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Abstract

Control of the Riverine (Palpalis) group of tsetse flies is normally achieved with stationary artificial devices such as traps or
insecticide-treated targets. The efficiency of biconical traps (the standard control device), 161 m black targets and small
25625 cm targets with flanking nets was compared using electrocuting sampling methods. The work was done on Glossina
tachinoides and G. palpalis gambiensis (Burkina Faso), G. fuscipes quanzensis (Democratic Republic of Congo), G. f. martinii
(Tanzania) and G. f. fuscipes (Kenya). The killing effectiveness (measured as the catch per m2 of cloth) for small targets plus
flanking nets is 5.5–15X greater than for 1 m2 targets and 8.6–37.5X greater than for biconical traps. This has important
implications for the costs of control of the Riverine group of tsetse vectors of sleeping sickness.
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Introduction

African sleeping sickness or Human African Trypanosomiasis

(HAT) is endemic to 36 countries in sub-Saharan Africa covering

9 million km2 with 60 million of the 400 million inhabitants at

risk of the disease. Africa has emerged from a recent sleeping

sickness epidemic. In 1997 about 450,000 people were afflicted

[1] which has now been reduced to about 70,000 cases per year

[2,3]. Two forms of the disease exists, the Rhodesian (or East

African) form being more acute and the Gambian form more

chronic. Both these forms of the disease are fatal if left untreated

and has an impact of 1.59M DALYs (disability adjusted life

years). The related disease (nagana) in domesticated animals

causes estimated losses to African agriculture of US$4.5bn per

year [4]. In 2000 the African Union recognized trypanosomiasis

as ‘‘one of Africa’s’ greatest constraints to socio-economic

development’’ [5]. The trypanosomes causing HAT are trans-

mitted by tsetse flies, particularly those of the Riverine (Palpalis)

group. Antigenic variation in the trypanosome makes it unlikely

that an effective vaccine will be produced in the foreseeable

future. The available drugs are too toxic for prophylactic use.

Consequently the only means of preventing the disease is vector

control although this is not routinely practiced largely because of

the cost.

Drug treatment of HAT is in a parlous state. The drugs

available were developed many years ago and their toxicity and

consequent human mortality allied to the increasing resistance to

the drugs is a great worry [6]. Recent introduction of Nifurtimox

Eflornithine Combination Therapy (NECT) has improved the

situation but there is serious concern that no other drug for stage II

treatment is in reserve should this fail. Vector control is essential

for control of the Rhodesiense form of the disease [7] and can play

a valuable role in support of case detection and treatment

programmes for the Gambiense form of the disease especially in

areas of high tsetse challenge when case detection and treatment

alone is insufficient for control to be achieved [8,9]. Given worries

about the sustainability of case detection and treatment it is

essential that effective vector control measures are available.

A major obstacle in control programmes against Riverine tsetse

is cost. Consequently, for the reasons given above, cheaper control

techniques are needed. A standard method for control of Riverine

tsetse is to use biconical traps, treated or untreated with insecticide

or large insecticide-treated targets [9,10,11,12]. Because of their

size both are expensive to make and deploy at the high densities

required (10–30+/km2). Our aim is to develop a more cost-

efficient device than the standard biconical trap or 1 m2 targets.

Work is underway on developing artificial odour attractants to

improve device efficiency [13]. Other studies have looked for

improvements in the colour and shape of targets and traps

[14,15,16]. However, few studies have focused on reduction of size

of targets as a way to achieve better cost efficiency. Recent work

on G. f. fuscipes [17] has shown the potential for a dramatic

reduction in target size promising a considerable cost saving in

control programmes against Riverine tsetse.
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Crudely combining data for the number of HAT cases by

country [18] and maps of potential distribution of tsetse flies [19]

suggests than .90% of current HAT transmission is being caused

by a small number of tsetse flies especially G. fuscipes fuscipes

(Uganda, Sudan, Congo Brazzaville, Central African Republic),

Glossina fuscipes quanzensis (DRC, Angola, Congo Brazzaville) with

smaller number being transmitted by G. palpalis gambiensis and G. p.

palpalis on the coast of West Africa. In this work we have expanded

studies on target size to four other species of Riverine tsetse

including the very important vectors G. f. quanzensis and G. p.

gambiensis. In addition we have investigated the efficacy of the

common practise of insecticide-treating biconical traps in the belief

that this increases the number of tsetse they kill beyond those

actually trapped by the device [20].

Methods

Study sites
We conducted studies in each country during periods

considered to be most appropriate in terms of fly abundance,

accessibility, time and logistics. In doing so we could not

investigate the effect of long-term seasonality on the efficiency of

the different devices, nor was this the object of the current study.

Studies were undertaken on Glossina tachinoides and G. palpalis

gambiensis along the lower Comoe river at Folonzo (09u 549 N, 04u
369 W) in southern Burkina Faso, between January and May 2009.

The two species are sympatric here, along with G. m. submorsitans

and G. medicorum. Additional studies on G. p. gambiensis were

conducted along the Mouhoun river near Solenzo (12u149 N,

04u239 W), in western Burkina Faso, from January to June and in

November 2009. See [21] for further details of the site.

Studies were undertaken on G. fuscipes quanzensis in July 2009

near the Lukaya river (4u 299 S, 15u 189 E), ,20 km south east of

Kinshasa, Democratic Republic of Congo. See [13] for further

details of the site.

Studies were undertaken on G. f. martinii in November 2009 in

the Gombe National Park (4u 389 S, 29u 379 E) on the shore of

Lake Tanganyika, Tanzania. The area receives an annual rainfall

of 760–1200 mm and is in a protected area of tropical rain and

highland forest. There are several game species in the research

area, including bushpigs (Potamochoerus porcus), monitor lizards

(Varanus niloticus), bushbuck (Tragelaphus scriptus), olive baboons

(Papio anubis), chimpanzees (Pan troglodytes) and various species of

monkey and snake. G. brevipalpis also occurs here.

Studies were performed on Glossina f. fuscipes from September to

November 2010 on the 0.5 km2 of Chamaunga Island (00 259 S,

340139 E), Lake Victoria, Kenya. See [13,17] for further details of

the site.

Experimental design
Square black targets (161 m) were compared for their ability to

kill tsetse flies with targets 1/16th the size (0.2560.25 m) and with

a standard biconical trap [12] (Fig. 1). Targets were made from

black cotton cloth. Electrocuting grids were fitted over fine black

netting and these were placed next to targets and traps where they

intercepted flies in flight – these devices are called flanking nets.

The fine black polyester net (Quality no. 166, Swisstulle,

Nottingham, UK) and the blackened 0.2 mm diameter electro-

cuting wires of the electric net are effectively invisible to tsetse

[22,23]. Electrocuting grids were also placed over the black cloth

target. Electrocuted flies fell into trays of soapy water below the

grids. All treatments were simultaneously compared with and

without flanking nets [14,17], allowing us to measure efficiency of

the devices (i.e., the catch of the black cloth target or the catch

inside the trap as a percentage of the total number of flies arriving

in the vicinity of the device). The total number of visiting flies was

taken to be the catch in the trap or on the target, plus the catch on

each flanking net.

Experiments ran for 12 days each and were carried out during

peak activity times of each tsetse species during the period of this

study: for G. tachinoides and G. p. gambiensis from 08:00–12:00; for G.

f. martinii from 10:00–14:00; for G. f. quanzensis from 10:30–14:30.

The standard experimental design was a series of Latin-squares of

treatments x days x sites, with sites at least 50 m apart. Analyses of

variance were performed on log detransformed catches and these

are discussed in the text.

Three experiments were conducted to assess the responses of

tsetse to 3-dimensional objects. These studies were conducted with

G. f. fuscipes only. The first experiment measured both the numbers

of G. f. fuscipes caught on electrified 3-dimensional objects (3DO)

(e.g. biconical traps) and the numbers of flies circulating but not

contacting such objects. Due to difficulty in covering the conical

parts of the biconical trap with electrified grids, a comparable 3

dimensional trap (Fig.2) was made which has flat surfaces. The first

experiment compared a fully electrified 3DO consisting of three

0.561 m electrified grids arranged in a triangular fashion (Fig. 2)

and killing all flies coming into contact with the grid, with a similar

3DO (not electrified) but with an adjacent electrified flanking net

which intercepted and killed all circling flies. Each of the grids in

the 3DO had a blue cotton cloth insert with a central oblong

(15625 cm) piece of black cloth (to simulate the entrance of a

biconical trap). This experiment allowed us to compare numbers

of flies attracted to and directly landing on a 3-D object against

those flies attracted to, but only circling the object and getting

caught on the flanking net. The experiment ran for 12 days in a

262 Latin square, from 09:00–12:00.

A second experiment was done with a single flanking net

(0.561 m) adjacent to a biconical trap to intercept circling flies

(Fig 1 image on right), compared against a single biconical trap

and against a small blue cotton target (25625 cm) with an

adjacent flanking net (25625 cm). The small target was also used

to compare the efficiency of this small device compared to

biconical traps. The reason a blue cotton target was used for these

experiments and not black as in the size reduction study, is because

blue proved to be a better attractant than black for G. f. fuscipes

Author Summary

Sleeping Sickness (Human African Trypanosomiasis) is a
serious threat to health and development in sub-Saharan
Africa. Currently there are no vaccines or prophylactic
drugs available to prevent contraction of the disease.
Consequently vector control is the only method of disease
prevention. In many areas, especially those lacking high
densities of cattle, the only control option for routine use
against tsetse flies are insecticide-treated targets or
biconical traps. However, these methods in their current
form are often too expensive for routine use against the
riverine tsetse species that are the major vectors of
sleeping sickness. Our aim is to develop a more cost-
effective device than those currently available. Working on
four species of tsetse fly we have shown that a small
25625 cm target with adjacent flanking net was up to 38x
more cost-effective at killing tsetse flies than existing
devices. These findings suggest that this new technology
may make vector control in HAT foci an affordable option.

Tiny Targets for Tsetse Fly Control
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[14,17] and this type of tiny target is being considered for control

purposes.

For the third experiment, we compared a biconical trap closely

surrounded with four flanking nets (0.561 m) to intercept all flies

coming close to the trap as if to land. This was compared against a

normal biconical trap as well as a small blue cotton target

(25625 cm) with an adjacent flanking net (25625 cm). This

experiment indicated the number of flies attracted to a biconical

trap, but killed on the flanking nets before they could enter or

land, compared against the numbers of flies in the top-cage of the

standard trap. Again the small target with flanking net was used as

control.

Four experiments evaluated the optimal flanking net width for

use with a small 25625 cm target. The first experiment

investigated how closely G. f. fuscipes circle around a 25625 cm

blue target. This target was used with a 256100 cm flanking net

for 12 days with the collection tray divided into sections 10 cm

wide. This determined where flies first touched the flanking net to

give an initial indication of the optimal width of a netting panel.

Second, we compared flanking nets of 25 cm, 50 cm and 75 cm

widths, in a 363 Latin square design for 24 days. Third, a

25625 cm blue target with the same size flanking net was

compared with a 12.5625 cm target with 12.5625 cm flanking

net for 12 days. Finally, a 25625 cm blue target with 25625 cm

flanking net (all electrified) was compared against an un-electrified

25625 cm blue target with a 25625 cm electrified flanking net, in

a 262 Latin square design for 12 days.

Results

Catches for all four tsetse species from the devices listed are

shown in Table 1. Below we expand and emphasise some of the

data which we feel are the most important for the production of

more cost effective tsetse killing devices.

Large vs small target
The small target with flanking net uses 1/8th of the material in

the large 1 m2 target. From Table 1 it can be seen that deploying

the available cloth in the form of small rather than large targets

will kill more tsetse flies per dollar spent. Female flies are the main

target of control operations. If we consider just females from

Table 1 then we see that for G. p. gambiensis the catch per m2 for

small targets plus flanking nets is between 6.56 (Folonzo), and

8.76 (Solenzo) greater than that for 1 m2 targets. Corresponding

figures for G. f. quanzensis are 5.56, 5.86 for G. tachinoides and 156
for G. f. martinii, although in the last case the samples sizes are

small. Figures for male flies show even greater potential for small

targets. These findings are in agreement with those from a

previous study on G. f. fuscipes [17].

Biconical trap vs small target
The small target with flanking net uses 1/24th of the material in

the biconical trap. From Table 1 we can see that deploying the

available cloth in the form of a small target rather than a biconical

trap will kill more tsetse flies per dollar spent. Female flies are the

main target of control operations. If we consider just females from

Table 1 then we see that for G. p. gambiensis the catch per m2 for

small targets plus flanking nets is between 22.86 (Solenzo) and

37.56 (Folonzo) greater than that for biconical traps. Corre-

sponding figures for G. f. quanzensis are 226, for G. tachinoides 8.66
and for G. f. martinii it was impossible to determine as the biconical

trap failed to catch any flies. Figures for male flies show even

greater potential for small targets. Again, these data are in

agreement with those from a previous study on G. f. fuscipes [17].

Figure 1. This shows the standard control devices against which new designs were compared. Each is flanked by an electric net to catch
flies which circle the device but do not land. Electrified black target with flanking net (A) and a biconical trap with flanking net (B).
doi:10.1371/journal.pntd.0001257.g001

Tiny Targets for Tsetse Fly Control
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Circling or landing flies
Investigations into the behaviour of G. f. fuscipes towards a

rectangular blue and black 3-D object showed that 2.6x more G. f.

fuscipes females circled (mean = 10.9) around the object than

landed (mean = 4.2, s.e.d. = 0.09, P = 0.001; for ANOVA see

Table S1, experiment 1). For male G. f. fuscipes catches of landing

flies (mean = 4.5) were roughly equal to the circling flies

(mean = 4.9, P = 0.6, s.e.d. = 0.05). When using the biconical trap

as a 3-D object the majority of G. f. fuscipes circle around the trap

but do not enter as can be seen below. Compared to the standard

trap, a trap surrounded with four flanking nets caught 4.5x more

female G. f. fuscipes (mean = 18.1, s.e.d. = 0.11, P,0.001; for

ANOVA see Table S1, experiment 2) and a trap with a single

adjacent flanking net caught 2.9x more females (mean = 12.2,

s.e.d. = 0.06, P,0.001; for ANOVA see Table S1, experiment 3).

Male flies also circled more around the trap, with 3.6x more males

caught on the single flanking net (mean = 12.2, s.e.d. = 0.06,

P = ,0.001) and 2.6x more caught on the four flanking nets

closely surrounding the trap (mean = 9.2, s.e.d. = 0.1, P,0.001),

than were caught inside the standard trap. These data showed that

up to 80% of G. f. fuscipes, especially females, are circling the trap

and not landing or entering giving the biconical trap only about a

20% efficiency.

Comparing the efficiency of the devices for inducing landing

and entering responses, the biconical trap again performed poorly

(Fig. 3). Only 26% of the G. tachinoides and 32% G. p. gambiensis

attracted to the trap actually entered it. Trap efficiency was even

lower for G. f. quanzensis (18%), with the majority of flies circling

around but not entering. Catches of G. f. martinii were too low to

allow for analysis of its landing and trap-entry responses. In

contrast, the efficiency of the large target (i.e. landing response) was

much better. Fifty-five percent of G. tachinoides, 38% of G. f.

quanzensis and 45% to 58% of G. p. gambiensis that were attracted to

the target landed on the black cloth. The small black target with

flanking net also induced a poor landing response on the black

cloth (Fig. 3), indicating the importance of a flanking net to

maintain the killing efficiency of the small target. For example,

catches of G. tachinoides declined by 88% and G. f. quanzensis by

83% in the absence of this netting (i.e. catches on the 0.2560.25 m

black target alone), while G. p. gambiensis were 50–90% lower

without the small flanking net (Table 1).

Further refinement of the small target
Studies to optimize the flanking net width showed that G. f.

fuscipes circled closely around the small blue target. Sixty one

percent (n = 32, s.e.d. = 0.1) of females and 77% (n = 24,

s.e.d. = 0.07) of males were caught on the first 30 cm of flanking

net adjacent to the target. A further 23% (n = 12) female and 21%

(n = 7) male flies circled up to 50 cm away from the target. The

remaining few flies were caught 50–80 cm away, with no flies

caught between 80–100 cm. The subsequent experiments with

flanking nets of various width showed no difference in catches

between the standard 25 cm flanking net (mean = 14.4, sed = 0.05,

P = 0.07 for difference between means), the medium 50 cm

flanking net (mean = 16.7), or the long 75 cm flank net

(mean = 20.3). A smaller flanking net of 12.5625 cm resulted in

a 66% decrease in catches. Equal numbers of flies were caught by

the electrified flanking net (mean = 10.4, s.e.d. = 0.09, P = 0.9)

adjacent to the un-electrified small blue target, as were caught by

the completely electrified target and flank net (mean = 10.2) . This

suggests that savings could be made by putting insecticide only on

the flanking net.

Discussion

The catch of tsetse increases with target size but the increase is

not in proportion to the increase in surface area. So, paradoxically,

it is more cost efficient to deploy the available cloth in the form of

small rather than large targets . Tiny targets plus flanking nets use

1/8 and 1/24 the amount of materials required respectively for the

Figure 2. The experimental design used to investigate G. f. fuscipes circling or landing on an object. 3-D object with (A) and without (B)
flanking net.
doi:10.1371/journal.pntd.0001257.g002
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Table 1. Detransformed mean catches from the experiments to investigate the effect of target size on tsetse fly catches (ANOVA
data is given in supplementary Table S1).

Species Device Target Size (m2) Flanknet Males Flies killed /m2 Females Flies killed/m2

G. tachinoides

Target 2 Yes 27.8a 13.9 28.4a 14.2

Target 1 No 13.4ab 13.4 9.3b 9.3

Target 0.125 Yes 11.2b 90.0 6.8b 54.2

Target 0.0625 No 1.6c 25.1 0.6c 10.2

Trap 3.5 Yes 50.2ad 14.3 54.2a 15.5

Trap 3 No 27.2abd 9.1 19.0ab 6.3

s.e.d. 0.11 0.12

P ,0.001 ,0.001

G. p. gambiensis

Folonzo Target 2 Yes 6.5a 3.2 6.2a 3.1

Target 1 No 3.1ab 3.1 2.3ab 2.3

Target 0.125 Yes 3.6abc 28.7 1.9bc 15.0

Target 0.0625 No 0.4d 6.9 0.3cd 4.9

Trap 3.5 Yes 7.6ac 2.2 8.1a 2.3

Trap 3 No 2.0bc 0.7 1.2bcd 0.4

s.e.d. 0.1 0.12

P ,0.001 ,0.001

G. p. gambiensis

Solenzo Target 2 Yes 3.3abc 1.6 3.6ab 1.8

Target 1 No 3.7ac 3.7 2.1ab 2.1

Target 0.125 Yes 2.9abc 23.2 2.3ab 18.2

Target 0.0625 No 1.2bc 19.4 0.2c 3.0

Trap 3.5 Yes 5.7a 1.6 5.2ab 1.5

Trap 3 No 1.8c 0.6 2.3b 0.8

s.e.d. 0.11 0.1

P ,0.001 ,0.001

G. f. quanzensis

Target 2 Yes 1.9a 0.9 3.2a 1.6

Target 1 No 1.2ab 1.2 0.8b 0.8

Target 0.125 Yes 0.4abc 3.5 0.5bc 4.4

Target 0.0625 No 0.1bcd 2.0 0.1bcd 0.9

Trap 3.5 Yes 1.8abce 0.5 2.3a 0.7

Trap 3 No 0.6abcde 0.2 0.5bcd 0.2

s.e.d. 0.11 0.08

P 0.004 ,0.001

G. f. martinii

Target 2 Yes 0.8a 0.4 0.3a 0.2

Target 1 No 0.2ab 0.2 0.1ab 0.1

Target 0.125 Yes 0.5abc 4.4 0.2abc 1.5

Target 0.0625 No 0.0bcd 0.0 0.0abcd 0.0

Trap 3.5 Yes 1.1ac 0.3 1.0e 0.3

Trap 3 No 0.0bcd 0.0 0.0abcd 0.0

s.e.d. 0.06 0.05

P ,0.001 ,0.001

For ease of comparison the efficiency of each device is also expressed in terms of the number of male and female tsetse killed per 1m2 of material. Note the absolute
numbers of flies caught is merely a reflection of the density of flies in each experimental site; as this varies no comparison between sites can be made. The informative
datum is the ratio between flies/m2 for each device considering each site separately. Means not associated with the same letter differ at P,0.05. Standard error of
differences (s.e.d.) refer to transformed means, which are not shown. See Supplementary data Table S1 for ANOVA tables.
doi:10.1371/journal.pntd.0001257.t001
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large 1 m2 targets or biconical traps which are currently used in

control programmes. Despite this they are comparable or superior

to these much larger devices in killing G. p. gambiensis, G. f.

quanzensis, G. f. martini, (Table 1) and G. f. fuscipes [17]. Clearly this

means that considerable cost efficiencies are possible in using these

new devices as reflected in the tsetse killed per unit area of cloth

(Table 1). For example, concentrating only on female tsetse which

are the major target of control programmes, the killing

effectiveness measured as the catch per m2 of cloth for small

targets plus flanking nets is 5.5–156 greater than that for 1 m2

targets. In comparison to biconical traps, the killing efficiency of

small targets plus flanking nets is 8.6–37.5X greater . The tsetse

species studied here are responsible for the transmission of

virtually all gambiense-form HAT, which represents .90% of

all cases of HAT. Hence, the cost savings implied by the above are

available to most sleeping sickness control programmes.

Comparison with other tsetse species on which the effects of

target size has been studied, is limited to the savannah tsetse. For

G. pallidipes and G. morsitans, a target much less than about 1 m2 is

strongly contra-indicated [24,25,26] due to low attractiveness.

This is in strong contrast to our results on Riverine species shown

here and in a previous study on G. f. fuscipes [17]. The underlying

behavioural differences between Riverine and Savanna tsetse

which underpin these findings remain to be explained.

An essential part of the small target is the flanking net, as

catches of G. tachinoides, G. p. gambiensis and G. f. quanzensis declined

by 88%, 67–91% and 83% respectively, in the absence of netting.

This illustrates the importance of small panels of fine, insecticide-

treated net attached to the side of the small cloth targets to

intercept the flies that circle around the cloth. This principle has

been used as part of control targets for savannah species [24] and

recommended for control of G. p. gambiensis and G. tachinoides [18].

However, large panels of netting are prone to damage which

renders large 1 m2 devices fixed with a netting panel inefficient.

With the tiny targets recommended by this work, the small

flanking net is much less likely to be damaged. In addition, suitable

netting now available on the market, particularly insecticide pre-

impregnated polyethylene netting, is stronger and more durable.

A common practice in the control community has been to use

insecticide-treated traps in the belief that many more flies will land

on the outside of traps than are caught by them [27]. However,

there are scant direct data supporting this practice and hence it is

not universally accepted. Observations of G. morsitans and G.

pallidipes showed that only 47–30% of tsetse approaching a trap

landed on it or entered it, i.e.the majority (53–70%) of tsetse

visiting a trap did not contact it [28]. Our data show that the

efficiency (proportion of the total flies attracted to the trap which

are actually caught by it) is low (e.g. 26% G. tachinoides; 32% G. p.

gambiensis; 10% G. f. quanzensis). Let us assume for the sake of

argument that 100% of the flies circulating the biconical trap in

our experiments land on it and collect a lethal dose of insecticide.

Even then, using the data from Table 1, the flies killed per 1 m2 of

cloth will be greater for small targets plus a flanking net than for

biconical traps (2.2X G. tachinoides; 12X and 7.3X G. p. gambiensis;

2.2X G. f. quanzensis). In fact, the results show that the catch from

the 3-D target with a flanking net was 1.8x that of the target alone

(15.9 tsetse/day vs. 8.7 tsetse/day) suggesting that not all tsetse

approaching the object landed on it. The efficiency of the trap-like

object (55%) is slightly greater than a trap (31%) suggesting that

marginally more flies may land on a trap than are captured by it. If

that figure is common to all species it would roughly double the kill

per m2 figures given above in this paragraph. Clearly small targets

plus flanking nets are a more efficient means of killing tsetse than

using either 1 m2 targets or biconical traps whether the latter are

treated with insecticide or not.

This work clearly demonstrates the potential savings for tsetse

control operations in terms of reduced costs of materials and

insecticide associated with the manufacture of small targets. In

addition these devices are likely to offer two further advantages.

First, the small targets would be considerably easier and cheaper to

transport to the field [28] offering further considerable cost savings

to control campaigns. For example, the tiny targets can be carried

in a backpack and deployed rapidly by a single person. Second,

while large targets and their associated doses of insecticide have

been shown to have little impact on ecology [29] and to be

unobtrusive in national parks [30], the small targets could be

expected to be even better in both these respects. A potential

problem for small targets is that they may be easily obscured by

vegetation which may reduce their efficiency. Further work is

underway to look at the importance of this and the indications are

that this is very much smaller problem for Palpalis group flies than

for Morsitans group flies (Esterhuizen et al., in preparation).

In conclusion, it appears that the use of small targets demands a

full scale field trial while further research should be performed to

refine them and to explore their applicability against a wider range

of tsetse species and in other areas.
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Figure 3. Landing or entering response for tsetse on a standard target 1m2 (ST), a small 25625cm target (TT) or biconical trap (T).
For devices with a flanking net, landing or entering responses were estimated by expressing number caught landing on the target or entering the
trap as a percentage of the total (device+flanking net) catch. For unaccompanied traps and targets, capture efficiency was estimated by expressing
the mean catch of the trap or target as a proportion of the mean catch from a trap+flanking net. A = G. p. gambiensis at Solenzo; B = G. p.
gambiensis at Folonzo; C = G. tachinoides; D = G. f. quanzensis; E = G. f. fuscipes. *Data for G. f. fuscipes derived from Lindh et al., 2009.
doi:10.1371/journal.pntd.0001257.g003
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