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Abstract 

Secondary aquifers are a primary source of water in many semi-arid regions, and 

understanding groundwater recharge is necessary for the effective management of this 

resource. The Chloride Mass Balance (CMB) technique provides low-cost recharge estimates, 

and has successfully been used in many semi-arid catchments in Southern Africa. It is 

particularly useful along the west coast of South Africa, where physical data is limited. The 

west coast hosts the Verlorenvlei catchment and its RAMSAR listed wetland, where it is 

thought that deep groundwater baseflow sustains the wetland during the dry season. Shallow 

groundwater salinisation and increasing agricultural activity in the catchment has resulted in 

more deep groundwater abstraction, threatening the long-term health of the wetland. This 

study describes how major ion and stable isotope chemistry of ground and rain water can be 

used to calculate recharge to the secondary aquifer using the CMB technique, and its 

implications for assessing mechanisms of recharge and salinisation in the catchment. To do 

this, 102 groundwater samples were collected across the catchment over six sampling 

seasons. Additionally, 94 rain water samples were collected over the period of eighteen 

months, with daily rainfall collectors located in the valley, and a cumulative collector erected 

on the Piketberg mountain range, to assess the contribution of recharge from the Table 

Mountain Group (TMG) aquifer. CMB recharge estimates in the upper catchment indicate that 

the TMG aquifer contributes between 40 and 53 mm/a (11.4 – 15.2% MAP) recharge to the 

secondary aquifer, while direct recharge in the upper valley is between 20 and 27 mm/a (4.2 

– 5.6% MAP). These estimates are supported by δ18O and δ2H values of rain and groundwater, 

and correlate well with previous physical methods. δ18O and δ2H values also indicate that the 

upper catchment is likely to be a gaining stream, with deep groundwater contributing to 

baseflow. The additional input of salts further down the catchment, due to water-rock 

interaction and the inflow of other deep groundwater, make CMB recharge estimates 

unreliable in the lower catchment. Furthermore, pumping-induced discharge from the primary 

to secondary aquifer during the summer months is responsible for a distinct increase in salinity 

of the secondary aquifer. This is characteristic of a losing stream, with groundwater 

contributing little to baseflow. Predictions of increasing temperature and decreasing rainfall 

along the west coast indicate that pumping-induced discharge could become more common 

in the lower catchment, increasing the threat of secondary aquifer salinisation and a reduction 

in groundwater baseflow. Overall, the methodology applied in this study can be used for high 

resolution, at-point CMB estimates in other small catchments, and contribute to long-term 

groundwater management in semi-arid catchments affected by salinisation.  

Keywords: Recharge, Chloride Mass Balance, Verlorenvlei, Deep Groundwater, Semi-arid 
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°C – Degrees Celsius  

‰ – Per Mil 
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μm – Micrometre 
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CAF – Central Analytical Facility 

Clp – Chloride in precipitation 

Clgw – Chloride in groundwater  
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EC – Electrical Conductivity  
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HRU – Hydraulic Response Unit 

IC – Ion Chromatography  

ICP-MS – Inductively Coupled Plasma Mass Spectrometry 

ICP-OES – Inductively coupled plasma optical emission spectrometer 

LMWL – Local Meteoric Water Line  

Ma - Million years  

MAP – Mean Annual Precipitation 

mg/L – Milligrams per litre 

ml – Millilitre 

mm - Millimetre 
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PP – Polypropylene 

TDS – Total dissolved Solids 
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1. INTRODUCTION 

1.1. General Introduction 

South Africa is historically a water-stressed country, with rainfall significantly decreasing from 

east to west (Dennis and Dennis, 2012). Much of the west coast of South Africa receives 

between 200 and 500 mm rainfall per annum, and is defined as semi-arid (Lloyd, 1986). Low 

rainfall and the lack of surface water in many parts has resulted in large-scale groundwater 

abstraction to support agricultural and urban demands. Over-pumping is therefore a cause for 

concern, and quantifying groundwater recharge is necessary to determine safe aquifer yields, 

and to assess future groundwater vulnerability (Hugman et al., 2012). Sustainable 

groundwater management is particularly important along the west coast, where boreholes 

show less resilience to the effects of climate change in comparison to central South Africa 

(MacDonald et al., 2011). 

Groundwater recharge estimation is particularly important for wetland systems occurring in 

semi-arid settings, as base-flow derived from groundwater is considered an essential 

component for sustaining the health of these ecosystems, particularly during low flow periods 

(Parsons, 2004). In the African context, many wetland systems are threatened by over-

exploitation (either at the wetland or upstream) for economic development, as these 

ecosystems provide a valuable source of both water and nutrients (Schuyt, 2005). 

Furthermore, high groundwater extraction near streams can result in discharge from the 

stream to the aquifer, thus reducing baseflow (Chen, 2001). The South African Water Act of 

1998 states that groundwater can only be utilised for economic purposes if the annual 

recharge exceeds the basic environmental and human requirements in both the catchment 

and downstream. Quantifying groundwater recharge is therefore essential for assessing the 

contribution of baseflow to wetlands, and the effects of groundwater abstraction on baseflow. 

Decades of studies have focused on estimating recharge in semi-arid areas (Fontes and 

Edmunds, 1989; Gee and Hillel, 1988; Rushton, 1988) and Sub-Saharan Africa (Beekman 

and Xu, 2003; De Vries et al., 2000; Bredenkamp et al., 1995). These studies indicate that 

recharge estimation in semi-arid environments is particularly complicated, due to a smaller 

and more variable recharge flux in comparison to humid areas, and fewer recharge estimation 

techniques can be successfully used in semi-arid environments (De Vries and Simmers, 

2002). No single estimation technique can be used to accurately estimate recharge across a 

range of environments (Van Tonder and Bean, 2003), but combining physical and natural 

tracer techniques, as well as numerical modelling, has proven to be a powerful tool for 

estimating recharge (Scanlon et al., 2002). The Chloride Mass Balance (CMB) technique has 
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been successfully used to estimate recharge in many semi-arid areas (Lihe et al., 2010; Sami 

and Hughes, 1996; Bazuhair and Wood, 1996; Wood and Stanford, 1995). Such a method 

provides cheap estimations that are often easier to obtain than physical methods. It also 

provides a time-integrated recharge value (Wood and Stanford, 1995) that is particularly useful 

in semi-arid areas where rainfall varies in both time and space. For the CMB method to 

effectively work, it must be assumed that all chloride input to the aquifer is derived from rainfall, 

and that chloride is conservative in the system (Wood, 1999). Groundwater salinisation is 

common in many semi-arid settings, and as such the CMB method requires the use of 

additional methods, such as stable isotopes, to effectively constrain flow systems and 

understand recharge mechanisms (Verhagen, 2003). 

The Verlorenvlei is a RAMSAR (#525) listed wetland situated 200 km north of Cape Town in 

the Sandveld. The intermittent connection between wetland and ocean has created an 

estuarine environment that supports a high biodiversity of fish and aquatic birds. Agriculture 

is also an important part of life in the Sandveld, with potato production contributing 15% of the 

national potato produce and using roughly 20% of the annual recharged groundwater in the 

Sandveld (Archer et al., 2009). The upper reaches of the Piketberg valley, to the south east of 

the catchment, also host an increasing number of large-scale commercial farms, particularly 

producing export quality table grapes. The combination of low rainfall and poor-quality soil 

results in a large amount of water and fertiliser use, with the introduction of centre-pivot 

irrigation contributing to both declining groundwater levels, and the salinisation of surface and 

shallow ground water (Maclear, 1994). The strong interplay between the economic benefit for 

the agricultural sector, as well as ecosystems that are highly dependent on groundwater, has 

resulted in a groundwater system that shows significant signs of water stress (Conrad et al., 

2004). 

There are three aquifers in the Verlorenvlei catchment. A primary, unconfined aquifer is hosted 

in by quaternary sediments, and is widely used for irrigation in the west of the catchment. It is 

characterised by high salinity values of up to 1988 mS/m (Sigidi, 2017). The primary aquifer 

is underlain by a semi-confined secondary aquifer hosted by the Malmesbury Group. It 

becomes increasingly important towards the east of the catchment, and is characterised by 

lower salinity values in comparison to the primary aquifer. An additional fractured rock aquifer 

is hosted the Table Mountain Group (TMG). The primary and secondary aquifers are likely to 

be in hydraulic connectivity (Conrad et al., 2004), and the effects of over-pumping, in 

combination with changing climate conditions, could result in regional groundwater depression 

cones (Yuan et al., 2013), creating a threat of salinisation for both the wetlands and deeper 

aquifer. The TMG aquifer is also likely to provide the bulk of the recharge to the secondary 
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aquifer (Watson et al, 2017b; Conrad et al., 2004). The highest recharge to the TMG occurs 

in the Piketberg mountain range, with groundwater transported primarily through fracture 

networks down the catchment, due to the high hydraulic gradient (Watson et al., 

2017c).Although recharge estimation in semi-arid South Africa has received a lot of attention, 

limited recharge studies and hydrological data along the west coast makes recharge 

quantification in this environmentally sensitive area one of the most difficult to characterise. 

The CMB technique is one of the most common methods used for calculating recharge, but it 

is difficult to apply in areas of groundwater salinisation, such as along the west coast of South 

Africa. Furthermore, little research has focussed on the upper reaches of the Piketberg 

Mountain range, where the bulk of the recharge is suspected to be derived from the TMG 

aquifer. While some studies have characterised the chemical composition of the secondary 

aquifer groundwater in the Piketberg valley (GEOSS, 2012; SRK, 2009; GEOSS, 2006), these 

studies only cover a selected number of boreholes and do not assess long-term seasonal 

variations.  

This study therefore aims to characterise the geochemical and isotopic nature of groundwater 

from the secondary aquifer in the Verlorenvlei catchment over a period of 18 months. The 

study is focussed on the Moutonshoek Valley of the Piketberg Mountain range, where there is 

a high recharge potential and concentrated agricultural activity. Precipitation samples are used 

in combination with groundwater samples to calculate recharge using the CMB technique, with 

stable isotopic signatures providing additional insight into recharge processes. This 

geochemical approach to groundwater characterisation and recharge estimation will provide 

a good comparison to previous physically-based methods by Watson et al. (2017b) and 

Conrad et al. (2004). The methodology used during this study will be used to create a robust 

filtering technique for ground and rain water collection for CMB estimations in other semi-arid 

areas where salinisation is a cause for concern. Furthermore, recharge estimates and stable 

isotope data will be used to establish a conceptual model of recharge mechanisms. This will 

be used to assess the interaction of the shallow and deeper aquifer, and assess the future 

health of the groundwater and wetlands based on climate predictions. 

1.2. Aims and Objectives 

The key aim of this study is to characterise the groundwater originating in the secondary 

aquifer of the upper Verlorenvlei catchment, and estimate recharge using stable isotopes and 

the CMB technique. The data will be used to assess the extent of the interaction between the 

secondary and primary aquifer, the source of salts in the secondary aquifer, and the long-term 

impacts of climate change and pumping on groundwater quality and quantity. Additionally, the 

methodology presented for CMB estimation will be evaluated to assess the applicability of 
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such a method in other semi-arid catchments effected by salinisation, as well as establish a 

conceptual model of recharge mechanisms. 

Key objective one: To characterise deep groundwater and precipitation in the Verlorenvlei 

catchment. 

1. What is the geochemical and isotopic signature of deep groundwater in the 

Verlorenvlei catchment, and how does this vary spatially and temporally? 

2. What is the geochemical and isotopic signature of precipitation in the Verlorenvlei 

catchment, and how does this vary spatially and temporally? 

3. What is the average annual rainfall during this study, and how does it compare to 

previous years? 

Key objective two: To determine the recharge rate to the secondary aquifer of the 

Verlorenvlei catchment using the chloride mass balance method, and assess the applicability 

of this method for other semi-arid catchments. 

1. What is the recharge rate based on chloride mass balance calculations and stable 

isotope compositions, and how do these estimates compare to other recharge 

estimates in the Sandveld? 

2. What are the possible recharge mechanisms in the catchment? 

3. How can the methodology presented in this study be used for recharge estimation in 

other semi-arid areas? 

Key objective three: To assess the future health of the secondary aquifer and wetlands in 

the Verlorenvlei catchment. 

1. What are the possible sources of salinisation to deep groundwater?  

2. What is the extent of the interaction between deep and shallow groundwater, and how 

could this effect the secondary aquifer? 

3. What impacts could regional pumping and climate change have on future groundwater 

quality and quantity, and how could this impact the wetlands?  
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2. GROUNDWATER SYSTEMS 

2.1. Surface - Groundwater Interaction 

The term baseflow refers to the groundwater component of river flow, and groundwater is likely 

to contribute to surface flow during low rainfall periods. Baseflow may also contribute to 

wetlands, springs and seepages (Vegter and Pitman, 2003), and provides a minimum estimate 

of groundwater recharge. Winter et al. (1998) divides shallow groundwater and stream 

interaction into four simplified scenarios: (1) a gaining stream (where the groundwater 

contributes to stream flow); (2) a losing stream (where stream flow replenishes the 

groundwater); (3) a disconnected stream (where the stream and groundwater are separated 

by an unsaturated zone); and (4) bank storage (occurring when stream levels rise higher than 

the groundwater levels and the stream flow moves into the stream bank) (Figure 1). Connected 

rivers are common in the lower catchments of humid climates, and often seasonally alternate 

between losing and gaining streams (Lerner, 2003). Disconnected rivers on the other hand 

are likely to be smaller streams found in the upper catchments of drier climates, and under 

these circumstances, it is unlikely that groundwater contributes to stream flow (Lerner, 2003). 

This surface and sub-surface interaction occurs in the critical zone and is controlled by several 

factors, including the geological and soil characteristics of the stream beds, seasonal 

fluctuations, and the position of the water body with respect to groundwater flow paths (Winter, 

1999). 

 

 

 

 

 

 

 

 

 

Figure 1: Schematic diagrams of a gaining stream (a), losing stream (b), disconnected stream (c) and 
bank storage (d) (Winter et al., 1999) 
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A large portion of the interaction between streams and shallow aquifers is pumping-induced, 

and large groundwater abstraction could lead to a reverse-hydraulic gradient, where stream 

water discharges into the aquifer, creating a losing stream (Butler et al., 2001). The induced 

stream infiltration will result in the reduction of groundwater baseflow and stream flow 

depletion, and could have serious consequence for the health of wetlands, springs and riparian 

zones (Hugman et al., 2012). Furthermore, contaminated surface water could result in 

groundwater contamination (Chen, 2001). Pumping-induced interaction can also occur 

between a semi-confined and unconfined aquifer that are in hydraulic connectivity. While it is 

assumed that the hydraulic head in the unpumped aquifer will remain constant, this is not the 

case for prolonged or heavy pumping (Sayed and Hussainy, 2011). These are known as leaky 

aquifers, and aquifer drawdown could result in the discharge from one aquifer to the other via 

the semi-pervious layer. 

2.2. Groundwater flow systems 

The idea of groundwater flow systems was proposed by Toth (1963), who divided groundwater 

into local, intermediate and regional flow systems. This division supports the complicated 

nature of groundwater, which is a three dimensional field with components of lateral and 

vertical flow (Winter et al., 1998). These systems are heavily influenced by topography and 

follow the undisputed law of the hydrological cycle: topographically high areas are sites for 

recharge and topographically low areas are sites for discharge (Schwartz and Zhang, 2003). 

Understanding these flow systems is very useful due to their control on groundwater flux, 

residence time, depth and chemical properties (Dahl et al., 2007). 

Local flow systems are the shallowest and generally smallest, with the greatest variability in 

their interaction with surface water, as well as larger recharge rates and shorter residence 

times (Winter et al., 1998). These ‘meteoric waters’ are active participants in the water cycle, 

and are normally comparatively less saline than their deeper counterparts (Van Weert et al., 

2009). In such a local system, the effects of local topographic features, such as depressions, 

are a key controlling factor. An increase in local slope has the effect of increasing the depth 

and concentration of these local systems (Dahl et al., 2007). Recharge occurs at a topographic 

high and discharges to an adjacent lowland. Discharge is seasonal and erratic, and baseflow 

may not even occur in the dry season. In far-reaching flat areas, no local flow systems may 

develop, resulting in stratified groundwater (Dahl et al., 2007). Groundwater is generally 

present in this flow path for less than a year, and surface-groundwater interaction may occur 

in either direction (Gardner, 1999). Contamination by human activities are most likely to occur 

in this groundwater system. 
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Intermediate flow systems occur below local flow systems, but are not as deep as their 

regional counterpart. The topography and geology within a certain region controls the nature 

of intermediate flow paths, and they may interact occasionally with surface water. 

Groundwater residence times may be between 1 and 100 years approximately, and 

precipitation flowing through the vadose zone may enter the groundwater along this flow path 

(Gardner, 1999). Groundwater is discharged along a stream or wetland area. Recharge rates 

are smaller, but discharge into larger streams is continuous and steady throughout the year 

(Dahl et al., 2007). 

Regional flow systems are the deepest, and occur where the regional slope dominates local 

slope, such as between mountainous and coastal areas. Such systems have the longest flow 

paths and greatest residence times, as groundwater is primarily traveling through bedrock, 

and thus they generally contain the most dissolved solids (Winter et al., 1998). Groundwater 

present in regional flow systems typically has no contact with surface water after recharge, 

with recharge often occurring at the divide between two catchments (Dahl et al., 2007). This 

groundwater may have a residence time of thousands of years, and is typically the most 

resilient to degradation by human intervention (Gardner, 1999). 

2.3. Groundwater recharge 

The global hydrological cycle is a complex system controlled by the processes of inflow (from 

precipitation and snow melt), recharge and outflow (from runoff and evapotranspiration), with 

ground and surface water only forming two components of this system (Freeze and Cherry, 

1979). Groundwater is recharged from precipitation, rivers, large water bodies and 

anthropogenic activities such as irrigation. Recharge is therefore defined as the hydrologic 

process where the downward flow of water, through infiltration and percolation, contributes to 

the permanent water table. This recharge value is often represented as the increase in stored 

water (∆S), and forms an integral part of the water balance ∆S = P – R – E where P is 

precipitation, R runoff, and E actual evaporation (Rushton and Ward, 1979). Understanding 

groundwater dynamics is particularly important in the modern climate, where rapid 

urbanisation coupled with expanding industrial and agricultural activities are placing increasing 

pressure on water requirements. A thorough knowledge of groundwater recharge is therefore 

necessary to determine the limit for safe groundwater extraction (Hugman et al., 2012), and 

understand subsurface contamination and ecological impact.  

Recharge studies are essential in semi-arid and arid landscapes, where groundwater is the 

primary water source and prone to depletion (De Vries and Simmers, 2002). Many (semi-)arid 

areas are facing a water crisis, and this is likely to be exacerbated by population growth and 
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climate change. The low annual precipitation and high evapotranspiration rates in (semi-)arid 

environments results in low recharge values that are difficult to determine, and vary 

considerably in time and space (Scanlon et al., 2002). 

2.3.1. Mechanisms of recharge 

Lerner et al. (1990) characterised recharge into three principal mechanisms, namely 

direct/diffuse recharge, indirect recharge, and localised/focused recharge. The first 

mechanism is the direct diffusion of precipitation, where water percolates vertically through 

the vadose zone into the groundwater, and will only occur where the additional water is greater 

than evapotranspiration and the soil-water deficit in the unsaturated zone. Indirect recharge is 

associated with river beds and defined channels, where water percolation contributes to the 

recharge of the local water table (Beekman and Xu, 2003). Localised or focussed recharge is 

a form of indirect recharge, where large water bodies with an absence of channels, such as 

lakes, act as the hosts for localised recharge, and concentrated infiltration and percolation 

transfers water through the vadose zone (Robins, 1998). 

While such simplified definitions enable us to contextualise recharge processes, they focus 

on vertical percolation and largely ignore lateral subsurface recharge (Lerner et al., 1990). 

Sharma and Hughes (1985) showed that even with direct recharge, up to 50% of the 

recharged water can bypass the soil zone by moving along preferred pathways. Furthermore, 

in many locations a combination of these mechanisms can occur, in which case the type of 

percolation can play a significant role. De Vries and Simmers (2002) suggest the primary 

processes include diffuse percolation (controlled by hydraulic flux in the unsaturated zone and 

a piston-like flow in the saturated zone), macro-pore flow (along fissures, cracks and root 

pathways), and preferential flow (caused by different physical characteristics in the soil, such 

as a sand-clay interface). 

2.3.1.1. Humid environments 

High water tables are common in humid environments, and the aquifer’s ability to store and 

channel water controls the rate of recharge. Direct infiltration from precipitation is the most 

common mechanism of recharge, with recharge occurring along topographic highs and 

discharging at topographic lows, where baseflow and gaining streams are common. 

2.3.1.2. Semi-arid and arid environments 

The term aridity covers such a large array of studies that it is a somewhat vague concept. 

However, a few defining characteristics can be used for semi-arid and arid areas: small mean 

annual precipitation, high daily and seasonal variations in temperature, low humidity in coastal 
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areas and highly sporadic rainfall over time and area, to name a few (Lerner et al., 1990). 

Rainfall is therefore a defining characteristic, and the selection criteria is usually dictated by 

the mean annual precipitation (MAP) in mm. Perhaps the most widely accepted classification 

was suggested by Lloyd (1986), where hyperarid areas receive 0 - 50 mm, arid 50 - 200 mm, 

and semi-arid 200 - 500 mm MAP. Allison (1988), on the other hand, defined the MAP of semi-

arid environments to be less than 700 mm. For the purpose of this study, the work of Lloyd 

(1986) will be used to define aridity. 

The hydrological processes that control recharge in (semi-)arid areas are identical to those in 

other climates. However, for increasing aridity, it is important to note that the recharge is likely 

to be lower and show more temporal and spatial variation (Wood and Stanford, 1995). The 

pooling of water along topographic depressions and ephemeral streams is characteristic of 

arid settings, resulting in indirect or localised recharge to unconfined aquifers (Scanlon et al., 

2002). Gee and Hillel (1988) identified common flow pathways caused by shrinkage cracks 

and roots (several centimetres) and topographic or lithologic variations (several metres) as 

important for localised recharge. A third important flow path, not present in all (semi-)arid 

settings, is controlled by playa basins and karst sinks, and can be more than several hundred 

metres in diameter (Gee and Hillel, 1988).  Direct recharge can occur, but rapid percolation 

along preferred pathways is necessary to overcome the effects of evaporation and 

transpiration. Furthermore, high rainfall events are required for the rewetting of the dry, 

unsaturated zone, a necessity for effective infiltration and drainage (Van Wyk et al., 2012).  

Unconfined aquifers are commonly found in (semi-)arid landscapes and have 

characteristically deep water tables and losing streams (Scanlon et al., 2002). They are often 

the most accessible water sources in (semi-)arid regions, making them prone to over-

exploitation and contamination (De Vries and Simmers, 2002). The upwards leakage of water 

from confined aquifers, as well as lateral groundwater movement from areas of higher rainfall, 

may contribute significant recharge to unconfined aquifers (Fontes and Edmunds, 1989). 

Vegetation and soil characteristics also affect the unsaturated zone of shallow, unconfined 

aquifers. Vegetation has the evolutionary trait of being able to adapt (both in variety and 

density) to long-term rainfall values, and will extract water depending on the available soil 

moisture. For this reason, a sparsely vegetated landscape will have a greater recharge per 

unit rainfall than a denser vegetation, assuming all the other factors are constant (Bredenkamp 

et al., 1995). However, desert flora have effective transpiration methods, and deep-rooting 

acacia trees found in the Kalahari may extract water from depths greater than 50 m (De Vries 

and Simmers, 2002). Where indigenous, shrub-like vegetation has been cleared for shallow-

rooted crops and grassland, recharge may increase (Allison, 1988). Soil texture and 
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permeability are also important parameters for recharge, where coarse-grained soils and sand 

have higher recharge rates than fine-grained soils and clays (Scanlon et al., 2002). A reduction 

in the thickness of the soil crust (containing in-washed fine particles) and the unsaturated zone 

(a host for evapotranspiration processes) will result in an increase in recharge (Balek, 1988). 

(Semi-)arid areas occasionally host high-quality groundwater resources, and these are likely 

to be derived from past climates with higher rainfall and recharge values (Herczeg and Leaney, 

2011). They are commonly referred to as historical groundwaters. One of the oldest ground 

waters, with a residence time of 350,000 years, was found in the Great Artesian Basin of 

Australia (Airey et al., 1979). 

2.3.2. Groundwater recharge estimation techniques 

A variety of methods are available for estimating the quality and quantity of groundwater 

recharge and have been outlined by Allison (1988), Beekman and Xu (2003), Bredenkamp et 

al. (1995), De Vries and Simmers (2002), Gee and Hillel (1988), Lerner et al. (1990) and 

Scanlon et al. (2002) among others. These techniques are applicable to certain of the three 

hydraulic zones, namely surface water, the unsaturated zone, and the saturated zone. No 

single recharge estimation technique can be identified as applicable across a range of 

groundwater environments, and all the suggested methods give somewhat variable results 

(Simmers, 1988). The technique must be selected based on the temporal and spatial scales 

of the study, as well as the recharge flux and estimated groundwater age (Beekman and Xu, 

2003). (Semi-)arid environments present a particularly complicated setting for recharge 

estimations, with the recharge flux becoming smaller and more variable with increasing aridity. 

Fewer estimation methods can therefore be successfully used in (semi-)arid settings, and the 

effects of urbanisation and changing land practices on recharge are not always fully 

understood (De Vries and Simmers, 2002). 

Although indirect recharge mechanisms are important in (semi-)arid settings (Scanlon et al., 

2002), the methods for estimating direct recharge mechanisms are more reliable and still form 

the basis of many techniques (Lerner et al., 1990). Methods for estimating indirect recharge 

commonly make use of ‘at-point’ hydraulic properties from isotope and chemical tracers in the 

unsaturated zone, or water balance approaches (where the surface runoff is an important 

component) (De Vries and Simmers, 2002). These methods therefore estimate the potential 

recharge or drainage (Scanlon et al., 2002). The term ‘potential recharge’ was first proposed 

by Rushton (1988) to distinguish between the actual recharge, which reaches the water table, 

and the potential recharge, estimated from surface water and unsaturated zones and may not 

actually reach the water table. Evaporation and transpiration, as well as the inconsistent 
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spread of soil and vegetation type, can affect the recharge in these localised, near-surface 

environments (Koeniger et al., 2016). The application of these ‘at-point’ assessments may 

prove troublesome on a regional scale, where small spatial variability is negligent, but do 

provide invaluable information about local water quality and waste-disposal sites (De Vries 

and Simmers, 2002). 

Recharge techniques addressing the saturated zone are more applicable for assessing direct 

recharge mechanisms over larger areas, and they represent the actual recharge that 

contributes to the groundwater. However, a time delay exists between when the meteoric 

water enters the saturated zone, and when this water becomes available as a consumable 

groundwater resource (Balek, 1988). This could result in further chemical and isotopic 

alteration, and uncertainties regarding the origin of the recharge. 

Common recharge estimations are differentiated between physical techniques, tracer 

techniques and groundwater modelling. Multiple recharge estimation techniques should be 

used to reduce the uncertainties of each approach. 

2.3.2.1. Physical techniques 

Physical methods rely on direct measurements and produce quantitative results. In (semi-)arid 

environments, low hydrological fluxes may result in minor changes in hydrological parameters, 

which may prove difficult to detect (Allison, 1988). Due to the high variability of (semi-)arid 

rainfall, the measurements should be captured over multiple years to establish mean values. 

(a) Water Table Fluctuation (WTF) 

The water-table fluctuation (WTF) method is based on a simple concept; a rise in the water 

table during the rainy season is a direct result of recharged water reaching the unconfined 

aquifer. The recharge is calculated as (Scanlon et al., 2002): 

𝑅 =  𝑆𝑦  
∆ℎ

∆𝑡
 

Where 𝑆𝑦 is the specific yield of the aquifer, ℎ is the height of the water table, and 𝑡 is time. 

This method is ideally suited for short time periods and unconfined aquifers, where shallow 

water tables display sharply increasing and decreasing water levels (Scanlon et al., 2002). 

Difficulties arise in determining the specific yield and the effects of pumping and atmospheric 

pressure on water level responses, and it is often used in combination with other estimation 

techniques (Lerner et al., 1990). 
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(b) Lysimeter 

Lysimeters are physical measuring devices that measure evapotranspiration. They are used 

for recharge estimations in the unsaturated zone and provide point measurements. They are 

the most direct form of recharge estimation, and have been used extensively to monitor the 

evapotranspiration and hydrochemistry of agricultural soils (Bredenkamp et al., 1995). 

However, only a few studies have yielded successful recharge estimations. The rate of water 

drainage out the bottom of the lysimeter is measured, and is assumed to be proportional to 

the recharge or moisture flux (Beekman and Xu, 2003). Lysimeters are typically up to 10 

metres in all three dimensions to minimise the effects of local soil, vegetation and climate 

differences (Lerner et al., 1990). They are expensive to construct and maintain, and 

experiments are often abandoned before a wide range of data can be collected. 

2.3.2.2. Natural tracer techniques 

Multiple review papers focus specifically on the use of chemical and isotopic tracer techniques 

for assessing groundwater recharge (Fontes and Edmunds, 1989; Geyh, 2001; Herczeg and 

Leaney, 2011; Koeniger et al., 2016). Natural tracer techniques have an added advantage 

over physical techniques in semi-arid environments as the accuracy of recharge estimates do 

not decrease with increasing aridity and decreasing moisture flux to groundwater (De Vries 

and Simmers, 2002). They provide long term estimates, but little detailed information on a 

short time scale (Scanlon et al., 2002). 

(a) Chloride Mass Balance 

The use of the chloride ion as a tracer was first applied in the saturated zone by Eriksson and 

Khunakasem (1969) to estimate recharge rates to a coastal plain aquifer in Israel. This method 

assumes that chloride is conservative, and therefore the input of atmospheric chloride is 

equivalent to chloride flux in the subsurface. Since 1969, the use of chloride tracers in the 

saturated zone are now universally referred to as the Chloride Mass Balance technique and 

has been used in numerous recharge studies. Allison and Hughes (1978) have also 

successfully showed the use of chloride in the unsaturated zone as a technique for estimating 

recharge. 

Wood and Stanford (1995) assessed the validity of the study of Eriksson and Khunakasem 

(1969). They argued that the CMB results lacked validation from physical methods, but 

demonstrated that under certain conditions and assumptions, this method can be used in 

(semi-)arid areas to calculate regional recharge rates comparable to physical methods. Wood 

(1999) suggests that the following four statements must hold true for the CMB technique to be 
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successfully used: (1) all chloride in the groundwater must originate from precipitation directly 

infiltrating the aquifer; (2) chloride in the aquifer is conservative; (3) the chloride-mass flux has 

been consistent over time; (4) chloride is not recycled or concentrated in the aquifer. In the 

case of recharge estimations by Eriksson and Khunakasem (1969), it is now known that sea-

water intrusion effected the validity of these results. 

A limiting factor in some areas of South Africa is the absence of long term rainfall values. 

However, Sami and Hughes (1996) successfully used the technique to calculate recharge in 

a Karoo aquifer, with results comparable to physical techniques. For CMB, the general 

equation used is: 

𝑹 =  
𝑷 × 𝑪𝒍𝒑

𝑪𝒍𝒈𝒘
 

Where 𝑅 is recharge (mm/a), 𝑃 is annual precipitation (mm), 𝐶𝑙𝑝 is chloride concentration in 

rainwater, and 𝐶𝑙𝑔𝑤 is chloride concentration in groundwater. 

Care must be taken when applying this technique as it is not suitable for higher recharge rates, 

and many discrepancies are caused by preferential flow (Wood, 1999). Pollution during rainfall 

collection and sampling is an area of concern, as well as the effects of dry aerosol deposition, 

particularly in coastal areas and during the dry seasons when vegetation cover is limited (Van 

Tonder and Bean, 2003). Although not as accurate as other methods, differences in recharge 

estimation are within a factor of five, and the relative simplicity and cost-effectiveness of this 

method make it highly recommended (Beekman and Xu, 2003). The CMB technique provides 

point estimates for spatial scales that range from ~200 m to several kilometres, and time 

scales of  decades to thousands of years (Scanlon et al., 2002). It is mainly used for recharge 

on a local-scale recharge, and seldom applied to regional-scale recharge (Wood, 1999). 

(b) Stable O and H isotopes 

Verhagen (2003) eloquently describes the use of stable isotope data in the saturated zone as 

a “snapshot” of recharge studies, as it provides a broad visual understanding of the 

hydrological cycle, and can form a helpful contribution to other estimation techniques. While 

stable isotopes can help delineate the water’s origin and evaporative history, they cannot be 

used to quantitatively estimate recharge (Bredenkamp et al., 1995). The natural process of 

fractionation between heavier and lighter isotopes supports their applicability to identify 

groundwater infiltrating at high altitude regions or during a colder climate, as well as water 

where evaporation has occurred after recharge (Bredenkamp et al., 1995). The large 
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fluctuations in δ-values of precipitation are largely homogenised by the time this rainfall 

reaches the water table (Allison et al., 1983), and isotopic ratios remain conservative at 

ambient temperatures (Gat, 1996). (Semi-)arid areas typically have groundwater with a more 

negative stable isotopic ratio in comparison to surface water, supporting recharge that is 

derived from prolonged, intense rainfall events or during a previous climatic period 

(Bredenkamp et al., 1995). In both humid and semi-arid environments, precipitation and 

groundwater both obey the LMWL (Dansgaard, 1964). 

Stable isotopes have also been used in the unsaturated zone. Allison et al. (1983) suggested 

that a relationship existed between the deuterium deficit of the soil moisture (in comparison to 

the LMWL), and the recharge in the unsaturated zone: 

𝐷𝑒𝑢𝑡𝑒𝑟𝑖𝑢𝑚 𝑑𝑒𝑓𝑖𝑐𝑖𝑡 ∝  
1

√𝑅𝑒𝑐ℎ𝑎𝑟𝑔𝑒
 

While Allison et al. (1983) could validate this relationship in a wide variety of climatic regimes, 

with moisture fluxes less than 10 mm/year, this relationship did not prove applicable in other 

studies. This could be due to variations in vegetation and seasonal changes in the stable 

isotope composition of rainfall (Herczeg and Leaney, 2011). 

(c) Event markers 

Nuclear weapon testing during the late 1950s and early 1960s released large amounts of 36Cl 

and 3H into the atmosphere, which are now referred to as historical tracers or event markers. 

These isotopes can be used as tracers of soil water movement, and can be used to calculate 

recharge or water flux in the unsaturated zone. Where ∆𝑧 is the depth of the 36Cl or 3H peak 

in the soil, 𝜃 is the average water content above the peak of the tracer, and ∆𝑡 is the time 

between the tracer fallout and sampling, recharge rates can be calculated as (Scanlon et al., 

2002): 

𝑅 =  
∆𝑧

∆𝑡
 𝜃 

This calculation is applicable for recharge rates between 10 and 50 mm/a (Scanlon et al., 

2002). Tritium and chlorine-36 also prove useful for outlining preferential flow paths in the 

unsaturated zone. This is noticeable where soil profiles show deeper tritium concentrations in 

comparison to chlorine-36, as tritium has a greater affinity for the liquid phase (Scanlon et al., 

2006). 
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Applied in the saturated zone, 3H is only able to differentiate between recharge that occurred 

during the peak of bomb fallout, and that which occurred before or after (Cook and Solomon, 

1997). It is therefore a suitable tracer for shallow groundwater that has recharged in the past 

50 years. However, with a short half-life of 12.28 years, tritium concentrations have drastically 

reduced due to radioactive decay. This is further exacerbated in the southern hemisphere, 

where tritium concentrations increased by one order magnitude between 1963 and 1965, 

comparatively less than an increase of three orders of magnitude in the northern hemisphere 

(Allison and Hughes, 1977). As it becomes increasingly difficult to differentiate between natural 

and bomb-pulse tritium in precipitation, other methods have become necessary to determine 

groundwater ages 

(d) Groundwater age dating 

Tracers such as CFCs, 3H/3He, 14C and 16Cl can be used to calculate groundwater age. Using 

the specific radioactive decay of isotopes, groundwater age can be inferred from the time 

between when the isotope was isolated from the atmosphere (recharge) and when sampling 

occurred (Bredenkamp et al., 1995). CFCs and 3H/3He are used to estimate recharge rates in 

shallow, unconfined aquifers, where groundwater flow is predominantly vertical. Scanlon et al. 

(2002) suggested that these isotopes may only prove useful where water tables are less than 

10 m deep. The noble gas helium-3 is the daughter product of tritium, and will increase in 

comparison to tritium as the groundwater age increases. The groundwater age can be 

calculated using 3H and tritiogenic 3He, where 𝑡1/2 is the half-life of tritium (Scanlon et al., 

2002): 

𝑡 =  −
1

𝜆
ln (1 +  

𝐻𝑒3

𝐻3 )               𝜆 =  
𝑙𝑛2

𝑡1/2
 

Due to the diffusive properties of tritium in the unsaturated zone, the 3H/3He technique cannot 

produce reliable recharge rates where this value is less than 30 mm/a (Cook and Solomon, 

1997). CFCs have lower diffusion coefficients and may prove more effective at lower recharge 

rates. Additional helium-4 may also enter the groundwater from the aquifer material or an 

inflow from the mantle (De Vries and Simmers, 2002). 

Confined, deeper aquifers have horizontal flow velocities, and these can be estimated using 

radioactive decay of 14C and 36Cl, making them particularly useful in (semi-)arid areas where 

groundwater typically has longer residence times. Carbon-14 and Chlorine-36 have a half-life 

of 5 730 years and 300 000 years respectively, and chlorine-36 is used to date groundwater 

with ages in excess of 50 000 years (Mook, 2001). 
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2.3.2.3. Numerical modelling 

Recharge and hydraulic conductivity often exhibit good correlations, and numerical models 

make use of available hydraulic information to simulate recharge estimations (Scanlon et al., 

2002). These simulated predictions are a useful tool in collaboration with tracer and physical 

techniques. The water budget method, founded on the water balance, forms the basis of this 

method. The accuracy is therefore largely dependent on the quantity of data, as well as the 

quality of the spread of boreholes, frequency of captured data and correct predictions of 

aquifer boundary conditions (Van Tonder and Bean, 2003). Numerical models have the added 

benefit of not only predicting the rate of recharge, but also the distribution of the recharge, 

assuming that the parameters for the model are well established (Sanford, 2002). In most 

hydraulic settings, where groundwater flows paths are controlled by the climate, land-surface 

features and geological units (Winter, 2001), models typically use a framework that 

incorporates all three parameters.  Although a powerful tool, their use is cautioned in (semi-

)arid settings where hydraulic-conductivity data is limited, and low recharge results in limited 

groundwater fluctuations. 

(a) Cumulative Rainfall Departure (CRD) 

The CRD is based on the principle that over time, an aquifer will reach equilibrium. At such a 

state, the loss of groundwater will be equal to recharge. Thus, any groundwater fluctuation 

must be a result of rainfall departing from the mean annual precipitation, where a groundwater 

rise will result in a positive CRD value and vice versa (Xu and Van Tonder, 2001). Bredenkamp 

et al. (1995) showed the success of this method in South Africa. Based on the water balance 

equation, a simple equation shows the calculation or recharge (Xu and Van Tonder, 2001): 

𝑅𝑡 =  𝑟𝐶𝑅𝐷𝑖 =  𝑆𝑦  [∆ℎ𝑖 +
𝑄𝑝𝑖 +  𝑄𝑜𝑢𝑡𝑖

𝐴𝑆𝑦

] 

Where 𝑟 is the fraction of a CRD during month 𝑖 that contributes to recharge, 𝑆𝑦 is the specific 

yield of the aquifer, ∆ℎ𝑖 is the water level change during the month (L), 𝑄𝑝 is the groundwater 

abstraction (L3/T), 𝑄𝑜𝑢𝑡 is natural outflow, 𝐴 is the recharge area (L2), and 𝑃𝑖 is rainfall (L/T). 

An optimisation process during simulation can estimate 𝑟/𝑆𝑦 which will minimise the 

differences between actual and calculated fluctuations over time (Beekman and Xu, 2003). 

The added benefits of such an equation is the incorporation of the effects of outflow and 

pumping, which the Water Table Fluctuation method cannot accomodate. This method is 

particularly useful for fractured, unconfined aquifers with a small storativity, as the effects of 

rainfall recharge on water tables are more pronounced (Beekman and Xu, 2003). 
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3. ENVIRONMENTAL SETTING 

The Verlorenvlei is a RAMSAR listed wetland, situated 200 km north of Cape Town, in the 

Sandveld region along the west coast of South Africa. The vlei extends between the villages 

of Elands Bay and Redelinghuys, making it one of South Africa’s largest estuarine lakes. The 

lake is an important feeding ground for a variety of endangered bird species and has a high 

biodiversity profile due to the interaction between the fresh and marine water systems. The 

lake itself is relatively shallow but extends over a significant area (15 by 1.5 km) and as a 

result, evaporative losses from the lake are significant. However, the vlei has to date never 

run dry (although lake water levels are variable), and this is because the lake is fed by both 

surface water and groundwater from the Verlorenvlei catchment (Conrad et al., 1999). The 

Verlorenvlei catchment covers an area approximately 1890 km2, and is bounded by the 

Swartberg and Olifantsrivier mountains in the east and north-east, and the Piketberg Mountain 

range in the west and south-west (Noble and Hemens, 1978). Climate change coupled with a 

large amount of agriculture has had an impact on the quantity and quality of water in the major 

rivers that feed the lake. 

3.1. Geology 

The Malmesbury Group (~750 Ma) is the host of the oldest rocks found in the area, and forms 

the Precambrian (Neoproterozoic) basement upon which all younger geological deposition 

occurred. Hartnady et al. (1974) divided this group into three ‘terranes’, namely the 

northeastern Boland, central Swartland and southwestern Tygerberg terranes, suggesting that 

tectonic processes have controlled the formation of the three terranes. The existence of these 

terranes has however been questioned by Kisters et al. (2002). These tectonic processes form 

part of the Pan-African Orogeny (~600 Ma), where the Malmesbury Group forms part of the 

low-grade Saldania belt, and northwesterly striking faults zones divide the group into the 

terranes, all of which display a NW-SE trending structural grain (~600 Ma) (Gresse et al., 

2006). The northeastern Boland and central Swartland terranes are separated by the 

Piketberg-Wellington fault, which lies just to the south-east of the catchment boundary (Figure 

2). It is believed to be tectonically linked to the Krom Antonies lineament, which represents a 

zone of crustal weakness in the Malmesbury Group (Rozendaal et al., 1994).  The Krom 

Antonies lineament marks the western boundary of the Riviera pluton, with a possible 

downthrow of ~450 m (Rozendaal et al., 1994). The Redelinghuys fault, running through the 

centre of the catchment, is associated with the Piketberg-Wellington fault and a product of 

Pan-African tectonics (De Beer, 2003) (Figure 2). The Swartland Terrane is in turn separated 

from the southwestern Tygerberg Terrane by the Colenso (Piketberg-Wellington) fault. 
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While the Verlorenvlei catchment lies in the Boland Terrane, a small portion of the 

Moorreesburg Formation of the Swartland Terrane outcrops on the eastern edge of the 

catchment, and consists predominantly of greywacke and phyllite (Gresse et al., 2006) (Figure 

2). The sediments of the Malmesbury Group are likely to have been deposited on a passive 

continental margin; including ocean basin (turbidite sequences of the Tygerberg Terrane), 

ocean shelf (Swartland Terrane), and near-shore environments (Boland Terrane) (Rozendaal 

and Scheepers, 1995), although the Boland terrane may be the only one that is autochtonous 

in nature (Kisters et al., 2015). The lowermost Piketberg Formation of the Boland Terrane is 

exposed between the towns of Piketberg and Redelinghuys, although outcrops are only poorly 

seen against hill slopes and along road cuts. It is a highly foliated and lineated argillaceous 

rock comprised of greywacke, sericitic schist, feldspathic limestone, conglomerate and 

quartzite (Rozendaal et al., 1994). The Porterville Formation (Boland Terrane) covers a large 

area in the eastern catchment and consists mainly of greywacke, phyllite and shale (Gresse 

et al., 2006). 

The Tygerberg and Swartland Terranes in particular are host to a large number of granite 

intrusions of the Cape Suite (Rozendaal et al., 1994). The Cape Granite Suite intruded the 

meta-volcano-sedimentary rocks of the Malmesbury Group syn- and post- tectonic (~510 Ma), 

with the northwest trending Colenso and Wellington faults controlling the spatial distributions 

of these S- and I- type granites (Kisters et al., 2015). The Boland Terrane has only two 

exposed plutons, 150 km southeast of Piketberg, but drilling has revealed the presence of 

other plutons at depth. Of significance is the Riviera granite pluton in the Moutonshoek valley,   

that intruded a NW-trending fold structure in the Malmebsury group. Tungsten and 

molybdenite mineralisation are associated with the deposit, but no mining has occurred yet 

(GEOSS, 2012). Elevation of the pluton, followed by erosion and recent sedimentary 

deposition, has placed the pluton in a near-surface environment (Rozendaal et al., 1994). The 

pluton is terminated on the western, eastern and northern boundaries by fault systems.  

The Malmesbury Group and Cape Granite Suite are unconformably overlain by the Cambrian 

Klipheuwel Group and its Populiersbos Formation, which outcrops in the Redelinghuys area. 

It is characterised by red to purple shale, conglomerate and arkose (De Beer, 2003). 

Quartzose sandstones of the Table Mountain Group (TMG) form the Piketberg and Cederberg 

mountain ranges that flank the eastern ridge of the Sandveld. These sedimentary rocks form 

part of the Cape Supergroup that was deposited in a passive margin basin following the end 

of the Pan-African Orogeny (~500 Ma), and shows a sedimentary succession that includes 

sandstone, shale and small amounts of conglomerate (Tankard et al., 2009). The TMG forms 

the lower most unit of the Cape Supergroup (~450 Ma), and unconformably overlies the 
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Malmesbury basement rocks (Thamm and Johnson, 2006). The depositional environment of 

the TMG ranges from shallow marine to fluvial, with glacial deposits. The TMG is hard and 

resilient in nature, forming a stark contrast against the easily weathered rocks of the 

surrounding Malmesbury Group. The Sandveld region is dominated by the Pikenierskloof, 

Graafwater, Peninsula and Cedarberg Formations of the TMG. The oldest Piekenierskloof 

Formation consists of course-grained sandstone, conglomerate and minor amounts of shale. 

It has a thickness of 390m west of Eendekuil (Figure 2), comparative to a maximum thickness 

of 900 metres to the northwest of Citrusdal (Rust, 1967). This is overlain by the quartzose 

sandstone, shales, siltstones and occasionally conglomerates of the Graafwater Formation 

(Thamm and Johnson, 2006). The sandstone component varies between 50 and 100% of the 

total formation (De Beer, 2003).  The Peninsula Formation is the main unit of the Cape 

Supergroup, with a maximum thickness of up to 2000 metres around Citrusdal (Thamm and 

Johnson, 2006). It consists mainly of quartz arenite, and contains small amounts of 

conglomerate and shale, and is characterised by bedding planes of one and four metres in 

thickness (De Beer, 2003). It caps the Piketberg Mountain range, and covers an extensive 

area in the north of the catchment, with an average thickness of 900 m at Piketberg (Rust, 

1967). The glacially deposited Pakhuis formation is not present in the catchment, and 

uppermost Cedarberg Formation only thinly outcrops across the catchment, and is 

characterised by shale and siltstone that is typical of an offshore shelf. The uppermost unit of 

the Table Mountain Group, the Nardouw subgroup, only crops out in a small area in the central 

catchment. It is comprised of a thick layers of quartzose sandstone (Thamm and Johnson, 

2006). Deformation and low-grade metamorphism caused by tectonism during the Cape Fold 

Belt event (~250 Ma) has caused an overprint that hinders the identification of original 

Malmesbury lithostratigraphy (Rozendaal and Scheepers, 1995). 

The Sandveld Group of Cenozoic deposits is the youngest geological unit that covers the 

southwestern coast from False Bay to Elands Bay. A range of depositional environments 

(including shallow marine, Aeolian, estuarine and fluvial) have contributed to this rather thin 

deposit (Roberts et al., 2006). 
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Figure 2: Geology of the Verlorenvlei catchment (courtesy of the Council for Geoscience), including 
the distribution of regional faults 

3.2. Geomorphology 

The low-lying areas to the west of the catchment are covered by littoral sands, likely to be of 

aeolian origin, providing relatively infertile soils with low water retaining capacity (Maclear, 

1994). They have a low amount of weatherable minerals, as well as little clay or silt. The soil 

tends to be acidic, but becomes more alkali towards the coast due to the accumulation of lime 

(CSIR, 2009). The banks of the Verloren River and tributaries are areas of highly fertile soil 

where plant material has accumulated. The comparatively fertile Krom Antonies river valley 

has an upper alluvial sandy soil layer ~3-12m thick, and an underlying clay layer ~3-25m thick 

(SRK, 2009). The Piketberg Mountain range enclosing the Krom Antonies River in the east 

has the highest topographic elevation (1446m), and thus mark the eastern boundary for the 

catchment, which extends towards Elandsbaai.  

Regional faults 
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3.3. Hydrology and Hydrogeology 

The Verloren River contributes the bulk fresh water input to the Verlorenvlei estuarine system. 

It flows mainly during winter and early summer, with its flow being reduced to a trickle in the 

dry summer months (Sinclair et al., 1984). It has four main tributaries which drain three of the 

four quaternary catchments (G30B, G30C and G30D) (Figure 3). At a length of 50 km, the 

Kruismans River is the longest tributary and drains the extensive, low-lying Kruismans basin 

between the Olifantsrivier Mountains and the Piketberg Mountain range. The Bergvallei River 

drains the Swartberge and flows into the Kruismans River. It is mostly dry, and the lack of 

surface water flow has resulted in parts of the river beds being ploughed for agriculture (CSIR, 

2009). The Hol and Krom Antonies rivers drain the same quaternary catchment, with the Hol 

River only flowing sporadically after very good rains. The Krom Antonies River is the shortest 

tributary of the Verlorenvlei, but arguably the most significant in terms of freshwater input, as 

it drains the Mountonshoek Valley of the Piketberg Mountain range. The point where the Krom 

Antonies joins the Hol River has been termed the confluence. 

 
Figure 3: Quaternary catchment of the Verlorenvlei 

The Verlorenvlei catchment has both unconsolidated primary and fractured-rock secondary 

aquifers. The unconfined primary aquifer is hosted by coarse grained, unconsolidated sands, 

with a flow direction that follows the topography and tributaries (GEOSS, 2006; Watson et al., 
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2017a). It produces high yielding boreholes, and dominates the west of the Verlorenvlei 

catchment. Due to its shallow, unconfined nature, it is prone to contamination from 

anthropogenic activities, with salinity increasing towards the coast (Conrad et al., 2004). The 

primary coastal aquifers may have also experienced marine transgression in the past (DWAF, 

2004). An unconfined, primary aquifer is present in the Moutonshoek Valley of the Piketberg 

Mountain range, but decreases in thickness as the sediments in the valley give way to the 

sandstone formations of the Table Mountain Group.  

The primary aquifer is underlain by a semi-confined to confined secondary aquifer hosted by 

the Malmesbury Group, with a partial clay aquitard (Conrad et al., 2004). Faults, weathering 

zones and bedding planes are the primary features that control groundwater flow (Conrad et 

al., 2004). The secondary aquifer is associated with high yielding artesian boreholes and good 

quality groundwater (particularly along the Krom Antonies River). The primary and secondary 

aquifer are likely to be hydraulically connected, and as the piezometric head is generally higher 

than the water table, Conrad et al. (2004) suggests that the secondary aquifer discharges into 

the primary aquifer. The primary aquifers to the west of the catchment are characterised by 

low recharge, due to low rainfall and thick sands (DWAF, 2004). 

The TMG rocks of the Piketberg Mountains host an additional fractured rock aquifer system. 

While the primary aquifer is recharged directly from rainfall, the secondary aquifer does not 

show any response to rainfall (Watson et al., 2017b). It is therefore likely that the secondary 

aquifer is recharged directly by the TMG aquifer at the top of the Moutonshoek catchment as 

a result of a high hydraulic gradient, and groundwater flow following a SE-NW direction, 

primarily controlled by faults (Watson et al., 2017b; Munch et al., 2013; GEOSS, 2006; Conrad 

et al., 2004; Timmerman, 1986). This is supported by the high potential evaporation in the 

valley, ~1600 mm/a (Watson et al., 2017b), which limits vertical recharge from rainfall. The 

majority of the TMG groundwater occurs in the Peninsula Formation of the Piketberg Mountain 

range, and shows a dip of 13 degrees (Watson et al., 2017c). 
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Table 1: Stratigraphy and hydrostratigraphy of the Verlorenvlei catchment 

 

While the Krom Antonies, Hol and Verloren Rivers drain a single Groundwater Resource Unit 

(GRU), as defined by GEOSS (2006), the Kruismans River drains the quaternary catchment 

G30B with a GRU that is fundamentally different. Unlike the mountainous area of 

Moutonshoek, the Kruismans River drains the flat lying plains of the Malmesbury Group, which 

is low yielding and results in limited groundwater abstraction (GEOSS, 2006). The Bergvallei 

River similarly crosses three GRUs (GEOSS, 2006). The most lower reaches of the Bergvallei 

River (in close proximity to its confluence with the Kruismans River) occur in the same 

groundwater setting as the Krom Antonies, Hol and Verloren Rivers. An increase in elevation 

along the Bergvallei marks the change to a new GRU, which is characterised by high-yielding 

primary aquifers and groundwater flow directions directed towards the coast (GEOSS, 2012), 

suggesting that this groundwater contributes little to the Verlorenvlei system. 

3.4. Climate and vegetation 

The Verlorenvlei is described as a Mediterranean climate, with 80% of the rainfall occurring in 

the winter months between April and September (CSIR, 2009). The highest rainfall occurs in 

the Piketberg mountains to the southeast of the catchment, which is the origin of the Krom 

Antonies River. An average annual precipitation of around 550 mm/year is recorded on the 

Piketberg mountain range (Lynch, 2004). Towards the east of the catchment this value 

decreases drastically, with Elands Bay (the mouth of the Verlorenvlei) receiving around 210 

mm/year. These rainfall patterns are extremely variable, and a single, rare heavy shower can 

contribute up to one year worth of precipitation (CSIR, 2009). The winter rainfall period 

corresponds to lower average temperatures between 8 and 13 °C, with average summer 

temperatures of 17 to 23 °C (Schulze et al., 2008). Evaporation increases towards the coast, 

with the upper reaches of the Mountonshoek valley experiencing a potential evaporation rate 

Age range 

(Ma)
Supergroup Group Formation Description Unit

Terminology used 

in this thesis

2 - 0 Sandveld (Various) Alluvium
Quaternary 

Aquifer
Primary Aquifer

Cedarberg Shale; siltstone

Peninsula Quartz arenite

Graafwater Sandstone; shale; siltstone

Piekenierskloof
Course-grained sandstone; 

conglomerate 

Porterville Greywacke; phyllite; shale 

Piketberg
Greywacke; schist; limestone; 

conglomerate; quartzite

Moorreesburg Greywacke; phyllite

417 - 443

545 - 750

Stratigraphy

Table MountainCape

Malmesbury

Table 

Mountain 

Group Aquifer

Malmesbury 

Group Aquifer

Hydrostratigraphy

TMG Aquifer

~~~~Major unconformity~~~

~~~~Major unconformity~~~

Secondary Aquifer
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of 950 mmm/year (Watson et al., 2017b). At the confluence of the major tributaries, the mean 

annual precipitation is greatly exceeded by a potential evaporation rate of 1460 mm/year 

(Watson et al., 2017b). 

Most of the indigenous vegetation in the catchment is Strandveld Fynbos; a semi-succulent 

vegetation that is described as a transition between Coastal Fynbos and Succulent Karoo 

vegetation (CSIR, 2009). These both  ecologically important biomes, and have been identified 

by the government of South Africa as being a top conservation site (Archer et al., 2009). 

 
Figure 4: Mean annual precipitation in the Verlorenvlei (Lynch, 2004) 

3.5. Land use and cover 

Agriculture is the predominant water user in the catchment, and accounts for more than 90% 

of the total water demand (Archer et al., 2009). Seed and table potatoes are the primary food 

crop grown, and potato crop circles, using centre pivot irrigation, are visible from high 

elevations (Figure 5). In 2002, 7500 hectares of land was cultivated for potato production 

(DWAF, 2003) and used roughly 20% of the annual recharged groundwater (Archer et al., 

2009). Sandveld potatoes are grown in the sandy soils typically found in the lower parts of the 

catchment. While such a setting results in high yields, the use of extensive fertiliser and water 

is required. Some fields are also left to stand bare between crop rotation (as groundcover 

plants may host potato pests), which results in soil erosion (CSIR, 2009). Rooibos tea 
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production covers a significant area of the land. This arid crop relies predominantly on rainfall 

and therefore contributes little to the water demands. Likewise, natural vegetation provides 

grazing lands for livestock. Citrus and viticulture production also occur, particularly in the upper 

reaches of the Moutonshoek (where high rainfall and good quality groundwater are prevalent), 

as well as in the Kruismans basin. These crops require a large amount of water. 

 
Figure 5: Satellite image of the Verlorenvlei catchment 

3.6. Previous recharge estimates 

Using the chloride mass balance technique, Weaver et al. (1999) calculated  a recharge of 5 

- 16% to the TMG aquifer in the area of Struisbaai, and Miller et al. (2017) a maximum recharge 

of 27% to the TMG aquifer in Paarl. Parsons (2002) estimated a recharge of 5% in areas of 

lower rainfall, and >20% in areas receiving rainfall of more than 600 m/a. Hay and Hartnady 

(2002) support this with recharge estimations between 7 and 44% in the Citrusdal area, and 

with a spatial average of ~23%. Weaver et al. (1999) furthermore shows that a recharge as 

high as 50% is likely to occur in the TMG mountains surrounding the Agter-Witzenberg valley 

near Ceres. 

The west coast has significantly fewer recharge studies, and CMB results show that very little 

rain water recharges the primary aquifers of quaternary catchment G30E (DWAF, 2004). This 

is likely due to the fact that no recharge occurs in alluvial aquifers that receive rainfall of less 
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than 375mm/a, which is applicable to the lower areas of the catchment where rainfall is less 

than 300mm/a (DWAF, 2004). This is supported by Conrad et al. (2004) who estimates a 

recharge of ~2.8% in the valley of the Krom Antonies river and further along the Verloren 

River, and 13 – 20% in the Piketberg Mountains of Moutonshoek.  
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4. METHODOLOGY 

4.1. Study area 

Groundwater occurring along the Krom Antonies, Hol, Kruismans and upper reaches of the 

Verloren Rivers were selected for a detailed study, as these are the main tributaries 

contributing to the Verlorenvlei wetland. The Krom Antonies River forms the central 

component of this study area as it is likely to be the main contributor of fresh groundwater to 

the Verlorenvlei, with high recharge derived from the TMG aquifer of the Piketberg Mountain 

range. Additionally, there are many boreholes tapping into the secondary aquifer, as this area 

supports the highest agricultural activity in the catchment. 

Natural tracer techniques have been selected for recharge estimation in the Verlorenvlei 

catchment, largely due to their cost effectiveness, accuracy in semi-arid environments and 

ability to provide long term estimates. The chloride mass balance (CMB) technique is used as 

the primary method for calculating recharge in this study. This method was selected based on 

the availability of anion analytical facilities in South Africa, the size of the study, and the semi-

arid nature of much of the catchment (< 500 mm/a). Furthermore, the collection of rainfall 

samples will provide a platform for a citizen science component where local residents will 

contribute to the project. These chemical-based recharge estimates will offer an independent 

comparison to the recharge estimates obtained by the physical and modelling techniques of 

Watson et al. (2017) and Conrad et al. (2004). Stable isotopes of 18O and 2H were utilised as 

a supplementary method to the CMB technique. Although stable isotopes cannot produce 

direct recharge estimates, a comparison between stable isotope compositions of rain and 

ground water proved useful in delineating the water’s origin and evaporative history, as well 

as identifying spatial and temporal aspects of recharge and possible recharge mechanisms. 

4.2. Field sampling 

In June 2015, a reconnaissance site visit was undertaken to locate deep boreholes tapping 

into the secondary aquifer, as well as to identify local residents who would assist with the 

collection of rain water. From this visit, eight daily rainfall collection points were identified 

(Figure 6). These were selected in such a way as to cover a large area of the catchment. In 

addition to the eight daily rainfall collection points, a cumulative rainfall collector (M-R) was 

erected on the Piketberg mountain range. The cumulative collector M-R was erected in March 

2016, and the sample collected in September 2016. 
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Figure 6: Eight daily rainfall collection points (orange) and one cumulative rainfall collector (yellow) in 
the Verlorenvlei catchment 

Deep boreholes were selected for sampling during subsequent field trips, based on their 

proximity to the rainfall collectors, distribution across the catchment, and willingness of the 

farmers to assist with regular sampling. Due to time limitations and unforeseeable events, 

such as broken pumps, not all boreholes were able to be sampled during every field trip. In 

total, 41 boreholes were sampled across the catchment during the six sampling trips (Figure 

7). 
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Figure 7: 41 boreholes sampled across the Verlorenvlei catchment 

4.2.1. Groundwater collection 

Six groundwater sampling trips took place during 2015 (June, September, November) and 

2016 (March, June, November), with 102 samples collected from 41 boreholes across the 

catchment (Table 2). Groundwater was only sampled from deep boreholes tapping into the 

secondary aquifer, with 64 samples collected in 2015, and 38 in 2016. An electric pump was 

fitted to 38 of the boreholes, allowing them to be purged before sampling (Figure 8b). Artesian 

aquifers KA12, KA17 and KA19 flow throughout the year and were sampled directly (Figure 

8b). The borehole and sampling locations were situated at a maximum distance of 300 metres 

from one another, and flowed through steel or PVC piping. Where possible, a sample was 

taken directly from the source. The sampling points for a single borehole occasionally differed 

between sampling seasons as the groundwater had been redirected for irrigation purposes. 

The boreholes were purged until the electrical conductivity (EC) had stabilised, indicating a 

homogenous, “fresh” groundwater source. EC, pH and water temperature were measured with 

portable EXTECH EC500 pH/conductivity probes. All probes were calibrated in the morning 

and afternoon, to accommodate for temperature fluctuations. They were calibrated against pH 
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standards of 4, 7 and 10, and EC standards of 1413 μS/cm and 12200 μS/cm. Upon return 

from a sampling trip, EC was also measured in the laboratory of the department of Soil Science 

(Stellenbosch University) using a Eutech con700 EC meter, to validate the values obtained by 

field probes. Major cations, anions and selected trace elements were collected in clean 50 ml 

Polypropylene (PP) tubes. The cation samples were acidified with nitric acid to prevent the 

precipitation of metals. Stable isotopes of oxygen and hydrogen were collected in a clean 15 

ml PP tube. All samples were filtered through a 0.45 μm cellulose acetate filter, and the tubes 

were thoroughly rinsed with filtered water. Samples were double bagged and placed in a 

cooler box with ice during the day, and moved to a refrigerator every evening. Upon return 

from the field, these samples were stored in laboratory fridges. 

Table 2: Deep groundwater sampling points in the catchment; 41 boreholes and 102 samples in total. 

 

River Borehole Jun '15 Sep '15 Nov '15 Mar '16 Jun '16 Nov '16

KA1 x x x x
KA2 x x x x x
KA3 x x x x
KA4 x
KA5 x
KA6 x x x
KA7 x x
KA8 x x
KA9 x x x x x x

KA10 x
KA11 x x x x x x
KA12 x
KA13 x x
KA14 x
KA15 x x
KA16 x
KA17 x
KA18 x
KA19 x
KA20 x
KA21 x x x x
KA22 x
KA23 x x
KA24 x x x
KA25 x x
Krs1 x
Krs2 x
Krs3 x x x x x
Krs4 x x x
Krs5 x
Hol1 x x
Hol2 x x x x x x
Hol3 x x
Hol4 x x x
Hol5 x x
Hol6 x x x x x x
Hol7 x x x
Hol8 x
Vrl1 x x x x x x
Vrl2 x
Vrl3 x

Krom 

Antonies

Kruismans

Hol

Verloren
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Figure 8: Sampling of an electrical pump operated borehole KA11 (A) and an artesian borehole KA17 

(B) along the Krom Antonies River 

4.2.2. Rain water collection 

As part of the WRC’s citizen science initiative, local residents were encouraged to become 

actively involved in the sampling of daily rainfall events. The eight residents who agreed to 

contribute to the project were instructed in the correct protocol for rainfall sampling. It was 

firstly ensured that all rainfall gauges were located at least five metres from any tree or 

construction, and were not near any large dirt roads, to minimise dust pollution. The residents 

were instructed to collect a rainfall sample at 8am after every rainfall event, to minimise the 

effects of evaporation. The collection procedure involved transferring the rain water from the 

gauge to a clean 50 ml PP tube, labelling the tube with the date, time and amount of rainfall 

(which is read off the gauge before decanting it), and then refrigerated until collection during 

the following field trip. Upon return to Stellenbosch, the samples were filtered into two clean 

15 ml PP tubes using a 0.45μm cellulose acetate filter, and sent off for chloride and stable 

isotope analysis. One day of rainfall therefore translates to a single rain water sample. 

Of the eight daily collection points, three collectors (KA-R1, Hol-R and P-R) did not accurately 

record rainfall, and could therefore not be used for recharge estimates. This could be due to 

confusion regarding the sampling protocol, as well as a change in management (as was the 

case for KA-R1). The remaining five collection points were assessed by calculating the 

percentage of total rainfall days that were sampled, and the percentage of the total rainfall (in 

mm) that was sampled. The accuracy of samples for KA-R2, KK-R, VL- R and Krs-R were 

validated against the farmers’ rainfall records (Table 3). KA-R3 is validated against a Davis 

Automatic Weather Station (AWS) that is located 100 metres from the rainfall gauge (Table 

3). Sampling at KK-R, VL- R and KA-R3 commenced in June 2015, and KA-R2 and Krs-R in 

July 2015. KK-R, KA-R3 and Krs-R collected samples for one year until June 2016. KA-R2 

and VL-R continued collecting samples until October and September 2016 respectively.  

A B 
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Table 3: Inclusivity of rain water collection, in comparison to farmer’s records (KA-R2, KK-R, VL-R and 
Krs-R) and the records of an AWS (KA-R3) 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

KA-R2 (Farmer's rainfall records)
Total rainfall (mm) 21 6 11 2 21 102 126 31 10 12 13 2 356

Rainfall sampled (mm) 55 25 8 0 10 0 98

No. rainfall days 3 3 3 1 5 9 7 6 5 4 3 1 50

No. samples 2 4 3 0 2 0 11

KK-R (Farmer's rainfall records)
Total rainfall (mm) 10 8 10 1.5 26 97 103 34 10 12 12 3 327

Rainfall sampled (mm) 39 98 21 6 0 0 0 164

No. rainfall days 1 3 3 1 5 8 9 6 4 3 3 2 48

No. samples 4 6 2 1 0 0 0 13

VL-R (Farmer's rainfall records)
Total rainfall (mm) 7 0 6 1 15 55 56 10 4 11 4 0 169

Rainfall sampled (mm) 19 53 8 3 0 0 0 83

No. rainfall days 2 0 2 1 5 5 5 3 2 1 1 0 27

No. samples 3 4 2 1 0 0 0 10

Krs-R (Farmer's rainfall records)
Total rainfall (mm) 0 4 7 0 3 59 36 19 9 0 10 0 147

Rainfall sampled (mm) 20 18 0 0 0 0 38

No. rainfall days 0 2 3 0 1 3 5 2 2 0 1 0 19

No. samples 2 1 0 0 0 0 3

KA-R3 (AWS rainfall records)
Total rainfall (mm) 12 2 14 2 13 38 57 19 7 5 11 1 182

Rainfall sampled (mm) 19 47 7 5 0 0 0 78

No. rainfall days 4 3 4 2 8 9 11 10 7 3 3 1 65

No. samples 2 5 1 1 0 0 0 9

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

KA-R2 (Farmer's rainfall records)
Total rainfall (mm) 9 1 23 45 11 158 101 43 71 10 2 5 477

Rainfall sampled (mm) 0 0 22 33 9 130 99 43 70 9 415

No. rainfall days 3 1 4 7 3 7 8 4 10 3 1 2 53

No. samples 0 0 2 4 2 5 7 3 9 1 33

KK-R (Farmer's rainfall records)
Total rainfall (mm) 8 0 24 31 14 161 99 15 66 7 0 1 426

Rainfall sampled (mm) 0 0 17 18 8 94 137

No. rainfall days 2 0 4 5 3 8 10 3 10 1 0 1 47

No. samples 0 0 1 2 1 3 7

VL-R (Farmer's rainfall records)
Total rainfall (mm) 0 0 16 18 3 106 55 18 37 4 0 2 259

Rainfall sampled (mm) 0 0 4 17 2 104 55 10 4 196

No. rainfall days 0 0 4 5 3 6 6 3 5 1 0 1 34

No. samples 0 0 1 4 1 5 6 1 1 19

Krs-R (Farmer's rainfall records)
Total rainfall (mm) 5 0 13 19 11 78 26 18 13 2 185

Rainfall sampled (mm) 0 0 0 0 0 50 50

No. rainfall days 1 0 1 2 3 3 2 3 2 1 18

No. samples 0 0 0 0 0 1 1

KA-R3 (AWS rainfall records)
Total rainfall (mm) 4 0 8 30 7 73 54 28 25 229

Rainfall sampled (mm) 0 0 0 0 0 51 51

No. rainfall days 2 0 7 8 7 14 12 13 15 78

No. samples 0 0 0 0 0 4 4

14%

Rainfall records
2016

27%

49%

37%

26%

16%

43%

Rainfall records

28%

22%

50%

2015

27%

6%

22%

5%

87%

62%

32%

15%

76%

56%
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Limited rain water samples were collected at Krs-R (four samples for both 2015 and 2016), 

making it an unreliable source for rain water characterisation and recharge estimates. 

Furthermore, only nine rain water samples were collected at KA-R3 in 2015, and four in 2016. 

This corresponds to 43% of the total rainfall in 2015 and 27% of the total rainfall in 2016, and 

is thus an unreliable source for rain water characterisation. The results obtained from Krs-R 

and KA-R3 were therefore not used for this project. 

KA-R2 (Figure 9a), KK-R (Figure 9b) and VL-R (Figure 9c) collected a minimum of 20 samples 

each over the minimum period of one year and one month (from 1 June 2015 to 30 June 

2016). These correspond to a minimum of 28% of the rainfall days being sampled, and a 

minimum of 59% of the total rainfall being sampled. KA-R2 collected the largest percentage 

of total rainfall (28% for 2015 and 87% for 2016), with KK-R collecting the smallest percentage 

of total rainfall (50% for 2015 and 32% for 2016). The cumulative rainfall collector M-R (Figure 

9d) was erected on the Piketberg mountain range in March 2016, and sampled in September 

2016. The collector was equipped with a measuring gauge to assess the total rainfall, as well 

as a mesh covering and bird spikes to prevent any solid deposition from contaminating the 

sample. In total, 34 rain water samples were collected and analysed in 2015, and 60 in 2016. 

  
 

  
 

Figure 9: Daily rainfall collectors KA-R2 (a), KK-R (b), VL-R (c) and cumulative rainfall collector M-R 
(d) 

A B 

C D 
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The weighted mean values of chloride in rain water were calculated by multiplying the daily 

precipitation amount (mm) with the chloride concentration in the rainwater (mg/L) for the 

sample taken that day. These were calculated using the equation: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑙𝑝 =  ∑ 𝑃 ∗ 𝐶𝑙𝑝  

Where P is the daily recorded precipitation amount (in mm) and Clp the chloride concentration 

of the rainwater sample corresponding to that day of rainfall (in mg/L). Weighted average 

compositions for δ18O and δ2H are calculated in the same manner. 

4.3. Analytical techniques 

4.3.1. Major cations and anions 

Major cations (Na+, Mg2+, Ca2+, K+) and anions (Cl, SO4
2-, HCO3

-, CO3
2-) in groundwater were 

analysed after each of the six field trips. Alkalinity was measured within one day of sampling 

at the Department of Soil Science, Stellenbosch University, using a Metrohm 702 SM Tritrino 

Autotitrator. Volumes obtained for EP1 (CO3
2-) and EP2 (HCO3

-) were converted to mg/L. For 

all samples, total alkalinity was equal to the bicarbonate alkalinity (mg/L HCO3
-). Cation (Na+, 

Mg2+, Ca2+, K+) and anion (Cl-, SO4
2-) analyses were completed at respective laboratories in 

the University of Stellenbosch and the University of the Free State (Table 4), due to laboratory 

problems at the University of Stellenbosch. The TDS (total dissolved ions) is defined as the 

total sum of major anions and cations for each sample, and is presented as mg/L. 

Table 4: Number of groundwater samples analysed for cations (Na+, Mg2+, Ca2+, K+) and anions (Cl, 
SO4

2-) at the University of the Free State and Stellenbosch University 

 

A total of 94 rain water samples were analysed for chloride. Chloride analysis on rain water 

was completed at the CAF laboratories of the Department of Soil Science (Stellenbosch 

University) and the Institute for Groundwater studies (University of the Free State). From this 

total, 27 samples (collected in 2015) were analysed at the Department of Soil Sciences only, 

and 60 samples (collected in 2016) were analysed at the Institute for Groundwater Studies 

only. A random selection of 7 samples (collected in 2015) were analysed at both the 

Jun Sep Nov Mar Jun Nov

CAF (Department of Soil Sciences) Stellenbosch University 37

CAF (Department of Earth Sciences) Stellenbosch University 9 18 15 14 9

CAF (Department of Microbiology) Stellenbosch University 37

Institute for groundwater studies University of the Free State 9 18 15 14 9

c
a
ti

o
n

a
n

io
n

2015 2016
Facility University
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Department of Soil and Sciences and the Institute for Groundwater Studies, for comparative 

purposes. 

Major cation analysis was performed on field acidified samples at the Central Analytical 

Facilities (CAF) of Stellenbosch University at the department of Earth Sciences and Soil 

Sciences, using an Argillent 7700 ICP-AES and a thermo iCAP inductively coupled plasma 

optical emission spectrometer (ICP-OES) respectively. The instruments are calibrated daily, 

using the standards framework set out by the National Institute of Standards and Technology 

(NIST). Anion analysis was completed at the CAF laboratories of the Department of Soil 

Sciences and Microbiology at Stellenbosch University, and the Institute for Groundwater 

Studies at the University of the Free State. An Ion Chromatography (IC) on a Waters 432 

Conductivity detector, connected to a Waters 717 plus Auto sampler and an Agilent 1100 

series binary pump, was used in the Department of Microbiology. A DionexDX-120 IC and 

DionexDX-129 IC were used at the Institute for Groundwater Studies and the Department of 

Soil Sciences respectively. The instruments are calibrated daily against six prepared 

standards of NaCl and Na2SO4, where the relative standard deviation is less than 2%. The 

anions have minimum and maximum detection limits which can be detected by the IC, and 

high concentrations are diluted based on the corresponding EC values. 

An average charge balance of 7.0% was obtained for the 102 groundwater samples. The 37 

samples collected in June 2015 showed an average charge balance of 10.1%. The remaining 

65 samples, analysed at Earth Sciences (Stellenbosch University) and the Institute for 

Groundwater Studies (University of the Free State), show an average charge balance of 5.1%. 

For piper diagrams and bulk ion chemistry, only samples with a charge balance of less than 

10% will be considered. However, since poor charge balance is most likely to do with HCO3
-, 

all chloride data was used in the CMB calculations. 

The 7 rain water samples analysed for chloride at both the IGS (University of the Free State) 

and the Department of Soil Sciences (Stellenbosch University) show a good correlation, aside 

from a single outlier (Figure 10). This outlier shows a concentration of 0 mg/L, as measured 

by the Department of Soil Sciences, which is unlikely. Furthermore, charge balances from 

groundwater results support the accuracy of the anion data from the IGS. Where possible, 

chloride in rain water data obtained from the IGS will be used, implying that samples collected 

in 2016 will have priority over those collected in 2015. 
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Figure 10: Comparison of analytical results for chloride concentrations in rain water from the Institute 

for Groundwater Studies (University of the Free State) and the Department of Soil Sciences 
(Stellenbosch University) 

4.3.2. Stable isotopes 

Oxygen and hydrogen isotope analysis was completed on 102 groundwater samples and 94 

rain water samples. For stable isotope analysis, δ18O and δ2H isotope values were analysed 

relative to Standard Mean Ocean Water (SMOW). The results are presented in the common 

δ-notation, which shows a deviation (in parts per thousand) from SMOW: 

δ O18  (‰) =  [
( 𝑂18 / 𝑂16 )𝑠𝑎𝑚𝑝𝑙𝑒

( 𝑂18 / 𝑂16 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1]  ×  1000 

δ 𝐻2  (‰) =  [
( 𝐻2 / 𝐻1 )𝑠𝑎𝑚𝑝𝑙𝑒

( 𝐻2 / 𝐻1 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1]  ×  1000 

Stable isotopes in rain water and ground water were analysed by the Environmental Isotope 

Group (EIG) at iThemba Laboratories in Gauteng. A PDZ Europa GEO 20-20 gas mass–

spectrometer was used for analysis, and has been connected to a peripheral sample 

preparation device. The analysis technique uses a PDZ water equilibration system (WES), 

where a dual inlet mode is used for isotopic analysis of oxygen and hydrogen in water. 

Laboratory standards are analysed with each sample batch. The results are all within the 

expected error limits, and the analytical precision is estimated to be 0.1‰ for oxygen and 

0.5‰ for hydrogen.  

Deuterium excess (d) was calculated according to: d = δ2H – 8 δ18O  
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5. RESULTS 

5.1. Physical rainfall 

5.1.1. Rainfall amounts 

Monthly precipitation values from 2015 and 2016 are presented for collector KA-R2 ( 
Figure 11a), and collectors KK-R ( 

Figure 11b) and VL-R ( 
Figure 11c) (Watson et al., 2017b). The total precipitation that was collected and analysed is 
presented as a percentage of the annual precipitation for each collector for 2015 and 2016 ( 

Figure 11). which is located at an elevation of 620m (comparative to 53m, 145m and 111m at 

VL-R, KK-R and KA-R2 respectively). 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11: Monthly precipitation values at KA-R2 (a), KK-R (b) and VL-R (c) 

28% 87% KA-R2 A 

 

50% 32% KK-R B 

49% 76% VL-R C 

2015 2016 
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KA-R2 received the most rainfall in the catchment (356 mm for 2015 and 477 mm for 2016), 

followed by KK-R (327 mm for 2015 and 426 mm for 2016), with the least rain measured at 

VL-R (169 mm for 2015 and 259 mm for 2016). This represents a decrease in rainfall from the 

top of the catchment towards the confluence. All collection points received on average 28% 

less rainfall in 2015 when compared to 2016. While the farmers did not collect rainfall for a full 

calendar year, they did sample for a minimum of one year, from the month of July 2015 to 

June 2016. During this time frame, VL-R collected the most rainfall (84%), KA-R2 the second 

most (67%) and KK-R the least (64%). An automatic weather station (C-AWS) is located 400 

metres from VL-R, and agrees with the rainfall measurements within approximately 8mm 

(Watson et al., 2017b). A second automatic weather station (M-AWS) was constructed in 

March 2016 (Watson et al., 2017b), and is located 3km east of KA-R2. For the ten months 

between March and December 2016, KA-R2 and M-AWS agree within 15mm, which 

represents a difference of only 3% of the total rainfall that fell during that time frame. 

Cumulative rainfall collector M-R is located at an elevation of 620m (comparative to 53m, 

145m and 111m at VL-R, KK-R and KA-R2 respectively). It was constructed in early March 

2016, and sampled late September 2016, collecting a total of 330 mm for these seven months. 

During the same time, 94% (451 mm) of the annual rainfall for 2016 was recorded at KA-R2, 

96% (410 mm) at KK-R, and 98% (253 mm) at VL-R.  

5.1.2. Rainfall events 

A single rainfall event has been described as the total rain that fell over a 24-hour period, from 

8 am to 8 am the following day. The total number of rainfall events recorded and sampled at 

the daily rainfall collectors are presented in Figure 12. The nature of the rainfall event is 

characterised by the amount of precipitation recorded, where <5mm has been allocated as 

the smallest rainfall event, and >20mm the largest rainfall event. 

The heaviest showers were recorded at KA-R2 for 2016, where six rainfall events >20mm 

occurred in 2016. The lightest showers were recorded at VL-R, with no showers >20mm 

occurring in 2015, and only three recorded in 2016. KA-R2 and VL-R show the best distribution 

of rainfall events collection, particularly for 2016. KK-R on the other hand shows the least 

representative collection of rainfall events, where no events of <5mm were collected. 
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Figure 12: Total number of rainfall events recorded and sampled at daily rainfall collectors KA-R2 (a), 

KK-R (b) and VL-R (c) for 2015 and 2016  
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5.2. Compositional rain water 

A single rain water sample was collected at cumulative collector M-R on the Moutonshoek 

mountain range in September 2016, with the results presented in Table 5. Daily rainfall 

samples were collected at four stations across the field area, with results presented for KK-R 

(Table 6), VL-R (Table 7) and KA-R2 (Table 8). Weighted averages were calculated from the 

entire sampling season. 

Table 5: Stable isotope and chloride concentration at cumulative rainfall collector (1 sample) 

 

 
Table 6: Stable isotope and chloride concentrations at daily collector KK-R (20 samples) 

 

  

Clp δ2H δ18O d-excess Precipitation

mg/L ‰ ‰ ‰ mm

2016 September 20 7.10 -15.9 -4.27 18.26 330

M-R

Year Month Day

Latitude: -32.67638          Longitude: 18.74424

Clp δ2H δ18O d-excess Precipitation

mg/L ‰ ‰ ‰ mm

2015 June 11 1.71 -9.0 -1.39 2.2 8
2015 June 16 2.33 6.4 -0.91 13.7 9
2015 June 17 20.59 -21.8 -3.87 9.1 7
2015 June 24 3.37 -4.6 -2.57 16.0 15
2015 July 12 3.82 -6.5 -2.19 11.0 12
2015 July 17 4.15 -0.8 -3.11 24.1 7
2015 July 18 0.90 -10.4 -3.44 17.1 36
2015 July 24 1.72 -20.5 -4.88 18.5 10
2015 July 30 3.58 3.5 -2.31 22.0 18
2015 July 31 2.08 -14.4 -3.65 14.8 15
2015 August 4 4.60 5.5 -0.81 12.0 7
2015 August 14 3.41 -0.3 -0.88 6.8 14
2015 September 8 10.33 5.8 -0.27 7.9 6
2016 March 27 7.16 -2.1 -3.22 23.7 17
2016 April 23 2.74 -13.2 -2.96 10.5 8
2016 April 29 1.67 -4.6 -1.90 10.6 10
2016 May 24 3.33 6.0 -1.55 18.4 8
2016 June 10 1.22 1.1 -2.08 17.7 22
2016 June 14 0.53 -3.8 -1.91 11.5 9
2016 June 15 0.27 -14.8 -3.51 13.2 63

MAXIMUM 20.59 6.4 -0.27 2.2

MINIMUM 0.27 -21.8 -4.88 24.1

WEIGHTED AVERAGE 2.73 -6.9 -2.71 14.8

KK-R

Year Month Day

Latitude: -32.68107          Longitude: 18.71758
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Table 7: Stable isotope and chloride concentrations at daily collector VL-R (29 samples) 

  

Clp δ2H δ18O d-excess Precipitation

mg/L ‰ ‰ ‰ mm

2015 June 10 4.41 -3.9 -0.61 1.1 5
2015 June 16 9.77 1.5 -0.80 7.9 7
2015 June 24 7.37 -8.1 -2.62 12.9 7
2015 July 11 2.35 -12.1 -3.51 16.0 11
2015 July 18 0.49 -13.4 -3.07 11.2 13
2015 July 23 1.02 -20.4 -5.31 22.1 9
2015 July 30 3.21 -10.2 -2.94 13.3 20
2015 August 4 11.05 1.2 -0.76 7.3 3
2015 August 31 4.11 12.1 1.03 3.9 5
2015 September 7 2.39 2.6 -0.12 3.5 3
2016 March 30 13.07 8.1 -1.00 16.0 4
2016 April 20 14.90 9.9 0.35 7.1 3
2016 April 21 19.55 -8.0 -3.33 18.6 5
2016 April 22 2.29 -12.4 -3.51 15.7 5
2016 April 29 5.14 2.3 -0.60 7.0 4
2016 May 13 2.31 13.3 -0.22 15.1 2
2016 June 10 1.68 0.9 -1.66 14.2 15
2016 June 14 0.46 -9.4 -2.88 13.6 40
2016 June 15 0.45 -16.1 -3.18 9.4 20
2016 June 19 0.83 -21.6 -3.90 9.6 20
2016 June 27 5.34 1.0 -0.68 6.4 9
2016 July 1 6.93 1.5 -1.59 14.2 5
2016 July 6 12.54 1.3 -1.92 16.7 6
2016 July 15 14.21 4.9 -0.41 8.2 2
2016 July 21 1.98 -1.1 -1.06 7.4 26
2016 July 22 12.35 0.1 -2.66 21.4 4
2016 July 29 6.12 -25.3 -4.38 9.7 12
2016 August 3 8.66 -42.5 -6.50 9.5 10
2016 September 1 13.18 9.2 0.02 9.0 4

MAXIMUM 19.55 13.3 1.03 1.1

MINIMUM 0.45 -42.5 -6.50 22.1

WEIGHTED AVERAGE 3.98 -8.9 -2.56 11.5

VL-R

Year Month Day

Latitude: -32.59653          Longitude: 18.68548
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Table 8: Stable isotope and chloride concentrations at daily collector KA-R2 (44 samples) 

  

Clp δ2H δ18O d-excess Precipitation

mg/L ‰ ‰ ‰ mm

2015 July 30 1.85 1.8 -3.10 26.5 40
2015 July 31 1.68 -15.0 -3.57 13.5 15
2015 August 4 5.4 4.8 -1.20 14.4 5
2015 August 14 2.01 -2.8 -1.26 7.3 13
2015 August 25 2.49 5.5 -0.36 8.4 4
2015 August 31 1.5 16.9 2.13 -0.1 3
2015 September 7 5.38 3.5 -0.02 3.7 4
2015 September 9 2.4 0.5 -0.23 2.3 3
2015 September 15 9.02 7.1 0.78 0.8 1
2015 November 20 12.06 13.5 0.46 9.9 6
2015 November 21 4.55 -13.7 -3.97 18.1 5

2016 March 25 9.44 -2.4 -2.64 18.7 18
2016 March 30 7.18 8.2 -1.34 18.9 4
2016 April 21 2.31 4.1 -0.81 10.6 4
2016 April 22 1.55 -5.5 -2.78 16.7 10
2016 April 23 2.35 -17.0 -3.54 11.4 8
2016 April 28 1.10 -1.9 -1.44 9.6 11
2016 May 18 2.60 10.7 -0.54 15.1 3
2016 May 24 2.41 7.3 -1.43 18.7 6
2016 June 10 0.84 -5.5 -2.63 15.6 30
2016 June 15 0.40 -17.2 -3.19 8.3 58
2016 June 20 1.06 -21.3 -5.02 18.8 40
2016 June 27 1.98 -1.5 -2.64 19.7 1
2016 June 28 1.03 -1.7 -1.85 13.1 2
2016 July 1 1.63 -2.2 -2.74 19.7 15
2016 July 2 18.45 2.2 -1.96 17.9 2
2016 July 7 17.99 2.0 -2.16 19.3 4
2016 July 21 0.57 35
2016 July 22 1.64 -2.5 -1.99 13.4 5
2016 July 28 3.83 -37.2 -6.13 11.8 5
2016 July 29 1.07 -31.1 -4.76 7.0 33
2016 August 3 1.78 -44.9 -7.12 12.1 25
2016 August 14 9.70 -1.5 -2.25 16.5 9
2016 August 22 10.55 -0.8 -2.14 16.3 9
2016 September 1 1.59 6.5 -0.71 12.2 7
2016 September 5 2.23 4.3 -1.63 17.3 12
2016 September 13 5.21 -1.0 -2.41 18.3 10
2016 September 16 1.46 -17.0 -5.33 25.6 20
2016 September 17 1.24 -27.7 -4.99 12.2 2
2016 September 22 1.69 8.7 -0.79 15.0 1
2016 September 26 1.92 4.3 -1.04 12.6 2
2016 September 27 2.71 -1.2 -2.32 17.3 12
2016 September 28 10.08 7.7 -0.81 14.2 3.5
2016 October 11 5.25 6.9 -1.69 20.5 8.5

MAXIMUM 18.45 16.9 2.13 -0.1

MINIMUM 0.40 -44.9 -7.12 26.5

WEIGHTED AVERAGE 2.61 -9.4 -2.93 14.0

KA-R2

Year Month Day

Latitude: -32.71908          Longitude: 18.70420
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5.2.1. Chloride concentrations in rain water 

Chloride concentrations in rainfall varied between 0.27 and 20.59 mg/L for all rainfall collectors 

(Figure 13). Excluding statistical outliers, which lie off the primary box and whisker plot, daily 

rainfall collector VL-R shows the greatest variation in chloride concentrations across the 

catchment (19.10 mg/L), with KK-R showing the smallest variation (7.16 mg/L). The weighted 

averages of all samples are 2.61, 2.73 and 3.98 mg/L for KA-R2, KK-R and VL-R respectively. 

Cumulative collector M-R has a measured chloride concentration of 7.10 mg/L, representing 

the highest average chloride concentration of all the rainfall collectors. 

 

Figure 13: Chloride concentrations in rain water, including the number of samples per site 

A reasonably good correlation exists between the amount of precipitation and chloride 

concentration (Figure 14). Chloride in precipitation and rainfall amount have an indirect 

correlation, where high chloride concentrations are associated with smaller rainfall events. 

 
 

Figure 14: Chloride concentrations in precipitation in comparison to measured rainfall amounts at 
daily rainfall collectors 

KA-R2 VL-R KK-R M-R 

x 

44 20 29 1 

Cumulative collector 
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5.2.2. δ18O and δ2H in rain water 

The δ18O ratios of rain water range from -7.12‰ to 2.13‰ (Figure 15a), whilst the δ2H values 

in rain water range from -44.9‰ to 16.9‰ (Figure 15b) for all rainfall collectors. Deuterium 

excess ratios range from -0.1‰ to 26.5‰, with a single negative value (-0.1‰) measured at 

KA-R2 (Figure 15c). The weighted averages at daily rainfall collectors KA-R2, KK-R and VL-

R are -2.93‰, -2.71‰ and -2.56‰ for δ18O, and -9.4‰, -6.9‰ and -8.9‰ for δ2H respectively. 

Cumulative collector M-R has an isotopic signature of -15.9‰ for δ2H, and -4.27‰ for δ18O, 

which is more negative in comparison to the weighted averages of the daily rainfall collectors. 

M-R shows a greater deuterium excess than the weighted average values of the daily rainfall 

collectors, where weighted d ratios at KA-R2, KK-R, VL-R and M-R are 14.0‰, 14.8‰, 11.5‰ 

and 18.3‰ respectively. The greatest isotopic variation occurs at KA-R2. 

     

 

 

 

 

 

 

 

 

 

 
 

Figure 15:  Stables isotope ratios in rain water for δ18O (a), δ2H (b) and deuterium excess (c) at 
rainfall collectors KA-R2, KK-R, VL-R and M-R 

Stable isotope compositions show a general decrease in heavy isotopes with increasing 

rainfall amount for δ18O (Figure 16a) and δ2H (Figure 16b). This correlation is however weak, 

particularly for δ2H, with r-values of 0.07 and 0.18 for 2015 and 2016. While the deuterium 

excess shows no correlation with rainfall for 2016 (r = 0.01), a weak positive correlation 

between deuterium excess and increasing rainfall amount is noted for 2015 (r = 0.35) (Figure 

16c). 
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Figure 16: Isotopic compositions of δ18O (a) and δ2H (b) in comparison to rainfall, and the deuterium 
excess (c) in comparison to rainfall at daily collectors. 

Seasonal variations correlate well with varying values of δ18O (Figure 17a) and δ2H (Figure 

17b). A dramatic decrease in isotopic ratios is noted around July/August for 2016, with 

minimum δ2H and δ18O ratios of -44.9‰ and -7.12‰, in comparison to minimum ratios of -

27.7‰ and -5.33‰ in the other months. A similar trend is observed in 2015, although this is 

less pronounced than 2016, with minimum δ2H and δ18O ratios of -21.8‰ and -5.31‰ in June 

and July. April, May, September and October show the most positive isotopic ratios for both 

2015 and 2016. This is more pronounced for 2015 (maximum δ2H and δ18O ratios of 16.9‰ 

and 2.13‰ in September) in comparison to 2016 (maximum δ2H and δ18O ratios of 13.3‰ and 

0.35‰ in May and April). It is therefore apparent that heavier isotopes dominated the rainfall 

for 2015 in comparison to 2016. This is mirrored in the deuterium excess-values (Figure 17c) 

where 2015 shows greater a variability in d (maximum difference of 26.6‰) in comparison to 

r = 0.01 

 8 

r = 0.18 

r = 0.07 

r = 0.35 

A 

B 

C 

r = 0.23 

r = 0.16 
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2016 (maximum difference of 19.1‰), and thus greater fluctuations from the GMWL. It is also 

apparent that 2015 is characterised by a lower average d value (11.2‰) in comparison to 

2016 (14.3‰). 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 17: Seasonal variations in δ18O (a), δ2H (b) and d (c) 

Stable isotope ratios are used as a comparative tool against the Global Meteoric Water Line 

(GMWL) of Craig (1961). The line of best fit between isotopic ratios for rain water samples 

from KA-R2, KK-R and VL-R is defined as the Local Meteoric Water line (LMWL). Due to the 

substantial isotopic variations between 2015 and 2016, it is necessary to determine the LMWL 

for these unique sampling seasons. Two LMWLs are therefore calculated from the 34 rain 

water samples collected in 2015, and the 59 rain water samples collected in 2016 (Figure 18). 
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The 2015 LMWL is defined by the following equation (r = 0.80): 

δ2H = 5.00 δ18O + 5.91 

The 2016 LMWL is defined by the following equation (r = 0.89): 

δ2H = 7.73 δ18O + 13.63 

When considering all the rainfall data for 2015 and 2016, a general LMWL with the following 

equation is produced (r = 0.82): 

δ2H = 6.48 δ18O + 9.85 

 

Figure 18: LMWL line for 2015 (34 samples from daily rainfall collectors) and 2016 (59 samples from 
daily rainfall collectors), in comparison to the GMWL defined by Craig (1961) 

5.3. Groundwater 

In total, 102 deep groundwater samples tapping into the secondary aquifer were collected 

from 41 boreholes across the study area (Figure 7). 58 samples were collected from 25 

boreholes along the Krom Antonies River (Table 9 and Table 10), 25 samples from 8 

boreholes along the Hol River (Table 11), and 11 samples from 5 boreholes along the 

Kruismans River, and 8 samples from 3 boreholes along Verloren River (Table 12). 

  

δ2H = 8 δ18O + 10 

δ2H = 5.00 δ18O + 5.91 

δ2H = 7.73 δ18O + 13.63 

r = 0.89 

r = 0.80 
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Table 9: Deep groundwater samples collected along the Krom Antonies river, sites KA1 to KA10 
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Table 10: Deep groundwater samples collected along the Krom Antonies river, sites KA11 to KA25 
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Table 11: Deep groundwater samples collected along the Hol river 
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Table 12: Deep groundwater samples collected along the Kruismans and Verloren rivers 
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5.3.1. Groundwater depths 

The depths of 41 of the boreholes sampled are presented for each tributary in Figure 19. The 

depth of nine boreholes (KA3, KA6, KA10, KA12, KA16, KA18, KA20, Krs6 and Hol3) are 

unknown. 

The shallowest boreholes occur along the Krom Antonies River, with only 6 of the 17 recorded 

depths being greater than 100 metres. They range between 21 and 122 metres in depth. The 

deepest borehole sampled in this study occurs along the Kruismans River at Krs4, with a depth 

of 285 metres, and could possibly be tapping into a deeper aquifer. This is located 2.8km from 

the shallowest borehole on the Kruismans with a depth of only 40 metres. Sampling locations 

along the Hol River show deeper secondary boreholes than the Krom Antonies, where Hol1 

is the only site with a depth < 100 metres. Borehole depths range between 70 and 200 metres 

along the Hol, with the deepest borehole (200m) occurring at the confluence (Hol8). The three 

boreholes situated along the Verloren River range in depth from 70 to 145 metres. 

 
Figure 19: Borehole depths in the study area tapping into the secondary aquifer 

5.3.2. EC, pH and ORP 

For every sampling site, seasonal averages were calculated for EC, pH and oxidation-

reduction potential (ORP), and are compared to one another in Figure 20. The Kruismans has 

the least saline groundwater in the study area (average EC = 74 mS/m), followed by the 

Verloren (average EC = 109 mS/m) and the Krom Antonies (average EC = 123 mS/m), with 

the most saline groundwater occurring along the Hol (average EC = 147 mS/m). However, for 

Hol groundwater, the statistical median indicates that this water has a similar salinity to the 

Krom Antonies, with two saline groundwater sites (Hol2 and Hol6) distorting the mean. pH 

values across the study area are very similar, with an average value of ~7 for each of the 

tributaries. The site with the highest pH occurs along the Kruismans (Krs2, pH = 8.4), with the 
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Krom Antonies exhibiting the lowest pH (KA13, pH = 4.4). ORP values range between 18 and 

195 mV across the study area. 

 

Figure 20: In-field measurements of EC (a), pH (b) and ORP (c) 

Seasonal variations in electrical conductivity of deep groundwater is depicted in Figure 21. 

The Krom Antonies shows little seasonal variation in EC, with KA11 showing the largest 

variation of 121 mS/m. The Krom Antonies additionally shows a good spatial variation in EC 

values, with the uppermost Krom Antonies hosting some of the freshest groundwater in the 

study area (EC ~ 35 mS/m). This value increases downstream, with boreholes towards the 

east of the Krom Antonies showing greater EC values than those towards the west (Figure 

22). The Kruismans shows little seasonal and spatial variation in salinity, with a maximum 

seasonal variation of 16.1 mS/m. The EC of groundwater along the Hol is <102 mS/m for 

boreholes Hol1, Hol3, Hol4, Hol5, Hol7 and Hol8. These values are comparable to boreholes 

KA1 to KA8 (EC <104 mS/m), and boreholes Krs1 to Krs4 (EC < 102 mS/m). Boreholes Hol2 

and Hol6 are outliers and account for the most saline groundwater in the study area. Hol2 

varies between 358 and 613 mS/m, with the most saline samples taken during June 2015 and 

November 2015, and the least saline in September 2015 and June 2016. Hol6 shows the most 

prominent seasonal variation, where EC values follow the pattern Sep 2015 > Nov 2016 > Nov 

2015 > June 2015 > Mar 2018 > June 2016. Verloren groundwater has a maximum seasonal 

variation of 103.4 mS/m for Vrl1.  

 

 

Mean x 
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Figure 21: Seasonal variations in electrical conductivity for deep groundwater along the Krom 

Antonies (a), Kruismans (b), Hol (c) and Verloren (d) rivers 

 
Figure 22: Spatial variations in EC (mS/m) across the study area 
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5.3.3. Major ion chemistry 

5.3.3.1. Statistical variations of ion concentrations 

The statistical variations of cation concentrations in groundwater are presented in Figure 23, 

where a seasonal average was calculated for each sampling site. Sodium is the most 

dominant cation in the study area, followed by calcium, magnesium and potassium. A single 

outlier exists for all major cations and corresponds to sample site Hol2. Magnesium and 

sodium concentrations of groundwater follow the trend of Hol > Krom Antonies > Verloren > 

Kruismans. This is not the case for calcium, where Krom Antonies > Hol > Verloren > 

Kruismans. Statistical percentiles indicate that cation concentrations of groundwater from 

most of the sampling sites along the Hol are significantly lower than the mean, and anomalous 

sites Hol2 and Hol6 are responsible for distorting the data.  

 
Figure 23: Major cations of calcium (a), magnesium (b) and sodium (c) in groundwater 

The average anion concentrations of each tributary (where a seasonal average has been 

calculated for each sampling site) is presented in Figure 24. Chloride is the most dominant 

anion in the study area, followed by bicarbonate and sulphate. Statistical outlier Hol2 has an 

average chloride value of 1790 mg/L that far exceeds any other sampling site in the field area, 

and has been omitted from the plot. This resonates the patterns for the Hol cation 

concentrations, where Hol chloride concentrations are similar to the other tributaries, and the 

mean is distorted by Hol2 and Hol6. Chloride concentrations in groundwater follow the same 

trend as magnesium and sodium, where Hol > Krom Antonies > Verloren > Kruismans. 

Bicarbonate likewise follows the same trend as calcium, where Krom Antonies > Hol > 

Verloren > Kruismans. Average sulphate concentrations show a different trend where Krom 

Antonies > Kruismans > Hol > Verloren. 

Mean x A B C 
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Figure 24: Major anions of bicarbonate (a), sulphate (b) and chloride (c) in groundwater. Outlier Hol6 

(where Chloride = 1790.5 mg/L) has been emitted from the chloride plot only. 

5.3.3.2. Groundwater characterisation 

The geographical locations of the major tributaries of the Verlorenvlei catchment (namely the 

Krom Antonies, Kruismans, Hol and Verloren Rivers) are used as a proxy to characterise deep 

groundwater from the secondary Malmesbury aquifer. Groundwater types in the different 

tributaries have been characterised using a piper diagram (Figure 25). For sampling locations 

where multiple trips were conducted, the season with the lowest charge balance was selected 

for input into the diagram, and there is little variation in the type of groundwater between the 

seasons. Sites that were only sampled once in June 2015 and have a charge balance of >10% 

(i.e. KA16 and Vrl3) have been emitted from this plot. 

Mean x A B C 
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Figure 25: Piper diagram of groundwater in the study area 

Most sampling sites have chloride as the dominant anion (except for KA1, KA2 and KA3) and 

fall between a mixture of Na+-Cl- and Ca2+-Mg2+-Cl- type groundwater. Seven boreholes, 

occurring along the Krom Antonies, plot off the main sample group and represent the boundary 

between Ca2+-HCO3
- type groundwater (KA1, KA2 and KA3), and Ca2+-Mg2+-Cl- type 

groundwater (KA4, KA5, KA6 and KA7). Two outliers also exist along the Kruismans river 

(Krs1 and Krs2), with groundwater of Na+-Cl- type, but an increase in bicarbonate in 

comparison to the other sampling sites. 

5.3.4. δ18O and δ2H in groundwater 

The standard δ2H versus δ18O plots are used to show all groundwater samples collected 

across the study area in 2015 and 2016, in reference to the GMWL (Craig, 1961) and the 2015 

and 2016 LMWL (Figure 26). An evaporation line represents the line of best fit through the 

groundwater samples, and is validated by an r-value. Krom Antonies groundwater has δ2H 

ratios of -19.0 to -9.0‰, and δ18O ratios of -3.71 to -2.72‰. Most of the samples fall between 

the GMWL and 2015 LMWL, and show a weak evaporation trend (r = 0.36) parallel to the 2015 

LMWL. Kruismans groundwater has δ2H ratios of -14.0 to -18.0‰, and δ18O rations of -4.21 

KA1,2,3 

KA4,5,6,7 

Krs1,2 
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to -2.93‰. Although similar in composition to the Krom Antonies, a weak trend (r = 0.31) 

indicates a stronger evaporative influence than Krom Antonies groundwater. The Hol shows 

the greatest variation in groundwater isotopic ratios across the catchment, with δ2H ratios 

varying between -20.5 to +0.6‰, and δ18O ratios between -3.94 to +0.36‰. A strong 

evaporation trend (r = 0.92) is largely influenced by a few individual outliers that are not 

necessarily true representatives of the groundwater, with the three most positive isotopic 

samples occurring at Hol6 and influencing this strong evaporation trend. Groundwater along 

the Hol also shows two isotopic classes: one that appears to follow a strong evaporation line 

parallel to the 2015 LMWL, and another that plots on the GMWL and includes isotopic ratios 

that are more negative in comparison to its counterpart. Verloren groundwater shows a similar 

evaporation trend (r = 0.86), and two outliers largely affecting this trend, with isotopic ratios of 

ranging between -18.2 to -11.0‰ for δ2H, and -4.02 to -2.76‰ for δ18O. 
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Figure 26: Stable isotope values of deep groundwater from the Krom Antonies (a), Kruismans (b), Hol 
(c) and Verloren (d) rivers, in comparison to the LMWL for 2015 and 2016, and the GMWL (Craig, 

1961) 

The seasonal variations in δ18O ratios are depicted in Figure 27. The tributaries show no 

spatial variation in δ18O values, and no seasonal correlations between individual boreholes. 

The Hol groundwater has the most significant seasonal fluctuations in the study area, with 

Hol6 showing a maximum seasonal variation of 4.05‰. δ18O ratios follow the trend Sep ’15 > 

Nov ’16 > Nov ’15 > Jun ’15 > Mar ’16 > Jun ’16, and show an almost identical pattern to 

seasonal variations in EC.  

δ2H = 4.79 δ18O + 2.40 

r = 0.34 

δ2H = 8 δ18O + 10 

δ2H = 7.7 δ18O + 13.6 

δ2H = 5.0 δ18O + 5.9 

δ2H = 1.75 δ18O - 9.20 

r = 0.31 

A B 

δ2H = 4.48 δ18O + 0.09 

r = 0.92 

C 

δ2H = 5.12 δ18O + 4.15 

r = 0.86 
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Figure 27: Statistical variations in δ18O ratios of deep groundwater over different sampling seasons 
along the Krom Antonies (a), Kruismans (b), Hol (c) and Verloren (d) rivers 

The seasonal variations of δ2H are depicted in Figure 28. In contrast to the lack of variation in 

δ18O ratios, δ2H ratios show a good spatial correlation along the Krom Antonies, with values 

increasing from the top to the bottom of the catchment. Groundwater originating in the upper 

Moutonshoek has more positive δ2H ratios (approximately -15 to -9‰), which are comparative 

to the more negative δ2H ratios of groundwater originating from the lower Krom Antonies 

(approximately -19 to -14‰). There is no seasonal correlation between individual boreholes. 

Kruismans and Hol groundwater shows no spatial or seasonal correlation in δ2H ratios, with a 

maximum seasonal variation of 4.0‰ and 21.1‰ respectively. Hol groundwater shows the 

greatest variation in δ2H ratios in the study area (21.1‰). A maximum variation of 18.9‰ 

occurs at Hol6 and accounts for the largest variation in the study area. δ2H values at Hol6 

show similar seasonal trend as for δ18O ratios and EC values, where Sep ’15 > Nov ’15 > Nov 

’16 > Jun ’15 > Jun ’16 > Mar ‘16  

Upstream Confluence 

Upstream Confluence Confluence Downstream 

x Mean A 

B C D 
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Figure 28: Statistical variations in δ2H ratios of deep groundwater over different sampling seasons 
along the Krom Antonies (a), Kruismans (b), Hol (c) and Verloren (d) rivers 

Seasonal variations in d values of groundwater are depicted in Figure 29. While δ2H ratios 

vary considerably between the upper and lower catchment of the Krom Antonies, deuterium-

excess values show much less spatial variation, with the upper catchment supporting d values 

of ~13.5‰, and the lower catchment ~12.0‰. However, boreholes KA1 to KA13 show a 

greater d range of 7.4‰, in comparison to boreholes KA14 to KA25, with a d range of 4.9‰. 

The Hol has three groundwater sites where d ~10‰ (Hol3, Hol4 and Hol5), which plot on the 

GMWL, as was noted in Figure 26. Hol6 shows the greatest variations in d across the study 

area, ranging from -2.23 to 14.51‰. The only negative d value in groundwater was sampled 

in September 2016 at Hol6, and correlates with the more positive δ2H and δ18O ratios. 

Upstream Confluence 

Upstream Confluence Confluence Downstream 

Mean x A 
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Figure 29: Statistical variations in the deuterium excess of deep groundwater over different sampling 
seasons along the Krom Antonies (a), Kruismans (b), Hol (c) and Verloren (d) rivers  

Upstream Confluence 
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6. DISCUSSION 

6.1. Groundwater characterisation 

6.1.1. Krom Antonies 

Three types of deep groundwater occur along the Krom Antonies: a Ca2+-HCO3
- type in the 

upper-most catchment, and a Ca2+-Mg2+-Cl- and Na+-Cl- type found in the middle and lower 

catchment (Table 13). This indicates a shift from calcium to sodium as the dominant cation, 

and bicarbonate to chloride as the dominant anion, as groundwater progresses down the 

catchment. Stable isotope data also indicates a distinct decrease in δ2H ratios, and it is likely 

that groundwater recharged in the TMG of the Piketberg mountain range is mixing with other 

groundwater along its flow path. These spatial variations in stable isotope and major ion 

chemistry can be used to delineate groundwater zones along the Krom Antonies. 

Table 13: Classification of groundwater types along the Krom Antonies 

 

Boreholes KA1 to KA3 have a Ca2+-HCO3
- type groundwater that is distinct from the rest of 

the catchment, and will be referred to as Upper Krom Antonies. Stable isotope ratios are 

further used to distinguish the Upper Krom Antonies from another distinct isotopic cluster.  

Ca2+-HCO3
-

Ca2+-Mg2+-Cl- Na+-Cl-

KA1 x
KA2 x
KA3 x
KA4 x
KA5 x
KA6 x
KA7 x
KA8 x
KA9 x
KA10 x
KA11 x
KA12 x
KA13 x
KA14 x
KA15 x
KA16
KA17 x
KA18 x
KA19 x
KA20 x
KA21 x
KA22 x
KA23 x
KA24 x
KA25 x
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Boreholes from the Upper Krom Antonies (KA1 to KA3), have more positive δ2H ratios and 

greater variations in d (Figure 30). Alternatively, boreholes occurring in the lower reaches of 

the Krom Antonies (borehole KA19 to KA25) are characterised by a more negative δ2H ratio 

and smaller variations in d (with an isotopic slope that runs parallel to the GMWL) (Figure 30). 

These boreholes have been termed the Lower Krom Antonies, and δ2H ratios provide the 

tipping point between the Upper Krom Antonies (δ2H ratios > -14.0‰) and Lower Krom 

Antonies (δ2H ratios < -14.0‰). The only exception is sample KA1 from November 2015, 

originating in the Upper Krom Antonies with a δ2H ratio of -15.4‰. Samples which show the 

same average isotopic signature as the Upper Krom Antonies but have chloride as the 

dominant anion have been termed the Middle Krom Antonies (Figure 30) and includes 

boreholes KA4 to KA18. 

 
Figure 30: Stable isotope compositions of groundwater from the upper, middle and lower Krom 

Antonies, in comparison to the LMWL and GMWL 

Figure 31 shows the delineated groundwater zones of the Krom Antonies based on major ion 

chemistry and δ2H ratios. 

δ2H = 8 δ18O + 10 

δ2H = 7.7 δ18O + 13.6 

δ2H = 5.0 δ18O + 5.9 
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Figure 31: Delineation of groundwater zones along the Krom Antonies based on groundwater 
chemistry and δ2H ratios, where A is the upper Krom Antonies, B the middle Krom Antonies, and C 

the lower Krom Antonies 

6.1.1.2. Upper Krom Antonies 

The only borehole in the Upper Krom Antonies that is known to be drilled into the TMG aquifer 

is located 180 metres south east of borehole KA1. It is therefore likely that boreholes KA1 to 

KA3 have been drilled through the TMG into the Malmesbury aquifer, and represent the 

nearest composition to TMG groundwater in the study area. TMG aquifers typically have a low 

salinity (10 - 100 mS/m) and low pH values (5.5 - 7), with groundwater being Na+-Cl- dominated 

(Smart and Tredoux, 2002). GEOSS (2012) and SRK (2009) both suggest that groundwater 

originating in the Piketberg mountain range is Na+-Cl- in nature. However, this study suggests 

that groundwater from the Malmesbury shale of the Upper Krom Antonies, which immediately 

underlies the TMG aquifer, is Ca2+-HCO3
- in nature. TMG groundwater in the study area is 

hosted in the Piekenierskloof formation (Watson et al., 2017c), and an extensive groundwater 

study of the Olifants-Doorn catchment conducted by DWAF (2000) shows a compositional 

bimodality of groundwater from the Piekenierskloof formation which support a wide range of 

pH values (6.6 to 7.2) but similar EC values (<80 mS/m). Piper plots of DWAF (2000) show 

that while the majority of samples fom the Piekenierskloof formation are Na+-Cl- type, a fair 

A 

B 

C 

δ2H (‰) 
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proportion plot on the Ca2+-HCO3
-/Ca2+-Mg2+-Cl- zone. Vegter (1995) also showed that 40% of 

samples from the western limb of the TMG, where this study area is located, show a 

substantial increase in calcium and magnesium, in comparison to the rest of the TMG. 

6.1.1.3. Middle Krom Antonies 

The Middle Krom Antonies has an isotopic signature near identical to the Upper Krom 

Antonies, and is likely to have a similar source of recharge. However, the Middle Krom 

Antonies has higher EC values (Figure 32) and groundwater of Ca2+-Mg2+-Cl- and Na+-Cl- 

composition, indicating the addition of salts, particularly sodium and chloride. Fractured shale 

aquifers are characterised by low permeability and groundwater flow velocities in comparison 

to sandstone aquifers, resulting in prolonged rock-water interaction (Domenico and Schwartz, 

1990). In addition, most shale formations were deposited in saline environments, and limited 

flushing results in geological formations with a high concentration of adsorbed ions, and thus 

groundwater with greater dissolved ion concentrations (White et al., 1963). Groundwater flow 

directions of the secondary aquifer in the Krom Antonies Valley follow the local topography 

(Watson et al., 2017a), with groundwater moving from the Upper to Lower Krom Antonies. 

Low flow velocities and increased rock-water interaction with the saline shales of the 

secondary aquifer is therefore likely to be a primary cause for the increase in salinity along the 

Middle Krom Antonies. Furthermore, satellite imagery of the catchment suggests that the TMG 

formation along the lower eastern limb of the Piketberg Mountain range dips away from the 

Krom Antonies catchment, resulting in increased recharge to the Kruismans basin (Figure 32). 

Little recharge may be directed to the Krom Antonies Valley, resulting in the accumulation of 

salts on the eastern part of the Middle Krom Antonies (Figure 32). 
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Figure 32: Spatial variation in EC values of groundwater where A is the upper Krom Antonies, B is the 
middle Krom Antonies, and C the lower Krom Antonies. Groundwater recharge direction in the Middle 

Krom Antonies in depicted 

6.1.1.4. Lower Krom Antonies 

Groundwater of the Lower Krom Antonies is characterised by δ2H < -14.0‰, and the Upper 

Krom Antonies (δ2H > -14.0‰) is therefore unlikely to be its primary source of recharge. 

Precipitation in the valley contributes little direct recharge to the secondary aquifer (Conrad et 

al., 2004; Watson et al., 2017b), and is unlikely to contribute significantly to the decrease in 

δ2H ratios of the Lower Krom Antonies. Shallow groundwater is also an unlikely source as 

samples from piezometers along the Krom Antonies river show δ2H > -13.3‰ (Sigidi, 2017). 

Isotopic signatures of Hol groundwater (excluding isotopic outlier Hol6) are plotted against 

groundwater samples from the Lower Krom Antonies (Figure 33), and they show an almost 

identical isotopic signature. Furthermore, boreholes from the Lower Krom Antonies have an 

average EC value of 126 mS/m, indicating that the groundwater has picked up a significant 

amount of salts in comparison to the Upper Krom Antonies. Deep groundwater of the Hol has 

an average EC of 147 mS/m and hence groundwater mixing can geochemically account for 

the increase in EC and decrease in δ2H and δ18O ratios in the Lower Krom Antonies. Watson 

et al. (2017c) supports the influx of Hol groundwater near the confluence.  

A 

B 

C Kruismans 
basin 
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Figure 33: Groundwater from the lower Krom Antonies and Hol (excluding outlier Hol6), in comparison 

to the general LMWLs and GMWL 

6.1.2. Hol 

6.1.2.1. Hol2 

The most saline groundwater in the study area occurs at Hol2 which lies just to the west of the 

Krom Antonies water shed, and derives groundwater from the same mountain range as the 

Krom Antonies (Watson et al., 2017a). However, the dip of the bedding planes along this 

mountain range direct most of the groundwater flow into the Krom Antonies catchment to the 

east (Figure 32), with little groundwater draining to the west (Watson et al., 2017a), resulting 

in the accumulation of salts at Hol2. The boreholes to the east of this watershed divide are 

comparatively less saline due to higher recharge (Figure 32). Similar saline conditions do not 

occur at Hol1 and Hol3, which have similar borehole depths to Hol2. They are situated outside 

of the boundaries of the Piketberg Mountain range (Figure 32), and are likely to not be effected 

by this local saline hotspot. GEOSS (2006) indicates the same zone of salinisation at Hol2. 

6.1.2.2. Hol6 

Borehole Hol6 shows the largest geochemical fluctuations in the catchment, with EC values 

more than doubling in summer (September and November) compared to winter (March and 

June), and stable isotope ratios following the same seasonal trends. Hol6 is utilised as a 

primary borehole for irrigation, with pumping commencing around November and continuing 

until March. It is therefore possible that water level draw-down induced by pumping during 

these months will result in the inflow of additional groundwater sources. 
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Meteoric waters typically have lower δ2H and δ18O ratios than evaporative systems, such as 

lakes and soil water, which are enriched in heavier isotopes (Gat, 1996), and evaporative 

sources could contribute to the positive stable isotope ratios noted at Hol6. Stable isotope 

ratios of shallow groundwater from the Hol primary aquifer (Sigidi, 2017) are compared to 

stable isotope ratios of borehole Hol6 (Figure 34). A near identical evaporation trend is 

observed for the shallow groundwater (δ2H = 4.41 δ18O + 0.28) and Hol6 (δ2H = 4.64 δ18O + 

0.31). Shallow groundwater δ2H ratios range between -20.6‰ and +2.0‰ (Sigidi, 2017), and 

are comparable to δ2H ratios of Hol6. Furthermore, shallow groundwater samples from the Hol 

have an average EC of 740 mS/m (Sigidi, 2017). It is therefore likely that prolonged pumping 

of the secondary aquifer in the summer months results in significant drawdown and 

subsequent discharge from the primary to the secondary aquifer through the semi-pervious 

layer, characteristic of a leaky aquifer (Sayed and Hussainy, 2011). This would account for 

the anomalous EC and stable isotope ratios at Hol6 in September and November. 

 
Figure 34: Deep groundwater samples from Hol6 in comparison to shallow groundwater samples from 

the Hol and confluence. Shallow groundwater data is from Sigidi (2017) 

Similar seasonal variations are not apparent at Hol7 and Hol8, which are located within 60 

metres from Hol6 and have a similar borehole depth. Hol7 is used for household purposes 

and Hol8 for small-scale irrigation from January to April, and are small water consumers in 

comparison to Hol6. This indicates that Hol6, although 130 metres in depth, may be in better 

hydraulic contact with the shallow aquifer than surrounding deeper aquifer system. 

6.1.3. Kruismans 

Borehole Krs4 is situated on the Redelinghuys fault and boundary between the flat plains of 

the Kruismans basin and sandstone formations of the TMG. Although Krs4 has a depth of 285 
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meters, similar chemistry to the surrounding boreholes indicates a similar source. Boreholes 

Krs1 to Krs3 have low EC values (< 102 mS/m), and are situated in the Kruismans basin. They 

present an interesting scenario, as the lack of local topography could support weak local flow 

systems, which has been shown elsewhere to result in stratified groundwater, and increased 

water-rock interaction and the accumulation of salts (Dahl et al., 2007). This however is not 

the case, as EC values of Krs1 to Krs4 are comparable to the fresh Upper Krom Antonies. 

Furthermore, the high average ORP values (~120 mV) indicate that the groundwater has had 

recent contact with the atmosphere and has been recently recharged. Krs1 to Krs4 are the 

only boreholes in the study area situated in quaternary catchment G30B, which corresponds 

to a different GRU to G30D (GEOSS, 2006). This is particularly evident at Krs1 and Krs2, 

which show a clear increase in HCO3
- in comparison to Krs3 to Krs5. This indicates a transition 

from HCO3
- to Cl- as groundwater moves towards the confluence. The source of recharge for 

the Kruismans secondary aquifer has not been quantified. 

The effects of salinisation from the local shale are seen on the shallow groundwater samples 

of the Kruismans, which have an average EC of 746 mS/m (Sigidi, 2017). The significantly 

more fresh deep groundwater suggests that little interaction occurs between the primary and 

secondary aquifer of the Kruismans, and salinization of the secondary by the primary aquifer 

is not a cause for concern. 

6.1.4. Verloren 

The deep groundwater of the upper Verloren (sampled in this study) shows a similar isotopic 

and chemical signature to the deep groundwater of Hol and lower Krom Antonies. 

Groundwater studies along the lower Verloren River (beyond the boundaries of this study 

area) indicate that TDS concentrations vary between 500 and 3500 mg/L, with a chemical 

composition similar to diluted sea water (Maclear, 1994; Harck, 1995). It is therefore likely that 

additional salinisation occurs as groundwater progresses towards the coast, and is a cause of 

concern for the health of the wetlands. 

6.2. Rain water characterisation 

The El Niño-Southern Oscillation (ENSO) is a key role player for drought severity in the 

Western Cape, as most of the severe droughts have typically taken place during El Niño years 

(Araujo et al., 2016). This is particularly evident during the rainy season, where the variation 

in sea-surface temperature (SST) and high pressure systems result in low rainfall and 

droughts in southern Africa (Camberlin et al., 2001). El Niño years are also characterised by 

high temperatures in addition to low rainfall (Meque and Abiodun, 2015). 
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The El Niño event of 2015/2016 was one of the strongest recorded in history, taking place 

between spring (~September) 2015 and autumn (~March) 2016, with a weak El Niño occurring 

in 2014 (Lian et al., 2017). This is apparent in the results presented in this study, where all 

collection points received on average 28% less rainfall in 2015 when compared to 2016, 

particularly for the winter months. The total annual rainfall for 2015 at KK-R was the lowest 

recorded since 2003, while 2016 was only slightly below average (Watson et al., 2017b). 

6.2.1. Chloride composition 

Precipitation amount and chloride concentration show a good correlation, with higher rainfall 

events having lower chloride values. This is attributed to the dilution of aerosol particles during 

higher rainfall events. 

Weighted mean chloride values for the daily collectors show a maximum variation of 1.37 mg/L 

from one another, suggesting that they have a similar rainfall source. However, cumulative 

collector M-R has a significantly higher chloride content. Dry deposition and dust pollution on 

the Picketberg Mountain range is less than in the valley, and all rainfall collectors are made of 

the same material. This suggests that precipitation falling on the mountain does have a higher 

chloride content than precipitation in the valley. 

6.2.2. Isotopic composition 

The main factors that influence stable isotopic composition in precipitation are the amount of 

precipitation, continentality, temperature and altitude (Dansgaard, 1964; Mazor, 1991). There 

is also a possibility that water vapour originating from the Atlantic or Indian ocean may 

influence isotopic compositions, but this is unlikely to effect the west coast where most 

precipitation is derived from the Atlantic ocean (Diamond and Harris, 1997). The effects of 

altitude are apparent at M-R (elevation of 620 metres). Isotopic composition of precipitation at 

M-R is more depleted than the weighted averages for the daily rainfall collectors, and can be 

explained by the altitude effect, where the drop in temperature with increasing altitude results 

in condensation and isotopic depletion (Gat, 2001). 

The amount effect implies that large quantities of rain have lower isotopic ratios, due to the 

rain-out effect of heavier isotopes, and less evaporation during the rainfall event (Dansgaard, 

1964). Results show that this correlation does exist for both sampling years, albeit weak. On 

the other hand, seasonal variation shows a greater influence on stable isotope composition. 

Seasonal variability is a complex process influenced by numerous factors including 

temperature, humidity, source of the moisture, storm trajectories and convection patterns (Gat, 

1983). The lowest δ18O and δ2H ratios are observed around the months of July and August, 
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which correspond to the coldest months in the study area (Schulze et al., 2008), and thus 

produce precipitation with the lowest isotopic compositions. These strong seasonal variations 

are typical of temperate climates (Gat, 2001). Higher isotopic ratios are also recorded in 2015,  

and this is due to the effects of El Niño, where precipitation has been previously documented 

as having an isotopic signature that is heavier by 2‰ (Suwarman et al., 2017). 

Most arid regions show a LMWL slope < 8, as the secondary evaporation of falling droplets 

results in precipitation that does not represent the in-cloud composition (Gat, 2001). The 

general LMWL in this study is nearly identical to the Cape Town LMWL, collected from 12 

years of data, where δ2H = 6.41 δ18O - 8.66 (Harris et al., 2010). However, the LMWL of 2015 

and 2016 show significant differences, where 2016 shows a slight evaporation trend (slope = 

7.73) and 2015 a far more pronounced evaporation trend (slope = 5.00). This is likely due to 

the El-Niño effects in 2015, which showed a particularly strong correlation with increasing 

temperature (Meque and Abiodun, 2015), and thus in-cloud evaporation. The lower d values 

for 2015 (~3.1‰ less than in 2016) are also attributed to the El-Niño effects, and Sánchez‐

Murillo et al. (2017) shows a similar increase in d (~3.6‰) from 2015 to 2016.  

6.3. Recharge estimation using the CMB technique 

Deep groundwater sites along the Krom Antonies are used for CMB recharge estimates, as 

the Krom Antonies is likely to represent the most recently recharged groundwater in the study 

area. Rainfall collector KA-R2 will be used to estimate recharge at boreholes in the Upper 

Krom Antonies, KK-R for boreholes in the Middle Krom Antonies and VL-R for boreholes in 

the Lower Krom Antonies (Figure 35). Chloride values from mountain collector M-R will also 

be used for recharge estimations in the Upper Krom Antonies, in order to assess the 

contibution of TMG groundwater to the secondary aquifer. 

Long-term rainfall records are not available for all the rainfall collectors, and it is therefore 

necessary to use the rainfall values collected in 2016, as 2015 presents an anomalously dry 

year. The only limitation is that such a method will provide time specific recharge estimations. 

KA-R2 and VL-R rainfall values in 2016 show a good validation against AWS records, and 

therefore the annual total is reliable. Although rainfall was only collected at M-R from March 

to December in 2016, KA-R2 shows that 94% of the annual precipitation fell during this time 

frame. Using this percentage and the 330mm recorded at M-R, the assumption is made that 

the total annual rainfall for 2016 at M-R was 350mm. This agrees with Lynch (2004) who 

indicates that MAP at the location of KA-R2 is 125mm more than at the location of M-R. 
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Figure 35: Rainfall collectors and boreholes used for recharge estimation, where A is the Upper Krom 
Antonies, B is the Middle Krom Antonies, and C is the Lower Krom Antonies 

The CMB equation is used to calculate recharge, where P is annual precipitation, Clp the 

chloride concentration of rain water, and Clgw the chloride concentration of groundwater. 

𝑅 =  
𝑃 ×  𝐶𝑙𝑝

𝐶𝑙𝑔𝑤
 

6.3.1. Recharge estimates 

CMB calculations presented in Table 14 show the distribution of recharge estimates across 

the Krom Antonies catchment. Weighted average chloride concentrations of rain water for the 

whole sampling season, and average chloride concentrations of groundwater for the whole 

sampling season, are used as input values. These estimates are compared to recharge 

estimates by Watson et al. (2017b), underlined and presented above each rainfall collector. 

The highest recharge estimates are calculated in the Upper Krom Antonies, and range 

between 20.0 and 26.6 mm/a (4.2 – 5.6%) and 40.0 to 53.0 mm/a (11.4 – 15.2%) for M-R and 

KA-R2 respectively. The highest recharge is calculated at KA1, followed by KA2 and KA3. 

These values correspond well with estimates by Watson et al. (2017b), particularly for 

borehole KA1. The recharge values decrease substantially in the Middle Krom Antonies, which 

range between 2.1 and 9.1 mm/a (0.5 – 2.1%), and the Lower Krom Antonies, which range 

between 1.8 and 8.6 mm/a (0.7 – 3.3%). These do not agree with estimates by Watson et al. 

(2017b), and support the additional input of salts in the Middle and Lower Krom Antonies, 

A 

B 

C 
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which are likely to be distorting these estimates. Boreholes KA2 and KA3, which are situated 

slightly further down the catchment than KA1 (Figure 32), could also be effected by the 

additional input of salts. This would account for borehole KA1 producing the highest estimates 

that are most like Watson et al. (2017b). Recharge estimates from the Upper Krom Antonies 

suggest that the recharge that the TMG contributes ~48 mm/a to the secondary aquifer 

(represented by M-R), which is twice the amount of ~24 mm/a that direct infiltration in the 

valley contributes to recharge (represented by KA-R2). 

Table 14: Spatial distribution of CMB calculations for the Krom Antonies, with recharge estimates of 
Watson et al. (2017b) presented above each collector 

 

 

 

The impact of seasonal variations in groundwater chloride concentrations from the Upper 

Krom Antonies on recharge estimates at KA-R2 and M-R are presented in Table 15. Weighted 

average chloride values of all rainfall sampled at KA-R2 is used as an input parameter. 

Borehole KA1 shows the maximum seasonal variation in CMB estimates. This range is 16.9 

# samples
Clp (mg/L)

P (mm)

KA1 4 46.9 26.6 mm/a 5.6% 53.0 mm/a 15.2%

KA2 5 48.7 25.6 mm/a 5.4% 51.0 mm/a 14.6%

KA3 4 62.3 20.0 mm/a 4.2% 40.0 mm/a 11.4%
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KA4 1 127.6 9.1 mm/a 2.1% KA19 1 325.2 3.2 mm/a 1.2%

KA5 1 128.2 9.1 mm/a 2.1% KA20 1 119.5 8.6 mm/a 3.3%

KA6 3 175.7 6.6 mm/a 1.6% KA21 4 265.9 3.9 mm/a 1.5%
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mm/a at M-R, which translates to 31% of the average recharge value for KA1. Similarly, this 

range is 8.5 mm/a for KA-R2, which translates to 32% of the average recharge value for KA1. 

While seasonal groundwater variations do impact the CMB estimates, particularly for the low 

chloride concentrations at KA1, this impact is < 33% of the final value. 

Table 15: The influence of seasonal groundwater variability on CMB estimates in the Upper Krom 
Antonies 

 

The effects of varying chloride concentrations for different rainfall events on recharge 

estimates are presented for daily rainfall collector KA-R2 and Upper Krom Antonies 

groundwater in Table 16. Rainfall values from one year of data at KA-R2, 1 October 2015 to 

30 September 2016, have been used for input into the table. The highest recharge estimates 

are calculated using the mean chloride concentrations in rain water, i.e. not weighted average. 

Alternatively, the lowest estimates are calculated using the mean chloride values from rainfall 

events >20 mm. This indicates the dilution effect of aerosol particles for high rainfall events. 

These are however both unrealistic scenarios, as rainfall events < 20mm are also likely to 

contribute to recharge, but larger rainfall events will still contribute the most. The weighted 

average concentration of chloride in rainfall is therefore likely to be the most representative of 

chloride contribution to groundwater. The weighted average recharge estimate for KA1 is 

5.6%, and falls between the estimate of 7.4% for rainfall events > 5mm, and the estimate of 

4.3% for rainfall events > 10mm. Watson et al. (2017b) estimated a recharge value of 8.0% at 

# samples

Clp (mg/L)

P (mm)

AVERAGE 46.9 26.6 mm/a 5.6% 53.0 mm/a 15.2%

Nov '16

Jun '16 40.6 30.7 mm/a 6.4% 61.2 mm/a 17.5%

Mar '16 49.6 25.1 mm/a 5.3% 50.1 mm/a 14.3%

Nov '15 41.1 30.3 mm/a 6.4% 60.5 mm/a 17.3%

Sep '15

Jun '15 56.1 22.2 mm/a 4.7% 44.3 mm/a 12.7%

AVERAGE 48.7 25.6 mm/a 5.4% 51.0 mm/a 14.6%

Nov '16

Jun '16 47.2 26.4 mm/a 5.5% 52.6 mm/a 15.0%

Mar '16 50.0 24.9 mm/a 5.2% 49.7 mm/a 14.2%

Nov '15 48.2 25.8 mm/a 5.4% 51.6 mm/a 14.7%

Sep '15 45.0 27.7 mm/a 5.8% 55.2 mm/a 15.8%

Jun '15 53.0 23.5 mm/a 4.9% 46.9 mm/a 13.4%

AVERAGE 62.3 20.0 mm/a 4.2% 40.0 mm/a 11.4%

Nov '16

Jun '16 61.3 20.3 mm/a 4.3% 40.5 mm/a 11.6%

Mar '16 60.3 20.6 mm/a 4.3% 41.2 mm/a 11.8%

Nov '15

Sep '15 57.5 21.7 mm/a 4.5% 43.2 mm/a 12.3%

Jun '15 69.9 17.8 mm/a 3.7% 35.6 mm/a 10.2%
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KA-R2, indicating that rainfall events > 5mm might contribute the bulk of recharge to the 

secondary aquifer. 

Table 16: The effects of varying chloride values of different rainfall events on the CMB estimates of 
boreholes in the Upper Krom Antonies 

 

6.3.2. Comparison to other studies 

Conrad et al. (2004) used a GIS-based approach to estimate recharge in the Sandveld, based 

on the parameters of lithology and rainfall. Conrad et al. (2004) estimates recharge at KA-R2 

to be 1.4 mm/a, significantly less than the estimate for this study. Additionally, Conrad et al. 

(2004) estimates recharge at M-R to 80.1 mm/a, comparatively more than the estimation for 

this study. Although recharge estimates by Conrad et al. (2004) at KK-R (3.1 mm/a) and VL-

R (0.8 mm/a) correspond well with the estimates of this study, it is known that these CMB 

estimates in this study are unlikely to represent true recharge due to the influx of salts in 

groundwater. DWAF (2004) calculated a recharge value of 28% in the mountains, and 5% at 

the base of the mountains, using the CMB method in the northern part of the catchment. These 

results are comparable to the estimates in this study. 

Recharge estimates at M-R are slightly lower in comparison to TMG recharge estimates by 

Hay and Hartnady (2002), who estimated a spatial average of ~23% to the TMG aquifer in the 

Citrusdal area (located ~30 km from this study area). This could be due to the lower annual 

rainfall in catchment, where Parson (2002) suggests that TMG recharge of greater than 20% 

only occurs in areas where rainfall exceeds 600 mm/a. 

6.4. Groundwater recharge mechanisms 

CMB recharge estimates in the Upper Krom Antonies show that the TMG (represented by M-

R) contributes twice the recharge to the secondary aquifer than localised recharge 

(represented by KA-R2) does. Watson et al. (2017b) shows a similar 2:1 ratio. When this ratio 

is applied to the average stable isotope compositions at M-R and KA-R2, the predicted 

groundwater isotopic signature of the Upper Krom Antonies is -13.6 for δ2H and -3.79 for δ18O, 

# samples

Clgw (mg/L)

Weighted average 34 2.6 414.6 23.2 mm/a 5.6% 22.4 mm/a 5.4% 17.5 mm/a 4.2%

All rainfall average 34 4.3 414.6 38.1 mm/a 9.2% 36.6 mm/a 8.8% 28.6 mm/a 6.9%

> 5 mm average 20 3.5 372.0 27.7 mm/a 7.4% 26.6 mm/a 7.2% 20.8 mm/a 5.6%

> 10 mm average 12 2.0 308.5 13.3 mm/a 4.3% 12.8 mm/a 4.2% 10.0 mm/a 3.3%

> 15 mm average 8 2.1 258.5 11.5 mm/a 4.4% 11.0 mm/a 4.3% 8.6 mm/a 3.3%

> 20 mm average 6 1.0 220.5 4.5 mm/a 2.0% 4.3 mm/a 2.0% 4.7 mm/a 2.1%
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with a d value of 16.7‰ (Figure 36). This correlates well with actual groundwater isotopic ratios 

of the Upper Krom Antonies, supporting the fact the TMG contributes the most recharge to the 

secondary aquifer. The actual average d value is 13.1‰, and more negative in comparison to 

the predicted value. This indicates that evaporative losses have occurred before infiltration, 

through the processes of plant interception, streamflow, surface retention, evapotranspiration 

and runoff (Gat and Dansgaard, 1972), resulting in heavier isotope enrichment (Geyh, 2001). 

Modelled potential evaporation by Watson et al. (2017b) assigns an average value of 2 

mm/day for the upper catchment during rainfall events, supporting the idea of evaporation 

before infiltration. The presence of these evaporative losses suggest that a combination of 

macropore diffusion and focussed recharge are at play in the catchment (Wood and Stanford, 

1995). 

 
Figure 36: Weighted stable isotope ratios of rainfall collectors KA-R2 and M-R in comparison to 

boreholes KA1 to KA7. The predicted groundwater stable isotopic signature is caculated from the 2:1 
ratio for recharge at M-R and KA-R2 respectively 

6.4.1. Conceptual model of groundwater flow 

A conceptual model of groundwater recharge for the Krom Antonies, in respect to the 

boreholes and rainfall collectors, is presented in Figure 37. 
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Figure 37: Conceptual model of recharge along the Krom Antonies 

The primary aquifer is thin in the Upper Krom Antonies (Figure 37), and recharge from the 

TMG, and direct recharge to the secondary aquifer are likely to be the primary mechanisms, 

with CMB results indicating that the TMG contributes the most. While CMB recharge estimates 

in the Middle Krom Antonies are not reliable due to the influx of additional salt from the 

Malmesbury shale, stable isotope compositions indicate that the Upper and Middle Krom 

Antonies have similar recharge sources (Figure 30). Comparison between groundwater of the 

secondary and primary aquifer (Sigidi, 2017) originating in the Upper and Middle Krom 

Antonies indicate that the primary and secondary aquifers in the Middle and Upper Krom 

Antonies have a similar composition (Figure 38). This suggests that the high recharge to the 

secondary aquifer in the Upper Krom Antonies recharges the primary aquifer, contributing to 

baseflow in the form of a gaining stream. This would account for the lower EC values (~133 

mS/m) of shallow groundwater along the Krom Antonies, comparatively less than the Hol 

(~740 mS/m) and Kruismans (~746 mS/m) (Sigidi, 2017). 

The thick primary aquifer at the Lower Krom Antonies (Figure 37) implies minimal direct 

recharge to the Malmesbury aquifer, and stable isotope signatures indicate that the TMG 

aquifer also contributes little recharge (Figure 38). The Hol and Lower Krom Antonies 

groundwater has a more negative isotopic signature and recharge is likely to have occurred 

more inland or at higher altitudes (Breitenbach et al., 2010). This groundwater would have 

longer flow paths, resulting in the smoothed isotopic signatures that are similar to the GMWL, 

as groundwater transitions through the aquifer (Gat, 1974). This is distinct from the Upper 

Krom Antonies, where the large isotopic variations represent the variations of local rainfall. 
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Deep groundwater from the Lower Krom Antonies is likely to contribute very little recharge to 

the shallow aquifer, as shallow groundwater has a more positive isotopic signature than its 

deep counterpart (Figure 38). Hol6 also shows the effects of pumping-induced recharge in the 

summer, where shallow groundwater contributes a fair portion of recharge to the deep aquifer. 

The Lower Krom Antonies and Hol can therefore be characterised as a losing stream. 

 
Figure 38: Deep groundwater from the Upper and Middle Krom Antonies, and Lower Krom Antonies, 
in comparison to shallow groundwater from the Upper and Middle Krom Antonies, and Lower Krom 

Antonies. Shallow groundwater data is from Sigidi (2017) 

6.4.2. Implications for using the CMB technique in semi-arid areas 

The CMB estimates correlate well with independent, physical methods from Watson et al. 

(2017b). The methodology for ground and rain water sampling presented in this study can be 

used to create a filtering technique for CMB input parameters. Major ion chemistry and stable 

isotopes are the main tools used, and provide easy recharge estimation in semi-arid 

catchments where groundwater salinisation is common and physical data is not always easily 

accessible. 

The good spatial resolution and distribution of sampling points over the Krom Antonies 

catchment, and the good temporal variation over six sampling seasons, makes the 

methodology for delineating groundwater zones particularly robust. This study supports the 

fact that groundwater in the upper catchment is typically the least saline and most 

representative of recent recharge, and can sometimes be defined by a distinctly different 

groundwater type, as was the case for the Upper Krom Antonies. An increase in salinity only, 

while stable isotope ratios remain constant, indicate the same groundwater source, but where 
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salts have been added through water-rock interaction or low flushing of salts (e.g. the Middle 

Krom Antonies), and this groundwater is unsuitable for CMB calculations. Alternatively, a 

change in both the stable isotope composition and salinity indicates the influx of additional 

groundwater that is not representative of the catchment (e.g. the Lower Krom Antonies), and 

this groundwater should not be used for CMB estimates. Hol6 additionally reiterates the 

importance of sampling more than one season. Had only one sample been taken and 

assumed to be representative of average groundwater composition, the error of sampling 

shallow groundwater could have been made. Large seasonal fluctuations in groundwater 

geochemistry that correspond with pumping seasons can act as indicators for the effects of 

pumping-induced recharge, with strong evaporation trends further indicating that recharge is 

derived from shallow ground or surface water sources. 

This study shows the importance of establishing a rainfall collector at a higher altitude in the 

catchment where recharge is suspected to be significant (e.g. rainfall collector M-R on the 

Piketberg Mountain range). The stable isotopes of this rain water could be more representative 

of groundwater in the valley, and the high altitude makes this collector less prone to dust 

pollution. Such a collector should be supplemented by rainfall collectors in the valley, which 

provide a robust spatial distribution. Comparing the stable isotopes of rain water from a range 

of collectors and groundwater from a range of boreholes can be used to validate the CMB 

recharge estimates. This study shows that the CMB method can be used to calculate recharge 

over smaller catchments, given that the flow systems are well constrained.  

This study shows the importance of initially selecting more than one rainfall collector, to 

account for potential sampling errors (nine collectors were initially selected, but only four 

produced reliable results). Assessing the inclusivity of sampling for both the type of rainfall 

event, and the total annual rainfall, can indicate which rainfall collectors have the most 

representative sampling. It is also valuable to sample more than one rainy season, as extreme 

meteorological and weather events (such as El Niño) can produce data that is not 

representative of long-term averages. Stable isotopes of rain water are good indicators for 

such events, particularly when compared to other long-term rain water compositions. 

6.5. Effects of regional pumping and climate change 

Future climate change predictions across South Africa paint a bleak scenario, particularly for 

the west coast. In the Western Cape, winter rainfall is likely to decrease in the future, and will 

possibly be characterised by higher intensity rainfall events (Midgley et al., 2005). These high 

intensity events are less likely to contribute significantly to recharge in the Verlorenvlei 

catchment (Watson et al., 2017a). Temperatures in the Sandveld are also predicted to 
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increase during the critical summer months from December to February, with a reduction in 

summer rainfall (Archer et al., 2009), and an extension of the summer season (Cavé et al., 

2003). This is particularly worrisome for potato farmers who are heavily reliant on groundwater 

for irrigation during the summer months, and will result in increased groundwater abstraction 

in summer, placing more pressure on a groundwater system that already shows signs of high 

water stress (Archer et al., 2009; Műnch et al., 2013).  

Saline shallow groundwater in the upper part of the Krom Antonies is not an issue yet, as the 

fresh secondary aquifer recharges the primary aquifer in the form of a gaining stream. 

However, increased pumping of TMG groundwater could decrease baseflow to the Krom 

Antonies River and result in the inflow of saline Hol groundwater reaching further up the 

catchment. Cavé et al. (2003) shows that an exponential relationship exists between rainfall 

and recharge, and a slight reduction in rainfall due to climate change could therefore result in 

a significant reduction in recharge, which may become negligible for rainfall < 400 mm/a. 

Pumping-induced groundwater discharge from the primary to secondary aquifer at Hol6 has 

not been identified in previous literature, and could have severe consequences for the health 

of the secondary aquifer. As pumping increases and rainfall decreases across the catchment, 

such a scenario as at Hol6 could become more common across the lower catchment where 

the deep groundwater contributes little to baseflow. Sigidi (2017) shows that the inflow of 

shallow groundwater is particularly worrisome for the Hol and Kruismans, where average 

shallow groundwater EC values are 740 and 746 mS/m respectively. The salinity of the 

shallow groundwater is also likely to increase in the future, as surface run-off along the west 

coast is predicted to decrease to below 5 mm/a (Schulze, 2000), and dryland salinity could 

impact salinity down the catchment (Bugan, 2014). Although deep and shallow groundwater 

along the Kruismans show little signs of interaction, this could change in the future with 

increased pumping. 

Pumping-induced recharge not only poses a threat of salinization to the secondary aquifer, 

but also threatens to decrease the quality and quantity of groundwater discharged into the 

Verlorenvlei wetlands. The wetlands rely heavily on groundwater baseflow during periods of 

low surface run-off and drought, and prolonged pumping is likely to result in a losing stream 

and reduced baseflow conditions. Furthermore, increases in pumping in the upper Krom 

Antonies catchment will reduce the contribution of TMG groundwater to the lower catchment.  
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7. CONCLUSIONS 

The secondary aquifer of the Verlorenvlei catchment is generally characterised by good quality 

groundwater in comparison to the saline, primary aquifer. This is particularly true for the upper 

reaches of the Krom Antonies catchment in the Piketberg Mountain range, where groundwater 

has the lowest EC and chloride content in the study area. It also has a distinct Ca2+-HCO3
- 

type groundwater that has not been identified in previous literature, and is likely to represent 

the nearest composition to TMG groundwater. This is comparatively different to the Ca2+-Mg2+-

Cl- and Na+-Cl- type groundwater found in the rest of the catchment. 

Chloride Mass Balance estimates from the upper Krom Antonies catchment indicate that direct 

recharge to the secondary aquifer varies between 20 and 27 mm/a (4.2 - 5.6% MAP), while 

the TMG aquifer contributes between 40 and 53 mm/a (11.4 - 15.2% MAP). These estimates 

correspond well with physical methods by Watson et al. (2017b), and prove robust for different 

groundwater sampling seasons and rainfall events. Ground and rain water δ18O and δ2H 

values from the upper Krom Antonies support the estimate that the TMG contributes double 

the recharge to the secondary aquifer, in comparison to direct recharge. Additionally, 

deuterium excess values of ground and rain water indicate the presence of evaporative 

processes before infiltration, suggesting a combination of macropore diffusion and focussed 

recharge. δ18O and δ2H values also show that deep groundwater contributes significant 

recharge to the primary aquifer in the upper and middle Krom Antonies, resulting in a gaining 

stream where deep groundwater contributes to baseflow. 

Salinity increases significantly down the Krom Antonies catchment. This is reflected in the 

CMB results that underestimate recharge in the lower catchment and do not correlate well with 

physical-based methods. The middle and upper Krom Antonies have the same source of 

recharge, and increasing salinity in the middle Krom Antonies is attributed to decreased 

recharge and significant water-rock interaction with the Malmesbury shale. On the other hand, 

more negative stable isotope values of groundwater in the lower Krom Antonies show that little 

recharge is in fact derived from the TMG aquifer and upper catchment, contrary to previous 

literature. The lower Krom Antonies is mixing with deep groundwater from the Hol, and has a 

distinctly different source of recharge to the upper Krom Antonies, with δ18O and δ2H values 

indicating the likelihood of recharge at a higher altitude or more inland. 

Although most deep boreholes along the Hol are comparable to the upper reaches of the Krom 

Antonies, two exceptions contribute significant salt to the lower Krom Antonies, and are a 

cause for concern. Salinisation at Hol2 is controlled by the dip of the Piketberg Mountain 

range, which directs most of the recharge into the Krom Antonies valley and results in the 
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accumulation of salts. Additionally, large groundwater abstraction at Hol6 during the summer 

months has resulted in the discharge of shallow groundwater to the deeper aquifer through 

the semi-confined layer. This is apparent by the elevated EC values and positive δ18O and 

δ2H values that are indicative of an evaporative environment, and closely match those of the 

shallow aquifer. This indicates a losing stream scenario, and deep groundwater does not 

contribute to baseflow. 

Climate predictions indicate less rainfall and higher temperatures along the west coast, which 

will result in both decreased recharge and increased groundwater abstraction. Contributions 

from the TMG aquifer are likely to be significantly less in the lower Krom Antonies, resulting in 

more inflow of saline Hol groundwater. This will have severe impacts on the large expansion 

of agricultural activities in this area. The effects of pumping do not appear to be a problem for 

the Kruismans, where shallow and deep groundwater show little interaction. However, this 

study indicates that pumping-induced discharge from the primary to secondary aquifer is likely 

to become a problem for deep groundwater along the Hol, Verloren and lower Krom Antonies, 

which all have a similar source of recharge. This pumping-induced groundwater interaction 

has not been identified in previous literature, and should be carefully monitored in the future. 

Such a scenario does not only threaten the secondary aquifer with salinisation, but also the 

health of the wetlands through a reduction in deep groundwater baseflow. 

Overall, the good spatial and seasonal variation in groundwater sampling shows the 

applicability of using major ion and stable isotope chemistry to constrain flow systems, 

recharge mechanisms, and identify the input of additional salts. This study also shows the 

importance of correct rain water sampling, as rain water indicated higher evaporation and the 

abundance of heavier isotopes in 2015, typical of an El Niño event. For recharge estimation, 

average δ2H, δ18O and chloride values from both years were used, as these are most 

representative of long-term rainfall. This is supported by the general LMWL that is near 

identical to previous long-term isotopic studies in the Western Cape. Assessing the accuracy 

of rain water collection also proved valuable, to ensure that sampling is representative of both 

the type of rainfall event and the total annual rainfall. The study additionally showed the 

importance of establishing a rainfall collector in a high-altitude environment where rainfall is 

the most representative of recharge. Using this collector in combination with a collector in the 

valley proved particularly useful for validating the recharge mechanisms and estimates.  

Although the CMB technique is typically used for regional recharge estimates in non-saline 

systems, in this study the at-point recharge estimates in the upper catchment are comparable 

to physical based methods. Since the estimates in the lower parts of the catchment via 

physical based recharge methods suggest negligible recharge, the approach used in this study 
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provides a meaningful estimate of recharge in the catchment as a whole. Therefore, the robust 

methodology for rain and groundwater evaluation presented in this study has far wider 

implications for CMB estimation, and provides a filtering technique that can be used for high 

resolution recharge estimates in semi-arid catchments threatened by groundwater 

salinisation. 
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