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Abstract—The resource-constraint energy sector faces an in-
satiable demand for energy, which necessitates improvements in
efficiency. One key sector that has potential for savings is resi-
dential water heating, which makes up 32% of household energy.
Previous studies have proven that with effective scheduling up to
29% savings can be achieved for a nominal consumption pattern.
The model that was used to estimate the savings, calculates the
energy usage for a given hot water consumption pattern and given
heating schedule for a horizontally mounted water heater. This
two-node model is used to aid user-informed scheduling and auto-
scheduling, but was developed as a black-box model, validating
the energy and not the internal temperatures, which could be
misleading. This paper evaluates the accuracy of the model
by performing temperature measurements inside the horizontal
electric water heater. Moreover, two aspects neglected by the
model are investigated: The node state transfer usage threshold,
and the inter-nodal thermal resistance. The results show that
the model significantly underestimates the stratification that
occurs naturally. This underestimation also severely affects the
modelled energy consumption and hides limitations of the model,
preferring a lower threshold and higher inter-nodal resistance.
The results also show that Legionella growth in the EWH could
be a concern despite a high set point.

I. INTRODUCTION

Given the increasing cost of energy and its limited re-
sources, combined with increased awareness of climatic
change, the need for lower domestic energy consumption has
received increased attention. National utilities in the devel-
oping world are introducing measures to curb demand. For
example, in South Africa, the national energy supplier (Eskom)
has offered solar water heating rebates to users [1]. Also in
South Africa, the cost of electricity has increased by 300.7%
since 2007 [2]. This has led many households to look for
affordable ways to lower their monthly electricity bill. On
average, the electric water heater (EWH) consumes 32% of
total household electricity. Given its energy consumption levels
and its substantial energy-capacitive nature, many solutions for
household energy savings focus on managing the energy of
the EWH. These attributes have put the EWH in the spotlight
of many demand side management (DSM) projects, such as
for peak load shaving [3],[4]. As there are millions of EWHs
across each country (South Africa has 5.4 million) they are
the perfect candidates for creating small micro grids and

smart networks. This requires feedback in near real-time and
accurate readings from the EWHs.

Resource restrictions in a country, such as in South Africa,
greatly inhibit real-time capabilities of a smart infrastructure
due to the high cost and low bandwidth nature of the vast ma-
jority of internet connections. In order to utilise the available
connections, optimisation strategies need to be implemented,
such as keeping the amount of data transfered from each EWH
to an absolute minimum. Additional information can then be
obtained through simulation of each EWH using the gathered
metrics to gain new information. One such model is the two-
node model for horizontally mounted EWHs [5]. This model
can be run on a mobile device with low computing power
which thus reduces the overall system cost, making it more
affordable for the masses.

A. Contribution

This paper builds on the foundation laid by the work in [5],

in which a thermal energy model is developed and validated
for a horizontally oriented EWH as a black box. This paper
uses temperature measurements inside the EWH to avaluate
the nodal temperatures modelled by Nel et. al.
This paper also investigates two variables neglected by the
work by Nel et. al., namely the inter-nodal heat transfer
coefficient and the threshold used before transitioning from the
one-node state to the two-node state. This paper shows that
the model underestimates the natural steady-state stratification
that occurs in the EWH, leading to some hidden effects
(with regards to the thermal transfer coefficient and nodal
state transition threshold) and underestimation of the energy
that is used during consumption events (enthalpy). The lower
temperatures seen at the lower part of the EWH also means
that Legionella growth could be a substantial concern despite
a high set point.

II. RELATED WORK

Dolan et. al[6] presents a one-node model, assuming
uniform temperature distribution, for an EWH. The model
use a first-order differential equation to estimate the average
thermal response of the water in an EWH. Fluctuations in
internal temperatures due to usage events are not estimated.



Kondo et. al. [7] presents a two-node model, describing
an upper and lower node caused by a thermocline in the
EWH due to natural stratification, for a vertical EWH with
two heating elements heating independently. The modeling
is simplified by assuming the thermocline to be zero. The
upper- and lower-nodes are simulated as individual one-nodes
which consists of fixed volumes with uniform temperatures
where the upper-node always has a higher temperature than
the lower-node. Although the heat dissipation of each node
is considered with an estimated EWH thermal resistance, the
model is not validated with measured data. The consumption
profiles for individual EWHs were estimated from measured
average residential load profiles. The assumption of fixed
node volumes and a zero thermocline within the EWH will
result in erroneous energy flows for above average water
usage events.

Diao et. al. [8] presents a one- and two-node transitioning
model for vertical EWHs which consists of the one-node
model from [6] and the two-node model of [7]. The model
transitions to the two-node state when a withdrawal occurs
and returns to a one-node state when the EWH contains
only warm- or cold water. The two-node model also assumes
a uniform temperature in each node as in [7] although, a
varying thermocline height during withdrawal events is taken
into consideration. The upper-node in the two-node model
is held at constant temperature of the average withdrawal
temperature, ignoring the effect of standing-losses. Since the
model does not take the cross-sectional area of the EWH into
consideration, it is only valid for vertical orientated EWHs.
The model accuracy is not validated with measured data.

Booysen et. al. [9] validated Nel’s EWH model with a
field study in which actual consumption patterns were used
with and without schedule control. It is stated that 29%
savings can be achieved with informed schedule control.
The savings calculations are based on estimating the internal
temperatures from the EWH energy model. The case study is
implemented with European Telecommunications Standards
Institute (ETSI) compliant smart grid technology.

All the aforementioned contributions to modeling an EWH
makes the assumption of the internal temperature being the
average outlet temperature of the latest withdrawal event. This
estimation can be correct at withdrawal times, although at
higher resolution estimations the internal temperature will be
affected due to a temperature measurement taken outside of
the EWH which is exposed to the natural elements. These
natural elements play a large role in measurements in the South
African setup of EWHs. The Majority of the EWHs are being
moved from the traditional roof attic installations to outside,
for prevention of damages due to leaks. The existing EWH
model is explained in the next section.

Fig. 1. One node representation

Fig. 2. Two node representation

A. Existing EWH Model

The existing EWH model described in detail by Nel in
[5], and summarized in [9], is a verified and accurate model
simulating the energy flow within the EWH. The model
can be described as having two states, a one-node state and
the other a two-node state. The two-node model transitions
between a single node, in one-node state, to a binodal state
which effectively consists of two one-node nodes known as
the lower- and upper-node, with each having their separate
energy input and output sources. A visual representation of
the respective model nodes can be seen in figures 1 and 2.

The stratified nodes of the two-node model are separated
by a thermocline, which acts as a heat transfer medium
between the nodes, caused by natural stratification. The
model proposed by Nel in [5] assumes no conductance
through this thermocline, although Cloete [10] measured and
experimented with thermocline values and implemented it
into the existing EWH energy model.

The thermocline constant used in [10] is not verified with
actual measurements within the EWH but with measurements
taken at the EWH outlet connection.

The existing two-node model assumes a constant water
withdrawal threshold. As soon as the threshold is reached, the
model transitions from the one-node state 1 to the two-node
state 2. This threshold is an assumption made in both [5],
[10]. This threshold has not yet been physically measured or



Fig. 3. Experimental setup used by Nel et. al.

determined at this time, of what the author is aware of.

The next section presents a brief overview of how Nel’s
EWH Model is implemented in [5].

1) One-Node Model: The one-node model, 1, treats the
water mass as a uniform body, temperature change in this
body happens instantaneously across the entirety of the mass.
During a water withdrawal event, the average outlet tempera-
ture is used to estimate the current internal EWH temperature.
The inrush water mixes instantaneously with the existing water
mass, resulting in a new average internal temperature.

The energy inside the EWH (E;,,5;4.) consists of the input
energy by the element (), usage energy during with-
drawals (Eysqge) and energy lost to the environment (Ess).

The energy balance can be depicted as follows:

Einside = Einput - Eusage - Eloss (1)

Calculating the next internal temperature can be derived
from 1 with the following equation:

Einput

ATinside =
inside va;tank

2)
Where: ¢ is the specific heat capacity of water and V4, the
total volume of the EWH.

The energy lost to the environment is referred to as standing
losses. These losses occur when there is a temperature differ-
ence between the internal EWH temperature and the outside
environment temperature.

These losses can be calculated with the following equations:

Tinside [’I’L + ]-] = Tamb[n] + (Enside [n] - Tamb[n]) e” (3)

4= —n )

CmtankR

Where myqnk is the mass of water in the EWH and R is
the thermal resistance of the EWH.

Eioss [n] = CmtankATinside [n] )

Fig. 4. Experiment of this work, showing placement of thermostat (SP) with
temperature sensor.

2) Two-Node Model: The two-node model, 2, uses a vol-
ume withdrawal threshold which determines when to transition
from the one-node state to the two-node state. The two-node
state is when the water body splits into two sections caused by
the natural stratification in the EWH when cold water enters
the EWH. These sections are referred to as the lower-node
(or, hypolimnion) and the upper-node (or, epilimnion). The
upper-node indicates the amount of warm water left in the
EWH after a withdrawal event, and the lower-node indicates
the newly cold water rushed into the EWH.

With the two nodes separated into individual one-node
states, each node’s energy input, thermal decay and energy
used can be calculated separately. The thermal resistance used
to determine the thermal decay is dependent on the contact
surface area of the node exposed to the environment and the
opposing node. To calculate the contact surface area of each
node, the Newton-Raphson method is used to first calculate the
secant where the lower node contacts the edge of the cylinder,
then the area of the node is calculated.

The calculation of the thermal conductance for each node
enables the use of Equations 3 and 4 with the consideration
of Tinside being the nodal internal temperature and the myqp
replaced with the nodal mass. Equation 5 can then be used to
calculate the energy losses for the individual nodes.

The lower-node will only increase in volume when with-
drawal events occur, otherwise it will continue heating until
the lower- and upper-node temperatures are equal. The lower-
and upper-node only then transitions back to a single one-node
state.

The two-node model can also be used with a vertical EWH
which reduces the complexity of the calculations since the
cross-sectional area remains constant.

Despite apparently accurately describing the temperature
inside the EWH, the model disregards the inter-nodal transfer
of energy (inter-nodal thermal transfer resistance), and also
does not consider the proposed state transfer threshold. Both
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Fig. 5. Measured temperatures of lower- and upper-nodes and inlet with simulated lower node temperatures of specified threshold and Inter Nodal Thermal

Resistance Factor (INTRF) values overlaid.

of which are assumed to be correct.

III. SIMULATION SETUP

To validate the model simulations were run using the
parameters as shown in Table I. Two parameters which di-
rectly influence the model, but have no concrete derivation or
estimation, were varied in order to determine their impact on
the simulation results. The first parameter being a threshold
volume, Vipresh, Which indicates the required volume of water
to be extracted from the EWH to transition from a one-node
to a two-node state. The second parameter is the Inter Nodal
Thermal Resistance Factor ( INT RF’), which is a constant
factor to estimate the thermocline thermal resistance based
on the current thermocline area. The simulation was run as
an independent simulation in that only independent external
parameters were used as parameters for the simulation model
in order to verify the input energy. These parameters included
the measured inlet temperature, measured ambient temperature
and the measured water usage.

The models discussed in [5] enabled simulation of a single
EWH with given parameters. The Java implementation was
able to simulate 10 days worth of data in a time of 100
milliseconds. If multiple EWH simulations were to be run,
this would require sequentially simulating each individual
EWH with their respective parameters. This is computationally
inefficient as the time required for simulations increases N-
fold for N EWHs. This model was improved on by creating a
vectorised version of the model and simulator in Python. Vec-
torisation drastically improves the computational efficiency by
utilising the parallel processing capabilities of modern 64-bit
CPUs. Though the vectorised approach is slower for a single
EWH simulation due to extra overhead for setting up the vector
environment, however, the power really starts to show once
groups of EWHs are simulated. For a single EWH simulation

TABLE I
SIMULATION PARAMETERS
[ Parameter | Value |
R 0.471
c 4.184 kl/kg
Tank Volume | 100 L
SP 60 C
P 2 kW
time step 1 minute
Vihresh 10L, 100 L
INTRF 0.4, 4.0
T-in Measured inlet temperature time series.
T-amb Measured ambient temperature time series.
Schedule Continuously on.
Hot water Measured water used time series.

of 3 days the vector simulation took 733 milliseconds, where
simulating 4 EWHs, each with different parameters took 751
milliseconds, an extra cost of 18 milliseconds or 2.46 % longer
execution. Scaling this up further, simulating 100 EWHs, each
with unique parameters, takes 830 milliseconds, an additional
97 milliseconds or 13.23 % longer execution. This clearly
illustrates the power of vectorisation with single instruction
multiple dimension operations, enabling multiple scenarios to
be explored simultaneously.

IV. DATA COLLECTION AND EXPERIMENTAL SETUP

The original experiment that was used to verify the model
collected: outlet temperature, inlet temperature, ambient tem-
perature, water usage and electricity usage. The original exper-
iment also used the outlet for schedule control see Figure:3 as
well as Table:II explaining the key inputs of the experiments.

The experiment we used to measure internal temperature,
uses a thermostat that extends into the EWH. This temperature
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values for lower node with measured value as reference.

TABLE II
SYMBOL DEFINITIONS
[ Symbol | Definition i

T-in This is the measured temperature of the water pipe delivering
cold water to the EWH.

T-out The outlet pipe measured temperature.

SP Temperature measurement that is used in set point control.

T-low This temperature is being modeled in the original experiment.
Now this lower node is being measured and compared to the
modeled T-low.

T-Upper | This temperature is being modeled in the original experiment.

Now this upper node is being measured and compared to the
modeled T-Upper.

was then used for thermostat control. Figure:4 shows the
main differences between the two experiments including the
placement of the thermostat with an internal temperature
Sensor.

The internal temperature probe could measure water temper-

ature more accurately than the outlet and be more responsive,
thus lowering energy input while heating to a set display
temperature.

The experiment ran with the same schedule, set temperature
and water usage event timings as the original model verifi-
cation experiment, [5], as to have a one to one comparison.
For schedule control the EWH was set to an always on state
meaning that whenever a temperature was measured that is
lower than the set threshold the device would immediately
turn on again. In the case of this experiment the set point
temperature was set to 60 degrees. Water usage event timings
were closely monitored and followed the same pattern as in
the original experiment which is found in Table III.

All this data is captured by a Geasy controller [10] that
has been modified to use the internal temperature for set point
control. The unit then sends all the relevant data to a raspberry
pi that logs and cleans the data.



TABLE III
WATER USAGE EVENT SCHEDULE.

[ Event time | Volume (I) ]|

09:45 20.5
12:30 50.3
14:00 10.6
15:00 69.8

V. RESULTS

The results provide a window into the hitherto unknown in-
ternal temperature distribution inside the horizontally mounted
electric water heaters. From the results illustrated in Figure
5, it is clear that the natural stratification has a significant
impact on the temperature distribution inside the tank — rather
than a single node state ever being reached, the lower node
temperatures are always significantly less than the upper node
and the modeled lower node temperature. Similarly, the upper
node seems to be significantly warmer than the modeled value
due to the stratification. This suggests that a gradual increase
in temperature is present from the bottom to the top of the
EWH, most likely due to a natural stratification that exists,
even in steady state.

Although this in itself is interesting, the impact on energy is
worth considering — Due to the higher temperature in the upper
section of the tank, the energy that leaves the tank (per volume
of water) when hot water is consumed is more than what the
model predicts, meaning more energy would be required to
heat the cold inlet water than would be the case if the water
leaving the tank was colder. However, since the hot water is
mixed with cold water to achieve a desired temperature at the
point of use, it is likely that a user would use less hot water if
the temperature of the hot water is higher. The nett effect on
energy would therefore be less in a natural experiment, than
in a controlled lab experiment with a set consumption volume.

Due to the reasons described above, it is also apparent
(Figure 6 and 7) that the model performs better with a
lower threshold at which the model enters into the two-
node state. This is due to a lower required threshold for the
nodal transition, which better emulates the evidently persistent
stratification.

The results further show that the two-node model performs
better with a lower inter-nodal conductance, for both the upper
and lower nodal temperatures, which is, again, to the evidently
persistent gradual stratification.

When comparing the measured vs. modeled energy, for
different thresholds and for different INTRFs, we find that the
the model underestimates the measured energy consumed. This
is due to the outlet being at the highest point, which is also
the highest temperatures due to the stratification. The energy
is underestimated by the model, but is more accurate for the
lower threshold than the higher threshold (23.7% vs. 18.6%).
However, the INTRF does not affect the nett energy, which
is possibly due to the comparatively small size and infrequent
sequencing of the experimental events.

VI. CONCLUSION AND FUTURE WORK

In this paper we evaluated the only existing model for
horizontally mounted electric water heaters, which is used
in smart grid applications. The model, which uses a two-
node approximation for the natural stratification is compared
with actual temperature and energy measurements with a set
consumption pattern under full-on thermostat control. The
measurements indicate that, although the model seemingly
accurately models the energy consumed by the electric water
heater, it underestimates the stratification, both in the transients
and in the steady-state conditions. We also find that the inter-
nodal thermal resistance, which the model assumes to be
infinite is overestimated, and the thresholds for state transfer
also overestimated — Both of these oversights are hidden by
the underestimation of the stratification. The results also show,
also due to the stratification, that the model underestimates
the consumption losses (enthalpy). More concerning, is the
low temperatures measured in the lower node, which could
lead to growth of Legionella. Future work includes thermal
measurement in along the volume of the electric water heater,
and evaluating the presence of bacterial growth.
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