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Abstract

The purpose of this thesis is to implement the Frequency Shift Keying (FSK) modem
modules for the Software Defined Radio (SDR), using different Linux sound Application
Programming Interfaces (API's).
The FSK modulation scheme, uses coherent detection with matched filters.
The modules are implemented using the Linux operating system and the programming
language used is C/C++. Simulation is performed first and then followed by implementa-
tion in real-time, using APIs.
The APIs used are Open Sound System (OSS), Advanced Linux Sound Architecture
(ALSA), Jack Audio Connection Kit (JACK) and PortAudio (PA).

In real-time two computers are used, one acting as the modulator and the other as the
demodulator. The two sound cards are connected by an audio cable.

Results obtained using OSS, ALSA and JACK are satisfactory.
Recommendations are subsequently made for the suitable API(s). Both ALSA and JACK
are the best APIs for the implementation.
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Opsomming

Die doel van hierdie tesis is om modules vir 'n frekwensieskuif-sleuteling (FSK) modem
vir 'n Sagteware-gedefinieerde Radio (SDR) te implementeer, deur gebruik te maak van
verskillende Linux klankargitekture (API's). Die FSK modulasieskema gebruik koherente
deteksie met aangepaste filters.
Die modules is geïmplementeer met behulp van die Linux bedryfstelsel en CjC++ is
gebruik as programmeringstaal. Simulasies is eers gedoen, gevolg deur 'n reële-tyd imple-
mentasie. Die klankargitekture wat gebruik is, is Open Sound System (OSS), Advanced
Linux Sound Architecture (ALSA), Jack Audio Connection Kit (JACK) en PortAudio
(PA).
Twee rekenaars is gebruik vir die reële-tyd stelsel, waar een as die modulator optree en
die ander een as die demodulator. Die twee klankkaarte is verbind deur 'n klankkabel.
Bevredigende resultate is verkry met behulp van OSS, ALSA en JACK. Aanbevelings is
gevolglik gemaak vir toepaslike API's. Beide ALSA en JACK is die geskikste API's vir
die implementasie.
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Glossary

ADC
ALSA
API
ASCII
bps
CPU
DSP
FSK
ISA
JACK
MF
OSS
PA
Pe
PCM
PCI
Rx
SDR
SNR
SR
Tx

:Analog to Digital Converter
.Advanced Linux Sound Architecture
:Application Programming Interface
:American Standard Code for Information Interchange
:bits per second
:Central Processing Unit
:Digital Signal Processing
:Frequency Shifting Key
:Industry Standard Architecture
:Jack Audio Connection Kit
:Matched Filter
:Open Sound System
:Port Audio
:Probability of error
:Pulse Code Modulation
:Peripheral Component Interconnect
:Receiver
:Software Defined Radio
:Signal-to-Noise Ratio
:Sampling Rate
:Transmitter
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Chapter 1

INTRODUCTION

1.1 Software Defined Radio (SDR)
SDR is an emerging technology intended for the conception and design of flexible radio
systems, which are "multi-service", "multi-standard", "multi-band", re-configurable and
re-programmable by software.
With it the following are possible:

1. It has the ability to receive and transmit using various modulation methods and a
common set of hardware.

2. lts functionality can be completely redefined by downloading and running new soft-
ware at will.

3. It minimises the costs involved in the building of hardware as some tasks can be per-
formed using software, resulting in simplification of radio architecture and improved
performance.

One of the first software radios was a military project named SpeakEasy. The primary
goal of the SpeakEasy project is to utilize programmable processing to emulate more than
10 existing military radios, operating in frequency bands between 2 and 200MHz. Another
design goal was to be able to easily incorporate new coding and modulation standards that
can be used in the future, so that military communications can keep pace with advances
in coding and modulation techniques [19].

SDR is currently being used to implement radio modem technologies.
In the long run, it is expected to become the dominant technology in radio communica-
tions.

1
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CHAPTER 1. INTRODUCTION 2

1.2 SDR Open System Architecture
Figure 1.1 illustrates the hardware of a software-defined radio [16]. It typically consists of
a superheterodyne radio frequency (RF) front end which converts RF signals to and from
analog intermediate frequency (IF) signals, and analog to digital converter and digital to
analog converters which are used to convert a digitised IF signal to and from analog form .

RF Modem
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d - data
c - control

Figure 1.1: SDR Open System Architecture

1.3 Thesis Objectives
The objectives of this are:

• to implement the FSK modem modules for the SDR, using a sound card and different
Linux sound drivers.

• to choose the API that works best.

1.4 Thesis Overview
The structure of the thesis is as follows:

Chapter One: Introduction
This chapter introduces Software Defined Radio and objectives of this thesis.

Chapter Two: Background Theory
This chapter explains the background theory required for the implementation of the FSK
modem modules.

Chapter Three: FSK MODULES DESIGN
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CHAPTER 1. INTRODUCTION 3

This chapter outlines the design that is to be followed in the implementation stages of the
modules.

Chapter Four: Simulation
The simulation of both the modulator and demodulator is implemented in this chapter.

Chapter Five: Implementation Using Linux Sound APIs
In this chapter, modules are implemented using ass, ALSA, JACK and PA.

Chapter Six: Results
Results of simulation and real-time implementation are interpreted in this chapter.

Chapter Seven: Discussions and Conclusions
Recommendations are made for the best API(s).

Appendices

Included CD-ROM
The CD contains the source code of Simulation and all four APIs used.

http://scholar.sun.ac.za/



Chapter 2

BACKGROUND THEORY

2.1 Introduction
This section gives some background theory on FSK modulation using matched filters. The
theory covers both modulation and demodulation processes. The expected performance
for the chosen modulation scheme is also worked out. Factors affecting sound quality are
also discussed.

2.2 FSK Modulation
FSK modulation is the process corresponding to switching or keying the frequency of the
carrier signal between two frequencies that correspond to binary symbols 0 and 1.

Let Sl(t) and S2(t) represent the two signals used to represent the binary symbols 0 and
1, respectively [1].

Sl(t) = { A cos 27rht o < t ::; T,
0 elsewhere,

S2(t) = { A cos 27rht 0< t ::; T,
0 elsewhere.

(2.1)

(2.2)

For example, Figure 2.1 shows the modulated waveform of the character "M". Intervals
of high frequency denotes "I" bits and those of low frequency denotes "0" bits.

4
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CHAPTER 2. BACKGROUND THEORY 5

o o o o

Figure 2.1: An idealized FSK waveform of character M

Coherent detection is used in the demodulating process, In this method the receiver has a
perfect knowledge of the two signals 51 (t) and 52(t) transmitted by the modulator system.
The received binary FSK signal is passed through two different matched filters, each one
containing the exact shape of one of the signals transmitted.
The matched filter (MF) receiver is shown in Fig. 2.2. The outputs of the matched filters
are added and subtracted for the purpose of bit synchronisation and decision making, re-
spectively.
The bit synchronisation process determines peaks from the signal created by the sum
of the output of the two matched filters. The peaks positions are used in the decision
threshold block.
The decision threshold block uses the signal created from the subtraction of the outputs.
It reads the signal at peak positions and decides on whether a bit is a one or zero by using
a threshold of zero.

s(t) + n(t)
Binary
output

c.Q
______. .!Q

t= T ~
o

Figure 2.2: Matched-filter detection of FSK waveforms

2.3 Sampling Rate
Sampling Theorem: If the analog input is sampled instantaneously at regular intervals at
a rate that is at least twice the highest analog frequency then the samples contain all of

http://scholar.sun.ac.za/



CHAPTER 2. BACKGROUND THEORY 6

the information of the analog signal [5].

(2.3)

Figure 2.3 shows the results of under sampling. Joining the dots gives a different picture
about the original waveform. The observed frequency is also different.

Figure 2.3: Under Sampling

2.4 Sample Resolution
This refers to how many different values the samples can take on. The higher the sample
resolution, the more accurate the representation of the level of each sample, but again,
the more memory is required to store each sample.
Digital audio is normally found in one of two resolutions:

1. 8-Bit: 8-bit resolution was used in the earliest sound cards, and is used for some
lower-quality recording formats as well. Here, each sample can take one of 256 dif-
ferent values (28 = 256).

2. 16-Bit: This is the standard for compact disc audio and newer sound cards. Each
sample can take one of 65,536 different values. The resolution is considered to ac-
curately represent music audio.

2.5 Quantization Noise
Another important factor in any source encoding scheme is the amount of noise or dis-
tortion introduced, the difference between the sample value and the original waveform
received [1].
The signal-to-quantization-noise ratio increases by 6dB for every additional bit used in a
binary system. There is a difference of about 48dB between 8-bit and 16-bit resolution.
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CHAPTER 2. BACKGROUND THEORY 7

2.6 Performance Analysis of Coherent FSK
The average energy per binary digit for analog FSK is [1]

A2T
E=-

2
where A and T are the amplitude and bit duration, respectively.

(2.4)

In digital demodulation, sampling of the analog signal takes place. The average energy
per bit is given by

(2.5)

where N is the number of samples per bit.

If one signaling frequency is present in the absence of noise, it is assumed that the one MF
output is zero and the other output is at E. Conversely, if the second signaling frequency
is present, the first MF output is zero and as a result of the subtraction the net output is
at -E [1].

The sum of the noise output variance from the two matched filters is given by,

2 2 A2N
O"out = O"in (2.6)

For Gaussian-distributed noise and equiprobable ones and zeros, the probability of error
is given by [1],

100 1 (y+E)2

Pe = e- 2CT~" E dy
o J27m7n E

and this gives the probability of error

(2.7)

1 100

%2Pe =!<C e-T dz
y 27l' A.JN

2O-in

and for Gaussian-distributed noise [1],

(2.8)

Q(x) (2.9)

(2.10)

From equations 2.8 and 2.9,

Pe = ~ [1 - erf ( ;.: ) 1
2 2 20"m

(2.11)

Figure 2.4 is the expected probability of error curve for the coherent FSK, using equa-
tion 2.11.
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CHAPTER 2. BACKGROUND THEORY 8

Performance Analysis
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Figure 2.4: Theoretical probability of error for coherent FSK

2.7 Summary
This chapter discusses the background theory that is used in the implementation of the
modules. The FSK modulation scheme using coherent detection is discussed. Factors
affecting the quality of sound are stated. Equation 2.11 is used to calculate the expected
probability of error for the implemented modulation scheme.
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Chapter 3

FSK MODULES DESIGN

3.1 Introduction
This chapter outlines the proposed specifications for modules design.

3.2 Specifications
The following is a list of proposed specifications for the module.

3.2.1 Buffer Sizes

Buffer sizes should be in integer powers of 2, that is 2n, where n is an integer. This works
best with the buffering used internally by the sound drivers.
Buffer sizes differs from one API to another. The OSS API prefers buffer sizes between
1024 and 4096 for normal use [7], while ALSA works best with much bigger buffers.
Table 3.1 shows kernel buffer sizes that will be used.

API Periods Period size Buffer Size
OSS 1 1024 1024
ALSA 8 1024 8192
JACK 8 1024 8192
PA 1 1024 1024

Table 3.1: Buffer sizes

3.2.2 Samples Per Bit

A full buffer contains 8 transmitted bits. A buffer of 1024 (128 x 8) samples will have 128
samples per bit.

9
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CHAPTER 3. FSK MODULES DESIGN 10

3.2.3 Sampling Rate

The chosen sampling rate is 44kHz. This is to allow use of full sound card bandwidth
later.

3.2.4 Bit Duration

With a sampling rate of 44kHz and samples per bit equal to 128, bit duration will be 2.91
ms. This gives a baud rate of 343 bits per second.

3.2.5 Frequencies

Low and high frequencies chosen are 1300Hz and 2100Hz, respectively. These are frequen-
cies used in 1200 or 2400 baud modems.

3.2.6 Audio Formats

Table 3.2 shows audio formats to be used for different APIs.

API Audio Format
OSS 8-bit unsigned
ALSA 8-bit unsigned
JACK 32-bit floating point
PA 8-bit unsigned

Table 3.2: Audio Formats

3.3 Modulator Processes
Methods that are used in the modulator are the following:
inputMessage() :-writes entered message from keyboard, to an array.
initO :-initialises variables and memory allocation of all arrays.
modulator() :-performs modulation process.
playBackO :-writes modulated signal to kernel buffer.

http://scholar.sun.ac.za/



CHAPTER 3. FSK MODULES DESIGN II

3.4 Demodulator Processes
Methods that arc used in the demodulator arc the following:
initO :-initialises variables and memory allocation of all arrays.
matchcdFilters() :-prcpares matched filters.
recordingt) :-captures data from the kernel buffer.
convolutionl ) :-performs discrete convolution.
bitSynchroO :-synchronises bits.
shiftingSamples() :-shifts samples left out after synchronisation to the

front of the buffer.
decisionDeviceO :-makes decision on bits.
displayMessageO :-displays message on the screen.

3.5 Conclusion
All the necessary specifications are given in this section. Processes that will take place
inside the modulator and demodulator modules are stated and Audio formats to be used
in different APIs are also stated.

3.5.1 Summarised Specifications

Low Frequency Signal
High Frequency Signal
Bit Duration
Baud Rate
Samples Per Bit
Sampling Rate
Duplexing

:1300 Hz
:2100 Hz
:2.91 ms
:343 bps
:128
:44 kHz
:half-duplex

The simulation will use a buffer size of 1024, that contains about 8 bits.
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Chapter 4

SIMULATION

4.1 Introduction
In this chapter simulation of both the modulator and demodulator takes place. The lan-
guage used in simulation is C++. Theory discussed in Chapter 2 is used. The modulator
write an FSK modulated signal to file. The demodulator read the FSK modulated signal
from a file and demodulate it using matched filters, bit synchronisation and threshold for
deciding. The output of the demodulator should be the original message that was typed
as the input of the modulator.
The aim of simulation is to get the software working properly on files before implementa-
tion with sound cards in real-time takes place.

4.2 FSK Modulator
The modulator consists of four stages:

• Input of Characters

• Converting Characters to Bits

• FSK Modulation Process

• Writing Analogue Signal to File

12
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CHAPTER 4. SIMULATION 13

Figure 4.1 shows a flowchart of the modulator.

START

conversion of
characters to binary format

and store in bit_array

FSK
modulation

STOP

Figure 4.1: Modulator Flowchart

4.2.1 Input of Characters

The simulation uses characters that are entered through the keyboard. The following
C++ code fragment shows how characters are entered:

int ch;
cout«"Enter message: ";
numOfChars = 0;
lithe ASCII code for newLine is 10
while((ch=cin.getO) != 10)
{

message.push_back((char)ch);
numOfChars++; Ilcharacter counter

}

Characters are entered, with enter key "new line" marking the end of the message. The
ASCII code for the enter key is 10. As the length of the message is not known, a vector
is used instead of an array to store characters.

http://scholar.sun.ac.za/



CHAPTER 4. SIMULATION 14

4.2.2 Converting Characters to Bits

Each number stored in the message vector gets converted to binary by repeatedly dividing
the number by 2 until the answer is 0 and by retaining the remainder each time division
takes place. These remainders, in reverse order, give the binary value of the character.

The code is as follows:

for(int i = 0; i<numOfChars;i++)
{

tempolnt.push_back((int)message[i]);
}
IIConverting integers to bits
int reverseBitsArray[8], number;
int charCounter,bitCounter,remainder;
Illoop as long as charCounter < numOfChars
charCounter = 0;
do
{

for(int i =O;i<numOfChars;i++)
{

number = tempolnt[i];
bitCounter = 0; lireset bit counter
do
{

remainder = number%2;
number = number/2;
reverseBitsArray[bitCounter]
bitCounter++;

}while(bitCounter<8);
liReversing the order
for(int i=7; i >= O;i--)
{

remainder;

bitArray.push_back(reverseBitsArray[i]);
}

}
charCounter++;

}while(charCounter<numOfChars);

All characters at this stage have been converted into binary format and all the bits are
stored in the "bitArray" vector.
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CHAPTER 4. SIMULATION 15

4.2.3 FSK Modulation
Figure 4.2 shows a flowchart for the modulation process.

generate samples
of bit length

from high frequency
sme wawe

generate samples
of bit length

yes from low frequency
sine wave

no

Figure 4.2: FSK Modulation Process

This code fragment shows how bits are converted to an analog signal. Zero and one bits
are converted to low and high frequency, respectively.

int temp;
int zeroSampIes = 0;
int oneSamples = 0;
bufferSize = numOfChars * samplesPerBit;
//////////////////////////////////////
//unsigned int allSamples;
//aIISamples = 8 * numOfChars * samplesPerBit;
I/float tempBufferl[aIISamplesJ;
/////////////////////////////////////unsigned int z = 0;
for (int i = 0; i < totalBits; i++)
{

if (bitArray[i] == 0)
{

for(int t=O; t < samplesPerBit; t++)
{

float x = t * lowFreq/samplingRate * 2 * M_PI;
temp = (int)(100*cos(x»;
tempBuffer.push_back(temp);
zeroSamples++;

}
}
else
{

http://scholar.sun.ac.za/



CHAPTER 4. SIMULATION 16

for(int t=O; t < samplesPerBit; t++)
{

float x = t * highFreq/samplingRate * 2 * M_PI;
temp = (int)(100*cos(x));
tempBuffer.push_back(temp);
oneSamples++;

}
}

};

4.2.4 Writing To File (Transmission)
All the samples contained in the "tempBuffer" vector are in a waveform and are now writ-
ten to a file.

FILE * fin;
if((fin = fopen("/temp/fskfile.dat", "wb"))
{

cout « "Cannot open file" « endl;
exit(l);

NULL)

}
unsigned long numSamples;
numSamples = totalSize;
if (fwrite (tempBuffer , sizeof (int), numSamples , fin) != numSamples)
{

cout « "Error writing to the file" « endl;
exit (1) ;

}
fclose(fin);
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CHAPTER 4. SIMULATION 17

4.3 FSK Demodulator
The modulated signal stored in a file (transmitted by the modulator) is now going to be
demodulated.
The demodulator entails:

1. matched filtering

2. bit synchronisation

3. threshold decisions

Figure 4.3 shows a flowchart of the demodulator.

START

.:>---Ves

No

Recording

Ves

No

END

Figure 4.3: Demodulation Process

4.3.1 Initialising variables
Before the demodulation process starts, variables are initialised and memory is allocated
to application arrays. The file containing the modulated signal is opened, its size deter-
mined, and then closed. This is done for the purpose of allocating memory to hold the
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CHAPTER 4. SIMULATION 18

contents of the file. The code fragments below shows the retrieval of data from the file.

FILE *ptr;
/********************************************** Opening a file to count number of samples *
* and then closing it *
*********************************************/ptr = fopen("/temp/fskfile.dat","rb");
while «c = fgetc(ptr)) 1= EOF) charRead++;
fclose(ptr);

The audioStream array acts as audio from the outside world. Retrieved data from the file
is read into the audioStream array.

//Dividing by 4 to get num of samples in type int
fileSize = charRead/4;
dataSize = charRead/4;
flipIndex = dataSize-l;
numOfSamples = dataSize;
audioStream = new int[fileSize];
//Reopening file again,this time for reading in binary
FILE * fp;
if«fp = fopen("/temp/fskfile.dat","rb"))
{

}
if(fread(audioStream, sizeof(int), fileSize, fp) l=fileSize)
{

NULL)
cout«endl"Data file does not exist;

cout«endl"Error reading from file;
exit (1) ;

}
fclose(fp);

All the data has now been retrieved from the file and copied into the audioStream array.
The audioStream now contains the analog signal that was transmitted by the modulator.

4.3.2 Matched Filters
Matched filters should be tailored to the two signal waveforms of the modulator, to achieve
the maximum signal-to-noise ratio.
The filters use the same formulae as those used in the modulation process, one for low
and one for high frequency signal.

Low Frequency Matched Filter
//low frequency matched filter
for(int i=O; i < samplesPerBit;i++)
{

float x = i *(lowFreq/samplingRate * 2 * M_PI);
temp =(int)(Amplitude*cos(x));
//Flipping the match filter by using push_front
lowFreqMF.push_front(temp);

}
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High Frequency Matched Filter

I/high frequency matched filter\\
for(int i=O; i < samplesPerBit; i++)
{

float x = i * (highFreq/samplingRate * 2 * M_PI);
temp =(int) (Amplitude*cos(x));
//Flipping the matched filter by using push_front
highFreqMF.push_front(temp);

}

The two matched filters contain the phases and frequencies of the two original signals
modulated.

4.3.3 Buffer lengths
The internal kernel buffers use sizes of buffers that are in integer powers of two, as ex-
plained in Chapter 3. The kernel buffer (kernelBuffer[J) to be used must have sizes of this
magnitude.
The application buffer (applicationBuffer[J) must always be twice the size of the kernel
buffer in order to avoid losing bits. This is explained clearly in Section 4.3.6. Figure 4.4
shows how buffer sizes are related.

Transmitted data size

A I) lil ))'----1--1 -L---L--.I...----J---J

/ "
/ ",

B ( 1 1 1 1 1 1 1 'I
i !

[- 8bltssamplessize _;

c
16 bits samples size

A= channel
B = kemel buffer
C = application buffer

Figure 4.4: Demodulator buffers

4.3.4 Recording (Capturing)
This part of the program emulates the process of capturing analog signals from the out-
side world, with the use of the sound card. The audio stream is captured sequentially in
lengths of eight bit samples size. The captured stream is stored in the kernel buffer.
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for(i=O;i<eightBitSamples;i++)
{

kerneIBuffer[i] = audioStream[sampleCounter++];
}

The kernel buffer is then accessed by the application and contents of the kernel buffer are
read to the application buffer.

for(i=O;i<eightBitSamples;i++)
{

applicationBuffer[taillndex++] = kerneIBuffer[i];
}
//Monitoring the buffer
if(taillndex >maxTaillndex) maxTaillndex = taillndex;

The role played by "taillndex" is explained in Section 4.3.8. It is used to monitor the
position of the last sample in the application buffer.
Samples in the application buffer are now ready to be processed.

4.3.5 Convolution Process

Samples equivalent to eight bits are convolved at a time. The function of the MF_input[]
array is to pass samples through the matched filters. The MF_input[] array is firstly filled
with "ground valued samples" of one bit length (equal to the size of the matched filter).

counter = 0;
for(i = O;i < samplesPerBit;i++)
{

MF_input[counter++] = 0; //ground position
}

The ground valued samples are then followed by the first eight bits samples, taken from
the application buffer.

for(i 0; i < eightBitSamples; i++)
{

}
MF_input[counter++] = applicationBuffer[i];

Samples in the MF.Input array are passed through the matched filters. The process of
discrete convolution is explained in Appendix B. The code below shows the convolution
process that takes place inside the matched filters.

float output_low, output_high; //MF outputs
counter = 0;
for(int i=samplesPerBit; i«samplesPerBit+eightBitSamples);i++)
{

output_high = 0; //reset sums to zero\\
output_low = 0;
for(int j=l;j <= samplesPerBit;j++)
{

output_low += MF_input[i-j+l] * lowFreqMF[j];
output_high += MF_input[i-j+l] * highFreqMF[j];

}
MF_output_sum[counter] = (output_Iow+output_high);
MF_output_subtract[counter] = (output_high-output_low);
counter++;

}
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The variables output Zero and outputOne are outputs of both the low and high frequency
MF, respectively.
The sum of the two outputs from the filters are added and stored in the MF .output.sumj].
This array is used in bit synchronisation to determine peak positions.
The MF_outpuLsubtract[] stores the difference of the two outputs from the matched fil-
ters. This array is used in deciding whether a bit is a zero or one bit.
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4.3.6 Bit Synchronisation

The purpose of synchronisation is to determine the positions, where decisions on bits
should be taken.

In ideal cases, bit synchronisation should occur at intervals of 128 samples, since samples
per bit are chosen to be 128.
This is not always the case. Synchronised bit positions can occur at intervals that are
more or less than 128. This happens when the clock frequencies of the two sound cards
slightly differ.

Buffer Underruns (fclockTX > fclockRX)

Figure 4.5 illustrates the signal created by the sum of the output of the two matched
filters for the situation where synchronisation takes place for every 127 samples or less.
The arrow points at a position of the 8th synchronised position, which lies inside the
buffer, between position 896 and 1024. If synchronisation occurs for every 127 samples,
the 8th position will be at position 1016.

1024 samples

Figure 4.5: Buffer Underruns

Buffer Overruns (fclockTX < fclockRX)

Figure 4.6 illustrates a situation where synchronisation takes place after every 129 samples
or more. The arrow indicates the eighth bit synchronised position, which is at position
1032, beyond the 1024 samples size. This will result in losing samples beyond 1024.

1024 samples

t
Figure 4.6: Buffer Overruns

From the situation that occurs under buffer overruns, the application can only synchro-
nise seven bits. The 8th bit lies beyond the 1024 buffer size. This will actually force the
application to synchronise only seven bits at a time. The rest of the samples after the 7th
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bit will be processed in the next cycle. Section 4.3.8 explains how the application handles
the rest of the buffer.

Performing Bit Synchronisation
Bit synchronisation is performed by locating peaks in the signal created by the sum of the
output of the two matched filters. Signal samples are stored in MF .output.suml] array.
The application starts at the front of the MF_outpuLsum[] array and then takes the sum
of samples as it moves in step size. Seven steps are performed. The sum of samples is
stored. For the next cycle, the application starts at the second sample of the array and
perform the operation again in step sizes. The new sum is compared with the previous
one. The larger one is taken as the new sum. The process will go on until the application
determines the right step size of locating peak positions. The step size will be used in the
decision logic method.
The code fragment below shows how bit synchronisation is performed.

\\newStartPos = O;newStep = O;newSum = 0;
for(int step = (samplesPerBit _ R);step«samplesPerBit + R);step++)
{

for(int startPos = 0; startPos < (samplesPerBit + R); startPos++)
{

float sum = 0;
for(int bitNum = 0; bitNum < 7; bitNum++)
{

sum = sum + MF_output_sum[startPos + bitNum * step];
}
if (sum> newSum)
{

newSum = sum'
newStartPos ~ startPos;
newStep = step;

}
}

}

Knowing the starting position of synchronisation and the step to be taken for the next
synchronised bit, positions are stored in synchroPosition array.

for(i = O;i < 7;i++) //seven bits to be synchronised\\
{

synchroPosition[i] = newStartPos;
newStartPos += newStep;

}

There are cases where peaks are detected within the first bit length. Such cases occur
when a lot of Gaussian noise is added to the modulated signal in the analysis of bit error
rate. These peaks start to show up at around a SNR of 12dB. To correct the situation, bit
shifting has to be performed.
The code fragment below controls the shifting of bits.

if(indexPosition[O] < R)
{

for(i = O;i < 7;i++)
{

indexPosition[i] += (newStep);
}
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}
if((indexPosition[O] > R)&& (indexPosition[0]«samplesPerBit-2*R)))
{

for(i = O;i < 7;i++)
{

indexPosition[i] = (i+l)*newStep;
}

}

The next step after bit synchronisation is the decision logic block.

4.3.7 Decision Device

At this stage, synchronised bit positions are known. The synchroPosition array contains
positions of synchronisation. Decisions are made by reading the value of the MF_output_subtract
array at positions of synchronisation. If the value is less than zero, it means that the tar-
geted bit is "0"; otherwise it is "1".
Bits are then stored in the demodulatedBits vector for further processing.
The code fragment is as follows:

int i,j;
int bitCounter = 0;
for(i = 0; i < 7; i++)
{

j = synchroPosition[i];
if(MF_output_subtract[j] < 0) //condition for zero bit
{

zeroBitCounter++;
oneBitCounter = 0; //reset
demodulatedBits.push_back(O); I/storing zero bit in a vector

}
else //condition for one bit
{

oneBitCounter++;
zeroBitCounter = 0; //reset
demodulatedBits.push_back(l); I/storing one bit in a vector

}
bitCounter++;
if(zeroBitCounter >= 8) demodFlag 0;

}
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4.3.8 Shifting of samples

The buffer has now been processed and it should be prepared for the next intake of new
samples from the kernel buffer.
Samples from the start to the 7th position of synchronisation (end of seventh bit), inside
the application buffer array, are erased. The rest are shifted to the front of the application
buffer array.
Note that the application buffer is double the size of the kernel buffer.
Figure 4.7 shows processes that takes place in the applicationBuffer. It shows how shift-
ing occurs inside the buffer in three stages. These stages occur for every demodulation
process cycle, and are illustrated as follows:

• Stage A: This is the state just after bit synchronisation.

• Stage B: Samples up to the 7th synchronised bit are deleted.

• Stage C: Remaining samples are shifted to the front of the array.

When number of samples in Stage C are greater than or equal to 1024, the application
does not go to the kernel buffer to collect new data. It processes samples that have been
accumulated in Stage C and at the same time the application must not compromise new
data that it must collect from the kernel buffer.
To tackle this problem, the application must be fast enough to complete two cycles of
processing before the kernel buffer is ready to deliver new data. If it takes 23.28ms of
recording to fill one buffer, the application has to take less than 23228 = Il. 64ms to com-
plete one process cycle. Failure to do so will result in the application not coping with new
data that it must collect from the kernel buffer.
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Figure 4.7: Shifting of samples

This code fragment shows how shifting of samples takes place. The firstBuffer FullFlag is
assigned a value of "1" when the application buffer is holding samples that are more than
1024.

position =synchroPosition[6]; //seventh bit position
//Deleting the first seven synchro bits samples of applicationBuffer
index = 0;
for(i = (position + 1);i < tailIndex; i++)
{

applicationBuffer[index++] = applicationBuffer[i];
}
tailIndex = tailIndex - (position + 1);
if(tailIndex >= eightBitSamples)
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{
firstBufferFullFlag = 1;
firstCounter = 0; //reset

}
else
{

firstBufferFullFlag = 0;
}

The variable "tailIndex" monitors the position of the last sample in the application buffer.
If the variable is at a position greater or equal to eight bits samples size, the flag "first-
BufferFullFlag" is set to one. This tells the application to use data it has in the application
buffer before the application can go and collect new data from the kernel buffer.

4.3.9 Output Display

The purpose of this method is to check whether the application is demodulating correctly.
Converting demodulated bits to characters makes it easier to check the correctness of the
results.
At this stage, all bits that are stored in the demodulatedBits array, are converted back to
characters that are displayed on the screen.

size = demodulatedBits.size();
bitCounter 0;
do
{

for(int i = 7;i >= O;i--)
{

//reversing Bits
finalMessage[i] = demodulatedBits[bitCounter++];

}
sum = O·
for(int'i=0;i<8;i++)
{

sum = sum + finaIMessage[i]*pow(2,(float)i);
}
cout«(char)sum; I/character format

}while(bitCounter < size);

4.4 Conclusion
The simulation of both the modulator and the demodulator is described in this chapter.
The modulated signal is written to file. The demodulator reads the file and demodu-
late the read signal. The output of the demodulation process is then displayed on the
screen. Results showed that software modulates and demodulates successfully. All the re-
sults of simulation, including the bit error rate, are explained in Chapter 6.
The simulation has proven that software algorithm is fine and the sound card, API's and
real-time issues can be brought into the chain.
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Chapter 5

IMPLEMENTATION USING
LINUX SOUND APIs

5.1 Introduction
In this chapter, different Linux sound drivers are used to implement the modulator and
demodulator in real time. All four APIs are used to determine the API with the best
performance.

Application Programming Interfaces used are:

• Open Sound System (aSS)

• Advanced Linux Sound Architecture (ALSA)

• Jack Audio Connection Kit (JACK)

• PortAudio (PA)

5.1.1 Native APIs
OSS and ALSA are two different low-level APIs for Linux. They are the kemel sound
drivers of Linux.
Older kernels of Linux distributions come with ass. For the Red Hat (RH) distribution,
kernels prior to release 2.6 come with ass, while the current releases come with ALSA.
The RH distribution used in this thesis is Fedora Core 1 and its kernel uses ass, the last
kemel from RH to come with OSS kemel drivers.
ALSA is backward compatible with aSS/Free (via ass emulation). For this thesis, the
ALSA kernel module was downloaded from [8]. Both ass and ALSA implement native
blocking calls. ALSA comes ahead of ass in many things.

5.1.2 Advantages of ALSA over OSS
1. ALSA supports the ass API as a subset of its own API.

28
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2. In cases where there might be a driver for both APIs, the ALSA one is often better.

3. ALSA has a callback function while ass docs not.

4. ALSA supports most sound card drivers that are sometimes not supported by ass.

Pros and Cons of ALSA vs ass can be found at [18].

5.1.3 Low-Latency Higher-Level APIs

Port Audio and JACK arc low-latency APIs that simplify the work of the programmer
in communicating with the audio hardware. They form an interface between the native
APIs and the programmer. Port Audio comes in two versions, the ass and ALSA. JACK
uses only ALSA drivers.

5.2 Implementation Using ass
5.2.1 OSS Overview and Introduction

Open Sound System (aSS) is the first attempt to unify the digital audio architecture for
UNIX. ass is a set of device drivers that provide a uniform API across all the major
UNIX architectures. It supports SoundBlaster or Windows Sound System compatible
sound cards which can be plugged into any UNIX workstation supporting the ISA or PCI
bus architecture. ass also supports workstations with on-board digital audio hardware[9].
ass uses Linux system calls that are explained in Appendix C.
Topics that are to be covered in this section are:

• Opening the device file "jdevjdsp".

• Setting the sound parameters.

• Accessing the kernel buffer.

• Modulator and demodulator processes.

• Closing the device

5.2.2 Opening the Device

The following line of code opens the device / dev / dsp for writing only. The modulator
will be writing samples to the kernel buffer.

fd_dsp=openC"/dev/dsp",O\_WRONLY,O);

For the demodulator, the device is opened for read only. The application will be reading
data from the kernel buffer.

fd_dsp=openC"/dev/dsp",O\_RDONLY,O);
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Setting Sound Parameters

After opening" / dev / dsp: : the next step is to set the sampling parameters. These param-
eters determine the quality of sampled audio data.
The parameters are:

• Sample format (no. of bits)

• Number of channels (mono/stereo)

• Sampling rate (speed)

The OSS manual guide [7]prefers the order above, when setting these parameters. Setting
sampling rate before the number of channels does not work with all devices.
Sampling parameters can only be changed between open and the first read(), writeO or
other ioctl() call made to the device. The effect of changing sampling parameters when the
device is active is undefined. The device must be reset using the ioctl SNDCTL_DSP _RESET
before it can accept new sampling parameters.
Sample Format
This parameter affects the quality of audio data. Table 5.1 shows formats that are sup-
ported by the OSS API.

Audio Format Description
AFMT_MU_LAW logarithmic mu-Law audio encoding
AFMT_U8 standard unsigned 8 bit audio encoding
AFMT_S16_LE standard 16 bit signed little endian
AFMT_S16_BE big endian variant of the 16 bit signed format
AFMT_S8 signed 8 bit audio format
AFMT_U16_LE unsigned little endian 16 bit format
AFMT_U16_BE unsigned big end ian 16 bit format

Table 5.1: OSS Audio Formats

These audio formats are defined in the kernel soundcard.h header file. In this thesis, 8-bit
unsigned samples are used.
The settings are as follows:

arg = AFMT_U8;
status = ioctl(fd_dsp, SNDCTL_DSP_SETFMT, &arg);
if (status == _1)
{

close(fd_dsp);
throw "SNDCTL_DSP_SETFMT";

}
if(arg != fmt)
{

close(fd\_dsp);\\
throw "unable to set the requested format";

}
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Channels
Both mono and stereo modes are supported and only values "0" and "I" are allowed, re-
spectively.
Here the application will select the number of channels, calling ioctl SN DCT L_DSP_ST EREO
with an argument specifying the number of channels. The variable arg will have a value
of zero if mono is requested. The settings are as follows:

arg = channel;
status = ioctl(fd_dsp, SNDCTL_DSP_STEREO, &arg);
if(status == -1)
{

close(fd_dsp);
throw "SNDCTL_DSP_STEREO ioctl failed";

}
if(arg != channel)
{

close(fd\_dsp);
throw "unable to set requested channel";

}

Sampling Rate
The sampling rate for the sound card is set as follows:

arg = samplingRate;
status = ioctl(fd_dsp, SNDCTL_DSP_SPEED, &arg);
if(status == -1)
{

close(fd\_dsp);
throw "SNDCTLDSP SPEED ioctl failed";

}
if(arg != samplingRate)
{

close(fd_dsp);
throw "unable to set requested sampling rate";

}

Fragments Size
The setting of the fragment size is not compulsory. If not set, the default fragment size
of the sound card buffer will be used. However caution should be taken. If the default
fragment size is smaller than the size of the application buffer, buffer under-runs are likely
to occur. So it is advisable to set it according to the application needs. The application
makes a request by calling ioctl SNDCTL_DSP_SETFRAGMENT with an argument
specifying the number of frames. The request is to have a buffer that has one fragment
that can accommodate 1024 frames. In return the ioctl will return argument containing
the frame size. If the value of the argument returned is not equal the requested one, the
application has to give an error message.

int numOfFragments,fragmentSize, intPowerOfTwo;
intPowerOfTwo = 10; //2-10 1024
numOfFragments = 1;
arg = intPowerOfTwo;
arg = arg + numOfFragments * 65536;
int fragSize = arg;
status = ioctl(fd_dsp,SNDCTL_DSP_SETFRAGMENT,&arg);
if (status == -1)
{

close(fd_dsp);
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throTJ "SNDCTLDSP_SETFRAGMENT ioctl failed";
}
if(arg != fragSize)
{

close(fd_dsp);
throTJ "unable to set the requested fragment";

}

NB: The application should always check the returned argument and compare it with the
requested one.

Determining Fragment Size
The fragment size can be determined by the following code fragment:

status = ioctl(fd_dsp,SNDCTL_DSP_GETBLKSIZE,&arg);
if (status == -1)
{

close(fd_dsp);
throTJ "SNDCTL_DSP_GETBLKSIZE ioctl failed";

}

All the required sampling parameters have been set. The application is now ready for the
modulation process.
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5.2.3 Modulator Processes
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Figure 5.1: OSS modulator flowchart

Figure 5.1 shows a flowchart of the implementation of the modulator.
The modulated signal is written to "I dev I dsp" and transmitted using a sound card.

Start/End Bits

For the demodulator to detect the message transmitted, the modulator must have both
start and end bits, before and after the message, respectively.
The message that was entered using the keyboard is converted to bits and stored in the

http://scholar.sun.ac.za/



CHAPTER 5. IMPLEMENTATION USING LINUX SOUND APIS 34

bitsMessageArray[]. Before the message is modulated, twelve leading zero bits followed by
a one bit as the 13th bit are placed in front of the message bits. Figure shows how start
and end bits are implemented.

start bits message end bits

Figure 5.2: Start/End bits

For example, the message" @7" in binary is

01000000 00110111

The message above has eight zero bits in a row. Showing that if only eight zero bits were
used as both start and end bits, the modem was going to mistaken this as end bits.
Thirteen "zero" bits in a row are chosen as part of start bits, since there is no combination
of characters that will have a sequence of more than eight "zero" bits.

The code fragment that implement this is as follows:

messageArray = new int[messageSize];
int p = 0;
for(int i= 1; i <= messageSize; i++)
{

temp = (int)inputMessage[i] ;11(type string)
messageArray[p++] = temp;

}
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
lis = String(SpinEdit->Text);
IlleadingBits = StrTolnt(s);
int inputBit;
startBits = 13;
endBits = 13;
int totalBits = 8*messageSize + startBits + endBits;
p = 0;
bitsMessageArray = new int[totaIBits];

Inserting start bits:

for(int i = 1;i <= startBits; i++)
{

ifC i == 13)inputBit = 1;
elseinputBit = 0;
bitsMessageArray[p++] inputBit;

}

Converting integers to bits:

int reverseBitsArray[8];
int number,charCounter,bitCounter,remainder;
for(int i =O;i<messageSize;i++)
{

number = messageArray[i];
bitCounter = 0;
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do
{

remainder = number%2;
number = number/2;
reverseBitsArray[bitCounter++]=remainder;
//bitCounter++;

}while(bitCounter<8);
for(int i = 7; i >=O;i--)
{

bitsMessageArray[p++]=(reverseBitsArray[i]);
}

}

Inserting end bits:

for(int i =O;i < endBits; i++)
{

inputBit = 0;
if (i == 0) inputBit = 1;
if (i == 12) inputBit = 1;
bitsMessageArray[p++]= inputBit;

}
numOfBits = totalBits;

Bits that are stored in the bitsMessageArray[] are the ones that are modulated. The
modulation procedure is the same as the one used in the simulation process.
The modulated signal is stored in the audioBuffer[] array.

Playback

Samples in the audioBuffer are now written to / dev / dsp, the kernel buffer using write ()
system call. The modulated signal is played using the sound card.
Samples are written to the kernel buffer as follows:

write(fd_dsp, audioBuffer, totalBuffer);

The modulated signal gets played and transmitted using an audio cable, to the input port
of the sound card of the second computer. The second computer will demodulate the
signal.
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5.2.4 Demodulator Processes
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Figure 5.3: OSS demodulator flowchart

Figure 5.3 shows a flowchart of the modulator. All processes that take place in the de-
modulation process are just the same as those explained in Chapter 4.

Reading from the kernel buffer

Data captured through the sound card is transferred to the application using the read()
system call.

read(snd.audio_fd,snd.applicationBuffer,snd.bufferSize);
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Data is copied to the application buffer through the audio_fd file descriptor. The number
of bytes to be read per call must be equal to the kernel buffer size.

OSS uses double-buffering. The buffer is divided into two. The first buffer is accessed
by the kernel, while the second buffer is accessed by the application. When the kernel
has completely filled the first buffer, swapping takes place. The application now access
the first and the kernel the second buffer.
All that the application has to do, is to copy all the data from the kernel buffer it has
accessed, go and process it and return back. This process is repeated as long / dev / dsp is
still open.
There are two problems the application is faced with:

1. It should be extremely fast in processing data and return to collect new data on
time.

2. Returning early will result in collecting the same data from the same buffer that it
had just accessed before.

The first problem can only be solved by optimising the functionality of the code. The
application must be able to process data in less than half the time required to record one
buffer.

The second problem can be solved by using buffer pointers. The OSS API provides the
pointer that can be used to point to the current recording position of a buffer. Knowing
the current recording position, the application can utilize this to monitor swapping of
buffers.
At this stage, the application simply idles inside an infinite loop while at the same time
it monitors the current recording position. If the present byte offset (the field info.ptr) of
the current position happens to be smaller than the previously read one, the application
knows that swapping has taken place. The application then gets out of the loop and access
the new kernel buffer to collect new data.

The code fragment below shows how this can be done.

tempPtr = 0;
for (;;)
{

if (ioctl(audio_fd,SNDCTL_DSP_GETIPTR,&info) !=o)
{

perror("Unable to query buffer space");
exit (1) ;

}
if(tempPtr < info.ptr)
{

tempPtr = info.ptr;
}
else
{

}
break;

};

This process is repeated as long the device is open.

http://scholar.sun.ac.za/



CHAPTER 5. IMPLEMENTATION USING LINUX SOUND APIS 38

Bits Detection

As the demodulator converts modulated signals to bits, this process can continuously sup-
ply bits for further processing or bits can be passed on to the next processing stage, only
when data considered to be valuable is detected by the demodulator. For the purpose
of testing the functionality of the modem module, the modem keeps idling even when
no transmission is taking place. The module idles with one bits and as soon it detects
start bits of the message, it then stores them in a vector. A vector is used instead of an
array, since the length of the message is not known. After detecting end bits, the module
proceeds to the "Display Message" block. The transmitted message will then be displayed
on the screen.

for(int i= 0; i < 7; i++)
{

j = synchroPosition[i];
if(MF_output_difference[j] < 0) Ilzero bit is detected
{

detectedBit = 0;
zeroBitCounter++;

}
else Iione bit is detected
{

detectedBit = 1;
oneBitCounter++;

};
11****************************************************11* The conditional statement below checks for successive
11* "0" leading bits more than ten and being followed by a
11* "1" bit. The condition will set on the capture flag.
11****************************************************if((zeroBitCounter > 10) && (detectedBit == 1»
{

Ilif(captureFlag ==1) outputFlag = 1;
captureFlag = 1;
zeroBitCounter = 0;

};
11****************************************************11* The conditional statement below checks for
11* successive "1" that are more than ten and while the
11* capturing flag is set on. If the condition is true,
11* capturing is stopped and display process is started.
11****************************************************if((oneBitCounter >10)&&( captureFlag == 1»
{

outputFlag = 1;
captureFlag = 0;

}
11****************************************************11* Conditional statement below controls
11* capturing of bits to be used to display message.
11****************************************************if(captureFlag == 1) II capturing condition
{

};
11****************************************************11* Conditional statements below resets
11* bit counters.
11****************************************************if(detectedBit == 0) oneBitCounter = 0;
if(detectedBit == 1) zeroBitCounter = 0;
IIControlling oneBitCounter not to overflow
IINot at all restricted to use 50
if (oneBitCounter >50) oneBitCounter = 0;

demodulatedBits.push_back(detectedBit);

}
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5.2.5 Closing the Device

To shut down the demodulator, the application releases any locks that are held by the
process on the device.
The device is closed by calling the closeO system call. The line of code for closing is:

closeCfd_dsp)

5.2.6 OSS Summary

Both the modulator and the demodulator were implemented. The combination deliver
expected results. The output is equivalent to the input.

The only serious drawback is the way the modulator is designed. If the modulator has to
modulate very long messages. All the message has to be modulated first, and be played
all at once. The design is not practically viable.
The modulator should be able to collect data from the data table in fixed fragments for
playing, without disturbing play.
The solution to this problem is to come up with an interrupt-driven modulator, but un-
fortunately OSS docs not have a callback mechanism.

The demodulator performs very well. Synchronisation between the application and the
kernel buffer was achieved with the pointer that is provided by OSS. The pointer monitors
current recording positions in the kernel buffer.
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5.3 Implementation Using ALSA

5.3.1 ALSA Overview and Introduction

Jaroslav Kysela and others started writing an alternate sound driver for the Gravis Ultra-
Sound Card. The project was renamed Advanced Linux Sound Architecture (ALSA) and
has resulted in, what they believe, a more generally usable sound driver that can be used
as a replacement for the built-in kernel drivers. The ALSA drivers support a number of
popular sound cards, are full duplex, fully modularised, and compatible with the sound
architecture in the kernel.

Topics that are covered in this section are:

• Opening the device

• Setting sound pcm parameters

• The callback process

• Delivering data to callback

• Closing the device

5.3.2 Interrupt-Driven Modulator

Handles to Structures

Before the application starts, handles to structures are created.

snd_pcm_hw_params_t *hw_params;
snd_pcm_sw_params_t *sw_params;
snd_pcm_sframes_t frames_to_deliver;

Ilfor software params
Ilfor hardware params
Ilfor callback

Opening The Device
char *pcm_name;
pCID_name = strdup("plughw:O,O");
if ((err = snd_pcm_open (&playback_handle, pcm_name,

SND_PCM_STREAM_PLAYBACK, 0» < 0)
{

fprintf (stderr, "cannot open audio device 'los
('los)\n",argv[l],snd_strerror (err»;

exit (1);
}

The next step is to set hardware parameters.
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Setting Sound PCM HW Parameters

The steps below set hardware parameters.

1. Allocate the hardware parameter structure, snd.pcm.hw..parama.t.

if ((err = snd_pcffi_hw_params_malloc (&hw_params» < 0)
{

fprintf (stderr, "cannot allocate hardware parameter structure
exit (1);

}

2. Fill parameters with full configuration space for a PCM.

if ((err = snd_pcffi_hw_params_any (playback_handle, hw_params» < 0)
{

fprintf (stderr, "cannot initialize hardware parameter structure
(%s)\n",snd_strerror (err»;

exit (1);
}

3. Configure space to contain only one access type.

if ((err = snd_pcffi_hw_params_set_access (playback_handle, hw_params,
SND_PCM_ACCESS_RW_INTERLEAVED» < 0)

{
fprintf (stderr, "cannot set access type (%s)\n",snd_strerror(err»;
exit (1);

}

4. Set the sample format.

if ((err = snd_pcffi_hw_params_set_format (playback_handle, hw_params,
SND_PCM_FORMAT_U8» < 0)

{
fprintf (stderr, "cannot set sample format (%s)\n",

snd_strerror(err»;
exit (1);

}

5. Configure space to have sampling rate nearest to the targeted one.

unsigned int sampling_rate = data.samplingRate; int dir = 0;
if ((err snd_pcffi_hw_params_set_rate_near (playback_handle,

hw_params, &sampling_rate, &dir» < 0)
{

fprintf (stderr, "cannot set sample rate (%s)\n",
snd_strerror(err»;

exit (1);
}

6. Set configuration to contain only mono channel.

http://scholar.sun.ac.za/



CHAPTER 5. IMPLEMENTATION USING LINUX SOUND APIS 42

{

if ((err = snd_pcm_hw_params_set_channels (playback_handle,
hw_params, 1» < 0)

fprintf (stderr, "cannot set channel count (%s)\n",
snd_strerror(err»;

exit (1);
}

7. Set the above hardware parameter settings.

if ((err = snd_pcm_hw_params (playback_handle, hw_params» < 0)
{

fprintf (stderr, "cannot set parameters (%s)\n" ,
snd_strerror(err»;

exit (1);
}

8. Free previously allocated snd.pcm.hw.parama.t.

snd_pcm_hw_params_free (hw_params);

The next step is to tell ALSA when to wake the application up whenever frames..per.buffer
or more frames of playback data can be delivered. Also to tell ALSA that the application
itself will start the device.

Setting Sound PCM SW Parameters

The steps below set the sound software parameters.

1. Allocate the software parameter structure.

if ((err = snd_pcm_sw_params_malloc (&sw_params» < 0)
{

fprintf (stderr, "cannot allocate sv param struct (%s)\n",
snd_strerror (err»;

exit (1);
}

2. Initialise the current software parameters structure.

if ((err = snd_pcm_sw_params_current(playback_handle,sw_params»< 0)
{

fprintf (stderr, "cannot initialize sw param struct (%s)\n",
snd_strerror (err»;

exit (1);
}

3. Set the minimum available frames (frames.per.buffer) to consider PCM ready.
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if ((err = snd_pcm_sw_params_set_avail_min (playback_handle,
sw_params, data.frames_per_buffer» < 0)

{
fprintf (stderr, "cannot set min available count (%s)\n",

snd_strerror (err»;
exit (1);

}

4. Start a threshold inside a software configuration container, threshold start value is
au (unsigned int) in frames.

if ((err = snd_pcm_sw_params_set_start_threshold (playback_handle,
sw_params, OU» < 0)

{
fprintf (stderr, "cannot set start mode (%s)\n" ,

snd_strerror(err»
exit (1);

}

5. Set software parameters.

if ((err = snd_pcm_sw_params (playback_handle, sw_params» < 0)
{

fprintf (stderr, "cannot set sw parameters (%s)\n",
snd_strerror(err»;

exit (1);
}

6. After setting all the required parameters, the audio interface is prepared for use as
follows:

if ((err = snd_pcm_prepare (playback_handle» < 0)
{

fprintf (stderr, "cannot prepare audio interface (%s)\n",
snd_strerror (err»;

exit (1);
}

Callback Process

The interface is already set at this stage to interrupt the kernel for every frames.per.buffer
frames, and ALSA will wake up this program very soon after that.

The "Callback Process" procedure takes place inside the while(l} loop as follows:

1. Application waits until the interface is ready for taking data.

if ((err = snd_pcm_wait (playback_handle, 1000» < 0)
{

fprintf (stderr, "poll failed (%s)\n", strerror (errno»;
break;

}
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2. Application finds out how much space is available for playback data.

if ((frames_to_deliver = snd_pcm_avail_update (playback_handle» < 0)
{

if (frames_to_deliver == -EPIPE)
{

fprintf (stderr, "an xrun occurred\n");
break;

}
else
{

fprintf (stderr,"unknown avail update return value (%d)\n",
frames_to_deliver);

break;
}

}

3. If space available for playback is greater than the calculated frames per buffer, the
calculated number of frames (by the application) will be delivered. Otherwise only
the number of frames required for playback will be send. The code fragment is:

frames to deliver (frames_to_deliver > data.frames_per_buffer) ?
data.frames_per_buffer : frames_to_deliver;

4. When valuable message has been played, the application is interrupted by breaking
the loop.

II ==== deliver data to callback ====11
if(data.index > data.valuable_samples + 3*data.samplesPerBit)

break;
if (data.playback_callback (frames_to_deliver) != frames_to_deliver)
{

fprintf (stderr, "playback callback failed\n");
break;

}

Playback

At callback, data is transferred from the audioBuffer array in fixed frames for playback.

int err;
1* ... fill buffer with data ... *1
for(int i = 0; i < nframes; i++)
{

Buffer[i] = audioBuffer[index++];
}
if ((err = snd_pcm_writei (playback_handle,Buffer, nframes» < 0)
{

fprintf (stderr, "write failed (%s)\n", snd_strerror (err»;
}

5.3.3 ALSA Demodulator
The implementation of the demodulator resembles that of the OSS. The exception is that
ALSA has a callback feature that OSS does not have.
In OSS some means of using buffer pointers are used to monitor the exact position of the
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recording position. Which in turn makes it possible to know when the right time avails
to collect captured data (i.e Wait process in Figure 5.3 on page 36).

Focus will be put on demodulator processes that are different from those of the modulator.
Processes like "Closing the device" will not be discussed as they are the same as those of
the modulator.

Opening the device

In opening the device for capturing only; the stream to use is, SND_PCM_STREAM_CAPTURE.

snd_pcm_open (&capture_handle, pcm_name, SND_PCM_STREAM_CAPTURE, 0) < 0)

Setting the parameters
dir = o·
totalS~ples = periods * periodsize;
audioBuffer = new unsigned char [totaISamplesJ;
IlaudioBuffer = new unsigned char [periodsizeJ;
if «err = snd_pcm_hw_params_malloc (&hw_params)) < 0)
{

fprintf (stderr, "cannot allocate hw param structure (%s)\n",
snd_strerror (err));

exit (1);
}
11==== Initialize hardware parameter with full configuration space ====11
if «err = snd_pcm_hw_params_any (capture_handle, hw_params)) < 0)
{

fprintf (stderr, "cannot initialize hw param, snd_strerror (err));
exit (1);

}
11==== Set access type ====11
if «err = snd_pcm_hw_params_set_access (capture_handle, hw_params,

SND_PCM_ACCESS_RW_INTERLEAVED)) < 0)
{

fprintf (stderr, "cannot set access type ",snd_strerror (err));
exit (1);

}
11==== Setting the sample format ====11
if «err = snd_pcm_hw_params_set_format (capture_handle, hw_params,

SND_PCM_FORMAT_U8)) < 0)
{

fprintf (stderr, "cannot set sample format (%s)\n" ,
snd_strerror (err));

exit (1);
}
11===== Setting sampling rate =====11
if «err = snd_pcm_hw_params_set_rate_near (capture_handle, hw_params,

&samplingRate, &dir)) < 0)
{

fprintf (stderr, "cannot set sample rate (%s)\n",
snd_strerror (err));

exit (1);
}
11==== Setting channels =====11
if «err = snd_pcm_hw_params_set_channels (capture_handle,

hw_params, 1)) < 0)
{

fprintf (stderr, "cannot set channel count (%s)\n",
snd_strerror (err));

exit (1);

http://scholar.sun.ac.za/



CHAPTER 5. IMPLEMENTATION USING LINUX SOUND APIS 46

}
11===== Setting number of periods (fragments) =========11
if (snd_pcm_hw_params_set_periods(capture_handle, hw_params,

periods, 0) < 0)
{

fprintf(stderr, "Error setting periods.\n");
exit (1) ;

}
11==== Set buffer size (in frames). The resulting latency is given by
11==== latency = periodsize * periods I (samplingRate * bytes_per_frame)
if «err = snd_pcm_hw_params_set_buffer_size(capture_handle,

hw_params, (periods*periodsize))) < 0)
{

fprintf(stderr, "Error setting buffersize (%s)\n",
snd_strerror (err));

exit (1) ;
}
11====== Setting hw parameters =====11
if «err = snd_pcm_hw_params (capture_handle, hw_params)) < 0)
{

fprintf (stderr, "cannot set parameters (%s)\n",snd_strerror (err));
exit (1);

}
11====== Freeing a previously allocated snd_pcm_hw_params_t =====11
snd_pcm_hw_params_free (hw_params);
if «err = snd_pcm_prepare (capture_handle)) < 0)
{

fprintf (stderr, "cannot prepare audio interface for use (%s)\n",
snd_strerror (err));

exit (1);
}

Capturing

As explained before,the application is controlled by callback process that informs it when
data becomes available. Data is then copied into the audio Buffer array.
The code fragment below shows how the capturing process takes place.

while «pcmreturn = snd_pcm_readi(capture_handle, audioBuffer,
(periodsize * periods)))< 0)

{
snd_pcm_prepare(capture_handle);
fprintf(stderr, "««««« Buffer Overrun »»»»»\n");

};

5.3.4 ALSA Summary

Both the ALSA modulator and the demodulator were implemented in this section.
ALSA has a callback function that is called at the right time when data is needed from
the kernel buffer.
The modulator is interrupt-driven. This makes it possible for the modulator to collect
modulated samples from the data table in fixed fragments, while at the same time the
modulator is writing samples to the sound card, for playing.
In the demodulator design, no difficulties were experienced. A callback function synchro-
nises capturing of new data between the the application and the kernel buffer.
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5.4 Implementation Using JACK

5.4.1 Jack Overview and Introduction

Most Unix APIs are based on the read/write. OSS is such an API. This is the abstraction
that is used in Unix:, "Everything is a file". According to developers of audio applica-
tions, the problem with this design is that it fails to take the real-time nature of audio
interfaces into account. It becomes rather difficult to facilitate inter-application audio
routing when different programs are not all running synchronously. JACK solves all this.

JACK is a low-latency audio server, written for operating systems that use POSIX threads
such as GNU /Linux and Apple's OS X.
JACK's layout is shown in Figure E.l on page 79.

JACK Capabilities

JACK is capable of the following [15]:

1. It provides a high level abstraction for programmers that removes the audio interface
hardware from the picture and allows them to concentrate on the core functionality
of their software.

2. It allows applications to send and receive audio data to/from each other as well as
the audio interface. There is no difference in how an application sends or receives
data regardless of whether it comes from another application or an audio interface.

3. It provides a "callback" function in your program that will be executed at the right
time. Your callback can send and receive data as well as do other signal processing
tasks. The programmer is not responsible for managing audio interfaces or thread-
ing, and there is no "format negotiation": all audio data within JACK is represented
as 32-bit floating-point values normalised to range [-1;1].

4. It can connect several client applications to an audio device, and allow them to share
audio with each other.

5. Clients can run as separate processes like normal applications, or within the JACK
server as "plug-ins".

Using JACK within a program typically consists of:

1. calling jack.elientenew to connect to the JACK server.

2. registering "ports" to enable data to be moved to and from your application.

3. registering a "process callback" which will be called at the right time by the JACK
server.

4. telling JACK that your application is ready to start processing.
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5.4.2 JACK Demodulator
Figure 5.4 shows steps that are taken in implementing the demodulator using JACK

Tell JACK to call
error() when

needed
Demodulation process

Create JACK client(s) Connect Port(s)

Tell JACK to call
process() when needed

Activate the
client(s)

Tell JACK to call
jack_ on_shut_down()

when needed

Create ports for the
client(s)

Figure 5.4: JACK implementation steps

5.4.3 Jack Callback Functions
The following callback functions are called by the main() function.

Process callback

This is the function that JACK calls whenever data is needed for processing.
The function has the parameter) nframes, which is the number of frames available on the
clients input port, that the client expects to receive.
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Data is then received by using jack_port_get_buffer, which returns a pointer to the
buffer associated with the given port.
The function memove() is used to move data of length sizeoJ(jacLdefauILaudio_sample_t)
*nframes that is available, from the associated buffer to the application (client) buffer.
The problem is now how to make the demodulation process know when the data is ready
to be captured.
The use of semaphores solves this problem. Semaphores can be used to coordinate oper-
ations between the callback processf ) and the demodulation process.
By having the statement sem_wait( &sem) in the demodulation process and semcpost (&sem)
in the callback, the two can be synchronised as follows:

• sem_wait(&sem) - will pause the demodulation process to wait till the data is ready.
This should come just before the capturing process .

• seni.posti &sem) - will release demodulation process to continue with its activities.
This should come just after the filling of the application buffer.

The callback processO code is as follows:

int process (jack_nframes_t nframes, void *arg)
{

I*grab our input buffer *1;
sample_t *in = (sample_t *)jack_port_get_buffer(input_port,
memmove (app_buffer, in,sizeof(jack_default_audio_sample_t)* nframes);
for(int i = 0; i< 8192; i++)
{

app_buffer[i] = 100 * app_buffer[i];
}
sem_post(&sem);
return 0;

}

Sampling Rate callback

This is also used as a callback. It is only called back when the sampling rate changes.
The rate (samplingRate) at which the demodulation process samples with, will also have
to be updated.
The first parameter (nframes) is the number of frames per second (the new sampling
rate). The second parameter is the arg pointer.

int srate(jack_nframes_t nframes, void *arg)
{

printf("the sample rate is now %lu/sec\n", nframes);
samplingRate = nframes;
return 0;

}

Errors callback

This is another callback function. It gets called when problem(s) arise. It even describes
the nature of error (dese is a description of the error).
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void error(const char *desc)
{

fprintf(stderr,"JACK error: %s\n", desc);
}

Shutdown callback

This function gets called when the jack client is shut down. The code fragment is:

void jack_shutdown (void *arg)
{

exit (1);
}

Preparing Client for JACK

To prepare a client for Jack is easy and the procedure takes place in the mainO function
of the application.

Catching Errors

Before starting the connection process, JACK is set to call error() whenever it experi-
ences an error. This callback is global to this process, and not specific to each client.

jack_set_error_function (error);

Creating a JACK client

The next step is to create a client of the JACK server.

if ((client = jack_client_new (argv[1])) == 0)
{

fprintf (stderr, "jack server not running?\n");
return 1;

}

The argument is passed when the application is run.

JACK Callback Process

Tell the JACK server to call process() whenever there is work to be done.

jack_set_process_callback (client, process, 0);

JACK server shutting client down

Tell the JACK server to call jack shut.down if ever it needs to be shut down, either en-
tirely, or if it just decides to stop calling the client.

jack_on_shutdown (client, jack_shutdown, 0);
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Creating Ports

A port is created as "input" port of the client. It is the one that delivers audio data.
To the JACK server it is the output port of the server.

input_port = jack_port_register (client, "input",
JACK_DEFAULT_AUDIO_TYPE, JackPortIsInput, 0);

Activating the client

After ports are created, the next task is to activate the client by telling the JACK server
that the client is ready to perform its tasks.

if (jack_activate (client))
{

fprintf (stderr, "cannot activate client");
return 1;

}

Connecting Ports

After activating the client, ports are connected. This step cannot be done before clients
are activated. Clients have to run first.

if ((ports = jack_get_ports (client, NULL, NULL,
JackPortIsPhysicalIJackPortIsOutput)) == NULL)

{
fprintf(stderr, "Cannot find any physical capture ports\n");
exit (1) ;

}
if (jack_connect (client, ports[O), jack_port_name (input_port)))
{

fprintf (stderr, "cannot connect input ports\n");
}
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5.4.4 Demodulation Process

JACK is now running. The demodulation process starts to run inside a while loop.
The semaphore sem_wait(&sem) pauses the demodulation process to wait until data is
ready. This just comes before the capturing process.

while (1)
{

if(rnf.firstBufferFuIIFlag == 0)
{

sern_wait(&sem);
rnf.kernel_to_application(app_buffer);
for(int i = 0; i < mf.periods;i++)
{

rnf.convolution();
rnf.bitSynchro();
rnf.shiftingSamples();
mf.decisionDevice();

}
}
else
{

rnf.convolution();
rnf.bitSynchro();
rnf.shiftingSamples();
rnf.decisionDevice();

}
if(rnf.outputFlag == 1) break;

}
rnf.displayMessage();

5.4.5 JACK summary

No difficulties were experienced with the implementation of JACK at all. JACK takes
care of setting sound parameters.
Semaphores are used to synchronise the callback function with the demodulation process.
The only big problem experienced was to understand how JACK works, before starting
with modem code. James Shuttleworth [6] explains JACK very well. Jack documentation
is found at [14].

http://scholar.sun.ac.za/



CHAPTER 5. IMPLEMENTATION USING LINUX SOUND APIS 53

5.5 Implementation using PortAudio

5.5.1 PA Overview and Introduction
Port Audio is a library that provides streaming audio input and output. It is a cross-
platform API that works on Windows, Macintosh, Unix running OSS, ALSA, JACK, SGI
and BeOS[17]. The OSS version of PA is used in this implementation.

Using PA within a program typically consists of the following steps[17]: Here are the
steps to writing a PortAudio application:

1. Write a callback function that will be called by Port Audio when audio processing
is needed.

2. Initialize the PA library and open a stream for audio I/O.

3. Start thc stream. Your callback function will now be called repeatedly by PA in the
background.

4. In your callback you can read audio data from the input Buffer and/or write data to
the outputBuffer.

5. Stop the stream by returning 1 from your callback, or by calling a stop function.

6. Close the stream and terminate the library.

5.5.2 PA Modulator
The modulation process is again the same as in other used APIs.
A callback function that is called by PA when audio processing is needed IS coded as
follows:

statie int Modu_Callback (
void *inputBuffer,
void *outputBuffer,
unsigned long framesPerBuffer,
PaTimestamp outTime,
void =userbat a )

Modu_Data *data = (Modu_Data*)userData;
char *out = (char*)outputBuffer; II
unsigned long i;
int finished = 0;
(void) outTime; 1* To prevent unused variable warnings. *1
(void) inputBuffer;
for( i=O; i<framesPerBuffer; i++ ) II Data collected in frames
{

lithis array is not in use.
Ilarray of interleaved samples
IIsampIe frames to be

{
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*out++ = data->data_array[data->index];
data->index += 1;
if Cdata->index >= data->total_samples) finished 1;

}
return finished;

}

Functions that are called by mainf ) are listed below in order.

1. inputcmessagef): receives entered characters.

2. initf ): initialises required variables and arrays.

3. process(): generates a modulated signal.

4. Samples of the modulated signal are transferred to the data_array. This lS the
data table of the modulator.

forCi=O; i < data.total_samples; i++)
{

data.data_array[i] = audio.audioBuffer[i];
}

5. Pa.Jnitializef}: initialise PA. It is called before any other calls to PA. This will trig-
ger a scan of available devices which can be queried later.

6. Pa.Dpenbtreamt): sets sound parameters for the audio stream.
The code fragment below shows the parameters:

Pa_OpenStreamC
&stream, /* passes back stream pointer */
paNoDevice, /* default input device */
0, /* no input */
paUInt8, /* unsigned 8 bit format */
NULL,
OUTPUT_DEVICE,
1, /* mono output */
paUInt8, /* unsigned 8 bit format */
NULL,
SAMPLE_RATE,
FRAMES_PER_BUFFER,
0, /* number of buffers, if zero then use default minimum */
paClipOff, /* we won't output out of range samples so don't bother
Modu_Callback, /* specify custom callback */
&data); /* pass data through to callback */

7. Pa.Start'Streamfstream]: starts the stream to run. The variable stream points to
the stream.

http://scholar.sun.ac.za/



CHAPTER 5. INIPLEMENTATION USING LINUX SOUND APIS 55

8. Time required to play the modulated signal is calculated.

9. Pa.Sleepfallocatcd.Time * 1000): sets the modulator to sleep for the allocated time
to play the modulated signal.

10. Pa._StopStream(stream): stops the stream after the allocated play time has elapsed.

Il. Pa._CloseStream(stream): closes the stream.

12. Pa._Terminate(): terminates PA.

5.5.3 PA Demodulator

A callback function called by the demodulator is as follows:

static int recordCallback( void *inputBuffer, void *outputBuffer,
unsigned long framesPerBuffer,
PaTimestamp outTime, void *userData )

{
Modu_Data *data = (Modu_Data*)userData;
SAMPLE *rptr = (SAMPLE*)inputBuffer;
SAMPLE *wptr = &data->recordedSamples[data->frameIndex * NUM_CHANNELSJ;
long i;
(void) outputBuffer; 1* Prevent unused variable warnings. *1
(void) outTime;
ifC inputBuffer == NULL)
{

fore i=O; i < data->total_frames; i++ )
{

*wptr++ = SAMPLE_SILENCE;
}

}
else
{

fore i=O; i < data->total_frames; i++ )
{

*wptr++ = *rptr++;
}

}
data->frameIndex -= data->total_frames; lireset index
data->frameIndex = 0; lireset index
sem_post(&sem);
return 0; II to run continuously

}

Semamphores are used again to synchronise the demodulation with a callback function.
Functions called by mainf ) are listed below in order.

1. initO

2. matchedFiltersO
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3. Pa.Initializef )

4. Pa.Opendtreamf )

5. Pa.Start.Strearnf)

6. Demodulation Process:

while(Pa_StreamActive(stream))
{

if(mf.firstBufferFullFlag == 0)
{

sem_wait (&sem) ;
fore i=O; i < data.total_frames; i++ )
{

data.processArray[i] = data.recordedSamples[i];
}
mf.kernel_to_application(data.processArray);

}
mf.convolution();
mf .bitSynchro 0 ;
mf.shiftingSamples();
mf.decisionDevice();
if(mf.outputFlag == 1) break;
//sem_wait(&sem);

}

7. displayMessage()

8. Pa._CloseStream().

9. free( data.recordedSamples):

10. Pa.Terminatet).

5.5.4 PA Summary

No serious problems in the implementation of both the modulator and demodulator were
experienced. The implementation so far is the simplest if it is compared to the first three
APIs.
Like in JACK, semaphores are used to synchronise the callback function with the demod-
ulation process.
PA implementation appears not to be stable at all. Results obtained from it are not
reliable. Both tests were conducted using both 8-bit unsigned format and 16-bit format.
Results obtained are either completely error free, or with all characters in error. The fact
that the demodulator can sometimes display error free messages, indicates that the prob-
lem could be related to latency issues or the demodulator could be failing to detect the
start and end bits of the message. Buffer sizes ranging from 1024 to 8192 were also tried
to solve the problem and mixer settings were monitored carefully for cases like clipping.
Other options to solve this problem are:

• to recompile the kernel for low-latency again .

• to use the ALSA version of Port Audio.
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Chapter 6

RESULTS

6.1 Introduction
This chapter shows results obtained in simulation and real-time implementations.

6.2 Simulated FSK

6.2.1 Modulation results
Tests on the simulation are performed by modulating the character "P" and then fol-
lowed by the demodulation of the same character. The ASCII code for the character is
"01010000".
The modulated signal is shown in Figure 6.1. The signal has a higher frequency in regions
between 128th and 256th samples; and between 384th and 512th samples, while at other
positions it has a lower frequency.
Demodulation results of the same signal are shown in the next section.

57

http://scholar.sun.ac.za/



CHAPTER 6. RESULTS 58

FSK Modulated Signal
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Figure 6.1: Modulated signal

6.2.2 Demod ulation results

MF Outputs

Figure 6.2 is the output signal of the low frequency matched filter.
The signal has its peaks at positions 128, 384, 640, 768, 896 and 1024. These peaks de-
notes "zero" bits.

Low Frequency Matched Filter Output
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Figure 6.2: Low Frequency MF Output

Figure 6.3 is the output signal of the high frequency matched filter.
The signal has its peaks at position 256 and 512. These peaks denotes "one" bits. Both the
two matched filter outputs have energy per bit values that agrees well with the expected
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High Frequency Matched Filter Output
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Figure 6.3: High Frequency MF Output

value of Eb = 0.64 X 106.

Summation of MF Outputs

Figure 6.4 is the summation of output signals of the two matched filters for the purpose
of bit synchronisation. Peaks takes place for every 128 samples. Bit detection takes place
at these samples positions.

Sum of Matched Filters Output
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Figure 6.4: Sum Of MF Outputs
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Bit Detection

Figure 6.5 is the difference of output signals of the two matched filters for the purpose of
decision making. According to the application threshold, bit synchronised positions that
have negative values are considered to be "zero bits" otherwise "one bits". From figure 6.5
it is clear that bits detected at positions 256 and 512 are "ones", while at the other five
positions (excluding 1024) "zero" bits are detected. The demodulator is designed to syn-
chronise only seven bits at a time, therefore the peak at 1024 is left for the next round.

Difference of Matched Filters Output
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Figure 6.5: Difference Of MF Outputs

6.3 Performance Analysis
The performance analysis test of the module is conducted in simulation. A message con-
sisting of 32200 bits is both modulated and demodulated. The demodulation process is
repeated, each time increasing the noise level and adding it into the system. Table 6.1
shows the results obtained.
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Noise Level Error Bits Error Bits Error Bits Error Bits Bit Error Rate
120 0 0 0 0 0
150 1 4 5 4 108.7x 10 6

155 8 8 3 8 209.6 X 10-6
160 12 11 13 5 318.3x10 6

165 21 22 14 18 582.3x 10 6

170 26 26 13 28 722.0x 10-6
175 28 23 28 30 846.3x10 6

180 54 43 48 54 1.545 x 10 3

185 53 70 72 53 1.925 x 10 3

190 74 71 68 79 2.267 x 10 3

195 109 115 105 110 3.408 x 10-3
200 114 105 120 124 3.595 x 10 3

205 166 269 130 133 5.419 x 10 3

210 266 204 231 179 6.832 x 10 3

215 204 214 306 241 7.492 x 10 3

220 249 474 478 306 11.70 x lO-J

Table 6.1: Performance Analysis Table

Figure 6.6 shows the plot of both practical and the expected probability of error for the
module. The implementation loss comes out to be roughly 0.5dB.
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Figure 6.6: Performance Analysis Test

6.4 Real-Time FSK

6.4.1 Txl R; Sampling Rate Mismatch Range

The aim of this section is to test the performance of the modem under buffer overruns
and underruns. The sampling rate of the application and that used for the sound card
settings are mismatched. The mismatch range is determined. This is the range where bit
synchronisation and decision functions performs without any errors. All sampling rate
mismatch took place in the modulator.

First the test is conducted by starting with the application sampling rate of 44kHz and
gradually decreasing it till errors occur.
The second test is to start with the application sampling rate of 44kHz and gradually
increase it till errors occur.

Table 6.2 shows ranges that appeared to give stable correct results. Beyond the ranges,
there is a probability of errors appearing in the output results.

Mismatch Range (kHz) % Error in
Min Rate Max Rate sampling rate

42.9 44 2.5
44 46.7 6.1

Table 6.2: SR Mismatch Ranges
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6.4.2 Tests Across APIs

Tests were conducted using all possible combinations of APIs and results compiled as
follows:

From Table 6.3, PortAudio appears not to be stable at all.

Modulator Demodulator Comments
OSS OSS Error free
OSS ALSA Error free
OSS JACK Error free
OSS PA Not reliable
ALSA OSS Error free
ALSA ALSA Error free
ALSA JACK Error free
ALSA PA Not reliable
PA OSS Not reliable
PA ALSA Not reliable
PA JACK Not reliable
PA PA Not reliable

Table 6.3: Tests Across APIs
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6.4.3 Profiling Demodulation Process

The code is profiled to determine how much time is taken in calling different subroutines
of the program and also to get the overall processing time of the code. Only the OSS was
profiled. All four APIs are using the same methods for the demodulation process.
According to program specifications, a bit duration is 2.91ms. Since a buffer has a length
of eight bits: it will take about 23.28ms to fill one buffer with data.
For 2000 buffer recordings, it will take 45.56 seconds of recording time. Figure 6.7 shows
the profiling results obtained. The overall processing time is roughly 2.9 seconds for the
process of a recording that lasted 45.56 seconds. The results obtained clearly show that
the program is capable of processing data at durations far less than half the recording
time of just filling one buffer.
From calculations, the processing time is roughly 6.4% of the time required to do one
buffer recording. Profiling results were compiled using Intel Celeron 850MHz CPU in the
demodulator.

6.5 Summary
Results of both simulation and real-time implementations are discussed in this chapter.
Simulation results discussed are:

• Waveforms at different stages of the demodulator.

• Bit error rate of the modem.

• Implementation loss.

Real-time results discussed are:

• Tests across different APIs, that is the modulator and demodulator operating with
different APIs.

• t;/u; Sampling Rate Mismatch Range.

• Profiling of the demodulator.
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Chapter 7

DISCUSSIONS AND
CONCLUSIONS

7.1 Implementation Options
In the bit synchronisation method, there is another efficient way of implementing syn-
chronisation.
In the method used, accumulated samples are processed if their number is greater than or
equal to the kernel buffer size. That means that at some stages processing time will have
to be double. The performance of this method depends entirely on the processor's speed.
The other method is to switch between 7 and 8 bit synchronisation. In this method, the
processing time will only increase by 14.3% when 8 bits are synchronised and this actually
gives the processor some time to perform other tasks. The method used in the project is
simpler to implement.

7.2 Coneluding Remarks
From the results obtained during tests of different APIs, both the native ALSA and JACK
are considered the best APIs to work with, mainly for the following reasons:

1. ALSA has a callback function.

2. The modulator is interrupt driven, and data can be collected from the data table in
fixed buffer sizes for playing.

3. ALSA can easily port to JACK.

4. Both ALSA and JACK support bigger buffers.

66
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5. Both support full duplex.

6. Implementation loss of less than 0.5 dB is obtained.

7.3 Outstanding Tasks
Outstanding tasks to be performed are:

1. A full-duplex system should be implemented. Each computer should be capable of
both modulating and demodulating and be able to switch between the two processes.

2. The application program should be able to adjust the mixer automatically, to con-
trol cases of clipping.

7.4 Uses of Modules Outside SDR Architecture
The modules are not restricted to be used only in SDR architecture. Other areas of use
are:

• Software modems, especially the development of linmodems (Linux modems). There
is a project to turn winmodems into linmodems.

• Wireless local area networks, which can reduce the number of cables running around.

7.5 Final Conclusion

• Modem works.

• ALSA & JACK are best API's to use.
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Appendix A

THESIS TOOLS

A.1 Software Used
Linux Distribution
Kernel
C++ compiler
IDE
Profiler
Plotter

:Fedora Core 1 (Red Hat)
:2.4.22-1.2115.nptl
:gcc 3.3.2
:KDevelop 2.1.5 & Kylix 3
:Kprof & gprof
:gnuplot (interfaced)

Figure A.l shows the modulator that is used for both Simulation and OSS API.
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A.2

69

Two computers with sound cards are used. The two are connected by an audio cable,
between the two sound cards. One computer acts as the modulator, while the other one
acts as the demodulator.

lstPC

CPU
RAM

FgGhHiljJkKILmMnNoOpPqQrRsStTuUvVwWxXyYzZ

low frequency high frequency

IReal time ::1 Icharacters ::1 11300 12100

sampling rate samples/bit

Imono ::1 lunsigned 8 bits ::1 144100 h28

bit duration baud

11024 ::1 10.00291 1343

message size block size

i Run Jl Clear Quit 152 11024

Figure A.l: Modulator figure

Hardware Used

:Intel Celeron 850MHz
:128MB

Sound Card :Trident, ALI M5451

CPU :Intel Celeron 800MHz
RAM :128MB
Sound Card :VIA 82C686
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Appendix B

DISCRETE CONVOLUTION

Convolution is the ordered combination of multiplication followed by summation. Since
sampling is involved, discrete convolution is used.

The convolution of the input signal x(n) and the impulse response h(n) is achieved by
reversing the impulse response under the sample of current interest.

The process of performing the ordered multiplication is[3],

Response
t = 0 t = T t = 2T t = 3T t = (n-1)T due to
xoho XOhl XOh2 XOh3 XOhn-1 Xo

xlho x]hl x,h2 xlhn-2 Xl

X2hO X2hl X2hn-3 X2

X3hO X3hn-4 X3

followed by summation ...

Column Sum
1
2
3
4
5

Yo = xoho

Yl = XOhl + xlho

Y2 = XOh2 + xlhl + X2hO

Y3 = XOh3 + xlh2 + X2hl + X3hO

Y4 = XOh4 + xlh3 + X2h2 + X3hl + X4hO

n

From the two processes above, the convolved output is given by:

y(i) =L Xkhi-k

k=O

(B.1)
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and the pseudo code is as follows:

output +--- output + inputji-j-l-L] * impulsejj]

In is the number of terms in the impulse response
output [max]
impulsejmax]

FOR i +--- (max/2) TO ((max/2) + n - 1) STEP 1
{

output +--- 0; (reset sum to zero)
FOR j +--- 1 TO m STEP 1
{

}
}
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Appendix C

SYSTEM CALLS USED BY ass

C.I The open() System Call
The openO system call is used to gain access to a device file (/ dev / dsp) for reading, writing
or both [4]. The prototype for openO is as follows:

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname,int flags)
int open(const char *pathname,int flags, mode_t mode)

The flag defines how the file should be opened. Table C.l lists flags that can be used for
opening the device.

Flag Description
O_RDONLY open device for capturing only
O_WRONLY open device for playback only
O_RDWR open device for both capturing and playback

Table C.l: Flags For The opent] Call

C.2 The ioctl() System Call
The ioctlO system call is a catch all for setting or retrieving various parameters associated
with a file or to perform other operation on the file. The prototype for ioctZ 0 is as follows:

#include <sys/ioctl.h>
int ioctl(int fd,int request, ... )

The argument fd is the file descriptor that was returned from the previous openO call.
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C.3 The read() System Call
The read() system call is used to read data from the device corresponding to a file descrip-
tor fd that was returned from the previous opent) call. Figure C.1 shows a conceptual
diagram of this process.

Kernel Application

read(fd, buffer, n)

Analog waveform

Figure C.1: read () system call

The prototype for read() is as follows:

#include <unistd.h>
ssize_t read(int fd,void *buf, size_t count)

The second argument is a pointer to a buffer to copy data from, and the third argument
returns the number of bytes read or a value of -1 if an error occurs.

C.4 The write () System Call
The write() system call is used to write data to the device corresponding to the file de-
scriptor. Figure C.2 shows a conceptual diagram of this process.

Kernel Application
write(fd, buffer, n)

Analog waveform

Figure C.2: writet) system call

The prototype for writeO is as follows:

#include <unistd.h>
ssize t write(int fd,void *buf, size t count)
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C.5 The closer) System Call
Any locks held by the process on the device are released, even if they were placed using
a different file descriptor.

The prototype for closeO is as follows:

#include <unistd.h>
#include <sys/stat.h>
#include <fcntl.h>
int close(int fd)
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Appendix D

SOUND CARD

A typical sound card can do the following things:

1. play pre-recorded music (from CDs or sound files, such as wav or MP3), games or
DVDs.

2. record audio in various media from external sources (microphone or tape player).

3. synthesise sounds.

D.I Sound Card Devices
Figure D.1 is a block diagram of an idealised sound card that the Linux sound driver
provides [10]. The DAC and ADC provide the means for getting the audio in and out
of the sound card while the DSP oversees the process. The DSP also takes care of any
alterations to the sound, such as echo or reverb. Because the DSP focuses on the audio
processing, the computer's main processor can take care of other tasks.
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Figure D.l: Sound Card Block Diagram

D.2 Duplexing
A half-duplex sound card is capable of either transmitting or receiving data, but not
both, while a full-duplex sound card can transmit data in both directions simultaneously.
According to the Free OSS documentation, the Free OSS drivers do not support full du-
plexing. Only the commercialOSS supports full duplex.
ALSA supports full duplex, and is free [13].

D.3 Sound Card Jitter
One problem of Sound Cards is "jitter" [Il]. It is the deviation in or displacement of the
sampling rate. If a sound card is recording at a sample rate of 44.1kHz, it does not exactly
take one sample every 1/44100 second. There is always a tiny timing error which causes
the sample to be slightly too late or early.
The really bad part is that jitter is frequency dependent. Because it is related to the
timing of the sample, it can change the recorded frequencies just a little. If it records a
sample just a little too fast, the card thinks that the recorded frequency is a little lower
than it really is.
Typical jitter-times go between l.0 x 10-9 and l.0 x 10-7 seconds.

http://scholar.sun.ac.za/



APPENDIX D. SOUND CARD

D.4 Linux Supported Sound Cards

Sound cards supported by the Linux kernel sound driver can be found at [20].
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JACK LAYOUT

Figure E.l is the schematic diagram of JACK.
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