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ABSTRACT 
 

 

Wetland systems provide vital hydrological ecosystem goods and services to mankind. When 
wetlands are transformed, through invasion by alien plants or replaced with agriculture, natural 
capital is lost, and the system is no longer able to provide the same quality of hydrological 
ecosystem services. Natural capital can be restored, but it involves substantial financial 
investment, and there is no guarantee that these hydrological ecosystem services will be fully 
recovered. This thesis aimed to investigate the hydrological impact of the land-cover changes in 
the Kromme River Catchment over the last 50 years, by using a combination of mapping and 
hydrological modelling techniques. We hypothesized that wetland loss in the Kromme has 
resulted in a shift in the flow regime, greater responsiveness to floods as a result of less storage, 
lower baseflow, and reduced water quality. We also hypothesised that the riparian invasion by 
Acacia mearnsii has caused flow reductions as a result of increased evaporation relative to the 
wetlands. Modelling results predict that over the past 50 years, the transformation of the 
floodplain wetlands in the Kromme River has shifted the flow regime, reducing baseflows and 
increasing the responsiveness of the catchment to extreme rainfall events. The invasion of A. 
mearnsii over time has also been predicted to have caused a reduction in river flow. Various 
restoration scenarios were considered, however if the Kromme were to be restored back to a 
land-cover state comparable to the 1950’s, 26.9 km2 (65.1%) of A. mearnsii would have to be 
cleared, and 5.2 km2 (34.2%) of the wetlands would have to be restored. The hydrological 
benefits would include a predicted increase in riverflow (42 mm/a), baseflow (2.9 mm/a), an 
increase in flood protection and improved water quality. This restoration strategy could be 
regarded as a type of insurance plan, and the benefits gained in terms of increased ecosystem 
service delivery would be the insurance premium. In conclusion it appears that restoration, 
insuring natural capital in the Kromme River, would provide significant economic returns on 
investment.  
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OPSOMMING 
 

 

Moeraslandstelsels voorsien die mens van noodsaaklike hidrologiese ekosisteemgoedere en -
dienste. Wanneer moeraslande verander word, hetsy deur die indringing van uitheemse plante of 
vervanging met landboubedrywighede, gaan natuurlike kapitaal verlore en kan die stelsel nie 
meer dieselfde gehalte hidrologiese ekosisteemdienste lewer nie. Hoewel natuurlike kapitaal 
herwin kan word, behels dit beduidende finansiële belegging, en is daar boonop geen waarborg 
dat die hidrologiese ekosisteemdienste ten volle sal herstel nie. Hierdie tesis het ten doel gehad 
om die hidrologiese impak van die grondbedekkingsveranderinge in die Krommerivier-
toeloopgebied oor die afgelope 50 jaar met behulp van ’n kombinasie van karterings- en 
hidrologiese modelleringstegnieke te ondersoek. Die hipotese was dat moeraslandverlies in die 
Kromme tot ’n verandering in die vloei-regime, hoër responsiwiteit op erge reënval as gevolg 
van minder bergingsruimte, ’n laer basisvloei en swakker watergehalte gelei het. Daar is voorts 
gehipoteseer dat die oewerindringing deur Acacia mearnsii ’n verlaging in vloei veroorsaak het 
weens ’n toename in verdamping uit die moeraslande. Modelleringsresultate dui daarop dat die 
transformasie van die vloedvlakte-moeraslande in die Krommerivier oor die afgelope 50 jaar die 
vloei-regime verander het, basisvloei verminder het en die toeloopgebied se responsiwiteit op 
erge reënval verhoog het. Die indringing van A. mearnsii het ook volgens aanduidings mettertyd 
’n vermindering in riviervloei tot gevolg gehad. Verskeie herstelscenario’s is oorweeg. Om die 
grondbedekking in die Kromme te herstel tot wat dit in die 1950’s was, moet 26,9 km2 (65,1%) 
van die A. mearnsii verwyder en 5,2 km2 (34,2%) van die moerasland herwin word. Die 
hidrologiese voordele kan ’n verwagte toename in riviervloei (42 mm/a) en basisvloei (2,9 
mm/a), ’n toename in vloedbeskerming sowel as beter watergehalte insluit. Hierdie 
herstelstrategie kan as ’n soort versekeringspolis beskou word, en die voordele verbonde aan 
beter ekosisteemdienslewering as die versekeringsuitbetalung. Ten slotte blyk dit dat die herstel 
van die Kromme, en die gepaardgaande versekering van natuurlike kapitaal, beduidende 
ekonomiese opbrengste op belegging sal meebring. 
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CHAPTER 1: INTRODUCTION 
 

 

Motivation 

 

Restoration of Natural Capital (RNC) is a process through which not only the individual 

components of an ecosystem are restored, but also the flow of ecosystem goods and services 

(Aronson et al. 2007). Ecosystem services are the benefits that humans derive from nature that 

are essential to human existence (Daily et al. 2000, de Groot et al. 2002). The delivery of many 

ecosystem services has been repeatedly improved by restoration with many examples of 

successes worldwide (Aronson et al. 2007). Restoration has also been repeatedly shown to 

increase biodiversity and improve the socio-economic value of an ecosystem or area (Aronson et 

al. 2007, Blignaut & Aronson 2008, Blignaut et al. 2010). The concept of payments for 

ecosystem services (PES) was developed to give users of ecosystem services an incentive to pay 

for the benefits they derive from nature (World Bank 2004, Kosoy et al. 2008). PES requires 

interdisciplinary interaction, and provides a platform from which scientists, economists and 

beneficiaries can communicate and cooperate (World Bank 2004, Kosoy et al. 2008).  

 

The most well known restoration project in South Africa, the Working for Water (WfWater) 

Programme, commenced the clearing of invasive alien plants (IAP) in 1995 (Hosking et al. 

2002). The primary aim of WfWater is to contribute to economic empowerment, social equity 

and ecological integrity (Turpie et al. 2008, DWAF 2004). IAP clearing programmes are also a 

cost-effective way to protect water resources in South Africa (Le Maitre et al. 2002). However, 

recent research has shown that the WfWater Programme is sometimes inefficient, as follow-up 

IAP clearing treatment is often not done timeously (Hosking & du Preez. 2004, van Wilgen et al. 

2012, McConnachie et al. 2012). There is a growing body of research on RNC and PES 

(Aronson et al. 2007), but according to Cowling et al. (2008), there has been a failure to link this 

restoration research with socio-economics and policy making (Aronson et al. 2010). This failure 

suggests that restoration projects have not been successful in effecting changes in the way 

ecosystem services are integrated into management practices (Cowling et al. 2008). A meta-
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analysis of the pre-2009 restoration literature, 1582 peer-reviewed articles from 13 journals, 

revealed that the societal benefits of restoration are frequently underestimated and undervalued 

(Aronson et al. 2010). This has highlighted the overwhelming need for interdisciplinary research, 

and suitable management frameworks for this research that will maximize outcomes (Cowling et 

al. 2008).  

 

Background 

 

This master’s study is part of a greater, interdisciplinary umbrella project undertaken by 

ASSET Research1 and funded by the Water Research Commission, South Africa. There has been 

a large amount of ecological restoration work done in South Africa, however very few of these 

cases have documented the benefits of restoration. The purpose of the project was to provide 

evidence of the benefits of the restoration of natural capital and to address this information 

deficiency. Eight recently restored sites across South Africa were selected as case studies. These 

sites were, organised by biome: Oudtshoorn (Succulent Karoo), Namakwa Sands (Succulent 

Karoo), the Sabie River (Grassland (top) and Savanna (bottom)), the Drakensberg (Grassland), 

Lephalale (Savannah), the Agulhas Plain, Beaufort West (Nama Karoo), and the Kromme River 

(Fynbos). At each of these eight sites the following hypothesis was tested: 

 

RNC improves water flow and water quality, land productivity, in some instances sequesters 

more carbon, and, in general, improves both the socio-economic value of the land in and the 

surroundings of the restoration site as well as the agricultural potential of the land. 

 

This master’s thesis investigates the hydrological benefits of restoration in the Kromme 

River system in the Eastern Cape of South Africa. The study was interdisciplinary in nature, and 

Katie Gull (Gull 2012) conducted the economics study of the Kromme system. As well as the 

hydrological science undertaken in this thesis, this research had a strong social science element. 

All of the farmers within the study area in the Kromme River were interviewed as part of this 

study (Appendix 1). This master’s research also culminated in a farmer’s workshop, where 
                                                           
1 ASSET Research is an African research and development platform committed to the vision of a prosperous, clean and green economy in Africa. 
Website: http://www.assetresearch.org.za/  
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research findings were presented back to the farming community and workshops on the ecology 

of the Kromme system were held (Appendix 2).  

 

Socio-economic setting 

South Africa is a chronically water scarce country (Ashton 2002). The invasion of alien 

plant species, especially in river systems of South Africa, is a serious threat to water security 

(Dye & Jarmain 2004, Görgens and van Wilgen 2004). The coastal city of Port Elizabeth in the 

Eastern Cape of South Africa is in the midst of a water crisis and is searching for ways to 

augment its water supply to achieve water security. The Kromme River is a crucial water supply 

catchment for Port Elizabeth as the metropolis currently obtains roughly forty percent of its 

water from the Churchill and Impofu Dams collectively (DWA 2010).  

 

Farmers have occupied the Kromme Catchment since the eighteenth century (Haigh et al. 

2002, Raymer 2008). Since then, the hydrological regime has been altered by over-grazing, 

transformation of flood plains for crop production, invasion of alien trees in the floodplains 

(mainly Black Wattle, or Acacia mearnsii), canalization and straightening of the river, building 

infrastructure through and alongside the river, mechanical damage to the wetlands (ploughing) 

and the removal of a keystone wetland plant, palmiet (Prionium serratum). However, the 

growing recognition of the extensive damage being done by erosion of these wetlands resulted in 

restoration commencing in 1996 in the Kromme (Haigh et al. 2002). Gabions were constructed to 

prevent further erosion from headcuts, and A. mearnsii stands began to be cleared (Haigh et al. 

2002). Further information on the detailed history of the Kromme is available in Appendix 3.  

 

This study is of great socio-economic importance as our findings suggest that the effective 

control of A. mearnsii from the Kromme Catchment would make significant volumes of water 

available for downstream users –including the municipality of the city of Port Elizabeth.  

 

Aim, key research question, hypotheses and significance of study 

 

This masters study investigated the impact of restoration on several ecosystem services, 

including provisioning (water flow) and regulating (water purification, assurance of supply, 
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flood attenuation) services. As the restoration is a recent activity in the Kromme Catchment, we 

would not expect it to have demonstrated the full effects yet and there could be a time-lag of 

several years before benefits can directly be measured in the hydrological record. Thus this study 

examined the changes in the land-cover of the Kromme Catchment over the past 50 years and 

investigated the impact this had on the hydrology. The benefits of restoration were then inferred 

from the results. The central research question of this thesis is: 

 

What was the hydrological impact of the land-cover changes in the Kromme River Catchment 

over the last 50 years? 

 

To address this question, two steps had to be taken: firstly, the land-cover changes in the 

Kromme had to be quantified (Chapter 3), and secondly, matched to changes in the hydrological 

record (Chapter 4). However, no reliable flow record exists for the Kromme River, so the 

hydrology of the Kromme had to be modeled. A key issue in this study was how to calibrate the 

model if no riverflow data exist. This was addressed by ensuring that the key drivers of 

evaporation change, including the loss of palmiet wetlands (i.e. P. serratum dominated wetlands) 

and invasion by A. mearnsii would be modeled acceptably by comparing outputs with 

measurements available in the literature. No work has been done on the water use of palmiet 

wetlands, so the water-use of palmiet was studied to address this gap (Chapter 5). We 

supplemented the findings of the palmiet study with unpublished data on evaporation from 

palmiet wetlands and used this as input into the modelling chapter (Chapter 4).  

 

The main hypotheses for this study are: 

a) Wetland loss has resulted in: a shift in the flow regime, greater responsiveness to 

floods as a result of less storage and less baseflow and a reduction in water quality 

due to loss of filtering capacity of wetlands.  

b) Riparian invasion by A. mearnsii has caused flow reduction as a result of increased 

evaporation relative to P. serratum.  

c) Cultivation of floodplains has caused a decline in water quality.  

 

Thesis structure 
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This thesis is composed of six different sections: three of these are synthesis chapters 

(introduction, literature review and conclusion) and three are research chapters (Figure 1.1). 

There is some overlap between the literature review and the introductions of the data chapters 

since each was written as a stand-alone publishable unit. Each chapter is briefly described below 

along with listings of the main contributors.  

 

 

 Figure 1.1: The visual framework of this thesis 
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Chapter 1: Introduction – This chapter sets the scene for the thesis, mentioning the motivation 

for the study and the umbrella project that this thesis falls under. It also briefly introduces 

the Kromme River catchment and its socio-economic setting, as well as some of the most 

important issues in the area. It outlines the specific aims of this master’s thesis and 

introduces the research questions and structure of the thesis.  

 

Chapter 2: Literature Review – This chapter reviews the broader literature base to set the 

scene for the three data chapters that follow. This chapter is divided into two main sections 

answering two specific questions. Firstly, to set the scene for Chapter 5: what information is 

available on the water use of South African vegetation types or land-cover types; 

specifically alien plant invasions and wetlands? Secondly, to set the scene for Chapter 3 and 

4, what is known nationally and internationally about the impacts of changes in land-cover 

on hydrological ecosystem goods and services? The focus here is specifically on the 

transformation of floodplain wetlands into cultivated land (e.g. changes in flow regulation, 

impacts on water quality and sediments) and the impacts of riparian invasions on flow 

regimes (flow reductions and yield).  

 

Chapter 3 – This chapter provides an in-depth view into what has happened to land-use in the 

Upper Kromme Catchment over the last 50 years. It specifically addresses the issues of alien 

invasion and wetland degradation. The output of this study included four high-resolution 

land-cover maps, from 2007, 1983, 1969, 1954 (Appendix 4). This is the first study of its 

kind and level of detail to be conducted in a South African catchment. This chapter has been 

submitted for peer-review for inclusion into a Springer Book entitled: Landscape Ecology 

for Sustainable Environment and Culture, edited by Prof Bojie Fu and Prof Bruce Jones. 

This chapter was co-authored by the following people: Dr David Le Maitre, Prof Karen 

Esler, and Prof Richard Cowling (co-supervisors). 

 

Chapter 4 –This chapter uses the mapping data obtained in Chapter 3 and incorporates it into a 

hydrological model. It specifically investigates the impacts of land-cover change on 

hydrological ecosystem goods and services. It also incorporates data from Chapter 5. The 

details of how the crop factor for the Kromme wetlands was derived can be found in 
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Appendix 5. This chapter has been aimed at an international audience, and we plan to submit 

it to the Journal of Wetland Ecology and Management or an equivalent journal. This chapter 

was co-authored by the following people: Dr David Le Maitre, Prof Karen Esler, Prof 

Richard Cowling (co-supervisors), Mr Mark Horan and Mr Sean Thornton-Dibb (provided 

technical advice and input into the model development).  

 

Chapter 5 – This chapter shifts focus and scale, and even study site, to one aspect of one species: 

the water-use of the wetland plant commonly known as palmiet (P. serratum). This study 

was undertaken because the hydrological model (Chapter 4) required a ‘crop factor’, a 

measure of water use which relates actual to potential evaporation, for each vegetation type 

found in the Kromme. There has been much research done on the water-use of agricultural 

species, and to a limited extent native dryland species, however very little work has been 

done on the water use of wetland species. This study looks at whether or not palmiet is a 

conservative water user, and how its water-use compares to other vegetation. This chapter 

may be submitted as a short research note to the South African Journal of Botany. This 

chapter was co-authored by the following people: Dr David Le Maitre, Prof Karen Esler, Prof 

Richard Cowling (co-supervisors) and Dr Caren Jarmain who provided Scintillometry and 

remote-sensing data, as well as help with methodology. 

 

Chapter 6: Conclusion – This concluding chapter summarizes the major findings of this thesis 

and puts forward some management recommendations. It also reflects on gaps in the 

research and highlights areas for future study. It also mentions how this thesis attempts to 

address some of these gaps (Appendix ^)  

 

Appendix 1 – Social Study: a background to the farmers of the Kromme is presented in this 

Appendix, as well as a summary of the activities taking place in the catchment and some of 

the opinions held by landowners. This Appendix also provides the main output of this study: 

the interactive land-cover map, with agricultural information overlaid.  

 

Appendix 2 – Kromme Workshop: a summary of the farmers workshop held in March 2012 at 

Kareedouw.  
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Appendix 3 – The History of the Kromme. This work was included as an appendix so as not to 

detract from the flow of the thesis. It outlines the chronological history of the Kromme. It 

also presents a time-line of some of the major activities in the Kromme since 1775.  

 

Appendix 4 – Land-cover Maps: the land-cover maps and corresponding aerial photographs are 

displayed in this Appendix.  

 

Appendix 5 – Palmiet Crop Factor: this appendix shows the data analysis and derivation of the 

Crop Factor used in the hydrological modelling in Chapter 4.  

 

Appendix 6 – Policy Paper: Urban water use. Authors: Alanna Rebelo and Katie Gull.  
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CHAPTER 2: LITERATURE REVIEW 
 

 

Land transformation, which results in habitat loss, is currently the major threat to both 

species (Pimm & Raven 2000, Raimondo et al. 2009) and ecosystems (Vitousek et al. 1997, 

Rouget et al. 2004, Reyers et al. 2009). Though this transformation is perhaps essential for food 

and resource provision, the process of changing native land-cover into a specific land-use often 

has undesirable side-effects on hydrological ecosystem goods and services delivery (Vitouek et 

al. 1997, Falkenmark et al. 1999, Warburton et al. 2010). The reason for this is that the 

vegetation composition characteristic of different land-uses differentially affects the partitioning 

of rainfall between interception, transpiration, infiltration and runoff (Falkenmark et al. 1999, 

Costa et al. 2003). The native land-cover of the Kromme River System in the Eastern Cape 

Province of South Africa has been transformed into various agricultural land-uses, such as 

orchards and grazing (Chapter 3). The Kromme floodplain wetlands, crucial for providing 

hydrological ecosystem services to the Port Elizabeth Metropolis downstream, have been 

transformed by cultivation or invaded by woody alien trees, predominantly the Australian Black 

Wattle, Acacia mearnsii (Chapter 3). Perceptions of a marked decline in hydrological ecosystem 

services from the Kromme led to restoration efforts to mitigate this loss, beginning in 1996 

(Haigh et al. 2002, Raymer 2008). To understand the hydrological change that has taken place in 

the Kromme catchment, it is important to know the properties and water-use characteristics of 

native South African plants, and those that, after land transformation, replace them.  

 

This literature review has two main sections. The first section addresses what is known about 

the water-use of South African plants and woody invasive alien plants (IAPs). The second 

section reviews the local and international literature on the hydrological effects of land 

transformations.  
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Water-use of South African plants 

 

The impacts of vegetation change, the result of succession or an alien invasion, on the 

hydrological regime is difficult to quantify because there is high variation in plant growth forms 

and physiology. The concept of ‘limits to evaporation’ was developed to simplify this 

complexity by identifying six key determinants of evaporation (Calder 1996, Calder 1999, Le 

Maitre 2004). These can be divided into two categories: physical and biological factors. Physical 

factors are, in order of magnitude of effect, soil moisture availability, energy availability and the 

effect of raindrop size on interception losses. The most important biological factors are plant size 

(e.g. height and root depth), and plant physiology (e.g. degree of drought tolerance) and the 

seasonality of the leaves (Calder 1999, Le Maitre 2004). In South Africa, a water-scarce country, 

the major limit to growth and evaporation is soil water availability (Dye & Jarmain 2004, Dye et 

al. 2008b).  

 

A general principle exists with regards to plant water use: trees typically use more water 

than shrubs, which use more water than grasses (Bosch & Hewlett 1982, Dunin 2002). However 

some native South African plant groups, such as fynbos and grasslands, have features that limit 

water-use (Mooney et al. 1983). In the Cape Floristic Region, fynbos typically has leaves with 

low photosynthetic capacity, similar in structure and physiology to those in other Mediterranean-

type climate regions (Mooney et al. 1983). As a result, fynbos uses water relatively 

conservatively and their leaves have relatively low stomatal conductances (von Willert et al. 

1989, Mooney et al. 1983). In the Grassland Biome, transpiration rates are relatively high, but 

because grasses are dormant during the winter their annual transpiration is relatively low (Dye et 

al. 2008a, Dye et al. 2008b). In the more arid grasslands, rainfall is low, and so transpiration 

typically dominates the water balance (Snyman & Fouche 1991). There are some cases in the 

montane grasslands of the Drakensberg Mountains in South Africa, where energy is the major 

limit to transpiration (Everson et al. 1998). Evaporation and runoff each account for about half 

the rainfall during average rainfall years, whereas transpiration was found to dominate the water 

balance during dry years (Everson et al. 1998).  
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Water-use of invasive alien plants  

 

There have been very few direct measurements of water use of IAPs in South Africa (Le 

Maitre 2004). Results of an international review of 40 studies worldwide reveal that the 

differences in water-use between IAPs and native plants of the same growth form appeared to 

arise at the leaf scale, where IAPs were measured to have higher stomatal conductances than 

indigenous species (Cavaleri & Sack 2010). However the dataset compared in this review used 

only a limited data set, and there are many studies that show that many other factors need to be 

taken into account, such as: whether a tree is evergreen or not, its rooting depth, the plant height 

and total leaf area (Everson et al. 2007, Clulow et al. 2011). In South Africa, most invasions are 

woody trees replacing shorter vegetation, which is generally composed of either herbaceous 

plants or low shrubs such as fynbos (Le Maitre et al. 2000). Greater water-use of South African 

IAPs is a result of higher transpiration rates of IAPs than that of native species (Dye et al. 

2008a). Higher transpiration in IAPs has been attributed to competitive physiological and 

structural advantages, such as higher leaf surface area, active summer growth and deeper root 

systems (Levine et al. 2002, Morris et al. 2011). In South Africa and Lesotho, woody invasive 

alien trees were estimated to have invaded 10.1 million ha to some degree by 1997 (Le Maitre et 

al. 2000). These invasions were estimated to decrease the mean annual surface runoff by about 

3300 million m3 per annum. In the Kromme River, the greatest IAP threat is that of invasion by 

A. mearnsii (Haigh et al. 2002, Raymer 2008, Chapter 3). A. mearnsii has been found to be 

highly drought tolerant and so has been declared likely to persist under climate change scenarios 

of water shortages (Smith et al. 1998, Crous et al. 2011).  

 

a. Non-riparian invasions 

In the grasslands of the Seven Oak District, KwaZulu-Natal, the annual transpiration of the 

grassland (3-6.5 mm.d-1) was found to be comparable to that of invasions of A. mearnsii, 

however that it was during the winter period, when the grass has senesced, that the trees used 

more water (Everson et al. 2007). In fynbos non-riparian sites, transpiration rates of A. mearnsii 

have been recorded between 1000-1400 mm per annum (Dye & Jarmain 2004). In non-riparian 

situations, indigenous vegetation typically has relatively low transpiration rates, so the invasion 
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or removal of A. mearnsii can result in differences in transpiration of up to 600 mm per annum 

(Dye & Jarmain 2004).  

 

b. Riparian invasions 

Direct measurements from the few studies done in South Africa have revealed that the water-

use of A. mearnsii in the riparian zone is markedly higher than that of indigenous vegetation 

(Dye et al. 2001, Everson et al. 2001). The total evaporation of a dense, closed canopy stand of 

mature A. mearnsii in a riparian zone in the Western Cape was measured to be over 1500 mm per 

annum (Dye & Jarmain 2004). This value is comparable to evaporation from tropical forests 

(Dye & Jarmain 2004). Where a soil-water deficiency exists, the transpiration of stands of A. 

mearnsii may exceed the rainfall if groundwater supplies are available (Clulow et al. 2011). At 

the Two Streams Catchment, KwaZulu-Natal, A. mearnsii was measured to be using 1156 mm 

and 1171 mm for 2007 (rainfall 689 mm) and 2008 (rainfall 819 mm) respectively (Clulow et al. 

2011). Annual transpiration of native riparian vegetation was compared to that of a riparian A. 

mearnsii invasion for two different riparian plant communities, one in the Fynbos Biome at a site 

in Jonkershoek, and the other in the Grassland Biome at Gilboa (Dye et al. 2001). In both 

Biomes, A. mearnsii was measured to have a higher annual transpiration than native riparian 

communities, yielding annual differences of 171 mm (1503 mm and 1332 mm respectively) in 

the Fynbos Biome, and 424 mm, (1260 mm and 836 mm respectively) in the Grassland Biome 

(Dye et al. 2001).  

 

Water-use of wetlands and riparian plants 

 

Historical diary excerpts written by early travellers in South Africa suggest that the 

floodplains of the Kromme River system may have once been covered entirely by peat wetlands, 

dominated by the wetland plant Prionium serratum (Skead 2009). Since the 1950’s, the Kromme 

wetlands have largely been transformed into agriculture, and currently only 12% of what may 

once have existed remains (Chapter 3). There have been few direct measurements done on the 

water-use of South African riparian and wetland species, which causes complications in 

hydrological studies, such as this one, where accurate estimations of plant water-use is important 

for realistic output of riverflow. An international review on the role of wetlands in the 
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hydrological cycle concludes that there is clear evidence worldwide that wetlands are generally 

higher water-users than adjacent non-riparian vegetation, with 48 out of 74 studies concluding 

that wetlands increase average annual transpiration (Bullock & Acreman, 2003). However 10% 

of studies conclude the opposite (Bullock & Acreman, 2003). 

 

In South Africa, it has been established that riparian vegetation – trees or wetlands that have 

permanent access to water in the root zone - has higher evaporation rates than non-riparian 

vegetation (Everson et al. 1998, Scott 1999, Dye et al. 2001, Everson et al. 2009). The limited 

research that has been done on South African wetlands has shown that wetlands are generally 

also high water-users as a result of the high evaporation rates of wetland plants such as reeds 

(Phragmites mauritianus) (Birkhead et al. 1997, Everson et al. 2001, Clulow et al. 2012). An 

early study in South Africa on riverflow in a marsh wetland system in KwaZulu-Natal in 1983, 

managed to link transpiration from the riparian zone with daily fluctuations in riverflow, 

demonstrating the high diurnal water-use of riparian species (Seyhan et al. 1983). There have 

been several studies on water-use of wetlands in South Africa which for this review have been 

presented by biome: the Fynbos and Grassland Biomes, and the Savanna Biome respectively.  

 

a. Fynbos and Grassland Biomes 

Annual transpiration was measured for two riparian tree communities, one in the Fynbos 

Biome at Jonkershoek, and the other in the Grassland Biome at Gilboa (Dye et al. 2001). The 

water use of these riparian tree communities was found to be high, at 1332 mm and 836 mm 

respectively (Dye et al. 2001). Upon comparing the water-use of riparian communities in two 

different biomes, Dye et al. (2001) concluded that water-use across different riparian plant 

communities cannot be generalised, as structural and physiological differences between them 

result in very different annual transpiration rates. Riparian vegetation, dominated by dense stands 

of Setaria megaphylla, of the grasslands from the Seven Oaks District of KwaZulu-Natal, was 

measured to have a very high water use, with a summer maximum of more than 6 mm. d-1 

(Everson et al. 2007). This riparian zone (7.5 ha, 11% of the catchment area) was found to be 

important in riverflow generation relative to its area, contributing 21% to annual riverflow, 

compared to the upland areas (65 ha, 89% of the catchment area) (Everson et al. 2007). At 

another site in KwaZulu-Natal, total annual evaporation for the wetlands of the Mfabeni Mire 
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was measured to be approximately 900 mm, which was lower than expected due to cloud cover 

in the summer and in general a low evaporative demand for that year (Clulow et al. 2012). 

Clulow et al. (2012) emphasized that transpiration from different sites should not be compared 

without taking into account evaporative demand (vapour pressure deficit, VPD), as differing 

VPD at different sites, may cause an under or over-estimation of transpiration for short-term 

studies (Clulow et al. 2012).  

 

b. Savanna Biome 

In the Savanna Biome, transpiration for a common reed, P. mauritianus, was measured in the 

Sabie River, Kruger National Park (Birkhead et al. 1997). Transpiration of reeds was found to be 

high, 12 mm/day in summer and 7 mm/day in winter (Birkhead et al. 1997). A modelling 

verification study on water-use of the riparian wetlands of the Sabie River in Kruger National 

Park found that this same reed, P. mauritianus, had lower daily transpiration rates of 9 mm in 

summer and 4 mm in winter (Everson et al. 2001). The two studies used different techniques and 

the one used by Birkhead et al, (1997) definitely resulted in over-estimates (Everson et al. 2001). 

In the Sabie River, the riparian tree community, dominated by Breonadia salicia was found to 

use 36% less water (2.5 mm.d-1) than that of the reeds (3.9 mm.d-1) (Everson et al. 2001).  

 

In the Limpopo Province, transpiration from floodplain and savanna vegetation in the Nylsvlei 

wetland was estimated to be between 920-1300 mm per annum, by using a combination of 

modelling techniques and energy balance measurements (Birkhead et al. 2007). In comparison 

from the North West Province, annual transpiration of a Phragmites communis dominated 

wetland in Orkney, was measured to be 1174 mm, using eddy covariance and Bowen ratio 

techniques (Dye et al. 2008b). The North West Province experiences summer rainfall, and thus 

daily transpiration was higher in summer (3 mm) than in winter (1.6 mm) (Dye et al. 2008b). 

Further west, in the Northern Cape Province, direct measurements have been taken on the water-

use of South African riparian species from the Seekoei River, including species such as the 

native trees, Rhus lancea, Acacia karoo, and two wetland graminoids: P. mauritianus and Juncus 

species (Everson et al. 2010). Riparian water usage was measured to be 65% higher than that of 

the surrounding vegetation, and distinct seasonal differences were also found (Everson et al. 
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2010). Average daily evaporation of two riparian sites was found to both be 2.77 mm (Everson et 

al. 2010). 

 

Impact of land-cover change on hydrology 

 

The two greatest land-cover changes in the Kromme River have been the transformation of the 

floodplain wetlands into agriculture, and the invasion of the riparian zone by A. mearnsii. 

However, it is difficult to conclusively demonstrate causal relationships between these land-

cover changes and the hydrology of the Kromme (Royappen et al. 2002). This review aims to 

shed some light on what hydrological changes should be expected from these two key land-cover 

changes. The first section reviews the literature of the impacts of the transformation of floodplain 

wetlands into cultivated land, the second reviews the available information on the impacts of a 

change from native vegetation to plantations on flow regimes, and the third reviews the impacts 

of riparian invasions on flow regimes.  

 

For this section of the review it is necessary to clarify some hydrological concepts that will 

be discussed in further detail. In terms of the water balance, not all precipitation immediately 

enters the river channel and flows out of the catchment (Hewlett 1982). Water may be 

evaporated, immediately discharged from the catchment, temporarily stored, or percolated deep 

into subsurface storage (Hewlett 1982). Surface runoff or overland flow is defined as that part of 

precipitation that fails to infiltrate the soil, due to a range of physical and chemical factors, and 

flows over the surface until reaching the river channel (Hewlett 1982, Descheemaeker et al. 

2006). Rainwater infiltrating the soil enters the sub-surface system and percolates through the 

soil and weathered rock, in some cases following preferential flow pathways, in others reaching 

the water table, before discharging into a river (Midgley & Scott 1994). Stormflow is the sum of 

the water from surface and subsurface stormflow that discharges during and after a rainfall event, 

and can be distinguished from the baseflow, the relatively steady flow which persists between 

events (Hewlett 1982, Lacey & Grayson 1998) using a range of techniques (Smakhtin 2001). 

Groundwater is defined as subsurface water located in the saturated zone. Other subsurface water 

is soil moisture (Le Maitre et al. 1999). The below ground movement of water is poorly 

understood (Royappen et al. 2002), but in a recent study groundwater discharge was found to 
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constitute a large portion of baseflow in many South African catchments (Le Maitre & Colvin 

2008). A high proportion of baseflow is often associated with catchments with high rainfall or 

low evaporation and large water storage capacity, often where the underlying geology is granite 

or basalt (Mwakalila et al. 2002). 

 

There is a set of principles governing hydrological impacts of land-use change within a 

catchment. Firstly, the location of a specific land-use or land-cover change within a catchment 

plays an important role in riverflow response (Warburton et al. 2012). The riparian zone for 

example, although it makes up only a fraction of the area of a catchment, is significant because 

changes in this zone have impacts disproportionate to the area of transformation (Scott 1999, 

Everson et al. 2007). Secondly, the relative contribution of land-use or a land-cover change to 

riverflow is not proportional to the area of that change (Bosch & Hewlett 1982, Warburton et al. 

2012). Lastly, the relative contribution of each land-use to riverflow is not constant, but varies 

with mean annual precipitation (Warburton et al. 2012). 

 

Transformation of floodplain wetlands into cultivated land 

 

a. Changes in flow regulation 

Wetlands are well known to be vital for flood attenuation in a landscape as in many instances 

they have been shown to have a buffering ability, reducing floods and delaying stormflow (Kotze 

& Breen 1994, Bullock & Acreman 2003, Kotze et al. 2005, Turpie et al. 2008, Russel 2009). In 

the Kromme River, we are aiming to determine whether the catchment’s response to large 

rainfall events is consistent with what we would expect, given the land-cover changes. 

Catchment responses to large rainfall events are not much affected by vegetation due to 

saturation of the catchment, however where there is large storage, such as floodplain or peat-

forming wetlands, this is different (Bragg 2002, Bullock & Acreman 2003, Scott et al. 2004, 

Stähli et al. 2011). There has been extensive research done on the hydrology of peat-forming 

wetlands in the Northern Hemisphere (Evans et al. 1999, Bragg 2002, Grayson et al. 2010). Peat-

forming wetlands are well known to occur in systems characterised by ‘boom and bust’ type 

dynamics, with flashy stormflow hydrographs (Holden et al. 2007, Grayson et al. 2010). 
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Degraded peat-forming wetlands in northern England were found to be less able to absorb 

extreme rainfall events than those that had been restored (Grayson et al. 2010).  

 

In a review of the international literature, land transformation from forest and grasslands to 

agriculture, crop and pasture lands was found to increase riverflow (Scanlon et al. 2007). 

However this may not be beneficial, as although there is little South African literature on the 

topic, it is likely that a land-use change to agriculture would decrease baseflow and potentially 

yield. In south-eastern Amazonia, a land-use change from native cerrado (characterized by 

grasses, small palms, shrubs and twisted or leaning trees) to agriculture, mostly pastures, 

decreased mean annual riverflow by 24% and increased high season flows (Costa et al. 2003). A 

modelling study in Ethiopia found that restoring land-use from agriculture, either cultivation, 

pasture lands or maize and some subsistence agriculture, back to indigenous woodland, semi-arid 

land characterised by dryland acacias, would decrease riverflow by 8% (Legesse et al. 2003). In 

a modelling study done in South Africa, degradation of native dryland vegetation by too-frequent 

burning and overgrazing was shown to increase riverflow (Mander et al. 2010). In a review of 

169 studies worldwide, wetlands, although providing invaluable services to mankind, in most 

cases use more water than other land-uses, thereby reducing riverflow (Bullock & Acreman 

2003).  

 

With respect to understanding groundwater and surface interactions within wetlands, it is 

important to understand the connectivity and geology of each specific wetland (Devito et al. 

1996). Many wetlands exist because they have formed atop impenetrable geological features, so 

there is little or no groundwater interaction (Devito et al. 1996, Bullock & Acreman 2003). 

However this is different for floodplain wetlands, such as those in the Kromme, which have are 

known to be connected and to recharge groundwater, especially during flood events (Bullock & 

Acreman 2003). In many wetlands documented to be valuable for groundwater recharge, the 

direction of flow between surface flow and groundwater varies depending on the hydrological 

conditions (Dubreuil 1985, Thompson & Hollis 1995, Wolski 2002). Bullock and Acreman 

(2003) reviewed 69 wetland studies pertaining to groundwater recharge. Half of these simply 

stated that groundwater recharge took place, a quarter stated that there was no recharge, six 

studies reported wetlands to recharge more, and nine studies that wetlands recharge less than 
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other land types (Bullock & Acreman 2003). A study of peat wetlands in the United Kingdom 

found that there was no significant flow regulation, and that groundwater discharge contributed 

very little to baseflow (Evans et al. 1999). However there are cases, such as in the floodplain 

wetlands of Nigeria, where wetlands have been found to increase baseflow (Sellars 1981).  

 

b. Water quality and sediments 

Wetlands have important functions in the hydrological cycle, as they have the ability to retain, 

or temporarily store, water and sediments (Begg 1986, McCarthy & Ellery 1998, Tooth et al. 

2002, Humphries et al. 2010b). Sediments in the floodplain have been found to be an important 

sink for solutes, allowing river systems in good condition to improve water quality (Humphries 

et al. 2010a). Conclusions from a global review suggest that changes in land-use from forest and 

grasslands to agriculture (crop and pasture lands) may degrade water quality by mobilizing salts, 

causing salinization, and leaching of fertilizers (Scanlon et al. 2007). In Rwanda, marsh 

agricultural reclamation, drainage by Electrogas and increase in hydropower has degraded the 

water table of the marsh, the water quality of the marsh and decreased the water level in lakes 

downstream (Hategekimana & Twarabamenye 2007). In a South African study, road 

construction, invasion by alien plants and water use by local residents were found to have the 

greatest impact on the water quality of the eMthonjeni-Fairview Spring Wetland in 

Grahamstown, with the greatest damage caused to erosion control and toxicant removal services 

(Sinchembe & Ellery 2010). However riparian restoration in the USA, inter alia riparian fencing, 

protected stream crossings, and stream bank bioengineering, which create protective buffering 

between the dryland and water course, has been found to be successful in improving water 

quality, specifically phosphorous concentrations and bacterial counts (Meals 2001).  

 

c. Geomorphology 

The floodplains of the Kromme Catchment formed and accumulated sediments and wetlands 

over millennia, indeed the remaining palmiet wetlands are growing atop peat beds estimated to 

be some 0.5 to 2.8 m in depth, over 5600 years old (Toerien & Hill 1989, Haigh et al. 2002, 

Lewis 2008). The geomorphology of the Kromme River has since been modified, and at several 

points along the length of the river, there are large headcuts, eroding backwards into the exposed 

floodplain (Haigh et al. 2002). An underlying principle of geomorphology is that a landscape is 
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dynamic, erosion is a natural process and rehabilitation should be done with this in mind 

(Grenfell et al. 2009). Disturbance in the river channel, in the form of a road dissecting the river 

or the ploughing of the river bed, causes erosion and incision of the channel (Ellery et al. 2009). 

Accelerated erosion, for example, decreases water quality, causes sedimentation of dams and 

may result in a lowering of the water table (Bosch & Hewlett 1980). Typically, several drivers 

interact to bring about geomorphological change in a landscape and it is difficult to isolate their 

individual effects (Michalková et al. 2011).  

 

In California, a Mediterranean-type climate region, land-use change over large areas altered 

erosion intensity which caused channel lengthening and a decrease in active channel width 

(Michalková et al. 2011). In South Africa and Australia, IAPs have been found to impact the 

geomorphology of river systems by modifying the river channel and their removal can lead to 

significant channel instability and mobilization of sediment (Beyers 1991, Rowntree 1991, 

Richardson et al. 1997, Bunn et al. 1998). In the Kromme River, IAPs shade out palmiet 

wetlands and have caused extensive erosion damage due to the species having a shallow 

spreading root system (Boland et al. 2006). The impacts of IAPs on riverine habitats show that 

invasion can lead to significant destabilisation of the floodplain sediments and result in erosion 

(Rowntree 1991). It is possible to mitigate these geomorphological impacts and one such 

example of this is in the Andes, where restoration of dense vegetation on mountain slopes slowed 

the rate of erosion (Vanacker et al. 2007). Other solutions included a decrease in rural population 

size coupled with reduced agriculture and a decrease in grazing pressure. This resulted in 

decreased erosion rates, the colonization of riverbanks by riparian vegetation and the narrowing 

of a river channel (Kondolf et al. 2007).  

 

Impact of afforestation on flow regimes 

 

There have been very few measurements of the impacts of invasions on runoff in South 

Africa, so when it comes to understanding their impacts, we have to draw inferences from the 

knowledge that we do possess. Most invasions in South Africa involve woody plants or trees, 

thus we can look at studies that have compared runoff from catchments with woody plants versus 

shorter vegetation, herbaceous plants (e.g. grasslands) or low shrubs (e.g. fynbos) (Calder 1996, 
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Calder 1999, Le Maitre 2004). A review on 94 catchment experiments around the world 

conclusively demonstrated that a reduction in vegetation cover will result in an increase in 

riverflow, and vice versa (Bosch & Hewlett 1982). Tall woody trees, such as pine and eucalyptus 

change the riverflow by 40 mm per 10% change in vegetation cover, whereas for deciduous 

hardwoods it is 25 mm and scrub 10 mm, respectively (Bosch & Hewlett 1982).  

 

There have been many studies in South Africa on the impacts of plantations on riverflow, both 

in riparian and non-riparian settings, largely because the forestry industry is important for the 

economy but also accounts for the use of a relatively large proportion (4-8%) of South Africa’s 

water resources (Bosch & von Gadow 1990, Jewitt 2002). Many South African studies have 

found that afforestation of catchments significantly reduces riverflow, showing that woody trees 

use more water that the native vegetation (van Lill et al. 1980, van Wyk 1986, Scott & Smith 

1997, Scott & Lesch 1997, Scott et al. 1998, Scott et al. 2000). Several reviews have shown that 

where plantations replace shrubs or low vegetation they increase interception and transpiration, 

decrease total annual riverflow and baseflow and have a variable effect on stormflow, depending 

on the size of the rainfall event and the saturation of soil water reserves (Versfeld 1994, Forsyth 

et al. 1997, Vertessy et al. 2003, Scott et al. 2004). Dye (1996), noted that the rate at which 

transpiration increased after afforestation differed markedly between eucalypt and pine sites. In 

terms of what to expect when IAPs are cleared, studies show globally that deforestation increases 

riverflow (Bosch & Hewlett 1982, Zhang et al. 2001, Vertessy et al. 2003, Andreassian 2004, 

Bruijnzeel 2004, Scott et al. 2004, Legesse et al. 2010).  

 

A paired catchment experiment was done in South Africa to determine the longer-term effects 

of afforestation with Eucalyptus grandis and P. radiata on riverflow (Scott & Prinsloo 2008). In 

both experiments, afforestation led to reductions in riverflow. However, this trend was reversed, 

riverflow tending towards pre-afforestation levels, as the trees matured; over 30 years for the 

pines, and 15 for eucalypts. Another study on afforestation with Eucalyptus and Pinus species in 

a South African catchment was found to significantly decrease riverflow after three and four 

years respectively. The stream dried up after nine and 12 years respectively (Scott & Lesch 

1997). When the Eucalyptus plantations were clearfelled, full perennial riverflow did not return 

until five years later. Several studies done in New Zealand and Australia, found that greater 
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reductions in riverflow resulted after planting P. radiata than eucalyptus (Vertessy et al. 2003). 

Conversely, in South Africa greater reductions were found after E. grandis was planted than after 

that of Pinus patula and P. radiata (Scott & Smith 1997). Commercial plantations in South 

Africa were estimated to reduce the mean annual riverflow by 3.2% and baseflow by 7.8% (Scott 

et al. 1998).  

 

Impact of riparian invasions on flow regimes 

 

a. Runoff/Riverflow 

Where woody trees replace indigenous vegetation types such as fynbos or grasslands, they are 

known to alter the hydrology of the catchment in a number of ways. This is because different 

growth forms; trees, shrubs or grasses, affect hydrology differently (Calder 2005). Firstly, IAPs 

are able to alter the rainfall interception in a catchment (Calder 2005). A change in interception 

can alter the ratio of evaporation to infiltration rates, which could in turn alter riverflow (Bosch 

& Hewlett 1982). Secondly, where woody alien trees replace indigenous grasslands or other 

short vegetation types, transpiration rates (soil water uptake) will exceed those of the indigenous 

vegetation. This is because the roots of the woody alien trees are able to reach groundwater 

reserves 10 m or more below the surface (Le Maitre et al. 1999, Le Maitre 2004). Thirdly, dense 

stands of IAPs generally have high annual transpiration rates, especially when compared to those 

of indigenous plants which become dormant in particular seasons, such as grasslands (Dye & 

Versfeld 2007, Everson et al. 2007). At a larger, catchment scale, these differences manifest as 

changes in evaporation and therefore changes in riverflow (Le Maitre 2004).  

 

Modeling studies have estimated that invasion by IAPs will decrease riverflow (Le Maitre et 

al. 1996, Le Maitre et al. 2000, Le Maitre & Görgens 2001, Le Maitre et al. 2002). One study 

estimated that IAPs would decrease mean annual runoff by 3300 million m3 per annum (Dye et 

al. 2008a). A few studies have used portable weirs to examine the short-term effects of the 

clearing of invasive wattle (Dye & Poulter 1995, Prinsloo & Scott 1999). Both of these studies 

found that the removal of invasive wattle resulted in riverflow increases, however due to their 

short-term nature neither of these studies took into account the water-use of the native vegetation 

that would eventually replace the wattle (Dye & Poulter 1995, Prinsloo & Scott 1999). Three 
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paired-catchment experiments showed that clearing indigenous forest or exotic trees in the 

riparian zone of a catchment disproportionately increases riverflow compared to clearing trees in 

another part of the catchment (Scott 1999).  

 

b. Stormflow 

IAPs also have an effect on stormflow, because litter cover, satiation of aquifers and soil 

water storage capacity all play a role in the stormflow process (Scott et al. 2004). Surface runoff, 

a component of stormflow, was found to decrease with vegetation rehabilitation, as it becomes 

negligible when vegetation cover exceeds 65% (Descheemaeker et al. 2006). This is because the 

vegetation stabilises and protects the soil, and organic matter improves its structure resulting in 

significant increase in infiltration and sustained riverflow. Furthermore, total vegetation cover 

was found to explain 80% of the variation in the rainfall/runoff relationship (Descheemaeker et 

al. 2006).  

 

c. Groundwater and baseflow 

Gush et al. (2002) concluded that our understanding of the hydrological processes with regard 

to the water use of trees from deep soil profiles was inadequate. Woody alien invasions are also 

thought to cause a general reduction in groundwater recharge (Parsons 2004). Clearing natural 

forests has been shown to increase baseflow; provided disturbance is kept to a minimum 

(Bruijnzeel 2004). However in Australia, natural forest growth stage had no effect on baseflow 

(Lacey & Grayson 1998). In general, afforestation and reforestation has been found to decrease 

baseflow (Hibbert 1971, McGuinnes & Harrold 1971, Smith & Scott 1992, Versfeld 1994, 

Forsyth et al. 1997, Scott & Lesch 1997, Scott et al. 1998, Andreassian 2004, Scott et al. 2004).  

 

Conclusion 

 

Invasion of fynbos and grasslands by woody IAPs are similar in structure and physiology to 

plantations of the same species, and plantations have been shown to increase evaporation, 

thereby decreasing riverflow. This analogy is also supported by the results of short-term studies 

on effects of clearing IAPs on transpiration and interception. Riparian and wetland vegetation 

have been shown to have higher evaporation rates, and therefore total water-use, than adjacent 
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dryland vegetation, ranging from around 1000-1200 mm annually. Invasions by IAPs in riparian 

and wetland settings use more water than native riparian plants; for A. mearnsii transpiration 

ranges from 1300-1500 mm/annum. Therefore where IAPs replace native riparian vegetation it is 

likely that a decrease in annual riverflow will result. 
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CHAPTER 3 
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Securing sufficient and reliable water supply is a priority for many countries worldwide, but their 
efforts are hindered by widespread landscape degradation and uncertainty around future climate 
change. We used historical aerial photographs and mapping techniques to investigate how a 
South African landscape has changed over the past century. The Kromme River system, a 
valuable water-providing catchment for the Nelson Mandela Bay metropolitan hub, has become 
heavily degraded. The floodplain wetlands, which historically occupied the entire valley floor, 
have been almost completely replaced by agriculture or invaded by the Australian Black Wattle, 
Acacia mearnsii. Some efforts have been made to restore the wetlands and control the invasive 
plants, but our results show that at the current rate of clearing it would take 30 years before A. 
mearnsii would be brought under control. We recommend that investment should be made, as a 
type of insurance against the loss of natural capital, based on restoring resilience in important 
water-providing catchments to hedge against future climatic uncertainties. 
 
Keywords: floodplain wetlands, ecosystem goods and services, degradation, restoration, 
Prionium serratum, land-cover change, climate change.  
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Figure 3.1: The Kromme River in the Eastern Cape of South Africa as seen from its headwaters 
towards the coast. The Kromme is a narrow river valley, hence the name ‘Langkloof’, 100 km in 
length, bordered on each side by steep mountain ranges. The Kromme River has been heavily 
transformed by agriculture as shown in the foreground.  
 

Diary Extract: C. I. La Trobe 1816 

Upper Langkloof 
‘First impression of Langkloof: “a vale of perhaps 100 miles enclosed by mountains of 
different heights. On entering it we felt not a little disappointed ... we saw a long ridge of 
comparatively low hills, divided by narrow parallel kloofs, without wood or water, skirting 
a dull uncultivated vale....”’. (Skead 2009)  
-The Langkloof is the local name for the Kromme River valley 

 

INTRODUCTION 

 

The concept of insurance, using financial capital as a safeguard against future undesirable 

and yet possible events, is well entrenched within modern society. It is considered wise to invest 

in and protect manufactured and human capital but the concept of protecting and investing in 

natural capital is met with great resistance. Natural capital is the ecosystem infrastructure that 

provides humankind with essential ecosystem goods and services (Aronson et al. 2007, Mander 

et al. 2010). The Kromme River system has valuable natural capital, including wetlands and 

aquifers, which provide water as well as regulating and storing services to the downstream 
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Nelson Mandela Bay metropolitan hub (Haigh et al. 2002, Raymer 2008). The Nelson Mandela 

Bay metropolitan hub has a history of struggling to match water supply with demand, largely due 

to its rapidly increasing population size as well as economic development (Raymer 2008). There 

is a strong correlation of 0.91 between population size and water demand, and it is already 

evident that water demand is set to outstrip supply for the hub in the near future (Eberhard 2009). 

This ever increasing demand for resources coupled with the uncertainty surrounding the 

predicted changes in climate, will be a recipe for disaster if it is not mitigated by investing in, 

and ensuring that, natural capital is maintained. 

 

Natural Capital:  

“Natural Capital is an economic metaphor for the stock of physical and biological natural 
resources that consist of: 
Renewable natural capital (living species and ecosystems);  
Nonrenewable natural capital (subsoil assets, e.g. petroleum, coal, diamonds);  
Replenishable natural capital (e.g., the atmosphere, potable water, fertile soils); and  
Cultivated natural capital (e.g., crops and forest plantations).” 

(Aronson et al. 2007) 
 

The on-going efforts to maintain economic growth and development are driving the 

intensification of agriculture and other ways of using landscapes. Land transformation, or habitat 

loss, is currently the major factor endangering species (Pimm & Raven 2000, Raimondo et al. 

2009) and ecosystems (Rouget et al. 2004, MA 2006). This effect is exacerbated in semi-arid 

type environments with irregular rainfall, as there is often a mismatch between seasons when 

water is needed and when rainfall occurs (Kondolf 2011). This leads to measures aimed at 

capturing and using every drop of water available. Ecosystems need resilience to persist and 

humankind is making itself vulnerable by stripping ecosystems of this resilience by 

compromising their structural and functional integrity (eroding natural capital). This is 

particularly apparent in wetland and riparian ecosystems. Despite the uncertainty surrounding 

climate change, there is general agreement that it is likely to result in water shortages and an 

increase in floods in southern Africa (Midgley et al. 2005, Schulze 2005, Bates et al. 2008, Le 

Maitre et al. 2009). Alternatives to traditional infrastructure (like dams and inter-basin transfers) 

which involves using the infrastructure nature provides (such as wetlands and aquifers) are likely 
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to prove more effective in mitigating the effects of climate change and water scarcity (Matthews 

et al. 2011).  

 

Ecosystem Goods and Services: 
Ecosystem goods and services are the benefits that society derives either directly or 
indirectly from ecosystem functions (Daily et al. 2000, de Groot et al. 2002).  
These goods and services can be classified into three main groups: 
Provisioning services (e.g. water, food, fuel), 
Regulatory services (carbon sequestration, water filtration, crop pollination),  
Cultural services (fulfillment of human needs: spiritual, cultural, aesthetic, intellectual) 
(Aronson et al. 2007) 

 

Wetlands continue to be destroyed worldwide, as well as in South Africa, a trend which 

sacrifices long term societal benefit for short term, largely private gains (Ashton 2002). Major 

threats to wetlands and associated river systems are agriculture, forestry, invasive alien species 

and poor land and fire management (Mooney et al. 1986, Rowntree 1991, Groombridge 1992, 

Rejmanek & Randall 1994, Grundling & Marnewick 1999, David et al. 2000, Brinson & 

Malvarez 2002, Collins 2005, Kotze et al. 2009). Invasive woody alien trees, such as Acacia 

mearnsii, commonly known as Black Wattle, are one of the greatest threats to South Africa’s 

water supply because of high water consumption rates (Dye & Jarmain 2004). Alien plants had 

invaded about 10.1 million ha of South Africa and Lesotho to various degrees by 1996, resulting 

in the loss of an estimated 3300 million m3 of water per annum (Le Maitre et al. 2000).  

 

Acacia mearnsii (Black Wattle) 
A. mearnsii is arguably one of South Africa’s most aggressive IAPs. It is a tall woody tree, a 
competitive invader with extremely rapid growth rates, high seed production and drought 
tolerance (Crous et al. 2011). It transpires large volumes of water and, together with other 
woody alien invasive plants, has been shown to decrease riverflow, baseflow and yield of 
South African River Systems (Bosch & Hewlett 1982, Dye 1996, Le Maitre et al. 2009). It 
has shallow root systems and thus is not able to withstand flood waters, resulting in trees 
being ripped out which causing significant channel instability and erosion in river systems 
(Scott et al. 2004, Grenfell et al. 2005). A. mearnsii shades out native plant species, such as 
the wetland plant, palmiet (Prionium serratum) (Boucher & Withers 2004, van Wilgen et al. 
2008). A. mearnsii originates from Australia and is adapted to fire. This makes it very 
difficult to eradicate as burning simply stimulates the germination of its sizeable seed banks 
and many trees resprout. A. mearnsii poses a significant threat to attaining water security in 
South Africa. 
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Figure 3.2: The flowers and leaves of a Black Wattle (A. mearnsii) tree  
 

 

Figure 3.3: An aerial photograph taken from a helicopter of Black Wattle (A. mearnsii) invading 
the Kromme River System, South Africa. A large expanse of the river has been cleared 
(foreground and right) but re-growth with the next flood or fire is inevitable due to accumulated 
seed-banks.  

 

Restoration has had a highly successful return on investment worldwide as it has repeatedly 

been shown to improve the delivery of many ecosystem services (Aronson et al. 2007) and 

increase biodiversity (Aronson et al. 2007, Blignaut & Aronson 2008). In the 1990’s South 

Africa recognized the threat to ecosystems and the economy by alien plants and have 

acknowledged the impact of alien invasion and poor management (van Wilgen et al. 1998). In 

1996 a restoration programme called Working for Water (WfWater) commenced the clearing of 
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invasive alien plants (IAPs). It has been found to be economically viable and competitive to 

restore natural capital and infrastructure rather than using expensive, traditional engineering 

techniques (van Wilgen et al. 1998, van Wilgen et al. 2008). The Kromme River Catchment, a 

Mediterranean-type climate catchment in the Eastern Cape of South Africa, was selected as a 

priority location for WfWater, because of its importance in water provision for the Nelson 

Mandela Bay metropolitan hub. The water use of this metropolitan hub is predicted to increase 

from of 100 Mm3 per annum in 2007 to about 130 Mm3 per annum by 2017 (Murray et al. 2008). 

A major aim of the WfWater project is to make more water available by removing IAPs with 

high water consumption rates (McConnachie et al. 2012). However WfWater’s ability to cope 

with the scale of the problem and its efficiency over the past 15 years has been called into 

question (van Wilgen et al. 1998, Hobbs 2004, van Wilgen et al. 2012, McConnachie et al. 

2012).  

 

Working for Water 
In the 1990s South African scientists recognized the widespread damage to the landscape by 
alien invasion and acknowledged the urgent need for restoration. In 1996, the government’s 
WfWater programme began clearing the invasive alien trees in the Kromme River System 
(McConnachie et al. 2012). WfWater aims to make more water available by clearing IAPs 
that use high amounts of water. It is run through the Department of Water and 
Environmental Affairs. Since WfWater started in 1995, more than one million hectares of 
IAPs have been cleared throughout the country. WfWater has also provided jobs and 
training to about 20 000 people a year. These people are drawn from the most marginalized 
areas, and of the total, 52% are women. Currently there are 300 projects across all nine 
South African provinces (DWAF 2006).  

 

 

Figure 3.4: Workers from South Africa’s WfWater Programme. WfWater, besides restoring the 
landscape by clearing IAPs, also empowers local people by creating jobs for unskilled workers 
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Here we assess how changes in the South African landscape as a result of increased ‘progress 

and development’ have affected the Kromme Catchment. We ask what changes are likely to 

happen in the future, not only in terms of continued land transformation, but coupled with 

climate change. Have recent attempts to restore this landscape been successful? Are current 

restoration programmes efficient? We attempt to discover the main driver of these changes to 

answer the question: how can these complex systems be managed in such a way that they 

become our insurance against climate change?  
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METHODS 

Study site 

 

The Kromme River (33˚S, 24˚E) is located in the Eastern Cape Province of South Africa 

(Figure 3.5). It is about 100 km in length from its upper reaches (550 m above sea level) to its 

estuary. The catchment is narrow and steep, bordered by the Suuranys Mountains (±1050 m) to 

the north, and the Tsitsikamma Mountains (±1500 m) to the south, both running from east to 

west.  

 
Figure 3.5: The location of the Kromme River study catchments (K90A and K90B) and the 
position of the Churchill Dam in the South Eastern corner of the catchment. The Kromme River 
is located in the Eastern Cape Province of South Africa and the Nelson Mandela Bay 
metropolitan area receives 24% of its water from the Churchill Dam. Solid black lines within the 
catchment delineate 11 subcatchments, ■ the remaining palmiet wetlands, ■ Churchill Dam.  
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Rainfall in the region is unpredictable, but tends to exhibit a bimodal pattern, with 

maximums in spring and autumn (Midgley et al. 1994). Mean annual precipitation (MAP) for the 

entire catchment is ±614 mm. Mean annual runoff (MAR) for the entire catchment is ±75 mm 

which is ±11% of the rainfall (Middleton & Bailey 2008).  

 

The catchment has been heavily transformed by agriculture and alien invasion (Figure 3.6a). 

Groundwater recharge rates are estimated to be fairly high despite the relatively low rainfall, 

largely because of the shallow soils in the mountain slopes and the low water-use of fynbos 

(Figure 3.6b). Kareedouw (population under 1000) is the only town in the catchment (Figure 

3.6c). The catchment consists predominantly of shales and sandstones of the Cape Supergroup 

(Toerien & Hill 1989) (Figure 3.6d). The Cape Fold Belt is part of an intensely folded range with 

dipping beds forming a trellis drainage pattern (Lewis 2008). There are six large and five minor 

tributaries entering from the southern mountain range, and seven large and numerous minor 

tributaries entering from the drier northern mountain range in the upper catchment (Haigh et al. 

2002). Riverflow from the northern tributaries is mostly seasonal. Several of the tributaries have 

alluvial fans which limit the extent of the palmiet wetlands. Historically, the P. serratum 

stabilized the floodplain alluvium, forming peat basins which would have covered a large area of 

the floodplain (Haigh et al. 2002).  
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Figure 3.6: Characteristics of the upper Kromme Catchments: (a) vegetation and land-use, (b) ground water recharge (mm/annum), (c) towns and 
farms and (d) geology (Middleton & Bailey 2008). 
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Land-use in the Kromme was mapped at high resolution (~5m) spanning four decades: 1954, 

1969, 1986, 2007. These time-slices were supplemented with a reference state based on a 

reconstruction of the land-cover of the Kromme system prior to European occupation, and using 

the Garden Route Initiative’s Vegetation Map (Vlok et al. 2008). Land-use mapping was done 

using 1:20 000 aerial photographs in a GIS system (ArcMap) to divide the area into 15 pre-

selected land-cover categories (Table 3.1). The Fynbos was divided into 10 types by (Vlok et al. 

2008) but these were amalgamated into two categories for the modelling study based on whether 

the vegetation type classified as productive or unproductive for livestock. Areas of fynbos that 

was mapped as heavily degraded by over-grazing or altered fire regimes were kept as a separated 

class.  

 

Areas that were invaded by alien plants were only distinguished if they had reached maturity 

and the density was greater than that of 80%. Canopy cover values lower than this are difficult to 

distinguish from indigenous vegetation in aerial photographs. There is a small degree of error, 

which varies depending on the difficulty of identifying and mapping each land-use category. The 

most difficult land-cover type to map was the mountain seep wetlands, as it is difficult to 

distinguish them from surrounding dryland fynbos. Indeed the sizes of these seep wetlands are 

likely to fluctuate seasonally and to be different each year. However this error was justified in 

that mapping was done for hydrological modelling purposes and the hydrological differences 

between fynbos and seep wetlands would be marginal when compared to other land-use types 

such as floodplain wetlands.  

 

Mapping done using the most recent photographs was ground-truthed by mapping land-cover 

adjacent to the road that traverses the catchment. Some additional areas were verified using 

photographs and observations made during a helicopter trip over the catchment. The 2007 aerial 

photographs and map were used to cross-check identifications made from historical aerial 

photographs where the mapped classes could not be verified. Additional verification was done 

using maps compiled by different organizations and individuals: National Land Cover (NLC) 

(Van den Berg et al. 2008), maps showing extent, clearing and follow up done by WfWater, 

land-use maps for the Baviaanskloof Mega Reserve, and land-use maps for the Garden Route 

Initiative (GRI) (Vlok et al. 2008).  
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Table 3.1: The key to the different land-uses mapped in the Kromme Catchment, using aerial 
photograph based polygons captured using the ArcMAP software. 

 Land-use Description 
1 Dams Including small farm dams and a large municipal dam 

2 Mountain Seep Wetlands High altitude/gradient wetlands on the mountain slopes 

3 Palmiet Wetlands  Wetlands in the valley, dominated by Prionium serratum 

4 Riparian Vegetation Woody vegetation in ravines, either thicket or Afromontane forest 

5 Unproductive Fynbos Seven Different unproductive fynbos and renosterveld vegetation types 

6 Productive Fynbos Three Different productive fynbos and renosterveld vegetation types 

7 Degraded Fynbos Degraded by heavy grazing or poor fire management 
8 Irrigated Fields Agriculture that has an irrigation system (sprinkler or central pivot) 

9 Dryland Farming Any agriculture that is not irrigated 

10 Orchards Orchards with irrigation systems 

11 Acacia mearnsii The dominant woody invasive alien plant in the catchment 
12 Pinus species The 2nd most common woody invasive alien plant in the catchment 

13 Alien Plants  All other woody invasive plants, mainly Eucalyptus species 

14 Infrastructure All unnatural structures: houses, roads, railway lines, quarries 

15 Open Soil Open soil, sites of erosion or deposition in the river valley 

 

Geomorphology changes 

 

The total active channel length was measured along the centreline of the Kromme River from 

the aerial photographs from each of the four time slices.  

 

RESULTS 

 

Historical record and meteorological setting 

 

Diary Extract: C. I. La Trobe 1816 
East of Jagersbos 
“... this country, unproductive as it generally is in means of subsistence for man and beast 
(is clothed) with an astonishing profusion of vegetable beauty. Hardly a spot exists upon 
which some curious and beautiful plant does not rear its head in its proper season; and in the 
midst of this brown desert we see the magnificent chandelier or red-star flower, measuring 
from four to five inches, to a foot and a half in the spread of its rays growing luxuriantly 
among the stones (Brunsvigia littoralis)”. (Skead 2009) 

 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3                                                                                  Land-Cover Change in the Kromme 

 

63 
 

This historical overview of the Kromme was compiled using two sources: Haigh et al. (2002) 

and Raymer (2008). The earliest record of agriculture in the catchment was in 1775 when a Mr 

Ferreira applied for grazing rights at Jagersbos. By this stage, settlers had already occupied the 

eastern part of the catchment. Orchards and grazing were the most common forms of land-use 

until 1930. In 1931 a particularly large flood destroyed many orchards along the river banks, 

causing severe erosion. After this, many farmers turned to pasture, dairy and meat production. 

This is also when A. mearnsii appeared for the first time along a stretch of the Kromme River. 

From 1931 to 1934, good rainfall years ensured A. mearnsii establishment. After the war ended 

in 1942, agricultural pressure increased. After orchards were swept away again in a flood in 

1965, the farmers raised the banks of the river in an attempt to contain future floods. This caused 

significant channel erosion. By 1986, more than half of the valley floor had been converted to 

agriculture and A. mearnsii had formed dense stands on the floodplains. In 1996 WfWater began 

clearing the A. mearnsii, revealing the extent of the damage to the wetlands. In 2000 Working for 

Wetlands, a programme aimed at the rehabilitation of river systems, began building a series of 

weirs to prevent headcuts from eroding further upstream (Working for Wetlands 2010).  

 

Diary Extract: C. J. F. Bunbury 30 March 1838 
Langkloof 
“The country was extremely arid except along the course of the little streams, and on the 
hills near the younger Kamper’s residence the bushes had been burnt to a considerable 
extent, a practise general in this country and advantageous to the cattle but very provoking 
to the botanist”. (Skead 2009) 

 

Since 1931, the first recorded flood, there has been a major flood approximately every 

decade, the exceptions being the 1940’s and the 1970’s. In the 1980’s there were two major flood 

episodes, the first being a series of three consecutive floods in 1981 and the second in 1983. The 

1996 floods were described as the largest ever experienced in the catchment. In the past decade 

three major flood events have been recorded: 2004, 2006, and 2007. This year, 2012, the 

Kromme experienced a series of large flooding events. These results were not encorporated into 

this study.  
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Erosion Damage in the Kromme River 
In the Kromme River, headcuts formed as a result of activities which disturbed the Kromme 
River’s path. Examples from the Kromme were the building of a provincial road (the R62) 
and the building of the railway line through the wetlands, river or floodplain. The damage 
done was exacerbated by farmers allowing animals to graze in these disturbed areas, or 
ploughing these areas up for agriculture. These activities created ‘nick-points’ or 
weaknesses which led to rapid erosion and the loss of the eroded sand and gravel 
downstream. The nick-points migrate upstream and create progressively wider and deeper 
head-cuts and dongas over time. This process was rapidly accelerated during the large 
floods in the Kromme Catchment. The channels formed by the headcuts are detrimental 
because they drain groundwater from the surrounding alluvium, drying it out and reducing 
the lands productivity for agriculture or grazing. This process also destroys wetlands – 
which in a healthy state provide many services to society. 

 

 
Figure 3.7: A damaged tributary in the Kromme River. The headcut moved backwards up the 

hill, eroding away sediment and vegetation 
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Figure 3.8: An aerial photograph taken from a helicopter of the main floodplain of the Kromme River 
after a large flood event. The floodplain was once covered by palmiet wetlands, specially adapted to 
withstand the force of the flood waters. The removal of the palmiet wetlands has destabilized the system, 
causing massive headcuts and lateral erosion which lowered the water table and reduced the agricultural 
potential of the land.  

 

 
Figure 3.9: Cement weirs built along the Kromme River, Eastern Cape, South Africa. These weirs are 
built to restore the river by stopping the headcut from proceeding backwards up the river. This traps 
sediments and allows vegetation, such as P. serratum in this photograph, and eventually 
wetlands to recover 
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Overall it appears as though annual rainfall has decreased, albeit not significantly 

(R2=0.071), over the past century (Figure 3.10), with the seven lowest rainfall years all occurring 

during the past 40 years. Furthermore, the annual rainfall has not exceeded 823 mm in the last 30 

years, compared with nineteen times in the preceding century. It appears as though extreme 

rainfall events are increasing in frequency, despite the fact that there is a decrease in annual 

rainfall in the past 40 years.  

 

 

Figure 3.10: Annual precipitation in the upper Kromme from 1881 to 2007. The black stippled 
line is the trend line for rainfall. The horizontal gray stippled line indicates the overall mean 
rainfall per annum for this period (678 mm). Gray arrows indicate the occurrence of flood events 
according to the historical record (which only begins in the late 1920’s), larger arrows represent 
larger floods 
 

Land-use changes 
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Over time, both productive and unproductive fynbos vegetation groups have become 

degraded as a result of increasing grazing pressures and increases in fire frequency (Figure 3.11) 

Mountain seep wetlands have remained relatively unchanged over time, although they have 

become invaded by alien plants in some places. The most significant changes are in the relatively 

fertile floodplains which were dominated by palmiet wetlands. These wetlands have largely been 

replaced by agriculture, both irrigated and dryland, and also to a large extent by A. mearnsii 

invasion. A. mearnsii has also invaded ravines, replacing indigenous Afrotemperate forest.  

 

 
Figure 3.11: Landcover change in the Kromme Catchment from before 1954 to 2007 
 

a. Urban Sprawl 
 
The infrastructure of the town of Kareedouw has increased steadily from 1954 to the 1980’s, 

however there is a dramatic change between 1986 and 2007 (Figure 3.12). This is the result of 

the ending of the Apartheid Regime in South Africa in 1994, which brought in new land tenure 
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and labour laws, leading to a movement of people from farms into nearby towns. During this 

time, four new townships were established around Kareedouw. A. mearnsii invasion increased 

steadily from 1954-2007. The palmiet wetlands in close proximity to the town had completely 

disappeared by 2007.  

 

 
Figure 3.12: Snapshots capturing the spread of a rural town, Kareedouw from 1954 to 2007. 
Kareedouw is the only town in the Kromme River Catchment. Important land-use changes 
include: ■ A. mearnsii, ■ infrastructure, ■ dryland agriculture, ■ irrigated agriculture, ■ exposed 
soil, ■ palmiet wetlands and ■ fynbos 
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b. Increase in Agriculture 

There was an increase in agriculture from 1954 to 2007, almost completely replacing palmiet 

wetlands along the entire length of the upper Kromme River (Figure 3.13). Large, functional 

palmiet wetlands remain at only one location along the Kromme, mostly displaced by 

agriculture. More recently there has been a shift from pasture crops to orchards by some farmers, 

especially in the Jagersbos area (Figure 3.14). A. mearnsii has invaded the area not claimed by 

agriculture. However by 2007 it had been largely removed from the main channel and 

floodplains themselves. Where A. mearnsii is cleared by WfWater, it is often immediately 

replaced by agriculture.  
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Figure 3.13: Snapshots capturing the increase in agriculture in the fertile floodplains at a farm 
called Jagersbos from 1954 to 2007 in the Kromme River Catchment. Important land-use 
changes include: ■ palmiet wetlands, ■ orchards, ■ dryland agriculture, ■ irrigated agriculture, ■ 
A. mearnsii, ■ exposed soil, ■ dams, and ■ fynbos 
 

c. Impact on Palmiet Wetlands 
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Palmiet Wetlands 
Prionium (palmiet) is a monotypic genus, recently moved from the family Juncaceae to 
Prionaceae (Munro & Linder 1997, Boucher & Withers 2004).Wetlands dominated by 
Prionium serratum (palmiet) have been neglected and under studied. They are widely 
distributed in the acid waters of the Fynbos Biome, from the Gifberg to Port Elizabeth, and 
have outliers in the Eastern Cape and southern KwaZulu-Natal (Rogers 1997, Boucher & 
Withers 2004). They are generally non-channeled or channeled valley bottom wetlands 
(Collins 2005). Palmiet wetlands are often underlain by a layer of peat, built up over 
thousands of years (Grundling 2004). P. serratum grows in dense stands that may appear to 
be separate plants, but are often clonal systems. Growth occurs throughout the year, 
flowering in spring and summer and fruit appears in March. P. serratum is completely salt 
and shade intolerant. P. serratum has adapted to fire, but alien plants invading wetlands 
cause their stems to lengthen in search of sunlight, which exposes it to increased fire 
damage. P. serratum is perceived by landowners to block rivers and is often removed in 
favour of agriculture. This causes destabilization of rivers and wetlands (Boucher & Withers 
2004).  

 

 
Figure 3.14: Palmiet, Prionium serratum, is a unique South African wetland plant, the only 
species in its family Prioniaceae. P. serratum has long, strap-like leaves and plants grow up to 
two metres tall 
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Figure 3.15: A typical palmiet wetland in Jonkershoek, in the Western Cape of South Africa. 
Palmiet wetlands are often underlain by a thick layer of peat, built up over thousands of years 
which perform many important functions including water storage and filtration. 

 

The last remaining intact palmiet wetlands are located on a farm named Krugersland (Figure 

3.16). These particular wetlands have been placed under protection and they are not permitted to 

be removed for agriculture. But the change in native land-cover to different land-uses 

surrounding these wetlands and encroaching upon these wetlands over time is pronounced.  
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Figure 3.16: Snapshots capturing the change in extent and surrounding land-use of valuable 
palmiet peat wetlands due to an increase in agriculture and invasion of Black Wattle from 1954 
to 2007. These wetlands occur on Krugersland Farm and are currently the last existing wetlands 
in the Kromme River. Important land-use changes include: ■ palmiet wetlands, ■ A. mearnsii, ■ 
dryland agriculture, ■ irrigated agriculture, ■ fynbos, and ■ other alien species. 
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Figure 3.17: The last remaining functional palmiet wetlands and peat beds in the Kromme River, 
Eastern Cape, South Africa. The wetlands would have historically covered the floodplains of the 
Kromme Riverbed, but have largely been removed in favour of agriculture 
 

d. Land-use change around the Churchill Dam 

 

The snapshots in Figure 3.19 show the change of land-use on municipal property surrounding 

the Churchill Dam. On the far right it is possible to see the plantations of A. mearnsii and 

Eucalyptus trees that were planted by the authorities themselves. This was later recognized to be 

a conflict of interest, and the plantations were removed. However the municipality has failed to 

take responsibility for these alien plants and they have spread.  

 

The Churchill Dam 
The building of the multi-arched Churchill Dam (able to hold 2.961 billion litres of water), 
began in 1940 and was completed in 1943. The first test of the Churchill Dam took place in 
1944, which was a high rainfall year. The dam filled overnight to a depth of 27 m and a few 
days later overflowed (Raymer 2008). Today it is a very important water supply for the 
Nelson Mandela Metropolitan hub in the Eastern Cape of South Africa as it provides 
approximately 26% of the city’s water supply. The Eastern Cape has been in a drought with 
the Churchill Dam being less than 30% full for the past few years. After the 2012 floods, it 
filled to 100% capacity for the first time in several years.  
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Figure 3.18: The multi-arched Churchill Dam on the Kromme River in the Eastern Cape of 
South Africa 
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Figure 3.19: Snapshots capturing the change in agriculture and invasion of A. mearnsii in the 
vicinity of the Churchill Dam from 1954 to 2007. The Kromme River is an important water 
source for the nearby city of Port Elizabeth. Important land-use changes include: ■ dams, ■ A. 
mearnsii, ■ palmiet wetlands, ■ dryland agriculture, ■ fynbos, and ■ alien species.  
 

e. Geomorphological Changes: Changes in Channel Length 

 

The total channel length has increased from 1954 to 2007 (Figure 3.20). Very little change in 

the total channel length occurred between 1954 and 1986 with the most marked changes 

happening before and after this period. This implies that the river channel has become more 
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meandering with time, which may be a result in decreased channel stability brought about by the 

invasion of A. mearnsii.  

 

 
Figure 3.20: Change in the mean (±standard deviation) total channel length from 1954 to 2007 
measured along the centreline for the length of the upper Kromme River. 
 

f. Rate of Spread of A. mearnsii 

 

The most dramatic increase in A. mearnsii invasion is 10.37 ha during the period 1986 to 

2007 (Figure 3.21). However this is also the greatest time-step, with 24 years between the 

respective aerial photographs.  
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Figure 3.21: Snapshots capturing the rate of the invasion of A. mearnsii from 1954 to 2007 
along the Kromme River. Important land-use changes include: ■ palmiet wetlands, ■ A. 
mearnsii, ■ dryland agriculture, ■ irrigated agriculture, ■ orchards, ■ exposed soil, ■ seep 
wetlands and ■ fynbos 
 

The rate of invasion was greatest in the period between 1954 and 1969 at about 96 ha/a, 

which was its initial invasion phase. After this time, the invasion rates slowed to 12 ha/a perhaps 

indicating some threshold was reached. Between 1986 and 2007 the rate of invasion increases 

again to 43 ha/a, possibly indicating the stage when it began to invade old lands.  
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Table 3.2: The expansion and rate of invasion by A. mearnsii from 1954 to 2007 along the 
Kromme River. 
  Reference 1954 1969 1986 2007 Mean 
Acacia mearnsii (ha) 0.00 1440 2886 3097 4134 - 
Rate of change (ha/decade) - 1440 1447 211 1037 - 
Number of years - 54 15 17 21 - 
Rate of change (ha/a) - 27 96 12 49 46.0 
 

g. Effectiveness of Mitigation Attempts: Rate of Clearing by WfWater 

 

WfWater began alien clearing in the Kromme Catchment in 1996. The control programme 

involves an initial treatment followed by several, sometimes up to eight, further treatments 

before a given invasion is reduced to acceptable levels (McConnachie et al. 2012).  

 

Table 3.3: The extent of the A. mearnsii alien invasion clearing by WfWater along the Kromme 
River from 2002 – 2010 

Year Area cleared (ha/a) 

2002 93.61 

2003 57.18 

2004 77.19 

2005 155.79 

2006 143.7 

2007 149.24 

2008 147.08 

2009 151.89 

2010 269.39 

Mean 138.34 

 

Thus WfWater is clearing aliens at three times the rate of invasion.  
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DISCUSSION 

 

Over the past half century wetlands, floodplains and fertile riverbeds, those areas in the 

catchment that are the most vital in terms of providing essential services to mankind, have been 

the most heavily impacted and transformed. Research has shown the transition from intact 

indigenous vegetation to landscapes heavily transformed by agriculture and IAPs results in 

significant hydrological changes (Prinsloo & Scott 1999, Jackson et al. 2001, Jewit 2002, Gleick 

2003, Shiklomanov & Rodda 2003, Allan 2004, Scanlon et al. 2007, Gleick et al. 2011). The 

main drivers of land-use change and wetland transformation in the Kromme appear to be 

unsustainable agricultural practices and alien invasion of the riparian zone. These drivers cause 

erosion and headcuts, lowering of the water table, decreased riverflow due to increased 

transpiration and irrigation, greater flood damage, decreased baseflow and a decrease in water 

quality (Hibbert 1971, McGuinnes & Harrold 1971, Bosch & Hewlett 1982, Rowntree 1991, 

Smith & Scott 1992, Dye 1996, Scott & Lesch 1997, Scott 1999, Le Maitre & Görgens 2001, Le 

Maitre et al. 2002, Andreassian 2004, Dye & Jarmain 2004, Scott et al. 2004, Calder 2005, 

Grenfell et al. 2005).  

 

Land-use change over large areas has been shown to alter erosion intensity, causing channel 

lengthening and a decrease in active channel width (Michalková et al. 2011). In South Africa and 

Australia, IAPs have been found to impact the geomorphology of rivers systems by modifying 

the river channel, while subsequent removal can lead to significant channel instability and 

mobilization of sediment (Beyers 1991, Rowntree 1991, Richardson et al. 1997, Bunn et al. 

1998). With the destruction of wetlands in the Kromme, the river appears to have become more 

braided and sinuous with time. It is difficult to be certain about channel change because the 

Kromme River was originally a valley-bottom wetland with no channel visible at the surface. 

The decrease over time in the length of the Kromme River channel length is likely to be a result 

of alien invasion and concomitant wetland destruction.  

 

What has happened in the Kromme may be a reasonable reflection of what is happening in 

other South African catchments (Mander et al. 2010). This damage to natural capital in 

catchments that are valuable for water provision is counter-productive. In the case of the 
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Kromme, farming is marginal and it is not an important agricultural catchment (Haigh et al. 

2002). In such cases we would recommend prioritizing land-use at a catchment scale in terms of 

which ecosystem goods or services it is to provide. It is clear that high quality water-related 

ecosystem goods and services are not compatible with intensive agriculture in the floodplains of 

the same catchment. Yet this is the model that South Africa and many other countries appear to 

follow.  

 

In the face of climate change, water resources in South Africa are likely to become scarcer 

and less predictable over time (WWAP 2009, Matthews et al. 2011). Specific predictions include 

an increase in summer rainfall, a decrease in winter rainfall, an increase in rainfall intensity in 

the east, a monthly rainfall change of 10 mm or more, and an increase in air temperature (mainly 

minimum temperature) by up to 2-3 °C (Midgley et al. 2005). Furthermore, climate change is 

likely to result in an increase in floods and droughts (Midgley et al. 2005). In the Kromme, 

rainfall is decreasing over time while major floods appear to be increasing. These predictions 

indicate a likely increase in extreme events, which a healthy, resilient, functioning river system 

may be able to absorb. However, with most of the wetlands in the Kromme transformed, the 

catchment may have lost its buffering ability and may no longer be able to absorb these extreme 

events. The wetlands that do remain are located upstream, near the headwaters, and as a result 

have no ability to filter and purify water downstream. However if P. serratum was restored 

further downstream, services that are crucial to downstream stakeholders –including water 

purification and flood attenuation, may be recovered with time (Aronson et al. 2007, Blignaut & 

Aronson 2008). 

 

In an attempt to restore the Kromme Catchment, WfWater is clearing A. mearnsii at three 

times the average rate of invasion. However the available data do not differentiate between initial 

clearing and follow-up, so it is possible that their rate of clearing is slower than these data 

indicate. At their current rate of clearing it would take WfWater another 30 years to clear the 

Kromme, and this is just one of many South African catchments. Such a large investment in the 

Kromme over a long period of time with such a low rate of progress would suggest that the 

WfWater Programme could do with improvement (Hosking & du Preez, 2004, McConnachie et 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 3                                                                                  Land-Cover Change in the Kromme 

 

82 
 

al. 2012). Part of this may be the lack of communication: the failure to bridge the gap between 

managers, implementing agents and landowners and society at large (Cowling et al. 2008).  

 

CONCLUSION 

 

The question remains as to how these complex systems can be managed so that they are 

insured against future climate change. Managing the functioning of rivers requires holistic, 

integrated catchment management approaches as well as interdisciplinary co-operation (Dollar et 

al. 2007, Nel et al. 2007, Nel et al. 2009). Riparian systems have been described as complex 

adaptive systems and both a social learning process and an adaptive management approach is 

needed (Pahl-Wostl 2007). We recommend that important water providing catchments, where 

agriculture is marginal, should be prioritized for provision of water-related ecosystem services 

alone. Investment into improving the resilience of these systems as insurance against future 

climate changes is essential. This should be in the form of prohibiting unsustainable land 

management practices and enforcing the laws that protect rivers and wetlands, eradication of 

IAPs and rehabilitation of the river and wetlands. This investment in restoration of an important 

water-providing catchment cannot be done without education and a social learning process aimed 

at getting the land owners and others committed to participating in its restoration (Pahl-Wostl 

2007, Cowling et al. 2008).  
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Figure 3.22: The headwaters of the Kromme River are in a pristine condition as they fall within 
the Formosa Nature Reserve, Eastern Cape, South Africa 
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Wetlands are invaluable life support systems as they provide humankind with many essential 
services. However wetlands across the globe are threatened by land transformation and it is 
estimated that more than half of South Africa’s wetlands have been thus destroyed. We argue 
that to meet rising demands for water, investment in natural infrastructure should be made for 
providing and storing water rather than using traditional, expensive engineering methods. 
Using modelling, we show that restoration of the natural infrastructure of a South African 
catchment characterised by cycles of boom and bust is able to provide competitive water 
related ecosystem services. Theoretically, if wetlands were restored to the extent they 
occupied in the catchment in 1969, they would potentially be able to provide an extra 5 mm 
baseflow per annum during the 3 dry months alone, translating into a flow increase of at least 
6120 m3 each year in the dry season. Wetland restoration would also improve the 
catchment’s ability to absorb extreme rainfall events, decreasing flood damage and 
improving water quality. If the woody invasive alien plants were cleared from the riparian 
zone of this catchment (4134 ha currently invaded), an increase in riverflow of more than 42 
mm per annum, which is equivalent to 32610 m3 per annum (±30%), could be expected. 
 
Keywords: restoration, degradation, land-cover change, extreme events, baseflow, yield 
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INTRODUCTION 
 

“When one tugs at a single string in nature, he finds it connected to the rest of the world”  

– John Muir 

 

Wetlands across the globe are valuable as they have the ability to retain or temporarily store 

water and sediments, and in doing so provide society with many ecosystem goods and services 

(Begg 1986, McCarthy & Ellery 1998, Tooth et al. 2002, MA 2005, Zedler & Kercher 2005, 

Humphries et al. 2010, Driver et al. 2012, Simonit & Perrings 2011). Some of the ecosystem 

services are regulating services such as flood attenuation (Kotze & Breen 1994, Bullock & 

Acreman 2003, Kotze et al. 2005, Vörösmarty et al. 2005, Turpie et al. 2008, Russel 2009, 

Simonit & Perrings 2011), increasing baseflow or dry season flow (Sellars 1981, Finlayson & 

D’Cruz. 2005), recharging of groundwater aquifers (Thompson & Hollis 1995, Wolski 2002, 

Bullock & Acreman 2003, Finlayson & D’Cruz. 2005), as well as nutrient and waste 

assimilation, which improves water quality (Kotze & Breen 1994, Cowan 1995, Kotze et al. 

2005, Finlayson & D’Cruz. 2005, Vörösmarty et al. 2005). There are many human and 

environmental driving forces that cause damage or changes to wetlands, and this may affect 

their ability to optimally perform these functions (Moser et al. 1996, MA 2005, Nelson 2005, 

Zedler & Kercher 2005, Vörösmarty et al. 2005, Finlayson & D’Cruz. 2005). For all their 

positive aspects, wetlands are generally also relatively high water-users, a trade-off that needs to 

be taken into consideration (Birkhead et al. 1997, Everson et al. 2001, Bullock & Acreman 

2003, Clulow et al. 2012). 

 

Southern African wetland systems have not been as well studied as their Northern 

Hemisphere counterparts (Ellery et al. 2009). A lack of knowledge about Southern Hemisphere 

riparian systems combined with inappropriate management has caused significant damage 

(Kondolf 2011). In South Africa, wetlands and their associated river systems, despite their 

inherent value, are in a critical state (Nel et al. 2007, Nel & Driver 2012) with 65% estimated to 

be threatened (Nel & Driver 2012) and over half estimated to have been destroyed (Cowan 

1995, Driver et al. 2012). Floodplain wetlands are recognised to be the most threatened and 

least protected wetland type in South Africa (Nel & Driver 2012). Palmiet wetlands, 

characterised by the dominance of palmiet (Prionium serratum), are associated with the acid-

waters of the Fynbos Biome with outliers in Pondoland and southern KwaZulu-Natal (Rogers 

1997, Boucher & Withers 2004) in South Africa. Palmiet wetlands are channelled, or sometimes 
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non-channelled, valley bottom wetlands and rivers often have fringes of palmiet along their 

banks (Collins 2005). Some palmiet wetlands have formed on top of peat beds built up over 

thousands of years (Haigh et al. 2002). These peat deposits play a major role in water filtration 

and carbon sequestration (Gorham 1995, Grundling 2004, House & Brovkin 2005, MA 2005). 

 

Land-cover changes have been identified as among the most important drivers of ecosystem 

transformation (Nelson 2005, Reyers et al. 2009). Changes in land-cover from woody vegetation 

to pasture or grassland increases riverflow (Bosch & Hewlett 1982, Zhang et al. 2001, Vertessy 

et al. 2003, Andreassian 2004, Bruijnzeel 2004, Scott et al. 2004, Legesse et al. 2010). 

Reforestation or afforestation decreases riverflow and total annual baseflow (van Lill et al. 1980, 

van Wyk 1986, Scott & Smith 1997, Scott & Lesch 1997, Scott et al. 1998, Scott et al. 2000) and 

has a variable effect on stormflow, depending on the size of the rainfall event and the saturation 

of soil (Versfeld 1994, Dye 1996, Forsyth et al. 1997, Vertessy et al. 2003, Scott et al. 2004). 

This decrease in riverflow and baseflow is largely due to changes in vegetation structure to tall, 

deep-rooted, evergreen vegetation from seasonally dormant grassland or shrublands, which 

changes rainfall partitioning between evaporation and runoff at both habitat and landscape scales 

(Scott et al. 2004, Calder 2005). The location of the specific land-use practices within a 

catchment plays an important role in the response of the riverflow with riparian areas being 

particularly sensitive to changes (Scott 1999, Everson et al. 2007, Warburton et al. 2012). In 

South Africa, models of the hydrological impacts of invasive alien plants (IAPs), especially 

woody trees in riparian zones, have projected that they decrease riverflow (Le Maitre et al. 1996, 

Le Maitre et al. 2000, Le Maitre & Görgens 2001, Le Maitre et al. 2002). By analogy with 

plantations, IAPs also are predicted to decrease groundwater recharge (Le Maitre et al. 1999, 

Calder 2005). IAPs have been found to affect water quality by redistributing sediments 

(Rowntree 1991), and have been modelled to decrease yields of water supply schemes (Le 

Maitre & Görgens 2001). Clearing woody IAPs, especially from riparian zones and wetlands, has 

been shown to recover these ecosystem goods and services (Dye & Poulter 1995, Prinsloo & 

Scott 1999, Scott 1999).  

 

The Kromme River System in the Eastern Cape of South Africa, like other rivers in the 

country, is characterised by long periods of typical flows punctuated by heavy floods (Haigh et 

al. 2002). Native ecosystems have adapted to this episodic nature of flow, sediment transport 

and channel evolution and when this natural flux has been suppressed, invasive alien species 
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(IAPs) can outcompete native species (Moser et al. 1996, MA 2005, Russel 2009, Kondolf 

2011). The Kromme is situated in a long narrow river valley, bordered on both sides by steep 

mountain ranges (Haigh et al. 2002). According to records dating from the mid 18th Century 

(Skead 2009), palmiet wetlands once filled the valley bottom and flood plains but have now 

been converted to cultivated lands or displaced by IAPs, mainly Acacia mearnsii (Chapter 3). 

Palmiet wetlands stabilise the alluvium and their removal, although it was intended to make 

what was perceived to be the best agricultural land available, has resulted in extensive erosion 

in this high energy system, similar to what has happened to floodplain wetlands elsewhere (MA 

2005, Nelson 2005, Haigh et al. 2002, Raymer 2008, Russel 2009). South Africa has legislation 

with explicit provision for protecting river systems and their floodplains; however, enforcement 

of these laws remains problematic (Roux et al. 2006, Armstrong 2009). After 1995 two 

restoration programmes commenced work in the catchment: Working for Water (Hobbs 2004, 

van Wilgen et al. 2012, McConnachie et al. 2012) and Working for Wetlands, clearing IAPs and 

rehabilitating wetlands, respectively. 

 

The aim of this study is to improve the understanding of the dynamics of the interactions 

between changes in land-use and the hydrological responses of a catchment. We use a 

hydrological model to address the following question: what impact has wetland degradation had 

on the surface runoff in the Kromme Catchment? This understanding can be used to predict the 

long-term hydrological impacts of the restoration of the Kromme wetlands, which will help to 

make a case for restoration. Three aspects of hydrology were investigated: firstly riverflow (i.e. 

surface runoff and baseflow, secondly stormflows (i.e. floods), and lastly water quality. A 

change from wetlands to another land-cover, such as agriculture or A. mearnsii, is predicted to 

reduce the riverflow component of the water balance by increasing evaporation losses. The 

destruction of the wetlands is predicted to have caused a decrease in the water storage and 

filtering capacity of the catchment. We further predict that this will reduce the water quality, 

reduce baseflow by decreasing water storage and retention in the catchment, and decrease the 

catchment’s capacity to absorb extreme events, resulting in an increase in rainfall-event runoff 

responses and more severe floods (Russel 2009).  
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METHODS 

 

Study site 

The Kromme River (33˚S, 24˚E) is located in the Eastern Cape Province of South Africa 

(Figure 4.1). It is about 100 km in length from its upper reaches (550 m above sea level) to 

its estuary. The catchment is narrow and steep, bordered by the Suuranys Mountains (±1050 

m) to the north, and the Tsitsikamma Mountains (±1500 m) to the south, both running from 

east to west. The Kromme River is divided into five quaternary catchments: K90A-E. This 

study focuses on the Upper Kromme which is made up of the two uppermost quaternary 

catchments: K90A and K90B (Figure 4.1).  

 

 
Figure 4.1: The location of the Kromme River study catchments (K90A (left) and K90B (right)) and 
the position of the Churchill Dam. The Kromme River is located in the Eastern Cape Province of South 
Africa and the Nelson Mandela Bay metropolitan area receives 24% of its water from the Churchill 
Dam.  

 

Churchill Dam 
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Rainfall in the region is unpredictable, but tends to exhibit a bimodal pattern, with high 

rainfall in spring and autumn (Midgley et al. 1994). Mean annual precipitation (MAP) for the 

entire catchment is ±614 mm. Mean annual runoff (MAR) for the entire catchment is ±75 

mm, which is ±11% of the rainfall (WR2005) (Middleton & Bailey 2008).  

 

The catchment has been heavily transformed by agriculture and IAPs, particularly the 

river floodplains where A. mearnsii was nearly ubiquitous before clearing started in the 

1990’s (Chapter 3) (Figure 4.2a). Groundwater recharge rates are estimated to be fairly high 

despite the relatively low rainfall, largely because of the shallow soils in the mountain slopes,  

the low water-use of fynbos and the highly-fractured underlying sandstones (Figure 4.2b, 

Colvin et al. 2007, Roets et al. 2008). Kareedouw (population under 1000) is the only town in 

the catchment (Figure 4.2c). The catchment geology consists predominantly of shales and 

sandstones of the Cape Supergroup (Toerien & Hill 1989) (Figure 4.2d). The Cape Fold Belt 

is part of an intensely folded range with dipping beds forming a trellis drainage pattern 

(Lewis 2008). The trellis of K90A and B consists of six large and five minor tributaries 

entering from the southern mountain range, and seven large and numerous minor tributaries 

entering from the drier northern mountain range (Haigh et al. 2002). Riverflow from the 

northern tributaries is mostly seasonal. Several of the tributaries have alluvial fans which 

limit the extent of the palmiet wetlands. Historically, the palmiet stabilised the floodplain 

alluvium, forming peat basins which would have covered a large area of the flood plain 

(Haigh et al. 2002). 
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Figure 4.2: Characteristics of the upper Kromme Catchments: (a) vegetation and land-use, (b) ground water recharge (mm/annum), (c) towns 
and farms and (d) geology (Middleton & Bailey 2008). 
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Mapping 

Land-use in the Kromme was mapped at high resolution (~5 m) using aerial photography 

taken in 1954, 1969, 1986, 2007 and a reference state. This reference state is a reconstruction of 

the Kromme before European occupation using a vegetation map of the Baviaanskloof Mega 

Reserve (Vlok et al. 2008). Mapping was done using 1:20 000 aerial photographs in a GIS 

system (ArcMap) according to 15 pre-selected land-use categories. For a detailed description of 

land-use changes in the Kromme, see Chapter 3.  

 

Using hydrological modelling to investigate impacts of land-use change  

Riverflow measurements in the Kromme are made at the Churchill dam at the outlet of 

catchment K90B. There is no gauge to measure the inflow, so it is estimated by measuring 

changes in the level of the water in the dam, subtracting measured outflows and estimated 

evaporation and adding measured rainfall. However, even small errors in the water level, 

evaporation or rainfall values can result in large errors in the estimated inflow. The errors are 

particularly important during low flows and negative inflow values were frequently calculated. 

Consequently, this flow record was deemed too unreliable to use for catchment runoff 

estimation; it was not used in a prior study because of the errors (A.H.M. Görgens, pers. comm. 

2010). This means that the only way to estimate impacts of the loss of wetlands, and increases in 

the area invaded by A. mearnsii, on riverflow is to use hydrological modelling to generate a flow 

record. Hydrological modelling has been used frequently in the past to assess water resource 

availability in both pristine and transformed ecosystems (Hughes 2004). It has also been used to 

assess the consequences of development scenarios (Schulze 2000). Traditional modelling 

methods are only able to offer measures of reliability in situations where the model can be 

calibrated and the simulated data could be compared with observed data. This could not be done 

in this case, but we provide evidence that the estimates of the changes in actual riverflow are 

defensible in a later section (see Calibration and Validation). The modelling of the changes was 

facilitated by the fact that default parameter values were available for most of the land-cover 

types from an unpublished  hydrological modelling study done for the catchments of Kromme, 

Kouga and Baviaanskloof River systems using the same model (Mander et al. 2010).  
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The ACRU agrohydrological model 

The Agricultural Catchments Research Unit (ACRU) model has been developed over a 

period of 30 years by the School of Bioresources Engineering and Environmental Hydrology 

(BEEH) at the University of KwaZulu-Natal in South Africa. This particular model was chosen 

because of its simple user interface,  its large database of vegetation and soil parameters 

developed for South African conditions, and because it is appropriate for a catchment of this 

size. The ACRU model is a physical-conceptual model with a daily time step. It is based on 

multi-layer soil water budgeting (Figure 4.3) and is consequently sensitive to land-use changes, 

irrigation demand and the onset and degree of water stress. ACRU has been used in numerous 

studies in South Africa and elsewhere for various purposes including investigating the impacts of 

land-use change (Jewitt et al. 2004, Schulze 2000) and impacts of climate change (Schulze et al. 

2005) on hydrological resources. It has also been tested against field measurements (Schulze 

1995, Jewitt & Schulze 1999, Smithers and Schulze 2004). Documentation on the latest available 

ACRU Model was published in Warburton et al. (2010). However, this particular study is the 

first to use the new wetland and riparian routines of the version 4 of the ACRU Model, a script 

which allows excess riverflow to flood adjacent riparian or wetland Hydrological Response Units 

(HRU’s) (Gray 2011).  

 

 
Figure 4.3: A diagram of the multi-layer water budgeting performed by ACRU. The 
thickness of the arrows represents the relative proportion of water moving through the 
system (Diagram from: Schulze 1995, Smithers and Schulze 2004). 
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Model set-up 

a. Sub-catchments 

The study catchment (quaternary catchments K90A and K90B) was sub-divided into 11 

hydrologically similar sub-catchments (A1-4 and B1-7) (Figure 4.4). The main factor guiding the 

delineation was altitude, because rainfall is positively correlated with altitude. Catchment 

responses to rainfall are non-linear, so a single mean rainfall value would not adequately 

estimate hydrological processes over the whole catchment. This is especially true for catchments 

with marked rainfall gradients. These sub-catchments were based on those delineated by Schulze 

et al. (2008), as rainfall, geology and soils had already been taken into account during this 

process. However the sub-catchments were further divided based on hydrology, where an extra 

three sub-catchments were delineated to represent the flood plain.  

 

 
Figure 4.4: The upper Kromme was divided into 11 study sub-catchments (A1-4, B1-7). The 
position of the 3 rainfall stations within the study catchments are marked by shaded circles. 
 

b. Hydrological response units (HRU’s) 

Sub-catchments were each divided up into 15 different Hydrological Response Units (HRU), 

which are areas of the subcatchment that are treated as a unit due to hydrological, geological, and 

vegetation similarities, using 1:20 000 colour aerial photographs in a GIS system, ArcMap 

(Table 4.1). Vegetation types were divided into two categories according to whether the 

vegetation type was classified as relatively productive (on relatively fertile soils) or unproductive 
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(on highly infertile soils, mainly associated with thin soils overlying the exposed quartzitic 

sandstones in the upper regions of the catchment). Productive fynbos groups are those that 

contain vegetation that has a relatively high nutrient content and are consequently known to be 

able to support grazing by livestock. Unproductive fynbos groups have comparatively low 

nutrient content and cannot support large livestock. Lastly, fynbos that was heavily degraded by 

over-grazing or altered fire regimes was separated from these two groups.  

 

Table 4.1: The subcatchments of the upper Kromme were each further divided into 15 
different hydrological response units (HRU’s) which were mapped in the Kromme using 
aerial photo interpretation and captured as spatial data layers using ArcMap. 

HRU Land-use Description 
1 Dams Including small farm dams and a large municipal dam 
2 Mountain Seep Wetlands High altitude/gradient wetlands on the mountain slopes 
3 Palmiet Wetlands  Wetlands in the valley, dominated by Prionium serratum 
4 Riparian Vegetation Woody vegetation in ravines, either thicket or afromontane forest 
5 Unproductive Fynbos Seven different unproductive fynbos and renosterveld vegetation types 
6 Productive Fynbos Three different productive fynbos and renosterveld vegetation types 
7 Degraded Fynbos Degraded by heavy grazing or poor fire management 
8 Irrigated Fields Agriculture that has an irrigation system (sprinkler or central pivot) 
9 Dryland Farming Any agriculture that is not irrigated 
10 Orchards Orchards with irrigation systems 
11 Acacia mearnsii The dominant woody invasive alien plant in the catchment 
12 Pinus Sp The second most common woody invasive alien plant in the catchment 
13 Other Alien Plants  All other woody invasive plants, mainly Eucalyptus species 
14 Disjunct Impervious All unnatural structures: houses, roads, railway lines, quarries 
15 Adjunct Impervious Open soil, sites of erosion or deposition in or adjacent to the river 

 

c. Configuration 

Different land-uses, or HRU’s, were captured in a flow network (Figure 4.5). HRU’s were 

linked together in such a way that water flows (rainfall, evaporation and riverflow) in the 

Kromme River were represented in this model as accurately as possible. Irrigated fields were 

“fed” with irrigation water from the nearest dam.  
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Figure 4.5: The 11 subcatchments of the upper Kromme River were routed to form of a 
hydrological network. Within each subcatchment, the 15 HRU’s were configured according to 
the above design. Key: ---Subcatchments, light blue and red arrows indicate riverflow, dark blue 
stippled lines (affiliated with irrigated HRU’s) indicate water abstraction for irrigation,    HRU’s, 
▀ irrigated HRU’s, ▲ dam and the large light green ovals represent wetlands and riparian zones. 
The red boxes represent subcatchment nodes and the purple box the catchment node.  
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d. Data sources 

i. Rainfall 

Rainfall records from all available sources were screened for errors and missing data and 

only the most reliable records were used (Lynch 2003). From a set of nine stations, we selected 

three that best represented each of the eleven sub-catchments (Figure 4.4). We obtained data for 

the Hendrikskraal and Kareedouw rainfall gauging stations from the Lynch database (Lynch 

2003), and from the Churchill Dam rainfall gauging station from the Department of Water 

Affairs. We generated a rainfall correction surface for the catchment from altitude using a digital 

elevation model (DEM), and calculated the mean rainfall for each of the three subcatchment 

segments: A1-4, B1-4 and B5-7 (Figures 4.4 & 4.6). 

 

 
 

Figure 4.6: Mean monthly rainfall from 1950 to 2000 driving the three sub-catchment segments: 
A1-4, B1-4 and B5-7. Gauges are placed at Hendrikskraal ■, the town of Kareedouw ■ and at the 
Churchill Dam □.  
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ii. Soils and geology 

Soil and geological data for the ACRU model were extracted for each of the eleven sub-

catchments from the electronic data provided by the South African Atlas of Climatology and 

Agrohydrology (Schulze et al. 2008).  

iii. Water bodies and irrigation 

Surface areas obtained from the mapping survey (Chapter 3) for each of the farm dams and 

for the municipal dam were used to calculate the volumes using formulae presented in the ACRU 

Manual (Schulze 1995). The most general dam form was used for calculations as this allows for 

dams which do not have a standard shape and where detailed measurements are not available: 

. Irrigation data were obtained via interviews of farmers in the 

Kromme in 20102.  

iv. Wetland and riparian routines 

Palmiet wetlands were modelled using the new ACRU4 wetland routine (Horan pers comm. 

2012) and a crop factor derived in this study (Chapter 5, Appendix 5). Where A. mearnsii 

replaced palmiet wetlands, it was also modelled using the new ACRU wetland routine. Riparian 

zones and seep wetlands were modelled using the riparian routines. This was to allow the 

hillslope flow, in the form of underground seepage through the B-Horizon, to be modelled.  

v. Vegetation parameters 

The ACRU model outputs both evaporation and riverflow. It calculates total evaporation 

from estimates of both evaporation from the soil (Es) and vegetation (Et). The model estimates 

the potential Et for each vegetation type using the Hargreaves and Samani (1985) equation which 

requires only daily minimum and maximum temperature inputs. It then uses a water use 

coefficient (crop factor) to approximate an actual Et, which is then further adjusted for soil 

moisture availability (Schulze 1995). The ACRU model takes into account three processes when 

modelling evaporation from plants: canopy interception, evaporation from vegetated surfaces 

and evaporation from soil surfaces (Schulze 1995). Evaporation is influenced by soil water 

uptake via the plants roots from soil horizon A and B (Schulze 1995). The monthly values for 

crop factor, infiltration co-efficient, root mass distribution, amongst other values, for each 

                                                           
2 The data obtained in the farmer surveys conducted in 2011 are contained in a separate database and will not be 
published due to sensitive nature of the data.  
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vegetation type –derived from a vegetation map by Vlok et al. (2008) – were obtained from the 

ACRU model database, having being compiled for a similar hydrological study in the same 

region by Mander et al. (2010). The crop factor for P. serratum, which was used to approximate 

water use of the palmiet wetlands, was developed from MODIS satellite data (Appendix 5).  

 

Scenarios 

A model was built for each of four different land-cover scenarios, representing the actual 

land-cover from four different periods in the Kromme: 2007, 1986, 1969 and 1954. The data on 

the state of the catchment in each period are described in Chapter 3 of this thesis.  

 

Calibration and Validation 

The ACRU Model attempts to capture and represent water flows and the controls on them 

but it does require calibration against observed data to confirm that the correct values for the 

various parameters have been chosen. However, for the Kromme River there are no reliable flow 

measurements. The output was instead compared with results from another independent 

modelling study, namely the Water Resources 1990 assessment (Midgley et al. 1994)) and with 

the dam inflow data as downloaded from the Department of Water Affairs (DWA) database 

(http://www.dwaf.gov.za/hydrology/).  

 

Traditional calibration and validation could not be done in this case, but we do have limited 

data for the key land-cover changes, namely the loss of the palmiet wetlands and invasion by A. 

mearnsii, that can be compared with the model outputs. Evaporation from palmiet wetlands was 

measured using infra-red scintillometry (Jarmain pers. comm. 2011) and also using the remote-

sensing based SEBAL model (Appendix 5). Measurements of evaporation from riparian 

invasions of A. mearnsii are available from a number of studies in South Africa (Dye et al. 2001, 

Dye & Jarmain 2004, Clulow et al. 2009, Clulow et al. 2011). These measurements can be 

compared with the ACRU output values for evaporation for the hydrological response units 

(HRUs) with those land-cover types. If the ACRU output values are reasonable predictions for 

evaporation from key land-cover types, this provides evidence that the estimates of the changes 

in modelled riverflows are defensible. 
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Responses to extreme events 

The responses to flood events can still be studied using the estimated dam inflows instead of 

the modelled data, because the effects of errors in the dam inflow calculations will be small 

relative to the inflow volumes. We used the measured inflows after extreme events to assess 

whether the catchment’s ability to absorb extreme flood events had been altered by the changes 

in landcover. For the flood analysis, 20 of the largest individual rainfall events were selected in 

each of five decades from 1950 to 2000. The corresponding riverflow response for each rainfall 

event was calculated from the DWA data set. To determine whether or not extreme flood events 

have become more prevalent with time, a standard least squares fit was applied to each 

correlation using STATISTICA Version 10. Significance of the differences between correlations 

were then determined based on whether or not confidence intervals overlapped in a range plot.  
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RESULTS 

 

The most significant changes in the land-cover of the Kromme Catchment between 1954 

and 2007 were an increase in the area of productive and unproductive fynbos that has become 

degraded by overgrazing and too-frequent burning, an increase in the cover of A. mearnsii, a 

decrease in palmiet wetlands (85%) and riparian vegetation (92%), and a proliferation of 

different forms of agriculture (Figure 4.7). Four different hydrological models were built 

according to each of the four different land-cover scenarios: 1954, 1969, 1986, 2007. These four 

scenarios formed along a degradation gradient, ranging from:  

 

1. representative of the state of the land in 1950s:  

(low degradation, wetlands relatively intact, low intensity agriculture) 

2. representative of the 1960/1970s,  

3. representative of the 1980s and lastly  

4. representative of the 1990/2000s:  

(most degraded, wetlands most transformed, high intensity agriculture) 
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Figure 4.7: Land-use change in the Kromme from before 1954 to 2007 

 

Effect on Riverflow 

 

The changes in riverflows due to rainfall can be confounded by multi-year variability in 

rainfall and trends in rainfall so we first examined the rainfall records for evidence of change. 

Rainfall in the Kromme has decreased and become more variable over the four decades (Table 

4.2.1). MAP was highest in the period 1950-1970, and lowest from 1980-2000. The Kromme 

River has a relatively high modelled rainfall-to-runoff-ratio of around 26% compared to 21% and 

19% for the water resources studies: WR90 and WR2005 respectively (Middleton & Bailey 

2008). The difference may be explained by the WR2005 being based on a MAP of 745 mm, 131 

mm higher than that of this study (614 mm); however different models, modelling approaches 

and assumptions about vegetation water-use may also account for these differences. The MAP 
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used in this study was calculated using more rainfall gauging stations than the water resources 

study and was extrapolated using a rainfall correction surface and weighted according to the area 

of the catchment the rain gauge represented. When the MAP of 614 mm is used to calculate the 

ratio for the water resources studies, the new ratios range from 21-28% which are very 

comparable to the ratios calculated for this study. In the Kromme this modelled rainfall/runoff 

ratio based on its state in 1954 was 26.2% and has declined to 24.6% for its state in 2007. Thus 

the decrease in MAR of 42 mm per annum is greater than what would be expected given the 

decrease in rainfall. This is confirmed by a second analysis where the rainfall input records is 

kept constant and the large decrease in runoff is still apparent (Table 4.2.2). Thus the model 

behaved as expected and the decrease in runoff over time relative to the rainfall can be attributed 

largely to land-cover changes in the Kromme.  

 

Table 4.2.1: Mean annual rainfall and modelled riverflow in the Kromme River for four different 
20 year time periods. Different rainfall data were used for each model, thus the impacts of land-use 
change alone cannot be isolated. Means are ± standard deviation.  

Landcover 
Rainfall 

Dates 
Mean Annual 

Precipitation (mm) 
Mean Annual 
Runoff (mm) 

Rainfall / 
Runoff (%) 

1954 1950-1970 668.7±130.73 175.4±96.93 26.2 
1969 1960-1980 617.6±169.48 160.9±87.47 26.1 
1986 1970-1990 561.0±178.60 138.5±82.10 24.7 
2007 1980-2000 542.6±178.70 133.4±80.05 24.6 

 

Table 4.2.2: Mean annual rainfall and modelled riverflow for the Kromme River for 
four different landcover scenarios each spanning 50-year periods. Landcover scenarios 
were modelled along a degradation gradient, from (1) least degraded to (4) most 
degraded. Rainfall input data (614.0±165.56) were identical in this section, the same 50 
year dataset being used in each scenario. This allows the impacts of land-use change 
alone to be isolated. Means are ± standard deviation.  

Landcover 
Scenario 

Rainfall 
Dates 

Mean Annual 
Runoff (mm) 

Rainfall / 
Runoff (%) 

1 1950-2000 188.1±95.87 30.6 
2 1950-2000 169.0±86.63 27.5 
3 1950-2000 147.2±81.83 24.0 
4 1950-2000 146.1±79.97 23.8 

 

The differences in runoff between scenarios appear relatively small, but when converted into 

volumes the differences become more evident. The differences in land-cover between the 1954 
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and 2007 scenarios resulted in a modelled decrease in MAR of 42 mm, which translates to 15.18 

million cubic metres (mcm) in total over 50 years, or 0.3 mcm per annum. Scenario 1, 

representing the Kromme in its least degraded state in the last 50 years, produced consistently 

higher runoff per annum for the given rainfall input (Figure 4.8). Scenario 4, representing the 

Kromme in its most degraded state in the last 50 years, produced consistently lower runoff per 

annum for the given rainfall input. Line (a) shows the potential yield with the minimal number of 

years where there was failure to meet the demand for yield (3 years out of 27) under Scenario 1. 

Line (b) shows the potential harvestable yield with minimal failures (1 year out of 18) under 

Scenario 4. There is a difference in 10 mcm per annum in potential yield between the two 

different scenarios. Line (c) shows the point in the 1980s after which the actual yield drawn from 

the Kromme declined and never again exceeded line (b). This may be a result of a reduction in 

yield that the Kromme is able to supply. However it is also around the time that the Impofu Dam 

was built (Appendix 3), and this change may have decreased the pressure of abstraction from the 

Churchill Dam. This graph shows that the ACRU modelled results have a high level of 

agreement with the actual river flow data from the DWA and that runoff from the upper Kromme 

River has been in steady decline over the past 50 years.  
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Figure 4.8: ACRU simulations of the total riverflows in the Kromme Catchment annually 
under four different degradation scenarios from 1955-2000. Landcover scenarios were 
modelled along a degradation gradient, from least degraded to most degraded. The same 50 
year rainfall data record was used in each scenario. This allows the impacts of land-use change 
alone to be isolated. The yield, or offtake from the dam for industry and for the Nelson 
Mandela Bay metropolitan area is also shown.  

 

Effect on Baseflow 

 

Baseflow, that portion of riverflow resulting from groundwater and catchment water storage, 

was calculated from the modeled data for the three driest months in the Kromme: December, 

January and February. The model behaved as expected: for the least degraded state, the baseflow 

was highest and made up the greatest percentage of the mean annual runoff (Table 4.3). The 

modeled baseflow decreased along the degradation gradient, predominantly the result of wetland 

transformation, A. mearnsii invasion and an increase in the area under agriculture. The increase 

(a) 

(b) 

(c) 
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in the standard deviation of the modeled results with the degradation gradient suggests that 

baseflow would also become more variable and less predictable with increased degradation.  

 

Table 4.3: Simulated monthly baseflow (mean ± standard deviation) for each landcover scenario 
each spanning 50-years periods. Landcover scenarios were modelled along a degradation 
gradient, from (1) least degraded to (4) most degraded. Rainfall input data (614.0±165.56) were 
identical in this section, the same 50 year data record used in each scenario. This allows the 
impacts of land-use change alone to be isolated. 

Landcover 
Scenario 

Rainfall 
Dates 

Mean Monthly 
Baseflow (mm) 

Mean Annual 
Baseflow (mm) 

% of 
MAR 

1 1950-2000 9.42 ± 7.263 113.10 60.1 
2 1950-2000 8.27 ± 6.993 99.25 58.7 
3 1950-2000 6.57 ± 7.070 78.88 53.6 
4 1950-2000 6.58 ± 9.221 78.95 54.0 

 
The way the catchment responds to rainfall events according to the ACRU model differs 

among the four different degradation scenarios. Scenario 4, the most degraded, responded the 

most to high rainfall events (Figure 4.9). Conversely, during the dry season it had the lowest 

riverflow. However in Scenario 1, the least degraded, the catchment was best able to absorb high 

rainfall events, shown by the less dramatic response to these high rainfall events compared to the 

other 3 scenarios. During the dry season Scenario 1 generated the highest riverflow. The model 

results suggest that as the catchment has become more degraded with time (from 1954 to 2007), 

so the baseflow during the dry months has decreased and the riverflow during the extreme 

rainfall events/high rainfall season has increased.  
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Figure 4.9: Mean monthly riverflow from 1990 to 2000 for each of the four modelling scenarios 
(♦ 2007, ♦ 1986, ♦ 1969, ◊ 1954).  

 

Effect on Extreme Events 

 

Analysis of the rainfall and riverflow and the cumulative deviations from the respective 

mean values showed that the Kromme has had extended periods of above average rainfall, from 

1950-1970, punctuated by relatively brief but intense periods of drought, from 1980-1990 

(Figure 4.10). In 1983 the most extreme rainfall event in over 50 years occurred in the Kromme, 

where more than half of the MAP (614 mm) was received in 8 days, a total of 332.37 mm. This 

resulted in catastrophic floods. Four of the ten most extreme rainfall events occurred in the 

1970s, and two in each of the 1950s, 1980s and 1990s. There were 2786 rainfall events between 

1950 and 2000. The mean magnitude of rainfall event was 11 mm. There were 28 rainfall events 

greater than 101 mm. There is a slight decrease in the magnitude of all rainfall events over time. 
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In addition, extreme rainfall events appeared to decrease rather than increase with time, although 

the rate of decrease was low (Figure 4.10).  

 

 
Figure 4.10: Mean annual rainfall (solid line) and its cumulative deviation from the mean 
(stippled line) in the upper Kromme River between 1950 and 2000.  

 

The ability of the upper Kromme River catchment to absorb rainfall has decreased over time, 

despite the attempt to artificially retain it by increasing the number of farm dams (Figure 4.11). 

The relationship between rainfall and riverflow has changed over time, the catchment producing 

more runoff/riverflow for each rainfall event. This can be seen by the gradient of the trendline 

for each decade. In the 1950s the gradient was low (0.05) but increased to 0.89 in the 1980s 

where it peaked and then decreased to 0.66 in the 1990s. The removal of the outlier, point (a), 

reduced this gradient to 0.68, only slightly greater than the gradient of the 1990s. Outlier (a) is 

the largest rainfall event in the Kromme Catchment in the last 50 years, 332 mm over a period of 

eight days. The 1950s had the weakest correlation coefficient, followed by the 1960s. The 

trendlines of all other decades were acceptable fits. Range plots showed that each time period 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 4                                                                                   Hydrological impacts of restoration 

 

115 
 

was differed significantly from the next, with the exception of 1960s from 1970s, 1980s from 

1990s and 1970s from 1990s.  

 

 
Figure 4.11: An assessment of the ability of the Upper Kromme River catchment to absorb and 
regulate the flows from extreme rainfall events over the past five decades. Note: DWA data and not 
ACRU Modelled data were used in this section.  
 

Effect on Water Quality 

 

There are no water quality data for the Kromme River before 2000 although water treatment 

works were constructed in the 1940s. However, data on the amount of chemicals used to treat the 

water are available from 1985 (Figure 4.12). It is possible to deduce the state of the quality of the 

water by examining the volumes of the chemicals added to the water, as they would increase in 

response to a decline in water quality. Water quality of the Kromme River declined from 1985 to 

1995 (section A), necessitating ever greater amounts of chemicals. At this point there was an 

1950’s 

1960’s 

1970’s 

1990’s 

1980’s 
(a) 
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abrupt change in the amount of chemicals used and a slower rate of increase from then to 2010 

(section B). Chemicals used to treat impoundment water are constantly being improved to 

decrease running costs. At the Churchill Dam, chemicals have changed over time from 

‘Flocotan’ (an aluminium sulphate) to ‘powder allum’ (a different form of aluminium sulphate), 

and finally to a liquid allum called PAC ‘Poly Aluminium chloride’. This latest shift to PAC, a 

far cheaper and easier chemical to use, coincided with the shift seen in the graph –demarcated by 

section A and B. Thus the specific impacts of restoration on water quality cannot be quantified, 

however it is clear that the need for, and thus the cost of, water treatment has increased overall 

from 1985-2010.  

 

 

  
Figure 4.12: Water treatment chemical input (corrected ■ Chlorine and ■ Lime) into the Churchill 
Dam from 1985-2010. 

A B 
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Model reliability 

 

A comparison of the cumulative riverflow showed that the different flow estimates are 

actually quite similar (Figure 4.13). The close similarity between the flows based on the 

observed (DWA), modelled (WR90) and post-1980 land-cover scenarios (ACRU) suggests that 

they are all reasonable estimates of the actual riverflow.  

 

 
Figure 4.13: Modelled cumulative riverflow from 1980 to 2000 in the upper Kromme River for 
each of the four different landcover scenarios (1954, 1969, 1986, 2007) and for two independent 
modelling studies: --- DWA dam recipe calculations, --- WR90 modelled estimates.  

 

1954 

1969 

DWA 

WR90 

1986 
2007 
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DISCUSSION 

 

Wetland transformation 

Wetland transformation is not expected to have had a discernible impact on overall runoff as 

this will have been masked by much greater changes caused by A. mearnsii invasion. However, 

changes to the wetlands are predicted to have had an impact on baseflow (Begg 1986, McCarthy 

& Ellery 1998, Tooth et al. 2002, Humphries et al. 2010). When the bulk of the Kromme 

wetlands were removed, runoff, instead of being captured in wetland sediments, would have left 

the catchment as riverflow in the wet season, some of which would be stored instead in the 

Churchill Dam. In a dam, water is subject to high evaporation rates and as a result high volumes 

of water are lost to the atmosphere (Everson et al. 1998, Everson 1999).  

 

The ACRU model appears to simulate the expected changes well, projecting a marked 

decrease in baseflow with time. This is due to the decline in the extent of the wetlands by 5.2 

km2 (69.6%) between 1954 (7.54 km2) and 2007 (2.34 km2) and the concomitant reduction in 

catchment storage. This makes a strong case for the restoration of wetlands, as they have the 

ability to provide low cost water during the dry season. Theoretically, if the wetlands were 

restored to the extent they occupied in 1969, they would potentially be able to provide an extra 5 

mm baseflow per annum during the 3 dry months alone. This would translate into a flow increase 

of at least 6120 m3 each year in the dry season. Contrary to these results, a review of 169 wetland 

studies worldwide, albeit dominated by Northern Hemisphere case studies, found that in most 

cases wetlands decreased baseflow, with exceptions of floodplain and peatland wetlands where 

connections to aquifers were strong (Bullock & Acreman 2003). We hypothesize that the latter is 

the case with the floodplain peatland wetlands of the Kromme River (Haigh et al. 2002).  

 

Wetlands are renowned globally for their role in flood attenuation in a landscape (Kotze & 

Breen 1994, Kotze et al. 2005, Turpie et al. 2008, Russel 2009). From the time-series analysis of 

rainfall it is evident that this catchment often experiences long periods of drought, punctuated 

with periods of heavy rainfall, often accompanied by flooding. The Kromme Catchment is a high 

energy catchment, and it needs to have a high resilience to be able to withstand the frequent 

heavy floods. The removal of wetlands has decreased the catchment’s ability to absorb extreme 
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rainfall events, causing significant soil erosion (Chapter 3). It is not clear what caused the slight 

improvement in the catchment’s buffering capacity after the 1980s; it may have been a result of 

the wetland rehabilitation that commenced in the Kromme in the early 2000s, however the 

gradients of these correlations were too similar to draw any conclusions about restoration. 

Results from the international review of wetlands corroborate these results, as in most cases 

wetlands have been shown to reduce flood peaks or delay stormflow (Bullock & Acreman 2003). 

In African studies, wetlands in Zimbabwe were found to have an insignificant effect on flood 

magnitude (Bullock 1992), whereas wetlands in West Africa were found to flatten flood peaks 

(John et al. 1993).  

 

Wetland restoration may have improved water quality in the Kromme. It is evident that the 

rate of increase in the new chemicals at the Churchill Dam was lower than that of the old 

chemicals. The question remains as to whether this reflects a slower rate of decline in water 

quality as a result of the wetland rehabilitation upstream of the dam. Certainly this rehabilitation 

would have an effect on the sediment load arriving at the dam, but this cannot be causally linked 

to the water treatment at the dam. It is possible that the change in water treatment may be the 

result of changes in user water quality requirements rather than the water purification plant 

managers responding to upstream changes in water quality. However a study done in the USA 

has shown that wetlands do improve water quality and that a loss of wetlands would increase 

sediment loads as well as total phosphorus and nitrogen (Wang et al. 2010).  

 

Our results present a compelling case for investing in wetland restoration as an insurance 

against future extreme rainfall events– especially in the face of uncertainties associated with 

anthropogenic climate change (Schulze et al. 2005). An increase in temperature of 1.5 °C, a 

predicted temperature rise for the African continent as a result of climate change, has been 

modelled to result in a decrease in simulated discharge of about 15% in a study in South Central 

Ethiopia (Legesse et al. 2003). Climate change could have profound implications for water 

security in the Nelson Mandela Bay metropolitan hub in the future.  

 

Invasive alien plants (IAPs) 
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A. mearnsii is an aggressive invader, predominately invading the river course, which gives it 

access to water all year round. It is an extremely high water user, recorded as transpiring and 

intercepting up to 1500 mm per annum in riparian zones in fynbos (Dye & Jarmain 2004). This is 

approximately 600 mm higher than that of dryland fynbos and about 170 mm more than a 

restioid wetland in a winter rainfall area similar to the Kromme (Dye & Jarmain 2004, Everson 

et al. 1998). It is a highly drought-tolerant species with a high level of anatomical plasticity 

(Crous et al. 2011, Crous et al. 2012). Furthermore A. mearnsii shades out the palmiet in the 

wetlands (Boucher & Withers 2004) as it invades along the floodplain. Once the wetland plants 

have been displaced, the peat beds are exposed, rapidly dry out and erode away. Since A. 

mearnsii is arguably the main driver in the destruction of the remaining palmiet wetlands, it is 

likely to be indirectly causing a decrease in the catchment’s ability to absorb extreme rainfall 

events and the degradation of its water filtering service.  

 

The model predicts a decrease in the flows in the Kromme from 1954 to 2007. Riverflow 

changes are likely to have been a result of the two biggest land-use changes: invading A. 

mearnsii and the degradation of fynbos on the mountain slopes, which are likely to have caused 

conflicting changes to riverflow. An increase in the extent of degraded natural vegetation, as a 

result of too-frequent burning and overgrazing is well established to cause an increase in runoff, 

which contributes to increased riverflow and therefore yield (Mander et al. 2010). The loss of the 

palmiet wetlands and their replacement by cultivated lands and erosion should also have 

decreased evaporation and increased total runoff. The net decrease suggests that the increase in 

the extent of A. mearnsii invasions, and thus its water-use, has exceeded the gains from the 

extensive area of damaged mountain fynbos and the reduction in the palmiet wetlands. Even if A. 

mearnsii is not completely eradicated, but simply cleared to the extent of the 1954 invasion, the 

ACRU model predicts that there would be an increase in riverflow of more than 42 mm per 

annum with a resultant increase in yield of 32610 m3 per annum. These results compare well 

with the findings of an international review looking at the impacts of land-cover change from 

that of low native vegetation (i.e. shrubs) to that of afforestation (i.e. trees) (Bosch & Hewlett 

1982). It was found that woody trees, such as pine and eucalyptus, change the riverflow by 

approximately 40 mm per 10% change in vegetation cover (Bosch & Hewlett 1982). 
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South Africa is a chronically water scarce country (Ashton 2002). The Nelson Mandela Bay 

metropolitan hub is in a water crisis and is seeking to increase its water supply and security of 

that supply (DWA 2010). The data from this study suggest that restoration of the wetlands in the 

municipality’s main supply catchment, the Kromme River, could increase runoff and help to 

alleviate the water supply situation. In the Kromme, wetlands currently continue to be destroyed, 

sacrificing long term societal benefit, for short term private gains. It is during the dry season and 

droughts that water security is a major problem for both the city and for local farmers, and it is 

wetlands that provide water during the dry season (Sellars 1981). Denuding/burning the 

catchment would not increase water supply, as it would not provide water in the dry season; the 

more variable MAR becomes, the lower the potential yield from the catchment becomes. Many 

studies have shown temporal variation of riverflow to be an important consideration in water 

management (e.g. Bruijnzeel 2004, Vogel et al. 2007, Mander et al. 2010).  

 

The model shortcomings and uncertainty estimates 

Table 4.4 shows the evaporation output from the Kromme ACRU Model for three vegetation 

types (HRU’s): P. serratum, A. mearnsii and fynbos. It also displays the results, with MAP and 

other pertinent information, from other studies done on these vegetation types in South Africa. 

At first glance it may appear as though the Kromme ACRU Model is underestimating 

evaporation from these key HRU’s (Table 4.4). However, when the MAP from these studies is 

compared, the Kromme is receiving less than half the MAP than that of the other fynbos research 

sites, and about 200 mm less than that of grassland research sites. From this, it appears as though 

the evaporation that ACRU models for these vegetation types are reasonable, and it then follows 

that riverflow estimates will be defensible. Furthermore the order of magnitude of the 

evaporation that ACRU outputs for these vegetation types are logical; A. mearnsii is using ±200 

mm more than that of the indigenous riparian vegetation (P. serratum), which in turn is using 

±260 mm more than that of the dryland fynbos. The only other major factor that is not taken into 

account is that of the influence of groundwater (undoubtedly a significant factor in the 

hydrological dynamics of the Kromme floodplain) as ACRU does not adequately model soil-

groundwater interactions.  
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Table 4.4: A comparison of the ACRU Model evaporation outputs for key vegetation types 
(HRU’s) from the Upper Kromme (Eastern Cape), with that of measurements done in other 
studies in South Africa (Dye et al. 2001, Dye & Jarmain 2004, Clulow et al. 2011). All 
evaporation and rainfall (MAP) values are reported in mm per annum. Provinces: EC (Eastern 
Cape, WC (Western Cape), and KZN (KwaZulu-Natal).  

 Location Province Biome MAP  P. serratum A. mearnsii Fynbos 
ACRU Output Kromme River EC Fynbos 614 694.6±21.46 899.4±44.66 430.39 
Appendix 5 Jonkershoek WC Fynbos 1630 1043 - - 
Dye et al. 2001 Jonkershoek WC Fynbos 1324 - 1503- 1332 
Dye & Jarmain 2004 Jonkershoek WC Fynbos 1324 - 1503 600-850 
Dye et al. 2001 Gilboa KZN Grassland 867 - 1260 - 
Dye & Jarmain 2004 Gilboa KZN Grassland 867 - 1260 - 
Dye & Jarmain 2004 Seven-Oaks KZN Grassland 842 - 1223 - 
Clulow et al. 2011 Two-Streams KZN Grassland 754 - 1164 -  

 

A qualitative assessment of the uncertainty of the model output was undertaken by 

comparing ACRU simulations to those of DWA and WR2005 (Middleton & Bailey 2008) 

(Figure 4.13) and to compare evaporative outputs of key HRU’s from the ACRU model to 

measurements done in other studies (Table 4.4). One major shortcoming in this modelling study 

is that of taking into account soil-groundwater interactions as ACRU does not adequately model 

this. A second shortcoming in this study was in terms of irrigated agriculture; it appears that 

dams were drying up and crops not being properly irrigated as a result (crop water-use was lower 

than expected). This may mean that farmers are extracting water from the Kromme River 

illegally or the model is over-estimating crop water-use. This would not have been taken into 

account in the modelling as irrigation amounts were based on estimates from the farmers 

themselves, as the Department of Water Affairs have no reliable measurements, or even 

estimates. This lack of information may have confounded the results of this study, as 

underestimating water-use of crops would have a noticeable impact on riverflow. However at 

least this underestimation would be consistent for all of the four scenarios modelled in this study, 

and so the comparison between land-cover scenarios is still reasonably robust, even if absolute 

values are questionable.  
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CONCLUSION 

 

Although the conclusions reached in this study are based primarily on the outputs of a 

model, we have found them to be consistent with the data and findings of other studies and argue 

that the results are robust enough to make a strong case that similar changes have occurred in the 

actual riverflow of the Kromme.  

 

The findings also make a strong case for restoration of the wetlands and removal of A. 

mearnsii. When land-use change and climate change are superimposed on ecosystems that are 

naturally unstable and highly variable, they react extremely unpredictably and are exceptionally 

difficult to manage. These systems need to be managed and restored carefully so that some 

acceptable degree of resilience is recovered such that there is some protection from future 

climate change and uncertainty.  
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Palmiet, Prionium serratum, is a valuable wetland plant which occurs mostly in the Fynbos 
Biome, in the southern and south-western part of South Africa. It is generally perceived as 
undesirable by South African riparian landowners, clogging rivers and impeding riverflow. So it 
is often removed and replaced by agriculture. Very little is known about this important wetland 
plant. This study investigated its water relations, by measuring stomatal conductance. P. serratum 
has a lower stomatal conductance range than that of non-riparian fynbos vegetation, which is 
counter-intuitive given that its evaporation is not water-limited. We conclude that although the 
water-use of P. serratum is a cost that needs to be considered in comparing its benefits with that 
of cropland, the ecosystem goods and services that P. serratum wetlands have been shown to 
provide far outweigh the short-term financial gains of cropland.  
 
Keywords: Prionium serratum, palmiet, stomata, evaporation, stomatal conductance, water-
use.  
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INTRODUCTION 

 

Palmiet (Prionium serratum, Prioniaceae) is a common and prominent riparian wetland plant, 

occurring in river floodplains and along river fringes in the southern and south-western part of 

South Africa (Boucher & Withers 2004). It is perceived by many riparian landowners as a high 

water-user causing blockages in rivers, and is therefore often removed so that the floodplain 

sediments can be cultivated or converted into pasture. However, the loss of P. serratum makes 

these lands vulnerable to erosion during floods, destabilizing and modifying river systems and 

further degrading the wetlands (Chapter 4, Boucher & Withers 2004). This chapter investigates 

the water-use of P. serratum, specifically the seasonal and annual patterns in stomatal 

conductance and its response to key drivers.  

 

P. serratum is widely distributed in the acid waters of wetlands in the Fynbos Biome, from 

the Gifberg to Port Elizabeth, with outliers in the Eastern Cape and southern KwaZulu-Natal 

(Rogers 1997, Boucher & Withers 2004). Prionium is a monotypic genus, recently moved from 

the family Juncaceae to Prionaceae (Munro & Linder 1997). P. serratum grows in dense stands 

of what appear to be separate plants but are often simply individual ramets in large clones 

(Boucher & Withers 2004). These wetlands may be underlain by a layer of peat and accumulated 

sediments, built up over thousands of years (Haigh et al. 2002, Grundling 2004). It grows 

throughout the year, with flowering in spring and summer and fruit appearing in March (Boucher 

& Withers 2004). It is completely intolerant of saline water and full shade (Boucher & Withers 

2004). P. serratum resprouts after fires but can be killed by fire where shading by IAPs has 

caused it to grow long stems in search of full sunlight.  

 

Soil water availability is a major factor limiting to plant growth in most of South Africa (Dye 

et al. 2008). Like other Mediterranean vegetation, fynbos has conservative water-use with 

relatively low stomatal conductances and photosynthetic capacities (von Willert et al. 1989, 

Mooney et al. 1983). However, riparian plants with permanent access to water in the root zone 

have much higher evaporation rates than non-riparian counterparts (Everson et al. 1998, Scott 

1999, Dye et al. 2001, Everson et al. 2007, Everson et al. 2009, Clulow 2011). The limited 

research conducted on South African wetlands has shown that these habitats are generally high 
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water-users as a result of the high evaporation rates of wetland plants such as reeds (Phragmites 

mauritianus) (Wilson & Dincer 1976, Seyhan et al. 1983, Meigh 1995, Birkhead et al. 1997, 

Everson et al. 2001, Birkhead et al. 2007, Dye et al. 2008, Clulow et al. 2012). Other important 

factors affecting annual water-use are the proportion of the year that leaves are maintained, the 

aerodynamic resistance of the canopy (Dye et al. 2008), and the topographic aspect (Everson et 

al. 1998).  

 

This chapter reports on measurements of the stomatal conductance of P. serratum using 

porometry and climatic factors which are known to control stomatal conductances and, thus, 

transpiration rates. The results are compared with the stomatal conductances of other fynbos 

plant species. Many methods have been developed to measure the water-use of different plant 

species at the leaf, plant, and ecosystem scale. Scaling up from leaf scale (stomatal conductance) 

to canopy scale is very difficult and can lead to substantial errors; so it is not attempted in this 

study (Jarvis & McNaughton 1986, Pearcy et al. 1989). Furthermore, it is important to consider 

that all evaporation/plant water-use measurements involve some estimation, and all are subject to 

error.  

 

It is widely accepted that restoring wetlands is beneficial in terms of habitat provision, 

sediment stabilisation and accretion, which create storage capacity for water and increase the 

ability of the floodplain to absorb floods and retain groundwater to sustain dry season flows 

(Begg 1986, Kotze & Breen 1994, McCarthy & Ellery 1998, Tooth et al. 2002, Bullock & 

Acreman 2003, Kotze et al. 2005, Turpie et al. 2008, Russel 2009, Humphries et al. 2010). 

However the high evaporation rates of wetland plants, such as P. serratum, may reduce water 

availability and the cost of such losses needs to be taken into consideration when evaluating 

restoration options. 

 

The aim of this study was investigate the water-use of P. serratum and seasonal/spatial 

variation of its water-use. It was initially hoped that this study would provide an estimate of 

annual water-use of P. serratum for the hydrological modelling in Chapter 4. However it quickly 

became apparent that the errors involved in the scaling-up process, from stomatal conductance to 

transpiration, were too great for results to be robust enough to use (Pearcy et a. 1989).  
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METHODS 

 

Study sites 

 

We located, as a study site, a palmiet wetland in the Jonkershoek valley in the Western Cape 

Province of South Africa (33°58’38” S, 18°56’48” E) (Figure 5.1). The area receives a mean 

annual precipitation (MAP) of ± 1427 mm (Scott 1999). The catchment is protected as part of a 

nature reserve; however the adjacent slopes have been used for pine plantation forestry for 

decades. This wetland was used to obtain field-based measurements of water-use from P. 

serratum.  

 

 
Figure 5.1: The location of the study palmiet wetland in a satellite image of Jonkershoek in the 
Western Cape (inset). The extent of the palmiet wetlands are delineated in red, and the 
approximate location of the 6 study plants are marked.  
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Leaf Anatomy 

An epidermal peel was done for the adaxial and abaxial surface of a P. serratum leaf and 
examined under a light microscope at 4x, 10x and 40x magnifications. Stomata were counted on 
both surfaces. A cross section through a leaf of P. serratum was made, examined and 
photographed at 4x, 10x and 40x magnifications.  

 

Porometer measurements of stomatal conductance 

The stomatal conductance of P. serratum (m2.s.mol-1) was measured on 6 plants at 

Jonkershoek wetland over three different seasons: in spring of 2010 (November), summer of 

2011 (February/March) and winter of 2011 (June). Sampling took place over three days in each 

season. Measurements were taken hourly starting as early as 07h00 and as late as 19h00 

depending on the duration of full sunlight in each season. Measurements were made using a 

porometer for Stomatal Conductance Measurements (SC1 Leaf Porometer -Decagon Devices 

2012). Leaf temperature was also recorded using the porometer. From the 6 study plants, 3 were 

chosen which were situated away from the water such that their roots would not be constantly 

inundated. The other three were chosen along the edge of the water such that their roots would 

constantly be submerged in water. On each plant, two leaves were sampled, one from the bottom 

of the plant (older) and one from the top of the plant (younger). Both the top and bottom surface 

of each leaf was measured and whether it was positioned such that it was in the sun or shade was 

recorded. Preliminary measurements indicated that leaf age and whether the leaf was positioned 

on the north/south/east or west of the plant did not significantly affect stomatal conductances. 

Hence leaf age and aspect where not taken into consideration in the actual fieldwork.  

 

Measurements could only be taken once there was sufficient solar radiation to initiate 

photosynthesis and for the stomata to open. Winter measurements were extremely difficult to 

take, especially early in the morning, and were not possible during wet weather. As a result data 

were only obtained for two days in winter. Stomatal conductance measurements were only 

accurate to within 10% (Decagon Devices 2012).  

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



Chapter 5                                                                                        Water-use of Prionium serratum 

 

139 
 

Since it is difficult to scale stomatal conductance up to plant or stand-level, it was therefore 

not possible to compare our data with evaporation data for other species or systems (Pearcy et al. 

1989). Hence we compared our data with stomatal conductance data collected for other fynbos 

species, as no stomatal conductance data exist for South African wetland plants, in order to 

determine the relative levels of water-use by P. serratum.  

Statistical Analyses 

 

STATISTICA Version 10 was used to check all data for normality. All the data were found 

to be normally distributed. A mixed model repeated measures analysis of variance (ANOVA) 

was done to determine the significance of the difference between stomatal conductance 

measurements for specific variables at different times of day and in different seasons. A 

‘Classification And Regression Tree’ (CART) Analysis (Breiman et al. 1984), was used to 

determine which climatic variables affected stomatal conductance.  

 

Leaf area index 

The leaf area index (LAI) of a plant is a measure of the area of leaves of the plant per unit of 

ground area. It is often used to assess biomass, canopy cover and to make transpiration or 

productivity estimates (Jarvis & Leverenz 1983, Decagon Devices 2010). The LAI of P. 

serratum was measured on a cloudy day in autumn, using an ACCUPAR LP-80 Leaf Area Index 

Meter (Decagon Devices 2010).  
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RESULTS 

 

The results are divided into two sections: the first is on P. serratum anatomy and the second 

on P. serratum water-use characteristics.  

 

Anatomy of palmiet stomata 

 

The number of stomata does not differ between adaxial and abaxial leaf surfaces. From an 

epidermal peel of both the abaxial and adaxial surface of P. serratum leaves, stomata do not 

appear to be sunken (Figure 5.2). Stomatal guard cells are easily made out at a magnification of 

10x.  

 

 
Figure 5.2: Epidermal peel of adaxial surface palmiet (Prionium serratum) leaf (10x) 

 

Stomata 
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A more detailed cross section through a P. serratum leaf shows that it has large stomatal 

cavities and from these sections it appears to have sunken stomata, despite the contradictory 

evidence from the epidermal peels (Figure 5.3 & 5.4). There is no obvious explanation as to why 

P. serratum should have sunken stomata, as it is a wetland not a desert plant. One explanation 

may be as an adaptation to the intermittent dry periods that wetlands periodically experience.  

 

 
Figure 5.3: Cross section through palmiet (Prionium serratum) leaf on left (4x), and right (10x). 
Arrow indicates the position of stomatal apertures.  

 

Figure 5.4: Two cross sections through a palmiet (Prionium serratum) leaf (20x). Red squares 
indicate the position of stomatal apertures.  
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Stomatal conductance of P. serratum 

 

In an average stand of P. serratum, the mean (± standard deviation) number of plants per m2 

(n=10) is 7.0±1.76. The mean (n=10) number of living leaves per plant is 48.3±13.56, and dead 

leaves is 8.3±5.03. The mean (n=50) length of leaves is 89.7±11.75 cm. These values translate 

into a LAI of 11.2±1.10 (n=25) as measured by the LAI meter.  

 

i. Spatial variation in P. serratum water-use 

There was no significant difference in stomatal conductance among P. serratum plants that 

were inundated with water and those that were not inundated, or between the abaxial and adaxial 

surfaces of P. serratum leaves. There was no significant difference in stomatal conductance 

between sunny and cloudy days, and between leaves that were positioned in the sun or shade. 

However once the sun had set, stomatal conductance declined significantly (Figure 5.5).  

 

 
Figure 5.5: The effect of presence or absence of the sunlight on stomatal conductance of palmiet 
(Prionium serratum) in Jonkershoek, Western Cape. Points with the same letters denote no 
significant difference.  
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ii. Temporal variation in P. serratum water-use 

The mean hourly stomatal conductance did not differ significantly among measurements 

made at different times of the day. However the diurnal patterns of stomatal conductance 

differed significantly among seasons (Figure 5.6), with those in in winter being significantly 

different from those during the summer and spring. In spring, stomatal conductance was low in 

the early morning and increased toward sun-set. In summer the stomatal conductance was similar 

throughout the day while in winter it started relatively high in the morning and ended with low 

values.  

 

 
Figure 5.6: The effect of time of day and season on stomatal conductance of palmiet (Prionium 
serratum) in Jonkershoek, Western Cape. The blue line is the diurnal pattern for spring, the red 
for summer and the green for autumn/winter. For the sake of comparison, time was restricted to 
the hours 11:00 to 16:00 as for some days in winter, stomatal conductance could only be 
measured between those hours.  
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A CART analysis importance plot indicated that the three most important variables 

controlling stomatal conductance are the presence or absence of the sun (i.e. whether the sun had 

set or not), the season and the time of day (Figure 5.7).  

 

 
Figure 5.7: The relative importance of the effects of each variable (the effect of whether the sun 
had risen or not (shade/sun), the season, the time of day (hour), whether or not the plant was 
permanently inundated with water and the abaxial and adaxial surfaces of the leaves) on the 
stomatal conductance of palmiet (Prionium serratum) in Jonkershoek, Western Cape.  

 

iii. Climatological influence on P. serratum water-use 

Wind speed, saturated vapour pressure, temperature, vapour pressure deficit, radiation, 

potential evaporation and relative humidity had no significant effect on the stomatal conductance 

of P. serratum. Vapour pressure (VP) was the only environmental variable that had a significant 

positive effect on stomatal conductance (P=0.05, t=1.94 ). 

 

iv. Stomatal Conductance 

P. serratum has a mean stomatal conductance range of 18-112 mmol.m-2.s-1.  
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DISCUSSION 

 

Stomatal Conductance 

 

P. serratum appears to have a lower stomatal conductance than most other terrestrial fynbos 

plants (Table 5.1). This is counter-intuitive given that P. serratum is a wetland plant and in this 

study all plants appeared to have access to water and showed no signs of water stress.  

 

Table 5.1: Ranges of leaf conductances (mmol.m-2.s-1) for different growth forms of fynbos from 
the Cape Floristic Region, South Africa. Table adapted from von Willert et al. (1989) and Miller 
(1984).  

 

P. serratum stomatal conductance compares well with the stomatal conductance of 

Cannomois acuminata which has been measured to be 89-139 mmol.m-2.s-1 (von Willert et al. 

1989). The C. acuminata restiod vegetation from the Cedarberg area is comparable to the 

riparian, fynbos, wetland communities in Jonkershoek which had an annual evaporation of about 

1332 mm per annum (MAP 1324 mm) (Dye et al. 2001).  If we assume that palmiet and restioids 

Source Location Tall shrub Mid Shrub Restioid Geophyte Graminoid P. serratum 

Miller 1984 
Algeria: 
Waboomveld 75-217 31-665 134-339 110-146 - - 

 
Algeria:  
23 years of age 43-264 71-598 283-445 - - - 

 
Jonkershoek: 
Waboomveld 90-452 90-452 - - - - 

 
Jonkershoek: 
Swartboskloof 45-904 37-1100 - - 252-358 - 

 
Jonkershoek: 
Langrivier 77-528 191-213 265-427 195 - - 

        
 Jakkalsrivier 60-143 425 350 - 105 - 
        
 Pella 126-455 57-646 219-585 - - - 
        
von Willert et 
al. 1989 Cedarberg 68-157 61-125 89-139 226 91 - 
        
This study Jonkershoek  - - - - - 18-112 
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respond in the same way to climatic factors, these findings suggest that the annual evaporation of 

palmiet stands in Jonkershoek could be about the same.  

 

Leaf Area Index 

 

Obtaining a LAI for plants like grasses is difficult because of the vertical arrangement of the 

leaves. LAI can be measured in two ways: the total leaf area per unit ground (as in this study) or 

as the projected leaf area per unit ground area (Dye et al. 2008). In the case of graminoids, the 

latter is usually much lower and more comparable to measurements on other species, meaning 

that the comparisons given here should be treated with caution (Dye et al. 2008). In a study of 

grasslands, LAI values were found to be very low, ranging from 0.3 to 2.0, whilst those of 

woody coniferous open-canopy forests range from 0.2 to 0.9 (Breuer et al. 2003). However 

another study found maximum LAI of conifer stands to vary from 3.5-20 (Leverenz & Hinckley 

1990). A study done on Arundo Donax found LAI values to range from 3.4-6.1 (Watts & Moore 

2010). LAI varied from 1-5 in a remote-sensing survey of the grassland and plantations of the 

Mistley-Canema Estate in KwaZulu-Natal (Bulcock & Jewitt 2010). The LAI of P. serratum is 

high, comparable with LAI values for dense, closed canopy forests, but this may also be a result 

of the vertical and overlapping arrangement of the leaves (Eschenbach & Kappen 1996). Fynbos 

has been measured to have an LAI of between 2-3 (Miller 1984). Sugarcane has been measured 

to have a LAI of up to 6, and Acacia mearnsii to have a LAI of 2-3 (Dye et al. 2008).  

 

CONCLUSION 

 

From the stomatal conductance measurements in this study it appears that P. serratum is a 

relatively low water-user for a wetland plant. However, stomatal conductance measurements are 

difficult to perform, and the porometer can be inconsistent, so follow-up verification work is 

recommended. In terms of morphology, it is possible that P. serratum has special morphological 

adaptations, such as sunken stomata, for periods of drought, when rivers or wetlands dry up. 

These adaptations may have allowed the species to persist in extremely dry years. Thus, although 

appearing counter-intuitive as P. serratum grows exclusively in areas that are inundated, these 

adaptations are essential for the long-term survival of the species. In conclusion, the water-use of 
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P. serratum is a cost to consider when assessing the costs and benefits of a wetland compared to 

that of cropland. However when the other ecosystem goods and services that wetlands provide 

are factored in, the benefits of a wetland far outweigh those of cropland. We recommend that 

riparian landowners protect and preserve the wetlands and riparian zones surrounding their 

water-resources, and restrict agriculture to non-riparian land where the hydrological side-effects 

will not be as pronounced.  
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CHAPTER 6: CONCLUSIONS AND SYNTHESIS 
 

 

The aim of this thesis was to investigate the impact of restoration on key ecosystem 

provisioning and regulating services, by estimating the impacts of degradation in the Kromme 

River, South Africa. The land-cover change over the past 50 years was investigated and their 

impact on hydrology was modelled. The benefits of restoration can now be inferred from the 

results. The central research question of this thesis was: 

 

What was the hydrological impact of the landcover changes in the Kromme River Catchment 

over the last 50 years? 

 

This synthesis chapter highlights the main conclusions of this study, as well as making some 

recommendations for various management and political levels.  

 

MAIN CONCLUSIONS 

 

Land-cover change 

In the past 50 years, the Kromme River’s wetlands, floodplains and relatively fertile riverbeds, 

the areas in the catchment that are the most vital in terms of providing essential services to mankind, have 

been the most damaged and transformed. Two key land-cover changes were identified: the loss of palmiet 

floodplain wetlands, and the invasion of A. mearnsii, primarily in the riparian zones (Chapter 3) 

 

Hydrological impacts 

The hydrological modelling predicted that the transformation of the floodplain wetlands in 

the Kromme River has shifted the flow regime, reducing baseflows and increasing the 

responsiveness of the catchment to extreme rainfall events (i.e. greater floods) (Chapter 4). There 

are also data which indicate a decline in water quality (Chapter 4). The invasion of A. mearnsii 

over time has caused a reduction in riverflow. However it is very difficult to differentiate 

between the hydrological impacts of the wetland transformation and that of the A. mearnsii 
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invasion, as the invasion by A. mearnsii is a key driver for wetland loss. Regardless, the 

hydrological impacts of degradation in the Kromme River are substantial.  

 

Working for Water 

At their current rate of clearing (3x the rate of invasion), it would take WfWater another 30 

years to effectively control A. mearnsii in the Kromme (Chapter 3). On a positive note, WfWater 

appear to have been relatively successful at follow-up in the Upper Kromme (Chapter 3, McConnachie 

et al. 2012), however the rate of clearing is still too slow to perhaps be economically effective. It may be 

better to make a greater investment into clearing as much as possible, as early as possible, so that control 

would not have to be stretched out for as long as 30 years. A further observation relating to the control of 

IAPs, which I do not mention in my chapter, is that biological control has not yet been introduced into the 

Kromme, and this is something that should be rectified as soon as possible.  

 

Water-use of Palmiet 

P. serratum appears to have a relatively low stomatal conductance for a wetland plant. It has 

sunken stomata which may have evolved for periods of drought, when rivers or wetlands dry up. 

These adaptations may have allowed the species to persist in extremely dry years. However the 

evaporation from palmiet wetlands is still relatively high (Appendix 5) and thus the water-use of 

P. serratum is an additional cost to consider when evaluating the costs and benefits of a wetland 

compared to that of agriculture (Chapter 5).  

 

Benefit of restoration 

Using hydrological modelling of different scenarios, it is possible to hypothetically reverse 

the impacts of degradation and to infer the hydrological benefits of restoration. If the Kromme 

Catchment were to be restored back to the land-cover state of 1986 (i.e. clear 10.4 km2 (25.2% of 

the current extent of the invasion) of A. mearnsii, restore 0.5 km2 (3.3% of original extent) of 

palmiet wetlands), the hydrological benefits would be so small, they would not be worth the 

investment in restoration (Chapter 4). If the Kromme Catchment were restored back to the land-

cover state of 1969 (i.e. clear 12.5 km2 (30.2%) of A. mearnsii, restore 1.6 km2 (10.5%) palmiet 

wetlands), the hydrological benefits would include a predicted increase in riverflow (27.5 mm/a), 

baseflow (1.69 mm/a), an increase in flood protection and improved water quality (Chapter 4). If 
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finances were invested in the Kromme Catchment such that it was restored back to the land-

cover state of 1954 (i.e. clear 26.9 km2 (65.1%) of A. mearnsii, restore 5.2 km2 (34.2%) palmiet 

wetlands), the hydrological benefits would include a predicted increase in riverflow (42 mm/a), 

baseflow (2.9 mm/a), an increase in flood protection and improved water quality (Chapter 4). 

Finally, if the Kromme were restored back to its reference condition, which in reality is 

impossible due to the large scale wetland degradation and loss of peat beds, it would involve 

restoring between 5.2-12.8 km2 (34.2-100%) of the palmiet wetlands, clearing 41.3 km2 (100%) 

of A. mearnsii and ceasing all intensive cultivation in the floodplains (32.2 km2) (100%). The 

actual hydrological benefits would include ecosystem goods and services in excess of those 

modelled for the 1954 scenario (Chapter 4). These actions could be regarded as the type of 

insurance plan taken out, and the benefits gained in terms of increased ecosystem service 

delivery would be the insurance premium. In conclusion it appears that restoration, or financial 

investment into the Kromme River, would provide significant economic returns on investment.  

 

SHORTCOMINGS 

 

1. ACRU Model restrictions 

The ACRU model did not adequately take into account groundwater dynamics in the 

Kromme, which is a problem considering the high levels of groundwater recharge of floodplain 

wetlands. Neither did the model take into account structural damage to the river, in the form of 

erosion dongas and headcuts, which would undoubtedly have some of the greatest hydrological 

impacts in the Kromme. A model is never a substitute for real data; however its results still 

provide insights and may be useful. However as a result of the limitations of this model, it is 

likely that the hydrological benefits of restoration in this study are under-estimations of their true 

value. 

 

2. Data limitations 

The South African Department of Water Affairs did not have the requisite data on water-use 

of the Kromme farmers, despite being mandated by South African legislation to collect these 

data. As a result I had to rely on the landowners for details of their water-use (Appendix 3). 

Recent research has shown that not all farmers tell the truth (St. John et al. 2010). Indeed my 
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research suggested that farmers had underestimated their water-use for agriculture in the 

Kromme River, as the model predicted that farm dams were drying up, and output from the 

model indicates that crop water-use was uncharacteristically low (Chapter 4). This may imply 

that farmers are possibly using far more water than they are legally entitled to, and may be 

directly abstracting from the Kromme River itself.  

 

RECOMMENDATIONS 

 

Communication 

Restoration has been highly successful worldwide and has repeatedly been shown to improve 

the delivery of many ecosystem services (Aronson et al. 2007, Blignaut & Aronson 2008). 

However, there has been a failure to link this research with socio-economics and policy making. 

This failure suggests that such research has had little impact on local communities and few 

studies have been successful in implementing changes, with regards to the use of ecosystem 

services (Cowling et al. 2008). Communication between scientists and managers, and scientists 

and landowners needs to be improved. There are projects trying to address this gap, such as the 

umbrella project that this thesis falls under: ASSET Research, which has produced several policy 

papers as output from several of its funded masters studies (Appendix 6). This could be further 

encouraged by providing incentives for young scientists doing postgraduate studies to write up 

their research in a popular format, for magazines read by managers and landowners. The 

Conservation Ecology Department at Stellenbosch University have implemented such a 

programme, whereby postgraduate students are required to disseminate their research through 

several popular mediums in order to graduate. There are also projects willing to fund this type of 

dissemination and community interaction, and a grant was given by ASSET Research for the 

results of this masters research to be presented back to the farmers in the Kromme (Appendix 2) 

 

A second communication gap has been identified in this study between the management  of 

Working for Water and landowners. This lack of communication has often resulted in 

disagreements over whose role it is to do follow-up treatments in the Kromme. This issue has 

been pinpointed as one of the major reasons why follow-up is not timeously done in some cases 

in South Africa, and why reinvasion occurs (McConnachie et al. 2012, van Wilgen et al. 2012).  
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A social change 

South Africa is a water scarce country and as a result of a series of poor management 

decisions, unsustainable land use and invasion by woody alien trees, water security has declined. 

For centuries South African landscapes and rivers have been viewed through the lens of ideas 

and preferences inherited from the North (Kondolf 2011). South Africa has been viewed as 

“barren” and “vaal” (bland) due to its lack of woody trees and powerful river systems. Since the 

1820 settlers arrived, Europeans have brought numerous plant and animal species from other 

countries for many reasons, including: timber, horticulture, crops, accidental introduction and 

ornamental purposes. Invasion of South African by these species has changed landscapes, 

causing hydrological impacts that we bear the brunt of today. To truly succeed in restoring the 

South African landscape, we will require more than isolated restoration attempts (van Wilgen et 

al. 2012). A true recovery of the system will require a social change, a shift in mindset that can 

only be brought about by strategic social marketing and a social learning process (Leigh 2005, 

Pahl-Wostl 2007). There is also a great need for economic systems to be completely restructured 

so that ecosystem services are appropriately valued and included in financial audits at all levels 

(local, regional and national) (Cowling et al. 2008). Together with Living Lands3, a network of 

researchers, farmers and managers in the region, we have embarked on such a learning process 

with relevent stakeholders in the Kromme (Appendix 2).  

 

Valuing water appropriately 

Wastage of water in South Africa through leaks, unnecessary over-consumption and through 

losses associated with water hungry IAPs is pervasive. It has been argued (Andrews 2012) that 

the price of water should be increased, on a sliding scale, to reflect its true value: a resource that 

humankind cannot survive without; and to foster or encourage an appropriate sense of the value 

of water in society. It is also suggested that a payments for ecosystem services (PES) scheme be 

considered for the Kromme, Kouga and Baviaanskloof region (Mander et al. 2010, Andrews 

2012). If a market for the trading of water-rights was opened, and a cap-and-trade system 

                                                           
3 Living Lands is an NPO conserving and restoring living landscapes –including environmental, social and 
economic aspects. http://www.earthcollective.net/livinglands/ 
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(Stavins 2001) for water introduced, it may encourage and provide incentive for farmers to 

become more sustainable water-users, as well as to discourage unsustainable farming practices 

(Andrews 2012). However this would require not only buy-in from the associated municipality, 

the Department of Water Affairs and land-owners, but also accurate monitoring of the water-use 

of each farmer (Andrews 2012). It has also been suggested that IAPs should be controlled no 

matter the cost and that an alien control charge should be included as part of water resource 

management fees (Blignaut et al. 2007).  

 

Water-use monitoring and support 

In Australia, field techniques (such as heat-flux towers and Scintillometry) coupled with 

remote sensing techniques have been incorporated into the Australian Water Resources 

Assessment. This assessment releases an annual estimate of the water balance for the continent 

for planning and policy purposes (Glenn et al. 2011). Despite attempts by the South African 

Department of Water Affairs to gauge water usage and to enforce water usage restrictions as per 

their mandate, very little is known about actual water-use by South African landowners. 

Additionally very little is known about South Africa’s water resources in general as not all river 

systems are gauged, in the case of the Kromme River, data are poorly kept and existing 

equipment poorly maintained. Remote sensing is a potential solution to these logistical 

challenges, and whilst it may not be a silver bullet, it could assist farmers and government to 

optimise, manage and control water use in South Africa. There are energy-balance-based 

algorithms for estimating the evaporation from areas of land using satellite images which can 

help to establish links between land-use, water allocation and water-use (Bastiaanssen et al. 

1998, Bastiaanssen et al. 2005). Coupled to ground techniques, heat-flux towers or 

scintilometers, for validation, it could prove a reasonably cheap, highly accurate and high 

resolution measure of water-use of landowners and industry in South Africa. It is also 

recommended that for every cement weir that Working for Wetlands builds, the Department of 

Water Affairs should capitalize on this and install a gauging weir for monitoring riverflow.  

 

Enforcement of legislation 

South Africa has some of the best environmental legislation in the world including inter alia: 

the National Environmental Management Act 1998 (NEMA), the National Water Act 36 of 1998 
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(NWA), the Conservation of Agricultural Resources Act 43 of 1983 (CARA), the National 

Forests Act 84 of 1998 (NFA) (Roux et al. 2006, Armstrong 2009). However, enforcement of 

these laws remains problematic (Armstrong 2009). Immediate action needs to be taken such that 

the environment can be protected from offenders. There are many landowners in South Africa 

who are violating citizens’ constitutional rights to clean air, fresh water and biodiversity, making 

short-term personal profits at society’s long-term cost. Promoting sustainable farming will take 

two approaches: providing incentives (carrots) and compliance and law enforcement (sticks). It 

is recommended that a scientific officer with legal training be appointed in every secondary 

catchment in South Africa to follow up on water-related violations and to ensure that legislation 

is enforced.  

 

Investing for the future 

Climate change is likely to lead to water shortages and more intense and unpredictable 

rainfall events, resulting in increased floods (Schulze et al. 2005, Matthews et al. 2011, 

Trenberth 2011). In the face of growing uncertainty surrounding future climate change, it would 

be wise to take out an insurance policy by investing in and restoring our natural infrastructure 

while we still can. It has been recommended that alternatives to new infrastructure (such as water 

filtration and desalination plants) be considered, that society builds with nature: attempting to use 

the natural infrastructure (wetlands, aquifers) that nature provides (Matthews et al. 2011). As a 

matter of urgency, South Africa should be investing in ecosystems by increasing protected areas, 

with river and wetland systems being the highest priority (Nel et al. 2009).  

 

There are examples of success stories of investing in natural infrastructure from all around 

the world. One such example is of the Seattle Municipality, North America (Cosman et al. 2012). 

In the 1980s Seattle was one of the unhealthiest cities in North America, with the highest rate of 

disease (outbreaks of typhoid and cholera), as a result of poor quality and limited water supply. 

After years of water-shortages and a fire destroying most of the city, the municipality decided to 

invest in a catchment, and purchase it for the sole purpose of water-provision. The Cedar River 

Catchment was bought from farmers and restored, and within 10 years the catchment provided a 

secure supply of high quality water, the outbreaks of disease ceased, improving the health of the 

citizens of the Seattle Municipality. In addition, the city was saved billions of dollars in the long 
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term. This is because the use of natural systems for water provision services proved substantially 

cheaper than creating an artificial system, such as a new water filtration plant (Cosman et al, 

2012). It is recommended that South African government follow a similar approach: that is to 

decide which catchments are priority catchments in terms of water-provision, and invest in these 

catchments. It is becoming increasingly apparent that unsustainable and commercial farming 

practises are not compatible with high quality, secure water provision. The South African 

government should decide whether to farm “water” in these catchments, or maintain agriculture 

and forestry, as these catchments cannot support both services. We recommend that important 

water providing catchments, especially where agriculture and forestry are marginal, should be 

prioritized for provision of water-related ecosystem services alone. 

 

Conclusion 

This study could be greatly strengthened by being repeated in a transformed catchment that 

has a high quality historical hydrological record. An ideal catchment would be one where alien 

invasion has taken place, and where restoration has followed, as the hydrological effects would 

all have been captured in this hydrological record. The modelling results from this study have 

been interesting, but a key question that arises out of this thesis is: is it possible to accurately 

quantify the hydrological benefits of restoration at a landscape scale? 
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APPENDIX 1 
A social study of the farmers of the Kromme 

 

This Appendix is split into two sections. The first is a description of the farmers of the 

Kromme in a powerpoint format. Each farm has a slide for a) its location within the 

catchment, b) a photo of the farm, c) a photo of the farmer –if possible. The slides that show 

the map also show an attribute table with pertinent information about the farm and its land-

uses, as well as details about the farmers. This database is not displayed in full in this thesis, 

so as to protect the farmers’ details. The second section is a summary of the farming activities 

and opinions of farmers in the Kromme. Another output of this social study was a detailed 

land-use map, aimed at the farmers (Figure A1.1). This was distributed to interested farmers 

at the workshop in March 2012 (Appendix 4). All of our data were obtained in lengthy 

private interviews at each of the farmers’ homes.  

 

SECTION 1: Description of the Kromme Farmers 
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SECTION 2: Summary of the Activities in the Kromme 
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Figure A1.1: A detailed map of the farming in the Upper Kromme River 
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APPENDIX 2 
The Kromme Workshop 

 

The Kromme Workshop was held in Kareedouw, the town in the Kromme Catchment, for 
farmers of the Upper Kromme. Farmers were consulted in person, month in advance as to what 
date and time would suit them best. The following invitation, in the appropriate language, was 
then hand-delivered to each farmer. This Appendix contains a workshop report, summarizing key 
points and showcasing the day using photos.  
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APPENDIX 3 
A history of the land-use of the Kromme 

 

Present land-use 

 

The total area of the Kromme River Catchment is 155 631 ha (Mander et al. 2010). The area 

is extensively transformed, especially in the lower estuarine reaches where there are a number of 

tourist resorts. The catchment is invaded with alien plants, with over 60% reported to be infested 

over a decade ago (Carpenter 1999). The upper reaches of the river are mostly privately owned 

and farmed (28 544 ha) (with drylands or old cultivated fields comprising 9 862 ha), and only 

8 062 ha are owned by the state. Farming in the catchment is predominantly intensive fruit, 

vegetable and large livestock farming. Some farmers are taking advantage of ecotourism and a 

few game and holiday farms have been developed to attract tourists. There are few towns and 

informal settlements in the catchment, the largest Kareedouw, comprising 3 708 ha. Wetlands are 

extensive, making up 1 077 ha of the catchment; however most are heavily degraded or 

completely transformed. There are large areas of degraded vegetation, making up 13 325 ha, 

whilst 3 350 ha of this is reported to be as a result of alien invasion (SANParks 2009, Skowno 

2008).  

 

Large areas of natural vegetation do still exist (10 205 ha), some within the Formosa Nature 

Reserve in the upper reaches of the river (Figure A3.1). Fynbos is the dominant vegetation type 

(56 804 ha), followed by grassland (15 479 ha), thicket (12 087 ha), renosterveld (11 366 ha) and 

forest (2 734 ha) (Vlok et al. 2008). The dominant vegetation on the peat beds is palmiet (P. 

serratum) with smaller patches of ferns, grasses, reeds and sedges (Haigh et al. 2002). Peat beds 

develop above the alluvial fans where the sub basins form. The peatland complex, fen, have 

formed over a period of 5000 years. Two western peat basins cover 240 ha, whilst an eastern peat 

basin covers 150 ha. The mean thickness of the peat is approximately 1.6 m, ranging from 0.5 m 

to 2.8 m. The total volume of peat was estimated to be 12.9 Mm3. Peat beds are being destroyed 

by agriculture, ploughing of the wetlands, the removal of palmiet, water abstraction, draining, 
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donga and headcut erosion, the construction of dams, roads, railway lines and fences, alien plant 

invasion and peat fires (Haigh et al. 2002).  

 

Figure A3.1: Catchments K90A-E (Eastern Cape) divided into land-use types (irrigation, 
plantation, dryland), catchment health and broad vegetation type (Middleton & Bailey 2008).  

 

The Kromme River System has two major impoundments; the Churchill Dam (with the 

adjacent Churchill Water Treatment Works) and the Impofu Dam (with the adjacent Elandsjagt 

Water Treatment Works) (Figure A3.2).  
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Figure A3.2: Towns, settlements and farmsteads along the Kromme River, in catchments K90A-
E (Eastern Cape).  

 

History 

 

This history was compiled using three primary sources, Haigh et al. (2008), Raymer (2008) 

and Skead (2009). Haigh et al. (2008) used a number of sources, including the National Archives 

in Cape Town, travel writings of early explorers, annual reports from the Cape Colony and Cape 

Province and interview conducted with land owners. Raymer (2008) used a number of newspaper 

articles, the City Engineers Annual Reports (1907-1991), the Mayor’s Annual Reports (1903-

1945), Official Council Brochures, Municipal Files and Departmental Records (1930-2006), and 

various Bills, Acts, and Proceedings of Select Committees of Parliament. Skead (2009) is a 

compilation of records and diary extracts of travellers and settlers in South Africa dating from 

1700 to 1848.  

 

Pre-1940: Colonization era 

Settlers began acquiring grazing rights for the region as early as 1775. According to records, 

timber began to be shipped from the Kromme Catchment to Cape Town, via newly built harbours 

in Plettenberg Bay and Mossel Bay in 1787. Before the 1820s Port Elizabeth (PE) comprised 

only Port Fredrick, a mission station at Bethelsdorp. However in the 1820s, the British Settlers 

Stellenbosch University  http://scholar.sun.ac.za



 
Appendix 3                                                                                                  History of the Kromme 

 

187 
 

landed in PE and the population began to grow until, in 1861, the PE Municipality was formed. 

In 1869, a precursor to the R62 was built from Avontuur to Kareedouw, which only crossed the 

Kromme River twice, by bridge and by causeway. The previous route required travellers to cross 

the river eight times. Before the 1880s, no house in PE had running water.  

 

In the first half of the twentieth century, the most common farming practices in the region 

were orchards and grazing. In 1905, Kareedouw, the main town in the Kromme River valley, 

became established. The following year the railway line through the catchment (at the base of the 

Suuranysberg watershed) was completed, with a station at Jagerbos. This allowed for an 

intensification of farming. Planning for the construction of the Churchill Dam began as early as 

1928. In 1930, 1931, 1932, 1936 exhaustive surveys, studies and reports on the Kromme River 

system were undertaken in preparation for the dam. Between 1930 and 1940, farming in the 

region changed to soft fruit orchards on the fertile floodplains, which had previously been 

wetlands. However in 1931, massive floods ripped out orchards along the Kromme River banks 

and caused severe erosion. As a result, many farmers turned to pasture, meat and dairy 

production. After the 1931 floods, black wattle trees were reported to have appeared in great 

numbers all along the course of the Kromme River. Four good years of rainfall following the 

1931 flood ensured black wattle establishment. In 1935, famers started planting kikuyu 

(Pennisetum clandestinum) on the floodplains as a pasture grass. Indigenous rooigras (Themeda 

triandra) was ploughed over for the production of grains and vegetables.  

 

In 1937, the proceedings for the construction of the Churchill Dam commenced at the Water 

Court. The following year, authority was granted for the building of the dam. In 1939 the contract 

for the building of the dam was awarded. The preparation and set up at the proposed dam 

building site commenced in 1940.  

 

Diary Extracts (Source: Skead 2009) 

 

 

 

 

1772-1773  Thunberg, C. P. 
 

Upper Langkloof, near Uniondale: 
 

“The land in the Lange Kloof is bare, and without any shrubs or bushes, but abounds 
much in grass.” 
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1772-1773  Thunberg, C. P. 
 

Essenbosch, 33km west northwest of Humansdorp: 
 

“...arrived at Essebosch, a fine forest in almost a plain and level country” 
“The bread tree (Encephalartos caffer) is a species of palm or cycad which grows on 
the hills below the mountains, in these tracts” 
“The berries of the guarri bush (Euclea undulata) had a sweet taste and were eaten 
by the Hottentots” 
“...we proceeded to Essebosch, a pretty, neat, little wood which has acquired its name 
from the large trees, essenboom or ash trees, Ekebergia capensis, that grew there, the 
leaf of which resembles the European ash. Large fig trees too, Ficus capensis, the fruit 
of which is eaten by the baboons, grew here in abundance.” 

1775  Sparrman, A. 
 

Upper Langkloof, Uniondale 
 

“In the neighbourhood of the Brak‐rivier which, he says, is where the Langkloof 
begins, as well as in other places in the Langkloof they made great complaints about 
the piss‐grass mentioned as growing in Attaquaskloof [40 km northwest of Mossel 
Bay] though nobody could, with any degree of certainty, point out any particular 
herb as coming under that denomination”.  
 

Essenbosch 
 

“The name of Essen‐bosch is given to a kind of woody tract along the Essen River 
which, as well as the wood, has taken its name from the esse or ash tree, Ekebergia 
capensis”.  

1804  Lichtenstein 
 

Near Kromme River, eastern Langkloof 
 

“We rested near the river under the shade of some small trees of kruppelholz, Protea 
conocarpa [Leucospermum conocarpodendron]”.  

1816  La Trobe, C. I.  
 

Upper Langkloof, after passing over the mountains at Perdekop 
 

“Barren as these mountains in general appear, they yet afford a rich harvest for the 
botanist, and we found several curious plants unknown to our best botanist, Mr 
Melville. In some places, the rugged sides of the hills are clothed with aloes and other 
larger plants, and as we proceeded we saw on many hills the so‐called wageboom 
growing dispersed [Protea nitida] resembling a planted orchard, the trees standing 
fifteen or twenty paces asunder”.  
 

First impression of Langkloof: “a vale of perhaps 100 miles enclosed by mountains of 
different heights. On entering it we felt not a little disappointed ... we saw a long 
ridge of comparatively low hills, divided by narrow parallel kloofs, without wood or 
water, skirting a dull uncultivated vale...”.  
 

Essenbosch 
 

Pitched tent “... on a grassy spot surrounded with bushes and defended by high trees 
against wind...” 
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1816  La Trobe, C. I.  
 

East of Jagersbosch 
 

“... we saw a country before us apparently level but full of dells and gullies. The great 
variety of bushes and flowering shrubs on all sides attracted our attention. Large 
aloes [Aloe ferox] are interspersed among the bushes and, with their broad leaves, 
form a striking contrast to the many small‐leaved evergreens which surround them. 
Some of them were in full bloom, towering above the thicket, and one, more perfect 
than the rest, was brought into the wagons”.  
 

 “... this country, unproductive as it generally is in means of subsistence for man and 
beast [is clothed] with an astonishing profusion of vegetable beauty. Hardly a spot 
exists upon which some curious and beautiful plant does not rear its head in its 
proper season; and in the midst of this brown desert we see the magnificent 
chandelier or red‐star flower, measuring from four to five inches, to a foot and a half 
in the spread of its rays growing luxuriantly among the stones [Brunsvigia 
littoralis]”. 

1820  Moodie, J. W. D.  
 

Langkloof  
 

“I had now entered the Langkloof... which extends for more than 100 miles between 
two parallel ranges of mountains, or rather mountains on one side and high grassy 
hills on the other”.  
 

West of Gamtoos River 
 

“The eastern extremity of the Lange Kloof opens into the valley of the Kromme River 
[18 km west of Humansdorp], and here the scenery again becomes interesting and 
romantic... The pasturage along the banks of the Kromme River is everywhere of that 
coarse description which is distinguished by the term ‘sour’ by the colonists”. 

1838  Backhouse, J.  
 

Upper Langkloof over the mountains behind George: 
 

“In the evening we pursued our journey in the Lange Kloof which is an extensive 
valley between ranges of lofty hills with farms at distant intervals wherever there 
are little streams to fertilize the ground which is generally dry pasture compose 
more of bushes than of grass”.  
 

Lower Langkloof, near Krom River: 
 

“We emerged from the Lange Kloof by a steep descent to the upper part of the Krom 
Rivier... The vale of the Krom Rivier is narrow. In some places the head of the river 
extends from the hills on one side to those of the other side and is choked with 
palmit [Prionium serratum]. The quantity of water was so small as only just to be 
traced in a flowing state in a few places”. [27 November] 
“The hills, both here and in the adjacent parts of the Lange Kloof were besprinkled 
with a glaucous‐leaved protea forming a small tree [probably Protea nitida]” 
“In a stony place on one of the hills the noble Cyrtanthus obliquus was in flower.” 

Stellenbosch University  http://scholar.sun.ac.za



 
Appendix 3                                                                                                  History of the Kromme 

 

190 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1838  Backhouse, J.  
 

Krom Rivier: 
 

“Three Fingo women stopped where we outspanned... they were eating the root of 
Cussonia, an arborescent shrub belonging to the same natural order as the ivy; the 
leaves were palmate and the root is about as thick as a man’s arm, tender and white.”  
“The Coloured people eat likewise the roots of the blue waterlily, Nymphacaea 
capensis [Nymphaea nouchali], which abounds in some of the pools of the Krom 
Rivier, along with Villarsia indica [Nymphoides indica] a smaller plant with yellow‐
fringed blossoms. The magnificent flowers of the blue waterlily exhale an odour 
resembling that of the violet”.  
“Fine specimens of Virgilia capensis [Virgilia oroboides], a small tree with fragrant, 
pink, pea‐like flowers were growing near some streamlets”. 
“The blue Africa lily, Agapanthus umbellatus [Agapanthus praecox] was in flower in 
moist places”.  
“An aloe with a trunk rising to 8 feet high, though not in flower, formed a striking 
feature among the bushes on the adjoining hills”.  

1838  Bunbury, C. J. F.  
 

Langkloof: 
 

“The country was extremely arid except along the course of the little streams, and on 
the hills near the younger Kamper’s residence the bushes had been burnt to a 
considerable extent, a practise general in this country and advantageous to the cattle 
but very provoking to the botanist”. (30 March) 
“Here, however was plenty of that curious plant called by the colonists paarde kapok, 
or horse‐cotton, Lanaria plumosa [Lanaria lanata] with its stem and flowers 
enveloped in a dense woolly coat of singular whiteness. A beautiful everlasting, the 
Helichrysum foetidum bearing a profusion of golden yellow flowers, is common along 
the edges of streams in the Long Kloof, together with the graceful and pretty shrub 
Gnidia oppositifolia” 
“On the parched and barren hills which bound the Long Kloof, a few species of 
everlastings were the chief plants in flower at this season; and another of the same 
tribe, Metalasia muricata is as common along the road all through this kloof and 
indeed throughout the Districts of Zwellendam and George, as the ragwort is in 
England”.  
“Different species of Restio form the principal part of the herbage, both on the hills 
and along the sides of the streams. In most rivers is an abundance of our common 
reedmace or bulrush Typha latifolia which appears to be as truly wild here as in 
Europe”.  
 

Central portion of the Langkloof: 
 

“This long valley, although crossed by numerous streams, is on the whole of a 
remarkably arid and monotonous appearance. Indeed, short of actual desert, I can 
hardly imagine anything more wearisome: not a tree, not a house, or a trace of 
civilization for miles together; scarcely a bush above 3 feet high; nor a tinge of green 
except along the margins of streams whose course is indicated by a narrow strip of 
reeds and rushes. A great part of the ground is covered exclusively with the 
melancholy grey rhinoceros bush [Elytropappus rhinocerotis]. The mountains on the 
south are extremely steep and rugged ... like the cliffs of Table Mountain, without a 
tree or blade of grass. The streams ... are numerous and, though small, are never 
entirely dried up. An industrious and enterprising people would have turned them to 
good account in irrigating land. As it is, I travelled through the Long Kloof at two 
different seasons, and both times it appeared equally barren”.  (31 March) 
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1940-1996: Degradation era 

After 1942, agricultural activities tended towards the production of soft fruit and vegetables, 

but dairy and sheep farming remained important. With the increase in economic pressure, 

destructive framing practises, such as over-grazing and the draining of floodplains for larger 

1838  Bunbury, C. J. F.  
 

Krom Rivier valley 64 km east of Diep River at Jagersbosch: 
 

“... rugged stony and barren hills ... the hill immediately behind the house which 
abounds with Proteaceae and heaths, and promises a good harvest of plants in a 
more favourable season. I gathered a leucospermum [Leucospermum cuneiforme]” 
which I had not before seen in flower. I have seen no acacias since we crossed the 
Great Doorn River on the morning of 29 March”.  
“The hills near Jagersbosch abound with the small tree called wagenboom [Protea 
nitida] which was indeed common in many parts of the country we had traversed, 
but this was the first time I saw it in flower. It is one of the largest kind of Protea, for 
though it does not attain such a height as the silver tree, it is fully as thick in the 
trunk. A beautiful sugarbird of a golden‐green colour with scarlet breast was here 
perched on its flowers, climbing about them and thrusting its slender beak into 
every floret.”  
“The moist hollows between the hills, as well as the valley of the Kromme River, 
were nearly filled with the palmiet rush [Prionium serratum], a common plant 
throughout the country we had traversed from the Hottentot Holland Mountains 
eastward. It is eminently a social plant growing very thick together and forming 
large masses unmixed with anything else. In its herbage and general appearance it is 
quite unlike a rush and has more the look of an aloe or of the crown of a pineapple 
mounted upon a thick, black spongy stem which varies in height from less than a foot 
to 3 or 4 feet according to the depth of water in which it grows”.  

1839  Krauss, F. In Sphor  
 

Upper Langkloof: 
 

Krauss went down into the Langkloof. “The main vegetation was again kreupelbome, 
[Leucospermum cuneiforme] but also bulbous plants and particularly the beautiful 
amaryllis [Amaryllis belladonna] adorned the countryside”.  
“On March 3rd I travelled from the Landkloof across a steep rise into teh narrow 
valley of the Kromme River ... the river was densely overgrown with palmiet reeds 
and is very marshy”.  
 

Jagersbosch: 
 

Arrived at Jagersbosch, deep in the mountains: “... here I found a few specimens of a 
pretty plant with a flower rising from the centre [Cussonia spicata]”.   
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orchards, increased. When the first aerial photographs were taken in 1942, the Kromme River 

Catchment was already transformed to a degree by agricultural activities. In 1943, the 

construction of the multi-arched Churchill Dam (able to hold 2.961 billion litres of water), was 

completed. The first test of the Churchill Dam took place in 1944, which was a high rainfall year. 

The dam filled overnight to a depth of 27 m and a few days later overflowed.  

 

In 1945 people began to harvest the black wattle bark for use in the tannery in George. The 

Kromme River Scheme (Churchill Dam and the Churchill Water Treatment Works) only 

officially opened in 1948 because it was only fully commissioned in 1947 as a result of the war. 

Only a year later, in 1949, a second pipeline to Churchill Dam was proposed. In the 1950s 

extensive bridge construction began. Between the period of 1954 and 2003, the Kromme River 

straightened out and became less braided and sinuous. In this same period the channel was 

recorded to have doubled in overall width. Several years prior to 1954, the rainfall was unusually 

high and in 1956 a massive flood event occurred. The Churchill Water Treatment Works were 

also flooded and supply was disrupted. The second pipeline to the Churchill Dam was 

commissioned the same year. In 1957, pipe-laying commenced, cutting the river eleven times. 

The same year, extensive cracking of the downstream face of the Churchill Dam occurred.  

 

In the 1960s extensive road construction began, and from 1961-1969, the old road was re-

laid and tarred. This construction damaged the catchment, as a stream was re-routed for a bridge 

to be built, and the whole process resulted in sedimentation. In 1961 a pump station was 

constructed, and the following year the second pipeline became fully operational. The same year 

a carbonation bay (to stabilize raw water) was constructed at the Churchill Dam. In 1963 a safety 

report on Churchill Dam was released and work on strengthening the dam was completed the 

same year.  

 

In 1964 and 1965, there was heavy rainfall which resulted in a massive flood which swept 

away orchards and fences. After this flood event, farmers in the catchment raised the banks of the 

river, causing massive erosion, in a futile attempt to reduce future damage. In 1968 there was 

another year of heavy rainfall and another massive flood event. During the period 1970 to 1986, 

the deterioration of wetlands increased markedly. In 1970, preparations for a second dam lower 
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down on the Kromme River began. Further years of heavy rainfall occurred in 1971, when the 

Churchill pipelines were again disrupted, in 1974 when a headcut was reported to have moved 

back 500 m, and in 1977 when the Churchill pipe bridge was reported to have been washed away. 

In 1979 construction on the second dam on the Kromme River commenced.  

 

Between the years 1980 and 1985, a drought occurred, which reduced the vegetation cover 

of the catchment. In 1981 the biggest series of floods in record occurred, with three floods in one 

year. The impacts of this flood event were exacerbated as a result of the low vegetation cover 

from the drought. The Churchill pipelines were also washed away. The year before the floods, a 

contract for maintenance work on the Churchill Dam and pipes was awarded, thus maintenance 

and inspections began in 1981. In 1982, Elandsjagt Dam was completed and in another major 

flood the following year, the dam was filled.  

 

Between the period 1983 to 1990, side roads leading to several farms (Walletjies, 

Kammiesbos, Jagerbos and Hudsonvale) were built. In 1985, Elandsjagt Water Treatment Works 

officially opened. By 1986, half of the valley floor had reportedly been transformed. In 1988 the 

walls of the Churchill Dam cracked a second time as a result of an alkali aggregate reaction. 

Another year of drought followed in 1989. Post apartheid, in 1994, an influx of people into 

Kareedouw, the biggest town in the Kromme River valley, began. Some 70% of the people are 

unemployed and living off grants. In 1996, the largest recorded floods occurred, breaching the tar 

roads and causing severe damage to infrastructure and farms downstream.  

 

Post-1996: Restoration era 

In 1996, WfWater began clearing aliens in the Kromme River Catchment. This clearing 

revealed the extent of the damage to the wetlands, which included extensive instream gullying 

(especially in the peat basins) and widespread river bank erosion. In 2000, a project called 

Working for Wetlands began mechanical restoration of the Kromme River. A series of rock 

gabions built in the upper catchment were completed in 2002. A gabion and two concrete/rock 

structures were built in Companjesdrift and completed in 2005. A rock gabion weir and spillway 

were built at Hudsonvale between 2000 and 2003. Three concrete structures and three spillways 

were built at Krugersland in 2001 and completed in 2003. According to a survey conducted in 
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2001, 65% of the Kromme River Catchment was natural, 29% agricultural, 6% degraded, and 

almost 1% urban. In 2001, wetlands on the farm Hudsonvale were deemed to be in good 

condition, due in part to the kikuyu pastures in the seasonal zone, but mostly a result of the 

rehabilitation structure completed by WfWetlands.  

 

In 2001 another flood occurred. By 2003, over half of the land adjacent to the marsh 

wetlands in Krugersland was transformed. The land at Companjesdrift was invaded by alien 

vegetation by 2000 and the marsh had been destroyed. By 2003, all wetlands had been converted 

to floodplains/riparian zones. In 2003, 13 weirs were constructed, and in 2004, a further five. In 

2004, flash floods damaged the Churchill pipelines. Between 2004 and 2006, two weirs were 

constructed and in 2005 two gabions built above the tributary at Hendrikskraal. In 2005 five 

weirs were constructed and between 2006 and 2007, a concrete/gabion structure was built at 

Kammiesbos. In 2006, extant marshes persisted at Krugersland, and Companjesdrift was in good-

excellent condition due to removal of alien vegetation and rehabilitation structures constructed. 

Another large flood event occurred in 2006. Construction for the desludging process began in 

2005 and was completed in 2006. A smaller flood followed in 2007, and a further four gabions 

were constructed.  

 

In 2007 a survey showed that from the palmiet wetlands at the upper reaches of the Kromme 

River, to the town of Kareedouw, intensive farming of vegetables and livestock occur. From 

Kareedouw to the charcoal factory, there are six oxidation ponds, factories and low-cost housing 

areas. From the charcoal factory to the Churchill Dam, land-use is primarily agricultural and 

grazing, although stretches of palmiet do occur. From Churchill to Impofu Dam, the land is 

largely inaccessible due to the confined nature of the valley, with steep mountain ridges to the 

east and west, and the two dams forming physical barriers to the north and south respectively. 

However one dairy farm exists in the area. From the stretch of river from Impofu Dam to the 

estuary, the primary land-use is dairy farming. The primary land-use in the Diep River Catchment 

is cattle farming. The most recent assessment of land-use in the Kromme River Catchment prior 

to this study, can be seen in Figure A3.1.  
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Figure A3.3: Chronology of Kromme River Catchment 1940-2010 
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APPENDIX 4 
Mapping outputs for the Kromme River 

 

This masters study resulted in the creation of a detailed land-use map for the Kromme (2007) 

and land-use maps for 1983, 1969, 1954 and a reference map. This Appendix showcases these 

maps and the mosaicked aerial photographs used for the creation of these maps.  
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APPENDIX 5 
Calculating a Crop Factor for Palmiet (Prionium serratum) 

 

INTRODUCTION 

 

Many methods have been developed to measure the water-use of different plant species at the 

leaf, plant, and ecosystem scale. Scaling up from leaf scale (stomatal conductance) to canopy 

scale is very difficult and can lead to substantial errors (Jarvis & McNaughton 1986, Pearcy et al. 

1989). At the other end of the scale, estimates of evaporation over large areas derived from 

modelling techniques such as SEBAL (Surface Energy Balance Algorithm for Land), which 

estimates evaporation from satellite imagery and climatic variables such as solar radiation and 

vapour pressure (Bastiaanssen et al. 1998), also involve assumptions which can lead to 

substantial errors.  

 

METHODS 

 

Evaporation at the Franschhoek Wetland 

 

The Franschhoek palmiet wetland is also located in the Western Cape Province of South 

Africa, nearby the Jonkershoek wetland (33°57’50” S, 19°10’00” E) (Figure A5.1). Thus this 

wetland has similar rainfall to the Jonkershoek wetland. Dr C. Jarmain (unpublished data) carried 

out measurements at this wetland using an energy balance technique (scintilometry). 

Measurements were taken using a large aperture scintilometer at 10 minute intervals for 17 days, 

from 13 – 29 October 2008. Data collected using a scintilometer (model BLS900) and weather 

station data were used to estimate the daily energy balance which was then used to estimate the 

total daily evaporation (ET): 

 

 

 

 

λE = Rn – G - H 

 
ET = λE / λv 
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λE refers to the latend energy flux density, (Rn) net solar radiation, (G)soil heat flux density, 

(H) sensible heat flux density (all in w.m-2), and λv the latent heat of vaporisation (J.kg-1). 

Scintilometry data were then scaled up to daily values and compared with remote-sensing data. 

 

We also obtained satellite-based estimates of evaporation for this wetland from two sources, 

both based on the Surface Energy Balance Algorithm for Land (SEBAL) Model. The one dataset 

came from a study which covered the main wine growing area of the Western Cape and used 

Landsat 7-ETM imagery (Jarmain et al. 2007). The data have a spatial resolution of 30 m and 

cover the period from September to April for 2004-2005, 2005-2006 and 2006-2007. The other 

data came from a study of evaporation using Monthly Moderate Resolution Imaging 

Spectroradiometer (MODIS) data with a spatial resolution of 250 m (Meininger and Jarmain 

2009). These data covered three separate rainfall years, a low rainfall year (2000-2001), an 

average rainfall year (2002-2003), and a high rainfall year (2006-2007). In the first data set 

(2000-2001), three months were excluded due to cloud cover obscuring the study site. In the 

second data set (2002-2003), two months were excluded due to cloud cover. In the last data set 

(2006-2007) only one month was excluded due to cloud cover.  

 

Reference evaporation (Et0) was obtained from a nearby weather station (Villiersdorp). A 

crop factor for palmiet (Kc) was then calculated using the following formula: 

 

 

 

Crop resistance or Kr (s.m-1) was also calculated using the MODIS data by an independent 

project. Crop resistance was converted to stomatal conductance (m.s-1) for comparison with 

porometry data (Allen et al. 1998).  

 

 

 

Kc = Et / Et0 

Kr = 1 / Kc 
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Figure A5.1: A satellite image of the Franschhoek palmiet wetland in the Western Cape (inset)  
 

RESULTS 

 

Scintilometry 

 

Evaporation of palmiet at a wetland/stand scale is very closely linked to solar radiation 

(Figure A5.2; Jarmain unpublished). Evaporation is low throughout the night, however in spring, 

from about 07:00 it starts increasing and reaches a peak of 0.78 mm/hour around midday. 

Evaporation then decreases until 18:00 when it reaches its night time constant evaporation rate.  
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Figure A5.2: Mean daily evaporation from the Franschhoek palmiet wetland over 17 days in 
spring, measured using scintilometry over 24 hours at 10 minute intervals. The black line is 
evaporation and the gray line is solar radiation.  

 

a. Landscape scale: Remote-Sensing 

 

The MODIS based evaporation data show that that palmiet uses more water over the period 

October to February (spring and summer) than it does during the winter months (May to August) 

(Figure A5.3).  
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Figure A5.3: Seasonal and annual variation in monthly MODIS evaporation values for 
palmiet in the Franschhoek palmiet wetland from 2000-2007. Black lines show evaporation 
and gray lines show reference evaporation. Stippled, red vertical lines indicate a jump in the 
horizontal time scale.  

 

During the high and average rainfall year the evaporation from palmiet peaked in the early 

summer, however during the low rainfall year this peak in stomatal conductance was not 

apparent (Figure A5.4).  

Low Rainfall Year Average Rainfall Year High Rainfall Year 
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Figure A5.4: Seasonal and annual variation in monthly MODIS stomatal conductance values for 
palmiet in the Franschhoek palmiet wetland from 2000-2007. The black stippled line is the 
average rainfall year (2002-2003), the gray line is the high rainfall year (2006-2007), and the 
solid black line is the low rainfall year (2000-2001). 

 

The evaporation rates estimated using the Landsat images confirms the characteristic peak 

over the early summer months (Figure A5.5). No estimates were made during the winter months. 

The Landsat estimates of the monthly summer evaporation were slightly higher than that of 

MODIS (±50 mm). It is interesting to note that the evaporation of palmiet is in excess of that of 

the reference evaporation (Figure A5.5).  

Average Rainfall Year 

Low Rainfall Year 

High Rainfall Year 
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Figure A5.5: Seasonal and annual variation in monthly Landsat evaporation values for 
palmiet in the Franschhoek palmiet wetland from 2004-2007. Black lines show SEBAL 
estimates of evaporation and gray lines show reference evaporation.  
 

Driving Factors 

For the Landsat data, both rainfall and solar radiation appear to be driving Et (Figure A5.6).  
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Figure A5.6: The relationships between SEBAL evaporation estimates and solar radiation 
for palmiet in the Franschhoek palmiet wetland. Black lines again indicate estimated 
evaporation and gray lines reference evaporation. Black stippled lines indicate solar 
radiation.  

 

Crop Factor for palmiet 

 

There is a high level of agreement between the crop factor for the MODIS and Landsat data 

which supports the use of the crop factor for MODIS in the hydrological modelling study in 

Chapter 4 (Table A5.1).  
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Table A5.1: The calculated crop factor for palmiet.  

  MODIS Kc Landsat Kc 
January 1.002827 1.3835622 
February 1.092371 1.3067137 
March 1.044104 1.0256552 
April 1.2048355 

 May 1.0971023 
 June 1.150314 
 July 0.9433495 
 August 1.0090625 
 September 1.123157 1.0707617 

October 1.0727197 1.0025311 
November 1.0006825 1.1609746 
December 1.013613 1.4825863 

 

Water-use of palmiet 

 

The Landsat-based evaporation estimate for palmiet appeared to be an over-estimate relative 

to the MODIS estimate. The annual evaporation of palmiet was estimated as 1526 mm by the 

scintillometry measurements during one season of the year, 1042 mm by MODIS and 1623 mm 

by Landsat. Since scintillometry measurements were only taken during spring, it is likely that the 

annual evaporation calculated using only spring data will be over-exaggerated. Therefore the 

evaporation of Landsat would also appear to be an over-estimate of palmiet’s actual evaporation. 

Evaporation measured from Phragmites mauritianus, another South African wetland plant, 

suggest an evaporation of anywhere between 900-1300 mm/a, depending on the rainfall for the 

region (Birkhead et al. 1997, Everson et al. 2001, Clulow et al. 2012). This is much closer to the 

MODIS estimate for palmiet, suggesting that it is more accurate (Everson et al. 2001). The 

MODIS-based values for stomatal conductance appeared to under-estimate the stomatal 

conductance of palmiet relative to the porometry data (Table A5.2). 
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Table A5.2: A comparison of water-use values, in terms of evaporation (Et) and various 
conductances (Cond.) across all scales and methods used in this study. MODIS stomatal 
conductance was averaged for each month over the 3 years.  

 
Scintilometry Landsat MODIS Porometry MODIS 

 

Et  
(mm) 

Et  
(mm) 

Et  
(mm) 

Stomatal Cond. 
(mmol.m-2.s-1) 

Stomatal Cond. 
(mmol.m-2.s-1) 

January 
 

188.61 153.60 
 

17.41 
February 

 
163.91 129.47 40.89 17.12 

March 
 

102.90 87.67 46.08 14.04 
April 

  
81.27 

 
32.85 

May 
  

43.39 
 

21.30 
June 

  
38.00 59.86 25.99 

July 
  

29.59 
 

14.02 
August 

  
46.27 

 
32.18 

September 
 

132.75 73.51 
 

29.16 
October 127.20 133.95 102.23 48.50 23.77 
November 

 
166.90 110.29 36.85 28.20 

December 
 

220.21 147.65 31.86 33.69 
Annual 
estimate 1526.40 1623.73 1042.94 
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View of the Jonkershoek Dam, Western Cape 
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