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The Parallel Worlds of Number Theory

Dedicated to the memory of Klaus Breuer (1968-2013).

1 Introduction

Mathematics is like a fantastical, infinite and infinitely varied landscape which is seen and
explored by the human mind. Different areas of Mathematics are like continents, so vast that
only small parts of them can be explored in a lifetime. These continents differ substantially
in character and in resistance to exploration, yet are connected to each other by various
unexpected land bridges.

My own research concerns the continent of Number Theory. It is one of the very first
areas of Mathematics to be explored, the earliest glimpses and rumours of it dating back to
Babylonian times. Today, the exploration of Number Theory is one of the largest and most
active endeavors in Mathematics, although it is unfortunately under-represented in the South
African mathematical community.

The goal of this article is to give you a taste of Number Theory, and in particular of
the curious phenomenon of the two parallel worlds of Number Theory — Number Fields and
Function Fields — which resemble each other in character, yet differ in telling details.

The point of departure of Number Theory is the study of the whole numbers (integers)
and their behaviour under the four basic operations of arithmetic: addition, subtraction,
multiplication and division with remainder. Depending on the direction taken, this study can
quickly leave behind the familiarity of basic arithmetic, and lead to more exotic concepts, often
at the frontiers with other areas of Mathematics, such as Algebra, Analysis and Geometry.
Today, I invite you to accompany me on a journey starting with the prime numbers and
taking us to zeta functions and the Riemann Hypothesis, then skipping over to cyclotomy,
elliptic functions, elliptic curves, Galois Theory and the André-Oort Conjecture. All this will
take place in classical Number Theory, also known as the world of Number Fields.

At the same time, we will also trace an analogous path in the parallel world of Function
Fields. We will start with the arithmetic of polynomials over a finite field, irreducible poly-
nomials (primes), zeta functions and the Riemann Hypothesis (Hasse-Weil Theorem), then
skip over to the theory of Drinfeld modules, Galois Theory and the André-Oort Conjecture
for Drinfeld modular varieties.

2 Classical Number Theory

Let us start with the prime numbers: 2,3,5,7,11,13,17, ..., which are integers greater than
1 and divisible only by themselves and by 1. These form the building blocks of all other
integers, in that every non-zero integer can be factorised into a product of =1 and a finite list
of prime numbers; moreover, these prime factors are unique (up to the order in which they
are multiplied). This is known as the Fundamental Theorem of Arithmetic, and has been
known since the time of the Ancient Greeks. As an example, the prime factorizations of 24
and 2013 are 24 =2-2-2-3 =23.3 and 2013 = 3 - 11 - 61, respectively.

How many prime numbers are there? The Greeks knew the answer to this, too, and their
proof (most likely due to Euclid) is so beautiful that I repeat it here:

Theorem 1 (Euclid, ca. 300 B.C.E.) There exist infinitely many prime numbers.



Proof. Let pi,po2,...,pn be any finite list of prime numbers. Now form the number
N := pip2---pp + 1. By construction, N leaves a remainder of 1 when divided by any
pi, hence is not divisible by any prime on our list. However, since N > 1, it must be divisible
by at least one prime number, and this prime is not on our list. Therefore, any finite list of
primes is necessarily incomplete. ]

So how are the primes distributed amongst the integers? This question is more subtle,
and it is not immediately clear what would qualify as an answer. If we compute the first
thousand or ten thousand prime numbers, we notice that they are distributed seemingly at
random, but tend to thin out as the numbers get larger. In fact, it looks very much like the
probability that a given number n is prime is 1/log(n) (Here log(x) = In(z) is the natural
logarithm). Of course the distribution of primes numbers is entirely deterministic and not
random at all, so we need a better answer.

The standard approach is to define the prime counting function

m(x) := the number of primes p < z, for every real number .

Figure 1 shows two graphs of y = m(z) at different scales.
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Figure 1: y = n(z), y = Li(z) and y = 105(1-) for 2 < 100 (left), and z < 10,000 (right).

Around 1792-1793 the teenaged C.F. Gauss had conjectured, based on his computations
of prime numbers, that m(z) behaves like the function z/log(x), and the following theorem
was proved a century later by J. Hadamard and C.J. de la Vallée-Poussin.

Theorem 2 (Prime Number Theorem) We have

- m(x)
a:lggo z/log(x) L

The relation in Theorem 2 is more succinctly written as

x
m(x) ~ og(@)’
As we can see from the graphs of Figure 1, an even better approximation for 7(x) is the
function "
Li(x) :== —,
5 logt



which supports the idea that n is prime with “probability” 1/log(n). This approximation was
suggested by G.L. Dirichlet in 1838, and it is an exercise for our Mathematics 144 students

to show that .

" log(x)

The proof of the Prime Number Theorem requires substantial input from Complex Analy-
sis, applied to the Riemann zeta function, and this will be the next destination on our journey.
But first, let us enter the magic mirror into the parallel world of Function Fields.

Li(x)

3 Polynomials Over a Finite Field

Our analogue of the ring Z of integers will be the ring A = F,[T] of polynomials over a finite
field F, of ¢ elements, where ¢ is a power of some prime number p. These are expressions of
the form

a=apT"+ an 1 T" ' 4+ -+ a1 T + ao, ap,ai,...,an € Fy,

where n = deg(a) is called the degree of a.

The layperson can set ¢ = p and think of these as “numbers” with digits ag,a1,...,a, €
F, = {0,...,p — 1}, but where the base has been replaced by the symbol 7. The basic
operations of arithmetic are performed as usual, except that all carries between digits are
dropped.

As aresult, adding 1 to itself p times yields 0 and we say that our ring A has characteristic
p. This is the first major difference between A and the ring Z of integers, which we say has
characteristic 0.

A polynomial is monic if its leading digit is a,, = 1; this is in analogy with the positive
integers.

Our analogues for prime numbers in Z are monic polynomials in A of degree at least
1 which are irreducible, meaning polynomials which cannot be factorised into products of
smaller polynomials. For example, the first few primes in A = F3[T] are

T, T+1, T+2 T>+1, T>°+T+2, T?> + 2T + 2.
As in the classical case, every non-zero polynomial in A can be factorised into a constant
times a product of primes, unique up to ordering.
How many primes are there in A? Infinitely many — in fact, Euclid’s proof of Theorem 1
also works in this case. As to their distribution, it again looks random, thinning out as the

degree gets larger. In this case, however, we can get more precise information. We define the
prime counting function for A as

ma(n) := The number of primes in A of degree n, for any n > 1.

Then one can prove

ma(n) ~ (1)

logq(x)’
where x = ¢" is the total number of monic polynomials of degree n in A. So this is an exact
analogue of the Prime Number Theorem. In this case, the proof of (1) is much simpler than
the proof of the Prime Number Theorem for Z. As we will see, this is related to the notion
of zeta functions.



4 The Riemann Zeta Function

We now return to the world of classical Number Theory and consider the function defined by
. = 1
C(s) =D —. (2)
n=1
This is called the Riemann zeta function, although it was first studied by L. Euler, who proved

in 1735 that

1 1 1 2
N=14+_4+_4—4...="
@ Jr4+9+1(fL 6’

and obtained similar expressions for ((s) for other positive even integers s. More importantly,

Euler discovered in 1737 that .
I\
o =TI(1-) - 3)

where the product runs over all prime numbers p. This is a simple consequence of unique
factorisation, although to give a rigorous proof one must be a little careful with convergence
issues. Speaking of convergence, the series (2) diverges for s = 1, since

ey sy (n)
2731 n = B
and so lim,_,;+ ((s) = +o0. This, combined with the Euler Product (3), gives another proof
of the fact that there are infinitely many prime numbers. In fact, with a little extra effort
one can use this to show that the sum
1 1 1 1 1

2 3Ts T

of reciprocals of primes diverges, so in a sense there must be more prime numbers than there
are squares (after all, the sum of reciprocals of squares converges to %2) This immediately
gives us mw(xz) > /x for sufficiently large x. In fact this argument gives us, for any ¢ > 0,
7(z) > 27 for all sufficiently large z.

We thus see that ((s) has much to tell us about the distribution of prime numbers.

In 1859 G.F.B. Riemann presented to the Prussian Academy of Sciences his one and
only publication in Number Theory [30], which is nevertheless considered one of the greatest
contributions to the field. His point of departure was to consider ((s) for complex numbers
s € C, thus bringing to bear the full force of Complex Analysis on the study of prime numbers.
The series in (2) converges to a holomorphic function for #(s) > 1, and Riemann showed how
to extend ((s) to a meromorphic function on the whole complex plane, with only a simple
pole at s = 1. Furthermore, he discovered that ((s) satisfies the functional equation

s S

m 2T (%) C(S):W_lg F(l;s) C(1—ys), for all s € C, (4)

where -
I'(s) ::/ e it dt
0

is Euler’s Gamma Function.



Thus we see that ((s) enjoys a certain symmetry about the critical line R(s) = % The

presence of I' ($) in (4) forces ((s) to be zero for negative even integers s, the so-called trivial
zeros, and all other zeros must lie on, or be distributed symmetrically on either side of, the
critical line R(s) = 5. From the series (2) it is clear that ((s) # 0 for R(s) > 1, and thus by
symmetry also for R(s) < 0, except for the trivial zeros. All other zeros of ¢ are thus confined
to the critical strip 0 < R(s) < 1; they are called the critical zeros.

Figure 2 shows a phase plot of ((s), on which we can clearly see the pole at s = 1, the
trivial zeros on the left, and the first few critical zeros, all of which lie on the critical line.

Figure 2: Phase plot of ((s)

What does this tell us about prime numbers? Instead of the prime counting function 7 (z),
let us consider the following function, which is easier to study:

77

ifn=p
otherwise.

h(x) = ZA(”), where A(n) := { Bng

n<x

The Prime Number Theorem can be shown to be equivalent to

bla) ~ .

Riemann deduced an exact formula for ¢(x), which (after some simplifications) can be written
as

P(x) :m—z%o —log 2w — %log(l—w‘2), (5)
p

where the sum ranges over all critical zeros p of ((s). This sum is only conditionally conver-
gent, otherwise ¥ (z) would have to be continuous, which it is not. The terms of the sum must
be added in order of increasing |p|. Since |z°| = %), we therefore get a valuable estimate
of ¢(z) (and hence of m(x)) if we knew that R(p) < 1 — ¢ for all critical zeros p. In fact,
Riemann conjectured that all the critical zeros p lie on the critical line; this is known as the



Riemann Hypothesis. All critical zeros p of ((s) satisfy R(p) = %

This is the single most important unsolved problem in Mathematics today. There are
hundreds, possibly thousands, of theorems that begin “Assume the Riemann Hypothesis is
true, then ...”. We will encounter examples of this towards the end of this article.

The Riemann Hypothesis is equivalent to the following strong form of the Prime Number
Theorem:

7(z) = Li(x) + O(Vzlog x). (6)
In other words, the further left we can banish the zeros of ((s), the better estimates we
can get for 7(x). Unfortunately, the best that is known at the moment is

C(s) #0 for all R(s) > 1.

This was proved independently by Hadamard [18] and de la Vallée-Poussin [33] in 1896,
which nevertheless allowed them to prove the Prime Number Theorem, albeit with much
weaker error bounds than (6).

5 The Riemann Hypothesis for Function Fields

Let us define a zeta function for the polynomial ring A = F,[T]. For any a € A we set
la| := ¢98(9) and then define
1
CA(S) = Z W

a€A, a monic

In fact, since there are ¢" monic polynomials of degree n, we see that

— n — — 7

by summing the geometric series. This expression makes sense for all s € C, s # 1, and we
find again a simple pole at s = 1. Unique factorisation in A again gives us the Euler product

oo =T1(t ) =I(- ) .

P n=1

Combining (7) and (8), it is a simple exercise to deduce that
¢" = dma(d),
dln
and Mobius Inversion gives us the exact expression
_ 1 n/d
ma(n) =~ u(d)g"". (9)
din
Here u is the Mobius function, defined for any integer n € Z by

1 if n is the product of an even number of distinct prime numbers
pu(n) == ¢ —1 if nis the product of an odd number of distinct prime numbers
0  if n has a repeated prime factor.



n
The function p(n) is highly erratic, but since the highest term in (9) is q—, and the
n
n/2
next term is no larger than q—, we obtain the following strong form of the Prime Number
n

Theorem for A = TF,[T]:

n

q n/2
R

), (10)

which is even stronger than what we can get for Z assuming the Riemann Hypothesis.

So what about the Riemann Hypothesis for (4(s)? It is vacuously true, since (4(s) does
not have any zeros!

Does this mean that there is no interesting analogue of the Riemann Hypothesis in the
function field world? Far from it, but we will need some more technical definitions (which
will not be needed for the rest of this article).

Let K be a global function field, that is a finite extension of (7). Choose any place oo
of K, and define the ring

q

A:={z € K | z is regular at all places except co}.

This is a Dedekind domain with finite class number, and is a more sophisticated analogue
of Z (or more generally, of the ring of integers in a number field). We can define the zeta

function of this ring A by
1
Ca(s) = Z W?

aCA
where the sum runs over all non-zero ideals a C A and |a| := #(A/a). Then Ca(s) again
satisfies an Euler product, and it can be shown that it is a rational function of the form
Palq™?)
Cals) = T ==

where Py(x) € Z[z] is a polynomial of degree 2g, where g is the genus of K.
From this one obtains the following exact expression for the prime counting function:

wa(n) := The number of prime ideals p C A of norm |p| = ¢"
29
1 1
_ 1 njd 1 (n/d)p:
E S (S ). )
din dn i=1
where p1, p2, ..., p2g are the zeros of (4(s).

Furthermore, the following analogue of the Riemann-Hypothesis was proved by A. Weil
in 1948 [34].

Theorem 3 (Hasse-Weil) All zeros p; of (a(s) satisfy R(p;) = 5.

This applied to (11) again gives us

10



Weil then went on to conjecture a far-reaching generalisation of Theorem 3 to zeta functions
associated to higher dimensional varieties. This conjecture was one of the main motivations
of A. Grothendieck’s foundations of modern Algebraic Geometry, and was eventually proved
by P. Deligne in 1974. Grothendieck (1966) and Deligne (1978) were awarded Fields Medals
for their work.

6 Lattices in C

Let us now return to the classical world of characteristic 0, and start with something that
at first sight appears to be purely Complex Analysis. A lattice A C C is a discrete additive
subgroup of C. There are two possibilities, depending on the rank of A.

Ao Zw = {nw | ne€Z} rank 1 case, or
| Zwi + Zwy = {mwy +nws | m,n € Z} rank 2 case,

for generators w,w;,ws € C, where w # 0 and {w;, w2} are linearly independent over R.
We are interested in functions f on C which are periodic with respect to A, i.e. for which

flz+X) = f(2), for all z € C and A € A.

In the rank one case, we find that every A-periodic function can be written in the form

f(z) = flea(2)),

where ex(2) “ and f is a function on the multiplicative group C* = C ~ {0}. If f is
meromorphic, then f is given by a suitably convergent Laurent series

f(w) = Z apw”, an € C,

neL

— esz/w

which is just the Fourier series of f.
Thus the exponential function ey : C — C* is fundamental to the study of periodic
functions. It satisfies the functional equation

er(nz) =ep(z)" for all n € Z,

which we capture in the following commutative diagram with exact rows.

0 A (O g 1 (12)
[
0 A c2.c 1

Here the first two vertical arrows represent multiplication by n € Z and [n] : C* — C* is the
homomorphism z — x™.
The points of order n in C* are the nth roots of unity:

C'n] ={weC" |w" =1} ={ea(A/n) | N € A} = A/nA =2 Z/nZ

and they are of great relevance in Number Theory.

11



Let ¢, € C*[n] be a primitive nth root of unity, that is, a generator of the cyclic group
C*[n] = Z/nZ. Denote by Q((,) the nth cyclotomic field, obtained by adjoining ¢, to Q.
Then Q(¢,) is a Galois extension of QQ; moreover, its Galois group is Abelian, and we have
the explicit isomorphism

(Z/nZ)" — Gal(Q(¢n)/Q)

m  (mod n) —— (om: ().
Moreover, every Abelian extension of QQ is contained in a cyclotomic field:

Theorem 4 (Kronecker-Weber) Let K/Q be a finite Abelian extension. Then K C Q((,)
for somen € Z.

7 Elliptic Functions and Elliptic Curves

Let us now consider the case of rank two lattices A = Zw; +Zw-o C C. Meromorphic functions
which are periodic with respect to A are called elliptic functions, and were studied intensively
in the 19th century. By A-periodicity, an elliptic function f is determined entirely by its
behaviour on the fundamental parallelogram

{zwi +ywr € C|0 < 2,y < 1}

for the lattice, so f defines a function on the quotient C/A, which is a torus (see Figure 3) — it
can be visualised by glueing together opposite pairs of edges of a fundamental parallelogram.

° o1+ s °
) K SN
S v
CRIN
' ' BEES
. ot ]l .E|| \
0 .

Figure 3: The lattice A = Zw; 4+ Zws with fundamental parallelogram (left), and the torus C/A (right)

It is easy to show that any non-constant elliptic function must have at least two poles in
any fundamental parallelogram of A, so the simplest example is the Weierstrass p-function,

oA =5+ Y (ﬁ-g)

AeAN{0}

which has a double pole at every point of A. A phase plot for pa(z) is shown in Figure 4.

12



0

Figure 4: Phase plot of p(z) on C (left) and on the torus C/A (right), with A = Z(1+2i) +Z(2+1).

One can show that every elliptic function is a rational combination of pa(z) and its
derivative @/ (z). Furthermore, these two functions are related by the following differential
equation:

pﬁx(z)Q = 4@,\(2)3 — gopa(2) — g3, forallze C~ A (13)
where
1
g2 = 60 Y 1 €C
AeA~{0}
1
gg = M0 > 5€C
AeA{0}

and

g5 — 27g5 # 0.

The constants go and g3 are called Eisenstein series, and depend on A. They are examples of
modular forms, themselves very interesting from a number theoretic perspective, but beyond
the focus of this article.

The differential equation (13) leads us to define an Elliptic Curve E as a projective alge-
braic curve whose affine equation is

E:y? =42 — gox — gs, (14)

for constants go, g3 € C satisfying A := g3 — 27¢3 # 0. The condition A # 0 is equivalent to
the curve being smooth.

The set of complex-valued points F(C) consists of all solutions (x,y) € C? to (14), as well
as one further point O at infinity. Now it follows from (13) that E(C) is parametrised by oa
and @y as follows:

13



~

C/A =5 E(C)

e i B

Thus an elliptic curve is isomorphic (as a Riemann surface) to a torus. Since the torus
C/A is also an Abelian group, F(C) inherits an Abelian group structure as well, with O as
the identity element. Geometrically, this group structure is determined by the condition that
for three points P,Q, R € E(C),

P+Q+R=0<+= P, Q and R are collinear;

see Figure 5.

Figure 5: Addition law on an elllptlc CUrve (Image credit: Beao/Wikipedia)

For every n € Z we thus obtain a group homomorphism
[n]: E(C) — E(C)
P +— [nP=P+P+---+P.

n

We summarise all this information in the following commutative diagram with exact rows,
strongly reminiscent of (12):

0—sA——C—N Lm0 (15)
0— s A—C—N | pey 0

The right commutative square encodes a family of functional equations for p known as
addition laws; the version for n = 2 is

(2 2
pA(22) = i <Z§EZ§> —20p(2)  if2z & A.

For any n, the subgroup E[n] of points of order n is isomorphic to A/nA = (Z/nZ)>.

14



8 The Arithmetic of Elliptic Curves

Why are elliptic curves of interest to Number Theorists? We give here a small selection of
interesting results.

Let K be a number field, i.e. a finite extension of Q. Suppose E/K is an elliptic curve
defined over K, i.e. defined by an equation like (14) with coefficients gs, g3 € K. Then the
addition law on FE is defined by rational expressions with coefficients in K, and so the set
E(K) of K-valued points on E is a subgroup of E(C). A fundamental result is the following.

Theorem 5 (Mordell-Weil) The Abelian group E(K) is finitely generated, i.e.
E(K) = E(K)or X Z", where the torsion subgroup E(K )ior is finite.

The integer r > 0 in the above theorem is called the rank of E/K (not to be confused
with the rank of the lattice A, which is 2), and its behaviour is very mysterious. It is the
subject of the Birch and Swinnerton-Dyer Conjecture, one of the Clay Millenium Problems,
and it is conjectured that there exist elliptic curves over Q with arbitrarily high rank.

How large can the K-rational torsion subgroup E(K )i be? It turns out that there are
only finitely many options for each field K.

Theorem 6 (B. Mazur, 1978) Let E be an elliptic curve over Q. Then E(Q)ior is iso-
morphic to one of the following groups.

Z/NZ where N =1,2,3,...,10 or 12
Z)27Z x Z/2NZ where N =1,2,3,4.

Moreover, all of these groups do occur.

Theorem 7 (L. Merel, 1996) For every d € N, there exists a constant B > 0, depend-
ing only on d, such that, if E is an elliptic curve defined over a number field K of degree
[K : Q] =d, then |E(K)tor| < B.

The above theorem by Merel was known for a long time as the Uniform Boundedness
Conjecture.

The n-torsion group E|[n] is defined over K and is isomorphic to (Z/nZ)?. Adjoining the
coordinates of these points to K gives a Galois extension K (E[n]|) of K. Since the Galois
action respects the Z/nZ-module structure of E[n], this Galois group is isomorphic to a
subgroup of GLa(Z/nZ).

How large is this subgroup? That depends on the size of E’s endomorphism ring. Since [n]
is an endomorphism for every n € Z, we find that Z C End(FE). Usually, that is all, but some-
times End(E) is larger and we say that E has complex multiplication (CM). In this case, the
Galois action commutes with the additional endomorphisms, which forces Gal(K(E[n])/K)
to be Abelian (and hence much smaller than GLa(Z/nZ)).

When E does not have complex multiplication, then this Galois group is much larger, and
we have the following deep theorem by J.-P. Serre [32].

Theorem 8 (Serre, 1972) Suppose E/K is an elliptic curve over a number field K, and
that E does not have complex multiplication. Then there exists a constant B > 0 such that,
for every n € Z, the Galois group of K(E[n])/K is isomorphic to a subgroup of GLa(Z/nZ)
of index at most B.

15



As a consequence of Serre’s Theorem, we can bound the growth of E(K ). as we enlarge
the number field K.

Theorem 9 (Breuer, 2010) Let E/K be an elliptic curve defined over a number field K.
Then there exists a constant C' > 0 such that, for any finite extension L/K,

#E(L)ior < C([L : K]loglog[L : K])7,

where v =1 if E has complex multiplication and v = % otherwise.

9 Drinfeld Modules

We now return to the world of function fields, where we wish to find an analogue of the theory
of lattices in C and elliptic curves. First, we need a characteristic p analogue of the field of
complex numbers, that is a field which is both complete and algebraically closed.

Starting with the ring A = F,[T], we form its quotient field F' := Fy(T") (the analogue of
the field Q of rational numbers). On this field we define the absolute value

‘gg:;’oo .= gAes(f)—des(g) 0 #£ gg:; € F =TF,(T),

and |0]s := 0. This absolute value satisfies the following properties. For all z,y € F,
L. [2]eo =0 <= z=0,
2. [2Yloo = [#]oo|yloo,

3. |2+ yloo < max(|z]oo, [Y]oo)-

The third property is called the strong triangle inequality or ultrametric inequality, and it is
stronger than the usual triangle inequality |x + y| < |z|+ |y|. As a result, this absolute value
induces a very different metric on F' than the usual metric does on Q, R or C. For example,
in an ultrametric space all triangles are isosceles.

To construct an analogue of the real numbers R, we complete F' with respect to this
absolute value, obtaining the field Fi, := Fy((#)) of formal Laurent series in 4. The absolute
value extends to this completion, and is given by |z|oc = ¢", where n € Z with

z=apT" + an TV 1+, an # 0.

The field of complex numbers C is constructed as the algebraic closure of R, so we take the
algebraic closure F, of Fi,. However, in contrast to [C : R] = 2, we find that [F : Fo] = 00,
and as a result F, is no longer complete. The absolute value extends to Fi, and we complete
it once more to obtain the field

—

Cxo = 009

which is both complete and algebraically closed. This is our analogue of the complex numbers,
and there exists an entire theory of complex analysis for this field.

Since the function field analogue of Z is A, our philosophy is to replace Z by A wherever
we can. For example, Abelian groups (Z-modules) become A-modules.
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We now define an A-lattice A C C of rank r to be a discrete A-submodule of C,, which
is free of rank r. This means that

A= Aw + Awg + -+ - + Aw,,

where {wi,ws,...,w,} is linearly independent over Fi,. Since [Co : Fio] = 00, the field C
has enough “space” to accommodate lattices of arbitrary rank » > 1, unlike the classical case
which only admits lattices of rank 1 or 2.

When characterising the A-periodic functions on C, one finds that these can be expressed
in terms of the following exponential function associated to A:

er(z) =z H (1—;)

0£AEA

The function ey : Coo — Co is entire (i.e. is given by an everywhere convergent power series),
F-linear, A-periodic, surjective and has simple zeros at every point of A and no other zeros.
When A has rank 1 then ey is the analogue of the usual exponential function, and when A
has rank 2, it plays the role of the Weierstrass p-function.

We again encode the properties of e into a commutative diagram with exact rows:

0 A Coo 2 Cos 0 (16)

0 A Coo 2 Cop 0

Here for every a € A the first two vertical arrows represent multiplication by a. The right
commutative square encodes the functional equation

ea(az) = ¢-(ea(2)),
where

¢a($) = Z Clil‘qi, a; € (COOa Ay deg(a) 7& 0

is an F,-linear polynomial of degree " 9°8(%) = |q|".
The field C, is automatically an A-module, since A C C,. However, it follows from (16)
that ¢ induces a new A-module structure on C,, defined by

a-z:= ¢g(z), z2€Cqx, a€ A

This new A-module structure on Co, is called a Drinfeld module of rank r. Moreover, the
submodule of a-division points is the A-module

¢la) = {z € Coo | da(2) = 0} = {ea(N/a) [ A € A} = AJah = (AfaA)',

which further cements the analogy with roots of unity (if » = 1) and elliptic curves (if r = 2).
Motivated by this, we define Drinfeld modules more generally as follows.
Let K be a field containing A. Denote by 7 : x +— z¢ the g-Frobenius map. We denote
by K{7} the non-commutative ring of polynomials in 7 with coefficients in K, subject to the
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commutation relation 7a = a?r for every a € K. Equivalently, we can regard K{7} as the
ring of all polynomials of the form ) 7" a;x? under point-wise addition and composition.
Then a Drinfeld module of rank r over K is a ring homomorphism

p: A — K{r}
rdeg(a)

a 7 ¢a = E aiTz)
1=0

satsifying the conditions
1. ag = a, and

2. Qr deg(a) 7& 0.

For a € A, we define the A-module of a-division points on ¢ by

¢la] = {z € K | ¢a(x) = 0};

it is isomorphic to (A/aA)".
Since A = [T is generated by T', a Drinfeld module ¢ is completely determined by

pr=T+qr+ - +g¢17, gekK, g #0.

We note that the construction of ¢ associated to a lattice A C Cy of rank r indeed defines
a Drinfeld module over the field Co, of rank r. Conversely, it can be shown that every Drinfeld
module over C,, can be obtained this way.

The coefficients g1, go, .. ., g» depend on A and are examples of Drinfeld modular forms.

Drinfeld modules were introduced by V.G. Drinfeld [14] in 1974 as a tool for studying
the Langlands correspondence for GLo over a function field. He was awarded a Fields Medal
in 1990.

10 The Arithmetic of Drinfeld Modules

Let us start with the rank 1 case. Consider the Drinfeld module ¢ over F' = F,(T") defined
by ¢ = T + 7; it is known as the Carlitz module and was already studied by L. Carlitz
[12] in the 1930s. It corresponds to a rank 1 lattice of the form Aw, where w € Cy is
transcendental over F’; it is the analogue of 27mi € C. Let a € A, then the module of a-division
points ¢[a] is isomorphic to A/aA and, like the case of roots of unity, one can show that
the field F({,), obtained by adjoining to F' a generator (, of ¢[a], is Galois over F' and its
Galois group is canonically isomorphic to (A/aA)*. Furthermore, we have an analogue of the
Kronecker-Weber Theorem, due to D. Hayes [19], which states that every Abelian extension
of F'is contained in a field obtained by adjoining to F' division points of the Carlitz module,
elements of the algebraic closure F, of F,, and (1/7)"-division points of the Carlitz module
associated to the ring Fq[1/T7.

Now consider the case of general rank r > 1.

Let K be a finite extension of F' = F,(T), and let ¢ be a rank r Drinfeld module over K.
Do we have an analogue of the Mordell-Weil Theorem? Well, almost.
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Theorem 10 (B. Poonen, 1995) The A-module structure defined on K by a Drinfeld mod-
ule is isomorphic to ¢(K)tor x AN, where ¢(K )ior is finite and AN denotes the product of a
countably infinite number of copies of A.

The finite torsion module ¢(K)ior is an interesting object of study. The analogue of
Merel’s Theorem is still unsolved for rank r > 1.

Uniform Boundedness Conjecture. For all integers r,d > 1, there exists a constant
B > 0 such that #¢(K)wor < B for every Drinfeld module ¢ of rank r defined over a field K
of degree [K : F| = d.

In the case r = 1, this conjecture was proved by Poonen [28], and the case of r = 2 and
A = F2[T] was solved by A. Pl [25].

The field obtained by adjoining all of ¢[a] to K is again Galois over K, and analogously
to the elliptic curve case, its Galois group is isomorphic to a subgroup of GL,(A/aA). In this
case, the analogue of Serre’s Theorem was proved by R. Pink and E. Riitsche [26].

Theorem 11 (Pink-Riitsche, 2009) Let ¢ be a Drinfeld module defined over a finitely
generated extension K of F, and suppose that End(¢) = A. Then there exists a constant
B > 0 such that for every a € A, Gal(K (¢[a])/K) is isomorphic to a subgroup of GL.(A/aA)
of index at most B.

As in the elliptic curve case, this allows us to bound the growth of the torsion module of
a Drinfeld module.

Theorem 12 (Breuer, 2010) Let ¢ be a Drinfeld module of rank r over a finitely generated
extension K of F. Then there exists a constant C' > 0 such that, for every finite extension
L/K,

#P(L)tor < C([L : K]loglog[L : K])7,

where v = [End(¢) : A]/r.

Lastly, let 7 > 1 and let K = Fy(T, g1, 92, - .., gr—1), where g1, g2, ..., gr—1 are algebraically
independent over (7). Consider the rank r Drinfeld module defined over K by

pr=T+qT+ - +gear 1"

Up to isomorphism, every rank r Drinfeld module can be obtained from ¢ by substituting
suitable values for the g;’s, so we call ¢ a generic Drinfeld module. For this particular Drinfeld
module we obtain the following result, which was conjectured by S.S. Abhyankar [1].

Theorem 13 (Breuer, 2013) For every a € A, we have Gal(K (¢[a]/K) = GL,(A/aA).

11 The André-Oort Conjecture

Safely back in the Number Fields world, I want to touch upon one more theme, one which
has been a focus of my own research: the concepts surrounding the André-Oort Conjecture.

We start with some definitions. Let E; and Ey be two complex elliptic curves associated
to the lattices A; and As, respectively. An isogeny f : Fhy — Fo is a morphism of algebraic
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curves which maps the identity of E; to the identity of Fo. In terms of complex tori, it is
induced by a map

f:C/A1 —s CJAs
z (mod A;) — ¢z (mod Ay),

where ¢ € C with cA; C Ag. Tts kernel is ker f = ¢ 1Ay /Ay and its degree is deg(f) = # ker f.
An isomorphism f : Fy — FEs is an isogeny with ker f = {0}.
Suppose the elliptic curve F is defined by the affine equation

E:y2:4x3—ggw—gg, gg,ggEC,A::g%—Q?Qﬁ#O.

Then its j-invariant is defined by

. 1728 g3
FE)=—-"==
J(E) A

and two elliptic curves E; and Fs are isomorphic if and only if their j-invariants are equal.
Moreover, for every j € C, there exists an elliptic curve E with j(E) = j. Thus the complex
plane C is a moduli space for elliptic curves.

More generally, the j-invariants of two isogenous elliptic curves are related in the following
sense.

Theorem 14 For every integer N > 1 there exists a polynomial ®n(X,Y) € Z[X,Y] with
the following properties.

1. N (X,Y) is irreducible in C[X,Y].
n(X,Y) = By (Y, X).

If P is a prime number, then ®p(X,Y) = (X —Y)(X —Y*) mod P.

BTN

DN (j(E1),j(E2)) =0 if and only if there exists an isogeny Ey — Ea with kernel ismor-
phic to Z/nZ.

This polynomial ®x(X,Y) is called the Nth modular polynomial.
We see that the ring of endomorphisms of an elliptic curve E associated to a lattice A is
End(E) ={ce C|cA C A},

and it is not hard to show that when E has complex multiplication (CM), i.e. Z C End(FE),
then End(F) is an order in a quadratic imaginary field.
The j-invariant of a CM elliptic curve has interesting Number Theoretic properties.

Theorem 15 Let E be an elliptic curve with complex multiplication by an order R = End(FE)
in the quadratic imaginary field K. Then

1. j(E) is an algebraic integer,
2. K(j(F)) is the ring class field of R, i.e. K(j(E))/K is an Abelian extension of K, with
Galois group isomorphic to the generalised ideal class group Pic(R) of R.
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Moreover, given a quadratic imaginary field K, then every Abelian extension of K can
be obtained by adjoining the j-invariants and torsion points of elliptic curves with complex
multiplication by orders in K. This is a generalisation of the Kronecker-Weber Theorem, and
is generally known as Kronecker’s Jugendtraum.

So CM j-invariants are very interesting numbers. One may ask about the distribution of
CM-valued points on algebraic varieties, and this leads to the André-Oort Conjecture, the
precise statement of which is beyond the scope of this survey. We can, however, show one
very interesting special case. A point (x,y) € C? is called a CM point if both x and y are
j-invariants of CM elliptic curves.

Theorem 16 (S.J. Edixhoven, Y. André, 1995) Let X C C? be an irreducible algebraic
curve. Then X contains infinitely many CM points if and only if

1. X is a horizontal or vertical line with CM constant coordinate, or

2. X is the locus of ®n(X,Y) =0 for some N € Z.

This theorem was first proved by Edixhoven [15], assuming the Generalized Riemann Hy-
pothesis for quadratic imaginary fields, and then unconditionally by André [2] using methods
from Diophantine approximation.

This theorem can also be made effective:

Theorem 17 (F. Breuer, L. Kiihne) Let di,dy and m be positive integers. Then there
exists a constant B such that the following holds. Let X C C? be an irreducible algebraic
curve of degree di and dy in the two coordinates and defined over a number field K of degree
[K : Q] = m. Suppose that X is not one of the two types given in Theorem 16. Then any
CM point on X has height at most B.

The height of a point is a measure of its complexity. We will not give its precise definition
here, but we note that there are only finitely many points of height below any given bound.

I first proved Theorem 17 in 2001 assuming the Generalized Riemann Hypothesis for
quadratic imaginary fields [4]. In a recent breakthrough, Kiithne found an unconditional proof
[22].

12 The André-Oort Conjecture for Drinfeld modules

Finally, we will have a look at the Function Field analogues of the concepts presented in the
previous section.

Let ¢ and 9 be two Drinfeld modules. Then a morphism f : ¢ — 1) is an element f € C{7}
such that

foa=vaf, for all @ € A.

A non-zero morphism is called an isogeny, and can only exist if ¢ and 1 have the same rank.
An isomorphism is an isogeny with trivial kernel, i.e. an element f € C,, with

f¢af_1 = ¢a7 for all a € A.
Suppose now that ¢ is a Drinfeld module of rank r = 2, then ¢ is determined by

or=T+gr+A7% g, AeCu, A0
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We define its j-invariant by

J(8) ="
As in the case of elliptic curves, two Drinfeld modules are isomorphic if and only if they have
the same j-invariant. Furthermore, for every j € C, there exists a Drinfeld module ¢ with
j(¢) = j, and so C is a moduli space for rank 2 Drinfeld modules.
We also have an analogue of modular polynomials, due to S. Bae [3].

Theorem 18 For every monic N € A there exists a polynomial ®n(X,Y) € A[X,Y] with
the following properties.

1. &N(X,Y) is irreducible in C[X,Y].
On(X,Y) =Pn(Y, X).
If P € A is prime, then ®p(X,Y) = (Xl = Y)(X — YY) mod P.

™ o

There exists an isogeny ¢ — ¥ of rank 2 Drinfeld modules with kernel isomorphic to
A/NA if and only if ®n(j(9),5(¥)) = 0.

A generalisation of Theorem 18 to higher rank can be found in my joint work with
H.-G. Riick [10, 11].

The endomorphism ring of a Drinfeld module ¢ is

End(¢) := {f € Coo{7} | fda = duf, Ya € A},

which is in fact the centraliser of ¢4 in Coo{7}. Once again, one can show (by considering
the lattice in C, corresponding to ¢) that End(¢) is an order in an extension K/F,(T) of
degree dividing r, and in which the absolute value | - |, extends to a unique absolute value
in K (this is called an imaginary extension). When this degree is r, i.e. when End(¢) is as
large as possible, we say that ¢ has complex multiplication (CM).

Adjoining the isomorphism invariants (of which there are several if r > 2, see [29] for a
definition) of a CM Drinfeld module ¢ to K again produces the ring class field associated
to End(¢). Moreover, every Abelian extension of a global function field can be obtained by
adjoining invariants and torsion points of CM Drinfeld modules, so an analogue of Kronecker’s
Jugendtraum is true in this case, too.

The following analogue of Theorem 16 was the subject of my Ph.D. thesis, and appeared
in [5]. A point (z,y) € C% is called a CM point if both x and y are j-invariants of rank 2
Drinfeld modules with CM.

Theorem 19 (Breuer, 2002) Suppose that q is odd. Let X C C2 be an irreducible alge-
braic curve. Then X contains infinitely many CM points if and only if

1. X is a horizontal or vertical line with CM constant coordinate, or
2. X is the locus of n(X,Y) =0 for some N € A.

Furthermore, given positive integers dy, ds, m, there exists a constant B > 0 with the following
property. Suppose that X C C2, is an irreducible algebraic curve of degree di and dy in the
two coordinates and defined over a field K of degree [K : Fo(T')] = m. If X is not of the form
(1) or (2) above, then any CM point on X has height at most B.
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Theorem 19 was generalised to more general rings A (still of odd characteristic) in [6], and
in [21] my Ph.D. student A. Karumbidza proved a generalisation of Theorem 19 to Drinfeld
modules of rank 3 (so C%, is replaced by the product of two Drinfeld modular surfaces).

In 2003 I made the following conjecture which was the main focus of my research during
the following decade.

Conjecture 20 (André-Oort Conjecture for Drinfeld modular varieties) Let X be an
irreducible subvariety of a moduli space of rank r Drinfeld modules. Then X(Cs) contains a
Zariski-dense set of CM points if and only if X is a locus of Drinfeld modules with additional
endomorphisms.

I succeeded in proving this conjecture in the cases where X is a curve, and when X is
any subvariety containing a Zariski-dense set of CM points which all lie in one Hecke orbit,
see [8]. More recently, P. Hubschmid [20] succeeded in proving Conjecture 20 in almost full
generality.

13 Concluding remarks

I hope that the reader has enjoyed this brief journey to some of the sights of Number Theory,
and can appreciate the astonishing similarities between Number Fields and Function Fields.
It is indeed a magic mirror from which the reflection of classical Number Theory gazes back
at us, familiar, yet subtly different.

If the reader wishes to see more, and in more depth, I strongly recommend the excellent
book [31] by M. Rosen.
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