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The study and management of emerging infectious diseases

(EIDs) and of biological invasions both address the ecology of

human-associated biological phenomena in a rapidly changing

world. However, the two fields work mostly in parallel rather

than in concert. This review explores how the general

phenomenon of an organism rapidly increasing in range or

abundance is caused, highlights the similarities and differences

between research on EIDs and invasions, and discusses shared

management insights and approaches. EIDs can arise by: (i)

crossing geographical barriers due to human-mediated

dispersal, (ii) crossing compatibility barriers due to evolution,

and (iii) lifting of environmental barriers due to environmental

change. All these processes can be implicated in biological

invasions, but only the first defines them. Research on EIDs is
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embedded within the One Health concept—the notion that human, animal and ecosystem health are

interrelated and that holistic approaches encompassing all three components are needed to respond to

threats to human well-being. We argue that for sustainable development, biological invasions should

be explicitly considered within One Health. Management goals for the fields are the same, and direct

collaborations between invasion scientists, disease ecologists and epidemiologists on modelling, risk

assessment, monitoring and management would be mutually beneficial.
ing.org/journal/rsos
R.Soc.open

sci.6:181577
1. Background
Changes to climate, habitats and biodiversity are affecting abiotic and biotic components of ecological niches,

while social and economic changes (e.g. the development of megacities and increasing movement of people

and goods in a globalized world) offer multiple routes for species translocation and dissemination [1–3].

Together these external drivers increasingly facilitate biological invasions, a major threat to biodiversity

and ecosystems globally [4]. Non-native species include disease-causing microorganisms and parasites,

and disease vectors (e.g. arthropod vectors such as mosquitoes), which pose substantial threats to human,

domesticated animal and wildlife populations. Invasions by pathogens are, in public and animal health

terms, emerging infectious diseases (EIDs; such as human immunodeficiency virus (HIV) and severe acute

respiratory syndrome (SARS) [5,6]). In this paper, we focus on the mutual relevance of invasion science [7]

and public health epidemiology in the context of EIDs of direct public health significance [8]. We also

highlight how invasive non-pathogenic species, and infectious diseases that do not affect humans or

domesticated animals directly, may indirectly impact human health. Possible indirect effects include those

affecting the health of domesticated animals, crops, natural resources of wild plant and animal origin and

also the health of natural ecosystems. Epidemiology is a broad field that encompasses many areas of health

research; here, we use the term ‘epidemiologists’ to refer to those within the subspecialty focused on

epidemiology of EIDs, which may also include disease ecologists. Responses to EIDs engage a wide

community of medical, veterinary and public and animal health professionals.

The World Health Organization (WHO) defines an EID as ‘an infectious disease that has appeared in a

population for the first time, or that may have existed previously but is rapidly increasing in incidence or

geographic range’ (https://apps.who.int/iris/handle/10665/204722). Infectious diseases emerge via a

number of mechanisms. ‘Adaptive emergence’ constitutes genetic change of a microorganism that

results in a phenotype that is capable of invading a new ecosystem, particularly by jumping to new

host species, including humans [9]. This mechanism of emergence may permit pathogens causing

animal infections to become transmissible to humans (i.e. become zoonoses) and, in some cases, to be

sustained by human-to-human transmission in the absence of animal reservoir hosts [10–12]. Expansion

or ‘geographical emergence’ by changes to geographical ranges of pathogens or parasites can involve

long-distance translocation, more localized spread or both. For invasion biologists, invasive species are

those translocated intentionally or accidentally through a human agency (often over long distances)

from the locations where they are native to an ecosystem where they were previously absent [13,14].

This is analogous to the emergence of EIDs by long-distance geographical spread.

The ideas that EIDs are essentially invasive species [15], and that two branches of science (invasion

science and EID epidemiology) are studying similar phenomena [16–18], are not new. Furthermore,

management objectives and methods may be similar [19]. Invasive arthropod vectors of parasites and

pathogens, such as Aedes species of mosquitoes, are a case in point; they are traditionally considered

part of EID studies, but are also studied by invasion biologists (e.g. [17,20]). However, despite these

commonalities, functionally, the fields of invasion science and EID epidemiology work in parallel

rather than together. Therefore, in this review, we explore the extent of similarities in key concepts,

processes and methodological approaches, as well as useful differences that provide opportunities for

synergies, which may enhance our understanding and practical management of invasions and EIDs.

We call for these fields to be integrated within the One Health approach to enhance human well-being.
2. Common ground
2.1. Shared global context: the One Health concept
EIDs that have affected humanity in recent decades have sharpened the focus of microbiologists,

epidemiologists, human and animal health practitioners, as well as environmental and biological

https://apps.who.int/iris/handle/10665/204722
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Figure 1. Biological invasions and EIDs as components of One Health. The schematic combines an adaptation of the IPBES
Conceptual Framework [29] with a schematic of the One Health concept. The IPBES Conceptual Framework illustrates the
interplay between anthropogenic and natural drivers of change in nature (biodiversity and ecosystems) (black boxes and arrows)
and how this connects ecosystem services to human well-being (þve effects, blue box and arrows). We also identify
connections to ecosystem disservices, such as those caused by EIDs and invasive species (2ve effects, red box and arrows). For
simplicity, positive effects of invasive species are not shown. The One Health concept (green circle) encompasses the IPBES
Conceptual Framework, with its interacting human, animal and environment components.
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scientists, on the intersections of human, animal and ecosystem health. Emergence of many infectious

diseases is associated with the dynamics of natural communities and their abiotic environmental

determinants [21]. Many EIDs, including invasive pathogens such as West Nile virus (WNV) in North

America, are maintained by (or originate in) wild animal hosts, and their emergence may have

negative effects on natural communities as well as human or production animal health [22].

Accordingly, the One Health concept has evolved, which postulates that human, animal and

ecosystem health are interrelated and interdependent, and that reactionary or preparatory responses to

threats to human well-being demand holistic, transdisciplinary approaches encompassing all three

components, including medical and veterinary practitioners and collaborators in ecosystem health

[23]. Public health organizations around the world are increasingly adopting the One Health approach

to make their responses to infectious diseases more effective (e.g. https://www.cdc.gov/onehealth/).

The One Health concept encompasses benefits to human well-being (ecosystem services, i.e. benefits

produced by ecosystem functions and structures for human well-being) as well as risks (ecosystem

disservices, i.e. ‘nuisances’ for human well-being such as pests, and biological and geophysical

hazards [24]). Both EIDs [25] and biological invasions [26] are important causes of ecosystem

disservices, although biological invasions often render services and disservices at the same time

[26]. Both disease emergence and biological invasions are increasing, being driven by the same

global changes in climate, biodiversity, socio-economics and trade/travel [27]. The

Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES, www.ipbes.net) was

launched in 2012 to assess the state of biodiversity and of the ecosystem services it provides to

society [28,29]. Integrating disservices in the IPBES conceptual framework illustrates the

shared role that EIDs and biological invasions play for human well-being as components of One

Health (figure 1).

https://www.cdc.gov/onehealth/
https://www.cdc.gov/onehealth/
http://www.ipbes.net
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Figure 2. An example of indirect effects of invasive species on human health. Here, the indirect impact is water availability, which in
South Africa is imperilled by invasive plants that are ‘thirsty’ (i.e. take up water at rates that significantly reduce water flows),
climate change-induced drought and the competing requirements of drinking water for human populations, livestock production
and other agricultural enterprises. How this issue is central to the One Health concept is illustrated by the interacting human,
animal and environment components of the water availability problem as indicated by dashed circles. These circles indicate the
main impacts of humans (the anthropogenic impacts), animals (the consumption of water by livestock and the consequent
need to drill boreholes) and the environment (rainfall and plant communities).
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The One Health concept recognizes that impacts of ecosystem changes on human health may act

indirectly, e.g. via impacts on food and water security or by affecting biodiversity [17,30,31], and the

UN Food and Agriculture Organization has adopted the One Health approach (http://www.fao.org/

asiapacific/perspectives/one-health/en/). For example, several invasive trees in South Africa reduce

water availability, thereby causing indirect impacts on human health (figure 2). More generally,

biological invasions are increasingly being framed in a context of a transdisciplinary social–ecological

system in which wider implications, including health and socio-economic impacts, are considered [32].

In South Africa, such transdisciplinary approaches have been termed ‘invasion science for society’

[33], which echoes the One Health concept.
2.2. Common drivers and biological processes
There are many overlaps and parallels between EIDs and biological invasions. Both involve species

crossing geographical barriers that historically prevented natural dispersal, processes of establishment

in a new environment, and subsequent range expansion to occupy the new environment. Not all EIDs

can be termed invasive species, but some EIDs spread, and many establish, internationally, and such

pathogens can be readily considered as invasive species (e.g. WNV, chikungunya, SARS and Zika in

the Americas; chikungunya and dengue in Europe; HIV and influenzas globally). Even if EID

emergence is associated with native range expansions (e.g. the spread of Lyme disease into Canada

from the USA), and as such might not be formally considered as invasive species, insights on the

basis of invasion concepts are still very relevant.

http://www.fao.org/asiapacific/perspectives/one-health/en/
http://www.fao.org/asiapacific/perspectives/one-health/en/
http://www.fao.org/asiapacific/perspectives/one-health/en/


Table 1. Barriers to invasions and disease emergence, the processes whereby these may be surmounted and the phenomena
and consequences that may result. EID, emerging infectious diseases.

initial barrier which
when crossed can lead
to the phenomenon process global change examples/mechanisms EID examples

geographical dispersal biological invasions (i.e. inter-

regional dispersal of alien species

by humans)

EIDs involving international

spread (e.g. HIV, SARS,

WNV)

compatibility evolution pre-adaptation via eco-evolutionary

experience. Evolution of new

phenotypes in the environment

(e.g. herbicide resistance,

reduction in body size due to

size-selected harvesting, new

associations)

adaptive emergence of a

zoonosis (e.g. zoonotic

influenza)

greater capacity to survive

and reproduce, allowing

species to spread (e.g.

WNV in North America)

environmental disturbance land-use change that removes

competitors or predators, or

opens up resources allowing

range expansion of species

(native or non-native)

climate change that changes the

geographical location of the

ecological niche of species

provides new opportunities for

contact between humans,

animals and disease

vectors; and

causes biodiversity change

driving disease emergence

diseases and their vectors

(e.g. Lyme disease vectors

in Canada)
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The concepts of ‘barriers’ and ‘stages’ are as relevant in biological invasions [13] as they are to disease

emergence by international spread of a pathogen [5], and also to the processes mediating de novo

emergence of a zoonosis from a microorganism maintained by animal reservoir hosts [34]. This topic

has been reviewed before [17,35]. However, we focus on three key elements that permit, or prevent,

EIDs and biological invasions: (i) geography, which is surmounted by dispersal; (ii) compatibility,

which is determined by genetics and may be surmounted by evolution (including pre-adaptation via

eco-evolutionary experience; see below); and (iii) environment, which is a barrier that may be lifted by

disturbance, including environmental changes. Together, these factors mediate the biotic and abiotic

qualities of the niche, the species’ fitness in that niche and determine how the niche qualities and

fitness may change (table 1 and figure 3).
(i) Geography: The crossing of historical geographical barriers and human-mediated introductions are

related to both invasive species and many EIDs. The movement of invasive species, and long-

distance dispersal of EIDs or their vectors, occurs via air and surface transport of goods and

people [36]. For infectious diseases of humans, air travel is considered the most important route

because it is rapid enough for humans infected in source locations to remain infective upon

arrival in their destinations (e.g. SARS [37]). For many invasive species, the travel time from the

native to the alien region is less important due to the occurrence of long-lived life stages such as

seeds and eggs, so international spread of plants and animals is often facilitated by surface

transport (on land or by sea). However, surface transport is also important for EIDs whereby

infected arthropods, invasive arthropod vector eggs and infected animal hosts may be

transported over long distances, e.g. the historical spread of plague and the recent spread of

Aedes albopictus eggs/immatures in tyres and house plants [38–40]. While not a typical feature of

EID introductions, deliberate transport and introduction of invasive species is common [41,42].

Also, both EIDs and invasive species have a history of, and the potential for, being introduced
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Figure 3. A conceptual diagram of the barriers to biological invasions and EIDs and how they limit species invasions and disease
emergence. Processes whereby barriers may be breached are shown in the central box, and an example of these (from the
introduction of West Nile virus (WNV) to North America) is shown in the box to the right. Note the only prerequisite for
biological invasions is that there is dispersal across a geographical barrier (evolution and environmental change are not required
if conditions are already suitable). By contrast, an EID can arise either through evolution leading to the breakdown in a
compatibility barrier or environmental change breaking an environmental barrier without there being dispersal over a
geographical barrier (cf. table 1). Moreover, the order of the barriers crossed can vary. For example, in the emergence of HIV,
a compatibility barrier was first crossed (non-human primate to human) before the global spread of the pandemic. The insect
collage used under ‘species that are introduced’ in Figure 3 was sourced from Wikimedia Commons under the Creative
Commons Share-Alike License (CC-BY-SA 3.0; see https://commons.wikimedia.org/wiki/File:Insect_collage.png). We acknowledge
the original author of the work: ‘BugBoy52.40’.
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via the international pet trade [43,44], and both may be introduced deliberately as acts of

bioterrorism (e.g. [45]). The bridging of the ‘geographical’ contact barrier between animals and

humans (a process known as ‘spillover’) is essential for the de novo emergence of

microorganisms as zoonoses, and the re-emergence of many zoonoses such as the spread of

Nipah and Hendra viruses to humans (who are readily infected by the virus) from wildlife

reservoirs [18]. Many zoonoses and arthropod vectors are dispersed regionally or more locally by

natural means, which are not usually considered in the context of invasive species. Dispersal by

migratory birds is one important mechanism whereby pathogens (e.g. influenza viruses) and

some disease vectors (particularly ticks) can be dispersed over long distances (e.g. [46]).

Beyond the simple contingency of species being transported into a new environment, the number

and size of introduction events of a given species is also important. This is termed propagule

pressure in invasion science and is analogous to concepts of infection frequency (relevant for

spillover and introduction to new areas) and infective dose that are important in infectious

disease epidemiology [13,17,47]. If propagule pressure is low, introduced species are more likely

to undergo stochastic fade-out for a range of reasons, including the probability that an infected

individual meets enough naive individuals for at least one of them to acquire infection (for

infectious diseases), or to mate successfully (for any species undergoing sexual reproduction).

(ii) Compatibility: Both invasive species and EIDs must be capable of surviving in their new

environment to the point of reproduction, and then of reproduction that supports stable or

expanding populations. The capacity of an invading species to reproduce in the invaded

environment is often measured as the intrinsic growth rate of the population (r, which is a time-

based metric) in invasion science and the basic reproduction number (R0, which is a generation-

based metric) in epidemiology. For persistence (i.e. naturalization) of invasive populations or

EIDs, they must be compatible with ‘environmental’ conditions (including quantities such as host

https://commons.wikimedia.org/wiki/File:Insect_collage.png
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population size and density) to the extent that r is positive and R0 is greater than unity [15]. Whether

or not an introduced organism becomes naturalized or invasive depends, to a great extent, on the

eco-evolutionary experience of the introduced species and the recipient community. Eco-

evolutionary experience describes the historical exposure of an organism to biotic interactions

over evolutionary timescales [48,49], and emphasizes the role of traits selected for in previous

environments (pre-adaptations), within both introduced and resident species, in driving the

establishment success and adaptability of introduced species. In other words, eco-evolutionary

experience determines the ease with which an invader can integrate into novel ecological

contexts, and pre-adaptations are crucial determinants of a species’ invasiveness and a

community’s invasibility [48–51]. Continuing evolutionary change of invading species is

commonplace [52], and often involves admixture (intraspecific hybridization between previously

allopatric populations) or hybridization between closely related species (e.g. [53]). Such genetic

recombination often leads to enhanced performance by invasive populations due to heterosis and

hybrid vigour [54]. However, many invasive species adapt in the absence of admixture or

hybridization [54,55], resulting in traits that increase their performance. For example, invasive

species may undergo rapid evolution in traits related to dispersal (e.g. [56]) and much insight has

been gathered on such adaptations by identifying candidate genes underlying them. Adaptive

emergence of EIDs for transmissibility of animal pathogens to or among humans explicitly

requires genetic change, by mutations and recombination events [10,11]. However, as for non-disease-

causing invasive species, pathogens and disease vectors continue to evolve and adapt to new

environments into which they have been introduced, enhancing R0 within the invaded environments

[57,58]. For pathogens of animals and humans, evolution towards increased R0 typically involves

trade-offs between traits of transmission (higher pathogen loads mean more efficient transmission

when contact is made between infected and naive hosts) and virulence (higher pathogen loads mean

greater morbidity/mortality and reduced contact rates between infected and naive hosts) [59]. Such

evolutionary processes are, however, highly idiosyncratic among pathogens that are transmitted by

different routes [60] and among different populations [61]. Genetic changes may also permit invasive

species and EIDs to persist long-term and not undergo ‘boom and bust’ which may occur for a range

of reasons, including depletion of resources [62,63].

(iii) Environment: Environmental conditions determine whether a recipient location provides a suitable

niche for species to establish and spread. Abiotic factors including climate (e.g. temperature,

rainfall/humidity), and substrate qualities are key to whether introduced species can survive.

Biotic factors, ranging from host population size, density and connectedness, and nutritional

resources through ‘enemies’ (predators, parasites, pathogens, competitors and, for

microorganisms, immunity and cross-immunity) to more complex community interactions, will

determine whether introduced species can survive and reproduce [32,64]. When biogeographic

barriers are breached by human action, species may be introduced to ecological niches that are

suitable for their survival and reproduction and which also provide an ‘enemy-free’ space that

further permits their establishment and spread. For this reason, the realized niche of species may

be much larger in their introduced ranges than their native ranges [65]. The same is true of EIDs

when they are introduced into an immunologically naive population [15]. While evolutionary

change in invading species may alter the compatibility of the invading species with the invaded

environment, environmental change may facilitate invasions by creating new suitable niches for

invading species without the need for evolutionary change. Human disturbance of natural

communities, ranging from replacement of natural vegetation with agricultural systems to more

subtle changes, can make them more vulnerable to invasive species [66,67]. Such changes have

similar effects on the process of emergence of infectious diseases in both wildlife and livestock

[68]. Current and future global change (climate, biodiversity, landscape/land-use change,

including urbanization) are likely to facilitate both disease emergence and biological invasions,

while some sudden and unpredictable environmental fluctuations may inhibit invasions [69,70].

In the above section, we have separated geographical, compatibility and environmental barriers, but they

are often interdependent in influencing invasion/emergence (r and R0 depend on both compatibility and

environment). Even when not mutually dependent, they act together. For example, environmental

change (such as altered land use) can bridge the ‘geographical’ contact barrier between animal

pathogens and humans, as is the case for Nipah virus [71]. Environmental changes also drive

evolutionary changes that may alter the eco-evolutionary experience of potential invaders and
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potentially invaded communities. Issues of global spread of species and global environmental changes

that drive disease emergence directly and indirectly (via non-disease-causing invasive species)

underline the need for a One Health approach [23].

2.3. Similar methods
Risk analysis is a key management approach for both applied epidemiologists and invasion biologists. In

this section, we focus primarily on risk assessment and return to discuss risk management later. Risk

assessment is applied to help develop policies in anticipation of, and in response to, disease

emergence events and biological invasions. To support these risk assessments, both disciplines aim to

identify qualities (traits or syndromes) that (i) make species ‘invaders’ or ‘emergers’ (e.g. [72–74]), (ii)

make source environments more likely to yield them (e.g. [74]), and (iii) render receiving

environments susceptible or resistant to invaders or emerging pathogens [75]. Modelling is used in

both invasion science and epidemiology to elucidate biological processes, predict establishment and

spread, to support risk assessment and to assess effectiveness of interventions. The same ‘top-down’

(correlative, e.g. statistical models, ecological niche models and machine learning) and ‘bottom-up’

(mechanistic, e.g. dynamic simulation models, network analysis, individual-based models) methods

are used for predicting the possible current and future extent of EIDs and invasive species [32,76].

Disease modelling methods used by epidemiologists would, of course, be directly relevant to

modelling all types of infectious diseases, including those that affect species other than vertebrates,

including plant pathogens [77]. Methods for monitoring invasive species, including active field

surveillance and citizen science-based passive surveillance, have much in common with methods used

to monitor risks from emerging zoonoses and vector-borne diseases in the environment [78–81].

Similar sampling designs are used and their implementation in target regions or sentinel sites is often

determined by similar criteria, such as likely spread patterns predicted by species distribution and

spread models, and occurrence of locations where impact may be greatest (e.g. [82]). In both

disciplines, molecular approaches are used to confirm species identities and for source attribution

[83,84], and both are exploring Earth observation data as proxies for potential occurrence of invaders

[85], or risk from EIDs [86].
3. Useful differences: opportunities for synergies
3.1. Differences in scope
From an invasion biology perspective, EIDs are idiosyncratic in two ways. First, many important EIDs

affecting humans and domesticated animals are obligate parasites of vertebrates [5], which means that

consideration of the host population is paramount to predictive modelling and assessing impacts and

risk. Parasitic species and microorganisms thus comprise a special subset of invasive species. For EIDs

and parasitic invasive species, spread into naive populations may be rapid from the point of

introduction to an epidemic, provided there is sufficient availability of naive hosts. To a first

approximation, spread will not occur if the frequency of contact with naive hosts is below a threshold

level. For microorganisms transmitted directly among humans, the patterns and extent of spread

(equivalent to the ‘invasive range’) are mostly determined by characteristics of the human population

and microorganism and not directly by the environment. The persistence of transmission cycles of

microorganisms following spread (i.e. endemicity) depends on the details of the transmission

characteristics of the microorganism and of the host population. As for non-infectious invasive

species, emerging infections may boom and bust but usually due to mechanisms associated with the

availability of susceptible hosts, through either reduction in the host population by a highly

pathogenic EID or the development of immunity to the emerging pathogen in the host population [87].

Second, the causal organisms of EIDs (viruses, bacteria, fungi, protozoa and helminths) and vectors

(particularly insects) are, for the most part, at the ‘small and fast’ end of the spectrum of invasive

species, i.e. they have very small size and their generation time is often (but not always) short (days to

months). By contrast, generation times may be years to decades for organisms like invasive trees.

Notably, few invasive plants have reached their broad-scale climatic limits in their new ranges even

centuries after introduction (e.g. [88–90]). Given the ease of accidental long-distance movement by

human agency, microorganisms are likely to be common as invasive species of natural systems globally,

although data on the occurrence of such events are very limited. Furthermore, due to their extremely
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short generation times, compared to many invasive plant species for example, they have greater capacity to

adapt genetically to new environments. Despite this, and compared to their focus in EID epidemiology,

microorganisms remain understudied in invasion biology due to a range of factors including difficulties

with isolation or culturing, poorly known biogeography and therefore their native versus non-native

status, and difficulties in detecting and ascribing impacts to the causative agent (e.g. [91]).

The first difference described above could be thought of as a limit on the scope of direct synergies in

models used and the number of ‘invasive EIDs’ that may lend themselves to direct collaborations

between invasion biologists and epidemiologists. However, clearly some invasive species are parasites

or pathogens, and for these, the expertise of EID epidemiologists would enrich invasion biology.

Furthermore, this apparent idiosyncrasy does not mean that invasion biologists cannot profit from

modelling approaches developed in EID epidemiology. The second difference is of interest because

the larger size (which makes their detection and enumeration easier) and longer generation times of

many invasive species have meant that the demographic processes and community ecology of

invasions have been more readily studied. Epidemiologists tend to use relatively simple criteria-led

approaches or species distribution models to assess whether, and to what extent, invasion by

pathogens and vectors may occur now and in the future (e.g. [92]). The approach to understanding

the processes of introduction–naturalization–invasion used by invasion biologists has made it easier

to describe and understand individual invasion processes [32]. This approach could be used to

enhance risk assessment for EIDs, particularly those that are vector-borne and those that are zoonoses

associated with wildlife, as all of the factors involved in these processes may determine the speed,

trajectory and impact of EIDs as well as invasive species.

Factors that make species more successful invaders have been studied in invasion science since the

1980s (including using approaches of comparing native with invasive species, and invasive alien with

alien-but-not-invasive species [93]), but only more recently by epidemiologists interested in emerging

diseases [72,94,95]. Consequently, the elucidation of traits of invasiveness and invasibility and the

recognition that these traits of invaders and invaded communities interact to permit or prevent

invasions [96] is generally much richer than for EIDs. Studies in invasion science have led to concepts

of traits that permit invaders to be more successful in certain environments (e.g. ‘urban winner’

species [97]), and ordination-type methods for classifying communities in terms of their invasibility

(e.g. ‘periodic tables of niches’ [98]). All of these could be a focus for direct knowledge transfer from

invasion science to those assessing risk of zoonotic EIDs and arthropod vectors, and for conceptual

exploration of their application to assessing risk of all EIDs. Ultimately, this may significantly enhance

our understanding of the different components of the emergence/invasion systems allowing more

effective prevention and control strategies.

3.2. Differences in risk management methods
As invasion biologists and epidemiologists have practical objectives of reducing impacts of the species

that are their focus (by prevention, eradication, containment, control or impact reduction), sharing of

tools, methods and activities that facilitate these objectives may have considerable value. This subject

is worthy of a review in its own right—the following are simply examples.

While risk assessment of an anticipatory nature is very similar in the fields of infectious disease

epidemiology and biological invasions, there are differences when risk management is conducted in

the face of invasions or EIDs. In invasion science, risk management addresses the consequences of

inaction by estimating the ‘invasion debt’, primarily of existing introduced species [99]. This approach

could be readily adapted to risk management practices for EIDs. Those responsible for managing

invasions use a range of tools, such as eradographs, to visualize the impacts of interventions to

control geographical spread [100] and identification of management-specific switch points in control

programmes that determine if and when management objectives should be changed [101].

Field surveillance/monitoring is conducted for both EIDs (particularly when these are zoonoses or

vector-borne) and invasive species [102,103], and it may be practical and economical to develop

combined field surveillance programmes. For example in Canada, south-to-north invasion of tick and

fly vectors and of vector-borne pathogens of human and livestock health significance is occurring or a

threat [102,103]. While the vectors and vector-borne diseases of livestock may not have human health

importance, surveillance may use methods and/or locations similar enough for collaborations in field

surveillance to be logical. Molecular methods are mainstream in identifying microbial pathogens in

infectious disease surveillance programmes, but these methods are almost entirely used for identifying

pathogens and comparisons to identify disease clusters or to attribute sources [104]. More detailed
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molecular analytical approaches are used in invasion science to understand invasion dynamics, such as

underlying propagule pressure [105], landscape-scale dispersal patterns and rates [106], or to reconstruct

invasion history and pathways [83,107]. These approaches may assist risk assessment and policies for

management [108], while analysis of environmental DNA using meta DNA barcoding can assist in

detecting any species (non-infectious invasive and EIDs) during transport, thereby aiding in

preventing introductions from occurring [109]. While molecular approaches are often used to

identify the provenance of source populations of invading populations and EIDs [84], they can also

provide information relevant to biological control of invasive populations, for example, identifying

the native regions where the prospects of identifying co-evolved biological control agents are more

likely [110]. All of these more detailed approaches could be more widely implemented in the field

of EID surveillance.

Passive citizen science methods of collecting information on species distributions are used both in

public health and in ecology. In ecology, the object is monitoring of biogeography and global

biodiversity information (e.g. eButterfly—http://www.e-butterfly.org/ and iSpot—https://www.

ispotnature.org/). However, in public health, these methods have been developed to the point where

data are systematically collected and analysed in national surveillance programmes to provide early

warning of emerging vector-borne diseases allowing rapid responses [111]. Because most invasion

science does not (directly) address human health issues, funding is probably much more difficult to

mobilize for work on invasions than for EIDs. This means that cheaper means must be sought to

detect new introduced species than can be implemented for EIDs. Nonetheless, the experience of

public health epidemiologists in this area may benefit the field of invasion science, and

epidemiologists may benefit from incorporating more cost-efficient methods developed in invasion

biology.

In public health epidemiology, the need for rapid, specific and sensitive methods to detect clusters of

disease cases as the first sign of an outbreak has led to a revolution in molecular and bioinformatics

methods (particularly whole-genome sequencing and analysis) for species identification [104]. Given

the potential for EID epidemics to arise rapidly, there has been considerable effort in public health to

implement these molecular methods into programmes that systematically identify and control EIDs

[111]. These complement data-driven international efforts to detect EID events including the joint

WHO-OIE-FAO Global Early Warning System (GLEWS) for health threats and emerging risks at the

human–animal–ecosystems interface (http://www.glews.net/), active detection of possible EID

events via international media reports by the Global Public Health Intelligence Network (GPHIN),

and passive detection of EID events by interested, voluntarily participating public health, infectious

disease, veterinary, microbiology and academic experts in systems such as Promed (https://www.

promedmail.org/) and Health Map (https://www.healthmap.org/en/) [111].

In general, control methods for EIDs (e.g. vaccines and quarantine) and invasive species (e.g. plant

removal) are highly idiosyncratic, even if at first sight (such as chemical control of insects), they may

seem very similar. However, despite these clear differences, prevention and control programmes for

both EIDs and invasive species share the potential for interactions with the public to be crucial for

programmes to succeed. Public trust and engagement (for example, in terms of personal and

environmental impact, privacy/data-security, land ownership and access) may be essential for

successful prevention and control [112]. Collaborations in developing procedures for public

engagement may be very fruitful.

The often-rapid nature of disease emergence requires quick mobilization of expertise, and resources,

including funding and personnel. The immediate relevance of EIDs to humans has united global efforts

to counter them, and this has resulted in national and international networks of public health

organizations coordinated (in the case of international outbreaks) by WHO. By contrast, calls for unity

over invasions (e.g. [113]) have so far largely failed to produce effective agencies. There is, for

example, no equivalent to public health organizations such as US Centers for Disease Control and

Prevention, the Public Health Agency of Canada and the European Centre for Disease Prevention and

Control that has prime responsibility for the detection and control of invasive species. This contrast is

probably due to a number of reasons, including the local, regional or national (versus international)

scope of many invasions, the often long time lag between biological invasions and detected impacts,

and the generally slower nature of invasions, which together result in fractionated efforts that may be

ineffective. Responsibilities for coordinating responses to EIDs of public health significance always lie

with public health organizations, but responsibilities for responding to invasive species vary

depending on the impact or location of the invasive species and may be organizations responsible for

agriculture, fisheries, environment, natural resources, transport or local government entities [114].

http://www.e-butterfly.org/
http://www.e-butterfly.org/
https://www.ispotnature.org/
https://www.ispotnature.org/
https://www.ispotnature.org/
http://www.glews.net/
http://www.glews.net/
https://www.promedmail.org/
https://www.promedmail.org/
https://www.promedmail.org/
https://www.healthmap.org/en/
https://www.healthmap.org/en/
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Figure 4. A One Health approach to the management of EIDs and biological invasions. The continuum of possible invasion/EID
management functions, their policy or programme objectives, and the research activities that support their development are
shown. The rows of boxes represent the different fields involved in responding to EIDs and biological invasions: management
programmes, policy development and scientific research. The columns represent different stages of response to EIDs and
invasions and how, as indicated by numbered red arrows, emphasis may change from general research into risks of EIDs and
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4. Where to from here?
Invasion science and epidemiology in the context of EIDs represent both applied and basic sciences. Both

disciplines are involved in, and are informed by, fundamental research, and both have clear objectives

and mandates to minimize negative impacts on society and the environment. The science is applied to

the development of management plans along a continuum of points of potential anticipatory and

responsive actions (figure 4). These functions are, to a greater or lesser extent, already undertaken

independently by those involved in the study, prevention and control of EIDs and biological

invasions. However, we advocate for a strong, collaborative One Health approach in these actions that

integrates across human, animal and environmental health, including both invasion biology and

epidemiology in the field of EIDs.

There are clear opportunities for immediate collaboration:

(1) Predictive modelling: Modelling of dispersal, introduction and spread of EIDs and invasive species

would be a relatively simple point of collaboration as the objectives are similar. This would be

applicable to all parts of the continuum of management functions, but particularly to anticipating

the risk of invasions and EIDs.

(2) Monitoring of EIDs and invasions: International scanning, as conducted for EIDs, could be readily

applied to biological invasions as has been proposed previously [115]. The increasing availability

of ‘big data’ to support detection and monitoring of EIDs and biological invasions, and the

challenges of analysing these data to provide intelligence, is a particularly needed avenue of

collaborative action and research [115,116]. Collaborative monitoring (and more systematic

surveillance) for EIDs and invasive species at points of entry, monitoring in field studies

(including assessing indirect effects of invasions on health), and collaboration on the development

and application of molecular methods for detection and demographic analysis of populations of

invasive species and EIDs are all areas where synergistic activities could increase efficiency.

(3) Management of invasions and EIDs: Given the transferable skill sets between those involved in EID

and invasive species management, and the possibilities for synergies between the fields, collaboration

across the range of management activities could be very advantageous, recognizing that the

responsibilities for managing biological invasions and EIDs may be distinct.
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We are not aware of examples where the application of epidemiology to biological invasions or

invasion biology to EIDs has resulted in improved outcomes in terms of prevention or control.

However, the application of epidemiological modelling may well have contributed to understanding

patterns of spread of chytridiomycosis in amphibians, which is very likely a transmissible disease

(e.g. [117]). Similarly, while the emerald ash borer beetle and WNV (both invasive species) arrived

almost simultaneously at the US–Canada border, to date practical spread modelling of the emerald

ash borer as conducted by invasion biologists [118] has only been matched by theoretical

mathematical modelling of the spread of WNV [119]. Furthermore, there is no cross-talk between

those responsible for predicting spread and responding to the emerald ash borer (https://www.nrcan.

gc.ca/forests/fire-insects-disturbances/top-insects/13377), and those responsible for responding to

WNV (https://www.canada.ca/en/public-health/services/diseases/west-nile-virus/surveillance-west-

nile-virus.html), when it is recognized that changes in biodiversity (such as those occurring as a

consequence of the invasion of emerald ash borer) may have impacts on risk from WNV [120]. The

lack of integration of these responses provides a clear example of a missed opportunity to benefit from

the One Health framework.

Throughout, collaborations need to be win–win for epidemiologists and invasion biologists, and they

need to be enabled. ‘Soft’ collaborations within the academic context would be the easiest to set up, and

may only require simple encouragement (e.g. joint seminars, learning exchanges or workshops). More

solid collaborations on joint projects, such as proposed for ‘Global networks for invasion science’

[121], would require collaborative funding opportunities. Possibly the most enabling step would be

the development of common collaborative programmes founded on common policy initiatives of

national and international organizations responsible for managing EIDs and biological invasions. In

the One Health field, this has begun with the animal health, human health and food security

organizations working collaboratively on the FAO/OIE/WHO Tripartite Collaboration on

antimicrobial resistance (AMR: http://www.who.int/foodsafety/areas_work/antimicrobial-resistance/

tripartite/en/). While human health has a UN organization, the WHO, that provides international

leadership and coordination on EIDs, there is currently no analogous body for invasion science. The

United Nations Environment Programme (UNEP) and IUCN’s Invasive Species Specialist Group

(ISSG) may be two of the most promising institutional bodies that could facilitate interactions between

invasion biologists and epidemiologists (and their organizations).
5. Conclusion
The fields of invasion science and EID epidemiology share the challenge of the increasing numbers of

invasions and EIDs with no evidence of saturation. Invasions and EIDs involve similar biological

processes, may be intrinsically linked biologically and by human activity, are addressed by scientists

with similar skills and objectives, and are being driven by the same global changes. Invasions by non-

pathogenic organisms can also have important impacts on human health. They are therefore both part

of the One Health concept and require a One Health approach to minimize their negative impacts on

humanity. We have identified exciting opportunities for synergies between the fields of invasion

science and EID epidemiology and call for greater collaboration to benefit humanity.
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