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Behavioural and chemical evidence for multiple
colonisation of the Argentine ant, Linepithema
humile, in the Western Cape, South Africa
Natasha P Mothapo*, Theresa C Wossler

Abstract

Background: The Argentine ant, Linepithema humile, is a widespread invasive ant species that has successfully
established in nearly all continents across the globe. Argentine ants are characterised by a social structure known
as unicoloniality, where territorial boundaries between nests are absent and intraspecific aggression is rare. This is
particularly pronounced in introduced populations and results in the formation of large and spatially expansive
supercolonies. Although it is amongst the most well studied of invasive ants, very little work has been done on
this ant in South Africa. In this first study, we investigate the population structure of Argentine ants in South Africa.
We use behavioural (aggression tests) and chemical (CHC) approaches to investigate the population structure of
Argentine ants within the Western Cape, identify the number of supercolonies and infer number of introductions.

Results: Both the aggression assays and chemical data revealed that the Western Cape Argentine ant population
can be divided into two behaviourally and chemically distinct supercolonies. Intraspecific aggression was evident
between the two supercolonies of Argentine ants with ants able to discriminate among conspecific non-nestmates.
This discrimination is linked to the divergence in cuticular hydrocarbon profiles of ants originating from the two
supercolonies.

Conclusions: The presence of these two distinct supercolonies is suggestive of at least two independent
introductions of this ant within the Western Cape. Moreover, the pattern of colonisation observed in this study,
with the two colonies interspersed, is in agreement with global patterns of Argentine ant invasions. Our findings
are of interest because recent studies show that Argentine ants from South Africa are different from those
identified in other introduced ranges and therefore provide an opportunity to further understand factors that
determine the distributional and spread patterns of Argentine ant supercolonies.

Background
Many species have been accidentally introduced into
areas outside their geographic distribution as a direct
consequence of human trade [1]. Indeed, the influx of
exotic species has significantly increased globally with
increased trade, highlighting the important role of
human activity as a major driver of biological invasions
[2-4]. Once established, invasive species have wide ran-
ging impacts on the ecosystem including the displace-
ment of native biota, disruption of ecosystem function
in natural systems [5-7] as well as severe economic

impacts in agriculture and forestry sectors [8]. Thus,
invasive species are considered amongst the most signif-
icant threats to biodiversity globally [9].
Ants are regarded among the most damaging of inva-

sive species largely due to the important roles they play
in ecosystems globally [10-14]. Indeed five ant species
are listed amongst the top 100 worst invaders in the
world [12] and many have already established in most
continents on the globe [15,16]. Although many of these
ants show strong affinity for human modified habitats
where there is high resource availability and limited bio-
tic resistance [17], several have successfully penetrated
into natural communities [10,16,18,19].
The Argentine ant, Linepitheman humile, originates

from South America and has successfully established on
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six continents and several oceanic islands. Their colony
structure is the best studied of invasive ant species
[20-24]. Similar to other invasive ants, Argentine ants
are characterised by a social structure known as unico-
loniality, where territorial boundaries are absent and
intraspecific aggression between physically separate
nests is rare [25-29]. Introduced populations form
supercolonies that extend over thousands of kilometres
[20,22,24,30-32] compared to their native range [33,34].
Ants from spatially separate nests within a supercolony
treat each other as nestmates; however, ants from dif-
ferent supercolonies show pronounced aggression
[20,30,35-37]. It is well established that aggression
between ants from different colonies is determined by
genetic similarity and similarity in cuticular hydrocarbon
profiles (CHC) [23,29], which represent recognition sig-
nals in ants and other insects [30,38-40].
Argentine ants in the introduced ranges are charac-

terised by widespread acceptance of non-nestmate conspe-
cifics, chemical and genetic similarity amongst distant
populations [20,23,25,30,31,35,41]. Thus, mutually tolerant
supercolonies sharing both chemical (CHC profiles) and
genetic similarity are expected to originate from the same
source colonies in the native range [34,41]. This knowl-
edge has been widely used to ascertain supercolony iden-
tity in both native and introduced ranges of the Argentine
ant [22,31,34,35,41,42], and has more recently been used
to investigate introduction history of these ants and other
invasive ants [22,43,44]. Several studies on the population
structure of Argentine ants in most parts of the introduced
range revealed the presence of multiple supercolonies,
usually a single large supercolony with smaller supercolo-
nies [30,36]. The presence of different supercolonies
within a geographic area is thought to indicate multiple
introduction events [35,44]. We use a combination of
behavioural (aggression bioassays) and chemical (cuticular
hydrocarbons) approaches to investigate the population
structure of Argentine ants in the Western Cape, South
Africa. Supercolony boundaries have been determined at
local scales in both native and introduced ranges
[20,22,30-34,41], and more recently across continents
[24,41,45] however, this is not true for South Africa.
Since introduction into the Western Cape, South

Africa in the early 1900s [46], Argentine ants have suc-
cessfully spread throughout the region in both urban
and natural environments [47,48]. The impacts of the
invasion on the Fynbos biome of South Africa, a biodi-
versity hotspot, are similar to other introduced areas
[49-51]. Argentine ants displace native ants and other
arthropod fauna [52,53], disrupting important plant-ant
interactions [54] and leading to the alteration of ecosys-
tem functioning and cascading effects on other trophic
levels [55]. Previous studies suggest that the Argentine
ant has colonised South Africa multiple times, however,

very little work has been done on this ant in South
Africa and large scale data is lacking despite its clear
importance. Tsutsui et al., (2001) found that Argentine
ants from three localities in the Western Cape, South
Africa, form two genetically different groups. This sug-
gested that Argentine ants have been multiply intro-
duced into South Africa and that more than one
supercolony exists. Recently, Vogel et al. (2010) and
Van Wilgenburg et al. (2010) showed that ants from
Stellenbosch do not form part of the global large super-
colony as identified in both these studies. Thus, the
aims of this study are to [1] determine the population
structure of Argentine ants within the Western Cape,
South Africa (the point of entry for this ant); [2] to
identify the number of supercolonies within this region,
infer the number of introduction and relate the findings
with what is observed in other introduced ranges.

Methods
Collection of Argentine ants
Argentine ants were collected from eight sites in the
Western Cape region of South Africa: Stellenbosch, Som-
erset West, Jonkershoek, Bellville, Caledon, Bredasdorp,
Elim and Porterville from September to October
2007 (Table 1, Figure 1). The sites sampled ranged over
900km from the northern to the southern part of the
Western Cape. For each site, we collected three nests
(consisting of queens, workers and brood) at least 500m
apart to avoid collecting ants from the same nests. Nests
were collected in plastic containers (30cm × 2cm × 8cm)
lined with Fluon (Fluoropolymer Dispersion, Whitford
Plastics Ltd, England) one quarter down from the brim
to prevent ants escaping. Prior to behavioural assays, ants
were provided with 0.25 M sugar water only.

Behavioural assays
Individual ants were paired from the same nest (controls),
between nests within the same site as well as between
nests from different sites. Pairwise aggression tests, adapted
from earlier studies [20,25,30] were used to assess the pat-
tern of intraspecific aggression among Argentine ants
within the Western Cape. Single, randomly picked workers
from each of the two nests were paired in an 8ml glass pill
vial lined with Fluon (one quarter down from the brim).
Behavioural interactions between the two ants were
observed and recorded over 10 minutes and scored accord-
ing to escalating aggression on a scale from 0 - 4. Beha-
vioural interactions were categorised as follows: 0 - ignore,
1- antennate with no aggressive response, 2 - retract or
avoidance, 3 - aggression (such as biting, lunging, pulling
and mandible gaping) and 4 - prolonged aggression or
fighting. Categories 0 to 2 were regarded as non-aggressive
while 3 and 4 were aggressive [25]. For each nest pair, the
behavioural assay was repeated ten times while each
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worker was used only once. The nest origin was unknown
to the observer.

Chemical analyses
Ten workers from the same nest were washed in 100 μl
of hexane for 10 minutes, followed by a second two
minute rinse in another 100 μl of hexane. The two sam-
ples were combined to produce a 200 μl cuticular lipid
extract. To purify the extract, silica gel minicolumns
were constructed from glass Pasteur pipette tubes filled
with ± 500 mg of silica gel (grade 13,30-200 mesh,
SIGMA-Aldrich, USA), plugged with glass wool and
pre-wetted with 2ml hexane prior to loading the cuticu-
lar lipid extract (here forth, CHC extract) [56-59]. The
CHC extract was concentrated under a stream of nitro-
gen to 100 μl and then loaded onto the pre-wetted silica
gel minicolumn. The hydrocarbon fraction was eluted
with 3ml of hexane, evaporated to dryness under a
stream of nitrogen and redissolved in 25 μl hexane.
A volume of 1 μl of the extract was injected in a Gas
Chromatograph (Agilent3850) fitted with a splitless
inlet, flame-ionisation detection and a DB-5 capillary
column (30m × 0.32mm × 0.25 μm film thickness, Agi-
lent Technologies, CA). The injection port and the
detector were set at 290°C and 320°C, respectively.
Helium was used as the carrier gas at 30.4 ml/min and
nitrogen as the make-up gas. The following temperature
program was used: oven temperature was held at 80°C
for 2 minutes, and then increased to 270°C at a rate of
10°C/min then raised to 310°C at 3°C/min and finally
held at 310°C for 20 minutes. Electron impact mass
spectra (Agilent 5975B mass spectrometer) were used as
the means of identifying the peaks (compounds) on the
chromatograms. The compounds were identified by
comparing their mass spectra with those of pure com-
pounds accessed via the WILEY and NIST (National
Institute of Standards and Technology) databases. Only
compounds with a match of 90% or more to those
accessed in the library were positively identified. All
compounds in trace quantities were not included
because their abundances could not be calculated.

Statistical analyses
Behavioural assays
Behavioural categories were converted to binary data,
aggression vs. non-aggression. In many behavioural studies,
the scores are averaged to get a single number or aggression
index that is thought to represent the level of aggression per
nest pair in each trial [25,60]; and used to statistically ana-
lyse the data. However, converting categorical data into
mean behavioural or aggression indices is thought to con-
ceal some subtle behavioural differences between trials [42].
Therefore, two non-parametric approaches were used to
analyse the behavioural data: (i) Chi-square tests were used

Table 1 Collection sites for Argentine ants in the Western
Cape, South Africa

Nest Latitude Longitude

Stellenbosch 1 33° 55.945’ 018° 51.825’

Stellenbosch 2 33° 55.746’ 018° 51.889’

Stellenbosch 3 33° 55.959’ 018° 51.990’

Bellville 1 33° 55.940’ 018° 51.609’

Bellville 2 33° 54.132’ 018° 37.593’

Bellville 3 33° 52.346’ 018° 38.200’

Porterville 1 33° 00.683’ 019° 00.511’

Porterville 2 32° 59.072’ 018° 01.457’

Porterville 3 32° 59.078’ 019° 01.392’

Elim 1 34° 35.547’ 019° 45.589’

Elim 2 34° 35.277’ 019° 45.445’

Elim 3 34° 31.751’ 019° 50.112’

Bredasdorp 1 34° 32.258’ 020° 02.760’

Bredasdorp 2 34° 32.607’ 020° 02.892’

Bredasdorp 3 34° 31.830’ 020° 02.106’

Caledon 1 34° 14.355’ 019° 25.699’

Caledon 2 34° 13.616’ 019° 24.561’

Caledon 3 34° 14.045’ 019° 25.175’

Somerset west 1 34° 04.173’ 018° 49.810’

Somerset west 2 34° 05.045’ 018° 49.326’

Somerset west 3 34° 04.669’ 018° 50.717’

Jonkershoek 1 33° 58.819’ 018° 56.738’

Jonkershoek 2 33° 59.482’ 018° 57.251’

Jonkershoek 3 33° 58.733’ 018° 56.982’

List and GPS coordinates of field sites where Argentine ants were collected.

Figure 1 Map of Western Cape, South Africa and the sites used
in this study. Map of the Western Cape region, South Africa with
the eight sites from which Argentine ants were collected for this
study, including sites from previous studies ("green circle”) Tsutsui
et al., 2001 (Cape point, Betty’s Bay and Caledon); ("red circle”) Vogel
et al., 2010 (Stellenbosch) and Van Wilgenburg et al., 2010
(Stellenbosch). Ants were collected from Porterville in the North
right down to Elim in the South.
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to compare aggression between nestmates and non-nest-
mates within sites. (ii) Multivariate data analyses were per-
formed in PRIMER (Plymouth Routines in Multivariate
Ecological Research, version 5.2.9, 2004: Plymouth Marine
Laboratory, UK) to assess the differences in the level of
aggressive interactions for nests between sites. An ordina-
tion analysis was conducted using non-metric Multidimen-
sional Scaling (hereafter MDS) plots that score and display
categories based on their similarity or dissimilarity [61]. The
stress value on the MDS plot is a measure of the goodness
of fit and is dependent on the dimensions of the data used.
A stress value below 0.7 is an indication of a good fit [62].
Bray-Curtis coefficients were used to calculate the similarity
matrix [63] and an Analysis of Similarity (ANOSIM) test,
based on 1000 permutations, was used to assess the signifi-
cance of the separation of aggressive interactions between
the groups on the MDS plot. Global R values closer or
equal to zero indicate strong similarity between the test
groups and those closer to or equal to one indicate very
strong differences between the test groups. Statistical signif-
icance was accepted at p < 0.05.
Chemical analyses
Forty cuticular compounds were separated and identi-
fied by Gas Chromatography/Mass Spectrometry (GC/
MS), and the peak areas were standardised to 100% by
calculating the percentage contribution of each com-
pound to the cuticular hydrocarbon blend. The propor-
tion of the relative compounds was calculated as the
ratio of that compound relative to the other 39 com-
pounds. Because peak areas represent compositional
data, the standardised peak areas were transformed to
logcontrasts using Aitchison’s (1986) [64] formula:
Zij=ln[Yij/g(Yj)], where Zij is the standardised peak area
i, for individual j, Yij is the peak area i for individual j,
and g(Yj) is the geometric mean of all peaks for indivi-
dual j. Multivariate data analyses were performed using
SPSS 17.0 software. The standardised peak areas were
subjected to a Principal Components Analysis (PCA),
with varimax rotation, to reduce the number of describ-
ing variables. The extracted PCA factors were further
subjected to a Discriminant Analysis (DA) to determine
whether the behaviourally defined Argentine ant colo-
nies could also be discriminated on the basis of their
CHC profiles.

Results
Behavioural Assays
Aggression tests revealed that Argentine ants within the
Western Cape are unicolonial, as ants from distant sites
were mutually tolerant. Intraspecific aggression was rare
between ants from the same site (Figure 2). One nest in
Elim, Elim 3, was aggressive to all other nests within this
site (Elim 1 and Elim 2; Figure 2).Consequently; two nests
(Elim 2 - non-aggressive; Elim 3 - aggressive) were selected

and treated independently in further analyses. There was
very little aggression observed between ants from different
sites despite large geographic distances separating them
(Table 2). Only interactions that included ants from Elim
resulted in significantly high levels of injurious aggression
(Table 2). The MDS revealed two groups, those interac-
tions including ants from Elim 3 and those that did not
(Global R = 0.982, p < 0.001; Figure 3), suggesting that a
behavioural boundary exists between ants from Elim 3 and
all the other sites included in this study. In assays between
non-aggressive non-nestmates, ants spent most of their
time antennating or self-grooming. Furthermore, these
data show no relationship between aggression and distance
between nests, since ants remained non-aggressive despite
large geographical distances separating them (see Figure 1).

Chemical analyses
Forty compounds were separated and thirty eight of
them identified in the CHC profile of field populations
of Argentine ant (see Table 3 for compound identifica-
tion). The profiles are characterised by a series of linear
alkanes (retention times 9-28 mins) followed by clusters
of long-chained and methyl-branched hydrocarbons
(retention times 30-38 mins) (Figure 4) with chain-
lengths ranging from C13-C44 (Table 3). Saturated long-
chained hydrocarbons, namely, hexacosane, heptacosane
and octacosane were the most abundant compounds in
the profiles of ants from Stellenbosch, while 13-methyl-
hentriacontane was abundant in the profiles of ants
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Figure 2 Behavioural interactions of Argentine ants within
sites. Frequency of aggressive and non-aggressive behavioural
interactions between nestmates and non-nestmates within each
site. The frequency represents the total number of interactions
(aggressive and non-aggressive) of all three nests within a site for
within and between nest interactions observed over 10 minutes.
Levels of significance shown by (ns) p > 0.05 and (***) P < 0.001
(Chi-Square test). Locality abbreviations: Elim = Elim, Port =
Porterville, Cal = Caledon, Stell = Stellenbosch, SW = Somerset West,
Jonk = Jonkershoek, Bell = Bellville, and Bred = Bredasdorp.
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from Porterville and Bredasdorp. The cuticular profiles
of ants from Elim 3 are distinguishable from all other
sites in that Elim 3 ants have high abundances of the
two unknown compounds (peaks 35 and 40) and low
abundances of tetratriacontane (peak 24) and heptatria-
contane (peak 28) in contrast to other samples (Table 3).
The PCA produced nine principal components (PC)

with eigenvalues larger than 1, explaining 74.5% of the
total variance. A DA on these principal components sig-
nificantly separated the Argentine ants into two groups
based on the CHC profiles (Wilks’ l = 0.034 c2=
46.86 d.f. = 72 P <0.0001, Figure 5). The ants from Elim
3 nest were the most aggressive, and they showed strong
chemical divergence from all other ants used in this
study (Figure 5). In the classification results of the DA,

57.4% of all CHC samples were correctly assigned to
their respective groups and all Elim 3 ants were 100%
correctly classified into their group. The ants from the
different sites were separated along the Discriminant
Function 1, and the compounds associated with this
separation are the straight chained alkanes tetratriacon-
tane and heptatriacontane, the methyl-branched alkanes
17-methylheptatriacontane and 13,17,21-trimethylhepta-
triacontane, as well as an unknown compound (peak 35,
see Table 3).

Discussion
This study is the first investigation of the population
structure of Argentine ants in the Western Cape, South
Africa using behavioural and chemical analyses. The
chemical and behavioural data revealed that Argentine
ants within the Western Cape are unicolonial and indi-
cated the presence of at least two supercolonies that
come into contact at Elim. Throughout this study ants
were rarely aggressive to each other, except for all the
interactions that included ants from Elim 3 where these
ants were both behaviourally and chemically dissimilar
from all other ants used in this study. These data are in
keeping with the findings published on Argentine ant
behaviour whereby ants from different supercolonies
attack each other [20,22,30,33,42].
The CHC profiles of Argentine ants within the Wes-

tern Cape consisted of the structural hydrocarbon
classes found and identified in previous nestmate recog-
nition studies of this ant [23,58]. We found that marked
differences in CHC profiles, particularly for Elim 3 nest
(Figure 5), resulted in maximum aggression, supporting
the prediction that there is a negative relationship
between chemical similarity and intraspecific aggression
[55-58].
Argentine ant populations in the introduced ranges are

characterised by widespread acceptance of non-nestmate
conspecifics and genetic similarity among distant popula-
tions [20,23,30,31] as well as chemical resemblance across

Table 2 Aggressive interactions between ants from different sites

SW Cal Stel EL3 EL2 Port Jonk Bell Bred

SW

Cal 1/10ns

Stel 0/10ns 0/10ns

El3 7/10*** 7/10*** 8/10***

EL2 3/10* 4/10* 0/10ns 9/10***

Port 0/10ns 0/10ns 0/10ns 8/10*** 1/10ns

Jonk 1/10ns 0/10ns 0/10ns 9/10*** 4/10* 0/10ns

Bell 1/10ns 0/10ns 0/10ns 6/10** 0/10ns 0/10ns 0/10ns

Bred 1/10ns 2/10ns 0/10ns 8/10*** 3/10* 0/10ns 0/10ns 0/10ns

Frequency of aggression between ants from different sites. Levels of significance based on Chi-Square test shown by (ns) P > 0.05, (*) P < 0.05, (**) P < 0.01 and
(***) P <0.001. Degrees of Freedom (df = 1). Site abbreviations: SW = Somerset West, Cal = Caledon, Stel = Stellenbosch, EL3 = Elim 3, EL2 = Elim 2, Jonk =
Jonkershoek, Bell = Bellville and Bred = Bredasdorp.
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Figure 3 Behavioural interactions of Argentine ants from
different sites. Non-metric Multidimensional Scaling (MDS) plot
showing all aggressive and non-aggressive behavioural interactions
for paired nests between sites. Analyses were conducted using the
categories aggression and non-aggression. The separation
incorporated colony interactions that included Elim 3 and those that
did not. All interactions that included Elim 3 ("green triangle”) and
those that excluded Elim 3 ("blue trianlgle”) grouped separately
indicating a distinct boundary between Elim and all other sites.
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Table 3 List of Compounds found in CHC profiles of Argentine ants

Peak Compound Elim (1 + 2) Elim 3 Bell Stell Cal Port SW Bredas Jonk

1 Tridecane 1.83 ± 0.45 2.07 ± 0.60 1.73 ± 0.48 1.33 ± 0.75 2.50 ± 0.96 2.19 ± 0.54 2.14 ± 0.63 3.06 ± 0.59 2.75 ± 0.41

2 Tetradecane 0.33 ± 0.22 0.44 ± 0.11 0.34 ± 0.19 0.00 0.06 ± 0.07 0.56 ± 0.28 0.66 ± 0.27 0.58 ± 0.21 0.46 ± 0.21

3 Hexadecane 0.80 ± 0.18 0.74 ± 0.17 0.28 ± 0.11 0.35 ± 0.25 0.87 ± 0.42 0.39 ± 0.27 0.73 ± 0.19 0.38 ± 0.20 0.79 ± 0.22

4 Heptadecane 0.29 ± 0.13 0.47 ± 0.10 0.36 ± 0.10 0.00 0.18 ± 0.13 0.00 0.61 ± 0.19 0.70 ± 0.26 0.93 ± 0.33

5 Octadecane 0.03 ± 0.03 0.17 ± 0.08 0.10 ± 0.06 0.00 0.27 ± 0.26 0.26 ± 0.46 0.22 ± 0.13 0.18 ± 0.11 0.00

6 Nonadecane 0.03 ± 0.04 0.24 ± 0.08 0.13 ± 0.07 0.00 0.24 ± 0.22 0.25 ± 0.35 0.18 ± 0.11 0.22 ± 0.12 0.00

7 Eicosane 0.49 ± 0.13 0.63 ± 0.04 0.52 ± 0.12 0.18 ± 0.17 0.92 ± 0.38 0.66 ± 0.73 0.94 ± 0.36 0.62 ± 0.26 0.50 ± 0.40

8 Heneicosane 0.79 ± 0.17 0.87 ± 0.05 0.94 ± 0.07 0.67 ± 0.70 1.08 ± 0.62 0.79 ± 0.27 2.05 ± 0.63 1.02 ± 0.42 0.64 ± 0.23

9 Docosane 1.82 ± 0.20 1.52 ± 0.11 1.61 ± 0.12 2.04 ± 0.71 4.07 ± 1.66 2.00 ± 0.29 5.88 ± 1.87 2.53 ± 1.18 1.57 ± 0.35

10 Tricosane 2.83 ± 0.25 2.43 ± 0.19 2.71 ± 0.21 4.27 ± 1.10 5.67 ± 1.95 3.15 ± 0.47 7.96 ± 2.29 3.87 ± 1.32 2.89 ± 0.38

11 Tetracosane 4.11 ± 0.29 3.56 ± 0.33 3.80 ± 0.30 6.25 ± 1.29 7.78 ± 2.28 4.88 ± 0.63 10.15 ± 2.62 5.65 ± 1.45 4.23 ± 0.52

12 Pentacosane 5.88 ± 0.49 4.66 ± 0.35 5.25 ± 0.43 6.51 ± 2.55 6.12 ± 1.45 6.41 ± 0.81 5.14 ± 1.70 5.83 ± 1.04 5.63 ± 0.66

13 1,2,benzenedicarboxylic acid 4.34 ± 1.31 2.08 ± 0.30 1.89 ± 0.44 1.53 ± 1.01 1.50 ± 0.69 2.01 ± 0.67 1.53 ± 0.53 3.10 ± 1.03 2.01 ± 0.45

14 Hexacosane 5.51 ± 0.43 4.83 ± 0.37 5.17 ± 0.34 9.53 ± 2.25 7.19 ± 1.46 6.16 ± 0.73 8.33 ± 1.01 6.44 ± 0.80 5.21 ± 0.62

15 Heptacosane 6.30 ± 0.17 6.94 ± 0.42 5.75 ± 0.41 10.88 ± 2.73 7.21 ± 0.48 5.71 ± 0.63 6.32 ± 0.32 5.96 ± 0.88 5.48 ± 0.50

16 Octacosane 4.20 ± 0.19 4.18 ± 0.25 4.80 ± 0.34 7.38 ± 1.79 5.22 ± 0.54 4.92 ± 0.79 4.88 ± 0.26 4.76 ± 0.52 4.45 ± 0.42

17 Nonacosane 4.43 ± 0.24 4.50 ± 0.26 4.99 ± 0.38 6.82 ± 1.31 4.82 ± 0.45 4.63 ± 0.44 4.27 ± 0.40 4.98 ± 0.62 4.46 ± 0.40

18 Triacontane 3.36 ± 0.24 3.70 ± 0.15 4.41 ± 0.60 4.11 ± 1.01 3.75 ± 0.45 3.53 ± 0.38 3.05 ± 0.26 3.50 ± 0.45 3.48 ± 0.49

19 Hentriacontane 3.04 ± 0.23 3.07 ± 0.22 3.73 ± 0.44 2.97 ± 0.65 3.15 ± 0.42 2.81 ± 0.33 2.67 ± 0.34 2.82 ± 0.41 3.13 ± 0.31

20 Dotriacontane 2.72 ± 0.23 3.37 ± 0.48 3.60 ± 0.58 2.33 ± 0.65 2.77 ± 0.42 2.45 ± 0.43 2.23 ± 0.28 2.04 ± 0.47 2.90 ± 0.25

21 13-methylhentriacontane 0.03 ± 0.04 0.26 ± 0.18 0.51 ± 0.41 3.17 ± 3.45 0.44 ± 0.36 13.40 ± 6.91 1.18 ± 0.94 12.97 ± 4.49 3.38 ± 2.64

22 Tritriacontane 2.04 ± 0.19 2.36 ± 0.16 2.45 ± 0.34 1.28 ± 0.49 2.05 ± 0.34 1.68 ± 0.28 1.88 ± 0.30 1.67 ± 0.38 2.11 ± 0.19

23 2,6,10,15 tetramethyl heptadecane 2.75 ± 0.21 1.41 ± 0.18 2.78 ± 0.28 1.56 ± 0.58 1.82 ± 0.60 2.08 ± 0.34 1.89 ± 0.46 2.17 ± 0.46 1.88 ± 0.34

24 Tetratriacontane 8.25 ± 0.80 0.33 ± 0.11 6.38 ± 0.58 7.06 ± 2.44 5.26 ± 1.41 7.71 ± 1.59 4.04 ± 1.29 4.47 ± 1.11 7.68 ± 0.99

25 Pentatriacontane 1.64 ± 0.29 2.91 ± 0.26 2.95 ± 0.46 2.32 ± 1.50 2.63 ± 0.77 2.76 ± 2.09 1.35 ± 0.42 1.27 ± 0.58 2.32 ± 0.82

26 Hexatriacontane 2.81 ± 0.52 1.33 ± 1.33 4.09 ± 0.49 3.03 ± 1.02 2.72 ± 0.76 2.77 ± 0.52 2.74 ± 0.50 2.34 ± 0.45 3.28 ± 0.38

27 13,17,21 trimethylpentatriacontane 2.08 ± 0.36 1.62 ± 1.62 1.15 ± 0.28 0.40 ± 0.35 1.13 ± 0.46 1.19 ± 0.38 0.63 ± 0.35 1.36 ± 0.47 2.35 ± 0.47
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Table 3 List of Compounds found in CHC profiles of Argentine ants (Continued)

28 Heptatriacontane 1.81 ± 0.21 0.10 ± 0.05 1.32 ± 0.21 0.29 ± 0.23 0.78 ± 0.35 0.70 ± 0.28 0.83 ± 0.35 0.63 ± 0.23 1.52 ± 0.32

29 Octatriacontane 1.64 ± 0.24 2.04 ± 0.37 1.99 ± 0.29 1.33 ± 0.73 1.35 ± 0.37 0.98 ± 0.31 1.35 ± 0.28 1.15 ± 0.36 1.57 ± 0.21

30 17-methylheptatriacontane 2.90 ± 0.25 2.19 ± 0.21 2.99 ± 0.31 1.76 ± 1.08 1.89 ± 0.65 1.50 ± 0.37 2.56 ± 0.64 1.94 ± 0.57 1.95 ± 0.39

31 17, 21dimethylheptatriacontane 8.76 ± 0.91 1.90 ± 0.67 6.83 ± 0.78 3.45 ± 1.26 5.21 ± 1.71 4.97 ± 0.87 2.81 ± 1.46 4.01 ± 0.99 7.71 ± 1.13

32 13,17,21 trimethylheptatriacontane 1.46 ± 0.28 2.68 ± 1.21 3.40 ± 0.60 2.00 ± 0.89 2.48 ± 0.86 1.62 ± 0.37 2.00 ± 0.56 1.74 ± 0.53 2.32 ± 0.31

33 Tritetraconatne 2.24 ± 0.19 5.80 ± 3.38 3.23 ± 0.58 2.47 ± 0.89 2.48 ± 0.48 1.82 ± 0.53 2.24 ± 1.34 2.12 ± 1.57 4.84 ± 1.16

34 13-methyltritetracontane 0.70 ± 0.20 0.00 0.42 ± 0.16 0.07 ± 0.11 0.28 ± 0.19 0.17 ± 0.17 0.12 ± 0.09 0.46 ± 0.20 0.64 ± 0.26

35 unknown 0.78 ± 0.27 6.45 ± 0.61 1.09 ± 0.18 0.45 ± 0.33 0.46 ± 0.31 0.14 ± 0.13 0.62 ± 0.28 0.68 ± 0.29 0.69 ± 0.29

36 Tetratetracontane 0.92 ± 0.11 2.16 ± 0.35 0.92 ± 0.20 0.24 ± 0.23 0.49 ± 0.26 0.15 ± 0.15 0.97 ± 0.28 0.71 ± 0.30 0.54 ± 0.21

37 1-bromotetratetracontane 0.46 ± 0.31 0.00 0.65 ± 0.39 0.49 ± 0.36 0.85 ± 0.40 0.43 ± 0.24 0.98 ± 0.29 0.45 ± 0.35 1.23 ± 0.35

38 13-methyltetratetracontane 1.58 ± 0.19 0.00 1.40 ± 0.11 0.27 ± 0.25 0.46 ± 0.29 0.34 ± 0.21 0.88 ± 0.39 0.43 ± 0.20 1.33 ± 0.25

39 13, 17 dimethyltetratetracontane 1.30 ± 0.28 0.48 ± 0.48 1.17 ± 0.39 0.16 ± 0.20 0.63 ± 0.56 0.26 ± 0.28 0.07 ± 0.12 0.00 0.88 ± 0.82

40 unknown 1.12 ± 0.27 7.77 ± 2.58 1.61 ± 0.36 1.06 ± 0.59 1.21 ± 0.41 1.57 ± 0.86 0.95 ± 0.28 1.21 ± 0.50 1.18 ± 0.34

The 40 cuticular compounds identified and their percentage contribution (Mean ± SE), in the cuticular lipid extract sampled from field populations of Argentine ants for the 8 sites. Three nests were sampled per site
(N = 18 runs per site). Elim (1+2) = Elim, Elim 3 = Elim 3, Bell = Bellville, Stell = Stellenbosch, Cal = Caledon, Port = Porterville, SW = Somerset West, Bredas = Bredasdorp, Jonk = Jonkershoek.
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Figure 4 Chromatogram of Argentine ants from Western Cape, South Africa. A representative gas chromatogram of a cuticular
hydrocarbon profile of field collected Argentine ants in the Western Cape. Chromatogram of Elim nest 2, See Table 1 for peak identification.

Figure 5 Patterns of CHC profiles of Argentine ants from different sites. Discriminant Analysis of Argentine ant cuticular hydrocarbons,
based on nine principal component factors selected by Principal Component Analysis on forty CHC compounds extracted from field populations
from eight sites in the Western Cape, South Africa. Ants from Elim 3 nest are significantly separated from all other ants in the remaining sites
based on the CHC profiles.
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geographically separated locations [22,23]. Although this
characteristic is attributed to reduced diversiy in genetic
markers and nestmate recognition cues as a consequence
of genetic bottleneck events experienced during introduc-
tion and establishment [20,30], the release from ecological
constraints (i.e. pathogens, predators, parasites) and
favourable environmental conditions in the introduced
range have lead to the successful expansion of incipient
colonies [6,16,30]. Consequently leading to the formation
of the geographically vast supercolonies currently observed
worldwide [65].
Argentine ant populations within the introduced range

often have smaller supercolonies occurring within a lar-
ger supercolony, with nests from different supercolonies
sometimes separated by distances less than 30m [66,67].
This pattern is similar for the South African population
with nests from the two supercolonies interspersed
within each other i.e. nests from different supercolonies
occurring within short distances from each other. This
type of distribution pattern was best explained by van
Wilgenburg et al., 2010. The initial establishment and
spread of a large colony may prevent further establish-
ment by propagules from different source populations,
or if the propagules from other sources establish, their
distribution will be largely limited by the population
that established first [45]. This idea is supported by
genetic data [68] for Elim which showed genetic struc-
turing with “pockets” (of a divergent haplotype) sur-
rounded by the larger supercolony (that included all
other sites in this study), which is further supported our
aggression data. The combination of these data from
this study and the genetic data suggests that the
observed aggression between ants from the two superco-
lonies is possibly an expression of underlying genetic
differences. This is further supported by CHC con-
gruency for the ants from the two populations. The pat-
tern of chemical, behavioural and genetic differentiation
between spatially close nests observed in this study are
similar to that observed in Argentine ants from other
parts of the introduced range [30,31,35,36,42]. The
behavioural and chemical data in this study therefore
offers support for at least two introductions of Argen-
tine ants into South Africa.
Two recent studies showed the global distribution of

Argentine ants is dominated by a single global dominant
supercolony [41,45]. On continents and islands where
this dominant supercolony exists, it is always the largest
and most aggressive [45], displacing and outcompeting
neighbouring supercolonies [20,30,32,69,70]. In their
work, Van Wilgenburg et al (2010) included samples
from Stellenbosch, Western Cape where they found that
these ants do not form part of the global large supercol-
ony and are likely to be an introduction from different
source populations, as seen for other regions used in

their study. Similarly, Vogel et al., 2010 found that the
Stellenbosch population was highly differentiated from
the six supercolonies used in their study. Both these stu-
dies suggested that South African populations are likely
a primary introduction from a different source popula-
tion in the native range. However, two supercolonies
have been identified in the Western Cape, and although
Stellenbosch forms part of the large supercolony in
South Africa, it is not known whether ants from the
small supercolony may also originate from a primary
introduction from the native range or from a secondary
introduction from other introduced supercolonies not
yet identified.

Conclusions
Overall our results show that Argentine ants in the Wes-
tern Cape, South Africa are unicolonial and form two
supercolonies with a boundary at Elim. The observed
behavioural differences between ants from the two super-
colonies found in this study are possibly related to the
phenotypic differences in the CHC profiles which are
probably the expression of the underlying genetic differ-
ences. Our results are consistent with those found in ear-
lier studies on the behaviour and colony structure of
Argentine ants in other introduced ranges. These find-
ings suggest that the similarities and differences in the
phenotypic expression of CHCs and behaviour, among
Argentine populations are important in the maintenance
of unicoloniality and the formation of supercolonies.
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