
Simulation and Verification Software
for Superconducting Electronic

Circuits

by

Johannes Arnoldus Delport

Dissertation presented for the degree of Doctor of Philosophy in Electrical and
Electronic Engineering in the Faculty of Engineering at Stellenbosch

University

Supervisor:

Prof. Coenrad Johann Fourie

Electrical and Electronic Engineering

Stellenbosch University

April 2019

Declaration

By submitting this dissertation electronically, I declare that the entirety of the work contained
therein is my own, original work, that I am the sole author thereof (save to the extent explicitly
otherwise stated), that reproduction and publication thereof by Stellenbosch University will
not infringe any third party rights and that I have not previously in its entirety or in part
submitted it for obtaining any qualification.

This dissertation includes four original papers published in peer-reviewed journals or books
and zero unpublished publications. The development and writing of the papers (published and
unpublished) were the principal responsibility of myself and, for each of the cases where this is
not the case, a declaration is included in the dissertation indicating the nature and extent of
the contributions of co-authors.

April 2019

Copyright c© 2019 Stellenbosch University
All rights reserved

i

Stellenbosch University https://scholar.sun.ac.za

Abstract

The dissertation presents simulation and verification software for both high- and low-level de-
signs with emphasis on superconducting integrated circuits. A static timing analysis tool called
SuperSTA is introduced as a method of analysing high-level superconducting designs in terms
of the longest delay from any input to any output. This method of analysis provides metrics
with which a design can be scrutinized and judged based on predefined criteria. A super-
conducting circuit simulator, JoSIM, is also introduced as a modified nodal analysis transient
simulator which uses trapezoidal integration to solve a circuit netlist. A SPICE syntax circuit
netlist is analysed and a matrix constructed, whereafter the Ax = b linear algebra problem is
solved using the KLU algorithm. JoSIM incorporates unique features such as a modified nodal
phase analysis method, parametrization through expression parsing and alphanumeric node
names. JoSIM includes a built-in graphical user interface for direct result verification. This is
achieved using the cross-platform graphical library FLTK as well as Python’s Matplotlib library.
The design of the simulator and all the incorporated components are discussed in a step-by-step
manner. JoSIM is compared to existing superconducting circuit simulators and judged in terms
of accuracy and ability to simulate very large scale superconducting circuit designs. Results are
investigated and recommendations for future improvements and optimizations to the simulator
are discussed

ii

Stellenbosch University https://scholar.sun.ac.za

Opsomming

Die dissertasie bied simulasie- en verifikasieprogrammatuur vir beide ho- en laevlakontwerpe,
met die klem op supergeleidende gentegreerde stroombane. ’n Statiese tyd-analiese program
genaamd SuperSTA word bekendgestel as ’n metode om hovlak supergeleidende ontwerpe te
analiseer in terme van die langste vertraging van enige intree na enige uittree. Hierdie metode
van analise verskaf maatstawwe waarteen ’n ontwerp ondersoek kan word en beoordeel word
op grond van voorafbepaalde kriteria. ’n Supergeleidende stroombaan simuleerder, JoSIM,
word ook bekendgestel as ’n aangepaste nodus tydsgebied analiese wat trapezoidal integrasie
gebruik om ’n stroombaan op te los. ’n SPICE-sintaks stroombaan intree word geanaliseer
en ’n matriks gebou, waarna die Ax = b linere algebra-probleem opgelos word met behulp
van die KLU-algoritme. JoSIM bevat unieke eienskappe soos ’n aangepaste nodus fase analise
metode, parametrisering deur uitdrukking ontleding en alfanumeriese nodus name. JoSIM sluit
’n ingeboude grafiese gebruikerskoppelvlak in vir direkte resultaatverifikasie. Dit word behaal
deur die grafiese biblioteek FLTK sowel as Python se Matplotlib-biblioteek te gebruik. Die
ontwerp van die simuleerder en al die ingeslote komponente word stap-vir-stap bespreek. JoSIM
word vergelyk met bestaande supergeleidende stroombaansimuleerders en beoordeel in terme
van akkuraatheid en vermo om supergeleidende kringontwerpe te kan simuleer. Resultate word
ondersoek en aanbevelings vir toekomstige verbeteringe en optimalisering aan die simuleerder
word bespreek

iii

Stellenbosch University https://scholar.sun.ac.za

Acknowledgements

I would like first and foremost thank my parents for all their years of support and motivation.
They built the bridge on which I stand and for that I am forever grateful. Second, I would like
to thank my soon to be loving wife for all the late night cups of coffee and words of support
when I really needed. Third, I would like to extend my special gratitude to Dr Kyle Jackman
and Mr Paul le Roux for their support and endless wisdom during times of mathematical strife
and debugging nightmares. Last, I would like to thank Professor Coenrad Fourie for all his
patience and wisdom when it was needed, without him all of this would not have been possible.
My gratitude also extends to all of my research colleagues, past and present, who helped with
testing and debugging of the software.

iv

Stellenbosch University https://scholar.sun.ac.za

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Background on Computing and Superconductivity 1

1.2.1 Digital Devices . 1
1.2.2 Sensors and Filters . 5
1.2.3 Simulation in computing . 6

1.3 Objectives of Dissertation . 7
1.3.1 Objectives . 7
1.3.2 Document Layout . 7

2 Electronic Design Automation in Superconductivity 9
2.1 Introduction . 9
2.2 Design Process . 9

2.2.1 High Level . 9
2.2.2 Synthesis . 10
2.2.3 Analogue Simulation . 11
2.2.4 Optimization . 12
2.2.5 Layout and Fabrication . 12
2.2.6 Technology Computer Aided Design . 13

2.3 Conclusion . 13

3 High Level Verification 15
3.1 Introduction . 15
3.2 SuperSTA . 15

3.2.1 Design Flow . 15
3.2.2 Pre-Placed . 17
3.2.3 Post-Placed . 17

3.3 Results . 18
3.4 Conclusion . 20

4 Analogue Simulation 21
4.1 Introduction . 21
4.2 Josephson junction . 21
4.3 JSIM . 22
4.4 PSCAN . 24
4.5 WRspice . 25
4.6 Conclusion . 27

v

Stellenbosch University https://scholar.sun.ac.za

5 JoSIM - Development 29
5.1 Introduction . 29
5.2 Design Flow from Input to Output . 30

5.2.1 Input . 30
5.2.2 Matrix Setup . 31
5.2.3 Solution Calculation . 32
5.2.4 Output Handling . 32

5.3 Components . 33
5.3.1 Resistor . 33
5.3.2 Inductor . 34
5.3.3 Capacitor . 34
5.3.4 Josephson Junction . 35
5.3.5 Voltage and Current Sources . 40
5.3.6 Lossless Transmission Line . 44
5.3.7 Mutual Inductance . 45

5.4 Control Commands . 46
5.4.1 Parameters . 46

5.5 Chicken and Egg . 48
5.6 Phase Simulation . 48

5.6.1 Phase Inductor . 49
5.6.2 Phase Capacitor . 49
5.6.3 Phase Resistor . 50
5.6.4 Phase JJ . 50
5.6.5 Phase Lossless Transmission Line . 51
5.6.6 Phase Mutual Inductance . 51
5.6.7 Phase Voltage Source . 52
5.6.8 Phase Source . 52

5.7 Conclusion . 52

6 JoSIM - Results 53
6.1 Introduction . 53
6.2 IV Curve . 53
6.3 Small Simulations . 54
6.4 Medium to Large Scale Simulations . 57
6.5 Conclusion . 60

7 Very Large Scale Design Simulation 62
7.1 Introduction . 62
7.2 Data Structure Considerations . 62
7.3 Parallel Processing . 63
7.4 Optimizations in the Math Engine . 64
7.5 Conclusion . 64

8 Conclusion 66

Bibliography 67

Appendices

A

vi

Stellenbosch University https://scholar.sun.ac.za

B

C

D

E

vii

Stellenbosch University https://scholar.sun.ac.za

List of Figures

1.1 CMOS logic using voltage levels . 2
1.2 RSFQ pulse storage in superconducting loops 3
1.3 AQFP logic with a fluxon in the right loop . 4
1.4 RQL design concept . 4
1.5 A typical superconducting quantum interference device 5
1.6 An example of a superconducting quantum interference filter 6

2.1 Suggested standard design flow for superconducting circuit design 10
2.2 Schematic of a one bit full adder in single fanout design. 11
2.3 gSchem schematic editor by gEDA . 11
2.4 Xic layout editing tool . 13

3.1 Basic design flow of SuperSTA . 16
3.2 4-bit KSA simulated as DUT at HDL level . 19
3.3 4-bit KSA simulated with a clock speed higher than maximum identified 20

4.1 Basic example of a Josephson junction . 22
4.2 IV curve of a typical JJ . 22
4.3 V curves of the RCSJ model in JSIM . 23
4.4 IV curve of the RCSJ model in JSIM without Rtype=0 23
4.5 Josephson junction IV curve created using phase based simulator PSCAN 24
4.6 Tunnel junction model IV curves created using PSCAN. Dirichlet coefficients

used: (a) V. K. Semenov (b) MiTMoJCo . 25
4.7 IV curves of the RCSJ model in WRspice. (a) With Rtype=0 (b) Without Rtype=0 26
4.8 Rtype=1 model comparison between WRspice and JSIM 27
4.9 Circuit used to find the IV curve of a JJ . 27

5.1 Overview of the JoSIM design flow . 30
5.2 Example of a standard netlist with a subcircuit 30
5.3 Resulting master netlist after substitution . 31
5.4 Approximating the yn+1 value . 31
5.5 A basic resistor element. 33
5.6 A basic inductor element . 34
5.7 A basic capacitor element . 34
5.8 A basic Josephson junction element . 35
5.9 The resistively and capacitively shunted equivalent junction model 36
5.10 Element model of the Werthamer approximation 40
5.11 Sum and difference current calculation using the junction voltage 40
5.12 Sum and difference admittance equivalent circuits 40
5.13 A basic voltage source . 40
5.14 A basic current source . 41
5.15 Example of a PWL function depicting the relevant values 41

viii

Stellenbosch University https://scholar.sun.ac.za

5.16 Example of a pulse function depicting the relevant values 42
5.17 Example of a sinusoidal function depicting the relevant values 43
5.18 Example of a custom function depicting a waveform line of [0 1 2 3 2 1 0] with

periodicity enabled to create a triangle wave. 43
5.19 A basic transmission line element . 44
5.20 A basic mutual inductance element . 45

6.1 JoSIM IV curves . 53
6.2 JoSIM IV curve of only rtype=1 . 54
6.3 IV curves of JSIM, JoSIM and WRspice . 54
6.4 Basic JTL used to test small simulations . 55
6.5 Results of the JTL simulation performed with JoSIM 56
6.6 Comparison of the results for the JTL between JSIM, JoSIM and WRspice . . . 56
6.7 Error percentage of JoSIM compared to JSIM and WRspice 57
6.8 Results of the 7th partial product . 58
6.9 Output of the 4-bit KSA simulation . 59
6.10 Execution time vs JJ count . 61

ix

Stellenbosch University https://scholar.sun.ac.za

List of Tables

3.1 Gate-delay timings for a RSFQ cell library . 18

5.1 Shunting yard conversion to a RPN stack . 47
5.2 RPN stack evaluation . 47

6.1 General binary partial product generation . 58
6.2 4-bit binary addition . 59
6.3 Simple example of a large circuit . 60
6.4 Summary of execution times for various simulation sizes 61

x

Stellenbosch University https://scholar.sun.ac.za

Chapter 1

Introduction

1.1 Motivation

With Moore’s Law[1] approaching its inevitable limit, we look towards alternative technologies
to replace complementary metal-oxide-semiconductors (CMOS) in the high-speed computing
domain. This end is being approached from both an energy efficiency and a physical limitations
point. As devices become smaller, a need to reduce the amount of components and materials
used arises. When these components and materials are reduced or interchanged for others,
trade-offs are made to the energy efficiency. This battle can only go on until one reaches a hard
limit. We therefore aim our sights towards an entirely different technology.

One such technology is to use superconductors to produce a highly energy efficient form
of computing that would far exceed the current limitations seen by CMOS[2]. The resistive
property of a material is proportional to the temperature and physical area of the material.
Resistance accounts for the majority of energy loss in electrical components. To therefore
minimize the resistance of a material it would be crucial to reduce the temperature. When the
temperature has been sufficiently reduced, the resistance becomes almost non-existent and the
material enters a superconducting state[3]. Current that flows in a superconducting material
can do so indefinitely as there is no resistance for it to lose energy through.

When two superconducting materials are brought very close to each other, a device called
a Josephson junction (JJ) can be created wherein the current in one superconductor can be
passed to another if the current exceeds a critical value[4]. We can equate this to the switching
of a transistor in conventional CMOS. These JJs can be used to build logic devices, which have
been shown to reach clock frequencies close to the terahertz range[5].

Unlike the well established design software found in the CMOS domain, the superconduct-
ing circuit (SC) domain lacks the necessary tools to design and fabricate complex computing
designs. The development of SC simulation software is what motivates this work.

1.2 Background on Computing and Superconductivity

1.2.1 Digital Devices

Superconducting digital devices can be created to operate using numerous technologies such as
rapid single flux quanta (RSFQ), adiabatic quantum flux parametron (AQFP) and reciprocal
quantum logic (RQL). Each technology is unique in its own way and vastly different to CMOS.

1

Stellenbosch University https://scholar.sun.ac.za

1.2.1.1 CMOS

CMOS is a technology that was developed by Fairchild Semiconductor International, Inc. in
the early 1960s. The complementary part of the name refers to the p-type and n-type metal-
oxide-semiconductor field-effect-transistors (MOSFET) that almost all CMOS logic consists of.
CMOS forms the basis of modern day computing.

In CMOS a logical 1 is defined as a state where the voltage measured at a point to ground
is within the threshold of some value, usually 5V, and the logic 0 is defined when the voltage is
close or equal to 0V. Any state between these threshold values is undefined and causes undefined
behaviour. The rise and fall of the voltage between levels does not occur instantly and therefore
creates a delay in the system which needs to be compensated for. This concept is illustrated
in Figure 1.1.

Figure 1.1: CMOS logic using voltage levels

1.2.1.2 RSFQ

RSFQ is a technology that was developed by Likharev’s research group at Moscow State Uni-
versity circa 1985[6]. RSFQ circuits are driven by single flux quantum (SFQ) voltage pulses
which are defined by an integration of voltage over time where the result is exactly 1 magnetic
flux quantum (Φ0) or rather a fluxon (1.1). These fluxons are stored in superconducting loops
consisting of inductors and JJs.

∫
V (t)dt = Φ0 ≡

~
2e
≈ 2.07mV× ps (1.1)

Each superconductive loop can store exactly an integer number of fluxons, and when configured
with the correct amount of input and bias current, passes a fluxon on to the next superconduc-
tive loop. When a fluxon is present in a loop we call it a logic 1 and when a fluxon is absent a
logic 0. Using this convention it is possible to build a pulse based family of logic gates.

2

Stellenbosch University https://scholar.sun.ac.za

Figure 1.2: RSFQ pulse storage in superconducting loops

When an SFQ pulse arrives at the input in the circuit shown in Figure 1.2, it is stored in
the initial loop until the bias current is greater than the critical current of the junction, causing
a switch to occur and the pulse to be moved to the second loop.

RSFQ technology has shown the capability to be used for very-large-scale integration (VLSI)
through a complete 8 bit microprocessor called CORE1. CORE1 was developed by Yokohama
National University in collaboration with Nagoya University[7]. This design has been optimized
quite a few times since the first release and is currently at the 4th iteration[8].

RSFQ is DC biased and therefore has static power dissipation which makes it less suitable
for VLSI when compared to derivations like ERSFQ or ESFQ[9] and other technologies such
as AQFP and RQL.

1.2.1.3 AQFP

AQFP was developed by Professor Yoshikawa’s research laboratory at Yokohama National
University circa 2013[10]. Similar to RSFQ fluxons are stored in superconducting loops which
consist of inductors and JJs. These circuits are AC biased which results in extremely low power
dissipation.

The most basic AQFP gate consists of 2 superconducting loops called a quantum flux
parametron (QFP). The bias line, which consists of inductors, is mutually coupled to this QFP.
When the bias is increased in the presence of a small input current, the fluxon moves between
the two loops. The QFP represents a logic 0 when the fluxon is in the left loop and a 1 when
it is in the right loop. We illustrate this concept in Figure 1.3.

Due to its AC nature, AQFP has almost zero power dissipation and can thus be scaled
almost indefinitely for VLSI designs. This AC bias does however have the drawback of not
being as fast as DC based RSFQ due to the limit of the microwave frequency generated using
room-temperature electronics.

3

Stellenbosch University https://scholar.sun.ac.za

Figure 1.3: AQFP logic with a fluxon in the right loop

1.2.1.4 RQL

RQL is a low power superconductor logic family developed by Northrop Grumman Systems
Corp. circa 2011[11]. Like AQFP it is an AC biased logic family, however the logic is a lot
more similar to RSFQ. RQL was patented by Northrop Grumman and therefore very little
external research is conducted on the applications of this technology.

In RQL the clock is generated using an AC signal which also acts as the bias for the JJs
through the mutually coupled inductors. Similar to RSFQ a fluxon is stored in a superconduct-
ing loop and is transfered to the next loop when the bias exceeds the junction critical current.
The basic idea behind RQL is demonstrated in Figure 1.4. This technology, like AQFP, is
speed-limited to the maximum speed of the microwave frequency generating circuitry and due
to the AC bias retains similar low power dissipation qualities.

Figure 1.4: RQL design concept

4

Stellenbosch University https://scholar.sun.ac.za

1.2.2 Sensors and Filters

Superconductivity in digital electronics require very low temperatures, often close to absolute
zero. At this temperature these devices become very susceptible to external interference such
as external magnetic fields. This can be advantageous in some cases such as with superconduct-
ing quantum interference devices (SQUID) and superconducting quantum interference filters
(SQIF).

1.2.2.1 SQUIDs

A SQUID is a device that consists of 2 JJs to form the superconductive loop depicted in Figure
1.5. SQUIDs are extremely sensitive to variations in current due to external magnetic fields
and therefore are useful in systems where measurement accuracy is of utmost importance.

SQUIDs are mainly used in medical fields to measure neural activity as well as magnetic res-
onance imaging (MRI). SQUIDs can also be used in mining exploration to measure geothermal
energy. These devices form the basis for some quantum computing applications[12].

Figure 1.5: A typical superconducting quantum interference device

1.2.2.2 SQIFS

SQIFs are a relatively new application of the JJ where it is used in filter applications. Basic
designs for SQIFs include multiple SQUID loops attached in an array with varying sizes[13].
We demonstrate a basic example of a SQIF array in Figure 1.6.

SQIFs work particularly well when used in sensitive magnetometry, due to its non-periodic
voltage respone and large negative spike at zero magnetic field. The use of SQIFs in the RF
domain has also been shown in recent studies[14].

5

Stellenbosch University https://scholar.sun.ac.za

Figure 1.6: An example of a superconducting quantum interference filter

1.2.3 Simulation in computing

Any type of computing technology requires some form of computer aided simulation software
that would enable the user to verify the device operation before physically fabricating the
device. Smaller designs such as simplistic filters can be mathematically verified, however in
complex electronic systems this can no longer be done by hand.

The purpose of any computer aided circuit simulation software is simply to solve a set of
simultaneous linear equations which can be grouped as

Ax = b (1.2)

where A is a m × n matrix of coefficients, x a vector of unknown variables and b a vector of
known values.

In the early 1970s, a research group at the University of California Berkeley created a
simulation program with integrated circuit emphasis (SPICE)[15]. What SPICE allowed them
to do was solve an electronic circuit of theoretically any complexity by applying nodal analysis,
essentially Kirchoff’s current law (KCL), to the design creating a matrix of conductances that
is used to solve the voltage at every node within the design.

Since its conception SPICE has seen many variants[16][17], with the latest being SPICE3F
whereafter it became open domain and the base for all modern day commercial and non-
commercial circuit simulators.

With the advancement of computing systems, new methods of simulation were also de-
veloped. These simulation methods are based on a higher level of abstraction where it is no
longer necessary to see what components are physically connected in the device but rather
what the behavioural function of the device would be given a specific input. This method of
simulation is called high level verification and can be done using hardware description lan-
guage (HDL)[18][19]. This method of circuit design spawned two programming languages, very
high speed integrated circuit (VHSIC) hardware description language (VHDL)[20] and Verilog
HDL[21].

HDL allows the user to describe the function of a circuit on a higher level and verify operation
through logic simulation. This is a lot faster than SPICE, however, it only verifies operation
and does not account for any electrical properties in the design.

6

Stellenbosch University https://scholar.sun.ac.za

1.3 Objectives of Dissertation

1.3.1 Objectives

In light of the limited availability of advanced SC simulation software for both analogue and
high level verification, we propose a new SPICE type simulation engine JoSIM and a static
timing analysis tool (SuperSTA) for high level timing verification.

JoSIM is specifically aimed to overcome the challenges faced when attempting to simulate
designs that incorporate superconducting elements such as the JJ. SuperSTA uses results ob-
tained from analogue simulations to apply timing verification to SC designs in both analogue
form as well as high level description.

The simulation engine and all algorithms mentioned in this work are written in C++ and
compiled to be executable on three major operating systems Microsoft Windows, Apple Mac
OS and Linux.

We now summarise the required objectives to ensure the success of this dissertation:

1. Investigation of the available electronic design automation software within the supercon-
ducting circuit design domain.

2. Creation of high level verification tool for static timing analysis.

3. Creation of a SPICE simulator that is capable of interpreting superconducting elements.

4. Implementation of faster numerical solvers to improve simulation time and solution ac-
curacy.

5. Attempt implementation of non-conventional superconducting elements such as the mi-
croscopic tunnel junction.

6. Investigate and derive phase based simulation techniques for more accurate supercon-
ducting simulation results.

7. Simulation of very large scale circuits to allow verification of microprocessor level designs
within reasonable time.

1.3.2 Document Layout

In Chapter 2 we discuss the state of electronic design automation (EDA) in the superconducting
circuit domain and provide some insight into the steps involved when designing and creating
a superconducting integrated circuit. Each step is discussed in detail with examples and what
the equivalent would be within the existing CMOS EDA design flow. We take note of the large
efforts made by research foundations to attempt to get the design flow for superconductivity
to a level where it can compete with CMOS. We make some recommendations on fields that
require investigation to help bolster the strength of EDA in superconductivity

High level verification and the effect of a higher level of abstraction is discussed in Chapter
3. We explain the need for timing analysis at this level and present the static timing analysis
tool SuperSTA. The algorithms and design process for SuperSTA are discussed and results are
presented. Recommendations are also made for future improvements to the tool.

In Chapter 4 we investigate the history of simulation engines for superconducting elements.
Development decisions, results and features are discussed for each one and drawbacks are
highlighted. Proposed improvements are mentioned and conclusions are made.

JoSIM development is discussed, design decisions are explained and supported with argu-
ments in Chapter 5. Algorithms used for file input and output (IO) are walked through, com-
paring data structure methods for improved efficiency. Supported components within JoSIM

7

Stellenbosch University https://scholar.sun.ac.za

are shown with their corresponding input file descriptions as well as the generalized matrix
entries that collate to form the conductance matrix. Methods for solving very sparse matrices
in the most efficient way are investigated and the findings implemented.

The results of various different designs, each with unique elements are displayed in Chapter
6. These results are critically analysed and compared to previous simulation engines in both
speed and accuracy. We further analyse features not present in other simulators and scrutinize
the accuracy of the results.

In Chapter 7, we investigate improvements to the designs implemented in JoSIM to handle
massively parallel processing to reduce simulation times. Data structures used are reconsidered
to reduce the complexity of the algorithms used. Optimizations to the mathematical engines
used are investigated. We experiment with the idea of very large scale circuits with up to one
million JJs to evaluate the efficacy of analogue simulators on microprocessor scale design.

Conclusions and recommendations as well as ideas for future research are mentioned in the
final chapter.

Appendix A contains a published article “Superconducting digital circuit design with an
open source and freeware tool Chain”[22] wherein we investigate the entire design flow for
superconducting circuit design using only non-commercially available tools.

Appendix B contains a published article “Analysis of a Shielding Approach for Magnetic
Field Tolerant SFQ Circuits”[23]. In this article we utilize superconducting simulation en-
gines to investigate the effect of external magnetic fields on SFQ circuits and explore ways for
improvement to make designs more tolerant to magnetic fields.

Appendix C contains a published article “A Static Timing Analysis Tool for RSFQ and
ERSFQ Superconducting Digital Circuit Applications”[24], wherein we announce SuperSTA
and discuss its features and capabilities as well as shortcomings.

Appendix D contains an published article “JoSIM – Superconductor SPICE Simulator”[25],
wherein JoSIM is presented and evaluated against other simulation engines.

Appendix E contains the user manual for JoSIM, which guides the user through the process
required to run the simulation engine while discussing the features and input file requirements.

8

Stellenbosch University https://scholar.sun.ac.za

Chapter 2

Electronic Design Automation in
Superconductivity

2.1 Introduction

This chapter will discuss the process that a designer would follow when designing a supercon-
ducting circuit. This process is called a design flow and is not necessarily the exact process that
always needs to be followed, but rather the one suggested by the developers of the software
used in the process[22].

We discuss each step of the process as well as provide general examples of what the in-
put/output would look like. The software used is also mentioned where possible and possibili-
ties for future research in software that does not exist yet are mentioned. A more comprehensive
roadmap of the available state of EDA in SC design can be seen in [26] and [27].

In the CMOS domain, these design flows are well-established and large EDA companies such
as Cadence and Synopsis have been founded to enhance these design flows as far as possible.
Efforts in the superconductivity domain have been made through large government projects[28]
in the attempt to kick start EDA companies specifically for this domain.

We depict a suggested standard design flow for superconducting circuit design in Figure 2.1.

2.2 Design Process

2.2.1 High Level

A standard process to design a electronic circuit would start at a very high level of abstraction.
This means that nothing is known about the physical properties of the circuit, only its function.
This functionality would then be described in an HDL language of choice. An example of some
behavioural description in Verilog HDL can be

module add (a , b , out , ca r ry in , ca r ry out)
input a , b , c a r r y i n ;
output out , ca r ry out ;

assign ca r ry out = (a & b) | (a & c a r r y i n) | (b & c a r r y i n) ;
assign c = a ˆ b ˆ c a r r y i n ;

endmodule

whereˆ, | and & are the logic operators XOR, OR and AND respectively. The example describes
a single bit full adder operation in Verilog.

9

Stellenbosch University https://scholar.sun.ac.za

Desgin Idea

HDL behavioral
design

HDL simulation and
verification

Static Timing
Analysis

Synthesis

Analog
netlist

Place and
route

Layout

Analog simulation
Timing

Violations?

Schematic editor

Schematic

Netlist
generator

Yes

Margin &
Yield

Analysis

Bad

Layout editorAcceptable No

FabricationDRC & ERCFail Pass

Figure 2.1: Suggested standard design flow for superconducting circuit design

Once the circuit behaviour has been described, it would be placed in an HDL testbench
which will allow it to be simulated at a high level. Simulations can be done with commercial
level tools or open source simulators such as Icarus Verilog[29]. Once simulated, the operation
can be verified. This verification includes visual verification through interpretation of the results
as well as static timing analysis to ensure there are no timing violations[24].

If the designer is satisfied with the device operation, the design can be synthesized down to
an analogue netlist that can be simulated using a analogue simulation engine.

2.2.2 Synthesis

Synthesis is described as a process of combining a series of components or elements to form a
single entity. In EDA, synthesis is used to describe the process of transition from a high level
design to lower level. There are a few variants of synthesis and the definition of the term seems
to change depending on who is asked.

In SC design the two main variants of synthesis involve either generating a SPICE circuit
netlist or a fully placed and routed layout from a single HDL design. Both of these processes
would require the designer to specify the type of technology the design is intended for as well as
provide the synthesis engine with a library of analogue logic gates that will be used to formulate

10

Stellenbosch University https://scholar.sun.ac.za

the output.
There are however no known synthesis tools that support superconducting digital circuits

fully due to their inherent synchronous design. There have been multiple efforts to alter existing
tools or to create new ones[30][31], however none have been truly successful and thus the
designer would have to create the analogue netlist either by hand or by creating a schematic in
some schematic editor.

X07

A

B

Carry_In OUT

Carry_Out

X02

X03

X04

X05

X06

X01

X12

X11

X10

X13

X14

X08

Figure 2.2: Schematic of a one bit full adder in single fanout design.

Schematic editors can be quite useful in providing visual feedback in terms of how everything
is connected. Most schematic editors provide the user with the ability to convert the design into
a analogue netlist which can then be used for simulation[32][33]. An example of a schematic
editor can be seen in Figure 2.3.

Figure 2.3: gSchem schematic editor by gEDA

2.2.3 Analogue Simulation

A technology independent description of the example adder in Figure 2.2 through SPICE no-
tation can be presented as

. subckt ADDER 1 2 3 4 5
X01 SPLIT 1 6 7
X02 SPLIT 6 8 9
X03 SPLIT 2 10 11
X04 SPLIT 10 12 13

11

Stellenbosch University https://scholar.sun.ac.za

X05 SPLIT 4 14 15
X06 SPLIT 14 16 17
X07 XOR 7 11 22
X08 XOR 15 22 23
X09 NOT 23 3
X10 AND 8 12 18
X11 AND 9 16 19
X12 AND 13 17 20
X13 OR 18 19 21
X14 OR 21 20 5
. end ADDER

In SC design using SFQ pulse propagation, the maximum fanout that a single gate can have
is one. To provide the same pulse to more than one gate a splitter cell is required, which
essentially duplicates the SFQ pulse. This netlist coupled with the corresponding sub-circuits
required can then once again be simulated by inserting it into a testbench with excitations at
the relevant ports.

If the designer is satisfied with the results that the analogue simulation produces they can
then proceed to creating a layout of the design. If however the designer is not satisfied, they
then have the option to optimize the design or start from scratch. The design might produce
the correct results but operation margins might make it less likely to succeed due to fabrication
tolerances. Since the design operates as expected behaviourally the advised option would be
to perform some form of optimization to attempt to increase operational margins and yield
percentage.

2.2.4 Optimization

The process of optimization includes doing a margin analysis, which varies every component
within the netlist over a specified range. Multiple simulations are done while varying these com-
ponents to establish the operational margins of the design. This allows the designer to identify
components that might cause the design to fail once fabricated if the fabrication tolerances are
not tight enough.

Optimization of these identified components can be done by manually tweaking the values
of the components to try and improve stability, however this can be quite a tedious and time
consuming process if the design is quite large. Optimization can also be done by implementing
various methods such as genetic algorithms[34], Monte Carlo analysis[35]and others.

There are entire research fields dedicated to establishing algorithms that provide the best
form of optimization. It might be worthwhile to investigate these algorithms in an attempt
to create a generalised optimization software that applies the best algorithm of optimization
relevant to the design under scrutiny.

2.2.5 Layout and Fabrication

Once the designer is satisfied with the results of the analogue simulation, they can then proceed
with the creation of the layout. A layout is the physical description of the device that will be
used for fabrication. This includes the type of materials used for each layer, the width of the
material, the electrical properties and the physical location of each part of the design as it
would appear on a chip.

Since layouts rely strictly on the layer information, they can be done in almost any layout
editor that accepts custom layers. Common layout editing software includes LayoutEditor,
LASI, KLayout and Xic seen in Figure 2.4.

12

Stellenbosch University https://scholar.sun.ac.za

Figure 2.4: Xic layout editing tool

The process of laying out a design is not automated and requires that the designer have
intricate knowledge on layout design. The process is very time consuming and tedious especially
with large designs, though many layout editors have the ability to create sub-cells that aid
the designer in the process. Software tools such as layout versus schematic (LVS) are under
development to allow the user to verify the layout being created against the schematic or netlist
source. LVS requires intense graph manipulating algorithms and is a very new field even in the
CMOS domain.

The layout that is produced must adhere to the specific design rule checks (DRC) and
electrical rule checks (ERC) of the specific technology the design was intended for. Once
successful, tools such as Inductex[36] can be used to extract the impedances and repopulate
the analogue netlist to ensure that the design still produces the expected results given the
materials used and physical dimensions.

If the designer is completely satisfied with the results the layout level analogue simulation
produces the layout can then be sent for fabrication at the very few superconducting digital
circuit foundries that exist.

2.2.6 Technology Computer Aided Design

Technology computer aided design (TCAD) is a process whereby the fabrication process is
simulated through equations that mimic the geometric extrusions[37]. This simulation method
is completely seperated from the design flow and does not have an established software tool for
SC design as of yet. The equations that mimic the geometry extrusions are extremely complex
and require a large effort from both engineering and physics fields.

2.3 Conclusion

Though far from complete, the design flow for superconducting electronics is reaching a point
where VLSI circuits can be designed and simulated. Operation can be verified through the
verification techniques discussed. These verified designs can be fabricated and tested physically,
which will possibly and most probably introduce other unforeseen parts of the design flow that
have not been looked at prior to the fabrication of VLSI circuits.

Software tools that spawn from pojects like SuperTools[28] and similar will hopefully provide
a good foundation to build forth from in the development of better methods for superconducting
specific EDA tools. Once these tools reach a certain stability, companies may be founded from

13

Stellenbosch University https://scholar.sun.ac.za

them or simply acquired by larger, well-established companies such as Cadence or Synopsis.
Such is the life cycle of many innovative software technologies.

14

Stellenbosch University https://scholar.sun.ac.za

Chapter 3

High Level Verification

3.1 Introduction

High level verification is a process that attempts to establish valid design operation at a higher
level of abstraction. As the number of gates in a design increase, the time required to perform
an analogue simulation also increases and as a result so does the time to verify successful
operation. This time grows exponentially and soon verification through analogue simulation
of VLSI designs no longer become viable. To reduce the necessity of performing multiple
simulations, static timing analysis attempts to gauge the maximum performance of a design by
evaluating all possible paths from input to output and identifying the critical path given a set
of gate-delay times.

This chapter will discuss the design and implementation of a high level verification tool
SuperSTA[24]. SuperSTA is a command-line interface, static timing analysis tool for SC ap-
plications used to identify critical paths through a design, maximum frequency of operation
and possible slack in the design. Two timing values are presented to the user, one being a
global clock which is the maximum clock at which the design when viewed as a black box
would produce an output at every clock edge. The second clock value presented is the system
clock, which is the maximum clock at which the design can receive inputs at when performing
wave-pipelining[38].

SuperSTA presents the user with a few additional device metrics when the user provides
a target time within which the design is intended to finish. These metrics include the slack
within the design as well as mean path time and path time variance.

This tool was developed under the IARPA seedling project[39] to work in conjunction with
TimeEx[40] and RSFQ mapper[41]. The aim of this project was to establish the possibility of
high level design tools for RSFQ and ERSFQ circuits, and is the precursor to Supertools[28].

A macro view of the design flow implemented in SuperSTA is depicted in Figure 3.1.

3.2 SuperSTA

3.2.1 Design Flow

The static timing analysis tool SuperSTA takes as input either a SPICE netlist which is pro-
duced as an intermediate step within the synthesis process discussed in Section 2.2.2 or a device
exchange format (DEF)[42] file which is the end result of the place and route synthesis pro-
cess. The SPICE netlist input is referred to as the pre-placed STA and is discussed in detail
in Section 3.2.2 where the DEF input is called the post-placed STA and discussed in Section
3.2.3.

15

Stellenbosch University https://scholar.sun.ac.za

BeginSPICE
netlist

DEF File

Parse input file

Import timing
information

Find all paths from
inputs to outputs

Cell library with
timings

Identify critical path

Identify inputs
and outputs

Is target time
specified?

Produce
global clock

Find critical gate-to-
gate delay

Produce
system clock

Calculate slack

End

Produce
slack

No

Yes

Figure 3.1: Basic design flow of SuperSTA

Either file type provided requires specification of the input and output nodes or locations,
which, when not provided, will be determined algorithmically. SuperSTA parses each file se-
quentially to contruct a graph of how the design is interconnected. Once all interconnects are
established, gates that are not connected at both input and output are flagged as possible IO
in the case where the IO is not specified. This method of IO detection is not always accurate
as there is no way of determining if the identified point is an input or output. It is therefore
much more advantageous for the user to specify these points.

This constructed graph is then traversed from every possible input to every possible output
using a variation of the breadth-first search (BFS) method[43]. This method traverses the
graph by choosing a single point of input and output finding the most direct path between
them. Due to the single fanout nature of SFQ design the use of splitters is required, which in
this case causes branching to occur whenever a splitter is found whilst traversing. A note is
simply made of the location of every splitter found along the path and once the path reaches
an output it returns to each splitter to find a new path to an output.

16

Stellenbosch University https://scholar.sun.ac.za

There are alternate methods of graph traversing such as depth-first search (DFS) [43],
which explores all paths to their output first before traversing any branches. This method
would essentially produce the same result, however BFS was ultimately chosen instead.

This method of finding all possible paths is however only possible if the design being analysed
contains no feedback. If feedback is present, the search algorithm will loop infinitely. There
are methods for circumventing this problem such as checking for repetition in the path being
analysed.

Once all possible paths from intput to output have been found these paths are analysed
using a provided cell library containing gate-delay times to find the path that has the longest
delay. This path is called the critical path. The cell library of gate-delays is merely a folder
that contains HDL descriptions of each gate with accurate timing delays as characterized using
the timing extraction tool TimeEx[40]. If this cell library is not provided, generic times will be
used and results will not be accurate.

This critical path can be used to identify the maximum clock frequency at which the design
would produce a result in every clock cycle. This clock frequency is called the global clock and
is useful in the case where the design will be used as a subcircuit in a larger design and requires
a single clock input. In addition to this, each path is inspected to find the largest inter-gate
delay to identify the system clock, which is the maximum clock frequency at which the design
can throughput data without error. This clock is useful in cases were the design would be used
through wave-pipelining[38] of the inputs.

SuperSTA is also capable of determining whether the design meets certain requirements
such as operating frequency. This can be accomplished by allowing the user to specify a time
within which a result is expected at the output when given an input. This timing parameter is
called the target time and is used to calculate slack in the design. Slack in design philosophy
is a performance metric, where positive slack indicates a good design and negative slack a
design that needs reconsideration. The user is also presented with other meaningful design
statistics such as the mean path time and path time variance which should also be taken into
consideration when negative slack is present.

3.2.2 Pre-Placed

During the process of synthesis whereby a high level design is transformed into a low level
description, a SPICE-like netlist can be generated as an intermediate step. This netlist only
contains information regarding the interconnection between gates as well as the types of gates
used. It cannot be directly simulated and would require some form of testbench with relevant
subcircuit definitions. This netlist also does not contain any wiring information, which would
affect the delay within the design.

The purpose of allowing SuperSTA to evaluate this intermediate netlist is to allow the user
to gauge relatively early in the design process whether the design would meet target time
requirements or not. If the design does not meet the requirement in the netlist stage, then it
will by no means improve through the addition of interconnect delays. Similarly, if the design
just barely meets the set requirement, then it would generally not after adding interconnect
delays.

The results produced for this method should not be used to accurately characterize the
maximum operation speed of the design and should merely be used as an indication.

3.2.3 Post-Placed

The final result of the synthesis process would generally contain information regarding the
precise coordinates of placement and lengths of the interconnect wires. Additionally, due to

17

Stellenbosch University https://scholar.sun.ac.za

the use of PTLs in SFQ circuit design (discussed in Section 5.3.6), the requirement to include
the delay caused by the interconnection between different layers called vias also need to be
considered.

This file is called the post-placed design and is presented in a DEF file format. This file is
parsed to determine the interconnection between gates as well as the delays caused by these
interconnections. To calculate the interconnect delays some information is required about the
material the design will be fabricated with. These values are the data transmission speed and
the via delay. The user has the option to specify these values as part of the command used to
execute SuperSTA. If not specified, the default values will be used.

3.3 Results

The results of static timing analysis performed on a 4-bit Kogge-Stone adder (KSA)[44] is
presented. The file analysed is of the DEF type (post-placed) and the cell library of gate-delays
is presented in Table 3.1.

Table 3.1: Gate-delay timings for a RSFQ cell library

Gate Out delay

AND 9.3ps
DFF 5.5ps
JTL 3.2ps
NDRO 7.0ps
NOT 9.2ps
OR 7.2ps
PTL 18.5ps
SPLITTER 5.0ps
XOR 5.7ps

Due to the extreme file length of the 4-bit KSA def we ultimately decided not to include it
in this dissertation. SuperSTA was executed using the following command

SuperSTA −t 300E−12 −ppv 0 .02 −lpp 110 −d 4 b i t k s a r o u t e . de f

where ppv and lpp are the via delay and data transmission delay per micron. This command
produces the following result

SuperSTA v2 . 1 . 1 (Jan 3 2018) . Copyright 2016 Johannes Delport .

This program comes with ABSOLUTELY NO WARRANTY.
This i s f r e e so f tware , and you are welcome to r e d i s t r i b u t e i t
under c e r t a i n c o n d i t i o n s ; s e e the GNU GPL v3 f o r d e t a i l s .

F i l e s p e c i f i e d to ana lyse : ”4 b i t k s a r o u t e . de f ”

Total p o s s i b l e paths in des ign : 61
C r i t i c a l path time : 2 .92225 e−10s or ra the r 292 .225 ps
Global c l o ck : 3 .42202GHz

C r i t i c a l path :
b1 Pad

18

Stellenbosch University https://scholar.sun.ac.za

S p l i t 9 9 n 2 2 2
xor2a 17 n17
S p l i t 7 6 n 1 9 9
S p l i t 7 7 n 2 0 0
and2 26 n26
S p l i t 8 4 n 2 0 7
and2 27 n27
or2 28 n28
xor2a 29 n29
DFF 67 sum2
sum2 Pad

Slack : 7 .77455 e−12s
Total s l a c k : 3e−10s
Mean path time : 2 .58092 e−10s or ra the r 258.092 ps
Path time variamce : 4 .77655 e−22s ˆ2 or ra the r 4 .77655 e−10ps ˆ2
Path time standard dev i a t i on : 2 .18553 e−11s or ra the r 21 .8553 ps
Longest NET: and2 34 n34 −> and2 35 n35 => 570 micron
Largest in t e r−gate de lay time : 50 .7 ps
System c lo ck : 19 .7239GHz

From this results we can see that the maximum clock that can be achieved internal to the
design (system clock) is 19.7239GHz and note that the critical path is of depth 6 clocked gates.
This means that when clocked at this frequency we expect the result to appear at the output
after 6 clock cycles. When this clock is applied to the HDL test bench where the 4-bit KSA is
the device under test (DUT) we observe this exact behaviour.

Figure 3.2: 4-bit KSA simulated as DUT at HDL level

The clock period in Figure 3.2 is determined through t = 1
f
, which in this case is 50.7ps. We

adjust this to 51ps since the testbench does not accept fraction values for the clock. The time
difference between the clk (clock input) and the outclk vectors is due to the delay created by the
clocking circuitry. To simplify the implementation and legibility with SFQ HDL simulations
we assume that every edge event is considered an SFQ pulse rather than attempting to mimic
the width of the pulse. Noting this and observing the results we see that output is produced
in the 6th clock cycle of the outclk vector.

19

Stellenbosch University https://scholar.sun.ac.za

If we alter the clock to 45ps, simply 6ps faster than the maximum speed calculated by Super-
STA we observe the result appearing in the wrong clock cycle violating the timing restrictions
of the design. This can be seen in Figure 3.3

Figure 3.3: 4-bit KSA simulated with a clock speed higher than maximum identified

Additionally we note that the specified target time was met and that the slack presented is
positive. This design therefore meets the set requirement of the designer and can therefore be
moved further down the design process.

3.4 Conclusion

In this chapter a static timing analysis tool SuperSTA was developed and tested. An example
was run through SuperSTA and the results scrutinized. Back-annotation into an HDL descrip-
tion of the example confirms the results of SuperSTA as correct. Results were also shown for
the example when maximum clock speed is exceeded and the consequences thereof discussed.

The use of SuperSTA can greatly speed up the design process due to the ability to back-
annotate results into a HDL simulation of the design. Future improvements to SuperSTA will
include the analysis of a broader spectrum of design methodologies such as AQFP. We intend to
continue development through inclusion of more elements that cause delay within design such
as temperature, bias current effects and different clocking methods. Attempts to introduce
parallel processing during the BFS stage of SuperSTA will also be investigated.

The unique contributions made through the implementation of a static timing analysis tool
for superconducting circuit applications include a first of its kind tool as well as the definition of
new types of delay factors involved in superconducting circuits. These contributions are further
enforced through publication in an international journal[24] and is attached to this dissertation
in appendix C.

20

Stellenbosch University https://scholar.sun.ac.za

Chapter 4

Analogue Simulation

4.1 Introduction

When the design moves to a lower level of abstraction, the need to perform analogue simulations
arise. This requires the designer to have intrinsic knowledge of the electrical properties of the
design. An analogue simulation could also be described as an electrical simulation and is used
to compute electrical circuits. This is trivial for smaller circuits however as the component
count increases, it quickly becomes necessary to use computer aided simulation software such
as SPICE[15].

SPICE simulation in superconductivity is a rather niche field due to the complexity of the
JJ element and non-linearities created by it. Most simulators rely on approximations such as
the resistively and capacitive shunted junction (RCSJ) to model the tunnel current effect of
the Josephson junction[4]. Regardless of being approximations, the modeled effect is suitable
for simulation purpose and near enough to practical results to be acceptable in most cases.
The closest approximation to the Josephson junction that models the Josephson effect most
accurately was done by Werthamer in 1966[45][46]. This approximation though has not seen
implementation in a general simulation engine.

The first documented case of an attempt at the Josephson effect in SPICE was by Jewett at
University of California Berkeley in 1982[47]. The JJ model was added to the existing SPICE
2G5 and allowed the user to choose one of 3 types of quasiparticle resistances (Rtype). This
method was however rather slow due to the numerical method used by SPICE for accurate
simulation of transistor type devices. The SPICE 2G5 with the implementation of the JJ was
named JSPICE.

In 1991, S. Whiteley was consulted to incorporate the JJ into the then new SPICE3 simulator
which offered enhanced simulation performance and the implementation of a graphical post-
processor for result plotting[48]. Similar to the implementation of the JJ in the original SPICE,
this version was named JSPICE3. JSPICE3 also included an implementation of margin analysis
using pass/fail tests. JSPICE3 is the base upon which WRspice is built.

The rest of this chapter is dedicated to discussing the Josephson junction as well the capa-
bilities and drawbacks of the available superconducting circuit simulators. This will highlight
a few key areas on which improvement can be made.

4.2 Josephson junction

A Josephson junction is created by bringing two superconducting elements very close to each
other, only separating them with a thin insulating barrier (figure 4.1). At absolute zero tem-
perature the superconductor has no resistance and therefore a zero voltage drop. This allows
DC current to persist within a superconductor forever. When the current through the JJ is

21

Stellenbosch University https://scholar.sun.ac.za

Figure 4.1: Basic example of a Josephson junction

Figure 4.2: IV curve of a typical JJ

increased to some critical value, the voltage becomes non-zero and the electrons are said to
tunnel across the insulator. This non-zero voltage is called the gap voltage and is presented
using the equation

Vgap =
2∆

e
(4.1)

where 2∆ is the binding energy of two electrons and e is the electron charge. When the current
is further increased the junction approaches a linear resistance value. This resistance value
is called the normal resistance and is associated with normal electron tunnelling. When the
current is reduced, the curve follows the same path until it reaches the gap voltage after which
it drops sharply to zero current [49]. The same occurs for negative currents the junction which
creates a hysteresis curve. This phenomenon is called switching and is depicted in Figure 4.2.

4.3 JSIM

Josephson simulator (JSIM)[50], developed by Fang and Van Duzer in 1989, is a SPICE sim-
ulator dedicated to simulation of JJs and does not support any semiconductor devices. The
simulator is very light weight due to the need to only support a few components. JSIM makes
use of nodal analysis to compute solutions of large matrices.

JSIM, although being the most widely used superconducting circuit simulator, has received
no update since the last release in 1992. It was well optimized at the time and remains so
even on modern more powerful computing devices. However, many optimizations can be done
to improve input methods and time to solution. The code was written with older memory
architectures in mind using native C language where dynamic array sizes were hard to imple-
ment. This led to using pointers to form very long linked lists. These design choices make the
alteration of the code and debugging to identify bottlenecks in large designs almost impossible.

JSIM, like JSPICE, is only capable of doing transient time domain simulations and cannot
handle dc or ac simulations. What made JSIM unique to JSPICE is the implementation of
the JJ requiring only the right hand side to be changed on every time step where JSPICE
would change the A matrix after each iteration. This gives JSIM a large speed improvement
compared to JSPICE.

JSIM has only 2 implemented types of quasiparticle resistance models. Rtype=0 meant

22

Stellenbosch University https://scholar.sun.ac.za

that the quasiparticle resistance was ignored and Rtype=1 approximated the resistance as a
piecewise linear function. When Rtype=1 is specified the resistance used in the conductance
matrix (A) for the Josephson junction would vary depending whether the junction voltage is
below, in transition state or above the gap voltage.

The computing systems at the time of its creation were very limited in terms of memory and
performance when compared to modern computers. This fact influences the size of simulations
that JSIM can handle as it was written to be memory efficient. To further improve performance
in JSIM, the time step size in the transient simulation is increased when the junction phase
does not vary significantly within one time step. Similarly the time step is reduced when the
phase difference becomes large and can also be reduced to less than the specified time step if
the difference is greater than some threshold value.

The possibilty of using JSIM to simulate VLSI designs, however, becomes impractical due
to it’s failure in handling simulations that near 10 000 JJs. Regardless of this limitation JSIM
is still regarded as one of the more popular simulators despite its age. We plot the current
versus voltage (IV) curves for the JJ implementations in JSIM in Figure 4.3 and 4.4.

0.2 0.1 0.0 0.1 0.2
Voltage(V)

0.0002

0.0001

0.0000

0.0001

0.0002

Cu
rre

nt
(A

)

JSIM IV Curves
rtype=1
rtype=1

Figure 4.3: V curves of the RCSJ model in JSIM

0.004 0.003 0.002 0.001 0.000 0.001 0.002 0.003 0.004
Voltage(V)

0.0002

0.0001

0.0000

0.0001

0.0002

Cu
rre

nt
(A

)

JSIM IV Curves
rtype=1

Figure 4.4: IV curve of the RCSJ model in JSIM without Rtype=0

23

Stellenbosch University https://scholar.sun.ac.za

4.4 PSCAN

Personal superconductor circuit analyser (PSCAN) was written in 1991 by Polonsky at Moscow
State University[51]. At the time only JSIM existed along with JSPICE2 and 3. All of which
used the modified nodal voltage analysis approach to set up the linear equations. What PSCAN
introduced was a solution that was labeled modified nodal phase analysis and made use of the
relationship between the Josephson junction phase and voltage

v =
Φ0

2π

dφ

dt
(4.2)

This method of simulation relies on satisfying London’s quantization law for phase differences
in a superconducting loop

φ1 + ...+ φn = 0 (4.3)

Unlike other SPICE simulators PSCAN utilizes a unique behavioural type of input language
called SFQHDL[52]. This special input language made it possible for the designer to incorporate
test vectors for self-verification within the input file. What this enabled was the incorporation
of built-in margin optimization tools since the operation verification is done internally.

PSCAN was written in Fortran and was not available for testing publicly. PSCAN2 which
was released in September 2016 by Pavel Shevchenko and builds on the development experi-
ence of the original PSCAN. PSCAN2 is written in Python and is available to the public at
pscan2sim.org. Though the documentation indicate that it now accepts standard SPICE syn-
tax, it however still requires a SFQHDL behaviour description file for which there seems to be
no proper syntax guideline. We managed to get it up and running using the provided examples
and used it to plot a simple JJ IV curve. This IV curve can seen in Figure 4.5.

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030
Voltage (V)

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

Cu
rre

nt
 (A

)

PSCAN IV Curve

Figure 4.5: Josephson junction IV curve created using phase based simulator PSCAN

PSCAN2 includes an approximation to the microscopic tunnel junction as derived in [53]
which uses a Dirichlet series approximations to model the tunnel junction behaviour. The
Dirichlet series coefficients used by PSCAN2 can be set in one of the configuration files. We
plot the two available tunnel junction model IV curves in Figure 4.6. One set of coefficients
was provided by Prof Semenov and the other was borrowed from the tunnel junction coefficient
generating tool MiTMoJCo[54].

24

Stellenbosch University https://scholar.sun.ac.za

http://www.pscan2sim.org/

0.000 0.001 0.002 0.003 0.004 0.005 0.006
Voltage (V)

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

Cu
rre

nt
 (A

)

PSCAN Tunnel Junction IV Curve

(a)

0.000 0.001 0.002 0.003 0.004 0.005 0.006
Voltage (V)

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

0.00012

0.00014

Cu
rre

nt
 (A

)

PSCAN Tunnel Junction IV Curve

(b)

Figure 4.6: Tunnel junction model IV curves created using PSCAN. Dirichlet coefficients used:
(a) V. K. Semenov (b) MiTMoJCo

PSCAN2, unlike JSIM, includes a graphical interface window through which simulation
options can be altered and results plotted. This GUI, like the rest of PSCAN2, requires the
user to have in-depth knowledge of the PSCAN2 code since there is no user manual. Due to the
lack of a proper syntax guideline and detrimental speed of Python, PSCAN2 is by no means a
viable option to perform VLSI simulations.

4.5 WRspice

WRspice is a SPICE engine developed by Whiteley Research Incorporated in Sunnyvale, CA.
Until October of 2017 it was a commercial SPICE engine and part of a toolset called XicTools,
which included the layout package Xic. Development started as a project to rewrite JSPICE3
in C++ while maintaining full compatibility for older SPICE simulators.

WRspice unlike PSCAN and JSIM supports transistor components and was developed to

25

Stellenbosch University https://scholar.sun.ac.za

be fully graphical for ease of user interaction but still allows for command-line input. It is fully
cross platform supporting Microsoft Windows, Linux and Apple MacOS.

WRspice is the most modern SPICE simulator available at present with capabilities such
as network distribution, parallel processing and Monte Carlo analysis. It is well documented
with an online help and manual system.

Similar to the JSPICE and JSIM the quasiparticle resistance type can be specified, however
there are 5 different types unlike the 3 found in JSPICE and 2 in JSIM. WRspice supports
transient analysis of any device as well as support for AC and DC (phase mode) simulations.

The integration with the layout editor Xic allows schematic editing and translation to the
equivalent SPICE netlist for direct simulation. The ability for WRspice to view the simulation
results directly through the graphical interface makes it the closest simulator in terms of features
to what our project set out to achieve.

We compare the various implementations of JJ resistance types found in WRspice in Figure
4.7.

0.2 0.1 0.0 0.1 0.2
Voltage(V)

0.0002

0.0001

0.0000

0.0001

0.0002

Cu
rre

nt
(A

)

WRspice IV Curves
rtype=0
rtype=1
rtype=2
rtype=3
rtype=4

(a)

0.004 0.002 0.000 0.002 0.004
Voltage(V)

0.0002

0.0001

0.0000

0.0001

0.0002

Cu
rre

nt
(A

)

WRspice IV Curves
rtype=1
rtype=2
rtype=3
rtype=4

(b)

Figure 4.7: IV curves of the RCSJ model in WRspice. (a) With Rtype=0 (b) Without Rtype=0

26

Stellenbosch University https://scholar.sun.ac.za

4.6 Conclusion

In this chapter the Josephson junction as an element in analogue simulators was briefly exam-
ined. We discussed the various available circuit simulators, the features that make them unique
as well as their downsides. The JJ element within each simulator was tested to form an IV
curve for each type of resistance model.

To compare these simulators to each other the testing environment needs to be set up to
perform the same simulation on all of the simulators. This becomes a tedious task due to the
differences in syntax between them. It was not however possible to compare PSCAN2 to JSIM
or WRspice due to the lack of a proper user guide and difficulty understanding the syntax. We
were however able to compare JSIM to WRspice using the exact same circuit and resistance
model. This comparison can be seen in Figure 4.8.

0.004 0.002 0.000 0.002 0.004
Voltage(V)

0.0002

0.0001

0.0000

0.0001

0.0002

Cu
rre

nt
(A

)

WRspice vs JSIM IV Curves
WRspice
JSIM

Figure 4.8: Rtype=1 model comparison between WRspice and JSIM

In Figure 4.8 we see that JSIM starts to let current through at a lower voltage and exits the
sub-gap at a lower current level when compared to WRspice. This difference is largely due to
the implementation each simulator uses to approximate the Josephson effect. This difference
is further discussed in 5.3.4.2. This is achieved using the test circuit seen in Figure 4.9 and the
following model for the JJ

.model jj1 jj(rtype=1, vg=2.8mV, cap=0.07pF, r0=160, rn=16, icrit=0.1mA)

Figure 4.9: Circuit used to find the IV curve of a JJ

27

Stellenbosch University https://scholar.sun.ac.za

The IV curve is drawn by ramping up the current source to 2.5µA steadily until 50ps and then
keeping it constant for the rest of the simulation. The simulation is run for 1ns and a step size
of 0.1ps is used. The voltage across the JJ is then averaged for the last 500ps of the simulation
and stored.

The current is increased by another 2.5µA and the simulation is repeated. This is done
until the current reaches 250µA, which is much more than the 100µA critical current of the JJ.
The current is then ramped down back to zero incrementally and the same process is followed
for the negative current.

This requires a total of 400 simulations to find an average voltage for each current value
which when plotted presents the IV curve seen in Figure 4.8.

The same process is done for both WRspice and JSIM and the execution speeds of the 400
simulations are compared. In the test script we use to calculate the IV curve, the only variable
is the simulator and the timing can therefore be directly compared. While using WRspice the
script completed in 55.97s, where when using JSIM, it completed in 60.49s.

There are some slight differences between the piece-wise linear resistance models imple-
mented in each simulator which could attribute to the difference in execution speed. WRspice
does have the advantage of being written in C++ and using updated linear algebra methods
such as KLU, but JSIM does not come in too far behind it despite its age.

This leads us to believe that a simulator written in C++ with updated linear algebra libraries
that is exclusively designed for superconducting circuit simulation could be advantageous in
the long run.

28

Stellenbosch University https://scholar.sun.ac.za

Chapter 5

JoSIM - Development

5.1 Introduction

In this chapter we will discuss the development decisions and design intricacies involved in
the creation of the superconducting simulation engine JoSIM[25]. Due to JSIM and WRsice
being the most common superconducting simulation engines at the start of this development
process, the decision was made to utilize the same SPICE syntax used in both. This should
allow simulation of existing netlists and direct comparison of results and simulation times.

JoSIM was initially developed as part of this project to help motivate the argument of
this disseration. It was intended to be used to simulate VLSI designs in reasonable time by
making use of advanced linear algebra libraries and modern day computing systems with parallel
processing. Through the course of development, the need for JoSIM was further enhanced
through the US Government sponsored IARPA project Super Tools [28], wherein the purpose
of JoSIM was altered to provide simulation results of more accurate approximations of the JJ
behaviour through incorporation of more intricate models. Additional requirements were set
for JoSIM to be able to elegantly plot the results of a simulation to some graphical form that
should be publication ready such as scalable vector graphic (SVG) format.

JoSIM is developed in standard C++ to provide compatibility across multiple platforms and
is open source at JoSIM.git with the MIT license. Code is also commented as far as possible
to help legibility and aid future developers of the code. Documentation in the form of a user
manual is also made available and can be found in Appendix E.

Code was initially written using a MSI GE72 6QF running Microsoft Windows 10 and
Microsoft Visual Studio Enterprise with a student license. Development was later shifted to
a Apple Macbook Pro 13” (2017) running mac OS High Sierra and Visual Studio Code. This
change was made to eliminate the need for a nearby power outlet whenever inspiration struck.

This chapter is further divided into the different sections of JoSIM as a simulation process
and is depicted in the design flow shown in Figure 5.1.

29

Stellenbosch University https://scholar.sun.ac.za

https://www.github.com/JoeyDelp/JoSIM.git

Begin Parse netlist

SPICE syntax
netlist

Substitute
in any

subcircuits

Create A
matrix

Identify
simulation

controls

Execute
simulation
time loop

Solve
Ax=b

Process
results

Plot
results

Save
results

End

Data file

Figure

Figure 5.1: Overview of the JoSIM design flow

5.2 Design Flow from Input to Output

5.2.1 Input

As mentioned, input to JoSIM is aimed to provide as much compatibility with standard SPICE
syntax and closely follows the syntax found in The SPICE Book[55]. The user would pro-
vide a netlist containing multiple lines of component definitions and interconnect information.
Component definitions are further elaborated on in 5.3. These netlist files would also contain
control lines that define what JoSIM has to do with the components it has read in. The types
of control lines available in JoSIM are discussed in 5.4.

When a netlist is parsed, each line is read in and stored either as main design, controls or
subcircuit under the corresponding subcircuit section. Once the entire file has been parsed we
iterate through both the main design substituting the relevant subcircuit lines when a subcircuit
definition is found. This process is recursive to included nested subcircuits. In JoSIM we allow
alphanumeric node names as opposed to the standard numeric found in JSIM. This allows us
to append the corresponding subcircuit label to the node names and labels of the lines being
substituted. This process is illustrated in Figure 5.2 and 5.3.

. subckt RLC 1 4
R01 1 2 5
L01 2 3 10
C01 3 4 20
. ends RLC

V01 0 1 PWL(0 5 10 20)
R01 1 2 5
L01 2 3 10
X01 RLC 3 4
C01 4 0 20
. end

Figure 5.2: Example of a standard netlist with a subcircuit

30

Stellenbosch University https://scholar.sun.ac.za

V01 0 1 PWL(0 5 10 20)
R01 1 2 5
L01 2 3 10
X01 RLC 3 4
R01 |X01 3 2 |X01 5
L01 |X01 2 |X01 3 |X01 10
C01 |X01 3 |X01 4 20
C01 4 0 20
. end

Figure 5.3: Resulting master netlist after substitution

Once this master netlist has been generated we now iterate through each individual line,
deciding what needs to be done with it base on first character of each line. These components
are then transformed into their relevant MNA stamp.

5.2.2 Matrix Setup

When attempting to solve a set of linear equations to find the voltage at every node as in the
modified nodal analysis (MNA), we need to first decide on an integration method that would
approximate the current or voltage of non-linear components. The most basic of these methods
is simply the backward Euler method, which interpolates the value based on the previous value.

Figure 5.4: Approximating the yn+1 value

From Figure 5.4 we can write backward Euler differential as

dy

dt n
=
yn+1 − yn

h
(5.1)

This method is however a first order method which does not model the behaviour accurately
enough and is prone to error. We therefore opt to use a second order method such as the
trapezoidal integration method. The trapezoidal integration method can be defined as

dy

dt n
=

2

h
(yn − yn−1)− dy

dt n−1
(5.2)

where n is the current time step and h is the difference between the current time step and the
next. The trapezoidal method is still prone to error if sharp spikes in y occur between tn and
tn+1. There are other methods which approximate the non-linear curve more accurately however
these methods require additional computation and have not been considered for implementation
yet.

31

Stellenbosch University https://scholar.sun.ac.za

Using the trapezoidal integration method we can calculate a linear approximation to non-
linear devices such as an inductor where the current cannot instantaneously change. Substitut-
ing the trapezoidal method into the standard voltage and current equations for every component
allows us to create matrices called the MNA stamps[56]. These stamps are very sparse and
when all the stamps for every component in the system have been collected and collated we
are left with a very sparse A matrix. The A matrix is required to be square, which means the
amount of rows equal the amount of columns. This A matrix can then be used to solve the
system Ax = b.

5.2.3 Solution Calculation

To calculate the voltage and current at the present time step we need to solve x = A−1b.
There are various C++ libraries that do this very efficiently. We, however, chose KLU from the
SuiteSparse linear algebra library[57]. For KLU to perform operations on the sparse A matrix
we need to convert it to compressed sparse row (CSR) format, which essentially consists of 3
vectors that completely describe a sparse matrix of any size. These 3 vectors are the nonzero
vector, the count of nonzero elements in every row and the index of every nonzero value. This
is probably better explained using an example.




0 2 0 0 0 0 0
0 0 0 5 0 0 0
0 0 0 0 0 8 9
1 0 0 0 0 0 0
0 0 2 0 6 0 0
0 0 0 7 0 0 0
0 3 0 0 0 0 5




(5.3)

The matrix in (5.3) requires 49 values to completely be described. However, if we convert this
to CSR we find

A = [2, 5, 8, 9, 1, 2, 6, 7, 3, 5]

IA = [0, 1, 2, 4, 5, 7, 8, 10]

JA = [1, 3, 5, 6, 0, 2, 4, 3, 1, 6]

which completely describe the matrix in 5.3 using only 28 values, rather than the 49 required
by the sparse matrix.

When we pass this CSR format to the KLU solver, a symbolic solution is first calculated
where after the numerical solution is calculated at every time step. If at any point the A matrix
needs to be updated, a new symbolic calculation needs to be performed where after numerical
solutions can again be calculated for every time step.

If there exists a row within the A matrix that does not contain a single value, the matrix is
deemed singular and no soluation will be found for it. The simulator will then exit and provide
the user with an appropriate error message.

5.2.4 Output Handling

Once all the unknown values are calculated for the entire simulation period we are able to
present the results as either graphical results, numerical results or both. In the case of graphical
presentation we make use of the fast light toolkit (FLTK)[58] to very crudely plot the results of
a simulation. This library is cross platform and can be statically compiled into the executable
of JoSIM. This plotting method however has no way of saving the produced results as well

32

Stellenbosch University https://scholar.sun.ac.za

as no way of identifying the values being plotted. The functionality of FLTK is theoretically
endless and further effort will be put into developing this plotting method in the future.

Due to the crudeness of the FLTK plotting method we sourced alternative methods of
displaying the results in a way that can be saved for publication. One such alternative identified
is to use the Python library Matplotlib. This library has an interface to C++ that can be found
at matplotlib-cpp which interfaces with the Python installed on the host machine. Although
this plotting mechanism requires additional set up per individual system, the plots that are
produced can be saved in a publication ready format.

Apart from the plotting methods, we also developed methods to write the results out to
file in various formats. The intention is to use a universal standard such as comma separated
value (CSV) which will enable the ease of use with multiple standard third-party plotting tools.
In addition to this we also developed a method to produce a space separated value file which
corresponds to the JSIM output format.

If no plotting or output command is specified the results are simply written to the standard
output of the host, which in this case would be the command line.

5.3 Components

5.3.1 Resistor

Figure 5.5: A basic resistor element.

The definition of a resistor in JoSIM is

RLabel Pos.Node Neg.Node Value

The voltage across a resistor is defined as

v(t) = Ri(t) (5.4)

and written as a function of the current time step

Vn = RIn

1

R
Vn = In

Since we do not need to calculate the current we can leave it on the right hand side (RHS) and
only use it if the value is known

1

R
V +
n −

1

R
V −
n = In (5.5)

This can be written in matrix form as
[

1
R
− 1
R

− 1
R

1
R

] [
V +
n

V −
n

]
=

[
In
−In

]
(5.6)

33

Stellenbosch University https://scholar.sun.ac.za

https://github.com/lava/matplotlib-cpp

Figure 5.6: A basic inductor element

5.3.2 Inductor

A inductor in JoSIM has the following definition

LLabel Pos.Node Neg.Node Value

The voltage across an inductor can be described by

v(t) = L
di(t)

dt
(5.7)

which can be written as a function of the current time step as

Vn = L

(
dI

dt

)

n

Vn = L

[
2

hn
(In − In−1)−

(
dI

dt

)

n−1

]

Knowing that L
(
dI
dt

)
n−1

= Vn−1 we can write

Vn =
2L

hn
In −

2L

hn
In−1 − Vn−1

Vn −
2L

hn
In = −2L

hn
In−1 − Vn−1

Since we want the voltages at each node and the branch current we can split the voltage as the
difference between the two nodes.

V +
n − V −

n −
2L

hn
In = −2L

hn
In−1 −

(
V +
n−1 − V −

n−1

)
(5.8)

We can then neatly transform (5.8) to matrix form as




0 0 1
0 0 −1
1 −1 −2L

hn





V +
n

V −
n

In


 =




0
0

−2L
hn
In−1 −

(
V +
n−1 − V −

n−1

)


 (5.9)

5.3.3 Capacitor

Figure 5.7: A basic capacitor element

A capacitor in JoSIM has the following definition

34

Stellenbosch University https://scholar.sun.ac.za

CLabel Pos.Node Neg.Node Value

The current through a capacitor is described by

i(t) = C
dv(t)

dt
(5.10)

which when viewed as a function of the current time step

In = C
dVn
dt

In = C

[
2

hn
(Vn − Vn−1)−

(
dV

dt

)

n−1

]

The second differential is simply the current at the previous time step

In =
2C

hn
Vn −

2C

hn
Vn−1 − In−1

Vn −
hn
2C

In = −Vn−1 −
hn
2C

In−1

We now substitute the voltage as the difference between the two nodes

V +
n − V −

n −
hn
2C

In = −
(
V +
n−1 − V −

n−1

)
− hn

2C
In−1 (5.11)

We can now write (5.11) in matrix form as




0 0 1
0 0 −1
1 −1 hn

2C





V +
n

V −
n

In


 =




0
0

−
(
V +
n−1 − V −

n−1

)
− hn

2C
In−1


 (5.12)

5.3.4 Josephson Junction

Figure 5.8: A basic Josephson junction element

A Josephson junction in JoSIM has the following definition

BLabel Pos.Node Neg.Node Mod.Name [AREA=Value]

5.3.4.1 RCSJ

The resistively and capacitively shunted junction model for the Josephson junction is shown in
Figure 5.9 and has the following model description

.model Mod.Name
jj([RTYPE=Value],[ICRIT=Value],[VG=Value],[RN=Value],[R0=Value],[CAP=Value])

35

Stellenbosch University https://scholar.sun.ac.za

Both the component and model definition have specifiers that have default values. These values
are:

AREA 1

RTYPE 0

ICRIT 1mA

VG 2.8mV

RN 5

R0 30

CAP 2.5pF

Figure 5.9: The resistively and capacitively shunted equivalent junction model

The equations that describe the voltage and current of a RCSJ are given by

i(t) = Ic sinφ(t) + C
dv(t)

dt
+

1

R
v(t) (5.13)

φ̇(t) =
2e

~
v(t) (5.14)

where Ic the junction critical current, φ the junction phase, e the electron charge and ~ Plank’s
constant. If we write these equations in terms of the current time step we find

In = Ic sinφn +
1

R
Vn + C

[
2

hn
(Vn − Vn−1)−

(
dV

dt

)

n−1

]

In −
(

1

R
+

2C

hn

)
Vn = Ic sinφn −

2C

hn
Vn−1 − C

(
dV

dt

)

n−1(
1

R
+

2C

hn

)
Vn − In = −Ic sinφn +

2C

hn
Vn−1 + CV̇n−1

When written with the junction voltage as the difference between the two node voltages

(
1

R
+

2C

hn

)(
V +
n − V −

n

)
− In = −Ic sinφn +

2C

hn

(
V +
n−1 − V −

n−1

)
+ CV̇n−1 (5.15)

36

Stellenbosch University https://scholar.sun.ac.za

The phase equation is handled similarly

φ̇n =
2e

~
Vn

2

hn
(φn − φn−1)− φ̇n−1 =

2e

~
Vn

−hn
2

2e

~
Vn + φn = φn−1 +

hn
2
φ̇n−1

−hn
2

2e

~
Vn + φn = φn−1 +

hn
2

2e

~
Vn−1

− hn
2

2e

~
(
V +
n − V −

n

)
+ φn = φn−1 +

hn
2

2e

~
(
V +
n−1 − V −

n−1

)
(5.16)

If we now combine (5.15) and (5.16) into a single matrix, we find




1
R

+ 2C
hn

− 1
R
− 2C

hn
0

− 1
R
− 2C

hn
1
R

+ 2C
hn

0

−hn
2

2e
~

hn
2

2e
~ 1





V +
n

V −
n

φn


 =




Is
−Is

φn−1 + hn
2

2e
~

(
V +
n−1 − V −

n−1

)


 (5.17)

Where the current value on the RHS is defined as

Is = −Ic sinφ0
n +

2C

hn

(
V +
n−1 − V −

n−1

)
+ CV̇n−1 (5.18)

The RHS of the matrix in (5.17) requires that we . We therefore define the phase guess (φ0) as

φ0
n = φn−1 +

hn
2

2e

~
(
Vn−1 + v0

n

)
(5.19)

with
v0
n = Vn−1 + hnV̇n−1 (5.20)

The only caveat in guessing the next voltage is when the previous value differs quite significantly
within a time step (large d

dt
) the difference between the phase guess and the previous phase

value becomes extremely large causing unwanted behaviour. This occurs especially when initial
conditions are zero and the previous two voltage values are therefore zero. We combat this by
keeping the phase guess zero until around the third or fourth time step.

5.3.4.2 RCSJ resistance models

JoSIM, like JSIM, has only 2 types of resistance models implemented for the RCSJ model.
These are namely Rtype=0 and 1, and will be discussed in further detail in this subsection.

Rtype=0 quite simply refers to the fact that there is no conductance present from the
resistance branch in (5.17) and thus theoretically infinite resistance. We do however in the case
of Rtype=0 in JoSIM simply leave this as the subgap resistance (R0) since in practice there it
is impossible to reach a temperature of absolute 0 and thus there will always be a resistance.

The implementation of Rtype=1 requires a bit more thought since it represents a piecewise
linear conductance surrounding the voltage gap. JSIM defines an area that specifies 2 regions
wherein the conductance transitions between the subgap conductance and normal conductance.
These regions are Vgap + ∆V and Vgap + 2∆V where ∆V is the gap transition voltage and is
set to 0.1mV by default, but can be specified in the junction model.

37

Stellenbosch University https://scholar.sun.ac.za

As the junction current increases and approaches the critical current, the voltage guess
(v0) is monitored. If the the voltage for the next step is guessed to cross the voltage gap, the
junction conductance on the LHS in (5.17) is altered to a weighted value described as

2C

hn
+GT (5.21)

where GT is the transition conductance

GT =

Vgap+∆V

Rn
− Vgap

R0

∆V
(5.22)

This change requires that an LU decomposition be performed again using the new A matrix.
This alone however does not accurately describe the path the voltage follows and thus more
needs to be taken into consideration. An additional current value is added to the RHS Is to
compensate for this transition period and can be specified as

IT = Vgap

(
1

R0

−GT

)
(5.23)

while Vgap < V 0 ≤ Vgap + ∆V and

IT = V 0

(
1

Rn

−GT

)
(5.24)

while Vgap + ∆V < V 0 ≤ Vgap + 2∆V .
This minimizes the amount of LU decompositions required as it only now needs to be done

3 times during a junction switch instead of at every time step during the switch.
This method does however not take into account the ratio of critical current to quasiparticle

step height as seen in WRspice. With this parameter being user tunable it allows for more
accurately characterized junction behaviour above the subgap region. Similar to JSIM, the
transition is defined as a region surrounding the gap voltage with a transition conductance.
This region is defined as Vgap − 1

2
∆V and Vgap + 1

2
∆V where the conductance is

GT =
Ic

(Icfact ×∆V)
(5.25)

with Icfact being the ratio of critical to gap current with a default value of π
4
. When the junction

voltage enters the region surrounding the gap voltage the junction conductance in the A matrix
is changed and a constant current is added to the RHS. This constant current is the same as
in (5.23).

When the junction voltage exits above this region the transitional current is however not
set to 0 as in JSIM but given a constant value as defined in (5.26).

IT =
Ic

Icfact
+

[
1

R0

×
(
Vgap −

1

2
∆V

)]
−
[

1

Rn

×
(
Vgap +

1

2
∆V

)]
(5.26)

This method of handling Rtype=1 is preferred and is the method used in JoSIM as it matches
measured results from fabrication processes such as MITLL.

Though WRspice includes more quasiparticle resistance models such as a analytic exponentially-
derived approximation (Rtype=2) and a fifth order polynomial expansion model (Rtype=3),
these have yet to be investigated for implementation in JoSIM.

38

Stellenbosch University https://scholar.sun.ac.za

5.3.4.3 CPR

The current phase relation (CPR) is defined through the sinusoidal supercurrent equation

Is = Ic sin(φ) (5.27)

which holds true for most cases of electron tunneling between two superconducting materi-
als. However, an investigation by Haberkorn [59] shows that this CPR can be non-sinusoidal,
especially when considering ballistic tunnelling.

This non-sinusoidal effect is shown in the following equation.

Is =
π∆

2eRN

sinφ√
1− D̄ sin2

(
φ
2

) tanh

[
∆

2kBT

√
1− D̄ sin2

(
φ

2

)]
(5.28)

The equation in 5.28 introduces the temperature dependency through ∆, which is defined as

∆0 = 1.76kBTc (5.29)

∆ = ∆0

√√√√cos

[
π

2

(
T

Tc

)2
]

(5.30)

with T , the boiling point of liquid Helium, being 4.2K and Tc, the critical temperature of
Niobium, being 9.1K. kB is Boltzmann’s constant for average kinetic energy of particles.

The resistance value RN is defined as

RN =
π∆

2eIc
tanh

(
∆

2kBT

)
(5.31)

This allows us to change the characteristics of the tunnel current by simply altering the value
of D̄. For values of D̄ � 1 the equation becomes the normal sinusoidal equation whereas for
large values of D̄ it becomes the non-sinusoidal ballistic tunneling equation.

Implementation of this equation introduces temperature dependence and inches us ever
closer to a more accurate representation of the Josephson junction dynamics through simulation.

5.3.4.4 MTJ

The microscopic tunnel junction (MTJ) in [46], is described by Kratz as being a much more
accurate approximation of the tunnel current phenomenon seen in the Josephson junction.
Kratz calls this the Werthamer approximation after the Werthamer theory seen in [45]. We
therefore aspire to incorporate this more accurate approximation into JoSIM.

Other simulators such as PSCAN[51] and MiTMoJCo[54] approximate the MTJ through
using a set of coefficients for a Dirichlet series. This, however, is not the method of imple-
mentation described in [46], where the MTJ is represented by the element model in Figure
5.10.

39

Stellenbosch University https://scholar.sun.ac.za

Figure 5.10: Element model of the Werthamer approximation

The two current sources in Figure 5.10 are the sum and difference currents created using
the element model in Figure 5.11.

Figure 5.11: Sum and difference current calculation using the junction voltage

The sum and difference admittances seen in Figure 5.11 are represented by the equivalent
circuits in Figure 5.12.

Figure 5.12: Sum and difference admittance equivalent circuits

These admittances are complex and therefore require a discrete Fourier transform on every
time step. This, however, is very time consuming and will require many changes to the core
engine of JoSIM to see implementation.

5.3.5 Voltage and Current Sources

+ -

Figure 5.13: A basic voltage source

40

Stellenbosch University https://scholar.sun.ac.za

Figure 5.14: A basic current source

Voltage sources in JoSIM have the definition

VLabel Pos.Node Neg.Node Source Type

and similarly current sources

ILabel Pos.Node Neg.Node Source Type

with the voltage causing predefined values at the specified nodes on the RHS and current
causing predifined values at the corresponding nodes on the LHS. The source types could be
either piecewise linear (PWL), pulse or sinusoidal. The option to include DC sources was
considered, but ultimately deemed unnecessary, since in the case of performing a transient
analysis, the differential in components such as inductors and capacitors will always be zero.
If a DC operating point simulation method is to be implemented in the future, the DC source
will be added.

5.3.5.1 PWL

PWL source types have the following description

PWL(t0 v0 t1 v1 ... tn vn)

where t is the time point and v is the value at the corresponding time point. We always assume
that the initial time and initial value is zero, as this is the start of the simulation. Given that
tk is the current time step we create a linear interpolation from vk−1 to vk in the time period
tk−1 to tk. Doing this for all n time values specified builds a complete set of values that define
the piecewise linear function.

Figure 5.15: Example of a PWL function depicting the relevant values

5.3.5.2 Pulse

Pulse source types have the following description

PULSE(V1 V2 [TD [TR [TF [PW [PER]]])

41

Stellenbosch University https://scholar.sun.ac.za

where V1 and V2 are the two voltage levels. TD, TR, TF , PW and PER are the delay time, rise
time, fall time, pulse width and period respectively. The values from time delay to period are
optional but require the preceding value to function, as they are read in a specific order. If not
specified, these values have the following default values.

TD 0

TR Time step size

TF Time step size

PW Stop time

PER Stop time

The time step size and stop time are that of the transient simulation being run. Pulse functions
are implemented in a similar way to PWL functions in that the time points and values are
generated using the relevant parameters, where after the same procedure is followed to generate
the function values.

Figure 5.16: Example of a pulse function depicting the relevant values

5.3.5.3 Sinusoidal

Sinusoidal source types have the following description

SIN(VO VA [FREQ [TD [THETA]]])

where VO is the offset, VA the amplitute, FREQ the frequency and TD the time delay. We
include the damping factor THETA for completeness as this is used to modulate the signal’s
amplitude if need be. FREQ to THETA can be left out upon which default values will be
assumed. The parameters are consecutively read in and therefore need to be provided in the
correct order.

FREQ 1/Stop time

TD 0

THETA 0

The general function for a sinusoidal function would then be written as

f(t) = VO + VA sin(2πFREQ(t− TD))e−THETA(t−TD) (5.32)

42

Stellenbosch University https://scholar.sun.ac.za

Figure 5.17: Example of a sinusoidal function depicting the relevant values

5.3.5.4 Custom Waveform

Custom waveform source types have the following description

CUS(wavefile TS SF IM [TD PER])

where TS is the step size, SF the scaling factor, IM the iterpolation method, TD the time
delay and PER the periodicity. TD and PER can be left out upon which default values will be
assumed. The parameters are consecutively read in and therefore need to be provided in the
correct order.

TS Time step size

SF 1

IM 1

TD 0

PER 0

The custom waveform source type allows the user to provide a single line, space separated
waveform file from which the amplitudes of each point of the wave is created and scaled using the
scaling factor (SF). The values between the points are interpolated using either no interpolation
(0), linear (1), cubic (2) or spline (3). The function can become periodic if PER is set to 1,
whereby the pattern is repeated for the entire simulation

Figure 5.18: Example of a custom function depicting a waveform line of [0 1 2 3 2 1 0] with
periodicity enabled to create a triangle wave.

43

Stellenbosch University https://scholar.sun.ac.za

5.3.6 Lossless Transmission Line

Figure 5.19: A basic transmission line element

A lossless transmission line in JoSIM is defined through

TLabel Pos.Node1 Neg.Node1 Pos.Node2 Neg.Node2 [TD=Value Z0=Value]

with TD the time delay and Z0 the line impedance. Both are optional and have default values

TD 0

Z0 10

The high speed of superconducting electronics makes interconnection between logic gates slightly
problematic. The energy content of a SFQ pulse can quite quickly diminish to the point where
it no longer resembles a pulse and thus not transfer the correct data. This can be corrected
through pulse regeneration circuits such as the Josephson transmission line (JTL). JTLs need to
be biased and in the case of RSFQ consume static power. This makes them a costly component
if the signal needs to propegate over quite a distance. Additionally, each JTL adds roughly a
5ps delay, which also slows performance in large designs.

To combat the use of JTLs, designers of superconducting electronics make use of passive
transmission lines (PTLs) through which SFQ pulses can be transferred at near light speed
with minimal loss of energy[60][61]. The equations that govern this transmission are described
by

v1(t)− Z0i1(t) = v2(t− TD) + Z0i2(t− TD) (5.33)

v2(t)− Z0i2(t) = v1(t− TD) + Z0i1(t− TD) (5.34)

The time delay in terms of the current time step can be written as

t− TD ≡ n− TD
hn

= n− k

Rewriting the equations in (5.33) and (5.34) as a function of the time step

(V1)n − Z0(I1)n = (V2)n−k + Z0(I2)n−k

(V2)n − Z0(I2)n = (V1)n−k + Z0(I1)n−k

As a function of the voltages at both nodes we can write these equations as

(V1)+
n − (V1)−n − Z0(I1)n = (V2)n−k + Z0(I2)n−k

(V2)+
n − (V2)−n − Z0(I2)n = (V1)n−k + Z0(I1)n−k

We can now write the equations for the transmission line in matrix form as



0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1
1 −1 0 0 −Z0 0
0 0 1 −1 0 −Z0







V +
1

V −
5

V +
2

V −
3

I1

I2




=




0
0
0
0

Z0(I2)n−k + (V2)n−k
Z0(I1)n−k + (V1)n−k




(5.35)

44

Stellenbosch University https://scholar.sun.ac.za

5.3.7 Mutual Inductance

Figure 5.20: A basic mutual inductance element

Mutual inductance in JoSIM is defined as

KLabel LLabel1 LLabel2 Coupling Factor

Where the inductances being coupled will now have a revised equation

v1(t) = L1
di1(t)

dt
+M

di2(t)

dt
(5.36)

v2(t) = M
di1(t)

dt
+ L2

di2(t)

dt
(5.37)

The coupling factor (k) determines the mutual coupling (M) through the equation with -1 ≤ k
≤ 1

M = k
√
L1L2 (5.38)

By rewriting (5.36) and (5.37) in terms of the current time step we find

(V1)n =
2L1

hn
(I1)n −

2L1

hn
(I1)n−1 +

2M

hn
(I2)n −

2M

hn
(I2)n−1 − (V1)n−1

(V1)n −
2L1

hn
(I1)n −

2M

hn
(I2)n = −2L1

hn
(I1)n−1 −

2M

hn
(I2)n−1 − (V1)n−1

(
V +

1

)
n
−
(
V −

1

)
n
− 2L1

hn
(I1)n −

2M

hn
(I2)n = −2L1

hn
(I1)n−1 −

2M

hn
(I2)n−1 − (V1)n−1 (5.39)

and

(V2)n =
2M

hn
(I1)n −

2M

hn
(I1)n−1 +

2L2

hn
(I2)n −

2L2

hn
(I2)n−1 − (V2)n−1

(V2)n −
2M

hn
(I1)n −

2L2

hn
(I2)n = −2M

hn
(I1)n−1 −

2L2

hn
(I2)n−1 − (V2)n−1

(
V +

2

)
n
−
(
V −

2

)
n
− 2M

hn
(I1)n −

2L2

hn
(I2)n = −2M

hn
(I1)n−1 −

2L2

hn
(I2)n−1 − (V2)n−1 (5.40)

When collating (5.39) and (5.40) into one matrix we arrive at the MNA stamp




0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1
1 −1 0 0 −2L1

hn
−2M

hn

0 0 1 −1 −2M
hn
−2L2

hn







(
V +

1

)
n(

V −
1

)
n(

V +
2

)
n(

V −
2

)
n

(I1)n
(I2)n




=




0
0
0
0

−2L1

hn
(I1)n−1 − 2M

hn
(I2)n−1 − (V1)n−1

−2M
hn

(I1)n−1 − 2L2

hn
(I2)n−1 − (V2)n−1




(5.41)

45

Stellenbosch University https://scholar.sun.ac.za

5.4 Control Commands

The commands used to control JoSIM are placed within the netlist and usually start with a
single period followed by a command. These commands include the type of simulation to be
done, any models required by components and all the plotting commands.

The most basic of these commands, and a requirement for the simulator to do anything
until other simulation methods are implemented is a transient analysis. A transient analysis in
JoSIM is defined using the command

.tran T.Step T.Stop [T.Start]

which will perform a transient analysis that runs from time start (T.Start) to time stop (T.Stop)
with the time step value of time step (T.Step). The number of simulation time steps would
then be

n =
T.Stop− T.Start

T.Step
(5.42)

where T.Start has a value of 0 unless specified. In the case that n is not an integer number, the
amount of simulations to be run will be rounded down due to the nature of casting a double
to an integer in C++.

The model specifier for JoSIM is discussed in Section 5.3.4.1, as the only model parameter
JoSIM accepts at present is the Josephson junction model. Additional models will become
available as the software matures.

The plotting commands used by JoSIM can take any of the following forms

.print Pr.Type Device or Node
.plot Pl.Type(Node or device)0 ... Pl.Type(Node or device)n

These commands both essentially do the same thing, however, the way the commands are
formatted differs slightly. In the print command each seperate print needs to be stated on a
new line whereas the plot command can have multiple commands to plot in one line.

The Pr.Type can be either NODEV, DEVV, DEVI or PHASE. NODEV requests the node
voltage for the specified node. DEVV and DEVI request the device voltage and current for the
specified device. The voltage is defined as the difference between the two nodes the device is
connected to and the current would be this difference divided by the device impedance. PHASE
would simply print out the phase value (φ) for the specified junction.

When performing phase-based analysis the PHASE Pr.Type can be used for any component
and an additional Pr.Type NODEP is introduced that allows plotting the nodal phase.

The Pl.Type can be any of the V, I or P. Where when V is the voltage acrross the device,
but nodes could also be specified seperated by a comma to find the voltage between two nodes.
The I and P produce the device current and phase respectively.

Any of the control commands listed prior can be positioned within a control block of which
there can only be one per circuit netlist. These commands would be enclosed in a section that
starts with a .control command and ends with a .endc command. The lines enclosed in such a
block would not require the a period at the start to indicate that it is a control command.

To specify whether the enclosed lines are part of a subcircuit the .subckt and .ends commands
are used.

5.4.1 Parameters

A unique feature which is implemented in JoSIM is the expression parser which allows the user
to set variables and do calculations within the circuit netlist. The definition of an expression
within JoSIM is

46

Stellenbosch University https://scholar.sun.ac.za

.param Var.Name = Expression

The expression parser implements a variant of the Dijkstra’s shunting yard algorithm[62]
whereby the expression to be parsed is read in and converted to a reverse polish notation
(RPN) stack which is then evaluated to return a value.

An example of this would be

R01 = 5E–3 ∗ 1000 ∗ sin(PI/2) + 5

Table 5.1: Shunting yard conversion to a RPN stack

Token RPN Stack Operator Stack Note

5E-3 5E-3 3E-3 is a value
* 5E-3 * * is a high precedence operator
1000 5E-3 1000 * 1000 is a value
* 5E-3 1000 * * * has equal precedence to *
sin 5E-3 1000 * sin * sin has higher precedence than *
(5E-3 1000 * PI (sin * (is of the highest precedence
PI 5E-3 1000 PI (sin * PI is a value
/ 5E-3 1000 * PI / (sin * / is within the bracket
2 5E-3 1000 * PI 2 / (sin * 2 is a value
) 5E-3 1000 * PI 2 / sin *) found, pop stack
+ 5E-3 1000 * PI 2 / sin * + + has low precedence
5 5E-3 1000 * PI 2 / sin * 5 + 5 is a value

5E-3 1000 * PI 2 / sin * 5 + no more tokens, pop stack

The table in 5.1 depicts the algorithm steps in a very simplified manner. It does however
show that certain operators have precedence over others and if operators of the same importance
are found the operator is pushed to the RPN stack. Once all the tokens have been exhausted the
RPN stack can then be evaluated using an algorithm that applies the operator to the preceding
stack value(s) until there is only one item left in the stack

Table 5.2: RPN stack evaluation

RPN Stack Expression Evaluation Note

5E-3 1000 * PI 2 / sin * 5 + 5E-3 1000 *
5 PI 2 / sin * 5 + 5 PI No operator found
5 PI 2 / sin * 5 + PI 2 /
5 PI/2 sin * 5 + 5 PI/2 Sin Sin takes one operator
5 PI/2 sin * 5 + PI/2 Sin
5 1 * 5 + 5 1 *
5 5 + 5 5 +
10

This value is then stored using the R01 label as key. This value can then be used within the
netlist in various ways such as component values, model definitions or even in other parameter
values. This is particularly useful when some form of scaling needs to be applied to values,
since changing a single value then changes all values. Parameters can be unique to a subcircuit
or defined in main netlist making them global and accessible within subcircuits. If a parameter

47

Stellenbosch University https://scholar.sun.ac.za

makes use of another parameter within the expression that needs parsing, the required param-
eter needs to be defined prior to the evaluation due to the sequential read in of files within
JoSIM. The sequential read in and caviates related to that are discussed in Section 5.5.

The types of expressions that can be evaluated at present are only limited to very basic
algebra and trigonometric functions, however this can be expanded to encompass any possible
function.

The param control can also be enclosed within the control block whereby the period can be
omitted.

5.5 Chicken and Egg

During the development of JoSIM and the process used to read in a netlist various cases arise
which we call a ‘chicken and egg ’ situation. The name derives from the age old question ‘What
came first? The chicken or the egg? ’[63] and is so named because these situations often required
parts of the netlist which had not been read in at that point which results in causality dilemmas.

The most apparent of these dilemmas is that of subcircuit definitions. Where the subcircuit
used within the main netlist does not exist at the time of read in. We combat this by first
reading in the entire netlist, splitting it into a main part and subcircuit sections, and finally
expanding the main part into a master netlist using all the relevant subcircuits sections. This
also solves the problem when subcircuits are used within subcircuits.

Another situation which only became apparent during implementation was that of mutual
inductance, where the inductors being coupled need to be defined before the they can be
mutually coupled. It would not be good practice to force this requirement onto the user and
we therefore solve it in a similar way to the previous dilemma. We create the entire A matrix
by looping through the master netlist, thereby defining all the inductors and only take note
of mutual coupling. Once through the master netlist we then iterate through the mutual
inductances, if any, and apply them to the matrix separately. This dilemma will make a return
when discussing mutual inductance in Section 5.6.

The solutions decided upon do impact the performance negatively, however the alternative
would require shifting the responsibility to the user which would not be good practice. The
key to a successful design is to give the user exactly what they want while requiring as little
possible effort from their side.

5.6 Phase Simulation

The JJ is largely a phase-based element, and the direct calculation of the phase would thus
be more sensible. With phase mode, we present a direct relation between voltage and phase
which can be substituted into any voltage dependent equation. The act of derivation implies
extraction of information from a source and thus retaining data that is less informative than
the original. This can be seen through the constant derivation of voltage to obtain phase error
accumulation.

It therefore becomes necessary to do the entire simulation in phase, since each component
affects the phase of the entire circuit. We already have a well established MNA system that
handles calculation of voltage and current in a circuit, and it would be practical to simply adapt
this method to calculate phase.

This process is started by substituting the phase-voltage relation (5.44) into every compo-
nent equation and reducing it to find a modified nodal phase analysis (MNPA) matrix.

φ =
2π

Φ0

∫
vdt (5.43)

48

Stellenbosch University https://scholar.sun.ac.za

v =
Φ0

2π

dφ

dt
(5.44)

The standard voltage-based equations for basic analogue circuit components are presented as

v = L
di

dt
(5.45)

i = C
dv

dt
(5.46)

i =
v

R
(5.47)

We now substitute (5.44) into each of (5.45),(5.46) and (5.47) respectively to find the phase-
based equations and eventually the MNPA stamps. These MNPA stamps are obtained using
the trapezoidal integration method.

(
dx

dt

)

n

=
2

hn
(xn − xn−1)−

(
dx

dt

)

n−1

(5.48)

5.6.1 Phase Inductor

When (5.44) is substituted into (5.45) and we apply (5.2), we find

Φ0

2π

dφ

dt
= L

di

dt
(5.49)

Performing integration on both sides and assuming initial values as 0

Φ0

2π
φ = LIn

φ+ − φ− − 2πL

Φ0

In = 0 (5.50)

We are then able to create the MNPA stamp as




0 0 1
0 0 −1
1 −1 −2πL

Φ0





φ+

φ−

I


 =




0
0
0


 (5.51)

5.6.2 Phase Capacitor

When (5.44) is substituted into (5.46) and we apply (5.2), we find

i =
CΦ0

2π

d2φ

dt2
(5.52)

In =
CΦ0

2π

[
2

hn

(
dφ

dt n
− dφ

dt n−1

)
−
(
d2φ

dt2

)

n−1

]

In =
CΦ0

πhn

(
dφ

dt n
− dφ

dt n−1

)
− In−1

In =
2CΦ0

πh2
n

φn −
2CΦ0

πh2
n

φn−1 −
2CΦ0

πhn
φ̇n−1 − In−1

πh2
n

2CΦ0

In − φn = −φn−1 − hnφ̇n−1 −
πh2

n

2CΦ0

In−1

49

Stellenbosch University https://scholar.sun.ac.za

φn −
πh2

n

2CΦ0

In = φn−1 + hnφ̇n−1 +
πh2

n

2CΦ0

In−1

φ+
n − φ−

n −
πh2

n

2CΦ0

In = φn−1 + hnφ̇n−1 +
πh2

n

2CΦ0

In−1 (5.53)

Which leaves us with a MNPA stamp




0 0 1
0 0 −1

1 −1 − πh2n
2CΦ0





φ+

φ−

I


 =




0
0

πh2n
2CΦ0

In−1 + φn−1 + hnφ̇n−1


 (5.54)

We use the trapezoidal method to calculate the derivative of phase, which is done at the end
of every time step for the next time step.

φ̇n−1 =
2

hn
(φn−1 − φn−2)− φ̇n−2 (5.55)

5.6.3 Phase Resistor

When (5.44) is substituted into (5.47) and we apply (5.2), we find

i =
Φ0

2πR

dφ

dt
(5.56)

In =
Φ0

2πR

[
2

hn
(φn − φn−1)−

(
dφ

dt

)

n−1

]

In =
Φ0

πhnR
φn −

Φ0

πhnR
φn−1 − In−1

φ+
n − φ−

n −
πhnR

Φ0

In =
πhnR

Φ0

In−1 + φn−1 (5.57)

which leaves us with a MNPA stamp




0 0 1
0 0 −1
1 −1 −πhnR

Φ0





φ+

φ−

I


 =




0
0

πhnR
Φ0

In−1 + φn−1


 (5.58)

5.6.4 Phase JJ

The JJ in phase remains the same since the phase was already calculated in the the voltage-
based method. The voltage now becomes a virtual node only required to estimate the phase
for the next time step and to identify which mode of operation the junction will be in.
The MNPA stamp for the JJ can be wrtten as




0 0 2C
hn

+ 1
R

0 0 −2C
hn
− 1

R

1 −1 −hn
2

2e
~





φ+

φ−

V


 =




Is
−Is

φn−1 + hn
2

2e
~ Vn−1


 (5.59)

where the RHS current is defined as

Is = −Ic sinφ0
n +

2C

hn
Vn−1 + CV̇n−1 (5.60)

Since this method is equivalent to the one used in the voltage-based method, we retain the
same equations for the voltage and phase guess as in (5.19) and (5.20).

50

Stellenbosch University https://scholar.sun.ac.za

5.6.5 Phase Lossless Transmission Line

A lossless tranmission line has the voltage base equations

v1 − Z0i1 = Z0i2(t− TD) + v2 (5.61)

v2 − Z0i2 = Z0i1(t− TD) + v1 (5.62)

When 5.61 and 5.62 are represented in terms of phase they become

Φ0

2π
φ̇1n − Z0I1n = Z0I2n−k +

Φ0

2π
φ̇2n−k

Φ0

2π
φ̇2n − Z0I2n = Z0I1n−k +

Φ0

2π
φ̇1n−k

which we can then write in terms of the current time step as

φ+
1n − φ−

1n −
πhnZ0

Φ0

I1n =
πhnZ0

Φ0

I2n−k + φ1n−1 +
hn
2

(
φ̇1n−1 + φ̇2n−k

)
(5.63)

φ+
2n − φ−

2n −
πhnZ0

Φ0

I2n =
πhnZ0

Φ0

I1n−k + φ2n−1 +
hn
2

(
φ̇2n−1 + φ̇1n−k

)
(5.64)

We are now able to write the equations in (5.63) and (5.64) in matrix form as



0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1
1 −1 0 0 −πhnZ0

Φ0
0

0 0 1 −1 0 −πhnZ0

Φ0







φ+
1

φ−
1

φ+
2

φ−
2

I1

I2




=




0
0
0
0

V T1
V T2




(5.65)

where V T1 and V T2 are the RHS of equations (5.63) and (5.64) respectively.
This implementation of the lossless transmission line requires that the differential for each

phase node be calculated for each time step.

5.6.6 Phase Mutual Inductance

If we substitute te phase equation into that of the mutual inductance we find

Φ0

2π

dφ1

dt
= L1

di1
dt

+M
di2
dt

(5.66)

Φ0

2π

dφ2

dt
= M

di1
dt

+ L2
di2
dt

(5.67)

to which we can apply integration on both sides and assume initial conditions.

Φ0

2π
φ+

1 −
Φ0

2π
φ−

1 = L1I1 +MI2 (5.68)

Φ0

2π
φ+

2 −
Φ0

2π
φ−

2 = MI1 + L2I2 (5.69)

(5.68) and (5.69) can then be written in matrix form as



0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1
1 −1 0 0 −2πL1

Φ0
−2πM

Φ0

0 0 1 −1 −2πM
Φ0

−2πL2

Φ0







φ+
1

φ−
1

φ+
2

φ−
2

I1

I2




=




0
0
0
0
0
0




(5.70)

51

Stellenbosch University https://scholar.sun.ac.za

5.6.7 Phase Voltage Source

A voltage source can also be transformed into a phase based voltage source using the direct
transformation

v =
Φ0

2π

dφ

dt
(5.71)

Vn =
Φ0

2π

[
2

hn
(φn − φn−1)−

(
dφ

dt

)

n−1

]
(5.72)

φ+
n − φ−

n = φn−1 +
πhn
Φ0

(Vn + Vn−1) (5.73)

When we write (5.73) in matrix form it becomes




0 0 1
0 0 −1
1 −1 0





φ+

φ−

I


 =




0
0

πhn
Φ0

(Vn + Vn−1) + φn−1


 (5.74)

5.6.8 Phase Source

A phase source in JoSIM is defined as

PLabel Pos.Node Neg.Node Value

The purpose of the phase source is to apply a constant phase at the specified nodes. This source
type is only active when performing a phase mode analysis and will present the user with an
unknown component when attempting to use this in voltage mode.

In matrix form a phase source is written as




0 0 1
0 0 −1
1 −1 0





φ+

φ−

I


 =




0
0
φn


 (5.75)

5.7 Conclusion

JoSIM was developed as a SPICE syntax circuit simulator capable of simulating the super-
conducting effects of the Josephson junction. A netlist is fed to JoSIM as input and read in
sequentially. Once read in the netlist is parsed into a matrix, and the simulation controls are
identified. The controls define the actions that need to be executed on the matrix. The matrix
is solved using the KLU linear algebra library and the solution is presented to the user as output
in the manner defined by the controls.

JoSIM utilizes a voltage and phase based MNA approach to create the matrix and we
therefore discussed the circuit elements available in JoSIM including how they fit into the
MNA matrix. The integration methods used to approximate non-linear elements were discussed.
However, other methods that are less prone to error will be investigated and possibly provided
as optional to the user in future versions of the simulator.

The control commands in JoSIM were discussed and further expansion of simulation meth-
ods such as fixed point DC and frequency sweep AC will be investigated for implementation in
future versions.

52

Stellenbosch University https://scholar.sun.ac.za

Chapter 6

JoSIM - Results

6.1 Introduction

In this chapter we will discuss the results of simulations performed using JoSIM. We divide this
chapter into three parts namely the IV curve, small simulations and medium to large simula-
tions. We compare the results from each simulation to results produced by other simulators,
where possible, to critically analyse the success of JoSIM.

In the small simulations section we simulate a basic Josephson transmission line (JTL). We
compare simulation speed, accuracy as well as the ease of visually representing the results.

In the medium to large simulations section we simulate designs that use multiple subcircuits,
as well as designs that include nested subcircuits. These simulations are quite computationally
intense and the room for error to occur becomes larger. We analyse execution speed, accuracy
and resource intensity compared to existing simulators.

6.2 IV Curve

To evaluate the performance and accuracy of JoSIM as a superconducting circuit simulator we
run it through the same testbench used to calculate the IV curves in Section 4.6. The results
of this testbench can be seen in Figure 6.1 and 6.2.

0.03 0.02 0.01 0.00 0.01 0.02 0.03
Voltage(V)

0.0002

0.0001

0.0000

0.0001

0.0002

Cu
rre

nt
(A

)

JoSIM IV Curves
rtype=0
rtype=1

Figure 6.1: JoSIM IV curves

53

Stellenbosch University https://scholar.sun.ac.za

0.004 0.002 0.000 0.002 0.004
Voltage(V)

0.0002

0.0001

0.0000

0.0001

0.0002

Cu
rre

nt
(A

)

JoSIM IV Curves
rtype=0

Figure 6.2: JoSIM IV curve of only rtype=1

The IV curves generated by JoSIM are clearly in line with the theoretical expectation of
the RCSJ. The voltage remains zero until the current reaches the junction critical current value
whereafter it changes to the the gap voltage and when pushed further it approaches a linear
zone. When the current is brought back down, the voltage follows the same linear trend until
it reaches the gap voltage where the current drops sharply to a value close to zero.

If we now compare these results to that of JSIM and WRspice we can see through Figure
6.3 that the junction implementation closely matches that of WRspice. This is expected due
to the same procedure for implementation being followed as in [50].

0.004 0.002 0.000 0.002 0.004
Voltage(V)

0.0002

0.0001

0.0000

0.0001

0.0002

Cu
rre

nt
(A

)

WRspice vs JSIM vs JoSIM IV Curves
WRspice
JSIM
JoSIM

Figure 6.3: IV curves of JSIM, JoSIM and WRspice

JoSIM completes the testbench of 400 simulations and post-processing in 57.4s, which is
almost identical to that of JSIM seen in Section 4.6. The improvement hereof is discussed in
Chapter 7.

6.3 Small Simulations

We now simulate a very basic example to test that the modified nodal voltage analysis method
imlemented in JoSIM functions as expected and compare these results along with execution
times to that of JSIM and WRspice. The circuit we will use to conduct this small scale test is
the JTL, of which the schematic can be seen in Figure 6.4. This simulation tests the capability

54

Stellenbosch University https://scholar.sun.ac.za

of JoSIM to handle resistors, inductors, JJs and both types of input sources. It additionally
tests the ability to handle devices in parallel as can be seen with the junctions being shunted
by resistors in parallel.

+-

Figure 6.4: Basic JTL used to test small simulations

We excite the circuit with a SFQ pulse at 300ps and 600ps by providing a PWL voltage
representation of an SFQ pulse. We set the simulation controls to perform a transient analysis
of 0.1ps step size and simulation time of 1ns. Additionally we request that the voltage across
the input source, current through the output resistor and phases of both JJs be plotted. The
netlist representation of circuit in Figure 6.4 is run through JoSIM with the following command

JoSIM -g -m basic jtl.dat basic jtl.js

This presents us with the Python Matplotlib result window depicted in Figure 6.5. The same
circuit is run through JSIM as well as WRspice. JoSIM comletes execution in 0.071s, where
JSIM does in 0.06s and WRspice in 0.219s. We now compare the results of all 3 simulators
on one graph in Figure 6.6. With the execution time somewhere between JSIM and WRspice,
while still being heavily unoptimized can be considered not bad for the first attempt at creating
a superconducting circuit simulation engine.

55

Stellenbosch University https://scholar.sun.ac.za

0.0000

0.0005

Vo
lta

ge
(V

) VIN

0.0000

0.0002
Cu

rre
nt

(A
) ROUT

0

5

10

Ph
as

e(
ra

ds
) B01

0.0 0.2 0.4 0.6 0.8 1.0
Time(s) 1e 9

0

5

10

Ph
as

e(
ra

ds
) B02

Figure 6.5: Results of the JTL simulation performed with JoSIM

0.0 0.2 0.4 0.6 0.8 1.0
1e 9

0.00000

0.00025

0.00050

0.00075

Vo
lta

ge
 (V

)

Input Voltage
JoSIM
JSIM
WRspice

0.0 0.2 0.4 0.6 0.8 1.0
1e 9

0.0000

0.0002

0.0004

0.0006

Cu
rre

nt
 (A

)

Output Current

0.0 0.2 0.4 0.6 0.8 1.0
1e 9

0

5

10

Ph
as

e
(ra

ds
)

JJ01 Phase

0.0 0.2 0.4 0.6 0.8 1.0
Time (s) 1e 9

0

5

10

Ph
as

e
(ra

ds
)

JJ02 Phase

Figure 6.6: Comparison of the results for the JTL between JSIM, JoSIM and WRspice

The results in Figure 6.6 verify the correct operation of JoSIM through a practical example.
The difference is, however, nearly impossible to notice and we therefore plot the difference
between the signals as an error percentage on a log scale. This comparison is done on the phase
of the first JJ and can be seen in Figure 6.7. The slight deviations seen between the error
percentages of the simulators can be narrowed down to the variation in the implementation of

56

Stellenbosch University https://scholar.sun.ac.za

the Rtype=1 resistance model seen in Figure 6.3. This difference is fairly small and can be
considered negligible as it does not affect the accuracy of the results.

Figure 6.7: Error percentage of JoSIM compared to JSIM and WRspice

Small scale examples are however not a particularly good method of determining perfor-
mance metrics due to the KLU algorithm claiming performance bonus only on heavily sparse
matrices. We therefore need to experiment with larger simulations that produce matrices of
greater sparsity to truly test the performance of JoSIM.

6.4 Medium to Large Scale Simulations

We consider medium simulations as simulations that range between a 1000 and 5000 JJs, with
large scale designs being anything over 5000 JJs. To test JoSIM on medium to large scale
designs, we simulate designs that include multiple subcircuits as well as nested subcircuits as
this is the simplest way to increase complexity and matrix sparsity.

For the medium example we choose a design that calculates the partial products of an 8-bit
multiplier created by N. Muchuka and R. Bakolo in 2016. This simulation consists of 2896
JJs and a total of 18392 components. This equates to an A matrix of 36868 × 36868, with
only 112386 of the 1359249424 entries filled. This is an extremely sparse matrix which is only
0.00826% filled. JSIM completes this simulation in 1m33s. JoSIM completes this simulation
in 34s. WRspice completes this simulation in 1m04s. This clearly demonstrates the power of
the KLU algorithm when handling very sparse matrices as well as the advantage presented by
JoSIM over WRspice and JSIM.

The operation of the partial products generating circuit is shown in Table 6.1 where each
bit of B is mutliplied with every bit of A individually using the logic AND operation. This
creates the 8 partial product rows of which each column is then summed using an 8-bit full
adders to generate the product. The multiplication of two 8-bit binary numbers results in a
16-bit product as seen in Table 6.1.

We demonstrate the output of the 7th partial product through simulation results shown in
Figure 6.8.

57

Stellenbosch University https://scholar.sun.ac.za

Table 6.1: General binary partial product generation

1 1 1 0 1 1 1 1 A
× 1 1 1 1 1 1 1 1 B

1 1 1 0 1 1 1 1 PP0

1 1 1 0 1 1 1 1 PP1

1 1 1 0 1 1 1 1 PP2

1 1 1 0 1 1 1 1 PP3

1 1 1 0 1 1 1 1 PP4

1 1 1 0 1 1 1 1 PP5

1 1 1 0 1 1 1 1 PP6

+ 1 1 1 0 1 1 1 1 PP7

P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0

0.0 0.2 0.4 0.6 0.8 1.0
1e 9

0.0000

0.0001

0.0002

0.0003

Vo
lta

ge
 (V

)

Output Bit 0

0.0 0.2 0.4 0.6 0.8 1.0
1e 9

0.0000

0.0001

0.0002

0.0003

Vo
lta

ge
 (V

)

Output Bit 1

0.0 0.2 0.4 0.6 0.8 1.0
1e 9

0.0000

0.0001

0.0002

0.0003

Vo
lta

ge
 (V

)

Output Bit 2

0.0 0.2 0.4 0.6 0.8 1.0
1e 9

0.0000

0.0001

0.0002

0.0003

Vo
lta

ge
 (V

)

Output Bit 3

0.0 0.2 0.4 0.6 0.8 1.0
1e 9

0.0000

0.0001

0.0002

0.0003

Vo
lta

ge
 (V

)

Output Bit 4

0.0 0.2 0.4 0.6 0.8 1.0
1e 9

0.0000

0.0001

0.0002

0.0003

Vo
lta

ge
 (V

)

Output Bit 5

0.0 0.2 0.4 0.6 0.8 1.0
Time (s) 1e 9

0.0000

0.0001

0.0002

0.0003

Vo
lta

ge
 (V

)

Output Bit 6

0.0 0.2 0.4 0.6 0.8 1.0
Time (s) 1e 9

0.0000

0.0001

0.0002

0.0003

Vo
lta

ge
 (V

)

Output Bit 07

Figure 6.8: Results of the 7th partial product

As an additional example we simulate a 4-bit Kogge Stone added generated through at-
tempts by the University of South California to create a synthesis tool. This example takes as
input 2 sets of 4 bit inputs in parallel along with carry in bit. The bits are added using adder
logic and an output of 4 bits is produced a long with a carry out bit. The entire design is and
the interconnects between gates are modelled using transmission lines of variable time delay.
JoSIM completes this simulation in 26.69s. JSIM completes the same simulation in 1m13.88s
which is almost 3 times slower than JoSIM. WRspice did not finish this simulation and crashed
after 51m stating that a non convergence problem was detected

The 2 4-bit inputs shown in Table 6.2 are used as input along with the a 0 carry in bit. The
4-bit output is plotted along with the carry out. These results can be seen in Figure 6.9 and
verified as correct when compared to the expected result. These results also correspond with

58

Stellenbosch University https://scholar.sun.ac.za

Table 6.2: 4-bit binary addition

1 1 1 1 A
1 1 1 1 B

+ 0 CIN
1 1 1 0 SUM

1 COUT

the HDL simulation of the 4-bit KSA in Figure 3.2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e 9

0.0000

0.0005

Vo
lta

ge
 (V

)

Output Bit 0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e 9

0.0000

0.0005

Vo
lta

ge
 (V

)

Output Bit 1

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e 9

0.0000

0.0005

Vo
lta

ge
 (V

)

Output Bit 2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e 9

0.0000

0.0005

Vo
lta

ge
 (V

)

Output Bit 3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e 9

0.0000

0.0005

Vo
lta

ge
 (V

)

Carry Out Bit

Figure 6.9: Output of the 4-bit KSA simulation

The implementation of a large scale simulation becomes quite time consuming and complex
as it not only requires the design to be created in a schematic editor but also the verification
of the correct operation results. We therefore artificially create a large simulation that simply
strings together JTLs to boost the component and JJ count to a range where the simulation
can be considered large. This operation becomes quite simple when utilizing the ability to
create nested subcircuits. If we simply nest 10 JTLs in a subcircuit block called JTL10 and
then further nest 10 of these in a block called JTL100 and so forth we can through nesting
easily reach a simulation with 10 000 JJs. This nested netlist is shown in Table 6.3.

59

Stellenbosch University https://scholar.sun.ac.za

Table 6.3: Simple example of a large circuit

subckt JTLSTRING10 1 11 .subckt JTLSTRING1000 1 11
X01 JTL 1 2 X01 JTLSTRING100 1 2
X02 JTL 2 3 X02 JTLSTRING100 2 3
X03 JTL 3 4 X03 JTLSTRING100 3 4
X04 JTL 4 5 X04 JTLSTRING100 4 5
X05 JTL 5 6 X05 JTLSTRING100 5 6
X06 JTL 6 7 X06 JTLSTRING100 6 7
X07 JTL 7 8 X07 JTLSTRING100 7 8
X08 JTL 8 9 X08 JTLSTRING100 8 9
X09 JTL 9 10 X09 JTLSTRING100 9 10
X10 JTL 10 11 X10 JTLSTRING100 10 11
.ends JTLSTRING10 .ends JTLSTRING1000

.subckt JTLSTRING100 1 11 IA 0 1 pwl(0 0 50p 0 56p 600u 62p 0)
X01 JTLSTRING10 1 2 X01 DCSFQ 1 2
X02 JTLSTRING10 2 3 X02 JTLSTRING1000 2 3
X03 JTLSTRING10 3 4 X03 JTLSTRING1000 3 4
X04 JTLSTRING10 4 5 X04 JTLSTRING1000 4 5
X05 JTLSTRING10 5 6 X05 SINK 5
X06 JTLSTRING10 6 7 .tran 0.25p 1000p 0 0.25p
X07 JTLSTRING10 7 8 .print nodev 1 0
X08 JTLSTRING10 8 9 .print nodev 2 0
X09 JTLSTRING10 9 10 .print nodev 3 0
X10 JTLSTRING10 10 11 .print nodev 4 0
.ends JTLSTRING100 .print nodev 5 0

.end

This example was run through JoSIM which completed it in 2m13s, which when run through
WRspice and JSIM completes it in 2m39s and 4m36s respectively. To attempt to plot the
results of the simulation will not provide much useful information as the output of the first
JTLSTRING1000 lies outside of the bounds of the simulation time due to the delay caused by
1000 JTLs.

If we add one more 1000 JTL string to the simulation in Table 6.3 JSIM fails to converge
and crashes after about 4m30s. JoSIM consumes a large amount of memory due to the way
it was implemented and therefore starts to swap memory to the non-volatile memory of the
system. We further discuss how to solve these problems in JoSIM in Chapter 7.

6.5 Conclusion

In this chapter we performed various simulations and compared JoSIM to existing simulators.
We further demonstrated the speed improvement that JoSIM presents and contemplated the
possibility of performing VLSI design simulations within reasonable time. This task requires
further investigation and reconsideration of design implementation at the core of the JoSIM
engine.

Comparisons were drawn between JoSIM, JSIM and WRspice in terms of execution speed
and are tabulated in Table 6.4. We graph these results to attempt to extrapolate simulation
times for larger cicuits. This graph can be seen in Figure 6.10.

60

Stellenbosch University https://scholar.sun.ac.za

Table 6.4: Summary of execution times for various simulation sizes

Execution time (s)
Simulation JJ count JSIM WRspice JoSIM

Basic JTL 2 0.06 0.219 0.071
400 Simulation IVcurve 400 60.5 56 54.87

4-bit KSA 2095 73.9 DNF 23.49
General Partial Products 3904 93 64 20.9

3000 JTL String 6006 276 159 91.88
4000 JTL String 8006 >3600 232.7 130.87
5000 JTL String 10006 DNF 263.8 169.81

0 2000 4000 6000 8000 10000
JJ Count

0

50

100

150

200

250

Ex
ec

ut
io

n
tim

e
(s

)

Simulation Size vs Execution time
JSIM
JoSIM
WRspice

Figure 6.10: Execution time vs JJ count

61

Stellenbosch University https://scholar.sun.ac.za

Chapter 7

Very Large Scale Design Simulation

7.1 Introduction

JoSIM has shown significant performance improvements over previous superconducting circuit
simulators, however due to the JoSIM’s unoptimized implementation method it consumes large
amounts of memory and quickly reaches the limit of available system memory. These issues, as
well as experimentation with multi-threading and math engine optimizations, are discussed in
this chapter.

Each of the possible bottlenecks that plague JoSIM are discussed in each of the various
sections and possible solutions to solve these bottlenecks are presented. Implementation of
these solutions, however, require large refactoring and rewriting efforts and are left to be done
at a later stage.

7.2 Data Structure Considerations

The greatest bottleneck that JoSIM faces and also one of the many areas that will provide
significant improvement in future releases is the way that data structures are implemented.

JoSIM reads in a netlist and stores each individual line as a std::string in a std::vector. Once
all of these lines have been read, this vector of strings is iterated, identifying the different parts
of the design such as main netlist, subcircuits and controls. Each of these parts are stored in a
new std::vector of std::strings, essentially duplicating the initial vector, but as smaller vectors.

The main part is then iterated identifying any subcircuits that it might contain and substi-
tuting these subcircuits into the main netlist in a new vector of strings called the master netlist.
Already the inefficiency of this method becomes apparent as multiple duplicates of the original
netlist are created. These duplications can easily be reduced by rewriting the algorithm to alter
the netlist in place instead.

This master netlist is essentially the main netlist with all of its subcircuits expanded. During
the expansion of subcircuits, track needs to be kept of the interconnections, as well as the
uniqueness of the device labels. Since JoSIM allows alphanumeric node numbers, this task can
be simplified by simply appending the parent subcircuit call label to each of the labels and nodes
of the subcircuit lines being substituted using some delimiter. This ensures the uniqueness of
all node numbers and labels while also maintaining the ability to identify to which subcircuit
the component belongs. When nesting of subcircuits occur, the appended label can become
quite lengthy and since this is stored as a string the memory required to store this significantly
increases.

The master netlist is then iterated, performing the relevant actions based on the type
of component each line represents. Since the MNA solves nodal voltage/phase and branch
current, each of the nodes create a unique row and column within the A matrix. These nodes

62

Stellenbosch University https://scholar.sun.ac.za

are prepended with a R or C and also stored in a string vector. This is used to identify new
matrix entries, since if a component is read and the row and column already exists for it, then
the conductance of the component is simply added to the relevant matrix entry. Though, since
nested subcircuits append the name of its parent to the node numbers as well, these row and
column vectors can also consume quite a large amount of memory in large circuits.

A matrix element is created for each circuit element that stores the conductance value along
with the row and column name as well as the row and column index. Once all of these elements
are created, a full A matrix is created of size N×N , where N is the size of the row and column
vectors.

This A matrix can become extremely large even in smaller simulations since each of the N2

matrix elements is allocated the size of a double which is 8 bytes even if it is empty (0.0). As
an example, we look at the case of the general partial products simulation where N=36868.
This means that 368682 × 8 = 10873995392 bytes or rather ≈10GB of memory is required to
simply store this colossal A matrix. This is an extreme inefficiency and needs to be rectified.

Once this A matrix is created, it is iterated and the 3 CSR vectors are created which do not
even consume 0.1% of the memory required by the A matrix in the general partial products
example. These CSR vectors are then used by the KLU algorithm to solve the linear equations.

All of these inefficiencies and large memory consuming data structures can be minimized,
and we list some of the proposed solutions that will be implemented.

1. Create only one master netlist free of the duplicates

2. Create an object for each component that stores all the relevant information and simply
create pointers where necessary instead of duplicates

3. Directly create the CSR format vectors from the component objects instead of an A
matrix

The direct implementation of the CSR format allowed us to completely mitigate the large
memory impact presented by creating the A matrix in its totality. This was done by simply
keeping track of the positions of each non-zero element, iterating through the rows as this vector
is already in the correct order and simply adding the non-zero element to the corresponding
CSR vector. The other two vectors are created by simply keeping track of the amount of non-
zero elements thus far each time one is added to the vector as well as the column index of the
said element.

This implementation allows us to simulate circuits of much larger size without the concern
of running out of memory. We can still investigate other data structure inefficiencies to further
reduce the memory footprint of JoSIM, however, at this point it might be necessary to shift
focus to reduce execution speeds for large designs.

7.3 Parallel Processing

Another area that can be looked at for improvement in terms of execution speed is to multi-
thread certain parts of JoSIM. We need to, however, be very careful when choosing areas for
parallel processing as data dependency issues might occur if the wrong area is chosen. One
might think that the largest part of the simulation is the time loop and that it would be a
perfect candidate for parallel processing, however one would be mistaken. The time loop part
(transient analysis) of the process is extremely dependant on the results of the previous iteration
and thus attempting to run this in parallel will cause incorrect results. Data dependency issues
occur not only in loops but can also occur when threads are not synchronized at the end of a
parallel processed section.

63

Stellenbosch University https://scholar.sun.ac.za

There are, however, other areas that can be multi-threaded very well and should also see
major performance improvement in large circuits. One such area is the analysis of each line
of the master netlist. If the relevant functions that need to be performed for each component
of the netlist is distributed across multiple threads the parsing of the master netlist should
see major speed improvement. There should be no issues with data dependency in parallel
processing this part of the process if the data structures are altered as mentioned before.

Multi-threading the solving of Ax = b is a rather complex task and will not yield signif-
icant performance gain unless performed on extremely large simulations where the number of
unknowns exceed roughly a few hundred thousand. We thus rather seek alternate numerical
solution algorithms that already implement multi-threading and apply them once the unknowns
exceed a certain threshold.

Implementation of parallel processing is not a trivial task and great consideration needs to
be taken in whether the overhead created to manage the parallel threads would outweigh the
speed improvement gained. This is especially true for small designs where parallel processing
actually becomes detrimental to performance due to this overhead. We would rather then
implement some threshold size that the design needs to exceed before there would be a benefit
from multi-threading.

7.4 Optimizations in the Math Engine

The use of different linear algebra methods to solve the Ax = b problem could potentially also
improve solution time. Different algorithms have different features and are not always a one
stop solution to improve simulation speed. In most cases certain trade-offs need to be made to
allow for an increase in performance. There are quite a few linear algebra libraries available for
C++ and we therefore discuss what makes them unique as well as consider the implementation
in JoSIM. Since the values in the A matrix in a circuit simulator are not symmetric and neither
are they positive definite. We thus have to refine the available algorithms to those that solve
unsymmetric matrices, which reduces this list to only KLU, SuperLU and UMFPACK.

The current implementation of JoSIM utilizes the KLU solver from the SuiteSparse library
created by Tim Davis. This solver was chosen due to the specific applications in electric circuit
solving, as well as the ease of implementation and speed advantages over alternatives.

SuperLU was also considered for implementation due to its ability to perform multi-threaded
solving as well as the relative ease of implementation. SuperLU is included in various libraries,
but can also be installed as stand alone. This library will be added to JoSIM to increase the
parallel processing capabilities at a later stage.

UMFPACK was also created by Tim Davis, and it is was designed to allow for multi-frontal
re-ordering of the matrix and this gives it a great speed improvement when moving to very
large matrices. It is relatively complex to implement when compared to KLU and SuperLU,
but it will become necessary as we attempt to simulate VLSI designs.

At present the algorithm best suited for nodal circuit solutions is by far KLU and until
improvements are made to this method it will remain the chosen method for implementation
within JoSIM.

7.5 Conclusion

In this chapter we critically examined the prospects for JoSIM to simulate VLSI designs. We
highlighted key flaws in the JoSIM design and provided various solutions to improve speed,
as well as memory management. While these issues exist it will not be able to simulate VLSI
designs, however prospects to do so remain and efforts to achieve this are actively being worked

64

Stellenbosch University https://scholar.sun.ac.za

on. We aim to one day simulate microprocessor scale designs in reasonable time which would
allow for very accurate timing and result verification.

JoSIM’s capability to simulate circuits with junctions exceeding 10,000 within reasonable
time, where others start to falter, shows great promise towards this goal. Attempts were made
to simulate a circuit with over 200,000 JJs, but due to memory limitations the simulation
teminated after 4 hours on a machine with 64GB RAM. The simulation had not yet completed
the step of parsing each line at time of termination. This at least provides some hint as to
where to start our investigation for optimization.

65

Stellenbosch University https://scholar.sun.ac.za

Chapter 8

Conclusion

This dissertation investigates the requirements for design of large scale superconducting dig-
ital circuits. A toolchain and design flow for superconducting circuit design is proposed and
discussed. The importance of verification through simulation is highlighted and SuperSTA is
introduced.

SuperSTA is a static timing analysis tool developed to verify high-level designs as well
as ensure operation at intended throughput speed. SuperSTA algorithmically determines all
possible paths from input to output of design. These paths are evaluated using supplied delay
timings, which allows SuperSTA to determine the largest delay through a design. Additional
metrics are also provided to aid the user in determining the design quality.

The need for simulation software in the superconducting circuit domain was investigated.
Existing software such as JSIM, WRspice and PSCAN was tested and scrutinized. A new ana-
logue circuit simulation engine JoSIM was introduced as a modified nodal voltage analysis sim-
ulator that utilizes trapezoidal integration to solve linear equations. The development of JoSIM
was discussed and design decisions explained. Unique features, such as modified nodal phase
based analysis, parametrization through expression parsing and alphanumeric node names are
amongst the features present in JoSIM.

The implementation of the modified nodal phase analysis method allows the user to simulate
entirely in phase through the voltage-phase relationship present in the JJ. This removes the
time dependent nature of the inductor, enabling the application of external magnetic fields to
the design.

The initial intended aim of JoSIM was to simulate very large scale superconducting circuits
and it was therefore tested for this capability along with existing simulators. Results clearly
show a significant speed advantage in using JoSIM while retaining the same level of accuracy.
The advantages became more apparent while moving to larger simulations as other simulation
engines started failing.

Very large scale simulations with JJs exceeding 100,000 were tested and deemed impossible
to simulate with JoSIM in the current state due to memory and execution speed bottlenecks.
Various methods of optimization were investigated and some were implemented to show drastic
improvement in memory utilization. Alternative optimization techniques are yet to be investi-
gated and implemented to allow JoSIM to perform very large scale simulations.

Through its development it became evident that the JJ model implemented within JoSIM
and others is not quite adequate in the representation of the electron tunneling and quasiparticle
effect. More accurate models such as the Werthamer model were investigated however deemed
far to complex to implement at present. Improvements to the existing model were made to
allow temperature dependence and alteration between normal and ballistic electron tunneling.

Continued development on JoSIM through the open source repository will enable public
contributions towards the goal of creating a simulator capable of truly simulating the full

66

Stellenbosch University https://scholar.sun.ac.za

nature of the Josephson effect as well as very large scale designs.
Though this dissertation was written with the emphasis on JoSIM and the creation of a

circuit analysis tool it may also serve as a reference guide to the creation of any graph-based
physics simulation engines. The emphasis being on the ability to create a set of linear equations
where the state of two nodes are defined by what happens between them. Using the set of linear
equations to set up matrices to solve the states and interpreting the results.

67

Stellenbosch University https://scholar.sun.ac.za

Bibliography

[1] G. E. Moore, “Cramming more components onto integrated circuits, reprinted from elec-
tronics, volume 38, number 8, april 19, 1965, pp. 114 ff.,” IEEE solid-state circuits society
newsletter, vol. 11, no. 3, pp. 33–35, 2006.

[2] “Superconducting Technology Assessment,” NSA report, August 2005.

[3] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Physical
review, vol. 108, no. 5, p. 1175, 1957.

[4] B. D. Josephson, “Possible new effects in superconductive tunnelling,” Physics letters,
vol. 1, no. 7, pp. 251–253, 1962.

[5] K. K. Likharev and V. K. Semenov, “Rsfq logic/memory family: A new josephson-junction
technology for sub-terahertz-clock-frequency digital systems,” IEEE Transactions on Ap-
plied Superconductivity, vol. 1, no. 1, pp. 3–28, 1991.

[6] K. K. Likharev, O. A. Mukhanov, and V. K. Semenov, “Resistive single fux quantum logic
for the Josephson-junction technology,” Superconducting Quantum Interference Devices
and their Applications, 1985.

[7] N. Nakajima, F. Matsuzaki, Y. Yamanashi, N. Yoshikawa, M. Tanaka, T. Kondo, A. Fuji-
maki, H. Terai, and S. Yorozu, “Design and implementation of circuit components of the
sfq microprocessor, core1,” Superconductor Science and Technology, vol. 17, no. 3, p. 301,
2004.

[8] Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, and A. Fujimaki, “Design and demon-
stration of an 8-bit bit-serial rsfq microprocessor: Core e4,” IEEE Transactions on Applied
Superconductivity, vol. 26, no. 5, pp. 1–5, 2016.

[9] O. A. Mukhanov, “Energy-efficient single flux quantum technology,” IEEE Transactions
on Applied Superconductivity, vol. 21, no. 3, pp. 760–769, 2011.

[10] N. Takeuchi, D. Ozawa, Y. Yamanashi, and N. Yoshikawa, “An adiabatic quantum flux
parametron as an ultra-low-power logic device,” Superconductor Science and Technology,
vol. 26, no. 3, p. 035010, 2013.

[11] Q. P. Herr, A. Y. Herr, O. T. Oberg, and A. G. Ioannidis, “Ultra-low-power superconductor
logic,” Journal of applied physics, vol. 109, no. 10, p. 103903, 2011.

[12] G. Chen, D. A. Church, B.-G. Englert, C. Henkel, B. Rohwedder, M. O. Scully, and M. S.
Zubairy, Quantum computing devices: principles, designs, and analysis. Chapman and
Hall/CRC, 2006.

[13] J. Oppenlander, T. Trauble, C. Haussler, and N. Schopohl, “Superconducting multiple
loop quantum interferometers,” vol. 11, pp. 1271–1274, IEEE, 2001.

68

Stellenbosch University https://scholar.sun.ac.za

[14] O. V. Snigirev, M. L. Chukharkin, A. S. Kalabukhov, M. A. Tarasov, A. A. Deleniv,
O. A. Mukhanov, and D. Winkler, “Superconducting quantum interference filters as rf
amplifiers,” vol. 17, pp. 718–721, IEEE, 2007.

[15] L. W. Nagel and D. O. Pederson, “SPICE-Simulation Program with Integrated Circuit
Emphasis,” tech. rep., 1973.

[16] W. N. Laurance, “SPICE2: A Computer Program To Simulate Semiconductor Circuits,”
1975.

[17] T. Quarles, “The SPICE3 Implementation Guide,” Ucberl M, 1989.

[18] I. Getreu and D. Teegarden, “An introduction to behavioural modelling,” Microelectronics
journal, vol. 24, no. 7, pp. 708–716, 1993.

[19] C.-L. Huang and S. Su, “Approaches for computer-aided logic/system design using hard-
ware description language,” in Proceedings of International Computer Symposium 1980,
pp. 772–790, 1980.

[20] IEEE Computer Society, IEEE Standard VHDL Language Reference Manual. 2009.

[21] S. Sutherland, Verilog HDL quick reference guide. Sutherland HDL Consulting, 1995.

[22] M. N. Muchuka, J. A. Delport, and C. J. Fourie, “Superconducting digital circuit design
with an open source and freeware tool chain,” IEEE Transactions on Applied Supercon-
ductivity, vol. 26, no. 8, pp. 1–8, 2016.

[23] R. S. Bakolo, J. A. Delport, P. Febvre, and C. J. Fourie, “Analysis of a shielding approach
for magnetic field tolerant sfq circuits,” IEEE Transactions on Applied Superconductivity,
vol. 27, no. 4, pp. 1–5, 2017.

[24] J. A. Delport and C. J. Fourie, “A static timing analysis tool for rsfq and ersfq super-
conducting digital circuit applications,” IEEE Transactions on Applied Superconductivity,
vol. 28, no. 5, pp. 1–5, 2018.

[25] J. A. Delport, K. Jackman, P. Le Roux, and C. J. Fourie, “Josim-superconductor spice
simulator,” IEEE Transactions on Applied Superconductivity, 2019.

[26] C. J. Fourie and M. H. Volkmann, “Status of superconductor electronic circuit design
software,” IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, pp. 1300205–
1300205, 2013.

[27] C. J. Fourie, “Digital superconducting electronics design toolsstatus and roadmap,” IEEE
Transactions on Applied Superconductivity, vol. 28, no. 5, pp. 1–12, 2018.

[28] O. of the Director of National Intelligence, “Proposers’ Day Notification for SuperTools,”
January 2016.

[29] S. Williams, “Icarus Verilog.” http://iverilog.icarus.com, January 2017. Accessed:
2018-08-28.

[30] N. Katam, A. Shafaei, and M. Pedram, “Design of complex rapid single-flux-quantum cells
with application to logic synthesis,” in 2017 16th International Superconductive Electronics
Conference (ISEC), pp. 1–3, IEEE, 2017.

69

Stellenbosch University https://scholar.sun.ac.za

http://iverilog.icarus.com

[31] N. M. Muchuka, Hardware description language modelling and synthesis of superconducting
digital circuits. Stellenbosch : Stellenbosch University, 2017.

[32] “gEDA Project Wiki.” http://wiki.geda-project.org/, February 2018. Accessed:
2018-08-28.

[33] S. R. Whiteley, “Xic Reference Manual.” http://www.wrcad.com/manual/xicmanual/

xicmanual.html, August 2018. Accessed: 2018-08-28.

[34] C. J. Fourie and W. J. Perold, “Comparison of genetic algorithms to other optimization
techniques for raising circuit yield in superconducting digital circuits,” vol. 13, pp. 511–514,
IEEE, 2003.

[35] M. Jeffery, W. J. Perold, Z. Wang, and T. Van Duzer, “Monte carlo optimization of
superconducting complementary output switching logic circuits,” IEEE transactions on
applied superconductivity, vol. 8, no. 3, pp. 104–119, 1998.

[36] C. J. Fourie and W. J. Perold, “Simulated inductance variations in rsfq circuit structures,”
vol. 15, pp. 300–303, IEEE, 2005.

[37] M. E. Law and S. M. Cea, “Continuum based modeling of silicon integrated circuit pro-
cessing: An object oriented approach,” Computational Materials Science, vol. 12, no. 4,
pp. 289–308, 1998.

[38] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-pipelining: a tutorial and
research survey,” IEEE Transactions on very large scale integration (vlsi) systems, vol. 6,
no. 3, pp. 464–474, 1998.

[39] C. J. Fourie, N. K. Katam, J. A. Delport, S. N. Shahsavani, T. R. Lin, K. Jackman, and
M. Pedram, “Design methodologies and tools for SFQ logic circuits: precursor project to
SuperTools,” IEEE Transactions on Applied Superconductivity, 2019. To be submitted.

[40] C. J. Fourie, “Extraction of dc-biased sfq circuit verilog models,” IEEE Transactions on
Applied Superconductivity, vol. 28, no. 6, pp. 1–11, 2018.

[41] S. N. Shahsavani, T.-R. Lin, A. Shafaei, C. J. Fourie, and M. Pedram, “An integrated
row-based cell placement and interconnect synthesis tool for large sfq logic circuits,” IEEE
Transactions on Applied Superconductivity, vol. 27, no. 4, pp. 1–8, 2017.

[42] Cadence, LEF/DEF language reference, November 2009.

[43] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms , Second
Edition. 2001.

[44] S. Knowles, “A family of adders,” pp. 30–34, 1999.

[45] N. Werthamer, “Nonlinear self-coupling of josephson radiation in superconducting tunnel
junctions,” Physical Review, vol. 147, no. 1, p. 255, 1966.

[46] H. Kratz and W. Jutzi, “Microscopic simulation model of josephson junctions for standard
circuit analysis programs,” IEEE Transactions on Magnetics, vol. 23, no. 2, pp. 731–734,
1987.

[47] R. Jewett, “Josephson junctions in spice 2g5,” Electronics Research Lab internal memo-
randa, Department of Electrical Engineering and Computer Sciences, University of Cali-
fornia, Berkeley, CA, p. 94720, 1982.

70

Stellenbosch University https://scholar.sun.ac.za

http://wiki.geda-project.org/
http://www.wrcad.com/manual/xicmanual/xicmanual.html
http://www.wrcad.com/manual/xicmanual/xicmanual.html

[48] S. Whiteley, “Josephson junctions in spice3,” IEEE Transactions on Magnetics, vol. 27,
no. 2, pp. 2902–2905, 1991.

[49] T. P. Orlando and K. A. Delin, Foundations of applied superconductivity, vol. 8. Addison-
Wesley Reading, MA, 1991.

[50] E. S. Fang and T. Van Duzer, “A Josephson integrated circuit simulator (JSIM) for super-
conductive electronics application,” in Extended Abstracts of 1989 Intl. Superconductivity
Electronics Conf. (ISEC 1989), 1989.

[51] S. Polonsky, V. Semenov, and P. Shevchenko, “Pscan: personal superconductor circuit
analyser,” Superconductor Science and Technology, vol. 4, no. 11, p. 667, 1991.

[52] S. Polonsky, P. Shevchenko, A. Kirichenko, D. Zinoviev, and A. Rylyakov, “Pscan’96: New
software for simulation and optimization of complex rsfq circuits,” 1997.

[53] A. Odintsov, V. Semenov, and A. Zorin, “Specific problems of numerical analysis of the
josephson junction circuits,” IEEE Transactions on Magnetics, vol. 23, no. 2, pp. 763–766,
1987.

[54] D. R. Gulevich, User Guide for MiTMoJCo (Microscopic Tunneling Model for Josephson
Contacts), August 2017.

[55] A. Vladimirescu, The SPICE book. John Wiley & Sons, Inc., 1994.

[56] U. Wali, R. Pal, and B. Chatterjee, “On the modified nodal approach to network analysis,”
Proceedings of the IEEE, vol. 73, no. 3, pp. 485–487, 1985.

[57] T. A. Davis and E. Palamadai Natarajan, “Algorithm 907: Klu, a direct sparse solver
for circuit simulation problems,” ACM Transactions on Mathematical Software (TOMS),
vol. 37, no. 3, p. 36, 2010.

[58] F. Costantini, D. Gibson, M. Melcher, A. Schlosser, B. Spitzak, and M. Sweet, FLTK 1.3.4
Programming Manual, 2016.

[59] W. Haberkorn, H. Knauer, and J. Richter, “A theoretical study of the current-phase
relation in josephson contacts,” physica status solidi (a), vol. 47, no. 2, pp. K161–K164,
1978.

[60] Y. Hashimoto, S. Yorozu, Y. Kameda, and V. K. Semenov, “A design approach to passive
interconnects for single flux quantum logic circuits,” vol. 13, pp. 535–538, IEEE, 2003.

[61] Y. Hashimoto, S. Yorozu, Y. Kameda, A. Fujimaki, H. Terai, and N. Yoshikawa, “Design
and investigation of gate-to-gate passive interconnections for sfq logic circuits,” IEEE
transactions on applied superconductivity, vol. 15, no. 3, pp. 3814–3820, 2005.

[62] E. W. Dijkstra, “Algol-60 Translation,” 1961.

[63] P. of Chaeronea, “The Symposiacs Question III,” 1st Century CE.

71

Stellenbosch University https://scholar.sun.ac.za

Appendices

Stellenbosch University https://scholar.sun.ac.za

Appendix A

Journal Paper - Superconducting Digital Circuit Design

With an Open Source and Freeware Tool Chain

• M. N. Muchuka, J. A. Delport, and C. J. Fourie, ”Superconducting digital circuit design
with an open source and freeware tool chain,” IEEE Transactions on Applied Supercon-
ductivity, 2016.[22]

In this paper we discuss the availability of open source tools to design superconducting inte-
grated circuits. The paper is headed by Dr Muchuka, who’s suggestion it was to investigate the
topic. Personal contributions to this paper amounts to large portions of the research, testing of
examples using the software as well as providing most of the figures. Copyright for this paper
is held by IEEE Transactions on Applied Superconductivity.

Stellenbosch University https://scholar.sun.ac.za

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 8, DECEMBER 2016 1302008

Superconducting Digital Circuit Design With
an Open Source and Freeware Tool Chain

Maguu N. Muchuka, Johannes A. Delport, and Coenrad Johann Fourie, Member, IEEE

Abstract—Superconducting digital circuits have been around
for decades, but recent projects that exploit such circuits for low-
power, high-performance computing are rapidly maturing super-
conducting circuit technologies. As a result of increasing circuit
complexity, there is renewed focus on superconducting digital cir-
cuit design tools. Until now, most computer-aided design (CAD)
tool development for superconducting electronics (SCE) circuit de-
sign has been based on calibrating semiconductor tools, rather than
creating new technology-specific tools for the SCE circuit design.
The recent development shows bias toward large and expensive
CAD tools. These tools, or modules developed for commercial semi-
conductor CAD tools, require users to have access to an expensive
commercial semiconductor CAD software, which places it out of
the reach of new entrants or small research groups in SCE. In this
paper, the open-source tools that can be used as alternatives to
form an SCE design tool chain are described. All the design stages
in an SCE integrated circuits design flow, from circuit specifica-
tion down to layout design, are noted in this paper. Each stage is
discussed and the available open-source tools are described. The
inherent disadvantages of these open-source tools are also pointed
out. A design example is then provided to demonstrate a complete
open source and freeware tool chain.

Index Terms—Circuit design tool chain, circuit simulators,
open-source tools, single flux quantum (SFQ) circuits.

I. INTRODUCTION

SUPERCONDUCTING electronics (SCE) design has be-
come a key topic of research in the quest to develop faster

yet low-power beyond-CMOS alternatives for power-hungry
supercomputers and data centers [1]. As the barrier of phys-
ical limitations on semiconductor electronics approaches, the
SCE technology is an increasingly viable option for the next
major leap in high-performance computing [2]. Several super-
conducting logic families have emerged in the process, such as
rapid single flux quantum (RSFQ) [3], energy-efficient RSFQ
[4], energy-efficient SFQ [5], reciprocal quantum flux [6], and
adiabatic quantum flux parametron (AQFP) [7].

As the SCE research community grows, many new re-
searchers are facing challenges in selecting computer-aided de-
sign (CAD) tools. In most reported work, expensive commercial
tools and/or in-house tools are utilized. The cost of these tools
or/and accessibility may limit their acquisition, especially in the

Manuscript received June 2, 2016; revised September 20, 2016; accepted
October 3, 2016. Date of publication October 27, 2016; date of current version
November 15, 2016. This paper was recommended by Associate Editor O.
Mukhanov.

The authors are with the Department of Electrical and Electronic Engineering,
Stellenbosch University, Stellenbosch 7602, South Africa (e-mail: maguunic@
yahoo.co.uk.com; joeydelp@gmail.com; coenrad@sun.ac.za).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASC.2016.2622623

developing countries. This makes it difficult for some novice
researchers to reproduce the existing knowledge, and their
impact on the technology is delayed.

An alternative is the use of circuit design tools that are either
open source or freeware. In the case of open-source tools, users
are free to use, alter, and redistribute the software, whereas the
users of freeware tools have a free license with no limitations.
This is not to be confused with shareware, which has limitations
that can be removed by buying a full license.

Open source and freeware tools have existed for decades and
have been used extensively in semiconductor-based technology.
In the case of supported technology features, these tools provide
results that are sufficiently similar to those of commercial tools
to be practically useful for most research and development ap-
plications of budget-constrained groups. Although open-source
tools lack regular updates and proper documentation, they al-
low the users to extend their technology support by modify-
ing the source code. A drawback of open source or freeware
tools is that these are often more difficult to use or concate-
nate than commercial tools. Moreover, some require the user to
build the program from source code, which necessitates exper-
tise in software development tools and porting across different
operating systems.

Comprehensive studies on the SCE circuit design software,
their performance, and accuracy were done in 1999 [8] and
2013 [9]. In [9], mention of open-source tools and the avail-
ability thereof was made. However, this was not the purpose of
the study.

There is a good future for the open-source approach in CAD
tools, with electronic design automation (EDA) giants such as
Synopsys participating in OpenMAST [10], a tool that combines
various open-source tools. Similarly, a complete tool chain for
SCE can be formulated by evaluating and selecting the suitable
open-source tool for every stage in the SCE design flow. A
challenge is faced when selecting the right tool, which provides
the most functionality and best results.

In this paper, a selection of open source and freeware tools
for the SCE circuit design, which can be combined to construct
useful tool chains, is described. This is done in three steps. First,
simplified design flows are proposed for small-, medium-, and
large-scale SCE circuits. Second, the available open source and
freeware tools are discussed. Finally, the selection of a tool chain
is presented with the aid of a design example.

II. DESIGN FLOW

With a standard design flow for SCE circuits not yet estab-
lished, different design flows have been used in the reported
literature. The design flow presented in this paper is not nec-

1051-8223 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Stellenbosch University https://scholar.sun.ac.za

1302008 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 8, DECEMBER 2016

Fig. 1. Small-scale circuit design flowchart for SCE digital circuits.

essarily an instruction but rather a guideline. Two approaches
based on circuit complexity are presented, the first being small-
scale circuit design and the other being medium- and large-scale
circuit design.

A typical small-scale circuit design flow is depicted in Fig. 1.
Initially, a target SCE logic family and a fabrication process are
identified. The design rules associated with them then guides the
designer through the design process. The process begins with
circuit specification, followed by logical design from which a
suitable topology is obtained and the initial design values esti-
mated. A schematic representation of the circuits is then built
using a schematic capture tool, after which the circuit netlist is
generated. The netlist may be hand edited to include simula-
tor directives for the required circuit analysis. At the electrical
simulation stage, a circuit simulator runs the netlist supplying it
with the excitation signals necessary to test the circuit operation.
In cases where the circuit does not simulate correctly, the design
parameters are modified and the simulation repeated iteratively
until a valid simulation is observed. Design optimization is then
carried out to ensure that, despite the parameter spread during

Fig. 2. Medium- and large-scale design flowchart for SCE digital circuits.

the fabrication process and variation of bias current, the circuit
operates properly. If an optimal set of circuit parameters cannot
be obtained, the design is modified at the design entry/netlist.
Using the optimal circuit elements values, a geometrical repre-
sentation of the circuit is then laid down using a layout editor.
The resulting layout is used by a parameter extraction tool to
compute the circuit parameters. The extracted parameters are
then compared with the netlist parameters. If the former devi-
ates from the latter beyond the required tolerance, the layout
dimensions are adjusted and verified until the extracted val-
ues are within the required range. In the worst case scenario,
where the design rules of the target process cannot allow fur-
ther adjustment of element dimensions, the design process has
to be restarted. The final layout is then taped out as a test cell
and added to a reliable cell library repository if it is measured
successfully with sufficient operating margins.

Designing medium- and large-scale circuits, on the other
hand, employs a semicustom methodology based on cell library.
This approach is adopted from semiconductor technology. How-
ever, much needs to be done to automate it in superconducting
technology. With this methodology, a medium- or large-scale
circuit is built from a collection of well optimized and tested
small-scale circuits existing as a cell library. Custom intercon-
necting circuits are then built to route the signals to and from the
standard cells. This method is demonstrated in [11] and [12].

A simplified medium- and large-scale design flowchart is pre-
sented in Fig. 2. The gray-shaded blocks of the design flow
represent the parts that have not yet been developed in the
open-source domain. The design is achievable at a high level of
abstraction using hardware description languages (HDL). From
the functional specification, a design is captured with HDL,

Stellenbosch University https://scholar.sun.ac.za

MUCHUKA et al.: SUPERCONDUCTING DIGITAL CIRCUIT DESIGN WITH AN OPEN SOURCE AND FREEWARE TOOL CHAIN 1302008

such as VHDL or Verilog. The resulting behavior or/and struc-
tural circuit description is then simulated using logic simulators.
Simulation output can be viewed as waveforms using waveform
viewer tools. If the simulation results do not match the specifi-
cation, the HDL description is modified and simulated until the
desired specifications are achieved.

The design should then be synthesized to obtain its circuit rep-
resentation. This is a weak link in the general superconducting
logic circuits design flow. To the best of our knowledge, there
are no SCE cell libraries, syntheses, or place and route tools
in the open-source domain. Nonetheless, cell libraries exist in
various research institutions. A proprietary synthesis, place and
route tool has been demonstrated [13], but it is applicable to
only a specific cell layout and clock distribution strategy. Thus,
the designer will have to manually complete the design pro-
cess or develop a tool to handle it for generic processes and
cell libraries.

For other than the instances noted, every stage in these design
flows has associated tools in the open-source community.

A. Schematic Capture

Schematic capture tools allow the designers to draw a circuit
on a digital canvas. This provides the visualization of the design
and documentation, with some tools allowing schematics to be
exported in a publication-quality graphics format. Drawing a
schematic for a circuit can be easy; however, a challenge is
faced when using nonstandard components such as a Josephson
junction (JJ). Most open source and freeware schematic tools
do not have a JJ built-in. They require the user to create the JJ
symbol and define its attributes. This can be time-consuming
especially if the knowledge of the tool is limited. Thus, many
designers prefer schematic tools with a built-in JJ. Tools like
these are few but work quite well. The popular open-source
schematic tools are gSchem in gEDA [14], Sced in JSpice3
[15], Fritzing [16], KiCad [17], KTechlab [18], and Xcircuit
[19]. Among them, only the first two include the JJ model.

gSchem is part of the gEDA tool suite, which is available in
binary and source code for POSIX systems. The JJ model is
incorporated in gSchem’s component library, making the tool
easy to use for new researchers. The tool also supports scheme
language scripts, which allow the extension of its functional-
ity without recompiling the source code. This makes the tool
attractive to experienced users.

The program is easy to use. It provides an add-component
dialogue and a grid layout, which makes component placing
simple. However, a .model directive is required for the JJs
used in the schematic. The JJ model program [20] is useful
for new or inexperienced researchers who need to generate
junction models.

The JSpice3 schematic editor Sced is a keyboard driven edi-
tor. Sced has a JJ model built into its component library. How-
ever, it offers only fundamental properties for schematic capture,
making it difficult to use as the component count increases.

KiCad’s Eeschema, Fritzing, KTecheLab, and Xcircuit are
extensively used by the semiconductor circuit designers. They
do not have JJ in their component libraries, but provide means

of adding new components. By adding a JJ model to these tools
SFQ circuits can be captured. In addition, KTechLab and Xcir-
cuit have in-built netlist generators. Alternatively, schematic
editors built-in SPICE suites such as LTSPice can be used.

B. Netlist Generation

Once the schematic has been created, a circuit netlist spec-
ifying all the components, their node numbers, and their val-
ues, is generated. Most netlist generator tools are embedded in
schematic capture tools. gNetlist in gEDA suite is so far the
only open-source netlist generator tool used with superconduct-
ing circuits. It is important to note that the generated netlist
should be compatible with the available circuit simulator, al-
though translation tools are easily scripted and are supported
by gNetlist. The gNetlist tool in conjunction with an in-house
modified version of the SPICE database file is used to gener-
ate a Josephson-junction simulator (JSIM) compatible netlist
at Stellenbosch University. The designer may opt to use the
schematic as a guide and generate the netlist by hand. This re-
sults in a more compact and easy to debug netlist; however, it is
time-consuming.

C. Circuit Simulator

JSPICE [21] was the first SCE circuit simulator built by
adding the JJ model into SPICE2; JSPICE can only handle cir-
cuits with a limited number of JJs. Motivated by the limitations
of JSPICE, the JSIM was developed [22]. The JSIM was built
focusing on reducing computation effort per time step in circuits
with JJ as the only nonlinear device. This made the JSIM faster
than its counterparts and currently the most commonly used
open-source circuit simulator. JSIM generates an output data
file, which can then be plotted using third-party plotting tools
such as GNU Plot [23]. JSIM can be found on the Whiteley
Research, Inc.’s, repository of free software tools [24]. PSCAN
[25] [26] is another circuit simulator dedicated to SCE circuit
simulation. This simulator has been extensively used for SCE
circuit design, and is still popular in the USA. The developers
consider PSCAN open to the public, but it lacks support [27] and
has limited accessibility. It is not currently possible to download
a copy of PSCAN from a publicly accessible repository. Csim
[28] is also an open-source SCE simulator built from scratch.
It uses scripting language similar to C, which can be attractive
to many designers. However, it has not received much attention
from the digital SCE community, and to our knowledge an SFQ
circuit simulation has not yet been demonstrated in Csim. Csim
is also slow compared to JSIM and its documentation is limited.

LTSpice [29] and Ngspice can successfully simulate JJ-based
SCE circuits, such as a Josephson transmission line (JTL) and
D flip-flop (DFF) when the JJ model subcircuit is included, but
ngspice fails to run simulations with step sizes smaller than
0.5 ps. Thus, by including the JJ-model subcircuit in any spice
derivative, it is possible to simulate the small-scale SCE cir-
cuits. This makes the use of freeware modules such as LT-
Spice more convenient for beginners because they include a
schematic editor.

Stellenbosch University https://scholar.sun.ac.za

1302008 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 8, DECEMBER 2016

D. Optimization Tools

Circuit optimization tools are used to ensure that the selected
set of circuit parameters provide wide operation margins and
high circuit yields. The available optimization tools for SCE
have been built from scratch. Among them is MALT [30], an
open-source yield optimization tool based on inscribed hyper-
spheres algorithm, and COWBOY [26] developed to work with
PSCAN. COWBOY suffers similar problems as PSCAN men-
tioned in Section II-C. Other tools reported in the literature are
proprietary. The limited number of optimization tools, however,
may not constrain the designer when using free tools in the
SCE circuit design. The designer can as well implement the
optimization methods described in [26], [31] and [32]. This can
be achieved with a scripting language or a programming lan-
guage. A plethora of such languages with open-source compilers
are available.

E. Circuit Layout and Verification

Layout editors are used to lay down the physical dimensions
of the circuit elements. There are several open source and free-
ware projects addressing the issues of integrated circuit (IC)
layouts in semiconductor technology, such as Magic [33], Graal
[34], Toped [35], KIC [36], and LASI [37]. Among them, Magic
[38] and LASI [39] have been successfully adopted in super-
conducting IC. This is achieved by creating a technology file
for superconducting circuits and setting it as the active technol-
ogy file in the tool used. Thus, semiconductor tools that allow
the changing of the target technology file can be adapted in
superconductor technology.

The existing layout editors do not have design rule check and
layout versus schematic (LVS) verification features for super-
conducting circuits. Thus, to aid layout verification, parameter
extraction tools, commonly inductance extraction tools in the
case of SCE, are used. Commonly used inductance tools are
Lmeter [40], 3D-MLSI [41], FastHenry [42], and InductEx [43].
Among them, InductEx provides a model-size limited version
to public access but L-meter and FastHenry are available in full
for free.

F. HDL Logic Simulators

Researchers have shown that industry standard HDLs, such as
Verilog and VHDL, have the ability to support superconducting
logic circuit modeling [44]–[47]. Cell libraries containing HDL
models have been built to support the logic-level simulation of
large-scale circuits. However, these cell libraries, such as CON-
NECT library [44], SBU VHDL library [45], RSFQ64 [46],
among others are based on commercial simulators. An attempt
to use open-source simulators in modeling superconducting cir-
cuits was first reported in [47]. The authors successfully mod-
eled AQFP gates and simulated using an open-source simulator
iVerilog [48] and FreeHDL [49]. At Stellenbosch University,
we have been evaluating various open-source logic simulators
for superconducting circuit simulation. Virtually any logic sim-
ulator can be adopted for use in superconducting technology.
However, the choice needs to be made keeping in mind the

TABLE I
OPEN-SOURCE HDL SIMULATORS EVALUATED

Simulator Language Standard supported

Full Partial
GHDL VHDL 87 93
FreeHDL VHDL 93 -
NVC VHDL 93 2008
iVerilog Verilog 2001 2005
Verilator Verilog 2001 2005

various supported language standards, for example, FreeHDL
supports VHDL 93 standard, whereas Verilator [50] supports
Verilog 2001 standard and partially 2005 standard. This limits
the flexibility of the designer; however, the new modeling fea-
tures described in the new HDL standards, such as VHDL 2008
and Verilog 2005, can be performed in earlier versions but not
as succinctly. Thus, with the supported language features, a de-
signer can successfully model SCE circuits. On the other hand,
unlike the commercial tools, the user can extend the tool to cover
the required language construct. Table I shows a summary of
the simulators we have tested.

G. Synthesis

Two synthesis approaches have so far been demonstrated in
SFQ technology. In [51]–[53], a binary decision diagram-based
synthesis is presented, whereas in [54] a transduction-based
framework is used. In the transduction method, the authors sug-
gest that SIS of UC Berkeley can be utilized. The two methods,
however, handle Boolean function synthesis. High-level syn-
thesis (HLS) behavior of superconducting logic circuits has not
been reported in the literature. The HLS steps involving, code
optimization, allocation, and scheduling in superconducting and
semiconducting technologies are similar. A major difference
will be in the binding step. Therefore, calibrating open-source
semiconductor tools can cut down the tool development time sig-
nificantly. HLS open-source semiconductor tools such as, Yosys
[55] and Odin II [56] are potential candidates for calibration in
superconducting technology.

H. Layout Versus Schematic

To verify that the geometrical representation of a circuit in
the layout is logically equivalent to its schematic, an LVS tool
is necessary. An attempt toward general LVS in SFQ circuits is
reported in [57], where the authors presented an algorithm for
LVS and successfully verified a JTL and a pulse splitter. In the
open-source community, no such tools have been developed nor
adapted from the semiconductor technology for SFQ circuits.
Thus, an open source or freeware tool chain needs to rely on
manual LVS at this stage.

III. DESIGN EXAMPLE USING OPEN-SOURCE TOOLS

We demonstrate the design examples of superconducting cir-
cuits by describing the design stages presented in the previous
section. The main objective of these examples is to present a
complete open source and freeware toolset that can be used in

Stellenbosch University https://scholar.sun.ac.za

MUCHUKA et al.: SUPERCONDUCTING DIGITAL CIRCUIT DESIGN WITH AN OPEN SOURCE AND FREEWARE TOOL CHAIN 1302008

SCE design process. A summary of these tools is presented in
Table II at the end of this section.

Listing 1. JSIM compatible netlist generated by gEDA’s
gNetlist from schematic shown in Fig. 3.

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗ Begin .SUBCKT model ∗
∗ spice-sdb ver 4.28.2007 ∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
. SUBCKT DFF7 4 13 6
∗Begin SPICE netlist of main design
B1 1 0 jj1 area=0.25
B2 2 3 jj1 area=0.25
B3 3 0 jj1 area=0.2
B4 9 0 jj1 area=0.175
B5 11 9 jj1 area=0.15
B6 12 0 jj1 area=0.25
B7 7 0 jj1 area=0.25
IB1 0 5 pwl (0 0 5p 0.00025)
IB2 0 8 pwl (0 0 5p 0.0001)
IB3 0 10 pwl (0 0 5p 0.000175)
IB4 0 12 pwl (0 0 5p 0.00014)
L1 4 1 2.2e-012
L2a 1 5 1e-012
L2b 5 2 1.7e-012
L3 3 8 1.1e-012
L4 8 9 8.3e-012
L5a 9 10 3.8e-012
L5b 10 7 9e-013
L6 7 6 2.2e-012
L7 11 12 3e-012
L8 12 13 2.3e-012
RB1 1 0 1.02
RB2 2 3 1.02
RB3 3 0 1.275
RB4 9 0 1.45714
RB5 11 9 1.7
RB6 12 0 1.02
RB7 7 0 1.02

. model JJ1 jj(icrit=1m, cap=5p, rn=90, rtype=0)

. ends DFF7
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

A. Small-Scale Design Example
A DFF is used as an example of small-scale circuits. Once

the specifications of a DFF had been analyzed, a suitable cir-
cuit topology to implement it was identified. The seven-junction
DFF shown in Fig. 3 is captured with gSchem from gEDA. A
publication-quality graphic was then generated from gSchem
for documentation. Using gNetlist of gEDA, a JSIM compatible
netlist was generated to be used in the electrical simulation. List-
ing III shows the DFF subcircuit netlist generated from gSchem.
Appropriate inputs from a test bench were given to the DFF cir-
cuit and simulated with the JSIM circuit simulator. A data file is
generated by JSIM as the simulation output. GNUplot, an open-
source plotting tool, was used to generate the graphical view
of the results shown in Fig. 4(a). Once the required operation
was obtained, the DFF was optimized for widest critical margin.

TABLE II
SUMMARY OF THE OPEN-SOURCE TOOLS USED IN EACH DESIGN STEP

Category Tools

Schematic editor gEDA’s gschem
Netlist generator gEDA’s gnetlist
Circuit simulator JSIM
Analog waveform viewer GNUplot
Optimization Custom using C++
Layout editor LASI
Parameter extraction InductEx (free version)
HDL description entry Notepad ++
HDL simulators IVerilog and FreeHDL
Digital waveform viewer GTKwave

Fig. 3. Schematic capture of seven-junction DFF captured with gSchem.

Fig. 4. Timing diagrams. (a) Electrical simulation output of DFF obtained
from JSIM and plotted using GNUplot. (b) VHDL model simulation waveforms
carried out with FreeHDL with an SFQ pulse encoded as level transistion [45]
and viewed with GTKwave. dt and clk are data and clock input, respectively,
whereas qo is the output.

To do so, an optimization program was written on the basis of
the centering method [31] and the critical margin as the figure
of merit.Fig. 5 shows the parameter margins of the optimized
DFF. Using the optimal values, the circuit layout was designed
based on the IPHT process design rules and implemented in
LASI. For this to be performed, an IPHT layer definition file
had to be integrated into LASI. Fig. 6 shows the DFF layout

Stellenbosch University https://scholar.sun.ac.za

1302008 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 8, DECEMBER 2016

Fig. 5. Margin analysis for the optimized DFF circuit.

designed in LASI. The layout was then converted from LASI
default file format to GDSII. Using the free version of Induc-
tEx, inductance values were extracted from the GDSII layout
and manually verified.

B. Medium- and Large-Scale Design Example

With the current state of open-source tools, only high-level
logic simulation can be performed on medium- and large-scale

Listing 2. VHDL behavior model for DFF.
library ieee;
use ieee.std_logic_1164. all;
entity DFF is

port
(

clk : in std_logic;
d : in std_logic;
q : inout std_logic;

);
end entity DFF;
architecture bhv of DFF is
begin
process(clk)
variable x1,x2: time := 0 ps;
begin
if(clk’event) then

x1:=x2;
x2:=NOW;
assert(d’ last_event > minimum_data2clock_
seperation)

report “Data to clock seperation time violated”
severity error;

if(d’ last_event < (x2-x1)-clock2output_delay) then
q <= transport (not q) after clock2output_delay;

end if;
end if;

end process;
end architecture bhv;

SCE circuits. The structural HDL modeling approach was
used to build medium- and large-scale design in this paper. This
was begun by creating an HDL description cell library of RSFQ
circuit primitives. These primitives were then used as instances
in a large design. Listing III-B and Fig. 4(b) show the VHDL
model and logic simulation waveforms of the DFF described

Fig. 6. Seven-JJ DFF layout prepared using LASI based on the IPHT design
rules. The layout is implemented in a 150 μm × 75 μm area.

earlier in this section. FreeHDL and iVerilog open-source HDL
logic simulators were used to simulate the behavior description.
Using the HDL cell library, a structural HDL description of an
8-b-Wallace-tree multiplier was implemented. While the arith-
metic logic section was implemented with the help of generate
keyword in Verilog HDL and VHDL, the clock section was
implemented by hand coding all the necessary module instanti-
ations that provide the required delay for each arithmetic stage.
The circuit was then simulated to verify its operation. The HDL
model simulation took 68 s, whereas the JSIM counterpart took
8168 s on the same platform.

IV. CHIP-SCALE DESIGN

Current SCE technologies limit chip design and layout to
about 1000-10 000 gates, which could be synthesized, but is cur-
rently placed and routed by hand. Thus freeware/open-source
tools can be used to design the chip-scale systems, as individ-
ual gates are placed and routed by hand-in layout editors such
as LASI.

V. CONCLUSION

This paper brings out the awareness of open source and
freeware tools, which can be used in superconducting circuit
technology. Successfully tested tools and those which can be
modified for use in SCE are pointed out. Based on the design
flow proposed in this paper, an example is used to demonstrate
a complete tool chain for small-scale circuits. The use of an
open-source HDL simulators for medium- and large-scale cir-
cuits is also demonstrated. This would serve as a guideline for
novice researchers in SCE. From a review of the availability of
open source or freeware tools for SCE design, it is evident that
the focus for open-source development to really push progress
in SCE design should be on synthesis tool from high-level be-
havioral descriptions, as well as the associated place and route
tools. These tools require close interaction with the circuit de-
sign community, because successful tool implementation, even
if it is done with repurposed open-source tools from semicon-
ductor circuit design, will require industry-defined constraints
on cell library description and logic levelization (for synthe-
sis), layout design (for place and route) and clock synthesis
techniques. We would further like to point out that open-source

Stellenbosch University https://scholar.sun.ac.za

MUCHUKA et al.: SUPERCONDUCTING DIGITAL CIRCUIT DESIGN WITH AN OPEN SOURCE AND FREEWARE TOOL CHAIN 1302008

tools can be as accurate as the commercial tools; however, due
to the continuous upgrading of commercial tools, commercial
tools are recommended for large-scale commercial applications.

REFERENCES

[1] D. C. Brock, “The NSA’s frozen dream,” IEEE Spectr., vol. 53, no. 3,
pp. 54–60, Mar. 2016.

[2] M.I.T Lincoln Laboratory, “Forecasting superconductive electronics
technology,” Next Wave, vol. 20, no. 3, pp. 3–11, 2014.

[3] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A new
Josephson-junction technology for sub-terahertz-clock-frequency digital
systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1, pp. 3–28, Mar. 1991.

[4] D. Kirichenko, S. Sarwana, and A. Kirichenko, “Zero static power dissi-
pation biasing of RSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 21,
no. 3, pp. 776–779, Jun. 2011.

[5] O. A. Mukhanov, “Energy-efficient single flux quantum technology,”
IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 760–769, Jun. 2011.

[6] Q. P. Herr, A. Y. Herr, O. T. Oberg, and A. G. Ioannidis, “Ultra-low-
power superconductor logic,” J. Appl. Phys., vol. 109, no. 10, 2011,
Art. no. 103903.

[7] K. Inoue, N. Takeuchi, K. Ehara, Y. Yamanashi, and N. Yoshikawa,
“Simulation and experimental demonstration of logic circuits using an
ultra-low-power adiabatic quantum-flux-parametron,” IEEE Trans. Appl.
Supercond., vol. 23, no. 3, Jun. 2013, Art. no. 1301105.

[8] K. Gaj, Q. P. Herr, V. Adler, A. Krasniewski, E. G. Friedman, and M. J.
Feldman, “Tools for the computer-aided design of multigigahertz super-
conducting digital circuits,” IEEE Trans. Appl. Supercond., vol. 9, no. 1,
pp. 18–38, Mar. 1999.

[9] C. J. Fourie and M. H. Volkmann, “Status of superconductor electronic
circuit design software,” IEEE Trans. Appl. Supercond., vol. 23, no. 3,
Jun. 2013, Art. no. 1300205.

[10] Synopsys, “OpenMAST.” [Online]. Available: http://news.synopsys.com/
index.php?item=122764, Accessed on: Nov. 2015.

[11] M. Dorojevets, C. L. Ayala, and A. K. Kasperek, “Data-flow microarchi-
tecture for wide datapath RSFQ processors: Design study,” IEEE Trans.
Appl. Supercond., vol. 21, no. 3, pp. 787–791, Jun. 2011.

[12] F. Matsuzaki, N. Yoshikawa, M. Tanaka, A. Fujimaki, and Y. Takai, “A
behavioral-level HDL description of SFQ logic circuits for quantitative
performance analysis of large-scale SFQ digital systems,” Physica C,
Supercond., vols. 392–396, pp. 1495–1500, 2003.

[13] Y. Kameda, S. Yorozu, and Y. Hashimoto, “Automatic single-flux-quantum
(SFQ) logic synthesis method for top-down circuit design,” J. Phys.,
Conf. Ser., vol. 43, no. 1, pp. 1179–1182, 2006. [Online]. Available:
http://iopscience.iop.org/1742-6596/43/1/287

[14] gEDA Project. [Online]. Available: http://www.geda-project.org,
Accessed on: Nov. 2015.

[15] Jspice3. [Online]. Available: http://www.wrcad.com jspice3.html,
Accessed on: Nov. 2015.

[16] Fritzing. [Online]. Available: http://www.fritzing.org/home, Accessed on:
Nov. 2015.

[17] Kcad. [Online]. Available: http://www.kicad-pcb.org, Accessed on:
Nov. 2015.

[18] KtechLab. [Online]. Available: https://github.com/ktechlab/ktechlab/wiki,
Accessed on: Nov. 2015.

[19] Xcircuit. [Online]. Available: http://opencircuitdesign.com/xcircuit,
Accessed on: Nov. 2015.

[20] S. R. Whiteley. [Online]. Available: http://www.wrcad.com/ftp/pub/
jjmodel.c, Accessed on: Nov. 2015.

[21] S. R. Whiteley, “Josephson junctions in SPICE3,” IEEE Trans. Magn.,
vol. 27, no. 2, pp. 2902–2905, Mar. 1991.

[22] J. E. Fang and T. V. Duzer, “A Josephson integrated circuit simulator
(JSIM) for superconductive electronics application,” in Proc. Extended
Abstr. 2nd Int. Supercond. Electron. Conf., 1989, pp. 407–410.

[23] GNUplot. [Online]. Available: http://www.gnuplot.info/, Accessed on:
Sep. 2015.

[24] [Online]. Available: http://wrcad.com/freestuff.html, Accessed on:
Aug. 2016.

[25] S. Polonsky, V. Semenov, and P. Shevchenko, “PSCAN: Personal su-
perconductor circuit analyser,” Supercond. Sci. Technol., vol. 4, no. 11,
pp. 667–670, 1991.

[26] S. Polonsky, P. Shevchenko, A. Kirichenko, D. Zinoviev, and A. Rylyakov,
“PSCAN’96: New software for simulation and optimization of com-
plex RSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 7, no. 2,
pp. 2685–2689, Jun. 1997.

[27] V. Semenov, personal communicaton, Jul. 2016.
[28] A. Dewes, “A tool to simulate superconducting circuits, comparable

to spice.” [Online]. Available: https://github.com/adewes/superconductor,
Accessed on: Jul. 2016.

[29] Linear Technology Spice. [Online]. Available: http://www.linear.com/
designtools/software, Accessed on: Oct. 2015.

[30] Q. P. Kerr and M. J. Feldman, “Multiparameter optimization of RSFQ
circuits using the method of inscribed hyperspheres,” IEEE Trans. Appl.
Supercond., vol. 5, no. 2, pp. 3337–3340, Jun. 1995.

[31] T. Harnisch, J. Kunert, H. Toepfer, and H. F. Uhlmann, “Design centering
methods for yield optimization of cryoelectronic circuits,” IEEE Trans.
Appl. Supercond., vol. 7, no. 2, pp. 3434–3437, Jun. 1997.

[32] M. Jeffery, W. J. Perold, Z. Wang, and T. van Duzer, “Monte Carlo
optimization of superconducting complementary output switching logic
circuits,” IEEE Trans. Appl. Supercond., vol. 8, no. 3, pp. 104–119,
Sep. 1998.

[33] Magic VLSI Layout Tool. [Online]. Available: http://opencircuitdesign.
com/magic/, Accessed on: Nov. 2015.

[34] Graal Layout Editor. [Online]. Available: http://www.vlsitechnology.
org/html/linux_help3.html, Accessed on: Nov. 2015.

[35] Toped IC Layout Editor. [Online]. Available: http://www.toped.org.uk/,
Accessed on: Nov. 2015.

[36] K. Keller, “Kic : A graphical editor for integrated circuit.” [Online].
Available: http://www.wrcad.com/freestuff.html, Accessed on: Jul. 2016.

[37] Layout System for Individuals. [Online]. Available: http://www.
lasihomesite.com/, Accessed on: Jul. 2015.

[38] P. M. Xiao, E. Charbon, A. Sangiovanni-Vincentelli, T. Van Duzer, and
S. R. Whiteley, “INDEX: An inductance extractor for superconducting
circuits,” IEEE Trans. Appl. Supercond., vol. 3, no. 1, pp. 2629–2632,
Mar. 1993.

[39] R. S. Bakolo and C. J. Fourie, “Development of a RSFQ cell library for
the University of Stellenbosch,” in Proc. AFRICON, 2011, pp. 1–5.

[40] P. I. Bunyk and S. V. Rylov, “Automated calculation of mutual in-
ductance matrices of multilayer superconductor integrated circuits,” in
Proc. Extended Abstr. Int. Supercond. Electon. Conf., 1993, vol. 93,
p. 62.

[41] M. M. Khapaev, A. Y. Kidiyarova-Shevchenko, P. Magnelind, and
M. Y. Kupriyanov, “3D-MLSI: Software package for inductance calcula-
tion in multilayer superconducting integrated circuits,” IEEE Trans. Appl.
Supercond., vol. 11, no. 1, pp. 1090–1093, Mar. 2001.

[42] M. Kamon, M. J. Tsuk, and J. K. White, “FastHenry: A multipole-
accelerated 3-D inductance extraction program,” IEEE Trans. Microw.
Theory Techn., vol. 42, no. 9, pp. 1750–1758, Sep. 1994.

[43] Inductex. [Online]. Available: http://www0.sun.ac.za/ix/?q=home, Ac-
cessed on: Jan. 2016.

[44] S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and S. Tahara,
“A single flux quantum standard logic cell library,” Physica C, Supercond.,
vol. 378, pp. 1471–1474, 2002.

[45] C. L. Ayala, “Energy-efficient wide datapath integer arithmetic logic units
using superconductor logic,” Ph.D. dissertation, Stony Brook Univ., Stony
Brook, NY, USA, Dec. 2012.

[46] S. Intiso, I. Kataeva, E. Tolkacheva, H. Engseth, K. Platov, and
A. Kidiyarova-Shevchenko, “Time-delay optimization of RSFQ cells,”
IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 328–331,
Jun. 2005.

[47] N. Maguu and C. J. Fourie, “Modeling of AQFP logic gates with HDL
using multivalued logic approach,” in Proc. Int. Supercond. Electon. Conf.,
Nagoya, Japan, Jun. 2015, DS-P14.

[48] Icarus Verilog. [Online]. Available: http://iverilog.icarus.com/, Accessed
on: Nov. 2015.

[49] FreeHDL. [Online]. Available: http://freehdl.seul.org/, Accessed on:
Nov. 2015.

[50] Verilator Verilog Simulator. [Online]. Available: http://www.veripool.
org/projects/verilator/wiki/Installing, Accessed on: Nov. 2015.

[51] N. Yoshikawa, H. Tago, and K. Yoneyama, “A new design approach for
RSFQ logic circuits based on the binary decision diagram,” IEEE Trans.
Appl. Supercond., vol. 9, no. 2, pp. 3161–3164, Jun. 1999.

[52] N. Yoshikawa and J. Koshiyama, “Top-down RSFQ logic design based on
a binary decision diagram,” IEEE Trans. Appl. Supercond., vol. 11, no. 1,
pp. 1098–1101, Mar. 2001.

[53] J. Koshiyama and N. Yoshikawa, “A cell-based design approach for RSFQ
circuits based on binary decision diagram,” IEEE Trans. Appl. Supercond.,
vol. 11, no. 1, pp. 263–266, Mar. 2001.

[54] S. Yamashita, K. Tanaka, H. Takada, K. Obata, and K. Takagi,
“A transduction-based framework to synthesize RSFQ circuits,” in Proc.
Asia South Pac. Conf. Des. Autom., 2006, pp. 43–48.

Stellenbosch University https://scholar.sun.ac.za

1302008 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 8, DECEMBER 2016

[55] C. Wolf and J. Glaser, “Yosys open synthesis suite,” in Proc. Autochip,
2013.

[56] P. Jamieson, K. B. Kent, F. Gharibian, and L. Shannon, “Odin II—An
open-source Verilog HDL synthesis tool for CAD research,” in Proc.
18th IEEE Annu. Int. Symp. Field-Programmable Custom Comput. Mach.,
2010, pp. 149–156.

[57] R. Roberts and C. J. Fourie, “Layout-to-schematic as a step towards layout-
versus-schematic verification of SFQ integrated circuit layouts,” in Proc.
AFRICON, 2013, pp. 1–5.

Maguu N. Muchuka received the B.Sc. degree in physics, maths, and electron-
ics from Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India,
in 1998, and the M.Sc. degree in electronics from the University of Mysore,
Mysore, India, in 2000. He is currently working toward the Ph.D. degree in
electronics engineering at Stellenbosch University, Stellenbosch, South Africa.

Since 2007, he has been a Lecturer in Egerton University, Njoro, Kenya. His
research interests include electronic design automation tools design, supercon-
ducting electronics, and micro- and nanosystems.

Johannes A. Delport received the bachelor’s degree in electronics engineering,
in 2014, from Stellenbosch University, Stellenbosch, South Africa, where he is
currently working toward the master’s degree in electronics engineering.

His research interests include superconducting electronics, digital systems
simulation, and superconducting software design.

Coenrad Johann Fourie (M’01) received the B.Eng. degree in electronics engi-
neering and the Ph.D. degree in superconductive electronics from Stellenbosch
University, Stellenbosch, South Africa, in 1998 and 2003, respectively.

In 2001, he joined Stellenbosch University as a Lecturer, where he is currently
a Professor in the Department of Electrical and Electronic Engineering. His re-
search interests include superconducting electronics, superconducting quantum
interference device sensor applications, and the development of parameter ex-
traction software for superconductive integrated circuits.

Stellenbosch University https://scholar.sun.ac.za

Appendix B

Journal Paper - Analysis of a Shielding Approach for

Magnetic Field Tolerant SFQ Circuits

• R. S. Bakolo, J. A. Delport, P. Febvre and C. J. Fourie, ”Analysis of a Shielding Approach
for Magnetic Field Tolerant SFQ Circuits,” IEEE Transactions on Applied Superconduc-
tivity, 2017.[23]

This paper discusses the effect of magnetic fields in various directions and how shielding can be
effectively applied to minimize the effect of these fields. All the credit for this paper goes to Dr
Bakolo for his excellent work. Personal contributions are in the form of simulations and margin
calculations using in-house tools developed in the process of attaining this degree. Copyright
for this paper is held by IEEE Transactions on Applied Superconductivity.

Stellenbosch University https://scholar.sun.ac.za

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, JUNE 2017 1301305

Analysis of a Shielding Approach for Magnetic
Field Tolerant SFQ Circuits

Rodwell S. Bakolo, Johannes A. Delport, Pascal Febvre, Member, IEEE, and Coenrad J. Fourie, Member, IEEE

Abstract—The operating margins of unshielded SFQ circuits are
influenced by external magnetic fields, and earlier research showed
experimental results of operating region versus bias current for
circuits with in-plane and perpendicularly applied magnetic fields.
Here, we report a method that can be used to analyze shields to
protect SFQ circuits from external magnetic fields. To validate the
approach, we investigated a grid-patterned shield of varying spac-
ing. The analysis was done with cell layouts made according to the
Hypres’ 4.5 kA/cm2 process, in which the top-most layer, M3,
was used to implement the shields. It was calculated that a grid
shield of 2.5 µm grid bar width and spacing of 5 µm offered a good
compromise at both providing shielding and causing a relatively
small drift in circuit inductance. In order to make SFQ circuits
more tolerant to magnetic fields, we have simulated with circuit
parameter alterations to realize the best bias and higher operat-
ing field margins, due to external magnetic fields. The external
magnetic fields are modeled through three orthogonal coils that
generate roughly a uniform magnetic field density throughout the
cell under test.

Index Terms—SFQ, magnetic fields, shielding, magnetic field
tolerant.

I. INTRODUCTION

S INGLE flux quantum (SFQ) based electronics are known
to have high switching speeds and ultra low energy con-

sumption figures [1]. However, SFQ circuits suffer operating
margin drift and failure when exposed to magnetic fields as low
as 15 μT [2], [3]. Further, very large scale integration issues are
often impeded as complex circuits require large bias currents.
In large circuits, the bias currents can reach several amperes
[3]–[5]. These currents create design challenges including heat-
ing in feed lines, but of great concern are the magnetic fields
generated by these currents. These fields, together with those
from external sources, such as the Earth, further degenerate the
mostly narrow operating margins of SFQ circuits.

Test results have shown fields parallel to SFQ circuit’s plane
have more negative impact on the operating margins than per-
pendicular ones [2]. It is therefore, imperative that SFQ cir-
cuits are shielded from external magnetic fields, especially

Manuscript received September 6, 2016; accepted February 9, 2017. Date of
publication February 15, 2017; date of current version February 24, 2017. This
work was supported in part by the French-South African Partenariat Hubert
Curien PROTEA under Grant 33944VG, in part by the South African National
Research Foundation under Grant 95237, and in part by the Malawi Government.

R. S. Bakolo, J. A. Delport, and C. J. Fourie are with the Department of
Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch
7600, South Africa (e-mail: coenrad@sun.ac.za).

P. Febvre is with the Université Savoie Mont Blanc, IMEP-LAHC (CNRS
UMR5130), Le Bourget du Lac 73376, France.

Digital Object Identifier 10.1109/TASC.2017.2669646

parallel ones, and bias lines. The concept of shielding is not
new, but only the standard solid, continuous superconducting
layer, shield is reported [6]–[8]. Inductance of striplines be-
tween multiple ground planes, where the shielding layer forms
a top ground plane, is lower than for microstrip lines above a
single ground plane. For solid shield layer layouts, inductance
thus has to be adapted, resulting in more area consumed by
inductors. A shielding mechanism that does not significantly
decrease inductance of circuit elements would thus be benefi-
cial to allow smaller layouts. Furthermore, solid shield layers
increase the probability of flux trapping in the layer metal, so
that a shield should consist of structures that minimize flux
trapping probability. Hence, a shielding mechanism that offers
a compromise while providing efficient shielding is a necessity.
Three orthogonal coils were modelled to generate uniform mag-
netic fields onto an SFQ circuit, as shown in [9], to establish the
effectiveness of different shielding approach configurations.

We present a method that can be used to analyse the effective-
ness of on-chip magnetic shields for SFQ circuits. The method
was validated through simulations that establish the best possi-
ble shield configuration. Efficient shielding reduces the vulner-
ability of SFQ circuits to external magnetic fields and hence a
first step toward magnetic field tolerant SFQ design.

II. SHIELDING CONCEPT

The use of superconductors as shields is not new and it has
been reported by numerous authors such as [10], [11]. However,
most of the work does not apply to SFQ circuits. There is a huge
reliance on Meissner effect to achieve perfect magnetic field
exclusion. Niobium, the main superconductor in low-Tc SFQ
circuits, is a Type II superconductor and therefore perfect dia-
magnetism is non-existent. An infinite ratio of the film thickness,
d, to the London penetration depth, λ, is required for an ideal
shield. However, the films used in SFQ circuits are very thin and
therefore the ratio is always finite. For instance, the M3 layer
in the Hypres process [12], has a thickness of d = 600 nm and
penetration depth of λ = 90 nm. The ratio d

λ
= 6.67. This reveals

that shielding in SFQ is never perfect as ≈10% of the magnetic
field will still find its way through the shield [6], [13]–[15]. The
aim of designing on-chip shields is to reduce mutual inductance
that can exist between external magnetic field producing entity
and circuit inductance, hence reducing coupling.

Grounding of on-chip shields is crucial. It was verified in
[7], [8], that shields grounded at strategic positions improved the
shielding efficiency. Shielding results in resultant surface flow

1051-8223 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Stellenbosch University https://scholar.sun.ac.za

1301305 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, JUNE 2017

of currents and the ground contacts improve the flow. However,
placement of ground contacts works better in less complex struc-
tures and the layout designer may only place them as the layout
permits in larger, complex circuits. The concept of grounding
and the resulting efficiency can be described using the effective
inductance. This is because grounding reduces the effective in-
ductance of the shielding layer, which results in improved flow
of surface currents. In addition, the coupling between the shield
and circuit reduces in a grounded shield thereby improving the
shield’s efficiency.

III. SHIELDING APPROACH

A. Simulation Tools

Outlined next are software tools that were used to analyse
the shielding approach presented in this paper. SFQ cells were
laid out in Layout System for Individuals (LASI) [16], from
which GDSII format binary files were generated. Three oth-
orgonal coils, that produce uniform magnetic fields on-chip,
were modelled in InductEx [17], [18] to produce roughly uni-
form magnetic fields of any required orientation. All circuit
inductances and couplings with the coils, calculated again in
InductEx, were used in circuit simulations. Schematic capture
and parameterisation were done in gEDA [19], while Joseph-
son Simulator (JSIM) [20] was used for transient simulations
of the SFQ circuits. To obtain operating margins in the circuits,
analyse, which is part of our in-house tool-set was used.

B. A Grid Patterned Shield

The shielding analysis presented here was done with layouts
made with the Hypres’ 4.5 kA/cm2 process design rules [12].
The process’ top-most layer, M3, which has technology fixed
thickness d = 600 nm and penetration depth λ = 90 nm was
used to implement on-chip shields.

The use of orthogonal coils, shown in Fig. 1, envisages that
magnetic fields, as vectors, can take any orientation. Therefore,
the circuit needs to be protected against that. The magnetic field
orientation, dictated by positive or negative coil currents, re-
mains constant and fixed for each simulation described here.
Although the field vector was not swept over all directions,
which would be time intensive for small sweep steps, it does
contain equal components in each axial direction and thus al-
lows us to determine shielding efficiency in the presence of
all axial components. A grid patterned shield, which resembles
a Faraday’s cage, was simulated with Delay Flip-Flop (DFF)
and Direct Current to SFQ (DC-SFQ) converter cells. The grid
shield offers similar shielding protection to the normal solid
shield, with an added advantage that it affects circuit induc-
tance less [21]. In our earlier simulations, only a grounded grid
shield (in Fig. 2) of 2.5 μm grid bar width and spacing of 5 μm
was considered [21] and hereby referred to as the standard grid
shield. In order to obtain the best possible grid configuration, we
considered seven grid spacing configurations. All coupling coef-
ficients between coils and circuit inductance were recorded and
used in margin analysis simulations while the coil currents were
gradually increased, at each stage. For each SFQ cell, there is a

Fig. 1. Current density plots of a DC-SFQ surrounded by 3 orthogonal coils,
(a) unshielded and (b) under a standard grid shield. The current density calcula-
tions were done all around the cell, however only the top part is shown here. The
current density is highest in the coils (red) and affects the cell due to coupling.
The current density plots were generated with Magix, a visualization tool for
InductEx, which produces files viewable with P araV iew [22]. In the sim-
ulations, a 1 volt sinusoidal voltage at 10 GHz is applied to each coil, which
results in a maximum current density of ≈ 1.75 × 10+10 A/m2 . Radii of coils
are Rxy =125 μm, Ry z =130 μm and Rxz =135 μm. To further validate the
effectiveness of the grid shield, current densities were calculated at the indicated
points.

point at which the shielding no longer offers protection, called
an operating field margin (OFM) or failure point. The OFM of
an SFQ cell is hereby defined as the point where the circuit
parameter and bias margins diminish to 0%. The varied currents
represent different magnetic field density magnitudes the circuit
could be exposed to.

In addition, the SFQ cells were simulated with field coil cur-
rents that vary both negatively and positively, thereby effectively
reversing the magnetic field orientation in each coil and fix it for
each simulation. This approach produced two OFMs, one for the
positive field and the other for the negative field. These OFMs
cannot be necessarily the same as the circuit inductance orien-
tation and position can influence the results. This is a thorough
approach and remains indicative at best, but a good shield has to
provide protection from all possible field vectors. At any given
time, all coils have the same amount of current and therefore

Stellenbosch University https://scholar.sun.ac.za

BAKOLO et al.: ANALYSIS OF A SHIELDING APPROACH FOR MAGNETIC FIELD TOLERANT SFQ CIRCUITS 1301305

Fig. 2. A DFF covered in a grid patterned shield - each grid bar is 2.5 μm
wide and are spaced 5 μm from each other. The layout was done in the Hypres’
4.5 kA/cm2 , in which the layer, M3, with fixed thickness d = 600 nm was used
to make the grid shield. The ground contacts, marked GND, were placed to
provide the best possible shielding and lowest drop on circuit inductance. To
avoid major drops in circuit inductance grounding must be laid out in a line that
crosses circuit inductance at 90◦ or any angle as the layout permits, but not in
parallel and close to major circuit inductance.

the vector sum of the resulting fields has an inclination, θ ≈ 55◦

and azimuth, ϕ ≈ 45◦ in a spherical coordinate system.
Fig. 1 shows current density plots of a DC-SFQ cell sur-

rounded by 3 orthogonal coils, for both the unshielded and
standard grid shielded cases. The red colour shows the highest
current density, while blue is lowest. With the aid of the color
field magnitude key in Fig. 1, it can be observed from the color
variations that the grid shield reduces the density on the DC-SFQ
cell that occurs due to coupling with the 3 coils. By calculating
current densities at the nine points shown in Fig. 1, on both the
unshielded and shielded DC-SFQ cells, we can show that the
grid shield reduces the current density by 40%. The grid shield
was only implemented in the top-most layer of the Hypres’
4.5 kA/cm2 fabrication process for our simulations described
here. This approach leaves the ground plane unmodified to avoid
other design challenges that might arise because of additional
changes of circuit inductances.

IV. ANALYSIS OF THE GRID PATTERNED SHIELD

In this analysis, simulations for both the DFF and DC-SFQ
were conducted to determine the effect of grid bar spacing on
shielding effectiveness. Grid bar spaces of 0, 2.5, 4, 5, 6, 7.5,
9 and 10 μm were used in the analysis. The bar width of each
grid was fixed to 2.5 μm for all grid spaces. An example of
grid shield is shown in Fig. 2. At this point, each grid shield
configuration was simulated and OFMs recorded for each cell.
The results are summarised in Fig. 3, and it can be observed
that the shielding effectiveness reduces with increase in spacing
between grid bars. So the smaller the spaces, the better the
shield. As the spaces become wider, coupling between circuit

Fig. 3. The variation of shielding effectiveness with changing grid spacing -
A grid shield with smaller spaces offers better shielding, but the downside is
that the circuit inductance are affected to the point that re-optimisation of the
entire circuit might be necessary and vice-versa. Positive and negative currents
refer to fields from coils.

Fig. 4. Percentage inductance drop against variations in grid spacing in both
the DFF and DC-SFQ.

and external coils increases, which leads to poorer shielding.
However, it can also be noted from Fig. 4, that the overall
influence on circuit inductance reduces when increasing the
spacing of the grid bars from 0 to 7.5 μm. Any further increase
in spacing beyond 7.5 μm produces no further drop in circuit
inductance. It can be concluded that even the widest possible

Stellenbosch University https://scholar.sun.ac.za

1301305 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, JUNE 2017

grid bar spacing can cause a drop in circuit inductance of about
10% (see Fig. 4). It is at the discretion of the circuit designer on
how much magnetic shielding can be applied without sacrificing
parameter and bias margins due to the drop in circuit parameter
values.

The OFMs in Fig. 3 can be compared to unshielded cases
for both cells. The OFMs for the unshielded DFF were 46 μT
and 38 μT [21] for positive and negative currents, respectively,
while for the unshielded DC-SFQ the OFMs were 63 μT and
38 μT for positive and negative currents, respectively.

A grid shield of 2.5 μm wide bars and 5 μm spacing offers
the best compromise at OFMs of 98 μT for positive current
and 50 μT for negative current (refer to Fig. 3(a)) in the DFF.
Whereas for the DC-SFQ under the same grid shield dimensions
produced OFMs of 117 μT and 67 μT for positive and negative
current respectively (see Fig. 3(b)). In comparison, the OFMs
for solid shield covered cells were 86 μT and 50 μT [21] in the
DFF and 113 μT and 59 μT in the DC-SFQ.

The percentage inductance drop for the grid shield with
2.5 μm grid bar width and 5 μm spacing are 8% and 11% for
the DC-SFQ and DFF respectively, as shown in Fig. 4. In com-
parison, the drop is quite high when a top solid shield is used
with 21% in the DC-SFQ and 25% in the DFF. Such high vari-
ations can negatively impact operating margins if redesigning
and optimization are not done. However, the parameter varia-
tions for the grid shield with 2.5 μm grid bar width and 5 μm
spacing showed to have minimal effect on operating margins of
the cells. Another advantage of the grid shield is that the bar
width has been chosen narrow enough so that trapped magnetic
flux, from which originate some noise and digital malfunctions,
cannot occur, unlike for the case of a solid shield. Another ad-
vantage of the grid shield is that the bar width has been chosen
narrow enough so that magnetic flux trapping, from which orig-
inate some noise and digital malfunctions, is unlikely to occur
in the bars or the grid holes (see [23] Section 5.4, pp. 43-45),
unlike for the case of a solid shield.

V. MAGNETIC FIELD TOLERANT DESIGN

Apart from shielding, SFQ circuits can be made more immune
to magnetic fields likely to remain inside shielded cryo-cooled
environments. We investigated the effect of altering selected cir-
cuit parameters, such as Josephson junctions’ critical currents
and inductance values. Schematics, optimised parameter val-
ues and bias margins for the DFF and DC-SFQ are shown in
Figs. 5 and 6, respectively.

Most SFQ cells have shown to recover operation, with broader
OFMs, by adjusting bias currents to compensate for the in-
duced currents from external magnetic fields. This approach is
mostly not practical due to the nature of biasing systems for
SFQ circuits. It is not easy to adjust the bias current for a sin-
gle cell in a large circuit, without affecting the rest. A better
approach is to alter selected circuit parameters. Margin analysis
results of a circuit close to failure Red show what parameters
can be Red altered in order to recover functionality. In Table I,
the Initial OFMs are the ones shown in Fig. 3 for both the
grid (at 5 μm spacing) and the solid (at 0 μm spacing) shields.

Fig. 5. A 5-Josephson junction DFF with parameters: L1 = 1.86 pH,
L2 = 1.59 pH, L3 = 7.73 pH, L4 = 1.5 pH, L5 = 2.13 pH, L6 = 1.3 pH,
L7 = 1.91 pH, J1 = J4 = 200 μA, J2 = J5 = 250 μA, J3 = 150 μA, Ib1 =
230 μA and Ib2 = 135 μA. Optimised bias margins: −53%∼42%.

Fig. 6. A DC-SFQ with parameters: L1 = 0.56 pH, L2 = 0.52 pH, L3 =
1.0 pH, L4 = 4.78 pH, L5 = 2.2 pH, L6 = 4.1 pH, J1 = 225 μA, J2 =
225 μA, J3 = 250 μA, Ib1 = 275 μA and Ib2 = 175 μA. Optimised bias mar-
gins: −56%∼34%.

TABLE I
NEW OPERATING FIELD MARGINS (OFMS) FOR THE DFF AND DC-SFQ AFTER

SELECTED PARAMETERS WERE ALTERED

Cell Initial OFMs Altered Parameters New OFMs

DFF - Grid 98 & 50 μT L5 =2.6 pH 126 & 42 μT
DFF - Solid 86 & 50 μT L5 =2.6 pH 101 & 32 μT

DC-SFQ - Grid 117 & 67 μT L6 =3.5 pH 134 & 67 μT
J1 =200 μA
J3 =275 μA

DC-SFQ - Solid 113 & 59 μT L6 =3.5 pH 123 & 49 μT
J1 =200 μA
J3 =275 μA

OFMs presented for positive & negative currents, respectively.

The New OFMs were calculated after selected parameters
were altered in both cells. In the DFF, only the value of L5 was
changed, while in DC-SFQ, the values of L6 , J1 and J3 were
changed (refer to Figs. 5 and 6 and Table I). Simulations for both
grid and solid shielded DFF and DC-SFQ cells showed improve-
ment in OFMs, especially for positive currents, as summarised in
Table I. With this approach, coupled with good shielding, grid
or solid, SFQ circuits can be made more tolerant to magnetic
fields of specific orientation.

VI. CONCLUSION

A method that can be used to analyse and validate magnetic
shielding for SFQ circuits has been presented. Further, we have
shown the best possible configuration for the grid-patterned
shield for SFQ circuits. The problem with ordinary solid shield is

Stellenbosch University https://scholar.sun.ac.za

BAKOLO et al.: ANALYSIS OF A SHIELDING APPROACH FOR MAGNETIC FIELD TOLERANT SFQ CIRCUITS 1301305

that it greatly reduces the values of circuit inductance and further
optimisation is always required to recover circuit operation. We
have shown that a grid-patterned shield with 2.5 μm grid bar
width and spacing of 5 μm offers good shielding and affects
the circuit inductance less. It has also been shown that SFQ
circuits fail at different levels of external fields due to varying
orientations of external magnetic fields. As such, shielding has
to be made with the most critical orientation in mind. We have
further shown that selected circuit parameters can be altered to
make SFQ circuits more tolerant to external magnetic fields.

ACKNOWLEDGEMENTS

The authors would like to thank Ruben van Staden for the
assistance rendered in validating the grid shields with Magix.

REFERENCES

[1] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A new
josephson-junction technology for sub-terahertz-clock-frequency digi-
tal systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1, pp. 3–28,
Mar. 1991.

[2] R. Collot, P. Febvre, J. Kunert, and H. Meyer, “Operation of low-Tc circuits
in a magnetic environment,” IEEE Trans. Appl. Supercond., vol. 23, no. 3,
Jun. 2013, Art. no. 1700404.

[3] M. Suzuki, M. Maezawa, and F. Hirayama, “Effects of magnetic fields
induced by bias currents on operation of RSFQ circuits,” Physica C,
Supercond., vol. 412–414, pp. 1576–1579, 2004.

[4] H. Terai, Y. Kameda, S. Yorozu, A. Fujimaki, and Z. Wang, “The effects of
dc bias current in large-scale SFQ circuits,” IEEE Trans. Appl. Supercond.,
vol. 13, no. 2, pp. 502–506, Jun. 2003.

[5] E. Tolkacheva, H. Engseth, I. Kataeva, and A. Kidiyarova-Shevchenko,
“Influence of the bias supply lines on the performance of RSFQ circuits,”
IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 276–279, Jun. 2005.

[6] Y. Mizugaki, R. Kashiwa, M. Moriya, K. Usami, and T. Kobayashi,
“Grounding positions of superconducting layer for effective magnetic
isolation in josephson integrated circuits,” J. Appl. Phys., vol. 101, no. 11,
2007, Art. no. 114509.

[7] Y. Mizugaki and R. Kashiwa, “Magnetic shielding effect of grounded
superconducting niobium layers,” J. Phys., Conf. Series, vol. 97, no. 1,
2008, Art. no. 012056.

[8] Y. Mizugaki, R. Kashiwa, A. Kawai, M. Moriya, K. Usami, and T.
Kobayashi, “Magnetic isolation enhanced by a superconducting loop in
josephson integrated circuits,” Jpn. J. Appl. Phys., vol. 48, no. 7R, 2009,
Art. no. 073001.

[9] R. S. Bakolo and C. J. Fourie, “Modelling of the influence of magnetic
fields on the operation of digital superconductive circuits,” in Proc. 2015
15th Int. Supercond. Electron. Conf., 2015, pp. 1–3.

[10] K. H. Carpenter, “Magnetostatic simulations for design of supercon-
ducting magnetic shields,” IEEE Trans. Appl. Supercond., vol. 6, no. 3,
pp. 142–146, Sep. 1996.

[11] L. Gozzelino, R. Gerbaldo, G. Ghigo, F. Laviano, and M. Truccato,
“Comparison of the shielding properties of superconducting and supercon-
ducting/ferromagnetic bi- and multi-layer systems,” J. Supercond. Novel
Magn., pp. 1–8, Aug. 2016.

[12] Hypres, “Niobium integrated circuit fabrication: Design rules rev
24,” Hypres, Tech. Rep., Jan. 11, 2008. [Online]. Available: http://
www.hypres.com

[13] Y. Mizugaki et al., “Magnetic isolation on a superconducting ground
plane,” Jpn. J. Appl. Phys., vol. 38, no. 10R, 1999, Art. no. 5869.

[14] Y. Mizugaki, H. Hakii, M. Moriya, K. Usami, and T. Kobayashi, “Mu-
tual inductance coupled through superconducting thin film in niobium
josephson integrated circuits,” Jpn J. Appl. Phys., vol. 44, no. 6L, 2005,
Art. no. L763.

[15] K. Suzuki, S. Yorozu, Y. Kameda, and K. Tanabe, “Investigation of mag-
netic flux state in nb SFQ circuits by scanning squid microscope,” Physica
C, Supercond. Appl., vol. 445, pp. 1034–1036, 2006.

[16] “Lasi,” Tech. Rep. [Online]. Available: http://www.lasihomesite.com/
[17] “Inductex: Inductex v5.03,” Stellenbosch Univ., Stellenbosch, South

Africa, Tech. Rep., 2016. [Online]. Available: http://www0.sun.ac.za/ix/
[18] C. J. Fourie, O. Wetzstein, J. Kunert, H. Toepfer, and H.-G. Meyer, “Exper-

imentally verified inductance extraction and parameter study for supercon-
ductive integrated circuit wires crossing ground plane holes,” Supercond.
Sci. Technol., vol. 26, no. 1, 2013, Art. no. 015016.

[19] gEDA, “GNU’s general public licence—Electronic design automation,”
Tech. Rep. [Online]. Available: http://www.geda-project.org/

[20] J. E. Fang and T. V. Duzer, “A Josephson integrated circuit SIMulator
(JSIM) for superconductive electronics application,” in Proc. Extended
Abstracts 2nd Int. Supercond. Electron. Conf., 1989, pp. 407–410.

[21] R. S. Bakolo, R. Staden, P. Febvre, and C. J. Fourie, “Modelling mag-
netic fields and shielding efficiency in superconductive integrated circuits,”
J. Supercond. Novel Magn., pp. 1–5, Sep. 2016.

[22] ParaView. [Online]. Available: http://www.paraview.org/
[23] M. Schmelz, “Development of a high sensitive receiver system for transient

electromagnetics,” Univ. Twente, Enschede, The Netherlands, 2014.

Stellenbosch University https://scholar.sun.ac.za

Appendix C

Journal Paper - A Static Timing Analysis tool for RSFQ

and ERSFQ Superconducting Digital Circuit applications

• J. A. Delport and C. J. Fourie, ”A Static Timing Analysis Tool for RSFQ and ERSFQ
Superconducting Digital Circuit Applications,” IEEE Transactions on Applied Supercon-
ductivity, 2018.[24]

SuperSTA is introduced in this paper as a static timing analysis tool for superconducting
circuits. Examples are executed to demonstrate the capabilities and drawbacks fo the tool. All
contributions are my own and copyright for this paper is held by IEEE Transactions on Applied
Superconductivity.

Stellenbosch University https://scholar.sun.ac.za

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 28, NO. 5, AUGUST 2018 1300705

A Static Timing Analysis Tool for RSFQ and ERSFQ
Superconducting Digital Circuit Applications

Johannes A. Delport and Coenrad J. Fourie , Member, IEEE

Abstract—Static timing analysis in the rapid-single-flux-
quantum and energy-efficient RSFQ superconducting digital cir-
cuit domain is yet to be achieved in a generic sense. A static timing
analysis tool is proposed here for preplacement designs as well
as postplaced and routed designs. Preplaced static timing anal-
ysis attempts to find a general gauge for the performance of a
JSIM/SPICE netlist in the absence of information on wiring de-
lays. The postplaced and routed static timing analysis provides a
more accurate analysis of a design in the cadence design exchange
format. This design file should include all the wire lengths as well as
a complete clocking scheme. Results of this postplaced and routed
static timing analysis are then used to determine the maximum
clock speed that the design can be run at to prevent timing vi-
olations. Results for both methods of analysis are presented and
then incorporated in an hardware description language represen-
tation of the design to show that there are no timing violations at
the presented clock speed. We show the implementation of a static
timing analysis method developed as a precursor to the IARPA
SuperTools project, and how it applies to circuits with H-tree and
HL-tree clocking schemes.

Index Terms—SFQ clock frequency, superconducting integrated
circuits, superconducting logic circuits, timing analysis, wiring
delay.

I. INTRODUCTION

S TATIC timing analysis (STA) is a technique that is used to
provide an estimation of the expected timing (and power)

of a digital circuit without the requirement for simulation. The
number of timing paths (input to any output) increases as an
exponential function with respect to the number of logic gates
in the circuit. Therefore, it is impractical to perform a full-chip
simulation at the electrical level. Timing information about a
circuit is a crucial part of the standard cell-based design flow,
and for the analysis of rapid-single-flux quantum (RSFQ)-based
superconducting digital circuits, we split this task in two parts,
namely pre-placed STA and post-place-and-route STA. To en-
sure that the results of the analysis remains accurate, we rely on
the accurately characterized timing information of a standard
cell library.

Previous work has shown that single flux quantum (SFQ) cells
are very different to semiconductor (CMOS) cells in terms of

Manuscript received November 16, 2017; revised January 19, 2018; accepted
March 5, 2018. Date of publication March 14, 2018; date of current version
April 4, 2018. This work was supported by IARPA contract FA8750-15-C-
0203-IARPA-BAA-14-03. (Corresponding author: Johannes A. Delport.)

The authors are with the Stellenbosch University, Stellenbosch 7599, South
Africa (e-mail:,joeydelp@gmail.com; coenrad@sun.ac.za).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASC.2018.2815919

delay and power consumption [1], [2]. For this work, we consid-
ered only RSFQ [3], [4] and energy-efficient RSFQ (ERSFQ)
[5] logic families, for which the differences in STA analysis
compared to CMOS are largely due to the requirement that all
logic cells in these families need to be clocked. This introduces
a challenge in terms of clock tree design that needs to be con-
sidered in the design of the STA tool. Difficulties related to
modeling timing behavior inside SFQ logic cells have already
been outlined earlier [6], [7], especially in terms of the strong
dependence of timing values on circuit parameters such as bias
current, and on dynamic conditions such as the state of a cell and
the state of its neighboring cells. Here we investigate the timing
paths through a design under the assumption that a cell library
has been characterized at the required bias current, and that tim-
ing values are listed as worst-case over all states. In our work,
which assumes a row-based large-scale placement and routing
strategy [8], the timing parameters of a cell are not affected by
the state of a neighboring cell, because all cells are connected
through passive transmission lines. Small resistances in series
with transmission lines prevent flux trapping, but conveniently
also isolate cells from each other.

We apply the same methodology for design analysis to both
pre- and post-placed analysis parts, and present the results in
table form. The hybrid HL-tree clocking scheme [8] is also
analyzed for which a system clock is presented. A conclusion is
presented and future improvements are identified.

II. PRE-PLACED STA

For the pre-placed STA, we use a JSIM [9] or SPICE compati-
ble electrical netlist of a circuit which appears as an intermediate
step in the synthesis process. This netlist contains all the cells,
either as direct implementations, or as subcircuits in the SPICE
format. The netlist is analyzed, and inputs and outputs (IO) are
identified by either supplying these by command, or by letting
the tool identify each algorithmically. Once all IOs are identi-
fied, a breadth-first search (BFS) is run to connect all the input
nodes to all possible outputs. This process identifies all the pos-
sible paths through the design which is then used to calculate
delay. The complexity in the BFS increases exponentially for
every pulse splitter found on the path as this causes a new branch
which eventually becomes a path on its own. For small circuits
this is trivial but as the design increases in size so does the evalu-
ation time needed to identify all the paths. This however remains
vastly superior to physical (electrical) simulation of equal size
designs.

1051-8223 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Stellenbosch University https://scholar.sun.ac.za

1300705 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 28, NO. 5, AUGUST 2018

Fig. 1. Splitter consideration in system clock calculation.

BFS was chosen as the graph traversal algorithm due to
its relative simplicity for implementation. No additional data
structures are required as it only needs to keep track of when the
path splits. Essentially start and ending points are chosen and
the BFS algorithm follows the path from start to end, making
a note of every time a splitter is reached. Once a path has been
found start to end, the algorithm identifies where the last splitter
was found (if any) and follows that path to the end. Once all the
splitters have been exhausted along the path all possible paths
from start to finish have been found for the specified points.
Depth first search traverses a path and each time a splitter is
reached it branches and then continues by visiting one node in
one branch and then one in the other. Results are similar to BFS,
but harder to implement.

Through the aid of the accurately characterized timing infor-
mation in the standard cell library, each logic cell in every path
can be identified and their delays added together. The greatest
delay through the design from any input to any output we then
identify as the critical delay, and the path along which it is cal-
culated is identified as the critical path. By using this critical
delay, we can then identify the preliminary global clock speed
for the design. This is the clock speed at which a result would
be produced at the output in each clock cycle.

Logic gates in RSFQ and ERSFQ logic need to be clocked,
which effectively provides pipelining in every path. If a circuit
is designed for wave-pipelining [10], which has been demon-
strated for RSFQ [11], and paths are balanced with clocked
delay cells, then we can designate the maximum possible sys-
tem clock as that which is needed to successfully shuttle bits
between successive logic gates. To identify the system clock we
need to analyze once more all the paths, but this time identify the
largest gate-to-gate delay considering all the splitters between
gates. Here, clocked delay elements count as gates.

RSFQ/ERSFQ cells have a fan-out of one, so that signal
connection to multiple inputs require a succession of one-to-
two pulse splitters. Fig. 1 illustrates how the system clock can
be influenced by splitter cells that do not need to be clocked.
In Fig. 1(a) a case is depicted where the output signal from a
logic gate only has to traverse one splitter before the next logic
gate. Fig. 1(b) depicts a case where the logic cell has a much
shorter delay, but where the output signal traverses two splitters
before the next logic gate. If these branches are part of the same
system, the system clock has to be 1/14ps to account for the
largest gate-to-gate delay.

III. POST PLACED-AND-ROUTED STA

For post placed-and-routed STA we analyze a file in the Ca-
dence DEF format [12]. The file is generated by the RSFQ
Mapper application [8], developed as part of the same IARPA
project that funded this research. RSFQ Mapper receives a high-
level design (in Verilog HDL or BLIF format) and maps it to
a RSFQ chip. The mapping process is composed of logic syn-
thesis, placement (global and detailed), clock tree synthesis,
and routing steps. The final output of the RSFQ Mapper is a
placed-and-routed netlist in Design Exchange Format (DEF).
To analyze the file, we first identify all the components and nets
(wires) in the design. Thereafter, we connect all the components
through their respective nets. Utilizing the same BFS as in the
pre-placed case, we identify all the paths in the design. Identi-
fying the global clock follows a similar process as before, but
now includes the wire delays as well as via delays that are not
present in the netlist representation. The longest of these de-
lays is again the critical time, which can be used to calculate the
global clock speed. The RSFQ Mapper toolchain can implement
a hybrid clocking scheme, which becomes inherent in the post
placed-and-routed description of a circuit and consequently also
in the calculation of critical paths and delays. This is discussed
in Section IV. Our method estimates a system clock from the
critical path on the assumption that a concurrent or H-tree clock-
ing scheme is used, and by following a similar process as in the
pre-placed method. It is not valid for other clocking schemes.

Our method produces further information regarding the tim-
ing of the design in the form of the slack, total slack, mean path
time, path variance as well as the standard deviation. In the case
of the slack, the user would be required to specify a target time
for the design which would then be compared to the critical
path time. If the target time exceeds the critical time, positive
slack is reported, and the design can be considered as good. If
the target time is less than the critical time, negative slack is
reported, which means that the design is slower than intended.
In the case of negative slack, the value for total slack is also
produced, which is a measure of the total paths that exceed the
target time. This value is an indication of how good the design
is or whether a complete redesign is necessary.

IV. CLOCK SCHEME CONSIDERATIONS

Clock scheme selection for RSFQ-based circuits is not trivial,
and several topologies are possible (for a review, see [6]). In
SFQ circuits, logic cells are synchronous and therefore require
a clock to propagate pulses from the input through the cells.
For the design of the RSFQ Mapper application, research was
done in what the best way would be to clock large designs in
RSFQ [13]. In the research presented here we only account
for concurrent clocking, H-tree clocking and the hybrid HL-
tree clocking found in the final version of the RSFQ Mapper
application.

The H-tree clock can be determined if it is assumed that
every gate would be a leaf to a balanced H-tree and would thus
receive its clock at the same time. This makes the calculation
of the clock purely the depth of the H-tree as a measure of the
total delay accrued through all the clock splitters on its path.
However, the method fails if any branch of the H-tree network

Stellenbosch University https://scholar.sun.ac.za

DELPORT AND FOURIE: STATIC TIMING ANALYSIS TOOL FOR RSFQ AND ERSFQ SUPERCONDUCTING DIGITAL CIRCUIT APPLICATIONS 1300705

Fig. 2. HL-tree clocking scheme.

is unbalanced, so that a more general solution is required. We
assume that minor imperfections and randomness in component
values would not affect the timing in such a way that unbalance
in the clock would appear.

The HL-tree clocking scheme is depicted in Fig. 2. It is ev-
ident that a pure H-tree network is simply an HL-tree network
with exactly one leaf to each branch. The aim with the HL-
tree network is to have a balanced H-tree up to a point, after
which gates (that may be dependent on the output of its near-
est neighbor, but not necessarily so) are stacked in a row and
clocked concurrently. To calculate the HL-tree system clock
we reconstruct the clock paths found in the DEF file and iden-
tify the minimum clock depth between an arbitrary clock input
(GCLK_IN in Fig. 2) and the first logic gate. This is denoted as
Ttree min shown in Fig. 2. The system clock is then identified as
the longest delay through concurrent splitters and a logic gate
minus Ttree min.

This method inherently supports an unbalanced clock tree.

V. RESULTS AND CONSIDERATIONS

We developed an STA tool to implement the methods dis-
cussed above. This tool, SuperSTA, is demonstrated on a 16-bit
Kogge-Stone adder (KSA) that was synthesized with RSFQ
Mapper. STA is analysed for both pre-placed and for post-
placed-and-routed versions.

The STA output for the 16-bit Kogge-Stone adder netlist,
before placing and routing, is shown in Fig. 3.

As seen in Fig. 3, the results from a netlist produces no clock
speed as this would not be an accurate result due to the lack
of wiring delays. This intermediate step application is useful to
gauge whether the circuit would even come close to the target
time before doing a complete place and route–it is also important
to note that the critical time is calculated from the clock-to-out
delay of every logic gate. It can therefore be seen as an early
assessment of the design. The design is then placed and routed,
after which it is analyzed with the STA tool again, now with full
information on actual signal wire lengths. The results of this
analysis are shown in Fig. 4.

It is clear from the critical path time how large an influence
the wiring and via delays have on the maximum clock frequency

Fig. 3. STA extraction results for a 16-bit Kogge-Stone adder read from
a netlist.

Fig. 4. STA extraction results for a placed-and-routed 16-bit Kogge-Stone
adder.

of the circuit. The circuit design, which was not optimized for
switching speed, reduced from an estimated 8.46 GHz from the
pre-placed and unrouted netlist down to a mere 1.8 GHz system
(global) clock. This shows the potential of the STA analysis
presented here to yield information on clock speed reduction

Stellenbosch University https://scholar.sun.ac.za

1300705 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 28, NO. 5, AUGUST 2018

Fig. 5. Verilog simulation results of a 4-bit KSA at 19.6 GHz, with correct
output.

after automated place and route procedures, and to assist with
clock speed optimization.

Furthermore, due to the design utilizing the HL-tree clocking
scheme, the results include HL-tree information. The measure of
slack indicates that the design is slower than initially intended.
From slightly positive in the netlist case, it reduces to negative
in the placed-and-routed case, with a total slack for the latter
that indicates that majority of the paths are slower than the target
time. Such a result indicates that reconsideration or redesign is
needed.

As another demonstration, consider a 4-bit Kogge-Stone
adder subjected to the same process. Here we compare the
results of the STA to that of an HDL simulation. The HDL
simulation includes all the wire delays, as it is a gate level de-
scription of the post-placed and routed 4-bit KSA. SuperSTA
identifies the resulting HL-tree clock as 19.72 GHz or rather a
clock pulse every 50.7 ps. We then adjust the clock speed for
the HDL design accordingly and compare results.

From Fig. 5 we can see that at 19.60 GHz the design still
produces the correct results. It is important to note that we use
event-based logic for HDL simulation, which implies that at
every level change in the simulation indicates the occurrence
of a pulse (event). It is also important to note that the critical
path depth of the 4-bit KSA is 6 clocked gates, which means
that the result to a sum of two parallel-input 4-bit words will
only be shown after 6 clock pulses. The design was then over-
clocked to attempt to find the maximum clock before the output
produced critical timing violations. This maximum overclock
was achieved at 19.72 GHz for the input words shown in Fig. 5,
which is exactly the limit suggested by SuperSTA. It is impor-
tant to note that every possible input vector was probed, and
though some did not produce critical timing violations at the
suggested limit, the purpose of the STA tool is to identify the
maximum clock at which violations will occur for any input. A
SPICE simulation for the 4-bit KSA is shown in Fig. 6 with the
maximum clock also set at 19.6 GHz. The correct output is still
produced at this frequency, but pulse repulsion occurs above
this frequency. This produces incorrect output and thus further
verifies the critical clock timing presented by SuperSTA.

Table I shows the solution times for problems of increasing
size. It can clearly be seen that as the possible paths increase
so does the time to solution. The first two entries are pre-
placed netlist designs and are easier to analyze. Solutions

Fig. 6. SPICE simulation of the 4-bit KSA at 19.6 GHz, with correct output.

for post-placed designs are harder to analyze as they require
reconstruction to netlist form and also include additional cal-
culation time for transmission lines and vias. The time it takes
to calculate the large problems is still very reasonable, so that
a simulation could easily be rerun if changes are needed in the
design. Furthermore, the execution of a SPICE version of the

Stellenbosch University https://scholar.sun.ac.za

DELPORT AND FOURIE: STATIC TIMING ANALYSIS TOOL FOR RSFQ AND ERSFQ SUPERCONDUCTING DIGITAL CIRCUIT APPLICATIONS 1300705

TABLE 1
TIME-TO-SOLUTION AND DESIGN SIZE COMPARISON

Design Possible Paths Solution time (s)

SuperSTA HDL

KS4 netlist 47 0.0367246 -
KS16 netlist 610 0.0659592 -
KSA4 routed 61 0.0553873 0.1819739
KSA8 routed 197 0.1258301 0.2733722
KSA16 routed 693 0.6152803 1.6130728
KSA32 routed 2589 4.2927526 6.8411896

4bit KSA runs a total of 45.22s in JSIM on a modern quad-core
computer, so that it becomes impractical for larger circuits to
run multiple JSIM simulations for detecting timing violations.

VI. CONCLUSION

A static timing analysis tool was proposed for the supercon-
ducting circuit design domain, which could speed up the design
and redesign of large scale designs without the need for phys-
ical simulation. Though not generally applicable to all design
methodologies in superconducting circuit design, the results
produced in the test cases satisfy the general concept of STA
and would suffice as a proof of concept tool.

We also demonstrated through HDL simulations that the STA
tool, in finding the worst-case safe timing, does not overestimate
the maximum clock speed.

Although not specifically discussed in the text, it is possible
to include jitter caused by thermal noise or timing changes due
to parameter variations as worst-case values added to the delay
times of every gate. The STA tool would then find the associated
worst-case delay value.

Importantly, it is now possible to verify quickly if a syn-
thesized, placed-and-routed circuit fares better or worse than
another instantiation in terms of maximum clock speed, which
is an important requirement for clock speed optimization.

Future considerations are the inclusion of multiple clock-
ing schemes as well as a more generally used place-and-route
format.

ACKNOWLEDGMENT

The authors would like to thank M. Pedram, N. Katam,
S. Shahsavani, and T.-R. Lin (University of Southern

California) for helpful discussions and for synthesized versions
of the Kogge-Stone adders used here, as well as Lieze Schindler
(Stellenbosch University) for her contribution of the HDL sim-
ulation data for the Kogge-Stone adder.

REFERENCES

[1] S. Yorozu, Y. Kameda, H. Terai, A. Fujimaki, T. Yamada, and S. Tahara,
“A single flux quantum standard logic cell library,” Physica C, Supercond.,
vols. 378–381, pp. 1471–1474, 2002.

[2] H. Akaike et al., “Design of single flux quantum cells for a 10-Nb-layer
process,” Physica C, Supercond., vol. 469, pp. 1670–1673, 2009.

[3] K. K. Likharev, O. A. Mukhanov, and V. K. Semenov, “Ultimate perfor-
mance of RSFQ logic circuits,” IEEE Trans. Magn., vol. MAG-23, no. 2,
pp. 759–762, Mar. 1987.

[4] K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A new
Josephson-junction technology for sub-terahertz-clock-frequency digi-
tal systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 2, pp. 3–28,
Mar. 1991.

[5] D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, “Zero static power
dissipation biasing of RSFQ circuits,” IEEE Trans. Appl. Supercond.,
vol. 21, no. 3, pp. 776–779, Jun. 2011.

[6] K. Gaj, E. Friedman, and M. J. Feldman, “Timing of multi-gigahertz
rapid single flux quantum digital circuits,” J. VLSI Signal Process., vol. 9,
pp. 247–276, 1997.

[7] S. Intiso, I. Kataeva, E. Tolkacheva, H. Engseth, K. Platov, and
A. Kidiyarova-Schevchenko, “Time-delay optimization of RSFQ cells,”
IEEE Trans. Appl. Supercond., vol. 15, no. 2, pp. 328–331, Jun. 2005.

[8] S. N. Shahsavani, T.-R. Lin, A. Shafaei, C. J. Fourie, and M. Pedram,
“An integrated row-based cell placement an interconnect synthesis tool
for large SFQ logic circuits,” IEEE Trans. Appl. Supercond., vol. 27, no. 4,
Jun. 2017, Art. no. 1302008.

[9] E. S. Fang and T. Van Duzer, “A Josephson integrated ciruit simulator
(JSIM) for superconductive electronic applications,” in Proc. Ext. Abs.
Int. Supercond. Electron. Conf., Tokyo, 1989, pp. 407–410.

[10] W. P. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-pipelining: A
tutorial and research survey,” IEEE Trans. Very Large Scale Integr. Syst.,
vol. 6, no. 3, pp. 464–474, Sep. 1998.

[11] T. Filippov, M. Dorojevets, A. Sahu, A. Kirichenko, C. Ayala, and
O. Mukhanov, “8-Bit asynchronous wave-pipelined RSFQ arithmetic-
logic unit,” IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 847–851,
Jun. 2011.

[12] Cadence, “LEF/DEF language reference - international sympo-
sium on physical design,” 7 Nov 2009. [Online]. Available:
www.ispd.cc/contests/14/web/doc/lefdefref.pdf, Accessed on: 25 May,
2017.

[13] N. Katam, A. Shafaei, and M. Pedram, “Design of multiple fanout clock
distribution network for rapid single flux quantum technology,” in Proc.
2017 22nd Asia South Pacific Des. Autom. Conf., 2017, pp. 384–389.

Authors’ biographies not available at the time of publication.

Stellenbosch University https://scholar.sun.ac.za

Appendix D

Journal Paper - JoSIM – Superconductor SPICE Simula-

tor

• J. A. Delport, K. Jackman, P. le Roux, and C. J. Fourie, ”JoSIM - Superconductor SPICE
Simulator,” IEEE Transactions on Applied Superconductivity, 2019. [25]

In this paper we introduce JoSIM simulator for superconducting circuits. The development
decisions are discussed and comparisons are made to existing simulators. All contributions to
this paper are my own.

Stellenbosch University https://scholar.sun.ac.za

4EOR2B-06 1

JoSIM – Superconductor SPICE Simulator
Johannes A. Delport, Student Member, IEEE, Kyle Jackman,Paul le Roux Student Member, IEEE,

and Coenrad J. Fourie, Senior Member, IEEE

Abstract—We present JoSIM, a SPICE based circuit simulator
that utilizes the modified nodal voltage analysis method and
trapezoidal integration to solve systems of linear equations. The
objective of JoSIM is to provide accurate simulation results with
major improvements in terms of simulation speed and expand-
ability. JoSIM is written in such a way that optimization engines
can be directly written into the source as functions. JoSIM
incorporates the ability to do phase-based simulation through a
modified nodal phase analysis method. A full data visualization
GUI, built using open-source graphical libraries, is included. We
show the results of simulations with JoSIM and compare them to
the results of JSIM, as well as comparisons between simulation
times. We also show extremely large simulations which are not
realizable in reasonable time using JSIM. The software tool is
packaged and presented as part of a US government funded
project.

Index Terms—Circuit analysis, Circuit simulation, Josephson
junctions, SPICE, Superconducting integrated circuits

I. INTRODUCTION

SPICE simulation in superconductivity is a rather niche
field due to the complexity of the Josephson junction (JJ)

element and the non-linearities created by it. Most simulators
rely on approximations such as the resistively and capacitive
shunted junction (RCSJ) to model the tunnel current effect of
the JJ [1]. Regardless of being approximations, the modelled
effect is suitable for simulation purpose and near enough to
practical results to be acceptable in most cases. The closest
approximation to the Josephson junction that models the
Josephson effect most accurately was done by Werthamer
in 1966 [2]. This approximation though has not seen exact
implementation in a general simulation engine, with the closest
being the microscopic tunnel junction (MTJ) in the personal
superconductor circuit analyser (PSCAN) [3].

The first documented case of an attempt at the Josephson
effect in SPICE was by Jewett at University of California
Berkeley in 1982 [4]. The JJ model was added to the existing
SPICE 2G5 and allowed the user to choose one of 3 types of
quasiparticle resistances (Rtype). This method was however
rather slow due to the numerical method used by SPICE for
accurate simulation of transistor type devices. The SPICE 2G5
with the implementation of the JJ was named JSPICE.

WRspice is a SPICE engine developed by Whiteley Re-
search Incorporated in Sunnyvale, CA. Until October of 2017

The research is based upon work supported by the Office of the Director
of National Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), via the U.S. Army Research Office grant W911NF-17-1-
0120.

J. Delport (jdelport@sun.ac.za), K. Jackman (kjackman@sun.ac.za), P.
le Roux (17500966@sun.ac.za) and C. Fourie (coenrad@sun.ac.za) are all
with the Department of Electrical and Electronic Engineering, Stellenbosch
University, Stellenbosch, WC, 7600 South Africa.

Manuscript received October 30, 2018.

it was a commercial SPICE engine and part of a toolset called
XicTools, which included the layout package Xic. Develop-
ment started as a project to rewrite JSPICE3 in C++ while
maintaining full compatibility for older SPICE simulators.

Josephson simulator (JSIM) [5] developed by Fang and Van
Duzer in 1989 is a SPICE simulator dedicated to simulation
of JJs and does not support any semiconductor devices. The
simulator is very light weight due to the need to only support a
few components. JSIM makes use of nodal analysis to compute
solutions of large matrices.

In this paper we present JoSIM, a Josephson junction SPICE
simulation engine for transient analysis akin to JSIM and WR-
spice written in modern C++ with emphasis on extendibility
while remaining focused on superconductive circuit elements.

We compare JoSIM to JSIM and WRspice in terms of
accuracy of the JJ model and execution speed of various size
simulations. We discuss the design philosophy involved and
introduce the ability to perform phase-based simulations and
discuss the potential of using phase to improve simulation
speed and memory usage for large simulations.

II. MODIFIED NODAL ANALYSIS

A. Voltage

When attempting to solve a set of linear equations to find
the voltage at every node as in the modified nodal analysis
(MNA) [6], we need to first decide on an integration method
that would approximate the current or voltage of non-linear
components. The most basic of these methods is simply the
backward Euler methods, which interpolates the value based
on the next or previous value. This method is however a first
order method which does not model the behaviour accurately
enough and is prone to cumulative error. We therefore opt to
use a second order method such as the trapezoidal integration
method. Trapezoidal integration method can be defined as

dy

dt n
=

2

hn
(yn − yn−1) − dy

dt n−1
(1)

where n is the iteration count and hn the current time step
in the transient analysis. This integration method is suitably
accurate in most cases but does however still produce spikes
when a rapid change in y occurs.

JoSIM programmatically creates component matrices using
generic MNA stamps for the component type. We demonstrate
the creation of these generic MNA stamps through an inductor
as example.

v = L
di

dt
(2)

Stellenbosch University https://scholar.sun.ac.za

4EOR2B-06 2

If we apply the equation in (1) to (2) we obtain an equation
for the inductor voltage that is dependent on the previous time
step current and voltage.

Vn − 2L

hn
In = −2L

hn
In−1 − Vn−1 (3)

Where (3) can be written in general matrix form as



0 0 1
0 0 −1
1 −1 − 2L

hn





V +

V −

I


 =




0
0

− 2L
hn
In−1 − Vn−1




This general matrix form is used to solve the Ax = b linear
algebra problem in circuit simulation.

The MNA stamp used for the JJ coincides with the matrix
found in JSIM, which relies on a second order guess of the
phase for the next time step.




1
R + 2C

hn
− 1
R − 2C

hn
0

− 1
R − 2C

hn

1
R + 2C

hn
0

−hn

2
2e
h̄

hn

2
2e
h̄ 1





V +

V −

φ


 =




Is
−Is

φn−1 + hn

2
2e
h̄ Vn−1




where the phase node φ is a virtual node not connected
physically in the circuit and e and are the electron charge
and Plancks constant respectively.

Is = −Ic sinφ0 +
2C

hn
Vn−1 + CV̇n−1 (4)

with

φ0
n = φn−1 +

hn
2

2e

h̄

(
Vn−1 + v0

n

)
(5)

and
v0
n = Vn−1 + hnV̇n−1 (6)

B. Phase

PSCAN first introduced in 1991 utilized a similar method
of computing the phase as standard variables, however this
tool was practically unobtainable until s recent re-release by
Shevchenko, written in Python, made it open-source. The
tool utilizes its own unique input language, SFQHDL, which
allows the self-verification of circuit results using the built-in
optimization engine.

The JJ being is a phase-based element, therefore the direct
calculation of the phase is more practical. What phase mode
analysis presents is a direct relation between voltage and phase
which can be substituted into any voltage dependent equation.
The act of derivation implies extraction of information from a
source and thus retaining data that is less informative than the
original. This is evident through constant derivation of voltage
to obtain phase an accumulation of error is observed.

It therefore becomes sensible to perform the entire transient
analysis in phase since each component affects the phase of the
entire circuit. We have already established a MNA system that
handles the calculation of voltage and current in a circuit thus
it would be sensible to simply adapt this method to calculate
phase.

To start this process we substitute Josephson voltage-phase
relation [7] in (7) into every component equation and reduce
it to find a modified nodal phase analysis (MNPA) matrix.

v =
Φ0

2π

dφ

dt
(7)

We once again demonstrate this using the inductor as example.

Φ0

2π

dφ

dt
= L

di

dt
(8)

φn − 2πL

Φ0
In = 0 (9)

which leads to the MNPA stamp



0 0 1
0 0 −1
1 −1 − 2πL

Φ0





φ+

φ−

I


 =




0
0
0




Utilizing phase no longer depends on the previous time step
values for inductors, which reduces overall complexity since
superconducting circuits are largely inductive.

The JJ MNPA stamp remains mostly the same with simply
the role of the voltage and phase swapped. This means that
the phase is now connected, and the voltage becomes a virtual
non-connected node.




0 0 1
R + 2C

hn

0 0 − 1
R − 2C

hn

1 −1 −hn

2
2e
h̄





φ+

φ−

V


 =




Is
−Is

φn−1 + hn

2
2e
h̄ Vn−1




The phase for the next time step remains the same second
order guess which utilizes a guess voltage.

Direct calculation of the phase allows the addition of DC
external magnetic field through mutual coupling with all the
inductors in the circuit. This is a rather important feature in low
temperature superconductivity due to the high susceptibility
to external fields which was not possible using voltage-based
methods [8].

III. FEATURES AND TEST METHODOLOGY

A. Features

JoSIM is written to accommodate standard SPICE syntax
as well as the syntax utilized by JSIM. This allows the results
of simulations to be quite easily compared with that of JSIM
and WRspice. Apart from the capability to perform phase-
based simulations, JoSIM allows alpha-numeric node numbers
in the SPICE netlist.

The inclusion of an expression parsing algorithm based
on Dijkstras shunting yard [9], which allows the creation of
variables within the SPICE netlist which can be used to scale,
compute or parameterize component values within the netlist.

JoSIM allows the output of result vectors in various ways
including space- or comma-separated files. A key feature that
is provided with JoSIM is the ability to plot the result vectors
through either the cross-platform FLTK graphical library or the
Python based matplotlib interface. The latter which provides
the ability to scale, label and save the results as publication
grade figures.

Stellenbosch University https://scholar.sun.ac.za

4EOR2B-06 3

2 0 2
Voltage(V) 1e 2

2

1

0

1

2

Cu
rre

nt
(A

)

1e 4

a)
rtype=0
rtype=1

4 2 0 2 4
Voltage(V) 1e 3

2

1

0

1

2

Cu
rre

nt
(A

)

1e 4

b)
WRspice
JSIM
JoSIM

Fig. 1. a) JoSIM Rtype=0 and Rtype=1 I-V curves. b) JoSIM, JSIM and
WRspice Rtype=1 I-V curves.

B. Test Methodology

We compare the quasiparticle resistance model used in
JoSIM to the others. This is done by comparing the I-V curves
which are generated by steadily ramping up the input current
of a JJ and keeping it constant and averaging the voltage across
the junction once stabilized. The current is incremented and
the process is repeated until the input current reaches some
large value whereafter the current is swept through zero to
the negative peak and back to zero. Plotting these averaged
voltage values against the current produces the I-V curve of
the junction.

The only quasiparticle resistance models (Rtype) that are
implemented in JoSIM at present is the unshunted (Rtype=0)
and PWL resistance model (Rtype=1). This is similar to that
found in JSIM, where WRspice has an exponentially derived
resistance curve (Rtype=2), a fifth order polynomial expansion
(Rtype=3) and a temperature variation model (Rtype=4) con-
trolled by a specified current source. The models implemented
by WRspice are scheduled for incorporation into JoSIM in the
near future.

Additional tests are performed which benchmark the speed
and simulation size capabilities of JoSIM compared to others.
These benchmarks include a basic Josephson transmission line
(JTL), a 4-bit Kogge-Stone Adder (4-bit KSA) and various
large simulations created by stringing together JTLs up to a
total of 10,000 JJs.

IV. RESULTS

A. I-V Curves

The first test involving the I-V curves of the JJ in JoSIM
is presented in Figure 1 a. The comparison between the I-V
curve of JoSIM, JSIM and WRspice can be seen in Figure 1
b. Since the JJ model used in JoSIM matches the one found
in WRspice they are very close with the difference forming
as a result of the way JoSIM approximates the voltage guess
for the next time step.

The model used in JSIM differs to JoSIM and WRspice in
the way the transitional current and conductance is calculated.
JSIM approximates a transition conductance as the slope
between the sub-gap and normal resistances for the gap voltage
spread region (∆V). Based on where the voltage is guessed
to be in the next time step, the A matrix is adjusted using
either sub-gap, transition or normal conductance. During the

0.0000

0.0005

Vo
lta

ge
(V

) VIN

0.0000

0.0002

Cu
rre

nt
(A

) ROUT

0

5

10

Ph
as

e(
ra

ds
) B01

0.0 0.2 0.4 0.6 0.8 1.0
Time(s) 1e 9

0

5

10

Ph
as

e(
ra

ds
) B02

Fig. 2. Josephson transmission line (JTL) simulation using JoSIM.

transitional state, two regions are defined namely Vgap + ∆V
and Vgap+2∆V . When in the first region a constant current is
added to the b matrix entry for the junction, where a varying
current is added during the second region.

This model differs quite significantly from the one used in
JoSIM and WRspice, where a single region ∆V is defined
surrounding the gap voltage. The transition conductance is
calculated using the critical current, ∆V and a ratio of critical
to gap current (typically π/4). Similar to JSIM the A matrix is
adjusted with the transitional conductance when entering the
transition region, however the current with which the b matrix
entry is adjusted differs and is continually added even when
entering the normal resistive state.

This difference in RCSJ model implementation is what
causes the normal region of WRspice and JoSIM to differ
slightly when compared to JSIM. The WRspice/JoSIM JJ
model provides a better match to measured I-V curves for
processes such as MITLL.

B. JTL

The example tested using JoSIM is the basic JTL and is
seen in Figure 2. We further compare these results to the same
simulation performed using JSIM as well as WRspice and plot
the percentage difference between the junction output phases.
The results of this comparison can be observed in Figure 3.
The difference percentage scale is expressed in logarithmic
form for greater clarity.

C. Execution Speed

The execution speed and simulation size capabilities of
JoSIM were tested and compared to that of JSIM and WR-
spice. The results of these simulations are shown in Table I.

D. Phase Simulations

When performing phase-based simulations the phase of each
node in the circuit is calculated. This method was implemented

Stellenbosch University https://scholar.sun.ac.za

4EOR2B-06 4

10 6

10 4

10 2

100

Di
ffe

re
nc

e
(%

)

JoSIM/JSIM absolute difference

0.0 0.2 0.4 0.6 0.8 1.0
Time (s) 1e 9

10 7

10 5

10 3

10 1

101

Di
ffe

re
nc

e
(%

)

JoSIM/WRspice absolute difference

Fig. 3. JTL phase difference of JoSIM vs JSIM and WRspice.

TABLE I
COMPARISON OF SIMULATOR EXECUTION SPEEDS

Simulation Execution Times(s)
JJ Count JSIM WRspice JoSIM

Basic JTL 2 0.06 0.219 0.139
400 simulation I-V curve 400 60.5 56 54.87

4-bit KSA 2,095 73.9 DNF 23.49
General Partial Products 3,904 93 64 20.9

3,000 JTL string 6,006 276 159 91.88
4,000 JTL string 8,006 >3,600 232.7 130.87
5,000 JTL string 10,006 DNF 263.8 169.81

0.0

2.5

5.0

Cu
rre

nt
(A

)

1e 4
IA

0

5

10

Ph
as

e(
ra

ds
) Node 1

0

10

20

Ph
as

e(
ra

ds
) Node 2

0.0 0.2 0.4 0.6 0.8 1.0
Time(s) 1e 9

0

10

20

Ph
as

e(
ra

ds
) Node 3

Fig. 4. Nodal phase analysis of a DC to SFQ connected to JTL with resistor
termination.

in JoSIM in such a way that no alterations need be made to
a circuit netlist to allow for phase-based analysis. We plot the
results of the nodal phases of a DC to SFQ converter connected
to a JTL and terminated using a resistor in Figure 4.

V. CONCLUSION

A superconducting circuit simulator JoSIM was demon-
strated to have superior execution speed while maintaining

accuracy. Voltage- and phase-based analysis methods were
discussed in detail with demonstrations of each. The simulator
was compared to popular existing alternatives as well as
percentage difference measured.

JoSIM has been proven to be a reliable new superconducting
circuit simulator with clear advantages in simulation speed as
well as compatibility with multiple formats. Advanced features
such as the capability to do both phase and voltage analysis,
parameterize circuit netlists through expressions as well as
natively plotting outputs and saving them in a variety of
formats.

Development on this simulator will continue with efforts
to introduce parallel processing in certain regions to further
improve performance on large circuits being investigated.
Additional RCSJ models will are being considered for future
releases along with the elusive microscopic tunnel junction
[10].

Additional improvements planned for future implementation
include the addition of noise to simulations as well as the
modulation of temperature locally on a per component base,
as well as globally across the circuit. Development can be
tracked through the JoSIM open-source online repository [11].

REFERENCES

[1] B. D. Josephson, “Possible new effects in superconducting tunneling,”
Phys. Lett., 1962.

[2] N. R. Werthamer, “Nonlinear self-coupling of josephson radiation in
superconducting tunnel junctions,” Phys. Rev., 1966.

[3] S. V. Polonsky, V. K. Semenov, and P. N. Shevchenko, “PSCAN: Personal
superconductor circuit analyser,” Supercond. Sci. Technol., 1991.

[4] R. Jewett, “Josephson junctions in SPICE 2G5,” University of California
Berkeley, 1982.

[5] E. S. Fang and T. Van Duzer, “A Josephson integrated circuit simulator
(JSIM) for superconductive electronics application, Ext. Abstr. 2nd Int.
Supercond. Electron. Conf., 1989.

[6] U. V. Wali, R. N. Pal, and B. Chatterjee, “On the Modified Nodal
Approach to Network Analysis, Proc. IEEE, 1985.

[7] K. A. Delin and T. P. Orlando, “Foundations of Applied Superconductiv-
ity, Addison-Wesley Publishing Company, 1991, p. 406.

[8] K. Jackman and C. J. Fourie, “Software tools for for flux trapping and
magnetic field analysis in superconducting circuits,” IEEE Trans. Appl.
Supercond., Submitted for publication.

[9] E. W. Dijkstra, “Algol-60 Translation,” 1961
[10] H. Kratz and W. Jutzi, “Microscopic simulation model of Josephson

junctions for standard circuit analysis programs, IEEE Trans. Magn., vol.
23, no. 2, pp. 731, Mar. 1987.

[11] J. A. Delport, (2018, Oct 18) “JoSIM: Superconducting Circuit Simu-
lator,” [Online]. Available: https://github.com/JoeyDelp/JoSIM.

Stellenbosch University https://scholar.sun.ac.za

Appendix E

JoSIM - User Manual

Stellenbosch University https://scholar.sun.ac.za

JoSIM - Superconducting Circuit Simulator

Developers Manual
v2.1

Johannes A. Delport

Stellenbosch University
South Africa

November 20, 2018

Stellenbosch University https://scholar.sun.ac.za

Copyright c© 2017-2018 by Johannes Delport

Permission is granted to anyone to make or distribute verbatim copies of this
document as received, in any medium, provided that the copyright notice and the
permission notice are preserved, and that the distributor grants the recipient
permission for further redistribution as permitted by this notice

Linux is a registered trademark of Linus Torvalds.

Windows is a registered trademark of Microsoft Corporation.

macOS is a registered trademark of Apple, Inc.

All trademarks are the property of their respective owners.

Stellenbosch University https://scholar.sun.ac.za

Contents

1 Introduction and setup 1
1.1 Introduction . 1
1.2 Initial setup . 1
1.3 License . 2
1.4 Building from source . 2

1.4.1 UNIX . 2
1.4.2 Windows . 4

2 Technical discussion 5
2.1 Modified nodal analysis . 5
2.2 Trapezoidal integration . 5
2.3 LU decomposition . 7
2.4 Data structures & speed considerations 7
2.5 FLTK . 8
2.6 Matplotlib . 8
2.7 Modified nodal phase analysis . 8

3 Input files 10
3.1 JSIM Notation . 10
3.2 WRSpice Notation . 10
3.3 Subcircuit Convention . 10

4 Command line arguments/switches 11

5 Output 12
5.1 Comma seperated value . 12
5.2 Space seperated value . 12
5.3 GUI plotting window . 12

6 Examples 13

7 Error handling and exceptions 16

8 Planned improvements 16

Appendices 18

A Component Stamps 18
A.1 Resistor . 18
A.2 Capacitor . 18
A.3 Voltage source . 19
A.4 Current source . 19

Stellenbosch University https://scholar.sun.ac.za

A.5 Josephson junction . 20
A.6 Transmission line . 21
A.7 Mutual Inductance . 22

Stellenbosch University https://scholar.sun.ac.za

1 Introduction and setup

1.1 Introduction

JoSIM was developed under IARPA contract SuperTools(via the U.S. Army Research
Office grant W911NF-17-1-0120). JoSIM is a analogue circuit simulator with SPICE syn-
tax input that has inherent support for the superconducting Josephson junction element.

JoSIM is meant to function as a replacement to the aging simulator JSIM[1]. JoSIM
is written in modern C++ and is fully customizable and extendable to offer support
for improved superconducting elements as well better approximations to the Josephson
effect in superconducting materials.

A .cir or .js file containing a SPICE syntax circuit netlist is provided as input. The cir-
cuit netlist, given appropriate input excitations can then be simulated through transient
analysis. Results of this simulation can be either plotted for quick reference or saved as
either a space delimited (.dat) or a comma separated value (.csv) file.

Fig.1 shows an overview of what JoSIM aims to accomplish. This is much like any
other SPICE deck simulator with the exception that it incorporates native handling of
the Josephson junction.

.cir

.js

.dat

.csv
FLTK GUI

JoSIM

Process
netlist

Build
matrices

Solve
Ax=b

Figure 1: A macro overview of JoSIM

1.2 Initial setup

JoSIM can be found at JoSIM.git from where it can be cloned and compiled for either
UNIX or Windows. Within this repository there will be a CMakeLists.txt which is a
recipe used to compile JoSIM using CMake.

To compile the source a working C++ compiler with support for C++14 is required.
Additionally SuiteSparse linear algebra libraries are required but are provided in the
repository. Git version control software is recommended but is not required to compile
JoSIM. Furthermore, the user has the option to enable additional features for plotting.
These features are disabled by default, but would require either FLTK or Matplotlib
(through Python) and can be enabled/disabled during compilation.

1

Stellenbosch University https://scholar.sun.ac.za

A single executable binary is generated using the CMake recipe and can be placed
anywhere on the system as well as freely redistributed.

1.3 License

JoSIM is governed by the MIT license which is a very permissive license that allows
anyone to redistribute it as well as commercialize it without repercussions. The MIT
license allows use of this software within proprietary software as long as all copies of the
licensed software includes a copy of the MIT license as well as the copyright notice.

1.4 Building from source

1.4.1 UNIX

These instructions were executed on a vanilla install of CentOS 7 Minimal to reduce
oversight in the compilation instructions created by previous package installs. For other
distributions please use the package manager relevant to the distribution of choice.

1.4.1.1 CentOS 7 Minimal Enviroment Set-up

A working internet connection is required, this might be enabled by default in other
distributions however from Minimal the user would be required to run:

$ sudo ifup <network interface >

Where the network interface can be identified using the ip addr show command.
Once the internet connection is up and running, install git version control software using
the command:

$ sudo yum install git

Thereafter, navigate to a directory where compilation will take place and execute:

$ git clone https :// github.com/JoeyDelp/JoSIM.git

For the minimal install the user would also need to install standard development tools
by executing:

$ sudo yum groupinstall "Development Tools"

This will install the latest version of gcc and make tools available to CentOS 7. Addi-
tionally, CMake 3 will be required to compile this tool properly and would require the
activation of the epel-release repository.

$ sudo yum install epel -release

$ sudo yum install cmake3

The basic version without graphical plotting, requires only a single external library
SuiteSparse. Install it using the command:

$ sudo yum install suitesparse suitesparse -devel

2

Stellenbosch University https://scholar.sun.ac.za

Navigate to the newly cloned/extracted JoSIM directory then run the following com-
mands:

$ mkdir build

$ cd build

$ cmake3 ..

$ make

This will generate a JoSIM executable in the build directory.

1.4.1.2 CentOS 7 Graphical Environment Set-up

JoSIM offers the ability to do visual plotting of the results through either the FLTK
graphical library or the Python based Matplotlib library. The former will require the
installation of the FLTK libraries using the command:

$ sudo yum install mesa -libGL -devel fltk fltk -fluid fltk -

devel

FLTK plotting can be enabled using the cmake flag during the build step in the previous
section:

$ cmake3 -DUSING_FLTK =1 ..

The latter Matplotlib library requires that the Python pip, devel, numpy and matplotlib
be installed using:

$ sudo yum install python -pip python -devel tkinter tk tk-

devel

$ sudo pip install numpy matplotlib

Matplotlib plotting can be enabled using the cmake flag during the build step in the
previous section:

$ cmake3 -DUSING_MATPLOTLIB =1 ..

1.4.1.3 Apple macOS

Apple macOS is very similar to most Unix systems and therefore follows much the
same procedure. The user would clone the repository and install CMake as well as the
necessary libraries as indicated in previous sections. These libraries can be installed
using either Homebrew, Macports or compiled from source using the standard macOS
compilers. Much effort is made in the CMake file for JoSIM to attempt to identify the
location of the required libraries. If the libraries cannot be found then alterations to the
CMake file would need to be made to suit the users unique circumstances.

3

Stellenbosch University https://scholar.sun.ac.za

1.4.2 Windows

A Microsoft Visual Studio solution is provided and can be found in the src folder. This is
by far the easiest way to compile the software under a Microsoft Windows environment.
Simply open the solution and click build (F6) to build either Debug or Release targets
for the software.

There are several configurations that allow for each of the graphical engines as well
as the one without. FLTK static libraries for Windows are distributed with the source
of JoSIM and will allow for the seamless compilation for this configuration.

Python on the other hand will require additional setup by the user. The easiest method
of installing Python and the only one tested for this software is Anaconda Python. Ei-
ther of the two versions 3.6 or 2.7 will work as the software has been tested to work
on both. Version 3.6 is recommended as it boasts improvements to the UI elements of
Matplotlib, which allow additional functionality.

To execute the Python version the following variables will need to be set/created in
the Windows environment:

• PYTHONHOME = Anaconda directory

• QT QPA PLATFORM PLUGIN PATH = %PYTHONHOME%/Library/plugins/platforms

The executables once compiled can be found under bin/win followed by the chosen
configuration.

4

Stellenbosch University https://scholar.sun.ac.za

2 Technical discussion

2.1 Modified nodal analysis

There are many ways to set-up a set of linear equations to solve the voltage or currents
in a circuit. One of the more well known ways is to use nodal analysis which creates
an equation for each node defined in the circuit netlist. This method is the basis on
which the original Berkeley SPICE[2] was built. This method however only calculates
the voltages of every node which makes it difficult to handle components that are voltage
dependent such as inductors and junctions.

This drawback lead to the creation of the modified nodal analysis which is an extension
to the prior with the ability of calculating some of the branch currents in the circuit.[3]
We therefore make use of the MNA to build the set of linear equations within JoSIM
due to the large use of inductors as well as Josephson junctions in superconductivity.

Another useful feature of MNA is the way that every component can be represented
as a sub-matrix we call a stamp. The summation of all the stamps provide us with the
A, x as well as b matrices that are required to solve the linear equations. These stamps
will be discussed further in the following subsection.

2.2 Trapezoidal integration

Much like the nodal analysis mentioned before, there are multiple methods of solving
differential equations with minimal error in a digital system. The most basic method is
the forward Euler method which is a first-order approximation method where the error
is proportional to the step size.[4]. Solving differential equations however produce a local
truncation error which is the difference between the numerical solution and the exact
solution after one step. It can be shown that the local truncation error for the forward
Euler method is proportional to the square of the time step taken which makes this
method less accurate compared to higher order methods.

We focus rather on using the trapezoidal rule for solving the linear equations as this
method becomes increasingly more accurate as the time steps become smaller. The
trapezoidal rule is a second-order method for solving differential equations. We can
express the trapezoidal method as:

(
dx

dt

)

n

=
2

hn
(xn − xn−1) −

(
dx

dt

)

n−1

(1)

In this case the n is the current time step and n− 1 refers to the previous time step. By
using this method to solve differential equations we are able to create generic stamps for
each component that JoSIM can handle.

To demonstrate this method and how a stamp is formed we will show an example of an

5

Stellenbosch University https://scholar.sun.ac.za

inductor. The inductor in Fig.2 has a general equation to determine the voltage across

Figure 2: A basic inductor with current flowing through it

it as:

vL1(t) = L1
di

dt
(2)

When we apply the trapezoidal rule we find (2) can be rewritten as:

vn = L1

[
2

hn
(In − In−1) −

(
di

dt

)

n−1

]
(3)

=
2L1

hn
(In − In−1) − L1

(
di

dt

)

n−1

=
2L1

hn
(In − In−1) − vn−1

∴ In =
hn

2L1
(Vn + Vn−1) + In−1 (4)

∴ hn
2L1

Vn − In = − hn
2L1

Vn−1 + In−1 (5)

Where (5) is the current step voltage and current as a function of the previous step
values. We further expand the (5) by stating that the voltage is the potential across the
two nodes: v = v1 − v2.

hn
2L1

(V1)n − hn
2L1

(V2)n − In = −
(
hn

2L1
V (V1)n−1 −

hn
2L1

(V2)n−1

)
− In−1 (6)

Which we can then write in matrix form as:



0 0 1
0 0 −1

1 −1 −2L1
hn





V1

V2

IL1


 =




0
0

−2L1
hn

(IL1)n−1 − ((V1)n−1 − (V2)n−1)


 (7)

(7) is a generic stamp that we can place into the A matrix which describes the inductor
L1.

We can do the same for a resistor, capacitor, current source, voltage source, Joseph-
son junction and a transmission line. The stamps for each of these components can be
found in Appendix

6

Stellenbosch University https://scholar.sun.ac.za

2.3 LU decomposition

When the A matrix has been set up as detailed in the previous section all that is left
to do is to solve the Ax = b problem using some form of iterative method. We choose
KLU from the SuiteSparse[5] library to accomplish this task.

This requires the A matrix to be in compressed row storage (CRS) format which is
a data structure of 3 vectors. The first of these vectors contains all the non-zero el-
ements in the A matrix. The second contains first a 0 followed the total number of
non-zero elements after each row such that the final entry in the vector is the total num-
ber of non-zero elements. The third vector contains the column index of each non-zero
element. As an example, the following sparse matrix of 5x5




1 0 0 4 0
0 3 2 0 0
0 0 1 0 0
0 4 0 5 0
0 0 0 0 1




would yield a CSR format data structure of

nnz = [1, 4, 3, 2, 1, 4, 5, 1]

rowptr = [0, 2, 4, 5, 7, 8]

colind = [0, 3, 1, 2, 2, 1, 3, 4]

which has a total of 21 elements compared to the 25 required for the original A matrix.
This difference of course becomes much larger the larger the A matrix becomes as well
as the sparser the matrix becomes. Which is almost always the case for electrical type
simulations.

Once in this format we can proceed with the KLU factorization. Due to the MNA
forcing only the RHS to change upon every time step we can easily do the LU decom-
position for the A matrix only once at the beginning of the time loop. Where after the
system is simply solved using with a new RHS upon each iteration.

2.4 Data structures & speed considerations

JoSIM relies heavily on the use of the C++ unordered map data structure which cre-
ates a hash table for quick lookup. This immensely simplifies code legibility as well as
component identification within later stages of the process.

Initially a standard map was used, however this very negatively impacted the speed of
execution of the program and thus alternatives were sought. Ideally the use of unordered
maps are not perfect if speed was the only consideration, however they do provide a good
balance between implementation, speed and debugging.

7

Stellenbosch University https://scholar.sun.ac.za

There is still large room for improvement with regards to parallel processing of spe-
cific stages within the execution, however the largest part of the process (the time loop)
is very loop dependent and therefore cannot be parallel processed. This also limits
the speed improvement to relatively large circuits as the overhead required for thread
delegation slows down the execution on smaller problems.

2.5 FLTK

JSIM lacked the ability to provide direct feedback on the results of the simulation. Un-
less the user had some script to plot the data file that it produced or some third-party
application that could plot the results no clear feedback was received.

With JoSIM we introduce the implementation of the cross-platform C++ GUI library
FLTK[6] which allows the results of the simulation to be instantly plotted in a data
graph window. Though the full extent of the FLTK library has not been explored. The
current implementation acts as a proof-of-concept design.

2.6 Matplotlib

With the complexity of FLTK yet to be explored an additional option for plotting the
results has been provided. This method utilizes a C++ header only that interfaces with
Python to display the results in a Matplotlib window. This method of plotting instantly
allows the user to resize, pan and save the results. File formats include SVG, PNG, EPS
and many more.

Though easy to implement and interpret, the method requires a lot of additional setup
for each individual system and becomes very hard to debug if errors occur. This method
is also limited to only the functionality provided by Matplotlib and alternatives will be
looked at in the future.

2.7 Modified nodal phase analysis

First introduced in version 2.0 of JoSIM, the ability to perform a simulation that calcu-
lates the nodal phase instead of voltage is presented. This new analysis method is named
the modified nodal phase analysis (MNPA) and utilizes the voltage-phase [7] relationship
seen in (8).

v =
Φ0

2π

dφ

dt
(8)

If this relationship is applied to all the component models found in JoSIM we obtain the
MNPA stamps, which allow us to solve the phase directly. As example we demonstrate

8

Stellenbosch University https://scholar.sun.ac.za

this on the inductor equation (2).

Φ0

2π

dφ

dt
= L1

di

dt
(9)

Φ0

2π
φn = L1In (10)

Φ0

2πL1
φ+
n − Φ0

2πL1
φ−n = In (11)

Which is functionally equivalent to the resistor in voltage analysis. The computation
required to solve the phase of an inductor is therefore far less complex than that of solv-
ing the voltage. With superconducting circuits being largely inductive, the use of phase
reduces the overall complexity of the solution which in turn provides faster simulations
and reduced memory usage.

JoSIM has been adapted to allow phase analysis on any design that works with voltage
analysis without requiring alterations to the netlist file. Since the voltage is simply the
scaled time derivative of the phase the voltage can be calculated as a post process if the
user requests it.

Through the implementation of the MNPA method in JoSIM, additional improvements
were introduced such as the objectification of every component at the matrix creation
level that increases efficiency and debugging. This change allows for simplification of
plotting functions since a direct link to the rows of the result matrix for each component
reduces the indexing time required to identify the correct row.

Phase mode simulation can be enabled using the command line switch -a followed by
a 1. If not provided the default for this command is 0, which indicates a voltage mode
simulation will be performed.

9

Stellenbosch University https://scholar.sun.ac.za

3 Input files

Input files follow a SPICE syntax similar to JSIM. This allows for a direct use of the
files that are already executable using JSIM as well as tools that write output files for
use with JSIM.

Each SPICE file (.cir or .js) can be broken into subsections such as comments, sub-
circuits, main circuit and control sections. Each individual line is categorized by the
first character. This is key to the efficiency of the entire tool as that single first charac-
ter defines what the program does with that line as the file is read in line by line.

An example of an input file is given in the example section of this document.

3.1 JSIM Notation

Initially JoSIM only supported JSIM notation and follows a lot of the syntax listed in
the JSIM manual found here. Do note though that not all the syntax in this file is
supported, therefore only use it as a template.

A comprehensive syntax guideline will be compiled in the future as the tool becomes
more stable and all the required features are supported.

3.2 WRSpice Notation

In addition to JSIM, WRSpice syntax support has been partially added in recent releases.
This allows the simulation of .cir files generated using WRCAD XIC. The .param control
card that allows parameterization of component values as well as variable declarations
within netlists has also been added.

Once again not all WRSpice syntax is supported and it is requested that the user work
cautiously until a comprehensie syntax guide is available.

3.3 Subcircuit Convention

A key difference between WRSpice and JSIM is the way that subcircuit declarations
are handled. JSIM includes the name of the subcircuit between the label and the first
node number. Where WRSpice puts this name at the end of the line, after the node
numbers. Due to JoSIM handling nodes as alphanumeric instead of simply numeric, it
becomes incredibly hard to discern between node and subcircuit name. We therefore
include a command argument for convenience that specifies the subcircuit convention.
The default would be 0, meaning JSIM and can be set to 1 for WRSpice. This is done
using the -c 1 command argument. If the user is using JSIM syntax this argument can
be completely omitted.

10

Stellenbosch University https://scholar.sun.ac.za

4 Command line arguments/switches

A full range of the available command switches and their arguments is provided to the
user upon specification of the -h switch.

Figure 3: JoSIM help command menu

Each help menu item is pretty self explanatory and should not require further documen-
tation. These command switches can be placed in any order and can be concatenated
so long as the final command is the input file.

11

Stellenbosch University https://scholar.sun.ac.za

5 Output

5.1 Comma seperated value

The output to a comma separated value format file was chosen due to the large support
therefore and ease of import into third-party tools such as Microsoft Excel. This simpli-
fies the movement, copying and removal of columns from the output file a lot simpler as
well.

5.2 Space seperated value

This is the legacy format that JSIM uses to output it’s results into. We opt to support
this file format due to the large user base of JSIM and the amount of plotting/viewing
tools written around this output format. This output format can also be easily read in
and manipulated by third party tools and we shall therefore keep this option with the
same command switch as JSIM.

5.3 GUI plotting window

The output of results directly into a plotting window that is user viewable improves the
prototyping speed immensely as the user can immediately see whether the output is as
desired or not. Though primitive at present with the lack of any axis or tooltips to show
that the values of each graph are as well as the lack of the ability to resize the graphs
within the window, we will continue to expand on this functionality to eventually have
a user-friendly output window.

12

Stellenbosch University https://scholar.sun.ac.za

6 Examples

Below is an example file that Chains together a DCSFQ, 3 x JTLs and a SINK cell.

1 .SUBCKT JTL 4 5
2 B01 3 7 j j 1 area =2.16
3 B02 6 8 j j 1 area =2.16
4 IB01 0 1 pwl (0 0 5p 280u)
5 L01 4 3 2 .031p
6 L02 3 2 2 .425p
7 L03 2 6 2 .425p
8 L04 6 5 2 .031p
9 LP01 0 7 0.086p

10 LP02 0 8 0.086p
11 LPR01 2 1 0.278p
12 LRB01 7 9 1p
13 LRB02 8 10 1p
14 RB01 9 3 5 .23
15 RB02 10 6 5 .23
16 . model j j 1 j j (rtype=1, vg=2.8mV, cap=0.07pF , r0=160 , rn=16, i c r i t =0.1mA)
17 . ends JTL
18 .SUBCKT DCSFQ 2 17
19 B01 5 3 j j 1 area =1.32
20 B02 5 6 j j 1 area=1
21 B03 9 10 j j 1 area=1.5
22 B04 13 14 j j 1 area =1.96
23 B05 15 16 j j 1 area =1.96
24 IB01 0 8 pwl (0 0 5p 162 .5u)
25 IB02 0 12 pwl (0 0 5p 260u)
26 L01 2 1 0 .848p
27 L02 0 1 7 .712p
28 L03 1 3 1 .778p
29 L04 5 7 0 .543p
30 L05 7 9 3 .149p
31 L06 9 11 1 .323p
32 L07 11 13 1 .095p
33 L08 13 15 2 .951p
34 L09 15 17 1 .63p
35 LP01 0 6 0.398p
36 LP02 0 10 0 .211p
37 LP03 0 14 0 .276p
38 LP04 0 16 0 .224p
39 LPR01 7 8 0.915p
40 LPR02 11 12 0 .307p
41 LRB01 4 5 1p
42 LRB02 18 6 1p
43 LRB03 19 10 1p
44 LRB04 20 14 1p
45 LRB05 21 16 1p
46 RB01 3 4 8 .56
47 RB02 18 5 11 .30
48 RB03 19 9 7 .53
49 RB04 20 13 5 .77
50 RB05 21 15 5 .77
51 . model j j 1 j j (rtype=1, vg=2.8mV, cap=0.07pF , r0=160 , rn=16, i c r i t =0.1mA)
52 . ends DCSFQ
53 .SUBCKT SINK 2
54 B01 1 4 j j 1 area =2.16
55 IB01 0 5 pwl (0 0 5p 280u)
56 L01 2 1 0 .517p
57 L02 1 3 5 .307p
58 LP01 0 4 0.086p
59 LPR01 1 5 0.265p
60 LRB01 4 6 1p
61 RB01 6 1 5 .23
62 ROUT 0 3 4.02
63 . model j j 1 j j (rtype=1, vg=2.8mV, cap=0.07pF , r0=160 , rn=16, i c r i t =0.1mA)
64 . ends SINK
65 IA 0 1 pwl (0 0 170p 0 176p 600u 182p 0 370p 0 376p 600u 382p 0 600p 0 606p 600u 612p 0 700p 0

706p 600u 712p 0)
66 X01 DCSFQ 1 2
67 X02 JTL 2 3
68 X03 JTL 3 4
69 X04 JTL 4 5
70 X05 SINK 5
71 . tran 0 .25p 1000p 0 0 .25p
72 . p r in t nodev 1 0
73 . p r in t nodev 3 0
74 . p r in t nodev 5 0

This file can be found under JoSIM/test/dcsfq jlt sink.js and we will now demonstrate

13

Stellenbosch University https://scholar.sun.ac.za

this example using JoSIM.

Figure 4: JoSIM command line window output from execution of the dcsfq jtl sink.js

Fig 4 shows the default output from the JoSIM executable produces some statistics
about the file provided as input and the reuse of subcircuits within the file. It also gives
the user a count of the amount of Josephson junctions used within the circuit as this is
usually taken as a measure of how large the circuit is.

The results of the -g command switch can be seen in Fig 5 and 6. Which we can
clearly see from is the results expected given the type of circuit. The 3 graphs that are
plotted are the node voltages at the input to the DCSFQ, the middle JTL and the input
of the SINK.

14

Stellenbosch University https://scholar.sun.ac.za

Figure 5: JoSIM FLTK results window from execution of the dcsfq jtl sink.js file

There are a few larger examples included in the test folder which can be executed to
test the execution speed of JoSIM.

15

Stellenbosch University https://scholar.sun.ac.za

Figure 6: JoSIwwM Matplotlib results window from execution of the dcsfq jtl sink.js file

7 Error handling and exceptions

An attempt is made to handle as many of the exceptions thrown as possible and to
provide the user with accurate and meaningful error messages in the case of an error. If
any issues are not caught or bugs are picked up during the usage of JoSIM, please do
not hesitate to report them on the git page under issues. The software has had very
little exposure until now. It is a version 1 tool and there will be bugs, please use with
caution and please report any issues.

8 Planned improvements

There are several planned improvements to JoSIM which include per device tempera-
ture dependence as well as global temperature to more accurately model the effects of
superconductive materials.

Engine improvements will include new Josephson junction models that extend beyond
the default RCSJ model, as well as the ability to simulate the Werthamer approximated

16

Stellenbosch University https://scholar.sun.ac.za

model for the Josephson junction. Further engine improvements will also include paral-
lel processing of certain stages within the execution as well as the ability to switch to
different linear solvers.

Optimizations will be investigated to further limit the memory impact JoSIM has on
the host system. Among the areas of investigation will be the effect of identifying the
vectors the user wishes to save before starting the simulation. In doing so only these
identified vectors need to be saved for the entire simulation and only two or 3 time steps
worth of data would need to kept. This should improve memory impact significantly on
large simulations. The only foreseen complication is when transmission lines are present
but this can also be circumvented.

17

Stellenbosch University https://scholar.sun.ac.za

Appendices

A Component Stamps

A.1 Resistor

R1
1 2

IR1

Figure 7: A basic resistor with current flowing through it

vR1(t) = iR1(t)R1

(V1 − V2)n = InR1

1

R1
(V1)n − 1

R1
(V2)n − In = 0

(12)

We however do not need to calculate the current through the Resistor as it is not always
needed, we therefore omit it in the matrix and calculate it when the user requests it.

[
1
R − 1

R
− 1

R
1
R

] [
V1

V2

]
=

[
0
0

]

A.2 Capacitor

C1
1 2

IC1

Figure 8: A basic capacitor with current flowing through it

in(t) = C1
dv

dt

in(t) =
2C1

hn

[
(Vn − Vn−1) −

(
di

dt

)

n−1

]

2C1

hn
(V1)n − 2C1

hn
(V2)n − I(n) =

2C1

hn
(V1 − V2)n−1 + In−1

(13)

18

Stellenbosch University https://scholar.sun.ac.za

Once again we omit the current for the capacitor as it will only complicate the calculation.
We therefore only calculate the voltage output.

[C
hn

− C
hn

− C
hn

C
hn

] [
V1

V2

]
=

[C
hn

− C
hn

]

A.3 Voltage source

+ -

V1
1 2

Figure 9: A basic voltage source

A voltage source simply adds the voltage as a new row and column to the matrix, similar
to a branch current. 


0 0 1
0 0 −1
1 −1 0





V1

V2

V 1


 =




0
0
V 1




A.4 Current source

I1
1 2

Figure 10: A basic capacitor with current flowing through it

A current source does not affect the A matrix in any way and simply adds or subtracts
the current supplied at the respective nodes.

[
0 0
0 0

] [
V1

V2

]
=

[
−I1
I1

]

19

Stellenbosch University https://scholar.sun.ac.za

A.5 Josephson junction

B1

1 2

IB1

Figure 11: A basic Josephson junction

B RC

1

2

Ic

Is

Figure 12: A basic Josephson junction in Resistively, Capacitively Shunted Junction
form

Is = −Ic sinφ0
n +

2C

hn
vn−1 + C

(
dv

dt

)

n−1

(14)

In this case Ic, C, φ0
n are the junction critical current, capacitance and initial phase

guess.

φ0
n = φn−1 +

hn
2

2e

h̄
(vn−1 + v0

n) (15)

20

Stellenbosch University https://scholar.sun.ac.za

v0
n = vn−1 + hn

(
dv

dt

)

n−1

= vn−1 + hn

[
2

hn
(vn−1 − vn−2) −

(
dv

dt

)

n−2

]

v0
n = 3vn−1 − 2vn−2 − hn

(
dv

dt

)

n−2

(16)

When we apply 16 to 15 we can approximate an equation for the initial phase guess. To
approximate this we would need to specify values for 3 time steps before the first time
step. By assuming these values are always 0 we can then implement this as a stamp.




2C
hn

+ 1
R −2C

hn
− 1

R 0

−2C
hn

− 1
R

2C
hn

+ 1
R 0

−hn
2

2e
h̄

hn
2

2e
h̄

1





V1

V2

φ


 =




Is
−Is

φn−1 + hn
2

2e
h̄
vn−1




A.6 Transmission line

T1

TD Z0
1

2

3

4

Figure 13: A basic lossless transmission line

The implementation of a lossless transmission line requires the everything on the right-
hand side to be delayed by the TD specified by the user. The Z0 is the line impedance
and is a function of the transmission line length.

The voltage on between node 1 and 2 is delayed by TD before appearing at node 3
and 4, where after a reflection of the result at node 3 and 4 is observed at node 1 and
2. This effect continues every TD until the voltage is completely diminished by the line
impedance.

21

Stellenbosch University https://scholar.sun.ac.za

Z0

+
-

V1T1

+
-

V2T1

Z0

T1

TD

Z0

i1 i2

5 6

1

1

2

2

3

3

4

4

Figure 14: A basic lossless transmission line broken into components

The dependent voltage sources on either side of the transmission line can be described
by

v1(t) − Z0i1(t) = v2(t− TD) + Z0 · i2(t− TD) (17)

v2(t) − Z0i2(t) = v1(t− TD) + Z0 · i1(t− TD) (18)

which leads to

(V +
1) − (V −

1) − Z0(I1) = (V2)n−k + Z0(I2)n−k (19)

(V +
2) − (V −

2) − Z0(I2) = (V1)n−k + Z0(I1)n−k (20)

with

k =
TD

h
(21)




0 0 0 0 1 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 −1
1 −1 0 0 −Z0 0
0 0 1 −1 0 −Z0







V +
1

V −
1

V +
2

V −
2

I1

I2




=




0
0
0
0

(V2)n−k + Z0(I2)n−k

(V1)n−k + Z0(I1)n−k




A.7 Mutual Inductance

Basic inductance equations for mutual inductance

VL1 = L1
di1
dt

+M
di2
dt

(22)

22

Stellenbosch University https://scholar.sun.ac.za

L1 L2

k
I1 I2

VL1 VL2

Figure 15: Standard mutual inductance

VL2 = M
di1
dt

+ L2
di2
dt

(23)

M can be defined as the mutual inductance multiplied by a coupling factor k

M = k
√
L1L2 (24)

Using the standard trapezoidal integration method on (22) and (23)

(
dx

dt

)

n

=
2

hn
(xn − xn−1) −

(
dx

dt

)

n−1

(25)

we find

VL1(n) =
2L1

hn

(
IL1(n) − IL1(n−1)

)
+

2M

hn

(
IL2(n) − IL2(n−1)

)
− VL1(n−1) (26)

VL2(n) =
2M

hn

(
IL1(n) − IL1(n−1)

)
+

2L2

hn

(
IL2(n) − IL2(n−1)

)
− VL2(n−1) (27)

If we are to split the equations in (26) and (27) to a LHS and RHS. Where the LHS is
what we want to calculate and the RHS is what we have from previous time steps.

VL1(n) −
2L1

hn
IL1(n) −

2M

hn
IL2(n) = −2L1

hn
IL1(n−1) −

2M

hn
IL2(n−1) − VL1(n−1) (28)

VL2(n) −
2M

hn
IL1(n) −

2L2

hn
IL2(n) = −2M

hn
IL1(n−1) −

2L2

hn
IL2(n−1) − VL2(n−1) (29)

Furthermore, we see that the voltage across the inductors are a voltage drop betwen two
nodes.

V +
L1(n)−V

−
L1(n)−

2L1

hn
IL1(n)−

2M

hn
IL2(n) = −2L1

hn
IL1(n−1)−

2M

hn
IL2(n−1)−V +

L1(n−1)−V
−
L1(n−1)

(30)

23

Stellenbosch University https://scholar.sun.ac.za

V +
L2(n)−V

−
L2(n)−

2M

hn
IL1(n)−

2L2

hn
IL2(n) = −2M

hn
IL1(n−1)−

2L2

hn
IL2(n−1)−V +

L2(n−1)−V
−
L2(n−1)

(31)
We can now write these equations in standard matrix form as

[
1 −1 −2L1

hn
−2M

hn

]



V +
L1(n)

V −
L1(n)

IL1(n)

IL2(n)


 =

[
−2L1

hn
IL1(n−1) − 2M

hn
IL2(n−1) − V +

L1(n−1) − V −
L1(n−1)

]

(32)

[
1 −1 −2M

hn
−2L2

hn

]



V +
L2(n)

V −
L2(n)

IL1(n)

IL2(n)


 =

[
−2M

hn
IL2(n−1) − 2L2

hn
IL2(n−1) − V +

L2(n−1) − V −
L2(n−1)

]

(33)
Leading us to the MNA stamps




0 0 1 0
0 0 −1 0

1 −1 −2L1
hn

−2M
hn







V +
L1(n)

V −
L1(n)

IL1(n)

IL2(n)


 =




0
0

−2L1
hn
IL1(n−1) − 2M

hn
IL2(n−1) − V +

L1(n−1) − V −
L1(n−1)




(34)




0 0 0 1
0 0 0 −1

1 −1 −2M
hn

−2L2
hn







V +
L2(n)

V −
L2(n)

IL1(n)

IL2(n)


 =




0
0

−2M
hn
IL1(n−1) − 2L2

hn
IL2(n−1) − V +

L2(n−1) − V −
L2(n−1)




(35)
Which when collated gives us




0 0 1 1
0 0 −1 −1

1 −1 −2L1
hn

−2M
hn

1 −1 −2M
hn

−2L2
hn







V +
L2(n)

V −
L2(n)

IL1(n)

IL2(n)


 =




0
0

−2L1
hn
IL1(n−1) − 2M

hn
IL2(n−1) − V +

L1(n−1) − V −
L1(n−1)

−2M
hn
IL1(n−1) − 2L2

hn
IL2(n−1) − V +

L2(n−1) − V −
L2(n−1)




(36)

24

Stellenbosch University https://scholar.sun.ac.za

References

[1] E. S. Fang and T. Van Duzer. A Josephson integrated circuit simulator (JSIM) for
superconductive electronics application. Extended Abstracts of 1989 International
Superconductivity Electronics Conference, 407-410, 1989.

[2] Laurence W. Nagel and D.O. Pederson. SPICE (Simulation Program with Integrated
Circuit Emphasis). EECS Department, University of California, Berkeley, 1973.

[3] Ho, Ruehli, and Brennan. The Modified Nodal Approach to Network Analysis. Proc.
1974 Int. Symposium on Circuits and Systems, San Francisco. pp. 505509.

[4] Atkinson, Kendall A. An Introduction to Numerical Analysis (2nd ed.) New York:
John Wiley & Sons, 1989

[5] Timothy A. Davis Direct Methods for Sparse Linear Systems SIAM, Philadelphia,
Sept. 2006.

[6] F. Costantini, D. Gibson, M. Melcher, A. Schlosser, B. Spitzak and M. Sweet. FLTK
1.4.0 Programming Manual. 2018. [Online]. Available: http://www.fltk.org/. [Ac-
cessed: 29- Apr- 2018].

[7] T.P. Orlando and K.A. Delin. Foundations of Applied Superconductivity. Addison-
Wesley Publishing Company. 1991. pp. 406.

25

Stellenbosch University https://scholar.sun.ac.za

	Introduction
	Motivation
	Background on Computing and Superconductivity
	Digital Devices
	Sensors and Filters
	Simulation in computing

	Objectives of Dissertation
	Objectives
	Document Layout

	Electronic Design Automation in Superconductivity
	Introduction
	Design Process
	High Level
	Synthesis
	Analogue Simulation
	Optimization
	Layout and Fabrication
	Technology Computer Aided Design

	Conclusion

	High Level Verification
	Introduction
	SuperSTA
	Design Flow
	Pre-Placed
	Post-Placed

	Results
	Conclusion

	Analogue Simulation
	Introduction
	Josephson junction
	JSIM
	PSCAN
	WRspice
	Conclusion

	JoSIM - Development
	Introduction
	Design Flow from Input to Output
	Input
	Matrix Setup
	Solution Calculation
	Output Handling

	Components
	Resistor
	Inductor
	Capacitor
	Josephson Junction
	Voltage and Current Sources
	Lossless Transmission Line
	Mutual Inductance

	Control Commands
	Parameters

	Chicken and Egg
	Phase Simulation
	Phase Inductor
	Phase Capacitor
	Phase Resistor
	Phase JJ
	Phase Lossless Transmission Line
	Phase Mutual Inductance
	Phase Voltage Source
	Phase Source

	Conclusion

	JoSIM - Results
	Introduction
	IV Curve
	Small Simulations
	Medium to Large Scale Simulations
	Conclusion

	Very Large Scale Design Simulation
	Introduction
	Data Structure Considerations
	Parallel Processing
	Optimizations in the Math Engine
	Conclusion

	Conclusion
	Bibliography
	Appendices
	
	
	
	
	

