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Abstract

We present here a new generalized Time-Frequency-Represenation (TFR) for use
in describing ultra-fast laser pulses. The TFR is developed in terms of Fourier-
Hermite-Gauss (FHG) polynomials on a von Neumann TFR lattice, by expanding
the lattice in a third dimension, thus forming a lattice cube. The temporal and
spectral coefficients of the Hermite-Gauss (HG) clearly are inherently functionally
Fourier transform invariant. The enhanced numerical complexity of the FHG TFR
is greatly reduced by exploiting the translation property of Hermite polynomials
by means of Pascal matrices. Although the new FHG TFR represents an over
complete basis set, it can be reduced by a subset selection to a complete basis.
This method and the accompanying overlap integral is then developed and the
complex orthogonality and similarity of the temporal and spectral overlap integral
matrices is then analytically proved.
Numerically the Pascal matrices are unstable. The new two correlation FHG TFR
lattice cubes present an improvement on the traditional TFRs in that they have
the advantage that it is unnecessary to compute the undesirable inverse overlap
matrix to reconstruct the signal, temporally and spectrally, i.e. they contain all
the information necessary to reconstruct the signal. It is then proven that it is
a digital requirement to double the original proposed bandwidths of the signal
inputs, here and also for the von Neumann TFR.
The Hermite-Gauss polynomials correspond to the number states {nk} of the
Glauber-Sudarshan coherent states in Fock space. A classical correspondence anal-
ogy between Glauber-Sudarshan coherent states in Fock space and the temporal
FHG TFR is then considered under certain conditions and thus allows for a com-
parison of the amplitudes between the two decompositions for each ‖k‖ = ωk/c,
culminating in an optimization procedure to determine a “classical” coherent state
correlation TFR. Application simulation results of quantum coherent control of
IR ultra-short laser pulse interaction with octahedral molecules utilizing an opti-
mal genetic algorithm are presented. A representative shaped laser pulse is used
throughout to compare various TFRs.
Keywords: Coherent Quantum Control, Adaptive Feedback Control,
Time-Frequency Representations, Ultrashort Laser Pulses, Spatial Light Modula-
tor, Multilevel Molecules, von Neumann TFR, Anharmonic Rovibrational Levels,
Genetic Algorithms
82. 53. Kp, 42. 55. -f, 31. 15. xv
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Abstrak

Hier bied ons aan ’n nuwe veralgemende Tyd-Frekwensie-Voorstelling (TFV) vir
die gebruik in die beskrywing van ultra-vinnige laser pulse. Die TFV word on-
twikkel in terme van Fourier-Hermite-Gauss (FHG) polinome op ’n von Neumann
TFV diskrete rooster, deur die normale rooster uit te brei in ’n derde dimensie,
om ’n kubus rooster te vorm. Die temporale en spektrale koëffisiënte van die
Hermite-Gauss (HG) polinome is duidelik inherent funksioneel Fourier transform
invariant. Die verhoogde numeriese kompleksiteit van die FHG TFV word aan-
sienlik verminder deur die ontginning van die translasie eienskap van Hermitiese
polinome, deur gebruik te maak van Pascal matrikse. Hoewel die nuwe FHG TFV
’n oor volledige basis voorstel, kan dit deur ’n deelversameling selektief verminder
word tot ’n volledige basis. Hierdie metode en die gepaardgaande oorvleuelings
integrale word dan ontwikkel en die komplekse ortogonaliteit en similartieit van die
temporale en spektrale oorvleueling integrale matrikse word dan analities bewys.
Numeries is die Pascal matrikse onstabiel. Die nuwe twee korrelasie FHG TFR
kubus roosters bied ’n verbetering op die tradisionele TFV in dat hulle die voordeel
inhou dat dit onnodig is om die ongewenste omgekeerde oorvleuelings matriks te
bereken om die sein te herkonstrueer, temporaal en spektraal, d.w.s. dit bevat al
die nodige inligting om die sein te herkonstrueer. Daar word dan bewys dat dit
’n digitale vereiste is om die oorspronklike voorgestelde bandwydtes van die sein
insette te verdubbel, hier en ook vir die von Neumann TFV.
Die Hermite-Gauss polinome stem ooreen met die aantal getal toestande {nk}
van die Glauber-Sudarshan koherente toestande in die Fock ruimte. ’n Analogie
tussen Glauber-Sudarshan koherente toestande in Fock ruimte en die temporale
FHG TFV word dan beskou onder sekere omstandighede om gevolglik ’n verge-
lyking van die amplitudes tussen die twee ontbindings vir elke ‖k‖ = ωk/c, wat
uiteindelik kulmineer in ’n optimalisering proses om ’n “klasieke” koherente toes-
tand korrelasie TFV te bepaal. Simulasie resultate van ’n toepassing van kwan-
tum koherente toestand beheer van IR ultra-kort laser pulse se interaksie met
oktahedriese molekules, deur gebruik te maak van ’n optimale genetiese algoritme,
word dan aangebied. ’n Verteenwoordigende gevormde laser puls word deurgaans
gebruik om verskeie TFVs te vergelyk.
Sleutelwoorde: Koherente Kwantum Beheer, Aanpasbare Terugvoer Beheer-
lusse, Tyd-Frekwensie-Voorstelling, Ultra Kort Laser Pulse, Ruimtelike Lig Mod-
ulator, Multivlak Molekules, von Neumann TFV, Anharmonise Rovibrasionele
Vlakke, Genetiese Algoritmes
82. 53. Kp, 42. 55. -f, 31. 15. xv
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Mathematics is the Language with which God has written the Universe
Galileo Galilei

The True Logic of this World is in the Calculus of Probabilities
James Clerk Maxwell
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Foreword

Originally when I committed myself to do this dissertation, I was motivated and
enticed by my supervisor, Dr. L. R. Botha, to extend his simulation work, which
was essentially control of a closed quantum system, into to the bounds of open
quantum systems. This was mainly due to my years of experience in classical
stochastic nonlinear control and my exposure to quantum mechanics and quantum
field theory, the natural extension is of course to maneuver into the field of quan-
tum control. Thus my original dissertation was entitled “Stochastic coherent
control of quantum processes”, which would have originally been summarized
as follows.
The study of the coherent control of quantum systems via shaped ultra-short laser
pulses is a very active field of research with various possible applications [1]. Cur-
rently deterministic optimal control techniques are utilized. Such a model was
developed at the NLC which predicted preferential preparation of a pre-selected
well defined quantum state [2]. Quantum mechanical systems must be regarded as
open systems due to the fact that any real system will be subjected to a coupling to
an uncontrolled environment which will influence it. Therefore in order to make
meaningful predictions with regards to a control problem in the real world one needs
to include stochastic processes in a simulation.
As a first step in this study stochastic variables will be included into the current
NLC model. This will for example include stochastic modeling of the noise with
regards to the laser center frequency, the influence of stochastic noise on the transi-
tion wavelengths of the molecule due to stochastic variability of the Doppler shifts.
It is expected that these processes will introduce de-coherence into the process and
possible reduced efficiency in producing the selected outcome. Various methods
of introducing stochastic processes in coherent control problems and the possible
countering of these effects will be investigated. The reduced-master equation will
be derived for this specific model. Inclusion of stochastic processes in the model
will give an indication of the robustness, stability and practical applicability of this
particular quantum control problem. The predictions of the adapted model will be
compared with that of the original deterministic model. As a second step the ap-
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plicability of well-known stochastic control techniques applied to classical systems,
such as extended Kalman filtering [3], to quantum coherent control will be inves-
tigated. In classical systems these techniques leads to great improvements in the
control of the physical systems. It needs to be shown whether this is the case in a
quantum system.
References:
[1] C Brif, R Chakrabati, H Rabitz, “Control of quantum phenomena: past, present
and future”, arxive:00912. 5121v2, May 2010, Submitted to New J. Physics.
[2] L de Clercq, “Numerical modeling of the excitation of a polyatomic molecule by
femtosecond laser beams”, M. Sc. Thesis, Univ. Of Stellenbosch, 2011.
[3] R F Strengel, “Optimal control and estimation”, Dover Publications, 1996
I was well away into this study, of course firstly, the original closed system work
and the method of representing a ultra-short laser pulse by means of the Time-
Frequency Representations (TFR), such as the Wigner-Ville, Husimi and the von
Neumann TFRs. The von Neumann TFR was the new method we wished to
represent the ultra-fast laser pulses with. In the first year I even investigated new
techniques to simplify the optimization process of the closed quantum control and
was highly excited by the possibility of these new techniques, but struggled to
convince my supervisor, who was concentrating on the von Neumann TFR, which
I had already programmed.
Due to the persistence of my supervisor, I rethought the von Neumann TFR,
and it dawned on me what aspects of the representation, being a representation
in terms of Gaussian elementary pulses, was so desirable. The main feature is
that a Gaussian pulse was Fourier transform invariant. The proverbial bulb lit
up and I saw that the von Neumann representation could be extended to those
general functions that are Fourier invariant, which happen to be the Hermite-Gauss
polynomials, exactly the basis functions of the quantum harmonic oscillator. This
happened almost one year to the day after starting this endeavor.
Well the morning after this insight, I explained it to my supervisor and my new
supervisor, Dr. H. Uys, and they both unanimously agreed that I should stop all
my work on the open quantum control optimization process, and pursue this novel
idea, henceforth. Stopped in my tracks and off on a tangent.
Initially I investigated all the analytical aspects of the now novel Fourier-Hermite-
Gauss TFR. I discovered beautiful properties concerning Pascal matrices and their
interrelationship with the Hermite polynomials and exploited these aspects to sim-
plify the calculation of the so-called overlap matrix that is required in these rep-
resentations. After a year of struggling and developing this theory on my own
I even discovered the relationship of the FHG temporal basis functions with the
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optical coherent state representations and because of the analogy (similarity) of
these representations, that one could find a correlation TFR between the two rep-
resentations.
This then was presented as a poster at the FEMTO11 Copenhagen Conference
on Femtochemistry and Physics, in July 2013. I was extremely honored to be
almost immediately accepted, especially seeing that 2013 was the centenary year
of Niels Bohr discovery of the classical quantum theory of the Hydrogen atom, and
his beloved city. Thereafter Niels Bohr established the Copenhagen Institute for
quantum physics and developed the Copenhagen interpretation. The abstract is
included hereafter.
All good and well, but this was all done analytically. Unfortunately, working with
a simulation everything has to be sampled and digitized. The von Neumann TFR
and the FHG TFR then soon become subfields of Digital Signal Processing (DSP).
With DSP, the Digital Fourier Transform (DFT) and its associated digital algo-
rithm, the Fast Fourier Transform (FFT), utilizing the so-called radix technique
must be employed. Questions of sampling and the Nyquist-Shannon theorem,
aliasing and anti-aliasing, z-transforms, causality and many other effects peculiar
to DSP must be considered.
One of the first problems, that stuck out its head, was the high numerical insta-
bility of the Pascal matrices, which analytically are so fruitful, making their use
digitally useless. Although, it was soon discovered that the temporal and spectral
reconstruction of ultra-fast laser pulse can be amazingly well reconstructed by this
novel FHG TFR in both amplitude and in phase, with the slight quirk, that two
separate representations, one each for the temporal and spectral representations,
but with the extraordinary feature that no overlap matrix is required in the signal
reconstruction. It essentially proves their orthogonality. The FHG TFR signal lat-
tice cube contains all the information. The one great disadvantage of using the von
Neumann TFR is the construction of the overlap matrix and its inverse. The over-
lap matrix is highly ill-conditioned and one has to resort to Moore-Penrose pseudo
inverse algorithms. Great effort and time was spent in constructing analytically
and numerically the overlap matrix for the new FHG TFR, only to discover that
one can actually by-pass its construction by using two separate TFRs and then
using a special combination of the two to create a single TFR. Being correlation
cubes, the one can be considered a translation of time and the other a translation
in frequency, totally orthogonal.
I never knew, with its conception, that the invariance of the quantum oscillator,
could digitally conceive a minimum content of digital information. This is still
part of ongoing research and is not published here.
This is just a historical background reflection of the development of this new novel
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FHG. The introductory Chapter 1 gives a thorough summary and an outline of
this dissertation. This Chapter also concludes with an overview of the thesis,
Section 1.7.
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1. Introduction

Since the advent of lasers it has always been the dream of physicists and chemist
to manipulate and control atomic and molecular processes and it was hoped that
the new invention would deliver their wildest expectations. Almost immediately
it became obvious that the laser did not meet all the far reaching expectations
of the scientists. Nature was a bit more subtle and complicated. Modern con-
trol theory was also in its infancy and making enormous strides with the Apollo
program, the space race and autonomous missile and aircraft guidance and con-
trol. In parallel these concepts flowed over to initiate the field of quantum control.
Although the progress was slower than expected, the theory of quantum control
steadily grew. In Brif et al. [1] an extensive overview can be found. It also con-
tains a vast bibliography. This is also obvious in the introductory text book by
d’Allessandro “Introduction to Quantum Control and Dynamics” [2], which has a
similar enormous bibliography.
The hurdle of quantum control [2], [3] is that it has a myriad of multi-interdisciplinary
fields, e.g.,

1. Quantum Mechanics [4, 5, 6, 7, 8]
2. Nonlinear Stochastic Control Theory [9, 10, 11, 12, 13, 14, 15, 16, 17]
3. Laser Theory and Optics [18, 19, 20, 21, 22, 23, 24]
4. Molecular Group Representation Theory [25, 26, 27, 28, 29, 30, 31]
5. Lie Groups and Algebra [32, 2]
6. Time Frequency Analysis (TFA) [33, 34]
7. Correlation and Coherent States [35, 36, 37, 38]
8. etc.

One can now expect that the time required for a single researcher to master all
of the above fields is a great trek, with many hardships. This is confirmed by
d’Allessandro. The simpler route is of course to combine a team of specialists.
This also has its advantages and disadvantages. The greatest of which is the
communication between the various fields. Nonetheless, successes have been ac-
complished by various groups.
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Chapter 1 Introduction

In this introductory Chapter, we refer to modern control theory as classical control
theory as opposed to quantum control theory.
In Section 1.1 an almost too brief overview of quantum control theory is given. In
Section 1.2 gives a general overview of Quantum Coherent Control with femtosec-
ond lasers as the major application of this research. It is necessary, for the great
simplification that is obtained, to rather work in Dirac-interaction picture. The
derivation of a interaction Hamiltonian is given in Section 1.3. This derivation
is also done in [39], but in a round about way. Section 1.4 discusses octahedral
molecules, which is the molecule under investigation for our quantum coherent
control application. Due to the symmetry of the molecule and Emmy Noether’s
theorem, a short overview of irreducible representations of point groups is given
in Subsection 1.4.1, the classification of them in Subsection 1.4.2 and the charac-
ter tables of the point groups, specifically for the relevant octahedron group in
Subsection 1.4.3. The IR active transitions for octahedral molecules is discussed
in Subsection 1.4.4. For our specific XY6 octahedral molecule under investigation,
the IR dipole moments are given Subsection 1.4.5, as well as the corresponding
interaction IR dipole moment matrix for our interaction Hamiltonian matrix, that
is required for our simulations.
A brief overview of spatial light modulators that is used to manipulate the ultra-
short IR laser pulses for the coherent quantum control of the octahedral molecule,
is given in Section 1.5. Finally to prepare the reader for the presentation on
Time-Frequency-Representations (TFR) we have included a short introduction in
Section 1.6. Finally, in Section 1.7 an overview of the thesis is presented.

1.1. Quantum Control

Historically, probably the first instance of control (cybernetics), was the automatic
opening of Egyptian temple doors invented by the Greek, Hero of Alexandria, c.10
– c.70 AD, using the pneumatics of steam. In the nineteenth century, with the
invention of the steam engine, Watt invented a spinning regulator to regulate the
speed of the engine. Classical control theory really kicked off in World War 2,
especially in the design of the German V1 and V2 rockets. At the allied front an
automatic target predictor was invented by the American Norbert Wiener and also
independently by the Russian A. Kolmogorov, now known as the Wiener-Hopf fil-
ter. In the ensuing Cold war years, this independent development continued. The
blind Russian mathematician Lev Pontryagin introduced the sufficient conditions
for optimal control, known as the Pontryagin Maximum Principle (PMP). In the
USA similar equations were developed by E. T. Bellman that lead to the Hamilton-
Jacobi-Bellman equation and dynamic programming. With so many matrices and
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1.1 Quantum Control

matrix integrations involved, it is obvious that as the dimension of the system
increases, that the numerical load on the computer exponentially explodes. The
phrase “The curse of dimensionality” was coined by Bellman [9]. Early in the
1960, R. E. Kalman, introduced stochastic estimation, and many required defini-
tions conditions in optimal control, that were intensively utilized in the Apollo Lu-
nar program. Introductory textbooks in linear control theory are usually [13, 12].
The classic text books on optimal control are [9, 10, 11]. On stochastic estimation
and control theory [40, 14, 15, 16, 41]. Applied nonlinear control is well introduced
by Slotine and Li [17] and Isidori [42]. By far the favourite is Stengel [9], since it
actually covers all the topics (The first edition was actually published as "Stochas-
tic optimal control: theory and application" [43]). Robert Stengel was also the
principle design engineer of the Apollo Lunar Module1. This book would best be
supplemented by the nonlinear control books [17, 42].

Figure 1.1.: Lev Pontryagin, E. T. Bellman and R. E. Kalman

When walking over to the terrain of quantum control all the classical and modern
control theory methods are applicable. What is important is to correctly define the
various quantum dynamical system equations and the quantum mechanical mea-
surement equations of the system to which these techniques may be applied. We
only define these techniques on closed quantum systems, (cf. [2]). The main pur-
pose of this section is to introduce and formally define the most general quantum
control problem, and the concept of quantum controllability.

In any Hilbert space, H, it is always possible to find a set of countable or denu-
merable orthonormal basis vectors, in the Dirac notation, |ei〉, where, i, is in some
index set, I, such that a state vector of the quantum system, |ψ〉, can be expanded
in terms of these basis vectors as,

|ψ〉 =
∑
i∈I

αi |ei〉 αi ∈ C. (1.1)

1All digital reproductions, photographs and paintings, of persons in this thesis were obtained
from www.wikipedia.com
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Chapter 1 Introduction

We associate a completeness relation to the basis vectors by,∑
i∈I
|ei〉 〈ei| = I, (1.2)

where, I, is the identity operator. For a dynamical quantum state we have to
introduce the time, so that the state vector is given by,

|ψ(t)〉 =
∑
i∈I

αi(t) |ei〉 . (1.3)

Note that the time dependence enters through the coefficients, for it is assume that
the basis vectors are stationary. In the case of a uncountable infinite dimensional
Hilbert space, an orthonormal basis is replaced by a basis, |x〉 , where, x, varies
over an appropriate measurable set, Ω, with measure, dx, such that,

〈x|x1〉 = δ(x− x1), (1.4)

where, δ(x−x1), is the generalized Dirac-δ function centered at, x1. The quantum
state, |ψ〉, is then expanded as,

|ψ〉 =
ˆ

Ω
ψ(x) |x〉 dx, (1.5)

for some function,ψ(x), defined on, Ω. The completeness relation is then given by,
ˆ

Ω
|x〉 〈x| dx = I. (1.6)

If we ignore all possible dependencies, except the time, t, the Schrödinger equation
can be written in vector notation2, for a closed quantum system as,

i~
∂

∂t
~ψ(t) = H(u(t))~ψ(t), ~ψ(0) = ~ψ0, (1.7)

where, ~ψ(t) ∈ Cn, if the Hilbert space, H, has dimension, n, and u(t) ∈ Cm, is the
control input and, H, is the quantum Hamiltonian. The general solution of the
above equation is given by,

~ψ(t) = X(t)~ψ0, (1.8)
2The equivalence between the abstract Dirac notation and vector algebra is given by: |ψ〉 ↔ ~ψ

and 〈ψ| ↔ ~ψT , where T denotes the transpose operation. In abstract algebra they are known
as dual vector spaces.

10

Stellenbosch University  https://scholar.sun.ac.za



1.1 Quantum Control

is called the Schrödinger Operator Equation, where the, X(t) ∈ Cn × Cn, is
called the evolution operator, which of course is a matrix. Here we used the
shorthand notation commonly used if the initial time, t = 0. More generally, if
the initial time is given by, t = t0, with initial state still presented as, ~ψ(t0) = ~ψ0,
then the evolution operator is given by,

~ψ(t) = X(t, t0)~ψ0. (1.9)

X(t, t0), therefore propagates the state vector from its initial state, ~ψ0, to its final
state, ~ψ(t). In control literature it is often referred to as the state propagator.
The evolution operator, X(t, t0), satisfies a similar differential equation to the
Schrödinger equation and is given by,

i~
d

dt
X(t, t0) = H(u(t))X(t, t0), X(t0, t0) = I. (1.10)

Noticing that in a sense this equation is a first order differential equation, we could
simply write the solution as,

X(t1, t0) = e−
i
~
´ t1
t0
H(u(τ))dτ . (1.11)

Since the problem is multi-dimensional, this, however, will only be approximately
valid if, t1−t0 =δt, is very small. It does allow for a numerical calculation method.
The true solution was developed by F. Dyson and is known as the Dyson Series
(once again employing the shorthand notation and assuming, ~ = 1, for simplicity),

X(t) = I +
∞∑
n=1

Dn(t), (1.12)

with

Dn(t) = (−i)n
ˆ t

0

ˆ t1

0
· · ·
ˆ tn

0
H̃1(t1)H̃1(t2) · · · H̃1(tn)dtn · · · dt1, (1.13)

where, H̃1(t), is the Dirac interaction picture Hamiltonian (to be discussed later).
The mathematician John von Neumann introduced the concept of a quantum
density matrix, ρ(t), to work with an ensemble of identical quantum systems, as
is necessary for quantum statistics. If, using the Dirac notation, given that there is
a fraction, 0 < wj(t) ≤ 1, of systems in the ensemble with state, |ψj(t)〉, and j, in
some index set, I, such that, ∑j∈I wj(t) = 1, then the density operator describing
the state of the state of the ensemble is defined by,

ρ(t) =
∑
j∈I

wj(t) |ψj(t)〉 〈ψj(t)| = ~ψ(t)W(t)~ψ†(t), (1.14)
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Chapter 1 Introduction

and the † is the Hermitian conjugate operator and W(t) = diag{wj(t)}j∈I . It is
a linear operator, ρ(t) : H→H. The density matrix satisfies the von Neumann-
Liouville equation,

i~
d

dt
ρ(t) = [H(t), ρ(t)] ρ(0) = ρ0, (1.15)

where, [·, ·], is the normal commutator bracket. The solution is given by the
Liouvillian Superoperator equation,

ρ(t) = X(t)ρ0X
†(t). (1.16)

In the Schrödinger picture the state vectors are dynamical wavefunctions, ψ(r, t),
and the operators, A, are stationary Hermitian observables. In direct contrast, in
the Heisenberg picture, the state vectors, |ψj〉, are stationary state vectors and
the Hermitian observable operators, A(t), are dynamical. Intermediate between
these two pictures lies the Dirac interaction picture. This is the quantum
picture we prefer to work in, because of its many desirable properties.

One of the fundamental principles of quantum mechanics that had many conse-
quences, is the probability nature of quantum mechanics and from the Copenhagen
interpretation the strange consequences of measurement on a quantum system. A
measurement has the effect of projecting the quantum state into one of its eigen-
value and eigenvector states of the quantum operator. This is best summarized in
the following postulate.

Postulate 1.1.1. von Neumann-Lüders Measurement Postulate. When
an observable (operator), A, is measured the result is an eigenvalue of A.

〈A〉ψ =
∑
j

λjPr(λj) =
∑
j

λj 〈ψ|Pj|ψ〉 =
〈
ψ|
∑
j

λjPj|ψ
〉

= 〈ψ|A|ψ〉 . (1.17)

For any controllable system, measurement is essential. You have got to know in
which state a system is to be able to control it to another desired state. Given the
formalism we have just introduced we are now in a position to define the various
concepts of closed quantum controllability.

Definition 1.1.2. The Schrödinger equation,

d

dt
~ψ(t) = −iH(u(t))~ψ(t), (1.18)
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1.1 Quantum Control

is pure state controllable if for every pair of initial states, ~ψ0 and ~ψ1, there exist
a control functions, u, and a time, T ≥ 0, such that the solution of Eq. (1.18) at
time, T , with initial condition, ~ψ0, is, ~ψ(T ) = ~ψ1. Here, ~ψ0 and ~ψ1, are two vectors
on the complex sphere of radius, 1, Sn−1

C .

All the quantum states that can be obtained from the solution of Eq. (1.18) with
initial condition, ~ψ(0) = ~ψ0, are referred to as the orbit of a quantum state,

Oψ0 :=
{
X(t)~ψ0|X ∈ eL

}
, (1.19)

where, L, is the associated Lie algebra with the Lie group, eL.
Since for any vector, ~ψ0, and, eiφ ~ψ0, represent the same physical state, for any, φ ∈
R, from a physics viewpoint, the following property, equivalent state controllable,
is equivalent to pure state controllable.

Definition 1.1.3. The system Eq. (1.7) is equivalent state controllable if, for
every pair of initial and final states, ~ψ0 and ~ψ1, in Sn−1

C , there exist control, u,
and a phase factor, φ, such that the solution, ~ψ(t), of Eq. (1.18), with, ~ψ(0) = ~ψ0,
satisfies, ~ψ(T ) = eiφ ~ψ1, at some time, T ≥ 0.

Definition 1.1.4. The system Eq. (1.15) is density matrix controllable if, for
each pair of unitarily equivalent matrices, ρ1, and ρ2, there exist a control, u, and
a time, T ≥ 0, such that the solution, ρ(t), of Eq. (1.15), with initial condition
equal to, ρ1,

ρ(T ) = ρ2. (1.20)

For density matrix controllability, the orbit of density matrices are given by,

OL(ρ0) :=
{
Xρ0X

†|X ∈ eL
}
. (1.21)

The Lie algebra is called the dynamical Lie algebra associated with the system.
This is always a subalgebra of, u(n). In this case, dim(L) = n2 = dim(u(n)), which
is equivalent to, L = u(n) and eL = U(n), the system is said to be controllable.
In this case, R = U(n), which means that every unitary matrix can be obtained
by choosing an appropriate control in Eq. (1.7). We shall say that the system
is controllable even in the case where, dim(L) = n2 − 1 = dim(su(n)), which is
equivalent to, L = su(n) and eL = SU(n). Sometimes we use the terminology
operator controllability or complete controllability to distinguish this case
(controllability of system Eq. (1.15)) from the case where we have controllability
of the state, |ψ〉.
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Chapter 1 Introduction

Theorem 1.1.5. A quantum control system with dynamical Lie algebra, L, is
density matrix controllable, if and only if, L = su(n) or L = u(n), i.e., it is
operator controllable.

1.2. Quantum Coherent Control

It has long been the dream of physicists and chemists alike to accomplish proper
quantum coherent control of complex quantum systems such as multi-level
molecules. The methodologies were quite generally boosted by the following two
schemes:

• Two-pathway control scheme, invented by Brumer and Shapiro [44, 45, 46].
• Pump-dump control scheme, also known as Stimulated Raman scattering

involving Adiabatic Passage (STIRAP), invented by Tannor, Kosloff and
Rice [47, 48].

Figure 1.2.: (a) Open Loop Control (b) Adaptive Feedback Control (c)
Measurement-based Real-Time Feedback Control (d) Coherent Real-Time Feed-
back Control

The Russians were always in the background, behind the iron curtain, but never
behind, and already in 1985, Bagratashvili et al. published, “Multiple photon
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1.2 Quantum Coherent Control

infrared laser photophysics and photochemistry” [49]3. Only in 1991 did Tannor
and Yin publish [50] "Mode selective Chemistry". General unifying features are
given in Pechen at at. [51]. An authoritative and extensive review is given by
Brif et al. [1]. It also contains a vast bibliography. Optimal control of quantum
systems is discussed in [52]. Rabitz even speculates in [53]. The interested reader
is advised to consult these articles, because it is our opinion that we cannot give
a better overview. As a summary, in Figure 1.2 the four main quantum control
techniques are outlined, namely:

1. Open Loop Control (OLC)

2. Adaptive Feedback Control (AFC)

3. Measurement-based Real-Time Feedback Control (RTFC)

4. Coherent Real-Time Feedback Control

Figure 1.3.: Quantum Coherent Control

Of course our goal is to use lasers to coherently control molecules and Tannor
[50] and Judson and Rabitz article describes this quite well [54]. Our simulated
quantum coherent control is abstractly represented in Figure 1.3, and falls in the
class of Adaptive Feedback Control of Figure 1.2(b).

3V.S. Letokhov held the first patent on Laser cooling. The Nobel Prize in Physics 1997 was
awarded jointly to Steven Chu, Claude Cohen-Tannoudji and William D. Phillips "for de-
velopment of methods to cool and trap atoms with laser”, without recognition of Letokov’s
precedence. In his own words “probably because I am Russian”. Another Nobel Prize con-
troversy.
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Firstly, we use a IR femtosecond ultra short laser pulse with a Gaussian envelope
that then enters a 4f-SLM (Spatial Light Modulator, see Section 1.5) that shapes
the pulse in the spatial frequency domain by means of a Liquid Crystal Display,
which is programmed by an optimization program running in the computer to
optimally shape the laser pulse for a specific purpose. XY6 octahedral molecules
(see Section 1.4 for a brief outline of the physics involved) are then bombarded
by the shaped IR laser pulse. The IR interaction is described in terms of the
Dirac-Louiville-von Neumann interaction picture which is derived in Section 1.3.
Accordingly, the octahedral molecule is selectively excited in the first few rovi-
brational for further physical manipulation. This could be for selective isotope
separation by means of kinetic reaction of energy and momentum as derived in
[35], or for further molecular or atomic reactions. At the CSIR NLC the first
article that was published relating to this work was [55].
At present, the simulation program uses a genetic algorithm to optimize the laser
pulse shape in a open loop control (OLC) scheme. It is ideally suited, by measuring
the spectroscopic transmitted pulse, for adaptive feedback control (AFC).

1.3. Dirac-Liouville-von Neumann Equation

It is by far easier, for our specific quantum system, to rather work in the interaction
picture. The Hamiltonian of the Octahedral (see Section 1.4) Oh molecule in the
presence of an interacting EM field (ignoring the field contribution) is given by,

H = Hm +HI , (1.22)

where,

Hm = The Hamiltonian of the ν3-rovibrational levels = diag (~ωi)17
i=1

HI = The interaction Hamitonian of the EM field

where the time independent molecular equation satisfy, (Hm and HI are Hermitian
operators, i.e., Hm = H†m, HI = H†I ),

Hmψn(r) = Enψn(r), En = ~ωn, n = 1, . . . , 17. (1.23)

This is related to the time-dependent solution by,

ψn(r, t) = e−
i
h
Entψn(r). (1.24)

The Louiville-von Neumann density matrix equation is given by,

i~
d

dt
ρ(t) = [H(t), ρ(t)] . (1.25)
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1.4 Octahedral Molecules

Define the Dirac-interaction picture by means of the unitary time transformation,

U(t) = exp
(
i

~
Hmt

)
,

so that in the Dirac-interaction picture we have,

ρI(t) = U(t)ρ(t)U †(t), (1.26)
HID(t) = U(t)HI(t)U †(t). (1.27)

Then the time derivative of Eq. (1.26), and using Eq. (1.27), gives us,

d

dt
ρI(t) = i

~
HmρI(t)− ρI(t)

i

~
Hm + U(t) d

dt
ρ(t)U †(t)

= i

~
[Hm, ρI(t)]−

i

~
U(t) [Hm +HI(t), ρ(t)]U †(t)

= i

~
[Hm, ρI(t)]−

i

~
[Hm, ρI(t)]−

i

~
[HID(t), ρI(t)] . (1.28)

This leaves us with the Dirac-interaction picture Louiville-von Neumann equation,

i~
d

dt
ρI(t) = [HID(t), ρI(t)] , (1.29)

where, HID(t) = H†ID(t) and diag[HID(t)] = 0. This reduces the curse of dimen-
sionality that we are confronted with.
In Subsection 1.4.5, the dipole moments χ are defined for the Dirac-interaction
picture and we find that the Hamiltonian is then given by,

HID(t) = Hij(t) = χije
iωijtεo(t), (1.30)

where, ωij = ωi − ωj, and, εo(t), is the real component of the electric field of the
input femtosecond laser pulse.

1.4. Octahedral Molecules

Nuclei of molecules can of course vibrate as discussed in the Born-Oppenheimer ap-
proximation [56]. The first analytical solution of a homonuclear diatomic molecule
was given in terms of the approximate Morse potential [57]. One of the first text-
books on molecular vibrations is [31]. A very good read is “Molecular symmetry
and spectroscopy” [30]. The importance of group theory and symmetry in quan-
tum mechanics was first recognized by E.P. Wigner and collected in his book [25],
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(just for this contribution he could have won the Nobel prize), and Hermann Weyl
[26]. These are classical textbooks on quantum group theory, but a modern version
is given by Tinkham [28].
The various elements in a point group are labeled according to its symmetry op-
erations, e.g., in the cyclic point groups, Cn, the elements are rotations through
angles of, 2πk/n, about the symmetry axis, with k = 1, 2, . . . , n. The group
is a cyclic group of order n, with a generating element given by the rotation
matrix, Cn, i.e., Cn = {Cn, C

2
n, . . . , C

n
n = E}4. The rotations dependent on

the rational factor, k/n. In denoting the elements of the point group, this ra-
tional factor must be written in its lowest prime form, so that for example,
C6 = {C6, C

2
6 , C

3
6 , C

4
6 , C

5
6 , C

6
6 = E} = {C6, C3, C2, C

2
3 , C

5
6 , E}. The classes of the

groups are labeled using calligraphic text of the generating symmetry element of
the class, so that, C6 = E ∪ C6 ∪ C3 ∪ C2 ∪ C

2
3 ∪ C

5
6 . If two inequivalent classes C2

appear in the decomposition of the group then they are labeled, C2 and C ′2. An
additional inequivalent class, C2 would be labeled, C ′′2 , etc. Sometimes the labels
of the symmetry axes to which the distinct equivalent classes refer are used as
superscripts, e.g., Cx2 , C

y
2 , and, Cz2 . In the dihedral, Dn, groups (these are symme-

try groups with additional reflection symmetry) a problem arises in denoting the
n twofold axes perpendicular to the axis of highest symmetry. To denote these
rotations we write, C2⊥ , for the elements and the class as, C2⊥ .

1.4.1. Irreducible Representations of Point Groups

The great majority of molecules in physical problems has axes of symmetry only of
the second, third, fourth and sixth orders. The cyclic groups are the simplest and
it is rather straight forward to determine their irreducible representations. Each
element in a cyclic group is in its own class. The number of irreducible repre-
sentations is equal to the number of classes. Therefore the number of irreducible
representations of a cyclic group is equal to the order of the group. The cyclic
group has only one-dimensional irreducible representations. Therefore the cyclic
subgroups of a group all have one-dimensional irreducible representations. Irre-
ducible representations play a far reaching effect on physics and a very good text
book is [29].

1.4.2. Classification of irreducible representations

The origin of the classification of irreducible representations of abstract groups
is not clear, but most books adhere to the following notation. The irreducible

4The convention of using, E, for the the identity operator, I, is from German “Einheit”.

18

Stellenbosch University  https://scholar.sun.ac.za



1.4 Octahedral Molecules

representations are all labeled by a capital letter with a subscript usually denoting
its specific multiplicity. If there is parity (inversion-i) symmetry then the subscripts
(g, e, s - gerade, even, symmetric or u, o, a - ungerade, odd, asymmetric) are used:

1. A and B denote the one-dimensional irreducible representations.

Those having a character, +1, under the principal rotation symmetry class,
Cn, are labeled, A, and those with a character, −1, are labeled, B. If the
inversion symmetry operator, i, is present in the class structure of the group,
then the subscript labels, g or u, are used depending on whether the character
is either, +1 or −1, respectively in the inversion class column of the character
table.

2. E denotes the two-dimensional irreducible representations.

This, E, must not be confused with the identity element.

3. F denotes the three-dimensional irreducible representations.

4. G denotes the four-dimensional irreducible representations.

The fact that the letters, C andD, are already used to describe the symmetry point
groups could possibly explain their exclusion in the classification of irreducible
representation and the natural order of the alphabet.

When the irreducible representations refer to the electron wavefunctions of
molecules, such as the well-known homonuclear diatomic molecule H2, then the
notation of the electron molecular wavefunctions are related to the atomic orbital
angular momentum spherical harmonics, which are given by, s, p, d, f (sharp,
principal, diffuse, fundamental), but for molecules the equivalent Greek capitals
are used, i.e., Σ, Π, ∆, Φ.

1.4.3. Character tables of point groups

There are 32 crystallographic point groups. The orders of the first 22 point groups,
those point groups that are isomorphic to one another are listed in the same rows,
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are listed in the following Table:5

Point group Order
C1 1

S2 = Ci, C2, Cs 2
C3 3

C2h, C2v, D2 = V 4
C4, S4 4
C3v, D3 6

C6 6
C4v, D4, D2d 8
D6, C6v, D3h 12

T 12
O, Td 24

The other ten symmetry point groups can all be constructed by direct products of
those already considered with the group, Ci (or Cs).

C3h = C3 ⊗Cs ; D2h= D2⊗Ci ; D3d= D3⊗Ci

C4h = C4 ⊗Ci ; D4h= D4⊗Ci ; D6h= D6⊗Ci

C6h = C6 ⊗Ci ; S6= D3⊗Ci ; Th= T⊗Ci

Oh= O⊗Ci

(1.31)

In this notation our example group is the, D3, point group, i.e., it has a threefold
symmetry axis and three twofold axes perpendicular to the symmetry axis. The
character table can then be written as,

D3 E 3C2⊥ 2C3

A1 1 1 1
A2 1 −1 1
E 2 0 −1

(1.32)

The octahedron group,6 O, of proper rotations of a cube has direct bearing on the
XY6 molecule which has the full octahedron symmetry, Oh. The full octahedron
symmetry group is the direct product of the octahedron group and the inversion
operator, Oh= O⊗Ci. To study the full octahedron group Oh, we first obtain
the character table of the octahedron group, O, from which we can obtain the
character table of the, Oh group.

5C are the cyclic groups, D are the dihedral groups, D2 = V is the German “vierengruppen”,
S are the symmetric groups, T is the tetrahedron group, O is the octahedron group.

6Note that when referring to the group it is known as the octahedron group, but when applied
to the symmetry of molecules, the molecule is known as an octahedral molecule.
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1.4 Octahedral Molecules

O E 8C3 3C2 6C2 6C4

A1 1 1 1 1 1
A2 1 1 1 −1 −1
E 2 −1 2 0 0
F1 3 0 −1 −1 1
F2 3 0 −1 1 −1

(1.33)

This group is isomorphic to the regular tetrahedron group, Td. The only differences
being that the classes are labeled, E , 8C3 , 3C2 , 6σd, 6S4 . The classes of the full
octahedron group, Oh, can be obtained from the direct products of the classes of
the regular octahedron group, O, with the class of the inversion operator, I = S2 .

O E 8C3 3C2 6C2 6C4

⊗S2 ↓ ↓ ↓ ↓ ↓
I 8S6 3σh 6σd 6S4

(1.34)

The character table of the full octahedron symmetry group, Oh, is given below
(this can also be found in Barrow [58]),

Oh E 8C3 3C2 6C2 6C4 I 6S4 8S6 3σh 6σd
A1g 1 1 1 1 1 1 1 1 1 1
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2g 1 1 1 −1 −1 1 −1 1 1 −1
A2u 1 1 1 −1 −1 −1 1 −1 −1 1
Eg 2 −1 2 0 0 2 0 −1 2 0
Eu 2 −1 2 0 0 −2 0 1 −2 0
F1g 3 0 −1 −1 1 3 1 0 −1 −1
F1u 3 0 −1 −1 1 −3 −1 0 1 1
F2g 3 0 −1 1 −1 3 −1 0 −1 1
F2u 3 0 −1 1 −1 −3 1 0 1 −1

(1.35)

1.4.4. XY6 IR Active Transition Frequencies

The rovibrational energy spectrum of a polyatomic molecule has a complex struc-
ture. For our octahedral, XY6, we have, 3N − 6 = 15, where, N = 7, the number
of atoms, natural vibrational modes (6 = 3 + 3 for translational and rotational
freedom). A change of variables of the Hamiltonian, in the Born-Oppenheimer ap-
proximation 1927, to mass weighted coordinate are usually referred to as normal
coordinates with their associated normal vibrational modes. This assures that the
normal modes contain no net translation or rotation about the center of mass of
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Figure 1.4.: Octahedral Molecule

the molecule. The potential energy function of the intramolecular vibration har-
monic oscillator are diagonal, i.e., contain no cross terms in the normal coordinate
representation. The octahedral symmetry of the XY6 molecule reduces the num-
ber of active normal vibrational modes to 6, usually referred to as, ν1, ν2, . . . , ν6.
For a thorough understanding of the methods employed consult the classic of Wil-
son, Decius, Cross [31] and the up to date Bunker and Jensen [30]. Specifically
for octahedral molecules the 1934 article by Nath [59] which directly applies the
GF Matrix method of Wilson et al [31]. The importance of determining the force
constants of octahedral molecules by this method and improvements thereof, is
shown in the number of articles relating to the technique, even as recent as 2005,
cf. Fatih Ucun and M. Gökhan Sengül [60]. This is also an excellent paper that
summarizes all the aspects quite well. It also contains a list of the common octa-
hedral XY6 molecules, namely, SF6, SeF6, MoF6, TeF6, WF6, OsF6, IrF6, NpF6,
UF6, and PuF6. It calculates the 7 force constants of all these molecules.

Of the 6 vibrational frequency modes, ν1, is a single mode, ν2, is a double degener-
ate mode, and ν3,ν4, ν5, and ν6, are triply degenerate modes. Multiplied with there
degeneracies, these add up to their original 15 natural modes. Not all the normal
modes are Raman or infrared (IR) active, i.e., modes that can be directly excited
by a single frequency EM field. We concentrate only on the IR-active ν3 mode.
The energy spectrum is discrete in the first few IR-active rovibrational levels of the
ν3 normal mode. The statistical density of rovibrational states increases rapidly
with energy. For a polyatomic molecule a point is reached where the density of
the states is so high that the energy states are in a quasi-continuum. As we climb
further up the ν3 ladder we eventually reach the dissociation energy where the
molecule dissociates into the continuum. An interesting effect occurs at the onset
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of the quasi-continuum. In a high intensity monochromatic electromagnetic field,
i.e., a laser pulse, the polyatomic molecule is excited in a dipole active normal
mode. This absorbed energy redistributes itself quite rapidly into the other avail-
able vibrational modes to establish a statistical equilibrium among the modes. The
agent of the intramolecular redistribution of energy can qualitatively be explained
by intramode coupling at the heart of which lies the nonlinear spectroscopic an-
harmonicities. This process is called intramolecular vibrational redistribution or
relaxation (IVR). The onset is called the stochastization energy. In analogy with
classical Hamiltonian systems one could say the molecular rovibrations find them-
selves in a quantum chaos. IVR induces statistical inhomogeneous broadening in
the rovibrational spectrum. A quantitative theory for the IVR has been developed
by Makarov et al. [49]. There are numerous theories to model the IR multiphoton
excitation of a polyatomic molecule. The overtone of eigenvalue modes listed in
the Table 1.1 below are given in Halonen and Child [61]. The infra-red active ν3

rovibrational modes of the Oh-symmetry of the octahedral molecule are listed in
Table 1.1.

No Frequency Level Group Symmetry
1 ω1 = 0 0 A1g

2 ω2 = 627.71 1 F1u

3 ω3 = 2ω2 − 2.6080 2 Eg
4 ω4 = 2ω2 − 2.3560 2 A1g
5 ω5 = 2ω2 + 0.2120 2 F1g

6 ω6 = ω5 + ω2 − 7.7916 3 F1u
7 ω7 = ω5 + ω2 − 2.3960 3 F2u
8 ω8 = ω5 + ω2 − 2.2204 3 F1u
9 ω9 = ω5 + ω2 + 0.3330 3 A2u

10 ω10 = 2495.75 4 A1g
11 ω11 = 2495.76 4 Eg
12 ω12 = 2503.73 4 F1g
13 ω13 = 2504.20 4 F2g
14 ω14 = 2506.60 4 Eg
15 ω15 = 2506.87 4 A1g
16 ω16 = 2509.42 4 F2g

17 ω17 = 3132.17 QC None
Table 1.1.: XY6 ν3-rovibrational modes
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Figure 1.5.: ν3-Rovibrational Levels of Octahedral Molecule

1.4.5. XY6 Dipole Moments

Transition dipole moments are measured in units of Debye and is given by,

Debye = 3.3356× 10−30Cm

.
The dipole moment of the first rovibrational transition moment of XY6 is given
by,

S1 = (0.394 ∗Debye)/e = 8.202759× 10−12m,
where, e = 1.602176 × 10−19 C, is the charge of the electron. The first transition
dipole moments can be rounded off to,

S2 = 8× 10−12.

Transition Dipole Moment Matrix, χ, is symmetrical with zero diagonal. Define
only the upper triangular nonzero transition dipole moments, X. Adding the
transpose to the matrix completes the lower triangular matrix,

χ = X +XT (1.36)
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Dipole constants XY6

1. The first-level dipole transition moment is given by,

χ1,2 = S2.

2. The second-level dipole transition moment is given by,

χ2,3 = S2
√

0.444,
χ2,4 = S2

√
0.222,

χ2,5 = S2
√

0.666.

3. The third-level dipole transition moment is given by,

χ3,6 = S2
√

1.029 χ4,6 = S2
√

0.939 χ5,6 = S2
√

0.009
χ3,7 = S2

√
0.500 χ4,7 = S2

√
0.372× 10−27 χ5,7 = S2

√
0.667

χ3,8 = S2
√

0.137 χ4,8 = S2
√

0.7274 χ5,8 = S2
√

0.6658
χ3,9 = S2

√
0.278× 10−31 χ4,9 = S2

√
0.5434× 10−31 χ5,9 = S2

√
0.333

Table 1.2.: 3rd-level dipole transition moments

4. The fourth-level dipole transition moment is given by,

χ6,10 = S2
√

0.095 0 χ8,10 = S2
√

0.095 0
χ6,11 = S2

√
0.190 χ7,11 = S2

√
0.2198 χ8,11 = S2

√
0.190 0

χ6,12 = S2
√

0.2857 χ7,12 = S2
√

0.3297 χ8,12 = S2
√

0.2857 0
χ6,13 = S2

√
0.2857 χ7,13 = S2

√
0.3297 χ8,13 = S2

√
0.2857 χ9,13 = S2

√
0.7143

χ6,14 = S2
√

0.190 χ7,14 = S2
√

0.2198 χ8,14 = S2
√

0.190 0
χ6,15 = S2

√
0.095 0 χ8,15 = S2

√
0.095 0

χ6,16 = S2
√

0.2857 χ7,16 = S2
√

0.3297 χ8,16 = S2
√

0.2857 χ9,16 = S2
√

0.7143
Table 1.3.: 4th-level dipole transition moments
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5. The quasi-continuum dipole transition moment is given by,

χ10,17 = S2

√
11/36

χ11,17 = S2

√
11/36

χ12,17 = S2

√
11/36

χ13,17 = S2

√
11/36

χ14,17 = S2

√
11/36

χ15,17 = S2

√
11/36

χ16,17 = S2

√
11/36

Table 1.4.: QC dipole transition moments

In the following representation (on the next page) of the interaction Hamiltonian
matrix the coefficients are denoted by, a = χ.
Dirac interaction Hamiltonian is then given by,

Hij(t) = χije
iωijtε(t), (1.37)

where, ωij = ωi − ωj, and ε(t), is the real component of the electric field of the
input femtosecond IR laser pulse.
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χ =



0 a1,2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a∗1,2 0 a2,3 a2,4 a2,5 0 0 0 0 0 0 0 0 0 0 0 0
0 a∗2,3 0 0 0 a3,6 a3,7 a3,8 a3,9 0 0 0 0 0 0 0 0
0 a∗2,4 0 0 0 a4,6 a4,7 a4,8 a4,9 0 0 0 0 0 0 0 0
0 a∗2,5 0 0 0 a5,6 a5,7 a5,8 a5,9 0 0 0 0 0 0 0 0
0 0 a∗3,6 a∗4,6 a∗5,6 0 0 0 0 a6,10 a6,11 a6,12 a6,13 a6,14 a6,15 a6,16 0
0 0 a∗3,7 a∗4,7 a∗5,7 0 0 0 0 0 a7,11 a7,12 a7,13 a7,14 0 a7,16 0
0 0 a∗3,8 a∗4,8 a∗5,8 0 0 0 0 a8,10 a8,11 a8,12 a8,13 a8,14 a8,15 a8,16 0
0 0 a∗3,9 a∗4,9 a∗5,9 0 0 0 0 0 0 0 a9,13 0 0 a9,16 0
0 0 0 0 0 a∗6,10 0 a∗8,10 0 0 0 0 0 0 0 0 a10,17

0 0 0 0 0 a∗6,11 a∗7,11 a∗8,11 0 0 0 0 0 0 0 0 a11,17

0 0 0 0 0 a∗6,12 a∗7,12 a∗8,12 0 0 0 0 0 0 0 0 a12,17

0 0 0 0 0 a∗6,13 a∗7,13 a∗8,13 a∗9,13 0 0 0 0 0 0 0 a13,17

0 0 0 0 0 a∗6,14 a∗7,14 a∗8,14 0 0 0 0 0 0 0 0 a14,17

0 0 0 0 0 a∗6,15 0 a∗8,15 0 0 0 0 0 0 0 0 a15,17

0 0 0 0 0 a∗6,16 a∗7,16 a∗8,16 a∗9,16 0 0 0 0 0 0 0 a16,17

0 0 0 0 0 0 0 0 0 a∗10,17 a∗11,17 a∗12,17 a∗13,17 a∗14,17 a∗15,17 a∗16,17 0


(1.38)
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Chapter 1 Introduction

1.5. Spatial Light Modulator

The 4-f SLM configuration is used to modulate the femtosecond laser pulse to
control the molecular transition level. The SLM consists of 640 pixel amplitude
and phase modulators. The modulation occurs in spatial frequency domain, but it
can easily be shown to be equivalent to time-frequency modulation. Given an input
electric field IR femtosecond laser pulse, with a Gaussian modulation modeled as,

εi(t) = Ai
1√
2πσ

e−
(t−t0)2

2σ2 cosωi(t− t0) (1.39)

= Ai
1√
2πσ

e−
(t−t0)2

2σ2
eiωi(t−t0) + e−iωi(t−t0)

2 ,

where, Ai, is the input amplitude, ωi, is the IR angular frequency, t0, is the center
time (usually taken to be zero) and σ, is the standard deviation of the Gaussian
pulse, respectively. We are only interested in the analytic signal with positive
frequencies,

εi(t) = Ai
1√
2πσ

e−
(t−t0)2

2σ2 eiωi(t−t0). (1.40)

Note also that it is the standard Gaussian normalized to one, i.e.,
ˆ ∞
−∞

1√
2πσ

e−
(t−t0)2

2σ2 = 1. (1.41)

This is then transformed to the frequency domain by standard Fourier optics by
means of a grating and mirrors. For, t0 = 0,

ε̃i(ω) = Ai
1√
2π
e−

σ2(ω−ωi)
2

2 = Ãie
−σ

2(ω−ωi)
2

2 . (1.42)

A N -discretization of a transform limited pulse in the frequency domain can there-
fore be written as,

ε̃N(ω) =
N
2 −1∑

n=−N2

rect
[
ω − ωn
4ω

]
ε̃n(ω) =

N
2 −1∑

n=−N2

Ãne
iΦn , (1.43)

where, rect(·), is the normal rectangular function defined in SubsectionA.4.3.
This is easily obtained from the Fourier transform and Fourier transform properties
(cf. TableA.1 in SectionA.5),
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1.5 Spatial Light Modulator

F
{

1√
2πσ

e−
t2

2σ2

}
= 1√

2π
e−

σ2ω2
2 . (1.44)

The masking function associated with the pixellated device with N -pixels is given
by,

M(x) =
N
2 −1∑

n=−N2

rect
[

x− xn
4xp −4xg

]
Mne

−iφn +
N
2 −1∑

k=−N2

rect
x− xk + 4xp

2
4xp −4xg

Mke
−iφk ,

(1.45)
where,

4xp = Width of a single pixel.
4xg = Separation between pixels.
Mn = Amplitude modulation of the pixels.
Mk = Amplitude modulation of the gaps.
φn = Phase modulation of the pixels.
φk = Phase modulation of the gaps

Figure 1.6.: 4f-Spatial Light Modulator

A complete analysis can be found in various articles Trebino [62] and the MSc
thesis [55]. The effect of the SLM in the frequency domain for a transform limited
bandwidth is the following discretization,

M(ω) =
N
2 −1∑

n=−N2

rect
[
ω − ωn
4ω

]
Mne

−iφn . (1.46)
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The product with the input electric pulse then gives,

ẼN(ω) = M(ω)ε̃N(ω) =
N
2 −1∑

n=−N2

rect
[
ω − ωn
4ω

]
MnÃne

iΦn−iφn . (1.47)

The second set of lens and grating inverse Fourier transforms the electric field of
the femtosecond pulse back into time domain,

εN(t) = <
[
F−1{ẼN(ω)}

]
, (1.48)

and of course it is only real part that interacts with Hamiltonian of the molecule.

1.6. Introduction to Time Frequency
Representations

Time-frequency Representations (TFR) and analysis (TFA) was originally intro-
duced in a seminal paper by E. P. Wigner for quantum statistical mechanics [63],
in quantum phase space, (q, p), known as the Wigner distribution. In 1946, D.
Gabor was researching communication theory [64] and immediately saw that the
quantum wave mechanics was also applicable to TFA of sound. He modified the
von Neumann phase space representation to TFA and represented the signal with
Gaussian pulses on the time-frequency domain. These pulses would later be known
as Gabor atoms. Ville 1948 [65] adapted the bilinear Wigner representation to a
TFR which is now commonly known as the Wigner-Ville distribution. Since then
a myriad of TFR have been invented, mainly due to some short comings of the
Wigner-Ville distribution. In 1966 Leon Cohen [66] "Generalized phase-space dis-
tribution functions", came up with a classification scheme for the various TFRs,
known as Cohen Classes.
Essentially there are two main classes:

1. The Atomic Decompositions

a) Short Time Frequency Transform (STFT)
b) Gabor Representation
c) Time-scale analysis and wavelet transforms
d) Spectrogram
e) Scalogram

2. The Energy Distributions (Cohen classes)
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1.6 Introduction to Time Frequency Representations

a) The Wigner-Ville Distribution
b) The Ambiguity function - Symmetrical Sussman ambiguity function
c) Generalized phase-space distribution functions

One of the most popular methods to analyze a non-stationary time signal would
probably be the original short-time Fourier transform developed by Gabor.
The simplicity of the concept behind it, directly displays the shortcomings of the
Fourier transform technique. Imagine we are lying down and absorbing the sounds
of a beautiful classical piece of music, which lasts an hour. The opus starts with
slow violins, cello’s with harps and slowly builds up were the woodwinds enter.
Then the brass and drums come in building up to a crescendo climax. If we were
to have any idea of the frequency content of the music, we simply Fourier analyze
it. In the spectrum we could localize the frequency contents of the violin or the
drum, but alas we will have no indication of when the instruments were played.
Ah, but to accomplish this, it would be much better to break down the hour into
five minute intervals and to Fourier analyze them individually. At least this would
give us some indication of when the violins or drums were played. This is of course
a coarse scaling and to achieve a better localization it would be straightforward to
break it down into one minute intervals. This is the concept behind the short-time
Fourier transform. Just chop up the signal and individually Fourier analyze the
small intervals to obtain a combined time-frequency picture of the signal.
Of course, we can continue and just make the intervals smaller and smaller to get
an ever improved representation of the music. Unfortunately, this is were we run
into a mathematical conundrum. We cannot and the reason is that, when the time
intervals become so narrow, then the spectrum looses any relationship to our music.
What has happened? And this is one of the fundamental limitations of Fourier
transforms. We have taken the original score and dissected it into short time
signals, but according to Fourier analyzes, short signals have broad bandwidths, so
much so, that they do not properly represent the frequency content of the original
signal. Buried in the underlying Fourier technique is an uncertainty principle,
almost similar to the Heisenberg uncertainty principle of quantum mechanics and
they have the same mathematical foundations (cf. Appendix A “The Fourier
Integral and Delta Functions” of Gasiorowicz [5]). Irrespective, this technique can
work well, if the right discretization is chosen for the specific signal. But in other
specific cases this might not be possible. Although, we see that it sometimes works
and at other times doesn’t and that we are aware that there is a fundamental
uncertainty principle underlying the technique, we must also bear in mind that
it maybe the process of breaking down our signal in smaller pieces that might
cause the failure of the method. Therefore, the plethora of various time-frequency
representations. One technique may just work better for a specific signal than
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another. The best analogy to TFR is a musical score, depicted in Figure 1.7,
where the horizontal lines denote direction of time and the vertical direction the
frequency content. Without this type of musical representation, musicians would
not have been able to play each other’s compositions, without having listened to
the piece.

Figure 1.7.: Musical Score for Three Guitars

1.7. Overview of the Thesis

In this introductory Chapter 1, short overviews of various relevant topics were
already presented, such as classical control theory, quantum control, quantum co-
herent control, the derivation of the Dirac-Liouville-von Neumann interaction pic-
ture equation, octahedral molecules, with their irreducible representations, group
theory, etc., spatial light modulators, and an introduction to time-frequency rep-
resentations, specifically discussing the short time Fourier transform.

No discussion about lasers is given in the introductory Chapter 1. A short discus-
sion about EM waves, Gaussian beams, Fourier optics, optical phase space, EM
quantization and Lagrangians and coherent states is lastly overviewed in Chapter 7.

An overview relating to Time-Frequency-Representation (TFR) is given in
Chapter 2. Here the two main types are characterized. It is worthy to note that
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the original Cohen classes were meant as a classification scheme for the then known
quantum mechanical TFRs.
It seems that the preferred Time-Frequency-Representation (TFR) for scientists,
i.e., physicists and chemists, as opposed to engineers, is the von Neumann TFR,
Chapter 3, to represent ultra-short laser pulses. Here the von Neumann TFR is
defined and some features are highlighted. The derivations relating to the overlap
integral or matrix is also given and found to differ from that given in an important
article.
Chapter 4 is a prepublished article concerning the adaptive quantum coherent con-
trol of a multi-level molecular system in the von Neumann time-frequency domain.
Here we explore the use of the von Neumann TFR specifically for our quantum
coherent control of an octahedral molecule. We discover that the von Neumann
representation greatly reduces the search time of the optimization algorithm. With
the speed advantage we explore the quantum topology of the laser interaction with
octahedral molecule.
Given the advantages that we gained from the use of the von Neumann it was
discovered that certain of the great features of the von Neumann spectral and
temporal bases could be extended into the Hermite-Gauss polynomials. For TFRs
this is a novel discovery andChapter 5 describes in detail the derivation of the
generalized Fourier-Hermite-Gauss (FHG) time-frequency representation. Much of
this Chapter is unique to this dissertation. The discovery and application of Pascal
matrices to Hermite translations is also new. Whole new Lemmas, Corollaries and
a Theorem, specifically pertaining to this representation are also presented.
Although the Pascal matrices perform marvels analytically there numerical calcu-
lation and stability leave much to be desired. This necessitated a deep research
in Chapter 6, concerning the complete FHG spectral and temporal lattice cubes.
Being a direct consequence of the FHG TFR this Chapter in its entirety is novel
and unique to this dissertation. The complete lattice cube is investigated and even
new functions are defined to facilitate in the development.
The very nature of the FHG temporal and spectral bases are very reminiscent to
the solution of the quantum harmonic oscillator. The subsequent step to coher-
ent states, which can also be expanded in terms of quantum harmonic oscillator
states, is cautiously analyzed in Chapter 7. It is discovered, that at least for the
temporal FHG TFR bases that there exists an analogy between these states and a
correspondence “classical” coherent state harmonic oscillator representation. This
is then developed in terms of a correlation function between these FHG temporal
representation of laser shaped ultrafast pulses. This is what we call the coherent
state TFR analogy, which in essence, is a correlation between the respective state
representations.
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Finally, in Chapter 8, the dissertation is once again summarized in the conclusion.
The main discoveries are highlighted. A short description of outstanding work
relating to this thesis, that should be completed in the future, is given. Then
future research is outlined.
There are quite a few appendices which we include here to ensure that the reader
has a rather complete reference handy on all the mathematics relevant to this
thesis. There is a serious Appendix A on Fourier transforms. One on the derivation
of the FHG spectral overlap matrix, and another on orthogonal polynomials, and
then lastly just some Matlab© programs.
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2. Time Frequency Representations

2.1. Introduction

Time Frequency Representations (TFR) originated with Eugene Wigner and John
von Neumann to represent the quantum mechanical wave functions in phase space
(q, p) and then only recognized to be just as applicable for sound waves by Denis
Gabor. The forefathers are shown in Figure 2.1.
To get a better idea of wave signal analysis, we firstly introduce a few common
definitions like signal localization Section 2.2, the Heisenberg-Gabor Inequality
Section 2.3, the concept of an analytical signal Section 2.4, before venturing into a
discussion of some atomic decompositions, starting with the mathematical analy-
sis of the Short-Time-Fourier-Transform Section 2.5. Thereafter, in Section 2.6, we
discuss the Gabor transform, which was the first STFT, and was actually originally
conceived by Denis Gabor from the von Neumann TFR. The von Neumann TFR is
discussed in detail in Chapter 3. The widely used spectrogram, in signal analysis,
is given in Section 2.7, its characteristic function and its relationship with the so
called ambiguity function. In Subsection 2.7.1 a short discussion of the inherent
barrier of time-frequency resolution is outlined. Subsection 2.7.2 gives an all to
brief discussion on discrete time signal analysis (this is a field all on its own [67])
for the STFT. An extremely good classical review of the various time-frequency
distributions is given by Cohen [68]. Although a bit outdated 1989, it reviews the
historical developments quite nicely.
Section 2.8 discusses the prototype of the TFR kernel methods, namely the Wigner-
Ville distribution. In Subsection 2.8.1, some properties of the Wigner-Ville distri-
bution are given, Subsection 2.8.2, disadvantages, Subsection 2.8.3, the Pseudo-
Wigner-Ville distribution and in Subsection 2.8.4, the related ambiguity is dis-
cussed, respectively.
Finally, in Section 2.9, the all important kernel methods developed by Leon Cohen
are presented. Only a brief history and summary is given, but in Subsection 2.9.1
the Husimi distribution, which has quantum mechanical implementations and also
used herein, is presented and in Subsection 2.9.2 the Smoothed-Pseudo-Wigner-
Ville Distribution is given.
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Chapter 2 Time Frequency Representations

Figure 2.1.: Eugene Wigner, John von Neumann and Dennis Gabor

2.2. Signal Localization

In Appendix A an overview of Fourier transforms is presented. There we see that
the Fourier transform can be defined in various ways. It is essential for anybody
working in this field to be able to use any of these definitions, and to be able to
revert from one to another. It is also common in electrical engineering and Digital
Signal Processing (DSP) to rather use, j =

√
−1, for the imaginary symbol to

avoid possible confusion with symbol used for electrical current, i. However, for
this paragraph we define (t, is time and, ν, is frequency)

F {g (t)} = G (ν) =
ˆ ∞
−∞

g (t) e−2πiνt dt, (2.1)

F−1 {G (ν)} = g (t) =
ˆ ∞
−∞

G (ν) e2πiνt dν. (2.2)

The advantage of this definition is that we do not have any normalization constants,
and its immediate disadvantage of continuesly writting the 2π in the exponent. To
avoid this, we can transform to angular frequency, ω = 2πν, (which then corre-
sponds to the quantum mechanical Fourier transform definitions between phase
space, (q, p)), but unfortunately this introduces the normalization constants. This
is also discussed in excellent classic book of Cohen [33].
If we consider that the energy, Ex, is assumed to be finite, of a signal, x(t)1, is
related through Parseval’s theorem (cf. SubsectionA.3.10 and Eq. (A.72)) by,

Ex =
ˆ ∞
−∞
|x(t)|2 dt =

ˆ ∞
−∞
|X(ν)|2 dν. (2.3)

1We shall either refer to time signals as s(t) or as x(t).
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Since, |x(t)|2, and, |X(ν)|2, are positive and can be normalized to unity it is
tempting to consider these functions as probability density distribution functions,
namely, px(t) = 1

Ex
|x(t)|2, and pX(ν) = 1

Ex
|X(ν)|2. This is exactly what Co-

hen does. Then, in analogy with probability theory, we can define the following
averages2:

• Time average.
tm = 〈t〉 = t̄ = 1

Ex

ˆ ∞
−∞

t |x(t)|2 dt (2.4)

• Frequency average.

νm = 〈ν〉 = ν̄ = 1
Ex

ˆ ∞
−∞

ν |X(ν)|2 dν (2.5)

• Time spreading (Temporal covariance, Time duration).

T 2 = (∆t)2 = 4π
Ex

ˆ ∞
−∞

(t− tm)2 |x(t)|2 dt (2.6)

• Frequency spreading (Spectral covariance, Frequency bandwidth).

B2 = (∆ν)2 = 4π
Ex

ˆ ∞
−∞

(ν − νm)2 |X(ν)|2 dν (2.7)

• Characteristic function (Given a “probability density”, px(t) = 1
Ex
|x(t)|2.)

Px(θ) =
ˆ ∞
−∞

px(t)eiθt dt

A signal can then be characterized in the time-frequency domain by its average
position, (tm, νm), and its average location of energy given by the area of the
time-bandwidth product, T×B.

2.3. Heisenberg-Gabor Inequality

A consequence of the scaling property of the the Fourier transform pairs (see
SubsectionA.3.4) reveals an interesting constraint,

T ×B ≥ 1 (2.8)
2The bracket 〈·〉 denotes an integral probability average or expectation
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or,
∆t∆ν ≥ 1.

This constraint is known as the Heisenberg-Gabor inequality (in honour of the
Heisenberg uncertainty relationship in Quantum Mechanics which Denis Gabor
accredited to Heisenberg, in his original article [64], cf. also [33, 34]). This mani-
fests, that it is impossible to simultaneously represent a signal in the time and in
the frequency domain with arbitrarily small support. The lower bound or equality
in Eq. (2.8) is reached for a Gaussian function,

x(t) = C exp
[
−α(t− tm)2 + 2πiνm(t− tm)

]
, C ∈ R, α ∈ R+. (2.9)

2.4. Analytical Signals

Gabor recognized that in Fourier transforms negative frequencies naturally occur,
as mathematical artifacts of the complex representation, but physically that they
hard to interpret. Mirror images of the Fourier spectrum about the zero frequency
to reflect physical real signals is common. If a signal can somehow be transformed
so that it generally shows only positive frequencies, these signals would be consid-
ered more physical. This is also closely related to the commonly upheld principle
of causality, that the future cannot effect the present and that from cause and
effect, we establish that only causes in the past can effect the present. Just like
chirality is broken by some elementary particles, there may be reasons to believe
that this principle also, may not be as fundamental as we would hope it to be.

For any real valued signal, s(t), we associate a complexed valued signal, sa(t),
called an analytical signal by (cf. [69, 33]),

sa(t) = s(t) + iH {s(t)} = s(t) + iš(t) (2.10)

where, H {·} the Hilbert transform defined by (cf. [69, 70, 33]),

H {s(t)} = š(t) = 1
π

ˆ ∞
−∞

s(τ)
t− τ

dτ = 1
πt
∗ s(t) (2.11)

where the * denotes the convolution operator (cf. SubsectionA.3.8 for the defini-
tion). A common use of the Hilbert transform in the communication industry is
to generate single side band signals (SSB). The Fourier transform of, sa(t), is a
single sided Fourier transform of which the negative frequencies have been removed
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and the positive frequencies have been doubled, and the DC component is kept
unchanged,

Sa(ν) =


0 if ν < 0

S(0) if ν = 0
2S(ν) if ν > 0

, (2.12)

where, S(ν) = F {s(t)}, and, Sa(ν) = F {sa(t)}. Thus,

sa(t) =
ˆ ∞

0
S(ν)e2πiνt dν, (2.13)

where,
S(ν) =

ˆ ∞
−∞

s(t)e−2πiνt dt. (2.14)

For a real signal, s(t), we have, S(−ν) = S∗(ν), therefore by zeroing the negative
frequencies in the analytical signal, we do not alter the real information content
of the signal. The relationship between the Hilbert transform definition of the
analytical signal and the single sided frequency definition can be obtained from
the Fourier transform pair,

P 1
πt

F⇐⇒ −i sgn (ν), (2.15)

where, P , denotes the Cauchy principal value of the function. Using the con-
volution theorem, (see SubsectionA.3.8), we have (in SectionA.4 we list all the
common functions and in TableA.1 we have a list of their Fourier transform pairs),

F{iš(t)} = F{iH {s(t)}} = iF{ 1
πt
∗ s(t)} = sgn (ν)S(ν), (2.16)

thus,

Sa(ν) = S(ν) + sgn (ν)S(ν) =


0 if ν < 0

S(0) if ν = 0
2S(ν) if ν > 0

. (2.17)

In our analysis of our quantum control problem, we model an incoming Gaussian
femtosecond IR laser pulse as an analytical signal. Also important is the even and
odd functions of Fourier transforms presented in SectionA.6. This emphasizes the
reality of a the signal content. In the numerical or digital implementation it is
known that the Hilbert transform should not be directly implemented, because
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it exhibits undesirable numerical properties. A modern trick of the trade is to
rather use Noble identities or Noble transform that remedies these inconsistencies.
This is an indication of the intricacies of numerical or digital methods that, even
a simple operation like as a sign function, may lead to problems.

2.5. The Short-time Fourier Transform

In the analysis of nonstationary signals, probably the most widely used method
is the short-time Fourier transform (STFT) and its related spectrogram. A short
introduction for the general necessity of TFR was given in Section 1.6.
Mathematically, the STFT is treated as follows: To study the properties of the
signal at a specific time, t, one simply emphasizes the signal at that time and
suppresses the signal at other times. This is achieved by multiplying the signal by
a so called window function, w(t), centered at, t, to snatch a piece of the signal to
produce a modified signal,

sw(t)(τ) = s(τ)w(τ − t). (2.18)

The modified signal is a function of two times. We have a fixed time we are
concentrating on, t, and the running time, τ . The window function is chosen
specifically to leave the signal more or less unmodified around the time, t, but
distant from the time of interest τ , to suppress the signal. That is,

sw(t)(τ) =
{
s(τ) for τ near t

0 for τ far away from t
. (2.19)

The window function is actually a way of taking a running or moving average of the
signal. This is the chopping up of the signal described in the introduction. How-
ever, in studying the STFT, one must always bear in mind that the properties of
the signal are inextricably intertwined with the properties of the window function.
Unscrambling or inverting the process is required for the proper interpretation and
estimation of the original signal.
Notwithstanding the above difficulties, the STFT method is ideal in many re-
spects. Based on reasonable physical principles, consistent with our intuition, it is
well defined and for many signals it gives an excellent TFR. However, for certain
situations and signals it may not be the best method available. Other techniques
may give a clearer picture for the particular situation. Thus other methods have
been developed, which are discussed here and in subsequent Chapters.
Since the modified signal emphasizes the signal around, t, the Fourier transform
will of course reflect the distribution of frequencies around time, t,
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2.5 The Short-time Fourier Transform

Fs(t, ν;w) =
ˆ
sw(τ)e−2πiντdτ

=
ˆ
s(τ)w(τ − t)e−2πiντdτ. (2.20)

This is generally referred to as the atomic decompositions method of the signal,
where the short time window function, w(t), is considered as an atom. They are
elementary parts that are used to reconstruct the total signal as a moving average
of elementary waveforms. More generally we define the window function,

wt,ν(τ) = w(τ − t)e2πiντ . (2.21)

The additional dependence on the time, t, and frequency, ν, are subscripted. Each
atom is obtained from a translation in time, (τ − t), and a shifting (translation) in
frequency (modulation), e2πiντ (See SubsectionA.3.5). The Weyl-Heisenberg group
incorporates all translation in time and frequency transformations.
The short time Fourier transform (STFT) is now generally defined by,

Fs(t, ν;w) =
ˆ ∞
−∞

w∗(τ − t)s(τ)e−2πiντ dτ (2.22)

where the function, w(t), has finite extend (localized about t = 0), mathematically
defined as the support of the function and we allowed the window function to
complex, where ∗ denotes the complex conjugate operation.

The STFT can also be defined in terms of its Fourier transforms as, if s(t) F⇐⇒ S(ν)
and window, w(t) F⇐⇒ W (ν), spectra, then,

Fs(t, ν;w) =
ˆ ∞
−∞

S(u)W ∗(u− ν) e2πi(u−ν)t du. (2.23)

This last form illustrates quite a unique feature, if we rewrite it as a convolution
(see SubsectionA.3.8 and Eq. (A.41)),

Fs(t, ν;w) = Wt(ν) ∗ S(ν) (2.24)

where, notationally we have specifically written,Wt(ν), to highlight the dependent
variable, ν, of the convolution, and still display the dependence of the variable, t,

Wt(ν) = W ∗(ν)e2πitν . (2.25)
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Chapter 2 Time Frequency Representations

It is quite instructive to highlight a physical analogy of this equation with filtering
theory. In the language of signal analysis, the STFT can be considered as passing
the signal, s(t), through a band-pass filter with frequency response, W ∗(u − ν).
This band pass filter is obtained from a filter, W (u), by frequency translation,
ν. Thus the short-time Fourier transform, Fs(t, ν;w), is analogous to passing the
signal, s(u), through a continuous filterbank, W ∗(u− ν), with parameter, ν.
If, h(t), is the analysis window of the STFT, then generally the signal, s(t), can
be reconstructed (synthesized) from, Fs(t, ν;h), by a different synthesis window,
g(t),

s(t) =
ˆ ∞
−∞

ˆ ∞
−∞

Fs(τ, ν;h)g(t− τ)e2πitν dτdν, (2.26)

provided that the analysis window, h(t), and synthesis window, g(t), are function-
ally orthogonal or inverses,

ˆ ∞
−∞

g(t)h∗(t) dt = 1. (2.27)

The results we will obtain are revealing when expressed in terms of the amplitudes
and phases of the signal and window and their transforms. The notation we use
is,

s(t) = A(t)ejϕ(t). (2.28)

2.6. Gabor TFR

The Gabor TFR is a specific implementation of the STFT. Initially, this was how
Gabor modified ideas of the von Neumann TFR to be applicable to the analysis
of sound. The first modern day use of the Gabor-von Neumann TFR can be
found in Helstrom [71] "An expansion of a signal in Gaussian elementary signals
(Corresp.)", 1966. Then it was again recognized by Bastiaans in 1980 and 1981,
[72, 73]. The first discrete Gabor expansion only appear in 1990, Wexler [74] and
Orr contributed as well, in 1990 and 1991 [75, 76]. Bastiaans [77] recognized that
the inverse of the discrete Gabor transform is a discrete Zac transform.
Lately it has also been used for signal compression, Shimshovitz and Tannor [78]
"Periodic Gabor Functions with Biorthogonal Exchange: A Highly Accurate and
Efficient Method for Signal Compression" 2012.
It was soon recognized that the window function could be replaced by other func-
tions, e.g., a hat function etc. all with the feature of having a short or confined
domain, which gave rise to the general STFT method. The term atom arose from
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2.6 Gabor TFR

the so-called Gabor atoms, where Gabor used the Gaussian function as a window
function (which he named fundamental atoms to construct the signal),

h(t;σ) = 1√
2πσ

e−
t2

2σ2 . (2.29)

If we define the window function as,

w(t− τ) = e−π(t−τ)2
, (2.30)

or
w(t) = e−πt

2
, (2.31)

the Gabor transform can be considered as a special case of the short-time Fourier
transform,

Gs(τ, ν) = Fs(τ, ν;w). (2.32)

The Gabor Transform is defined as,

Gs(τ, ν) =
ˆ ∞
−∞

s(t) e−π(t−τ)2
e−i2πvt dt. (2.33)

The STFT can be inverted, provided, Ew <∞, according to,

s(t) = 1
Ew

ˆ ∞
−∞

ˆ ∞
−∞

Fs(τ, ν;w)w(t− τ)e2πitν dτdν. (2.34)

The Gabor transform is invertible and the original signal can be retrieved by the
inverse Gabor transform,

s(t) = 1
Eg

ˆ ∞
−∞

ˆ ∞
−∞

Gs(u, ν) e−π(u−t)2
ei2πvt dudν. (2.35)

The Gabor transform has some very valuable properties, which we list below with-
out proving.

• Linearity.
as1(t) + bs2(t) G←→ aGs1(t, ν) + bGs2(t, ν) (2.36)

• Shifting property.

s(t− to) G←→ Gs(t− to, ν)e−i2πvto (2.37)
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Chapter 2 Time Frequency Representations

• Modulation property.

s(t)ei2πvot G←→ Gs(t, ν − νo) (2.38)

Strictly, the inverse digital Gabor transform is performed by a Zac transform,
another physicist [79, 77]. This is related to the synthesis window, described in
Eq. (2.26).

2.7. Spectrogram

The spectrogram, which is so often used in signal analysis, is in fact just a glorified
special STFT of which we only take the square of the TFR to obtain the the energy
density of spectrum or the signal probability distribution. The energy density is
always the square of the spectrum. This is directly related to the square of the
electric field being equal to the energy or intensity of a electromagnetic field or
signal. Here we quickly reproduce the STFT definition with a different notation
to emphasize that it is just a Fourier transform of a moving average of a windowed
function. The window function, w(t), is just multiplied to the signal to generate,

sw(t)(τ) = s(τ)w(τ − t). (2.39)

The window function has limited support, i.e., it is defined only on a finite time,
e.g., t ∈ [−T

2 ,
T
2 ], so that generally for a hat function (cf. Eq. (A.76) and Eq. (A.80)),

wT (t) = πT (t) =
{

1 if t ∈ [−T
2 ,

T
2 ]

0 otherwise . (2.40)

The Fourier transform will reproduce the frequency content of the small window
of the signal,

F
{
sw(t)(τ)

}
= Sw(t)(ν) = Fs(t, ν;w). (2.41)

The STFT contains both amplitude and phase information in the time-frequency
domain.
The energy density spectrum at time t, also known as the spectrogram, is simply
given by,

P (t, ν) = |St(ν)|2 . (2.42)
This operation essentially destroys the phase information contained in the STFT.
The energy density of the window function is given by,

Ew =
ˆ ∞
−∞
|w(t)|2 dt.
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2.7 Spectrogram

The characteristic function is straightforwardly obtained from the definition,

M(θ, τ) =
ˆ ˆ

|St(ν)|2 eiθt+iτν dνdt, (2.43)

= As(θ, τ)Aw(−θ, τ), (2.44)

where,

As(θ, τ) =
ˆ
s∗(t− 1

2τ)s(t+ 1
2τ)eiθt dt, (2.45)

Aw(θ, τ) =
ˆ
w∗(t− 1

2τ)w(t+ 1
2τ)eiθt dt, (2.46)

are the ambiguity functions (see Subsection 2.8.4) of the signal and the window.

2.7.1. Time-frequency Resolution

Having considered the analogy with filtering theory we can extend these thoughts
further by using the Dirac-δ (See SubsectionA.4.6) time signal and frequency in-
puts to obtain the characteristics of the filter, i.e.,

• Dirac-δ time signal.

s(t) = δ(t− to) F⇐⇒ Fs(t, ν;w) = w(t− to) e−2πiνto (2.47)

• Dirac-δ frequency signal (Modulation).

s(t) = e2πiνot F⇐⇒ Fs(t, ν;w) = W (ν − νo) e−2πiνot (2.48)

Here we clearly notice that the temporal resolution of the STFT is dependent
on the duration, h(t), of the analysis window, and the frequency resolution is
proportional on the effective bandwidth, H, of the analysis window, h. Thus we are
confronted with a reciprocal trade-off between temporal and frequency resolution
which is directly inherited from the corresponding Fourier relationship and the
Heisenberg-Gabor inequality.
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Chapter 2 Time Frequency Representations

2.7.2. Discrete Time-Frequency Representations

Alas all of the above is defined for continuous signals. In the calculation of these
transforms the signal had to be discretized. This is the field of Digital Signal Pro-
cessing (DSP) [80, 81]. For an example of a discrete Gabor TFR consult [74]. As
some background reference, the important sampling theorem is given in SectionA.7
along with some properties of band-limited signals in SectionA.8. Related to the
sampling theorem is the Poisson summation theorem and the Nyquist-Shannon
sampling theorem given in SectionA.9 and SectionA.10. The sampling of a signal
is accomplished by a so-called Dirac comb defined in Subsection A.4.6.5. A dis-
crete sampled signal3, s[n], with sampling period, ∆t, the sampling period of the
discrete STFT must chosen such that, T = k∆t, with k ∈ N. The discrete STFT
for a discrete rectangular window, m,n ∈ Z, with sampling steps sizes, T , and, Ω,
becomes,

Fs[n,m;h] = Fs(nT,mΩ;h) =
ˆ ∞
−∞

h∗(τ − nT )s(τ)e−2πimΩτ dτ (2.49)

For discrete time-frequency representations Gabor suggested that an arbitrary time
signal can be decomposed as,

s(t) =
∑
n,m

cn,mhn,m(t) hn,m(t) = h(t−mT )einΩt, (2.50)

where the time-frequency domain, (t, ω)∈ R2, is discretized in a lattice were, T and
Ω, are the time and frequency lattice intervals. Gabor proposed that the function,
h(t), should coincide with the minimum variance function that is most compact for
the time-frequency bandwidth product which is of course the Gaussian function,

h(t) = (α/π)1/4e−αt
2/2. (2.51)

The Gabor atoms, hn,m(t) = h(t−mT )einΩt, with both, T and Ω, small, collectively
form an oversampled overcomplete non-orthgonal basis, which is called a frame.
It has been shown that such an expansion is possible, if,

Ω× T ≥ 1. (2.52)

Without loosing any signal information, the problem reduces to choosing the values
of, T and Ω, so as to minimize the redundancy (overlapping of atoms). The Balian-
Low theorem, however, proves that it is impossible to have a window function, h,

3The [·] is common notation for discrete signals in DSP
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2.7 Spectrogram

that is well localized in both frequency and time, and is appropriately named the
Balian-Low obstruction. A well localized window, h, (for example a Gaussian
window), the reconstruction (synthesis) formula will be numerically unstable.
In the discrete case the reconstruction (synthesis) of the signal can generally be
written as,

s(t) =
∑
n,m

Fs[n,m;h]gn,m(t) gn,m(t) = g(t−mT )einΩt, (2.53)

with, h, g, and, T,Ω, subject to
1
Ω
∑
n

g(t+ k

Ω − nT )h∗(t− nT ) = δk ∀t, (2.54)

where, δk = 0 ∀k 6= 0 and δo = 1. This discrete condition on the analysis and
synthesis window functions is a much more severe condition than the compliance
of the continuous condition.

2.7.3. The Short-Frequency Time Transform.

In motivating the short-time Fourier transform we emphasized the desire to study
frequency properties at time t. Conversely, we may wish to study time properties
at a particular frequency. We just multiply the spectrum, S(ν), with a frequency
window,W (ν), and take the time transform, which of course, is the inverse Fourier
transform. In particular, we define the short-frequency time transform by,

sν(t) =
ˆ ∞
−∞

e2πiθtS(θ)W (ν − θ)dθ (2.55)

where of course, w F⇐⇒ W and s
F⇐⇒ S, then,

St(ν) = e−2πiνtsν(t). (2.56)

Only the modulation phase factor, e−2πiνt, separates the the short-frequency time
transform from short-time Fourier transform. Since the distribution is the absolute
square, the phase factor does not enter into it and either the short-time Fourier
transform or the short-frequency time transform can be used to define the joint
distribution,

P (t, ν) = |St(ν)|2 = |sν(t)|2 . (2.57)
This exhibits the desirable fact that the spectrogram can be used to study the
behavior of time properties at a particular frequency. This is done by choosing an,
H(ν), that is narrow, or equivalently, due to reciprocity, by taking an, h(t), that
is broad.
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Chapter 2 Time Frequency Representations

2.7.3.1. Narrowband and Wideband Spectrogram.

Due to the reciprocity theorem of Fourier transform (cf. SubsectionA.3.4), which
manifests itself in the Heisenberg-Gabor uncertainty, if the time window is of short
duration, the frequency window, H(ν), is broad; in that case the spectrogram is
called a broadband spectrogram. Conversely, if the window is of long duration,
then, H(ν), is narrow, and we say we have a narrowband spectrogram.

2.7.4. Characteristic Function.

The characteristic function of the spectrogram is straightforwardly obtained,

MSP (θ, τ) =
ˆ ˆ

|St(ω)|2 ejθt+jτωdtdω (2.58)

= As(θ, τ)Ah(−θ, τ), (2.59)

where,
As(θ, τ) =

ˆ
s∗(t− 1

2τ)s(t+ 1
2τ)ejθtdt, (2.60)

is the ambiguity function (see Subsection 2.8.4) of the signal [69], and, Ah, is
the ambiguity function of the window defined in the identical manner, except that
we use, h(t), instead of s(t). Note that the ambiguity function has the following
property, A(−θ, τ) = A∗(θ,−τ).

2.8. Wigner-Ville Distribution

In 1932 E. P. Wigner invented his quasi-probability distribution for quantum statis-
tical purposes [63]. The wave mechanics of quantum mechanics, represent particles
as waves and Ville (1948) recognized by analogy that it could also be utilized for
any wave of signal analysis4 [65]. Wigner’s original motivation for introducing the
distribution was to calculate the quantum contributions of the second virial coef-
ficient for a gas, to indicate how it deviates from the ideal gas law. Classically,
to calculate the second virial coefficient one needs a joint distribution of position
and momentum. So Wigner devised a joint distribution that gave, as marginal

4This we would like to call the Ville correspondence, which is just an example of the Copenhagen
correspondence. We are aware that it may be confused with the Weyl correspondence. Even
Feynman contributed to this quantum-classical correspondence, his 1948 and 1949, path
integrals [82, 83], with Kac (1949) in stochastic theory [84], which resulted in the Feynman-
Kac formula. It is widely used, even in finance, see Rouah [85].
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2.8 Wigner-Ville Distribution

probabilities distributions, the quantum mechanical distributions of position and
momentum. Quantum mechanics motivated the distribution, but the distribu-
tion was used in a classical manner. It was a hybrid method. Also Wigner was
motivated in part by the work of Kirkwood and Margenau which had previously
calculated this quantity, but Wigner improved on it. Kirkwood subsequently de-
veloped what is now the standard theory of nonlinear statistical mechanics, the
BBGKY Hierarchy (the theory was independently developed by Bogoluibov, Born,
Green, Kirkwood and Yvon). Kirkwood attempted to extend the classical theory
to the quantum case and devised the distribution which is commonly called the
Rihaczek or Margenau-Hill distribution to do that. Many years later Margenau
and Hill rederived the Margenau-Hill distribution. The importance of Margenau-
Hill work is not the distribution, but the derivation. They were also the first to
consider joint distributions involving spin. The Wigner-Ville TFR still remains
one of the great methods in optics, as can be seen in Bastiaans [86].
The Wigner-Ville distribution of a signal, s(t), or its Fourier transform, S(ω), is
defined as, i.t.o. angular frequency, ω,

Ws(t, ω) = 1
2π

ˆ
s∗(t− 1

2τ)s(t+ 1
2τ)e−iωτ dτ, (2.61)

Ws(t, ω) = 1
2π

ˆ
S∗(ω + 1

2θ)S(ω − 1
2θ)e

−iθt dθ. (2.62)

In what follows, we define the Wigner-Ville TFR in terms of ordinary frequency,
ν. Given a time signal, s(t),

Ws(t, ν) =
ˆ ∞
−∞

s∗(t− τ

2)s(t+ τ

2)e−2πiντ dτ (2.63)

The only difference is the, 1
2π , factor. It is important to note that,

Ws(t, ν) = F τ

{
s∗(t− τ

2)s(t+ τ

2)
}
,

were we have used the notation, F τ , to indicate explicitly that the Fourier trans-
form is to be taken over the variable, τ. The frequency, ν, appears due to the
Fourier transform.
Using the correlation theorem of Fourier transforms Eq. (A.41) with, s(t) = g(t)
and s∗(t) = f(t), we obtain the auto-correlation of, s(t), as,

Cs(t) = s∗(t) ∗ s(t) =
ˆ ∞
−∞

s∗(t− τ)s(τ) dτ,
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a simple change of integration variable to, τ = t
2 + τ ′

2 ,

Cs(t) = s∗(t) ∗ s(t) = 1
2

ˆ ∞
−∞

s∗( t2 −
τ ′

2 )s( t2 + τ ′

2 ) dτ ′.

Thus,

2Cs(2t) = 2s∗(2t) ∗ s(2t) =
ˆ ∞
−∞

s∗(t− τ

2)s(t+ τ

2) dτ.

From the relationship between convolution and correlation Eq. (A.58) and Eq. (A.59)
with, s(t) = g(t) and s∗(t) = f(t), so that f ∗(−t) = s(−t), we obtain the auto-
convolution of, s(t), as,

s∗(t) ∗ s(t) = s(−t) ? s(t).

This shows that integrand of Wigner transform, Ws(t, ν), is related to the inte-
grand of the convolution, 2s∗(2t) ∗ s(2t), or to the integrand of the correlation of,
2s(−2t) ? s(2t).
The Wigner-Ville distribution can also be calculated in terms of the spectral signal.
For this purposes we substitute the inverse Fourier transforms of, s(t + τ

2 ), and,
s∗(t− τ

2 ), utilizing the Fourier time translation property (cf. SubsectionA.3.5),

s(t+ τ

2) = F−1{e2πi τ2 νS(ν)} =
ˆ ∞
−∞

S(ν)e2πiν(t+ τ
2 ) dν, (2.64)

s∗(t− τ

2) = F−1{e2πi τ2 νS∗(ν)} ==
ˆ ∞
−∞

S∗(ν)e−2πiν(t− τ2 ) dν, (2.65)

into the Wigner-Ville distribution Eq. (2.63) and with dummy transform variables,
η, in Eq. (2.64) and, ξ, in Eq. (2.65) we obtain

Ws(t, ν) =
ˆ ∞
−∞

[ˆ ∞
−∞

S∗(η)e−2πiη(t− τ2 ) dη

] [ˆ ∞
−∞

S(ξ)e2πiξ(t+ τ
2 ) dξ

]
e−2πiντ dτ,

(2.66)
and with a little manipulation this becomes,

Ws(t, ν) =
ˆ ∞
−∞

ˆ ∞
−∞

S∗(η)S(ξ)e−2πit(η−ξ)
[ˆ ∞
−∞

e2πiτ( η2 + ξ
2−ν) dτ

]
dη dξ. (2.67)
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The integral in the square parenthesis is equal to the Dirac-δ, therefore,

Ws(t, ν) =
ˆ ∞
−∞

ˆ ∞
−∞

S∗(η)S(ξ)e−2πit(η−ξ)δ(η2 + ξ

2 − ν) dη dξ. (2.68)

The Dirac-δ obeys, δ(ax) = δ(x)/|a|, (cf. Eq. (A.96)) so that the integration over,
η, results in,

Ws(t, ν) =
ˆ ∞
−∞

ˆ ∞
−∞

2S∗(2ν − ξ)S(ξ)e−2πit(2ν−2ξ) dξ. (2.69)

Now substitute, ξ = ν + θ
2 , thus, dξ = dθ/2, into Eq. (2.69) and we obtain the

Wigner-Ville distribution in terms of the Spectral signal, S(ν), by means of the
inverse Fourier transform,

Ws(t, ν) =
ˆ ∞
−∞

S∗(ν − θ

2)S(ν + θ

2)e2πiθt dθ (2.70)

that is,

Ws(t, ν) = F−1
θ

{
S∗(ν − θ

2)S(ν + θ

2)
}
.

The time t is a result of the inverse Fourier transform. Now instead, by simply
substituting, ξ = ν − θ

2 , thus, dξ = dθ/2, into Eq. (2.69), we obtain the Wigner-
Ville distribution in terms of the Spectral signal, S(ν), by means of the Fourier
transform (direct), but with the signs reversed in Spectral signals, ν + θ

2 ,

Ws(t, ν) =
ˆ ∞
−∞

ˆ ∞
−∞

S∗(ν + θ

2)S(ν − θ

2)e−2πitθ dθ. (2.71)

This is equivalent to the definition in Eq. (2.62). That is,

Ws(t, ν) = F θ

{
S∗(ν + θ

2)S(ν − θ

2)
}
.

2.8.1. Properties of the Wigner Distribution

The Wigner have several unique properties which we state here without proof.
• Energy conservation.

Es =
ˆ ∞
−∞

ˆ ∞
−∞

Ws(t, ν) dt dν (2.72)
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• Marginal Properties.

|S(ν)|2 =
ˆ ∞
−∞

Ws(t, ν) dt (2.73)

|s(t)|2 =
ˆ ∞
−∞

Ws(t, ν) dν (2.74)

• Real valued (Reality).

Ws(t, ν) ∈ R ∀ t, ν ∈ R2 (2.75)

• Translation covariance (Time and Frequency Shifts).

x(t) = s(t− to) =⇒ Wx(t, ν) =Ws(t− to, ν) (2.76)

x(t) = s(t)e2πiνot =⇒ Wx(t, ν) =Ws(t, ν − νo) (2.77)

• Dilation covariance (scale).

x(t) =
√
ks(kt); k > 0 =⇒ Wx(t, ν) =Ws(kt,

ν

k
) (2.78)

• Compatibility with filtering

x(t) =
ˆ ∞
−∞

h(t−u)s(u) du =⇒ Wx(t, ν) =
ˆ ∞
−∞

Wh(t−u, ν)Ws(u, ν) du

(2.79)
• Compatibility with modulation.

x(t) = m(t)s(t) =⇒ Wx(t, ν) =
ˆ ∞
−∞

Wm(t, ν − ξ)Ws(t, ξ) dξ (2.80)

• Wide-sense support conservation.

s(t) = 0 |t| > T =⇒ Ws(t, ν) = 0 |t| > T (2.81)

S(ν) = 0 |ν| > B =⇒ Ws(t, ν) = 0 |ν| > B (2.82)
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• Unicity (Moyal’s formula)
∣∣∣∣∣
ˆ ∞
−∞

x∗(t)y(t) dt
∣∣∣∣∣
2

=
ˆ ∞
−∞

ˆ ∞
−∞

W∗x(t, ν)Wy(t, ν) dt dν (2.83)

• Instantaneous frequency (where š is the analytic signal of, s.)

fs(t) =
´ ∞
−∞

νWš(t, ν) dν´ ∞
−∞
Wš(t, ν) dν

(2.84)

• Group delay (where š is the analytic signal of, s.)

ts(ν) =
´ ∞
−∞

tWš(t, ν) dt´ ∞
−∞
Wš(t, ν) dt

(2.85)

• Perfect localization of linear chirp.

s(t) = e2πiνs(t)t; νs(t) = νo + βt =⇒ Ws(t, ν) = δ(ν − (νo + βt)) (2.86)

2.8.2. Disadvantages

With so many desirable properties one can easily be deceived into believing that we
have the ultimate time-frequency distribution, but unfortunately the underlying
problems must also be highlighted.
The Wigner-Ville distribution is a bilinear function of the signal s(t), which implies
the quadratic superposition principle and therefore exhibits the artifact of inter-
ference terms between different pulses. Consider the Wigner-Ville distribution of
the sum of two signals,

s(t) = s1(t) + s2(t). (2.87)
We obtain,

Ws(t, ν) =W11(t, ν) +W22(t, ν) + 2<e{W12(t, ν)}. (2.88)

which clearly shows the interference term, also known as the cross Wigner distri-
bution, that arises and where,

W12(t, ν) =
ˆ ∞
−∞

s∗1(t− τ

2)s2(t+ τ

2)e−2πiντ dτ. (2.89)
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Strictly the Wigner-Ville distribution is only called a quasi-probability distribution,
since the interference terms can be negative. According to probability definition
a probability distribution must be positive semi-definite. It may only be zero on
sets of measure zero.
Although the Wigner suffers from this problem, the marginal property in the pre-
vious Subsection 2.8.1 shows that the marginal densities are probability densities,
Eq. (2.73) and Eq. (2.74). Wigner was the first to be aware of these negative prob-
abilities. That there might be merit in considering negative probabilities, can be
appreciated if one notices that even the great Richard Feynman wrote an article
[87] on negative probabilities, and that other important physicists like Scully and
Schleich [88] take him seriously. Maybe we must sit up and take notice.

2.8.3. Pseudo Wigner-Ville Distribution

The pseudo Wigner-Ville distribution is just a windowed version of the Wigner-
Ville distribution,

PWs(t, ν) =
ˆ ∞
−∞

h(τ)s∗(t− τ

2)s(t+ τ

2)e−2πiντ dτ (2.90)

where h(t) is just a regular window function. The spectral equivalent given by,

PWs(t, ν) =
ˆ ∞
−∞

H(ν − θ)W(t, θ) dθ (2.91)

clearly shows that it is just the frequency convolution and consequently frequency
smoothing of the Wigner-Ville function. The pseudo-Wigner-Ville distribution
comes to its own in its representation of nonstationary signals.

2.8.4. Ambiguity Function

The narrow band ambiguity function, also known as as the symmetric Sussman
ambiguity function is defined as,

A(τ, θ) =
ˆ ∞
−∞

s∗(t− τ

2)s(t+ τ

2)e−2πiθt dt (2.92)

In the Wigner-Ville distribution the variables, t, and, ν, are true or absolute coor-
dinates. Notice that the difference in this definition with Wigner-Ville distribution
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is that the Fourier transform is with respect to, t, rather than, τ. In the ambiguity
function the variable, τ , refers to the relative time or delay in the signal, and, θ,
refers to relative frequency or the Doppler in the signal. This is extensively used
in Radar, where the delay, τ , is a measure of the relative distance to the target,
and the Doppler, θ, is a measure of the relative velocity of the target. (See [69])
It is generally complex and satisfies the Hermitian even symmetry,

A(τ, θ) = A∗(−τ,−θ). (2.93)

The ambiguity function is the two-dimensional Fourier transform of the
Wigner-Ville distribution,

A(τ, θ) =
ˆ ∞
−∞

ˆ ∞
−∞

W(t, ν)e2πi(ντ−θt)dt dν (2.94)

Mathematically, A(τ, θ), is the dual of, W (t, ν), with respect to the Fourier trans-
form.
Being a pseudo-probability density, we can, from probability theory, calculate the
characteristic function of the Wigner Distribution as,

M(θ, τ) =
ˆ ˆ

W(t, ω)eiθt+iτω dtdω (2.95)

= 1
2π

ˆ ˆ ˆ
s∗(t− 1

2τ
′)s(t+ 1

2τ
′)e−iω(τ−τ ′)eiθt dτ ′dtdω

=
ˆ ˆ

δ(τ − τ ′)s∗(t− 1
2τ
′)s(t+ 1

2τ
′)eiθt dτ ′dt

=
ˆ
s∗(t− 1

2τ)s(t+ 1
2τ)eiθt dt = A(θ, τ). (2.96)

This is just the symmetric ambiguity function.

2.9. The Kernel Methods

In 1966, Leon Cohen characterized the time frequency approach by means of Ker-
nel functions [66]. This then actually classified all the then known quasi probability
distributions developed by physicists for the quantum thermodynamics and statis-
tics, see the introduction of Section 2.8. Cohen also named a quasi probability
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distribution in honour of Born-Jordan, which he created. Later, 1969, contribut-
ing to his work, another paper was published by Summerfeld and Zweifel [89].
The properties of the distribution are reflected by simple constraints on the kernel
function and vice versa.
According to Cohen, all kernel time-frequency distributions can be obtained from
the time signal, s(t),

C(t, ω) = 1
4π2

ˆ ˆ ˆ
s∗(u− 1

2τ)s(u+ 1
2τ)K(θ, τ)e−iθt−iτω+iθu dudτdθ (2.97)

or its related Fourier transform spectrum, S(ω),

C(t, ω) = 1
4π2

ˆ ˆ ˆ
S∗(u+ 1

2θ)S(u− 1
2θ)K(θ, τ)e−iθt−iτω+iτu dθdτdu (2.98)

In terms of the characteristic function we get,

C(t, ω) = 1
4π2

ˆ ˆ
M(θ, τ)e−iθt−iτω dθdτ, (2.99)

where,
M(θ, τ) = K(θ, τ)

ˆ
s ∗ (u− 1

2τ)s(u+ 1
2τ)eiθu du (2.100)

= K(θ, τ)A(θ, τ). (2.101)

Thus the characteristic function may then be called the generalized ambiguity
function.
The energy density may be written as the Fourier transform of the autocorrelation
function. Now consider the energy density of the time frequency distribution as
the Fourier transform of a local autocorrelation function,

C(t, ω) = 1
2π

ˆ
Rt(τ)e−iωτ dτ. (2.102)

Then the deterministic generalized local autocorrelation function is defined by,

Rt(τ) = 1
2π

ˆ ˆ
s ∗ (u− 1

2τ)s(u+ 1
2τ)K(θ, τ)eiθ(u−t) dudθ. (2.103)
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Name Kernel Distribution
General Cohen Class K(θ, τ) 1

4π2

´ ´ ´
s ∗ (u− 1

2τ)s(u+ 1
2τ)

K(θ, τ)e−iθt−iτω+iθu dudτdθ
Wigner-Ville 1 1

2π
´
s ∗ (t− 1

2τ)s(t+ 1
2τ)e−iωτ dτ

Margenau-Hill cos(1
2θτ) <{ 1√

2πs(t)S
∗(ω)e−iωt}

Kirkwood-Rihaczek eiθτ/2 1√
2πs(t)S

∗(ω)e−iωt

Born-Jordan (Cohen) sinc(1
2θτ) 1

2π
´ 1
|τ |e
−iτω ´ t+|τ |/2

t−|τ |/2
s ∗ (u− 1

2τ)s(u+ 1
2τ)e−iωτ dudτ

Page eiθ|τ | ∂
∂t

∣∣∣ 1√
2π

´ t
−∞ s(t

′)e−iωt′ dt′
∣∣∣2

Choi-Williams e−θ
2τ2/σ 1

4π3/2

´ ´ 1√
τ2/σ

e−σ(u−t)2/τ2−iτω

s ∗ (u− 1
2τ)s(u+ 1

2τ)e−iωτ dudτ
Spectrogram

´
w∗(u− 1

2τ)e−iθu
∣∣∣ 1√

2π

´
e−iωτs(τ)w(τ − t) dτ

∣∣∣2
w(u+ 1

2τ) du
Zhao-Atlas-Marks g(τ)|τ |sinc(aθτ) 1

4πa
´
g(τ)e−iτω

´ t+|τ |a
t−|τ |a

s ∗ (u− 1
2τ)s(u+ 1

2τ)e−iωτ dudτ
Positive |S(ω)|2|s(t)|2Ω(u, v)

Table 2.1.: Kernel Cohen Classes

A first class of such time-frequency representations is given by the atomic decom-
positions (also known as the linear time-frequency representations). Table 2.1 gives
a short list of the kernel Cohen classes.
A signal independent approach to time-frequency representations is the inclusion
of a kernel function, Φ(θ, τ), (sometimes also called the parametrization function)
so that,

Ds(t, ν; Φ) =
ˆ ˆ ˆ ∞

−∞

e2πiθ(u−t)Φ(θ, τ)s∗(u− τ

2)s(u+ τ

2)e−2πiντdθ du dτ

(2.104)
A whole set of bilinear time-frequencies can be defined by, in terms of the Wigner
distribution, by means of a double convolution integral of the Wigner distribution

Ds(t, ν;F ) =
ˆ ∞
−∞

ˆ ∞
−∞

F (u− t, θ − ν)Ws(u, θ) dudθ (2.105)

where,

F (t, ν) =
ˆ ∞
−∞

ˆ ∞
−∞

Φ(ζ, τ)e−2πi(ζt+ντ)dζ dτ. (2.106)
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is just the double Fourier transform of the Kernel function. We now only briefly dis-
cuss two related TFR distributions, in the next two Subsection 2.9.1 and
Subsection 2.9.2. This is only for reference purposes, since later we use the Husimi
TFR distribution.

2.9.1. Husimi Distribution

The Japanese physicist Kôdi Husimi in 1940 in “Some Formal properties of the
Density Matrix” [90] developed what is called the Q-function in quantum op-
tics. The Husimi distribution is essentially a two-dimensional convolution (cf.
SubsectionA.3.8) by a phase-space Gaussian distribution of theWigner-Ville quasi-
probability distribution,

Hs(t, ν;α, γ) =
ˆ ∞
−∞

ˆ ∞
−∞

Gαγ(u− t, θ − ν))Ws(u, θ) dudθ (2.107)

where,

F (t, ν) = Gαγ(t, ν) = 4
α

exp
[
− 1
α

(
ν2

γ2 + 4γ2t2
)]

. (2.108)

For, α = 0, then, G0(t, ν) = δ(t)δ(ν), is the double Dirac-δ thus the Wigner
function, Ws(t, ν), is returned.

2.9.2. Smoothed Pseudo Wigner-Ville distribution

Rather than taking a convolution with Wigner-Ville distribution, we can also con-
sider a separable smoothing function for the Kernel function. We then get the
smoothed pseudo Wigner-Ville distribution,

F (t, ν) = g(t)H(−ν), (2.109)

that is,

SPWs(t, ν) =
ˆ ∞
−∞

h(τ)
ˆ ∞
−∞

g(u− t)s∗(u− τ

2)s(u+ τ

2) du e−2πiντ dτ (2.110)
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3. The von Neumann TFR

3.1. Introduction

The Wigner quasi-probability distribution was originally developed by Eugene
Wigner as a bilinear representation of classical and quantum phase space, (q, p),
in 1932. “On the quantum correction for thermodynamic equilibrium” [63]. In
1949 Jean-André Ville recognized that this distribution can also be used as a
time-frequency “phase space” representation [65].

Although several people, notably Nyquist (1928), Shannon (1949), Wiener and
Kolmogoroff (1941), worked on related topics, the advent of the modern day time-
frequency analysis really occurred with the publication of “Theory of Communi-
cation” in 1946 by Denis Gabor [64]. (The inventor of the hologram and recipient
of the 1971 Nobel Prize in Physics). In this work he extends his admiration to
the founding fathers of quantum mechanics and expressed the idea to treat sound
analogous to quantum wave mechanics. In analogy of the Gabor atom decompo-
sition (1946) of a sound time signal can then be seen as a quantum of sound and
is closely related to the von Neumann representation. The Gabor transform is the
first instance of a Short-Time-Fourier-Transform (STFT). In this same paper the
idea of an analytic signal is formally established. The von Neumann representa-
tion [91] was also originally developed for quantum mechanical phase space, i.e.,
(q, p). One of the first modern application is given in [92], and it has become quite
popular in the scientific community, as can be seen by the various articles of late,
[93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104].

In this Chapter we present the von Neumann TFR, which is an indispensable
stepping stone to the generalized Fourier-Hermite Gauss (FHG) TFR that is the
main contribution of this thesis. Indeed, the von Neumann TFR may be seen
as a zeroth order subset of the FHG TFR. Before we eventually present the von
Neumann TFR we state a few mathematical preliminaries that will assist the
reader in understanding it. In Section 3.2 we derive the standard Gaussian integral
by a few different methods. In Section 3.3 we prove the extremely important
fact that Gaussian function are Fourier transform invariant, i.e., functionally the
Gaussian function remains a Gaussian function under a Fourier transform. This
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fact is what gives the von Neumann TFR basis functions basically all its various
properties.
In Appendix A the Fourier transform is summarized in general. In Section 3.4 the
Fourier transform properties of Gaussian functions are given, so when presented
later, the properties are there for convenience. In Section 3.5 the von Neumann
Representation is outlined. In Subsection 3.5.1 the basis functions are presented
with the Fourier transform invariance. In Subsection 3.5.2 the important von Neu-
mann basis lattice is presented. In Subsection 3.5.3 we state the principles of what
would be required of basis functions to perform this task. We introduce the so-
called overlap integral (Matrix). In Subsection 3.5.4 the overlap integral is derived.
The result differs from that given in [94] and explained. The derivation has an ob-
vious way to confirm and the results herein coincide. Then finally, the definitions
of the von Neumann TFR and the signal reconstruction is given in Subsection 3.5.5
and Subsection 3.5.6, respectively. These preliminaries are all known results. How-
ever, they will be essential in deriving the generalized representation which is to
follow in Chapter 5.

3.2. Derivation of Standard Gaussian Integrals

Theorem 3.2.1. If, <(a) > 0, i.e., a, might be complex, the integral of a Gaussian
function or normal curve is,

I(a) =
ˆ ∞
−∞

e−ax
2 dx =

√
π

a
. (3.1)

Proof. This can be shown by taking the square of the above integral,

I2(a) =
[ˆ ∞
−∞

e−ax
2 dx

] [ˆ ∞
−∞

e−ay
2 dy

]
=
ˆ ∞
−∞

ˆ ∞
−∞

e−a(x2+y2) dxdy, (3.2)

and transforming to polar coordinates, x = r cos θ and y = r sin θ, so that,

I2(a) =
ˆ 2π

0

ˆ ∞
0

re−ar
2 drdθ = π

a
. (3.3)

Giving,

ˆ ∞
−∞

e−ax
2 dx =

√
π

a
(3.4)
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This is for, a ∈ C. It has a direct Corollary if, a = iβ. From Euler’s formula,
eix = cosx+ i sin x, we have, i = eiπ/2.

Corollary 3.2.2. Generally for, β ∈ C,

ˆ ∞
−∞

eiβx
2 dx =

√
iπ

β
=
√
π

β
eiπ/4. (3.5)

We now state and proof a Theorem that is quite relevant to this thesis.

Theorem 3.2.3. For, a = α + iβ α > 0, and, ω ∈ R, we have,

ˆ ∞
−∞

e−at
2±iωt dt =

√
π

a
e−

ω2
4a .

Proof. We begin by showing that for any, a, c ∈ C,
ˆ ∞
−∞

e−a(x+c)2
dx =

√
π

a
, a = α + iβ α > 0 (3.6)

Although the integrand does not tend to zero as x → 0, this can be justified
because the integral exists for, a = α + iβ and α → 0. Let, c = g + ih. This
is accomplished by complex contour path integration with a rectangle with a line
segment containing the real axis and the other line segment, z = c, the two other
joining sides a distance, k ∈ R 3 |k| > |g|, and since, e−az2 , is analytic we obtain
by Cauchy’s theorem, ˛

e−az
2 dz = 0. (3.7)

The transformation, z = x+ c, maps the real, x axis into a complex line, Lc, and
results in a complex line integral,

ˆ ∞
−∞

e−a(x+c)2
dx =

ˆ
Lc

e−az
2 dz. (3.8)

The contribution of the joining sides on the contour integral can be shown to tend
to zero and we are left with,

ˆ
Lc

e−az
2 dz −

ˆ ∞
−∞

e−ax
2 dx = 0, (3.9)

or Eq. (3.6), ˆ ∞
−∞

e−a(x+c)2
dx =

√
π

a
. (3.10)
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As a corollary consider the integral,
ˆ ∞
−∞

e−at
2±iωt dt. (3.11)

By completing the square we have,

− at2 ± iωt = −a(t∓ iω

2a)2 − ω2

4a , (3.12)

thus, ˆ ∞
−∞

e−at
2±iωt dt = e−

ω2
4a

ˆ ∞
−∞

e−a(t∓i ω2a )2 dt, (3.13)

but by setting, c = ∓i ω2a , we see that the above right hand integral is equal to,√
π
a
, Eq. (3.6) and Eq. (3.10), thus,

ˆ ∞
−∞

e−at
2±iωt dt =

√
π

a
e−

ω2
4a (3.14)

Not everybody is comfortable with contour integration, but fortunately the above
standard integral can be derived by an alternative method using Fourier trans-
form properties. This is directly related to the characteristic function methods of
stochastic analysis.

Alternative Proof

Proof. The nth-moment of a function f (t), is defined by the following integral,

mn =
ˆ ∞
−∞

tnf (t) dt n = 0, 1, 2, . . . (3.15)

Now if we are given the Fourier transform pair,

f (t) F⇐⇒ F (ω) , (3.16)

then it is easy to see from the differentiation property of Fourier transforms,
SubsectionA.3.6 cf. A.27, that,
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F (ω) =
ˆ ∞
−∞

f (t) e−iωt dt (3.17)

dnF (ω)
dωn

= (−i)n
ˆ ∞
−∞

tnf (t) e−iωt dt (3.18)

dnF (0)
dωn

= (−i)n
ˆ ∞
−∞

tnf (t) dt = (−i)nmn (3.19)

that is,

(−i)nmn = dnF (0)
dωn

(3.20)

With, f(t) = e−at
2 , differentiating,ˆ ∞

−∞
f(t) dt =

ˆ ∞
−∞

e−at
2 dt =

√
π

a
, (3.21)

n times w. r. t. a, we obtain (!! denotes the double factorial, see [105])

(−1)n
ˆ ∞
−∞

t2ne−at
2 dt = (−1)n (2n− 1)!!

2n
√

π

a2n+1 . (3.22)

Thus, from Eq. (3.20) and Eq. (3.20), we obtain,

mn = (2n− 1)!!
2n

√
π

a2n+1 . (3.23)

Due to the evenness of the Gaussian function the odd moments are zero, thus using
the double factorial formula [105],

(2n− 1)!! = (2n)!
n!2n . (3.24)

We find,

mk =
{ 0 k odd

(k)!
(k/2)!2k

√
π

ak+1 k even

}
. (3.25)

Now the (non-unitary Eq. (A.11)) Fourier transform of f(t), is given by,

F (ω) =
ˆ ∞
−∞

e−at
2
e−iωt dt =

ˆ ∞
−∞

e−at
2−iωt dt. (3.26)

Expanding the Taylor series about zero we obtain,

F (ω) =
∞∑
n=0

ωn

n!
dnF (0)
dωn

=
∞∑
k=0

(−iω)k

k! mk, (3.27)
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F (ω) =
∞∑
n=0

(−iω)2n

(2n)! m2n =
√
π

a

∞∑
n=0

(
− iω

2
√
a

)2n

(2n)!
(2n)!
n! , (3.28)

F (ω) =
√
π

a

∞∑
n=0

(
−ω2

4a

)n
n! =

√
π

a
e−

ω2
4a . (3.29)

The standard integral relationship is then given by,
ˆ ∞
−∞

e−at
2−iωt dt =

√
π

a
e−

ω2
4a (3.30)

3.3. Gaussian Fourier Transform Invariance

Let f(t) = e−at
2 , then if we define the Fourier transform as a unitary transform in

terms of the angular frequency ω, Eq. (A.9), i.e.,

F {f(t)} = 1√
2π

ˆ ∞
−∞

f(t)e−iωt dt = F (ω), (3.31)

where F (ω) = 1√
2ae
−ω

2
4a and,

F−1 {F (ω)} = 1√
2π

ˆ ∞
−∞

F (ω)eiωt dω = f(t), (3.32)

then the standard integral, Eq. (3.30), immediately has the following corollaries,

F
{
e−at

2} = 1√
2a
e−

ω2
4a , (3.33)

F−1
{
e−bω

2} = 1√
2b
e−

t2
4b . (3.34)

Notice that the forward and the inverse unitary Fourier transforms, transform the
same. Note also,

F
{

1√
2πσ

e−
t2

2σ2

}
= 1√

2π

ˆ ∞
−∞

1√
2πσ

e−
t2

2σ2±iωt dt = 1√
2π
e−

σ2ω2
2 . (3.35)
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If the Fourier transform pair is defined symmetrically (or unitary, cf. Eq. (A.9))
we have the following relationship,

F {f(t)} = F (ω) = 1√
2π

ˆ ∞
−∞

f(t)e−iωt dt, (3.36)

F−1 {F (ω)} = f(t) = 1√
2π

ˆ ∞
−∞

F (ω)eiωt dt. (3.37)

The standard normal Gaussian distribution with zero mean, 〈x〉, and unit standard
deviation, σ, and normalized to 1 is defined as,

N (0, 1) = 1√
2π
e−

x2
2 . (3.38)

More generally this is defined as,

N (〈x〉 , σ) = 1√
2πσ

e−
(x−〈x〉)2

2σ2 = 1√
2πσ

e−
1
2(x−〈x〉σ )2

. (3.39)

This is the standard definition of Gaussian function, normally used for probability
theory1 and statistics. For our purposes we will modify this slightly to explicitly
denote the dependent variable and the shifting and scaling

N(x− 〈x〉 , σ) = 1√
2πσ

e−
1
2(x−〈x〉σ )2

:= N (〈x〉 , σ). (3.40)

Thus we write, N (x) = N (0, 1). Thus a symmetrical Fourier transform of a
Gaussian function can be defined as,(2α

π

) 1
4
e−αt

2 F⇐⇒
(2α
π

) 1
4
√
π

α
e−

(πν)2
α ,

(2α
π

) 1
4
e−αt

2 F⇐⇒
( 1

2απ

) 1
4
e−

ω2
4α . (3.41)

for Fourier transforms Eq. (A.5) and Eq. (A.7), respectively. Or equivalently,

1√
2π

ˆ ∞
−∞

[
1√
2π
e−

t2
2

]
e−iωt dt = 1√

2π
e−

ω2
2 (3.42)

F {N (t)} → N (ω), (3.43)
in other words the normal Gaussian distribution with zero mean and standard
deviation 1 is functionally its own Fourier transform!!!!!!!! Mathematically this
functional form is invariant under the Fourier transform.

1Historically Laplace is the father of classical probability theory (Pascal, Huygens et al.). Ein-
stein, Norbert Wiener, von Mises, Markov, Kolmogorov all contributed, but at present, Edwin
Jaynes, yes the Jaynes-Cumming model, with his treatise “Probability theory: the logic of
science” is the preferred book [106].
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3.4. Fourier Transform Properties of the Gaussian
Function

In this Section we derive a few Fourier transform properties of Gaussian functions
for convenience for later use.

3.4.1. Scaling Condition

Using the linearity of the Fourier transform and the standard Gaussian integral
derived in Eq. (3.30),

1√
2π

ˆ ∞
−∞

[
1√
2π
e−

ax2
2

]
e−iωx dx = 1√

2πa
e−

ω2
2a = N (ω,

√
a), (3.44)

1√
2π

ˆ ∞
−∞

[ √
a√

2π
e−

ax2
2

]
e−iωx dx =

√
aN (ω,

√
a), (3.45)

which gives the scaling condition for Fourier transforms,

F
{
N (x, 1√

a
)
}

=
√
aN (ω,

√
a). (3.46)

3.4.2. Temporal and Spectral Shifting

The Fourier Temporal and Spectral Shifting Theorem states (cf. Eq. (A.22) and
Eq. (A.23)),

F {f(t− a)} → e−iaωF (ω), (3.47)
F
{
eiaωf(t)

}
→ F (ω − a), (3.48)

and applied on the normal distribution,

F {N (t− a, σ)} → e−iaω
1
σ
N (ω, 1

σ
), (3.49)

F
{
eiatN (t, σ)

}
→ 1

σ
N (ω − a, 1

σ
). (3.50)
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3.4 Fourier Transform Properties of the Gaussian Function

3.4.3. Gaussian Fourier Transform pair

Combining both the Fourier scaling and shifting Theorems SubsectionA.3.4 and
SubsectionA.3.5 we find,

F {N (t− tm, σ)} → e−itmω
1
σ
N (ω, 1

σ
) = P (ω), (3.51)

P (ω − ωn) = e−itm(ω−ωn) 1
σ
N (ω − ωn,

1
σ

), (3.52)

F−1 {P (ω − ωn)} = eiωntN (t− tm, σ). (3.53)

We arrive at this transform pair

F
{
eiωntN (t− tm, σ)

}
= e−itm(ω−ωn) 1

σ
N (ω − ωn,

1
σ

) (3.54)

which will play a central role in the von Neumann TFR discussed in the next
Section 3.5. Replacing, σ, with,

√
2α,

F
{
eiωnt

1√
4πα

e−
(t−tm)2

4α

}
= e−itm(ω−ωn) 1√

2π
e−α(ω−ωn)2

. (3.55)

To obtain the von Neumann basis coefficient (cf. Subsection 3.5.1) multiply both
sides with, (8απ)

1
4 ,

F
{( 1

2απ

) 1
4
e−

(t−tm)2
4α +iωnt

}
=
(2α
π

) 1
4
e−α(ω−ωn)2−itm(ω−ωn) (3.56)

or in terms of the normal function,

F
{

(8απ)
1
4 eiωntN (t− tm,

√
2α)

}
=
(

2π
α

) 1
4 e−itm(ω−ωn)N (ω − ωn,

1√
2α

). (3.57)
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Chapter 3 The von Neumann TFR

3.5. The von Neumann Representations

As discussed in Tannor et al. [94], the original idea that was proposed by von
Neumann, was to represent a discrete K−point time signal on a discrete time-
frequency grid or lattice of exactly the same dimension, i.e., K−points. According
to von Neumann, given a discrete K−point time signal, which one can also trans-
form by means of a Discrete Fourier Transform (DFT) to the frequency domain,
to obtain a discrete K−point frequency signal, implies that all the available infor-
mation of the signal is contained in a discrete set of K−points. To retain the total
information content of the signal in a time-frequency representation, he proposed
to decompose the signal in terms of K-Gaussian functions (or Gabor atoms) over
the time-frequency domain, i.e., each Gaussian function is centered around a dis-
crete time-frequency point, say, (ti, ωj), with i, j = 1, 2, . . . ,

√
K. Now,

√
K ∈ N,

which implies that, K ∈ N, must be quadratic. If it is not, the signal must be
resampled or zero-padded so that it is. He stated that in quantum mechanics the
minimum uncertainty wave function is a Gaussian function. This was originally
shown by Schrödinger in 1926. Both von Neumann and Cohen include derivations
of this statement in their books.

3.5.1. The von Neumann Basis

Originally it was shown by Erwin Schrödinger (1926) that to comply with the
Heisenberg uncertainty principle, 4x4p ≥ ~

2 , the normalized minimum uncer-
tainty quantum wave packet (this is derived in many textbooks, [4, 7, 107, 108]),
is given by,

ψ(x) =
[

1
2π (4x)2

] 1
4

exp
[
−(x− 〈x〉)2

4(4x)2 + i 〈p〉x
~

]
. (3.58)

Utilizing these minimum uncertainty wave packets, von Neumann originally pre-
sented the von Neumann representation to decompose a general wave packet
in quantum mechanics. For TFR we make the following analogy, equivalent
to the Ville correspondence for the Wigner-Ville TFR, namely, x → t, and,
p/~ → ω. Comparing Eq. (3.58) with Eq. (3.60), we see, (4x)2 → σ, 〈x〉 → tm
and, 〈p〉 /~ → ωn, then ψ(x) → αtm,ωn(t). The analogy is plainly mathematical
using a tool to represent waves.
The von Neumann basis representations in the frequency (spectral) domain is given
by an evenly spaced lattice in time frequency phase space,

α̃tm,ωn(ω) = α̃m,n(ω) =
(2σ
π

) 1
4

exp
[
−σ(ω − ωn)2 − itm(ω − ωn)

]
. (3.59)
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3.5 The von Neumann Representations

The inverse Fourier transform of the basis gives the time (temporal) von Neumann
basis,

αtm,ωn(t) = αm,n(t) =
( 1

2σπ

) 1
4

exp
[
− 1

4σ (t− tm)2 + itωn

]
. (3.60)

This inverse relationship can easily be computed with the observation that the
conjugate of the time representation of the von Neumann basis can be written as,

αm,n(t) = (8σπ)
1
4 eitωnN (t− tm,

√
2σ), (3.61)

and the frequency representation as,

α̃m,n(ω) =
(

2π
σ

) 1
4 e−itm(ω−ωn)N (ω − ωn,

√
1

2σ ). (3.62)

We then note that,
F {αm,n(t)} = α̃m,n(ω) (3.63)

or,

αm,n(t) F⇐⇒ α̃m,n(ω) (3.64)

3.5.2. The von Neumann Basis Lattice

The von Neumann basis can be represented as a square lattice of evenly spaced
points in time and frequency phase space. Originally, von Neumann wanted to
represent the quantum mechanical wave function in terms of the minimum uncer-
tainty wavefunction determined by Erwin Schrödinger in 1926. The subsequent
development of time-frequency analysis and the Gabor limit, also known as the
Heisenberg-Gabor uncertainty, specifies that the limit of the uncertainty, namely
1 is only reached for a Gaussian envelope time signal. This is proven in L. Cohen’s
book, “Time Frequency Analysis. ” The concept behind the von Neumann TFR
is to retain the maximum or similar information contained in the discrete sampled
time signal. This places the condition on TFRs that, given an N point time signal,
E(ti), i = 1, . . . , N , then the time-frequency representation must also contain N
points. Thus the time-frequency lattice must be divided as, N =

√
N ×

√
N .

In taking a Fourier transform on a digital computer, the so called discrete Fourier
transform must be calculated and inadvertently the ubiquitous Fast Fourier Trans-
form (FFT) is implemented (in one of its myriad of algorithms). For an ultra-short

69

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3 The von Neumann TFR

laser pulse, when one wants to zoom into a spectral window of interest and recon-
struct the time signal using these Fourier coefficients, one quickly finds idiosyn-
crasies in the results, that mainly pertain to fact that all the digital data must be
used in the reconstruction. The von Neumann representation bridges this short-
coming. It allows the user to zoom in on the spectral portion of interest of the
spectral signal, and discarding the null-support2 in the spectral domain.

Figure 3.1.: The von Neumann Lattice

Consider the spectral electric field, E(ω), of a signal sampled at, M, complex data
points. The analytical signal will, however, only have a non-null support over the
bandwidth, Ω = ωmax − ωmin. In this bandwidth of interest the electric field,
E(ω), will have, N points, ωmin, ωmin + δω, . . . , ωmin + (N − 1)δω = ωmax. By
Nyquist sampling theorem (See SectionA.10) (actually the reciprocal theorem of
Fourier transforms) the timespan, T , of the original signal must correspond to,
T = 2π/δω. The temporal electrical field, E(t), will correspond to the inverse
Fourier transform of E(ω), that will also have, M , data points.
The von Neumann lattice is defined on, N =

√
N ×

√
N , points equally and

uniformly distributed between the time and frequency domains, (T,Ω). For each
2Null-support is defined for instance on the real line for a real function,f(x), as a set, N =
{x ∈ R | f(x) = 0}
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3.5 The von Neumann Representations

lattice square, the equivalent von Neumann point, (tk, ωl), is defined at the center
of the square, i.e., given the incremental von Neumann time step, ∆t = T/K, then,

tm = −T/2 + (m− 1
2)∆t m = 1, · · · , K =

√
N, (3.65)

and similarly the von Neumann frequency increment, ∆ω = Ω/K, then,

ωn = ωmin + (n− 1
2)∆ω n = 1, · · · , K =

√
N. (3.66)

The subscripts, (m,n), coincide with subscripts of the von Neumann basis func-
tions, αtm,ωn , and, α̃tm,ωn(ω). It is important to note that, K =

√
N , and this can

always be accomplished by zero-padding the original signal.
The temporal, αtm,ωn(t), and spectral, α̃tm,ωn(ω), Gaussian functions all have the
same full-width half-maximums (FWHM) given by, βt =

√
σ16 ln 2, and βω =√

4 ln 2/σ, respectively. The Fourier scaling theorem, SubsectionA.3.4, establishes
a reciprocity between the two FWHMs given by,

βtβω = 8 ln 2. (3.67)

The σ parameter defines a constant ratio between the two FWHMs,

σ = βt
2βω

= T

2Ω . (3.68)

J. von Neumann, “Der Eindeutigkeit der Schödingerschen Operatoren”, Math.
Ann 104, 570 (1931), [91]

3.5.3. Principles of Signal Representation

The objective of the von Neumann basis is to represent an arbitrary signal time
signal, ε(t), in terms of the von Neumann temporal basis, αm,n(t), or equivalently
Fourier transform of the signal, ε̃(ω), in terms of the von Neumann spectral basis,
i.e., can we represent, ε(t), such that,

ε(t) ∼
∑
m,n

Vm,nαm,n(t), (3.69)

or equivalently as,
ε̃(ω) ∼

∑
m,n

Ṽm,nα̃m,n(ω). (3.70)

71

Stellenbosch University  https://scholar.sun.ac.za



Chapter 3 The von Neumann TFR

The question now is: What is the relationship between, Vm,n and Ṽm,n? This
would be simplicity itself if the basis vectors were orthogonal, that is if (this also
definition of the inner product in this abstract space, using the Dirac bra and ket
notation),

〈αm,n(t)|αk,l(t)〉 =
ˆ ∞
−∞

α∗m,n(t)αk,l(t) dt = δm,kδn,l, (3.71)

〈α̃m,n(ω)|α̃k,l(ω)〉 =
ˆ ∞
−∞

α̃∗m,n(ω)α̃k,l(ω) dω = δm,kδn,l, (3.72)

where, δm,k, are usual Kronecker delta function defined in Eq. (A.84). Then as in
Fourier Series analysis (SubsectionA.1.1) we would have,

ˆ ∞
−∞

α∗m,n(t)ε(t) dt =
∑
k,l

Vk,l
ˆ ∞
−∞

α∗m,n(t)αk,l(t) dt =
∑
k,l

Vk,lδm,kδn,l = Vm,n,

(3.73)
and,

ˆ ∞
−∞

α̃∗m,n(ω)ε̃(ω) dω =
∑
k,l

Ṽk,l
ˆ ∞
−∞

α̃∗m,n(ω)α̃k,l(ω) dω =
∑
k,l

Ṽk,lδm,kδn,l = Ṽm,n.

(3.74)
Thus we see that,

Vm,n = Ṽm,n, (3.75)

if and only if,
ˆ ∞
−∞

α∗m,n(t)αk,l(t) dt =
ˆ ∞
−∞

α̃∗m,n(ω)α̃k,l(ω) dω, (3.76)

or (using the Dirac Bra-Ket notation is common in physics articles to denote the
functional integral inner product, Eq. (3.76), see e.g., Fechner et al. [94])3,

〈αm,n(t)|αk,l(t)〉 = 〈α̃m,n(ω)|α̃k,l(ω)〉 . (3.77)
3This notation implies that the basis vectors are |αk,l(t)〉 ∈ H, in a mathematical functional
Hilbert space, with their associated dual basis vectors 〈αk,l(t)| . In fact in any abstract Hilbert
space, i.e., a complete inner product space, this notation is applicable. It is just a mathemat-
ical shorthand notation inherited from quantum mechanics.

72

Stellenbosch University  https://scholar.sun.ac.za



3.5 The von Neumann Representations

The above equations define the so-called overlap matrix (integral) and unfortu-
nately, Eq. (3.71) and Eq. (3.72) do not hold and we have a non-zero overlap
integral, which implies that the basis vectors are non-orthogonal, i.e.,

〈αm,n(t)|αk,l(t)〉 = 〈α̃m,n(ω)|α̃k,l(ω)〉 = Sk,l
m,n
6= δm,kδn,l. (3.78)

The following relationship is required to impose orthogonality and for uniqueness
of an expansion for non-unitary overlap integrals. This is the principle of signal
representation,

∑
k,l

∑
m,n

|αm,n(t)〉
[
Sk,l
m,n

]−1
〈αk,l(t)| = δm,kδn,l, (3.79)

or ∑
k,l

∑
m,n

|α̃m,n(ω)〉
[
Sk,l
m,n

]−1
〈α̃k,l(ω)| = δm,kδn,l. (3.80)

More generally, because of the continuous time t and angular frequency ω domains,
we actually have,

∑
k,l

∑
m,n

|αm,n(t)〉
[
Sk,l
m,n

]−1
〈αk,l(τ)| = δm,kδn,lδ(t− τ), (3.81)

or ∑
k,l

∑
m,n

|α̃m,n(ω〉
[
Sk,l
m,n

]−1
〈α̃k,l(ω′)| = δm,kδn,lδ(ω − ω′). (3.82)

Here δ(t− τ) is the Dirac-δ-function defined in SubsectionA.4.6.

3.5.4. Derivation of the Overlap Integral

The overlap integral of the von Neumann is defined as an inner product of the
various basis, i.e., for the angular frequency basis as

Sk,l
m,n

= 〈α̃m,n(ω)|α̃k,l(ω)〉 =
ˆ ∞
−∞

α̃∗m,n(ω)α̃k,l(ω) dω, (3.83)

and also for the time basis.

Sk,l
m,n

= 〈αm,n(t)|αk,l(t)〉 =
ˆ ∞
−∞

α∗m,n(t)αk,l(t) dt. (3.84)
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where equality is assured by the Parseval-Plancherel theorem for energy densities
(cf. SubsectionA.3.10). Inserting the angular frequency basis, Eq. (3.59), into the
overlap integral inner product we arrive at,

Sk,l
m,n

=
(2σ
π

) 1
2
ˆ ∞
−∞

exp
[
−σ(ω − ωn)2 − σ(ω − ωl)2 + itm(ω − ωn)− itk(ω − ωl)

]
dω.

(3.85)
The evaluation of this integral is essentially an exercise in converting the exponent
of the exponential into a similar form as the standard normal integral. This entails
completing the square of the exponent, which, after some algebra, reduces the
exponent of the integrand of Eq. (3.85) to,[
−σ2 (ωn − ωl)2 + i (tkωl − tmωn)

]
+
{
−2σ

[
ω − 1

2 (ωn + ωl)
]2

+ i (tm − tk)ω
}
.

(3.86)
The exponential of the square bracket can be factored out of the integral and after
substituting,

ω′ = ω − 1
2 (ωn + ωl) , (3.87)

into Eq. (3.86) and after some simplifications we obtain,[
−σ2 (ωn − ωl)2 − 1

2i (tm + tk) (ωn − ωl)
]

+
{
−2σω2 + i (tm − tk)ω

}
. (3.88)

The curly brackets is now in the form of the standard normal integral, −aω2 + ibω,
namely, Eq. (3.30)

ˆ ∞
−∞

e−aω
2+ibω dω =

√
π

a
e−

b2
4a

=
(
π

2σ

) 1
2
e−

(tm−tk)2

8σ . (3.89)

The overlap integral (substituting Eq. (3.88) in the exponent of Eq. (3.85) and
using Eq. (3.89)) can thus be written as,

Sk,l
m,n

= exp
[
−σ2 (ωn − ωl)2 − 1

2i (tm + tk) (ωn − ωl)−
1

8σ (tm − tk)2
]

(3.90)

This result can be confirmed by doing the temporal basis integral, which gives the
same result, i.e.,

〈αm,n(t)|αk,l(t)〉 = Sk,l
m,n

= 〈α̃m,n(ω)|α̃k,l(ω)〉 . (3.91)
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3.5 The von Neumann Representations

The unit constant in front of the overlap integral, i.e., A = 1, explains the choice
of the normalization constants of the von Neumann representation basis.
Exploring some of the aspects of the overlap integral, we notice first of all, that it
represents some kind of matrix indexed in the rows by, (m,n), and in the columns
by, (k, l). To place the time and the angular frequency on the same footing we set,
σ = 1/2,

Sk,l
m,n

= exp
[
−1

4 (ωn − ωl)2 − 1
2i (tm + tk) (ωn − ωl)−

1
4 (tm − tk)2

]
. (3.92)

This can be written in complex polar form as,
Sk,l
m,n

= Amn,kle
iφmn,kl , (3.93)

where,
Amn,kl = exp

[
−1

4 (ωn − ωl)2 − 1
4 (tm − tk)2

]
, (3.94)

φmn,kl = −1
2 (tm + tk) (ωn − ωl) . (3.95)

What follows is just a comment and an errata of Fechner et al. [109]. They define
the spectral von Neumann bases as (exactly as in the article as Eq. (1)),

α̃ωntm(ω) =
(2α
π

)1/4
exp

[
−α(ω − ωn)2 − itm(ω − ωn)

]
.

This corresponds to our Eq. (3.59) except that our variance has been changed to σ
to avoid notational ambiguity and a change in our subscript order. Their definition
of their temporal von Neumann bases is (exactly as in the article as Eq. (2))

αωntm(t) =
( 1

2απ

)1/4
exp

[
− 1

4α(t− tm)2 − itωn
]
.

This differs from our definition Eq. (3.60) by a change in the sign of the phase, i.e.,
−itωn. From Eq. (3.64) this implies that, for their von Neumann bases, that,

α∗ωntm(t) F⇐⇒ α̃ωntm(ω). (3.96)

In this subsection we state that Eq. (3.83) is equal to Eq. (3.84), which is true. In
their article they then calculate the overlap matrix as (their Eq. (10)),

S(n,m),(i,j) =
√

2α
π

exp
[
−α2 (ωn − ωi)2 − 1

8α (tj − tm)2

+ i

2 (ωi − ωn) (tj + tm)
]
.
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Chapter 3 The von Neumann TFR

Now this corresponds to our Eq. (3.90), except for the notational difference, but
they include a constant factor,

√
2α
π
, which we do not find. The scaling of the bases

cancels this factor exactly. We assume the correct equation should have been

S(n,m),(i,j) = exp
[
−α2 (ωn − ωi)2 − 1

8α (tj − tm)2

+ i

2 (ωi − ωn) (tj + tm)
]
. (3.97)

Now, because of the phase difference in, αωntm(t), compared to our Eq. (3.60), if
we calculate the overlap matrix with them we find,

T(n,m),(i,j) = exp
[
−α2 (ωn − ωi)2 − 1

8α (tj − tm)2

− i2 (ωi − ωn) (tj + tm)
]
. (3.98)

Notice the phase change in the bottom half of Eq. (3.98) compared with Eq. (3.97).
The constant factor that appears in this calculation is also,

√
1

2απ , but it is also
exactly canceled by the scaling of the temporal bases. Thus,

S(n,m),(i,j) = T ∗(n,m),(i,j). (3.99)

It is our belief that this minor phase difference would not effect any of their results,
except for the temporal phases. The equality of Eq. (3.90) lead us to our choice of
temporal von Neumann bases Eq. (3.60) and the extensions that are to be revealed
in Chapter 5, these notational definitions are continued.

3.5.5. The von Neumann Time-Frequency Representation

The von Neumann TFR representation is then given by,

Qm,n =
∑
k,l

[
Sk,l
m,n

]−1
ˆ ∞
−∞

α∗k,l(t)ε(t) dt, (3.100)

Qm,n =
∑
k,l

[
Sk,l
m,n

]−1
ˆ ∞
−∞

α̃∗k,l(ω)ε̃(ω) dω. (3.101)

Expansion of the signal in either the temporal or spectral basis with their accom-
panying respective signals result in the same TFR. This is only possible because
of the Fourier invariance of the von Neumann basis functions shown in Eq. (3.63).
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Notice that in the calculation of the von Neumann representation the inverse of
the overlap matrix, Sk,l

m,n
, is required. The matrix is invertible, since it contains

no non-zero eigenvalues and therefore, det
(
Sk,l
m,n

)
6= 0. Unfortunately the overlap

matrix is ill-conditioned and sparse so that, even at very modest dimensions, it
becomes necessary to numerically calculate the inverse with the pseudo-inverse
Moore-Penrose technique. This rather places a question mark on the relative
numerical accuracy of the technique, but we assume that the inverse technique is
accurate enough.

3.5.6. Signal Reconstruction

The reconstruction of the temporal signal and spectral signals are then given by
the expansion of the von Neumann representation into their respective temporal
or spectral von Neumann bases,

ε(t) =
∑
m,n

Q
m,n
αm,n(t), (3.102)

ε̃(ω) =
∑
m,n

Q
m,n
α̃m,n(ω). (3.103)

This is simply derived by inserting the von Neumann TFR, Eq. (3.100) and Eq. (3.101)
into Eq. (3.102) and Eq. (3.103), respectively, and then employing the orthogonality
conditions, Eq. (3.81) and Eq. (3.82), respectively, e.g., the temporal reconstruction
expansion,

∑
m,n

Q
m,n
αm,n(t) =

∑
m,n

∑
k,l

[
Sk,l
m,n

]−1
ˆ ∞
−∞

α∗k,l(τ)ε(τ) dτ
αm,n(t)

=
∑
m,n

|αm,n(t)〉
∑

k,l

[
Sk,l
m,n

]−1
ˆ ∞
−∞

〈αk,l(τ)| ε(τ) dτ


=
ˆ ∞
−∞

∑
m,n

∑
k,l

|αm,n(t)〉
[
Sk,l
m,n

]−1
〈αk,l(τ)|

 ε(τ) dτ

=
ˆ ∞
−∞

(δm,kδn,lδ(t− τ)) ε(τ) dτ

= ε(t).

In the last step of this derivation, we note the importance of the inclusion of the
Dirac-δ function, which is also absent in Fechner et al [109].
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Chapter 3 The von Neumann TFR

In Figure 3.2(a) we present a von Neumann TFR. The von Neumann grid was,
25 × 25 = 625 pixels, which is the closest square to 640 pixel SLM. The colour
represents the relative amplitude of the signal. In Figure 3.2(b) the reconstructed
spectral signal (red) along with the true signal (blue) is depicted. Notice that
there are small errors in the reconstruction. Comparing this with the vertical axis
of the von Neumann TFR, we see they are in good agreement.
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Figure 3.2.: (a) The von Neumann TFR (b) von Neumann spectral reconstruc-
tion of the electric field

In the next Chapter 4 an Article is presented giving an application of the von
Neumann TFR to ultrashort laser pulse optimal control on an octahedral molecule
and there various results are obtained and discussed.
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4. Adaptive Quantum Coherent
Control

Adaptive quantum coherent control of a
multi-level molecular system in the von

Neumann time-frequency domain

L R Botha, 1, 2 A M Smit, 1, 2 L E de Clercq, 3 R
Madigoe1, 2 and E R Rohwer2

1 CSIR National Laser Centre, CSIR Campus, Pretoria, South Africa
2 Laser Research Institute, Department of Physics, Stellenbosch University,

South Africa
3 Institute of Quantum Electronics, ETH Zürich, Zürich, Switzerland

asmit1@csir. co. za

Abstract
A numerical model of the coherent interaction of a shaped femtosecond pulse with
a multilevel quantum system was developed. This model was used with a learning
algorithm to optimize the population in an arbitrarily chosen quantum level within
the multi-level system in the von Neumann time-frequency representation. It was
found that optimization in the von Neumann space outperformed optimization
in the frequency domain. It was found that optimum solutions are robust with
regards to variation in laser energy and frequency as well as to random variation
in phase and amplitude of the pulse. The topology of the optimization space was
investigated and the results are not in disagreement with published predictions.
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4.1. Introduction

Adaptive Feedback Control (AFC) of quantum systems is a well-known technique
with applications ranging from femtochemistry to quantum logic gates [110, 46,
111, 54, 112, 51]. The object of this study is to apply AFC to optimize the popula-
tion of an arbitrarily chosen higher vibrational level in a specific vibrational mode
of a molecule utilizing a joint time-frequency description of a femtosecond laser
pulse. The time-frequency representation used is the von Neumann representa-
tion introduced in [94, 96]. AFC using the von Neumann basis has been reported
in [113]. They compared the speed and efficiency of an adaptive coherent con-
trol process to reproduce given pulse shapes. It was found the AFC utilizing the
von Neumann basis (VN method) outperformed AFC utilizing frequency domain
shaping via a Spatial Light Modulator (SLM) (SLM method). The subject of our
investigation is the excitation of a particular vibrational mode of a molecule in
which anharmonicity causes a red shift in the resonant frequencies of the higher
vibrational levels compared to the ground state. In the vibrational ladder climb-
ing process a molecule is excited from the ground state to some higher vibrational
state via various in-between vibrational states. In such a process the pulse should
initially be resonant with the first vibrational state and then at a later stage,
when the population has been transferred from the ground state to some higher
vibrational level it should again be resonant with the transition frequency from
that level to the next. It seems logical that such a pulse should have a specific
time-frequency structure, similar to the pulses used in [113] and hence based on
the results obtained in [113] it can be expected that the VN method would also
outperforms the SLM method.
Selective optimization of an arbitrarily chosen higher vibrational level utilizing the
SLM method was previously reported [114]. This study expands the previous work
to include optimization in the time-frequency domain using the von Neumann ba-
sis. In this study AFC of the excitation of a molecule via a shaped femtosecond
laser pulse was numerically simulated. The multilevel system used was a poly-
atomic molecule and a specific vibrational mode of the molecule. The objective
was to show that an arbitrarily chosen upper vibrational level, in the ground elec-
tronic state of the molecule, could be preferentially populated. This could then,
for example, allow mode selective chemistry by applying a second laser that in-
teracts with the excited population but not with the ground state population or
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4.2 Interaction of the laser pulse with the multilevel system

alternatively, the enhanced reactivity of the excited molecule could be utilized for
selective chemistry.

The control of the vibrational excitation of molecules has been studied by various
authors. Solving the time-dependent Schrödinger equation of the interaction of an
HCN molecule with intense, ultrashort, chirped laser pulse was reported in [115].
It was shown that controlling the chirping rate and the area of a laser pulse allows
selective vibrational excitation and dissociation of a particular bond of a molecule.
Vibrational ladder climbing in NO utilizing ultrafast frequency chirped laser pulses
has been reported in [116]. They demonstrated experimentally that the transfer
of population up to vibrational state 3 of NO shows strong enhancement when the
frequency chirp of the laser pulses follows the consecutive vibrational transitions
[117]. It was shown that quantum gates based on molecular vibrational qubits
can be implemented utilizing shaped femtosecond pulses and selectively exiting
different vibrational modes [112, 117]. Energy deposition via vibrational ladder
climbing in the ground electronic state and the ability to control a ground state
unimolecular dissociation was demonstrated [118]. They chose the cleavage of
CO from Cr(CO)6 and excited the molecule up to vibrational level n = 7 within
a fs pulse. Control over the reaction by applying a linearly chirped pulse was
demonstrated. It was found that there is a clear reactivity dependence on the
chirp of the excitation pulse. The influence of the number of control parameters
on the fidelity of obtaining certain logical quantum gates utilizing the vibrational
levels of SCCl2 was investigated and it was found that fidelity of ∼ 0.999 is possible
[119]. In addition it was reported that these transformations show robustness with
regards to errors in the phase and amplitudes of the shaping system. Therefore,
selective excitation of specific vibrational modes of molecules is a well-studied field,
however frequency chirping was the predominant mechanism employed in most
studies. In this study the bandwidth of the laser pulse was significantly wider that
the bandwidth required to excite all the different levels of the specific vibrational
mode investigated. It was thus at the onset of the investigation not clear whether
chirping the pulse would have the same effect as that reported previously.

4.2. Interaction of the laser pulse with the
multilevel system

Here we briefly present our physical model of a laser’s interaction with an oc-
tahedral molecule. This leads to the dynamical von Neumann equation in the
interaction picture for the process. Assume that the laser light that interacts with
the molecule is linearly polarized in the ~e-direction, the field can then be written
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as,
E(t) = E0ε(t)~e. (4.1)

With, E0, the amplitude of the electric field and the time dependence of the field
is given by, ε(t). The total Hamiltonian is given by,

H = H0 +HI . (4.2)

Ho, represents the molecule in its unperturbed state and, HI , is the interaction
Hamiltonian which is due to the molecule interacting with the laser light. For
concreteness we choose to work with an octahedral spherical top molecule, XY6.
The molecule has 3N−6 modes of vibration, but we restrict our analysis to the, ν3,
infrared active vibrational mode. Even so each excitation of this mode may contain
several near-degenerate levels with a number of forbidden couplings as dictated by
the molecular symmetries. As such this choice provides us with a non-trivial
quantum system to work with. The level structure is indicated in Figure 4.1. The
unperturbed Hamiltonian is diagonal with regards to the frequencies associated
with each vibrational level. Thus is given by,

H0 =
∑
j

ωj |ψj〉 〈ψj| (4.3)

where, ωj, are the frequencies associated with the vibrational levels within the
specific vibrational mode. In this study the energy levels of XY6 for which the
spectroscopy of the higher vibrational levels are available in the literature [49, 61]
were used. The spectroscopy of the model included anharmonicities as well as
anharmonic splitting of the levels, see Figure 4.1. In this study it was assumed
that the onset of the vibrational quasi-continuum was at level 5, i.e., 5 vibrational
quanta [49]. It was assumed that once the molecule was excited into the vibrational
quasi-continuum its energy would be re-distributed via inter-vibrational relaxation
to all the other vibrational modes according to equilibrium statistics and would no
longer be available for selective excitation of a particular chosen level. The dipole
approximation of the interaction Hamiltonian was used. The model considered
only single photon transitions. The von Neumann equation was used to describe
the dynamics of density matrix elements, of the different levels and can be written
as,

dρ

dt
= −i
~

[H, ρ] , (4.4)

in the interaction picture this can be written as [114],

dρ

dt
= −i
~

n∑
l=1

(
ρlbe

iωbltIal − ρaleiωbltIlb
)
, (4.5)
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with,
ωij = ωi − ωj, (4.6)

and,
Iab = ε(t)E0Xab, (4.7)

where, Xab, is the transition dipole moment strength from level, a to b. The set
of simultaneous differential equation given in Eq. (7.87), for the 16 levels shown in
Figure 4.1, was solved numerically.

Figure 4.1.: The level structure used in this study. Shown in the figure are the
principal quantum numbers, n, as well as the anharmonic splitting of these levels
for which there is a small difference in transition frequency. The broken lines
represent forbidden transitions.

4.3. Adaptive feedback control and the optimization
process

The electric field used in the simulation was a shaped ultra-short laser pulse. A
genetic algorithm based process was utilized to obtain an optimum pulse shape.
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The objective function used in this study was the population in an arbitrarily
chosen upper vibrational level of the molecule. The goal of the GA was to optimize
the population in this specific vibrational level.

As mentioned previously, two different approaches were used to obtain an optimum
population in a specific vibrational level, i.e., SLM and VN. In the SLM approach
a Gaussian pulse in the time domain was Fourier transformed to the frequency
domain. Shaping of this pulse via a 640 pixel SLM was simulated. Shaping
was done via discrete amplitude and phase modulation in the frequency domain.
This was done by applying a shaping mask to the SLM. The pulse was then
transformed back to the time domain resulting in a pulse shaped in the time
domain. The interaction of this shaped pulse with the vibrational energy levels
was then calculated. The shaping mask was used by the GA to optimize the
population in the chosen vibrational level. Therefore the structure of the system
(genotype) consists of two strings of 640 different features (genes) that can take
values from zero to 1 in the case of the amplitude and −π to π in the case of
the phase, thus a total of 1280 genes were used by the GA. A Matlab© genetic
algorithm was used to optimize the pulse shape.

In the second approach, the so-called VN process, modulation is done in the von
Neumann time-frequency domain i.e. applying a mask to the Qm,n values, defined
in Eq. (3.100) or Eq. (3.101). This was done via modulating the amplitude and
phase of the von Neumann coefficients. In this particular case the von Neumann
space chosen was 25x25 pixels as mentioned previously, giving 625 numbers. The
gene values at these points varied between 0 and 1 for the amplitude and −π to π
for the phase. The same algorithm used in the SLM method was used to optimize
the population in a specific level. An experimental implementation of this process
would be to apply the mask in the von Neumann space, transforming back to
the frequency domain utilizing Eq. (3.103). The mask required in the frequency
domain to produce this from the input Gaussian pulse can then be calculated and
applied to a 4-f type shaper.

4.4. Results

4.4.1. Transform limited pulse

A transform limited 100fs pulse was used as a benchmark for comparing the effect
of shaped femtosecond pulses on the system. A fluence of 700mJ/cm2 was used
in all cases, and the energy of the shaped pulse was normalized with respect to
the total energy in the transform limited case. This ensured that results obtained
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Figure 4.2.: (a) The von Neumann transform of a 100fs Gaussian pulse (25×25)
pixels. (b) Original Fourier transform (solid blue line) superimposed on the
frequency domain pulse reconstructed from the von Neumann representation.
The two vertical lines in (b) represent the bandwidth required to excite all the
transitions in Figure 4.1.

with pulses with equivalent energy were compared. It was assumed that the carrier
frequency is that of the n = 0 to n = 1 transition in Figure 4.1 and it was assumed
that at the start of the pulse 100% of the population was in the vibrational ground
state, the n = 0 state. The levels shown in Figure 4.3 are those with the same
principal quantum number, therefore, the sum of the population in the various
anharmonic splittings at a particular principal quantum number after interacting
with the transform limited pulse. As can be seen the percentage of population after
the interaction with the standard Gaussian laser pulse, in level 2, i.e., vibrational
state, n = 2, is 20% of the initial population. Now we choose to optimize level 2
with our various techniques.

4.4.2. SLM Results

In the SLM method pulse shaping was obtained by modulating the phase and
amplitude in the frequency domain. The input pulse was the same 100fs transform
limited pulse as in the previous section. A 640 pixel SLM capable of phase and
amplitude modulation was assumed. Therefore, the optimization space consisted of
1280 (phase and amplitude) parameters that could be individually varied between
0 and 1 for amplitude and −π to π for the phase. It was decided to optimize the
population in the arbitrary chosenn = 2 vibrational level. The shaped pulses were
used to numerically calculate the population in a specific level and this population
was optimized using a Matlab© genetic algorithm. Typical results obtained are
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Figure 4.3.: Interaction of a transform limited pulse with the polyatomic
molecule. (a) Population dynamics, as can be seen approximately 20% of the
population are in vibrational level n = 2 after the pulse has interacted with the
molecule. (b) Transform limited electric field with a FWHM of 100fs.

shown in Figure 4.4. Optimum population values obtained for then = 2 vibrational
level varied between 70% and 80%. Thus significant selectivity compared to the
20% obtained by the transform limited pulse. It was also noted that the optimum
pulses showed limited structure in the time-frequency domain as can be seen in
Figure 4.4(a, c).

4.4.3. von Neumann Results

Shaping using the VN method was done by modulating the von Neumann am-
plitude and phase in the von Neumann time-frequency domain. Again a 100fs
transform limited pulse was used as the input pulse. A 25 × 25 von Neumann
grid was used since 625 is the closest square to 640 and we wanted to compare the
results to the SLM method utilizing 640 pixels. In addition, the parameter space
was limited to only those von Neumann coefficients in the time-frequency space
that had a non-zero von Neumann amplitude, similar to [113]. This resulted in a
reduced optimization space with approximately 75 points, therefore, the input to
the genetic algorithm was 75 von Neumann coefficients. Thus a total of 150 (phase
and amplitude) parameters compared to the 1280 of the SLM case. The modulated
pulse in the von Neumann space was then transformed to the frequency domain
using Eq. (3.103) and then transformed to the time domain via a Fourier trans-
form. A typical optimization result is shown in Figure 4.5. The optimum values
obtained using the VN method varied between 77% and 99%. This is significantly
higher than that obtained with the SLM method.
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Figure 4.4.: Simulated AFC utilizing frequency domain shaping via an SLM. (a)
Optimum time pulse obtained via a GA optimization process. (b) Population
dynamics caused by the time pulse in (a). (c) Husimi plot of the pulse.

4.4.4. Comparison of the two methods

Three typical optimization results obtained with the SLM and VN methods are
shown in Figure 4.6. As can be seen optimizing in the von Neumann space pro-
duced significantly higher population fractions in the selected vibrational level than
that obtained using the SLM method. In addition, in most instances, the von Neu-
mann method achieved relatively high population fraction very soon. This would
have a great advantage for experiments where individual runs can tedious. In our
opinion, the reason for the improved performance of the VN method is the fact that
the “control knobs” in the von Neumann time-frequency domain affects the electric
field in a tightly confined area of phase space and even more so if a reduced space
is used where only the non-negative frequency values are considered. Conversely,
to achieve control in a specific phase-space using shaping in the frequency domain
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Figure 4.5.: Simulated AFC the von Neumann time/frequency representation.
(a) Optimum pulse obtained via a GA optimization process. (b) Population
dynamics caused by this pulse. (c) Husimi plot of the optimum pulse (d) Fourier
transform of the optimum pulse.

only would require the simultaneous changing of many “control knobs”. This also
explains why, in the VN method, the optimization graph displays “jumps” while in
the SLM method the improvement is very gradual. Since the two representations,
i.e. Fourier and von Neumann contain the same information, it can be expected
that the SLM method would eventually approach the values obtained using the
VN method but that the number of generations required to achieve this will be
significantly higher. Another noteworthy difference between the two methods can
be seen if the Husimi plots of the optimum pulses obtained by both methods are
investigated. In all instances investigated the VN method produced a much richer
time-frequency structure than that obtained using the SLM method after the 100
generations. The Husimi graphs shown in Figure 4.4 and Figure 4.5 are typical of
the results obtained for the SLM and VN methods respectively.
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Figure 4.6.: Fitness values obtained using the two processes described in the text.
The von Neumann approach outperformed the SLM method significantly.

4.4.5. Robustness of the von Neumann solution

Robustness of the optimum solution is important for the eventual experimental im-
plementation of the process. If small changes in the shaped pulses produced large
changes in the expected optimum values then the process will have only limited
practical usefulness. Therefore, various tests of the robustness of the solutions were
done. The robustness of the solution was investigated in the following manner: (i)
The carrier frequency was varied but the shape was kept constant, (ii) the shape
was kept constant but the peak fluence of the pulse was varied and (iii) random
phase and amplitude values were added to the Fourier transform of the optimum
pulse. In all three cases the influence of the variation of the parameters on the
calculated maximum population values was determined. The optimum pulse used
in these calculations produced a population of approximately 83% in the n = 2
vibrational level.

The impact of varying the peak fluence of the laser pulse on the calculated popu-
lation in vibrational level 2 is shown in Figure 4.7. As can be seen the population
is relatively insensitive to a change in the peak fluence of the laser pulse. A change
of 10% in the laser fluence produces a maximum population level of approximately
80% compared to the best value of 83%. The influence of changing the carrier
frequency on the expected maximum population is shown in Figure 4.8. Changing
the carrier frequency is equivalent to changing the frequency of the excitation laser.
Again, the maximum population obtained is remarkably insensitive to a change
in the laser carrier frequency. A change in carrier frequency of 10cm−1produces a
reduction in the expected maximum population value of less than 10%. Due to the
fact that every experiment will have some noise the influence of random amplitude
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and phase noise on the expected maximum value was investigated. Random am-
plitude and phase noise was added to the Fourier transform of the optimum pulse
and this new pulse was then used to calculate the maximum population value in
a specific vibrational level. Two different scenarios were investigated: i.e., random
noise was varied from [-10%; 10%] and [-20%, 20%] both in amplitude and phase.
The first produced negligible effects on the maximum population, the second re-
duced the maximum population from 83% to 81%. It therefore seems that this
process is remarkably robust. A similar robustness to changes in amplitude and
phase for the SLM method was reported in [114, 115] and [120] predicted that an
optimally controlled quantum system will have a degree of robustness around full
control solutions.

Figure 4.7.: Influence of peak input pulse fluence on the calculated maximum
population in vibrational level 2.

4.4.6. Topology of the optimization space

The topology of optimally controlled quantum mechanical transition landscapes
was investigated in [120], the findings were (a) the transition probability extrema
landscape consists of values corresponding to no control or full control, (b) ap-
proaching full control involves climbing a gentle slope with no false traps in the
control space and (c) there is an inherent degree of robustness around any full
control solution. In a later paper [121] it was shown that some systems can show
trapping behavior thus contradicting the findings of [120]. In this study the con-
trol variables is a high dimensional space consisting of the various von Neumann
mask values, separated into phase and amplitude, in our case a 150 dimensional
space. In order to investigate whether the optimum points obtained by various
different runs were also different points in the optimization space an Euclidean
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Figure 4.8.: Maximum population in vibrational level 2 as a function of varying
carrier frequency.

norm was applied to the various von Neumann parameters of which the mask is
comprised. The norm was taken with respect to the origin (i.e., no mask) and also
between the different optimal solutions that were obtained. Results obtained for
14 different runs of the optimization algorithm are shown in table 1. The optimum
values obtained by the different runs varied between 99. 5% and 77. 4%. The
fitness values are shown in the second column. The third column gives the value of
the norm of the various solutions with respect to zero. As can be seen the norms
of the different optima are all approximately the same, therefore, suggesting that
they either all lie on a hyperdimensional spherical surface (n-sphere) centered at
the origin or that they are all the same point. However, the other columns gives
the norm (or distance in hyperdimensional space) between the first solution and
others. If the points were the same then this norm would have been zero. As can
be seen this is not zero, but again an approximately constant value. These values
are very close to each other also suggesting that they are all an equal “distance
“ from the specific optimum point used as a reference. Similar results were ob-
tained for the distance of the other solutions, calculated examples for the distance
between the 4th and the other and the 10th and the other, are shown in the ta-
ble. The solutions seems to be a constant distance from zero and all the solutions
seems to be approximately a constant distance from each other thus forming a
hyperdimensional spherical surface in all cases investigated.
In an n-dimensional Hilbert space, Hn, the unitary time-evolution operator (prop-
agator), U(t1, t0), of a state vector, ψ(t), in any of the quantum pictures is given
by [6],

ψ(t1) = U(t1, t0)ψ(t0) with U(t1, t0)U †(t1, t0) = 1, (4.8)

where the unitary time-evolution operator, U(t1, t0), satisfies the original Schrödinger-
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Hamiltonian equation associated with the interaction picture,

i~
d

dt
U(t, t0) = HI(t)U(t, t0) with U(t0, t0) = 1. (4.9)

In essence the unitary condition restricts the state vector trajectory to some hy-
perspherical surface in the Hn space. Now placing a SLM mask, M(ω), in the
spectral domain of a laser pulse, ε̃(ω), can be written as,

εM(t) = F−1 {M(ω)ε̃(ω)} . (4.10)

The interaction Hamiltonian of our system is given by,

HI(t) = X(t)< [εM(t)] = X(t)<
[
F−1 {M(ω)ε̃(ω)}

]
. (4.11)

where X(t) is the dipole interaction Hamiltonian (in the interaction picture) of the
molecule and < denotes the real part. Since the input laser ε̃(ω) is a non-varying
function and the inverse Fourier operator F−1 is a linear operator, we conclude
that for infinitesimal time maps the unitary map

U(t+ δt) ' e−
i
~
´ t+δt
t X(τ)<[F−1

τ {M(ω)ε̃(ω)}]dτ (4.12)

is approximately a linear map of the mask function M(ω) and therefore due to
successive application of infinitesimal unitary operators, U(tn+1, tn), will be ap-
proximately a linear map of the mask function. Therefore, since there is a linear
relation between, M(ω) and U(t1, t0), we suspect similar behavior in the domain,
M(ω), as that implied by the restriction of the unitary transformation, i.e., some
confinement on a hyperspherical surface in the vicinity of the optimal solution.
The above is of course by no means a formal mathematical secure footing and
must only be considered as heuristic explanation of some of our observations.
It is clear that there are many different optimal points as can be seen by investigat-
ing the norms and also visually inspecting the shapes of the pulses. The maximum
fitness values at all the points were quite similar and were all obtained after only
100 generations via a GA. If more generations, e.g., 200 are used the optimum
values reached are closer to each other and at higher generations the approach to
the optimal value is gradual, as can be seen in Figure 4.7, as is also predicted by
[120]. The solutions are all robust as was also predicted by [120]. In our particular
problem gradient based methods are extremely slow, however, a limited number
of runs were performed utilizing gradient based optimization techniques. Gradient
based techniques are generally known to be easily trapped in a local maxima. The
number of runs was not sufficient to give a confident indication of whether local
traps in the optimization landscape do exist. However, no traps were found during
any of our runs.
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Table 4.1.: The fitness values (population in the chosen vibrational level) of dif-
ferent controls are shown in the second column. The norm of the masks of
the different optimum solutions with respect to the origin(distance to origin) is
shown in the first column and the distance of the other points with respect to a
specific solution point are shown in the other columns. The norm was defined
as ‖Mi‖ =

√∑n
j M

2
ij.

Fitness
i Value (%) ‖Mi‖ ‖M1 −M1i‖ ‖M2 −Mi‖ ‖M3 −Mi‖ ‖M4 −Mi‖
M1 92. 4 8. 0 0 5. 0 5. 5 4. 6
M2 96. 3 7. 6 5. 0 0 4. 9 4. 9
M3 80. 7 7. 2 4. 9 4. 8 4. 7 4. 5
M4 90. 3 7. 5 5. 5 4. 9 0 5. 0
M5 99. 5 8. 8 4. 9 5. 5 5. 3 5. 3
M6 83. 0 7. 3 5. 2 4. 5 4. 5 4. 7
M7 88. 7 8. 2 4. 5 4. 6 4. 7 4. 5
M8 96. 1 8. 5 5. 4 5. 4 5. 2 5. 1
M9 89. 7 8. 4 4. 9 4. 8 5. 1 5. 0
M10 95. 1 8. 1 4. 6 4. 8 5. 0 0
M11 77. 4 7. 3 5. 3 5. 4 4. 9 5. 3
M12 80. 3 7. 5 4. 9 5. 2 4. 7 4. 8
M13 98. 5 8. 6 5. 1 5. 2 5. 0 4. 8
M14 94. 6 9. 2 4. 9 5. 1 5. 6 4. 8

Average 90. 2 8. 0 5. 0 4. 7 4. 7 4. 6

4.4.7. Excitation mechanism

A chirped femtosecond laser was used to excite the vibrational levels of Cr(CO)6
up to vibrational level n > 7 in [118]. It was found that the excitation mechanism
was population transfer up the vibrational ladder caused by a series of chirped
adiabatic passages. In their case the anharmonic vibrational ladder consists of
energies, thus the anharmonic shift for the transition from n = 7 to n = 8 is
195cm−1 which is significant compared to their laser bandwidth of 150cm−1. In
their case the maximum anharmonic shift is larger than their laser bandwidth. In
our case the bandwidth of the 100 fs pulse (FWHM) is 146cm−1 and the maximum
anharmonic shift, i.e., n = 1 to 2 compared to n = 3 to 4 is less than 15cm−1,
and therefore, negligible compared to the pulse bandwidth. This is graphically
illustrated in Figure 4.2(b) where the total bandwidth required to excite all the
transitions shown in Figure 4.1 lie between the two vertical lines. It can thus be
expected that chirping of the pulse would have a negligible effect in our case be-
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cause even if the pulse is chirped, all the levels will still be resonant with some
frequency component of the laser. The influence of chirp on the excitation was
investigated by including chirp in the interaction model. The chirp of the laser
pulse was varied over a broad range and it was found that chirp had a negligible
influence on the excitation probabilities of the various levels. In our case the opti-
mum pulses obtained did not have any noticeable chirp or a specific time structure
and we believed that neither an adiabatic process nor pulse sequences shifted in
frequency and time were responsible for the high level of selectivity of the pro-
cess. The robustness of the solutions also seems to rule out π-pulse dependent
processes. One of the motivations for utilizing the von Neumann time/frequency
representation was because it was felt that due to the fact that it could be ex-
pected that the excitation of the various higher levels of the vibrational ladder
will be time and frequency dependent. This means that a time-frequency based
optimization process would be well suited to this process and might elucidate the
excitation mechanism. However, even though the time-frequency based process
outperformed the frequency only process it is difficult to discern the excitation
mechanism. Optimum pulses obtained are vastly different making it very diffi-
cult to understand the underlying mechanism, for example, Figure 4.9 shows the
Husimi plots of two optimum pulses. The pulse shown in Figure 4.9(a) produced a
population of 85% and that shown in Figure 4.9(b) 97%. Both were obtained after
utilizing the same laser parameters and after 100 generations of a GA based op-
timization process. The two pulses are clearly different with some time structure.
Both pulses were stretched from 100fs to approximately 1ps. These are typical of
the results obtained i.e. stretched to 1ps with some time structure. Multiple pass
interference is a possible mechanism.

Figure 4.9.: Husimi plots of two optimum pulses. Selective excitation of 97% (a)
and 85% (b) were obtained for the right and left pulses respectively.
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4.5. Conclusion

A simulated AFC based on the von Neumann time-frequency representation for the
selective excitation of an arbitrary vibrational level in a polyatomic molecule was
developed. The results obtained were compared to that obtained via a previously
developed process based on shaping only in the frequency domain the so-called
SLM method.
The VN time-frequency method outperformed the SLM based one by a significant
margin. The parameters space in the von Neumann method is much smaller than
that of an equivalent SLM based method. This should be very attractive from an
experimental point of view.
It was found that the optimum solution obtained using the von Neumann method,
similar to what was found for the SLM method, is a very robust solution and this
should also be favorable from an experimental implementation point of view.
Utilizing the von Neumann method selective excitation of a specific vibrational
level of up to 97% was achieved. However the excitation mechanism is not clear
but multiple path interference is a possibility.
The topology of the optimization space was investigated and even though the
results are not conclusive it was found that the results are not in disagreement with
the predictions made in [120], i.e., (a) the transition probability extrema landscape
consists of values corresponding to no control or full control, (b) approaching full
control involves climbing a gentle slope with no false traps in the control space
and (c) an inherent degree of robustness around any full control solution.
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5. The Generalized FHG TFR

5.1. Introduction

This Chapter presents the new generalized Fourier-Hermite-Gauss (FHG) TFR
in its entirety. The methods and analytical derivations can all be found here.
Whereas the von Neumann TFR only uses Fourier-Gauss basis functions, which
are the zeroth order Fourier-Hermite-Gauss polynomials, we generalize the method
on the same von Neumann representation lattice to a discrete FHG basis functions.
The importance of the Fourier transform invariance of these functions is once again
the crux to the success of the representation.
Considering the value of invariant Fourier transform functions, we extend the
problem to the general Fourier transform eigenvalue problem in Section 5.2. The
eigenvalue problem is solved there, in some detail, and the resulting general Fourier
Transform eigenfunctions are the well-known Hermite-Gauss polynomials. In the
derivation a few of the properties of the Hermite functions are utilized. In
Subsection 5.2.1 some properties of Hermite polynomials are summarized for easy
access and convenience.
In Subsection 5.3.1 the von Neumann TFR is generalized and extended to Fourier-
Hermite-Gauss polynomials. We explore the possibilities of expanding a signal with
this additional freedom of the generalized Hermite polynomials. Being orthogonal
polynomials we note that it is possible to expand a signal over the Hermite-Gauss
polynomials, but that the spectral and temporal shifting, eiωnt and e−itm(ω−ωn), the
Fourier component of the expansion, have essentially no role. The coefficients of
this expansion are written vectorially for easy representation. We do show that
they have the desired Fourier transform independence.
Perelemov [122] proved that the von Neumann lattice representation is complete
but not over complete. Obviously, this new generalization is overcomplete, but can
be made complete by the the theory of frames [123]. The theory of frames is then
exploited to address the ill-conditioning of the von Neumann overlap matrix. By
the correct choice of the basis functions of the FHG TFR an overlap matrix can
be obtained with much better conditioning. The immense power of the Hermite
polynomial expansion is exploited to greatly benefit the calculation of the various
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HG polynomial necessary occurring in the new representation. This is shown in
Subsection 5.3.2. Temporal and spectral HG polynomials are then defined in a new
manner with the aid of the, so-called, lower and upper triangular Pascal matrices.
Portraits of Gauss, Hermite and Pascal are shown in Figure 5.1. Fourier is not
included because he has a whole, Appendix A, dedicated to him.
Thereafter, a summary of the analytical generalized FHG representation is given
in Section 5.4 in which the FHG TFR is presented in generalized format for the
first time. The signal reconstruction is also shown for the generalized FHG TFR.
The FHG overlap matrix is then derived in detail for the temporal FHG basis. It is
shown that the spectral overlap matrix does not directly equal the temporal overlap
matrix. The verification and the similarity between the two overlap matrices is
then derived, with some rather novel mathematics, and is unique to this thesis.
In the generalized FHG TFR use is made of a coefficient matrix, which is specif-
ically left for later determination. This is then the strength of the technique. In
Section 5.5 a very brief introduction of the theory of frames to show how this coef-
ficient matrix can be chosen. Finally in Section 5.6, some applications to quantum
control theory is given.

Figure 5.1.: Carl Friedrich Gauss, Charles Hermite, Blaise Pascal

5.2. The Fourier Transform Eigenvalue Problem

The Fourier transform is a linear operator on the square integral functions [124,
125, 126, 127]. Being a linear operator we can conceive an eigenvalue problem
for the Fourier transform operator. Then a general invariant function under the
Fourier transform will be an eigenfunction of the linear operator. This naturally
invites the question: “What is the most general function that is invariant
under the Fourier transform?”, i.e.,

F {f(t)} = λf(ω), (5.1)
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where, λ ∈ C. This is essentially an operator eigenvalue problem, because the
Fourier transform is a linear functional operator. In Appendix A, the Fourier
transforms, f(t) F⇐⇒ F (ω), of derivatives, Eq. (A.26) and Eq. (A.27), are given by,

F{ d
n

dtn
f(t)} = (iω)nF (ω), F−1{ d

n

dωn
F (ω)} = (−it)nf(t). (5.2)

The similarity of these Fourier properties leads us firstly to the preliminary differ-
ential equation,

d2g (t)
dt2

− t2g(t) = 0 = d2G (ω)
dω2 − ω2G (ω) , (5.3)

the solution of which is a Gaussian function, g(t) = 1√
2πe
− t

2
2 , which we know

is Fourier transform invariant, Eq. (3.33) and Eq. (3.34). Since we are in search
of the most general function that is invariant under the Fourier transform, we
generalize this differential equation, Eq. (5.3). We note that including the function,
g (t) = f(t), with an integer constant, i.e.,

d2f (t)
dt2

− t2f(t) = − (2n+ 1) f (t) n ∈ Z+ (5.4)

will still be Fourier transform invariant, which we now prove. Fourier transforming
this differential equation, Eq. (5.4), results in,

d2F (ω)
dω2 − ω2F (ω) = − (2n+ 1)F (ω) n ∈ Z+ (5.5)

But this is the exactly the same differential equation as Eq. (5.4). This shows
that the differential equation, Eq. (5.4) and Eq. (5.5), remains invariant under
the Fourier transform. I suppose that the mathematicians arrived at the above
differential equation by trial and error. Now consider the trial solution, in which
we include the original Gaussian function, e− t

2
2 ,

x (t) = e−
t2
2 Hn (t) , (5.6)

for some unknown function, Hn(t), to be evaluated. Inserting this into the time
differential equation, Eq. (5.4), results in the following differential equation,

d

dt

[
e−

t2
2 Hn (t)

]
= e−

t2
2
dHn

dt
− te−

t2
2 Hn,
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d2

dt2

[
e−

t2
2 Hn (t)

]
= e−

t2
2
d2Hn

dt2
− 2te− t

2
2
dHn

dt
+
(
t2 − 1

)
e−

t2
2 Hn, (5.7)

e−
t2
2
d2Hn

dt2
−2te− t

2
2
dHn

dt
+
(
t2 − 1

)
e−

t2
2 Hn− t2e−

t2
2 Hn = − (2n+ 1) e− t

2
2 Hn. (5.8)

Canceling the Gaussian function, e− t
2
2 , in Eq. (5.8), we find our trial unknown

function, from Eq. (5.6), satisfies the following differential equation,

d2Hn

dt2
− 2tdHn

dt
+ 2nHn = 0 (5.9)

To solve the differential equation we use the common series expansion technique
of Frobenius, M. Boas [128],

Hn (t) =
n∑
k=0

akt
k. (5.10)

Inserting this in Eq. (5.9) the differential equation results in the following recursion
relationship for the polynomial coefficients, ak,

ak
ak−2

= 2(k − n− 2)
k(k − 1) . (5.11)

This is exactly the recursion relationship that satisfies the Hermite polynomials,
i.e., Hn (t), is a Hermite polynomial (See Subsection 5.2.1 for a summary of their
properties).
Define the unnormalized Hermite-Gauss polynomials by,

gn(t, 1) = N (t, 1)Hn (t) (5.12)

where, Hn (t), is a Hermite polynomial. Then our Fourier eigenvalue problem is
given by,

F {gn(t, 1)} = 1√
2π

ˆ ∞
−∞

gn(t, 1)e−iωt dt = λngn(ω, 1) (5.13)

with eigenvalues, λn = (−i)n. An orthonormal basis for, L2(R), (quadratically
Lebesgue integrable functions) is given by,

ψn(x) = 2
−n2 (n!)

− 1
2 π
− 1

4 e
−x

2
2 Hn(x) (5.14)

100

Stellenbosch University  https://scholar.sun.ac.za



5.2 The Fourier Transform Eigenvalue Problem

This conforms to the so-called physicist’s choice, with the Rodrigues’ generating
function, for the Hermite polynomials given by (cf. [129, 130] and Eq. (5.28)),

e
2tx−t2 =

∞∑
n=0

Hn(x) t
n

n! , (5.15)

or
Hn(x) =

[
dn

dtn
e

2tx−t2
]
t=0

= (−1)nex
2 dn

dxn
e
−x2
. (5.16)

Now it is easy to show that,

dHn

dx
= 2xHn −Hn+1, (5.17)

d2Hn

dx2 = 2Hn + 4x2Hn − 4xHn+1 +Hn+2. (5.18)

Inserting this into the differential equation, Eq. (5.9), gives as the following recur-
sion relationship (cf. Eq. (5.33)),

Hn+1 = 2xHn − 2nHn−1 (5.19)

Now insert this into, dHn
dx

, Eq. (5.17), and we obtain (cf. Eq. (5.31)),

dHn

dx
= 2nHn−1. (5.20)

This last relationship shows that the Hermite polynomials constitute an Appell
sequence. Multiple application of the formula, Eq. (5.20), gives us,

dkHn

dxk
= 2kn!

(n− k)!Hn−k. (5.21)

Under the frequency convention, Eq. (A.5) and Eq. (A.6), (as opposed to the unitary
transform for the angular frequency) for the Fourier transform, i.e.,

F {f(t)} =
ˆ ∞
−∞

f(t)e−2πiνt dt = F (ν), (5.22)

and
F−1 {F (ν)} =

ˆ ∞
−∞

F (ν)e2πiνt dν = f(t), (5.23)

we have that the following eigenvalue problem,
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F {ψn(t)} = (−i)nψn(ν) (5.24)

The Hermite polynomials form a complete orthonormal system of eigenfunctions
for the Fourier transform on, L2(R). The general Fourier eigenfunction is thus
given by,

ψn(x) = 2
−n2 (n!)

− 1
2 π
− 1

4 e
−x

2
2 Hn(x) (5.25)

However, this choice of eigenfunctions is not unique. The eigenvalue problem for
the Fourier transform only has four distinct eigenvalues (±1 and ±i). Any linear
combination of eigenfunctions with the same eigenvalue gives another eigenfunc-
tion.
The eigenvalues of the Discrete Fourier Transform (DFT) matrix are simple and
well-known. The eigenvectors, however, are complicated, not unique, and are the
subject of ongoing research.

5.2.1. Some properties of the Hermite polynomials

Although we did derive some of the properties of Hermite polynomials in the pre-
vious Section 5.2, the remainder we merely list for easy reference. These properties
are derived in various books [130, 129].

5.2.1.1. Differential equation

d2Hn

dx2 − 2xdHn

dx
+ 2nHn = 0 (5.26)

5.2.1.2. Rodrigues’ formula

For n = 0, 1, . . . then,
Hn(x) = (−1)nex2 dn

dxn

(
e−x

2) (5.27)

5.2.1.3. Generating function

e2tx−t2 =
∞∑
n=0

Hn(x) t
n

n! (5.28)
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5.2.1.4. Recurrence formulae

Differentiating Rodrigues’ formula Eq. (5.27) we find,

dHn(x)
dx

= (−1)n d
dx

[
ex

2 dn

dxn

(
e−x

2)]

= 2x
[
(−1)nex2 dn

dxn

(
e−x

2)]− [(−1)n+1ex
2 dn+1

dxn+1

(
e−x

2)]
.

Reinserting Eq. (5.27) in the above equation we obtain,

dHn(x)
dx

= 2xHn(x)−Hn+1(x), (5.29)

or
Hn+1(x) = 2xHn(x)− dHn(x)

dx
. (5.30)

Now inserting Eq. (5.29) into the second derivative of the Hermite differential
equation Eq. (5.26) for n− 1. Performing the second derivative and simplifying we
obtain the following recurrence relation,

dHn(x)
dx

= 2nHn−1(x). (5.31)

From the above Eq. (5.31) we generalize by repeated application,

dkHn(x)
dxk

==


2kn!

(n−k)!Hn−k(x) k ≤ n

0 k > n
. (5.32)

Using Eq. (5.31) in Eq. (5.30) we find the following recurrence relation,

Hn+1(x) = 2xHn(x)− 2nHn−1(x). (5.33)

5.2.1.5. Translation formulae

The Taylor series expansion of

Hn(x+ y) =
∞∑
k=0

(
dkHn(ξ)
dξk

)
ξ=x

yk

k!
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,Applying Eq. (5.32) we find,

Hn(x+ y) =
n∑
k=0

2kn!
k!(n− k)!Hn−k(x)yk

=
n∑
k=0

(
n

n− k

)
Hn−k(x)(2y)k. (5.34)

A change of the dummy variable k to n − k, since
(
n
k

)
=
(

n
n−k

)
, finally gives the

Hermite translation formula,

Hn(x+ y) =
n∑
k=0

(
n
k

)
(2y)n−kHk(x) (5.35)

or in a more symmetrical form,

Hn(x+ y) =
n∑
k=0

1
2n/2

(
n
k

)
Hk(
√

2x)Hn−k(
√

2y). (5.36)

5.2.1.6. Hermite Polynomials

H0(x) = 1
H1(x) = 2x
H2(x) = 4x2 − 2
H3(x) = 8x3 − 12x
H4(x) = 16x4 − 48x2 + 12

...

...

5.3. Extension to Fourier-Hermite-Gauss
Polynomials

In Section 5.2 we derived the fact that the eigenfunctions of the Fourier transform
linear operator correspond to the unnormalized Hermite-Gauss (HG) polynomials,

F {φp(t)} = λpφp(ν) (5.37)
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Let, Cp = 2−
p
2 (p!)−

1
2 π
− 1

4 , p ∈ Z+, be an normalization constant then the general
Fourier eigenfunction is given by,

φp(x) = Cpe
−x

2
2 Hp(x) (5.38)

where, Hp (x) , is a p-th order Hermite polynomial and, e−x
2/2 , is a Gaussian func-

tion (ergoHermite-Gauss polynomials). Because the Hermite-Gauss functions,
φk(x), are all symmetrical or anti-symmetrical depending on k = 1, ..., N , i.e.,
k = p+ 1, so that

φk(−x) =

φk(x) , if k odd
−φk(x) , if k even

or simply,
φk(−x) = (−1)(k−1)φk(x). (5.39)

Suppose we now extend the usual basis functions of the von Neumann TFR,
Eq. (3.59) and Eq. (3.60), to Hermite-Gauss polynomials, actually due to the trans-
lation exponential, eiωnt, they are Fourier-Hermite-Gauss polynomials, i.e.,

αmn(t) 7−→ eiωntφp[(t− tm)/
√

2σ], (5.40)

and
α̃mn(ω) 7−→ e−itm(ω−ωn)φp[

√
2σ(ω − ωn)], (5.41)

where the HG polynomials with proper normalization are given by,

φp[(t− tm)/
√

2σ] = (2σ)−
1
4 2
− p2 (p!)

− 1
2 π
− 1

4 e
− (t−tm)2

4σ Hp[(t− tm)/
√

2σ] (5.42)

and

φp[
√

2σ(ω − ωn)] = (2σ)
1
4 2
− p2 (p!)

− 1
2 π
− 1

4 e
−σ(ω−ωn)2

Hp[
√

2σ(ω − ωn)] (5.43)

If we shift and modulate on a time-frequency lattice (tm, ωn), we retain the desired
functional invariance of the Fourier transform,

F {αmn(t)} = α̃mn(ω) (5.44)

but with N functions available in the index p (the Hermite-Gauss polynomials).
Whereas we saw that the von Neumann basis functions are not orthogonal, we
might be able to construct orthogonal basis functions from these Hermite-Gauss
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functions with this additional extension of having N polynomials available. Now
let us venture down the road and explore the possibilities of expanding an electric
signal with this additional freedom. To simplify the notation we introduce the
following vector notation,

h(t) =


H0 (t)
H1 (t)

...
HN−1 (t)

 . (5.45)

Then,
Φ(t) = e

− t
2
2 Ch(t), (5.46)

where,
C = diag

(
Cp = 2

− p2 (p!)
− 1

2 π
− 1

4
)N−1

p=0
, (5.47)

is a the constant diagonal matrix and spectrally,

Φ̃(ω) = e
−ω

2
2 Ch(ω). (5.48)

Here we present the new FHG generalization of the von Neumann TFR. The
general shifted FHG TFR basis vectors are then given by,

Ψm,n(t) = eitωnΦ(t− tm) F⇐⇒ Ψ̃m,n(ω) = e−itm(ω−ωn)Φ̃(ω − ωn), (5.49)

where the new Fourier-Hermite-Gauss polynomials are, in vector notation
with proper scaling, given by,

Ψm,n(t) = eitωn
{

(2σ)−
1
4 e−

(t−tm)2
4σ Ch[(t− tm)/

√
2σ]

}
, (5.50)

= eitωnΦ(t− tm)

and

Ψ̃m,n(ω) = e−itm(ω−ωn)
{

(2σ)
1
4 e−σ(ω−ωn)2Ch[

√
2σ(ω − ωn)]

}
. (5.51)

= e−itm(ω−ωn)Φ̃(ω − ωn)

Note that all that has happened is the inclusion of the Fourier phase transla-
tions, eitωn , e−itm(ω−ωn), with HG Φ polynomials. In Eq. (5.42) and Eq. (5.43),
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please notice that no tilde appears on the φp polynomials, because they remain
invariant under Fourier transform and are correctly scaled. Utilizing the notation
of SubsectionA.4.9 and Eq. (A.107) (cf. the definitions of the modulation, Mx,
and translation, Tx, functional operators, therein), then Eq. (5.49), in terms of
unscaled units, i.e., σ = 1

2 , can be succinctly rewritten as,

MωnTtmΦ(t) F⇐⇒ TωnM−tmΦ(ω) (5.52)

In this functional operator notation, we have removed ~ from the Fourier transform
of Φ, because in this notation it is just a change in the dependent variable, t→ ω.
This is a magnificent method of truly understanding the real nature of the FHG
polynomial bases. It is emphasized in the interchange of the functional operators
(and a sign change), and as we know operators do not commute. This leads to all
the difficulties. Unfortunately, I only discovered this notation myself right in the
end. This would have simplified this thesis tremendously.
The electric field of the laser pulse, ε(t), can be represented with a set of over-
complete Fourier-Hermite-Gauss (FHG) functions on a similar discrete von Neu-
mann lattice, as defined in Subsection 3.5.2,

ε(t) =
K−1∑
p=0

apm,ne
iωntφp[(t− tm)/

√
2σ]. (5.53)

The choice of the dimension K is rather open, and only constrained by the digital
conversion of Eq. (5.53). Here we choose K to equal one of the TF dimensions.
The expansion coefficients apm,n are obtained from,

apm,n =
ˆ ∞
−∞

e−iωntφp[(t− tm)/
√

2σ] ε(t) dt (5.54)

=
ˆ ∞
−∞

e−iωntφp[(t− tm)/
√

2σ]
K−1∑
k=0

apm,ne
iωntφk[(t− tm)/

√
2σ] dt

=
K−1∑
k=0

akm,n

ˆ ∞
−∞

φp[(t− tm)/
√

2σ]φk[(t− tm)/
√

2σ] dt

=
K−1∑
k=0

akm,nδ
p
k.

In vector notation (where all vectors are denoted in math bold are column vectors
and where the superscript, T , denotes the transpose operation), this can be written
concisely as an inner product as,

ε(t) = aTm,nΨm,n(t). (5.55)
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where,

ai,,j =


a1
i,j

a2
i,j
...
aNi,j

 , (5.56)

and
am,n =

ˆ ∞
−∞

Ψ∗m,n(t) ε(t) dt. (5.57)

The signal representation then becomes,

ε(t) = aTm,neitωnΦ(t− tm) F⇐⇒ ε̃(ω) = aTm,ne−itm(ω−ωn)Φ̃(ω − ωn) (5.58)

This insures that the TFR coefficients am,n defined in Eq. (5.57) are also Fourier
transform invariant. It is worthy to note that in the continuum the electric field
can be represented solely by a HG orthonormal expansion, but then the time-
frequency interpretation is lost. The numerical discreteness of the problem allows
for this finite expansion. The various frames can also be viewed as a movie of
picture frames.

Figure 5.2.: Fourier-Hermite-Gauss TFR Lattice
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5.3.1. Generalized Fourier-Hermite-Gauss Polynomials

We are aware that we have an overcomplete functional bases for the FHG TFR. To
allow for the reduction in the dimensions, we now introduce an arbitrary selection
coefficient, cni,j, into the expansion of the temporal and spectral translations FHG
bases and some over the HG functions. So we now re-express a set of basis vectors
as a linear expansion of these FHG polynomials as,

βi,j(t) =
N∑
n=1

cni,jΨn
i,j(t) where cni,j ∈ C, n = 1, . . . , N ∀i, j (5.59)

i.e., we seek a subset, βi,j(t), of basis functions of the full FHG set, which still
fulfill the conditions of completeness and orthogonality. The main challenge is to
find an appropriate set of selection coefficients, cni,j, that allows us to construct,
βi,j(t), that comply to the required conditions. From the linearity of the Fourier
transform we note that,

F {βi,j(t)} = β̃i,j(ω) (5.60)

Let us investigate the orthogonality of a set of these basis functions leaving the
coefficients, cni,j, unspecified, but bearing in mind that they may be manipulated
later to accomplish our goal of constructing a complete, but not overcomplete
orthonormal basis set. Before we proceed, we rather rewrite the basis functions in
vector notation as,

βi,j(t) =
[
c1
i,j c2

i,j · · · cNi,j
]


Ψ1
i,j(t)

Ψ2
i,j(t)
...

ΨN
i,j(t)

 =
[

Ψ1
i,j(t) Ψ2

i,j(t) · · · ΨN
i,j(t)

]

c1
i,j

c2
i,j
...
cNi,j

 ,
(5.61)

or
βm,n(t) = cTm,nΨm,n(t) = ΨT

m,n(t)cm,n = eitωnΦT (t− tm)cm,n. (5.62)
Notice that,

β∗m,n(t) = c†m,ne−itωnΦ(t− tm), (5.63)
and that

ΨT
k,l(t) =

[
Ψ∗k,l(t)

]†
, (5.64)

and the superscript, T , denotes the transpose of the vector and the † the complex
conjugate transpose operation or Hermitian operation. A temporal overlap integral
then becomes,

Tk,l
m,n

= 〈βm,n(t)|βk,l(t)〉 =
ˆ ∞
−∞

β∗m,n(t)βk,l(t) dt, (5.65)
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T(m,n),(k,l) = c†m,n

(ˆ ∞
−∞

Ψ∗m,n(t)ΨT
k,l(t) dt

)
ck,l (5.66)

Similarly, a spectral overlap matrix can be defined as,

Wk,l

m,n
= 〈β̃m,n(ω)|β̃k,l(ω)〉 =

ˆ ∞
−∞

β̃∗m,n(ω)β̃k,l(ω) dω, (5.67)

W(m,n),(k,l) = c†m,n

(ˆ ∞
−∞

Ψ̃∗m,n(ω)Ψ̃T
k,l(ω) dω

)
ck,l (5.68)

5.3.2. The Hermite Translation Expansion

To numerically calculate all the Hermite-Gaussian bases functions in FHG TFR
is a numerical extensive load. Fortunately, the translated Hermite functions that
occur in the FHG expansion, have a translation property that can be exploited to
our benefit to reduce the numerical load. This is now explained in detail. Using
the translation formulae for Hermite polynomials, Eq. (5.35), we can write the time
shifted polynomials as,

Hp (t− tm) =
p∑

k=0

(
p
k

)
(−2tm)p−kHk(t). (5.69)

This allows us to expand the time shifted Hermite polynomial vector as (Note that
the final index of the Hermite polynomials has been extended by one to n+ 1 for
notational convenience),

h(t− tm) =


H0 (t− tm)
H1 (t− tm)

...
Hn (t− tm)

 = L(−2tm)


H0 (t)
H1 (t)

...
Hn (t)

 = L(−2tm)h(t), (5.70)

where the lower diagonal matrix, L(x), is defined as,

L(x) =



1 0 0 · · · 0 0
x 1 0 · · · 0 0
x2 2x 1 · · · 0 0
x3 3x2 3x 1 ... ...
... ... ... . . . . . . 0
xn nxn−1 n(n−1)

2 xn−1 · · · nx 1


. (5.71)
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The specific form of this lower diagonal matrix is not just reminiscent of the
binomial expansion and Pascal’s triangle, it is exactly just that! and this is an
extreme coincidence. The lower triangular matrix, L, and upper triangular matrix,
U = LT , and the symmetric, S = LLT = LU, (Known as Pascal’s Matrices, [131]
due to the similarity with Pascal’s triangle since they all contain the binomial
coefficients). If, x = 1, then we obtain Pascal’s triangle in the lower diagonal of
the matrix,

L(1) =



1 0 0 0 0 · · · 0
1 1 0 0 0 · · · 0
1 2 1 0 0 · · · 0
1 3 3 1 0 · · · 0
1 4 6 4 1 . . . ...
... ... ... ... . . . . . . 0

1 n

(
n
2

) (
n
3

)
· · · n 1


. (5.72)

This matrix has the following beautiful property,

L = L(1) = exp D, (5.73)

where,

D =



0 0 0 0 0 · · · 0
1 0 0 0 0 · · · 0
0 2 0 0 0 · · · 0
0 0 3 0 0 · · · 0
0 0 0 4 0 . . . ...
... ... ... ... . . . . . . 0
0 0 0 0 · · · n 0


, (5.74)

in other words, it is equal to an (n + 1) × (n + 1) matrix with 1, 2, . . . , n in the
first subdiagonal. In addition,

L(x) = [exp D]x = exp (xD) , (5.75)

so that,
L(x) = Lx, (5.76)

D = subdiag
([

1 2 3 · · · n
])

and DT = superdiag
([

1 2 3 · · · n
])
,

dim D = n+1, which are both nilpotent, i.e., Dn+1 = 0. Also note that, det L(x) =
det U(y) = det S(z) = 1, and are therefore all unimodular. All lower triangular
matrices commute with each other and all upper triangular matrices commute as
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well, so that addition of the exponents are allowed. However, the product of a
lower and upper triangular matrix does not commute so that the addition of the
exponents is forbidden. Whereas,

L(x) = exp [xD] = [exp D]x = [L]x , (5.77)

and
U(x) = LT (x) = exp

[
xDT

]
=
[
exp DT

]x
= [U]x , (5.78)

We note that,
P = LLT = LU, (5.79)

but,
P(x) = L(x)U(x) = [L]x [U]x 6= [LU]x = Px. (5.80)

because the matrices do not commute [L,U] 6= 0. This is a very important result
used in the numerical calculation of the various matrix exponents

P(x) 6= Px (5.81)

The Hermite polynomial vector Eq. (5.70), using Eq. (5.75), can therefore be ex-
panded as,

h(t− tm) =
[
e−2tmD

]
h(t) (5.82)

hT (t+ tk) = hT (t)
[
e2tkDT

]
.
Employing the time translation property of the Hermite polynomials Eq. (5.31)
with Eq. (5.106) and noting that, Φ(t), are the HG polynomials also includes the
Gaussian functions, i.e., with proper scaling the temporal FHG polynomials can
be written in terms of this notation as,

Ψm,n(t) = eitωnΦ(t− tm) (5.83)

= eitωn (2σ)−
1
4 e−

(t−tm)2
4σ Ch[(t− tm)/

√
2σ]

Φ(t− tm) = e
−
t2m
4σ + tmt

2σ L−2tm/
√

2σΦ(t) (5.84)

Our Fourier-Hermite-Gauss atom polynomials in vector notation is given by,

Ψm,n(t) = eitωnΦ(t− tm). (5.85)
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Of course we also have the transpose of, Φ(t−tm), which can similarly be expanded
as,

ΦT (t− tm) = e
−
t2m
4σ + tmt

2σ ΦT (t)
(
L−2tm/

√
2σ
)T

(5.86)

which gives us the following relationship amongst the representation expansion
coefficients, from Eq. (5.110) and Eq. (5.111),

aTo,n = e
−
t2m
4σ + tmt

2σ aTm,nL−2tm/
√

2σ. (5.87)

One can now argue that we have just replaced the numerical cost with the equally
costly calculation of the Pascal’s matrix. But not so if you recognize that, since
we have equally spaced time steps say, ∆t, and that each time step in the program
is just an integer multiple of this increment, i.e., tk = k∆t then we only have to
calculate two Pascal’s matrices, namely, L±t = L(±2∆t/

√
2σ), (actually only one,

since by Corollary 5.4.7, L−t = L−2∆t/
√

2σ = GLtG = L−1
t ) and all other required

matrices are just integer multiples of these matrices.

5.3.2.1. Temporal HG polynomials

Let (note that this expansion is with respect to the center angular frequency, ωo),

Am(t) =



aT
m,K/2e

iω
K/2 t

...
aT

m,1e
iω1t

aT
m,oe

iωot

aT
m,−1e

iω−1t

...
aT

m,−K/2e
iω−K/2t


; Ao(t) =



aT
o,K/2e

iω
K/2 t

...
aT

o,1e
iω1t

aT
o,oe

iωot

aT
o,−1e

iω−1t

...
aT

o,−K/2e
iω−K/2t


, (5.88)

and that the subindex, m, is with respect to the time lattice. Now defining,

Lt = L(2∆t/
√

2σ). (5.89)

Then by Eq. (5.87), with,

Ao(t) = e
−
t2m
4σ + tmt

2σ Am(t)L−mt (5.90)
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The signal representation Eq. (5.58) then becomes (to = 0),

ε(t) =
K/2∑

m=−K/2
êTnAm(t)Φ(t− tm) (5.91)

=
K/2∑

m=−K/2
êTne

−
t2m
4σ + tmt

2σ Am(t)L−mt Φ(t)

=
K/2∑

m=−K/2
êTnAo(t)Φ(t),

where, ên, is the standard orthonormal basis vector (zero everywhere with 1 in the
nth-position).

5.3.2.2. Spectral HG polynomials

Similarly the spectral HG polynomials can be recast into the following form,

Φ̃(ω − ωo) = (2σ)
1
4 e−σ(ω−ωo)2Ch[

√
2σ(ω − ωo)]

Φ̃(ω − ωn) = (2σ)
1
4 e−σ(ω−ωn)2Ch[

√
2σ(ω − ωn)]

= (2σ)
1
4 e−σ(ω−ωo−ωno)2Ch[

√
2σ(ω − ωo − ωno)]. (5.92)

A similar argument and calculation can be used to generate the equivalent fre-
quency coefficients. For numerical purposes the expansion must be taken over the
central angular frequency, ωo (or ωo = ωmin as is done in the von Neumann basis.
The choice must then just be consistently adhered to). We specifically refer to
these central frequency as, ωo = ωc, since it then corresponds to the time center
as does, t = 0. For numerical purposes it is desirable to keep the exponents on the
Pascal matrices as small as possible. The maximum exponents in the temporal
domain is then equivalent, ±T/2. Referencing to the central frequency the max-
imum exponents in the spectral basis is then equivalent to, ±Ω/2. The angular
frequency formula are given by,

Φ̃(ω − ωn) = e
−σω2

no+2σ(ω−ωo)ωnoL−2
√

2σωnoΦ̃(ω − ωo) (5.93)

where, ωno = ωn − ωo, which gives us the following relationship amongst the
expansion coefficients of the representation

aTm,o = aTm,ne
−σω2

no+2σ(ω−ωo)ωnoL−2
√

2σωno . (5.94)
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Let,

Bn(ω) =



aT

K/2,ne
−it

K/2 (ω−ωn)

...
aT

−1,ne
−it−1(ω−ωn)

aT
o,ne

−it0(ω−ωn)

aT
−1,ne

−it−1(ω−ωn)

...

aT

−K/2,ne
−it−K/2 (ω−ωn)


; Bo(ω) =



aT

K/2,oe
−it

K/2 (ω−ωo)

...
aT

−1,oe
−it−1(ω−ωo)

aT
o,oe

−it0(ω−ωo)

aT
−1,oe

−it−1(ω−ωo)
...

...

aT

−K/2,oe
−it−K/2 (ω−ωo)


, (5.95)

and that the subindex, n, is with respect to the frequency lattice. Notice that we
have defined the above matrices, Bn, n = −K

2 , . . . ,−1, 0, 1, . . . , K2 , with respect to
the central frequency, ωo.

Then defining,
Lω = L(2

√
2σ∆ω), (5.96)

and inserting this new notation we obtain,

Bn(ω) = e
σω2
no−2σ(ω−ωo)ωnoBo(ω)Ln

ω (5.97)

The spectral signal representation Eq. (5.126) then becomes (ωo = ωc)

ε̃(ω) =
K/2∑

n=−K/2
êTmBn(ω)Φ̃(ω − ωn) (5.98)

=
K/2∑

n=−K/2
êTmBo(ω)Φ̃(ω − ωo).

5.4. The Fourier-Hermite-Gauss Representation

As was proven by Perelomov in [122], the von Neumann basis is complete but
not over complete. The over-completeness of FHG polynomials does present an
unnecessary complication. Let us investigate the orthogonality of a set of these
basis functions leaving the coefficients unspecified, but bearing in mind that they
may be manipulated to accomplish our goal of establishing a reduced complete
basis TFR.
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5.4.1. Temporal FHG Basis Functions

Before proceeding, we rather rewrite the basis functions Eq. (5.62) in vector nota-
tion as,

βm,n(t) = cTm,neitωnΦ(t− tm) where cTm,n ∈ CK . (5.99)

Remember this set, βm,n(t), is a selected subset (by means of cTm,n) of the full FHG
basis set, reduced to satisfy the conditions of completeness and orthogonality.
Using the Hermite translation formula, Eq. (5.84), with the correct scaling we
have,

βm,n(t) = cTm,neitωne
−
t2m
4σ + tmt

2σ L−2tm/
√

2σΦ( t√
2σ

) (5.100)

The total dimension of the temporal FHG basis functions K ×K = K2.

5.4.2. Spectral FHG Basis Functions

From the linearity of the Fourier transform we note that, F {βm,n(t)} = β̃m,n(ω),

β̃m,n(ω) = cTm,ne−itm(ω−ωn)Φ̃(ω − ωn) where cTm,n ∈ CK (5.101)
Using the Hermite translation formula, Eq. (5.93), with the scaling specifically
included, we have,

β̃m,n(ω) = cTm,ne−itm(ω−ωn)e
−σω2

no+2σ(ω−ωo)ωnoL−2
√

2σωnoΦ̃[
√

2σ(ω − ωo)] (5.102)

The total dimension of the spectral FHG basis functions K ×K = K2.

5.4.3. The FHG Overlap Integral

As discussed earlier an FHG overlap integral can then be defined as, similar to
the von Neumann TFR, Eq. (3.84), as,

Tk,l
m,n

= 〈βm,n(t)|βk,l(t)〉∆=

ˆ ∞
−∞

β∗m,n(t)βk,l(t) dt (5.103)

The dimension of the FHG overlap matrix is K2 ×K2..

T(m,n),(k,l) = c†m,n

(ˆ ∞
−∞

Ψ∗m,n(t)ΨT
k,l(t) dt

)
ck,l (5.104)
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where, the † denotes the complex conjugate transpose operation or Hermitian
operation. This is derived completely in Subsection 5.4.6 with the result,

Tk,l
m,n

= c†
m,n
e
− 1

8σ t
2
mk
−σ2 ω

2
ln
− 1

2 iωln(tm+tk)
L
−
tmk√

2σ
−i
√

2σωln
U

tmk√
2σ
−i
√

2σωln
c
k,l

(5.105)

The dimension of the lower and upper Pascal matrices is K ×K, while dim(T) =
K2 ×K2.. Remember that, Tk,l

m,n
, is just a component of this matrix.

Equivalently, this can also be calculated with FHG spectral basis, Eq. (B.30), with
the result,

Wk,l

m,n
= c†

m,n
e
− 1

8σ t
2
mk
−σ2 ω

2
ln
− 1

2 iωln(tm+tk)
L
−
√

2σωln−i
tmk√

2σ U
√

2σωln−i
tmk√

2σ c
k,l

(5.106)

Although there is an unexpected difference between the two methods of calculation
Theorem 5.4.8 actual proves that the two matrices are similar.

5.4.4. The Fourier-Hermite-Gauss TFR

Similar to the von Neumann TFR, Eq. (3.100), we have a Fourier-Hermite-
Gauss Time-Frequency-Representation given by,

Am,s =
∑
k,l

[
Tk,l
m,s

]−1
ˆ ∞
−∞

β∗k,l(t)ε(t) dt (5.107)

Or, equivalently (cf. Eq. (3.101)) in terms of the FHG spectral basis,

Am,s =
∑
k,l

[
Wk,l

m,s

]−1
ˆ ∞
−∞

β̃∗k,l(ω)ε̃(ω) dω (5.108)

5.4.5. The FHG Signal Reconstruction

The signal reconstruction, similar to Eq. (3.102) and Eq. (3.103), is then given
by,

ε(t) =
∑
m,s

Am,sβm,s(t)
F⇐⇒ ε̃(ω) =

∑
m,s

Am,s β̃m,s(ω) (5.109)
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5.4.6. The Fourier-Hermite-Gauss Overlap Integral

We fully derive the temporal overlap matrix in this subsection. Considering that
the whole concept of FHG TFR is novel, this to also unique to this dissertation.
The overlap integral Eq. (5.104) will be developed in three parts. We, firstly, note
the Hermite polynomials are all time shifted,

Tk,l
m,n

= c†m,n

(ˆ ∞
−∞

e−itωnΦ(t− tm) eitωlΦT (t− tk) dt
)

ck,l

= c†m,n

(ˆ ∞
−∞

Φ(t− tm) ΦT (t− tk)e−itωnl dt
)

ck,l (5.110)

where have made use of the shorthand,

ωnl
∆= ωn − ωl. (5.111)

The generalized FHG spectral basis is defined by,

β̃m,n(ω) = cTm,ne−itm(ω−ωn)Φ̃(ω − ωn) where cTm,n ∈ CK . (5.112)

The spectral overlap matrix is given by,

Wk,l

m,n
= c†m,n

(ˆ ∞
−∞

eitm(ω−ωn)Φ̃(ω − ωn) e−itk(ω−ωl)Φ̃T (ω − ωl) dω
)

ck,l

= c†m,neitkωl−itmωn
(ˆ ∞
−∞

Φ̃(ω − ωn) Φ̃T (ω − ωl)eitmkω dω
)

ck,l, (5.113)

where, tmk = tm − tk. The results of this spectral overlap matrix are given in
Eq. (B.30).

Part I

We are now in a position to evaluate the integral of the overlap matrix Eq. (5.110),
ˆ ∞
−∞

Ψ∗m,n(t)ΨT
k,l(t) dt =

ˆ ∞
−∞

Φ∗(t− tm) ΦT (t− tk)e−itωnl dt, (5.114)

118

Stellenbosch University  https://scholar.sun.ac.za



5.4 The Fourier-Hermite-Gauss Representation

with the integrand given by, (ignoring the HG normalization constants, 2−
p
2 (p!)−

1
2 π
− 1

4 ,
which is p dependent and also neglecting the time scaling, which we shall include
at a later stage),

Ψ∗m,n(t)ΨT
k,l(t) = e−

1
2 (t−tm)2− 1

2 (t−tk)2−iωnlth(t− tm)hT (t− tk). (5.115)

Subsection 5.3.2 showed that it is possible to handle the two time translations, tm
and tk, for the Hermitian polynomial vectors, h. The quadratics in the exponential
still represent a bother. Remembering that this is an integrand we transform to
an averaged translation time,

τ = t− tm + tk
2 (5.116)

so that,

t− tm = τ − tmk
2 and t− tk = τ + tmk

2 . (5.117)

Inserting Eq. (5.116) and Eq. (5.117) into the integrand of Eq. (5.115) the quadratic
exponent then becomes,

−1
2

(
τ − tmk

2

)2
− 1

2

(
τ + tmk

2

)2
− iωnl

(
τ + tm + tk

2

)
= (5.118)

−τ 2 − iωnlτ −
(
tmk
2

)2
− iωnl

(
tm + tk

2

)

With the aid of Eq. (5.116), Eq. (5.117) and Eq. (5.118) the overlap matrix trans-
forms to,
ˆ ∞
−∞

Ψ∗m,n(t)ΨT
k,l(t) dt = e−( tmk2 )2

−iωnl( tm+tk
2 )
ˆ ∞
−∞

h(τ−tmk2 )hT (τ+tmk2 )e−τ2−iωnlτ dτ.

(5.119)
Using the translation property of the Hermite polynomials Eq. (5.82), the above
integral becomes,

e−( tmk2 )2
−iωnl( tm+tk

2 )L−tmk
ˆ ∞
−∞

h(τ)hT (τ)e−τ2−iωnlτ dτUtmk (5.120)
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Part II

Now, secondly, let’s just focus on the remaining integral of Eq. (5.120), namely,
ˆ ∞
−∞

[
e−

τ2
2 h(τ)

] [
e−

τ2
2 hT (τ)

]
e−iωnlτ dτ. (5.121)

Now,

h(τ)hT (τ) =
 H0 (τ)

H1 (τ)
...

HN (τ)

 [ H0 (τ) H1 (τ) · · · HN (τ) ] (5.122)

We present this here in detail, because this could not be found in standard reference
books. So generally, we like to evaluate the Fourier transform of the product of
two quantum harmonic oscillator polynomials,

Jnm(ω) =
ˆ ∞
−∞

[
e−

τ2
2 Hn (τ)

] [
e−

τ2
2 Hm (τ)

]
e−iωτ dτ. (5.123)

The generating function of the Hermite polynomials is given by Eq. (5.28). Taking
a second generating function with dummy variable, y, and multiplying the two we
obtain,

e2t(x+y)−(x2+y2) =
∞∑
n=0

∞∑
m=0

Hn(t)Hm(t)x
nym

n!m! . (5.124)

Multiplying the Eq. (5.124) by, e−t2 ,

e−t
2+2t(x+y)−(x2+y2) =

∞∑
n=0

∞∑
m=0

[
e−

t2
2 Hn(t)

] [
e−

t2
2 Hm(t)

]
xnym

n!m! . (5.125)

Now, multiplying by, e−iωt, and integrating with respect to, t,ˆ ∞
−∞

exp
[
−t2 + 2t (x+ y)−

(
x2 + y2

)]
e−iωt dt = (5.126)

=
∞∑
n=0

∞∑
n=0

{ˆ ∞
−∞

[
e−

t2
2 Hn (t)

] [
e−

t2
2 Hm (t)

]
e−iωt dt

}
xnym

n!m! (5.127)

=
∞∑
n=0

∞∑
m=0

Jnm(ω)x
nym

n!m! . (5.128)

Consider the left hand integral in Eq. (5.126) and complete the square of the
exponent of the exponential,

− t2 + 2t (x+ y)−
(
x2 + y2

)
= − [t− (x+ y)]2 + 2xy (5.129)
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and substitute into Eq. (5.126) and change the integration variable,

τ = t− (x+ y) , dτ = dt, (5.130)

then the integral transforms to,

e−iω(x+y)+2xy
ˆ ∞
−∞

e−τ
2−iωτ dτ. (5.131)

The integral in Eq. (5.131) is once again in the form of our standard Gaussian
integral Eq. (3.14), so that Eq. (5.128) becomes,

[√
πe−

ω2
4

]
e−iω(x+y)+2xy =

∞∑
n=0

∞∑
m=0

Jnm(ω)x
nym

n!m! (5.132)

Expanding the left hand exponentials of Eq. (5.132) in terms of a Taylor series,

ex(2y−iω)e−iωy =
∞∑
n=0

xn(2y − iω)n
n!

∞∑
q=0

yq

q! (−iω)q, (5.133)

and using the binomial theorem for (2y − iω)n in Eq. (5.133) (Notice the addition
of (p+ q)! above and below),

ex(2y−iω)e−iωy =
∞∑
n=0

xn

n!

∞∑
q=0

n∑
p=0

2p
(
n

p

)
yp+q

(p+ q)!
(p+ q)!
q! (−iω)n+q−p. (5.134)

The binomial factorial becomes,

(
p+ q

p

)
= (p+ q)!

p!q! , (5.135)

thus,

ex(2y−iω)e−iωy =
∞∑
n=0

xn

n!

∞∑
q=0

n∑
p=0

2pp!
(
n

p

)(
p+ q

p

)
yp+q

(p+ q)!(−iω)n+q−p. (5.136)

Now substitute m = p+ q in the above equation,

ex(2y−iω)e−iωy =
∞∑
n=0

∞∑
m=0


min(n,m)∑
p=0

2pp!
(
n

p

)(
m

p

)
(−iω)n+m−2p

 xn

n!
ym

m! . (5.137)
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Comparing the coefficients Eq. (5.137) with Eq. (5.132) we obtain,

Jnm(ω) =
√
πe−

ω2
4

min(n,m)∑
p=0

2pp!
(
n

p

)(
m

p

)
(−iω)n+m−2p (5.138)

Jnm(ω) =
ˆ ∞
−∞

[
e−

τ2
2 Hn (τ)

] [
e−

τ2
2 Hm (τ)

]
e−iωτ dτ (5.139)

⇓ (5.140)

Jnm(ω) =
√
πe−

ω2
4

min(n,m)∑
p=0

2pp!
(
n

p

)(
m

p

)
(−iω)n+m−2p (5.141)

Remembering that, Jnm, Eq. (5.139), is just an element of a matrix, the structure
of this element with the presence with two binomial coefficients is reminiscent of
the triangular Pascal matrix that we previously investigated in Eq. (5.71). Let us
rewrite this element as,

Jnm(ω) = e−
ω2
4

min(n,m)∑
p=0

[
π

1
4 2

p
2

√
p!
(
n

p

)
(−iω)n−p

] [
π

1
4 2

p
2

√
p!
(
m

p

)
(−iω)m−p

]
.

(5.142)
This is just the product of two of Pascal’s triangles except for the π

1
4 2 p

2
√
p! factor.

It is still, however, possible to factorize this matrix as
ˆ ∞
−∞

[
e−

τ2
2 h(τ)

] [
e−

τ2
2 hT (τ)

]
e−iωτ dτ = e−

ω2
4 L−iωN

1
2 N

1
2
[
L−iω

]T
(5.143)

where, N = diag
(√

π
[

200! 21 · 1! 22 · 2! 23 · 3! 24 · 4 · · · 2n · n!
])

or,

N =
√
π



200! 0 0 0 0 · · · 0
0 21 · 1! 0 0 0 · · · 0
0 0 22 · 2! 0 0 · · · 0
0 0 0 23 · 3! 0 · · · 0
0 0 0 0 24 · 4! ... ...
0 0 0 0 0 . . . 0
0 0 0 0 0 0 2n · n!


. (5.144)

122

Stellenbosch University  https://scholar.sun.ac.za



5.4 The Fourier-Hermite-Gauss Representation

Fortunately, we must still include HG normalization constants for the product in
Eq. (5.143), which just serendipitously happens to be the inverse!

C2 = diag
(

2−p(p!)−1
π
− 1

2
)n
p=0

= N−1

. Because we have an imaginary power, it is easy to see that, if ω ∈ R,[
Liω

]†
= U−iω. (5.145)

and in general we have for, z ∈ C,

[Lz]† = Uz∗ . (5.146)

Therefore the above equation becomes,
ˆ ∞
−∞

Φ(τ)ΦT (τ)e−iωτ dτ = e−
ω2
4 L−iωU−iω (5.147)

Part III

The overlap matrix element Eq. (5.110), with ω = ωnl, can thus be written as,

Tk,l
m,n

= c†
m,n
e
− 1

4 t
2
mk
− 1

4ω
2
ln
− 1

2 iωnl(tm+tk)
L−tmk−iωnlUtmk−iωnlc

k,l
(5.148)

With the correct time scaling, we have,

Tk,l
m,n

= c†
m,n
e
− 1

8σ t
2
mk
−σ2 ω

2
ln
− 1

2 iωnl(tm+tk)
L
−
tmk√

2σ
−i
√

2σωnl
U

tmk√
2σ
−i
√

2σωnl
c
k,l

(5.149)

5.4.7. Spectral Overlap Integral

The spectral HG representation and its subsequent spectral overlap matrix is given
by,

β̃m,n(ω) = e−itm(ω−ωn)Φ̃†(ω − ωn)cm,n where cm,n ∈ CK . (5.150)
Of course, the Hermitian conjugate is then given by, β̃†m,n(ω) = c†m,neitm(ω−ωn)Φ̃†(ω−
ωn), so that,

Wk,l

m,n
= 〈β̃m,n(ω)|β̃k,l(ω)〉 =

ˆ ∞
−∞

β̃†m,n(ω)β̃k,l(ω) dω. (5.151)
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We, firstly, note the Hermite polynomials are all angular frequency shifted,

W(m,n),(k,l) = c†m,n

(ˆ ∞
−∞

eitm(ω−ωn)Φ̃(ω − ωn) e−itk(ω−ωl)Φ̃†(ω − ωl) dω
)

ck,l.

(5.152)
In exactly an equivalent fashion, as the previous the spectral overlap integral is
derived (cf. Appendix Appendix B), the spectral overlap matrix is given by,

Wk,l

m,n
= c†

m,n
e
− 1

4 t
2
mk
− 1

4ω
2
ln
− 1

2 iωln(tm+tk) [
L−ωln−itmk

] [
Uωln−itmk

]
c
k,l
. (5.153)

With the correct scaling we have,

Wk,l

m,n
= c†

m,n
e
− 1

8σ t
2
mk
−σ2 ω

2
ln
− 1

2 iωln(tm+tk)
L
−
√

2σωln−i
tmk√

2σ U
√

2σωln−i
tmk√

2σ c
k,l

(5.154)

Although one would expect that the temporal and spectral overlap matrices to be
equal we note subtle differences in the exponents of the L and U matrices. This
will be addressed in the next Subsection 5.4.8.

5.4.8. Validity of the Overlap Integral

With the choice of, cTm,n =
[

1 0 0 · · · 0
]
,∀m,n, a simple validity check is

to compare, Tk,l
m,n

, with the corresponding von Neumann overlap matrix Eq. (3.90),

Sk,l
m,n

= e−
σ
2 (ωn−ωl)2− 1

2 i(tm+tk)(ωn−ωl)− 1
8σ (tm−tk)2

.

Considering the basis vectors of the FHG TFR as lattice cube this corresponds
to a slice of the cube in a plane section of the front portion. This proves then
that, Tk,l

m,n
= Sk,l

m,n
, at least for the von Neumann TFR. The true test is ac-

complished by the evaluation of the corresponding, Wk,l

m,n
=
〈
β̃m,n(ω)|β̃k,l(ω)

〉
=´∞

−∞ β̃
∗
m,n(ω)β̃k,l(ω) dω and Tk,l

m,n
. It can be shown that,

Wk,l

m,n
= c†

m,n
e
− 1

8σ t
2
mk
−σ2 ω

2
nl
− 1

2 iωnl(tm+tk)
L
√

2σωnl+i
tmk√

2σ U
−
√

2σωnl+i
tmk√

2σ c
k,l

(5.155)

For the purpose of this exercise, great simplification can be obtained if we use
unscaled units, i.e., allow σ = 1

2 , then the overlap integrals can be simplified to,

Tk,l
m,n

= c†
m,n
e
− 1

4 t
2
mk
− 1

4ω
2
ln
− 1

2 iωnl(tm+tk)
L−tmk−iωnlUtmk−iωnlc

k,l
(5.156)
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and
Wk,l

m,n
= c†

m,n
e
− 1

4 t
2
mk
− 1

4ω
2
nl
− 1

2 iωnl(tm+tk)
Lωnl+itmkU−ωnl+itmkc

k,l
. (5.157)

For the general complete FHG TFR lattice cube the overlap matrices we have
select c

i,j
= êk and c

l,m
= ên, so that Wk,l

m,n
can be written as

Wi,j,k

l,m,n
= êTne

− 1
4 t

2
li
− 1

4ω
2
mj
− 1

2 iωmj(tl+ti)L
ωmj+itliU

−ωmj+itli êk (5.158)

Unfortunately equality cannot be proved, but it can only be hoped that the matri-
ces may be similar1. To prove that,Wk,l

m,n
' Tk,l

m,n
, explicit use is made of Corollary

5.4.8 and the following theorem from linear algebra. The Lemmas and the two
Corollaries and resulting Theorem 5.4.9 are specific to this FHG TFR and there-
fore novel to this thesis. In the following corollaries we use the following definitions
(we list all the relations for convenience)

z = ωnl + itmk (5.159)

− iz = tmk − iωnl (5.160)

iz = −tmk + iωnl (5.161)

z∗ = ωnl − itmk (5.162)

− z∗ = −ωnl + itmk (5.163)

− iz∗ = −tmk − iωnl (5.164)

Substituting Eq. (5.159) and Eq. (5.163) into Eq. (5.157), we have,

Lωnl+itmkU−ωnl+itmk = LzU−z∗ . (5.165)

From Eq. (5.156), and substituting Eq. (5.164) and Eq. (5.160), we have,

L−tmk−iωnlUtmk−iωnl = L−iz∗U−iz. (5.166)
1Similarity between two matrices is equivalent to a bases transformation
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Another important property is that for all, z ∈ C,

(Lz)† = Uz∗ (5.167)

In terms of this notation Eq. (5.157) becomes,

[
Wk,l

m,n

]
= e

− 1
4 t

2
mk
− 1

4ω
2
nl
− 1

2 iωnl(tm+tk)
LzU−z∗ (5.168)

and Eq. (5.156),

[
Tk,l
m,n

]
= e

− 1
4 t

2
mk
− 1

4ω
2
ln
− 1

2 iωnl(tm+tk)
L−iz∗U−iz (5.169)

We specifically add the square parentheses in Eq. (5.168) and Eq. (5.169) to indicate
that, without the selection vectors c

k,l
, that they no longer are matrix elements,

but have become matrices in their own right. We now define a few theorems,
definitions, lemmas to try and find a possible relationship between the two overlap
matrices in

[
Wk,l

m,n

]
and

[
Tk,l
m,n

]
.

Theorem 5.4.1. Given any matrix, A ∈ Cn×n, the associated eigenvalues, trace,
determinant and abstract inner product are all invariant under a similarity trans-
formation.

Definition 5.4.2. Two matrices, A,B ∈ Cn×n are similar, A ' B, if there exist a,
C ∈ GL(n,C), det C 6= 0 and A = CBC−1, i.e., are equal by means of a similarity
transformation.

Lemma 5.4.3. Given any, A,B,C,D ∈ Cn×n none of them equal to each other,
then if, A ' B and C ' D, then the matrix product, AC ' BD, if and only if
they are similar by means of the same, E ∈ GL(n,C), det E 6= 0 and A = EBE−1.

Proof. Since, A ' B, there exists, M ∈ GL(n,C), det M 6= 0 and A = MBM−1.
Similarly, since, C ' D there exists a N ∈ GL(n,C), det N 6= 0 and C = NDN−1.
Now the matrix product is given by,

AC =
(
MBM−1

) (
NDN−1

)
= MB

(
M−1N

)
DN−1.

Now this will be similar to BD, if and only if, M−1N = I, which implies by the
uniqueness of matrix inverses that,N = M.
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As simple as the above Lemma 5.4.3 may appear, it is crucial to adhere to it in the
product of similar matrices. It is extremely easy to fall into a trap by using similar
matrices and then assuming they are similar by similarity, even though they are
similar by different matrices and therefore not similar.
It is important to note that the matrix action of a similarity transformation in-
herently has a direction, i.e.,

A = MBM−1,

and the inverse,
B = M−1AM.

Lemma 5.4.4. For all z ∈ C and L, (U) the lower (upper) triangular Pascal
matrix, then, Lz ' Liz, (Uz ' U−iz), with identical similarity transformations,
F, which is an unitary matrix, i.e., FF† = F†F = I.

Proof. Construct,

F =


1 0 0 0 · · · 0
0 i 0 0 · · · 0
0 0 −1 0 · · · 0

0 0 0 −i
...

...
...

...
...

. . .
. . .

 = diag(ik)N−1
k=0 , (5.170)

and, F† = diag((−i)k)N−1
k=0 . Then, FF† = F†F = I. Then,

Lz ' FLzF† = Liz,

Uz ' FUzF† = U−iz.

Lemma 5.4.4 shows that the forward similarity action of the matrix, F, is, Lz →
Liz, i.e., to multiply the exponent with the imaginary number, i, and that its
action on, Uz → U−iz, i.e., to multiply the exponent with, −i.

Lemma 5.4.5. For all, x ∈ R and L, (U) the lower (upper) triangular Pascal
matrix then, L−x ' Lx, (U−x ' Ux), with the similarity transformation satisfying,
G2 = I. Furthermore for, z ∈ C, then, Lz ' L−z and Lz∗ ' L−z∗. (Uz ' U−z
and Uz∗ ' U−z∗).

Proof. Here G = diag((−1)k)k=N−1
k=0 .

The above Lemma 5.4.5 shows that the similarity action of the matrix, G, is
Lz → L−z (Uz ' U−z), i.e., to multiply the exponent with -1.
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Lemma 5.4.6. The following relationships hold between the F and G:

1. G2 = I

2. FF† = F†F = I

3. GFG = F

4. GF†G = F†

5. F†GF† = FGF = I

6. F2 = (F†)2 = G

7. [F,G] =
[
F†,G

]
= 0

8. F∗ = F†

The proof of this Lemma 5.4.6 is a simple exercise in matrix multiplication. These
three Lemmas, however, imply the following Corollary 5.4.7.

Corollary 5.4.7. For all z ∈ C and L, (U) the lower (upper) triangular Pascal
matrix, then with the forward similarity action of F, i.e., FLzF† = Liz, we have,
Lz ' Liz, L−z ' L−iz and Lz∗ ' Liz∗, L−z∗ ' L−iz∗ . With the additional action of
G, (which is direction independent due property 6), the two sets become individu-
ally similar. For the upper triangular Pascal matrix with forward action of F, we
have Uz ' U−iz, U−z ' Uizand Uz∗ ' U−iz∗, U−z∗ ' Uiz∗ . With the additional
action of G, the two sets become individually similar.

Proof. The similarities are easy enough to proof, but due to commutativity of the
lower triangular Pascal matrix,

Lz = Lx+iy = LxLiy. (5.171)

Furthermore if, A ' B, then ∃C ∈ GL(n,C), such that, A = CBC−1, then for
any, D ∈ GL(n,C), we have, DA = DCBC−1. This shows as that,

Lz∗ = Lx−iy = LxGLiyG.

By Lemma 5.4.3 this not similar to Lz, i.e.,

Lz � Lz∗ ,

and a similar result for the upper triangular Pascal matrices.
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The above Corollary 5.4.7 shows that complex conjugation splits the Pascal ma-
trices into two groups.

Corollary 5.4.8. For all, z ∈ C and L, (U) the lower (upper) triangular Pascal
matrix then, LzU−z∗ ' LizUiz∗.

Proof. Note that in the matrix products,

LzU−z∗ ,

and fall into each of the different categories,

L−iz∗U−iz.

This can easily be remedied by taking the complex conjugate of the second equa-
tion, (

L−iz∗U−iz
)∗

= LizUiz∗ .

A direct consequence of the previous Corollary 5. 4. 7 is that by the forward
action of F that

LzU−z∗ ' LizUiz∗ =
(
L−iz∗U−iz

)∗
.

Now we see by Corollary 5.4.8 that by the inclusion of the exponential factor in
Eq. (5.168) and Eq. (5.169) that

Theorem 5.4.9. The spectral and temporal overlap matrices are related by the
forward action of F by, [

Wk,l

m,n

]
'
[
Tk,l
m,n

]∗
. (5.172)

for all m,n and k, l.

Proof. Direct consequence of Corollary 5.4.8 and the previous Lemmas.

This is a rather a reverse way to prove our final Theorem 5.4.9, but the various
Lemmas and Corollaries are all necessary for the proof, so that the proof leads to
the Theorem 5.4.9. Apparently this roundabout way is how most mathematical
theorems are established. Now, this relationship gives us an indication how to
actually choose our selection coefficients, c†

m,n
.
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5.5. Introduction to Frame Theory

The HG basis vectors have essentially this additional freedom of the choice of the
basis coefficient vectors, cm,n, which might be very useful. The only prerequisite
is that the selected basis coefficient matrix, C =

[
cTm,n

]
, with dim C =

√
N ×√

N , must ensure that the overlap matrix, T, is invertible. The fact that only
one column in the C matrix is non-zero for the Neumann TFR, given that if it
were possible to factorize the constant coefficients and Pascal matrices in two, is
probably the origin of the ill-conditioning of the von Neumann overlap matrix.
This allows for great analytical latitude of this TFR and the authors, as yet,
have not utilized to its full potential. A diagonal plane slice of the HG basis
resulting in a diagonal plane section will definitely exploit the orthonormality of
the HG polynomials. A generalization of the idea of a basis to sets which may
be linearly dependent is known as a frame of a vector space V with an inner
product. Since the HG basis is an overcomplete basis the theory of frames is the
natural setting for any further study [34, 123]. Figure 5.3 represents the HG basis
as a cube. In Figure 5.3(a) taking the front face of the cube would retrieve the von
Neumann basis, whereas Figure 5.3(b) and Figure 5.3(c) would represent a spectral
and temporal diagonal frame dissection, respectively, and, when projected to the
front surface, then represents the TFR. This projection naturally occurs through
the use of the overlap integrals (matrices), Eq. (5.149) and Eq. (5.154). The TFR
are then given by Eq. (5.107),

Am,s =
∑
k,l

[
Tk,l
m,s

]−1
ˆ ∞
−∞

β∗k,l(t)ε(t) dt

, and Eq. (5.108)

Am,s =
∑
k,l

[
Wk,l

m,s

]−1
ˆ ∞
−∞

β̃∗k,l(ω)ε̃(ω) dω.

Figure 5.3.: (a) Front face of cube von Neumann and FHG basis (b) Vertical
diagonal slice of cube FHG basis (c) Horizontal diagonal slice of cube FHG basis
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For example, if we choose our frame to correspond with Figure 5.3(c) a horizontal
diagonal slice of the FHG basis, then the basis coefficient matrix, C =

[
cTm,n

]
. has

the following form for the temporal FHG basis,

cTm,n = êTn , ∀m. (5.173)

From the temporal FHG basis Eq. (5.100),

βm,n(t) = cTm,neitωne
−
t2m
4σ + tmt

2σ L−2tm/
√

2σΦ( t√
2σ

)

= êTneitωne
−
t2m
4σ + tmt

2σ L−2tm/
√

2σΦ( t√
2σ

)

= eitωne
−
t2m
4σ + tmt

2σ L−2tm/
√

2σe
− t

2
4σCnHn( t√

2σ
), (5.174)

where we have made use of the definition of Φ(t), in Eq. (5.45) and Eq. (5.46). The
effect of this choice of frame on the overlap matrix Eq. (5.149) is,

Tk,l
m,n

= e
− 1

8σ t
2
mk
−σ2 ω

2
ln
− 1

2 iωnl(tm+tk)
(

êTnL
−
tmk√

2σ
−i
√

2σωnl
U

tmk√
2σ
−i
√

2σωnl
êl
)
. (5.175)

It is important to note that the unit basis vectors, ên and êl, is indexed on the
spectral indices, n and l. The effect of premultiplying the overlap matrix is in effect
selecting the n, l, component of the matrix. The premultiplied transposed unit
vector selects the row and the post multiplied vector select the column component.
The temporal overlap matrix then becomes,

Tk,l
m,n

= e
− 1

8σ t
2
mk
−σ2 ω

2
ln
− 1

2 iωnl(tm+tk)
(

L
−
tmk√

2σ
−i
√

2σωnl
U

tmk√
2σ
−i
√

2σωnl
)
n,l

. (5.176)

A note of caution must be highlighted here. In defining the Hermite-Gauss poly-
nomial in Eq. (5.45) and Eq. (5.46) we explicitly defined that the dimension of the
Hermite polynomials start at 0 and step through

√
N − 1 dimension. The time

indices and inherited from the von Neumann basis Eq. (3.65),

tm = −T/2 + (m− 1
2)∆t m = 1, · · · , K =

√
N.

The same applies to the spectral indices obtained from Eq. (3.66), (See also Eq. (5.97)
and the discussion given there),

ωn = ωmin + (n− 1
2)∆ω n = 1, · · · , K =

√
N.
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For the frame that corresponds with Figure 5.3(b), the use of the spectral FHG
basis is more appropriate. Using Eq. (5.100),

β̃m,n(ω) = cTm,ne−itm(ω−ωn)e
−σω2

no+2σ(ω−ωo)ωnoL−2
√

2σωnoΦ̃[
√

2σ(ω − ωo)],

and choosing the basis coefficient frame,

cTm,n = êTm, ∀n, (5.177)

we obtain,

β̃m,n(ω) = cTm,ne−itm(ω−ωn)e
−σω2

no+2σ(ω−ωo)ωnoL−2
√

2σωnoΦ̃[
√

2σ(ω − ωo)]

= êTme−itm(ω−ωn)e
−σω2

no+2σ(ω−ωo)ωnoL−2
√

2σωnoΦ̃[
√

2σ(ω − ωo)]

= e−itm(ω−ωn)e
−σω2

no+2σ(ω−ωo)ωnoL−2
√

2σωnoe−σ(ω−ωo)2−
CmHm[

√
2σ(ω − ωo)],

(5.178)

and using Eq. (5.178) the resulting effect on the spectral overlap matrix Eq. (5.154)
is,

Wk,l

m,n
= e

− 1
8σ t

2
mk
−σ2 ω

2
ln
− 1

2 iωln(tm+tk)
(

L
−
√

2σωln−i
tmk√

2σ U
√

2σωln−i
tmk√

2σ

)
m,k

. (5.179)

Note that here the indexing is over the temporal indices, m and k.With the correct
scaling we find that (See Eq. (6.2))

√
2σωln = tln√

2σ
. (5.180)

5.6. Application Results

Since the advent of laser in the 1960’s the selective control of molecular bonds were
realized with various complications (please also refer to Eq. (Chapter 4) were this
also discussed). The importance of ultra-short laser pulses was soon recognized.
Two main mechanisms for molecular control were developed, namely the pump-
dump scheme of Tannor and Rice [47, 48] and the optical quantum interference of
Brumer and Shapiro [44, 45] (cf. Eq. (Section1.2)). One of the pioneer’s of the field
of femtochemistry is A. H. Zewail [132, 133, 134] An extensive overview of quantum
control techniques is given in [1]. A simulation program of an open-loop quantum
coherent control of an octahedral molecule’s interaction with IR ultra-short laser
pulse were developed in [55, 39, 135]. The simulation involves a femtosecond
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Gaussian IR laser pulse passing through a 4f-SLM (Spatial Light Modulator) pulse
shaper [136] to coherently shape the pulse to produce the maximum statistical
population of a selected rovibrational level of the von Neumann density matrix
ρ(t) of the octahedral molecule under consideration.
A 640 pixel f4-SLM was simulated and therefore a corresponding 625 = 25 × 25
von Neumann lattice was chosen. The IR active ν3-rovibrational mode frequency
levels of the octahedral molecule and there IR dipole symmetry forbidden transi-
tions (dotted lines) are shown in Figure 5.4(a). Due to laser frequency offset, all
other IR rovibrational interactions can be ignored. Including the quasi-continuum
(QC) this results in 17 different energy levels and therefore a IR dipole interac-
tion Hamiltonian of 17 × 17. The rovibrational levels are grouped together into
0, 1, 2, 3, 4, QC population levels. Initially it is assumed that the molecule is in
canonical Boltzmann quantum statistical distribution. A genetic algorithm op-
timization program is used to selectively maximize the second population level
of the octahedral molecule by solving the time evolution Liouville-von Neumann
equation in the Dirac-interaction picture,

i~
d

dt
ρI(t) = [HID(t), ρI(t)] , (5.181)

where, HID(t) = exp
(
i
~Hmt

)
HI(t) exp

(
− i
~Hmt

)
, and Hm, is the unperturbed

molecular Hamiltonian and HI(t) = χ<[εslm(t)], is the dipole interaction Hamil-
tonian matrix, εslm(t), is the modulated electric field of the laser pulse after the
SLM and, χ =

´
ψ∗aD · ε̂ψb dτ , is the interaction dipole matrix of the molecule

(this corresponds to the long wavelength or dipole approximation and the rotating
wave approximation). D = ∑

j qjrj, is the sum of the position vectors and charges
of the nuclei of the molecule. The time evolution of the various ν3-rovibrational
population levels with the optimized electric field is shown in Figure 5.4(b). This
is a typical result obtained from the optimal genetic algorithm control of the selec-
tive excitation of rovibrational levels, here the second rovibrational is selectively
excited to about 87%, and is used to compare the various TFRs.
One of the effects of the SLM is to temporally broaden the initial Gaussian pulse
from a 150 fs Full-Width-Half-Maximum (FWHM) to approximately 1.5 ps as can
be seen in Figure 5.5(a). Concurrently, the SLM spectrally shapes the electric field.
Figure 5.5(b) shows the re-sampled spectral field, required for the von Neumann
and FHG bases, as well as indicating the transitions frequencies of the XY6, ν3-
rovibrational levels in blue circles. The broad shape over the transition frequencies
is indicative of the underlying coherent correlation excitation process.
Originally, Wigner [63] developed his transform in the quantum mechanics (QM)
qp-space and is an invaluable transform for representing QM wave functions, cf.
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Figure 5.4.: XF6 rovibrational energy levels with forbidden transitions shown
in dashed lines. (b) Selective excitation of the XY6 second ν3-rovibrational
population level.

Schleich [35] and Tannor [8]. Given a time signal, ε(t), the Wigner-Ville TFR
[65, 33] is defined as,

Ws(t, ν) =
ˆ ∞
−∞

ε∗(t− τ

2)ε(t+ τ

2)e−2πiντ dτ (5.182)

and the Husimi TFR [90] (originally, also in QM qp-space, see Schleich [35]), is
the double convolution of the Wigner-Ville TFR with a Gaussian pulse,

Hs(t, ν;α, γ) =
ˆ ∞
−∞

ˆ ∞
−∞

Gαγ(u− t, θ − ν))Ws(u, θ) dudθ (5.183)

where,

F (t, ν) = Gαγ(t, ν) = 4
α

exp
[
− 1
α

(
ν2

γ2 + 4γ2t2
)]

. (5.184)

Figure 5.6(a) depicts the Wigner-Ville TFR Eq. (5.182) of our representative signal.
Clearly, the artifacts of the Wigner-Ville TFR can be seen here as negative values in
a bilinear representation, appropriately earning it the name of a quasi-probability
distribution. In Figure 5.6(b) the Husimi TFR Eq. (5.183) gets rid of the unwanted
“negative” interference terms at the cost of smearing the signal somewhat.
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The von Neumann TFR Eq. (3.100) is shown in Figure 5.7(a) on a somewhat
discrete 25x25 von Neumann lattice. The reconstructed spectral electric field
Eq. (3.103) from the von Neumann TFR is given in Figure 5.7(b). The reconstruc-
tion was performed without using spectral periodic boundary conditions therefore
one finds small recurring misfits to the true signal. In Dimler et al. [137], they
have shown that the reconstruction is drastically improved by employing periodic
boundary conditions.
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Figure 5.7.: (a) The von Neumann TFR (b) von Neumann spectral reconstruc-
tion of the electric field
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Figure 5.8.: (a) FHG TFR Amplitude (b) FHG spectral reconstruction of the
electric field

The corresponding Fourier-Hermite-Gauss TFR is shown in Figure 5.8(a). Being
an overcomplete basis one can conceive that the reconstruction of the spectral elec-
tric field be of a higher quality, which is shown in Figure 5.8(b) using Eq. (5.126).
Although one could go on tirelessly showing all forms temporal and spectral am-
plitudes and phase plots of this TFR and compare it with various other TFRs, it
is only the intention of the authors to show the operational applicability and to
represent the mathematical detail of the FHG TFR.
Figure 5.9(a) shows the first 7 HG planes summed together and Figure 5.9(b) the
spectral phase reconstruction. Figure 5.10(a) demonstrates the Fourier-Hermite-
Gauss temporal reconstruction and Figure 5.10(b) Hermite-Gauss temporal phase
reconstruction. Figure 5.11 and Figure 5.12 are included here for reference purposes
and comparison with Figure 5.8, Figure 5.9 and Figure 5.10 as another example.
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Firstly, they represent a different electric field signal, with virtually the same
results as the electric field signal used in the previous figures. This illustrates
the sensitivity of the process to amplitude and phase. Furthermore, they are all
constructed from a spectral and temporal electric field signals of 625 data points.
In the next Chapter 6, this electric field signal is used throughout as a reference
signal.
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Figure 5.9.: (a) FHG TFR Amplitude First 7 (b) FHG spectral phase
reconstruction
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Figure 5.10.: (a) FHG temporal reconstruction (b) FHG temporal phase
reconstruction
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Figure 5.12.: (a) FHG Temporal Amplitude Reconstruction (b) FHG Temporal
Phase Reconstruction

138

Stellenbosch University  https://scholar.sun.ac.za
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6.1. Introduction

This Chapter originated as an outflow and extension to the previous Chapter 5,
after trying to select a frame basis by the methods outlined in Section 5.5. While,
using the full FHG basis allowed for faithful signal reconstruction, as illustrated in
Figure 5.8(b), Figure 5.9(b), Figure 5.10(a), Figure 5.10(b), Figure 5.11(c),
Figure 5.11(d), Figure 5.12(a) and Figure 5.12(b), to my shock and horror the frame
methods worked awfully, for both the temporal and spectral frame choices. The
results are shown in Section 6.2. By contrast, the simple addition of the spectral
signal correlation cube of the first few HG planes, worked wonderfully as depicted
in Figure 5.9.

This necessitated the calculation of the overlap matrices. The lower and upper
triangular Pascal matrices, which proved so useful analytically, are unfortunately
highly numerically unstable. They suffer from finite digit representation and as
the dimension grows the elements explode. A major catastrophe. The calculation
of the overlap matrices by means of FFTs where then accomplished, but at a
numerical cost. In this method it was discovered that to actually determine the
overlap matrices, it is necessary to double the bandwidths, which is described in
Section 6.3 on periodicity and scaling. Without this doubling of the bandwidths,
serious overlapping of the FHG bases occur at the edges of the von Neumann grid
and just gets worse as the order of the HG increase. This is natural, since the
support of the HG polynomials increase with their order.

Since the temporal and spectral signal reconstruction are magnificently performed
by the methods given in Section 6.7, without even calculating an overlap matrix, it
indicated that the complete FHG TFR lattice cube already contained all the neces-
sary information. It was then deemed necessary to make a thorough investigation
of the complete FHG TFR lattice cube, Section 6.4. One of the major advantages
of introducing the Pascal matrices was, the then perceived numerical advantage of
not having to calculate all the numerical intensive HG polynomials. As the tem-
poral and spectral FHG bases are all just temporally and spectrally shifted, it was
then recognized that only the central HG polynomial needs to be calculated and
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that the other HG polynomials can be generated by simply digitally shifting the
polynomials as required. A further great numerical advantage and perception was
achieved by unscaling FHG bases and signals, thereby placing the temporal and
spectral bases on level playing fields. Applying Fourier properties, it was seen that
we are actually calculating correlations. The background to the unscaled FHG
signal correlation is given in Section 6.5. New functions were discovered to aid in
the calculation of the correlations. This was conceptually seen so important that
an alternative derivation of the unscaled signals is given in Subsection 6.5.1.
A thorough study is then performed of the complete FHG overlap matrices in
Section 6.6. Thereafter numerical studies are done in Subsection 6.6.1 of the com-
plete FHG bases correlation cube to effectively gain insight. A lot of interesting
new results are revealed there.
The method employed here to reconstruct the temporal and spectral signals di-
rectly from the temporal and spectral FHG correlation lattice cubes is given in
Section 6.7.
The rest of the chapter, in Section 6.8, is dedicated to the construction of a FHG
TFR from the complete spectral and temporal FHG TFR lattice cubes. In devel-
oping this Chapter, the extent was totally underestimated. It cost an enormous
great effort and so many new programs were written to test the theory. Too late
the use of functional operators, as defined in Eq. (6.67), was discovered. This really
highlights the essence of the techniques and would have greatly reduced the writ-
ing up. The reward of the insight and really starting to understand the techniques
was maybe worth the effort.

6.2. TFR Frames

In Section 5.5 an outline of a method to select the basis selection vectors cm,n,
defined in Eq. (5.59) and Eq. (5.62). In Figure 5.3 three cubes are shown repre-
senting the FHG lattice cubes. It is assumed that a simple reduction of the lattice
cube, by a frame slice or sheet is necessary to reproduce the TFR of the FHG
basis, accompanied with its much simplified overlap matrix, with the equivalent
dimension of the von Neumann TFR. This was attempted and performed.
Figure 5.3(b) shows a vertical diagonal slice of the lattice cube FHG basis along
the spectral vertical axis and stepping temporally. The correspond FHG selection
vectors cm,n are given in Eq. (5.177). Figure 6.1 represents the results of this
spectral frame selection. They are atrocious. Firstly, one notes that the spectral
and temporal TFRs do not resemble the spectral and temporal signals at all.
Interestingly, with the inclusion of the overlap matrices, they once again have the
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same patterns. Strangely, the spectral and temporal reconstruction of the signals
can still be performed, but extremely noisy. The spectral and temporal phase
reconstructions are way off.
Figure 5.3(c) shows a horizontal diagonal slice of the lattice cube FHG basis and
stepping spectrally from low frequencies to high. The corresponding FHG selection
vectors are given in Eq. (5.173). This is what we call the bottom to top temporal
frame. Figure 6.2 shows the results. It seems like some poor rotation has happened
to the TFRs, relative to the spectral frame selection. The spectral and temporal
signal reconstructions are just as noisy. The spectral phase reconstruction is better,
but still poor.
It was then decided to check a horizontal diagonal slice of the lattice cube FHG
basis and stepping spectrally from high frequencies to low. This is what we call
the top to bottom temporal frame. Here the logic proceeded as follows. Since
the zeroth order FHG is the just a Gaussian signal, it is best to take it is with
the highest angular frequency. As one progresses into the HG planes, the HG
polynomials each time comes with additional nodes, so that it is best to associate
the lowest frequency with the highest order HG polynomial. Figure 6.3 depicts the
various results. The TFRs improved so-so little, but is better than Figure 6.1 and
Figure 6.2, if you use your imagination.
The conclusion is that the spectral and temporal TFRs of the various frames, uti-
lizing the overlap matrices, are virtually the same, although deplorable. The signal
amplitude reconstructions are very noisy, and the signal phase reconstructions are
just not right. This warranted further research and investigation into the complete
FHG TFR lattice cube.
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Figure 6.1.: FHG TFR of the Spectral Frame
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Figure 6.2.: FHG TFR of the Temporal Frame (Bottom to Top)
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Figure 6.3.: FHG TFR of the Temporal Frame (Top to Bottom)
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6.3. Periodicity and Scaling

Any real TFR application must necessary live in the confines of a discrete (digi-
tal) numerical algorithm. Traditionally, the Discrete Fourier Transform (DFT) is
utilized to approximate a FT. A prerequisite for Fourier series analysis is that the
signal, f(t), must be periodic with period, T, i.e., f(t + T ) = f(t). The finiteness
of the DFT inherently requires this condition on the sampled, f̂(t), but automat-
ically by the inverse FT this periodicity is also imposed onto, F̂ (ω). Essentially
a FFT transform produces a pair of periodic digital functions f̂(t) = f̂(t + T )
and F̂ (ω) = F (ω + Ω). The Nyquist-Shannon sampling theorem determines the
maximum bandwidth, Ω = 2π/δt, (support[−Ω

2 ,
Ω
2 ]). The reciprocal (inverse)

Nyquist-Shannon determines the timespan, T = 2π/δω, (support[−T
2 ,

T
2 ]) of the

signal where, δω, is the angular frequency sampling rate. For a signal, f̂(ti) = f [i],
digitally sampled at, δt, with timespan, T = Nδt, we have the corresponding
DFT, F̂ (ωi), with angular frequency bandwidth, Ω = Nδω. Shannon showed,
SectionA.10, that sampling signals that do not have baseband components, e.g.,
a laser pulse with bandpass, involves the width of the non-zero frequency interval,
i.e., the bandpass width, as opposed to its highest frequency component, exactly
as is done herein. The scaling parameter is defined by,

σ = T

2Ω = δt

2δω . (6.1)

The total phase space is given by, Ω× T = 2πN. On the von Neumann lattice we
have, K = Ω/∆ω = T/∆t, and K2 = N , i.e., ∆t∆ω = 2π, and σ = ∆t

2∆ω , therefore,

∆t/
√

2σ =
√

2π =
√

2σ∆ω. (6.2)
The maximum steplength is then, K−1

2

√
2π. To obtain a normalized scaled prob-

lem the time and angular frequency must be scaled in such a fashion, say, κt[fs]
and κω[fs−1], T = κtTs and Ω = κωΩs, to ensure that the σ parameter is scale
independent. This insures that the all problems can in essence be compared on
the same footing.
For the von Neumann TFR, [98, 78] has shown that superior signal reconstruction
is achieved by imposing periodic constraints on the representation basis functions,
i.e., αm,n(t) = αm,n(t+T ) and α̃m,n(ω) = α̃m,n(ω+Ω). Similar periodic constraints
can also be imposed on the HG TFR basis vectors, i.e., βm,n(t) = βm,n(t+ T ) and
β̃m,n(ω) = β̃m,n(ω + Ω).
The Nyquist-Shannon sampling theorem, SectionA.10, only gives a minimum sam-
pling rate to represent a signal with the maximum frequency bandwidth. It is gen-
eral practice in DSP to actually oversample and to double (sometimes the higher

145

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6 The Complete FHG TFR

the better, but often unnecessary) the sampling frequency. To comply with re-
quirements of Eq. (6.1) and Eq. (6.2) this also means that the sampling time T
must be doubled.
In fact all of this is motivated by the following digital facts. One of the greatest
problems of representing the HG basis functions is at the boundaries of the von
Neumann grid. In the von Neumann TFR, the Gaussian functions are still rep-
resented quite well at the edges of the grid. For the HG functions, on the other
hand, as the Hermite polynomial’s order increases, the HG function effectively
broaden and unfortunately starts to extend increasingly beyond the boundaries of
the discrete grid.
Therefore, to represent the FHG basis properly, this implies that we, for instance in
the time domain, the time signal, not the grid, has to be extended. In accordance
to the ad hoc rules of DSP we extend it to 2T. Thus the time signal can be split
over the grid shoulders as T/2 on the one side, T over the grid and T/2 on the
other shoulder.
In the calculation of the of the overlap matrices on the von Neumann grid we
require, ωnl = ωn−ωl. At the minimum and maximum indices, n and l are reversed
in sign. This implies that we actually need two times the bandwidth Ω to cover
the whole spectrum for the proper calculation of the overlap matrices, i.e.,

ωnl ∈ [−Ω,Ω] ∀n, l.

That means that the bandwidth we require for the signals is 2Ω. The requirement
also arises in the time domain, i.e., tmk ∈ [−T, T ], for all, m and k. Thus, 2T. To
comply to all these requirements, and still have the same, σ, we must have,

δt→ δt

2 , and δω → δω

2 ,

so that, T , goes to, 2T , and, Ω, goes to, 2Ω. Thus, to represent the TF von
Neumann grid actually correctly, we must sample, 2T = (4N) δt2 , i.e., increase
the electric field digital representation to, 4N , samples at double the sampling
frequency. For our grid, 25 × 25 = 625 = N , that means, 4N = 2500, sampling
points. The von Neumann grid, remains untouched in its original form. The
requirements are only on the signal it must represent and to actually calculated
the overlap matrix correctly.
For periodic digital functions, f̂(t) = f̂(t + 2T ) and F̂ (ω) = F (ω + 2Ω). The
maximum bandwidth, 2Ω = 4π/δt, (support[−Ω,Ω ]). The reciprocal (inverse)
timespan, 2T = 4π/δω, (support[−T, T ]) of the signal where, δω

2 , is the angular
frequency sampling rate, corresponding to, δt

2 . The doubling of the time and
frequency bandwidths is demonstrated in Figure 6.4. Dimler et al. [96] also spend
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some time discussing issue of enlarging the bandwidths, but by simple zero padding
the signals.

This also addresses the very important issue of aliasing. In DSP one of the design
criteria is to sample at such and such a sampling frequency, fs = 1

δt
and timespan

T = Nδt, so as to ensure anti-aliasing. This is why they usually oversample.
What is aliasing? Digitally, f̂(t) = f̂(t + T ) and F̂ (ω) = F (ω + Ω), we have only
periodic signals. If the original signal, f(t), extends beyond the digital support
[−T

2 ,
T
2 ], then the digital signal, f̂(t), actually cuts off portions of the true signal

at the wings. This means that the true signal actually overlaps at its periodic
digital boundary, f̂(t + T ). Naturally, this also occurs in the frequency domain
if the spectrum, F (ω), of the original signal contains higher frequencies than our
cut-off bandwidth limit. This overlapping at the wings of the periodic DFT is
referred to as aliasing. The methods employed to counteract it, as anti-aliasing.
Basically, anti-aliasing is then just extending the support of the signal, usually
in the spectral domain. The ad hoc engineering approach is to sample at least
at, 11

4 , the required bandwidth, say, Ω. It is well known that the FFT with its
radix algorithm is designed on the fact the signal should be multiple of 2. That is,
N = 2m, for some m ∈ N.

Figure 6.4.: Time-Frequency Doubling

In our application we’re using a spatial light modulator (SLM) of 640 pixels. At
first this seemed a funny number. This resulted in the choice of our grid of,
625 = 25×25, to fit in properly into the 640. To illustrate the issue of aliasing, we
demonstrate the judicious choice of 640 pixels. Taking into consideration of the
fact that FFT works in powers of 2, we have, 640 = 512+128 = 29 +27 = 11

4×512.
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The aliasing was directly considered!

6.4. The Complete FHG TFR Cube

In the course of developing this theory and FHG TFR, we assumed that it is
necessary to define the FHG basis functions in terms of a frame, defined by the
selection of a certain set of vectors, cTm,n ∈ CK , to a define a frame as an intersection
of the FHG TFR lattice cube, as in the temporal basis set in Eq. (5.99),

βm,n(t) = cTm,neitωnΦ(t− tm) where cTm,n ∈ CK ,

and spectral basis set,

β̃m,n(ω) = cTm,ne−itm(ω−ωn)Φ̃(ω − ωn) where cTm,n ∈ CK .

In this Section, rather than using the vector-matrix notation, we are going to define
the full FHG temporal basis sets in terms of their indices on the von Neumann
basis, (m,n), as,

fm,n,k(t) = eitωnφk(
t− tm√

2σ
), (6.3)

where, φk, refers to Hermite-Gauss polynomial of order, actually (k − 1), see
Eq. (5.38), since they are normally indexed from 0. The, t−tm√2σ , provides the correct
scaling. As was shown in Section 5.3 and Eq. (5.40), Eq. (5.41) and Eq. (5.44), they
form Fourier transform pairs, i.e.,

F {fm,n,k(t)} = Fm,n,k(ω),

where the Fourier transform is given by,

Fm,n,k(ω) = e−itm(ω−ωn)φk[
√

2σ(ω − ωn)]. (6.4)

One further manipulation is required. In terms of unscaled time and angular
frequency units, we can define, fm,n,k(t) and Fm,n,k(ω), as follows,

f̂m,n,k(t) = eitωnφk(t− tm), (6.5)

and
F̂m,n,k(ω) = e−itm(ω−ωn)φk(ω − ωn), (6.6)

where we have used the hat ^ to indicate that the functions are unscaled and, of
course, they will still remain Fourier transform pairs,

F
{
f̂m,n,k(t)

}
= F̂m,n,k(ω), (6.7)
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In the course of the definition of the previous FHG TFR in Subsection 5.4.4, we
see that it is necessary to take the integral inner product of the bases functions
and the signal, ε(t), Eq. (5.107)

ˆ ∞
−∞

β∗k,l(t)ε(t) dt

,
and its Fourier transform ε̃(ω), i.e.,

ˆ ∞
−∞

β̃∗k,l(ω)ε̃(ω) dω.

In terms of the new two functions Eq. (6.4) and Eq. (6.3) these integrals become,
ˆ ∞
−∞

f ∗m,n,k(t)ε(t) dt =
ˆ ∞
−∞

e−itωnφk(
t− tm√

2σ
)ε(t) dt, (6.8)

and
ˆ ∞
−∞

F ∗m,n,k(ω)ε̃(ω) dω =
ˆ ∞
−∞

eitm(ω−ωn)φk[
√

2σ(ω − ωn)]ε̃(ω) dω, (6.9)

respectively. If we scale the incoming signal ε(t), in accordance with the scaling
used for the unscaled bases functions, f̂m,n,k(t), i.e., t =

√
2σt′, and using the

Fourier transform scaling property Eq. (A.20), we obtain,

F{ε(
√

2σt)} = 1√
2σ
ε̃( ω√

2σ
). (6.10)

After this action has been performed to the electric signal Fourier transform pair,
ε̂(t) F⇐⇒ ˆ̃ε(ω), they are also in terms of unscaled units, and they can be directly
implemented with the unscaled FHG TFR bases functions, f̂m,n,k(t) and F̂m,n,k(ω).
In the next Section 6.5, ε̂(t) and ˆ̃ε(ω), are defined by Eq. (6.12) and Eq. (6.13),
respectively.

6.5. Unscaled FHG Signal Correlation

If we scale the time as, t =
√

2σt′, and the angular frequency, ω = ω′√
2σ , and

the electric signals, Eq. (6.10), the basis functions become scale invariant, a very
desirable property. In the rest of this section we assume this has been done and
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for notational convenience we indicate the unscaled electric field signal as, ε̂(t)
and ˆ̃ε(ω), or at times as, ŝ(t) and Ŝ(ω). The unscaled electric fields transform
as follows. From Eq. (6.8) we have with, t =

√
2σt′, and the angular frequency,

ω = ω′√
2σ ,
ˆ ∞
−∞

f ∗m,n,k(t)ε(t) dt =
ˆ ∞
−∞

e−it
′ω′n
√

2σφk(t′ − t′m)ε(
√

2σt′) dt′, (6.11)

and from the definition of the HG polynomial, Eq. (5.38),

φk(x) = 2
− p2 (k!)

− 1
2 π
− 1

4 e
−x

2
2 Hk(x),

and the scaled normalized HG polynomial, Eq. (5.42),

φk[(t− tm)/
√

2σ] = (2σ)−
1
4 2
− k2 (k!)

− 1
2 π
− 1

4 e
− (t−tm)2

4σ Hk[(t− tm)/
√

2σ],

the integral, 6.11, transforms to,
ˆ ∞
−∞

f ∗m,n,k(t)ε(t) dt =
ˆ ∞
−∞

e−it
′ω′nφk(t′ − t′m)

[
(2σ)

1
4 ε(
√

2σt′)
]
dt′

=
ˆ ∞
−∞

f̂ ∗m,n,k(t)ε̂(t) dt.

Thus the unscaled temporal electric field signal ε̂(t) is defined by,

ε̂(t) = (2σ)
1
4 ε(
√

2σt) = ŝ(t) (6.12)

Similarly, from Eq. (6.9), we have the angular frequency, ω = ω′√
2σ , transform and

from the definition of the HG polynomial, Eq. (5.38) and the scaled normalized
HG polynomial, Eq. (5.43), the integral transforms to

ˆ ∞
−∞

F ∗m,n,k(ω)ε̃(ω) dω =
ˆ ∞
−∞

eit
′
m(ω′−ω′n)φk(ω′ − ω′n)

[
(2σ)−

1
4 ε̃( ω′√

2σ
)
]
dω′

=
ˆ ∞
−∞

F̂ ∗m,n,k(ω)ˆ̃ε(ω) dω.

Thus, the unscaled spectral electric field signal,ˆ̃ε(ω), is defined by,

ˆ̃ε(ω) = (2σ)−
1
4 ε̃( ω√

2σ
) = Ŝ(ω) (6.13)
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If we define the unscaled temporal FHG basis as, Eq. (6.5),

f̂m,n,k(t) = eitωnφk(t− tm) (6.14)

and the unscaled spectral FHG basis as, Eq. (6.6),

F̂m,n,k(ω) = e−itm(ω−ωn)φk(ω − ωn) (6.15)

where we have used the hat ^ to indicate that the functions are unscaled. In both
the above functions the Hermite-Gauss functions, φk(x), are the same functions as
defined in Eq. (5.38), i.e., time, t, and angular frequency, ω, are in the same units,
so that we can compare apples with apples and oranges with oranges. The playing
fields have been leveled.

In terms of unscaled time and angular frequency units these two above
integrals become,

ˆ ∞
−∞

f̂ ∗m,n,k(t)ε̂(t) dt =
ˆ ∞
−∞

e−itωnφk(t− tm)ε̂(t) dt, (6.16)

and

ˆ ∞
−∞

F̂ ∗m,n,k(ω)ˆ̃ε(ω) dω =
ˆ ∞
−∞

eitm(ω−ωn)φk(ω − ωn)ˆ̃ε(ω) dω. (6.17)

Now working in the frequency domain with the second integral, Eq. (6.17), the
definition of convolution Eq. (A.41), shows that just by using, f → H∗(−ξ) and
g → S = ε̃(ω), and a change of the dummy integration variable, τ → ω, and the
convolution variable, t→ ξ, we have,

C(ξ) = H∗(−ξ) ∗ S(ξ) =
ˆ ∞
−∞

H∗[−(ξ − ω)]S(ω) dω

=
ˆ ∞
−∞

H∗(ω − ξ)S(ω) dω.

Using this definition, we are now going to show that the integration of the multi-
plication of a spectral FHG basis function with the spectral signal, is actually a
convolution, and in this form, actually a correlation. Now let us define the, H(ξ),
function to be the following function, with, ξ = x,
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Hm,k(x) = e−itmxφk(x) (6.18)

Using Eq. (5.39) and the reality of the Hermite-Gauss polynomials we have,

H∗m,k(−ξ) = eitmξφk(−ξ) = (−1)(k−1)eitmξφk(ξ) = (−1)(k−1)H∗m,k(ξ). (6.19)

Thus with,

Cm,k(ξ) = H∗m,k(−ξ) ∗ Ŝ(ξ) =
ˆ ∞
−∞

H∗m,k(ω − ξ)Ŝ(ω) dω.

According to Eq. (A.59) and the alternative form of a correlation, Eq. (A.52), this
is just a correlation,

Cm,k(ξ) =
(
Hm,k ? Ŝ

)
(ξ), (6.20)

and, with, ξ = ωn, we have,

Cm,k(ωn) =
(
Hm,k ? Ŝ

)
(ωn) =

ˆ ∞
−∞

H∗m,k(ω − ωn)Ŝ(ω) dω, (6.21)

But,
H∗m,k(ω − ωn) = eitm(ω−ωn)φk(ω − ωn) = F̂ ∗m,n,k(ω) (6.22)

This can be written more compactly by using the translation operator Eq. (A.102),
Tωn , and removing the complex conjugation as,

TωnHm,k(ω) = F̂m,n,k(ω). (6.23)

Now letting, Ŝ(ω) = ˆ̃ε(ω), we find,

Cm,k(ωn) =
(
Hm,k ? Ŝ

)
(ωn) =

ˆ ∞
−∞

F̂ ∗m,n,k(ω)ˆ̃ε(ω) dω.

Thus
Cm,k(ωn) =

(
Hm,k ? Ŝ

)
(ωn) (6.24)

Similarly, working in the time domain with the first integral Eq. (6.16),

Xm,n,k(tm) =
ˆ ∞
−∞

f̂ ∗m,n,k(t)ε̂(t) dt =
ˆ ∞
−∞

e−itωnφk(t− tm)ε̂(t) dt

= e−itmωn
ˆ ∞
−∞

e−iωn(t−tm)φk(t− tm)ε̂(t) dt.

(6.25)
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If we now allow the electric field, ε̂(t) = ŝ(t), so that, F {ŝ(t)} = Ŝ(ω), we can
compare the two methods on the same type of footing. Let us now define the
functions,

Km,n,k(x) = eiωn(x+tm)φk(x) (6.26)

Thus
K∗m,n,k(t− tm) = e−itωnφk(t− tm) = f̂ ∗m,n,k(t) (6.27)

or applying the translation operator Eq. (A.102) as,

TtmKm,n,k(t) = f̂m,n,k(t). (6.28)

Lastly, we once again see that the integral Eq. (6.25) corresponds to a correlation
with the time signal

Xm,n,k(tm) = (Km,n,k ? ŝ) (tm) (6.29)

Using the Fourier property of correlation Eq. (A.53),

F{f(t) ? g(t)} = F ∗(ω)G(ω),

a obvious modification of Eq. (6.29) to a continuous correlation variable can be
written as,

F{Km,n,k ? ŝ(t)} = [F{Km,n,k(t)}]∗ S(ω).

Using the definition Eq. (6.26),

F{Km,n,k ? ŝ(t)} =
[
F{eiωn(t+tm)φk(t)}

]∗
S(ω).

But,
F{eiωn(t+tm)φk(t)} = eiωntmφk(ω − ωn),

and from Eq. (6.15) we find,

F{eiωn(t+tm)φk(t)} = eiωtmF̂m,n,k(ω)

.Thus
F{Km,n,k ? ŝ(t)} = e−iωtmF̂ ∗m,n,k(ω)S(ω). (6.30)

This is just a nifty alternative method to write the correlation as a product of its
Fourier transform. Here its just conjugate multiplication with a phase with the
spectral signal. To find the true correlation the inverse must still be taken and
then the specific time, tm..
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Summary

• TheUnscaled Spectral FHG TFR Lattice Cube is defined in Eq. (6.17)

Cm,k(ωn) =
ˆ ∞
−∞

F̂ ∗m,n,k(ω)ˆ̃ε(ω) dω

This can be written as a correlation, Eq. (6.24), (spectral signal ˆ̃ε(ω) = Ŝ(ω))

Cm,k(ωn) =
(
Hm,k ? Ŝ

)
(ωn)

where the Hm,k is defined by Eq. (6.18)

Hm,k(x) = e−itmxφk(x)

• The Unscaled Temporal FHG TFR Lattice Cube is defined in

Xm,n,k(tm) =
ˆ ∞
−∞

f̂ ∗m,n,k(t)ε̂(t) dt

This can be written as a correlation, Eq. (6.29), (temporal signal ε̂(t) = ŝ(t))

Xm,n,k(tm) = (Km,n,k ? ŝ) (tm)

where the Km,n,k is defined by Eq. (6.26)

Km,n,k(x) = eiωn(x+tm)φk(x)

6.5.1. Alternative Derivation of the Unscaled Signals

As can be seen, to place the time and angular frequency on the same footing,
it is necessary to define the unscaled electric field signals, ε̂(t) and ˆ̃ε(ω), as was
done in Eq. (6.12) and Eq. (6.13). Unfortunately, in a simulation we are forced
to use digital Fourier transform algorithms, such as the FFT. In a digitized form
the signal, s[n], and Fourier transform, S[n], are just sampling sequences, totally
oblivious of the actual time and angular frequency, that has to be supplied by the
user in accordance with the requirement that, t · ω = 2π. This can create scaling
confusion. Now with,

s(t) F⇐⇒ S(ω).
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We can, of course, use the scaling properties of Fourier transforms Eq. (A.20),

F{s(at)} = 1
|a|
S(ω
a

),

and Eq. (A.21),
F−1{S(aω} = 1

|a|
s( t
a

),

and immediately we see that the, 1
|a| factor often causes confusion. Substituting,

t =
√

2σt′, and the angular frequency, ω = ω′√
2σ , we also note that, t · ω = t′ · ω′ in

Eq. (A.71),

ˆ ∞
−∞

s∗(
√

2σt′)s(
√

2σt′) dt′ =
ˆ ∞
−∞

[
1√
2σ
S∗( ω′√

2σ
)
] [

1√
2σ
S( ω′√

2σ
)
]
dω′,

and with the scaling properties of Fourier transforms Eq. (A.20),

F{s(
√

2σt)} = 1√
2σ
S( ω√

2σ
),

the result remains valid. In the definitions of the unscaled signals, Eq. (6.12) and
Eq. (6.13) we actually have,

ŝ(t) = (2σ)
1
4 s(
√

2σt),

Ŝ(ω) = (2σ)−
1
4 S( ω√

2σ
).

By the linearity property of Fourier transforms Eq. (A.15) we see that,

F{ŝ(t)} = F{(2σ)
1
4 s(
√

2σt)} = (2σ)−
1
4 S( ω√

2σ
) = Ŝ(ω).

A simple method to detour this problem is to use the energy theorem (Parseval-
Plancherel), SubsectionA.3.10, and to replace, f(t) = g(t) = s(t) and F (ω) =
G(ω) = S(ω), in Eq. (A.71),

ˆ ∞
−∞

s∗(t)s(t) dt =
ˆ ∞
−∞

S∗(ω)S(ω) dω,

which changes Eq. (A.72), the energy of the signal, to,

E2 =
ˆ ∞
−∞

|s(t)|2 dt =
ˆ ∞
−∞

|S(ω)|2 dω.
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To insure digitally we are scaled correctly, and that t and ω have the same scale,
we define,

E2
s =
ˆ ∞
−∞

|s(t)|2 dt,

and
E2
S =
ˆ ∞
−∞

|S(ω)|2 dω.

If E2
s 6= E2

S then we just define the normalized signals as,

ŝ(t) = E · s(t)
Es

and Ŝ(ω) = E · S(ω)
ES

,

where, E, is an arbitrary energy attached to the signal and we still have,

ŝ(t) F⇐⇒ Ŝ(ω).

6.6. The Complete FHG Overlap Matrices

According to the von Neumann TFR bases, the overlap matrix is defined as in
Eq. (3.83) and Eq. (3.84) for the frequency and time, respectively. Basically it
boils down to forming a matrix in which each basis vector is multiplied with each
other in the two dual spaces. In the same manner we can construct an overlap
matrix for the new unscaled FHG basis. Here each index in order, as in, (i, j, k)
and (l,m, n), refers to the time, angular frequency and HG polynomial of the FHG
basis, respectively. Let us also reformulate these in terms of the correlations along
the lines of Section 6.5.

Thus, for the time we have the temporal FHG overlap matrix,

Tl,m,n
i,j,k

= 〈f̂ ∗i,j,k(t)|f̂l,m,n(t)〉 =
ˆ ∞
−∞

f̂ ∗i,j,k(t) f̂l,m,n(t) dt, (6.31)

and the spectral FHG overlap matrix,

Sl,m,n
i,j,k

= 〈F̂ ∗i,j,k(ω)|F̂l,m,n(ω)〉 =
ˆ ∞
−∞

F̂ ∗i,j,k(ω) F̂l,m,n(ω) dω. (6.32)

We define both because for the unscaled temporal FHG basis, Eq. (6.14), the
Hermite-Gauss polynomials indexed with time, m, and for the unscaled spectral
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FHG basis, Eq. (6.15), the Hermite-Gauss polynomials indexed with angular fre-
quency, n. Thus,

Tl,m,n
i,j,k

=
ˆ ∞
−∞

eit(ωm−ωj)φk(t− ti)φn(t− tl) dt, (6.33)

and
Sl,m,n
i,j,k

=
ˆ ∞
−∞

eiti(ω−ωj)−itl(ω−ωm)φk(ω − ωj)φn(ω − ωm) dω, (6.34)

Sl,m,n
i,j,k

=
ˆ ∞
−∞

eiti(ω−ωj)−itl(ω−ωm)φk(ω′)φn(ω − ωm) dω.

We now only work with the spectral FHG overlap matrix. This shows, using
the dummy variable, ω′ = ω − ωj and ωjm = ωj − ωm, that Eq. (6.34) transforms
to,

Sl,m,n
i,j,k

=
ˆ ∞
−∞

[
eitiω

′
φk(ω′)

]
·
[
e−itl(ω

′+ωjm)φn(ω′ + ωjm)
]
dω′. (6.35)

Inserting our defined functions, Hl,n(ω), Eq. (6.18), and comparing with the defi-
nition of a correlation Eq. (A.51), Eq. (6.35) can be written succinctly as,

C l,n
i,k (ω) = (Hi,k ? Hl,n) (ω), (6.36)

so that with, ω = ωjm, we have,

Sl,m,n
i,j,k

= C l,n
i,k (ωjm) = (Hi,k ? Hl,n) (ωjm) (6.37)

Proposition 6.6.1. The functions, Hl,n(ω), are Hermitian, denoted by †, if n =
0, 1, 2, . . ., are even and anti-Hermitian, denoted by×, if n is odd. (See SubsectionA.3.7
for the definition of Hermitian), i.e.,

Hl,n(ω) =

H
†
l,n(ω) if n is even

H×l,n(ω) if n is odd

Proof. The Hermite-Gauss functions, φn(ω), are even functions if, n = 0, 1, 2, . . .,
are even and odd functions if n is odd. Using Euler’s formula we have,

Hl,n(ω) = e−itlωφn(ω)
= cos(tlω)φn(ω)− i sin(tlω)φn(ω).
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Using the properties of even and odd functions in SubsectionA.3.7, and knowing
that, cos(x) and sin(x), are even and odd functions respectively, we see that if,
φn(ω), are even functions if n = 0, 1, 2, . . ., then, cos(tlω)φn(ω), is an even function
and, sin(tlω)φn(ω), is an odd function. Therefore, Hl,n(ω), is Hermitian. The anti-
Hermitian condition is similarly proofed.

Let us define the following notation,

k =

k+ if k is even
k− if k is odd

(6.38)

Then, Hm,k+ = H†m,k+ and Hm,k− = H×m,k− .
This proposition shows that if k and n are both even, then we have a cross-
correlation of two Hermitian functions which according to property 1 of Subsection A.3.9.2
commute, i.e.,

Sl,m,n
+

i,j,k+ = C l,n+

i,k+ (ωjm)

= (Hi,k+ ? Hl,n+) (ωjm)
= (Hl,n+ ? Hi,k+) (ωjm)
= Ci,k+

l,n+ (ωjm)

= Si,m,k
+

l,j,n+ .

That is,

Sl,m,n
+

i,j,k+ = Si,m,k
+

l,j,n+ (6.39)

If k and n are both odd, the same relation holds, i.e.,

Sl,m,n
−

i,j,k−
= Si,m,k

−

l,j,n−
(6.40)

Using the translation operator (cf. SubsectionA.4.8 for the definition), we see
that,

TωmHl,n(ω) = e−itl(ω−ωm)φn(ω − ωm) = F̂l.m.n(ω) (6.41)

Applying the translational invariance of correlations, property 4 of Subsection A.3.9.2,
we obtain, [

TωmC
l,n
i,k

]
(ω) = Hi,k ? (TωmHl,n). (6.42)
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Thus from Eq. (6.41) we have,

[
TωmC

l,n
i,k

]
(ω) =

(
Hi,k ? F̂l.m.n

)
(ω) (6.43)

The Hermite-Gauss polynomials are orthogonal, i.e.,
ˆ ∞
−∞

φn(x)φk(x) dx = δnk, (6.44)

where we have used Kronecker delta function, δnk, defined in Eq. (A.84). Applying
this we get the following simplification. If, (i, j) = (l,m), then,

Si,j,n
i,j,k

= δnk (6.45)

We note that the overlap matrix is the cross-correlation cube of the FHG basis
polynomials, i.e., Ŝ(ω) = F̂l,m,n(ω), in Eq. (6.24) with the subscripts changed to,
(i, j, k),

Ci,k(ωj) =
(
Hi,k ? F̂l,m,n

)
(ωj). (6.46)

To fix the notation we will denote it with,

Ci,k(ωj) = C l,m,n
i,k (ωj). (6.47)

Translation invariance of the cross-correlation operation shows that with, Tωm ,

TωmC
l,m,n
i,k (ωj) = C l,m,n

i,k (ωjm)
=
(
Hi,k ? F̂l,m,n

)
(ωjm)

= C l,n
i,k (ωjm)

= Sl,m,n
i,j,k

. (6.48)

The last step of this operation is obtained from Eq. (6.37). For a specific, F̂l,m,n(ω),
FHG basis function if we fix the Hermite-Gauss plane with, k = n, i.e., the time-
frequency plane, we note that the cross-correlation functions with the other FHG
basis functions, F̂i,j,n, form a specific overlap pattern about the center of, F̂l,m,n,
i.e., (i, j) = (l,m). If we translate the basis function in this plane with, (l,m), i.e.,
the time-frequency plane, say to, (p, q), then this FHG basis correlation pattern
remains invariant, except for phase, but centered about, (p, q) = (l,m). This
suggests that,
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C l,m,n
i,k (ωj) =

(
Hi,k ? F̂l,m,n

)
(ωj) = e−itiωjm

ˆ ∞
−∞

φk(ω)e−itli(ω+ωjm)φn(ω + ωjm) dω,

(6.49)
Similarly,

Cp,q,n
r,k (ωs) =

(
Hr,k ? F̂p,q,n

)
(ωs) = e−itrωsq

ˆ ∞
−∞

φk(ω)e−itpr(ω+ωsq)φn(ω + ωsq) dω.

(6.50)
The integrals in Eq. (6.49) and Eq. (6.50) will be equal if, tli = tpr and ωjm =
ωsq. Thus, we have actually proven that the correlation patterns are translation
invariant in the time-frequency planes, except for an addition of a phase that
depends on the times, ti and tr, for, n = k, and even more, that this remains true
for any two time-frequency planes, i.e., n 6= k,

eitiωjmC l,m,n
i,k (ωj) = eitrωsqCp,q,k

r,n (ωs) if tli = tpr and ωjm = ωsq (6.51)

with both differences still in the bounds of the time-frequency plane. If further-
more, ti = tr, the phases are equal and the correlations are equal under the same
conditions. Now we also know that Eq. (6.36),

C l,n
i,k (ω) = (Hi,k ? Hl,n) (ω),

and, Hl,n+ = H†l,n+ and Hl,n− = H×l,n− , as well as, Hi,k+ = H†i,k+ and Hi,k− = H×i,k− .
According to Subsection A.3.9.2, the cross-correlation operator commutes if the
functions are both Hermitian or anti-Hermitian that is,

Ci,j,k+

l,n+ (ωm) = Ci,j,n+

l,k+ (ωm), (6.52)

and
Ci,j,k−

l,n− (ωm) = Ci,j,n−

l,k− (ωm). (6.53)

This creates even further structure in the correlation patterns. We also know
that the addition of Hermitian or anti-Hermitian functions remain Hermitian of
anti-Hermitian, according to Subsection A.3.9.2.

Similar relations hold for the temporal FHG overlap matrix. We only sum-
marize the main results.

Replacing, (m,n, k) with (i, j, k), and, (m,n, k), with, (l,m, n), in Eq. (6.26) we
obtain,
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Ki,j,k(t) = eiωj(t+ti)φk(t), (6.54)
Kl,m,n(t) = eiωm(t+tl)φn(t), (6.55)

respectively. We also have,

TtlKl,m,n(t) = Kl,m,n(t− tl),
= eiωmtφn(t− tl) = f̂l,m,n(t). (6.56)

Similar to Eq. (6.36) we can define a cross-correlation function,

X l,m,n
i,j,k (t) = (Ki,j,k ? Kl,m,n) (t) (6.57)

From equation Eq. (6.29) replacing, (m,n, k) with (i, j, k), we find.

Xi,j,k(ti) = (Ki,j,k ? ŝ) (ti). (6.58)

Now substituting the signal, ŝ(t), with the FHG basis time function, f̂l,m,n(t), the
above equation transforms to,

X l,m,n
i.j,k (ti) =

(
Ki,j,k ? f̂l,m,n

)
(ti). (6.59)

From the definition of the temporal FHG overlap matrix, Eq. (6.31), and Eq. (6.57)
we find,

Tl,m,n
i,j,k

= (Ki,j,k ? Kl,m,n) (til). (6.60)

Using Eq. (6.59) the Eq. (6.60) transforms to,

Tl,m,n
i,j,k

= X l,m,n
i,j,k (til) (6.61)

Proposition 6.6.2. The functions, f̂l,m,n(t), are Hermitian, denoted by †, if,
n = 0, 1, 2, . . ., are even and anti-Hermitian, denoted by ×, if n is odd. (See
SubsectionA.3.7 for the definition of Hermitian), i.e.,

f̂l,m,n(t) =

f̂
†
l,m,n(t) if n is even
f̂×l,m,n(t) if n is odd

that is, f̂l,m,n+(t) = f̂ †l,m,n+(t) and f̂l,m,n−(t) = f̂×l,m,n−(t).
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Corollary 6.6.3. From the property, TtlKl,m,n(t) = f̂l,m,n(t), the functions, Kl,m,n(t),
do not possess this Hermitian and anti-Hermitian property, only the translated
functions, TtlKl,m,n(t).

Translation invariance of the cross-correlation operation on the second function
shows that with, Ttl ,

TtlX
l,m,n
i.j,k (ti) = X l,m,n

i.j,k (til)
=
(
Ki,j,k ? f̂l,m,n

)
(til)

= Tl,m,n
i,j,k

. (6.62)

The orthogonality of the Hermite-Gauss polynomials once again imply,

Ti,j,n
i,j,k

= δnk (6.63)

We can also write,

X l,m,n
i.j,k (ti) =

(
Ki,j,k ? f̂l,m,n

)
(ti) = eitlωmj

ˆ ∞
−∞

φk(t)eiωmj(t+til)φn(t+ til) dt. (6.64)

Similarly,

Xp,q,n
r,s,k (tr) =

(
Kr,s,k ? f̂l,m,n

)
(tr) = eitpωqs

ˆ ∞
−∞

φk(t)eiωqs(t+trp)φn(t+ trp) dt. (6.65)

The integrals in Eq. (6.64) and Eq. (6.65) will be equal if, til = trp and ωmj =
ωqs. Thus we have actually proofed that the correlation patterns are translation
invariant in the time-frequency planes, except for an addition of a phase that
depends on the times, tl and tp, for, n = k, and even more, that this remains true
for any two time-frequency planes, i.e., n 6= k,

e−itlωmjX l,m,n
i.j,k (ti) = e−itpωqsXp,q,n

r,s,k (tr) if til = trp and ωmj = ωqs (6.66)

with both differences still in the bounds of the time-frequency plane. If further-
more, tl = tp, the phases are equal and the correlations are equal under the same
conditions.
Eq. (6.60) can be compared with Eq. (6.37),

Tl,m,n
i,j,k

= (Ki,j,k ? Kl,m,n) (til),

Sl,m,n
i,j,k

= (Hi,k ? Hl,n) (ωjm).
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This exemplifies the differences between the two overlap matrices. Excluding the
fact that the roles of time, til, and angular frequency, ωjm, have been swopped
they represent the cross-correlation of two different basis functions, namely the,
Ki,j,k, and the, Hi,k, which exhibit different properties. This can more easily be
seen from Eq. (6.56) and Eq. (6.41) which results in the following Fourier transform
pair,

F {TtlKl,m,n(t)} = TωmHl,n(ω). (6.67)

Summary

• The Spectral FHG Overlap Matrix is defined in, Eq. (6.32)

Sl,m,n
i,j,k

= 〈F̂ ∗i,j,k(ω)|F̂l,m,n(ω)〉 =
ˆ ∞
−∞

F̂ ∗i,j,k(ω) F̂l,m,n(ω) dω.

In terms of correlations this is defined as, Eq. (6.37)

Sl,m,n
i,j,k

= C l,n
i,k (ωjm) = (Hi,k ? Hl,n) (ωjm)

If in Eq. (6.46) we substitute the spectral signal, ˆ̃ε(ω) = Ŝ(ω), with a spectral FHG
basis function, Ŝ(ω) = F̂l,m,n(ω), we find, Eq. (6.47),

C l,m,n
i,k (ωj) = Ci,k(ωj) =

(
Hi,k ? F̂l,m,n

)
(ωj).

• The Temporal FHG Overlap Matrix is defined in, Eq. (6.31)

Tl,m,n
i,j,k

= 〈f̂ ∗i,j,k(t)|f̂l,m,n(t)〉 =
ˆ ∞
−∞

f̂ ∗i,j,k(t) f̂l,m,n(t) dt.

In terms of correlations this is defined as, Eq. (6.61),

Tl,m,n
i,j,k

= X l,m,n
i,j,k (til) = (Ki,j,k ? Kl,m,n) (til)

If in Eq. (6.29) we substitute the temporal signal, ε̂(t) = ŝ(t), with a spectral FHG
basis function, ŝ(t) = f̂l,m,n(t), we find, Eq. (6.57),

X l,m,n
i,j,k (tm) = (Ki,j,k ? Kl,m,n) (tm)
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6.6.1. Numerical Reconstruction of the Complete FHG Basis

The spectral cross-correlations of a spectral FHG basis is given by Eq. (6.46) and
using the notation of Eq. (6.47) we have,

C l,m,n
i,k (ωj) =

(
Hi,k ? F̂l,m,n

)
(ωj).

Similarly, the temporal cross-correlations of a temporal FHG basis is given by
Eq. (6.59),

X l,m,n
i.j,k (ti) =

(
Ki,j,k ? f̂l,m,n

)
(ti).

With a specific fixed basis in mind, (l,m, n). both, C l,m,n
i,k (ωj) and X l,m,n

i.j,k (ti), form
a discrete cube or lattice in three dimensional space, (x, y, z), corresponding to
cross-correlation, as depicted graphically in Figure 5.2.
As a result of Eq. (6.51) the spectral cross-correlations, C l,m,n

i,k (ωj), form mosaic
patterns on the various z-axis planes, the HG part of the basis, centered about the,
(l,m), represented temporal FHG basis. Because of all the various symmetries,
we find that these patterns remain translation invariant in the time-frequency,
i.e., moving, (l.m) to (p, q), results in the same patterns about, (p, q, n), and
the patterns occurring in the various k-planes, although different in each k-plane
centered about, (p, q).
Similar results due to Eq. (6.66) apply to the temporal cross-correlations, X l,m,n

i.j,k (ti).
Each forms mosaic patterns on the various z-axis planes, the HG part of the
basis, centered about the, (l,m), represented temporal FHG basis, that remain
translationally invariant in the time-frequency, (l,m), on a specific z-plane, and
these various patterns remain invariant on the various k-planes.
To avoid the phases, we represent the planes only in absolute value, to demonstrate
the effects of the previous two paragraphs. To conform, we numerically calculate
the FHG TFR bases, for all (l,m, n) and (i, j, k) up to (25, 25, 25), for the spectral
and temporal bases. One of the consequences of unscaling the spectral and tem-
poral FHG bases is that their amplitudes in the two representation are the same.
This can easily be seen by comparing Figure 6.7 and Figure 6.10.
In Figure 6.5 and Figure 6.6, we show the absolute spectral FHG basis (l,m, n) =
(10, 16, 6) and the patterns formed on all (i, j, k) = (i, j, 6) and the translated
translated time-frequency (l,m, n) = (15, 8, 6) and all (i, j, k) = (i, j, 6), (l,m, n) =
(10, 16, 6) as well as and the patterns (i, j, k) = (i, j, 14), i.e., still centered at the
6th HG at (l,m, n) = (10, 16, 6), but what is the pattern on the 14th HG plane, and
(l,m, n) = (15, 8, 6) with all (i, j, k) = (i, j, 14), respectively. In both figures the
amplitudes are depicted with their accompanying phases patterns directly below.
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In both these figures, it is obvious that the phase patterns also translate, but that
the phase patterns are very complex. As an aside, one can say that these figures
are mathematical rendering of beautiful mosaic artwork. To appreciate the mosaic
phase patterns one must be aware that, standing in a forest that one does not see
the leaves for the trees. As a consequence of Eq. (6.44) we see that in Figure 6.5
the center tiles are equal to one and in Figure 6.6 they are zero.

In Figure 6.7, we demonstrate the spectral reconstruction of the 6th FHG basis,
dotted in blue compared to the true spectral basis in green. To paraphrase, in
Figure 6.7, we treat one of the FHG basis, specifically the FHG basis (l,m, n) =
(10, 16, 6), as the signal, and reconstruct the spectral basis signal in Figure 6.7(a),
and the temporal basis signal, Figure 6.7(b), using Eq. (6.76) and Eq. (6.74), re-
spectively. Because we are using FHG bases, we must also replace Cm,k(ωn) with
C l,m,n
i,k (ωj) and Xm,n,k(tm) with X l,m,n

i.j,k (ti), respectively. The unwrapped spectral
phase reconstructions are shown directly below each amplitude reconstruction.
The translated TF version is shown next to the first set.
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Figure 6.5.: FHG TFR Spectral 6th FHG basis and TF translation 6th HG

165

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6 The Complete FHG TFR

−1000 −500 0 500 1000

0.8

1

1.2

1.4

1.6

1.8

ω
 [(

10
fs

)−
1 ]

Time (10fs)

Fourier−Gauss−Hermite TFR Spec 15 Ampl n=16 m=10 k=6

 

 

0

0.05

0.1

0.15

0.2

0.25

−1000 −500 0 500 1000

0.8

1

1.2

1.4

1.6

1.8

ω
 [(

10
fs

)−
1 ]

Time (10fs)

Fourier−Gauss−Hermite TFR Spec 15 Ampl n=8 m=15 k=6

 

 

0.05

0.1

0.15

0.2

0.25

−1000 −500 0 500 1000

0.8

1

1.2

1.4

1.6

1.8

ω
 [(

10
fs

)−
1 ]

Time (10fs)

Fourier−Gauss−Hermite TFR Spec 15 Phase n=16 m=10 k=6

 

 

−3

−2

−1

0

1

2

3

−1000 −500 0 500 1000

0.8

1

1.2

1.4

1.6

1.8

ω
 [(

10
fs

)−
1 ]

Time (10fs)

Fourier−Gauss−Hermite TFR Spec 15 Phase n=8 m=15 k=6

 

 

−3

−2

−1

0

1

2

3

Figure 6.6.: FHG TFR Spectral 6th FHG basis and TF translation 14th HG
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Figure 6.7.: FHG TFR Spectral 6th FHG basis reconstruction & TF translation
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6.6 The Complete FHG Overlap Matrices

Similarly, for Figure 6.8 and Figure 6.9, we depict the absolute temporal FHG
bases, exactly the same as in the previous figures. In Figure 6.8 and Figure 6.9,
we show the absolute temporal FHG basis (l,m, n) = (10, 16, 6) and the pat-
terns formed on all (i, j, k) = (i, j, 6) and the translated time-frequency (TF)
(l,m, n) = (15, 8, 6) and all (i, j, k) = (i, j, 6), (l,m, n) = (10, 16, 6), as well as the
patterns (i, j, k) = (i, j, 14) and (l,m, n) = (15, 8, 6) with all (i, j, k) = (i, j, 14),
respectively. Once again, we see that that the accompanying phase also translate
in the TF plane. This proves our analytic results numerically at least for the ab-
solute (amplitude) values. As a consequence of Eq. (6.63) we see that in Figure 6.8
the center tiles are equal to one and in Figure 6.9 they are zero.

In Figure 6.10, we demonstrate the temporal reconstruction of the 6th FHG basis,
dotted in blue compared to the true spectral basis in green. The unwrapped spec-
tral phase reconstructions are shown directly below each amplitude reconstruction.
The translated TF version is shown next to the first set.
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Figure 6.8.: FHG TFR Temporal 6th FHG basis and TF translation 6th HG
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Figure 6.9.: FHG TFR Temporal 6th FHG basis and TF translation 14th HG
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Figure 6.10.: FHG TFR Temporal 6th FHG basis reconstruction & TF transla-
tion

The amazing signal reconstruction of the temporal and spectral signals, see Section 6.7,
and Figure 6.7 and Figure 6.10, reconstructed just with the temporal and spectral
cross correlation lattice cube, shows, that somehow the temporal and spectral cross
correlation lattice cubes contain the complete information of the TFR of the FHG.
An ideal testing ground is to see how a TFR can be constructed given that the
signal is precisely a FHG temporal or spectral FHG basis function.
The first thing that we notice, is the complex phase patterns that result. To
remove the phase of each TF from the various HG correlations, we simply take
the complex inner product of the of the FHG TFR correlation lattice cube of each
of the spectral and temporal lattice cubes, Eq. (6.68) and Eq. (6.69), respectively.
This then projects or collapses the lattice cube to just a time-frequency plane, i.e.,
a true TFR for the spectral and temporal bases functions.
In Figure 6.11, we plot the individual complex inner products of Eq. (6.68) of the
spectral FHG lattice cube correlation of the spectral FHG basis F̂m.n,k(ω) centered
on the center of the TF plane, i.e., (m,n, k) = (13, 13, k) and k = 1, . . . , 24. (We
should have gone to k = 25, but this does not fit on a page). The complex
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inner product of course destroys the phase, and we have already shown the TF
translation invariance. This means that the mosaic pattern shifts around without
change in the TF plane, i.e., for any (m,n). Thus, although Figure 6.11 depicts
the complex inner product spectral FHG lattice cube correlation of the spectral
FHG basis, the temporal complex inner product FHG lattice cube correlation,
have exactly the same patterns. Using Eq. (6.46) the complex inner product is just
taken as,

Cm,n,ki,j =
25∑
l=1

Cm,n,k
i,l (ωj) ·

[
Cm,n,k
i,l (ωj)

]∗
, (6.68)

where the TFR is taken over all (i, j) = (ti, ωj). If this same procedure is applied
to the temporal FHG basis, f̂m.n,k(t), centered on the center of the TF plane, i.e.,
(m,n, k) = (13, 13, k) and k = 1, . . . , 24. With the use of Eq. (6.59) we define,

Xm,n,k
i,j =

25∑
l=1

Xm,n,k
i.j,l (ti) ·

[
Xm,n,k
i.j,l (ti)

]∗
. (6.69)

Temporally, exactly the same mosaic patterns appear, i.e.,

Cm,n,ki,j = Xm,n,k
i,j (6.70)

We now define two normal inner products (in these definitions we retain the
phase of the TFRs) as,

Sm,n,ki,j =

√√√√ 25∑
l=1

Cm,n,k
i,l (ωj) · Cm,n,k

i,l (ωj), (6.71)

and

T m,n,ki,j =

√√√√ 25∑
l=1

Xm,n,k
i.j,l (ti) ·Xm,n,k

i.j,l (ti), (6.72)

for the spectral and temporal TFRs respectively. In these inner products the phase
is not destroyed and to avoid doubling the phase we take the square roots of the
products. Figure 6.12 and Figure 6.13, show the amplitudes and their accompany-
ing phases directly below each amplitude, of the various terms of Eq. (6.71), and
Figure 6.14 and Figure 6.15 show the amplitudes and their accompanying phases
directly below, of the various temporal FHG bases, i.e., Eq. (6.72).
We specifically decentered these graphs within the TF plane with (m,n) = (10, 16),
to show the main result of comparing Figure 6.12 and Figure 6.13 with Figure 6.14
and Figure 6.14, that the mosaic patterns are rotated by 900 about the center
points in both amplitude and phase.
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Figure 6.11.: FHG TFR Spectral HG complex inner product (All FHG Spectral
bases)
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Figure 6.12.: FHG TFR Spectral HG inner product (1-12 FHG Spectral bases)
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6.6 The Complete FHG Overlap Matrices
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Figure 6.13.: FHG TFR Spectral HG inner product (13-24 FHG Spectral bases)
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Chapter 6 The Complete FHG TFR
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Figure 6.14.: FHG TFR Temporal HG inner product (1-12 FHG Temporal bases)
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6.6 The Complete FHG Overlap Matrices
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Figure 6.15.: FHG TFR Temporal HG inner product (13-24 FHG Temporal
bases)
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Chapter 6 The Complete FHG TFR

6.7. Signal Reconstruction with the Complete FHG
TFR

The Hermite-Gauss polynomials are orthogonal. It is extremely desirable to exploit
this fact to our benefit. For our FHG bases, the orthogonality can only be achieved
at the same time and frequency, i.e., (tm, ωn). Because the integrals, in Section 6.5,
were shown to be correlations with the signal, by taking the inner product with
the reconstruction FHG basis vectors over the Hermite-Gauss polynomials, we
effectively reconstruct a portion of the signal that correlates best with the specific
chosen (tm, ωn). In fact we are collapsing the cube to form a FHG TFR. Every
(tm, ωn) corresponds to the best signal correlation over time, see Eq. (6.29), i.e.,

Tm,n(t) =
∑
k

Xm,n,k(tm) · f̂m,n,k(t) (6.73)

The temporal signal reconstruction is then simply performed by summing over
the (m,n), i.e.,

s(t) =
∑
m,n

Tm,n(t) (6.74)

Similarly, for the angular frequency, see Eq. (6.24), we define,

Wm,n(ω) =
∑
k

Cm,k(ωn) · F̂m,n,k(ω) (6.75)

The spectral signal reconstruction of the angular frequency is given by,

S(ω) =
∑
m,n

Wm,n(ω) (6.76)

These reconstructions work amazingly well, in both amplitude and phase.

6.8. The Complete FHG TFR

However, Tm,n(t) and Wm,n(ω), still do not represent TFRs. They definitely, how-
ever, contain all the signal information. One potential way to construct the TFRs
representation, is by simply taking the mean over each (tm, ωn). This then con-
tains the amplitude and phase information of the best reconstructed correlations
for each (tm, ωn).

T m,n = meant{Tm,n(t)}, (6.77)
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and
Wm,n = meanω{Wm,n(ω)}. (6.78)

A special word of warning is in order here. In the construction of the signal
correlations, Xn,k(tm) and Cm,k(ωn), special care must be taken for the signals,
s(t) and S(ω), so that their phases are masked to match the FHG basis functions
phases. This improves the results. What really happens with the mean operation is
that the phases tend to go out of phase and that the mean does not then represent
the true TFR. Unfortunately, this does not give very good TFRs. In Figure 6.16
and Figure 6.17, the spectral and temporal FHG TFRs are shown respectively.
Below each amplitude and phase TFR the spectral and temporal amplitude and
phase signal reconstructions are also given. The reconstructions are remarkably
good. All the signal reconstructions are done in the same manner and therefore
in the following representations they are not shown. The problem remains to
obtain an acceptable FHG TFR in amplitude and in phase. This is what we now
concentrate on. Continuing in the vein of attempting to develop a normal inner
product (without destroying the phase, Eq. (6.71) and Eq. (6.72)) of the spectral
and temporal signal reconstructions. This is shown in Figure 6.18 and once again
we see that the spectral and temporal FHG TFRs have no match. Thus we leave
the attempts to construct TFRs from their individual signal reconstructions and
move on to the two correlation lattice cubes, Xm,n,k(tm) and Cm,k(ωn).
The two correlation lattice cubes Xm,n,k(tm) and Cm,k(ωn) for the temporal and
spectral signal correlation respectively, contain all the information of the TFRs and
the signal reconstructions do not require the construction of an overlap matrix
and, what a relief, its pseudo-inverse. As a first attempt we simply try FHG
TFR (case 7)1 spectral and temporal HG cube inner product, but this also gives
rotten results, as depicted in Figure 6.19. It seems the two representations are
orthogonally related with a similarity transformation of the conjugate as proven
in Theorem 5.4.9.
In investigating and researching the spectral FHG TFRs we found that the TFRs
of the FHG spectral and temporal representations, Eq. (6.71) and Eq. (6.72), re-
spectively is rotated by 900 in the TF plane. One would expect the TFRs of both
the temporal and spectral FHG bases to be symmetrical in a TFR since they are
all just HG polynomials of various orders. We now define a average sum of two
normal inner products as,

Gm,n,k
i,j =

(
Sm,n,ki,j + T m,n,ki,j

)
/2. (6.79)

1The cases are as they are numbered in the Matlab© program and do not appear here in
sequence.
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This immediately makes the representation of the FHG TFR bases symmetri-
cal. Figure 6.20 and Figure 6.21 display the beautiful symmetrical mosaic Maltese
crosses that result from Eq. (6.79), for all (i, j) = (ti, ωj) in TF plane and the FHG
bases (m,n, k) = (10, 16, k), ∀ k. What is also obvious in these TFRs, is that
due to, most probably, phase dematching that the side mosaic patterns contribute
mush less and that the TFRs are more centralized than the individual contribu-
tions of the spectral, Figure 6.12 and Figure 6.13, and temporal, Figure 6.14 and
Figure 6.15, which is most desirable.

This suggests that for any signal, s(t) F⇐⇒ S(ω), that we can define a spectral
FHG TFR with the aid of Eq. (6.24),

Si,j =

√√√√ 25∑
k=1

Ci,k(ωj) · Ci,k(ωj), (6.80)

and a spectral FHG TFR with Eq. (6.29),

Ti,j =

√√√√ 25∑
k=1

Xi.j,k(ti) ·Xi.j,k(ti), (6.81)

and then a general TFRs of the signal just as in Eq. (6.79) as average of the
Eq. (6.80) and Eq. (6.81),

Am,s = (Sm,s + Tm,s) /2 (6.82)

Once again the TFR doesn’t measure up to the expected standard. This is shown
in Figure 6.22. It is definitely better, but doesn’t come close to our originally
summation of the first seven of the spectral lattice as shown in Figure 5.9.
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Figure 6.16.: FHG TFR case 2 Mean Spectral Signal with Spectral Amplitude
and Phase Reconstruction
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Figure 6.17.: FHG TFR case 2 Mean Temporal Signal with Temporal Amplitude
and Phase Reconstruction
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Figure 6.18.: FHG TFR case 3 Spectral and Temporal Signal Inner Product
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Figure 6.19.: FHG TFR case 7 Spectral and Temporal HG Cube Inner Product
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Figure 6.20.: FHG TFR symmetrical HG inner product (1-12 FHG bases)
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Figure 6.21.: FHG TFR symmetrical HG inner product (13-24 FHG bases)
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Figure 6.22.: FHG TFR symmetrical HG inner product

The next great question is, because HG frames are orthogonal to each other,
spectrally and temporally, can one construct an overlap matrix for each HG TF
frame, that can also be applied to both the spectral and temporal representations,
as is so nicely performed on the first level, which just happens to be the von
Neumann TFR. So let us calculate the overlap matrices for each HG TF frame,
spectrally and temporally. In other words, each HG TF plane, as we move into
the third dimension of our FHG TFR lattice cube, has a corresponding overlap
matrix, that each time coincides with a specific HG order, k. In terms of the
general complete overlap matrix, Wi,j,k

l,m,n
, this corresponds with Eq. (5.158), but

with the modification, k = n, in the HG planes[
Wi,j

l,m

]
n

= Wi,j,n

l,m,n
.

The absolute spectral overlap matrices (625x625) for the HG planes 1-24 are shown
in Figure 6.25 (Specifically illustrated in black and white to retain contrast). Sim-
ilar results are obtained for the absolute temporal overlap matrices. As one obvi-
ously notices, as one steps into the HG planes, the overlap matrices obtain extra
bands. This is due to the increase of the nodes of the HG polynomials with in-
creasing order. We start with three bands as in the von Neumann representation.
As the order of the HG polynomials increase the bands become more prominent
and reproduce extra bands up to 11 for our maximum order of 25.
For FHG spectral and temporal bases (m,n, k) = (10, 16, 6), corresponding to
Figure 6.24 and Figure 6.25, respectively, the various HG planes (1− 24) are each
multiplied with the inverse of their own overlap matrices. Here we definitely see
a direct similarity between the corresponding spectral and temporal patterns of
Figure 6.24 and Figure 6.25, respectively. On the sixth pattern there is one promi-
nent correlation, as expected since (m,n, k) = (10, 16, 6), with all its overlapping
normalized and wiped out. Compare Figure 6.5 with the overlapping. On the sec-
ond HG plane we get a little yellow Maltese. On the eighth a diffraction pattern.
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The tenth and fifteenth are similar. The third has something with two eyes and
the rest resemble some nebulae and or ghostly images. Use your own imagination.
But they are similar at least in amplitude.
In Figure 6.26 and Figure 6.27 the amplitude and phase TFRs of this representation
is given respectively. At least now the amplitudes resemble each other approxi-
mately. The phases look like some abstract paintings I wouldn’t mind owning. The
usual almost random patterns are deformed into much more smoother patterns.
The spectral and temporal amplitude and phases signal reconstructions are also
shown. They are definitely are much noisier, than the amazing normal reconstruc-
tion. This shows that we are on the right track, but we have still not found the
jewel of the Nile.
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Figure 6.23.: The Spectral Overlap Matrices of the HG Planes
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Figure 6.24.: FHG TFR Spectral HG Planes multiplied by their Overlap Matri-
ces
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Figure 6.25.: FHG TFR Temporal HG Planes multiplied by their Overlap Ma-
trices
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Figure 6.26.: FHG TFR Spectral HG Planes x Overlap Matrices
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Figure 6.27.: FHG TFR Temporal HG Planes x Overlap Matrices
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7. Coherent State FHG TFR
Analogy

Figure 7.1.: Roy Glauber and E. C. George Sudarshan

7.1. Introduction

This Chapter 7, consist of various subsections that eventually discuss the novel
FHG coherent state analogy. We begin with Section 7.2 which sets the background.
Here we introduce some quantum field theory of QM Harmonic oscillator creation
and annihilation operators and their statistical connection that leads to the Pauli-
exclusion principle [138]. We then have a short discussion in Subsection 7.2.1
about Gaussian laser beams, circular, and the the higher order modes, namely the
Hermite-Gaussian modes, Laguerre-Gaussian modes, and the encompassing Ince-
Gaussian modes. This Subsection 7.2.1 then actually shows, that laser beams ac-
tually occur in Hermite-Gaussian multimodes and that the coherent states should
also exhibit these properties.
A short introduction to optical phase space is given in Subsection 7.2.2. This com-
mences with the standard quantization of free EM radiation, in the footsteps of
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Chapter 7 Coherent State FHG TFR Analogy

the original derivation of Dirac [139]. The polarization of the quantum harmonic
oscillators is reviewed. Unfortunately, this method is not relativistic invariant
and underwent in few short years, quite a few revisions in search of the correct
Lagrangian. It then discusses the consequences of the manifestly relativistic co-
variant Lagrangian of Fermi, especially that four quantum harmonic oscillators are
required to describe the EM field. This is essential for our later classical correspon-
dence analogy. Finally, the various relevant important Lagrangians are presented,
culminating in the complete Dirac-Maxwell Lagrangian (including local gauge in-
variance), which clearly demonstrates the interrelationship of the source, charges,
and the free EM radiation field. A further rather important observation is that
each EM radiation field is quantized as a summation ∑

k (which in the limit of
field in the continuum is an integral, Eq. (7.88), which describes a multimode EM
radiation creation operator and in analogy a EM vector potential) as in Eq. (7.27)
to Eq. (7.30).

An all to brief discussion of coherent states is presented in Section 7.3. Some
definitions and properties are shown and the solution of the coherent states in
terms of the overcomplete quantum harmonic states is given. Their interconnec-
tion with quantum harmonic oscillators of quantum field theory of EM radiation
is re-established, with a generalized multimode superposition of coherent state
representation, however, how the polarization enters is unclear.

From the previous Section 7.3, we proceed carefully into Section 7.4, concerning
the new FHG TFR coherent state analogy. Actually it is double multimode su-
perposition of “classical” coherent states correspondence analogy. Here we show
that a optimal correlation function can be derived between the multimode super-
position of “classical” coherent states and the FHG TFR temporal bases. A cost
function is defined and optimized that eventually results in, what can we say, a
type of optimized correlation correspondence analogy. In the end some results
for our representative electric signals are given for the “classical” coherent state
optimized correlation analogy.

In this Chapter 7 we raise a few questions and probably a few eyebrows. Here,
we do not wish to demonstrate the exact equivalence, but only the plausibility of
a very good analogy. Fools rush in where angels fear to tread. We now proceed
cautiously.

7.2. A Brief Summary of Modern Light

The modern theory of light, started with the inability of the classical theory to
explain
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• black body radiation.
• Fraunhofer and Kirchhoff spectrum lines, and
• the photovoltaic effect of Hertz (Photoelectric effect).

Second quantization was introduced by Jordan and Wigner, in an article on Pauli’s
exclusion principle [140], now known as quantum field theory, without ever believ-
ing that it would have physical consequences. These two experiments and then
theoretically Enrico Fermi (1934) published his theory of β decay (Eng. trans.
[141]), placed the physics community on its head, totally baffled. P.A.M Dirac
also developed quantum field theory [142, 143, 144]. Therein he proves that gen-
eral field particles, that are identical particles, only come in terms of two varieties
or categories (see Merzbacher [6]). This was established by means of their cre-
ation and annihilation quantum field operators, â† and â, respectively, namely for
identical particles i and j [

â†i , â
†
j

]
= â†i â

†
j − â†j â

†
i = 0, (7.1)

or {
â†i , â

†
j

}
= â†i â

†
j + â†j â

†
i = 0, (7.2)

and by their Hermitian adjoints, similar equations for the annihilation field oper-
ators, â. This was established to be a fundamental principle of quantum particles
and related to the intrinsic spin of the particles, or their spin statistics, Pauli [138].
In quantum statistical mechanics, we have two types of particles, adhering to the
following:
Bose-Einstein Statistics (Bosons). All particles with integral intrinsic spin,
s ∈ Z,

[
â†k, â

†
l

]
= 0

[âk, âl] = 0 (7.3)[
âk, â†l

]
= δklI

Fermi-Dirac Statistics (Fermions). All particles with half-integral intrinsic spin,
s = ±1

2 ,±
3
2 ,±

5
2 , . . . ,

{
â†k, â

†
l

}
= 0

{âk, âl} = 0 (7.4){
âk, â†l

}
= δklI
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Normal matter is constituted by Fermi-Dirac particles (electrons orbiting a nu-
cleus, consisting of protons and neutrons). Thus, deep within the categorization
of Fermi-Dirac Statistics lies the reason of the Pauli-exclusion principle [138]. No
two identical fermionic particles, with the same quantum numbers, may occupy
the same space, since, â†kâ

†
k = 0.

In Quantum Field Theory (QFT) [145, 146, 147] it is customary to describe a
quantum particle in terms of its characteristic or intrinsic quantum numbers. At
present we know that:

• The fundamental particle of light is called a photon.
• The photon is a transversal EM wave.
• The energy of a photon is E = hν.
• The speed of a photon in vacuo is v = c. In media v < c. (Ewald-Oseen

extinction theorem [19]).
• The rest mass of the photon is m0 = 0. Prescribed by Einstein (E2 = m2

0c
4 +

p2c2).
• The linear momentum of the photon is p = E

c
= ~k, consequence of E = hν

and m0 = 0, i.e., massless.
• The photon has an intrinsic spin, s = ±1. This is circular polarization, right

and left, in the direction of the momentum, known as helicity. The chirality
or handedness property. (Total spin s = 1, in quantum mechanics requires
three spin states, s = −1, 0,+1. The s = 0 is assumed not to exist and
neglected, since m0 = 0).

• The photon is a boson, the intrinsic spin is integral Eq. (7.3).
• A collection of photons, as in light, can have orbital angular momentum.

7.2.1. Gaussian Laser Beams

I once had the opportunity to read a translated version of C.F. Gauss’ original
paper, in which he derives his famous Gaussian function. The original Gaussian
function was derived as an error function. Unlike Gauss this was done with slightly
circular reasoning. The central-limit theorem of probability theory (Papoulis [70])
shows that the addition of continuous random variables, with any type of probabil-
ity density, under certain limiting conditions, that the mean and variance remain
finite, will approximate a Gaussian probability density function and as n → ∞,
the variance ∑n

i=1 σ
2
i →∞, the approximation becomes an equality. Papoulis [70]

shows that adding the simplest random variables, namely an uniformly distributed
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random variable, the addition of only three already resembles a Gaussian prob-
ability density. In probability theory, the probability density of the addition of
random variables is a convolution operation. As a consequence random noise is
often represented as a Gaussian probability density.
Wigner-Weisskopf theory (see Steck [23]) shows that the natural lineshape of a
quantum transition, e.g., of a gas, has a Lorentzian distribution. Collision broad-
ening (sometimes referred to as pressure broadening of a gas or fluid) also has a
Lorentzian lineshape (Loudon [148]). Doppler broadening on the other has a Gaus-
sian lineshape. At any rate, due to the central limit theorem, after the addition
of many error sources, implies that the most natural lineshape of a laser will be
Gaussian. Here we only give a brief definition of Gaussian beams, without defining
the various parameters in detail, as these can be found in many references. We do
give the mathematical definitions of Hermite-Gaussian modes, Laguerre-Gaussian
modes and Ince-Gaussian modes. We say nothing about Bessel beams, because
they are not relevant to our discussion.
The most general laser beam modes are the Hypergeometric-Gaussian modes (not
represented here).

7.2.1.1. Circular Gaussian Beams

A circular Gaussian laser beam propagating in the z direction (beam axis) is
described by

E(r, z) = E0
w0

w(z) exp
[
− r2

w2(z) − ikz − ik
r2

2R(z) + iG(z)
]
, (7.5)

where,
w0 = w(0) is the narrowest waist of the beam.
r = Radial distance from beam’s axis
z = Axial distance from w0.
k = The wave number.
E0 = Electric field amplitude.
w(z) = Where the waist is equal to 1

e
and 1

e2
of the field amplitude

and intensity of its axial value respectively.
R(z) = Beam’s radius of curvature.
G(z) = Gouy phase shift.

[
= arctan

(
z
zR

)]

7.2.1.2. Hermite-Gaussian modes

One-dimensional Cartesian coordinates
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un(x, z) =
( 2
π

) 1
4
( 1

2nn!w0

) 1
2
(
χ0

χ(z)

) 1
2
[
χ0χ

∗(z)
χ∗0χ(z)

]n
2

×

Hn

(√
2x

w(z)

)
exp

[
−i kx

2

2χ(z)

]
(7.6)

where,

Hn(x) = Physicist’s Hermite polynomial of order n. (cf. Subsection 5.2.1).
w0 = w(0) is the narrowest waist of the laser beam.
x = Horizontal Cartesian axis.
z = Axial distance from w0.
k = The wave number.
E0 = Electric field amplitude.
w(z) = Where the waist is equal to 1

e
and 1

e2
of the field amplitude

and intensity of its axial value.
χ(z) = z + χ0 = z + izR, Complex beam parameter

Two-dimensional Cartesian modes

unm(x, y, z) = un(x, z)um(y, z), (7.7)

and, um(y, z), has exactly the same mathematical form as, un(x, z). These give
rise to the familiar Transverse-Electro-Magnetic modes of a laser, TEMmn. Of
course the TEM00 is just the Gaussian beam mode defined in Eq. (7.6).

7.2.1.3. Laguerre-Gaussian modes

(In terms of cylindrical coordinates (r, θ, z)) (For the definition of, L|m|n , see SectionC.2),

u(r, θ, z) = cmn
1

w(z)

[
r
√

2
w(z)

]
exp

[
− r2

w2(z)

]
L|m|n

[
2r2

w2(z)

]
×

exp
[
ik

r2

2R(z)

]
exp (imθ) exp [i(2n+ |m|+ 1)G(z)] (7.8)

where,
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L|m|n (x) = Associated Laguerre polynomials, n ≥ 0 is the
radial index and m the azimuthal index. (cf. SectionC.2).

cmn = Normalization constant.
w0 = w(0) is the narrowest waist of the laser beam.
r = Radial distance from the laser beam’s axis
θ = Azimuthal angle measured from laser beam axis.
z = Axial distance from w0.
k = The wave number.
E0 = Electric field amplitude.
w(z) = Where the waist is equal to 1

e
and 1

e2
of the field amplitude

and intensity of its axial value.
R(z) = Laser beam’s radius of curvature.
G(z) = Gouy phase shift

[
= arctan

(
z
zR

)]

The laser beams can generally be categorized in terms of Ince-Gaussian modes
and Hypergeometric-Gaussian modes. The above definitions are sufficient for our
purposes.

7.2.1.4. Ince-Gaussian modes

(Elliptic coordinates) The even and odd functions are defined as (derived in Ban-
dres and Vega [149])

uε(ξ, η, z) = w0

w(z)C
m
n (iξ, ε)Cm

n (η, ε) exp
[
−ik r2

2χ(z) − (n+ 1)G(z)
]
, (7.9)

where,
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Cm
n (η, ε) = Even Ince polynomials, order n and degree m.
ε = Ellipticity parameter.
ξ = Radial elliptic coordinate.
η = Angular elliptic coordinate.
x =

√
ε/2w(z) cosh ξ cos η

y =
√
ε/2w(z) sinh ξ sin η

r = Radial distance from the laser beam’s axis.
z = Axial distance from w0.
k = The wave number.
w0 = w(0) is the narrowest waist of the laser beam.
w(z) = Where the waist is equal to 1

e
and 1

e2
of the field amplitude

and intensity of its axial value.
R(z) = Laser beam’s radius of curvature.
G(z) = Gouy phase shift

[
= arctan

(
z
zR

)]
χ(z) = z + χ0 = z + izR, Complex beam parameter

Special cases of the Ince-Gaussian modes are the Hermite-Gaussian and Laguerre-
Gaussian modes for, ε = ∞ and ε = 0, respectively. For a thorough discussion
refer to Bandres Vega [149].

7.2.2. Optical Phase Space

Many text books deal with the subject of Optical Phase Space and Quantum
Optics. Notably Schleich [35], Scully and Zubairy [150], Klauder and Sudarshan
[151], Gerry and Knight [24], and Loudon [148].
Here, we firstly develop the standard quantization of an electromagnetic wave, in
the footsteps of Dirac’s original 1927 article [139], in terms of quantum harmonic
oscillators. We introduce different, at times rather confusing, notations for the
transversal polarization vectors. This is purposely done to emphasize the impor-
tance of the oversight of the Coulomb gauge. Dirac here, like Maxwell, assumed
the Coulomb gauge for the vector potential, A, (cf. [152, 153, 154]),

∇ ·A = 0, (7.10)
as opposed to the Lorenz-Lorentz gauge

∇ ·A + 1
c2
∂φ

∂t
= 0, (7.11)

where, φ, is the scalar Coulomb potential. These are related to the electric field, E,
and magnetic (induction) field, B, by E = −∇φ− ∂A

∂t
and B = ∇×A, respectively.
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The free classical EM radiation field, J = 0, the vector potential, A, must satisfy
the wave equation,

∇2A− 1
c2
∂2A
∂t2

= 0. (7.12)

The vector potential, A, can be expanded in terms of a 3-dimensional Fourier
series in a cubic cavity L3 as (Loudon [22]),

A(t, r) =
∑

k
[Ak(t) exp (ik · r) + A∗k(t) exp (−ik · r)] , (7.13)

where, the wave vector, k = [kx, ky, kz] = [2πνx/L, 2πνy/L, 2πνz/L], with νx, νy, νz ∈
Z. The Coulomb gauge is satisfied if, k ·Ak(t) = k ·A∗k(t) = 0. Of course, if the
wave vector, k, is the direction of propagation of the wave, this shows the transver-
sality of the EM wave and that there are two independent orthogonal amplitudes,
Ak(t) and A∗k(t), associated with each wave vector. These two components must
both satisfy the wave equation, Eq. (7.12), and when inserting Eq. (7.13) into
Eq. (7.12) we obtain the following imposed condition,

k2Ak(t) + 1
c2
d2Ak(t)
dt2

= 0. (7.14)

Defining an angular frequency, ωk = ck, the above equation is a simple harmonic
DE with solution given by

Ak(t) = Ak exp(−iωkt). (7.15)

In general there is a second solution of the form, Ck exp(iωkt), but for mat-
ters of convention this is usually attributed to the complex conjugate, A∗k(t) =
A∗k(t) exp(iωkt). Inserting Eq. (7.15) and its conjugate into Eq. (7.13) the vector
potential can be written as,

A(t, r) =
∑

k
[Ak(t) exp (−iωkt+ ik · r) + A∗k(t) exp (iωkt− ik · r)] .

The electrical, Ek, and magnetic, Hk, fields, for a single propagation mode, k, of
the EM radiation field, can be derived as in Loudon [22], from Maxwell’s equations
in the Coulomb gauge, in terms of the vector potential, Ak, as,

Ek = iωk [Ak exp (−iωkt+ ik · r)−A∗k exp (iωkt− ik · r)] , (7.16)
Hk = (i/µ0)k× [Ak exp (−iωkt+ ik · r)−A∗k exp (iωkt− ik · r)] . (7.17)

We now introduce generalized mode “position”, qk, and “momentum”, pk, coor-
dinates. Since these are field operators, we do not associate any “mass” to the
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reciprocal coordinates. It has caused so many discussions and speculations, that
Cohen-Tannoudji et al. [155] calls it a fictitious space. This is generally known as
the optical phase space and the coordinates are known as quadrature coordi-
nates,

Ak =
(
4εoV ω2

k

)− 1
2 [ωkqk + ipk] εk, (7.18)

A∗k =
(
4εoV ω2

k

)− 1
2 [ωkqk − ipk] εk, (7.19)

where, we have separated the vectorial part of the vector potential by means of a
polarization vector, εk, so that, εk ·k = 0. A single mode energy would correspond
to

Ek = 2εoV ω2
kAk ·A∗k = 1

2
[
ωkqk

2 + pk
2
]
. (7.20)

The quantization of the radiation field is now accomplished by associating the QM
harmonic oscillator with the vector potential, allowing for the eminent identifica-
tion of the vector potential, A(r, t), with the annihilation operator of a quantum
harmonic oscillator, ak, as follows,

Ak =
(
4εoV ω2

k

)− 1
2 [ωkqk + ipk] εk −→ (~/2εoV ωk)

1
2 akεk, (7.21)

A∗k =
(
4εoV ω2

k

)− 1
2 [ωkqk − ipk] εk −→ (~/2εoV ωk)

1
2 a†kεk, (7.22)

so that,

A(r, t) =
∑

k
(~/2εoV ωk)

1
2 εk

[
ake

−i(ωkt−k·r) + a†kei(ωkt−k·r)
]
. (7.23)

The electric field, E, is the given by,

E =
∑

k
i (~ωk/2εoV )

1
2 εk

[
ake

−i(ωkt−k·r) − a†kei(ωkt−k·r)
]
. (7.24)

or at a specific position, as a function of time

E+(t) =
∑

k
i (~ωk/2εoV )

1
2 εkake

−iωkt. (7.25)

In the above we have separated the polarization by means of the linear polarization
vector, εk.
What is actually often done in modern text books, Merzbacher [6], is to define
the operators, â†R(k) and â†L(k), that correspond to the creation of a photon with
linear momentum, p = ~k, and intrinsic spin angular momentum’s, J · k = ±~,
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respectively, for right and left circularly polarized photons. The commutation
relationships are given by (compare Eq. (7.3)),[

âR(k), â†R(k′)
]

=
[
âL(k), â†L(k′)

]
= δkk′ . (7.26)

Making them bosons operators, with spin 1. All other commutation relations are
zero. We are then in a position to define the following quantities for the quantized
EM boson field.

• Total energy (Hamiltonian)

H =
∑

k
c~k

[
â†R(k)âR(k) + â†L(k)âL(k)

]
(7.27)

• Total linear momentum

P =
∑

k
~k
[
â†R(k)âR(k) + â†L(k)âL(k)

]
(7.28)

• Total number of photons

N =
∑

k

[
â†R(k)âR(k) + â†L(k)âL(k)

]
(7.29)

• Total angular momentum with linear momentum k[
J · k̂, â†R(k)

]
âR(k)+

[
J · k̂, â†L(k)

]
âL(k) = ~

[
â†R(k)âR(k)− â†L(k)âL(k)

]
.

(7.30)
The boson field creation operators, â†R(k) and â†L(k), transform like the compo-
nents of an irreducible tensor of rank one, T 1

1 and T−1
1 . A transformation to

â†1(k) = 1√
2
[
−â†R(k) + â†L(k)

]
, (7.31)

â†2(k) = i√
2
[
â†R(k) + â†L(k)

]
, (7.32)

transforms them to two operators that transform like normal vector components
under rotation, i.e., linear transverse. Introducing two unit vectors, ê1

k and ê2
k,

orthogonal (transverse) to the direction of propagation, k̂, so that, ê1
k · ê2

k = 0,
ê1

k · k̂ = 0, ê2
k · k̂ = 0, ê1

k × ê2
k = k̂, k̂× ê1

k = ê2
k and ê2

k × k̂ = ê1
k form a mutually

orthogonal triad, then,

â†1(k)ê1
k + â†2(k)ê2

k = 1√
2
[
â†R(k)

(
−ê1

k + iê2
k

)
+ â†L(k)

(
ê1

k + iê2
k

)]
, (7.33)
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and its Hermitian conjugate operator,

â1(k)ê1
k + â2(k)ê2

k = 1√
2
[
−âR(k)

(
ê1

k + iê2
k

)
+ âL(k)

(
ê1

k − iê2
k

)]
. (7.34)

This then reconnects the operators defined in Eq. (7.21) and Eq. (7.22).
In relativity theory great use is made of the tensorial notation. Given that the
metric tensor, gµν , is diagonal, i.e., g00 = +1, g11 = g22 = g33 = −1, (at least
in special relativity theory, but also in electrodynamics [152],[154] and quantum
mechanics [7],[146]), we have,

Aµ =
∑
ν

gµνA
ν , (7.35)

where the vector 4-potential defined as (in SI units),

Aµ = [φ
c
,Ax, Ay, Az]T ,

where, φ and A, is the electromagnetic scalar and vector potentials. In this covari-
ant notation the Lorentz-Lorentz gauge condition, Eq. (7.11), is simply written
as (Einstein convention - there is an implicit sum over all values for pairs of equal
upper/lower indices),

∂µA
µ = 0. (7.36)

Usually the non relativistic quantum wave equations are described in terms of
a Hamiltonian. For quantum field theory it is more convenient to work with a
Lagrangian formalism.
The standard Lagrangian of a free EM field is given by Cohen-Tannoudji et
al. [155]

L st
R = −ε0c

2

2
∑
µ,ν

FµνF
µν (7.37)

where, F µν , is the EM field tensor, sometimes called the Faraday tensor by Misner
et al. [156], and is defined by

Fµν = ∂µAν − ∂νAµ. (7.38)

In SI units F µν is given by an anti-symmetric tensor, the Faraday tensor,

F µν =


0 −Ex

c
−Ey

c
−Ez

c
Ex
c

0 −Bz By
Ey
c

Bz 0 −Bx
Ez
c
−By Bx 0


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The interaction Lagrangian must be included with the standard Lagrangian to
allow for interaction with external charged particles. This is given by, ( jµ = [cρ, j],
the current density (in SI units)),

LI = −
∑
µ

jµA
µ = j ·A− ρφ. (7.39)

The addition of Eq. (7.37) and Eq. (7.39) gives us the standard Lagrangian of
an EM field, that is,

L st
em = L st

R + LI . (7.40)
In Einstein’s notation this becomes

L st
em = −ε0c

2

2 F µνFµν − jµAµ. (7.41)

Unfortunately, this formalism is still not truly relativistically covariant, see Cohen-
Tannoudji et al. [155] and the following relativistic Lagrangian for the free
EM field was proposed,

LR = −ε0c
2

2
∑
µ,ν

(∂µAµ)(∂νAν). (7.42)

In 1932, Fermi [157], proposed the following manifestly relativistic covariant
Fermi Lagrangian for the free EM field

L F
R = −ε0c

2
[∑
µ,ν

FµνF
µν + 1

2
∑
µ,ν

(∂µAµ)2
]
. (7.43)

This is all done in Cohen-Tannoudji et al. [155]. In the normal reciprocal Fourier
space, k, in the covariant formalism, the scalar and vector potential Aµ are con-
sidered independent dynamical variables. This implies that at each point, k, there
are four independent degrees of freedom. The four vector is given by,

kµ = [ω
c
,k] = [k0, k1, k2, k3]. (7.44)

We also have the wave relationship, that is ω = ck, where k = |k| = k0. Thus this
satisfies,

kµkµ = 0. (7.45)

For the propagation direction, k, we can define a unit vector k̂ = k/k. We still have
the two transverse polarization vectors, εk and ε′k, so that εk · k = ε′k · k̂ = 0. The
additional degrees of freedom imply that for each k, there are now four normal
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modes of vibration! Two transverse, one longitudinal and one scalar! In the
notation of Cohen-Tannoudji et al. [155], the quantum harmonic oscillator field
operators, ak, are written in covariant form as

[αε, αε′ , αl, αs] (7.46)

where αε, αε′ corresponds to normal transverse components and, αl, to the new
additional longitudinal harmonic oscillator and, αs, to the scalar component. This
implies

αµ(k) = αε(k)εµ + αε′(k)ε′µ + αl(k)κµ + αs(k)ηµ. (7.47)

The various four vectors are defined by

εµ = [0, εk]
ε′µ = [0, ε′k] (7.48)
κµ = [0, k̂]
ηµ = [1,0].

Up to this point the variables are considered independent, but the Lorenz-Lorentz
gauge Eq. (7.11) imposes an additional constraint. Cohen-Tannoudji et al. [155]
then shows that, for a free field, this leads to the following constraint,

αl(k)− αs(k) = 0, ∀k. (7.49)

From this condition, he then introduces two new variables simply as combinations,

αd = i√
2

(αl − αs) , (7.50)

αg = 1√
2

(αl + αs) . (7.51)

The constraint is then simply, αd = 0. He then studies the effects of the gauge
arbitrariness and shows a gauge transformation only effects, αg. Then also,

αl(k)κµ + αs(k)ηµ =

1√
2

[iαd(k) (ηµ − κµ) + αg(k) (κµ + ηµ)] . (7.52)

Then, finally this results in a separation of the four vector potential into

Aµ = Atµ + Agµ + Adµ, (7.53)
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where, Atµ, is the contribution from the transverse spatial components, αε and αε′ ,
and Agµ and Adµ, are the contributions from αg and αd, respectively. Finally, since
αd = 0, for a physical field, we have, Adµ = 0, and in the tensor, Fµν , the gauge
portion, Agµ, also doesn’t contribute, so that,

Fµν = ∂µA
t
ν − ∂νAtµ = F t

µν . (7.54)

Therefore the free-field EM fields are purely transversal in nature.
In Gaussian units, the Faraday tensor is given by,

F µν =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


. Physics can also be derived from a Lagrangian or as such a Hamiltonian. The
action principle is, however, best stated in terms of a Lagrangian, so (cf. Griffiths
[158], in Gaussian units)

• The Dirac Lagrangian (Spin-1
2) Spinor Field.

LD = i(~c)ψ̄γµ∂µψ − (mc2)ψ̄ψ, (7.55)

where, ψ̄, is the adjoint spinor and is considered as an independent solution
to ψ.

• The Maxwell Lagrangian (Spin-1, m0 = 0) Vector Field with source
Jµ.

LM = − 1
16πF

µνFµν −
1
c
JµAµ. (7.56)

The Euler-Lagrange equation gives the Maxwell equation as,

∂µF
µν = 4π

c
Jν , (7.57)

with the immediate consequence of charge conservation on the source, ∂νJν =
0.

• The Complete Dirac-Maxwell Lagrangian (including local gauge in-
variance)

LDM =
[
+i(~c)ψ̄γµ∂µψ − (mc2)ψ̄ψ

]
+
[
− 1

16πF
µνFµν

]
−
[(
eψ̄γµψ

)
Aµ
]
,

(7.58)
with current density,

Jµ = c
(
eψ̄γµψ

)
. (7.59)
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This last Lagrangian shows that by simply imposing local gauge invariance (para-
mount to charge conservation) on the Dirac Lagrangian, forces the introduction
of a massless vector field, Aµ, i.e., the EM field. This then demonstrates the
inseparable intertwined relationship between fermionic charge and bosonic photon
fields. LM , Eq. (7.56) can be compared with, L st

em,Eq. (7.41). They are the same
except for the coefficients, 1

16π and ε0c2

2 , and the additional, 1
c
. This is attributable

to the different EM units that are employed in the two books, Gaussian units vs
SI units1. It is unfortunate, and there are very valid reasons, that different physics
fields employ different units. So it is best to adapt quickly or die.

7.3. Coherent States

After the discovery of Hanbury-Brown and Twiss, in 1957, of the interferometric
fluctuations of light [159] and the subsequent papers of Mandel and Wolf, [160],
and to put the cherry on top, the invention of lasers (Section 7.2), an omission in
the description of the quantum of light as bosons was evident.

In 1963, E. C. G. Sudarshan and R. Glauber independently introduced quantum
coherent states specifically for light, as those states that are most closely related
to classical states. When Glauber2 discovered the states, he initially saw them as
a mathematical curiosity. According to history, they were in communication with
each other, and Sudarshan [161] sent a preliminary copy of his article to Glauber,
only requiring that Glauber should acknowledge him. Unfortunately, Glauber
[162, 163, 164] ignored the request. One of the great controversies of the Nobel prize
is that the 1973 Nobel prize was solely awarded to Glauber, without recognition of
Sudarshan’s contribution. In the physics literature there is an attempt to correct
this oversight by referring to them as Sudarshan-Glauber coherent states.
They essential describe the quantum state of a laser. Where normally we talk
about the number of quanta in a harmonic oscillator, here we should replace it with
the number of photons in the laser mode. At present many text books discuss this
topic, Klauder and Sudarshan [151], Perelomov [165], Rousseau and Blaise [166],
Gazeau [167], Combescure and Robert [168] with mathematical applications, and
in the selected works of Glauber [169]. Concurrently, Mandel and Wolf [170, 38]

Given a quantum harmonic oscillator with the Hamiltonian,

Ĥ = 1
2(p̂2 + ω2q̂2), (7.60)

1There is a third set of units used, namely Heaviside-Lorentz units, cf. Jackson [152].
2Another child prodigy, as was Gauss, Hamilton, Schwinger and Mozart to name a few.

204

Stellenbosch University  https://scholar.sun.ac.za



7.3 Coherent States

with the usual, [q̂, p̂] = i~, we define non-Hermitian annihilation and creation
operators (with “unit mass”, but essentially with no mass, i.e., zero mass, only
field energy) in optical phase space or quadrature space,

â = (2ω~)− 1
2 (ωq̂ + ip̂), (7.61)

â† = (2ω~)− 1
2 (ωq̂ − ip̂). (7.62)

The associated quantum mechanical harmonic oscillator Hamiltonian is given by,

Ĥ = ~ω
(
â†â + 1

2

)
, (7.63)

where, the vacuum zero-point energy, Eo = ~ω/2, arises as a direct consequence
of Heisenberg’s uncertainty principle, and therefore also places an uncertainty on
energy. The number operator is given by,

n̂ = â†â. (7.64)

This number operator is directly related to the amplitude of the coherent state,
|α〉. A coherent quantum state is usually defined as the eigenvalue problem of
the annihilation operator â of a quantum harmonic oscillator,

â |α〉 = α |α〉 , (7.65)

where the eigenvalue, α ∈ C. The Hermitian conjugate of the above is given by,

〈α| â† = 〈α|α∗, (7.66)

and with the aid of the commutator relationship of a harmonic oscillator,[
â, â†

]
= 1, (7.67)

we can expand the coherent state, |α〉, in terms of number of occupation states,
|n〉, of the harmonic oscillator and obtain

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 . (7.68)

The inner product of two coherent states, |α〉 and |β〉, is given by,

〈α|β〉 = e−
|α|2+|β|2

2

∞∑
m,n=0

α∗mβn√
m!
√
n!
〈m|n〉

= e−
|α|2+|β|2

2

∞∑
n=0

(α∗β)n

n!

= e−
|α|2+|β|2

2 +α∗β, (7.69)
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which proves that two coherent states are not orthogonal. Furthermore, we have,
|〈α|β〉|2 = e−|α−β|

2 . The position, q̂, and momentum, p̂, operator i.t.o., â and â†,
are given by,

q̂ =
√
~

2ω
(
â + â†

)
, (7.70)

p̂ = i
√

2ω~
(
â† − â

)
, (7.71)

respectively. The coherent state wave packet is then given by,

ψα(q) = 〈q|α〉 , (7.72)

and the position expectation is given by,

〈q̂〉 =
ˆ ∞
−∞

ψ∗α(x)xψα(x) dx. (7.73)

Rather than doing this integral we use the operator technique directly,

〈q̂〉 = 〈α|
√
~

2ω
(
â + â†

)
|α〉 (7.74)

=
√
~

2ω (α∗ + α) = 2
√
~

2ω<{α}.

The variance of the position operator is given by,

4q̂ =
√
〈q̂2〉 − 〈q̂〉2. (7.75)

Similarly, the expectation value of the momentum and its variance can be calcu-
lated as,

〈p̂〉 = 〈α|i
√

2ω~
(
â† − â

)
|α〉 = 2

√
2ω~={α}. (7.76)

The coherent state complex eigenvalue can then be written as,

α = 1
2

(
( ~2ω )− 1

2 〈q̂〉+ i(2ω~)− 1
2 〈p̂〉

)
. (7.77)

As was previously stated the number operator, n̂, Eq. (7.64), is directly related to
the amplitude of the coherent state, |α〉. Using both Eq. (7.65) and Eq. (7.66), the
probability of the number of states, is given by,

〈α| n̂ |α〉 = 〈α| â†â |α〉
= 〈α|α∗α |α〉
= ‖α‖2 〈α|α〉 , (7.78)
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7.3 Coherent States

and from Eq. (7.69), with α = β, we have 〈α|α〉 = 1. Thus, the probability of the
number state, n̂, is given by,

〈α| n̂ |α〉 = ‖α‖2 . (7.79)

Thus the complex eigenvalue, α, of Eq. (7.65), is related to the number state or
amplitude of the coherent state |α〉 , by α∗α = ‖α‖2.
The displacement operator, D̂(α), for quantum coherent states [150, 35, 24,
167, 166] also displays some kind of an analogy with Hermite and Fourier transla-
tion properties. For a single quantum mode, the displacement operator,

D̂(α) = exp
(
αâ† − α∗â

)
, (7.80)

where, α, corresponds to the displacement in optical phase space and, â†, is the
creation operator. When acting on the vacuum state, |0〉, the state is displaced
into a coherent state, i.e.,

D̂(α) |0〉 = |α〉 .
Milonni has a whole textbook on “The Quantum Vacuum” [37]. The displacement
of the vacuum state is shown in Figure 7.2. The displacement operator is an unitary
operator, and by using the Baker-Campbell-Hausdorff formula, the product of two
displacement operators is just another displacement operator with an added phase,

D̂(α)D̂(β) = e(αβ∗−α∗β)/2D̂(α + β). (7.81)

The phase shifting operator rotates the coherent state by an angle, θ, in the
phase space, (q̂, p̂) or (θ, n̂),

Û(θ) = e−iθn̂. (7.82)
From this definition it is easy to see that [n̂, Û] = 0. Taking the phase angle, θ,
derivative of the unitary transformation by the phase shifting operator, Û, of the
annihilation operator â, then gives

d

dθ

(
Û†âÛ

)
= iÛ†[n̂, â]Û. (7.83)

Using the operator algebra, we find [n̂, â] = −â, resulting in the following differ-
ential equation,

d

dθ

(
Û†âÛ

)
= −i

(
Û†âÛ

)
, (7.84)

with solution (given that the initial condition is θ = 0),

Û†âÛ = âe−iθ. (7.85)
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Figure 7.2.: Phase Space Uncertainties

The phase of a spatial temporal mode of a laser,

Ê = u∗(x, t)â + u(x, t)â†, (7.86)

can now be changed by an observer by the unitary transformation of the phase
shifting operator, Û(θ), to

Ê′ = u∗(x, t)e−iθâ + u(x, t)eiθâ†. (7.87)

A multimode creation operator (3-dimensional) can be defined as,

Â†ψ =
ˆ

dkψ(k)â†(k), (7.88)

where, k, is the wave vector with, ‖k‖ = ωk/c, and then associate a multimode
displacement operator, D̂ψ(α) = exp

(
αÂ†ψ − α∗Âψ

)
, and subsequently, define a

multimode Glauber-Sudarshan state as,

|αψ〉 = D̂ψ(α) |0〉 . (7.89)
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7.3 Coherent States

The electromagnetic field is then quantized by associating with each mode, k,
of the EM radiation field, the occupation number, nk, of a quantum harmonic
oscillator, with photon energy ~ωk. Generally the EM field is written in terms of
the Fock space as,

|nk1 , nk2 , nk3 , . . .〉 = |nk1〉 |nk2〉 |nk3〉 · · · = |{nk}〉 . (7.90)

In the Fock space, {nk}, the electromagnetic field can be considered as a collection
of coherent states, |αk〉, each corresponding to a specific k-mode of the number
states |nk〉 = |nk〉 , i.e.,

|αk〉 = e−|αk|
2/2

∞∑
nk=0

αnk√
nk!
|nk〉 . (7.91)

The time, eiωkt, and an amplitude, ak = ‖αk‖2 , Eq. (7.79), which is already in-
directly included in the coherent state, can also be introduced, as is done in the
quantization of the EM radiation field, Eq. (7.23), then ignoring the polarization,
by assuming all modes are plane polarized as in laser light, we may write a general
multimode superposition of coherent state as,

||αε; t〉〉 =
∑
k

eiωkte−|αk|
2/2

∞∑
nk=0

αnk√
nk!
|nk〉 (7.92)

Including polarization, we write, εk · k̂ = 0,

||αε; t〉〉 =
∑
k

e−|αk|
2/2εk

∞∑
nk=0

αnk√
nk!
|nk〉 . (7.93)

How one should include the second polarization is still unclear to the author. If we
assume that each coherent state for a specific, k, manifests itself in two varieties,
as in Eq. (7.26), i.e., âR(k) and âL(k), with associated transversal vectors, εk and
ε′k, this can be accomplished (see the discussion in Subsection 7.2.2). This would
then generally imply something like, and we would only hope that it is additive
from the superposition principle, that we have two coherent state expansion for
every, k,

||αε; t〉〉 =
∑
k

e−|αk|2/2εk

∞∑
nk=0

αnk√
nk!
|nk〉+

e−|α′k|
2
/2ε′k

∞∑
n′
k
=0

α′n
′
k√

n′k!
|n′k〉

 . (7.94)
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7.4. FHG Coherent State Analogy

In the Fock space, {nk}, the electromagnetic field (strictly speaking the electric
field is an operator in optical phase space, but its representation i.t.o. of state vec-
tors clarifies the situation), ε(t), can then be considered as a collection of Glauber-
Sudarshan coherent states, |αk〉, each corresponding to a specific k-mode of the
number states |nk〉 = |nk〉 , i.e., including time dependence, but ignoring the po-
larization, by assuming all modes are plane polarized 7.92

||αε; t〉〉 =
∑
k

∞∑
nk=0

eiωkte−|αk|
2/2 α

nk
k√
nk!
|nk〉 , (7.95)

where, |nk〉, are the number states of the electromagnetic quantum harmonic oscil-
lator and, αk ∈ C. Excluding the dependence on the wavenumber, k, i.e., nk → n,
the functional form of the q-representation of the orthonormal number states,
|n〉, of the harmonic oscillator, i.e., 〈q|n〉, are exactly our HG basis functions,
φn(x), (cf. Merzbacher [6]). In fact in quantum wave mechanics, the functional
forms of the q-representation and p-representation are related to each other by a
Fourier transform. This is the essence of quantum wave mechanics. Originally,
Schrödinger used the Copenhagen correspondence from classical to quantum me-
chanics to “derive” his equation,3 with the specific requirement that it had to
only contain the first partial derivative of time, to correspond with the canonical
classical mechanic equations of Hamilton. The manifestly relativistic covariance of
space-time and energy-momentum with their Heisenberg uncertainties,4q4p ≥ ~

2
and 4t4E ≥ ~

2 , results in the Heisenberg-Gabor uncertainty, 4t4ω ≥ 1
2 , show-

ing that they are also reciprocal variables (The name originates from Cohen [33],
see Section 2.3). Ever since Heisenberg’s formulation, the time-energy uncertainty
relation (The non-relativistic QM derivation in Messiah [7] emphasizes the prob-
lems) is still subject to an ongoing debate cf. Busch [171], "The Time-Energy
Uncertainty Relation", 2007.
The celebrated relativistic energy equation of Einstein i.t.o the rest mass m0 of a
particle,

E2 = m2
0c

4 + p2c2.

For a photon moving necessarily at the speed of light, we must have, m0 = 0, and
therefore,

E = pc, (7.96)

p = E

c
. (7.97)

3The non-relativistic PDE of Schrödinger cannot be “derived” from first principles. It can only
be seen as a plausible correspondence with the wave-particle duality equation of de Broglie.
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In the manifestly relativistic formulation we have the covariant position 4-vector
representation, [

ct q1 q2 q3
]
, (7.98)

and similarly, the momentum, [
E
c

p1 p2 p3
]
. (7.99)

Now according to Planck’s formula (1901),

E = hν = ~ω. (7.100)

or more generally as,

En = n~ω with n = 1, 2, . . . , (7.101)

where, ν and ω, is the frequency an angular frequency of a photon, respectively
and, h, is of course Planck’s constant. Furthermore, from the de Broglie equation,
rearranged to, p = ~k and k = ω

c
, we also obtain from Eq. (7.99) (Compare

Eq. (7.44), without the ~),

~
[
ω
c

k1 k2 k3
]
. (7.102)

Thus we notice that, [
ct q1 q2 q3

]
(7.103)

↓ ↓ ↓ ↓[
hν
c

p1 p2 p3
]

(7.104)
↓ ↓ ↓ ↓[
ω
c

k1 k2 k3
]

(7.105)

and that in quantum mechanics, q and p, are considered canonical reciprocal
variables, it is only natural by analogy to consider, ct and hν

c
, ω
c
, as canonical

reciprocal variables. Notice the direct correspondence of Eq. (7.105) with the
manifestly relativistic covariant derivation of the quantum EM radiation field and
its wavenumber, kµ = [ω

c
,k], Eq. (7.44). The Heisenberg uncertainty principle

states that for quantum states, (q, p),

4 q4 p ≥ ~2 , (7.106)

and its associated commutator relationship,

[q, p] = i~, (7.107)
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must therefore also be extended in this covariant formulation to (recall the vacuum
zero-point energy, Eo = ~ω/2, which implies that the energy can only be known
to some uncertainty),

4 t4 E ≥ ~2 . (7.108)

Associated with 4t4E ≥ ~
2 , we have a time and frequency or angular frequency

(related to the Heisenberg-Gabor inequality, Eq. (2.8)) inequality,

4 t4 ω ≥ 1
2 , (7.109)

and its associated commutator relationship,

[t, ω] = 1. (7.110)

Going from Eq. (7.106) to Eq. (7.108) to Eq. (7.109), we are actually performing
the Wigner-Ville correspondence, cf. Section 2.8. Ignoring the polarization, by
assuming all modes are plane polarized, the total field (a multimode superposition
of coherent states 7.92) can then be written as, in the qk-representation, where
(qk, pk), is the corresponding optical phase space of the k-mode,

〈〈q|αε; t〉〉 =
∑
k

∞∑
nk=0

eiωkte−|αk|
2/2 α

nk
k√
nk!
〈qk|nk〉 , (7.111)

where, |nk〉, are the number states of the electromagnetic quantum harmonic oscil-
lator and, αk ∈ C. By declaring that the quantum canonical position-momentum
states, (q, p), correspond to the classical variables, (t, ω), we have exactly the
Ville correspondence. From the (q, p) quasi-probability distribution of Wigner,
we move over to the “classical” Wigner-Ville TFR. This is in accord with the
fundamental quantum mechanical principle of the quantum Copenhagen corre-
spondence, but now in the opposite direction, to canonical quantization, and is
also a requirement. From quantum to classical (this is analogous to the Wigner-
Ville TFR and Feynman-Kac formula, see the footnote 4 of Section 2.8). Since,
the q-representation of the orthonormal, |nk〉, are exactly our HG, φnk(t), states,
(now with wavenumber k) and we know that in quantum mechanics all you need
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is, preferably, an orthonormal polynomial expansion,

〈nk|nl〉 = δklˆ ∞
−∞

〈nk|q〉 〈q|nl〉 dq = δkl

ˆ ∞
−∞

φnk(q)φnk(q) dq = δkl

ˆ ∞
−∞

φnk(t)φnk(t) dt = δkl

ˆ ∞
−∞

φk(t)φl(t) dt = δkl

We are aware that in non-relativistic quantum mechanics that time has some issues
attached to it, but that it naturally enters in its manifestly relativistic covariant
field theory formulation. We know, however, that for everym,n, in the FHG TFR,
that,

ˆ ∞
−∞

φp(
t− tm√

2σ
)φk(

t− tm√
2σ

) dt = δpk,

if the HG polynomials are properly scaled.

Considering this, we now actually make a bold step, by stating that, by analogy,
that a multimode superposition of coherent states expansion Eq. (7.111),

〈〈q|αε; t〉〉 =
∑
k

∞∑
nk=0

eiωkte−|αk|
2/2 α

nk
k√
nk!
〈qk|nk〉

↓ ↓ ↓ ↓ ↓

〈E; t〉 =
∞∑

m,n=0
cm,n

N∑
p=0

eiωnte−|αm,n|
2/2α

p
m,n√
p!
φp(

t− tm√
2σ

) (7.112)

to an analogous “classical” multimode superposition of coherent state expansion
〈E; t〉, i.e., the correspondence analogy, 〈〈q|αε; t〉〉 7−→ 〈E; t〉, by the following
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variable correspondence4

〈qk|nk〉 7−→ φp(
t− tm√

2σ
)

nk 7−→ p

k 7−→ m,n

αk 7−→ αm,n (7.113)
ωk 7−→ ωn∑
k

7−→
∑

m,n=0
cm,n

where, cm,n ∈ C, is an additional correlation expansion coefficient, corresponding
to the amplitude αk, that we assume is allowable because we are neglecting the
specific polarization, given in Eq. (7.94). Eventually, cm,n ∈ C, becomes our corre-
lation coefficient in this coherent state analogy. This is important, since in the
whole process in modulating the laser beam, we are actually modifying the phase
and amplitude. Exclusively for the temporal FHG basis (this is why it is only an
analogy), we also have, for electric field representation of the coherent laser pulse
ε(t), the following correspondence 〈E; t〉 7−→ ε(t),

〈E; t〉 =
∞∑

m,n=0
cm,n

N∑
p=0

eiωnte−|αm,n|
2/2α

p
m,n√
p!
φp(

t− tm√
2σ

) (7.114)

↓ ↓ ↓ ↓ ↓ ↓

ε(t) =
∞∑

m,n=0

N∑
p=0

eiωntapm,nφp(
t− tm√

2σ
), (7.115)

where FHG coefficients are given by,

aTm,n = [ a0
m,n a1

m,n a2
m,n · · · apm,n ]. (7.116)

In Eq. (7.115) we make the following proportional analogy. Firstly, the coefficients
of the FHG TFR are just proportional to “classical” multimode superposition of
coherent state coefficients, i.e.,

akm,n ∝ e−|αm,n|
2/2α

k
m,n√
k!

(7.117)

Notice that in Eq. (7.114), we also have the expansion coefficient, cm,n, available.
By the inclusion of the so-called correlation coefficient, cm,n, in Eq. (7.117) this
can be made into an equality,

4We use the symbol 7−→ to denote a correspondence analogy
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akm,n = cm,ne
−|αm,n|2/2α

k
m,n√
k!

(7.118)

Notice that from Eq. (7.111) to Eq. (7.112) to Eq. (7.115), we actually have two
analogies, i.e.,

〈〈q|αε; t〉〉 7−→ 〈E; t〉 7−→ ε(t).

The bold step, then becomes a leap into an unexplored mine field, so we tread
lightly. This is not an equivalence or an equality, but just a plausible correspon-
dence analogy. In the old quantum mechanics even Einstein, 1917 [172], discovered
the stimulated emission coefficient, by requiring detailed balancing with the black-
body radiation formula of Planck.
To complete the correspondence of Eq. (7.118), we therefore, for each HG expan-
sion, am,n, frequency-translated by, eitωn , we set up the corresponding optimization
problem to find the best, αm,n, cm,n ∈ C, that minimizes the following cost func-
tion

Jm,n = min
αm,n,cm,n∈C

‖am,n − b(αm,n, cm,n)‖2 (7.119)

where,

b(αm,n, cm,n) = cm,ne
−|αm,n|2/2 [ 1 αm,n α2

m,n/
√

2! · · · α
p
m,n/

√
p! ]T . (7.120)

The cost function, Jm,n, is then a measure of the correspondence of the FHG
TFR coefficients with a analogous “classical” coherent state. A few explanatory
notes relating to the cost function and the resulting “classical” coherent state
analogy correlation matrix, cm,n ∈ C, are in order now. In the cost function,
Jm,n, Eq. (7.119), we are comparing, am,n − b(αm,n, cm,n), by finding the optimal,
αm,n, cm,n, of the analogy vector b(αm,n, cm,n), Eq. (7.120). If in the optimization,
which corresponds to the minimum of the cost function matrix Jm,n, then if we have
perfect minimization, i.e., Jm,n = 0, it implies that we could find a, αm,n, cm,n ∈ C,
that, ‖am,n − b(αm,n, cm,n)‖ = 0, i.e., b(αm,n, cm,n) ∼ am,n, at least in amplitude.
This means, αm,n, cm,n ∈ C, i.e., the amplitude, αm,n, and correlation coefficient,
cm,n, have a direct match, am,n of the FHG TFR coefficient vector, Eq. (7.116),
and Eq. (7.118) is true. This means that, ‖cm,n‖ = 1, in Eq. (7.118), i.e., cm,n,
only contributes a phase, eiφ. When Jm,n 6= 0, the correspondence between the
coefficients are not exact, and immediately implies that the correlation coefficient
‖cm,n‖ 6= 1. To take this into consideration, we define a normalized “classical”
coherent state analogy correlation matrix Cm,n, which is real-valued, be means of

Cm,n = I− Jm,n/max
m

(max
n

(‖cm,n‖)). (7.121)
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This normalized “classical” coherent state analogy correlation matrix can then also
be plotted as a “classical” coherent state analogy TFR. Figure 7.3 and Figure 7.4
two “classical” coherent state analogy TFRs are presented for our first and second
laser pulses respectively. For convenience the spectral graphs of the two laser
pulses are given next to the coherent state TFR analogy. Since a coherent state is
just a quantum displacement of the vacuum state, one would expect that there is
a perfect correlation in areas of TFR where their is no signal. This is exactly what
we observe in the two graphs, for our “classical” coherent state analogy TFR. In
the presence of the laser pulses we see that the correlation between the “classical”
coherent state analogy TFR deteriorates. This is also expected. We clearly see
that there is greater correlation with respect to the second laser pulse Figure 7.4.
Just off the wings of the laser pulse, in the time domain the correlation is very low
in both cases.

This cannot be seen as a mathematical rigorous equivalence or equality. We be-
lieve, however, that we have shown the plausibility of a correlation analogy between
FHG TFR temporal bases and some kind of Glauber-Sudarshan multimode super-
position of “classical” coherent states. The proof of the pudding is in the eating.
The fruits of our endeavor and the plausibility of our double correspondence anal-
ogy, can be witnessed in Figure 7.3 and Figure 7.4 and they clearly illustrate that
the two “classical” coherent state analogy TFRs actually correspond to the electric
signals magnificently well.

ω
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Figure 7.3.: Coherent State TFR Analogy (First Representative Laser Pulse)
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Figure 7.4.: Coherent State TFR Analogy (Second Representative Laser Pulse)

7.5. Conclusion

A concrete example of an orthogonal expansion of signals has been constructed
with an additional benefit of analogy with Glauber-Sudarshan quantum coherent
states and the generation of a “classical” coherent state correlation TFR. The
analytical freedom offered by this new HG TFR must still be explored to its
full potential. The discovery of the “classical” coherent state analogy definitely
warrants further investigation and is under current research.
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8. Conclusion

One can ask, what is your wish or desire? This can be an ultimate question. The
question is so broad that one has to narrow it to more manageable terrains. The
use of the word terrain is specifically chosen to denote a portion of the whole world.
Zoom in to a specific question. Here we have explored the existence of different
domains and fields, actually in digital information coding.

The true question in this field than becomes: What is the minimum coding require-
ment to represent a set of digital information? Ah, presuming that all information
is of harmonic content (closest to binary). At least this is how we communi-
cate with longitudinal sound waves. Light being an electromagnetic phenomenon
is also governed by a transversal wave or harmonic principle. Thereby making
wave phenomena the basic communication principle. Now... Even and odd, real-
ity, imaginary, analyticity, Hermiticy vs anti-Hermiticy, orthogonality, and anti-
aliasing, data, coding and information, all play a crucial role. All the properties
are intertwined. All these questions must still be properly addressed. Somehow
the orthogonality of the Hermite-Gauss functions are of immeasurable im-
portance in the coding theory and the clue to unraveling the knot.

One great unaddressed question, is the relationship between precision and resolu-
tion of a signal. In representing a signal in terms of a finite polynomial bases, the
precision of reconstruction and resolving the two bases polynomials have a recip-
rocal relationship. The finer the grid the better the precision of reconstruction,
but the resolution of two neighbouring bases deteriorates. This is also related to
correlation. For higher resolution two neighbouring bases polynomials must have
lower correlation. This would also explain the small grid choice of 11 × 11 in
(Tannor et al. [94]). This is to improve resolution.

To give us some flavour of some future work, let us investigate what a translation
in the temporal and spectral domains actually causes. Let us assume that we
can only create a real function in the temporal domain with modulation unscaled
shifted in time with, tl, i.e., totally real (modifying our basis),

cos(ωmt)2
−n2 (n!)

− 1
2 π
− 1

4 e
−

(t−tl)
2

2 Hn(t− tl).
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Using Euler’s formula this can be written as,

1
2
(
eiωmt + e−iωmt

)
2
−n2 (n!)

− 1
2 π
− 1

4 e
−

(t−tl)
2

2 Hn(t− tl),

which does not resemble our defined basis at all. Being odd and even, real and
imaginary, as well as Hermitian and anti-Hermitian, and thrown into it all analyt-
icity, we find, starting with a real function (presumably something we can create)
that the Fourier transform will translate into two side-lobes in the frequency do-
main,

F (ω) = 1
2 · 2

−n2 (n!)
− 1

2 π
− 1

4

[
e−i(ω−ωm)tle

− (ω−ωm)2
2 Hn(ω − ωm) +

e−i(ω+ωm)tle
− (ω+ωm)2

2 Hn(ω + ωm)
]
.

According to SubsectionA.3.7 the Fourier transform must be Hermitian, i.e., F (−ω) =
F ∗(ω), which is not so evident from the above equation, but can quite easily be
proven. The important fact to note is that real signals Fourier transform into two
side-lobes, one at ωm and one at −ωm, which is simply a well known property of
modulation, i.e., the multiplication of, eiωmt. This is exactly the reason for the
introduction of analytical functions to avoid negative frequencies. But with the
disadvantage of being imaginary.
In the calculation of the of the overlap matrices on the von Neumann grid we found
the requirement of doubling the bandwidth on the electric signal,

ωnl ∈ [−Ω,Ω] ∀n, l

.That means the bandwidth we require for the signals is 2Ω. The requirement also
arises in the time domain, i.e., tmk ∈ [−T, T ], for all m and k. Thus, 2T. To comply
to all these requirements, and still have the same σ, we must have,

δt→ δt

2 , and δω → δω

2 ,

so that, T , goes to, 2T , and, Ω, goes to, 2Ω.
The judicious choice of a 640 pixel SLM was also shown, primarily to take into
account anti-aliasing. The SLM therefore was only designed to function on the
central 512 pixels, i.e., 640 = 64 + 512 + 64. Once again this was only discovered
after the fact. Thus, the correct choice is to narrow our bandwidth accordingly.
Hand in hand the correct grid choice would have been 512 ' 529 = 23 × 23. So
the suggestion for the grid is Ω×T = 2πN and then take N = 529. At present we
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have it at N = 625. After this correction we should also narrow our bandwidth to
correspond to the central 529 pixels of the SLM.
Also to late was the discovery of the functional operator notation that results
in writing the FHG bases as Eq. (5.52),

MωnTtmΦ(t) F⇐⇒ TωnM−tmΦ(ω)

This would have greatly simplified this work. The definition of the spectral func-
tion Eq. (6.18),

Hm,k(x) = e−itmxφk(x)

and the temporal function Eq. (6.26),

Km,n,k(x) = eiωn(x+tm)φk(x)

to facilitate the correlation functions of the overlap matrices are also novel to this
thesis.
In summary we have:

1. The application of the von Neumann TFR to enhance the numerical opti-
mization of quantum control problems.

2. Adaptive quantum coherent control of a multilevel molecular system in the
von Neumann time-frequency domain.

3. The discovery of the novel Fourier-Hermite-Gauss TFR as an expansion and
generalization of the von Neumann TFR.

4. The FHG TFR overlap matrices are different for the temporal and spectral
cases.

5. The requirement of doubling the bandwidths of the signal on a von Neumann
grid and its anti-aliasing effects.

6. The discovery of the functional operator notation that so succinctly summa-
rizes the FHG TFR.

7. The definition of two new functions for the use in the correlation function
8. The temporal and spectral FHG TFR correlation cubes contain all the in-

formation to reconstruct the temporal and spectral signals.
9. The discovery of the relationship Eq. (5.172) of Theorem 5.4.9[

Wk,l

m,n

]
'
[
Tk,l
m,n

]∗
.
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10. The discovery of the “classical” coherent State TFR correspondence analogy
with the novel FHG TFR, which leads to a correlation TFR.

It has recently come to my attention that a good engineering friend of mine, that
specializes in DSP, radar and sonar, that I gave a personal lecture on this work,
has found it so fascinating enough to implement it on some of standard benchmark
programs. What programs and have not yet had the opportunity to study, since I
was finalizing this thesis. To his shock he reported back to me telephonically, that
the implementation of these methods and his normal standard methods showed a
signal to noise ratio (SNR) improvement from 28 dB to over 300 dB. This must still
be confirmed, but this is absolutely amazing and will have enormous implication
on some applications.

The question for almost all the financial backers is always: So its new and novel,
but what is the possible applications? And how can it financially benefit my
pocket? Well here is short list of possible applications:

1. Adaptive quantum coherent control for ultra-short laser pulses.

2. Digital communication.

3. Information theory.

4. Radar and Sonar.

As for future work in this field the first we chapters at least gives an outline. Of
course the very next subject I will investigate is the DSP application. Before I
was abruptly derailed and convinced to this current work, I was busy on quantum
control of closed systems. At that time January 2012 I was busy with a new method
to enhance our own optimization procedure for the interaction of IR femtosecond
laser pulses with octahedral molecules. If funded I would still to complete this
work with two article entitled:

1. Quantum Molecular Control with Ultra Short Laser Pulses using Levi De-
composition of the Lie Group Interaction Hamiltonian.

2. A Modified Hadamard Lemma for Phenomenological Quantum Decay

At that time I just about completed reading d’Alessandro [2] and good portions
of Breuer and Petruccione, “The theory of open quantum systems” [173] and the
work “Quantum Noise” [174]. The real love of my heart is to do what I originally
signed up for, namely “Stochastic coherent control of quantum processes” or any
open quantum system work. If it were up to me, given that I am doing research
in this field, I would be in seventh heaven and health prevailing never cease.

One of the best quotes about light is to be found in (Hecht and Zajac, [18]) at the
end of their Chapter 1, A Brief History:
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“Profound insights are slow in coming. What few we have took over
three thousand years to glean even though the pace is ever quickening.
It is marvelous indeed to watch the answer subtly change while the
question immutably remains – What Is Light?”
As I am getting on in life, I hope that there is still a little child in me, since
. . . for geometry, you know, is the gate of science, and the gate is so low and small
that one can only enter it as a little child. William Kingdon Clifford (1845-1879)
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Generally most radio applications are interested in the far field effects of the EM field for 

communications purposes. In our quantum control experiment the requirement is to 

manipulate quantum dots (essentially atoms) by means of coherent microwaves in an 

extremely confined environment.  This necessitated the investigation of the near field EM 

effects for microwaves in cavity. A short derivation of the EM fields and radiation patterns of 

a dipole antenna from first principles is given, using the Liénhard-Wiechert potentials [1], 

[2], 

 

  ;                                        

where the relative position vector is defined as   

time,  are the charge and current densities respectively, and also 

employing Jefimenko's equations for the EM field [3], resulting in 

 

 

 

The experimental setup and measurements of the near field microwave dipole electric field 

will then be presented. The experimental results unequivocally demonstrate, see e.g. the 

excellent fit in Figure 1 below, the validity of the derived near field EM fields for a dipole 

antenna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Nearfield Dipole Radiation Field 
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A. The Fourier Series and
Transform

A.1. Introduction

(Latin. alias−at another time)

1799 Energy theorem of Fourier Series

1807 Fourier Series

1822 Fourier Transform

Historically, Baron Jean Baptiste Joseph Fourier (1768-1830) invented the Fourier
series technique to solve the partial differential equation for heat diffusion. Other
great contemporary scientists were Count Joseph-Louis Lagrange (1736-1813),
Pierre-Simon, Marquis de Laplace (1749-1827), Baron Simeon Denis Poisson (1781-
1840), famous, amongst other things for his Poisson summation theorem used in
DSP.

All these scientists/mathematicians lived through the French revolution that top-
pled the French nobility and the royalists. It is ironic that all their noble titles
were subsequently bestowed on them by Napoleon who proclaimed himself as Em-
peror of France. Two other Frenchmen Marc-Antoine Parseval (1755-1836) and
Adrien-Marie Legendre (1752-1833) (Legendre functions, 1783) probably were just
not favoured. It is not clear when the continuous Fourier transform was developed
from the Fourier series, but since the Laplace transform was already invented in
1785, we can only assume that this extension was made soon after the discovery
of the Fourier series, by Laplace in 1809, since the Fourier transform is included
in the Laplace transform with s = σ+ iω with σ = 0. The Laplace transform of a
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Chapter A The Fourier Series and Transform

function f(t) is defined as (cf. Beerends [175]),

F (s) =
ˆ ∞
−∞

f (t) e−st dt.

This Appendix gives a short summary of the relevant properties of the Fourier
series and transform. The enormous literature on Fourier transforms and anal-
ysis clear shows the extreme importance as a mathematical tool in physics and
engineering. Here is a brief list [124, 125, 126, 176, 175, 177, 20, 178, 67, 127].
There exists various definitions of the Fourier transform defined in SectionA.2.
In SectionA.3 most of the properties of the Fourier transform are listed without
proof. Some common functions that normally occur in Fourier transform analy-
sis are defined in SectionA.4 along with a special Subsection on the distribution
function known as the Dirac-δ function and its properties, which is so prevalent in
Fourier analysis.
Then, however, in SubsectionA.4.7 the functional mirror image operator is intro-
duced. This was actually conceived by the author at a late stage to help with the
understanding of correlation. The conception thereof was actually learning about,
SubsectionA.4.8, the translation operator. The author did not attempt to search
for a reference for the definition of modulation operator defined in SubsectionA.4.9,
but is sure it must be common knowledge in some circles. Rewriting certain for-
mula in terms of these function operators greatly simplifies the understanding of
the processes occurring. Unfortunately, this came to late.
A table of various Fourier transform pairs is presented in SectionA.5. The Fourier
transforms of even and odd functions are discussed in SectionA.6.
The next few Sections are devoted to topics that occur in Digital Signal Process-
ing (DSP), starting with sampling theory, properties of bandlimited signals, the
Poisson summation theorem and lastly the Nyquist-Shannon sampling theorem.
We didn’t think it prudent to include the Discrete Fourier Transform and Fast
Fourier Transform (FFT) as the last algorithm and its derivatives is probably the
most widely used algorithm in digital sciences.

A.1.1. Fourier Series

Any periodic signal f(t) with period T , i.e.,

f(t) = f(t+ nT ), n ∈ Z, t ∈ R, (A.1)

can be written as a Fourier series as,
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f(t) =
∞∑

n=−∞

ane
inωot , ωo = 2π

T
(A.2)

where,

an = 1
T

ˆ T/2

−T/2

f(t)e−inωotdt (A.3)

Definition A.1.1. (Trigonometric polynomials) A Fourier series with finitely
many terms is known as a trigonometric polynomial,

y(t) =
M∑

n=−M

cne
inωt. (A.4)

A.2. Various Definitions of the Fourier Transform

• The Fourier transform (Unitary, ordinary frequency) (Notice that there is no
scaling constant)

F {f (t)} = F (ν) =
ˆ ∞
−∞

f (t) e−2πiνt dt (A.5)

F−1 {F (ν)} = f (t) =
ˆ ∞
−∞

F (ν) e2πiνt dν (A.6)

• The Fourier transform and its inverse Fourier transform are only similar with
the same normalization constant if the two variables are commensurate, that
is if the units of the variables are each others inverses, e.g., ν = [1/t] where
as for, ω = 2πν, we obtain,

F {f (t)} = F (ω) =
ˆ ∞
−∞

f (t) e−iωt dt, (A.7)

F−1 {F (ω)} = f (t) = 1
2π

ˆ ∞
−∞

F (ω) eiωt dω. (A.8)

• The Fourier transform (Unitary, angular frequency, symmetric)

F {f (t)} = F (ω) = 1√
2π

ˆ ∞
−∞

f (t) e−iωt dt (A.9)
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F−1 {F (ω)} = f (t) = 1√
2π

ˆ ∞
−∞

F (ω) eiωt dω (A.10)

• The Fourier transform (Non unitary)

F {f (q)} = F (p) =
ˆ ∞
−∞

f (t) e−ipq dq (A.11)

F−1 {F (p)} = f (q) = 1
2π

ˆ ∞
−∞

F (p) eipqt dp (A.12)

• To indicate that a pair of functions are Fourier transform pairs, we often also
employ the following notation,

f(t) F⇐⇒ F (ω). (A.13)

A.3. Properties

In the following let, f(t), g(t)∈ L2(R), be any two integrable functions on the real
line with Fourier transforms, F (ω), G(ω), respectively and given a, b ∈ C, and
h(t) = af(t) + bg(t), its corresponding Fourier transform, H(ω). In general, f(t),
g(t) and F (ω), G(ω), may be complex valued functions, but that t, ω ∈ R. That
is,

f(t) = f1(t) + if2(t),
F (ω) = R(ω) + iX(ω).

A.3.1. Linearity

F{h(t)} = F{af(t) + bg(t)} = aF{f(t)}+ bF{g(t)} (A.14)

H(ω) = aF (ω) + bG(ω) (A.15)
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A.3.2. Duality (Symmetry)

If F{f(t)} = F (ω) then,
F{F (t)} = f(−ω) (A.16)

or,
F (t) = F−1{f(−ω)} (A.17)

Also,

F (−t) = F−1{f(ω)}.

A.3.3. Complex Conjugation

If, F{f(t)} = F (ω), then,

F ∗(t) = F−1{f ∗(ω)} (A.18)

F ∗(ω) = F{f ∗(−t)} (A.19)

Also,

F {f ∗ (t)} = F ∗(−ω),
[F{F (t)}]∗ = f ∗(−ω).

A.3.4. Scaling (Reciprocity)

For any real, a 6= 0, then, h(t) = f(at),

H(ω) = F{f(at)} = 1
|a|
F (ω

a
) (A.20)

Notice, the inverse (thus inverse scaling both ways),

F−1{F (aω} = 1
|a|
f( t
a

) (A.21)
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A.3.5. Shifting

• Temporal Shifting

Let, h(t) = f(t− t0), then

H(ω) = F{f(t− t0)} = e−iωtoF (ω) (A.22)

• Spectral Shifting

Let, H(ω) = F (ω − ωo), then

h(t) = F−1{F (ω − ωo)} = eiωotf(t) (A.23)

• Modulation. F{h(t)} = H(ω),

F{eiωoth(t)} = H(ω − ωo) (A.24)

• Combining Temporal shifting and Modulation, g(t) = eiωoth(t) = eiωotf(t −
t0),

F{eiωotf(t− t0)} = H(ω − ωo) = e−ito(ω−ω0)F (ω − ω0) (A.25)

A.3.6. Differentiation

• Time derivatives
F{ d

n

dtn
f(t)} = (iω)nF (ω) (A.26)

• Frequency derivatives

F−1{ d
n

dωn
F (ω)} = (−it)nf(t) (A.27)

A.3.7. Real and Hermitian Functions

Definition A.3.1. A function, f(x), is Hermitian if,

f(−x) = f ∗(x). (A.28)

Then we have
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• If f(t) is real, i.e., f(t) = <{f(t)}, then its Fourier transform, F{f(t)} =
F (ω) is Hermitian, i.e., F (−ω) = F ∗(ω).

• If f(t) is Hermitian, i.e., f(−t) = f ∗(t), then its Fourier transform, F{f(t)} =
F (ω) is real, i.e., F (ω) = <{F (ω)}.

In general, with g and h all real functions, we have,

f(t) = g(t) + ih(t). (A.29)

Then, f(t), will be Hermitian if, f(−t) = f ∗(t), i.e., if g(t) = g(−t), is an even
function and, h(−t) = −h(t), is an odd function

f(−t) = g(−t) + ih(−t) = f ∗(t) = g(t)− ih(t).

The same conditions are applicable for f(t) = g(t)− ih(t).

Every function, f(x), can be be written as the sum of even and odd functions,
that is,

f(x) = f+(x) + f−(x), (A.30)

where, f+(x)=1
2 [f(x) + f(−x)], denotes the even function and f−(x) = 1

2 [f(x)− f(−x)],
denotes the odd function.

For even and odd functions the following properties are valid:

1. The addition and subtraction of two even or two odd functions remain even
and odd respectively.

2. The product of two even functions is an even function.

3. The product of two odd functions is an even function.

4. The product of an even function with an odd function is an odd function.

Definition A.3.2. A function, f(x), is anti-Hermitian if,

− f(−x) = f ∗(x). (A.31)

Then we have:

• If f(t) is imaginary, i.e., f(t) = i={f(t)}, then its Fourier transform, F{f(t)} =
F (ω) is anti-Hermitian, i.e., −F (−ω) = F ∗(ω).

• If f(t) is anti-Hermitian, i.e., f(−t) = f ∗(t), then its Fourier transform,
F{f(t)} = F (ω) is imaginary, i.e., F (ω) = i={F (ω)}.
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In general, with g and h, all real functions, we have,

f(t) = g(t) + ih(t)

Then, f(t), will be anti-Hermitian if, −f(−t) = f ∗(t), i.e., if, −g(t) = g(−t), is an
odd function and, h(−t) = h(t), is an even function,

f(−t) = g(−t) + ih(−t) = f ∗(t) = g(t)− ih(t).

The same conditions are valid for f(t) = g(t)− ih(t).

Proposition A.3.3. Every analytical function, f(x), can be written as the sum
of a Hermitian and anti-Hermitian functions, that is,

f(x) = f †(x) + f×(x), (A.32)
where, f †(x), denotes the Hermitian function and, f×(x), denotes the anti-Hermitian
function. If, f(x) = g(x) + ih(x), then,

f †(x) = g+(x) + ih−(x), (A.33)
f×(x) = g−(x) + ih+(x). (A.34)

The following properties for Hermitian and anti-Hermitian functions are
valid:

1. The addition and subtraction of two Hermitian or two anti-Hermitian func-
tions remain Hermitian and anti-Hermitian respectively.

2. The product of two Hermitian functions is a Hermitian function.
3. The product of two anti-Hermitian functions is a Hermitian function.
4. The product of a Hermitian and an anti-Hermitian function is an anti-

Hermitian function.
Note that Hermitian functions have similar properties to even functions and anti-
Hermitian functions have similar properties to odd functions.
In summary, we have,

<{f(t)} F⇐⇒ F †(ω) (A.35)

f †(t) F⇐⇒ <{F (ω)} (A.36)

i={f(t)} F⇐⇒ F×(ω) (A.37)
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f×(t) F⇐⇒ i={F (ω)} (A.38)

If, f(t) = <{f(t)} = f+(t) + f−(t), then,

f+(t) F⇐⇒ <{F (ω)} (A.39)

f−(t) F⇐⇒ i={F (ω)} (A.40)

A.3.8. Convolution

Let, h(t) = f(t) ∗ g(t), that is,

h(t) = (f ∗ g)(t) = f(t) ∗ g(t) =
ˆ ∞
−∞

f(t− τ)g(τ) dτ (A.41)

then,
H(ω) = F{f(t) ∗ g(t)} = F (ω)G(ω) (A.42)

ˆ ∞
−∞

[ˆ ∞
−∞

f(t− τ)g(τ) dτ
]
e−iωt dt =

ˆ ∞
−∞

ˆ ∞
−∞

f(t− τ) e−iω(t−τ) dt g(τ)e−iωτ dτ

(A.43)
Change of variables, θ = t− τ, then,

ˆ ∞
−∞

f(t− τ) e−iω(t−τ) dt =
ˆ ∞
−∞

f(θ) e−iωθ dθ = F{f(t)}, (A.44)

and the second integral is independent thus,

H(ω) = F{f(t) ∗ g(t)} = F (ω)G(ω). (A.45)

It is also important to see what the convolution of the Fourier transforms represent,
i.e., F ∗G. Using Eq. (A.42) and the duality property Eq. (A.16),

F{F (t) ∗G(t)} = f(−ω)g(−ω). (A.46)

The convolution operation has the following algebraic properties:
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1. Commutative
f ∗ g = g ∗ f (A.47)

2. Associative
f ∗ (g ∗ h) = (f ∗ g) ∗ h (A.48)

3. Distributive
f ∗ (g + h) = f ∗ g + f ∗ h (A.49)

4. Translation invariance (Commutes with the translation operator T x, cf.
definition Eq. (A.102) ),

Tx(f ∗ g) = (Txf) ∗ g = f ∗ (Txg) (A.50)

Tx(f ∗ g)(t) = (f ∗ g)(t− x)

=
ˆ ∞
−∞

f(t− x− τ)g(τ) dτ

[f ∗ (Txg)] (t) =
ˆ ∞
−∞

f(t− τ)g(τ − x) dτ

=
ˆ ∞
−∞

f(t− x− τ)g(τ) dτ

[(Txf) ∗ g] (t) =
ˆ ∞
−∞

f(t− x− τ)g(τ − x) dτ

A.3.9. Correlation

The cross correlation between two functions is defined as,

h(t) = (f ? g) (t) =
ˆ ∞
−∞

f ∗(τ)g(τ + t) dτ. (A.51)

Substitute τ ′ = τ + t then the correlation can be written in the alternative form,

h(t) = (f ? g) (t) =
ˆ ∞
−∞

f ∗(τ − t)g(τ) dτ, (A.52)
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then,
H(ω) = F{f(t) ? g(t)} = F ∗(ω)G(ω) (A.53)

That is,

ˆ ∞
−∞

[ˆ ∞
−∞

f ∗(τ)g(τ + t) dτ
]
e−iωt dt =

ˆ ∞
−∞

f ∗(τ) eiωτ
ˆ ∞
−∞

g(τ + t)e−iω(τ+t) dt dτ.

(A.54)
Substitute,η = τ + t, then,

ˆ ∞
−∞

g(τ + t)e−iω(τ+t) dt =
ˆ ∞
−∞

g(η) e−iωη dη = F{g(t)} = G(ω), (A.55)

and the remaining integral is equal to, F ∗(ω), thus,

H(ω) = F{f(t) ? g(t)} = F ∗(ω)G(ω). (A.56)

It is also important to see what the correlation of the Fourier transforms represent,
i.e., F ? G. Using the Fourier transform property Eq. (A.53), duality Eq. (A.16)
and its complex conjugate conjugation,

F{F ? G} = [F{F (t)}]∗F{G(t)}
= f ∗(−ω)g(−ω) (A.57)

A.3.9.1. Convolution vs Correlation

There exist important relationships between convolution and correlation. Simply
comparing Eq. (A.42) and Eq. (A.53) and using Eq. (A.19) we see that,

F{f(t) ∗ g(t)} = F (ω)G(ω) = F{f ∗(−t) ? g(t)},

so that,
f(t) ∗ g(t) = f ∗(−t) ? g(t) (A.58)

Similarly, using the Fourier transform relation for correlation Eq. (A.53) and the
relationship for complex conjugation Eq. (A.19) and then the Fourier transform
relation for convolution Eq. (A.42),

F{f(t) ? g(t)} = F ∗(ω)G(ω) = F{f ∗(−t)}F{g(t)} = F{f ∗(−t) ∗ g(t)},
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and
f(t) ? g(t) = f ∗(−t) ∗ g(t) (A.59)

In SubsectionA.4.10 mirror and conjugation operator is defined as, Ic. Using this
operator Eq. (A.58) and Eq. (A.59) can be compactly written as,

f ∗ g = (Icf) ? g
f ? g = (Icf) ∗ g

A.3.9.2. Algebraic Properties of Correlation

The algebraic properties of correlation can all be derived from the algebraic prop-
erties of convolution, Eq. (A.47) to Eq. (A.50), and the relationship between con-
volution and correlation, Eq. (A.58) and Eq. (A.59).

1. Non-Commutative. In general,

f ? g 6= g ? f (A.60)

If, however, Icf = f and Icg = g, i.e., the functions are Hermitian, then
the correlation operation is commutative,

f ? g = g ? f, (A.61)

and
f ? g = f ∗ g. (A.62)

If, however, Icf = −f and Icg = −g, i.e., the functions are anti-Hermitian,
then the correlation operation is commutative,

f ? g = g ? f, (A.63)

and
f ? g = −f ∗ g. (A.64)

2. Non-Associative. In general,

f ? (g ? h) 6= (f ? g) ? h. (A.65)

If, however, Icf = f , Icg = g, and Ich = h, i.e., the functions are all
Hermitian, then the correlation operation is associative,

f ? (g ? h) = (f ? g) ? h. (A.66)

If, however, Icf = −f , Icg = −g, and Ich = −h, i.e., the functions are all
anti-Hermitian, then the correlation operation is associative,

f ? (g ? h) = (f ? g) ? h (A.67)
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3. Distributive.
f ? (g + h) = f ? g + f ? h (A.68)

4. Translation invariance. Only if the functions are both Hermitian or
anti-Hermitian is the following valid,

Tx(f ? g) = (Txf) ? g = f ? (Txg). (A.69)

In general we have,

Tx(f ? g) = f ? (Txg) = T2x [(Txf) ? g] (A.70)

Since,

Tx(f ? g)(t) = (f ? g) (t− x)

=
ˆ ∞
−∞

f ∗(τ)g(τ + t− x) dτ

=
ˆ ∞
−∞

f ∗(τ)Txg(τ + t) dτ

= [f ? (Txg)] (t).

Furthermore,

[(Txf) ? g] (t) =
ˆ ∞
−∞

f ∗(τ − x)g(τ + t) dτ.

A change of dummy variable, τ ′ = τ − x,

[(Txf) ? g] (t) =
ˆ ∞
−∞

f ∗(τ ′)g(τ ′ + t+ x) dτ ′

= (f ? g) (t+ x)
= T−x(f ? g)(t).

A.3.10. Energy Theorem (Parseval-Plancherel)

This is accredit to Parseval (1799) for Fourier series, strangely before the advent
of Fourier series, and was generalized for Fourier transforms by Plancherel (1910)
so is often referred to as the Parseval-Plancherel theorem.

241

Stellenbosch University  https://scholar.sun.ac.za



Chapter A The Fourier Series and Transform

For all quadratically integrable functions
ˆ ∞
−∞

f ∗(t)g(t) dt =
ˆ ∞
−∞

F ∗(ω)G(ω) dω (A.71)

in particular, if f(t) = g(t),
ˆ ∞
−∞

|f(t)|2 dt =
ˆ ∞
−∞

|F (ω)|2 dω (A.72)

which can be considered as the total energy in a signal, f(t).

A.4. Common Functions

A.4.1. Sign Function

sgn (x) =

 +1
−1

x ≥ 0
x < 0

(A.73)

A.4.2. Step Function (Heaviside Function)

u (x) = η (x) = h (x) =

 1
0

x ≥ 0
x < 0

(A.74)

u (x) = 1
2 [sgn (x) + 1] (A.75)

A.4.3. Rectangular Function (Hat function)

Sometimes also referred as the hat function

π (x) = rect (x) =


0 |x| > 1

2
1
2 |x| = 1

2
1 |x| < 1

2

(A.76)

π (x) = 1
2 [sgn (x+ 1)− sgn (x− 1)] (A.77)
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π
(
x

a

)
= u

(
x+ a

2

)
− u

(
x− a

2

)
= πa (x) (A.78)

π

(
x− b
a

)
= u

(
x− b+ a

2

)
− u

(
x− b− a

2

)
= πa (x− b) (A.79)

A.4.4. Triangular Function

Λ (x) = tri (x) =


0 |x| ≥ 1

1− |x| |x| < 1
(A.80)

Λ (x) = π2 (x) · (1− x·sgn (x)) (A.81)

A.4.5. Sinc Function

The unnormalized sinc function

sinc (x) = sin (x)
x

(A.82)

The normalized sinc function (an abbreviation of its Latin name sinus cardinalis)

sinc (x) = sin (πx)
πx

(A.83)

In this form, we have,

sinc (0) = 1

sinc (±n) = 0 n∈ N
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A.4.6. The Dirac-δ function

The discrete Kronecker delta function δijfor discrete i, j ∈ Z is defined such that,

δij =

 1
0

i = j

i 6= j
(A.84)

which is usually applied in a discrete sum operation for a discrete function, f (k),

f (k) =
∞∑
i=1

δik f (i) (A.85)

can be “generalized”, ignoring mathematical rigor, for a continuous well behaved
function, g : x ∈ R→ g (x) ∈ R using the heuristic analogy that, lim∑→ ´ dx,
to

g (y) =
ˆ ∞
−∞

δ (x, y) g (x) dx (A.86)

Since, x and y, are arbitrary the above shows that, δ (x, y) must somehow be
equal to zero everywhere unless, x = y. From this we infer that the “function” has
translational invariance since, x+ a = y + a, for any, a, even, a = −y

g (y) =
ˆ ∞
−∞

δ (x− y, 0) g (x) dx (A.87)

and with the additional symmetry condition, i.e., δ (x, y)=δ (y, x) the function only
depends on the difference,

g (y) =
ˆ ∞
−∞

δ (x− y) g (x) dx. (A.88)

In particular, this defines the Dirac-δdistribution function, δ (x),

g (0) =
ˆ ∞
−∞

δ (x) g (x) dx (A.89)

It is called a distribution function, for strictly speaking it is only to be used within
a integral as defined above. If, g (x), is an odd function, i.e., g (0) = 0 then, δ (x),
must be an even function, i.e.,

δ (x) = δ (−x) (A.90)
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Let, f (x), be any Fourier integral function with transform, F (p), then from,

F (p) = 1√
2π

ˆ ∞
−∞

f (x) e−ipx dx (A.91)

f (x′) = 1√
2π

ˆ ∞
−∞

F (p) eipx′ dp (A.92)

f (x′) = 1
2π

ˆ ∞
−∞

ˆ ∞
−∞

f (x) e−ip(x−x′) dx dp (A.93)

f (x′) =
ˆ ∞
−∞

f (x)
[

1
2π

ˆ ∞
−∞

e−ip(x−x
′) dp

]
dx, (A.94)

thus we make the connection,

δ (x) = 1
2π

ˆ ∞
−∞

e−ipx dp = 1
2π

ˆ ∞
−∞

eixp dp = δ (−x) . (A.95)

This integral does not exist in any conventional definition of a integral, but is an
extremely convenient way of interpreting the Dirac-δ distribution function and is
often used in Fourier analysis without further ado. Continuing in this vein the
following properties easily follow from similar properties of the Fourier transform

A.4.6.1. Scaling

δ (ax) = 1
|a|
δ (x) (A.96)

A.4.6.2. Translation

f (x) δ (x− a) = f (a) δ (x− a) (A.97)

A.4.6.3. Dirac-δ of a function

If, g (x) , is analytic near its zeros, g (xi) = 0 for i = 1, 2, . . . then using the first
order Taylor approximation for, g (x) ≈ g′ (xi) (x− xi) , provided that, g′ (xi) 6= 0,
we find,
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δ (g (x)) =
∑
i

1
|g′ (xi)|

δ (x− xi) (A.98)

A.4.6.4. The unit step function (Heaviside function)

u (x) =
ˆ x

−∞
δ (p) dp (A.99)

A.4.6.5. Dirac Comb

∞∑
n=−∞

δ (x− nT ) (A.100)

A.4.7. Mirror Image Operator

Given any function, f ∈ L2(C), the mirror image operator, I : L2(C) → L2(C),
with x ∈ R, is defined as,

I : [f(x)] = f(−x) (A.101)

To get a better understanding of functional operators on functions, probably the
simplest examples are the complex conjugation operator, and functional multipli-
cation and addition. We note that these operations have been used previously quite
often in SectionA.3. The condition x ∈ R is valid since in terms of Fourier trans-
forms t, ω ∈ R. The mirror image operator I is idempotent, that is, I2 = I◦I = e,
where, e, is the unit operator, i.e., e(f) = f .

A.4.8. Translation Operator

Given any function, f ∈ L2(C), the translation operator is a functional operator,
Tx : L2(C)→ L2(C), with x ∈ C, and is defined as,

Tx[f(y)] = f(y − x) (A.102)

Translation operators commute, i.e.,

TxTy = TyTx = Tx+y
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A.4.9. Modulation Operator

Given any function, f ∈ L2(C), the modulation operator is a functional operator,
Mx : L2(C) → L2(C), with x ∈ R, specifically used with Fourier transforms,
defined for a temporal function, f(t), as,

Mωnf(t) = eiωntf(t), (A.103)

and for a spectral function, F (ω), as

M−tlF (ω) = e−itlωF (ω), (A.104)

with the requirement that, ωt = 2π, as usual. If, f(t) F⇐⇒ F (ω), then with the
translation, T , and modulation, M, operators we know that, from Eq. (A.22),
temporal translation Fourier transforms to spectral modulation,

Tt0f(t) F⇐⇒M−t0F (ω) (A.105)

From Eq. (A.67) we note the temporal modulation Fourier transforms to spectral
translation,

Mω0f(t) F⇐⇒ Tω0F (ω) (A.106)

Then Eq. (A.68) shows that the translation and modulation also Fourier transform
transform in order,

Mω0Tt0f(t) F⇐⇒ Tω0M−t0F (ω) (A.107)

Thus, a natural consequence of Eq. (A.107) by simply taking into account Eq. (A.105)
and Eq. (A.106) is

Tt0Mω0f(t) F⇐⇒M−t0Tω0F (ω) (A.108)

But please remember that functional operators are position specific and that,
Mω0Tt0 6= Tt0Mω0 . This functional operator notation is an excellent method
to exhibit the true behaviour of the Fourier transform.

A.4.10. Mirror Image and Complex Conjugation Commute

Given any function, f ∈ L2(C), the complex conjugation functional operator,
C : L2(C)→ L2(C), then,

C ◦ I = I ◦ C.
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The complex conjugation operator is also idempotent, i.e., C2 = C ◦ C = e

Let us write, f(t) ∈ L2(C) with, t ∈ R as, f(t) = x(t)+iy(t), and x(t), y(t) ∈ L2(R)
then,

C ◦ I(f) = C{I[f(t)]}
= C{f(−t)} = C{x(−t) + iy(−t)}
= x(−t)− iy(−t)
= I{C[f(t)]}.

The combined operation we shall denote with, Ic. The operator, Ic, is idempotent,
that is, I2

c = Ic ◦ Ic = e.

It is of real importance to establish when a function, f(t), which in general can be
written as,

f(t) = g(t) + ih(t)

, with g and h all real functions is invariant under the Ic operation, i.e., Icf(t) =
f(t), i.e.,

f(t) = g(t) + ih(t)
Icf(t) = g(−t)− ih(−t).

This will only occur if, g(t) = g(−t), is an even function and, h(−t) = −h(t),
is an odd function, but this is just the condition that the function, f(t), is
Hermitian. (See SubsectionA.3.7 for the definition of a Hermitian function).

A.4.11. Translation and Ic Commute

The operator TxIc commute, i.e.,

TxIc = IcTx.

Let, h = Icf , then,

(TxIcf)(t) = Txh = h(t− x) = (Icf)(t− x) = f ∗(x− t),

but,
(IcTxf)(t) = Icf(t− x) = f ∗(x− t).
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A.5. Fourier Transforms

In TableA.1 a list common Fourier transforms are given for the ordinary frequency
ν definitions, Eq. (A.5) and Eq. (A.6), and the symmetrical (unitary) angular
frequency ω definitions, Eq. (A.9) and Eq. (A.10).

Function Frequency ν Angular Frequency ω

rect (at) 1
|a|sinc

(
ν
a

)
1√

2πa2 sinc
(

ω
2πa

)
sinc (at) 1

|a|rect
(
ν
a

)
1√

2πa2 rect
(

ω
2πa

)
sinc2 (at) 1

|a|tri
(
ν
a

)
1√

2πa2 tri
(

ω
2πa

)
tri (at) 1

|a|sinc2
(
ν
a

)
1√

2πa2 sinc2
(

ω
2πa

)
e−atu (t) 1

a+2πiν
1√

2π(a+iω)

e−αt
2 √

π
α
e−

(πν)2
α

1√
2αe
−ω

2
4α

e−a|t| 2a
a2+4π2ν2

√
2
π

a
a2+ω2

e−
a2t2

2 Hn (at)
√

2π(−i)n
a

e−
2π2ν2
a2 Hn

(
2πν
a

)
(−i)n
a
e−

ω2
2a2Hn

(
ω
a

)
1 δ (ν)

√
2πδ (ω)

δ (t) 1 1√
2π

eiat δ
(
ν − a

2π

) √
2πδ (ω − a)

cos (at2)
√

π
a

cos
(
π2ν2

a
− π

4

)
1√
2a cos

(
ω2

4a −
π
4

)
sin (at2) −

√
π
a

sin
(
π2ν2

a
− π

4

)
− 1√

2a sin
(
ω2

4a −
π
4

)
tn

(
i

2π

)n
δ(n) (ν) in

√
2πδ(n) (ω)

P 1
t

−iπsgn (ν) −i
√

π
2 sgn (ω)

sgn (t) 1
iπ
P 1
ν

−i
√

2
π
P 1
ω

u (t) = 1
2 [sgn (t) + 1] 1

2

(
1
iπ
P 1
ν

+ δ (ν)
) √

π
2

(
1
iπ
P 1
p

+ δ (ω)
)

∑∞
n=−∞ δ (t− nT ) 1

T

∑∞
k=−∞

δ
(
ν − k

T

) √
2π
T

∑∞
k=−∞

δ
(
ω − 2πk

T

)
Table A.1.: Fourier Transform Pairs

A.6. Even and Odd Transforms

In general the functions, f(t), and its transform, F (ω), are complex functions so
that we may write (cf. [125, 69]),

f(t) = f1(t) + if2(t),
F (ω) = R(ω) + iX(ω),
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and using Euler’s formula, eiωt = cosωt+i sinωt, the functions can be decomposed
as,

R(ω) = 1√
2π

ˆ ∞
−∞

[f1(t) cosωt+ f2(t) sinωt] dt

X(ω) = 1√
2π

ˆ ∞
−∞

[f2(t) cosωt− f1(t) sinωt] dt

f1(t) = 1√
2π

ˆ ∞
−∞

[R(ω) cosωt−X(ω) sinωt] dω

f2(t) = 1√
2π

ˆ ∞
−∞

[R(ω) sinωt+X(ω) cosωt] dω

If we therefore have a real signal, f(t) = f1(t), then,

R(ω) = 1√
2π

ˆ ∞
−∞

f(t) cosωt dt X(ω) = − 1√
2π

ˆ ∞
−∞

f(t) sinωt dt, (A.109)

then,
R(−ω) = R(ω) and X(−ω) = −X(ω). (A.110)

This means that the real part of the Fourier transform of a real function is sym-
metrical (even) and the imaginary part is asymmetrical (odd), or

F (−ω) = R(−ω) + iX(−ω) = R(ω)− iX(ω) = F ∗(ω). (A.111)

The real signal thus implies that,

f(t) = <e{f(t)} ⇐⇒ F (−ω) = F ∗(ω) (A.112)

For a real even function, f(t) = f(−t) = f+(t)⇒ X(ω) = 0,

F (ω) = R(ω) = 2 1√
2π

ˆ ∞
0

f(t) cosωt dt, (A.113)

f+(t) F⇐⇒ <e{F (ω)} = R(ω) (A.114)

For a real odd function, f(−t) = −f(t) = f−(t)⇒ R(ω) = 0,

F (ω) = iX(ω) = −2i 1√
2π

ˆ ∞
0

f(t) sinωt dt, (A.115)

250

Stellenbosch University  https://scholar.sun.ac.za



A.7 Sampling Theory

f−(t) F⇐⇒ i={F (ω)} = iX(ω) (A.116)

Now, consider for example the real odd function, f(t) = 1
t
; applying the above

Fourier transform formula we obtain,

F (ω) = −i 1√
2π

ˆ ∞
−∞

sinωt
t

dt =

 −i
√

π
2 ω > 0

+i
√

π
2 ω < 0

= −i
√

π
2 sgn(ω), (A.117)

since, ˆ ∞
−∞

sinωt
t

dt =

 π ω > 0
−π ω < 0

= π sgn(ω). (A.118)

A.7. Sampling Theory

To represent a function, f(t), in terms of its sampled values, f(nT ), as a sequence
of equidistant points, n ∈ Z, and T , the sampling period, we formally form the
sum,

fh(t) =
∞∑

n=−∞

T · f(nT ) · h(t− nT ), (A.119)

where, h(t), a given function ( It can be considered as a type of impulse response
function or a polynomial expansion function). Under the following conditions for
the function h(t), namely,

T · h(0) = 1
h(nT ) = 0 for n 6= 0

then,
fh(nT ) = f(nT ), (A.120)

in other words, fh(t) interpolates f(t). To study the properties of, fh(t), it is
convenient to introduce the following function,

f∗(t) =
∞∑

n=−∞

T · f(nT ) · δ(t− nT ). (A.121)

If, F∗(ω), is the Fourier transform of, f∗(t), then using the Poisson summation
formula, we obtain,

F∗(ω) =
∞∑

n=−∞

T · f(nT )e−inTω =
∞∑

n=−∞

F (ω + 2nσ) σ = π

T
. (A.122)

251

Stellenbosch University  https://scholar.sun.ac.za



Chapter A The Fourier Series and Transform

Clearly,
fh(t) = f∗(t) ∗ h(t). (A.123)

Therefore fh(t) is the output of a system with input, f(t), and impulse response,
h(t).
If, H(ω), is the Fourier transform of, h(t), then we also have,

Fh(ω) = F∗(ω)H(ω) = H(ω)
∞∑

n=−∞

F (ω + 2nσ). (A.124)

A finite energy function, f(t), is frequency bandlimited or simply bandlimited or
σ-BL if,

F (ω) = 0 |ω| > σ (A.125)

and the finite energy,

E = 1√
2π

ˆ ∞
−∞

|f(t)|2 dt = 1√
2π

ˆ ∞
−∞

|F (ω)|2 dω = 1√
2π

ˆ σ

−σ

|F (ω)|2 dω <∞.

(A.126)
A finite energy function f(t) is time-limited or τ -TL, if,

f(t) = 0 for |t| > τ and E <∞, (A.127)

and then,
F (ω) = F∗(ω)πσ (ω) ∀ω. (A.128)

Thus the output, fh(t), of the filter,

h(t) = sin σt
πt

F⇐⇒ πσ (ω) = H(ω), (A.129)

with the input, f∗(t), equals, f(t). This then leads to a fundamental result known
as the sampling theorem,

f(t) =
∞∑

n=−∞

f(nT ) · sin σ(t− nT )
σ(t− nT ) σ = π

T
(A.130)

This is specifically valid for a σ-BL signal. Note that the whole function, f(t),
is described in terms of its sampled values, f(nT ), at a sequence of equidistant
points, t = nT. The sampling rate or frequency is known as the Nyquist rate

ν = 1
T

= σ

π
(A.131)
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A.8 Properties of Bandlimited Functions

If the frequency of the signal contains frequencies higher than the σ-BL the most
undesirable effect of aliasing occurs. This is when the periodic DFT starts over-
lapping with neighbouring repeated periods and starts corrupting the DFT with
unreal frequency spectrums.

A.8. Properties of Bandlimited Functions

Let f(t) be σ-bandlimited function, then,

f(t) = 1√
2π

ˆ σ

−σ

F (ω)eiωt dω. (A.132)

1. The Fourier transform, F (ω), of σ-BL function is absolutely integrable, i.e.,
ˆ σ

−σ

|F (ω)| dω <∞. (A.133)

2. For any t real or complex, f(t), is of exponential type,

|f(t)| ≤
√
σE

π
eσ|t|. (A.134)

3. A σ-bandlimited function, f(t), is an analytical (entire, holomorphic) func-
tion on the entire t-Wessel (Complex, Argand) plane. The time derivative is
given by,

f
′(t) = 1√

2π

ˆ σ

−σ

iωF (ω)eiωt dω. (A.135)

4. Paley-Wiener Theorem: If a finite energy function, f(t), is analytic and
of exponential type then it is σ-BL.

5. A finite energy function, f(t), is periodic BL if it a trigonometric polyno-
mial,

f(t) =
M∑

k=−M

ake
ikωt, (A.136)

in the time interval (0, T ).
6. A periodic TL function cannot be a trigonometric polynomial.
7. A function cannot be bandlimited and time-limited.
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A.9. Poisson Summation Formula

Consider the Dirac comb sampling function (an impulse sampling train),

d(t) =
∞∑

n=−∞

δ (t+ nT ) = d(t+mT ), m ∈ Z, (A.137)

and noting that it is a periodic function with Fourier series coefficients given by,

an = 1
T

ˆ T/2

−T/2

δ(t)e−inωot dt = 1
T
, (A.138)

therefore its Fourier series is given by,

∞∑
n=−∞

δ (t+ nT ) = 1
T

∞∑
n=−∞

einωot , ωo = 2π
T
. (A.139)

Now given any function, y(t), with Fourier transform (non unitary),

Y (ω) =
ˆ ∞
−∞

y(t)e−iωt dt, (A.140)

then the function, x(t),
x(t) =

∞∑
n=−∞

y (t+ nT ) , (A.141)

is periodic with period, T , with Fourier series coefficients,

bm = 1
T

ˆ T/2

−T/2

x(t)e−imωot dt = 1
T

∞∑
k=−∞

ˆ T/2

−T/2

y (t+ kT ) e−imωot dt (A.142)

= 1
T

∞∑
k=−∞

ˆ (k+1)T/2

−kT/2

y (t) e−imωot dt,

bm = 1
T

∞∑
k=−∞

ˆ (k+1)T/2

−kT/2

y (t) e−imωot dt = 1
T

ˆ ∞
−∞

y(t)e−imωot dt = Y (mωo)/T.

(A.143)
Thus we obtain the Poisson summation formula

ȳ(t) =
∞∑

n=−∞

y (t+ nT ) = 1
T

∞∑
n=−∞

Y (nωo)einωot ωo = 2π
T

(A.144)
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A.10 Nyquist-Shannon Sampling Theorem

A.10. Nyquist-Shannon Sampling Theorem

A function, f(t), is band limited, if it has finite energy and

F (ν) = 0 for |ν| > B. (A.145)

The inverse Fourier transform is given by

f(t) =
ˆ ∞
−∞

F (ν)e2πiνt dν =
ˆ B

−B

F (ν)e2πiνt dν. (A.146)

Now, for any n ∈ Z, if we let,

t = nts = n

2B, (A.147)

then,

f(nTs) =
ˆ B

−B

F (ν)e2πiν n
2B dν = 1

2π

ˆ 2πB

−2πB

F (ω)eintsω dω. (A.148)

The term “looks” like a inverse Fourier series coefficient expansion of F (ω), with,
ts = 1

2B , and sampling duration, 2π, except that it is not periodic,

An = 1
2π

ˆ 2πB

−2πB

F (ω)eintsω dω , ts = 1
2B ! an = 1

T

ˆ T/2

−T/2

f(t)e−inωotdt , ωo = 2π
T

(A.149)
If, f(t), is band limited then,

F (ν) = F (ν)π2B(ν). (A.150)

From the Fourier transform pair, (π
(
x
a

)
= πa (x)),

sinc (2Bt) F⇐⇒ 1
2Bπ2B (ν) . (A.151)

Applying the convolution theorem and the Poisson sum formula, the signal can be
reconstructed as (Whitaker-Shannon Interpolation Formula),

f(t) =
∞∑

n=−∞

f (nts) sinc[2B(t− nts)] (A.152)
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where, Ts, is the digital sampling time (Nyquist-Shannon Sampling Theorem),

2B = 1
ts

(A.153)

is called the Nyquist rate. Notice the function must be sampled at twice the
bandwidth frequency to represent the signal. In practice the sampling frequency
is usually taken to at least, πB.

A.10.1. Inverse Nyquist-Shannon Sampling Theorem

From the duality of the Fourier transform,

F (ν) =
∞∑

n=−∞

F (nνs) sinc[2TW (ν − nνs)] (A.154)

where, 2TW , is the time-bandwidth or time duration of the signal, f(t) and νs,
is the digital sampling frequency or frequency sampling resolution in the Fourier
domain (Inverse Nyquist-Shannon Sampling Theorem),

2TW = 1
νs

(A.155)

Thus, sampling, f(t), every ts= 1
2B seconds for a time period, t ∈ [−TW , TW ], will

insure a frequency representation of frequency bandwidth B, ν ∈ [−B,B] with
frequency sampling νs. Thus,

ts = 1
2B and νs = 1

2TW
(A.156)
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B. The FHG Spectral Overlap
Matrix

For completeness, this is included in the appendices, only because the result is not
equal to the temporal overlap matrix. It is also derived in three parts. The FHG
spectral overlap matrix is given by Eq. (5.113),

Wk,l

m,n
= c†m,n

(ˆ ∞
−∞

eitm(ω−ωn)Φ̃(ω − ωn) e−itk(ω−ωl)Φ̃T (ω − ωl) dω
)

ck,l

= c†m,neitkωl−itmωn
(ˆ ∞
−∞

Φ̃(ω − ωn) Φ̃T (ω − ωl)eitmkω dω
)

ck,l (B.1)

where,
tmk = tm − tk. (B.2)

Part I

We are now in a position to evaluate the integral of the spectral overlap matrix,
ˆ ∞
−∞

Ψ̃∗m,n(ω)Ψ̃T
k,l(ω) dω = eitkωl−itmωn

(ˆ ∞
−∞

Φ̃(ω − ωn) Φ̃T (ω − ωl)eitmkω dω
)
,

(B.3)
with the integrand of Eq. (B.3) given by, (ignoring the HG normalization constants,
2−

p
2 (p!)−

1
2 π
− 1

4 , which is p dependent and also neglecting the angular frequency
scaling which we shall include at a later stage),

Ψ∗m,n(t)ΨT
k,l(t) = e−

1
2 (ω−ωn)2− 1

2 (ω−ωl)2+itmkω+itkωl−itmωnh(ω−ωn)hT (ω−ωl). (B.4)

It was previously shown that it is possible to handle the two spectral translation,s
ωn and ωl, for the Hermitian polynomial vectors, h. Substitute,

Ω = ω − ωn + ωl
2 , (B.5)
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so that,
ω − ωn = Ω− ωnl

2 and ω − ωl = Ω + ωnl
2 . (B.6)

Inserting Eq. (B.5) and Eq. (B.6) into the integrand of Eq. (B.4) the quadratic
exponent then becomes,

−1
2

(
Ω− ωnl

2

)2
− 1

2

(
Ω + ωnl

2

)2
+ itmk(Ω + ωn + ωl

2 ) + itkωl − itmωn = (B.7)

−Ω2 + itmkΩ−
(
ωnl
2

)2
− iωnl

(
tm + tk

2

)
.

With the aid of Eq. (B.5), Eq. (B.6) and Eq. (B.7) the overlap matrix transforms
to
ˆ ∞
−∞

Ψ̃∗m,n(ω)Ψ̃T
k,l(ω) dω = e−(ωnl2 )2

−iωnl( tm+tk
2 )
ˆ ∞
−∞

h(Ω−ωnl2 )hT (Ω+ωnl2 )e−Ω2+itmkΩ dΩ,

(B.8)
Using the translation property of the Hermite polynomials Eq. (5.70), the above
integral becomes,

e−(ωnl2 )2
−iωnl( tm+tk

2 )L−ωnl
ˆ ∞
−∞

h(Ω)hT (Ω)e−Ω2+itmkΩ dΩUωnl (B.9)

Part II

Now, secondly, let’s just focus on the remaining integral of Eq. (B.9), namely,
ˆ ∞
−∞

[
e−

Ω2
2 h(Ω)

] [
e−

Ω2
2 hT (Ω)

]
e+itmkΩ dΩ. (B.10)

Now,

h(Ω)hT (Ω) =
 H0 (Ω)

H1 (Ω)
...

HN (Ω)

 [ H0 (Ω) H1 (Ω) · · · HN (Ω) ] .

Here, we evaluate the inverse Fourier transform of the product of two quantum
harmonic oscillator polynomials,

Knm(t) =
ˆ ∞
−∞

[
e−

ω2
2 Hn (ω)

] [
e−

ω2
2 Hm (ω)

]
eitω dω. (B.11)
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The generating function of the Hermite polynomials is given by Eq. (5.28). Taking
a second generating function with dummy variable, y, and multiplying the two,
we obtain,

e2ω(x+y)−(x2+y2) =
∞∑
n=0

∞∑
m=0

Hn(ω)Hm(ω)x
nym

n!m! . (B.12)

Multiplying the Eq. (B.12) by, e−ω2 ,

e−ω
2+2ω(x+y)−(x2+y2) =

∞∑
n=0

∞∑
m=0

[
e−

ω2
2 Hn(ω)

] [
e−

ω2
2 Hm(ω)

]
xnym

n!m! . (B.13)

Now multiplying Eq. (B.13) by, eiωt, and integrating with respect to, ω,
ˆ ∞
−∞

exp
[
−ω2 + 2ω (x+ y)−

(
x2 + y2

)]
eiωt dω =

=
∞∑
n=0

∞∑
n=0

{ˆ ∞
−∞

[
e−

ω2
2 Hn(ω)

] [
e−

ω2
2 Hm(ω)

]
eiωt dω

}
xnym

n!m!

=
∞∑
n=0

∞∑
m=0

Knm(t)x
nym

n!m! . (B.14)

Consider the left hand integral Eq. (B.14) and complete the square of the exponent
of the exponential

− ω2 + 2ω (x+ y)−
(
x2 + y2

)
= − [ω − (x+ y)]2 + 2xy (B.15)

and substitute, Ω = ω − (x+ y) , dΩ = dω, then the left-hand integral
Eq. (B.14) transforms to

eit(x+y)+2xy
ˆ ∞
−∞

e−Ω2+itΩ dΩ. (B.16)

This integral in Eq. (B.15) is once again in the form of our standard Gaussian
integral so that,

[√
πe−

t2
4

]
eit(x+y)+2xy =

∞∑
n=0

∞∑
m=0

Knm(t)x
nym

n!m! (B.17)

Expanding the left hand exponentials of Eq. (B.17) in terms of a Taylor series,

ex(2y+it)eity =
∞∑
n=0

xn(2y + it)n
n!

∞∑
q=0

yq

q! (it)q, (B.18)
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and using the binomial theorem for, (2y + it)n,

ex(2y+it)eity =
∞∑
n=0

xn

n!

∞∑
q=0

n∑
p=0

2p
(
n

p

)
yp+q

(p+ q)!
(p+ q)!
q! (it)n+q−p. (B.19)

The binomial factorial becomes,

(
p+ q

p

)
= (p+ q)!

p!q! . (B.20)

thus substituting Eq. (B.20) into Eq. (B.19), we obtain,

ex(2y+it)eity =
∞∑
n=0

xn

n!

∞∑
q=0

n∑
p=0

2pp!
(
n

p

)(
p+ q

p

)
yp+q

(p+ q)!(it)
n+q−p. (B.21)

Now, substitute, m = p+ q, into Eq. (B.21),

ex(2y+it)eity =
∞∑
n=0

∞∑
m=0


min(n,m)∑
p=0

2pp!
(
n

p

)(
m

p

)
(it)n+m−2p

 xn

n!
ym

m! . (B.22)

Comparing the coefficients Eq. (B.22) with Eq. (B.14), we obtain,

Knm(t) =
√
πe−

t2
4

min(n,m)∑
p=0

2pp!
(
n

p

)(
m

p

)
(it)n+m−2p (B.23)

Thus Eq. (B.11),

Knm(t) =
ˆ ∞
−∞

[
e−

ω2
2 Hn (ω)

] [
e−

ω2
2 Hm (ω)

]
eitω dω

⇓

Knm(t) =
√
πe−

t2
4

min(n,m)∑
p=0

2pp!
(
n

p

)(
m

p

)
(it)n+m−2p (B.24)

Recalling that, Knm, Eq. (B.24) (see Eq. (B.10)) is just an element of a matrix,
the structure of this element with the presence with two binomial coefficients is
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reminiscent of the triangular Pascal matrix that we previously investigated in
Eq. (5.141). Let us rewrite this element as

Knm(t) = e−
t2
4

min(n,m)∑
p=0

[
π

1
4 2

p
2

√
p!
(
n

p

)
(it)n−p

] [
π

1
4 2

p
2

√
p!
(
m

p

)
(it)m−p

]
(B.25)

This is just the product of two of Pascal’s triangles except for the, π
1
4 2 p

2
√
p!, factor.

It is still, however, possible to factorize this matrix as
ˆ ∞
−∞

[
e−

ω2
2 h(ω)

] [
e−

ω2
2 hT (ω)

]
eiωτ dω = e−

t2
4 LitN

1
2 N

1
2
[
Lit
]T

(B.26)

where, N = diag
(√

π
[

200! 21 · 1! 22 · 2! 23 · 3! 24 · 4 · · · 2n · n!
])
, or,

N =
√
π



200! 0 0 0 0 · · · 0
0 21 · 1! 0 0 0 · · · 0
0 0 22 · 2! 0 0 · · · 0
0 0 0 23 · 3! 0 · · · 0
0 0 0 0 24 · 4! ... ...
0 0 0 0 0 . . . 0
0 0 0 0 0 0 2n · n!


. (B.27)

The HG normalization constants must still be included as before, we obtain,
ˆ ∞
−∞

Φ(ω)ΦT (ω)eiωτ dω = e−
t2
4 LitUit (B.28)

Part III

The overlap matrix element Eq. (B.14) can thus be written as (t = tmk),

Wk,l

m,n
= c†

m,n
e
− 1

4 t
2
mk
− 1

4ω
2
ln
− 1

2 iωnl(tm+tk)
L−ωnl+itmkUωnl+itmkc

k,l
. (B.29)

With the correct angular frequency scaling, we have,

Wk,l

m,n
= c†

m,n
e
− 1

8σ t
2
mk
−σ2 ω

2
ln
− 1

2 iωnl(tm+tk)
L
−
√

2σωnl+i
tmk√

2σ U
√

2σωnl+i
tmk√

2σ c
k,l

(B.30)
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C. Other Orthogonal Polynomials

The other orthogonal polynomials are also defined in [130, 129].

C.1. Laguerre Polynomials

C.1.1. Differential equation

x
d2Ln
dx2 + (1− x)dLn

dx
+ nLn = 0

C.1.2. Rodrigues’ formula

For, n = 0, 1, . . ., then

Ln(x) = ex
dn

dxn

(
xne−x

)

C.1.3. Generating function

e−tx/(1−t)

1− t =
∞∑
n=0

Ln(x) t
n

n!

C.1.4. Orthogonality

ˆ ∞
0

e−xLn(x)Lm(x) dx =

0 n 6= m

(n!)2 n = m
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C.2. Associated Laguerre Polynomials

C.2.1. Differential equation

x
d2Lmn
dx2 + (m+ 1− x)dL

m
n

dx
+ (n−m)Lmn = 0

C.2.2. Rodrigues’ formula

For, n,m = 0, 1, . . ., then

Lmn (x) = dm

dxm
Ln(x)

where, Ln(x), are the Laguerre polynomials with,

L0
n(x) = Ln(x)

Lmn (x) = 0 if m > n

C.2.3. Generating function

(−1)mtm

(1− t)m+1 e
−tx/(1−t) =

∞∑
n=m

Lmn (x) t
n

n!

C.2.4. Orthogonality

ˆ ∞
0

xme−xLmn (x)Lmp (x) dx =

0 n 6= p
(n!)2

(n−m)! n = p

C.3. Ince Polynomials

[? ] does not have a definition of Ince polynomials, but the other two references do
have, [130, 129]. Hill’s Differential Equation with three terms (constants A,B, k
and c)

w′′ +
(
A+B cos(2x)− 1

2(kc)2 cos(4x)
)
w = 0
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C.3 Ince Polynomials

However, when k2 < 0, i.e., k ∈ C,we substitute

ξ2 = −4k2c2

A = η − 1
8ξ

2

B = −(n+ 1)ξ

w(x) = Cn(x) exp
(
−1

4ξ cos(2x)
)

d2Cn
dx2 + ξ sin(2x)dCn

dx
+ [η − nξ cos(2x)]Cn = 0, n ∈ N.
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D. Matlab Code

The author always enjoyed finding program code in books, documents and theses,
to lighten the burden of reprogramming everything from the start. Obviously,
this is actually propriety information, and the exclusion thereof can certainly be
understood. Under the advice of my co-supervisor, I have been instructed to elim-
inate this from the thesis, mainly because he considered it unnecessary and that
it enlarged the thesis considerably. This can be understood, since the software
code is still under development and obviously not in a neat form to be published.
Especially, considering the amount of revisions it has undergone. Reluctantly, I
concurred. However, for the enjoyment, happiness and benefit of a few, I have
considered it prudent to include the following software listing all written in Mat-
lab©.

D.1. Main Molecule Function

1

2 function func = RunMoleculeAMSvN(x)
3 %{
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 FUNCTION : RunMoleculeAMSv1(x)
6 −−−−−−−−
7

8 DESCRIPTION : The main function of the Genetic Algorithm (GA) to ...
simulate

9 −−−−−−−−−−− the Optical Bloch equations(Louiville −von Neumann)
10 commutator bracket of the von Neumann density ...

matrix of
11 the UF6 molecules−laser interaction with a Gaussian ...

laser
12 pulse that has been modulated by a 4f−Spatial Light
13 Modulator (SLM).
14

15 Originally all the subfunctions were incorporated ...
in this

16 single main program. To enhance computation speed all
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17 unnecessary precalculatible program functions have been
18 extracted and placed in external functions. The ...

required
19 variables have been then saved in global ...

structures. There
20 are three such functions:
21 (1) Physical constants (PhysConst)
22 (2) The laser pulse and SLM parameters (LaserPulses)
23 (3) The UF6 Molecule parameters (UF_6Molecule)
24

25 I. Amplitude and Phase for SLM
26 II. Laser Pulse Temporal Window
27 III. Louiville−von Neumann Density matrix Laser Pulse
28 Interaction
29

30

31 INPUT : x − The vector incorporating the SLM paramerers ...
(Amplitude

32 −−−−− and Phase) 1280 Dbl Real
33 GLOBAL STURCTURES
34 =================
35 PC − Physical Constants Global Structure
36 LPOut − Laser Pulse parameters Global Structure
37 SLMOut − Spatial Light Modulator parameters Global ...

Structure
38 UF6_Molecule − Molecular Interaction Hamiltonian
39 INTERNAL
40 %OptFunc = 'Second' MUST BE SET Choose ONE of the ...

CASES
41 plotit = true or false To plot level ...

populations
42

43

44 OUTPUT : func − Minimization Vibrational Level
45 −−−−−− OptFunc = 'Second' MUST BE SET Choose ONE of the CASES
46

47 AUTHOR : A M Smit (Version 1) smoothvectorLudwigSLM REMOVED ...
dim(x)=1282

48 −−−−−−
49

50 DATE : November 2011
51 −−−−
52 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
53 %}
54

55 global PC LPOut SLMOut UF6;
56 %
57 % Flags and Settings
58 % %%%%%%%%%%%%%%%%%%
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59 plotit = true; % Plots Only Level Population
60 % When optimizing set to false
61 %
62 OptFunc = 'Second'; % % MUST BE SET ...

Optimization Maximum
63 % 'First'
64 % 'Third'
65 % 'Fourth'
66 % 'QC'
67

68 % Reguired for Ludwig's Smoother
69 x(1281) = 80;
70 x(1282) = 80;
71

72 %%
73 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
74 % I. Amplitude and Phase for SLM
75 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
76 am = x(1:640);
77 ph = x(641:1280);
78

79 %
80 % Smoothing Function (Required to remove discretization spikes)
81 % −−−−−−−−−−−−−−−−−−
82 % x = Is the input
83 % Frequency Domain Amplitude and Phase of SLM Laser Pulse
84 am = smoothvectorLudwigSLM(am,x(1281));
85 ph = pi*smoothvectorLudwigSLM(ph,x(1282));
86

87 %
88 % SLM Amplitude
89 % −−−−−−−−−−−−−
90 amplHbuild = ones(SLMOut.NumberFreqnew,1)*am;
91 amplHbuild = reshape(amplHbuild,SLMOut.delNRnew,1)';
92 %
93 % SLM Phase
94 % −−−−−−−−−
95 phasesHbuild = ones(SLMOut.NumberFreqnew,1)*ph;
96 phasesHbuild = reshape(phasesHbuild,SLMOut.delNRnew,1)';
97 phasesHbuild = mod(phasesHbuild,2*pi);
98

99 %
100 % SLM Mask
101 % −−−−−−−−
102 Mask1 = amplHbuild.*exp(1i*( phasesHbuild ));
103

104 %
105 % Zero Padding
106 % −−−−−−−−−−−−
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107 MASK = horzcat(SLMOut.VecLeft,Mask1,SLMOut.VecRight);
108

109 %
110 % SLM of Laser Pulse (Frequency Domain)
111 % −−−−−−−−−−−−−−−−−−
112 EFF2 = (SLMOut.EFF1).*MASK;
113

114 %
115 % 4−f Confocal SLM Second Lens (Fourier Optics)
116 % Inverse Fast Fourier Transform (Effective time domain pulse)
117 EFoutMask = ifft(EFF2);
118

119 % Renormalize Pulse
120 absEF2 = abs(EFF2)/max(abs(EFF2));
121 phase = mod(unwrap(angle(EFF2)),pi);
122

123 % Normalize SLM Mask time domain pulse
124 EFoutMask = EFoutMask/max(EFoutMask);
125

126 %%
127 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
128 % I.1 von Neumann TFR Representation
129 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
130 %
131 vNTFRPlots
132 %%
133 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
134 % II. Laser Pulse Temporal Window
135 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
136

137 % Windowed real Electric Field Laser Pulse Out
138 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
139 EF = real(EFoutMask(LPOut.postl :LPOut.postr));
140

141 % Laser Pulse Out Intensity
142 % −−−−−−−−−−−−−−−−−−−−−−−−−
143 Intensity = LPOut.I0*EF.*EF;
144

145 % Laser Pulse Out Energy
146 % −−−−−−−−−−−−−−−−−−−−−−
147 area = LPOut.delt*sum(Intensity); % Euler integration
148 %area = LPOut.delt/2*sum(Intensity(1:N−1)+Intensity(2:N));% ...

Trapezuim integration
149

150 % Laser Pulse Out Normalisation
151 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
152 E0 = sqrt(188*LPOut.I0*(LPOut.Fpulse/area));
153

154
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155 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
156 clear MASK Mask1 absEF2 phase amplHbuild phasesHbuild am ph area ...

EFoutMask;
157 clear EFF2 Intensity;
158 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
159

160 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
161 % III. Louiville−von Neumann Density matrix Laser Pulse
162 % Interaction
163 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
164 %%
165 %simplification Physical laser Electric Field Amplitude
166 LPOA = (PC.e*E0)/PC.hbar;
167

168 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
169

170 Nm = UF6.Nm;
171 Decay = false;
172 UnitNm = eye(Nm);
173 LPO_EF = (−1i*LPOut.delt*LPOA)*EF;
174 nn = floor(LPOut.N/1000);
175 %
176 % Performs time integration of interaction Hamiltonian
177 H_matI = zeros(Nm,Nm);
178 for r = 1: LPOut.N−1
179 % Scale interaction Hamiltonian with laser
180 H_matI = H_matI + LPO_EF(r)*UF6.I_Hmlt(:,:,r);
181 % Exp_H = UnitNm + H_matI + 0.5*H_matI*H_matI;
182 if ( (mod(r,nn) == 0)|| (r == LPOut.N−1))
183 Exp_H = expm(H_matI);
184 UF6.rhoM(:,:,r+1) = Exp_H*UF6.rhoM(:,:,r)*Exp_H';
185 H_matI = zeros(Nm,Nm);
186 else
187 UF6.rhoM(:,:,r+1) = UF6.rhoM(:,:,r);
188 end
189 end
190 %
191 % Now perform superoperator unitary transformation
192 %
193 %Exp_H = expm(H_matI);
194 %UF6.rhoM(:,:,LPOut.N) = Exp_H*UF6.rhoM(:,:,1)*Exp_H';
195 %%
196 %%
197 %%
198 % Minimization Vibrational Level;
199 rhoMdiag = diag(UF6.rhoM(:,:,LPOut.N));
200

201 switch OptFunc
202 case 'First' % 2

271

Stellenbosch University  https://scholar.sun.ac.za



Chapter D Matlab Code

203 func = (1.0 − (real(rhoMdiag(2))) );
204 case 'Second' % 3,4,5
205 func = (1.0 − (real(sum(rhoMdiag(3:5)))) );
206 case 'Third' % 6,7,8,9
207 func = (1.0 − (real(sum(rhoMdiag(6:9)))) );
208 case 'Fourth' % 10,...,16
209 func = (1.0 − (real(sum(rhoMdiag(10:16)))) );
210 case 'QC' % 17
211 func = (1.0 − (real(sum(rhoMdiag(17)))) );
212 otherwise
213 disp('Unknown Minimization Vibrational Level Condition')
214 end
215

216 if (plotit)
217 figure(10)
218 LevPopl = zeros(6,LPOut.N);
219 LevPopl(1,:) = real(UF6.rhoM(1,1,:));
220 LevPopl(2,:) = real(UF6.rhoM(2,2,:));
221 LevPopl(3,:) = real(UF6.rhoM(3,3,:)+UF6.rhoM(4,4,:)+UF6.rhoM(5,5,:));
222 LevPopl(4,:) = ...

real(UF6.rhoM(6,6,:)+UF6.rhoM(7,7,:)+UF6.rhoM(8,8,:)+UF6.rhoM(9,9,:));
223 LevPopl(5,:) = ...

real(UF6.rhoM(10,10,:)+UF6.rhoM(11,11,:)+UF6.rhoM(12,12,:)...
224 +UF6.rhoM(13,13,:)+UF6.rhoM(14,14,:)+UF6.rhoM(15,15,:)+UF6.rhoM(16,16,:));
225 LevPopl(6,:) = real(UF6.rhoM(17,17,:));
226 plot(LPOut.t/PC.fs,LevPopl(1,:),LPOut.t/PC.fs,LevPopl(2,:),...
227 LPOut.t/PC.fs,LevPopl(3,:),...
228 LPOut.t/PC.fs,LevPopl(4,:),...
229 LPOut.t/PC.fs,LevPopl(5,:),...
230 LPOut.t/PC.fs,LevPopl(6,:))
231 % title('The end population percentage as a function of FWHM ...

(Transform−Limited)')
232 xlabel('Time (fs)');
233 ylabel('Population within vibrational levels')
234 title('UF_6 Population 2nd Level Excitation')
235 legend('n = 0','n = 1',...
236 'n = 2','n = 3',...
237 'n = 4','Q.C.')
238 % xlim([t0 tF]);
239 ylim([0 1])
240 grid on;
241 end
242 end

D.2. von Neumann TFR Functions

D.2.1. Spec2vNTFR.m
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1 function vNTFR = Spec2vNTFR(EFw,wsmpl,vNOLM,vNSB,FlgInt)
2 %% Spectral Signal to von Neumann TFR
3 %{
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 FUNCTION : vNTFR = Spec2vNTFR(EFw,wsmpl,vNOLM,vNSB,FlgInt)
6 −−−−−−−−
7

8 DESCRIPTION : Given the Spectral Electric Field calculate
9 −−−−−−−−−−− the von Neumann Time−Frequency Representation

10 PREVIOUS CALLED FUNCTIONS:
11 1. vNGrid
12 2. vNOverlapAMS
13 3. vNSpecB
14

15 INPUT : EFw − Spectral (Fourier Transform) Electric Field ...
Angular

16 −−−−− Frequency vector [dim=N^2]
17 wsmpl − Spectral angular frequency sampling vector ...

[dim=N^2]
18 vNOLM − von Neumann Overlap Matrix [dim N2xN2]
19 vNSB − von Neumann Spectral Basis [dim N2xN2]
20 FlgInt − Flag for integration
21

22 OUTPUT : vNTFR − von Neuman Time−Frequency Representation
23 −−−−−− in unpacked matrix form
24

25 AUTHOR : A M Smit
26 −−−−−−
27

28 DATE : August 2012
29 −−−−
30 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
31 %}
32

33 %% Check row column vector
34 %
35 N2 = numel(wsmpl);
36 N = sqrt(N2);
37 % EFSpec must be column vector
38 [r,c] = size(EFw);
39 if r < c
40 EFc = EFw.';
41 else
42 EFc = EFw;
43 end
44

45 %% 1. Spectral von Neumann TFR coefficients
46 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
47 %
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48 SvNc = zeros(N2,1);
49 %
50 % Delta Electric Field sampling frequency
51 %
52 deltW = wsmpl(2) − wsmpl(1);
53 if (FlgInt)
54 % Euler Integration vector
55 SvNc = deltW*conj(vNSB)*EFc;
56 else
57 % Trapezium Integration vector
58 for ii=1:N2
59 SvNc(ii) = trapz(wsmpl,conj(vNSB(ii,:)).*EFc.');
60 end
61 end
62

63 %% 2. The von Neumann Time Frequency Representation
64 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
65 %
66 % Multiply with the inverse overlap matrix
67 %
68 Qwt = vNOLM\SvNc;
69

70 %% 3. Unpack the von Neumann Representation
71 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
72 %
73 vNTFR = reshape(Qwt,N,N); % Matrix is time x freq

D.2.2. Temp2vNTFR.m

1 function vNTFR = Temp2vNTFR(EFt,tsmpl,vNOLM,vNTB,FlgInt)
2 %% Temporal Signal to von Neumann TFR
3 %{
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 FUNCTION : vNTFR = Temp2vNTFR(EFt,tsmpl,vNOLM,vNTB,FlgInt)
6 −−−−−−−−
7

8 DESCRIPTION : Given the Spectral Electric Field calculate
9 −−−−−−−−−−− the von Neumann Time−Frequency Representation

10 PREVIOUS CALLED FUNCTIONS:
11 1. vNGrid
12 2. vNOverlapAMS
13 3. vNTempB
14

15 INPUT : EFt − Temporal Electric Field Time Series vector ...
[dim=N^2]

16 −−−−− tsmpl − temporal sampling vector [dim=N^2]
17 vNOLM − von Neumann Overlap Matrix [dim N2xN2]
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18 vNTB − von Neumann Temporal Basis [dim N2xN2]
19 FlgInt − Flag for integration (Euler 1 Trapezium 0)
20

21 OUTPUT : vNTFR − von Neuman Time−Frequency Representation
22 −−−−−− in unpacked matrix form
23

24 AUTHOR : A M Smit
25 −−−−−−
26

27 DATE : August 2012
28 −−−−
29 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
30 %}
31

32 %% Initialize
33 %
34 N2 = numel(tsmpl);
35 N = sqrt(N2);
36 % EFt must be column vector
37 [r,c] = size(EFt);
38 if r < c
39 EFc = EFt.';
40 else
41 EFc = EFt;
42 end
43

44 %% 1. Temporal von Neumann TFR coefficients
45 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 %
47 TvNc = zeros(N2,1);
48 % Delta Electric Field sampling time
49 %
50 deltT = tsmpl(2) − tsmpl(1);
51 if FlgInt
52 % Euler Integration vector
53 TvNc = deltT*conj(vNTB)*EFc;
54 else
55 % Trapezium Integration vector
56 for ii=1:N2
57 TvNc(ii,:) = trapz(tsmpl,conj(vNTB(ii,:)).*EFc.');
58 end
59 end
60

61 %% 2. The von Neumann Time Frequency Representation
62 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
63 %
64 % Multiply with the inverse overlap matrix
65 %
66 Qwt = vNOLM\TvNc;
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67

68 %% 3. Unpack the von Neumann Representation
69 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 %
71 vNTFR = reshape(Qwt,N,N); % Matrix is time x freq

D.2.3. vNGrid.m

1 function vN = vNGrid(MinW,MaxW,Nfourier,NvN)
2 %% Set up von Neumann latiice grid
3 %{
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 FUNCTION : vN = vNGrid(MinW,MaxW,Nfourier,NvN)
6 −−−−−−−−
7

8 DESCRIPTION : Calculates the various parameters of the von Neumann
9 −−−−−−−−−−− representation. The von Neumann reticule ofr grid ...

in the
10 time−frequency domain and the associated von Neumann
11 variance alpha.
12 NB − The time and frequency vectors are slightly offset
13 from the boundaries, effectively with half an increment
14

15 INPUT : MinW − Minimum Angular Frequency von Neumann Grid
16 −−−−− MaxW − Maximum Angular Frequency von Neumann Grid
17 TimeBW − Time Bandwidth von Neumann Grid
18 Nfourier − Fourier sampled Electric Field Dimension
19

20 OUTPUT : vN.alpha − von Neumann Basis Alpha
21 −−−−−− vN.N − Grid Dimension
22 vN.MaxW − Maximum Angular frequency
23 vN.MinW − Minimum Angular frequency
24 vN.TimeBW − Time Bandwidth
25 vN.FreqBW − Frequency Bandwidth
26 vN.delW − Incremental ∆ frequency
27 vN.delT − Incremental ∆ time
28 vN.time − von Neumann Grid time discrete time vector
29 vN.omega − von Neumann Grid discrete angular frequency ...

vector
30

31 AUTHOR : A M Smit
32 −−−−−−
33

34 DATE : December 2011
35 −−−−
36 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
37 %}
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38 %% Dimension of Electric Field and time
39 %
40 if NvN == 0.0
41 NvN = sqrt(Nfourier); % largest von Neumann Basis ...

Dimension;
42 end
43

44 %% Angular Frequency Bandwidth
45 %
46 FreqBW = MaxW−MinW;
47

48 %% Fourier Angular Frequency Increment
49 %
50 dW = FreqBW/(Nfourier−1);
51

52 %% Total Time Bandwidth (range)
53 %
54 TimeBW = 2*pi/dW;
55 %
56 MaxT = TimeBW/2;
57 MinT = − TimeBW/2;
58

59 %% von Neumann Alpha
60 %
61 alpha = TimeBW/(2*FreqBW);
62

63 %% von Neumann basis time and angular frequency increments
64 %
65 delW = FreqBW/(NvN);
66 delT = TimeBW/(NvN);
67

68 %% von Neumann Representation Structure
69 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 %
71 vN.alpha = alpha;
72 vN.N = NvN;
73 vN.MaxW = MaxW;
74 vN.MinW = MinW;
75 vN.MaxT = MaxT;
76 vN.MinT = MinT;
77 vN.TimeBW = TimeBW;
78 vN.FreqBW = FreqBW;
79 vN.delW = delW;
80 vN.delT = delT;
81

82 %% von Neumann Basis Representation Grid Vectors
83 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
84 %
85 fct = (1−1/NvN);
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86 vN.time = linspace(MinT*fct,MaxT*fct,NvN);
87 vN.omega = linspace(MinW+0.5*delW,MaxW−0.5*delW,NvN);

D.2.4. vNOverlapAMS.m

1 function S = vNOverlapAMS(omega,time,alpha,N)
2 %% von Neumann Overlap Matrix
3 %{
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 FUNCTION : S = vNOverlapAMS(omega,time,alpha,N)
6 −−−−−−−−
7

8 DESCRIPTION : Calculates the von Neumann overlap matrix given the von
9 −−−−−−−−−−− Neumann spectral and temporal reticule with the ...

associated
10 von Neumann basis alpha parameter (variance). This
11 calculates S using matrix techniques to speed up the
12 process.
13 Related is S = vNOverlapM(omega,time,alpha,N)
14

15 INPUT : omega − discrete von Neumann Grid frequency vector
16 −−−−− time − discrete von Neumann Grid time vector
17 alpha − von Neumann alpha parameter (variance)
18 N − von Neumann dimension (Sqrt dimension of Electric ...

Field)
19

20 OUTPUT : S − von Neumann Overlap matrix
21 −−−−−−
22

23 AUTHOR : A M Smit
24 −−−−−−
25

26 DATE : December 2011
27 −−−−
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 %}
30 %% Basis AMplitudes
31 %
32 % OLAmp = sqrt(2*alpha/pi); % This used in Tannor in error
33 OLw = alpha/2;
34 OLt = 1/(8*alpha);
35 %% Intermediate variables
36 %
37 N2 = N*N;
38 N2m1 = N2−N+1;
39 Nvec = [1:N]−1;
40 Nones = ones(1,N);
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41 Omvec = omega.'*Nones;
42 tmvec = time.'*Nones;
43 Omvd = Omvec − Omvec.'; % vNomega(n)−vNomega(i)
44 Omd2 = −OLw*(Omvd.^2);
45 tmvd = tmvec − tmvec.'; % vNtime(m)−vNtime(j)
46 tmd2 = −OLt*(tmvd.^2);
47 tmpl = 1i/2*(tmvec + tmvec.'); % vNtime(m)+vNtime(j)
48 %% von Neumann Overlap Matrix
49 %
50 S = zeros(N2,N2);
51 %
52 k = 0;
53 for ij = 1:N:N2m1 % step row omega (Sub−matrix time)
54 k = k + 1;
55 l = 0;
56 for kl=1:N:N2m1 % step column omega (Sub−matrix time)
57 l = l + 1;
58 S(ij+Nvec,kl+Nvec) = exp(Omd2(k,l)+tmd2+Omvd(l,k)*tmpl);
59 end
60 end

D.2.5. vNSpecB.m

1 function vNSB = vNSpecB(EFw,alpha,omega,time)
2 %% von Neumann Spectral Basis Functions
3 %{
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 FUNCTION : vNSB = vNSpecB(EFw,alpha,omega,time)
6 −−−−−−−−
7

8 DESCRIPTION : Given the von Neumann Grid and Spectral Electric Field
9 −−−−−−−−−−− sampling generates the Spectral von Neumann Basis

10

11 INPUT : EFw − Spectral (Fourier Transform) Electric Field ...
Angular

12 −−−−− Frequency increment vector [dim(EFw)=N^2 ]
13 alpha − von Neumann Basis alpha
14 omega − von Neumann Grid Discrete angular frequency ...

vector
15 time − von Neumann Grid Discrete time vector ...

[dim(time)=N]
16

17 OUTPUT : vNSB − von Neuman Spectral Basis
18 −−−−−−
19

20 AUTHOR : A M Smit
21 −−−−−−
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22

23 DATE : August 2012
24 −−−−
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 %}
27

28 %% Inialization
29 %
30 N = numel(time);
31 No = numel(omega);
32 EFN = numel(EFw);
33 N2 = N*N;
34

35 %% The von Neumann Spectral Basis
36 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 %
38 Aw = (2*alpha/pi)^.25; % von Neumann Spectral Basis ...

Amplitude
39 vNSB= zeros(N2,EFN); % von Neumann Spectral Basis
40 % Row indices index basis wt
41 % Column Frequency development
42 r_cnt = 0;
43 for nn = 1:N % Frequency
44 EFwd = EFw−omega(nn);
45 for mm = 1:N % Time
46 r_cnt = r_cnt + 1;
47 vNSB(r_cnt,:) = Aw*exp(−alpha*EFwd.^2−1i*time(mm)*EFwd);
48 end
49 end

D.2.6. vNTempB.m

1 function vNTB = vNTempB(EFtime,alpha,omega,time)
2 %% von Neumann Temporal Basis Functions
3 %{
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 FUNCTION : vNTB = vNTempB(EFtime,alpha,omega,time)
6 −−−−−−−−
7

8 DESCRIPTION : Given the von Neumann Grid and Temporal Electric Field
9 −−−−−−−−−−− sampling generates the Temporal von Neumann Basis

10

11 INPUT : EFtime − Temporal Electric Field Time
12 −−−−− increment vector [dim(EFw)=N^2 ]
13 alpha − von Neumann Basis alpha
14 omega − von Neumann Grid Discrete angular frequency ...

vector
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15 time − von Neumann Grid Discrete time vector ...
[dim(time)=N]

16

17

18

19 OUTPUT : vNBT − Temporal von Neumann Basis
20 −−−−−−
21

22 AUTHOR : A M Smit
23 −−−−−−
24

25 DATE : August 2012
26 −−−−
27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
28 %}
29

30 %% Initialization
31 %
32 N = numel(time); % von Neumann Grid Dimension
33 No = numel(omega); % von Neumann Grid Dimension
34 EFN = numel(EFtime); % Electric Field time ...

increments N2
35 N2 = N*N; % N2 should equal EFN
36

37 %% The von Neumann Temporal Basis
38 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 % NB NB Phase has been made Plus +++++
40 %
41 At = (1/(2*alpha*pi))^.25; % von Neumann Basis Temporal ...

Amplitude
42 sfct = − 1/(4*alpha);
43 vNTB = zeros(N2,EFN); % von Neumann Temporal Basis
44 % Row indices index basis wt
45 % Column Time development
46 r_cnt = 0;
47 for nn = 1:N % Frequency
48 for mm = 1:N % Time
49 r_cnt = r_cnt + 1;
50 vNTB(r_cnt,:)= ...

At*exp(sfct*(EFtime−time(mm)).^2+1i*omega(nn)*EFtime);
51 end
52 end

D.2.7. vNTFR2Spec.m

1 function EFvNSpec = vNTFR2Spec(Qwt,vNSB,N)
2 %% von Neumann TFR to Spectral Signal
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3 %{
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
5 FUNCTION : EFvNSpec = vNTFR2Spec(Qwt,vNSB)
6 −−−−−−−−
7

8 DESCRIPTION : Given the von Neumann Representation Qwt of an Electric
9 −−−−−−−−−−− Field, this function regenerates the spectral (Fourier

10 Transform) Electric Field via the inverse von Neumann
11

12 INPUT : Qwt − von Neumann Representation Time−Frequency
13 −−−−− Representation vector
14 vNSB − von Neumann Spectral basis
15 NB NB Requires that the von Neumann matrix be reshaped to ...

a vector
16 Qwt = reshape(QvN,1,N2);
17

18 OUTPUT : EFvN − Spectral Electric Field Recreated
19 −−−−−−
20

21 AUTHOR : A M Smit
22 −−−−−−
23

24 DATE : August 2012
25 −−−−
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 %}
28

29 %% von Neumann Representation Frequency Inverse
30 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
31 %
32 EFvNSpec = zeros(1,N*N);
33 %
34 r_cnt = 0;
35 for nn=1:N % Frequency
36 for mm=1:N % Time
37 r_cnt = r_cnt + 1;
38 EFvNSpec = EFvNSpec+Qwt(r_cnt)*vNSB(r_cnt,:); % vNSB is ...

now a row vector
39 end
40 end

D.2.8. vNTFR2Temp.m

1 function EFvNTemp = vNTFR2Temp(Qwt,vNTB,N)
2 %% von Neumann TFR to Temporal Signal
3 %{
4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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5 FUNCTION : EFvNTemp = vNTFR2Temp(Qwt,vNTB,N)
6 −−−−−−−−
7

8 DESCRIPTION : Given the von Neumann Representation Qwt of an Electric
9 −−−−−−−−−−− Field, this function regenerates the spectral (Fourier

10 Transform) Electric Field via the inverse von Neumann
11

12 INPUT : Qwt − von Neumann Representation Time−Frequency
13 −−−−− Representation vector
14 vNSB − von Neumann Temporal basis
15 NB NB Requires that the von Neumann matrix be reshaped to ...

a vector
16 Qwt = reshape(vNTFR,1,N2);
17

18 OUTPUT : EFvNTemp − Temporal Electric Field Recreated
19 −−−−−−
20

21 AUTHOR : A M Smit
22 −−−−−−
23

24 DATE : August 2012
25 −−−−
26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 %}
28

29 %%
30 % von Neumann Representation Temporal Inverse
31 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 %
33 EFvNTemp = zeros(1,N*N); % Row vector
34 %
35 r_cnt = 0;
36 for nn=1:N % Frequency
37 for mm=1:N % Time (Summation of row ...

vectors N^2)
38 r_cnt = r_cnt + 1;
39 EFvNTemp = EFvNTemp+Qwt(r_cnt)*vNTB(r_cnt,:); % vNTB is ...

now a row vector
40 end
41 end

D.2.9. vNTFRPlots.m

1 %% Used in Main Genetic Algorithm to Convert to von Neumann
2 %{
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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4 FUNCTION : NOT A FUNCTION −−− CALLED DIRECTLY FROM ...
RunMoleculeAMSvN

5 −−−−−−−−
6

7 DESCRIPTION : Called by RunMoleculeAMSvN to generate the von Neumann
8 −−−−−−−−−−− Time−Frequency−Rpresentation of the Spectral ...

Electric Field
9 after being masked by the Spatial Light Modulator (SLM)

10 This is the input Electric Field
11

12 INPUT : x − The vector incorporating the SLM paramerers ...
(Amplitude

13 −−−−−
14

15 OUTPUT : von Neumann Basis Plots
16 −−−−−−
17

18 AUTHOR : A M Smit (Version 1)
19 −−−−−−
20

21 DATE : August 2012
22 −−−−
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 %}
25

26

27 %% I. von Neumann TFR Representation
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29

30 %% Choose the von Neumann Grid dimension NvN
31 %
32 NvN = round(25);
33 NF = NvN*NvN;
34

35 %% Resample the Electric Field Fourier Transform to Match
36 % Firstly only over the SLM
37 EFFstep = SLMOut.delNRnew/NF ;
38 nwl = numel(SLMOut.VecLeft);
39 nwr = numel(SLMOut.VecLeft)+SLMOut.delNRnew;
40 EFFM = EFF2(nwl+1:EFFstep:nwr);
41

42 %% Frequency Bandwidth Range
43 %
44 wmin = SLMOut.wl;
45 wmax = SLMOut.wr;
46

47 %
48 %% Frequency von Neumann Fourier Samples for Resampling
49 EFFsmpl= linspace(wmin,wmax,NF);
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50

51 %
52 % Save the data for later processing
53 % save EFS_15_5_1_100 NvN NF EFFsmpl EFFM wmin wmax;
54 save EFS_26_11_300 NvN NF EFFsmpl EFFM wmin wmax;
55

56 %% von Neumann Grid Lattice
57 %
58 vN = vNGrid(wmin,wmax,NF,NvN);
59

60 %% Unpack the von Neumann Structure to program variables
61 %
62 to = vN.MinT; % Initial Time
63 tf = vN.MaxT; % Final Time
64 alpha = vN.alpha; % von Neumann basis alpha
65 time = vN.time; % von Neumann Grid time vector
66 omega = vN.omega; % von Neumann Grid angular ...

frequency vector
67 % wsmpl = linspace(wmin,wmax,NF); % EF sampled angular ...

frequency vector(EFFsmpl)
68 tsmpl = linspace(to,tf,NF); % EF sampled time vector
69 %
70 inttt = 0;
71

72 %% von Neumann Overlap matrix
73 %
74 vNOLM = vNOverlapAMS(omega,time,alpha,NvN);
75

76 %% von Neumann Spectral representation
77 %
78 vNSB = vNSpecB(EFFsmpl,alpha,omega,time);
79

80 %% von Neuman TFR
81 %
82 QvN1 = Spec2vNTFR(EFFM,EFFsmpl,vNOLM,vNSB,inttt);
83

84 %% Spectral representation
85 Qwt = reshape(QvN1,1,NF);
86 EFvN1 = vNTFR2Spec(Qwt,vNSB,NvN);
87

88 %% PLOTS
89 %
90 %Plots to Check Sampling
91 %
92 if (plotit)
93 load ...

C:\Users\asmit1\Documents\MATLAB\ASmit\LaserControl\UF_6\wnUF6.mat;
94 wnl = ones(size(wn));
95 Fgrn = 11;
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96 figure(Fgrn)
97 EFFww = LPOut.w(SLMOut.posL:SLMOut.posR);
98 plot(EFFww*PC.fs,abs(EFF2(SLMOut.posL:SLMOut.posR)),'r');
99 hold on;

100 plot(EFFsmpl*PC.fs,abs(EFFM),'g');
101 plot(wn*PC.fs,wnl,'b*');
102 xlabel('Angular Frequency [fs^{−1}]');
103 grid;
104 hold off;
105

106

107 Fgrn = Fgrn +1;
108 figure(Fgrn)
109 plot(EFFsmpl*PC.fs,abs(EFFM));
110 title('Electric Field FT Amplitude UF_6 2nd Level');
111 %xlim([2.27 2.442])
112 xlabel('\omega [fs^{−1}]');
113 ylabel('Amplitude');
114 grid on;
115 hold on;
116 % plot(wsmpl*PC.fs,abs(EF),'g.');
117 plot(EFFsmpl*PC.fs,abs(EFvN1),'r.');
118 %plot(w*fs,abs(EFvNw1),'y.');
119

120 hold off;
121

122 Fgrn = Fgrn +1;
123 figure(Fgrn)
124 plot(EFFsmpl*PC.fs,angle(EFFM),'b.');
125 title('Electric Field FT Phase UF_6 2nd Level');
126 %xlim([2.27 2.442]);
127 xlabel('\omega [fs^{−1}]');
128 ylabel('Phase [rad]');
129 grid on;
130 hold on;
131 % plot(wsmpl*PC.fs,angle(EF),'g.');
132 plot(EFFsmpl*PC.fs,angle(EFvN1),'r.');
133 hold off;
134

135 Fgrn = Fgrn +1;
136 figure(Fgrn)
137 % imagesc(x,y,fct(x,y)) with QvN1 the y−axis points down
138 % therefore the flipud
139 %imagesc(omega*PC.fs,time/PC.fs,abs(flipud(QvN1)));
140 imagesc(time/PC.fs,omega*PC.fs,abs(QvN1.'));
141 %colormap(clrmp);
142 ylabel('\omega [fs^{−1}]');
143 xlabel('Time (fs)');
144 title('von Neumann TFR Amplitude UF_6 2nd Level');
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145 colorbar;
146 % AXIS XY puts MATLAB into its default "Cartesian" axes mode. The
147 % coordinate system origin is at the lower left corner. ...

The x
148 % axis is horizontal and is numbered from left to right. ...

The y
149 % axis is vertical and is numbered from bottom to top.
150 axis xy;
151

152 Fgrn = Fgrn +1;
153 figure(Fgrn)
154 % imagesc(x,y,fct(x,y)) with QvN1 the y−axis points down
155 % therefore the flipud
156 %imagesc(omega*PC.fs,time/PC.fs,angle(flipud(QvN1)));
157 imagesc(time/PC.fs,omega*PC.fs,angle(QvN1.'));
158 %colormap(clrmp);
159 ylabel('\omega [fs^{−1}]');
160 xlabel('Time (fs)');
161 title('von Neumann TFR Phase UF_6 2nd Level');
162 colorbar;
163 axis xy;
164 end

D.3. Coherent State Analogy Functions

1 function GSCohStTFR = FGH_T2GSCohSt(FGHTFR)
2 %%
3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
4 % FUNCTION : GSCohSt = FGH_T2GSCohSt(FGHTFR)
5 % −−−−−−−−
6 %
7 % DESCRIPTION : Given the Temporal the Fourier−Gauss−Hermite (FGH)TFR
8 % −−−−−−−−−−− Determine the Glauber−Sudarshan Coherent State ...

Complex
9 % coefficient (alpha)

10 %
11 %
12 % INPUT : FGHTFR − FGH Time−Frequency Representation
13 % −−−−−
14 %
15 % OUTPUT : GSCohSt − NxN Frequency time
16 % −−−−−−
17 %
18 % AUTHOR : A M Smit
19 % −−−−−−
20 %
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21 % DATE : June 2013
22 % −−−−
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 %%
25 %
26 [r,c,d] = size(FGHTFR);
27 N = r;
28 GSCohStTFR = zeros(N,N);
29 GSCohSt = zeros(N,N);
30 CSalpha = zeros(N,N);
31 CScmn2 = zeros(N,N);
32 II = ones(N,N);
33 eps2 = 1.0e−16;
34 thres = 1.0e−1;
35

36 for ll=1:N
37 for mm=1:N
38 start_point = [1.0 +1i*1.0e−17;1.0 +1i*1.0e−17];
39 HGC = squeeze(FGHTFR(ll,mm,:));
40 model = @(params)GSCohS(params,HGC);
41 estimates = fminsearch(model, start_point);
42 %%
43 % ...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
44 % 2. The FGH Glauber−Sudarshan Coherent state TFR
45 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 [sse, GSC, cmn1] = GSCohS(estimates,HGC);
47 CSalpha(ll,mm) = estimates(1);
48 cf2 = estimates(2)*estimates(2)';
49 CScmn2(ll,mm) = cf2;
50 if cf2 > thres
51 GSCohSt(ll,mm) = sse/cf2;
52 else
53 GSCohSt(ll,mm) = 1.0;
54 end
55 end
56 end
57 figure(5);
58 imagesc(CScmn2)
59 colorbar;
60 mGScmn = max(max(abs(CScmn2)));
61 mGSS = max(max(abs(GSCohSt)));
62 GSCohStTFR = II−GSCohSt/mGSS;
63

64 %
65 % Coherent State Function Glauber−Sudarshan
66 function [sse, GScoef, cmn] = GSCohS(params,HGCc)
67 alpha = params(1);
68 cmn = params(2);
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69 GScoef = zeros(N,1);
70 for kk=0:N−1
71 if kk == 0
72 nfct = 1;
73 GScoef(kk+1) = 1;
74 else
75 nfct = nfct*kk;
76 GScoef(kk+1) = alpha^kk/sqrt(nfct);
77 end
78 end
79 ErrorVector = cmn*exp(−alpha*alpha'/2)*GScoef − HGCc;
80 sse = ErrorVector'*ErrorVector;
81 end
82 end
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