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SUMMARY
 

Postharvest quality of fresh table grapes is usually preserved through cooling using cold air. 

However, cooling efficiencies are affected by the multi-scale packaging that is commercially 

used for handling grapes after harvest. There is usually spatial temperature variability of 

grapes that often results in undesirable quality variations during postharvest handling and 

marketing. This heterogeneity of grape berry temperature inside multi-packages is largely due 

to uneven cold airflow patterns that are caused by airflow resistance through multi-package 

components. The aims of this study were therefore to conduct an in-depth experimental 

investigation of the contribution of grape multi-packaging components to total airflow 

resistance, cooling rates and patterns of grapes inside the different commercially used multi-

packages, and to assess the effects of these multi-packages on table grape postharvest quality 

attributes. A comprehensive study of moisture loss from grapes during postharvest storage 

and handling, as well as a preliminary investigation of the applicability of computational fluid 

dynamics (CFD) modeling in predicting the transport phenomena of heat and mass transfer of 

grapes during cooling and cold storage in multi-packages were included in this study.     

 

Total pressure drop through different table grapes packages were measured and the 

percentage contribution of each package component and the fruit bulk were determined. The 

liner films contributed significantly to total pressure drop for all the package combinations 

studied, ranging from 40.33±1.15% for micro-perforated liner film to 83.34±2.13 % for non-

perforated liner film. The total pressure drop through the grape bulk (1.40±0.01 % to 

9.41±1.23 %) was the least compared to the different packaging combinations with different 

levels of liner perforation.    

 

The cooling rates of grapes in the 4.5 kg multi-packaging were significantly (P<0.05) slower 

than that of grapes in 5 kg punnet multi-packaging, where the 4.5 kg box resulted in a seven-

eighths cooling time of 30.30-46.14% and 12.69-25.00% more than that of open-top and 

clamshell punnet multi-packages, respectively. After 35 days in cold storage at -0.5°C, grape 

bunches in the 5 kg punnet box combination (open-top and clamshell) had weight loss of 2.01 

– 3.12%, while  the bunches in the 4.5 kg box combination had only 1.08% weight loss.  
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During the investigation of the effect of different carton liners on the cooling rate and quality 

attributes of ‘Regal seedless’ table grapes in cold storage, the non-perforated liner films 

maintained relative humidity (RH) close to 100 %.  This high humidity inside non-perforated 

liner films resulted in delayed loss of stem quality but significantly (P ≤ 0.05) increased the 

incidence of SO2 injury and berry drop during storage compared to perforated liners. The 

perforated liners improved fruit cooling rates but significantly (P ≤ 0.05) reduced RH. The 

low RH in perforated liners also resulted in an increase in stem dehydration and browning 

compared to non-perforated liners.  

 

The moisture loss rate from grapes packed in non-perforated liner films was significantly 

(P<0.05) lower compared to the moisture loss rate from grapes packed in perforated liner 

films (120 x 2 mm and 36 x 4 mm). The effective moisture diffusivity values for stem parts 

packed in non-perforated liner films were lower than the values obtained for stem parts stored 

without packaging liners, and varied from 5.06x10-14 to 1.05x10-13 m2s-1. The dehydration 

rate of stem parts was inversely proportional to the size (diameter) of the stem parts. 

Dehydration rate of stems exposed (without liners) to circulating cold air was significantly 

(P<0.05) higher than the dehydration rates of stems packed in non-perforated liner film. 

Empirical models were successfully applied to describe the dehydration kinetics of the 

different parts of the stem. 

 

The potential of cold storage humidification in reducing grape stem dehydration was 

investigated. Humidification delayed and reduced the rate of stem dehydration and browning; 

however, it increased SO2 injury incidence on table grape bunches and caused wetting of the 

packages. 

 

The flow phenomenon during cooling and handling of packed table grapes was also studied 

using a computational fluid dynamic (CFD) model and validated using experimental results. 

There was good agreement between measured and predicted results. The result demonstrated 

clearly the applicability of CFD models to determine optimum table grape packaging and 

cooling procedures.  
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OPSOMMING

 

Naoes kwaliteit van vars tafeldruiwe word gewoonlik behou deur middel van verkoeling van 

die produk met koue lug.  Ongelukkig word die effektiwiteit van dié verkoeling beïnvloed 

deur die multivlakverpakking wat kommersieel gebruik word vir die naoes hantering van 

druiwe.  Daar is gewoonlik ruimtelike variasie in die temperatuur van die druiwe wat 

ongewenste variasie in die kwaliteit van die druiwe veroorsaak tydens naoes hantering en 

bemarking.  Die heterogene druiwetemperature binne die multivlakverpakkings word 

grootliks veroorsaak deur onegalige lugvloeipatrone van die koue lug as gevolg van die 

weerstand wat die verskillende komponente van die multivlakverpakkings teen lugvloei bied.  

Die doel van hierdie studie was dus om ‘n indiepte eksperimentele ondersoek te doen om die 

bydrae van multivlakverpakking op totale lugvloeiweerstand, verkoelingstempo’s en             

–patrone van druiwe binne kommersieël gebruikte multivlakverpakkings te ondersoek, asook 

die effek van die multivalkverpakking op die naoes kwaliteit van druiwe te bepaal.  ‘n 

Omvattende studie van vogverlies van druiwe tydens naoes opberging en hantering, asook ‘n 

voorlopige ondersoek na die bruikbaarheid van ‘n berekende vloei dinamika (BVD) model 

om die bewegingsfenomeen van hitte en massa oordrag van druiwe tydens verkoeling en 

koelopberging in multivlakverpakkings te voorspel, was ook by die studie ingesluit. 

 

Die totale drukverskil deur verskillende tafeldruif verpakkingssisteme is gemeet en die 

persentasie wat deur elke verpakkingskomponent en die vruglading bygedra is, is bereken.  

Van al die verpakkingskombinasies wat gemeet is, het die voeringfilms betekenisvol tot die 

totale drukverskil bygedra, en het gewissel van 40.33±1.15% vir die mikro geperforeerde 

voeringfilm tot 83.34±2.13 % vir die nie-geperforeerde voeringfilm.  Die totale drukverskil 

oor die druiflading (1.40±0.01 % to 9.41±1.23 %) was die minste in vergelyking met die 

verskillende verpakkingskombinasies met die verskillende vlakke van voeringperforasies. 

 

Die verkoelingstempos van die druiwe in die 4.5 kg multiverpakking was betekenisvol 

(P<0.05) stadiger as vir die druiwe in die 5 kg handmandjie (‘punnet’) multiverpakking.  Die 

4.5 kg karton het ‘n seweagstes verkoelingstyd van 30.30-46.14% en 12.69-25.00% langer, 

respektiewelik, as oop-vertoon en toeslaan-‘punnet’ multiverpakkings gehad.  Na 35 dae van 

koelopberging by -0.5°C het druiwetrosse in die 5 kg ‘punnet’-kartonkombinasies (oop-
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vertoon en toeslaan-’punnet’) ‘n massaverlies van 2.01 – 3.12% gehad, terwyl die trosse in 

die 4.5 kg kartonkombinasie slegs ‘n 1.08% massaverlies gehad het. 

 

In die ondersoek na die effek van verskillende kartonvoerings op die verkoelingstempo en 

kwaliteitseienskappe van ‘Regal seedless’ tafeldruiwe tydens koelopbering, het die nie-

geperforeerde kartonvoerings ‘n relatiewe humiditeit (RH) van byna 100 % gehandhaaf.  

Hierdie hoë humiditeit in die nie-geperforeerde voeringfilms het ‘n verlies in stingelkwaliteit 

vertraag, maar het die voorkoms van SO2-skade en loskorrels betekenisvol (P < 0.05) 

verhoog in vergelyking met geperforeerde voerings.  Die geperforeerde voerings het 

vrugverkoelingstempos verbeter, maar het die RH betekenisvol (P ≤ 0.05) verlaag.  Die lae 

RH in die geperforeerde voerings het gelei tot ‘n verhoging in stingeluitdroging en                 

–verbruining in vergelyking met die nie-geperforeerde voerings. 

 

Die vogverliestempo uit druiwe verpak in nie-geperforeerde voeringfilms was betekenisvol 

(P<0.05) stadiger in vergelyking met druiwe verpak in geperforeerde voeringfilms 

(120 x 2 mm and 36 x 4 mm).  Die effektiewe vogdiffusiewaardes vir stingelgedeeltes verpak 

in nie-geperforeerde voeringfilms was stadiger as vir stingelgedeeltes wat verpak is sonder 

verpakkingsvoerings, en het gevarieer van 5.06x10-14 – 1.05x10-13 m2s-1.  Die 

uitdrogingstempo van stingelgedeeltes was omgekeerd eweredig aan die grootte (deursnit) 

van die stingelgedeeltes.  Die uitdrogingstempo van stingels wat blootgestel was (sonder 

voerings) aan sirkulerende koue lug was betekenisvol (P<0.05) hoër as die uitdrogingstempos 

van stingels wat verpak was in nie-geperforeerde voeringfilms.  Empiriese modelle is gebruik 

om die uitdrogingskinetika van die verskillende stingelgedeeltes te beskryf. 

 

Die potensiaal van koelkamer humidifisering in die vermindering van die uitdroging van 

druifstingels is ondersoek.  Humidifisering het stingeluitdroging vertraag en het die tempo 

van stingeluitdroging en -verbruining verminder, maar dit het die voorkoms van SO2-skade 

op die tafeldruiftrosse verhoog en het die verpakkings laat nat word. 

 

Die bewegingsfenomeen tydens verkoeling en hantering van verpakte tafeldruiwe is ook 

ondersoek deur gebruik te maak van ‘n BVD model en is bevestig met eksperimentele 
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resultate.  Daar was goeie ooreenstemming tussen gemete en voorspelde resultate.  Die 

resultaat demonstreer duidelik die toepaslikheid van BVD-modelle om die optimum 

tafeldruifverpakkings- en verkoelingsprosedures te bepaal.  
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1. General Introduction

 

1.1 Introduction 
 

Table grapes and other fruits destined for export are usually consumed in the distant markets 

at least three weeks after they have been harvested. This brings about the need for postharvest 

technologies such as cooling to be employed in order to maintain harvest quality. The 

efficiency and success of cooling and perhaps other postharvest technologies is usually 

affected by other necessary practices and applications within the value chain. Factors 

affecting the effectiveness of cooling include the lag time which is the time taken between 

packing and the start of pre-cooling, package designs (Thompson et al., 1998), and human 

error.  

 

Table grapes are packed in multi-scale packages and cooled down to -0.5 °C and should be 

maintained at this temperature for the duration of the value chain. However, grape berries 

deteriorate during postharvest handling in the cold chain (Nelson, 1978) and this is often 

ascribed to inefficient cooling, poor temperature management and improper packaging 

(Thompson et al., 1998). Deterioration of table grapes is characterized by stem dehydration 

and browning due to moisture loss, decay, berry drop and SO2 injury (Nelson, 1978; Valero 

et al., 2006). These quality defects could be alleviated through improvements in cooling 

efficiencies and packaging systems.      

 

1.2 Refrigeration 
 

Cooling is one of the main techniques used to preserve the postharvest quality of horticultural 

products. This is due to the widely reported ability of low temperatures to reduce biochemical 

reactions (such as respiration), retard the growth of microbial organisms (Brosnan and Sun, 

2001; Arin and Akdemir, 2004) and minimize moisture loss. The relationship between 

product temperature and biochemical reaction follows van’t Hoff’s rule, which states that the 

rate of most chemical and biochemical reactions increases two to three times with every 10 

degrees rise in product temperature (Hardenburg et al, 1986; Brosnan and Sun, 2001; Kays 
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and Paull, 2004). Hence, cooling plays an important role in reducing these biochemical 

reactions. 

 

In many postharvest produce refrigeration systems, cooling is achieved using cold air. This 

means that during produce cooling heat is transferred primarily by convection and therefore, 

produce temperature and its homogeneity is largely governed by the patterns of airflow 

(Smale et al., 2006; Moureh and Flick, 2004; Moureh et al., 2009; Zou et al., 2006). Previous 

studies have shown significant spatial temperature variability in some food refrigerated 

systems, with non-uniform airflow implicated as a major cause of this variability (Brosnan 

and Sun, 2001; Smale et al., 2006). Temperature variability causes quality variation among 

fruit in the same consignment and promotes postharvest losses and waste.  

 

1.3 Packaging 
 

Packaging has been practiced for as long as fresh produce has been traded (Wills et al., 

2007). Its importance in the fresh produce industry has involved two main functions, which 

are to assemble the produce into convenient units for handling (unitization), and to protect the 

produce during distribution, storage and marketing. However, modern packages and 

packaging for horticultural produce are now expected to meet a range of basic requirements 

such as sufficient mechanical strength and facilitatation of easy disposal, reuse or recycling 

(Wills et al., 2007). Apart from protecting contents against damage during transportation and 

distribution of fruit and vegetables, package containers are often used during precooling 

(Vigneault and Goyette, 2002). To ensure efficient cooling during postharvest handling, the 

packaging should allow for sufficient airflow (Thompson et al., 1998).  However, the 

combination of packaging and the fruit usually induce some airflow resistance and thus 

negatively affecting cooling efficiency (Delele et al. 2008). The non-homogeneous flow of 

the cooling air inside the stack could also cause uneven cooling and product quality (Alvarez 

and Flick, 1999a, Alvarez and Flick, 1999b, Alvarez and Flick, 2007; Verboven et al., 2006). 

Many studies have reported on vent-hole ratio, fruit physical properties, and fruit stacking 

pattern as important components to be considered for improving airflow through fruit 

packages (Chau et al., 1985; Vingeault and Goyette, 2002). The more vent area there is on 

packages, the better the airflow through fruit packaging. Depending on the packaging 

material used to make fruit packages, there is usually a tradeoff between the number of 
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ventilation holes and package mechanical strength requirements. Vingeault and Goyette 

(2002) recommended a vent-hole ratio of 25–27% for good airflow through plastic boxes and 

de Castro et al. (2005) recommended a vent-hole ratio of 8-16% of the surface of the 

container to optimise the use of energy. There is therefore a need for science based packaging 

designs (Pathare et al., 2012 see Food and Bioprocess Technology) to ensure efficient airflow 

and cooling of fruits while fulfilling other packaging requirements for the different 

postharvest applications. 

 

1.4 Postharvest quality of horticultural produce 
 

The importance of temperature management in maintaining the quality of fresh fruit and 

vegetables is well documented (Kader, 1992). Apart from the reduction of biochemical 

reactions associated with fruit senescence, proper cooling reduces the rate of quality and 

moisture losses of fruit. Poor cooling and cold chain breakages tend to promote produce 

moisture loss and reduce marketability of fruits and vegetables (Thompson et al., 1998). 

Previous studies have shown significant loss of firmness and weight from strawberries due to 

delayed cooling (Nunes et al., 1994; Nunes et al., 1995; Thompson et al., 1998). Table grapes 

suffer rapid moisture loss if temperatures are not well managed. Moisture loss of grapes 

manifests as dry and brittle stems which appear just under 2 % of weight loss and berries 

show signs only after 5% of moisture loss (Thompson et al., 1998). Moisture loss symptoms 

such as loss of firmness and dull colour in strawberries, as well as stem dehydration and 

browning in table grapes seriously detract the consumers’ interest of buying affected produce.  

Good cold chain management is therefore of utmost importance to ensure the marketability 

and competitiveness of produce in the distant markets. 

 

1.5 Postharvest handling systems performance evaluation methodologies  
 

The performance of postharvest packaging is usually evaluated using experimental methods 

such as measuring product cooling rates (Chonhenchob and Singh, 2005) and airflow using 

probes. The commonly used experimental method for the improvement of airflow through 

postharvest packages is the pressure drop method. Many researchers have used Darcy–
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Forchheimer and Ramsin equations to develop correlations to estimate pressure drop through 

bulk produce and packages containing horticultural produce (Chau et al., 1985; Smale, 2004; 

van der Sman, 2002; Verboven et al., 2004; Vingeault and Goyette, 2002; Vingeault et al., 

2004). 

 

These experimental methods are fairly easy to use; however, they tend to be intrusive and 

destructive in nature (Ferrua and Singh, 2009). To date, the South African perishable 

industries utilize such experimental methods for testing postharvest packaging performance 

and improvements. Although the experimental methods work, they also have limited scope 

for sustainable packaging design due to high cost of instrumentation and the time required to 

gather appropriate data for meaningful results (Ferrua et al., 2009). Another limitation is 

based on the fact that the packaging has to be manufactured before its performance can be 

tested, thereby increasing costs especially in cases where the manufactured package performs 

poorly. 

 

Numerical modelling has gained popularity in the past decade within the agricultural and 

food industry research (Xia and Sun, 2002 and Norton and Sun, 2006). Many researchers 

have used mathematical modelling methodologies for the design and improvements of 

horticultural packages (Tanner et al., 2002a; Tanner et al., 2002b) and others have used 

numerical tools such as computational fluid dynamics (CFD) (Verboven et al. 2006; Zou et 

al., 2006; Opara and Zou, 2007; Delele et al., 2008; Tutar et al., 2009).   However, any 

numerically developed model would still require experimental validation to ensure its 

relevance and applicability to a wide range of conditions.  

In this study, table grapes are the fruit of interest due to its complex multi-layered packaging 

system. There are many different multi-package combinations that are used commercially to 

pack and handle grapes after harvest. Cooling is usually commenced after the grapes have 

been packed in these multi-packages. However, there are postharvest quality problems such 

as moisture loss which manifests as stem (rachis) drying and browning, SO2 damage and 

decay that are reported to be associated with poor postharvest cold chain management 

(Valero et al., 2006) and these quality defects reduce the marketability of grapes. To mitigate 

Stellenbosch University  http://scholar.sun.ac.za



5 

the problem of poor quality that is mainly ascribed to an inadequate cold chain (Nelson 

1978), it is important to improve the cooling airflow through the table grape packaging. 

 

1.6 Objectives and outline of the dissertation 
 

This dissertation aims to investigate the performance of the different grape multi-packages in 

terms of cooling and fruit quality attributes during postharvest storage and handling for 

improvement of packaging designs and cold chain performance. 

 

The specific objectives are to: 

• Investigate the airflow resistance through the different components of table grape 

multi-scale packages   

• Compare the cooling performance and quality of table grapes in different multi-

packages; 

•  Conduct a comprehensive study of table grape moisture loss in different packages 

and test the application of drying models in moisture loss from grape stems; 

• Investigate the application of postharvest cold storage humidification on the quality of 

grapes; and 

• Investigate the heat and mass transfer processes of packed table grapes using 

computational fluid dynamics (CFD) 

 

To address the set out objectives, the dissertation is arranged into three parts. The first part 

covers an in-depth comparative study of performance of different grapes multi-packages in 

terms of cooling rates and their effects on grapes quality attributes (Papers 1; 2 and 3). In 

Paper 1, the resistance to airflow by the different table grape multi-package combinations was 

studied. This is achieved determining the percentage contribution of each grape packaging 

component and grape bunches to total resistance to airflow of multi-packaging. The pressure 

drop as a function of incoming airflow is characterized for each packaging component and for 

the grapes bunches. The different components of the grape multi-packaging included the 

carton boxes; liner films and bunch carry-bags. Such work has never been reported before for 

the multi-scale packaging. 
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Based on the results obtained in Paper 1, the effect of six different liner films on the cooling 

rates and quality attributes of table grapes is studied in Paper 2. The cooling rates and 

patterns of grapes inside the different liner films were compared in conjunction with resulting 

effects on different postharvest quality attributes of grapes namely: grape stem condition; 

bunch weight loss and berry drop; colour changes; SO2 injury and decay development under 

both cold storage and shelf-life storage. No study has been reported, that characterizes the 

postharvest quality defects of grapes to the different multi-packages. Therefore the results 

from this study give a deeper understanding on the performance of multi-scale packaging of 

table grapes taking into consideration the postharvest quality of grapes. 

 

Part of Paper 3 is an extension of work done in Papers 1 and 2, where the contribution of 

grape punnet multi-packaging components to total airflow resistance was investigated (Paper 

3). Another part of Paper 3 looks at the cooling rates and patterns of grapes in different multi-

packages stacked on pallets. The cooling rates and patterns were also studied in conjunction 

with changes in grape quality attribute changes. 

 

The second part of the dissertaion covers a comprehensive study of grapes moisture loss 

(Papers 4; 5 and 6). In Paper 4 the total moisture loss of grape bunches is characterized into 

individual parts that make up the bunch. The different parts of the bunch include grape 

berries and stems. However, the stems are further divided into spheres (i.e. cap like structure 

connecting stems to berries); small; intermediate and large cylinder parts of the stem. No 

work has been reported in literature on grape moisture loss which considered the different 

parts that make up the grape bunch individually under cold storage conditions. In Paper 5, the 

application of drying models is investigated in predicting the dehydration of grape stems 

during cold storage in multi-packages. In literature no work has been reported on the 

application of drying models on the moisture loss studies. 

 

In Paper 6, the potential of humidification for controlling postharvest moisture loss is 

investigated. Previous studies (Lichter et al., 2011), have shown some potential 

improvements in the control of stem quality and weight loss of some grapes cultivars as 

associated with an increase in humidity. However, these studies were conducted under high 
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temperature conditions that prevail during marketing of the grapes in some markets (Lichter 

et al., 2011). In this study, a humidification system was applied during cold storage 

conditions.   

The third part of the dissertation involves a preliminary investigation of heat and moisture 

transfer using computational fluid dynamics (CFD) modelling (Paper 7). Table grape multi-

packaging is very complex and therefore numerical modelling would be a bit difficult due to 

the different geometries and boundary conditions that need to be considered to study the 

flow. However, attempts were made to develop CFD models for heat and mass transfer from 

grapes in multi-packages during cooling. These models were validated using experimental 

results obtained from earlier work reported in Papers 1, 2 and 3, and there was a good 

agreement between the models and the experimental data. 

 

In the last chapter of the dissertation, a general discussion and conclusion of the work is 

reported.  
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2. Literature Review 
 

Postharvest handling systems of table grapes and measurement of resistance 

to airflow inside horticultural packages

 

Nomenclature 

  

Abox
 box face area, m2 

Ahole vent hole area, m2 

a  resistance coefficient, kg s(b-2)m-(b+2) 

b   resistance exponent 

effd  effective product diameter, m 

hD  package hydraulic diameter, m 

κ  Darcy permeability, m2 
p  pressure, Pa 

O  vent hole ratio, % 

u   velocity vector, m s-1 

β  Forchheimer drag coefficient, m-1 

ε  porosity 
µ  dynamic viscosity 

ρ  density, kg m-3 

 

2.1. Introduction 
 

Table grapes is the second largest export crop from South Africa consisting of about 45 

million cartons exported (PPECB, 2012), and therefore contributes a significant percentage to 

the South African economy. The fruit is a cluster consisting of stems and berries (Winkler et 

al., 1974). The stems (rachis, branches, and pedicels), on which berries are borne, constitute 2 

to 6 percent of the total weight at maturity, differing with variety. The skin of the berries 

accounts for 5% to 12% of the total weight and consists of an epidermis which is composed 

of 6-10 layers of small, thick-walled cells. The skin is covered with a thin waxlike layer know 
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as cutin which consistitutes about 1-2 % of the total weight of the skin. The cutin consists 

mainly of oleanolic acid, and long chain alcohols with traces of ester, fatty acids, aldehydes, 

and paraffins. The cutin protects the berries against water loss and the attack of organisms. 

The thickness and toughness of the skin differ among varieties and are factors in the degree 

of resistance of table grapes to handling injury in packaging, transport, and storage (Winkler 

et al., 1974).   

Table grapes are non-climacteric fruit, which means they do not continue to ripen after 

harvest and for this reason they should be harvested when they reach optimum maturity 

(Ginsburg et al., 1978; Hardenburg et al., 1986). However, fruit quality tends to deteriorate 

rapidly during postharvest handling and storage, thus reducing shelf-life during marketing. 

Deterioration of table grape quality is mainly characterized by weight loss, stem (rachis) 

dehydration and browning, colour changes, accelerated berry softening, berry drop and high 

incidence of berry decay due mainly to Botrytis cinerea (Nelson, 1978; Valero et al., 2006). 

Sulphur dioxide gas (released by SO2 pad) is used to control decay caused by fungi such as 

Botrytis cinerea, which grows well in the optimum storage condition [−0.5°C to 0°C, 95% 

relative humidity (RH)] for table grape (Ginsburg et al., 1978). However, the presence of SO2 

gas may also cause various degrees of injury to the grapes (Zoffoli et al., 2008; Harvey and 

Uota, 1978).  

 

Cooling is the main technique that is widely employed to reduce postharvest related defects 

of fresh horticultural produce (Hardenburg et al., 1986). However, cooling efficiencies of 

produce such as fruit in different packages has been reported as a challenge, which often 

results in spatial variability of fruit temperature inside packages (Smale et al., 2006; Zou et 

al., 2006a). This variability of fruit temperature has been reported to cause fruit quality 

variability (Smale et al., 2006). Cooling of horticultural produce is achieved mainly through 

forced air cooling (FAC), which means that fruit temperature and its homogeneity is largely 

governed by the patterns of airflow (Smale et al., 2006; Zou et al., 2006a). It is therefore 

important that fruit packaging allows sufficient airflow in order to achieve good cooling 

efficiencies. Table grapes are packed in multi-scale packages to ensure good protection of 

fruit; however, they still suffer postharvest quality losses during cold storage and handling in 

the cold chain due in part to effects of packaging and packaging components on airflow 

patterns and produce cooling rates. 
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Airflow can be described as the resulting motion of air molecules when subjected to 

unbalanced forces and pressure differences (Tutar et al., 2009; van der Sman, 2002). During 

pre-cooling of table grapes, air is forced through the fruit package in response to a pressure 

gradient between the two sides of pallets. In the subsequent stages of the cold chain, post pre-

cooling (FAC) stage, the air is not actively forced through fruit packages due to the 

aerodynamics of facilities and equipment used, as well as the airflow resistance caused by 

packaging. Since the target temperature of produce is reached during pre-cooling, the 

subsequent cold chain stages are required to supply sufficient airflow to maintain low product 

temperatures and remove respiratory heat. In these latter stages of the cold chain, cooling of 

packed produce could therefore be achieved primarily through conduction as the cold air 

circulates around fruit packages rather than being forced through packages (Nelson, 1978).  

 

The cold chain can be segmented into four main refrigerated systems namely: cooling and 

storage facilities; refrigerated transport which is subdivided into road, sea and air transport; 

distribution centres and refrigerated displays in super-markets. Once pre-cooled the 

horticultural products should be handled from one segment of the chain to the next with 

minimal to no breakages of the cold chain. This requires good temperature management 

throughout the chain. However, this cold chain requirement is not always adhered to in 

practice, either due to human error or to poor designs of the refrigeration infrastructure being 

used. Since temperature homogeneity of products is governed by the patterns of air flow in 

refrigerated systems (Smale et al., 2006), the knowledge air flow patterns in the different 

refrigeration systems is imperative for proper packaging designs, cooling efficiencies and 

good temperature management within the cold chain.       

 

Air flow improvement in different cold chain applications is a well-established research field 

in postharvest. A lot of work has been reported on the improvement of packaging design, 

fruit stacking inside packages and stacking patterns of fruit packages on pallets for efficient 

air flow and cooling (Chau et al., 1985; Haas et al., 1976; Neale and Messer 1976; Neale and 

Messer, 1978; Verboven et al., 2004; Vigneault and Goyette, 2002; Vigneault et al., 2004; de 

Castro et al., 2005; Zou et al., 2006a;b ; Ferrua and Singh, 2009b; Tutar et al., 2009). Many 
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researchers have reported on airflow distribution inside refrigerated storage rooms (Foster et 

al., 2002; 2003); refrigerated transport (Moureh et al., 2002; Moureh et al., 2004; Moureh et 

al., 2009c; James et al., 2006) and refrigerated display cabinets (Field et al., 2006; Amin et 

al., 2009; Amin et al., 2011).   

 

In literature different techniques were used to measure and quantify airflow in the different 

applications within the cold chain. These techniques are either experimental or predictive. 

The experimental techniques could be divided into intrusive and non-intrusive techniques 

(Childs et al., 2000). The main differences between intrusive and non-intrusive techniques lie 

on the degree of contact between the measuring instrument and the medium being measured. 

During the intrusive measurement, the measuring device is in direct contact with the medium 

of interest, e.g. probes and air velocity meters in an air stream; while for the non-intrusive 

measurement, the medium of interest is observed remotely (Childs et al., 2000).  The 

intrusive methods can be further divided into direct-intrusive and indirect intrusive measuring 

techniques. Prediction methods include different numerical modelling and simulation.  

 

The objective of this chapter is to review table grape postharvest cold chain handling 

systems, including techniques used to assess the performance in cold chain systems and table 

grape postharvest quality defects.  

 

2.2 Table grapes refrigeration systems  
 

Table grape refrigeration systems could be divided into pre-cooling and cold storage; 

refrigerated transport and display cabinets. The commonality between all these refrigeration 

systems is that they use cold air as a cooling medium.  

 

2.2.1 Pre-cooling system 
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Pre-cooling has been defined as the rapid removal of field heat from freshly harvested 

produce in order to slow down metabolism and reduce deterioration prior to transport or 

storage (Brosnan and Sun, 2001). During table grape pre-cooling, FAC is used to rapidly 

remove field heat and this technique has also been referred to as forced convection (Nelson, 

1978). The term FAC has been used to describe the cooling of fruits or similar contents of 

packages by cold air forced through containers by a static head (Guillou, 1960). Storage of 

grapes for periods from a week to one month requires pre-cooling to the storage temperature 

of -0.5°C at a relative humidity of 95% and higher if possible (Ginsburg et al., 1978). The 

pre-cooling is a separate operation from the normal storage in refrigerated room, as most 

storage rooms designed for holding the produce have neither the capacity nor the air 

movement needed for rapid cooling (Hardenburg et al., 1986). 

 

During FAC of table grapes inside refrigerated rooms, fruit pallets are placed in two parallel 

lanes forming a channel and then a tarpaulin is placed over the top of pallets covering the 

open channel (Fig. 1b), (Thompson et al., 1998; Ferrua and Singh, 2009a). Following the 

placement of a tarpaulin over pallets, a fan is sealed against the channel and then switched on 

to remove air from the channel and thus creating a pressure difference between two sides of 

the pallets (Fig. 1). Cold air circulating inside the cold room is then forced through the 

packed products in response to the created pressure gradient and thus convectively cooling 

the fruit (Thompson et al., 1998). Other pre-cooling facilities are equipped with a racking 

system, where grape pallets are placed in parallel lanes and with two layers of pallets on top 

of each other in racks (Fig. 2). In this system the suction fans are situated on top of the tunnel 

near the roof and the tarpaulin is suspended down from roof to seal off the channel between 

the two lanes (rows of pallets) (Fig. 2).  

 

Some of the table grape cold store facilities have a number of small sized rooms (Winkler et 

al., 1974), holding a few grape pallets at a time (Figure 2). These smaller rooms are often 

referred to as pre-cooling rooms or tunnels. Other cooling facilities have bigger warehouse-

type refrigerated room, where pallets are arranged in a pre-cooling tunnel setup and a number 

of these pre-cooling tunnels are built in the same refrigerated room. Each tunnel is made up 

of 18 to 20 pallets on average and they each have individual fans forcing cold air through 

packages.   
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2.2.2 Table grape storage system 
 

Although not ideal for table grapes quality, sometimes grapes are stored for some period until 

either a shipping opportunity becomes available (especially in the production countries) or 

the buying power of consumers increases (mostly in importing countries and supermarkets). 

During grape storage, air must be circulated sufficiently to keep a cold storage room at even 

temperature throughout the room (Hardenburg et al., 1986). Since table grapes are pre-cooled 

to the desired pulp temperatures prior to cold storage, a high air velocity is unnecessary and 

usually undesirable. Only enough air movement should be provided to remove respiratory 

heat and heat entering the room (Hardenburg et al., 1986). A simplified arrangement of a 

typical cold room is such that cold air is discharged from the evaporator coils into the room 

with the aid of fans. The evaporators are usually situated near the ceiling of the room, and so 

the cold air sweeps the ceiling (Fig. 1) and circulates past the produce and is then returned to 

the evaporator with absorbed heat from the produce (Thompson et al., 1998). Amos (2005), 

characterised airflow in a commercial cold store and he found that there was an uneven 

distribution of airflow within the cold store. He reported that the top layers and side columns 

of bins tended to receive sufficient airflow, while the central positions received lower airflow. 

The temperature results indicated that the hot spots coincided with the area of lowest airflow 

(Amos, 2005). Chourasia and Goswami (2007), also found some temperature and airflow 

variability inside a potato cold store, with some areas showing possible hot and cold spots. 

Xie et al. (2006), used CFD modelling to study the effect of design parameters (such as 

corner baffle, the stack mode of foodstuffs, etc.) on the flow and temperature fields of a cold 

store and they found that all these design parameters, especially the stack mode of foodstuffs, 

greatly influenced the flow and temperature fields inside the cold store (Xie et al., 2006).    

 

 

2.2.3 Refrigerated trucks, reefer containers and reefer vessels (ships) 
 

Refrigerated truck trailers do not have enough air flow or refrigeration capacity to cool 

perishable commodities rapidly (Thompson et al., 1998; Moureh and Flick, 2004). For this 
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reason table grapes and other horticultural products should always be properly cooled to 

desired product temperature (-0.5°C for grapes) before loading in refrigerated trucks 

(Thompson et al., 1998).  

Smale et al. (2006) stated that from an aerodynamic perspective, the key characteristic of 

transport equipment is the placement of both the air delivery and return on the same face. 

This configuration is almost universally used, as it is practical to place all the refrigerating 

equipment at one end of the transport unit (Smale et al., 2006). The drawback of this 

asymmetrical design is the presence of a strong pathway between the two sections, implying 

high velocities in the front of the refrigerated enclosure (Fig. 3) (Smale et al., 2006; Moureh 

and Flick, 2004; Moureh et al., 2009c). In addition, the compactness of the cargo and high 

resistance to airflow due to narrow air spaces between pallets result in an uneven air 

distribution in the cargo where stagnant zones with poor ventilation can be observed in the 

rear part of the vehicle (Smale et al., 2006).  

 

Moureh et al. (2009c) characterised air velocity within ventilated packages inside a 

refrigerated vehicle with or without an air duct. The authors reported that vehicles without air 

ducts tended to have poor air velocities at rear positions (near doors), while by comparison, 

the use of air ducts contributes significantly to a more even distribution throughout the 

container by improving air supply towards the rear, whilst reducing airflow intensity at the 

front (Moureh et al., 2009c). 

 

Tanner and Amos (2003) reported significant spatial variability in temperature along the 

length and width of reefer containers during shipping of kiwifruits. Punt and Huysamer 

(2005) reported that plum pallets positioned near the doors responded poorly to changes in 

set-point temperature of the reefer container while those positioned near the cooling unit 

responded well during shipping of plums under dual temperature regimes of -0.5 °C (2 days); 

7.5 °C (5 days) and -1 °C (for the remainder of the journey). These results could also be 

attributed to the aerodynamics of reefer containers where the rear positions (near doors) are 

associated with poor airflow velocities. 
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The aerodynamics in reefer vessels (ships) is also similar to that found in reefer containers 

and refrigerated trailers, where both the delivery and the return air ducts are on the same side. 

Tanner and Amos (2003) found significant variability in temperatures along the length of the 

vessel deck (Fig. 4), probably due to compactness of loaded pallets bringing about resistance 

to airflow. They attributed this temperature variability to a possibility of insufficient airflow 

in the deck. They also reported that the largest cause of variability in pallet temperature was 

related to slow rate of cooling after placement in the cargo hold. The results from their study 

indicated that it took up to 10 days for the kiwi fruit temperatures to reach steady state 

(Tanner and Amos, 2003).  

 

The resistance to airflow through packed products in refrigerated transport systems could be 

related to the tight loading arrangement of pallets inside the transport confinement and 

possibly also the misalignment of the ventilation holes between fruit packages.  

 

2.2.4 Refrigerated display cabinets  
 

In supermarkets, open-type refrigerated display cabinets (RDCs) are used extensively to 

merchandise perishable food at suitable temperatures (Fig. 5) (Moureh et al., 2009a). A 

typical RDC consists of a limited container, insulating heat shell and a small refrigerating 

unit. The refrigeration system controls product storage temperatures by removing all of the 

heat gain from components of the display case. RDCs operate by circulating cold air around 

the displayed products (Moureh et al., 2009a). Two or more fans circulate the air through an 

evaporator heat exchanger from the inlet to the outlet section (Moureh et al., 2009a).  

 

Display cabinets are known to be the weakest link from the cold chain point of view and, 

therefore, particular attention needs to be paid to their design (Cortella, 2002).  The main 

challenge facing the efficiency of refrigerated display cabinets is to prevent warm ambient air 

in the supermarket from entering the open display cabinet system, thereby adding the heat 

load to the display’s refrigeration system and causing inefficient cooling. Refrigerated air 

curtains (which are cold turbulent air jets) are usually used in open display cabinets of 
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supermarkets as a barrier between the warm ambient air and the cold refrigerated air (Field 

and Loth, 2006; Moureh et al., 2009a). Most studies regarding the improvement of efficiency 

in open refrigerated display cases focus on improving the performance of these air curtains 

through improvement of cabinet designs (Amin et al., 2011). Amin et al. (2011) studied the 

effect of variables (such as jet throw angle, height of the opening, airflow rate ratio, etc) on 

the entrainment and penetration of outside ambient air into the refrigerated cabinet system, 

and they also investigated the relationship between these variables and the infiltration. They 

found a strong and direct relationship between jet exit Reynolds number and offset angle. 

Reynolds number defines how turbulent or laminar the air flow is; the higher the Reynolds 

number is, the more turbulent the flow becomes. The increase in Reynolds number resulted in 

an increase in absolute infiltration rate. The offset angle resulted in similar effects on absolute 

infiltration rate as the Reynolds number. They also reported that although the relationship 

between infiltration and the tested variables (i.e. jet throw angle, height of the opening, and 

flow rate ratio), was significant, the effect of each variable was better pictured in combination 

with other variables (Amin et al., 2011). Amin et al. (2012) studied the effect of what they 

referred to as ‘secondary variables’ on the efficiency of the air curtain. These secondary 

variables included the turbulence intensity of the air curtain jet at its discharge nozzle, 

average percentage of the space between the shelves that was filled with food products, 

difference between the temperatures of ambient air and the jet at the discharge nozzle, as well 

as the relative humidity between the aforementioned locations. They found that the 

temperature and relative humidity changes were of little or no importance, while the 

turbulence intensity changes infiltration rate almost linearly and the food level (amount of 

food on shelf) varies it in a nonlinear manner (Amin et al., 2012). 

 

Field and Loth (2006) measured air velocity and temperatures of the air curtains in a 

refrigerated display case in order to better understand the fluid dynamics which governs the 

entrainment. The results obtained from their study showed that the entrainment of the 

ambient air was governed by a variety of eddy engulfing structures. Eddy is defined as the 

swirling of a fluid (e.g. air) and the reverse current created when the fluid flows past an 

obstacle. They also reported that the flow measurement results indicated negatively-buoyant 

acceleration following the jet exhaust, followed by a more linear curtain growth characteristic 

of isothermal wall jets (Field and Loth, 2006).  
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Moureh et al. (2009a) studied the use of mist flow whereby fine water droplets are injected 

into the air curtain to improve the performance of refrigerated display cabinets. They found 

that the deposition and evaporation of droplets on the surface of products partially 

compensate the radiative heat gained by the products by removing from it the amount of 

latent heat of the evaporated droplets (Moureh et al., 2009a).  

2.3 Table grape packaging 
 

In order to maximise the cooling efficiency and maintain temperature homogeneity of packed 

products, the total ventilation areas of fruit packages should be large enough not to restrict the 

airflow (Pathare et al., 2012). The vent positions should cover most of the walls and the 

bottom (and the top if the container includes a cover) of the container and not affect the 

container structure (de Castro et al. 2004; Arifin and Chau 1987; Vigneault and Goyette 

2002). Several experimental studies have been reported in the literature to elucidate the 

influence of different package vent designs on the efficiency of the forced-air precooling 

process. The importance of these design criteria does not change with the size of the 

container since vent openings of individual consumer package, reusable box or standard 

pallet-size container play all the same major role in the efficiency of the cooling process 

(Émond et al., 1996).  

 

Table grapes are packed in different multi-scale packages (Fig. 6). Most of the published 

work on table grape packaging has focussed on modified atmosphere packaging (MAP) as an 

alternative to controlling decay and postharvest quality of grapes (Artés-Hernández et al., 

2006; Candir et al., 2012; Costa et al., 2011; Ustun et al., 2012; Valero et al., 2006; Zoffoli et 

al., 1999). There is, therefore, a very limited knowledge on the effects of table grape multi-

packages on resistance to airflow and cooling performance. In literature, the resistance to 

airflow through fruit packages has largely been related to the amount of vent-hole area of 

packages, product porosity, and fluid properties (Chau et al., 1985; Haas et al., 1976; 

Vigneault and Goyette, 2002; Vigneault et al., 2004; Neale and Messer, 1976; Neale and 

Messer, 1978; Zou et al., 2006a).  Based on extensive experimental research, de Castro et al. 
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(2005) recommended a vent-hole ratio of 8-16% of the surface of the container to optimise 

the use of energy.  

Resistance to airflow may even be higher during table grape cooling due to the fact that grape 

bunches are packed inside multi-scale packages. These multi-scale packages include the 

carton boxes with multiple inner packaging materials which include carton liner films, SO2 

pad, moisture absorption sheets and bunch carry bags.  

 

2.4  Assessment of pre-cooling, storage and packaging 
 

The assessment of airflow, cooling and moisture loss characteristics within the cold chain 

systems could be done using experimental and mathematical techniques. This section reviews 

the principles and application of these techniques.  

 

2.4.1 Experimental techniques for measuring and quantifying airflow within cold 
chain 

 

The experimental techniques can be subdivided into direct intrusive; indirect intrusive and 

non-intrusive methods.  

 

Direct intrusive methods  
 

The direct intrusive methods include all techniques that measure airflow directly; however, 

they are intrusive in nature in that the instruments used for measuring are in direct contact 

with the air flow fields. These include hot-wire and vane anemometers. 

 

Hotwire anemometer 
 

The “hotwire anemometer” is a well-known transducer and has been used for many years in 

measuring mean and fluctuating flow velocities (Al khalfioui et al., 2003; Sanyal et al., 
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2006). It usually refers to the use of a small (2–5 mµ in diameter) electrically heated element 

placed in a fluid with the aim of measuring the flow velocity of that fluid (Al khalfioui et al., 

2003). The commonly used wire materials include the platinum, platinum– iridium and 

tungsten (Sanyal et al., 2006). The hotwire meter may be operated either in constant current 

or in constant temperature mode (Sanyal et al., 2006). In the first method, an electric circuit is 

adjusted to feed a constant current to the hotwire. The current and the wire resistance define 

the power being fed to the wire, which is a function of the flow velocity. The second mode of 

hotwire operation is known as constant-temperature mode. In a constant-temperature 

anemometer (CTA), resistance and temperature are maintained at constant values; so when 

fluid velocity increases the system also increases the current through the sensor to restore 

equilibrium. Consequently, voltage drop across the element increases, thus giving a voltage 

signal dependent on fluid velocity (Sanyal et al., 2006). 

 

The principle of constant-temperature anemometry was discovered experimentally in 1909. A 

thin uniform wire, kept at constant resistance and temperature (by an adjusted continuous 

electric current) and immersed in a uniform transverse wind, dissipates heat convectively in 

proportion to the temperature elevation of the wire above that of the passing air, and also in 

proportion to the square-root of the wind velocity (Anon, 1917). 

 

Hot wire anemometry has a number of qualities, which includes an easy implementation and 

low cost. However, its main drawback is its high operating temperature as well as its high 

sensitivity to variations in the fluid temperature (Al khalfioui et al., 2003). Other 

disadvantages include the intrusive nature of the instrument during measurement, which often 

disrupt the parameter being measured. This happens either because they induce singular main 

loss in the air network or they generate some natural convection as a result of their operating 

temperature (Al khalfioui et al., 2003). In addition, the hotwire anemometer is a local 

measurement which has to be reproduced many times in order to get a profile of velocity 

allowing the determination of a volumetric flow (Al khalfioui et al., 2003; Glaniger et al., 

2000).  
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The hot-wire anemometer has been widely used by many researchers to measure airflow 

during cooling and other applications in the cold chain (Alvarez and Flick, 1999; Irving and 

Shepherd, 1982; Foster et al., 2002; Hammond et al., 2011; Laguerre et al., 2012; Moureh et 

al., 2009a; Xie et al., 2006).  

 

Xie et al. (2006) and Foster et al. (2007) used hotwire anemometers to measure the fan outlet 

velocity and air jet velocity across the width of the air curtain at the door of cold rooms, 

respectively. Moureh et al. (2009b) used an original experimental technique which consisted 

of indirect velocity measurement by means of heat transfer analogy for hot wire anemometry. 

They measured internal macroscopic velocities within porous fruit boxes. Alvarez and Flick, 

(1999) measured air velocity and turbulence intensity inside fruit bins containing spheres and 

upstream of the pallets using a constant temperature hot-wire anemometer. However, they 

found that the use of a single hot wire made it impossible to separate the two components 

( x and y ) of the velocity vector, and another challenge they encountered was that the velocity 

and turbulence between the spheres could not be measured without removing some spheres, 

which meant that two rows of spheres had to be removed each time to accommodate the hot 

wire. This removal of the spheres may have modified the velocity field to some extent 

(Alvarez and Flick, 1999). 

 

Irving and Shepherd (1982) used hot wire anemometers to measure air circulation rate inside 

integral refrigerated shipping containers. They found that the hot wire anemometers tended to 

overestimate the flow rate by 5 to 40% during their experiments (Irving and Shepherd, 1982). 

 

Some researchers used hotwire anemometers to measure the discharge velocity and 

turbulence across the air discharge grille (ADG) of refrigerated display cabinets (Hammond 

et al., 2011; Laguerre et al., 2012). Moureh et al. (2009a) also used a constant temperature hot 

wire anemometer to measure air velocity in a refrigerated display cabinet (RDC). They 

reported that the hotwire probe could be used to measure the time-averaged velocities, but did 

not give any information on flow turbulence due to the long response time (2 s).  
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Vane anemometers 
 

Vane anemometers have been used for many years to measure velocities in ducts (Ower and 

Pankhurst; 1966), weather stations and ventilation systems. The mechanical instruments are 

made of rotating blades (vane) which are orientated at an angle to the incoming air stream 

and pointers moving over a graduated dial marked with scales of feet or metres (Ower and 

Pankhurst; 1966). The instrument is based on the principle that air forces acting on the vane 

cause the spindle to rotate at a rate depending mainly on the air speed. However, to determine 

air speed using the mechanical vane anemometer, a stop watch is required in order to measure 

time taken for a number of ‘feet or metres of air’, as shown by the indicating mechanism, to 

pass the instrument’s ducts (Ower and Pankhurst; 1966). Modern digital vane anemometers 

indicate velocity readings (m/s) directly on an odometer counter, an illuminated screen, or 

feed an electric signal to a data logging system.  

 

Foster et al. (2002) used mini vane anemometers based on the impeller unit of Krestrel 

K1001 anemometer (diameter 25 mm) to measure air movement through the doorway of a 

refrigerated room. Irving and Shepherd (1982) also used vane anemometers to measure air 

circulation rate inside integral refrigerated shipping containers. They found that the vane 

anemometers overestimated the flow rate by 10 to 55% during their experiments (Irving and 

Shepherd, 1982). 

 

Indirect intrusive 
 

The indirect intrusive methods include those techniques that measure the parameters in the 

flow field that could be correlated to the airflow patterns. They are also intrusive in that the 

instrumentation used is inside the flow field. The indirect intrusive techniques discussed in 

this review include the tracer gas methods and thermal tracing methods e.g. thermocouples 

and compact sensors. 
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Tracer gases 
 

The tracer gas technique is one of the flow visualisation methods, where the movement of a 

tracer gas is monitored using instruments rather than by visual observation (Tanner et al., 

2000; Smale 2004). The tracer techniques generally involve injecting a tracer gas into a flow 

path and monitoring concentration changes at numerous sample points. Analysis can involve 

either calculation of a ‘time of gas arrival’ at each of the sample points or concentrations at 

the sample points to determine the level of mixing (Smale, 2004). Figure 7 shows a typical 

tracer method setup. In literature, the choice of tracer gas used in each application has largely 

been associated with the price, availability, accuracy and response time of the measuring 

sensors (Sherman, 1990; Smale, 2004). Smale (2004) made a cost comparison and response 

times of different tracer gas instrumentations.  

 

A good tracer gas should comply with certain requirements in order to successfully study 

flow systems.  According to Sherman (1990), an ideal tracer gas must have some of the 

following properties: 

Safety: the presence of the tracer should not pose a hazard to people, materials, 

or activities in and around the test area. The tracer therefore should be 

non-flammable, non-toxic, non-allergenic, etc. 

Non-reactivity:  because conservation of tracer will be used to infer airflow, the tracer 

gas should not react chemically or physically with any part of the 

system under study. 

Insensibility:  the presence of the tracer should in no way affect the processes that are 

being studied. Thus, an ideal tracer gas should not affect the airflow or 

air density of the system. 

Uniqueness:  an ideal tracer should be able to be recognized from all other 

constituents of air. In general it should not be a normal constituent of 

air in which it is being placed, but a tracer with non-zero back-ground 

may be used provided that the background is stable and additional 

tracer concentration is significantly larger than the (steady) 

background. 
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Measurability:  the (true) concentration and all injected tracer gas must be quantifiable 

through some sort of instrumentation. 

 

Table 1 summarises the different applications of tracer gas techniques in the cold chain. 

Details of different gases used, measuring method (i.e. time of tracer arrival or concentration 

at point of measurement) and instrumentation used are reported.   

 

Thermal tracing 
 

Ways of indirect airflow measurement involving measuring the product’s (or thermal 

spheres) cooling patterns have been reported by few researchers (de Castro et al., 2005; 

Vigneault and de Castro, 2005; Vigneault et al., 2007). This method involves placing 

instrumented balls or thermal sensors in different positions inside fruit packages and then 

correlating their cooling rates to air-flow rates. In most forced-air cooling studies thermo-

electronic sensors such as thermocouples and probes are used to monitor cooling rates and 

temperature patterns of packed produce in response to the approach cold air velocity 

(Gaffney and Baird 1977; Dincer, 1995a; b; c; Foster et al., 2002). This involves systematic 

suspension of probes in air spaces or inside fruit-core to monitor spatial temperature changes 

in the flow direction.  

 

Thermocouples 
 

In its simplest form thermocouples are made up of two dissimilar metals (Metal A and Metal 

B) fused together by soldering at the hot junction (measuring point) and the cold junction is 

the loose end of the two metals, which connect to the voltmeters or data loggers to read or log 

the temperature data (Kasap, 1997-2001; Herwaarden and Sarro, 1986; Genix et al., 2009). 

The principle of thermocouples is based on the Seebeck effect (Kasap 1997-2001; 

Drebushchak, 2009; Genix et al., 2009) which was discovered by Seebeck in 1821. Seebeck 

discovered that that when dissimilar two metals having different Seebeck coefficients are 

joined together at one end, a voltage called Electromotive Force (EMF) could be detected 

using a voltmeter at the other end (Genix et al., 2009). This measured electromotive force 

was proportional to the thermal gradient between the hot and cold junction materials (Kasap, 
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1997-2001; Drebushchak, 2009; Genix et al., 2009). The Seebeck effect is defined as the 

potential voltage difference ( )V∆ across a piece of metal due to a temperature 

difference ( )T∆ between the hot and cold junctions. There are different types of 

thermocouples that are commercially available and these are presented in the review by 

Childs et al. (2000). 

 

Many researchers have used thermocouples to measure spatial temperature changes inside 

ventilated fruit packages and fruit in bulk during forced air cooling (Acevedo et al., 2007; 

Amara et al., 2004; Barbin et al., 2010; 2012; Ferrua and Singh, 2009c; 2011; Gordon and 

Thorne, 1990; Hu and Sun, 2001; Laguerre et al., 2006; Martínez-Romero et al., 2003; 

Moureh et al., 2009c; van der Sman et al., 1996; 2000). Others (Foster et al., 2002; Xie et al., 

2006) have used thermocouples to monitor air temperature changes inside cold rooms with or 

without products. Some researchers (Punt and Huysamer, 2005; Tanner and Amos, 2003; Tso 

et al., 2002) studied the cooling patterns of fruits inside refrigerated trucks; reefer containers 

and reefer vessel holds. Thermocouples have also been used to measure air and product 

cooling in refrigerated display cabinets (Field and Loth., 2006; Hammond et al., 2011; 

Laguerre et al., 2012; Moureh et al., 2009a). In these studies thermocouples were suspended 

in different positions inside fruit packages; cold stores; refrigerated transport and display 

cabinets, mainly in the direction of the airflow in order to monitor spatial air and fruit 

temperatures distribution inside confined spaces. Thermocouples were also inserted in fruits 

or spheres or aluminium bodies in order to monitor fruit cooling in different positions.  

 

One of the main advantages of thermocouples is that they are relatively cheap (Childs et al., 

2000) and they are compatible with a wide range of data loggers (Table 3). However, Hu and 

Sun (2002) showed that there could be an error in temperature readings obtained using 

thermocouples if care is not taken during installation. They found inaccuracies in temperature 

readings associated with thermocouples inserted too shallow (near sample surface) into the 

sample (Hu and Sun, 2002). Too long thermocouple wires hanging out side the sample 

(exposed to cold air-blasts) also adds to error readings (Hu and Sun, 2002). This suggests that 

care should be taken when installing thermocouple wires into fruits in order to avoid error 

readings.    
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Infrared sensors 
 

Temperature measurement systems based on monitoring thermal radiation in the infrared 

spectrum are useful for monitoring temperatures in the ranges from 50 to 6000 K (Childs et 

al., 2000). An infrared measuring system comprises of the source or target, the environment, 

the medium through which the radiant energy is transmitted, usually a gas, and the 

measurement device. The measuring device may include an optical system, a detector, and a 

control and analysis system. Radiation detectors can be broadly grouped into three categories: 

disappearing filament optical pyrometers, thermal detectors, and photon or quantum 

detectors. 

  

Thermal detectors convert the absorbed electromagnetic radiation into heat energy, causing 

the detector temperature to rise (Childs et al., 2000). This can be sensed by effects on certain 

physical properties, such as electrical resistance used by bolometers, thermoelectric emf used 

by thermocouple and thermopile detectors, and electrical polarization used by pyro-electric 

detectors. The principal application of thermal detectors is for measurement of low 

temperatures where there is limited radiant flux and the peak of the Planck curve is well into 

the infrared. Thermal detectors offer wide spectral response by detecting the emitted radiation 

across the whole spectrum at the expense of sensitivity and response speed. For higher 

temperatures, devices with narrower spectral bandwidth are more suitable (Childs et al., 

2000). Bolometers are thermal detectors in which the incident thermal radiation produces a 

change in temperature of a resistance temperature device, which may be a RTD or a 

thermistor. Bolometers can however be comparatively slow with time constants of 10-100 

ms. A thermopile is an alternative to the use of thermal resistance temperature device. A 

thermopile consists of a number of series-connected thermocouples arranged such that the 

local heat flux generates a temperature difference between each pair of thermocouple 

junctions. In an infrared thermal detector, the thermopile is arranged so that half of the 

junctions are maintained at a constant temperature by being in contact with a component with 

relatively large thermal inertia. The radiant energy heats the other junctions, generating a 

thermoelectric emf (Childs et al., 2000). 
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Resistance Thermometers 
 

The temperature dependence of electrical resistance is fundamental to the operation of these 

sensors (Childs et al., 2000). The resistance of a conductor is related to its temperature 

because the motion of free electrons and of atomic lattice vibrations is also temperature 

dependant. Any conductor could in theory be used for a resistance temperature device (RTD), 

however, considerations of cost, temperature coefficient of resistance (a large coefficient 

value leads to a more sensitive instrument), ability to resist oxidation, and manufacturing 

constraints limit the choice. The most widely used conductors include copper, gold, nickel, 

platinum, and silver. Resistance temperature devices can be highly accurate. They are also 

widely used in industrial applications. The particular design of the sensing element depends 

on the application, the required accuracy, sensitivity, and robustness (Childs et al., 2000). 

 

Dincer (1995a) used such probes to measure the center temperatures of individual figs 

(thermal spheres) at the air flow velocities of 1.1, 1.5, 1.75, and 2.5 m/s. He  found that the 

cooling coefficient and lag factor varied linearly, the half cooling time and seven-eighths 

cooling time decreased by 21.5% and 20.9% and the heat transfer coefficient increased by 

27.3% with increasing air-flow velocity from 1.1 to 2.5 m/s. 

 

Tso et al. (2002) used resistance temperature detectors (RTD-100) to measure the air 

temperature inside the body of a refrigerated truck, and a compact transducer to measure the 

relative humidity in order to characterise the heat and mass transfer in a refrigerated truck 

with or without air and plastic strip curtains. They reported that an average air temperature 

inside the truck increased to 14°, 7° and 8 °C from an initial temperature of – 10 °C, for cases 

without an air curtain, with a fan air curtain and with a plastic strip curtain, respectively, 

within 2 min after the door was opened.  

 

Vigneault et al. (2007) developed an airflow rate (AFR) measuring method without 

modifying the airflow pattern inside horticultural crop packages. The method involved the 

use of instrumented balls to determine the correlations among their cooling rates (CR), 
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cooling indexes (CI), air approach velocities, and AFRs. With this method they successfully 

determined the relationships between the AFRs and the CRs as a function of the position of 

the instrumented balls in reference to the air entrance through packages with different vent-

hole ratio. De Castro et al. (2005) used similar instrumented balls to investigate the air 

pathways for peripheral and central opening configurations of packages during horticultural 

produce forced-air cooling process. 

 

Moureh et al. (2009a) used a black painted thermal sensor (type not specified) to measure 

locally the surface temperature along the refrigerated display cabinet. The black paint served 

to increase the emissivity of the sensor and thus to increase the proportion of absorbed heat 

flux emitted by the external walls. This sensor was set precisely on the top plane representing 

the food surface in order to avoid a flow disturbance. 

 

As part of the review by Ruiz-Garcia and Lunadei (2011), the application of RFID tags with 

embedded temperature sensors in the cold chain is reported. The cost the RFID technology 

was reported to be a major hurdle in the widespread use of this technology in agricultural 

industries (Ruiz-Garcia and Lunadei, 2011). 

 

Non-intrusive experimental methods 
 

The non-intrusive measurement techniques do not cause any disturbances to the flow fields 

under study, and therefore are capable of measuring difficult conditions (Kumara et al., 

2010). Advances in optical diagnostics as well as in computers have led to rapid progress in 

the development of non-invasive measurements and flow visualization techniques for 

multiphase flows. The Particle Image Velocimerty (PIV) and Laser Doppler Velocimetry 

(LDV) are the two widely used optical measurement techniques for gas-liquid two-phased 

flow applications (Kumara et al., 2010). 
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Laser Doppler Velocimetry (LDV) 
 

In its simplest form, LDV crosses two beams of collimated, monochromatic and coherent 

laser light in the flow of the fluid being measured (Kumara et al., 2010). The two beams are 

usually obtained by splitting a single beam, thus ensuring coherency between the two. The 

two beams are made to intersect at their waists (the focal point of the laser beam) (Kumara et 

al., 2010). The velocity measurement is made in the region where the beams intersect. It is 

called the measurement volume. The interference of the light beams in the measurement 

volume creates a set of equally spaced fringes (light and dark bands) that are parallel to the 

bisector of the beams. A measurement is made when a tiny particle being carried by the flow 

passes through these fringes. The frequency of the light scattered (and/or refracted) from the 

particles is different from that of the incident beam. This difference in frequency, called the 

Doppler shift, is linearly proportional to the particle velocity. The seeded particles must be 

big enough to scatter sufficient light for signal detection but small enough to follow the flow 

faithfully (Kumara et al., 2010). The light scattered by the particle is collected by the 

receiving lens and focussed into a photodetector which converts the fluctuations in light 

intensity into fluctuations in a voltage signal. An electronic device known as a signal 

processor is then used to determine the frequency of the signal and therefore the flow velocity 

(Kumara et al., 2010).  

 

The LDV technique has the advantages of (Wang, 1988; Kumara et al., 2010):  

• fast dynamic response and wide measuring range;  

• no need for calibration, because the speed of light and laser wavelength are known;  

• no interference to the flow field, because there is no physical probe inside the flow 

field;  

• independence of density and temperature variations, because the particle velocity and 

light frequency are not influenced by density and temperature fluctuations;  

• small spatial resolution--the wavelength of light is very short and can easily be 

focused to a very small spot;  

• remote sensing, because the laser beam can propagate a long distance without 

spreading too much;  
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• high quality of operation in a hostile environment, because the laser and detectors can 

be isolated from the environment by the use of optical windows.  

 

Its disadvantages are (Wang, 1988):  

• a usually low signal-to-noise ratio, because the scattered light intensity is very weak;  

• critical optical alignment--to obtain spatial coherence, alignment accuracy should be 

of the order of light wavelength;  

• possible need for seed particles to increase the signal-to-noise ratio;  

• high cost, because both laser and signal processing equipment are very expensive;  

• LDV has a major drawback due to the fact that in order to obtain a full-field profile of 

a given flow regime, multiple measurements must be made at various points 

throughout the flow and simultaneously as well if the flow is unsteady (Kumara et al., 

2010). 

 

 Particle Image Velocimetry (PIV) 
 

Adrian (1991) reported a comprehensive review on the origin and principles of the particle 

image velocimetry (PIV) technique. PIV differs from LDV in that the output of a pulsed high 

energy laser is directed through a cylindrical lens system which shapes the resulting beam 

into a thin planer sheet of high-intensity laser light (Kumara et al., 2010; Adrian, 1991). This 

sheet of light is subsequently aligned and directed through the flow where it is scattered by 

seed particles (Adrian 1991; Kumara et al., 2010). A camera positioned at 90° to the light 

sheet captures the images of illuminated particles. The laser light is pulsed and the camera 

captures particle images at that instant. Individual photographic film would be exposed for 

two or more pulses of laser light with a known time separation between pulses, thus capturing 

the sequential locations of the particles as they are convicted by the flow (Forliti et al., 2000). 

Images are formed on a photographic film or on a video array detector, and the images are 

subsequently transferred to a computer for automatic analysis (Adrian 1991). 

 

The analysis or “interrogation” of the recorded images field is one of the most important 

steps in the entire process, as it couples with the image-acquisition process to determine the 
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accuracy, reliability, and spatial resolution of the measurements; it is also the most time-

consuming part of the process (Adrian, 1991). There are four main interrogation techniques, 

namely, Direct Autocorrelation; Direct cross correlation; Young’s Fringes and Optical 

correlation and the principles of these techniques are detailed in the review by Adrian (1991). 

In a case where the recorded image contains a small amount of information, as for a typical 

video camera that consists of an array of approximately 500 x 500 pixels, the entire image 

field (e.g. 2.5 x 105 pixels) can be digitized and passed to the computer in one file (Adrian, 

1991). However, if the image field is very rich in information, as for a 100 mm x 125 piece of 

300 lines mm-1 resolution photographic film containing over 1.1 x 109 pixels, the local 

velocity in a small region of the image field is found by digitizing an interrogation spot and 

analysing the images within the spots, one spot at a time. The velocity field is then obtained 

by repeating this process on a grid of such interrogation spots (Adrian 1991). 

 

The LDV and PIV have been used to measure and quantify airflow in the different segments 

of the cold chain. Some researchers have used PIV and LDV to study airflow through 

ventilated fruit packages (Ferrua and Singh, 2008; Moureh et al., 2009b; 2009c; Tapsoba et 

al., 2007), others have studies airflow through cold rooms (Foster et al., 2002; Nahor et al., 

2005), while others have used PIV and LDV to study airflow in refrigerated trucks (Moureh 

et al., 2002; Moureh and Flick, 2004; Tapsoba et al., 2006) and display cabinets (Field and 

Loth, 2006; Laguerre et al., 2012b)  

 

The primary advantages associated with PIV lie in the non-invasive nature of the 

measurements and in the full-field velocity profile generated from a single measurement 

(Kumara et al., 2010). One of the disadvantages of PIV is that air cannot be used as the 

working fluid in an enclosed transparent structure due to the large differences between the 

refractive indices of air and the transparent solids such as acrylic. This difference in refractive 

indices tends to distort the laser sheet and the light scattered from the seeded particles as they 

pass through the system (Ferrua and Singh, 2008; Hopkins et al., 2000; Kelly et al., 2000).  

An appropriate transparent solid/liquid model, compatible with PIV measurements, must be 

selected (Ferrua and Singh, 2008). 
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2.4.2 Mathematical methods used to quantify and predict airflow 
 

In the past  decade, there has been a number of review articles reporting on the different 

applications of numerical models in the food refrigerated systems (Xia and Sun, 2002; Wang 

and Sun, 2003; Smale et al., 2006; Verboven et al., 2006; Norton and Sun, 2006; Delele et al., 

2010; Ambaw et al., 2012; Laguerre et al., 2012a). The increasing number of these review 

papers indicates the rapid rate of uptake and interest in the application of numerical 

modelling by researchers within the food and postharvest refrigeration industries. There are a 

number of mathematical models that are being employed to predict and quantify airflow 

within the postharvest cold chain and some of these are presented in the subsequent sections. 

 

 Computational Fluid Dynamic models (CFD) 
 

The principles of computational fluid dynamics (CFD) are well covered in the reviews by 

Norton and Sun (2006), Smale et al. (2006) and Xia and Sun (2002). CFD has become a 

widely used tool in the food industry in recent years and is defined as a numerical solution for 

the governing equations (i.e. the Navier-Stokes equations) in a geometrical domain (Smale et 

al., 2006; Xia and Sun, 2002). As discussed by Smale et al. (2006) and Xia and Sun (2002), 

the CFD simulation process can be subdivided into three main stages or phases, namely; the 

pre-processing; processing or solving and post-processing phases. Pre-processing includes 

problem thinking, meshing and generation of computational domain; defining thermo-

physical properties, the transfer processes and simulation type (Xia and Sun, 2002). These 

mathematical equations are discretised and solved to obtain an approximation of the values 

for each variable at specific points in the domain (Smale et al., 2006). During post-processing 

the analysis of the results of all the variables throughout the domain is performed. The result 

must be processed so that it can be easily reported, visualised and analysed. The application 

of CFD and other numerical models in the different systems of the cold chain have recently 

been reviewed by Ambaw et al. (2012) and Laguerre et al. (2012). 
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Lattice Boltzmann Method 
 

The Lattice Boltzmann method (LBM) has been reported as a good alternative numerical 

solution method of the convection-diffusion problem, requiring little advanced mathematics 

(van der Sman et al., 2002). Unlike conventional numerical schemes based on discretization 

of macroscopic continuum equations, the lattice Boltzmann method is based on microscopic 

models and mesoscopic kinetics (Chen and Doolen, 1998). Chen and Doolen (1998), did a 

comprehensive review of LBM including the origin of the scheme and the fundamental 

equations involved. The kinetic nature of the LBM introduces three important features that 

distinguish it from other numerical methods (Chen and Doolen, 1998). First, the convection 

operator (or streaming process) of the LBM in phase space (or velocity space) is linear. 

Second, the incompressible Navier-Stokes (NS) equations can be obtained in the nearly 

incompressible limit of the LBM. Third, the LBM utilizes a minimal set of velocities in phase 

space (Chen and Doolen, 1998).   

 

The application of LBM in food refrigerated systems was last reviewed by Smale et al. 

(2006) and there have been no recent reports found in literature on the application of LBM in 

the cold chain after their review. 

 

2.4.3 Assessment of airflow resistance 
 

The relationship between the pressure drop and air velocity is governed by Darcy’s law, 

which states that for small airflows the air flow rate is proportional to the applied pressure 

drop (van der Sman, 2002). The Darcy’s law which can be represented by, p uµ κ−∇ = , 

where p is the pressure, µ  is the dynamic viscosity of air, κ  is the permeability of the porous 

medium, u is the airflow velocity, and holds where small airflow velocity ranges are 

concerned, and these small airflows  are indicated by the particle Reynolds number Rep < 1. 

However, at higher flow rates, i.e. at particle Reynolds number Rep > 1, the airflow is 

described by the Darcy–Forchheimer equation, which includes a quadratic term (van der 

Sman, 2002). The Forchheimer term applies at higher velocities and it represents a form drag. 

For flow through a confined packed bed, such as a vented packaging, the Darcy– 
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Forchheimer equation is extended with the Brinkman term, which is required for the 

description of the boundary layer at the solid/porous-media interface (van der Sman, 2002); 

2
effp u u u uµ βρ µ

κ
−∇ = + − ∇

  
   (1) 

which is complemented with the continuity equation 

. 0u∇ =


   (2) 

Here p is the pressure, µ is the dynamic viscosity of air, κ  is the permeability of the porous 

medium, u is the airflow velocity, ρ is the density of air, β is the Forchheimer constant, and 

effµ is the effective dynamic viscosity in the boundary layer at the solid/porous-media 

interface (van der Sman, 2002). It can be assumed that effµ µ≈ (Vafai & Tien, 1980; van der 

Sman 2002). The Brinkman term is usually applied in highly porous media and its effect is 

that it will give rise to a small boundary layer, where the velocity reduces to zero exactly at 

the solid wall. On the scale of the vented box, the velocity profile is nearly uniform (van der 

Sman, 2002). Omitting this term from Eq. (1) will result in numerical solution of the velocity 

profiles showing bumps near the wall, which is not physical, but a numerical artefact (Vafai 

& Tien, 1980; van der Sman 2002). On the global scale the Brinkman term does not have a 

significant influence on the pressure drop over the packed bed, and will follow the global 

Darcy–Forchheimer equation (van der Sman, 2002). Consequently, the coefficients in Eq. (1) 

can be computed for near spherical products, using the Ergun relations (Ergun, 1952), Eq. 3. 

( )2
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2 3
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ε
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ε
−

=    (3) 

Here effd is the effective product diameter, and is calculated by 6
eff

Vd A= , with V the 

volume of the product, and A the surface area. The porosity of the packed bed is denoted as 

ε . Ergun determined experimentally that K1 = 150 and K2 = 1.75 (Chau et al., 1985). Some 

researchers have reported that, for spherical products the constants have the following values 

1 180K = and 2 1.8K = (MacDonald et al., 1979). However, Anderson (1963) found that K1 is 

not a constant but is a function of porosity, and K2 is a function of the tortuosity and the 

Reynolds number (Chau et al., 1985). The parameters 1 K (m2) and β (m-1) are the Darcy 

permeability of the porous matrix and the Forchheimer drag constant (van der Sman, 2002; 
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Verboven et al., 2004), respectively, and are dependent on stacked product diameter, 

porosity, stacking pattern, fluid property, product shape, roughness, confinement ratio 

( )h effD d and vent hole ratio of the container ( )O (Delele et al., 2008; van der Sman, 2002; 

Smale, 2004). The vent hole ratio is defined as the area of the vent hole divided by the total 

surface area of the face of the package the vent is placed: ( )hole boxO A A= , (Delele et al., 

2008; van der Sman, 2002; Smale, 2004). 

 

Some studies have questioned the validity of the Darcy–Forchheimer equation for the 

turbulent regime, indicated by Re 300p >  (Antohe & Lage, 1997; Lage et al., 1997; Tobis, 

2001; Pakrash et al., 2001). The experimental study of Lage et al. (1997) suggests that in the 

turbulent (post-Forchheimer) regime the pressure drop correlates with a cubic polynomial in 

the fluid velocity. The nature of porous media flow in the turbulent post-Forchheimer regime 

is at this moment still a controversial issue as indicated by the studies of Pakrash et al. (2001) 

and Tobis (2001). The main difficulty for resolving this question is the almost inaccessibility 

of porous media for a detailed flow measurement (van der Sman, 2002). 

Chau et al. (1985) used the power-law relationship of Ramsin equation to develop 

correlations that could estimate pressure drop through bulk fruits and packages with 

horticultural fruits (Chau et al., 1985) 

bp au∇ = −    (4) 

The coefficients a and b in Equation (4), are experimentally determined (Vigneault et al., 

2004) and are dependent on stacking pattern, diameter and porosity (Delele et al., 2008). 

Many researchers have carried experiments and developed correlations that could estimate 

pressure drop through bulk products and ventilated containers with horticultural products 

(Chau et al., 1985; Haas et al., 1976; Vigneault and Goyette, 2002; Vigneault et al., 2004; 

Neale and Messer, 1976; Neale and Messer, 1978). The product bulk properties include 

porosity, size, shape, roughness, stacking parameter and confinement. Based on extensive 

experimental research, de Castro et al. (2005) recommended a vent ratio of 8-16% of the 

surface of the container to optimise the use of energy. Haas et al. (1976) and Chau et al. 

(1985) reported that bed porosity had a much greater effect on pressure drop than the 
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diameter of oranges. Regardless of the fruit size, a stacking arrangement with a low porosity 

will produce a higher pressure drop than a stacking arrangement with a high porosity (Chau 

et al., 1985).  

 

2.5 Table grape postharvest quality defects developing during cold storage and 
handling 

 

2.5.1 Moisture loss 
 

The moisture loss process in fresh produce involves diffusion of moisture from cells into the 

intercellular spaces until a level of saturation is reached in these intercellular spaces. Moisture 

then vaporises from the intercellular spaces to the atmosphere through lenticels, stomates, 

scars, injured areas, or directly through the cuticle (Thompson et al., 1998; Veraverbeke et 

al., 2003). The rate of loss of moisture from fresh fruits is largely dependent on the humidity 

and temperature of the surrounding air, as well as on the heat and mass transfer properties of 

the fruit such as thermal conductivity, thermal and moisture diffusivity, interface heat and 

mass transfer coefficients (Margaris & Ghiaus, 2007; Thompson et al., 1998; Nelson, 1978). 

The rate of moisture loss is also influenced by the product surface area to volume ratio 

(Thompson et al., 1998). Produce with high surface area to volume ratios such as leafy 

vegetables lose moisture more rapidly than fruit which has a lower ratio (Thompson et al., 

1998). 

 

There are at least three symptoms of moisture loss from grapes: (i) shrivelled stems (also 

known as dry stems) which usually become brittle and break easily; (ii) browning of stem 

which occurs as stem dehydration becomes more severe; and (iii) berry softening which is 

followed by wrinkle like formation that starts to appear radiating out from the pedicel 

(Nelson, 1978). Dry and brittle stems often give rise to the detachment of berries from stems 

(often referred to as berry shatter or loose berries). Both the dry and brown stems detract 

seriously from the appearance of the grapes (Nelson, 1978). Grape berries do not show 

symptoms of water loss until the damage is quite evident on the stems. At about 4-5% mass 

loss, berries feel soft and above 5% loss in mass the wrinkles start to appear (Nelson, 1978). 
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Lichter et al. (2011) studied the effects of water vapour pressure deficit (WVPD) and ambient 

temperatures that prevail during marketing on the quality of grape stems (rachis) and cluster 

moisture loss of ‘Superior’ and ‘Thompson’ varieties. The grape clusters were stored at 20 °C 

or at 10 °C with low (70%) or high (>95%) RH and thus creating 4 levels of WVPD. They 

reported a poor overall correlation between cluster weight loss and rachis dry weight to 

browning for ‘Superior’ grapes but a good correlation for ‘Thompson’. The rachis of 

‘Superior’ suffered extensive browning at 20 °C even at high RH while the rachis of 

‘Thompson’ remained relatively green under similar conditions. ‘Thompson’ grape rachis 

remained green during the entire examination period (11 d) when held at high RH in either 10 

°C or 20 °C. 

 

Du Plessis (2003) studied the moisture loss and stem browning of table grapes (c.v’s. ‘Red 

Globe’, ‘Waltham Cross’, ‘Dauphine’ and ‘Barlinka’) during cold storage at -0.5 °C for 28 

days. He found that the stem condition worsened with storage period regardless of cultivar. 

Transections of stems showed no morphological differences between the cultivars. However, 

the study showed that accelerated stem dehydration could be associated to bunch straggly 

nature. 

 

2.5.2 Berry drop 
 

Some table grapes are susceptible to berry drop, which is characterised by the detachment of 

berries from grape stems (rachis). The berry drop is a quality problem that negatively affects 

the storability and marketability of grapes in markets. Berry drop can be divided into three 

categories as per Deng et al. (2007a): (1) berry shatter, which denotes a detachment of berries 

from the cap stem due to the fragile tissue structure of the stalk, (2) wet drop, where berries 

are sloughed from the stems and the short and thin berry brushes are still attached to the 

pedicel (Wu et al., 1992), (3) dry drop, or abscission, which is caused by the formation of an 

abscission zone in the grape (Deng et al., 2007a; Chen et al., 2000). In literature, the area 

between grape stalk and berries where abscission takes place is referred to as the abscission 

zone (AZ), and it is usually localized at the junction between the pedicel and berry or at the 
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junction between the stalk and pedicel or at the most fragile portion of the pedicel (Deng et 

al., 2007a; b; Wu et al., 1992).  

 

The Abscission zone 
 

Some researchers studied the morphology of the abscission zone (AZ) under electron 

microscope, and they found that AZ cells could be characterized by a small vacuole, a long 

karyon, invagination of the cell membrane and additional paramural body (Zhang and Zhang, 

2009). The cells at the AZ are often morphologically distinguishable from their immediate 

neighbours and are generally differentiated as a band composed of isodiametric or non-

isodiametric cells, 2–50 cells in thickness (Deng et al., 2007a). They are much smaller, 

closely packed cells that contain enlarged nuclei and mitochondria, dilated Golgi stacks and 

endoplasmic reticulum, and dense cytoplasm (Deng et al., 2007a). 

 

The mechanism of berry drop 
 

The major cause of abscission is the cell separation caused by the degradation of the cell wall 

in the AZ, (Zhang and Zhang, 2009), which often results in the lowering of the fruit 

detachment force (FDF). The FDF is defined as an index of berry adherence strength, which 

comprises the linking force (between berry brush and berry flesh) and tensile strength of the 

AZ. The dissolution of the middle lamella or shared cell wall in the abscission zone is a 

fundamental step in the abscission process which is attributed to the activity of catabolic 

enzymes such to pectinesterase (PE, EC 3.1.1.11), polygalacturonase (PG, EC 3.2.1.15) and 

cellulase (Cx, EC 3.2.1.4), (Deng et al., 2007a). 

 

Some studies (Deng et al., 2006; Deng et al., 2007a; b), have investigated the effects of 

different O2 and CO2 concentrations in cold (0 °C and 95% RH) storage environment of 

grape, on the catabolic enzyme activities, FDF and berry drop. Deng et al. (2007a) found that, 

in contrast to normal air storage of ‘Kyoho’ grapes, high O2 levels inhibited Cx, PG and PE 

activity and the reverse for peroxidase (POD), decreased the degree of swelling and distorting 
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of the abscission cell walls, and tended to keep berry adherence strength high and reduced 

berry drop (Deng et al., 2007a). The inhibitory mechanism of high O2 on berry drop possibly 

could be explained by the fact that disassembly of the AZ cells was delayed by a synergistic 

impact on degradation enzymes whose activities were affected by high O2 levels (Deng et al., 

2007a).  

 

Deng et al. (2007b) investigated the effects of low O2 and high CO2 atmospheres on the berry 

drop of ‘Kyoho’ grapes, changes of fruit detachment force (FDF) and berry abscission and 

enzyme activities in the abscission zone during 60 days of storage in air (control), 4% O2 + 

9% CO2 or 4% O2 + 30% CO2 at 0°C and 95% RH. They reported that, in comparison to air 

storage, the combined effects of the lower level of O2 and the higher level of CO2 suppressed 

the activities of cellulase, PG and POD, maintained greater FDF, and reduced berry 

abscission during storage. 

 

Zhang and Zhang (2009) investigated the relationship between the abscisic acid (ABA) 

concentrations and berry drop. They stated that ABA enhances the activities of cellulase and 

polygalacturonase, and accelerates the decomposition of cellulose and pectin, which 

determines the level of abscission zone development and berry falling. They found that when 

the ABA concentration was less than 20 ng g-1 of fresh weight (FW), the abscission zone was 

not developed, and the berry drop was effectively stopped. As part their study, they 

investigated the effects of treating grape bunches with growth regulators and chemicals and 

their results indicated that that 2,3,5-triiodobenzoic acid (TIBA) can (a) inhibit the generation 

of ABA significantly, (b) inactivate the activities of cellulase and PG, (c) delay the 

development of the abscission zone, and (d) stop berry falling. Indole acetic acid (IAA), 

gibberellic acid (GA3), naphthalene acetic acid (NAA), 6-benzylaminopurine (6-BA), 

calcium chloride (CaCl2), and potassium permanganate (KMnO4) caused similar results as 

TIBA. Chlorocholine chloride (CCC), dimethyl amino succinamic acid (B9), 

chloroethylphosphonic acid (CEPA) and exogenous ABA showed opposite effects. 
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2.5.3 Decay 
 

Gray mould, caused by Botrytis cinerea, is the main decay organism that causes rapid and 

extensive postharvest deterioration of table grapes (Romanazzi et al., 2012). It can develop in 

the vineyard and even more after harvest, during long-distance transport, cold storage, and 

shelf-life. Occasional infections by Penicillium spp., Aspergillus spp. and Alternaria spp., 

that cause blue mold, Aspergillus rot and Alternaria rot, respectively, can also occur. In 

conventional agriculture, bunches are sprayed with fungicides after flowering, at pre-bunch 

closure, at veraison, and later, depending on the time of harvest (Luvisi et al., 1992; 

Romanazzia et al., 2012). These decay organisms are latent and grow well when cold storage 

conditions are broken.  

Conventional methods to control decay problems after harvest include SO2 fumigation or 

release from generator pads containing a metabisulfite salt, and packaging of the fruit in 

polyethylene liners (Lichter et al., 2002; Lurie et al., 2006). Cold storage fumigation is 

usually done on a weekly basis especially when long term storage of grapes is employed.  

Since the late 1960s, dual release (DR; quick release plus a slow release phase) SO2 

generators inside boxes have been widely used for table grape storage and transport for 

periods of up to 2 months. The dual release of SO2 is achieved by using small and large 

sodium metabisulfite particles and by proprietary formulations of the salt and the pad (Zutahy 

et al., 2008). SO2 is usually effective in preventing decay as long as its level is sufficiently 

high. However, high levels can result in fruit damage, unpleasant aftertaste, and allergies 

(Lichter et al., 2002; Lurie et al., 2006).  

 

Many researchers have investigated alternatives to SO2 for the control of decay in table 

grapes during cold storage. Lichter et al. (2002) examined the effect of applying a postharvest 

ethanol dip on the decay of table grapes.  They reported that immersion of detached berries in 

70% ethanol eliminated most of the fungal and bacterial populations on the berry surface, but 

had little effect on survival of yeasts. They also found that the in vitro development of 

Botrytis cinerea spores was arrested by 40% ethanol. Dipping of grape bunches in 50%, 40% 
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or 33% of ethanol prior to packaging, resulted in inhibition of berry decay that was equivalent 

to, or better than that achieved with SO2, released from generator pads (Lichter et al., 2002). 

Candir et al. (2012) investigated the efficacy of several alternative postharvest treatments to 

sulphur dioxide (SO2) in maintaining quality and reducing fungal decay during cold storage 

of ‘Red Globe’ table grapes. They packaged the grapes in perforated polyethylene (PPE) or 

modified atmosphere packaging (MAP) bags (ZOEpac or Antimicrobial) with or without 

different grades of ethanol vapor-generating sachets (Antimold®30, Antimold®60 or 

Antimold®80) or an SO2-generating pad, and the grapes were kept at 0 ◦C and 90–95% 

relative humidity for 4 months. The results obtained from their study indicated that packaging 

of grapes with a SO2 pad in PPE or ZOEpac bags provided better control of fungal decay and 

stem browning than PPE or ZOEpac bags alone, PPE or ZOEpac bags with Antimold sachets 

or Antimicrobial bags alone. The PPE bag containing the Antimold®80 sachet was as 

effective as the SO2 treatments in reducing the incidence of fungal decay in naturally infected 

and artificially inoculated grapes for 1 month.  

 

Karabulut et al. (2005) investigated the potential of ethanol and potassium sorbate treatments 

on the germination of Botrytis spores in vitro. They reported that the germination of Botrytis 

cinerea spores on potato dextrose agar after a 30 s immersion in 10 or 20% ethanol was 87 

and 56%, respectively, compared to 99% among untreated controls. After similar immersion 

in 0.5 or 1.0% potassium sorbate, 84 and 68% of the spores germinated, respectively 

(Karabulut et al., 2005). Addition of 0.5 and 1.0% potassium sorbate to 10 and 20% ethanol 

solution significantly increased the inhibition of spore germination. The germination of 

spores after 30 s immersion in 20% ethanol plus 0.5% potassium sorbate was 9.7% 

(Karabulut et al., 2005). The incidence of gray mold, caused by on detached berries of ‘Flame 

Seedless’ grapes immersed for 30 s in water, 10 and 20% ethanol, and 0.5 or 1.0% potassium 

sorbate was 55.2, 42.1, 31.0, 37.7, or 24.4%, respectively (Karabulut et al., 2005). Addition 

of 0.5 and 1.0% potassium sorbate to 10 and 20% ethanol reduced decay to 10% or less and 

was more effective than either alone. After 30 days of storage at 1 ◦C, the combination of 

20% ethanol either with 0.5 or 1.0% potassium sorbate was equal in efficacy to commercial 

SO2 generator pads in reducing the incidence of gray mold on ‘Thompson Seedless’ grapes 

(Karabulut et al., 2005). 
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Karabulut et al. (2004) investigated the exposure times to heated ethanol and water on the 

mortality of Botrytis cinerea. They reported that a complete inhibition of the germination of 

spores occurred after a 10 s exposure to 30% ethanol or more at 24 °C. Mortality of spores in 

heated 10% ethanol was higher than in water at the same temperatures. They found that 

immersion of naturally infected, freshly harvested table grapes for 30 s in 30% ethanol at 24 

°C, reduced decay by approximately 50% after 35 days of storage at 1 °C. They also found 

that the addition of ethanol significantly improved the efficacy of a hot water treatment 

applied to grapes that were inoculated with B. cinerea two hours prior to immersion in heated 

solutions. Immersion for 30 or 60 s at 50, 55, or 60 ◦C in water or 10% ethanol also 

significantly reduced the number of decayed berries that developed after storage for 30 days 

at 1 °C (Karabulut et al., 2004).  

Lurie et al. (2006) tested the efficacy of three methods of applying ethanol to prevent storage 

decay on two cultivars of table grapes, ‘Superior’ and ‘Thompson Seedless’. The three 

application methods they tested included: (1) dipping grapes in 50% ethanol for 10 s followed 

by air drying before packaging; (2) placing a container with a wick and 4 or 8 ml ethanol/kg 

grapes inside the package; (3) applying 4 or 8 ml ethanol/kg grapes to paper and placing this 

paper above the grapes in the package. They found that all methods of application controlled 

decay as well as or better than a SO2-releasing pad. The ethanol impregnated paper caused 

high levels of berry browning, perhaps because of high levels of acetaldehyde inside the 

package. They also found that the taste of ‘Thompson Seedless’ grapes stored for 8 weeks in 

modified atmosphere storage was affected by CO2 levels above 7%. Some methods of 

applying ethanol used here show promise as alternatives to SO2 to prevent decay of grapes 

during storage while maintaining fruit quality (Lurie et al., 2006). 

 

Pretel et al. (2006) evaluated the quality of ‘Aledo’ table grapes, during storage at 2±1 °C 

followed by a period of 4 days at 20 °C in a slightly CO2 enriched atmosphere in 

combination with generators of SO2 in cardboard boxes. They found that a slightly CO2 

enriched atmosphere, SO2 micro-generators and their combination extended the storage 

period of late-harvested ‘Aledo’ table grapes without relatively affecting their organoleptic 

characteristics. 
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Arťes-Herńandez et al. (2006) investigated the use of modified atmosphere packaging  

(MAP) made from polypropylene films (PP) and storage at 0 °C followed by 8 °C and then 

20 °C for 7 days, 4 days and 2 days respectively, on the quality of ‘Superior Seedless’ table 

grapes. The two polypropylene films they used to generate MAP were the micro-perforated 

PP-30 and an oriented polypropylene (OPP). The OPP film was applied with and without 

fungicide (10 Lµ of trans-2-hexenal or 0.4 g Na2S2O5 kg−1). They found that the control 

clusters showed the highest weight losses and decay while almost no losses occurred under 

MAP treatments. They concluded that SO2-free MAP kept the overall quality of clusters 

close to that at harvest, with few differences when SO2 was added. 

 

Xu et al. (2007) conducted an in vitro and in vivo experiment to test the antifungal activity of 

grapefruit seed extract (GSE) on deteriorating ‘Redglobe’ grapes with Botrytis cinerea. Their 

results of inhibition of spore germination and radial growth of B. cinerea in vitro indicated 

that GSE could efficiently inhibit the growth of the tested fungi. They also investigated the 

effectiveness of GSE and chitosan to control postharvest decay and quality of ‘Redglobe’ 

grape berries stored at 0–1 °C. They found that chitosan and GSE treatments, alone or 

combined, significantly reduced postharvest fungal rot of the fruit compared with controls 

infected with B. cinerea. They reported that GSE and chitosan might have a synergistic effect 

in reducing postharvest fungal rot and maintaining the keeping quality of ‘Redglobe’ grapes. 

 

2.5.4 SO2 injury  
 

SO2 injury of table grapes is a disorder that usually occurs in storage due to excessive levels 

of SO2 gas that is in contact with grapes (Lichter et al., 2002; Lurie et al., 2006). Cases of 

poor or irregular control of fumigant dosage or high release of SO2 gas from an SO2 pad 

occur in table grape industry. The symptoms of SO2 injury are bleached, sunken areas that 

develop wherever the gas can readily penetrate the skin through wounds or natural openings 

at the stem ends (Harvey and Uota, 1978; Smilanick and Henson, 1992). Hairline cracking is 

another expression of phytotoxicity due to overexposure of table grapes to SO2 (Zoffoli et al., 

2008). These cracks are characterized by small, fine, longitudinal cracking lines, almost 

undetectable with the naked eye (Zoffoli et al., 2008). Postharvest practices of table grapes, 
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packaged with a SO2 generating pad, such as extended delay cooling periods and those 

practices that involve a raise in temperature, considerably enhance this disorder (Zoffoli et 

al., 2008). 

 

Zoffoli et al. (2008) investigated the concentrations of SO2 and time of exposure on the 

development of hairline cracking on table grapes.  The authors found that conditions that 

favoured higher concentrations of SO2 (in practice commercial conditions), such as the use of 

two SO2 generating pads (one on top and one on the bottom of the packaged table grapes), 

promoted hairline cracking. Hairline incidence increased linearly when the concentration and 

time product (CT) of SO2 exceeded 3 (mL L−1) h, and no hairline cracking was observed with 

CT below 0.8 (mL L−1) h. The authors noted that hairline symptoms were greatly induced on 

Thompson Seedless table grapes that were immersed in acidic solutions (citric acid and 

disodium phosphate) at pH 2 or 4. Based on these findings, Zoffoli et al. (2008) 

recommended that it is essential to use a minimal dose of SO2 that allows adequate protection 

from decay without reducing the berry quality, in order to reduce incidence of hairline split.  

 

2.6 Conclusion 
 

Sufficient airflow through fruit packages is required to ensure efficient cooling and 

preservation of postharvest quality. However, the role of resistance to airflow has not been 

sufficiently studied in table grape packaging systems. Therefore, special attention needs to be 

given to this aspect in order to gain an in-depth understanding of airflow and cooling patterns 

of grapes in multi-packages. Knowledge of resistance to airflow through table grape multi-

packages will assist in future improvement of packaging designs. 

 

Different techniques of measuring and quantifying airflow within the cold chain have been 

used. These are divided into experimental and numerical techniques. The limitation of 

experimental techniques lies in the cost of instrumentations and time taken to get meaningful 

results. Other limitations are the fact that most of the experimental techniques are only 

capable to do point measurements of the flow and so repeated measurements are required in 
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order to study the whole flow field. Although the numerical approach seems promising, its 

major drawbacks are computational power and the fact that its success lies on the degree of 

agreement with the experimental results. 

 

Despite the efforts given to cold chain improvement, table grapes still suffer quality 

deterioration during cold storage and postharvest handling in the cold chain. Few studies have 

reported on the mechanisms of moisture loss in table grapes; however, a more comprehensive 

study which considers the effects of different packaging components is warranted in order to 

gain a deeper understanding of this quality problem for better management within cold chain 

handling. Grape berry drop has been well investigated and possible solutions have been 

reported. However, the application of the new technologies proposed in literature is still 

limited and has not been tested on a commercial scale. The combination of efficient cooling 

and the SO2 generator or fumigation, appear to be the only practical alternative at this stage. 

Many researchers have shown the potential of using alternatives to SO2, but these have not 

been tested at a commercial scale. The challenge of using SO2 lies in applying optimum 

dosage to avoid berry damage and/or inadequate control of decay. 
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Table 1:  Reported applications of tracer techniques in food cold chain 

Reference Tracer gas/material used Application Data 

measured/calculated 

Instrument used 

Amin et al. (2009); 

Amin et al. (2011) 

Carbon Dioxide Refrigerated display cases Concentration of tracer 

gas 

Horiba gas analyser 

(VA-3000) 

Amos (2005) Carbon Monoxide Commercial cool store Time of arrival at 

sample point from 

injection point 

CO sensors (Figaro 

TGS2440, with 

detection range of 30-

1000 ppm) 

Cromarty (1968) Halogen compound refrigerant 

(Dichlorodifluoromethane) 

Duct ventilated bins of 

barley 

Time of arrival at 

sample point from 

injection point 

Milliampere and an 

audible alarm 

Hellickson and 

Baskins (2003) 

Neutrally bouyant helium-filled 

soup bubbles 

Commercial cool room 

filled with bins 

Bubble movement 

video taped 

Bubble movement was 

analysed with either 

multiple frame capture 

software or slow 

motion movement at 

various locations 
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Foster et al. (2003) Carbon Dioxide Infiltration through cold 

store entrances 

Concentration of tracer 

gas 

Infra-red CO2 analyser 

(accuracy 5 % of full 

scale) 

Foster et al. (2007) Carbon Dioxide Restriction of cold room 

infiltration 

Decay of an elevated 

CO2 concentration 

Infra-red CO2 analyser 

(Model ABPA-210, 

Horiba Ltd., Japan) 

Smale (2004) Fog Ventilated packages Arrival of fog at 

sample point 

Fog sensor made up of 

a light emitting diode 

(LED) and a 

phototransistor 

Tanner et al. (2000); 

Smale (2004) 

Carbon Dioxide Ventilated packages Concentration of tracer 

gas 

Gas analyser (Model 

LI- 6262, LI-COR Inc. 

Lincoln, Nebraska, 

USA) 
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Figure 1: Schematic representation of a typical forced-air cooling room with pallets arranged 

in a pre-cooling tunnel, a) side view of the pre-cooling room and b) top view of the pre-

cooling room setup. 
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Figure 2: Pre-cooling rooms with racking system
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Figure 3:  Contour maps showing the (a) predicted air velocities in the blowing plane and (b) 

temperatures inside a refrigerated trailer (Moureh and Flick, 2004) 

 

 

Figure 4: Typical air delivery and return contour plots for a deck in a reefer vessel, (Tanner 

and Amos 2003). 
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Figure 5: Schematic presentation of a vertical multi-deck display cabinet (Cortella, 2002). 

 

 

Figure 6: A typical table grape multi-scale setup. 
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Figure 7:  CO2 tracer gas measurement system (Tanner et al., 2000)  
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PAPER 1
 

Resistance to airflow through 4.5 kg multi-scale packaging of table grapes
 

 

Abstract 

 

Postharvest handling of table grape is commonly carried out using multi-scale packages 

comprised of the main container, inner liner film and pouches holding individual bunches of 

berries. Total pressure drop through different table grapes packages systems was measured 

and the percentage contribution of each package component and the fruit bulk were 

determined. The liner films contributed significantly to total pressure drop for all package 

combinations, ranging from 40.33±1.15% for micro-perforated liner film to 83.34±2.13 % for 

non-perforated liner film. The total pressure drop through the grape bulk (1.40±0.01 % to 

9.41±1.23 %) was the least compared to the different packaging combinations with different 

levels of liner perforation.    

 

Keywords: Packaging; Pressure drop; Air distribution; Cold chain; Table Grape  

 

Nomenclature   

 

Abox
 box face area, m2 

Ahole vent hole area, m2 

a  resistance coefficient, kg s(b-2)m-(b+2) 

B resistance exponent 

c  vent resistance coefficient 

pd  effective product diameter, m 

hD  package hydraulic diameter, m 

κ  Darcy permeability, m2 

N vent resistance exponent 

P  pressure, Pa 

O  vent hole ratio, % 
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2r  coefficient of determination 

U velocity vector, m s-1 

β  Forchheimer drag coefficient, m-1 

ε  Porosity 
µ  dynamic viscosity 
ρ  density, kg m-3 

θ   dimensionless temperature 

 

1. Introduction 

 

Cooling and proper cold chain management are commonly used methods to control 

postharvest ripening and senescence of fruit and vegetables (Arin and Akdemir, 2004). In 

most fresh food refrigeration systems, heat is transferred primarily by forced convection, 

where cold air is forced through food packages, therefore, the temperature and its 

homogeneity is largely governed by the patterns of the airflow (Smale et al., 2006; Zou et al., 

2006).  

 

Table grapes are non-climacteric fruit, which means they do not continue to ripen after 

harvest and for this reason they should be harvested when they reach optimum maturity 

(Ginsburg et al., 1978; Hardenburg et al., 1986)   However, fruit quality tends to deteriorate 

rapidly during postharvest handling and storage, thus reducing shelf-life during marketing. 

There are three compelling reasons why table grapes should be cooled promptly and 

thoroughly after harvest to maintain quality: to minimize water loss from fruit; to retard 

developments of decay by fungi; and to reduce the rate of respiration. Minimizing water loss 

is probably the most urgent reason for cooling (Nelson, 1978). Like many other fruit cooling 

systems, table grape cooling is achieved by forcing cold air through the ventilated package. 

The forced air cooling technique has been discussed by many researchers (Guillou, 1960; 

Nelson, 1978; Thompson et al., 1998; Brosnan and Sun, 2001), but its application is often not 

efficiently achieved, mainly due to the resistance to airflow imposed by the packaging 

container and the contents (Vigneault et al., 2004; Delele et al., 2008). Resistance to airflow 

may even be higher during table grape cooling due to the fact that berry bunches are packed 

inside multi-scale packages. Table grape multi-scale packages include the carton boxes with 
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multiple inner packaging materials which include carton liner films, SO2 pad, moisture 

absorption sheets and bunch carry bags (Ngcobo et al., 2011). It is therefore important to 

understand the effects of the packaging materials and the produce on airflow in order to fully 

understand cooling patterns and moisture transfer properties for the design of efficient 

cooling systems. 

 

Many researchers have studied the resistance to airflow as a function of bulk product 

properties, fluid properties and container (carton) ventilation (Chau et al., 1985; Hass et al., 

1976; Vigneault and Goyette, 2002; Vigneault et al., 2004, Neale and Messer 1976; Neale 

and Messer, 1978). The product bulk properties include porosity, size, shape, roughness, 

stacking parameter and confinement. Based on extensive experimental research, de Castro et 

al. (2005) recommended a vent ratio of 8 to 16% of the surface of the container to optimise 

the use of energy. Hass et al. (1976) and Chau et al. (1985) reported that bed porosity had a 

much greater effect on pressure drop than the diameter of oranges. Regardless of the fruit 

size, a stacking arrangement with a low porosity will produce a higher pressure drop than a 

stacking arrangement with a high porosity (Chau et al., 1985).    

 

The correlation between the resistance to airflow through fruit packages and the pressure 

drop has been described by many researchers (Chau et. al., 1985; Vigneault et al., 2002; 

Vigneault et al., 2004) and is mainly expressed by either Ramsin, ( )bp au∇ = − or Darcy-

Forchheimer p u u uµ βρ
κ

 ∇ = − − 
 

equations 1 and 2 (Table 1). These equations have been 

used to estimate airflow resistance through bulk fruit, vegetables and vented packages (Chau 

et al., 1985; Haas et al., 1976; Neale and Messer 1976; Neale and Messer, 1978; Vigneault 

and Goyette, 2002; Vigneault et al., 2004). The coefficients a  and b in equation (1), are 

experimentally determined (Vigneault et al., 2004) and are dependent on stacking pattern, 

diameter and porosity (Delele et al., 2008). In equation (2) the parameters 1
κ

 (m2) and β  (m
-

1) are the Darcy permeability of the porous matrix and the Forchheimer drag constant (van 

der Sman, 2002; Verboven et al., 2004), respectively, and are dependent on stacked product 

diameter, porosity, stacking pattern, fluid property, product shape, roughness, confinement 
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ratio h

p

D
d

 
 
 

 and vent hole ratio of the container ( )O which is defined as the area of the 

vent hole area divided by the total surface area of the face of the package in which the vent is 

placed: hole

box

AO A
 = 
  , (Delele et al., 2008; van der Sman, 2002; Smale, 2004). Power 

law expression has been used to determine the effect of container vent-hole ratio on total 

pressure drop.   

Although empirical equations have been derived for estimating pressure loss through vented 

packages (Vigneault and Goyette, 2002) and produce porosity (Chau et al., 1985; Haas et al., 

1976; Vigneault et al., 2004), no work has been reported on the effects of multi-scale 

packages of table grapes on airflow resistance and cooling dynamics. Despite a widely held 

view among industry practitioners that table grape cooling is best achieved through efficient 

forced air cooling, detailed knowledge on the airflow, heat and mass transfer processes 

occurring during cooling is still lacking.  

 

The objectives of this work were, therefore, to study the contribution of the different 

components of multi-scale packaging to airflow resistance and cooling rate during table 

grapes cooling. Special attention was given to quantify the contributions of liner films, the 

carry bag, the grape and the container (carton) to the total airflow resistance. The airflow and 

cooling performance of commonly used liner films were also evaluated.    

 

2. Materials and Methods 

 

2.1. Fruit supply 

 

Regal Seedless grapes were obtained from the HexRiver area of the Western Cape, South 

Africa. The size of the grapes used was extra-large (diameter of 21.15±0.13mm). The airflow 

resistance experiments were carried out in the wind tunnel at the Mechanical and 

Mechatronics laboratory at Stellenbosch University, South Africa. 
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2.2.  Experimental setup 

 

2.2.1. Pressure loss 

 

Figure 1 shows the wind tunnel setup. The dimensions of the test section were 600 mm 

(perpendicular to airflow) x 399 mm high x 400 mm (in the airflow direction). The test-

section was built in such a way that it could be adjusted to fit different carton box 

configuration. The desired approach airflow was achieved by means of suction fans built in 

the wind tunnel and the approach air velocities used ranged from 0.7 to 3.2 ms-1, which 

corresponded to fan frequencies of 10 to 50 Hz. The air velocities were measured in an empty 

wind tunnel and in a loaded wind tunnel during the experiment in order to determine the 

corresponding velocity to each fan frequency (Table 2). The pressure loss of the flow through 

the bulk grapes and packages was measured by a pressure transducer device (PMD70-

AAA7D22AAU, ENDRESS+HAUSER, Weil am Rhein, Germany). 

 

Table 3 shows the venting information of the different grape packages studied. The airflow 

resistance experiments were carried out in a stepwise manner as follows:  

(i) Empty packages: 

The carton boxes were arranged into two configurations in the test-section of the wind tunnel 

during the experiment, (1) boxes arranged with the 300 mm side perpendicular to the airflow 

and the 400 mm side in the direction of airflow and (2) boxes arranged with the 400 mm side 

perpendicular to the airflow and 300 mm side in the direction of airflow. This was done due 

to the differences in vent area on these box sides and the difference in bed depths (Table 3). 

Six carton boxes were tested at a time (two stacks of three adjacent to each other). The 

dimension of single carton box was 300 mm x 400 mm x 133 mm. 

 

(ii) Grape bulk:  

The pressure drop through grapes in bulk were tested by placing grape bunches in a highly 

porous wire-mesh box. A thin wire-mesh was built for testing the airflow through bulk 

grapes. The wire mesh box dimensions used for bulk experiment were 600 mm x 399 mm 

and its length in the direction of airflow was 400 mm and it had approximately zero 

Stellenbosch University  http://scholar.sun.ac.za



73 

resistance to airflow. The porosity (ε) of the grapes was determined by using the 

displacement method (Chau et al., 1985). The grape bunches were put in a container of a 

known volume V. Water was then added to fill the container to the known volume V. The 

difference between the volume V and the volume of water added was occupied by the fruit 

(Chau et al. 1985). The porosity was taken as a ratio of the difference between the total bulk 

volume and the actual volume occupied by the fruit and the total bulk volume (Chau et al. 

1985; Koc et al., 2008; Owolarafe and Shotonde, 2003; Verboven et al., 2004). 

(iii) Grape bunch carry bag: 

The resistance to airflow due to bunch carry-bags was tested by packing grapes in carry-

bags and placing the carry bags containing grape bunches inside the wire mesh boxes in the 

test-section similar to step (ii).  

 

(iv) The final test investigated the resistance to airflow of complete multi-scale packaging, 

comprised of six types of liner films and thus six different packaging combinations 

(Table 3).  

 

3. Results and discussion 

 

3.1. Airflow through empty grape box 

 

Figure 2 shows the effect of empty carton orientation on pressure drop. The resulting pressure 

drop was expressed in the form of Ramsin (eqn. 1) and Darcy-Forchheimer (eqn. 2) 

equations.  The main difference between the carton orientations was the vent-hole ratios. The 

values of coefficients a  and b , and 1
κ

 and β  were determined by fitting the experimental 

data to the relevant equations (Table 4 and 5). Both equations expressed the relationship 

between the pressure drop through vent-holes and the approach air velocity well as indicated 

by the coefficient of determination (r2) values greater than 99%.  

The carton boxes orientated with the short (300 mm) side wall perpendicular to the inflow 

direction resulted in higher pressure drop compared to long (400 mm) side wall orientation. 

Higher values of all the parameters ( a , b , 1
κ

 and β ) were observed for the 300 mm side 
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than the 400 mm side. These results could be attributed to the higher percentage ventilation 

(opening) on the 400 mm side compared to the 300 mm side. The vent hole ratios ( )O  were 

2.8 % and 6.7 % for the 300 mm and 400 mm sides, respectively (Table 3). Such an increase 

of vent hole ratio by 139.3 % resulted in 31.2 %, 28.5 %, 32.1 % and 88.0 % reduction in 

values of a ,b , 1
κ

 and β , respectively. The effect of vent hole ratio on β  was higher than 

the other coefficients. Similar reduction of the coefficients with an increase in vent hole ratio 

was also reported by previous studies (Smale, 2004; van der Sman, 2002; Delele et al., 2008). 

van der Sman (2002) and Delele et al. (2008) expressed the coefficient β  as a function of the 

vent hole ratio ( nCOβ = ) and reported values of -1.5 and -0.89 for the exponent n, 

respectively. In our case, the value of n was -2.43. These results indicated that the value of 

this exponent varies from case to case and recommending a single value would not be correct.   

 

3.2.  Air flow resistance of bulk fruit and bunch carry bag  

 

Figure 3 shows the pressure drop through the bulk grape bunches and through grapes packed 

in carry bags. The values of the Ramsin and Darcy-Forchheimer equation constants are 

shown in Tables 4 and 5, respectively. The vent hole ratio ( )O for the bulk grape can be 

considered as 100% as the grapes packed in a wire mesh box and the holep∆ of the wire mesh 

can be regarded as 0 (van der Sman, 2002). Thus in the case of the bulk grapes, tot bulkp p∆ = ∆ , 

which was influenced by the porosity.  

   

Due to high grape bunch porosity (56.45±0.04%), the pressure drop remained relatively low 

(just below 100 Pa m-1 for 2.06 m s-1 air superficial velocity). However, the introduction of 

the bunch carry bag into the bulk setup significantly increased the total pressure drop 

( )totp∆ (Fig 3.).  This result of increase in pressure drop with the introduction of the bunch 

carry bag is supported by the resistance coefficients a ,b , 1
κ

 and Forchheimer coefficient β  

that all showed a similar increase (Table 4 and 5). The corresponding increase of a ,b , 1
κ
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and β  was 25.8 %, 39.1 %, 74.2 % and 830.2 %, respectively. The percentage increase of 

Forchheimer coefficient β  due to the presence of the bunch carry bag was higher than the 

other coefficients. The carry bag has some slot like cuts that open when it is loaded with the 

grape. The extent to which they stretch and open depends on the bunch size and weight. The 

bigger and heavier the bunch was, the more elliptic openings were formed. Both the Ramsin 

and Darcy-Forchheimer constants (Tables 4 and 5) were higher for the bunch-carry bag 

combination than the grapes in bulk, indicating more resistance of airflow through carry bag 

than through the grapes in bulk. 

 

3.3. Airflow resistance multi-packages 

  

Figure 4 shows the total pressure drop through the different multi-scale packages of table 

grapes and the results of curve fitting using equations 1 and 2 are summarised in Tables 4 and 

5. The total pressure drop for each multi-package combination was regarded as the sum of 

pressure drop contributed by each package ( )tot box film CB bulkp p p p p∆ = ∆ + ∆ + ∆ + ∆ . Liner films 

were the only components that were uniquely different between the multi-scale package 

combinations, since the carton box and other inner packages were kept constant.  

 

The results (Fig. 5) indicated that the liner films contributed more than 50 percent of the total 

pressure drop, with the exception of the micro-perforated liners (40.33±1.15%). The non-

perforated liners contributed about 83.34±2.13%, while the perforated liners contribution was 

less than 69% but greater than 40%. The high resistance to airflow by the liner films could be 

ascribed to very low perforation percentage (Table 3). Although the liner film perforations 

generally reduced the resistance to airflow, compared to non-perforation liners, there was no 

clear correlation between the amount of perforation and the pressure drop. This poor 

correlation between pressure drop and the amount of perforation of the different liner films 

was also evident in the manner in which the resistance coefficients a ,b , 1
κ

and β  responded 

to vent hole ratio of the liner films (Table 4 and 5). There was an unusual increase in these 

coefficients with an increase in vent hole ratio of the liner, while they were supposed to 

decrease with increase in vent hole ratio. This behaviour could  be ascribed to the fact that the 
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2 mm perforation holes on the liner films are too small and they get easily blocked by fruit 

and inner packages. The holes of the highest perforated liner film (452.4 mm2) are 4 mm in 

diameter, but there are a total of only 36 holes in the film which means that if their 

distribution is not aligned with vent holes of the other packages such as of the box and carry 

bag, then there is no airflow through them once the film has been wrapped. The values of the 

Ramsin and Darcy-Forchheimer coefficients suggest that the non-perforation liner multi-scale 

packaging combination resulted in highest resistance to airflow (Tables 4 and 5).  

 

The carton boxes were the second largest contributor to the total pressure drop with 

contributions ranging from 9.89±2.43% to 37.68±1.51%.  This resistance to airflow by the 

carton boxes can be ascribed to the low vent-hole ratio of 2.80%. de Castro et al. (2005) 

recommended a vent ratio of 8 to 16% of the surface of the container to optimise the use of 

energy. These results corresponded to those of Vigneault et al. (2004), who found from their 

experimental studies that large vent area (88 %) resulted in lower pressure drop compared to 

small (25%) opening. The authors, thus, concluded that percentage opening is more important 

than the opening configuration. 

 

The bunch carry bag contributed between 2.43±0.41% and 12.58±0.88% to total pressure 

drop, while the grapes contribution was between 1.40±0.01% and 9.41±1.23%. The carry 

bags are well ventilated and are open at the top and hence have low resistance to airflow. The 

grape bunch porosity was calculated to be 56.45±0.04% and the low resistance to airflow by 

grapes was due to this high porosity of the grape bunches. 

 

4. Conclusion 

 

The effects of table grape packaging components on airflow and heat transfer characteristics 

were studied. Liner films contributed by far the greater resistance to airflow than the rest of 

the package components of the grapes’ multi-packaging. Although the perforated liner films 

contributed less compared to non-perforated liner films, there were no clear trends that could 

be correlated to the amount of perforation area. It is, therefore, not easy to clearly predict the 

differences in airflow patterns through the liner films packed with grapes as resistance 
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coefficients did not respond normally to the vent-hole ratio of the liner films, largely due to 

the fact that some vent holes may be blocked by fruit and inner packages. The percentage 

ventilation on carton boxes side walls (2.80% and 6.70%) was found to be low compared to 

the 8 -16% recommended in literature. This problem of limited ventilation area (and the 

potential effect on slow cooling of table grapes) is further exacerbated because vents are often 

blocked by the inner packaging and the fruit.    
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Table 1: Key equations correlating resistance to airflow and pressure drop in fruit packages 

 Equation Source 

 

Ramsin 

 
bp au∇ = −  

 

Chau et al., 1985            (1) 

 

 

Darcy-Forchheimer 

 

p u u u
κ
µ

∇ = − −βρ  

 

Forchheimer, 1901         (2) 

 

Table 2: Wind tunnel’s fan oscillation frequencies and the corresponding air velocity (m s-1) 

 Empty 

wind 

tunnel 

Empty box Multi-packages 

Fan 

frequency 

(Hz) 

 300 mm 

side 

400 mm 

side 

Non 

perforated 

liner 

Micro 

perforated 

liner 

30  

x 2 

mm 

liner 

54 x 

2 

mm 

liner 

120 

x 2 

mm 

liner 

         
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

10 0.70 0.58 0.65 0.28 0.49 0.41 0.40 0.37 

15 1.06 0.87 0.99 0.41 0.74 0.61 0.61 0.55 

20 1.42 1.17 1.33 0.56 0.99 0.83 0.80 0.74 

25 1.76 1.45 1.67 0.66 1.17 1.03 0.97 0.90 

30 2.08 1.76 1.98 0.78 1.24 1.19 1.12 1.06 

35 2.38 2.03 2.28 1.25 1.92 1.94 1.73 1.73 

40 2.68 2.29 2.58 1.39 1.98 2.13 1.90 1.94 

45 2.95 2.56 2.85 1.50 2.03 2.26 2.70 2.10 

50 3.21 2.79 3.09 1.63 2.13 2.34 2.97 2.21 
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Table 3: Ventilation details of grape multi-packages and porosity of table grapes  

Package, product details 

Effective ventilation 

across test section 

(m2) 

Package surface 

area exposed 

across test section 

(m2) 

%ventilation or 

porosity across 

test section area 

6 x empty cartons (300 

mm side) 
0.01 0.48 2.80 

6 x empty carton box (400 

mm side) 
0.02 0.32 6.70 

non-perforation liner film 0.00 0.84 0.00 

Micro-perforation liner 

film 
- 0 - 

94.2 mm2 (30 x 2 mm) 

perforation liner film 
9.42E-05 0.81 0.01 

452.4 mm2 (36 x 4 mm) 

perforation liner film 
4.52E-04 0.86 0.05 

169.6 mm2 (54 x 2 mm) 

perforation liner film 
1.70E-04 0.84 0.02 

376.9 mm2  (120 x 2 mm) 

perforation liner film  
3.77E-04 0.81 0.05 

Wire-mesh box 0.48 0.48 ≈100 
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Table 4: The a and b coefficients derived from equation 1 for multi-scale packages and grapes 

with the maximum and minimum velocity. 

  

Coefficients of Equation 1 
bp au∇ = −  

Packaging format and produce 

 a  

 

 b  

 

 2r  

 

Empty carton showing  respective 

ventilation side       

300mm side perpendicular to airflow 4.46 1.86 0.9994 

400mm side perpendicular to airflow 3.07 1.33 0.9902 

Bulk produce     

 Grapes in bulk bin 3.57 1.05 0.9877  

Grapes packed in bunch carry bags in 

bulk bin 4.49 1.46 0.9992 

Multi-scale packaging (carton, liner 

bag, and carry bags containing berries)       

Non perforation  7.87 2.16 0.9955 

Micro-perforation  6.29 2.37 0.9544 

0.012 %  perforation 6.72 1.94 0.9926 

0.053 %   perforation 6.88 2.14 0.9938 

0.046 %  perforation 7.07 2.04 0.9969 
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Table 5: The κ  and β coefficients derived from equation 2 for multi-scale packages and 

grapes with the maximum and minimum velocity. 

  

Coefficients of Equation 2 

 p u u u
κ
µ

∇ = − −βρ   
  

Packaging and produce 
 

1
κ

 
 β  

 

2r  

 

Empty carton showing  respective 

ventilation side 

   
300mm side perpendicular to airflow 9.23E+05 56.26 0.9999 

400mm side perpendicular to airflow 6.27E+05 6.74 0.9979 

Bulk produce 

   Grapes in bulk bin 1.51E+06 3.31 0.9969 

Grapes packed in bunch carry bags in 

bulk bin 2.63E+06 30.79 0.9999 

Multi-scale packaging (carton, liner 

bag, and carry bags containing berries) 

   Non perforation  2.87E+06 1756.25 0.9998 

Micro-perforation  8.45E+05 352.12 0.9995 

0.012 %  perforation 5.94E+06 528.95 1.0000 

0.053 %  perforation 4.62E+05 724.32 0.9996 

0.046 %  perforation 2.73E+06 865.46 1.0000 
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Figure 1: Picture of the wind tunnel with cartons/boxes of table grape 

 

Figure 2: Pressure drop as a function of approach air velocity for the empty cartons  
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Figure 3: Pressure drop as a function of approach air velocity for the grapes in bulk and 

packed in carry bags in porous wire mesh box. 

 

Figure 4:  Total pressure drop as a function of approach air velocity for multi-packages with 

the different perforation liner films 
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Figure 5:  Percentage contribution of the different packages and fruit to the total pressure 

drop of grape multi-scale packaging. 
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PAPER 2 
 

Effects of packaging liner films on cooling rate and quality attributes of 

table grapes (cv. Regal Seedless) 

 

Abstract 

 

Table grapes are commonly packed in multi-layered packages consisting of a cardboard 

carton, a plastic liner and bunch carry bags to maintain product quality along the cold chain. 

Each liner is characterized by the number and size of perforations which influence the 

environmental conditions around the produce inside the package. This study investigated the 

effects of different carton liners on the cooling rate and quality attributes of ‘Regal Seedless’ 

table grapes. Fruit quality attributes measured include weight loss, stem dehydration and 

browning, SO2 injury, decay, berry firmness and colour. Non-perforated liners maintained 

relative humidity (RH) close to 100 % during cold storage and during a 7 day shelf life 

period, which resulted in delaying the loss of stem quality but significantly (P ≤ 0.05) 

increased the incidence of SO2 injury and berry drop during storage compared to perforated 

liners. Perforated liners improved fruit cooling rates but significantly (P ≤ 0.05) reduced RH. 

Low RH in perforated liners resulted in a significant (P ≤ 0.05) increase in stem dehydration 

and browning compared to non-perforated liners. Berry firmness decreased by 78 % after 42 

days storage at -0.5°C. Significant (P≤0.05) differences in berry firmness between the 

different packages were observed only during the first 7 days of storage. Berry colour 

changed from greenish-yellow to yellowish-green in all types of plastic liners during the 

storage period. Fruit decay occurred in all packages after 7-day shelf-life, with the highest 

incidence of decay occurring in liners with less perforation. 

 

Keywords: ‘Regal Seedless’ table grapes; Heat transfer; Packaging liners; Postharvest 

quality 
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1. Introduction  

      

Table grapes are the second largest crop in the South African perishable product exports, 

making it one of the major contributors to the economy. About sixty one percent of the total 

table grape exports is destined for the European market (PPECB, 2010) and they are mainly 

packed in 4.5 kg boxes with multiple inner packaging materials. The inner packaging 

material includes carton liners, SO2 pad, moisture absorption sheets and bunch carry bags 

(Figures 2a and b). The use of multi-packaging is primarily aimed at protecting the grapes 

from bruising and other postharvest handling related injuries. This multi packaging is also 

required to allow sufficient airflow to ensure good heat transfer from the grapes to maintain 

the cold chain. 

 

Table grapes are non-climacteric fruit, which means they do not continue to ripen after 

harvest and for this reason they should be harvested when they reach optimum maturity 

(Ginsburg et al., 1978; Hardenburg et al., 1986). However, fruit quality tends to deteriorate 

rapidly during postharvest handling and storage, thus reducing shelf-life during marketing. 

Deterioration of table grape quality is mainly characterised by weight loss, stem (rachis) 

dehydration and browning, colour changes, accelerated berry softening, berry shatter and 

high incidence of berry decay due mainly to Botrytis cinerea (Valero et al., 2006). Sulphur 

dioxide gas (released by the SO2 pad) is used to control decay caused by fungi such as B. 

cinerea which grows well in the optimum storage condition (-0.5 to 0°C, 95% RH) for table 

grapes. The presence of SO2 gas may also cause various degrees of injury to the grapes 

(Zoffoli et al., 2008). The symptoms of SO2 injury are bleached, sunken areas that develop 

wherever the gas can readily penetrate the skin through breaks, wounds, or natural openings 

at the stem ends (Harvey and Uota, 1978), which further reduces the quality of table grapes 

during postharvest storage and handling. Many researchers (Artés-Hernández et al., 2006; 

Lurie et al., 2006; Zoffoli et al., 1999) have investigated the application of modified 

atmosphere packaging (MAP) to mitigate the loss of table grape quality and other types of 

fruit (An et al., 2007). However, no work has been reported on the effects of multi packaging 

currently used in the industry under regular atmosphere (RA) on the environmental condition 

inside the package and produce quality. 
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The aim of this work was to investigate the performance of different package liners that are 

commercially used to pack export quality table grapes based on heat transfer properties and 

effects on the quality of grape berries and stems.  

 

2. Materials and Methods 

2.1. Fruit supply 

 

 ‘Regal Seedless’ table grapes used in this study were grown in a commercial orchard in the 

Hex River area of South Africa. Size “large” bunches (average berry size of 17 mm diameter) 

were hand-harvested at a commercial maturity of 17 °Brix (DAFF, 2010) . The export quality 

grapes (free of quality defects) were cleaned, sorted and packed at a commercial pack-house 

and then transported by air-conditioned car for 2 hours to the Postharvest Technology 

Laboratory at the University of Stellenbosch. 

  

2.2. Packaging materials 

 

The majority of export table grapes are packed inside 4.5 kg cartons with dimensions of 400 

mm x 300 mm x 118 mm which are lined inside with polyethylene liners. The physical 

characteristics of the six types of liner bags used are described in Table 1. Each carton of fruit 

was packed as follows: the carton was lined with a liner bag and corrugated paper sheets 

placed in the bottom of the liner bag to protect produce against bruising; grape bunches were 

then packed inside carry bags and each carry bag was placed carefully inside the liner; when 

the box was packed to full capacity, a moisture absorption paper sheet was placed on top of 

the packed bunches and finally an SO2 pad (Proteku Grape Guard, INSUMOS 

FRUTICOLAS S.A., Chile) was placed on top of the absorption sheet to protect the grapes 

from a direct contact with the SO2 pad (Zoffoli et al., 2008).  Once, packing was complete, 

the liner was folded and taped with a plastic adhesive tape to enclose the grapes together with 

inner packaging.  
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2.3. Cooling system  

 

The cooling method that was used to cool the grapes was room cooling, where cold air (-

0.5°C) was forced to pass the grape packages through circulation by fans.  The cooling 

system inside the room was mounted at the top on the side wall and consisted of four (500 

mm diameter) fans (Recam International Fans, model RE623H/L), connected to evaporator 

coils in such a way that the air is chilled as it passes through the evaporator (heat exchanger). 

The cold room dimensions were 6.8 x 4.8 m2. The chilled air was then circulated through the 

cold room at about 3.1 m s-1. The cooling was therefore achieved by approaching natural 

convection, rather than forced convection cooling (Nelson, 1978). 

 

2.4. Heat transfer and relative humidity measurement 

 

Cooling rate of produce and relative humidity inside the package are commonly used to 

assess the performance of fresh produce packaging in the cold chain (Chonhenchob and 

Singh, 2005; Nelson, 1978; Smale et al., 2006). The grape packages were placed inside a cold 

room (set point -0.5 °C). Berry temperature was measured with probes (LogTag Trix-8 

Remote probe, LogTag Recorder Limited, China) inserted into berries in three positions (P1, 

P2 and P3) inside each carton. P1 and P3 were outmost measuring position (near shortest side 

wall of each carton), and P2 was the middle position inside each carton. Air temperature was 

measured with a LogTag air temperature recorder (LogTag Trix-8 Temperature Recorder, 

LogTag Recorder Limited, China) inside each carton. Air relative humidity (%RH) inside 

each carton was measured with a SENSITECH TempTale 4 monitor (Temptale4 Humidity 

and Ambient Temperature 16000, SensiTech, USA). Fruit cooling rates were calculated 

according to Thompson et al. (1998), and expressed as the time required to cool produce to 

seven-eighths of the initial product-coolant temperature difference. The seven-eighths cooling 

time was calculated by multiplying the time taken to reach the half cool temperature by a 

factor of three (Thompson et al., 1998). Half cool temperature was determined as per the 

following equation (Thompson et al., 1998): 

Half cool temperature = (initial product temperature – cooling air temperature) x 0.5  (1)  
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2.5. Fruit quality measurement 

 

Fruit quality measurements were carried out on the day of harvest (day 0) and every 

consecutive week for six weeks in cold storage plus one week at ambient at 24.3°C.  The 

initial (day 0) fruit quality was according to Table 2. Quality attributes measured included 

stem dehydration and browning, bunch weight loss, berry drop, firmness, SO2 injury colour 

and decay incidence.  

 

2.5.1. Stem dehydration and stem browning  

 

Stem dehydration was assessed using the following scoring system: fresh stems =1; some 

drying of thinner stems=2; all thinner stems dry=3; all thinner and some thicker stems dry=4; 

and all stems dry=5. Stem browning development was measured using the following scoring 

system: (1) fresh and green; (2) some light browning; (3) significant browning; (4) severe 

browning.  

 

2.5.2. Weight loss and berry drop 

 

The weight of individual bunches was measured on day 0 and then weekly for six weeks in 

storage with a scale (EEW-5000, 5500g x 0.5g, UWE, SOUTH AFRICA). Bunch weight loss 

was expressed as percentage loss of the initial weight. Berry drop (%) was expressed as ratio 

of loose berry weight to the initial bunch weight. 

 

2.4.1. Fruit firmness  

 

Firmness of four berries per bunch in each replication was measured non-destructively using 

a digital firmness tester (DUROFEL DFT100, AGRO-TECHNOLOGIE, France) fitted 

with a cylindrical probe with a plain tip of 5.64 mm diameter. Two opposite measurements 
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were made in the equatorial region of each grape berry with a maximum value 100 for a non-

deformable surface (Pretel et al., 2006). 

 

2.4.2. Colour measurement 

 

Colour was determined using a Chroma Meter (CR-400, KONICA MINOLTA (Japan), 

which expresses colour in dimensions L*, a*, b*, C and H, where L* is a measure of 

lightness, C* (chroma) is a measure of intensity or saturation and H (Hue angle) is derived 

from the two coordinates a* and b* (Wrolstad et al., 2005). The hue angle is expressed on a 

360 ° grid where 0° = bluish-red, 90° = yellow, 180° = green, and 270° = blue.  Two 

measurements were made in the equatorial region of opposite sides of the berries. 

 

2.4.3. SO2 injury and decay  incidence 

 

SO2 injury was measured according to the following scoring system: (1) none (0%); (2) slight 

damage (<5%); (3) moderate damage (5-10%); (4) severe damage (> 10 %). Decay was 

scored as follows: (1) no decay; (2) slight (< 2 infected berries per carton); (3) severe (2 – 5 

infected berries); (4) extreme (>5 infected berries per carton) 

 

2.5. Statistical Analysis 

 

The six different packaging liners studied using standard 4.5 kg carton boxes are described in 

Table 2. Each liner was replicated six (6) times, in order to compensate for any temperature 

difference inside the cold room, as well as to accommodate the natural and biological 

variability. In each liner replicate, there were two bunched (sub-replicates) that were marked 

and used for measuring quality attributes over the experimental period. This made a total of 

36 experimental cartons/liners and 72 experimental bunches. For temperature and relative 

humidity measurements, inside each liner, the pulp temperatures were measured at three 

different positions (P1, P2 and P3), while for air temperature and RH there was one 

measuring instrument in each liner. The quality data were analysed using the SPSS program 
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to determine the analyses of variance (ANOVA), Duncan’s Multiple Range Test and LSD 

values with a 5 % significance level. Daily mean temperature data were analysed using the 

repeated measures analyses of variance (ANOVA) of Statistica program, version 9.    

 

3. Results and Discussion 

 

3.1. Heat transfer rate 

 

Table grapes should be cooled promptly and thoroughly after harvest to maintain quality and 

the main reasons for the cooling are to minimize water loss from fruit, retard development of 

decay caused by fungi and reduce the rate of respiration (Nelson, 1978; Zutahy et al., 2008). 

Therefore, a good packaging is required to allow for adequate and uniform cooling of the 

packed produce. The air temperature profiles inside all the liners (Fig 1) indicate that the 

grapes were all exposed to a similar cooling temperature, as no significant air temperature 

differences were observed between liner bags. According to the cooling results (Table 3), 

grapes packed in perforated liners cooled faster (743 min) than those in non-perforated liners 

(795 min) and micro perforated liners (795 min) with the exception of those packed in a 30 x 

2mm perforated liner which cooled the slowest (840 min).  The micro-perforation liners 

cooling rate was similar to that of non-perforated liners, and this may be due to the 

dimensions of the holes in the micro-perforated liners being very small (pin size), and are 

thus not adequately opened to allow good air flow through the bag. Although the use of 

perforated liners generally resulted in faster cooling rates, the cooling rate was not correlated 

with the perforated area of the liners. This may be due to non-uniform airflow patterns inside 

the package which may be ascribed to the possibility of the inner packaging blocking some of 

the perforation holes.  Although the perforated liners contain a certain number of holes to 

allow airflow to pass through individual fruits, it is possible that the effective perforated area 

is limited to the liner holes that are in alignment with the carton ventilation holes, while the 

rest of perforated area remain less effective. The results also suggest that a spatial variation in 

terms of cooling rates exists between the different positions (P1, P2 and P3) within each 

carton (Table 3). The spatial temperature variability conforms to the work reviewed by Smale 

et al., 2006) where non-uniform airflow was implicated as a major cause of this variability. 
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3.2. Postharvest quality attributes 

 

3.2.1 Weight loss, stem quality and berry drop 

 

The industry quality protocol stipulates that table grapes must be stored and handled at – 0.5 

°C and 95 % relative humidity (PPECB, 2010; Ginsburg et al., 1978). This is mainly to 

minimize water loss from the fruit. Stem dehydration and browning, weight loss and berry 

drop are the main symptoms of water loss in grape bunches (Nelson, 1978). 

 

The results obtained from this study (Table 4) show that the non-perforated liners stabilised 

and maintained RH at 100 % during cold storage and after shelf life study, while the 

perforated liners resulted in significantly (P <0.05) lower RH. This difference may be 

ascribed to the differences in liner materials and the perforations. Non-perforated liners are 

made up of low-density polyethylene (LDPE) and one of the characteristics of LDPE is being 

a good moisture barrier, with relatively high gas permeability (Fellows, 2000; Jacomino et 

al., 2005).  This suggests that cooling of grapes packed in non-perforated liners may be due to 

conduction rather than convection mode of heat transfer, resulting in moisture condensation 

inside the liners and thus 100% RH inside these liners. The perforated liners are made up of 

high-density polyethylene (HDPE), which has a lower permeability to gases and moisture 

(Fellows, 2000). Although perforated liners did maintain the required level of RH, the 

formation of condensation was also observed (Fig. 3), suggesting that a combination of 

conductive and convective heat transfer may play a role in the cooling of grapes packed in 

these liners. The results also show that RH affects stem quality (Table 4). The 36 x 4 mm and 

120 x 2 mm liners resulted in a higher loss of stem quality than the non-perforated liners. 

Percentage weight loss (Fig. 2) was significantly higher (P<0.05) in  perforated liners than in 

the micro- and non-perforated liners, where the 36 x 4 mm resulted in the highest amount of 

average bunch weight loss (± 3%) after shelf life study. This corresponds with the inability of 

perforated liners to maintain high (≥ 95 %) RH. Nelson (1978) related water (weight) loss to 

the combination of temperature and relative humidity, and concluded that water loss is 

strictly a physical factor related to the evaporative potential of the surrounding air. The higher 

the evaporative potential of the air surrounding the fruit, the more water is lost from the fruit. 

Stellenbosch University  http://scholar.sun.ac.za



95 

This relationship may be expressed directly as the vapour pressure deficit (Vpd), a term 

which indicates the combined influence of temperature and relative humidity (Nelson, 1978).  

 

3.2.2. Berry drop  

 

The non-perforated liner resulted in a significantly (P <0.05) higher berry drop percentage (± 

8 % per bunch) than the perforated liners during 42 days of cold storage (Table 5). Reduction 

in fruit detachment force has been widely associated with the natural abscission of fruits 

(Deng et al., 2005). Berry drop has also been associated with different gas compositions 

during storage, such low O2 and high CO2 compositions (Deng et al., 2007). It is therefore 

possible that the gas compositions inside the non-perforated liners changes during cold 

storage and thus resulting in an increase in berry drop. However, this hypothesis was not 

tested in this study.  

 

3.2.3. SO2 injury and decay incidence 

 

The results obtained show that SO2 injury incidence occurred within the first 7 days of cold 

storage on the table grapes packed in non-perforated liners, while the perforated liners 

showed no injury (Table 6). However, after 42 days of cold storage the grapes packed in 

perforated liners started to show symptoms of SO2 injury as well. The SO2 injury incidence 

remained significantly (P<0.05) higher on grapes packed in the non-perforated liner than 

those packed in perforated liners. No incident of SO2 injury was observed on grapes packed 

in 36 x 4mm perforated liner. These data confirm the observations by Zoffoli et al. (2008), 

they suggested that hairline split development, which is a symptom of SO2 injury could be 

partially explained by the acidic conditions developed on berry surfaces after the SO2 

contacts with water vapour. The combination of liquid vapour (100 % RH) and the SO2 in the 

non-perforated liner may have resulted in a formation of acidic conditions (Kiss et al., 2010), 

that may have increased SO2 injury observed in this study (Zoffoli et al., 2008). 
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No incidence of decay was observed prior to the shelf life study, (data not shown) indicating 

that table grapes require packages that allow good cooling and need to be handled under a 

good cold chain management environment to retard development of decay.  However, after 

the shelf life, a high incidence of decay occurred (Table 7) and decay nests were observed in 

all fruit packages (Fig 4b). Botrytis cinerea spores germinate when free moisture and high 

relative humidity conditions prevail and low temperatures do not prevent spore germination 

but merely delay it. Free water at a relatively high temperature of approximately 20°C is 

conducive to the development of decay (Ginsburg et al., 1978). 

 

3.2.4. Firmness 

 

The firmness of the grape berries decreased from 69.63±0.55 (Table 2) to 54.28±0.48 Durofel 

units as the storage period increased for all the packaging types (Table 8). Since the berry 

firmness was varied prior to cooling trials, it was difficult to ascribe the differences observed 

in Table 8 to the different packages. Based on the results (Table 9) significant difference 

(P<0.05) was observed during the first seven days, and between 14 and 42 days of storage at 

– 0.5°C and there were no differences observed between 7 and 14 days of the storage period. 

A decrease in firmness of the grape berries may be caused by a drop in turgor pressure as the 

grapes lose water or by physiological changes in the tissue which weaken the structure 

(Bernstein and Lustig, 1985). According Deng et al. (2005), the decrease in firmness of grape 

in storage conditions was accompanied by a dramatic decrease in hemicelluloses and 

moderate decreases in cellulose and total pectin. This indicates that the softening of grape 

resulted from an increase in depolymerisation and degradation of cell wall polysaccharides 

(Brummell and Harpster, 2001; Deng et al., 2005). 

 

3.2.5. Colour  

 

The results (Table 10) show a decrease in Hue angle from an average of 118.1° at day 0 to 

108.8° after 42 days in cold storage. This indicates a colour shift of grape berries from 

Stellenbosch University  http://scholar.sun.ac.za



97 

greenish yellow (green =180°) toward yellowish green (yellow = 90°) during storage. The 

reduction of L* from 44.99±0.29 (Table 2) to 35.86±0.29, was observed (Table 10) as the 

berries turned yellowish brown due to SO2 injury and incidence of decay. The decayed 

brown berries (data not shown) showed a further reduction in Hue angle to less than 89.00° 

and very low values of L*. The trends also showed a decrease in colour intensity C* from 

16.59±0.22 (Table 2) to 12.32±0.21 (Table 10). These results are in agreement with those 

observed on ‘Alido’ table grapes by Pretel et al. (2006). 

 

Because sensory analysis by trained panellists for colour and firmness measurements of table 

grapes was not carried out due to resource limitations and time constraints, it is not possible 

to ascertain if the differences observed instrumentally can be translated to a sensory 

perception by human subjects and vice-versa. However, anecdotal evidence by untrained 

laboratory personnel who tasted some grape berries indicated that when firmness was less 

than 55 Durofel units the berries were considered soft to the extent that they had lost their 

characteristic texture. Future studies should include detailed correlation between instrumental 

measurements and sensory analysis of berry quality attributes. 

 

4. Conclusion 

 

Grape berries are susceptible to quality defects during postharvest handling and marketing 

and the combination of cold chain management and packaging plays a crucial role in fresh 

produce quality. Grape berries packaged and stored in perforated liners performed better in 

terms of higher cooling rate, low SO2 damage and low berry drop, while non-perforated 

liners performed better in terms of maintaining higher RH and stem quality. The SO2 injury 

of berries observed in the non-perforated liners bag due to SO2 toxicity may have been 

induced by generator pad releasing rate under saturated atmospheres and this highlights the 

need to adjust the perforation area of liner bags in consideration of the SO2 pad release rate. 

The results indicate that the use of perforated liners offers a potential in maintaining the 

postharvest quality of table grape. Given the importance of stem quality in table grape 

marketing, the optimization of liner perforation (size and number) for both berry and stem 

quality is warranted.  
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Table 1: Physical characteristics of the package materials 
 

LDPE- Low density polyethylene; HDPE- High density polyethylene 

 

Table 2: Initial quality characteristics of the grapes prior to cold storage 

 

Baseline quality characteristic 

 

Value 

L* 

Hue (°) 

C* 

 

44.99±0.21 

118.11±0.22 

16.59±0.22 

Firmness (0-100) 69.63±0.55 

Berry drop None 

 

 

Item Material type Thickness 

(µm) 

Number and size of 

perforations (mm) 

Perforation area 

(mm2)/Package area 

(mm2) 

Liner 1 LDPE 20.00  None  0/8.39 x 104 

Liner 2 HDPE  16.00 Micro-perforated 

 (9 pin holes per 1 x  

104  mm2 liner)  

- 

Liner 3 HDPE 16.00  30 x 2  377.14/8.08 x 104 

Liner 4 HDPE 16.00  36 x 4   1810.29/8.56 x 104 

Liner 5 HDPE 16.00  54 x 2  678.86/8.36 x104 

Liner 6 HDPE 16.00  120 x 2  1508.57/8.14 x 104 

Carry bag (LDPE) 18.75 - 11055.11/10.23 x 104 

Carton box Corrugated 

fibreboard 

4.00 mm - 1.414x104/29.36 x 104 
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Table 3: Rate of cooling (7/8 cooling time) of table grapes packed in different carton liners 

 

Carton liner type 

 

Seven-eighths cooling time (min) 

  

Mean 

 

P1 

 

P2 

 

P3 

Non perforated 795 1134 534 687 

Micro perforation 795 747 849 789 

30 x2 mm perforation 840 708 900 939 

36 x 4 mm perforation 747 807 777 645 

54 X 2 mm perforation 672 567 663 831 

120 x2 mm perforation 714 564 969 576 

 

Means 

 

760.5±25.08 

 

754.5±85.72 

 

782±65.59 

 

744.5±54.43 

 

P- Denotes the position of temperature measurement in each carton inside the liner where berries with 

pulp temperature recorders were placed. The numbers 1 and 3 were outermost measuring positions 

(near shortest side walls of each carton), and 2 is the middle position inside each box. 
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Table 4: Effect of different packaging liners on RH and stem quality of ‘Regal Seedless’ table 

grapes   

Packaging % Relative 

humidity 

Stem dehydration        

(1 – 5)* 

Stem browning        

(1 – 4)** 

After 14 days at -0.5°C    

Non perforated 100.00c 3.70a 2.20a 

Micro-perforation 91.10a 4.70b 2.80b 

30x2mm perforation 91.90b 4.90b 2.80b 

36x4mm perforation 92.30b 4.60b 2.90b 

54x2mm perforation 91.90b 4.70b 2.90b 

120x2mm perforation 92.20b 4.80b 3.20b 

Means 92.9±0.22 4.56±0.11 2.82±0.09 

After 42 days at -0.5°C    

Non perforations 100.00e 4.50a 2.70a 

Micro-perforation 92.30b 5.00b 3.20b 

30x2mm perforation 92.90cd 5.00b 3.30bc 

36x4mm perforation 92.70c 5.00b 3.80c 

54x2mm perforation 91.70a 5.00b 3.60bc 

120x2mm perforation 93.00d 5.00b 3.70bc 

Means 93.50±0.13 4.92±0.03 3.37±0.08 

Shelf life study: 7 days 

24.3 °C 

   

Non perforations 100.00b 4.80a 2.80a 

Micro-perforation 91.70a 5.00b 3.20ab 

30x2mm perforation 91.20a 5.00b 3.60bc 

36x4mm perforation 88.80a 5.00b 3.90c 

54x2mm perforation 91.10a 5.00b 3.70bc 

120 X 2mm perforation 89.90a 5.00b 3.80c 

Means 91.8±0.53 4.97±0.02 3.51±0.08 

*Score: 1= fresh stems; 2= some drying of thinner stems; 3 = all thinner stems dry; 4 = all thinner and 

some thicker stems dry; and 5 = all stems dry. **Score: 1 = fresh and green stems; 2 = some light 

browning of stems; 3 = significant browning of stems; and 4 = severe browning of stems. Values 

within a column and within a sampling period followed by a different letter are significantly different 

(P ≤ 0.05) according to Duncan tests. 
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Table 5: Effect of different packaging liners on berry drop of ‘Regal Seedless’ table grapes 

after cold storage  

Packaging Percentage Berry drop 

 After 7 days at -0.5°C  After 14 days at -

0.5°C 

After 42 days at -

0.5°C 

Non perforated 0.60a   1.60ab 8.20b 

Micro-perforation 0.30a 1.40ab 6.90ab 

30x2mm perforation 0.60a  1.90b 5.00ab 

36x4mm perforation 0.20a 0.90ab 2.90a 

54x2mm perforation 0.00a 0.10a 5.70ab 

120x2mm perforation 0.10a  0.40ab 4.30ab 

Means 0.3±0.08 1.07±0.22 5.52±0.65 

* Values within a column followed by a different letter are significantly different (P ≤ 0.05) according 

to Duncan’s Multiple Range Test. 
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Table 6: SO2 injury index of ‘Regal Seedless’ table grapes during cold storage at -0.5°C  

 SO2 Injury Index* 

Packaging After 7 days storage 

at -0.5°C** 

After 14 days storage 

at -0.5°C** 

After 42 days 

storage at -0.5°C** 

Non perforated  1.08a  1.17b  2.17c 

Micro-perforation 1.00a 1.00a  1.67b 

30x2mm perforation 1.00a 1.00a  1.25ab 

36x4mm perforation 1.00a 1.00a  1.00a 

54x2mm perforation 1.00a 1.00a  1.25ab 

120x2mm perforation 1.00a 1.00a  1.42ab 

Means 1.01±0.01 1.03±0.02 1.46±0.07 

*SO2 injury score (1-4): 1 = no injury; 2 = slight injury (< 5%); 3 = moderate injury (5 – 10%); and 4 

= severe injury (> 10%). ** Values within a column followed by a different letter are significantly 

different (P ≤ 0.05) according to Duncan’s Multiple Range Test. 

 

Table 7: Effect of packaging liners on the occurrence of decay incidence on ‘Regal Seedless’ 

table grapes after 42 days cold storage and shelf life  

Packaging Decay (1 – 4)*  

Shelf life study: 7 days at  24.3 °C  

Non perforations      2.90b              

Micro-perforation    3.30b 

30x2mm perforation     3.20b 

36x4mm mm2 perforation     2.30ab        

54x2mm perforation    1.70a 

120x2mm perforation    2.50ab 

Mean  

Significance level 

2.68±0.15 

P = 0.018* 

*Score: 1 = no decay; 2= slight (<2 infected berries carton); 3 = severe (2-5 infected berries per 

carton); and 4 = extreme (> 5 infected berries per carton).  * Values within a column followed by a 

different letter are significantly different (P ≤ 0.05) according to Duncan’s Multiple Range Test. 

 

Table 8:  Changes in ‘Regal Seedless’ grape berry firmness in cold storage 
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Packaging  Durofel units  

 After 7 days at -0.5°C After 14 days at -

0.5°C 

After 42 days at -

0.5°C   

Non perforated 66.60ab 60.50ab  55.70a 

Micro-perforation 62.10a 56.90a 52.90a 

30x2mm perforation 66.40ab 61.50ab 55.20a 

36x4mm perforation 67.80b 59.60ab  54.30a 

54x2mm perforation 70.40b 62.20b  54.90a 

120x2mm perforation 65.30ab 60.90ab 52.60a 

Means  66.44±0.73 60.29±0.62 54.28±0.48 

* Values within a column followed by a different letter are significantly different (P ≤ 0.05) according 

to Duncan tests. 

 

Table 9: Differences in berry firmness measured at different intervals during storage at – 

0.5°C 

 Difference in firmness (Durofel units) 

Packaging Prior storage  

– Day 7 at -

0.5°C 

Day 7 – Day 14 

at -0.5°C 

Day 14 – Day 42 at 

-0.5°C 

Prior storage  – 

Day 42 at -

0.5°C 

Non perforated  4.80a 6.50a 6.00a 14.50a 

Micro-perforation 9.80b 6.10a 6.60ab 16.70ab 

30x2mm perforation 5.60a 7.60a 5.40a 14.10a 

36x4mm perforation 7.10ab 9.20a 6.90ab 19.00ab 

54x2mm perforation 9.30b 9.30a 10.30b 20.50b 

120x2mm 

perforation 

5.60a 6.40a 8.30ab 14.30a 

Means 7.03±0.49 7.51±0.48 7.27±0.56 16.53±0.76 

* Values within a column followed by a different letter are significantly different (P ≤ 0.05) according 

to Duncan’s Multiple Range Test. 
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Table 10: Changes in colour parameters (L*, C* and Hue angle) of ‘Regal Seedless’ table 

grapes during cold storage                                            

Packaging L* C* Hue angle 

After 7 days at – 

0.5°C 

   

Non perforations 41.20a 16.90a 117.76b 

Micro-perforation 40.90a 17.30a 117.13b 

30x2mm  perforation 42.20ab 18.50ab 116.63b 

36x4mm perforation 41.90ab 17.90a 109.55a 

54x2mm perforation 43.30b 19.50b 116.76b 

120x2mm perforation 42.30ab 17.40a 117.67b 

Means 41.90±0.22 17.90±0.22 115.92±0.69 

After 14 days at – 

0.5°C 

   

Non perforations 39.00a 16.20a 114.59a 

Micro-perforation 39.40ab 16.70ab 115.50a 

30x2mm perforation 39.70ab 16.60ab 116.54a 

36x4mm perforation 40.40ab 17.50ab 116.16a 

54x2mm perforation 41.20b 18.30b 114.41a 

120x2mm perforation 39.90ab 16.80ab 114.33a 

Means 39.93±0.28 17.02±0.25 115.26±0.67 

After 42 days at -

0.5°C 

   

Non perforations 38.07c 12.70ab 112.67c 

Micro-perforation 36.40bc 11.80a 109.28ab 

30x4 mm perforation 35.20ab 11.60a 106.15ab 

36x4mm perforation 33.70a 11.80a 105.37a 

54x2mm perforation 36.30bc 13.80b 108.81ab 

120x2mm perforation 35.50ab 12.10a 110.37bc 

Means 35.86±0.29 12.32±0.21 108.78±0.68 

*Values within a column at each interval followed by a different letter are significantly different (P ≤ 

0.05) according to Duncan tests. 
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Figure 1: Air temperature profiles inside grape packages during the storage period 

 

Figure 2: Percentage (±SE) weight loss of ‘Regal Seedless’ table grapes during cold storage 

at -0.5°C and after 7 days shelf life at 24.3 C.  
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Figure 3: Condensation in a 120 x 2 mm perforated liner in cold storage 

 

 

(a)  (b)  

  

Figure 4: (a) Fresh table grape bunch prior to storage and (b) complete decay of ‘Regal 

Seedless’ table grapes after seven days shelf life study at 24.33±0.04°C 
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(a)    (b)  

Figure 5: Packing pattern , multi-packages (a) and inner packages (b) (corrugated board; 

absorbtion and SO2 pad) of table grapes 
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PAPER 3 

 

Performance of punnet multi-packaging for table grapes based on airflow, 

cooling rates and fruit quality

 

Abstract 

 

The performance of three table grape multi-scale designs, namely the 4.5 kg box, 5 kg open-

top punnet and 5 kg clamshell punnet, was studied. Results showed that vent-hole ratio of 

empty grape boxes had a significant influence on the resistance to airflow, where the 5 kg 

punnet box with a vent-hole ratio of 6.13±0.04% had a lower pressure drop than the 4.5 kg 

boxes with a lower vent-hole ratio of 3.80±1.74%. The addition of liner films and inner 

packages changed the pressure patterns, indicating that inner packaging had a great influence 

on airflow resistance and airflow patterns through multi-scale packages of grapes. Cooling 

rates of grapes in the 4.5 kg multi-packaging was significantly (P<0.05) slower than that of 

grapes in 5 kg punnet multi-packaging, where the 4.5 kg box resulted in a seven-eighths 

cooling time of 30.30-46.14% and 12.69-25.00% more than that of open-top and clamshell 

punnet multi-packages, respectively. After 35 days in cold storage at -0.5°C, grape bunches 

in the 5 kg punnet box combination (open-top and clamshell) had weight loss of 2.01 – 

3.12%, while  the bunches in the 4.5 kg box combination had only 1.08% weight loss. The 

bunch stem dehydration rates were also higher in the 5 kg punnet multi-package. These 

results were attributed to differences in vapor pressure deficit (VPD) measured between the 

three multi-scale packages, where the VPD inside the 4.5 kg multi-packaging was 40.95 Pa, 

while the VPD inside the 5 kg open-top and clamshell punnet packaging were 92.97 Pa and 

100.71 Pa, respectively.    

 

Keywords: Table grape; multi-packaging; Forced air cooling; Pressure drop; vapour pressure; 

moisture loss 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



112 

1. Introduction 

 

Precooling and refrigerated storage have been widely reported as effective techniques to 

preserve fruit quality and freshness after harvest, as these techniques tend to  reduce the rate 

of biochemical reactions and microbiological growth (Baird and Gaffney, 1976; Brosnan and 

Sun, 2001; Dincer, 1991, 1992; Dincer and Akaryildiz, 1993; Ginsburg et al., 1978; 

Thompson et al., 1998). Forced air cooling is one of the precooling techniques that is 

commonly used to remove the field heat from the freshly harvested fresh produce (de Castro 

et al., 2004; Hardenburg 1986; Thompson et al., 1998). In forced air cooling systems heat is 

primarily transferred by convection, and therefore temperature and its homogeneity is largely 

governed by patterns of airflow (Smale et al., 2006; Zou et al., 2006).  

 

Forced air cooling is usually commenced after the fruits have been packaged in carton boxes 

and stacked on pallets and therefore, it is important that the packaging used allows for 

sufficient airflow in order to achieve homogenous airflow and thus uniform cooling of 

packed fruits. Many studies have been reported on the resistance to airflow of fruit packages 

as a function of vent hole ratio and shape (Chau et al., 1985; Vigneault and Goyette, 2002; 

Zou et al., 2006); bulk fruit stacking and porosity (Chau et al., 1985; Delele et al., 2008; 

Neale and Messer, 1976; Neale and Messer, 1978; Verboven et al., 2004; van der Sman, 

2002;  Smale et al., 2004) and carton boxes stacked on a pallet (Delele et al., 2012). Fruit 

packaging and box stacking patterns are likely to contribute much to airflow resistance, as the 

flow is strongly dependant on vent-area and alignment of vent-holes of stacked boxes 

(Ngcobo et al., 2012b; Delele et al., 2012). Poor ventilation of fruit packages may result in 

heterogeneous cooling of fruits within packages and between different packages in stacked 

pallets and this has been associated with poor fruit quality in previous studies (Smale et al., 

2006).  

 

 Table grape packaging is characterised by different types of multi-scale package 

combinations (Ngcobo et al., 2012a). These multi-scale packages are aimed at protecting the 

grapes against mechanical damage during postharvest handling and contamination from 

foreign matter. However, these multi-packages are also required to allow for sufficient and 

homogenous cooling in order to prolong at-harvest grape quality after harvest. Previous 

studies (Delele et al., 2012; Ngcobo et al., 2012a; Ngcobo et al., 2012b) have focused on 

investigating the effects of liner films, and 4.5 kg boxes stacking on the resistance to airflow; 
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cooling rates and patterns respectively. The results obtained from these studies have shown 

that the plastic liner films component of the multi-scale packaging contributed the most 

(ranging from 40.33 ± 1.15% for micro-perforated liner film to 83.34 ± 2.13% for non-

perforated liner film) to airflow resistance (Delele et al., 2012; Ngcobo et al., 2012b). The 

multi-scale packages may well cause heterogeneous grape cooling which results in 

postharvest quality variation observed in practice despite the great efforts put in to ensure 

efficient pre-cooling and good temperature management in the cool chain. 

 

Poor quality in table grapes includes weight loss, stem (rachis) dehydration and browning, 

colour changes, accelerated berry softening, berry shatter and high incidence of berry decay 

due mainly to Botrytis cinerea and incidence of SO2 injury (Ginsburg et al., 1978; Nelson, 

1978; Ngcobo et al., 2012a; Zoffoli et al., 2008;). It is possible that grape postharvest quality 

problems may be associated with the type of multi-scale packaging combinations used and 

therefore an investigation focused on the performance of the different commercially available 

types of grape packaging combinations is warranted. 

 

The aim of this study was to evaluate the performance of different table grape package 

systems based on airflow, cooling and quality characteristics. The effects of box design, 

bunch carrying bag and punnet (open and clamshell) were analysed.      

 

2. Materials and Methods 

 

2.1. Fruit supply 

 

‘Regal Seedless’ grapes were sourced and packed at a commercial farm in the Worcester 

Area of Western Cape in South Africa. The fruit was then transported to the Postharvest 

Technology Lab at Stellenbosch University, where it was prepared for forced air cooling and 

cool storage trials. 
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2.2. Fruit packaging 

 

The grapes were packed in three types of commercially used grape multi-packages (Fig. 1a 

and b) namely (i) the 4.5 kg boxes containing the following inner packaging material (120 x 

2mm perforated liner film; corrugated paper sheet; bunch carry-bags; moisture absorption 

sheet and SO2 pads); (ii) 5 kg boxes containing the following inner packaging material (112 x 

4 mm perforated liner film; clamshell punnets; moisture absorption sheet and SO2 pads); and 

(iii) 5 kg boxes containing inner packages (112 x 4 mm perforated liner film; open-top 

punnets; moisture absorption sheet and SO2 pads). 

 

2.3. Airflow studies 

 

The resistance to airflow studies (measured as pressure loss across grape package) of 

individual grape packaging components were carried out in a wind tunnel as detailed by 

Ngcobo et al., (2012b), in a stepwise manner as follows: (i) pressure loss over empty boxes 

orientated either with its length (L) or breadth (B) perpendicular to inflow (Fig. 2a and b); (ii) 

pressure loss over boxes containing empty punnets; (iii) pressure loss over boxes containing 

punnets with grape bunches; and (iv) the pressure loss over complete grape multi-package 

combinations (boxes plus liner film plus punnets or carry bags containing fruits). The air 

velocities ranged from 0.70 – 3.21 ms-1; 0.10 – 0.60 ms-1 and 0.02 – 0.20 ms-1 for the empty 

wind tunnel, empty packages and fully packed multi-packages, respectively.  

 

2.4. Cooling System  

 

Forced air cooling of grapes boxes was done using a moveable forced air cooler (Fig. 3) 

inside a refrigerated room. The air temperature inside the cool room was -0.5°C, and was 

circulated by means of three fans (Delele et al., 2012). The fruit boxes were stacked on a 

pallet base and tightly positioned in front of the forced air cooler (Fig. 3). The 5 kg punnet 

boxes were stacked up to 9 layers, with each layer containing 5 boxes as per Figure 4a. The 

4.5 kg boxes were stacked up to 5 layers, with each layer containing 10 boxes laid out as per 

Figure 4b. A total mass of 225 kg was cooled at a time. Following the stacking of fruit boxes, 

strong plastic was used to seal the sides and top of the fruit stack to the cooler in order to 
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form a tunnel and to ensure that there was no air leakage when the cooler suction fan was 

switched on. After sealing with plastic, the cooler fan was switched on and sucked the cold 

room air through the stack and thus ensuring pre-cooling. 

 

For the quality measurements, six grapes boxes were cooled and stored in a separate but 

identical cool room at -0.5°C and at 95 % humidity. 

 

2.5. Temperature and humidity measurements     

 

Berry temperature was measured with probes (LogTag Recorder Limited, Northcote, 

Auckland, New Zealand) inserted into berries positioned in the centre of each carton. Air 

temperature was measured with a LogTag air temperature recorder (LogTag Trix‐8 

temperature Recorder) at the central position inside each carton. Air relative humidity (%RH) 

inside each carton was measured with a SENSITECH TempTale 4 monitor (Temptale4 

Humidity and Ambient Temperature 16000, SENSITECH, Beverly, MA, USA). 

 

2.6. Quality measurements 

 

Quality attributes measured included stem dehydration and browning, bunch weight loss, 

SO2 injury, colour and decay incidence. The measurements were recorded at 7 days intervals 

under cold storage and for 35 days. The measuring procedure was done according to Ngcobo 

et al., 2012a and is detailed as follows: 

 

Bunch weight loss. The weight of individual bunches was measured with a scale (Mettler, 

Toledo, Switzerland, with an accuracy of 0.01 g). Bunch weight loss data were normalised 

with respect to the initial bunch weight. 

 

Stem drying and browning. Stem dehydration was assessed using the following scoring 

system: without drying (fresh stems) = 1, some drying of thinner stems = 2, all thinner stems 

dry = 3, all thinner and some thicker stems dry = 4 and all stems dry = 5. Stem browning 
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development was measured by using the following scoring system: (1) fresh and green, (2) 

some light browning, (3) significant browning and (4) severe browning. 

 

SO2 injury and decay incidence. SO2 injury was measured according to the following 

scoring system: (1) none (0%), (2) slight damage (<5%), (3) moderate damage (5–10%) and 

(4) severe damage (>10 %). Decay was scored as follows: (1) no decay, (2) slight (less than 

two infected berries per carton), (3) severe (two to five infected berries), and (4) extreme 

(more than five infected berries per carton).  

 

2.7. Statistical Analysis 

 

The forced air cooling experiments were replicated 4 times and the cooling rate (seven eights 

cooling times) data between boxes in a layer and between layers was subjected to a two-way 

analysis of variance (ANOVA) to evaluate the significance of differences. The analysis was 

done using a STATISTICA 10, software (StatSoft, Inc., Tulsa, USA). Comparison of cooling 

rate between boxes was done on the mean values using LSD (Least Significant Difference) 

test (p = 0.05 level).  

 

The quality experiments were replicated 36 times (i.e. six boxes per multi-packaging type and 

from each box 6 bunches were evaluated) and the data (weight loss) were analysed in 

Microsoft Excel® and plotted as Mean ± SD.  

 

2.7.1. Cooling data 

 

The cooling data were normalised and presented as dimensionless temperature according to 

equation 1 (Dincer, 1995): 

 

 ( )
( )

a

i a

T T
T Tθ −= −

  (1) 

where θ , is the dimensionless temperature; T (°C) is the product temperature; aT  (°C) is the 

air temperature and iT (°C) is the product’s initial temperature . 
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 The dimensionless temperature change with time is generally expressed in the form of an 

exponential equation, including the cooling parameters in terms of a cooling coefficient (C, 

degree per hour degree) and lag factor ( )J  as (Dincer, 1995; Thompson 1998): 

 ( )expJ Ctθ = −   (2) 

 

The cooling rates were then calculated as the half-cooling time ( )H , (hour) which by 

substituting 0.5θ =  into equation (2);   

 

 ( )ln 2J
H C

  =   (3) 

and seven-eighths cooling time ( )S  in hours. By substituting 0.125θ =  into equation (2), the 

seven eighths cooling time is calculated by the following equation:  

 ( )ln 8J
S C

  =   (4) 

 

2.7.2. Pressure loss 

 

The equation used for calculating pressure drop over the packages is the Ramsin equation 

(Chau et al., 1985; Ngcobo et al., 2012b): 

bp aV∇ = −       (5) 

Where p is the pressure (Pa); V is the velocity vector (m/s) ; a is the resistance coefficient 

( ) ( )( )2 2b bkgs m− − +  and b is the resistance exponent. 

 

2.7.3. Determination of vapour pressure deficit ( )Vpd  

 

The vapour pressure deficit (Vpd = ps - p∞) was calculated from measured dry bulb 

temperature and relative humidity data. The corresponding vapour pressure (p∞) of the 
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surrounding air inside the multi-packaging treatments was determined by using a 

psychrometric chart. The determination of vapour pressure over the product surface (ps) took 

into account vapour pressure lowering effect of the solutes:  

 

*s satp VPL p=   (6) 

Where satp  is the saturated vapour pressure (Pa) at the produce surface temperature and VPL  

is the vapour pressure lowering effect of the produce. In the case of grapes, Becker et al., 

(1995) reported a value of 0.98, and was used in this research.    

 

3. Results and Discussion 

 

3.1. Resistance to airflow 

 

Figure 5 shows the results of pressure drop through empty boxes (i.e. 4.5 kg and 5 kg boxes) 

indicating that the vent-hole ratio has a significant influence to pressure drop, where the 5 kg 

boxes with higher vent-hole ratios of 6.16 and 6.10 % (Table 1) resulted in a lower pressure 

drop than the 4.5 kg boxes with lower vent-hole ratios of 2.57 and 5.03 % (Table 1).  

 

The addition of inner packaging containing fruit (i.e. bunch carry bags and punnets) into the 

4.5 kg and 5 kg boxes respectively, resulted in increased pressure drop (Fig. 6), but similar 

trends as in Fig. 5, where the pressure drop in the 5 kg boxes and punnets with grapes 

combination resulted in lower pressure drop than in 4.5 kg boxes and bunch carry bag with 

fruit combination (Fig. 6). However, as soon as the plastic liner films were added the pressure 

drop results (Fig. 7) were reversed, where the pressure drop in the 4.5 kg box multi-package 

combination became lower than the pressure drop in the 5 kg punnet combination. This was 

despite the fact that the punnet box liner film had a slightly higher vent-hole ratio (perforation 

114 x 4 mm) of 0.06 % than that of the 4.5 kg liner film 0.05% (120 x 2 mm perforation) 

(Table 1). This change in pressure drop results may be attributed to the structured (rigid) 

nature of punnet containers which makes more box structure on the plastic liner film and thus 

blocks the box vent-holes and thus more resistant to airflow. The bunch carry-bags have no 

structure other than that of the fruit they contain, and during cooling the pressure of the 
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incoming air results in deformed shapes that allow more air to pass through between the liner 

film and the box walls, thus bypassing the fruit. 

  

The results obtained for the resistance coefficients a  and b (Table 2), are in agreement with 

the pressure drop results, where the values of the a  coefficient increased by averages of 

31.36%; 32.35% and 27% (4.5 kg; 5kg clamshell and 5 kg open-top punnet multi-packages 

respectively) from empty boxes to fully packed multi-packages (Table 2). The b coefficient 

also increased slightly with increase in multi-packaging, however, it remained fairly constant. 

The Ramsin equation fitted well with the pressure drop data as indicated by the r2 values 

greater than 0.9. These results suggest that the inner package components have more 

influence on airflow patterns inside boxes than the box itself. These results agree with those 

obtained by Ngcobo et al. (2012b), where they found that the plastic liner film contributed the 

highest to pressure loss than any of the other packaging components. 

 

3.2. Cooling rates 

 

The cooling rates and patterns of stacked grape boxes measured in the central box of the stack 

under forced air cooling conditions are shown in Table 3 and Figures 8 and 9. Figure 8 shows 

the cooling patterns of grape multi-packaging combinations stacked in layers on a pallet base 

and the pallet orientated with its 1 m in the direction of the airflow. Figure 9 shows the 

cooling results when the pallet was orientated with its 1.2 m side in the direction of the 

airflow. The two orientations of pallets come with differences in stacking patterns of boxes in 

a layer (Figures 4a and 4b). When the pallet (stack) was oriented with its 1 m in the airflow 

direction, the cooling results (Fig. 8) indicated that the 4.5 kg multi-packaging combination 

resulted in a significantly (P<0.05) slower cooling rate than the cooling rates of 5 kg punnet 

box combination. When pallet orientation was 1.2 m in the airflow direction, the 4.5 kg 

multi-packaging combination still cooled the slowest, however, its cooling pattern was not 

significantly different from the 5 kg clamshell punnets box combination, while the 5 kg open-

top punnets combinations cooled significantly (P<0.05) faster than the two multi-package 

combinations. The seven-eighths cooling time shown in Table 3, was in agreement with the 

results observed in  the Figures 8 and 9, as the 7/8 cooling time for the open-top punnets 

combination were significantly (P<0.05) lower than that of 4.5 kg packaging and the 5 kg 
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punnets combination. These results may be attributed to the fact that the 4.5 kg boxes had a 

smaller vent-hole ratio than the 5 kg punnet boxes. Another possible reason for such results 

may have been due to the rigid structure of the punnets forcing a good contact between the 

cold air and fruit by properly sealing the plastic liner film to the inner box walls, while the 

deformed structure of bunch carry-bags and liner film in a 4.5 kg box may have allowed cold 

air to bypass the fruit through the formation of channels between liner films and the inner 

walls of the boxes and thus reducing cooling rate of the grapes. Based on the results, it was 

also evident that the table grape package design and box stacking patterns had an influence 

on the airflow patterns and thus the cooling rates.      

 

The results also indicated that the cooling pattern of boxes in a layer of the stack is such that 

the boxes upstream (incident to incoming airflow) tended to cool at a faster rate than the 

boxes positioned downstream (near the FAC) (Table 4). There were significant (P<0.05) 

differences in cooling rates of individual boxes in a layer, suggesting some uneven spatial 

variability within each layer of a stacked pallet. This may have been due to non-uniform 

airflow patterns within a stack as a result of misalignment of vent holes adjacent to each other 

and the inner packaging may have exacerbated heterogeneous flow.  

 

3.3. Quality attributes 

 

3.3.1. Bunch weight loss 

 

Moisture loss of grape bunches in different multi-packaging combinations during cold 

storage are shown in Figure 10. The results indicated that although the moisture loss 

generally occurred in all packages, the differences between the multi-packaging combinations 

used were not significant (P<0.05). However, there were noticeable trends that suggested that 

the grape bunches in 5 kg punnet multi-packages tended to lose weight at a faster rate than 

those in 4.5 kg carry-bag multi-packages. These differences could be ascribed to the 

differences in the percentage relative humidity inside the package. Measured relative 

humidity inside the packages was 85.31±2.45%; 84.11±1.04% and 93.52±0.23% which 

resulted in different vapour pressure deficits (VPD) of 92.97 Pa; 100.71 Pa and 40.95 Pa 

between the open-top punnets; clamshell punnets and 4.5 kg carry-bag multi-packages, 
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respectively (Table 5). The differences would become more significant if the storage periods 

were longer than 35 days. 

 

3.3.2. Stem dehydration and browning 

 

The stem dehydration results are presented in Figure 11. According to the results, open-top 

punnet multi-packaging resulted in a higher level of stem dehydration with 5.6 % of the total 

stems reaching drying score 3 (i.e. all thinner stem were dry) after 28 days in storage, while 

the other multi-packaging treatments went up to drying level 2 (i.e. some of the thinner stems 

dry). After 35 days in cold storage, 83.33% of bunches had stems that reached drying level 2 

and 16.67% of bunches still had fresh greener stems for the 4.5 kg carry-bag multi-packaging 

combination, while the clamshell punnets multi-packaging combination had 100% of bunch 

stems reaching level 2 drying after 35 days of cold storage.  These results could also be 

ascribed to the VPD difference (Table 5). The stem drying results followed a similar trend as 

the weight loss results. 

 

The stem browning results (Figure 12) did not show a similar trend as weight loss and stem 

dehydration results, as both the open-top punnet and 4.5 kg multi-packaging combinations 

reach browning scores of 3 after 28 days in cold storage. This observation could be ascribed 

to the fact that some of the stems were already showing some browning after 7 days in cold 

storage and this could clearly be attributed to pre-harvest sulphur sprays the affects of were, 

which was exacerbated in storage. The stem browning due to sulphur sprays is 

distinguishable as it tends to be localised on the outer surface of the stems, while the inner 

part of stems remain green.   

 

2.1.1. SO2 injury and decay incidence 

 

During this study no incidences of SO2 or decay were observed.  
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3. Conclusion  

 

Results obtained from the three multi-scale packages used for table grapes showed that 5 kg 

punnet multi-package generally performs better in terms of cooling rates than the 4.5 kg 

bunch carry-bag multi-packaging combination, where the seven-eighths cooling times of the 

4.5 kg multi-packaging were 30.30 % and 25.00 % (1 metre pallet orientation in airflow 

direction) and 46.14% and 12.69 % (1.2 metre pallet orientation in the airflow direction) 

longer than those of the open-top and clamshell punnet multi-packaging. However, there 

appears to be a trade-off between faster cooling rates and grape postharvest quality, given 

that the 4.5 kg box multi-package resulted in lower bunch moisture loss and stem dehydration 

rates than the 5 kg punnet multi-package. This trade-off could possibly be ascribed to the 

lower ability of 5 kg multi-packages to retain moisture (85.31±2.45 and 84.11±1.04% RH) 

and thus resulting in higher VDP of 92.97 Pa and 100.71 Pa, while the 4.5 kg multi-

packaging maintained 93.52±0.23 % RH, which resulted in lower VDP of 40.95 Pa. 

Furthermore, the higher VPD inside the 5 kg punnet multi-package may have resulted from 

convective mass transfer due to higher air circulation inside the package. 

 

The obtained results also suggested that the stacking of boxes influences the patterns of 

airflow within the stack as indicated by significant (P<0.05) differences in the cooling rates 

of individual boxes in a layer. The variation in cooling patterns within box stacks and layers 

may be ascribed to heterogeneous patterns of airflow due to poor alignment of vent-holes 

between boxes and further exacerbated by the presence of inner packaging.  Future studies 

should focus at optimising the table grape multi-packages for improved cooling while 

ensuring that postharvest quality is not compromised. 
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Table 1: Vent-hole ratio of the different table grape packaging components 

 

Package component 

and its orientation to 

airflow direction 

Ratio of vent-hole to wall surface area of grape 

packages 

Wall area (m2) Vent area (m2) Vent ratio (%) 

Punnet box 400 mm side 0.038 0.002 6.16 

Punnet box 600 mm side 0.057 0.003 6.10 

Punnet box bottom side 0.240 0.003 1.23 

Punnet box top 0.240 0.204 85.00 

Clamshell punnet long 

side 0.015 0.001 5.33 

Clamshell punnet short 

side 0.009 0.000 6.51 

Clamshell punnet bottom 

side 0.016 0.000 1.22 

Clamp-shell punnet top 

side 0.018 0.001 5.32 

Open top punnet long 

side 0.013 0.000 0.00 

Open top punnet short 

side 0.008 0.000 0.00 

Open top punnet bottom 

side 0.016 0.000 1.29 

Open top punnet top side 0.018 0.018 100.00 

114 x 4mm perforated 

punnet box liner 2.415 0.001 0.06 

4.5 kg carton box 300 

mm side 0.038 0.001 2.57 

4.5 kg carton box 400 

mm side 0.051 0.004 5.03 

4.5 kg carton box bottom 

side 0.120 0.003 2.45 
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4.5 kg carton box top side 0.120 0.030 25.33 

120 x 2 mm perforated 

liner bag 0.814 0.000 0.05 

 

Table 2: The a and b coefficients derived from equation (5) for multi-scale packages and 

grapes with the maximum and minimum air velocity 

Packaging combinations and fruits Equation (5) 

coefficients bp aV∇ = −  

 Measured 

Velocity (ms-1) 

a   b   r2 min  max  

Empty 4.5 kg box 300 9.00 1.90 0.999 0.081 0.441 

Empty 4.5 kg box 400 8.92 1.99 0.999 0.087 0.430 

4.5 kg box + Carry-bag + fruit (300 mm side 

perpendicular to airflow) 10.21 1.90 0.999 0.07 0.383 

4.5 kg box + Carry-bag + fruit (400 side 

perpendicular to airflow) 10.83 2.06 0.999 0.069 0.339 

4.5 kg box + liner film + Carry-bag + fruit 

(300 side perpendicular to airflow) 12.1 1.96 0.999 0.049 0.171 

4.5 kg box + liner film + Carry-bag + fruit 

(400 side perpendicular to airflow) 14.17 2.10 0.999 0.086 0.455 

Empty 5 kg punnet box (400 mm side 

perpendicular to airflow) 8.19 1.93 0.999 0.116 0.605 

Empty 5 kg punnet box (600 mm side 

perpendicular to airflow) 8.2 1.92 1.000 0.115 0.61 

5 kg box + empty clamshell punnet, (400 mm 

side perpendicular to airflow) 9.88 1.89 1.000 0.065 0.21 

5 kg box + empty clamshell punnet, (600 mm 

side perpendicular to airflow) 9.71 1.99 1.000 0.097 0.489 

5 kg box + clamshell punnets + fruit, (400 

mm side perpendicular to airflow) 9.93 1.89 1.000 0.063 0.204 

5 kg box + clamshell punnets + fruit, (600 

mm side perpendicular to airflow) 9.82 1.96 0.999 0.092 0.278 
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5 kg box + liner film + clamshell punnets + 

fruit, (400 mm side perpendicular to airflow) 11.53 2.04 0.998 0.024 0.076 

5 kg box + liner film + clamshell punnets + 

fruit, (600 mm side perpendicular to airflow) 12.76 2.34 0.999 0.014 0.063 

5 kg box + empty open-top punnets,(400 mm 

side perpendicular to airflow) 9.57 1.93 0.999 0.078 0.404 

5 kg box + empty open-top punnets,(600 mm 

side perpendicular to airflow) 9.46 2.01 0.999 0.11 0.54 

5 kg box + open-top punnets + fruit, (400 

mm side perpendicular to airflow) 9.46 1.79 0.991 0.072 0.383 

5 kg box + open-top punnets + fruit, (600 

mm side perpendicular to airflow)  9.35 1.92 0.999 0.104 0.496 

5 kg box + liner film + open-top punnets + 

fruit, (400 mm side perpendicular to airflow) 12.96 2.6 0.997 0.037 0.175 

5 kg box + liner film + open-top punnets + 

fruit, (600 mm side perpendicular to airflow) 9.95 1.92 1.000 0.039 0.118 

 

 

Table 3: Rate of cooling (seven-eighths cooling time) of stacked table grapes multi-packages,  

Pallet orientation in 
the airflow direction 

7/8 cooling time of grape multi-packaging  

Open-top punnets (5 
kg boxes) 

Clamp-shell punnets (5 
kg boxes) 

Carry-bags (4.5 kg 
boxes) 

1 metre 576.67±7.88 620.50±42.50 827.40±25.73 

1.2 metre 441.67±11.29 716.00±54.84 820.00±26.63 

 Significance level *P=0.0006 P=0.3059 P=0.8573 
 
*P<0.05 means that the difference between cooling rates of pallets is significant when their orientation is 
changed with respect to airflow direction. 
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Table 4: Cooling rate (seven-eighths cooling time) pattern of individual table grapes boxes in the middle layer of a pallet stack 

 

 

 

 

 

 

 

 

 

 

 

 

*P<0.05 means that the cooling rates of boxed in different positions in a layer was significant   
 

 

Carton 

position in a 

layer 

1 metre in the airflow direction   1.2 metre in the airflow direction 

7/8 cooling time  
 

7/8 cooling time  

Open-top 

punnets 

Clamp-shell 

punnets 
Carry-bags   

Open-top 

punnets 

Clamp-shell 

punnets 
Carry-bags 

A 640.56±37.91 593.22±29.83 971.86±41.02 
 

645.33±37.62 593.22±29.84 969.42±24.14 

B 557.11±30.21 508.00±11.88 973.18±45.14 
 

557.11±30.21 508.00±11.88 1009.87±29.19 

C 554.75±28.82 573.33±27.94 949.57±36.61 
 

541.11±28.85 573.33±27.93 949.68±24.14 

D 509.56±38.95 611.44±47.60 772.10±33.76 
 

509.56±38.95 611.44±47.60 799.31±30.44 

E 462.89±34.51 516.78±42.25 794.33±14.04 
 

511.67±41.91 591.89±44.60 794.33±23.19 

F 

  

793.73±34.84 

   

793.73±23.19 

G 

  

824.07±21.15 

   

824.07±23.19 

H 

  

739.07±24.75 

   

739.07±23.19 

I 

  

832.73±39.20 

   

832.73±23.19 

J 

  

792.00±21.55 

   

792.00±23.19 

 Significance 

level 
*P=0.0000 P=0.0492 P=0.0000 

  
P=0.0000 P=0.0000 P=0.0000 
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Table 5: Mean thermal and humidity conditions inside the grapes multi-packages during cold 

storage for quality measurements 

Packaging treatment 

Mean air temp 

inside boxes (0C) 

Mean RH 

(%) 

VPD 

(Pa) 

Open-top multi-

package combination 0.48±0.32 85.31±2.45 92.97 

Clamshell multi-

package combination 0.50±0.30 84.11±1.04 100.71 

4.5 kg carry-bag multi-

package combination 0.46±0.34 93.52±0.23 40.95 
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Figure 1:  Table grape multi-packages combinations, (a) 5 kg punnet multi-packages and (b) 

4.5 kg multi-package combination  
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Figure 2: Table grape box dimensions, (a) 4.5 kg grape box and; (b) 5 kg grape punnet box  
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Figure 3: Experimental setup of a forced air cooler for measuring cooling rates of grapes 

inside stacked carton boxes of multi-scale grape packages.  
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Figure 4: Top view of grape boxes stacking pattern and temperature sensor positions (    )  in 

each layer of fruit pallet, (a) 5 kg grape punnet boxes and (b) 4.5 kg grape boxes 
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Figure 5: Pressure drop as a function of approach air velocity for the empty carton boxes. 

 

Figure 6: Pressure drop as a function of approach air velocity for the grapes in package 

combinations with no liner films. CB is the bunch carry-bag and OT is the open-top punnets 
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Figure 7: Total pressure drop as a function of approach air velocity for the different grape 

multi-packages. 
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Figure 8:  Measured fruit temperatures at the centre box in the middle layer of stacked boxes 

on a pallet of grapes, the pallet was orientated with its 1 metre side in the direction of airflow 

and 1.2 metre perpendicular to airflow direction. 
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Figure 9: Measured fruit temperatures at the centre box in the middle layer of stacked boxes 

on a pallet of grapes. The pallet was orientated with its 1.2 metre side in the direction of 

airflow and 1 metre perpendicular to airflow direction. 

 

Figure 10: Changes in mass of grape bunches ( M , g) over time in cold storage. The values 

were normalised with respect to the initial mass of grapes ( iM , g). 
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Figure 11: Percentage comparison of changes in grape stem dehydration during cold storage 

packed in different multi-package combinations. Scoring is such that (1) = fresh stems; (2) = 

some drying of thinner stems; (3) = all thinner stems dry; (4) = all thinner and some thicker 

stems dry and all stems dry = 5 

 

Figure 12: Percentage comparison of changes in grape stem browning during cold storage 

packed in different multi-package combinations. Scoring is such that (1) = fresh and green, 

(2) = some light browning, (3) = significant browning and (4) = severe browning. 
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PAPER 4 

 

Moisture loss characteristics of fresh table grapes packed in different film 
liners during cold storage 

 

Abstract 

 

Moisture loss characteristics of grapes packed in different packaging liner films during cold 

storages (1.21±0.25 °C) were studied. The moisture loss rate from grapes packed in non-

perforated liner films was significantly (P<0.05) lower compared to the moisture loss rate 

from grapes packed in perforated liner films (120 x 2 mm and 36 x 4 mm perforated liner 

films). After 72 days of cold storage, the maximum moisture loss of grape stems was 

significantly (P<0.05) higher (range from 49.24 ± 4.66 % for non-perforated liner films to 

88.55 ± 0.61 for no packaging treatment) than moisture loss of grapes berries which was less 

than 10%. Transpiration coefficients of the different stem parts and grape berries, stored in a 

no packaging treatment decreased significantly (P<0.05) with storage period. The 36x4mm 

perforated liner film resulted in a significant (P<0.05) decrease of transpiration coefficients of 

the intermediate stem, large stem parts and berries. There were no significant differences 

between the transpiration coefficients of the bunch parts stored in the 120 x 2 mm and non-

perforated liner films. The transpiration rates of stem parts were lowest in the non-perforated 

liner film compared to other packaging treatments, while the transpiration rates of grape 

berries showed no differences between the different packaging treatments (0.79 ± 0.51 g kg-1 

d-1, for the non-perforated liner film and 1.57 ± 0.58; 1.59 ± 0.75; 1.37 ± 1.00 g kg-1 d-1, for 

the no packaging; 120 x 2mm and 36 x 4mm perforated liner films, respectively) 

 

Keywords: Table grape; packaging; packaging liner; moisture loss; transpiration coefficient; 

vapour pressure.  
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Nomenclature  

Transpiration rate per weight of product, g kg-1 d-1 

Transpiration coefficient of commodity on weight basis, g kg-1 d-1 Pa-1 

Water vapour pressure at evaporating surface, Pa 

Ambient vapour pressure, Pa 

Saturated vapour pressure, Pa 

Vapour pressure deficit, Pa 

 

 

1. Introduction 

 

Table grapes are non-climacteric fruit with a low rate of biochemical activity after harvest, 

but they are subject to serious water losses during postharvest handling and storage (Crisosto 

et al., 2001). There are at least three symptoms of water loss from grapes: (i) first to appear 

are shriveled stems (also known as dry stems), which usually become brittle and break easily; 

(ii) browning of stems which occurs as stem dehydration becomes more severe; and (iii) 

berry softening, which is followed by wrinkle like formation that starts to appear radiating 

out from the pedicel (Nelson, 1978). 

 

Dry and brittle stems often give rise to the detachment of berries from stems (often referred to 

as berry shatter or loose berries). Both the dry and brown stems detract seriously from the 

appearance of the grapes (Nelson 1978). Grape berries do not show symptoms of water loss 

until the damage is quite evident on the stems. At about 4-5% weight loss, berries feel soft 

and above 5% loss in weight the wrinkles start to appear (Nelson, 1978). 

 

The moisture loss process in fresh produce involves diffusion of moisture from cells into the 

intercellular spaces until a level of saturation is reached in these intercellular spaces. Then the 

moisture diffuses from the intercellular spaces to the atmosphere through lenticels, stomates, 

scars, injured areas, or directly through the cuticle (Thompson et al., 1998; Veraverbeke et 

al., 2003).  
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The rate of loss of moisture from fresh fruit is largely dependent on the humidity and 

temperature of the surrounding air, as well as on the heat and mass transfer properties of the 

fruit such as thermal conductivity, thermal and moisture diffusivity, interface heat and mass 

transfer coefficients (Margaris and Ghiaus, 2007; Thompson et al., 1998). The rate of 

moisture loss is also influenced by the product surface area to volume ratio (Thompson et al., 

1998). Produce with high surface area to volume ratios such as leafy vegetables lose moisture 

more rapidly than fruit, which has a lower ratio (Thompson et al., 1998). 

  

Table grapes are mainly packed in multiple-scale packages and are cooled and stored at 

temperatures of -0.5°C to prolong fruit quality after harvest (Ngcobo et al., 2012). However, 

despite good temperature control during postharvest storage, table grapes continue to lose 

weight mainly due to the micro-climatic conditions that were created within the enclosed fruit 

packages. Ngcobo et al. (2012) reported that there were significant differences in weight loss 

of table grapes packed in different multi-packages, where the perforated liner films resulted 

in a higher weight loss than the non-perforated liner films during the cold storage period.  

 

Intact table grape bunches have a very complex structure, comprising of branched stems 

(rachis) and grape berries. The stems act as ‘fruit handles’ for the consumers when they eat 

the fruit. The total weight loss model should, therefore, accommodate the different structures 

that make up the grape bunch. It is probable that the moisture loss characteristics of the whole 

table grape bunch could be different from the berries as well as the stalks. It is also obvious 

that for packed grapes the package components affect the rate of moisture loss. No work has 

been reported on the moisture loss characteristic of whole fresh table grape bunches in multi-

scale packages during postharvest storage and handling. 

 

The main objective of this work was to study the moisture loss characteristics of table grapes 

packed in different liner films during postharvest storage and handling.  

 

2. Theory of transpiration  

 

Estimation of the heat and mass transfer that occurs during postharvest refrigerated storage of 

fruit and vegetable products requires knowledge of various thermophysical properties of the 

commodities. Mass transfer calculations require the determination of the transpiration rate 
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which depends upon the air film mass transfer coefficient, the skin mass transfer coefficient 

and the vapour pressure lowering effect of the commodity (Becker et al., 1995).  

 

Transpiration is the process exhibited by fresh fruits and vegetables that involve the transport 

of moisture through the skin of the commodity, the evaporation of this moisture from the 

commodity surface and the convective mass transport of the moisture to the surroundings 

(Becker et al., 1995). The factors affecting transpiration rates of freshly harvested fruits and 

vegetables are: water vapour pressure difference, air velocity, heat of respiration, size, shape, 

and surface area of the commodity, skin structure, maturity, endothermic effect of 

evaporation; solutes in the commodity and packaging (Sastry & Buffington, 1983; Sastry 

1985). The driving force for transpiration is the vapour pressure difference between the fruit 

and its surrounding. Linear (Sastry & Buffington, 1983; Sastry, 1985; Nguyen et al., 2007; 

Delele et al., 2009), and nonlinear models (Sastry, 1983) have been developed over the years 

to predict transpiration rate. Linear models are expressed as per Eq. (1) below:  

 

( )ta sM k p p∞= −            (1) 

 

Where M is transpiration rate of the commodity per weight of the product (g kg-1 d-1); tak  is 

transpiration coefficient of the commodity on a weight basis (g kg-1 d-1 Pa-1); sp  is the water 

vapour pressure at the evaporating surface (Pa) and p∞  is ambient water vapour pressure 

(Pa). The transpiration coefficient of the commodity can be calculated by solving Eq. (1) 

above. 

 

Linear models are the simplest and are applied primarily to storage situations, where steady 

state conditions prevail and the commodity is assumed to be in thermal equilibrium with the 

environment (Sastry & Buffington, 1983). The key assumption of this type of model is that 

the evaporating surface is at the same temperature as the environment, and the surface water 

vapour can be calculated accordingly.  

 

Nonlinear modelling considers air velocity and skin structure in addition to vapour pressure 

difference (Sastry & Buffington, 1983). It was not considered in this work. 

Stellenbosch University  http://scholar.sun.ac.za



143 

3. Materials and Methods 

 

3.1. Plant material 

 

The grapes were harvested, prepared and packed from a farm in the Worcester area of Cape 

Town, South Africa and were transported in an air-conditioned car to the Postharvest 

Technology Research Laboratory at Stellenbosch University.  During preparation at the pack 

house, the grape bunches were ensured to contain uniform sized (diameter 21.04 ± 0.29 mm) 

berries.  In the laboratory the grape bunches were considered as the composition of 3 kinds of 

cylinders (Garcia-Perez et al., 2006), 1 sphere and 1 ellipse structure. The 3 cylinders make 

up the stem part; the small sphere (stem: berry cap) is the cap like structure binding the stem 

and berries; and the berries were considered to be ellipse structures (Fig 1). The average 

diameter of each of the individual parts was measured: small spheres (2.55 ± 0.27 mm); small 

cylinders (1.53 ± 0.19 mm); intermediate cylinders (2.85 ± 0.70 mm); large cylinders (4.88 ± 

1.03 mm) and berries (ellipse shaped) were minor diameter A: 21.04 ± 0.29 mm and major 

diameter B: 29.94 ± 2.49 mm (berry length). 

 

3.2. Experimental procedure 

 

An initial mass of small spheres; small cylinders; intermediate cylinders; large cylinders and 

berries (5.00 ± 0.00 g; 5.00 ± 0.00 g; 10.03 ± 0.02 g; 20.33 ± 0.37 g and 124.92 ± 4.41 g 

respectively), was prepared and replicated three times per packaging treatment (i.e. there 

were three of each packaging types containing similar grape bunch material inside the cold 

room). The packaging treatments included: no packaging (samples placed on open plastic 

trays); non-perforated liner film (LDPE); 36 x 4 mm perforated liner film (HDPE) and 120 x 

2 mm perforated liner film (HDPE). All the samples were weighed using a scale (Mettler, 

Toledo, Switzerland, with an accuracy of 0.01 g) to get the initial mass and then stored at 

1.21 ± 0.25 °C and 89.06 ± 2.63 % RH (Table 1) in an experimental cold room in the 

Postharvest Technology Research Laboratory. The weight of each sample was measured 

daily for the first 14 days, in order to capture detail moisture loss data from stem samples as 

they tend to dry out quickly and there after every seven days for the remainder of 80 days as 

moisture loss from grapes berries proved to be a relatively slow process. Due to the usual 

formation of condensation on the inside surface of packaging liners, the individual samples 
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were briefly removed from the liner films during measurement to avoid over estimation of 

weight due to water droplets.  

Air temperature and relative humidity were measured inside the storage room and inside the 

liner films containing grapes (Table 1). Air temperature was measured with a LogTag air 

temperature recorder (LogTag Trix-8 Temperature Recorder, LogTag Recorder Limited, 

Auckland, New Zealand) and the air relative humidity (%RH) was measured with a 

SENSITECH TempTale 4 monitor (Temptale4 Humidity and Ambient Temperature 16000, 

SensiTech, Beverly, MA, USA). 

 

3.3. Determination of vapour pressure deficit ( )Vpd  

 

The vapour pressure deficit (Vpd = ps - p∞) (Eq. 1) was calculated from measured dry bulb 

temperature and relative humidity data. The corresponding vapour pressure (p∞) of the 

surrounding air in the cold room and inside the liner films was determined by using 

apsychrometric chart.  The determination of vapour pressure over the product surface (ps) 

took into account vapour pressure lowering effect of the solutes:  

 

s satp VPLp=   (2) 

 

Where satp  is the saturated vapour pressure (Pa) at the produce surface temperature and VPL  

is the vapour pressure lowering effect of the produce. In the case of grapes, Becker et al. 

(1995) reported a value of 0.98, which was used in this study.  

 

4. Results and Discussion 

 

4.1. Moisture loss characteristics of fresh grape bunches 

 

Figures 2a-d, show a comparison of moisture loss characteristics of the different parts of 

grape bunches in different packages during storage. The results indicated that moisture loss 

rate from the grapes stems (rachis) was significantly (P<0.005) higher (range from 49.24 ± 
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4.66 % for non-perforated liner films to 88.55 ± 0.61 % for no packaging treatment) than 

moisture loss from the grape berries (range between 3.62 ±0.21 % non-perforated liners to 

8.68 ± 0.03 % for no packaging treatment) after 72 days of storage. This was true for all the 

package treatments. The reason for these results may be due largely to difference in skin 

tissue composition of berry skin and stem epidermal cells, where the berry skin’s outer layer 

(cuticle) is covered by hydrophobic epicuticular waxes, and the lamellar zone underneath is 

made of cutin (Lecas and Brillouet, 1994). Significant (P<0.005) differences in moisture loss 

were also observed between the smallest (small stem cylinders and berry: stem attachment 

spheres) and the largest parts of the stems (large stem cylinders), where the smallest parts lost 

moisture at a faster rate than large stems. This could be attributed to the difference in surface 

areas of these stem parts, where the small-size parts with high surface area to volume ratios 

lose moisture rapidly compared to parts with small surface area to volume ratios (larger size 

stem parts).    

     

4.2. Influence of packaging on moisture loss 

 

Moisture loss from grape bunches in different packaging treatments during cold storage is 

shown in Fig. 3. The results showed that the rate of weight loss of bunches packed in non-

perforated liner film was significantly (P<0.05) lower than that of bunches in perforated liner 

films and no packaging treatments. The maximum percentage moisture loss of bunches in 

non-perforated was 0.41 ±0.23 %; while bunches in 36 x 4 mm; 120 x 2 mm perforated liner 

films and no packaging treatment lost weight up to a maximum of 5.16 ± 2.31 %; 6.35 ± 0.47 

% and 7.31 ± 0.70 %, respectively during the storage period (Fig. 4a). This means that the 

whole bunch moisture loss was less than 10% during the 75 days of cold storage. These 

results agree with results obtained by Ngcobo et al. (2012), where they showed that the 

weight loss of grapes packed in perforated liners was significantly higher than that of grapes 

packed in non-perforated liner films.  

 

Figures 4b-g, show percentage moisture loss of individual parts of the stems and berries in 

different packages during cold storage. There was a similar trend in moisture loss from stem 

parts (i.e. berry: stem attachment spheres; small cylinders; intermediate cylinders and large 

cylinders) where the no package treatment resulted in significantly (P<0.05) higher rate and 
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percentage weight loss (86.87 ± 0.27 %; 87.84 ± 0.35 %; 89.95 ± 0.29 %; 89.11 ±0.70 % 

respectively), than the non-perforated liner film (50.71 ± 5.09 %; 49.82 ± 9.90%; 52.16 ± 

10.74 % and 29.37 ± 5.31 %, respectively). The 36 x 4 mm and 120 x 2 mm perforated liner 

films resulted in intermediate values of weight loss (Fig 4b-e). The percentage moisture loss 

of whole stems and of grape berries packed in non-perforated liners was significantly lower 

(49.24 ± 4.67 % and 3.62 ± 0.21 % respectively) than that of the same material in other 

packaging treatments (with moisture loss in the no packaging treatment being 88.55 ± 0.61 % 

for whole stems and 8.68 ± 0.03 % for berries), while no significant differences were 

observed between no packaging, 36 x 4 mm and 120 x 2 mm perforated liner films (Figs. 4f 

and g). Figure 5 shows the visual appearance of whole grape stems after 80 days in cold 

storage and the appearance was in agreement with result presented in Fig. 4f.   

 

4.3. Transpiration rates of grape bunches 

 

Table 2 shows the mean transpiration rates of the different parts of the grape bunch packed in 

different liner films during cold storage. The mean transpiration rates were determined for 

each part from the experimental data on moisture loss and surface area (Eq.1). The results 

indicate that the non-perforated liner film resulted in the lowest transpiration rates for all the 

different parts of the bunch compared to the other packaging treatments. This may have been 

due to the lowest Vpd (52.99 Pa) in the non-perforated liner film compare to Vpd of no 

packaging; 120 x 2 mm perforated and 36 x 4 mm perforated liner films which were 72.96; 

72.13 and 77.19 Pa, respectively. There were however, some arbitrary high variation (higher 

±SD) which were observed in mean transpiration rates of from parts of the bunch that were 

stored in non-perforated liner film, and this could perhaps be attributed to pockets of 

condensation water droplets that tend to form on the inside surface of the liner film and the 

lack of air circulation inside non-perforated liner films. The transpiration rates of the different 

stem parts stored in no packaging treatment (i.e. direct exposure to air circulation) were the 

highest of the lot, and this may have been due to the convective effect of the circulating air 

inside the cold room, experienced by stem parts in a no packaging treatment. It is important 

to note that although the transpiration rate of grape berries was lowest when packed in non-

perforated liner film (0.79 ±0.51 ≈ 1 g kg-1 d-1), the rates were not significantly different 

between the different packaging treatments (berry transpiration rate was about 1.57 ± 0.58 g 

kg-1 d-1 for the no packaging; 1.59 ±0.75 g kg-1 d-1  for the 120 x 2 mm perforated liner film 
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and 1.37 ± 1.00 g kg-1 d-1 for the 36 x 4 mm perforated liner film) (Table 2). This shows that 

grape berries in storage are least affected by the influence of the Vpd of the different 

packaging treatments and by the convective effect of the cold air circulating in the cold room 

and this may be due to the lignification of the berry skins (Lecas and Brillouet, 1994). These 

results corresponded well with the percentage weight loss presented in Figs. 4 a – g. 

 

4.4. Transpiration coefficient ( )tak  

 

In literature (Sastry, 1985; Fockens and Meffert, 1972) there is discussion whether the 

transpiration coefficients of the same horticultural commodity are constant or vary with Vpd. 

In the current work, the transpiration coefficients were calculated at intervals of 3; 9 and 57 d 

of cold storage at a constant temperature and high relative humidity (Table 1), in order to 

investigate whether these coefficients vary or remain constant with packaging treatment 

(Vpd) and storage time. The results of transpiration coefficients are presented in Table 3. The 

results indicate that there was a decrease in transpiration coefficient with storage period in all 

the packaging treatments. However, the decrease in transpiration coefficients of all stem parts 

with storage time was only significant (P<0.05) for the no packaging treatment (i.e. direct 

exposure to circulating cold air), and the 36x4 mm perforation liner film treatment resulted in 

a significant (P<0.05) decrease of transpiration coefficients between the initial (after 3 d) and 

final (after 57 d) storage times for the intermediate and large stem parts only (Table 3). The 

no packaging treatment (i.e. direct exposure to cold air) and 36 x 4 mm perforation liner film 

also resulted in a significantly high (P<0.05) transpiration coefficients of grape berries over 

the storage period. There were no significant differences in transpiration coefficients over 

storage period of stem parts and berries stored inside 120x2 mm and non-perforation liner 

films. The decline in transpiration coefficients with cold storage time may be ascribed to the 

phenomenon described by Fockens and Meffert, (1972). Fockens and Meffert (1972) found 

that when the relative humidity of the air around the fruit is high, the skin cells of the fruit 

remain turgid (swollen) causing the intercellular spaces to be larger and resulting in low 

diffusion resistance; and when the relative humidity of the air is low, skin cells are flattened 

causing the intercellular spaces to become smaller and thus increasing the diffusion 

resistance. Applying this explanation to the results obtained in this study, the high 

transpiration coefficient of grape parts in the initial stages of storage observed in the no 

Stellenbosch University  http://scholar.sun.ac.za



148 

packaging and 36x4 mm perforated liner film treatments may have been due to high initial 

diffusion rate from the cells to the surrounding air as a result of the convective effect of the 

circulating air in the cold room and vapour pressure differences. As these cells lost moisture 

to the surrounding air, they became flatter thereby increasing their diffusion resistance as the 

storage period progresses. Another possibility for the high transpiration coefficient of grape 

berries could be that, instead of a decreasing permeability, the permeability remained 

constant while the vapour pressure of the berry surface decreases because of the dehydration 

and corresponding increase in soluble solids.  

The results (Table 3) also showed that the transpiration coefficients of the bunch parts stored 

in a non-perforated liner film treatment were lowest in comparison to the other treatments 

indicating that this treatment may be a good moisture barrier. 

 

Conclusion 

 

The moisture loss of the fresh grape bunches studied suggests that the stem part of the bunch 

loses moisture more rapidly compared to the berries. After 75 d of cold storage the maximum 

weight loss of berries was less than 10 %, while the maximum weight loss of stems was in 

the range of 49.24 ± 4.66 % (non-perforated liner films) to 88.55 ± 0.61 (with no packaging 

treatment). The smaller the size of the stem (i.e. the higher the surface area to volume ratio), 

the greater the rate of moisture loss became.  

 

The use of non-perforated liner films significantly reduced the rate of moisture loss from the 

grape bunches and its parts compared to the perforated liner films and no packaging 

treatments during cold storage. This corresponded to the transpiration rate results, where the 

transpiration rates were lower in non-perforated liners than the other packaging treatments 

and this may have been due to the lower Vpd and no air circulation inside the non-perforated 

liner film. 
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The transpiration coefficients of the different stem parts and the berries stored in a no 

packaging treatment decreased significantly with storage period, while the 36 x 4 mm 

perforation resulted in significant decrease in transpiration coefficients over the storage 

period for the intermediate, large stem parts and berries. There were no significant decreases 

of transpiration coefficients for the parts stored in 120 x 2 mm and non-perforated liner films.  
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Table 1: Mean (± SD) temperature and RH profiles inside the cold room and packaging liner 

films 

 Packaging Mean Temperatures (°C) Mean Air RH (%) 

No packaging 1.21 ± 0.25 89.06 ± 2.63 

Non perforated liner film  1.79 ± 0.26 92.38 ± 4.81 

120 x 2 mm perforated liner film 1.38 ± 0.28 89.32 ± 4.35 

36 x4 mm perforated liner film 1.34 ± 0.24 88.54 ± 3.55 

 

Table 2: Mean transpiration rate of grape bunch parts during postharvest storage in different 

packaging liner films 

Packaging 

Vapour 

pressure 

deficit (Pa) 

Mean (±SD)  transpiration rate of the different parts of the grape bunch, g kg-1 d-1     

Berries: stem 

attachment 

sphere 

Small cylinders 
Intermediate 

cylinders 
Large cylinders Berries 

No 

packaging 72.957 89.08 ± 89.08 76.09 ± 93.65 87.70 ± 83.85 25.95 ± 26.88 1.57 ± 0.58 

Non 

perforated 

liner film  52.994 35.37 ± 20.36 33.96 ± 15.57 12.76 ± 11.46 7.03 ± 5.70 0.79 ± 0.51 

120x2 mm 

perforated 

liner film 72.129 65.78 ± 35.89 61.19 ± 28.28 21.79 ± 17.10 19.94 ± 1 4.43 1.59 ± 0.75 

36x4mm 

perforated 

liner film 77.194 56.16 ± 24.49 52.57 ± 23.76 23.79 ± 18.84 13.19 ± 9 .66 1.37 ± 1.00 
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Table 3: Overall mean (±SD) transpiration coefficient ( )tak of the grape bunch parts during postharvest storage in different packaging liner films 

Packaging treatment Days in 

storage 
tak , (g kg-1 d-1 Pa-1) 

Berries: stem 

attachment sphere 

Small 

cylinders 

Intermediate 

cylinders 

Large cylinders Berries 

No packaging 

      

 

3 2.42 ± 1.94 2.32 ± 1.13 1.37 ± 0.34 0.90 ± 0.37 0.03 ± 0.01 

 

9 0.02 ± 0.02 0.16 ± 0.13 0.52 ± 0.18 0.35 ± 0.12 0.02 ± 0.01 

 

57 

  

0.06 ± 0.07 0.08 ± 0.08 0.02 ± 0.00 

Non-perforated liner film 

      

 

3 0.98 ± 0.47 0.84 ± 0.33 0.45 ± 0.32 0.24 ± 0.14 0.02 ± 0.01 

 

9 0.51 ± 0.24 0.51 ± 0.19 0.26 ± 0.17 0.16 ± 0.08 0.02 ± 0.01 

 

57 

  

0.11 ± 0.03 0.05 ± 0.02 0.01 ± 0.00 

120x2 mm perforation liner film 

      

 

3 1.38 ± 0.36 1.04 ± 0.44 0.46 ± 0.22 0.36 ± 0.25 0.02 ± 0.01 

 

9 0.60 ± 0.27 0.72 ± 0.33 0.38 ± 0.28 0.39 ± 0.18 0.02 ± 0.01 

 

57 

  

0.14 ± 0.09 0.13 ± 0.06 0.02 ± 0.00 

36x4 mm perforated liner film 

      

 

3 0.85 ± 0.33 0.86 ± 0.24 0.51 ± 0.19 0.32 ± 0.10 0.03 ± 0.01 

 

9 0.64 ± 0.31 0.56 ± 0.31 0.39 ± 0.27 0.22 ± 0.13 0.02 ± 0.02 

  57     0.12 ± 0.08 0.14 ± 0.02 0.01 ± 0.00 
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Figure 1: Parts of the bunch considered to study the mass transfer kinetics of grapes during 

postharvest storage.  

 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



155 

 

 

 

 

a 

b 

Stellenbosch University  http://scholar.sun.ac.za



156 

 

 

Figure 2: Moisture loss kinetics of grape bunches packed in different packaging treatments 

during the cold storage period. (a)  no packaging; (b) non-perforated liner film; (c) 36x4 mm 

perforated liner film; (d) 120x2 mm perforated liner film. Error bars represent the standard 

deviation of the mean. 
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Figure 3: Changes in the mass of grape bunches ( M , g) over time in cold storage. The values 

were normalised with respect to the initial mass of grapes ( iM , g). Error bars represent the standard 

deviation of the mean. 
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Figure 4: Percentage moisture loss from different parts of grape bunches in different 

packaging treatments during cold storage period (a) whole stem; (b) berry: stem attachment 

spheres; (c) small cylinders of the stems; (d) intermediate cylinders of the stems; (e) large 

cylinders of the stems; (f) whole stems; (g) grape berries. Error bars represent the standard 

deviation of the mean 
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Figure 5: Appearance of stems taken from the different packaging treatments after 80 days in 

cold storage.  
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PAPER 5
 

Moisture diffusivity of table grape stems during low temperature storage 

conditions

 

Abstract 

 

Moisture diffusivity of grapes stems was studied under cold airflow storage conditions (1.21 

± 0.25 °C and 1.18 ± 0.23 ms-1) during postharvest storage. The stems were stored without 

packaging liner films or with packaging liners (packed in non-perforated liner films) under 

low temperature conditions inside a cold room. Effective moisture diffusivity values for stem 

parts packed in non-perforated liner films were lower than the values obtained for stem parts 

stored without packaging liners, and varied from 5.06x10-14 – 1.05x10-13 m2s-1. Dehydration 

rate of stem parts directly exposed (without liners) to circulating cold air was significantly 

(P<0.05) higher than the dehydration rates of stem parts packed in non-perforated liner film. 

Empirical models were applied to describe the dehydration kinetics of the different parts of 

the stem. 

 

Keywords: Grape stems; cold storage; non perforated liner film; dehydration; effective 

diffusivity; vapour pressure.  

 

 

Nomenclature 

 

0 ,a a    a coefficient of drying models 

Deff   effective moisture diffusivity, m2s-1 

DR   drying rate, kg water/kg dry matter h-1 

se    standard error 

k   drying coefficient 

M   moisture content, kg water/kg dry matter 
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0M    initial moisture content, kg water/kg dry matter 

eM  equilibrium moisture content, kg water/kg dry 

MR  dimensionless moisture ratio 

N   number of observations 

n  exponential coefficient of Page's Eq. 

R   radius of cylinder, m 
2r    coefficient of determination 

t    time, s 

λ   roots of Bessel function 
2χ   mean square of the deviation 

  

 

1. Introduction 

 

The stems of a grape bunch play a pivotal role in the overall appearance of a bunch, while 

acting as a handle for the consumer when they eat the fruit. However, during cooling and cold 

storage of fresh grapes, there is a simultaneous dehydration of stems, thus negatively 

affecting the postharvest quality of grapes (Ngcobo et al., 2012a, b). The water content in 

plants varies according to species, tissue and cell type and is also dependent on ambient and 

physiological conditions (Merva, 1995). The process of stem dehydration involves shriveling 

of the stem, which usually becomes brittle and break easily and this is followed by severe 

stages of dehydration where the stems start turning brown (Nelson, 1978). The dehydration of 

stems during long-term cold storage is an undesirable quality problem. However, there is a 

lack of information on the dehydration kinetics of fresh grape stems during prolonged storage 

periods and handling at low temperatures. The knowledge of the stem dehydration kinetics 

and its prediction models may assist in better managing postharvest quality of table grapes in 

the value chain. 

 

Dehydration is characterised by complex moisture movements within the products and is 

largely dependent on surrounding conditions, as well as on heat and mass transfer properties 

of the product such as thermal conductivity, thermal and moisture diffusivity, interface heat 

and mass transfer coefficients (Margaris and Ghiaus; 2007; Thompson et al., 1998; 

Veraverbeke et al., 2003). Effective moisture diffusivity describes all possible mechanisms of 
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moisture movement within the foods, such as liquid diffusion, vapour diffusion, surface 

diffusion, capillary flow and hydrodynamic flow (Pathare and Sharma, 2006, Kim & 

Blowmilk, 1995). A knowledge of effective moisture diffusivity is necessary for 

understanding and modelling mass transfer processes such as dehydration, adsorption and 

desorption of moisture during storage (Pathare and Sharma, 2006). Moisture transport in fruit 

has been modelled by means of Fick’s second law of diffusion. Three mechanisms are often 

considered most dominant in foods in general: convection (Darcy flow), molecular diffusion 

and capillary diffusion (Datta & Zhang, 1999). The continuum approach to mass transfer is 

the simplest means to describe moisture diffusion in fruit tissue because it avoids the 

necessity of modelling the microscopic pore space. It constitutes a phenomenological 

approach as the mass transfer coefficients that appear in the macroscopic balances have to be 

determined experimentally. The macro-scale addresses the fruit as a whole and at this scale 

the fruit is considered as a continuum, and may consist of different connected tissues, all with 

homogeneous properties (Ho et al., 2006). 

 

The stems of grapes are complex structures and therefore the dehydration kinetics of stems in 

cold storage should accommodate the different structures that make up the grape stem. No 

work has been reported on moisture diffusivity and dehydration of whole table grape stems in 

multi-scale packages during low temperature storage of table grapes. Several studies have 

reported on drying of grape berries (Azzouz et al., 2002; Cağlar et al., 2009; Cakmak and 

Yildiz, 2011; Doymaz, 2006; Fadhel et al., 2005; Margaris and Ghiaus, 2007; Ramos et al., 

2010; Xiao et al., 2010) and stems (Garcia-Perez et al., 2006, Garcia-Perez et al., 2010). 

However, these studies were conducted under high temperature conditions. In literature, 

Lichter et al., (2011) studied the effects of water vapour pressure deficit under ambient 

conditions of 20°C or 10°C on the physical and visual properties of grape stems due to water 

loss. Given that table grapes suffer moisture loss and dehydration of stems during low 

temperature storage, even low (1 %) moisture loss manifests in significant quality losses of 

grapes (Nelson, 1978; Ngcobo et al., 2012a). 

  

The objective of this study was therefore to investigate moisture diffusivity and dehydration 

characteristics of table grape stems during low temperature storage conditions. In addition, 

empirical models were applied to describe dehydration kinetics of the different parts of the 

stem. 
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2. Theory: Effective moisture diffusivity and dehydration 

 

Fick’s second law of diffusion was used to describe the transport of moisture from the stems 

(Crank, 1975). The moisture diffusivity is used to indicate the flow of moisture within a 

material. Moisture diffusivity is influenced mainly by moisture content and temperature of 

the material (Pathare and Sharma, 2006). To study the moisture diffusivity of stems, the 

complex structure was divided into 3 kinds of cylinders with different sizes and one sphere 

(berry and stem binding part), as per Garcia-Perez et al. (2006).  The moisture diffusivity of 

an infinite sphere and cylinder were therefore calculated by the following equations 1 and 2 

respectively (Crank; 1975) and taking the following assumptions into consideration (Garcia-

Perez et al., 2006).  

 

(i) The initial moisture and temperature are uniform inside the solid; 

(ii) The surface is at equilibrium with the drying air;  

(iii) Shrinkage is negligible  

(iv)  Solid symmetry 

(v) There is only one material 

 
2
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∞

=

 −
= = −  −  

∑   (2) 

 

Where effD is the effective moisture diffusivity in m2s-1; R is the radius of a cylinder and 

sphere in m. nλ  in (Eq. 2) are the roots of Bessel function (2.405, 5.520, 8.654,…) of zero 

order ( )0 0J r = . For 1n > , the second order and subsequent terms of the above equation 

become negligible (Sharma and Prasad, 2004). Thus, 1λ  is equal to 2.405 for Eq. (2). 

The average moisture content for thin layer drying is presented by the following equation (3), 

(Jain and Pathare, 2007; Doymaz 2011):  
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0

t e
R

e

M MM
M M

−
=

−   (3) 

where eM  is the dynamic equilibrium moisture content in kg [H2O]kg-1[DM]; 0M is the 

initial moisture content in kg[H2O]kg-1 [DM]; tM is the initial moisture content in kg 

[H2O]kg-1[DM] at time t  in s and RM is the dimensionless moisture ratio.
 

The equilibrium moisture content was determined using an indirect method described by Jain 

and Pathare (2004), where the rate of change of moisture content ( )dM
dt

− was plotted 

against the average moisture content. The equilibrium moisture content was inferred from the 

intercept by extrapolating the plot to the point at which the rate of change of moisture content 

was zero. 

Equations (1) and (2) can be further simplified to only the first term of the series, for long 

periods of dehydration. Eqs. (1) and (2) are written in a logarithmic form as follows: 

2

2 2

6ln ln eff
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D t
M

R
π

π
  = −        
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2

2 2
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D t
M

R
λ

λ
  

= −        
  (5) 

The effective moisture diffusivity was calculated from a slope of a straight line by plotting 

data in terms of ln RM  versus drying time, which gives a straight line with a slope in which 

(Doymaz, 2006; 2011): 

Sphere: 

2

1 2
effD

Slope
R

π
=   (6) 

Cylinder: 

2
1

2 2
effD

Slope
R

λ
=   (7) 

 

The moisture removal rate from grapes was expressed as the amount of evaporated moisture 

over time and was calculated using Eq. (8) 

Stellenbosch University  http://scholar.sun.ac.za



167 

1 2

2 1

t tM MDR
t t
−

=
−

  (8) 

Where 1t  and 2t are drying times (h); 1tM and  2tM  are moisture content of samples (kg 

water/kg dry matter) at time 1t  and 2t respectively (Doymaz; 2011). The moisture ratio data 

obtained were fitted to four thin-layer drying models detailed in Table 1. The best fitting 

model is determines by the coefficient of determination (R2) and low standard error ( )se is 

one of the primary criteria for selecting the best model to define the drying curves. 

 

3. Materials and Methods 

 

3.1. Plant material 

 

The grapes were harvested, prepared and packed from a farm in the Worcester area of Cape 

Town, South Africa and were transported in an air-conditioned car to the Postharvest 

Technology Research Laboratory at Stellenbosch University. In the laboratory the stems were 

considered as the composition of 3 kinds of cylinders (Garcia-Perez et al., 2006) and one 

sphere (Fig. 1). The 3 cylinders make up the stem part and the sphere is the cap-like structure 

binding the stem and berries. The average diameter of each of the individual parts was 

measured: spheres (2.55 ± 0.27 mm); small cylinders (1.53 ± 0.20 mm); intermediate 

cylinders (2.85 ± 0.70 mm); and large cylinders (4.88 ± 1.03 mm). 

 

3.2. Experimental procedure 

 

Figure 2 shows a schematic representation of the experimental setup. An initial mass of 

spheres, small cylinders, intermediate cylinders and large cylinders (5 ± 0.00 g; 5 ± 0.00 g; 

10.03 ± 0.02 g and 20.33 ± 0.37 g, respectively) was prepared and replicated three times per 

packaging treatment. The packaging treatments included: no packaging (samples stored 

without liner films and exposed to low temperature airflow conditions) and non-perforated 

(LDPE) liner film (0 airflow treatments). All the samples were weighed using a scale 

(Mettler, Toledo, Switzerland, with an accuracy of 0.01 g) to get the initial mass and then 

stored under low temperature conditions of 1.21 ± 0.25°C and 1.18 ± 0.23 ms-1 (airflow) in an 
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experimental cold room in the Postharvest Technology Research Laboratory. The weight of 

each sample was measured daily for the first 14 days (due to rapid dehydration of smaller size 

stem parts) and thereafter every seven days (due to a slow dehydration process of larger parts 

of the stems) for the remainder of storage period, in order to monitor weight loss rate during 

cold air storage. At the end of the storage period all the samples were dried at 75°C for 4 days 

in order to obtain the dry weight of individual parts for the calculation of the actual moisture 

content. 

 

To calculate the moisture content of a sample, the dry weight was subtracted from the initial 

wet weight of each sample.  The dimensionless moisture ratio was calculated as per equation 

(3) from the determined initial moisture content and average moisture content. Moisture 

removal (dehydration) rate was calculated as the difference in average moisture content 

between time intervals divided by the time difference between two measuring points. 

 

Air temperature and relative humidity were measured inside the storage room and inside the 

liner film containing stems. Air temperature was measured with a LogTag air temperature 

recorder (LogTag Trix-8 Temperature Recorder, LogTag Recorder Limited, China) and the 

air relative humidity (%RH) was measured with a SENSITECH TempTale 4 monitor 

(Temptale4 Humidity and Ambient Temperature 16000, SensiTech, USA). 

 

4. Results and Discussion 

 

4.1.  Effective moisture diffusivity 

 

The results of effective diffusivity ( )effD of stem parts under the different storage conditions 

are summarized in Table 2. The effective moisture diffusivity values (1.66 x 10-13 m2 s-1 ; 5.06 

x 10-14 m2 s-1; 1.05 x 10-13 m2 s-1; 3.09 x 10-13 m2 s-1) for stem parts (sphere; small cylinder; 

intermediate cylinder; large cylinder respectively) packed in non-perforated liner films were 

lower than the values (1.49 x 10-12 m2 s-1; 4.05 x 10-13 m2 s-1; 3.16 x 10-13 m2 s-1  ; 6.18 x 10-13 
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m2 s-1 respectively) obtained from the cold air circulation treatment. This can be ascribed to 

the absence of the convective effect of airflow inside the liner films.  

 

In comparison to the results obtained by García-Perez et al. (2006) under hot air drying, the 

diffusivity values of stem parts (sphere; small cylinder; intermediate cylinder; large cylinder) 

exposed to cold air circulating conditions were lower (1.49 x 10-12 m2 s-1; 4.05 x 10-1 m2 s-1 3; 

3.16 x 10-13 m2 s-1; 6.18 x 10-13 m2 s-1 respectively) than the values they found on their hot-air 

drying studies (3.92 x 10-8 m2 s-1; 1.07 x 10-11 m2 s-1; 1.38 x 10-11 m2 s-1; 1.78 x 10-11 m2 s-1 

respectively), (Table 4). However, all the diffusivity values obtained in the current study for 

the stem parts under cold air storage conditions were within the range of 10-15 -10-8 m2 s-1, 

reported in literature of similar studies (Veraverbeke et al., 2003 and Garcia-Perez et al., 

2006). The observed difference of diffusivity value between the cold air storage conditions 

and hot-air conditions may have been due to the higher convective nature of the hot-air than 

that of cold air.  

 

The results in this study follow similar trends as results reported in literature and were 

obtained using a macro-scale approach.  The macro-scale considers the stem as a whole and 

at this scale the stem is considered as a continuum, and may consist of different connected 

tissues, all with homogeneous properties (Ho et al., 2006). However, an in-depth 

microstructural study would also be beneficial in order to comprehensively understand 

cellular changes associated with moisture diffusivity from stems (Vega-Gálvez et al., 2012; 

Ramírez et al., 2011). 

 

4.2.  Dehydration of stems during cold storage 

 

The dehydration rate of the different parts of the stems under cold air storage conditions are 

shown in Figure 3a and b. The drying curves (Fig 3a and b) indicate that airflow plays a big 

role in stem dehydration under cold storage conditions as it significantly increased the 

dehydration rates of stems and its parts (Fig. 3a) compared to the lower dehydration rates of 

stems and its parts inside non perforated liner films (no airflow) (Fig. 3b). The rapid 

dehydration rate observed in Figure 3a may have been due to the convective nature of the 
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circulating air, while natural diffusion driven by vapour pressure difference in Figure 3b, may 

have resulted in a slow dehydration rate. Although stems and its parts were completely 

dehydrated under cold air storage conditions (1.21 ± 0.25 °C and 1.18 ± 0.23 ms-1), it took a 

significantly longer time to dehydrate them, than it would normally take under hot air 

ambient conditions such as the 40° C and 2 ms-1 conditions that were used by Garcia-Perez et 

al. (2006). It took 3 days under cold air storage conditions to reach approximately the same 

moisture content that Garcia-Perez et al. (2006) achieved in 5.6 hours of drying time for the 

spheres. These results strongly emphasises the importance of low temperature storage 

conditions in reducing the rate of stem dehydration.  

 

The results (Figure 3a and b) also indicated that the dehydration rate of the different parts of 

the stems is inversely proportional to the size (diameter) of the stem parts. These results are 

in agreement with the results obtained by Garcia-Perez et al. (2006), where they reported that 

the drying rate of stem parts increased as the cylinder gets smaller.  

 

The moisture removal data obtained from the experiments were fitted by four thin-layer 

drying models mentioned in Table 1. All four models showed the high coefficient of 

determination ( )2 0.980r > and low standard errors, se (Table 3) indicating that they all fitted 

the moisture ratio data well.  The small and intermediate cylinders showed the highest 

coefficient of determination (r2 > 0.99) for all models whereas the large cylinder showed 

lower values (r2 < 0.99), but still above 0.98. There was no single model that generally 

outperformed other 3 models in all cases in predicting drying of the different parts of the 

grape stem”. 

 

The four models were also tested for the prediction of whole stem drying under cold airflow 

and non-perforated liner film (no airflow) conditions. The results (Table 4) indicate that the 

Henderson and Pabis model appears to be the best fitted model in predicting dehydration of 

stems in different storage conditions (no packaging and non-perforated liner film). This was 

based on the fact that this model maintained high values for the coefficient of determination 

( )2r and low values of standard error ( )se  in both drying conditions. 
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Conclusion 

 

Moisture diffusivity and dehydration of stems under cold air storage conditions was studied. 

The effective moisture diffusivity values for stem parts packed in non-perforated liner films 

were lower than the values obtained from the no liner film cold storage condition.   

 

Non-perforated liner film (no airflow) significantly reduced the dehydration rate of stems 

compared to no liner film treatment over the storage period, suggesting that air circulation 

was the main contributor to moisture diffusivity and dehydration of stem parts. The 

dehydration rate of the different parts of stems was inversely proportional to the size 

(diameter). The Newton, Page, Henderson and Pabis, and asymptotic models fitted the 

dehydration of the different stem parts of grape stems well, indicating that any of the tested 

models could be used to predict dehydration during cold storage of grapes. However, the 

Henderson and Pabis model was the best fitted model in predicting dehydration of grape 

whole stems under the different low temperature storage conditions (exposure to cold air flow 

and no airflow) studied.  

 

The data obtained in this work and the tested models, could be applied and assist in 

predicting the quality of grape stems during the handling of fresh grapes in the cold chain. 
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Table 1: Thin-layer drying models applied to the moisture dehydration data of grape stems 

Model name Model Source 
Newton ( )( )expRM kt= −  Pathare and Sharma, 

(2006) 
Page ( )( )exp n

RM kt= −  Singh et al. (2006) 

Henderson and Pabis ( )( )expRM a kt= −  Henderson and Pabis, 
(1961) 

Asymptotic (logarithmic) ( )( )0 expRM a a kt= + −  Kingsly et al., (2007) 

 

 

Table 2: Effective moisture diffusivity (m2s-1) of individual parts of grape stems under 

different cold air drying conditions and compared with results obtained under hot air 

drying by García-Perez et al., 2006. 

 

 Packaging 

 

Stem : Berry 

attachment cap 

(sphere) 

 

small size 

parts of stem 

(cylinder) 

 

Intermediate 

size parts of 

stem (cylinder) 

 

Large part of 

stem 

(cylinder) 

No packaging 1.49 x 10-12 4.05 x 10-13 3.16 x 10-13 6.18 x 10-13 

Non perforated liners 1.66 x 10-13 5.06 x 10-14 1.05 x 10-13 3.09 x 10-13 

García-Perez et al., 2006: hot-

air drying (40 °C and 2 ms-1) 3.92 x 10-8 1.07 x 10-11 1.38 x 10-11 1.78 x 10-11 
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Table 3: Coefficients of Newton’s, Page’s, Henderson and Pabis, and asymptotic’s models 

for the dehydration of the different parts of grape stems under cold air circulation conditions. 

  Model Parameters Value 

Coefficient of 

determination 

 ( )2r  

Standard 

error  

 ( )se  

Small sphere 
Newton

( )( )expRM kt= −  
( )1k h−  0.0354 0.9830 0.03843 

  

Page ( )( )exp n
RM kt= −  

 

( )1k h−  

 

0.0148 

 

0.9920 

 

0.03589 

  n  1.2423   

  

Henderson and Pabis 

( )( )expRM a kt= −   

 

 

a  

 

0.8388 

 

0.9849 

 

0.01086 

 ( )1k h−  0.0309   

  

Asymptotic (logarithmic) 
( )( )0 expRM a a kt= + −  

 

0a  

 

0.0095 

 

0.9852 

 

0.01024 

 a  0.8307   

 ( )1k h−  0.0319   

      Small 

cylinder 

Newton

( )( )expRM kt= −  
( )1k h−  0.0208 0.9906 0.0204 

  

Page ( )( )exp n
RM kt= −  

 

( )1k h−  

 

0.0211 

 

0.9904 

 

0.0204 

  n  0.9969   

  

Henderson and Pabis 

( )( )expRM a kt= −  

 

a  

 

0.9001 

 

0.9905 

 

0.0086 

 ( )1k h−  0.0188   

  

Asymptotic (logarithmic) 

 

0a  

 

0.0157 

 

0.9910 

 

0.0076 

 a  0.8889   
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 ( )( )0 expRM a a kt= + −  ( )1k h−  0.0198   

      
Intermediate 

Cylinder 

Newton

( )( )expRM kt= −  
( )1k h−  0.0060 0.9935 0.0272 

  

Page ( )( )exp n
RM kt= −  

 

( )1k h−  

 

0.0185 

 

0.9956 

 

0.0071 

  n  0.7736   

  

Henderson and 

Pabis

( )( )expRM a kt= −   

 

a  

 

0.9222 

 

0.9918 

 

0.0159 

 ( )1k h−  0.0053   

  

Asymptotic (logarithmic) 
( )( )0 expRM a a kt= + −  

 

0a  

 

0.0564 

 

0.9922 

 

0.0143 

 a  0.8934   

 ( )1k h−  0.0051   

      
Large 

cylinder 

 

Newton

( )( )expRM kt= −  

 

( )1k h−  

 

0.0033 

 

0.9813 

 

0.1119 

  

Page ( )( )exp n
RM kt= −  

 

( )1k h−  

 

0.0198 

 

0.9880 

 

0.0215 

  n  0.6772   

  

Henderson and 

Pabis

( )( )expRM a kt= −   

 

a  

 

0.8265 

 

0.9881 

 

0.0186 

 ( )1k h−  0.0022   

  

 

Asymptotic (logarithmic) 
( )( )0 expRM a a kt= + −  

 

 

0a  

 

 

0.0255 

 

 

0.9888 

 

 

0.0171 

 a  0.8109   

 ( )1k h−  0.0025   
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Table 4: Coefficients of Newton’s, Page’s, Henderson and Pabis, and asymptotic’s models 

for the dehydration of the whole stems under different cold air conditions. 

 Package type Model Parameters Value 

Coefficient of 

determination  

 ( )2r  

Standard error   

 ( )se  

Exposure to 

cold air 

circulation 

Newton  

( )( )expRM kt= −  ( )1k h−  0.0022 0.9920 0.0148 

 

Page ( )( )exp n
RM kt= −  ( )1k h−  0.0076 0.9949 0.0052 

 

n  0.8082 

   

Henderson and Pabis 

( )( )expRM a kt= −  

 

a  

 

0.9252 

 

0.9910 

 

0.0078 

( )1k h−  0.0021   

 

Asymptotic (logarithmic) 
( )( )0 expRM a a kt= + −  

 

0a  

 

0.0267 

 

0.9921 

 

0.0066 

a  0.9086   

( )1k h−  0.0023   

      Non perforated 

liner film 
Newton ( )( )expRM kt= −  ( )1k h−  0.0008 0.9644 0.0210 

 

Page ( )( )exp n
RM kt= −  ( )1k h−  

 

0.0021 

 

0.9607 

 

0.0174 

 

n  0.8508   

 

 

Henderson and Pabis 

( )( )expRM a kt= −  

 

a  

 

0.9380 

 

0.9968 

 

0.0136 

 

( )1k h−  0.0007   

 

 

Asymptotic (logarithmic) 
( )( )0 expRM a a kt= + −  

 

0a  

 

-0.8405 

 

0.9732 

 

0.0109 

 

a  1.7541   

 

( )1k h−  0.0003   
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Figure 1: Different parts of the grape stem 
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Figure 2: Stem dehydration experimental setup inside an experimental cold room 
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Figure 3: Dehydration kinetics of grape stems parts and whole stem. (a) Exposure to cold air 

circulation (no film) and (b) no airflow-low temperature (non-perforated LDPE liner 

film).   

b 
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PAPER 6
 

Investigating the Potential of a Humidification System to Control Moisture 

Loss and Quality of Table Grapes (cv. ‘Crimson Seedless’) during Cold 

Storage

 

Abstract 

 

The potential of humidifying cold storage rooms to control moisture loss and quality of table 

grapes in different package designs was studied. Fruit were cold stored with humidification 

(%RH) or no humidified (% RH) and assessed for weight loss and SO2 injury at intervals 

during a 35 d period. After 21 d of cold storage under humidification, weight loss of grapes 

was significantly higher (P<0.05) in packages with open-top punnets than clamshell punnets 

and carry-bags. After 35 days in cold storage the grape weight loss was 1.45±0.32 %, 

1.62±0.21 % and 2.01±0.57 % under non-humidified storage, and 0.97±0.34 %; 1.08±0.27 % 

and 2.00±0.57 % under humidification for the  4.5 kg carry-bag, 5 kg clamshell punnet and 5 

kg open-top multi-packages, respectively. Cold storage humidification reduced the rate of 

stem dehydration and browning. However, humidification increased the SO2 injury incidence 

in table grape bunches and caused wetting of the packages. 

 

Keywords: Table grapes; Humidification; Cold storage; Multi-packaging; SO2 injury; 

Moisture loss 

 

1. Introduction 

 

Rapid moisture loss is one of the main table grape postharvest quality problems and it is 

characterized by mass loss (Ngcobo et al., 2012b), shriveled stems which usually become 

brittle and break easily, and, at advanced stages, the dry stems become brown (Nelson, 1978; 

Ngcobo et al., 2012a; Lichter et al., 2011). The grape berries only show symptoms of 
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moisture loss at about 3% - 5% of bunch weight loss (Nelson, 1978), while the stems start to 

show signs of dehydration immediately after commencement of weight loss of as low as 1 % 

(Ngcobo et al., 2012a). High water vapour pressure deficit (WVPD) due to low relative 

humidity (RH) of the cooling air has been reported to be the main driving force for 

evaporation from fresh commodities stored under refrigerated storage conditions (Sastry, 

1985; Paull, 1999; Thompson et al., 1998).  High RH and low temperature storage 

environments play an important role in maintaining the quality of produce (Hung et al., 

2011). In order to reduce moisture loss and preserve postharvest quality, table grapes are pre-

cooled to sub-zero temperatures of -0.5°C (Ngcobo et al., 2012a). However, the moisture loss 

still remains a challenge inside refrigerated storage rooms. 

 

In many cold storage rooms, temperature is controlled but the RH is not. In such cases the 

RH is dependent upon by the surface area of the refrigeration evaporator coil in the storage 

room and the temperature difference between the coil and the room air, along with air 

exchange rates, temperature distribution in the room, commodity and packaging material 

used (Paull, 1999). Humidification has been reported to reduce produce weight loss and 

maintain quality in cold stores (Hung et al., 2011; Delele et al., 2009) and on retail display 

cabinets (Brown et al., 2004; Moureh et al., 2009). Although humidification has proven to be 

successful in controlling weight loss and maintaining quality of produce, some drawbacks 

have been noted in literature. Some of the these drawbacks include the wetting of corrugated 

boards (packaging) under a high humidity environment, which causes weakening of 

cardboard strength, and this often leads to packaging collapse and ultimately to mechanical 

damage to produce (Marcondes, 1992; Hung et al., 2010). Mist fogging has also been 

reported to bring about conducive environments for microbial growth (Brown et al., 2004); 

and the wetting of surface of the produce causes the stomata to open, resulting in water loss 

(Hung et al., 2011). However, nano-mists have been reported to be able alleviate these 

drawbacks, whilst providing high humidification and its success lies in their droplets that 

evaporate easily and quickly before causing wetting of produce and packaging (Hung et al., 

2010; Hung et al., 2011; Saenmuang et al., 2012). 

 

The recommended RH for table grape storage is 95 % at -0.5°C (PPECB, 2012). Lichter et al. 

(2011) investigated the effects of WVPD on physical and visual properties of grape rachis 
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(stems) under ambient temperature conditions of 10°C and 20°C. Their results suggested that 

some cultivar differences may exist in terms of response to WVPD, where the rachis of 

‘Thompson Seedless’ grapes remained green at high RH under both 10°C and 20°C, while 

the rachis of ‘Superior Seedless’ grapes suffered extensive browning at high RH under 20°C. 

 

In this study the effects of humidification on table grape quality under cold storage at -0.5°C 

and in different multi-scale packaging was investigated. 

 

2. Materials and Methods 

2.1. Fruit and packaging 

 

The grapes were harvested, prepared and packed from a farm in the Worcester area of Cape 

Town, South Africa and were transported in an air-conditioned car to the Postharvest 

Technology Research Laboratory at Stellenbosch University.    

 

The grapes were packed in three different types of multi-scale packaging with vented 4.5 kg 

and 5 kg (punnet) carton boxes with dimensions of 0.4 m x 0.3 m x 0.13 m and 0.6 m x 0.4 m 

x 0.09 m respectively (Fig. 1).  Depending on the size of the grape bunch, 6 to 8 bunches in 

carry bags were packed in 4.5 kg boxes, while 10 punnets were packed in each 5 kg box. The 

bunch carry bags and punnets were packed inside perforated liner films (120 x 2 mm and 114 

x 4 mm perforated liner films for the 4.5 kg and 5 kg boxes, respectively) inside carton boxes. 

The moisture absorption and SO2 pads were then placed over the carry bags and punnets, just 

before taping the liner films closed using an adhesive tape.  
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2.3. Cooling and Humidification system 

 

The study was conducted in two experimental cold storage rooms 3.05 m in length, 2.4 m in 

width and 2.83 m in height (Fig. 2). Cooling of grapes boxes was achieved by means of room 

cooling. The room was equipped with three fans of diameter 30 cm that circulated the cooling 

air through the cooler and the room. The capacity of the fans was 1290 m3/h each. The 

cooling unit was a finned tube heat exchanger with dimensions of 1.25 m long, 0.4 m wide 

and 0.36 m high.  

 

The cold room was also equipped with an air-assisted Aqua Room-2 humidifier (Miatech 

Inc., Clackamas, US) with an air pressure capacity of 140 - 210 kPa; a liquid capacity of 2 

L/h and a droplet size of 10 micron. The humidity was controlled with a digital 

hygrotransmitter 0-100% RH sensor device.  

 

2.4. Temperature and RH measurements 

 

Air temperature and relative humidity were measured the inside storage room and inside the 

multi-scale packages containing grapes. Air temperature was measured with a LogTag air 

temperature recorder (LogTag Trix-8 Temperature Recorder, LogTag Recorder Limited, 

China) and the air relative humidity (%RH) was measured with a SENSITECH TempTale 4 

monitor (Temptale4 Humidity and Ambient Temperature 16000, SensiTech, USA). 

 

2.5. Weight loss measurement 

 

The weight of individual bunches was measured with a scale (Mettler, Toledo, Switzerland, 

with an accuracy of 0.01 g). Bunch weight loss was expressed as percentage loss of the initial 

weight. 
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2.5. Stem conditions evaluation 

 

Stem dehydration was assessed using the following scoring system: without drying (fresh 

stems) = 1, some drying of thinner stems = 2, all thinner stems dry = 3, all thinner and some 

thicker stems dry = 4 and all stems dry = 5. Stem browning development was measured by 

using the following scoring system: (1) fresh and green, (2) some light browning, (3) 

significant browning and (4) severe browning. 

 

2.6. SO2 injury and decay incidence 

 

SO2 injury was measured according to the following scoring system: (1) none (0%), (2) 

slight damage (<5%), (3) moderate damage (5–10%) and (4) severe damage (>10 %). Decay 

was scored as follows: (1) no decay, (2) slight (less than two infected berries per carton), (3) 

severe (two to five infected berries), and (4) extreme (more than five infected berries per 

carton). 

 

2.7. Experimental set-up 

 

Two identical cold rooms, one with humidification (-0.33±0.32 °C and 95.00±1.81 % RH) 

and one without humidification (-0.12±0.32 °C and 90.26±4.44 % RH) were used to cool and 

store the grapes (Table 1). Six boxes (2 per multi-packaging type) were placed on a pallet 

base at the central position in each cold room (Fig. 2). Six bunches from each box were 

labelled, evaluated for quality (stem condition; SO2 injury and decay incidence) and weight 

loss as per preceding sections 2.4 – 2.6 above, prior to the commencement of cooling. The 

same grape bunches were then evaluated at seven day intervals during cold storage for 35 

days. 
 

2.8.  Statistical analysis 

 

Twelve bunches were evaluated for quality attributes per multi-packaging type (treatment) 

and the data were subjected to the analyses of variance (ANOVA). The data were presented 

as Means±SD. 
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3. Results and Discussion 

 

3.1. Weight loss  

 

The percentage weight loss of grape bunches increased with storage period in all multi-

packages (Fig. 3a and b). The results indicate that after 21 days of storage under 

humidification, the percentage weight loss of grapes in open-top punnets multi-packaging 

was significantly (P<0.05) higher than weight loss of grapes in clamshell punnet and carry-

bag multi-packages (Fig. 3b). Under no-humidification storage the differences in weight loss 

of grapes in the different multi-packages were not significant. However the trend shows that 

the grapes in the open-top punnet multi-packaging had higher average weight loss than 

grapes in the other multi-packaging (Fig 3a). These results may have been due to a direct 

contact between grape bunches and the moisture absorption sheet that separates the SO2 pad 

and the grapes in the open-top punnet multi-packaging. Also it could be that the open-top 

punnets allow for more contact of airflow with bunches and reduction of the water loss 

barrier. 

  

Figure 4a-c shows comparative results of grape weight loss in individual multi-packaging 

when stored under humidification or no humidification. Although the results indicate that 

there were no statistically discernable differences in percentage weight loss (packed in the 

same packaging) of grapes stored under humidified cold storage and non-humidified cold 

storage, the trends indicate that humidification reduced the average grape weight loss in all 

tested multi-packaging (Fig. 4a-c). After 35 days in cold storage the grape weight loss was 

1.45±0.32 %, 1.62±0.21 % and 2.01±0.57 % under no-humidification storage, and 0.97±0.34 

%, 1.08±0.27 % and 2.00±0.57 % under humidification for 4.5 kg carry-bag, 5 kg clamshell 

punnet and 5 kg open-top multi-packages, respectively. The observed results are attributed to 

the low water vapour pressure difference (WVPD) which is achieved by increasing RH 

through humidification (Paull, 1999; Delele et al., 2009a). 

 

The signs of stem dehydration became visible after 7 days of cold storage for both the 

humidified and non-humidified storage (Table 2). However, the results indicated that 

humidification reduced the rate of dehydration compared to no-humidification storage (Table 

2). The stem dehydration rate of grapes packed in the 4.5 kg carry-bag multi-packaging under 

no humidification cold storage were 25 %; 50 %; 75%; 100% and 100 % (i.e. percentage of 
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grape bunches that reached drying score 4) after 7 d; 14 d; 21 d; 28 d and 35 d, respectively, 

while the dehydration rate of grapes in 4.5 kg multi-packaging under humidification was 

25%; 50 % and 75 % after 21 d; 28 d and 35 d respectively.  The dehydration rate of grapes 

packed in clamshell punnet multi-packaging under no humidification was 8 %; 75 % and 92 

% after storage periods 7 d; 14 d and 21 d, respectively, and after 28 days all stems of 

bunches in this treatment were completely dehydrated (score 5), while for those stored under 

humidification were 25 %; 50 %; 50 %; and 100 % after storage days 14 d; 21 d; 28 d; and 35 

d respectively. The visual differences in appearance of bunch stem dehydration in clamshell 

multi-packaging under humidification and non-humidification storage after 28 days is shown 

in Fig 5. The dehydration rate of grapes in open-top punnet multi-packaging under no 

humidification storage were 42 %; 83 %; 92 %; 100 %; 100 % after 7 d; 14 d; 21 d; 28 d; and 

35 d of cold storage, respectively, while under humidification cold storage the rate were 25 

%; 83 %; 84 % and 100 % after 14 d; 21 d; 28 d; and 35 d respectively.   

 

The highest stem browning score recorded was score 3 (i.e. significant browning of stems), 

and thus is used as reference in the browning rate discussion. None of the grapes stored under 

humidification reached a stem browning score of 3, but most of the samples reached a 

browning score of 2 (i.e. some light browning of stems) (Table 2). Contrary to humidified 

cold storage, the percentage of bunches that reached the browning score of 3 under non-

humidified storage in 4.5 kg was 25 % after 35 days; in clamshell punnet multi-packaging 

was 17 % after 28 days and in open-top punnet multi-packaging were 25 % and 33 % after 28 

and 35 days, respectively. This may have been due to lower transpiration potential of the 

surrounding air as a result of humidification. 

 

3.2. SO2 injury and decay incidence 

 

Figure 6 shows a bunch with SO2 injury under humidified storage. The SO2 injury occurred 

after 7 days of cold storage under humidification, for the 4.5 kg carry-bag multi-packaging, 

with 25 % of the bunches showing slight SO2 injury (score 2) and after 28 days in storage the 

number of affected bunches increased to 50 %  (Table 2). Under non-humidified storage in 

4.5 kg multi-packaging the incidence of SO2 injury appeared after 14 days with 25 % of 

bunches showing symptoms. This number of affected bunches only increased to 50 % after 

35 days of storage. The grapes packed in clamshell multi-packaging under humidification 

showed 33 % of bunches affected after 28 days and after 35 days about 50 % of grapes 
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showed incidence of SO2 injury, while under non-humidification storage 17 % of the bunches 

showed SO2 injury and only 33 % bunches had SO2 injury after 35 days. About 25 % of 

bunches in open-top multi-packaging showed the incidence of SO2 injury after 35 days of 

storage under humidified storage and 59 % of grape bunches had SO2 injury after 35 days 

under no-humidification storage. These results suggest that humidification could cause some 

incidence of SO2 injury on grapes. This could be attributed to a possible acidic environment 

that tends to be created by high levels of humidity in the presence of the SO2 sheet in the 

grape multi-packaging (Zoffoli et al., 2008; Ngcobo et al., 2012a). The water droplets were 

deposited on the package making the packaging soaked wet and this would have added in 

creating the acidic environment. This places emphasis on the optimization of humidifier to 

produce water droplets that would evaporated easily and not deposited on packaging such as 

nano-mists (Hung et al., 2010; Hung et al., 2011; Saenmuang et al., 2012).    

 

4. Conclusion 

 

The potential of humidification in controlling table grape quality disorders was investigated. 

The weight loss trends suggest that humidification can reduce the rate of moisture loss from 

grapes packed in different multi-packaging. Humidification also delayed the onset of and, in 

some, cases reduced the stem dehydration rate and browning development during postharvest 

storage. However, more SO2 injury incidence was observed under the humidified storage due 

to high moisture and the presence of the SO2 sheet creating an acidic environment. 

Humidification was also associated with packaging wetness due to high water droplet 

deposition on the packaging. This suggests that the humidification system needs to be 

optimized for successful postharvest storage in order to reduce the deposition of water 

droplets on the packaging structure. Also more work is warranted in optimizing table grape 

packaging where humidification applications are used in order to withstand the high humidity 

conditions.  
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Table 1: Conditions inside experimental cold rooms during storage of table grapes 

Room condition Relative humidity (%) Air Temperature (°C) 

No humidification 90.26±4.44 -0.12 ± 0.32 

Humidification 95.00±1.81 -0.33 ± 0.32 

 

Table 2: Effect of humidification and packaging on stem condition and quality of table grapes 

during cold storage.  

Packaging 

Non-humidification cold storage 

(90.26±4.44 % RH)   

Humidification cold storage 

(95.00±1.81 % RH) 

Stem 

dehydration    

(1-5)a 

Stem 

browning    

(1-5)b 

SO2  

injury 

indexc   

Stem 

dehydration    

(1-5)a 

Stem 

browning 

(1-5)b 

SO2 

injury 

indexc 

Baseline data (0 

days) 

       4.5 kg bunch carry-

bag multi-packaging 1.00±0.00 1.00±0.00 1.00±0.00 

 

1.00±0.00 1.00±0.00 1.00±0.00 

Clamshell punnet 

multi-packaging 1.00±0.00 1.00±0.00 1.00±0.00 

 

1.00±0.00 1.00±0.00 1.00±0.00 

Open-top punnet 

multi-packaging 1.00±0.00 1.00±0.00 1.00±0.00 

 

1.00±0.00 1.00±0.00 1.00±0.00 

After 7 days  

       4.5 kg bunch carry-

bag multi-packaging 2.25±1.26 1.00±0.00 1.00±0.00 

 

2.00±0.00 1.00±0.00 1.25±0.50 

Clamshell punnet 

multi-packaging 2.17±0.58 1.00±0.00 1.00±0.00 

 

1.75±0.45 1.00±0.00 1.00±0.00 

Open-top punnet 

multi-packaging 2.83±1.03 1.00±0.00 1.00±0.00 

 

2.00±0.00 1.00±0.00 1.00±0.00 

After 14 days  

       4.5 kg bunch carry-

bag multi-packaging 3.25±0.96 1.00±0.00 1.25±0.50 

 

3.00±0.00 1.00±0.00 1.25±0.50 

Clamshell punnet 

multi-packaging 3.50±0.90 1.00±0.00 1.00±0.00 

 

2.50±0.90 1.00±0.00 1.00±0.00 

Open-top punnet 

multi-packaging 3.67±0.78 1.00±0.00 1.08±0.29 

 

2.92±0.79 1.00±0.00 1.00±0.00 
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After 21 days  

       4.5 kg bunch carry-

bag multi-packaging 3.75±0.50 1.75±0.50 1.25±0.50 

 

3.75±0.50 1.00±0.00 1.25±0.50 

Clamshell punnet 

multi-packaging 3.83±0.58 1.67±0.49 1.00±0.00 

 

3.08±0.99 1.00±0.00 1.00±0.00 

Open-top punnet 

multi-packaging 3.83±0.58 2.00±0.00 1.25±0.45 

 

3.75±0.62 1.00±0.00 1.00±0.00 

After 28 days  

       4.5 kg bunch carry-

bag multi-packaging 4.00±0.00 1.75±0.50 1.25±0.50 

 

4.00±0.00 1.50±0.58 1.50±0.58 

Clamshell punnet 

multi-packaging 5.00±0.00 1.83±0.49 1.17±0.39 

 

3.08±0.99 1.58±0.51 1.33±0.49 

Open-top punnet 

multi-packaging 5.00±0.00 2.25±0.45 1.50±0.52 

 

3.83±0.39 2.00±0.00 1.25±0.45 

After 35 days  

       4.5 kg bunch carry-

bag multi-packaging 4.00±0.00 2.25±0.50 1.50±0.58 

 

4.00±0.00 2.00±0.00 1.50±0.58 

Clamshell punnet 

multi-packaging 5.00±0.00 2.08±0.30 1.33±0.49 

 

5.00±0.00 2.00±0.00 1.50±0.52 

Open-top punnet 

multi-packaging 5.00±0.00 2.33±0.49 1.75±0.62   5.00±0.00 2.00±0.00 1.25±0.45 
aScore: 1 = fresh stems, 2 = some drying of thinner stems, 3 = all thinner stems dry, 4 = all 
thinner and some thicker stems dry and 5 = all stems dry. 
bScore: 1 = fresh and green stems, 2 = some light browning stems, 3 = significant browning 
of stems and 4 = severe browning of stems. 
cSO2 injury score (1-4): 1 = no injury, 2 = slight injury (<5%), 3 = moderate injury (5-10%) 
and 4 = severe injury (>10%). 
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Figure 1: Grape multi-scale packaging. a) 5 kg punnet multi-packaging box and b) 4.5 kg 

bunch carry-bag multi-packaging box 
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Figure 2: Experimental setup inside the cold storage room; a – side view and b – top view 
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Figure 3: Percentage moisture loss of grape bunches in different multi-scale package 

combinations during cold storage. a) Non-humidification storage; and b) humidification 

storage  

a 

b 
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Figure 4: Percentage weight loss comparisons of grapes stored under humidified and non-

humidified cold storage. a) Clamshell punnet multi-packaging; b) open-top punnet multi-

packaging; and c) bunch carry-bag multi-packaging. 

 

 

a  
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b  

Figure 5: Visual appearance of grape bunches packed in clamshell punnet multi-packaging 

after 28 days of cold storage under (a) humidified and (b) non-humidified rooms. 

 

 

 

Figure 6: SO2 injury on grapes under humidified storage. 
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PAPER 7
 

Investigating the effects of table grape package components and 
stacking on airflow, heat and mass transfer using 3-D CFD modelling 

 

Abstract 

 

The flow phenomenon during cooling and handling of packed table grapes was studied using 

a computational fluid dynamic (CFD) model and validated using experimental results. The 

effects of the packaging components (bunch carry bag and plastic liners) and box stacking on 

airflow, and heat and mass transfer were analyzed. The carton box was explicitly modeled, 

the grape bunch with the carry bag was treated as a porous medium and perforated plastic 

liners were taken as a porous jump. Pressure loss coefficients of the grape bunch with the 

carry bag and perforated plastic liners were determined using wind tunnel experiments.  

Compared to the cooling of bulk grape bunches, the presence of the carry bag increased the 

half- and seven-eighth cooling time by 61.09 % and 97.34 %, respectively. The addition of 

plastic liners over the bunch carry bag increased the half- and seven-eighth cooling time by 

up to 168.90 % and 185.22 %, respectively. Non-perforated liners were most effective in 

preventing moisture loss but also generated the highest condensation of water vapor inside 

the package. For perforated plastic liners, cooling with a high relative humidity (RH) air 

minimized fruit moisture loss. Partial cooling of the grape bunch inside the carry bag before 

covering it with a non-perforated plastic liner maintained the required high RH inside the 

package without condensation. The stacking of packages on the pallet affected the airflow 

pattern, the cooling rate and moisture transfer. There was a good agreement between 

measured and predicted results. The result demonstrated clearly the applicability of CFD 

models to determine optimum table grape packaging and cooling procedures.  

 

Keywords: Table grape; Packaging; CFD; Airflow; Heat and mass transfer; plastic liner.  
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Notation 

Ac cooler surface area, m2 

ap specific fruit area, m-1 

Bi Biot number 

Cp Specific heat capacity, J kg-1 0C-1 

D diffusion coefficient, m2 s-1 

Dc collar diameter of heat exchanger tube, m 

De effective diffusivity, m2 s-1 

DP fruit diameter, m 

g gravitational acceleration, m s-2 

hh heat transfer coefficient, W m-2 °C-1 

hm mass transfer coefficient, m s-1 

κ  Darcy permeability, m2 

k turbulence kinetic energy, m2 s-2 

L latent heat, J kg-1 

p pressure, Pa 

Pr Prandtl number 

psat saturated vapour pressure, Pa 

pv vapour pressure, Pa 

Re Reynolds number 

Sc Schmidt number 

eS  heat source term, W m-3  
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Sm mass source term, kg  m-3  s-1 

St Stanton number 

t time, s 

T temperature, °C 

T'  fluctuating temperature, °C 

ji uu ,  mean velocity components in X, Y, and Z directions, m  s-1 

',' ji uu  fluctuating velocity components, m  s-1   

V volume, m-3 

ji xx ,  Cartesian coordinates, m 

Xv moisture content, kg/kg 

Yv vapour mass fraction 

β Forchheimer drag coefficient, m-1 

ε dissipation rate of turbulence kinetic energy, m2 s-3 

µ  dynamic viscosity, kg  m-1 s-1 

λ   thermal conductivity, W m-1 0C-1 

ω specific dissipation rate, s-1 

ρ  density, kg  m-3 

φ Porosity 

α  thermal expansion coefficient, °C-1 

Subscripts  

a air phase 
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c Cooler 

o reference condition 

p Product 

t Turbulence 

ji,  Cartesian coordinate index 

 

1. Introduction 

 

Fresh table grapes are a major commodity in global food trade and South Africa is ranked 

third in the world export market, with the European market accounting for about 61 % of the 

total exports (Ngcobo et al., 2012). Packaging and refrigerated storage are critical 

technologies in maintaining quality of fresh and processed food products (de Paula et al., 

2011; Opara, 2011; Caleb et al., 2011; Tsiraki & Savvaidis, 2011). For fresh table grape 

export, produce is typically packed in 4.5 kg vented cardboard boxes with multiple inner 

packaging materials that include plastic liner, SO2 pad, moisture absorber and bunch carry 

bag (Fig. 1). The main functions of these package components are to maintain the quality of 

the grapes during postharvest handling and storage by providing a mechanical shield against 

injuries, minimizing product moisture loss and retarding microbial decay (Opara, 2011). 

Produce temperature is one of the most important parameters that control the rate of 

respiration, moisture loss and microbial growth. Cooling of table grapes as fast as possible 

retards quality deterioration associated with these phenomena. Table grapes are a non-

climacteric fruit with a relatively low postharvest physiological activity. However, unless the 

appropriate measures are taken to maintain the cold chain, produce may be exposed to high 

levels of moisture loss and decay (Nelson, 1985; Lichter et al., 2008; Costa et al., 2011; 

Ngcobo et al., 2012). Moisture loss results in quality problems such as weight loss, stem 

drying, browning, softening and shattering of berries, which contribute to significant 

economic losses.  
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The cooling of packed table grapes is usually performed using a forced air cooling technique. 

Due to the high vapour pressure difference between the cooling air and the product surface, 

the initial cooling period of the produce from its field temperature to the desired storage 

temperature is usually associated with significant moisture loss (Nelson, 1978; Lichter et al., 

2011). Crisosto et al. (2001) observed up to 1 % moisture loss during the cooling period of 

table grapes. Although this level of moisture loss is considered small, the authors noted that it 

caused stem browning. Lowering the vapour pressure difference as fast as possible either by 

decreasing the berry temperature or increasing the relative humidity (RH) of air can minimize 

moisture loss. Berry cooling rate depends on several factors including box vent area (Opara, 

2011), cooling air properties (flow rate, temperature and RH), stacking pattern, liner 

properties and the presence of other components inside the package (such as moisture 

absorption pad and SO2 pad). The properties of the liner include plastic type and vent size, 

number and distribution. Previous research has shown that the presence of packing materials 

and cooling duration significantly influence/alter the decay of grape berries (Nelson & 

Ahmedullah, 1976; Nelson, 1978). Therefore, fresh produce packaging must have enough 

vents to allow the delivery of the cooling medium (air) with minimum resistance and provide 

uniform airflow and cooling through the entire mass of the produce while providing suitable 

mechanical resistance (Vigneault & Goyette, 2002; Castro et al., 2004; Vigneault & Castro, 

2005). Plastic liners are used in table grape packaging to minimize moisture loss from berries 

by maintaining high RH within the package. Recent experimental studies showed that non-

perforated plastic liners maintained the RH of the package close to 100 % resulting in the 

highest stem quality (Ngcobo et al., 2012). However, the use of non-perforated plastic liners 

also produced the highest moisture condensation inside the package, SO2 injury and berry 

drop while the use of perforated liners resulted in lower RH, higher stem dehydration and 

browning compared to the non-perforated liner. These findings highlight the need for 

optimization of plastic liner designs.  

 

The airflow, and heat and mass transfer processes during postharvest handling of horticultural 

products have been studied using experimental and modelling techniques (Tassou & Xiang, 

1998; Xu & Burfoot, 1999; Alvarez & Flick, 1999; van der Sman, 2002; Alvarez et al. 2003; 

Moureh & Flick, 2004; Nahor et al., 2005; Zou et al., 2006; Opara & Zou, 2006, 2007; 

Chourasia & Goswami, 2007; Delele et al., 2009a, 2009b; Ferrua & Singh, 2009; Tutar et al., 

2009). Some researchers have studied the airflow, and heat and mass transfer processes 
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within the individual and packed grapes using experimental (Gentry & Nelson, 1964; Nelson, 

1978; Frederick & Comunian, 1994) and modelling techniques (Dincer, 1995a, 1995b, 

Acevedo et al., 2007). However, none of the previous studies have developed a 

comprehensive 3-D CFD model which is capable of predicting the airflow, and heat and mass 

transfer within and around multiple package components such as that used for fresh table 

grapes (Fig. 1). These studies did not take into account the details of the packages and even 

the grape bunches. For better understanding of the flow behaviour in and around such 

complex packaging systems, the development of better modelling techniques is vital.  

Nowadays, the use of validated Computational Fluid Dynamics (CFD) modelling techniques 

has increasingly become an alternative approach to the difficult, time consuming and 

expensive experimental methods (Delele et al., 2009a; Tutar et al., 2009; Opara, 2011).   

 

The aim of this study was to develop and experimentally validate a 3-D CFD model of a table 

grape cooling process that predicted the cooling air velocity, temperature, RH and product 

moisture loss, taking into account the detailed geometries of the packaging components (box, 

liner and pads). The validated model was used to evaluate the effect of different package 

components and cooling procedures on airflow, and heat and mass transfer processes. 

 

2. Materials and Methods   

 

2.1. Cold storage room and table grape packaging 

 

The study was based on an experimental cold storage room with dimensions 3.05 x 2.40 x 

2.83 m (Fig. 2). The room is equipped with three fans of 30-cm diameter that circulate the 

cooling air through the cooler and the room. The capacity of each fan is 1290 m3/h and the 

cooling unit is comprised of a finned tube heat exchanger with dimensions of 1.25 x 0.40 x 

0.36 m. 

 

Grape bunches were packed using a vented carton box with dimensions of 0.4 m long, 0.3 m 

wide and 0.133 m high (Fig. 1). Every box contains about 4.5 kg of grape, equivalent to 6-8 
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bunches depending on the size of the grape bunch. The carry bags were well vented. During 

packing, each carry bag containing a bunch of berries is placed inside the plastic liner, the 

moisture absorption and SO2 pads are placed over the carry bags and the liner is closed and 

sealed using a plastic adhesive tape. A corrugated paperboard sheet is placed in the bottom of 

the box to protect the berries against bruising. A more detailed description of the table grape 

packaging system can be found in Ngcobo et al. (2012).  

 

2.2 CFD model formulation 

 

The CFD code used for this work was ANSYS FLUENT 13.0 (ANSYS, Inc., Canonsburg, 

Pennsylvania, USA). The governing equations were solved using the Reynolds-averaged 

procedure. In Cartesian coordinates, for flow in a porous medium, the Reynolds-averaged 

fluid flow equations based on interstitial fluid velocity are as follows (Antohe & Lage, 1997; 

Nakayama & Kuwahara, 1999): 

 ( ) ( )a a i
m

i

u
S

t x
ρ ρ∂ ∂

+ =
∂ ∂

 (1) 

( ) ( ) ( ) ( )

( ) ( )1/22 11
2

a i j ja i i
a a i j

j i j j i j

a
o a i a j j i

u u uu p u u u
t x x x x x x

T T g u u u u

ρρ
µ ρ

µα ρ φ φ βρ
κ

 ∂  ∂∂ ∂ ∂∂ ∂ ′ ′+ = − + + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂   

 − − − − − 

 (2)  

where aρ  is the density (kg m-3); iu  and ju  are mean air velocity components (m s-1); t is the 

time (s); ix and jx  are Cartesian coordinates (m); p is the pressure (Pa); aµ  is the dynamic 

viscosity (kg m-1 s-1); iu′  and ju′  are fluctuating velocity components (m s-1); T is the 

temperature  (0C); φ  is the porosity; g is the gravitational acceleration (m s-2); α  is the 

thermal expansion coefficient (0C-1)  and Sm is the mass source term (kg m-3 s-1). The fourth 

term in the right side of equation (2) represents the buoyancy force, where the reference 

temperature (To) was taken as the storage room temperature. The last two terms in the right 

side of equation (2) represent the resistance of the porous medium to airflow and are 

expressed in the form of the Darcy- Forchheimer equation; where κ  is the Darcy 
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permeability (m2) and β  is the Forchheimer drag coefficient (m-1).  

By assuming a local thermal equilibrium between the air and the porous solid matrix, the 

energy equation is: 

( ) ( )

( )

(1 )a pa p pp a pa j e
j j j

a pa j e
j

TC T C T C u T
t x x x

C u T S
x

φρ φ ρ φρ λ

φρ

  ∂ ∂ ∂ ∂
+ − + =    ∂ ∂ ∂   

∂ ′ ′− +
∂

 (3) 

Where PC  is the heat capacity (J kg-1 0C-1); eλ is the effective thermal conductivity (W m-1 
0C-1); T ′  is the fluctuating temperature (0C) and Se is the energy source term (W m-3). The 

Effective thermal conductivity was estimated using: (1 )eff a pλ φλ φ λ= + − (Carson, 2006). The 

limitation of this thermal equilibrium assumption for porous systems with heat generation and 

transient problems, particularly for large products and low conductivity fluid has been 

discussed (Verboven et al., 2006; van der Sman, 2008; Laguerre et al., 2008). During such 

non-equilibrium cases, a two equation model is recommended. However, thermal equilibrium 

assumption has been used and reasonable model accuracy was reported in several heat and 

mass transfer studies related to agricultural product handling (Tassou & Xiang, 1998; Moureh 

& Flick, 2004; Chourasia & Goswami, 2007; Delele et al., 2009a, 2009b, 2012). Using scale 

analysis, van der Sman (2008) reported that this thermal equilibrium assumption is valid 

when the air Stanton number, St 1x h p
a

x a pa

L h a
u Cρ

=  , vapour Stanton 

number,St 1x m p
v

x

L h a
u

= ≈ , Biot number, Bi 1h p

p

h D
λ

=   and the particle Reynolds number, 

3Re 10a x p
p

a

u Dρ
µ

= < . The initial temperature of the grapes was 21 0C and the cooling air 

temperature was 0 0C. Density, specific heat and thermal conductivity of the grapes were 

1077.9 kg m-3, 3395 J kg-1 0C-1 and 0.551 W m-1 0C -1, respectively (Bingol et al., 2008). 

Corresponding values of the cooling air were 1.25 kg m-3, 1005 J kg-1 0C -1 and 0.024 W m-1 
0C -1. Length of the porous region (Lx) was 0.4 m, average diameter of the grapes (Dp) was 

0.0201 m and calculated average air velocity inside the bulk grape region (ux) was 0.059 m s-

1. Porosity of the grapes was determined by using a displacement method (Chau et al., 1985) 

and it was 0.53. The specific grape area (ap) was 158.21 m-1. Correlations to determine the 
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heat transfer coefficient (hh) in packed beds can be found in Wakao & Kaguei (1982) and van 

der Sman (2008). Using this correlation, the calculated value of hh was 9.78 W m-2 0C-1. The 

mass transfer coefficient (hm) of table grapes takes into account convective mass transfer 

coefficient (hma) and skin mass transfer coefficient (hms), 
1 1 1

m ma msh h h
= + . The convective 

mass transfer coefficient was determined from the heat transfer coefficient using Lewis 

analogy (Bird et al., 2002). Table grape skin mass transfer coefficient was taken from Becker 

et al. (1994). The calculated value of hm was 8.23×10-4 m s-1, and the calculated values of Sta, 

Stv, Bi and Rep were 8.31, 0.87, 0.35 and 83.28, respectively. In this study, Bi value was 

close to 1. However, the agreement between measured and predicted results (see sections 3.1 

and 3.2) shows the validity of the thermal equilibrium assumption.   

The transport equation for vapour mass fraction is: 

 ( )( ) ( )a v v
a j v a e a j v m

j j j j

Y Yu Y D u Y S
t x x x x

φρ φρ ρ φρ
  ∂ ∂∂ ∂ ∂  ′′+ = − +     ∂ ∂ ∂ ∂ ∂     

 (4) 

Where vY  is the vapour mass fraction; vY ′ is the fluctuating vapour mass fraction and De is the 

effective diffusivity of the vapour (m2 s-1). The specific Reynolds stress term ( i ju u′ ′ ) in 

equation (2) and specific Reynolds flux terms ju T′ ′  and j vu Y′ ′  in equations (3) and (4), 

respectively were approximated by (Versteeg & Malalasekera, 1995; Wilcox, 2000): 
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Appropriate turbulence models were used for closure of these equations. The Reynolds stress 

term (Eqn. 5) is commonly treated using Boussinesq hypothesis. This hypothesis relates the 

Reynolds stress term to the mean velocity gradient and assumes the turbulent viscosity to be 
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isotropic scalar quantity, which is not strictly true. The Boussinesq hypothesis is used in 

Spalart-Allmaras, k-ε , and k-ω turbulence models. The Reynolds stress turbulence model is 

an alternative approach that takes into account the anisotropy of the Reynolds stress term, but 

with additional computational cost. In most applications, models based on Boussinesq 

hypothesis perform very well (Wilcox, 2000; Ansys, 2010). Alvarez & Flick (1999) observed 

turbulence generation behind the stacked product and later Alvarez et al. (2003) proposed a 

semi-empirical model based on one equation for two-dimensional turbulence flow through 

porous medium that took into account this turbulence generation. Though the generation of 

turbulence behind the stacked product was reported (Alvarez & Flick, 1999; Alvarez et al., 

2003), several previous studies on airflow, heat and mass transfer in loaded refrigerated 

systems used the porous medium approach and treated turbulence using conventional 

turbulence models that are employed in Reynolds-average approach (standard k-ε , RNG k-ε , 

SST- k-ω and Reynolds stress) (Hoang et al., 2000; Moureh & Flick, 2004; Nahor et al. 2005; 

Mirade & Picgirard, 2006; Delele et al., 2009a, 2009b). Generally, the accuracy of these 

models was reasonable. In this study, different two-equation eddy-viscosity turbulence 

models (standard k-ε , RNG k-ε , standard k-ω and SST- k-ω ) were compared. For standard-

k-ε , RNG- k-ε , standard- k-ω and SST- k-ω  turbulence models, the overall average relative 

error of predicted product temperature relative to the measured values was 23.94 %, 20.34 %, 

21.85 % and 17.13 % (see section 3.1), respectively. The SST- k-ω turbulence model was 

chosen and used in this study.  

 

The grape bunches with the carry bags and the cooler were modelled as a porous medium 

with the corresponding mass, momentum and heat sources/sink. The porous medium model 

describes the flow behaviour within a matrix of solid structure that is usually characterized by 

its porosity. As a result of the low Reynolds number (Re = 83.28), the flow inside the liner 

(the grape bunches with the carry bags) was taken as a laminar flow. In all other regions the 

flow was turbulent. The source terms in equation (1) and equation (2) consisted of different 

contributions. mS  takes into account the moisture loss from the product surface ( mpS ) and the 

condensation of water vapour on the cooling coils ( mcS ). eS  represents the heat of respiration 

of the product ( epS ) and the heat exchange on the cooler ( ecS ). Due to the relatively low 

temperature difference between the surfaces, the effect of radiation was neglected. The details 

about the calculations of these source terms are given in section 2.3. The model consisted of 
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the following four zones: solid box zone, product zone, cooler zone and free air zone. In all 

zones, in addition to the relevant source terms, the above equations were solved using the 

appropriate porosities. In the solid box zone, all source terms and porosity were zero and only 

the heat transfer equation (Eqn. 3) was solved. The product zone represented the region 

occupied by the grape bunches and the carry bags. In this zone, continuity, momentum, 

energy and vapour transport equations were solved. This zone included heat of respiration 

and product moisture loss as source terms and the porosity was taken as 0.53. The cooler 

zone represented the volume occupied by the cooler. The equations that were solved in the 

product zone were also solved here. Condensation of water vapour and heat exchange on the 

cooler were taken into account as source terms and the porosity was taken as 0.71.  The free 

air zone consisted of the region that is not included in solid box, product and cooler zones. 

Similar to the product and cooler zones, equations 1-4 were solved. In this zone, the porosity 

and the sources terms were taken as 1 and zero, respectively.  

 

2.3 Model parameters determination 

 

Bulk grape bunches were treated as a porous medium and the vented plastic liner was 

modelled with porous jump boundary condition. Pressure loss coefficients were determined 

from experiments conducted in a wind tunnel (Fig. 3). The dimensions of the test section 

were 0.6 m in width (perpendicular to airflow), 0.4 m in height and 0.4 m in depth (in the 

airflow direction). The required airflow was attained using a suction fan. Independent 

pressure drop experiments were conducted for flow through bulk grape bunches which were 

not covered with carry bags (Fig. 3b), bulk grape bunches which were covered with carry 

bags (Fig. 3c) and vented plastic liner (Fig. 3d). To measure the pressure drop through the 

bulk grape bunches with and without carry bags, the load was contained in a wire mesh and 

placed inside the wind tunnel. The pressure drop through the wire mesh was measured using 

a pressure transducer device (PMD70-AAA7D22AAU, ENDRESS+HAUSER, Weil am 

Rhein, Germany) and was found to be close to zero. Measurements were done for fan 

frequency of 1 to 50 Hz, these frequencies corresponded to an air velocity of 0.064 m s-1 to 

3.21 m s-1 for an empty wind tunnel.  
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For the porous bulk grape bunches, the measured pressure drop value was expressed as a 

function of air velocity and fitted to the Darcy-Forchheimer equation ( 21
2b

P u u
L κ
∆ µ

= − −β ρ ) 

with r2  0.993 using Microsoft Excel solver. The solver determined the best fit by 

minimizing the deviation between measured and predicted values. From the fitted equations, 

the values of the Darcy permeability (κ ) and Forchheimer drag coefficient (β ) were 

determined. The first term in the right side of the equation is the Darcy term that accounts for 

the viscous drag which is dominant at low air velocities (laminar flow), while the second term 

is the Forchheimer term that accounts for the inertial drag which dominates the pressure drop 

at high air velocities (turbulent flow). Lb is the bulk length in the flow direction (0.4 m). In 

the case of bulk grapes without carry bags, the measured values of K and β were 3.62 × 106 

m-2 and 80.19 m-1, respectively. The presence of the carry bags increased the coefficients 

significantly and the corresponding values of the coefficients were 1.74 × 107 m-2 and 358.08 

m-1, respectively. These parameters were determined for a particle Reynolds number 

( Re p
p

uDρ
µ

= ) range of 63-3347. This range corresponds to an intermediate to turbulent flow 

region. For flow through porous media, it is reported that Rep < 10, 10 ≥ Rep ≤ 300 and Rep 

> 300 distinguish laminar, intermediate and turbulent flow regimes, respectively (Eisfeld & 

Schnitzlein, 2001). The flow in this experiment was in the range of intermediate to turbulent, 

but including the laminar flow region could improve the accuracy of parameter estimation.   

 

Pressure loss coefficients of the porous jump boundary for vented plastic liners were also 

determined from measured data. The porous jump boundary condition is normally used to 

model a thin membrane with known pressure drop characteristics. For this boundary, the 

pressure drop is expressed as: 21
2 lp u u t

κ
µ ∆ = − +β ρ 

 
, where tl is the thickness of the liner. 

Pressure drop through the different vented plastic liners was measured by fixing the liner 

perpendicular to the airflow direction (Fig. 3d). Fan frequency range and pressure sensors 

used in this experiment were similar to the previous experiments on flow through bulk grape 

bunches and vented plastic liners. The Reynolds number of the flow based on the hydraulic 

diameter of the tunnel was in the range of 832-9280, the range covers laminar, intermediate 

and turbulent flow regions. The critical Reynolds number of channel flow is reported to be 

Stellenbosch University  http://scholar.sun.ac.za



213 

around 1300 (Patel & Head, 1969; Högberg et al., 2003). The measured pressure drop data 

were fitted to the above equation and corresponding values of 
κ
1 , β  and liner thickness (tl) 

for different vented plastic liners are given in Table 1 (r2  0.991). The thickness of the liners 

was taken from Ngcobo et al. (2012).  

 

The effect of the cooler on room airflow and humidity distribution was also included in the 

model. As the air passes through the finned tube heat exchanger, there is a significant 

pressure drop and condensation of water vapour over the cold heat exchanger surfaces.  The 

cooler was also modelled as a porous medium. However, the Darcy term was neglected and 

the parameter β was calculated by taking into account losses due to wall friction, entrance 

and exit and acceleration/deceleration effects (Tso et al., 2006). The quadratic term 

dominates the pressure drop when the flow Reynolds number ( Re a c

a

uDρ
µ

= ) is much greater 

than 1 (Zukauskas and Ulinskas, 1990; Tso et al., 2006; Verboven et al., 2006; Jacimovic et 

al., 2006). In this study the Re of the flow through the cooling unit was 3854.21 and 

corresponding value of  β was 42.6 m-1. The source due to the heat loss to the cooler (Sec) 

was calculated using: 

 ( )c hc c c a
ec mc

c c

Q h A T TS LS
V V

−
= = +  (8) 

To calculate the mass source due to the condensation of water vapour on the cooler (Smc), 

where L is the latent heat of evaporation (J kg-1), the following equation was used: 

 ( )c mc c da vc va
mc

c c

m h A X XS
V V

ρ −
= =  (9) 

The convective mass transfer coefficient (hmc) was calculated according to Lewis correlation 

of heat and mass transfer ( 2/3
hc

mc
p

hh
C Leρ

= ) (Tso et al., 2006), where Le is the Lewis number 

which was taken as 0.95 and 1 for frosting and non-frosting conditions, respectively.   

The heat of respiration (Sep) of the grapes was calculated using 0.11344.599 PT
epS e=  (Becker et 

al., 1994). The product moisture loss was calculated using a lumped convection model, 

Stellenbosch University  http://scholar.sun.ac.za



214 

neglecting the moisture diffusion inside the product: 

                                              ( )mp b p vp vaS h a P P= −                                               (10) 

where the Pvp and Pva are vapour pressures on the product surface and surrounding air, 

respectively. For thermodynamic equilibrium the surrounding air temperature approaches the 

product surface temperature and the vapour is assumed to follow the ideal gas law, 

vp w satP a P=  and
100va sat
RHP P  =  

 
. Details about the calculation of the bulk product mass 

transfer coefficient (hb) can be found in section 2.2. The skin mass transfer coefficient and 

water activity ( wa ) of the grapes were taken from Becker et al. (1994), with values of 

104.02 10−×  kg m-2 s-1 Pa-1 and 0.98, respectively. Average specific area ( 6
p

p

a
D
φ

= ) of the 

grape bulk was taken as 158.21 m2 m-3 (Verboven et al., 2006). The model used user defined 

functions to include the heat and mass transfer source terms. 

 

2.4 Boundary conditions and simulation procedure 

 

The dimensions of the simulation domain were the same as the experimental cool room (Fig. 

1). The fan was modelled as a fan boundary with a given pressure rise (32 Pa). This was a 

lumped parameter model that predicted the amount of flow through the fan, but did not take 

into account the detailed flow behaviour and the turbulence created through the fan blades. 

Detailed geometries of the vented carton box and pallet were explicitly modelled (Fig. 4). 

The product and cooler were treated as porous mediums; the determination of the relevant 

source terms is given in section 2.3. Vented liners were taken as porous jump boundaries with 

the corresponding loss coefficients (section 2.3), whereas the non-perforated plastic liner was 

treated as a wall boundary. Moisture absorption pad and corrugated riffle sheet were also 

taken as wall boundaries. Condensation of water vapour on these surfaces was modelled and 

it occurred when the vapour pressure of the air next to wall surfaces was higher than the 

saturated vapour pressure. The initial cool room temperature and RH were measured and 

found to be 0.13 0C and 90.77 %, respectively (Temptale4 Humidity and Ambient 

Temperature 16000, SENSITECH, Beverly, MA, USA). 
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The governing equations were numerically solved using the finite volume method. The 

computational domain was discretised using a tetrahedral hybrid mesh (Fig. 4). The selection 

of the optimum mesh size was based on the size and complexity of the zones. Mesh with a 

maximum edge length of 0.005 m and 0.01 m for box and product zones was used, 

respectively. The other regions were discretised using mesh with maximum edge length of 

0.03 m. The mesh consisted of over 4.62 × 106 cells. This mesh size selection was made 

based on a mesh sensitivity study. Comparison of the calculated results (wall y+ value, 

product temperature and RH) and central processing unit (CPU) time of calculation for 

different mesh sizes was made. Wall y+ value is a dimensionless parameter defined by: 

pu y
y τρ

µ
+ = , where uτ is the friction velocity, py   is the distance from point P to the wall, ρ  

is fluid density and µ  is fluid viscosity at point P. There was no significant change in value 

of the results when the mesh was smaller than this size (p < 0.05). The calculated y+ values 

were less than 5 and that fulfilled the requirement of enhanced wall function that was used in 

this model. The importance of such low y+ values on wall surfaces was also discussed by 

Tutar et al. (2009).  

 

The equations were discretised using a second order upwind scheme and pressure-velocity 

coupling was done using a SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) 

algorithm. SIMPLE algorithm uses the relationship between velocity and pressure corrections 

to enforce mass conservation and to get the pressure field. SIMPLE calculation is initiated 

with a guessed pressure field and the discretised momentum equation is solved using the 

guessed pressure field. In the SIMPLE algorithm an iteration is used to improve upon the 

guessed pressure field. A time step of 120 s and 50 iterations per time step were used. The 

simulation was converged to a solution with a normalized scaled residual below 10-4 for all 

equations. In normalized scaled residual analysis, the residual shows the error in the 

conservation equations and it is scaled using the global value, finally normalized by dividing 

using the maximum residual value. The residual of the energy equation was converged below 

10-7. For most problems, normalized scaled residual values of 10-3 for all equations except 

energy and species transport equations and 10-6 for energy and species transport equations 

gives sufficient accuracy (Ansys, 2010).  Sensitivity of the solution to different time steps 

(3600 s, 1800 s, 600 s, 120 s and 60 s) was assessed and no significant changes in the result 
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were found when the time step was lower than 120 s (p<0.05). The calculation was done 

using 64-bit, Intel® Core™2 i7 CPU, 2.93 GHz, 8 Gb RAM, Windows 7 computer and the 

CPU time of calculation was more than 22 h. 

 

2.5 Model validation experiments 

 

Validation experiments were conducted inside experimental cold storage room (Fig. 2). The 

inside fruit temperature and RH of the cooling air were measured using Logtag temperature 

probe (LogTag Recorder Limited, Northcote, Auckland, NewZealand) and SENSITECH 

TempTale 4 monitor (Temptale4 Humidity and Ambient Temperature 16000, SENSITECH, 

Beverly, MA, USA), respectively.  

 

‘Regal’ seedless grapes were obtained from the HexRiver area of the Western Cape, South 

Africa. The size of the grapes used was extra-large and it was assumed to be spherical 

(diameter of 20.15±0.13mm). Cooling experiments were conducted for three packaging 

configurations. First, measurement was conducted with the grapes placed inside the vented 

carton box without the other package components (carry bag, plastic liner and SO2 and 

moisture absorption pads). In the case of the second experiment, grapes were placed in carry 

bags and the carry bags with the grapes were packed inside the vented carton box. This 

experiment excluded plastic liner, SO2 pad and moisture absorption pad. In the last case, the 

experiment was done with all the package components included as per the commercial 

requirement (Fig. 1). Different plastic liners were used, including non-perforated, 120 × 2 

mm perforated, 54 × 2 mm perforated and 36 × 4 mm perforated. The numbers on the vented 

liners indicate the number and size of the holes. In all cases, the corrugated paper sheet was 

placed in the bottom of the vented carton box. The cooling experiments were conducted by 

placing two carton boxes with the same packaging configuration adjacent to each other on a 

pallet. Three temperature sensors and one RH sensor were included in every carton (Fig. 5). 

To evaluate the effect of stacking, 30 boxes of grapes were stacked on a pallet in three levels 

(10 boxes per level) according to the commercial guideline (Fig. 1a).  The grapes were 

packed using 120 × 2 mm perforated liners. Each experiment was repeated three times. 
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3.  Results and Discussion 

3.1.  Cooling airflow and temperature distribution 

 

The predicted airflow and temperature profiles are shown in Fig. 6 and Fig. 7, respectively. 

High velocity cold air that was exited from the fan was channelled along the ceiling of the 

cold room, and down the door side wall of the room, cooled the product and circulated back 

to the cooler. A large portion of the cooling air was flowing over the surface of the packed 

product (Fig. 6). Only some portion of the cooling air was able to pass through the vent holes 

of the box. Due to the high flow resistance, the flow of cooling air through the plastic liner 

into the bulk of the grapes was very limited. The flow through the non-perforated liner was 

completely blocked, but in the case of perforated liner there was a very small amount of air 

that passed through it. The velocity of the air within the package was very low, and it was 

moving as a result of the buoyancy force. For instance, in the case of the non-perforated liner 

the average velocity inside the bulk grape after 12 h of cooling time was 0.0041 m s-1.  

 

The cooling process progressed from the surfaces that were exposed to the flowing cold air to 

the central region of the package (Fig. 7). Product temperature was expressed as a 

dimensionless temperature (θ) ( a

i a

T T
T T

θ −
=

−
), where Ta and Ti are cooling air and initial 

product temperature, respectively (Dincer, 1995b). The half- and the seven-eighth cooling 

time correspond to a θ value of 0.5 and 0.125, respectively. Half- and seven-eighth cooling 

times of the side that was exposed to high velocity cold air (position 1 in Fig. 7) were 5.08 h 

and 17.42 h, compared to the 7.78 h and 23.67 h for centre region of the package (position 2 

in Fig. 7), respectively. Gowda et al. (1997) reported an identical trend in a parametric study 

conducted on forced air pre-cooling of spherical food in bulk. The layer that was nearest to 

the entry of the cooling air, cooled earliest, whereas the layer that was farthest from the entry 

point had the highest temperature. The measured and predicted results were in agreement 

(Fig. 8). Inside the package, conduction was the dominant mode of heat transfer. This was 

due to relatively low flow of cooling air into the package. During cooling of the stack of 
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products with a low velocity air (≤ 0.20 m s -1), conduction between products can be the same 

order of magnitude as convection (Amara et al., 2004). This result shows that for such 

packaging system a simple diffusion model combined with the appropriate boundary 

conditions may give reasonable accuracy with lower computational cost. However, in a 

complex flow system like room air cooling, determining the correct boundary conditions is 

challenging. Boundary conditions over the package are spatially highly variable and depend 

on several factors. For instance, in this study the heat transfer coefficients between front and 

back and top and bottom sides were different and there were also differences between 

different positions within the same side. The convective heat transfer coefficient over the 

surface of the package was in the range of 1.2 W m-2 0C-1 to 23.4 W m-2 0C-1. Boundary 

conditions for different design (box and liner) and operating conditions (airflow rate, 

stacking, etc) are different. Experimental determination of the boundary condition for each of 

the cases at high spatial resolution is time consuming, difficult and expensive. The cool room 

model that takes into account all the geometric, airflow, heat and mass transfer details is an 

alternative to predict the boundary conditions in a relatively easy and cheaper way. Such full 

scale refrigerated system models have been validated and used in a number of applications 

and found to be reasonably accurate (Hoang et al., 2000; Moureh & Flick, 2004; Moureh & 

Flick, 2004; Nahor et al., 2005; Mirade & Picgirard, 2006; Chourasia & Goswami, 2007; 

Delele et al., 2009a, 2009b; ). The full scale model can be used to develop a database of 

boundary conditions for different design and operating parameters that can be incorporated in 

the development of a simplified diffusion model of the grape packaging system. 

 

3.3. Effect of package components on heat and mass transfer during cooling and 

storage 

 

The effects of bunch carry bags and plastic liners were analysed on heat and mass transfer. 

The bunch carry bags and plastic liners significantly affected the cooling time (Fig. 9). 

Placing the grape bunches in carry bags increased the half cooling time by 61.09 % from 1.8 

h to 2.9 h, while the seven-eighth cooling time increased by 97.34 % from 3.7 h to 7.3 h. 

Nelson (1978) conducted an experimental study on the cooling of paper wrapped grape bunch 

clusters and reported a similar reduction in cooling rate as a result of the chimney wrap.  
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However, the addition of the carry bag did not affect the RH of the cooling air around the 

product which was 90.77 % on average. RH was calculated by taking the ratio of the partial 

pressure of water vapour actually present in the air-water vapour mixture to the saturation 

pressure of water vapour at the mixture temperature. ANSYS FLUENT calculates the 

saturation vapour pressure (psat) using: ( )
8 1

1
ln 1

i
sat c

i p
ic

p T F T T
p T

α
−

=

     = − × −       
∑  (Ansys, 

2010; Reynolds, 1979). Where 22.089cp = MPa, 647.283cT = K, 1 7.4192F = − , 

2 2.9721F = , 1
3 1.1553 10F −= − × , 3

4 8.6856 10F −= × , 3
5 1.0941 10F −= × , 3

6 4.3999 10F −= − × , 

3
7 2.5207 10F −= × ,   4

8 5.2187 10F −= − × , 0.01α =  338.15pT = K. Enclosing grape bunch 

loaded carry bags inside non-perforated liners increased the half cooling and the seven-eighth 

cooling time by 168.90 % and 185.22 %, respectively (Fig. 9). Nelson (1978, 1985) and 

Gentry & Nelson (1964) conducted an experimental study on the effect of plastic liners and 

observed a similar reduction in cooling rate. Covering with 120 × 2 mm perforated plastic 

liners increased half- and seven-eighth cooling time by 137.81 % and 175.70 %, respectively. 

Relative to the non-perforated liner, perforated liners decreased half- and seven-eighth 

cooling time by 11.46 % and 11.41 %, respectively. The improvement in cooling rate as a 

result of liner perforation was not that big. This could be due to suboptimal vent parameters 

(size, number and position) and blockage of the vents by the product and the box surfaces. 

This result shows that in order to get the required improvement in cooling rate, an optimal 

design and operation of perforated liners is necessary.  The velocity of the air inside the 

perforated packaging was a little bit higher than when the non-perforated liner used. For 

instance, after 12 h of cooling time, the air velocity was 0.0059 m s-1 compared to 0.0041 m s-

1 obtained when the non-perforated liner was used. The difference in cooling time between 

the different perforated plastic liners used in this study (120 × 2 mm, 36 × 4 mm and 54 × 2 

mm) was not significant (p < 0.05).  

 

The effect of the non-perforated liner on maintaining high RH inside the package was very 

vital (Fig. 10). Predicted total moisture loss from grapes that were packed with non-

perforated liners and cooled from an initial temperature of 21 0C to a storage temperature of -

0.5 0C and handled at this temperature for one month was only 0.18 %. After the cooling time 

of 8.2 h, the air inside the packed system was completely saturated (RH = 100 %) and 

resulted in a vapour condensation. This phenomenon was also reported by Ngcobo et al. 
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(2012) and Lichter et al. (2011). For perforated liners, the maximum RH that was attainable 

inside the package was the RH of the cooling air. In this case, after precooling and one month 

storage at -0.5 0C, the predicted total moisture was 1.23 %.  These results show that the 

perforation of plastic liners mainly affect the moisture transfer. The non-perforated liner was 

able to minimize the moisture loss. The lower moisture loss could help to minimize weight 

loss, stem drying, browning, softening and shattering of berries, but the high degree of 

condensation inside the package could enhance microbial growth and SO2 injury. Previous 

studies described the advantage of the plastic liner in minimizing grape moisture loss and in 

maintaining quality (Lichter et al., 2011, 2008; Nelson & Ahmedullah, 1976; Costa et al., 

2011; Crisosto et al., 1994; Ngcobo et al., 2012). Crisosto et al. (1994) conducted a moisture 

loss study on Thompson Seedless grapes with and without a plastic liner. After 12 days of 

storage at 0-1 0C and 3 days of shelf life at 20 0C, the moisture loss of 0.4 % and 7.6 % was 

observed for the packages with and without plastic liners, respectively. In the same study, 

after 28 days of shipment at 0-1 0C and 3 days of shelf life at 20 0C, for the package with 

perforated liner, a moisture loss of 0.4 % was reported, whereas no moisture loss was 

observed for non-perforated liner. The experimental study conducted by Ngcobo et al. (2012) 

reported a moisture loss of 0.70 % and 1.80 % after 30 days of storage at 0.5 0C for table 

grapes packaged with non-perforated and perforated liner, respectively. The design of a liner 

film that is capable of minimizing grape moisture loss but that prevents the accumulation of 

the condensed water inside the package is very vital (Lichter et al., 2011).  

 

Previous studies focused mainly on experimental evaluation of the effects of table grape liner 

vents on moisture loss and moisture condensation (Ngcobo et al., 2012). The vents in a 

plastic liner are expected to increase the cooling rate and to decrease the amount of 

condensation inside the package. Results obtained in the present study showed that vents only 

minimized condensation inside the package and increased moisture loss. However, the effect 

of liner vents on fruit cooling rate was relatively small. These results highlight the need to 

design liner vents that are capable of maximizing fruit cooling rate with minimum moisture 

loss. The developed CFD model can be used to optimize vent design of table grape liners, 

thereby reducing the cost of experimental studies. 
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3.4. Effect of product stacking on heat and mass transfer during cooling and storage 

 

The airflow pattern and temperature distribution within and around the stack of grape 

packages is shown in Fig. 11. Only some portion of the cooling air appeared to penetrate the 

stack through the gaps between the boxes (Fig. 11a). The hottest region was located near the 

central region of the stack. The region that was located near the entry of the cooling air had a 

faster cooling rate than the interior region (Figs 11b and 11c). The half- and seven-eighth 

cooling time at the centre of the stack was 23.19 h and 63.92 h, respectively. These cooling 

times were 193.42 % and 204.09 % longer than the corresponding cooling time of the two 

boxes mentioned in section 3.2, respectively. Due to the perforated liner (120 × 2 mm) that 

was used in this study, the maximum RH attained inside the packed boxes was the same as 

the RH of the cooling air. To attain maximum RH at the hottest spot in the stack, a cooling 

time of 87.64 h was needed, which was an increase of 212.90 % relative to the case of the 

two boxes that was mentioned above. The predicted total moisture loss of the stack that was 

cooled from an initial temperature of 21 0C to a storage temperature of -0.5 0C and stored at 

this temperature for a period of one month was 1.88 %. This moisture loss was 34.6 % higher 

compared to the two boxes. This result indicated that stacking of the packages on the pallet 

during handling affected the heat and mass transfer characteristics of the package. Nelson 

(1978) conducted an experiment to study the precooling of grape packages and observed 

significant effects of number and arrangement of packages on the pallet.  Due to the low 

penetration of the cooling air to the central region of the stack, the larger the pallet the more 

difficult to pre-cool.       

 

3.5. Improving the grape packaging and cooling procedure 

 

The validated model was applied to study alternative grape packaging and cooling 

procedures. First, bulk grape bunches were placed inside the vented box and cooled to the 

storage temperature. As soon as the storage temperature was attained grape bunches were 

placed inside the carry bag and plastic liner. In this method of cooling, the seven-eighth 

cooling time was reduced by 78.11 %, showing that this approach could help to reduce the 
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total energy consumption of the system. However, in this cooling procedure the RH inside the 

package was relatively low.  During packing with perforated plastic liners the RH throughout 

the storage period was the same as the RH of the cooling air. However, in the case of non-

perforated liners there was a slight increase of RH inside the package (2.12 %) during a one 

month storage period. Relative to the standard way of packaging and cooling, this method 

minimized the cooling energy and avoided the moisture condensation. The total energy 

consumption increases with precooling time (Thompson et al., 2010). However, the total 

moisture loss was relatively increased. After pre-cooling and one month storage at -0.5 0C, 

calculated total moisture loss of 0.57 % and 1.39 % was observed for non-perforated and 

perforated liners, respectively.  

 

In the second case, grape bunches were covered with carry bags and placed inside vented 

boxes, followed by cooling to the storage temperature. When grapes reached the storage 

temperature they were covered by a plastic liner. In this case, the seven-eighth cooling time 

was reduced by 64.82 %. The behaviour of the RH inside the package was the same as the 

first case. In terms of energy saving, this method of cooling was worse than the first case. 

However, the degree of moisture loss and condensation was not significantly different from 

the first case (p < 0.05). 

 

The third case studied the effect of cooling with high RH air. In this study the grapes were 

packed and cooled in a standard way but the cooling air had relatively high RH (96 %). The 

grapes were packed with perforated liners. With this cooling and storage method, it was 

possible to minimize the moisture loss by 71.16 %, but its effect on cooling rate was not 

significant (p < 0.05). It is known that high RH cooling air minimizes moisture loss by 

minimizing the vapour pressure deficit between the grape surface and the cooling air (Gentry 

& Nelson, 1964; Nelson, 1978; Lichter et al., 2011). This high level of RH can be attained by 

using an external humidifier. In addition to maintaining the required high RH, a humidifier 

that works with water misting can even increase the cooling rate by evaporative cooling 

effect (Delele et al., 2009a).  

 

In the last case, the grape bunches were covered with carry bags and placed inside a vented 
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boxes and cooled to the half cooling time. After reaching the half cooling time the grapes 

inside the carry bags were then covered with a plastic liner and the cooling of the package 

was continued up to the storage temperature. In this scenario, the seventh-eight cooling time 

was reduced by 41.60 %. For the non-perforated plastic liner, it was possible to get high RH 

(97.15 %) inside the package with no condensation whereas, for perforated liners the RH 

inside the package was the same as the RH of the cooling air. The calculated total moisture 

loss after pre-cooling and one month storage at 0.5 0C was 0.34 % and 1.31 % for non-

perforated and perforated liner, respectively. 

 

4. Conclusion 

 

Table grapes are normally packed in multilayer packages. For efficient postharvest handling 

and cooling of table grapes, optimal design, packing and operation of the package are very 

important. The airflow, heat and mass transfer characteristics in and around the table grape 

packaging system were studied using a computational fluid dynamic (CFD) model. The 

model was validated using experimental results.  

 

The effects of different package components on airflow, and heat and mass transfer processes 

were studied. The validated model was applied to evaluate alternative packaging and cooling 

procedures. The presence of bunch carry bags and plastic liners affects the cooling rate of 

grapes. The contribution of plastic liners in reducing the cooling rate of packed grapes was 

higher than the other package components. Non-perforated liners produced the highest RH 

inside the package and gave the lowest moisture loss, but also the highest condensation. Pre 

cooling of table grape bunches with and without carry bags before covering it with a plastic 

liner reduced the cooling time significantly, up to 78.11 %. For perforated liners, the use of 

high RH (96 %) cooling air compared to 90.77 % reduced the moisture loss by 71.16 %. The 

cooling airflow pattern, cooling rate and moisture loss were also affected by the stacking of 

the product on the pallet. The result demonstrated the applicability of CFD models to 

determine the optimum table grape package design and handling that gives the maximum 

cooling rate with minimum water condensation and moisture loss. The approach followed in 

Stellenbosch University  http://scholar.sun.ac.za



224 

this study can be applied in the optimization of other agricultural product packaging system 

design and handling. However, these models must include the appropriate system geometry, 

air supply properties and product physiochemical properties.      
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Table 1:  Pressure loss coefficients of the different plastic liners 

Liner type: 

number x size (mm) 

Liner thickness: 

(µm) 

           1/K 

           (m-2)     

β 

(m-1) 

 

0 × 0 (Non-perforated) 

 

20 

 

- 

 

- 

30 × 2 16 6.91 × 107 2.47 × 104 

54 × 2 16 4.81 × 107 2.17 × 104 

120 × 2 16 4.64 × 107 1.90× 104 

36 × 4 16 4.09 × 107 1.85 × 104 
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Figure 1: Table grape package: (a) Picture of packed table grape, (b) Diagram showing the 

details inside a packed box 

(b) 

(a) 
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Figure 2. Details of the experimental cold storage room  
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Figure 3: Wind tunnel experimental setup for airflow resistance measurement; (a) wind 

tunnel test section, (b) bulk of grape bunches without carry bags, (c) bulk of grape bunches 

with carry bags, (d) vented plastic liner 
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Figure 4: Details of the geometry and computational mesh used for the model simulation; (a) 

whole computational domain, (b) carton box 
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Figure 5: Experimental setup inside the cold storage room (    position of sensors) 
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Figure 6: Predicted airflow profile inside the cold storage room loaded with a pallet with two 

grape boxes packed with non-perforated plastic liner; (a) air velocity vector throughout the 

room, (b) airflow contour on a plane that passes through the grape package 

(b) 

(a) 
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Figure 7: Predicted temperature distribution inside the grape package, packed with non-

perforated plastic liner after 6 h of cooling from the initial temperature of 21 OC (294.15 K); 

(a) along the length of the box, (b) along the width of the box  
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Figure 8: Measured and predicted product temperature during cooling at different positions 

within the grape package; position 1: measured (), predicted (···); position 2: measured (), 

predicted (―); position 3, measured () predicted (); the positions are shown in Fig. 7  
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Figure 9: Measured and predicted temperatures at the centre of the grape package for 

different liner and packaging systems at the centre of the package (position 2 in Fig. 7); non-

perforated liner: measured (), predicted (―); perforated liner (120 × 2 mm): predicted (), 

measured (); no liner with carry bag, measured (), predicted (··); grape bulk without 

carry bag and liner: measured (●), predicted (­·) 
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Figure 10: Measured and predicted relative humidity (RH) inside grape package packed using 

plastic liners; non-perforated:  measured (), predicted (―), perforated liner (120 × 2 mm): 

predicted (), measured () 
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Figure 11: Predicted airflow and temperature profiles within and around the stack of grape 

packages, after 6 h of cooling from the initial temperature of 21 OC (294.15 K); (a) airflow 

vectors, (b) temperature along the length of the stack, (b) temperature along the width of the 

stack 

(a) 

(b) (c) 
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General Discussion and Conclusion

 

 

Cooling is the most important and effective technique used to maintain table grape quality 

after harvest. During cooling, heat is transferred from grapes through forced air convection, 

where cold air is forced through individual fruit packages. Since cold air is the cooling 

medium, means that the magnitude of grape temperature and its homogeneity inside packages 

is largely governed by the patterns of airflow. Given that table grapes are packed inside 

multi-scale packages, it is likely that airflow patterns inside the multi-scale packages could 

become uneven resulting in heterogeneous grape temperatures. Poor temperature 

management in the cold chain often results in rapid deterioration of grape postharvest quality. 

The deterioration of quality in grapes is characterised by moisture loss, stem dehydration and 

browning, accelerated berry softening and decay. The main aim of this study was to 

investigate airflow resistance, cooling rates and patterns, and quality attributes of grapes 

during postharvest storage and handling using multi-scale packaging. 

 

The effects of different multi-scale package components on airflow and heat transfer 

characteristics of table grapes were studied and reported in Paper 1. The results obtained from 

this study showed that liner films contributed the highest resistance to airflow of the package 

components. The contribution of liner films to total pressure drop for all the 4.5 kg packaging 

combinations ranged from 40.33±1.15% to 83.34±2.13 %, while grapes in bulk contributed 

the least at a range of 1.40±0.01 % to 9.41±1.23. The results also suggested that perforated 

liner films contributed less resistance to airflow when compared to non-perforated liner films. 

However, there were no clear trends that could be correlated to the size of perforation area of 

the liners, which suggested that airflow resistance did not necessarily decrease with an 

increase in perforation area of liners. This observation was attributed to the small size of 

perforation holes that could have been easily blocked by inner packages or berries. The 

blockage of liner perforations became more apparent as the resistance coefficients did not 

correlate to the vent:hole ratio of the liner films.  It was therefore concluded that predicting 

airflow patterns through the liner films packed with grapes was difficult. The percentage 
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ventilation area on side walls of the 4.5 kg carton boxes was low (2.80% and 6.70%) 

compared to the 8 - 16% recommended in literature.  

 

Table grapes are susceptible to quality defects during postharvest handling and marketing, 

and the combination of good cold chain management and postharvest packaging has been 

widely reported to play a crucial role in maintaining table grape quality. In Paper 2, the 

effects of different carton liner films on the cooling rate and quality attributes of ‘Regal 

Seedless’ table grapes were investigated. The results from this study showed that grape 

berries packaged and stored in perforated liners performed better in terms of faster cooling 

rate, low incidents of SO2 damage and low berry drop, while non-perforated liners performed 

better in terms of maintaining higher RH (up to 100 %) and stem quality. There was SO2 

injury of berries observed in the non-perforated liners and this was attributed to SO2 toxicity 

which may have been induced by the SO2 generator pad releasing high rate under saturated 

atmospheres. This highlights the need to optimise the perforation area of liner bags in 

consideration of the SO2 pad release rate. It is also important that quality attributes such as 

stem dehydration are considered during the optimization of liner films. 

 

Further to investigating the effects of liner films, the performance of three table grape multi-

package designs, namely the 4.5 kg box, 5 kg open-top punnet and 5 kg clamshell punnet 

were studied during cooling and cold storage of grapes (Paper 3). As part of this study, the 

effects of carton stacking and pallet orientation (i.e. 1 m or 1.2 m in the direction of airflow) 

on cooling rates were also investigated. The results obtained in this study indicated that 

grapes packed in the 4.5 kg multi-packaging cooled significantly slower than that of grapes 

packaged in 5 kg punnet multi-packaging. However, the 4.5 kg multi-packaging resulted in 

the lowest moisture loss (1.08%) of grapes, while the punnet multi-packages resulted in 

higher moisture loss (between 2.01-3.12 %) and stem dehydration. These moisture loss 

results were attributed to high vapour pressure deficits (VPD) experienced inside punnet 

multi-packages. These results suggest that there could be a possible trade-off between faster 

cooling rates of grapes and moisture loss, where high velocity of cooling air may result in 

rapid moisture loss of grapes. The results also suggested that stacking of boxes affected the 

patterns of airflow through the stack of boxes as indicated by significant spatial differences in 

the cooling rates of individual boxes of each layer. This variation in cooling patterns within 

stacked boxes and between layers may be ascribed to heterogeneous patterns of airflow due 
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to poor alignment of vent-holes between boxes and further exacerbated by the presence of 

inner packaging.   

 

Moisture loss is one of the most urgent reasons why table grapes should be cooled promptly 

and maintained during postharvest. Even low levels of moisture loss (as low as 1 %) results 

in significant stem dehydration and browning which affects the grape quality negatively and 

tends to detracts consumers from buying. The symptoms of moisture loss do not show on 

grape berries until the loss is severe. In Paper 4, the characteristics of table grape moisture 

loss packaged in different liner films was studied. The results obtained indicated that the use 

of non-perforated liner films significantly reduced the rate of moisture loss from the grape 

bunches compared to the perforated liner films and the no packaging (zero packaging) 

treatments during cold storage. These results corresponded well with the transpiration rate 

results also obtained from the same study, where the transpiration rates were lower in non-

perforated liners than the other packaging treatments, attributed to the lower vapour pressure 

deficit (VPD) and no air circulation inside the non-perforated liner film. 

 

The moisture diffusivity of grape stems during storage was also studied under cold airflow 

conditions (1.21 ± 0.25 °C and 1.18 ± 0.23 ms-1) (Paper 5). Effective moisture diffusivity 

values for stem parts packed in non-perforated liner films were lower than the values 

obtained from the no liner film cold storage condition. In agreement with results obtained in 

Paper 4, the non-perforated liner film (no airflow) significantly reduced the dehydration rate 

of stems compared to the no liner film treatment over the storage period, suggesting that air 

circulation was the main contributor to moisture diffusivity and dehydration of stem parts. 

The dehydration rate of the different parts of stems was inversely proportional to the size 

(diameter) of each stem part. The applicability of drying empirical models (Newton, Page, 

Henderson and Pabis, and asymptotic) to predict moisture loss from grape stems was also 

tested. Results obtained suggested that these models could potentially be used to predict 

moisture loss from stems, as indicated by the best fit to the dehydration data of the different 

stem parts. The data obtained in this work and the tested models, could be applied to assist in 

predicting the quality of grape stems during the handling of fresh grapes in the cold chain. 
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Following an in-depth study of moisture loss of grapes during postharvest storage and 

handling, the potential of humidifying cold storage rooms to control moisture loss and quality 

of grapes in different package designs was investigated (Paper 6). In this study, grapes were 

cold stored with or without supplementary and assessed for weight loss and SO2 injury at 

intervals during a 35 d period. Results obtained showed that humidification reduced the rate 

of moisture loss and stem dehydration from table grapes. However, incidences of SO2 injury 

were observed under the humidified storage condition and these defects were attributed to 

moist saturated air and the presence of an SO2 sheet inside grape packages, creating some 

acidic environment. Humidification was also associated with packaging wetness due to high 

water droplet deposition on packaging. This suggests that although humidification has a 

potential to reduce moisture loss from grapes,  the humidification systems needs to be 

optimized for successful postharvest storage in order to reduce the deposition of water 

droplets on packaging structure. Furthermore, further research work is warranted to optimize 

table grape packaging where humidification applications are used in order to withstand the 

high humidity conditions.  

 

In Paper 7 a preliminary investigation of the flow phenomenon during cooling and handling 

of packed grapes was studied using a computational fluid dynamic (CFD) model which was 

validated using experimental results. During the study the package (carton box) was 

explicitly modeled, the grape bunch with the carry bag was treated as a porous medium and 

perforated plastic liners were taken as a porous jump. The good agreement between model 

and experimental results coupled with the advantage of visualising the predicted flow patterns 

demonstrated the applicability of CFD models to optimise table grape package design and 

handling to achieve optimum cooling rate with minimum moisture condensation on the 

package and reduction of moisture loss of grape berries. The approach followed in this study 

can be applied to investigate and optimize the design of other agricultural and horticultural 

product packaging system. However, the modelling necessary to optimise such packages 

must include the appropriate system geometry, air supply properties and product 

physiochemical properties. 

 

Future studies 
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Future studies should focus at optimising specific table grape multi-packages for improved 

cooling while maintaining postharvest quality. More comprehensive study of the applicability 

of numerical modelling in the design and optimization of grape packaging is warranted.  
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