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Abstract  

The Passenger Rail Agency of South Africa is in the process of introducing new rolling stock into 

their current aged fleet of rolling stock. This poses several technical challenges relating to amongst 

other the operation of the mix of old and new trains on the same infrastructure. The objective of this 

study was therefore to determine the effect on service reliability in terms of punctuality, when old 

trains are incrementally replaced by new trains. Punctuality was measured by number of delays, total 

delay minutes and average delay duration over a specified time period. 

A discrete-event simulation model was developed using Anylogic simulation software. The line 

between Chris Hani and Cape Town stations on the Western Cape Metrorail network was chosen as 

case study for the model. Two cases were modelled with each consisting of 14 scenarios. Case 1 

assumed no reliability improvement to the overall rail system. Since the specific route consisted of 14 

trains shuttling to and from Cape Town, each scenario represented the replacement of an old train with 

a new train until the whole fleet consisted of only new trains. Case 2 modelled the same scenarios, 

except it was assumed that the system’s reliability was improved by an arbitrary value of 50%. 

In Case 1 a 29% improvement in number of delays, 37% improvement in total delay minutes, and 11% 

improvement in average delay duration were seen when Scenario 0 (base case) was compared to 

Scenario 14 (future case with all 14 old trains replaced). In Case 2 a 31% improvement in number of 

delays, 36% improvement in total delay minutes, and 7% improvement in average delay duration were 

seen. 

When Case 1 and 2 are compared on a scenario for scenario basis (e.g. Case 1, Scenario 0 compared to 

Case 2, Scenario 0) it was found that the 50% reliability improvement of the overall system resulted in 

an average improvement of 13% in number of delays, 19% in total delay minutes, and 6% in average 

delay duration. The overall improvement from zero new trains and no system reliability improvement 

(Case 1, Scenario 0) to 14 new trains and 50% system reliability improvement (Case 2, Scenario 14)  

resulted in a 39% reduction in number of delays, 47% reduction in total minutes delay, and 13% 

reduction in average delay duration. 

The model therefore shows how a train service can improve in terms of punctuality, when reliability 

improvements are made such as new rolling stock or overall system improvements that resolve 

primary delay causes. The findings of this study can therefore be used to support decisions related to 

capital investments into reliability improvements and new rolling stock commissioning strategies. 
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Opsomming 

Die Passasier Spoor-agentskap van Suid-Afrika is huidiglik in die proses om nuwe rollende materiaal 

in te faseer in die huidige vloot van rollende materiaal. Hierdie proses skep verskeie tegniese 

uitdagings ten opsigte van die bedryf van die mengsel van ou en nuwe treine op dieselfde 

infrastruktuur. Die doel van hierdie studie was om te bepaal wat die effek op diensbetroubaarheid in 

terme van stiptelikheid is, wanneer ou treine inkrementeel vervang word met nuwe treine. 

Stiptelikheid was gemeet deur hoeveelheid vertragings, totale vertragingsminute, en gemiddelde 

vertragingsduur oor `n gespesifiseerde tydperk. 

`n Diskrete-gebeurtenis simulasiemodel was ontwikkel met die gebruik van Anylogic sagteware. Die 

spoorlyn tussen Chris Hani- en Kaapstadstasie op die Wes-Kaapse Metrorail netwerk was gekies as 

gevallestudie vir die model. Twee gevalle was gemodeleer met elkeen wat bestaan uit 14 scenarios. 

Geval 1 het aangeneem dat geen betroubaarheidsverbeteringe aan die oorhoofse spoorwegsisteem 

aangebring was nie. Aangesien dié spesifieke roete 14 treine bevat wat na en van Kaapstad reis, stel 

elke scenario die inkrementele vervanging van ‘n ou trein met ‘n nuwe trein voor totdat die hele vloot 

uit slegs nuwe treine bestaan. Geval 2 het dieselfde scenarios gemodeleer, behalwe dat ‘n aaname 

gemaak was dat die betroubaarheid van die oorhoofse sisteem met 50% verbeter was. 

In Geval 1 was 29% verbetering in hoeveeldheid vertragings, 37% verbetering in totale 

vertragingsminute, en 11% verbetering in gemiddelde vertragingsduur gevind. In Geval 2 was 31% 

verbetering in hoeveeldheid vertraagings, 36% verbetering in totale vertragingsminute, en 7% 

verbetering in gemiddelde vertragingsduur gevind. 

Wanneer Geval 1 en 2 met mekaar vergelyk word op `n scenario-vir-scenario basis, was daar gevind 

dat die 50% betroubaarheidsverbetering aan die oorhoofse sisteem gelei het tot `n gemiddelde 

verbetering van 13% in hoeveelheid vertragings, 19% verbetering in totale vertragingsminute, en 6% 

verbetering in gemiddelde vertragingsduur. Die algemene verbetering vanaf geen nuwe treine en geen 

sisteem-betroubaarheidsverbetering tot 14 nuwe treine en 50% sisteemverbetering het gelei tot 39% 

verbetering in hoeveelheid vertragings, 47% verbetering in totale vertragingsminute, en 13% 

verbetering in gemiddelde vertragingsduur. 

Die model wys dus hoe `n treindiens kan verbeter in terme van stiptelikheid wanneer 

diensbetroubaarheid verbeteringe aangebring word soos nuwe rollende material en oorhoofse sisteems 

verbetering wat primêre vertraagings verminder. Die bevindings van die studie kan daarom gebruik 

word om besluitneemings te ondersteun met verband tot kapitale investeerings in diensbetroubaarheids 

verbeteringe en rollende material inbedryfsteling strategieë. 
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 Introduction 

1.1. Background 

Railway network companies often have the need to model and simulate the operation of their trains. 

This need usually arises with the expansion of infrastructure or the addition of new rolling stock and 

services. Infrastructure expansion entails adding new links, stations, or additional lines. Furthermore 

permanent way (perway), electrical and signal maintenance all contribute to train operations being 

disrupted to some extent. Also adding train services or new rolling stock requires major operations 

planning and rescheduling. Forecasting the effect on the operation of the network before the 

implementation of such changes is a crucial component to planning. Bottlenecks, line capacities, 

demand satisfaction and delay propagations are all areas that need to be identified and calculated 

before large capital amounts are spent. This can be done by the use of mathematical models and 

simulation.  

The Passenger Rail Agency of South Africa set into place a modernization program to renew various 

infrastructure and rolling stock components of the current rail network in South Africa. Part of the 

modernization program is also to introduce new rolling stock to the current fleet. This poses various 

technical as well as socio-economic complexities. This study will focus on the technical complexities, 

even though the socio-economic factors may carry more weight in terms of the final decision as to 

how and where the new trains will be deployed. To partly account for the socio-economic agenda of 

the South African Government, it is anticipated that new trains will be deployed in the most densely 

populated areas of the network. This study is based on the Western Cape network, and therefore the 

Chris Hani to Cape Town route was chosen as case study. 

There are various technical issues that will have to be addressed before the new trains can be 

introduced. These issues all relate to the operational readiness of the system in terms of electrical, 

perway, signalling and service depots. One example of these issues (even though it will not be covered 

in this study) is temporary speed restrictions caused by poor track condition. To utilise the faster speed 

characteristics of the new trains, the track has to be fixed and speed restrictions be lifted. 

1.2. Problem Statement 

In the Western Cape network the current fleet of trains does not meet the peak demand, and therefore 

in the short to medium term, the new trains will be operated with the old trains instead of simply 

replacing them. New trains will be introduced into the current fleet as they are rolled out from 

manufacturing, meaning that the fleet composition of old and new trains will be changed 

incrementally. Because the new trains have faster speed characteristics and are expected to be more 
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reliable, it creates a heterogeneous train fleet. The question exists as to how each new train being 

introduced will affect the overall service in terms of punctuality? 

This study thus aims to answer this question by means of a dynamic simulation model of the Chris 

Hani to Cape Town rail line. 

1.3. Brief Chapter overview 

Chapter 2 will explain the motivation behind the new rolling stock and modernization of the current 

rail system. The background of the case study is therefore articulated in terms of the agenda of 

PRASA and the Ministry of Transport in Chapter 2. Chapter 3 will cover the literature study of 

mathematical and simulation models of rail networks. It explains how queuing and optimization 

models were used to solve train disruption and scheduling problems. Chapter 4 will then explain how 

the model of this study is constructed and elaborates on the assumptions and limitations associated 

with the approach.  

How the model developed in Chapter 4 was used to the model the case study in Chapter 2, is then 

covered in Chapter 5. Chapter 5 shows how the specific software was used to build the model to 

produce the desired outputs. 

The results of the model are then illustrated and discussed in Chapter 6. Chapter 7 will draw the final 

conclusions together and discuss the relevance of the findings. Finally, Chapter 8 will list the various 

recommendations that came from the study and suggest areas of further study in the future.  
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 Case study background 

In this chapter the background to the case study of the PRASA rail line in the Western Cape, South 

Africa will be described. Section 2.1 will give an overview of who PRASA is as an organization and 

Section 2.2 will explain the motivation and need for modernising the network. Section 2.3 will give an 

overview of what the modernization program entails and Section 2.4 will cover the different train 

types which are currently and will in the future operate on the Western Cape network. 

2.1 Overview 

The entire South African railway is operated by two main state owned companies i.e. PRASA and 

Transnet. PRASA is dedicated to only passenger transport, whereas Transnet is responsible for freight 

transport services. This study however will only focus on PRASA. 

According to the terms of the Legal Succession SATS Act, the primary goals for PRASA are to 

provide urban rail commuter and long haul passenger services as well as long haul bus services. While 

providing these services, the secondary objective of PRASA is to utilize its acquired assets to generate 

income. Furthermore, PRASA’s responsibilities are “to effectively develop and manage rail and rail 

related transport infrastructure to provide efficient rail and road based passenger transport within, to 

and from Urban and Rural areas.”[1]  

2.1.1 Asset base 

The commuter rail network (Metrorail) is electrified by 3kV lines where the Shosholoza Meyl network 

consists of 3kV, 25kV and diesel lines. By “diesel lines”, it is meant that trains running on those 

sections are powered by diesel locomotives instead of electric motor coaches. 

Metrorail serves four regions i.e. Eastern Cape, Kwazulu-Natal, Gauteng and Western Cape. This 

study will only look at one line the Western Cape region, and therefore Table 2-1 shows a summary of 

the Assets of Metrorail Western Cape. 

Table 2-1: Metrorail Western Cape Asset Base 

 

Stations 123 units

Track 489 km

Reserve 10 400 ha

Turnouts 610 units

Level crossings 70 units

Rail reserve 320 km

Bridges 96 units

Foot bridges 19 units

Culverts 380 units

Sea walls 9 km

Metrorail Western Cape Asset base
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2.1.2 Operations 

According to PRASA’s Annual Report 2012/2013 [1], PRASA’s operational units are responsible for 

the following roles: 

 Planning and managing of day-tot-day operations 

 Transport service scheduling 

 Maintaining infrastructure and rolling stock  

 Collecting fare and rental incomes 

 Providing passenger security 

 Implementing operational safety plans 

The Western Cape network is operated in three corridors. The Central Line carries the largest amount 

of passengers and includes the routes from Cape Town to the Cape Flats, Simons Town and Bellville. 

The Southern Line is the route between Bellville and Strand and the Northen Line includes the routes 

connecting the Wellington, Worcester and Malmesbury areas to the Northern suburbs of the Cape. It is 

estimated that the network covers around 75% of residential areas across six municipalities in the 

Western Cape [1]. 

A fleet of 88 trains service an estimated 14.5 million passenger journeys per month with an average 

punctuality of 78%. Train frequencies vary between 3- and 15 minutes depending on which corridor or 

route and the passenger volumes [1]. 

2.2 Stakeholders’ motivation for renewal 

In this Section the need to modernize the current state of PRASA will be motivated. The viewpoints of 

PRASA, the Railway Safety Regulator and the Minister of Transport will be summarized and 

discussed. 

2.2.1 PRASA strategy 

PRASA’s Annual Report 2012/2013 explains it’s strategy as follows: “The Strategy of PRASA seeks 

to create a modern public entity by 2017 that would be able to deliver quality passenger services on a 

more sustainable basis.” [1] PRASA intends to implement this strategy through capacity investments in 

modern trains, signalling and telecommunications, infrastructure, new stations, access control and 

other operating systems. This will then lead to improved service delivery. It also intends to utilize the 

value of its telecommunication network and property portfolio. PRASA has thus set the following 

goals for its Metrorail service: 

 Cash generation adequate to cover its operational funding requirements 

 The utilization of assets to grow its property portfolio in order to fund future investments 

 New stations and facilities 

 A public transport share of between 35-40% for rail. 
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 Modern reliable infrastructure  

 Metro train frequencies of 3 – 5 minutes during peak periods. 

 Long-distance rail services able to compete with road transport 

 Operations meeting necessary quality and safety standards 

According to Sfiso Buthelezi [2], Chairman of PRASA, the main objective of PRASA is to provide 

quality public transport to connect people from their homes to their work and areas of economic 

activity. The challenge however is to provide a safe, reliable and predictable service amid the 

following circumstances: 

 Old rolling stock with an average age of 40 years 

 Rolling stock shortages  

 Outdated signalling system 

 Aged infrastructure 

 The sabotaging of trains and cables 

 Engineering knowledge and skills shortages 

These problems are planned to be resolved through the modernisation program discussed Section 2.3. 

2.2.2 Railway Safety Regulator 

In this Section a summary of the State of Safety Report for the year 2013/2014 will be given. It can be 

argued that many of the accidents and safety related incidences can be blamed on the outdated and 

under-invested infrastructure and rolling stock. Table 2-2 shows traffic volumes from the financial 

years 2008/2009 to 2013/2014. A reduction of 14.7% in passenger numbers for PRASA from 

2012/2013 to 2013/2014 must be noted. Table 2-3 shows the cost of operational rail occurrences and 

security-related incidents from the year 2008/2009 to 2013/2014. A significant drop in collisions and 

derailments can be noted for the year 2013/2014. However, the cost of level crossing accidents 

increased drastically from R500 000 to R15.3 million, while vandalism and train fires are the largest 

contributors to the cost of accidents and incidents amounting to a total of R112.1 million.

 

Table 2-2: Rail traffic volumes [3] 

Stellenbosch University  https://scholar.sun.ac.za



7 

 

PRASA reported a total of 8 train fires, one train collision and one station building fire as the top 10 

incidents contributing to the costs depicted in Table 2-3 for the financial year of 2013/2014. The train 

fires are mostly caused by acts of vandalism or protests. 

 

One of the main concerns for PRASA in terms of safety is platform-train interchange (PTI) of 

passengers. The RSR reported 83 incidents of passengers falling between the train and the platform 

and 615 incidents of passengers falling on the platform while entraining and detraining a train. It is 

reported that overcrowding and reckless behaviour of passengers are the main causes of these 

incidents. Another important factor to consider is the vertical gap between some of the station 

platforms and train floors. The study done by the RSR showed that stations with a gap of 20cm and 

more, experienced significantly more incidences than stations with lesser of a gap [3]. However the 

study concludes that passenger behaviour contributes to between 65 and 75% of PTI occurrences 

while internationally, PTI occurrences typically amount to 20-25%.  

Passenger behaviour that result in PTI occurrences can be related to under-capacity during peak 

periods. Most incidents occur during the periods 04:00-08:00 and 16:00-20:00. The RSR study 

concludes by saying that trains are not allocated effectively enough to meet passenger demand. Busy 

lines are thus under-capacity and quieter lines are over-capacity.  

2.2.3 Ministry of Transport 

The Minister of Transport stated in September 2014 that the key objectives of PRASA, since its 

inception in 2009, are customer centricity, modernization, state-of-the-art technology, efficiency and 

punctuality [4]. In her speech it was also reported that 500 coaches were out of service due to 

vandalism and theft. The train punctuality target of 85% was missed by 5% in 2014, and according to 

the Minister the inability to attain service delivery objectives may be as a result of a lack of capacity. 

Furthermore the decision to stop Shosholoza Meyl’s operational subsidy during the 2010/2011 

financial year has caused a serious drop in service quality and passenger numbers. Table 2-4 shows the 

growth and decline of passenger numbers during the years 2012 – 2013. Note that Shosholoza Meyl 

experienced a drop of 11.2%. The Minister stated that financial support is essential for the 

continuation of the long distance passenger rail service, since the termination thereof may result in 

severe socio-economic consequences. 

Table 2-3: The cost of operational occurrences and security related incidents[3] 
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2.2.4 Summary 

It is clear from the PRASA strategy that the modernization of rail infrastructure and rolling stock is a 

priority and a reality. To provide a “quality passenger service on a more sustainable basis”[1] will 

require major capital investment. The reports of the RSR and Minister of Transport reveal the true state 

of the passenger rail service currently. Inadequate station platforms, over-crowding of trains, 

insufficient line capacities, passenger train punctuality and reliability are all issues that need drastic 

action and capital expenditure. To add to the current inefficiencies of the railway, passenger demand 

for metro services are increasing, and is expected to increase in the future. The planned rail rival can 

reduce road traffic, fuel reliance and carbon emissions. An effective and reliable metro rail service can 

also attract investment and increase a region’s economic capacity.  

A modernisation program to revive the metro rail infrastructure and rolling stock is therefore a crucial 

necessity for the development of the South African economy. 

2.3 Modernization program 

A new rail fleet of 600 new X’Trapolis Mega train sets are planned to be built to replace the existing 

Metrorail fleet. The first 20 sets will however be built in Alstom’s Lapa manufacturing plant in São 

Paulo, Brazil (Alstom is the majority shareholder in the Gibela Consortium). This will not only ensure 

that the first batch of trains are built and delivered in a short period, but will also serve as a practical 

training exercise for Gibela’s South African employees. The first coaches are expected to be 

completed in 2016. Gibela will be building a production facility in Dunnottar, South Africa to produce 

the remaining 580 train sets. It is estimated that the facility will employ around 1500 people and create 

8000 indirect jobs [5]. The tender amounts to a total of R123bn over the next 20 years. 

According to PRASA [6] only 14% of the current signalling systems have not exceeded their design 

life. The outdated technology contributes to the unreliable service currently experienced by 

passengers. It is planned to build new train control centres and signalling systems to improve 

operational safety, capacity and rolling stock performance. The first phase of the project is estimated 

to cost R7bn and it is anticipated to be completed by June 2020. The renewal will include the regions 

Gauteng 1, Durban, Western Cape and Gauteng 2. 

Five Maintenance depots are also going to be renewed and modernized. These depots are designed to 

accommodate both the old and new fleet of rolling stock. The aim is to install new cranes and add the 

function of in-floor lifting. An investment of R1.9bn has been allocated to depot upgrades[6].  

Table 2-4: Passenger numbers [1] 
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A total of 135 stations were prioritized for upgrade. Currently construction is commencing on 14 

stations. The new stations will be equipped with speed gates, electronic information displays, public 

address systems and CCTV. This will improve passenger control and make the metro service more 

attractive and safe. The estimated expenditure of R1.5bn is expected [6].  

PRASA is also planning to upgrade the line speeds from to 120km/h and to 160km/h for the express 

lines. This will involve track and sleeper replacements, drainage upgrading, ballast screening and 

realignment of tracks. Overhead traction equipment and substations will also need upgrading to 

accommodate the faster X’Trapolis trains. An expenditure framework of R1.6bn is expected [6]. 

New rail links and network expansions are planned to keep up with economic growth in areas such as 

Bellville. The Blue Downs link for example will move passengers from Phillipi and Khayelitsha 

directly to Bellville, and relieve the overcrowded route to Cape Town. The other priority links include 

[6]: 

 Atlantis corridor and link 

 Phillipi – Southfield link 

 Cape Town International Airport link 

 Khayelitsha - Somerset West link 

These links will improve commuter accessibility of the Western Cape’s metro service greatly. There is 

however still a lot of room for improving the current infrastructure and service. 

2.4 Train types  

Currently in the Western Cape network, three different types of trains operate namely: 

 5M2A 

 8M 

 10M 

The X’Trapolis trains (EM01) will only have the coaches between the head and tail coaches 

motorized. These motor coaches will each have 4 motorized axles. Module compositions of 4, 5, and 6 

can be made to give 50%, 60% and 66% motorized ratios respectively. The EM01 will be able to 

accelerate at 0,83m/s2 with a top speed of 120km/hr1. The seating capacity ranges between 234 and 

380 per coach. A 6 coach module which is regarded as the standard module, will thus be able the carry 

between 1088 and 1218 passengers [7]. It is hoped that these trains will help relieve the high demand 

experienced in peak periods of the day when train over-crowding is a frequent problem. 

2.5 Summary  

The modern technology and upgrading projects discussed in this chapter will not be sufficient to 

replace all whole system and neither will it happen instantly. This means that ways have to be found to 

incorporate and integrate the new technology with the old technology in such a way to improve service 

                                                      
1 Compared to 0.35m/s2 and 80km/hr of the 5M2A trains currently most commonly used on the Western Cape 

network. 
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delivery effectively and sustainably. This study will therefore focus on how the new EM01’s will 

improve the service in terms of punctuality if they are introduced incrementally. 
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 Literature Review 

3.1 Introduction 

This Chapter will discuss the two spectrums of modelling train networks namely analytical models and 

simulation models. In Section 3.2 mathematical models and heuristic algorithms will be discussed 

whereas in Section 3.3, simulation models will be covered. Section 3.4 will then discuss train system 

punctuality and reliability. 

3.2 Mathematical models and heuristics algorithms 

Analytical models tend to be limited in scope and complexity, but mostly form the basis on which 

simulation models are built. With the advances made in computing power capabilities in recent years, 

the use of analytical models decreased significantly. Kozan & Higgens [8] developed an analytical 

model to estimate delays for individual trains and track links in an Australian rail network. They 

compared the results to that of obtained from a simulation algorithm. For 93% of the 157 scheduled 

trains the analytical model’s delay estimates were within 20% of that of the simulation algorithm’s 

estimates which was deemed more accurate. This inaccuracy was attributed to the sensitivity of the 

analytical model to slight differences in the assessed and actual delay distributions. This paper 

therefore highlighted one of the short-comings of analytical models when compared to simulation 

models.  

When it however comes to optimising train schedules, heuristic algorithms are used such as Job Shop, 

genetic and Tabu-search algorithms. These will be discussed in later sections. 

3.2.1 Queueing models 

Queueing theory, originally referred to as telegraphic theory, has been developed since the 1920’s for 

telecommunication services. The application of this theory has since expanded to the computer, 

manufacturing, retail services and transport industries. 

Queueing processes are usually described by six characteristics listed by Gross, et al. [9] as: 

1. Arrival pattern of customers 

2. Service pattern of servers 

3. Number of service stages 

4. Number of service channels 

5. Queueing discipline 

6. Capacity of the system 
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The arrival pattern in most queuing models is stochastic of nature and follows a certain probability 

distribution of inter-arrival times. It can however also be deterministic depending on the systems being 

modelled. When setting up the parameters for arrival it is necessary to know if agents can arrive in 

bulk (i.e. simultaneously), and if so, the probability distribution of the size of the bulk. In some models 

an agent can decide not to join the queue upon arrival - this is referred to as balked. In some cases an 

agent can enter a queue and then after a while lose patience and leave the queue (it is referred to as 

reneged). Another case may be when there is more than one queue and an agent switches from one 

queue to another. This is called jockeying. Further on, when an arrival distribution does not change 

over time it is referred to as stationary, and when it does change, nonstationary [9]. Note that in rail 

systems jockeyed and reneged arrivals are not considered. Trains cannot practically arrive in bulk 

because of headway constraints forcing trains to have a certain time or distance buffer between them. 

Headway constraints are enforced for safety purposes, and are applicable in any railway system. 

Similarly trains cannot renege or jockey a queue (waiting track) if the driver becomes impatient. It is 

however possible for a train to balk (note that there is a difference in meaning between bulk and balk). 

When a serious disruption occurs on a route, following trains can be rerouted where possible, or even 

be cancelled. 

Similar to arrival patterns, service patterns also have distributions describing the time an agent spends 

being serviced. Agents can also be serviced in bulk or singularly. The service time however can be 

influenced by the size of the queue or arrival pattern. In such a case it is referred to as a state-

dependent service, but generally arrival and service patterns are assumed independent [9]. Another 

aspect of service time, as with arrival patterns is that it may change over time. For example, when 

learning takes place and the service process becomes quicker and more efficient. The same terms as 

previously mentioned - stationary and nonstationary – are used for such service processes. This is not 

usually applicable in rail systems, as trains have specified dwell times at stations. In South Africa, 

however passenger train drivers may compromise specified dwell times, to either catch up lost time 

because of a delay or dwell longer because of passenger over-crowding. 

The manner by which an agent is chosen for service from a queue is referred to as queueing discipline. 

The most common discipline is the first-come-first-served (FCFS) principle, and in some inventory 

systems last-come-first-served (LCFS) principle applies. Other systems have priority schemes which 

are usually either called pre-emptive or non-pre-emptive. Pre-emptive priority is when a high priority 

agent enters a queue, service on a low priority agent will be paused and the high priority agent will be 

serviced first. In the case of non-pre-emptive priority the high priority agent will be moved to the front 

of the queue but will only be serviced when the agent being served at that moment is finished. 

Passenger rail systems mostly work on the FCFS principle, whereas freight rail systems might have 

different disciplines which take into account the importance of the freight content [9]. 

Some systems have limited queues which create a limited system capacity, such as a doctor’s waiting 

room with a number of chairs. However some queueing systems have infinite length, as in the case of 
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judicial processes or waiting lists. In the case of rail systems where stations and sections are the 

servers, queues are limited. 

Queueing systems can have more than one service channel. In general it is preferred to have a single 

queue feeding multiple channels e.g. customs at airports and railway stations with more than one 

platform. This usually applies for systems where the agents have no preference as to which service 

channel they want to use. In for example a bank, where different services are offered at each queue 

customers will line up in multiple queues [9]. 

The last aspect of queueing systems is stages of service. Systems may have more than one service 

stage and manufacturing systems are good examples of this. Parts will for instance be assembled, and 

then be moved forward to be checked for quality. If the quality is not satisfactory, the assembly will be 

fed back to the previous stage or otherwise the assembly will move forward to the next stage [9]. 

Passenger rail systems only have one service stage, while freight trains may have more (i.e. freight 

being unloaded and then the train moves to the hump yard etc.) 

The following points summarize queueing systems: 

1. An agent arrives according to a certain probability distribution or fixed inter-arrival time. 

2. The agent then enters or does not enter the queue, depending on the type of system. 

3. The agent then moves from the queue to get serviced for a duration specified by the modeller. 

This can be for a random or fixed time period. 

4. After the agent is serviced it leaves the system and the next agent in the queue is serviced, 

depending on the queueing discipline. 

Huisman et al. [10] developed a queueing network model to compute the long term performance of 

rail networks. To achieve this, a decomposition of the network in its detailed components was 

necessary. These components include stations, junctions and sections. The network performance was 

measured by the mean delay and delay probability of the trains arriving at their destinations. Because 

train movements are not known over the long term, assumptions were made to simplify the modelling 

of stations. One of the assumptions is to model the halting tracks outside of the model. Thus when a 

train finishes its route it exits the model and is stored in a queue outside the model. The halting track is 

where the train starts its route, and where the passengers alight or board the train. The next train can 

only enter the model after the train on the halting track has departed.  

The occupation times at the halting tracks are assumed to be exponentially distributed and equal for all 

train types. The stations are modelled as multi-server (since stations have more than one platform) 

queueing systems with Poisson arrival distributions.  

The same principles were applied to junctions and signal blocks, except that these were single server 

queues. If a junction is occupied, the next train falls into the queue, until the junction is clear. This 

occupation time is also exponentially distributed. 
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Track sections between stations were broken up in signal blocks, with each block acting as a separate 

queuing system. Bottlenecks and delays were then calculated by adding up all the waiting times in the 

queues. These waiting times were compared to the real delay durations of the trains.  

The model showed good accuracy even though a probability distribution was used for inter-arrival 

times to determine arrivals for trains, instead of using a timetable. Yuan & Hansen, [11] and Meester 

& Muns [12] both emphasise the lack of queueing models to consider timetables, since it is reliant on 

probability distributions for inter-arrival times. Moreover fixed arrival and departure times were also 

not considered and the impact of speed variations with different train types was neglected. Huisman et 

al. [10] however suggested a way to capture speed variances among different train types by ignoring 

block (signalling) sections in a section between stations. The model does however include one block 

section before and after each station, to insure that trains do not arrive in bulk at stations. Furthermore 

the number of trains allowed in a section was limited to the number that would have been allowed in 

the case with signal blocks. Speed variations was accounted for by for instance, if a section has five 

signalling blocks the middle three sections will be removed from the model and only the first and last 

sections will be included. This allows enough distance for a train with a different speed to have a 

significant variance in free running time. (Here free running time refers to the time a trains travels 

between stations without any disruptions). Huisman’s model was applied to two major lines of the 

Dutch network namely. Rotterdam – Utrecht and Den Haag – Utrecht. The traffic on this network is 

extremely heterogeneous with three different train types (implying three different train speeds) 

running three different services.  

de Kort et al. [13] also applies a similar queueing model based on Wakob’s Approach, on Den Hague 

station in the Netherlands. Wakob’s approach breaks up all the components of a station and analyses 

them independently as separate queues. Arrival and service times are both assumed to fit an Erlang 

distributions resulting in Ek(λ)/Et(µ)/1 queues for the whole queueing system. de Kort et al. [13] argues 

that service time variations should be dependent on running time and dwell time variations, instead of 

independent probability distributions. It was found that this approach over-estimates delays or 

alternatively models the “worst case scenario”. This may be related to the fact that Wakob’s approach 

returns the upper bound of the delay duration instead of the mean and standard deviation. This 

approach is thus inappropriate for delay propagation analysis, however it can be useful for capacity 

planning purposes [13]. 

Queueing models can serve as a good alternative to simulation to estimate delays, however as 

previously mentioned modelling large networks becomes difficult to solve analytically. Kozan & 

Higgens [8] explains this complexity of train networks with the following: 

“A train network is complex in that it includes many intersections, uni- and bidirectional track links of 

various lengths, sidings, and track capacity. Train services vary with different upper velocities, slack 

time, scheduled stops, non-uniform departure times, and include train connections as described in the 
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introduction of the paper. In the case of train connections and intersections, a train can suffer a delay 

from another that is scheduled much earlier and from a different part of the network.” 

“As well, the distribution of arrival times for each train at any station or intersection depends on the 

distribution of current delay, which can be different for each train service. Hence, delay to both the 

trains and at stations (or intersections) are interdependent. Therefore, the calculation of expected 

delay requires a solution of equations.” 

3.2.2 Job shop models 

Branch and bound algorithms have been used to develop and optimize timetables. These models 

transform train networks into large job shop models. Typically trains will be jobs and stations and 

sections will be machines. In job shop models there are a number of different jobs that need to be 

completed by a number of machines. A job will have a specified time and order it has to spend at each 

machine. For example Job A will use Machine 1 for 2min, then Machine 2 for 5min and lastly 

Machine 3 for 3min. Job B will first use Machine 2 for 3min then Machine 1 for 5min and then end off 

with Machine 3 for 1min. Figure 3-1 shows an illustration of this simple model. It is important to note 

that each machine can only work on one job at a time. This means that when Job B is finished with 

Machine 2, Job A can move to Machine 2. Similarly when Job A is finished with Machine 1, Job B 

can move to Machine 1. Whichever Job first finishes using Machines 1 and 2 then moves to Machine 

3. The other Job will then have to wait for the first Job to finish before moving to Machine 3. In the 

example illustrated in Figure 3-1 both Jobs will arrive at Machine 3 at the same time. In such cases 

priority rules can be implemented. Nevertheless problems of this nature, create the need to determine 

what the optimal sequence of machine usage is, i.e. which job should utilize which machine, when? 

Branch and bound algorithms are used to solve these problems. For further explanations on Job shop 

models and branch and bound algorithms refer to [14]. 

 

Rail networks can be similarly modelled, seeing trains as jobs and stations, sections and junctions as 

machines. There does however exist key differences between train network models and classical job 

shop models [14]. These are listed as follow: 

 Jobs and machines do not have lengths as do trains and sections. While moving from one 

section to another a train’s “head” will occupy the next section while the “tail” will occupy the 

Figure 3-1: Simple job shop model 
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current section. A train may thus occupy two sections at a time, whereas jobs can normally 

only occupy one machine. 

 Train acceleration, deceleration and cruising speed for a specific section cannot always be pre-

defined, since it is dependent on the train in front. 

 Trains can visit sections more than once, whereas jobs are mostly assumed to visit machines 

only once. 

 Passing facilities such as passing loops on rail sections are equivalent to capacitated buffers or 

parallel machines. These are very difficult features to model with a standard job shop model. 

In the paper of Burdett & Kozan [14] it is explained how these differences were incorporated in order 

to produce realistic results. 

D’Ariano et al. [15] also developed a job shop model for the Dutch railway network. Figure 3-2 shows 

a small network on which the model in Figure 3-3 is based. Note that each block section is represented 

by a machine or a resource, as referred to in this paper, and Trains A and B are the jobs. A minimum 

headway of one signal block between trains is modelled and indicated by the dotted arrows in Figure 

3-3. For example, Train A can only enter block 5 when Train B has exited block 7. 

 

Figure 3-2: Small network with 9 block sections and two trains [15] 

 

This model was expanded to model the Schiphol rail network which includes the stations of Nieuw-

Vennep, Hoofddorp, Amsterdam Lelylaan and Amsterdam Zuid. The network consists of 86 block 

sections, 16 platforms, traffic in two directions and 54 trains. 

The model wished to solve the train scheduling problem for real-time rail network management. The 

objective function is to minimize the maximum secondary delays at all stations by all trains. It was 

found that these algorithms perform better than the despatching rules commonly used with regard to 

average and maximum delays.  

Figure 3-3: Job shop graph of two trains [15] 
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Burdett & Kozan [9] used a hybrid job shop model with time window constraints to solve the train 

scheduling problem when adding additional train services. In their later work [7] they again used the 

job shop approach but then further refined the solution using simulated annealing and local search 

meta-heuristics. This allowed them to shift trains more easily and feasibly within the solution plane. 

3.2.3 Tabu search 

Tabu search is a meta-heuristic algorithm which memorizes the most recent local optimum. As soon as 

a solution is found which is better than the previous best solution, the algorithm will store it and 

discard the previous best solution (i.e. the solution becomes tabu). This also implies that the algorithm 

will never return to the same solution twice. The Tabu search thus eliminates the possibility for the 

search to get stuck on a local maximum and continually searches for new local optima in the solution 

space.   

Corman et al. [16] compare a Tabu search algorithm to a local search algorithm and various hybrid 

algorithms previously developed [15], [17] to solve routing and scheduling problems in the Dutch rail 

network. The study focussed on a bottleneck at the dispatching area of Utrecht Den Bosch, which 

consists of 191 block sections, 21 platforms and 50 km of track. The algorithms had to search out of 

356 possible routes for the best solution. The results showed that the Tabu search algorithm reached 

better solutions faster, compared to the other algorithms. 

Similar conclusions regarding to quality and speed of solutions reached by Tabu search methods were 

found by Higgins et al. [18] which solved the problem of a single track line with occasional sidings for 

opposing trains to pass each other. 

3.2.4 Genetic Algorithm 

Genetic algorithms are very effective and robust algorithms to determine global optima. Gradient 

based methods, such as Steepest Accent, Conjugate Gradient or Lagrangian Multiplier, usually 

converge faster to local optima or a local optimum than a genetic algorithm, however in cases of multi 

modal functions they may miss the global optimum more often than not. Genetic Algorithms are based 

on the theory of genetic evolution where the fittest genes in a chromosome survive and the weakest 

genes die away in the process of reproduction. To put in differently, the offspring of two parent 

chromosomes will only consist of the best genes found in both parents. In this way continual 

improvement in fitness takes place with every generation [19]. 

Considering the algorithm, each solution is represented by a chromosome. Stochastic mutation of 

some of these offspring is brought in at pre-determined instances in order to make sure the algorithm 

does not get stuck on a local optimum. The numerical values of a solution’s parameters are converted 

to a series of binary digits, and each parameter is then represented by a gene. When a gene thus 

evolves the digits of its binary code change to either 1 or 0 [19]. 

Genetic algorithms are not commonly used for solving train scheduling problems, however Higgins et 

al. [18] used a genetic algorithm to solve a single line train scheduling problem. In this study each 
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gene contained three attributes, namely: the delayed train, the train with the highest priority or right of 

way and the track section where the conflict will occur. With each parent then consisting of six genes 

(e.g. six train schedule solution), the fittest two parents are chosen to mate and produce two children 

with genes from both parents with a single randomly selected crossover point. The genes before the 

crossover point are transferred the first child, whilst the genes after the crossover point are transferred 

to the second child. Mutation in this algorithm has a very low probability, however when mutation 

happens and the conflict gene changes, and the neighbouring genes also change. Changing only one 

conflict gene by mutation is not good in train scheduling problems [18]. The genetic algorithm in this 

study proved to outperform the Tabu search and local search heuristics which the authors also used to 

solve the same problem. 

It is seems that most of the cases where genetic algorithms were used, were in cases of single track 

lines with traffic in both directions [3] [20] [21].  

3.3 Simulation models 

Saayman & Bekker [16] explains simulation as an attempt to solve real world problems, by first 

building a model that represents the current state and operation of a system as realistically as possible. 

This is achieved by making argued simplifications and assumptions. The model can then be used to 

solve, experiment or optimize the modelled system. Saayman & Bekker [16] goes further to explain 

that simulation allows the modeller to include the stochastic nature of real world systems. It allows for 

big scopes and high complexity systems. It is however difficult to validate a model, since the whole 

point of simulation is to forecast the effects of change to a system before spending capital to 

implement the intended change. Model validation is usually done by comparing the “current state” 

model to actual system behaviour. In this way the modeller can make the assumption that the model is 

a realistic representation of the system. Simulation is thus a tool that should be applied with care, since 

getting answers is easy but getting realistic answers is a fine skill [16]. 

In the railway environment there exist two types of simulation approaches to modelling train 

operations, i.e. macroscopic and microscopic. This Section will explain the difference between the two 

approaches and give examples of where they were applied. 

3.3.1 Macroscopic simulation models and software 

Macroscopic models are used to evaluate the operation of a transportation system, and uses statistical 

data to describe trains’ behaviour. Detailed individual train behaviour and movement are thus 

simplified in order to be able to model larger systems [22]. 

NEMO (Network Evaluation MOdel), a macroscopic model developed by IVE and the Austrian 

Federal Railways, is used for strategic planning and evaluation of infrastructure and operational 

complexities. Radtke and Hauptmann [23] used NEMO to model large parts of the German railways 

macroscopically and then combined the outputs with a microscopic model built in Railsys. 

Microscopic models will be discussed in Section 3.3.2, however microscopic models relate to the 
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more detailed approach to modelling trains. Radtke and Hauptmann’s [23] approach therefore 

suggested ways to combine macro- and microscopic railway models, even though the results and 

computational performance was not compared to similar approaches such as developed by Schlechte 

et al [24].  

Hwang & Liu [25] developed a macroscopic simulation model to forecast the effect of increasing 

demand for railway capacity of the Taiwan regional railway system. The objective was not only to 

model increase in the line capacities but to also improve the efficiency of the current capacity. The 

model’s objective was the accurate estimation of knock-on delays (secondary delays), as a result of a 

primary delay. The following input parameters where used to represent the network: 

 Railway condition –  the line, stations and track layouts of the stations 

 Traffic condition – minimum dwell time and scheduled timetable 

 Control condition – minimum headways, section capacity and recovery time 

With these parameters the model was run assuming no delays, i.e. strictly following the scheduled 

timetable. To determine the effect of a primary delay on the network then, a delay event had to be 

created. This event or primary delay is defined by four parameters namely, location of delay, delay 

start time, delay release time and the magnitude of the delay.  The magnitude of the delay is simply the 

difference between the delay start time and delay release time. The resulting secondary delays were 

thus one of the outputs of the model. These delays were then used to create a simulated timetable. 

To validate the model, actual train operating data was used. The arrival-departure time data of a 

specific day was retrieved from the Centralized Train Control database of the Taiwan Railways 

Administration. Actual delay data was also collected in order to compare with the simulation output. A 

route conflict delay was chosen as the real event that serves as the primary delay. The model proved to 

be within 120 seconds of the actual delay time 77.5% of the time, with 62.5% of the time within 60 

seconds. Figure 3-4 shows the Marvey diagram2 of the normal timetable without any delays and 

Figure 3-5 shows the diagram for the simulated timetable. It is clear that a delay occurred between 

Shongshan and Taipei stations and the next seven trains were affected by it. Hwang and Liu [25] went 

further to compare different delay reduction strategies and how they influence the total secondary 

delays. The effects of three strategies are shown in Figure 3-7. It is interesting to note the exponential 

relationship between primary (or first delay) and secondary delays (or knock-on delays). This can be 

explained by the fact that the larger the primary delay, the harder it is for a train to recover any of the 

lost time. A train is naturally limited in ability to use these three strategies to recover the lost time 

created by the primary delay. A train has a minimum allowed dwell time at stations and is also 

                                                      
2 A Marvey diagram is a time-distance diagram of a train’s journey from its origin to destination station. Lines 

running at a positive inclination are generally referred to as “up-trains” or trains moving in the “up” direction 

and lines at a negative inclination are referred to “down-trains” or trains moving in the “down” direction. The 

lines in the two different directions can only cross if the trains are running on a double line section, or if there is 

a passing loop. Furthermore, the steeper the lines the faster the train is running. Lines running horizontally 

therefore indicate a train standing still. 
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subjected to speed limits on sections. These limitations thus translate into knock-on effects on later 

trains which result in an exponential growth in the total delays.  

 

 

Middelkoop & Bouwman [26] demonstrated the use of Simone simulation software to model the entire 

Dutch rail network. The software requires the following as inputs to the model: 

 Infrastructure data 

 Timetable 

 Simulation specific parameters 

 Network properties with regard to disruptions and disturbances 

 Operational rules 

 Statistical indicators for the simulation output 

Figure 3-4: Normal timetable without delays [25] 

Figure 3-5: Simulated timetable diagram with delays [25] 
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The software then produces the indicators pre-specified by the user and an animation of the network 

operation. Figure 3-6 shows an example of the animation output Simone produces. The figure shows a 

part of the Dutch rail network and all the trains operating on it. Each type of train has a unique colour. 

Most parts of the model were constructed by the software’s automatic model generator. The model 

included 600 stations, 1100 track sections and 350 trains which is significantly large. The model was 

able to show (see Figure 3-7) for example the punctuality of trains in certain parts of the network and 

the relationship between initial delays and sum of delays (as done by Hwang & Liu [25]). 

 

 

On the East coast United States of America, one of the major railway companies, CSX, used Anylogic 

simulation software to create a visual emulator to replay past system behaviour of their entire network 

on a GIS map to better understand density, flow and congestion processes. Train movement data was 

imported to Anylogic from databases to pre-define train behaviour. It should be noted that this model 

was built without the use of Anylogic’s Rail Yard Library [27]. 

CSX also used Anylogic’s agent based modelling ability to model a supply chain network to 

determine the ability of the operator to fulfil the demand of coal trains and the ability to stage empty 

trains. In this model the trains were modelled as agents moving across the network and making 

decisions based on built-in intelligence.  

 

Figure 3-6: Simone simulation animation output 

[26] 

Figure 3-7: Total knock-on delays at the destination station [25] 
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3.3.2 Microscopic simulation models and software 

Microscopic simulation models are used to model actual operations of trains. Detailed train 

movements and behaviour are considered together with relevant infrastructure details. These models 

are used on smaller networks and can in some cases be optimized. In general, the objective of 

microscopic models is to test schedules and simulate the effect of disruptions [22].  

Train networks can be simulated in two ways. One is time-based modelling where a time span is 

broken up into equal intervals and train movement is calculated at each interval. This is a very realistic 

representation of train movement; however it requires a large amount of information with every 

update, making it computationally intensive. Time based models are typically used in signalling layout 

design and energy consumption analysis [28].  

The second way of simulating train movement is event-based. This method is similar to queueing 

models discussed in Section 3.2.1. The train’s movement is described in terms of a chain of events. 

For example, the train arrives at a station at a specified arrival rate and dwells for certain time period. 

The train then leaves and enters a track section which marks the start of the next event. Each event’s 

duration is characterized by a certain probability distribution. Event-based models may reduce 

computational time significantly compared to time based models, however train movement updates are 

not synchronised between events [28]. 

van Dijk [29] suggested that queueing theory and simulation can be combined. He argued that the 

advantages of queueing theory (generic components, few detailed data needed) reduces the 

disadvantages of simulation namely, high level of complexity and detailed data required. In the same 

way simulation’s advantages (i.e. real-life complexity and real-life uncertainties) reduce queueing 

theory’s disadvantages namely, over-simplification and unrealistic constraints. 

Azadeh et al. [30] used a Visual SLAM coding language to develop a simulation model of a complex 

rail system consisting of 50 stations and both passenger and freight trains. An analytical hierarchy 

process (AHP) method was used to weigh the qualitative and quantitative inputs and outputs which 

were then converted to a data envelopment analysis (DEA). The objective of the model was to find 

ways to increase passenger train reliability and decrease turn-around time of both passenger and 

freight trains. 

Ho et al. [28] developed a general-purpose multi-train simulator which enables the user to model 

without carrying out program code modifications. The simulator has been used in Hong Kong and 

China for studies of traffic control at conflict areas, scheduling optimization and energy management 

of trains. 

In the railway literature it was experienced by the author that the majority of simulation work is done 

to determine capacities of complex single line networks. Single line routes with different loop lengths 

and train types (e.g. passenger and freight trains) are extremely complex to schedule and to calculate 

capacity. Simulation software packages such as RTC (Rail Traffic Controller) and OpenTrack are then 
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used to simulate these complex networks. OpenTrack, which is similar to RTC, uses microscopic 

models to simulate rail operations and are based on user defined train, timetable and infrastructure 

databases [22]. OpenTrack was developed by the Swiss Federal Institute of Technology’s Institute for 

Transportation Planning and Systems and is mainly used to test and evaluate operating schedules and 

timetables[22].  

Schlechte, et al. [24] used OpenTrack to simulate the Simplon corridor between Switzerland and Italy. 

The objective was to maximise a utility, which can be a constant or monetary value, of the allocated 

trains. A LP optimization algorithm was written in CPLEX to determine the optimal schedule. This 

schedule was then simulated in OpenTrack to test its validity. The authors claim that their method 

allows for solutions that are comparable in quality to most sophisticated manual schedules, but were 

produced much faster than manual schedules. 

RTC from Berkeley Simulation Software, was developed in the United States of America and is very 

popular for simulating single line freight and passenger rail networks. Dingler et al. [31] used RTC to 

study the impacts of the various aspects of train type heterogeneity on the planning of rail operations 

of North American railroads. Furthermore suggestions were made as to how delays, caused by 

heterogeneity, can be reduced by certain operating strategies. 

Mei-Cheng Shih [32] also applied RTC to a North American rail network that was originally designed 

for low traffic density (i.e. infrequent passing loops) and short trains. An increase in demand of 

commodity flows thus created the need for an effective capacity expansion strategy. RTC was used to 

simulate experiments for various expansion alternatives.  

Similar work was done by Sogin et al. [33][34] where trains on North American networks were mixed 

in terms of speeds and priorities. Passenger trains running at speeds up to 110 mph and enjoying 

highest priority were sharing the same infrastructure as freight trains running at much lower speeds. 

This heterogeneity and increase in traffic required simulation to determine operational and expansion 

strategies. 

The author’s own experience in literature of both OpenTrack and RTC has shown that OpenTrack 

relies on scheduling data as input. Detailed itineraries have to be specified by the user before the 

simulation is run. If an invalid schedule is used the software will produce an error. RTC however has 

the ability to calculate a valid schedule given the starting times of each train. RTC thus uses 

sophisticated passing logic to determine valid schedules for rail networks. For this reason it is used for 

capacity modelling of highly heterogeneous rail systems. RTC has been applied very successfully in 

several commercial rail projects around South Africa. 

Unlike specialised rail simulation software such as RTC and OpenTrack, Anylogic (which is a muli-

method general simulation software package) has also been used for microscopic rail simulation 

models. Anylogic was used to determine the capacity of a rail maintenance yard for Australia’s largest 

rail freight operator. The model was built with the help of Anylogic’s Rail Yard Library. The model 
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was able to test amongst other, train configurations, track utilisation, scheduling of activities and train 

movements within the yard [35]. 

3.4 Train system punctuality and reliability 

The purpose of modelling train networks is primarily to estimate punctuality, since this and a safe 

journey are the key factors to passenger satisfaction [36]. Gylee [37] also makes this point by 

explaining punctuality as “the ability to achieve a safe arrival at a destination to an advertised 

timetable”. Punctuality will thus be discussed in this Section.  

A major aspect that influences punctuality is reliability. Rieveld et al. [38] uses reliability to define 

punctuality and refers to it as the same thing. However in this study reliability will refer to the ability 

of the system to not fail to such an extent that a delay will be caused. The system here includes the 

electrical infrastructure, perway infrastructure and rolling stock. Each of these components has their 

own way of defining and quantifying reliability. For example a recent study by Conradie [39] 

quantified the reliability for rolling stock of the Passenger Rail Agency of South Africa. However a 

failure in that study did not necessarily mean a failure causing a delay. A failure in this study will 

mean a failure that caused a train to either stop or be slowed down enough to cause a delay. 

Punctuality is not always measured in the same way. The most common way calculating it is by the 

percentage of trains that are punctual. Norway determines a train’s punctuality at its destination station 

[40], even though some argue that punctuality should be determined at each stopping point along a 

train’s route [41]. Olsson [40] did a correlation analysis on the following factors that may affect 

punctuality: 

 Temporary speed restrictions 

 Construction work 

 Infrastructure capacity utilisation 

 Occupancy ratio 

 Number of passengers 

 Departure and arrival punctuality 

 Operational priority rules 

High capacity utilization is widely assumed as a large contributor to secondary delays, however it was 

found that the number of passengers were more correlated to poor punctuality than capacity utilization 

(capacity utilization refers to the ratio of trains running on a line to the maximum number of trains 

able to run on the line). Further on operational rules at crossings and the management of boarding and 

alighting passengers (which influences departure punctuality) seemed to be the most significant factors 

pertaining to overall train punctuality. 
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3.5 Summary 

This chapter discussed the various ways to model and schedule train networks. Firstly pure analytical 

models were covered which showed that networks can be modelled accurately without advanced 

computational methods. They are however very limited in terms of scope and network complexity. 

Secondly heuristic methods were discussed. It can be concluded that these methods are very effective 

in optimising large complex networks.  It allows the modeller to find global optima amid a solution 

plane consisting of many local optima. Optimising train schedules for dense rail networks seems to be 

possible with the right combination of these heuristic algorithms. 

Lastly the use of simulation was discussed. Simulation allows for very large scopes and even entire 

networks to be modelled [26]. It also has the ability to include important infrastructure detail and also 

simulate reality fairly accurately. Moreover it possesses the ability to animate the model making the 

complex nature of a rail network visual and easier to understand. In the rail environment train 

operation simulation is differentiated between micro- and macroscopic simulation models. 

Macroscopic models often include entire transport systems of which rail can be part of, or in other 

cases very large rail networks. Microscopic models are much more focussed on the detail aspects that 

influence train movement and are used for smaller networks. Simulation models have the ability to 

calculate the capacity and expansion strategies of complex rail networks.  
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 Model development 

In this chapter a model will be developed to model heterogeneous rail traffic operating in an aged 

system. It will thus model rolling stock and overall system reliability and how it affects train 

punctuality. Since the model uses statistical methods to describe reliability and simplifies certain 

aspects that determine train movement, according to Nash [22], this model can be classified as a 

Macroscopic model. 

In Section 4.1 the basic outline of the model will be explained. The infrastructure sub-model will be 

explained in Section 4.2 while the two fundamental components of the model will then be explained in 

Sections 4.3 and 4.4. The limitations and assumptions of the model will then be explained in Section 

4.5, and finally the chapter will be rounded off with the concluding Section 4.6. 

4.1 Basic outline 

In this Section the inputs and the outputs will be discussed to give an overview of the model. The 

model itself will be discussed in the later sections. 

4.1.1 Outputs 

To understand the objective of the model one has to first look at the outputs of the model. The 

objective of the model is to give a measure of punctuality of an unreliable rail system. The idea of the 

model is to see the effect on a system when change is implemented. Thus in this model the change 

will be introducing heterogeneous train traffic into a rail system which was always operated with 

homogeneous train traffic and to increase the reliability of the system as a whole. To draw this back to 

the objective of the model - the punctuality of the trains will be measured with the change in 

heterogeneity of the traffic (i.e. changing the mix of train types) and change in system reliability. 

To measure punctuality one has to first look at what the criteria are for a train to be punctual. The most 

common measure used in Britain and Europe is 5 minutes from a train’s scheduled arrival time; e.g. 

when a commuter train arrives at its destination station within 5 minutes of the scheduled time it is 

regarded as punctual [42]. Any time a train arrives later it will be regarded as late and delayed. This 

will also be the measure used in this model.  

The outputs for the model are thus: 

 Total minutes delay over a given operational period 

 Number of delays 

 Average delay duration 

The key parameter is Total minutes delayed since it is the parameter by which train punctuality is 

measured. Subsequently, since Total minutes delayed is a function of Number of delays and Average 

delay duration, the latter two parameters will also be measured to understand how they are influenced 

when change is introduced in the system. 
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4.1.2 Inputs  

In order to produce the outputs mentioned in Section 4.1.1 accurately, one has to input the relevant 

constraints and variables that describe the system and the environment in which it operates. 

To describe the environment in which this model operates, the system will be broken up into five 

parts: stations, perway, signals, rolling stock and over-head traction equipment. The case study 

discussed in later chapters, includes trains that can regenerate electricity back into the grid when it 

either brakes or runs free. In reality this function may have an influence on how trains are scheduled 

because of various electrical infrastructure constraints such as the inability of the current Western 

Cape rail infrastructure to store the regenerated electricity. In effect this means that when a train 

generates electricity, there needs to be another train that consumes that electricity. This function will 

however be ignored in this study. The inputs that describe the environment of the model are the 

following: 

 Stations 

o GPS coordinates – indicate locations of the stations on the route. 

o Maximum capacity. The number of platforms or tracks in a specific direction in a 

station. 

o Dwell times. The time a train dwells in a station before departure. This value will be 

fixed since variation in dwell times for passenger services are usually a matter of 

seconds while delays are measured in minutes. Randomness in dwell times will 

therefore not have a significant influence on the outputs. 

 Perway 

o GPS coordinates. When modelling a train system or network, the geographical details 

of the route or piece of network being modelled, is an essential input. Some models 

don’t necessarily use geographical information such as GPS coordinates, but they still 

ensure that the dimensions of the route or network are correct. This model aims to 

model directly on a GIS map. 

 Signals 

o GPS coordinates. The exact location of each signal along the modelled route is 

required. 

o Operational rules. This includes min headways at stations, sections and junctions 

measured in signal blocks. 

 Rolling stock 

o Speed and acceleration properties. The defining factor that classifies this model as a 

heterogeneous train traffic model is the difference in speed and acceleration properties 

of the two different types of trains (old and new trains). Reliability also differentiates 

between the train types, and will be further explained in later Sections. 
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o Schedule. The schedule will be used to determine when a train must depart from its 

starting station and trip times to its end station. It will however be revised with each 

scenario to accommodate the new trains. 

These inputs contain no randomness, as they are only there to describe the modelled environment. 

With only these inputs the trains will run perfectly according to schedule, departing on time and 

arriving at their destinations on time. 

Finally, the stochastic inputs are in the form of delays, or otherwise referred to in literature as 

disruptions. Trains experience either a primary delay or a consequential delay. Goverde [43] explains 

the definition of a primary delay and a secondary delay (consequential delay) as follows: “A primary 

delay is the deviation from a scheduled process time caused by disruption within the process” and “A 

consequential delay is the deviation of a scheduled process time caused by conflicting train paths or 

waiting for delayed trains”. The input to the model will be a primary delay, and the delays caused on 

the following trains as a consequence will then be referred to as the consequential delays. A primary 

delay is mostly caused by a failure of either the train or track infrastructure. Delays can also be caused 

by passenger overcrowding or other passenger related accidents. Regardless, a primary delay has the 

following three parameters: 

 Location of train where primary delay occurs 

 Time when primary delay occurs 

 Duration of the primary delay 

The location of the primary delay will depend on the nature of the system being modelled. If primary 

delays tend to occur more in a certain region of the network, the probability of a primary delay 

occurring there should be adjusted accordingly. However, the location of a primary delay will have no 

influence on the sum of the consequential delays if only one line is modelled. This means that 

regardless of where a train is being delayed on a single line, the consequential delays will add up to the 

same amount. This is true for both homogeneous and heterogeneous traffic. This principle is however 

not valid when modelling a route with converging or diverging lines. 

In Figure 4-1, a simple Marvey diagram is shown to illustrate the movement of 5 trains running 

through 5 stations all at the same speed and headways. Train 1 then gets delayed for 23 minutes at 

Signal 2 which causes the following trains to also be delayed. The following trains will all have to 

wait until there is a minimum required headway of 5 minutes between it and the train in front, before 

continuing to the next station. The consequential delays are thus calculated as follow: 

 𝐷𝑖+1 = 𝐷𝑖 − 𝐻𝑖+1 + ℎ        𝑖 = 0,1,2, … , 𝑛      𝐷𝑖 > 𝐻𝑖+1 − ℎ      𝐻𝑖+1 > ℎ (1) 

And the sum of delays:  

 𝐷𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐷𝑖 − 𝐻𝑖+1 + ℎ𝑛
𝑖=0         (2) 
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Where: 𝐷0 = 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑑𝑒𝑙𝑎𝑦, 𝐷1,…,𝑛 = 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑑𝑒𝑙𝑎𝑦, ℎ = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 ℎ𝑒𝑎𝑑𝑤𝑎𝑦,

𝐻 = ℎ𝑒𝑎𝑑𝑤𝑎𝑦. The sum of delays for this case is then 1:05:00. If one refers to Figure 4-2, where 

Train 1 was delayed at Signal 7 for the same duration, the sum of delays is also 1:05:00, showing that 

for homogeneous traffic the location of the primary delay has no influence of the sum of delays.  

A similar calculation was done on a case with heterogeneous traffic where Train 3 was given faster 

speed properties resulting in a 3 minute shorter trip time. This implied that different headways at the 

start station had to be determined in order for the all the trains to arrive at the end station at equal 

intervals. Again a primary delay of 23 minutes was initiated at Signal 2 for the one case and Signal 7 

for the other (see Figure 4-3). It is important to note that after Train 3 is delayed, it continues its trip at 

the same pace as the slower trains, since it is not possible for trains to pass. The sum of delays was 

found to be exactly the same as in the case of homogeneous traffic.  

Thus for either homogeneous or heterogeneous train traffic on a single line, the location of a primary 

delay will make no difference to sum of delays. It must be mentioned that this does not apply to 

networks that consist of different lines converging and diverging at junctions, but for the purposes of 

this model the rule applies. 
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Figure 4-1: Marvey diagram for normal and delayed homogeneous rail traffic consisting of 5 trains 

with the primary delay occurring at Signal 2. 

Now moving on to the next parameter, namely the time when a delay occurs. This is not determined 

stochastically. It may be difficult to determine a distribution of when delays occur from available data, 

since most delays are caused by train or infrastructure failures which are not necessarily dependent on 

the time of day. Some delays however are not necessarily caused by failures but rather by human 

disruption. Train overcrowding and train driver slackness are examples of such delays. It is also 

important to know that failures may occur in either rolling stock or infrastructure without causing a 

delay. For instance sub-components on a train may fail, such as a traction motor, but it won’t cause the 

train to stop or even lose speed as the other motors are adequate to keep the train running.  
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Figure 4-2: Marvey diagram for normal and delayed homogeneous rail traffic consisting of 5 trains 

with the primary delay occurring at Signal 7. 

It can however be assumed that more delays occur during peak periods, since the train frequency is 

higher and thus a higher probability of failure in any part of the system and human disruption. The 

knock-on effect of primary delays is also greater during peak periods, since headways are shorter. In 

this model the average total number of delays in a day will be initially divided proportionally 

according the number of trains running in peak and off-peak periods to determine the frequency of 

delays. During the calibration of the model, these two values will however be adjusted to compensate 

for limitations and assumptions made elsewhere in the model.  

The last parameter that defines a primary delay is its duration. The duration of a delay depends on the 

type of delay. Each type has a certain probability distribution which in most cases is exponential [12]. 

Before a primary delay’s duration can be determined, it must first be determined what type of delay is 

occurring. The type of delay is determined empirically by assigning a calculated percentage 

probability to each type and then running a random number generator at a uniform distribution for 

numbers between 0 and 1. The uniform distribution between 0 and 1 is then divided proportionally 

into intervals corresponding to the percentages calculated for each type of delay. The delay type is 
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thus determined as mentioned, empirically. Once the delay type is determined, the duration can be 

determined by the distribution assigned to that specific type. 

 

 

Figure 4-3: Marvey diagram for normal and delayed rail traffic consisting of 4 slow trains and 1 fast 

train with the primary delay occurring at Signal 7 

4.1.3 Simulation software 

The model can be classified as a macroscopic model since statistical data will be used to describe train 

behaviour and detailed train movements are simplified (reference to Section 3.3.1). Evidently, 

microscopic software packages such as RTC and OpenTrack were not considered. Furthermore 

instigating a large number of random delays over a long period of time is difficult since these 

packages are designed to calculate line capacity and trip times. 

It was therefore necessary to use a general multi-method simulation package which will be able to 

capture the important aspects of train operations and the stochastic nature of an unreliable railway 

system. The two software packages that were considered are Simio, Anylogic. Even though there are 
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many other simulation software available in the market, these two packages are two of the most 

widely used in industry. Support and licenses were also readily available to the author. 

Anylogic was chosen as the software to build this model, since it has the ability to build micro- and 

macroscopic rail models. Case studies of Anylogic being used to model rail operations in industry 

were also publically available (refer to Section 3.3.1 and 3.3.2). Even though it can be argued that 

Simio will also be able build the model in this study, the lack of examples and case studies of similar 

application in the rail environment made Anylogic the preferred choice over Simio. Table 4-1 

compares the different software packages that were considered. It is clear that Anylogic is the most 

dynamic in its abilities and therefore further substantiates the reasoning behind choosing Anylogic as 

the preferred software for this study. 

Table 4-1: Summary of the different simulation software packages considered for this study 

Software Modelling scope Type of simulation 

Examples in literature of 

application in the rail 

environment 

OpenTrack Microscopic Discrete-event Yes 

RTC Microscopic Discrete-event Yes 

Anylogic Micro-/Macroscopic 
Discrete-event/ Agent based/ 

System dynamic 
Yes 

Simio Micro-/Macroscopic Discrete-event No 

 

4.1.4 Summary 

Using Anylogic simulation software the model developed in this study will therefore produce a 

measure of punctuality of a rail network subjected to a variety of primary delay types. Figure 4-4 

shows a basic outline of the model. 
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4.2 Model – Infrastructure sub-model 

Discrete event based theory is used to model the track infrastructure and the movement of trains on it. 

The source block will represent the start station from which trains will begin their journey. Thereafter 

a queue block and a hold block are used to represent a signal. A station is modelled by a queue block 

and a delay block, while the end station is the sink block. An agent or train will then start at the source 

and move through the signals and stations until it reaches the sink. If the signal is red, the train will be 

stopped at the hold block and wait in the queue. When the signal turns green again the train will 

proceed to the next signals until it reaches a station where it would dwell for a specified time. When 

the train then reaches the end station or sink it will exit the system. A simplified Anylogic version of 

this model is shown in Figure 4-5. Note that there are moveTo blocks as well. These represent the 

movement of the train in sections. From here on this sub-model will be referred to as the infrastructure 

model. 

 

Figure 4-5: Basic Anylogic discrete event model. The top row shows the standard DE process blocks, 

while the bottom row shows how these were translated to rail infrastructure terms. 

Figure 4-4: Model outline 
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4.3 Model – System agent 

However to capture the stochastic nature of delays and system reliability, this discrete event theory is 

combined with agent based theory. Two agent types are created – system agent and a train agent. The 

system agent determines the location, time and duration of a delay. To enforce the delay, the system 

agent interacts with the infrastructure model by turning a randomly selected signal red, at a calculated 

time for a randomly determined duration.  

The system agent as seen in Figure 4-7, is either in a Delayed State or Undelayed State3. When the 

model starts, seed values are assigned to t0 (time at which the system enters into its Undelayed State) 

and delayLocation parameters. The agent then enters into its Undelayed State where a random number 

between 0 and 1 is assigned to delayType to determine the first parameter of the upcoming delay when 

the system goes into its Delayed State. A Switch/Case Java function is used to facilitate an empirical 

distribution by means of numerical intervals proportionally sized according to the corresponding 

probabilities of each type of delay occurring (distributions were sourced from the observed data). For 

instance as can be seen in Figure 4-7, there is an 8.4% probability that a delay will be customer 

related. Therefore if the random number assigned to delayType falls within the interval between 0 and 

0.084, the value of delay will be “Customer”. The same applies for all the other types of delays. 

After the upcoming delay type is determined, another Switch/Case function is used to change any 

previous delayed signal to green (note that when referred to “delay signal” it means a signal that was 

turned red because of a delay instigated by the system agent). This code does not apply at the start of 

the model since no delay has been instigated yet, however after the first delay was instigated it is 

necessary to reset the delayed signal to green. 

Next the time will be stepped forward and the time of day will be returned to determine if it falls 

within the peak or off-peak period. The time to the next delay will depend on which period of the day 

it is. The time to delay will always be shorter in peak periods since more trains run in that period and 

therefore increasing the probability of a delay occurring. It can be noted that timeToDelay is a product 

of delay frequency and system reliability. The systemRel parameter is used as a crude value to increase 

the whole system’s reliability by simply increasing the timeToDelay value by an adjustable factor. If 

the time to delay then expires the agent will log the time as t1 and move into the Delayed State.  

Another Switch/Case function is used to determine the delay duration based on the delay type 

determined in the previous state. It can be noted that the value for delayDuration is sampled from 

exponential distributions since it was found from data that the durations of all the types of delays are 

distributed exponentially. The first value in brackets is the shape factor or λ which is simply the 1 𝑥̅⁄ . 

The second value is the minimum value which is 5min, since delays shorter than 5min are not 

accounted for. 

                                                      
3 For a more detailed description of the code used for the System Agent, please refer to Appendix B. 
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The last delay parameter that is determined is the location of the delay. One signal in every section 

between stations was chosen as potential delay signals, which counts to a total of 16 “delay” signals. 

Similar to the delayType parameter, the delayLocation value is chosen by a random number generator 

for values between 0 and 1. The 16 intervals are however of equal size, resulting in a uniform 

distribution to sample the location of the delay from. Since the location of the delay has no influence 

on the sum of delays as proven in Section 4.1.2, a uniform distribution is adequate. The code 

“signal_8656.block()” is a function used in Anylogic (the software used to build the model) to turn the 

specific signal to red. 

After the delay has thus been instigated the code will step through time and stay in the Delayed state 

until the delay duration has expired. This will mean that any train approaching the delayed signal will 

stop and queue until it is turned green again. After the delay duration has expired the new t0 will be 

logged and the system agent will move into the Undelayed State again. 

The system agent model described above only accounts for one type of train agent. The train agent 

will be explained in Section 4.4; however it is important to understand how the system agent will 

account for the reliability differences in train types. In this model it will be assumed that the new trains 

will not experience any rolling stock related delays. Therefore if a rolling stock related delay is 

instigated by turning a signal red, that red signal must not apply if the oncoming train is a new train 

and must only apply for old trains. To account for new trains the potential delay signals in the 

infrastructure model was modified as in Figure 4-6. The separator block (“s”) is used to let all the old 

trains pass through “Signal5” and the new trains through “Signal5_new” An additional source block 

was also added to function as the source of the new trains.  

 

Figure 4-6: Process block arrangement to account for two train types 

The algorithm shown in Figure 4-7 still applies with the inclusion of the new trains, however the code 

behind the process blocks related to signals in the Delayed and Undelayed States were modified. 

Appendix B contains the detailed code of this modification.  
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Figure 4-7: System agent algorithm accounting only for one train type 
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4.4 Model – Train agent 

The train agent operates within the infrastructure model, but in order to incorporate acceleration, the 

agent has a built-in algorithm that enables the train to accelerate and cruise appropriately. 

Real fixed block signalling systems commonly work on a three signal system, where a green signal 

will mean proceed at the specified speed limit, a yellow signal will warn the driver to drive cautiously 

because the next signal is red. A red signal will mean that the train must stop until the signal turns 

green again. When a signal is red it will mean that the section ahead is either occupied by another train 

or there might be maintenance occupation. This model does not take into account driver behaviour and 

also assumes infinite braking ability. This allows the model to use a two signal system - green and red. 

Furthermore the signals of this model will be used to enforce minimum headways and delays. 

As mentioned in Section 4.1.2 one of the inputs to the model is speed and acceleration properties of 

rolling stock. To create a heterogeneous train fleet, different speed properties has to be assigned to 

each train type. Thus a train must be able to accelerate until it reaches a specified cruising speed and 

then at some point start decelerating in order to stop at either a signal or a station. However, because 

agents must operate within a discrete-event environment, they are only able to stop at set locations. 

Moreover agents will have to stop at random times if delays occur. This creates the dilemma that a 

train will sometimes have to stop at a signal at an unspecified and possibly unrealistic deceleration. 

This model then simplifies the problem by assuming infinite deceleration as previously mentioned. 

Further discussion on this simplification is covered later in Section 4.5. 

A summary of the train agent algorithm is illustrated as a flow diagram in Figure 4-8. This algorithm 

is inherent to each train. 

A train will depart from its starting station according schedule. If in the rare occasion the section 

(assuming one section min-headway between trains) ahead is occupied because of a broken train or 

delay-causing failure, the train will fall into a queue until the section is open. The train will then 

accelerate and cruise up to the next signal. 

If the signal is green the train will continue cruising to the next signal or station. If the signal is red, it 

will be either because the section ahead is occupied, or it is experiencing a primary delay. If the 

section is occupied the train will again fall into a queue until the signal turns green. If the signal is 

enforcing a primary delay, it must first be determined what the delayType is. If the train type is 

affected by the determined delayType the train will be delayed for the corresponding delayDuration. 

After the delay the algorithm loops back to the signal again. If the train type is not affected by the 

delayType the train will ignore the red signal and keep on moving towards the next signal or station 

(refer to Section 4.3 and Figure 4-6). 

If the train again arrives at a signal the same algorithm loop explained in the previous paragraph will 

be followed. If the train arrives at a station, it will dwell at the station for the specified duration and 
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then continue forward in the same way as it departed from the starting station. If however the station is 

the end station, the train will exit the model. 

Start station

Is block section 
open?

No

Accelerate/cruise

Yes

Signal

Accelerate/cruise

Green

Signal/Station

Signal

Dwell

Station

Queue

Sink

End station

Reason?Red Queue

Delay Type?

Primary delay

Train type 
affected?No

Delay

Yes

Section occupied

 

Figure 4-8: Flow diagram of the Train agent 

4.5 Limitations and assumptions 

This section will discuss the limitations of the model and what assumptions are made to simplify the 

problem into something that is computable and still representative of the reality.  

4.5.1 Simulating delays 

The way the model simulates delays requires calibration of the frequency of delays to ensure the 

correct amount of delays. As mentioned before, delays are simulated by stopping trains at signals. 

However the timeToDelay parameter is based on the model time and not on the train’s itinerary. This 

Stellenbosch University  https://scholar.sun.ac.za



40 

 

means a delay (i.e. a red signal) may occur, regardless if there is a train at the signal or not. It may 

therefore happen that a signal is blocked at time T0 for duration of x minutes. A train may then only 

arrive at that signal at time T1 and be effectively delayed for 𝐷𝑝 = 𝑥 − (𝑇1 − 𝑇0) minutes. It is also 

possible that no train arrives at the blocked signal during the Duration of the delay, causing a zero 

effective delay. 

This can be accounted for by increasing the frequency of delays, which means shortening the 

timeToDelay for either or both the peak and off-peak periods. Shortening the timeToDelay in peak 

times may result in more secondary delays, because of trains running on shorter headways than in the 

case with off-peak periods. Since the outputs of the model are average delay duration and sum of 

delays, changing the delay frequency is a useful way of calibrating the model so that the model’s 

effective average delays and sum of delays will match that of the real world system being modelled. 

The other way of calibrating would be to adjust the duration of delays. This will however be a 

complicated process since the delay durations are determined from probability distributions that are 

fitted to observed distributions from data. Adjusting these input distributions may consequently 

compromise the validity of the more than one input parameter. Adjusting only the frequency of delays 

however only compromises the validity of one input parameter. 

4.5.2 Acceleration and deceleration properties 

As mentioned in Section 4.4, delays are enforced by blocking a random signal for a random duration. 

When this delay occurs it is not based on the train’s schedule, but rather on a set frequency depending 

on the time of day. Thus as long as a train is approaching a signal, the train has to stop at the signal if 

it turns red, regardless of the distance between them. This means that there can be no limit to the 

train’s deceleration capability. In reality if a signal turns red and the train is too close to stop before the 

signal, the train is allowed to move past the signal while breaking. As mentioned in Section 4.4, real 

railway signals have a yellow signal as well to warn the train that the next signal is red. This is 

however not possible to model with discrete event modelling, since the entities are only able to stop at 

specific points in the model space and not able to move past a point because of momentum. It will thus 

be assumed that the train decelerates at an infinite rate (i.e. the train will stop immediately regardless 

of its current speed). The effect of this assumption is that the model train will cover its scheduled 

distance in a shorter time than the real train with the same acceleration and cruising speed properties. 

To compensate for this assumption, the acceleration and cruising speeds of the model train are reduced 

so that the time won by instant deceleration is lost in slower acceleration and cruising speeds. Figure 

4-9 shows a typical speed profile for a train – accelerating from Station A until a cruising speed is 

reached. The train will cruise until it has to decelerate again to stop at Station B. The model train as 

mentioned will in this example have to accelerate slower to end up at Station B at the same time as the 

real train since it has no deceleration curve. Drivers may also simply remove the power supply to the 

traction motors and allow the train to coast and gradually decelerate until it is necessary to apply 
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brakes. The coasting regime however is very dependent on the driver’s judgement and preference, and 

thus difficult to model. Coasting will thus not be considered in the model. 

 

Figure 4-9: Model acceleration curve vs real acceleration curve 

4.5.3 Train passing 

In the rail environment train passing usually refers to trains running in opposite directions on a single 

line, and having to pass each other by use of passing loops. The line considered in this model however 

is a double line and thus train passing refers to trains running in the same direction having to pass each 

other. 

Therefore, considering one line on which two trains with different speed characteristics are running in 

the same direction, two scenarios are possible. The first is when the slower train follows the faster 

train – operationally this is not a problem because the distance between them will grow with time. 

However the second scenario is when the faster train follows the slower train – this is an operational 

problem since the faster train will get caught behind the slower train. This can be prevented by proper 

scheduling, but schedules don’t take into account random delays. Passing in the same direction will 

allow the faster train to get ahead of the slower train. Passing on track sections however, requires 

special operational effort for real train networks, and is usually applicable to large disruptions. This 

model focusses on small and medium length disruptions, thus track section passing falls outside the 

scope of this model.  

In this model trains will not be able to pass each other in any way. It will be assumed that all train 

types stop at all stations and have the same dwell-times. Passing therefore in stations is also not 

possible. This assumption limits the possibilities when creating scenarios for the model. 
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4.5.4 Peak and off-peak delay events 

As mentioned in Section 4.3 the frequency of delays are dependent on the number of trains which in 

turn is determined by the time of day. Now since it is fixed frequencies for the two different periods, 

one would think that there are a fixed amount of delays each day. However with close investigation of 

the algorithm illustrated in Figure 4-7, it can be noticed that this is not necessarily true. Primary delays 

are calculated one at a time, and also occur one at a time. This means the primary delays cannot 

overlap or run concurrently4, because the system is either in its Delayed State or Undelayed State. The 

next timeToDelay is only determined when the system enters the unblock state. When timeToDelay is 

determined, it is not based on the time of day; instead it is only the value of timeToDelay that is based 

on the time of day.  

In reality primary delays can occur concurrently and a rail network system is much more complex 

having three signalling states (i.e. green, yellow and red). To make this model computable, the system 

was unfortunately simplified to just two states (green and red). The calibration and validation of the 

model is therefore a crucial step. To get the model to give relatively realistic outputs it will be 

necessary to adjust some of the input parameters to make up for the simplifications and assumptions. 

The parameters to be configured will depend on the nature of the system being modelled and should 

be done with care and consideration of the integrity of the model.  

4.6 Summary 

This chapter explained the structure and development of the model. It stated the model outputs, inputs 

and overall structure. The structure consists of two agent types namely: System agent and Train agent. 

The algorithms behind these agent types were explained and also the accompanying limitations and 

assumptions that were made in order for the model to work.  

The application of this model on the case study described in Chapter 2 will be covered in Chapter 5. 

  

                                                      
4 In the reality primary delays may occur concurrently. However because the model controls delays centrally 

instead of locally, the model is limited to only one delay at a time. 
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 Case study model 

Before the new trains can be modelled into the network the system must first be modelled in its current 

state, and thereby compare the model outputs to that of real data. A conclusion as to if the model is 

valid can then be drawn. In this study the line between Chris Hani and Cape Town will be modelled 

which will only include traffic in one direction (i.e. direction up). The 39 km line consists of 18 

stations, 57 signal blocks and carries 291 trains per week in one way. Figure 5-1 illustrates the 

network. It is important to note that trains can run from Chris Hani and Kapteinsklip to Cape Town via 

Pinelands or via Mutual. This model however only includes the trains running via Mutual. The trains 

running via Pinelands do not run on the same tracks as the Mutual trains, and thus will not have an 

effect on the Mutual traffic. Some trains from Kapteinsklip however also run via Mutual to Cape 

Town and are thus included in the model. The Sarepta and Bellville trains also run on separate lines to 

Cape Town, and will also be excluded from the model.  

 

This chapter will show how the model developed in Chapter 4 is applied to this case study. In Section 

5.1 and 5.2 the input data collection and processing will be discussed. Sections 5.3 and 5.4 will cover 

the validation process and how the relevant software was used to simulate the model. 

Chris Hani 

Cape Town 

Figure 5-1: Chris Hani to Cape Town network diagram 
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5.1 Inputs 

Anylogic simulation software was used to model the network. The input parameters and variables 

listed in Figure 4-4 were processed to be compatible with the software. This Section will discuss that 

process. 

5.1.1 Perway 

In order to model and represent the route from Chris Hani to Cape Town station, a GIS map was used. 

The route was then laid out by placing GPS points along the track as visually observed. These points 

were then connected to form the route on which the trains will run. 

5.1.2 Rolling stock 

Since the reliability of the train types are modelled inputs under delays, the only inputs concerning 

rolling stock are speed and acceleration properties and the schedule. In the “as-is” model only one 

train type will be considered, namely old train. Old train will represent the 5M2A train set which is 

the most common type operating on the Western Cape network. The 10M train sets which also operate 

on the Western Cape network, uses the same drive system as the 5M2A and thus can be assumed the 

same speed properties. The 8M trains use a different drive system, however only one currently 

operates on the Western Cape network according to Mr. Robert Venter from PRASA. It will therefore 

be assumed that old train will accelerate at a maximum of 0.35m/s2 and cruise at a maximum of 

80km/hr. These two parameters can easily be adjusted to calibrate the train’s traveling time between 

the Chris Hani and Cape Town. This calibration process will be further discussed in Section 5.3. 

Anylogic 7.1 has a Rail library with which train movement can easily be modelled. However with this 

version it is not possible to use the rail library to model on the GIS map. It was therefore necessary to 

use the Process Modelling library which is able to model on the GIS map. The Process Modelling 

Library can however only move the agents at a constant speed and acceleration and deceleration are 

instant. Therefore an acceleration algorithm had to be developed and embedded into the old train 

agent. The algorithm is as follow: 

The agent departs from its stationary point with a speed value of 1. This is just a seeding value to kick-

start the algorithm. The model works in increments of 1 second, and thus to accelerate the agent, its 

speed is multiplied by (1+acceleration value) every second. The speed will increase until the cruising 

speed is reached, after which the agent’s speed will stay constant until it has reached the next discrete 

event. The discrete event will serve as the next stationary point at which the algorithm will start again. 

Figure 5-2 illustrates the flow diagram of the acceleration algorithm. Technically every second in the 

model is a discrete event; however a “discrete event” in this algorithm refers to a train having to stop 

at either a signal or station. As mentioned in Chapter 4 the trains in this model stop instantaneously 

and thus have an infinite deceleration rate. The algorithm is coded in Java script and implemented by 

Anylogic to determine the movement of the Type train agents. 
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The second input under rolling stock is the departure schedule from the starting stations. Trains will 

depart from Chris Hani, Khayelitsha and Phillipi stations. Most of the trains in the model starting from 

Phillipi are trains that in reality start their route from Kapteinsklip station. Because the track between 

Phillipi and Kapteinsklip only has two stations, it is left out of the model. The influence this piece of 

tracks has on the rest of the network is negligible, however as mentioned the trains running from 

Kapteinklip will be included in the schedule for the trains starting from Phillipi. All the trains that 

share the same track are included in the model. The schedule was received from PRASA’s train 

operations office. A copy of the schedule can be seen in Appendix A1.  

It is important to note that the schedules are only departure schedules for trains at their starting 

stations. The arrival schedule at their end stations will be used to compare the model’s trip time to that 

of the real scheduled trip time. This comparison will then be used to calibrate the model. Section 5.3 

will elaborate on the calibration process. 

5.1.3 Stations 

The details concerning the stations are important in describing the model. The locations are also 

determined by GPS coordinates retrieved from Google Earth. Trains will stop at every station in the 

model except for Paardeneiland station, which only serves as a depot. 

Figure 5-2: Train agent’s speed and acceleration algorithm 

currentSpeed = 1

currentSpeed = currentSpeed*(1+acceleration)

currentSpeed>=cruisingSpeed?

No

currentSpeed = cruisingSpeed

Yes

Agent arrival 

NoYes
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Stations in the network have different platform capacities; however in this model it will be assumed 

that all stations have only one platform and one line in each direction. This means that there is no way 

trains in the model can overtake one another. As mentioned before in reality if a train is delayed at a 

station, following trains could pass if there is more than one platform. In the model however the 

locations where the primary delays will occur are chosen not to be at stations and therefore eliminate 

the need for trains to pass at stations. This arrangement will in fact cause more secondary delays, and 

thus the necessity to again calibrate the model with delays. Section 5.4 will cover the calibration 

process that includes delays in more detail. 

The third parameter concerning stations is the dwell times of trains. In most cases the dwell time is 30 

seconds, except for Mandalay, Phillipi and Bonteheuwel station where it is 60 seconds. Paardeneiland 

as mentioned has no dwell time. In reality trains don’t always dwell according to the scheduled time 

because of several reasons pertaining to delays which will be discussed later. A train driver thus 

dwelling at a station longer than scheduled will log the time lost as a delay. The model takes this into 

account by including it as a delay type. However it may happen that a train driver will want to catch 

up time lost by shortening his dwell time. This is not specifically taken into account by the model. The 

effect of this limitation on the output is negligible since a train driver only logs a delay at his end 

station. If he thus made up lost time by dwelling shorter at stations it would only reduce the total delay 

logged at the end station. Trains rarely arrive early at stations. A summary of the station inputs are 

given in Table 5-1. 

 

 

Table 5-1: Station inputs 
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5.1.4 Signals 

To determine the signal locations Softtime data was retrieved from PRASA’s infrastructure department 

at Salt River depot which indicated the distance from each signal relative to Cape Town station. 

Because the Google Earth images did not clearly show each signal, the distances between signals was 

calculated and then by use of Google Earth the locations of each signal were estimated. The 

coordinates of the signals were then entered into Anylogic to pin point where each signal is located. 

Since the modelled network does not include any junctions or switches, the operational rules applied 

are rather simple;  

 On track sections there must always be one block section open between trains. 

 At stations there must be a block section clear on either side of the station. In effect there must 

be two block sections open between trains before and after a station. 

Figure 5-3 shows the GIS map with all the signal and station locations. This map was used to animate 

the simulation. 

 

Figure 5-3: GIS map of the station and signal locations between Chris Hani and Cape Town stations 

5.2 Stochastic inputs 

The stochastic inputs are added dynamically throughout the run of the model. This section will cover 

the process of how the randomness of the inputs was determined. As shown in Figure 4-4 these inputs 

include the location, time and duration of the primary delays. The data mined and processed for this 

model is delay data received from PRASA’s operations office for the months April 2015 to September 

2015. Figure 5-4 shows an example of an extract from the raw delay data received from PRASA. 
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Figure 5-4: Extract from the delay data received from PRASA in Excel format 

5.2.1 Location 

As seen in Figure 5-4 a “Place” is indicated as to where the delay occurred. However according to Mr. 

Jacques Carstens at PRASA’s operations office, those locations do not necessarily indicate where 

exactly the delay occurred. Drivers many times simply log the delay under one of the major stations 

along the route. The only advantage of having accurate location details would be that a more 

representative animation of the model could have been made. Otherwise the location of the delay is 

not important as explained in the Chapter 4. 

5.2.2 Time 

In Figure 5-4 it can be noted that a time of delay is indicated. Figure 5 5 shows the distribution of 

these times of delays sampled over a 6 month period compared to the number of trains scheduled for 

each hour in the day. The graph makes sense if one looks at the peak period of the day (05:00-08:00). 

Note that this is the profile for the trains moving up from the sub-urban areas to the CBD in Cape 

Town. For the down direction the peak period will be between 17:00-19:00 when passengers return 

home. During peak periods train frequency is the highest, and thus the probability of a failure causing 

a delay to occur is also the highest. However 42% of the data entries are logged for the hours between 

00:00 and 01:00. This is not an operational period of the day and cannot be regarded as reliable data 

entries. According to Jacques Carstens from PRASA, signalling boxes are many times vandalised and 

thus components necessary to capture the correct time of a delay are damaged in such a way that a 

default time of 01:00 is captured in many instances.  
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Khayelitsha Station 73975

Cape Town Station 73975

Descriptio TRAINS DELAYED DUE TO LACK OF CAPACITY

2015-07-01 9951 DEL 27% 11 0
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Figure 5-5: Distribution of the number of delays and number of trains during each hour of the day, 

sampled over 6 months only for trains running up (i.e. Chris Hani to Cape Town) 

Nevertheless, since the integrity of the data can be questioned, the frequency of primary delays will be 

adjusted proportionally according to the number of trains running. Forty six percent of the trains run 

between the hours 5:00 and 8:00 and on average 7.78 primary delays occur per day calculated over a 6 

month period (1 April 2015 – 30 September 2015). Assigning 46% of the delays per day to the 3 peak 

hours results in a delay frequency of 50.27min. The remaining 54% of the delays are the assigned to 

the off-peak hours giving a delay frequency of 185.71min. 

As mentioned before, only one primary delay is simulated at a time, and therefore the system is either 

in the Delayed state or Undelayed state. For this reason the system will not necessarily produce a delay 

every 50.27 or 185.71 minutes, but these frequencies will only be effective when the system is in the 

Undelayed state (reference to Figure 4-7).  

5.2.3 Duration 

As mentioned in Chapter 4, the duration of a delay will depend on the type of delay. The types of 

delays are grouped under the different departments of PRASA. When a train driver logs a delay, he 

must indicate what the cause of delay was. A meeting is then held every day by the managers of all 

departments to decide which department is to take the blame for the delay. The table in Appendix A2 

shows all the different causes of delays. These delays are grouped under the relevant departments of 

PRASA.  Table 5-2 shows a summary of these primary delays that occurred in the recorded 6 month 

period. Note that since there are such a vast number of different delay types, for simplification delay 

types will be named under the responsible department for the rest of this study. Also note that “Speed 

restr.” refers to temporary speed restrictions. Even though it is not necessarily a “random” event, it is 

logged as a delay event, and the schedule was not changed to accommodate the speed restrictions. 

Furthermore not all trains were delayed meaning that the speed restrictions were not applied for the 

whole 6 months. These temporary speed restrictions are usually enforced on sections where the track 
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condition is such that a train may derail when traveling at normal speeds. Because track failures and 

maintenance thereof are not necessarily predictable events, temporary speed restrictions will be 

modelled as random events.    

The primary delay was assumed to be the delay logged first (refer to Figure 5-4) under an EventID 

number. The other delays logged under the same EventID were assumed to be the consequential 

delays. Personnel at PRASA could not confirm that these assumptions were valid, and neither could 

they give the correct interpretation of the data set. 

 Table 5-2: Summary of the primary delays under each department for the 6 month period 

Primary delays  Overall 

Customer 

services 

Rolling 

stock 

Protection 

services Perway 

Speed 

restr. Signals Other 

Average duration [min] 14.4 8.0 17.5 17.4 12.8 8.7 13.5 17.4 

Standard deviation [min] 14.0 3.1 15.2 13.9 7.5 2.9 12.3 22.7 

Count [.] 1424 120 411 172 143 204 192 182 

Trimmean (95%) – λ [min] 10.0 7.0 11.7 12.5 10.0 8.0 10.0 12.0 

Average minutes to delay 131 1555 454 1085 1305 915 972 1025 

Probability  100% 8% 29% 12% 10% 14% 13% 13% 

Shape factor (1/λ) 0.10 0.14 0.09 0.08 0.10 0.13 0.10 0.08 

Total minutes 20448 962 7174 2996 1825 1770 2589 3162 

 

The type of delay is determined by the model by use of the empirical probabilities shown in Table 5-2. 

These probabilities were simply calculated by dividing the number of delays of each type by the total 

number of delays. A random number generator was run for numbers between 0 and 1. This range was 

divided into intervals proportional to the probabilities indicated in Table 5-2. Each time the generator 

produces a number, the type of delay will be determined by the interval in which the number falls. 

Note that these are values pertaining to only the primary delays that will be used as input to the model. 

The model output will include all the delays (i.e. primary and secondary) and therefore the number of 

delays will be much more. 

The duration of all the types of delay showed exponential distributions. Therefore a shape factor, λ, 

was calculated for each type to describe the estimated exponential curve (generally expressed as in 

Equation 3) using the 5% trimmed mean. Because the data showed a large number of outliers the 

average delays had to be trimmed by 5%5.  

 𝑦 = 𝜆𝑒𝜆(−𝑥)        (3) 

                                                      
5 It was found extremely difficult to get useful outputs from the model when these outliers were included as 

inputs since they caused the model to be “too random” and to produce outputs that could not be validated in the 

form of a goodness-of-fit test. Forty four delays out of the 1424 primary delays, ranging between 50 and 125 

minutes, were therefore trimmed to give a 5% trimming on the average delay duration. This trimming can further 

be justified by the fact that the model does not wish to simulate the exceptional delay events but rather the 

common events. Simulating exceptional events would require a separate study and possibly different 

assumptions and modelling method. 
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As an example of how these estimated delay duration distributions were validated with the observed 

data, refer to Figure 5-6 which shows the observed and estimated cumulative distributions for Rolling 

stock failures that caused a primary delay6. According to Law & Kelton [44] the Kolmogorov-

Smirnoff (K-S) goodness-of-fit test is most appropriate when comparing cumulative distributions, and 

therefore the (K-S) test was used to validate the estimated distributions. The procedure for Rolling 

stock delays went as follows: 

1 Null Hypothesis – H0 

The observed data have a theoretical cumulative distribution 𝐹(𝑋) with mean 𝜇 = 17 and 𝜎2 =

230. 

2 Calculation of right-continuous step-function 𝑭(𝑿), Fn(X) and K-S statistic Dn 

 𝐷𝑛
+ = max

0≤𝑖≤𝑛
{𝐹𝑛(𝑋𝑖) − 𝐹(𝑋𝑖)} (4) 

 𝐷𝑛
− = max

0≤𝑖≤𝑛
{𝐹(𝑋𝑖) − 𝐹𝑛(𝑋𝑖−1)} (5) 

 𝐷𝑛 = max{𝐷𝑛
+, 𝐷𝑛

−} (6) 

 

Table 5-3: Summary of the right-continuous step-function 𝐹(𝑋), Fn(X) and K-S statistic Dn for delay 

durations of rolling stock related delays 

Number of delays per week 

  Observed Model Estimate K-S statistic 

  Xi Frequency 𝑭(𝒙) Frequency 𝑭𝒏(𝒙) 𝑫𝒏 

X1 0 0 0.003 0 0 0.003 

X2 5 1 0.197 139 0.174 0.023 

X3 7 77 0.348 118 0.322 0.026 

X4 9 60 0.495 100 0.447 0.047 

X5 11 58 0.571 85 0.554 0.017 

X6 13 30 0.641 72 0.644 -0.003 

X7 15 28 0.705 61 0.721 -0.017 

X8 17 25 0.747 52 0.786 -0.039 

X9 19 17 0.813 44 0.841 -0.028 

X10 21 26 0.848 37 0.888 -0.040 

X11 23 14 0.874 32 0.928 -0.054 

X12 25 10 0.907 21 0.955 -0.048 

X13 30 13 0.934 14 0.972 -0.038 

X14 35 11 0.952 9 0.984 -0.032 

X15 40 7 0.980 6 0.991 -0.012 

X16 45 11 0.992 4 0.997 -0.004 

X17 50 5 1.000 3 1.000 0 

 

                                                      
6 Delays less than 5 minutes are usually not logged, however there are instances in data found where the driver 

may log a 3 or 4 minute delay. Regardless, the model is programmed to only instigate delays larger than or equal 

to 5 minutes. 
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3 K-S goodness-of-fit test 

As seen in Table 5-3 the supreme value (coloured in red) for Dn is 0.054. According to Law & 

Kelton[44] to compare Dn to the critical value - c1-α - the following test condition applies: 

 
(√𝑛 + 0.12 +

0.11

√𝑛
) 𝐷𝑛 > 𝑐1−𝛼 

(7) 

      For 𝑛 = 396, 1 − 𝛼 = 0.975 and 𝑐 = 𝟏. 𝟒𝟖 the result is:  

 1.08 < 𝟏. 𝟒𝟖  

Therefore there is no sufficient evidence to reject the H0, and estimated exponential distribution can be 

regarded as a good fit to the observed data. This validation process was followed with all the input 

distributions. 

 

Figure 5-6: The observed and estimated cumulative distributions for rolling stock related primary 

delays. 

5.3 Validation without delays 

The model validation phase has two parts. The first part is to calibrate the train’s average speed and 

acceleration so that the trains in the model will have the same trip time as the scheduled trip time. Of 

course this means that the trains cannot be delayed, and they should run as in an ideal world. 

The table in Appendix A1 shows the schedule and trip times for all the trains running on a weekday. It 

must be noted that there is a difference in trip times for trains running the same route. For instance 

Train 1 departing from Chris Hani travels 1:03:00 to Cape Town, but Train 4 travels the same distance 

in 01:01:00. The same can be said of the Khayelitsha and Kapteinsklip routes. To simplify this 

complication the model trains are calibrated to travel at the longest trip times scheduled. This means 
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that the Chris Hani trains will travel 1:03:00, Khayelitsha trains 00:53:30, and Kapteinsklip trains 

00:59:00. The difference between the scheduled and modelled trip times are illustrated in Figure 5-7. 

Note that the values are rounded to the nearest minute and are all on the negative side of the scale. 

The maximum acceleration and speed of the 5M2A, is 0.4m/s2 and 55km/hr. respectively, according to 

Mr. Robert Venter from PRASA. The model calibration thus used those values as a start and gradually 

reduced them until trip times corresponded to those mentioned earlier. The final calibrated 

acceleration and speed values are 0.21m/s2 and 50km/hr. respectively. The much lower acceleration 

value can be explained by the fact that infinite deceleration was assumed and that these values are 

average speed values. Generally train speeds are restricted by track geometry (such as curve radii and 

elevations) in some sections, thus they cannot not always run at maximum speed. 

 

Figure 5-7: The difference between the scheduled and modelled trip times when the model is run 

without delays7 

5.4 Validation with delays 

After the speed properties of the trains are calibrated, it is also necessary to calibrate the amount of 

delays so that the trains’ effective delays match that of reality. As explained in Section 4.5.1, simply 

instigating the real amount of delays, will not necessarily cause the real duration of delays in the 

model. In this Section, the calibration of the delays will be discussed. This will also be the last step to 

the validation of the model. If the model is found to be valid and representative of reality, new trains 

will be added to the model to finally answer the research questions asked in Chapter 1. 

                                                      
7 The model was calibrated so that the majority of trains have exactly the same trip time as specified in the 

schedule. There are however 14 trains in the schedule that have shorter trip times for the same route and 

therefore the corresponding trains in the model have different trip times. This difference in trip time is usually to 

accommodate other trains from other routes that share the same track in some areas of the line.  
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To determine if the model is calibrated the following three output parameters will be compared to 

what was seen in data for a 6 month period: 

 Number of delays 

 Total delay minutes  

 Average delay duration 

The input parameter that will be adjusted is the primary delay frequency. The delay frequencies for 

both peak and off-peak periods will be increased to compensate for the limitations of the model 

explained in Sections 4.5.1 and 4.5.4. Because of the randomness of the model, it is necessary to run 

the simulation multiple times for every change of delay frequency to ensure that the model output 

deviations converge to a reasonable number. It was found during the initial calibration rounds that 

after 5 runs of the same calibration setting, that the model produced the outputs of all three parameters 

within a standard deviation 5%. Therefore, for the final calibration rounds the model was run 5 times. 

Table 5-4 shows the results of the last calibration round8. Note that the standard deviation values in 

column 3 of Table 5-4 indicate the standard deviation of the delay durations for each run. The standard 

deviations at the bottom of the table are relevant to the average of all the runs. 

Table 5-4: Last calibration round results 

1/04/2015 - 30/09/2015 

Run Mean delay duration Std dev Total minutes delay Number of delays 

1 0:17:25 0:12:05 63666 3656 

2 0:16:51 0:12:12 61124 3629 

3 0:16:35 0:11:29 60797 3668 

4 0:17:21 0:10:28 65486 3775 

5 0:17:37 0:11:47 65213 3703 

Average 0:17:09 0:11:36 63257 3686 

Std dev 0:00:23 0:00:37 1978 50 

Std dev % 2% 5% 3% 1% 

 
The primary delay frequency that resulted in these outputs was 118 min and from Table 5-2 we see 

that the real delay frequency was 131 min (10% difference). Because 42% of the time entries were 

faulty as discussed in Section 5.2.1, it was not possible to calculate separate frequencies for peak and 

off-peak periods from data. This shows that when the model is calibrated (Total delay minutes 

parameter is close enough to the observed value from data), the time between delays in the model is 

10% shorter than what data shows. The model frequency however is expected to be higher since the 

model can only simulate one delay at a time, whereas in reality delays can happen concurrently. It 

must also be considered that the real deal frequency was calculated by dividing the total operating time 

over six months by total number of delays. If for example three delays of different durations occurred 

                                                      
8 Each run shown in Table 5-4 represents a simulation of 6 months with no new trains (i.e. the base case). The 

Mean delay duration is therefore the average of all the delays that occurred in the simulated 6 months. The same 

applies for the standard deviation. The Total minutes delay and Number of delays are summation parameters of 

all the delays that was simulated in the modelled 6 months. 
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in a time period of ten minutes, the delay frequency would be 3.33min, regardless of the real time 

between delays and regardless of the possibility of occurring concurrently. The frequency of delays in 

the model however was a pre-set fixed value, meaning that if three delays occurred in the 10min 

period, the time between them will always be 2 min and therefore the frequency 2min. The model can 

therefore simulate the same amount of delays with a higher frequency.  

Table 5-5 compares the results of the final calibration run shown in Table 5-4 to that calculated from 

data for both primary and secondary delays. Note that the total number of delays and total minutes in 

the “All delays” column of Table 5-4 is half of the number of delays in Table 5-5. This is because data 

shows delays in both directions of the line, while only one direction was modelled. The number of 

delays and total minutes modelled are thus doubled in order to be able to compare the modelled delays 

with the actual delays.  

In the “Primary delays” column, delay duration and total minutes delay have large differences when 

compared to the values extracted from data. Number of delays, however match very well with the 

difference being less than a percent. When the “All delays” column is studied it can be noticed that 

total minutes delay now match with only a 3% difference, but number of delays and delay duration 

differ with -19.7% and 28.5% respectively. From the number of delays it appears that the simulation 

modelled approximately 23.5% less secondary delays (𝐴𝑙𝑙 𝑑𝑒𝑙𝑎𝑦𝑠 –  𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑑𝑒𝑙𝑎𝑦𝑠) than what 

occurred in reality. This means that either the simulation modelled the effect of primary delays on 

secondary delays incorrectly or that the assumption made concerning which delay entry indicates the 

primary delay, was wrong (refer to Section 5.2.3).  

Table 5-5: Summary of primary delays and resulting sum of delays modelled compared to data 

 Primary delays All delays 

  Data Model Difference Data Model Difference 

Average delay duration 00:14:24 00:17:19 20.3% 00:13:21 00:17:09 28.5% 

Standard deviation 00:14:00 00:11:36 -17.1% 00:14:18 00:11:36 -18.9% 

Number of delays 1424 1429 0.3% 9188 7372 -19.7% 

Total minutes 20448 24750 21% 122789 126514 3.0% 

 

The only way the model could be wrong is if the trips times are inaccurate or if the schedule was 

incorrect. Figure 5-7 shows that 71% of the modelled trains’ trip times are exactly the same as on the 

schedule. The other 29% of trip times are between 1- and 5 minutes off the schedule. These 

differences are too small to have caused such a significant error in number of delays. Delay duration 

would not have been affected by trip time. Furthermore, the schedule that was used in the model was 

identical to the schedule that was in operation at the time of data capture.  

It can therefore be concluded that the assumption that the first entry of a delay log sheet is the primary 

delay is wrong. This statement can further be substantiated by considering Figure 5-8 which is a plot 

of all the assumed primary delays and the resulting sum of the delays. It is clear that there is no 
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relationship between primary delays and the subsequent sum of delays. Calibrating the model by use 

of comparison with primary delays is therefore impossible.  

 

Figure 5-8: Scatter plot of the relationship between primary delays and the resulting sum of delays 

In the “All delays” column in Table 5-5 the differences between the model outputs and data are 

shown. To determine if these differences are too large for the model to represent reality sufficiently 

(i.e. if the model is valid), statistical methods were used to test the validity of the model. The two most 

common procedures used in simulation modelling for validation testing are the Chi-square and 

Kolmogorov-Smirnoff (K-S) goodness-of-fit tests [44]. In the case of this model the K-S goodness-of-

fit test procedure was used to determine if the modelled data sufficiently represents the observed data. 

Since the output data of this model is continuous, Kelton & Law [44] states that both Chi-square and 

K-S tests can be used, however the Chi-square test is very dependent on the sample size and the way 

data is binned (frequency bins). Since the sample size of the observed data was limited to 6 months 

(26 weeks or 26 samples) it was opted to use the K-S test.  

The K-S test compares the largest vertical difference between the observed and estimated (in this case 

the modelled) cumulative distributions at any point to that of a critical value that depends on the level 

of confidence required [44]. The critical value is read from a table, which in this case was provided by 

Law & Kelton [44], that summarises the critical values for the K-S goodness-of-fit test. The following 

Sections will describe how the K-S procedure was followed to determine the validity of the model in 

terms of the Number of delays, Total delay minutes and Average delay duration parameters. Table 5-6 

shows the values that will be used for the Null Hypothesis of each parameter. These were calculated 

from all the delays observed in data. 
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Table 5-6: Mean and variance values for each parameter calculated from the observed data 

 

Observed data 

Total weekly minutes delay Number of weekly delays Delay duration 

μ 4703 351 13 

σ2 3154810 14162 204 

 

5.4.1 Number of delays 

To validate the output of the model the three parameters have to be analysed separately. Since the 

modelled schedule is repeatable every week in terms of number of trains and departure times; Number 

of delays and Total minutes delay were sampled after each modelled week. Modelling six months 

therefore provides 26 samples that can be tested against the 26 samples from the observed data. This 

Section will elaborate on the K-S test procedure to determine the validity of the Number of delays. 

1 Null Hypothesis – H0 

The observed data have a theoretical cumulative distribution 𝐹(𝑋) with mean 𝜇 = 351 and 𝜎2 =

14161. 

2 Calculation of right-continuous step-function 𝑭(𝑿), Fn(X) and K-S statistic Dn 

 𝐷𝑛
+ = max

0≤𝑖≤𝑛
{𝐹𝑛(𝑋𝑖) − 𝐹(𝑋𝑖)} (4) 

 𝐷𝑛
− = max

0≤𝑖≤𝑛
{𝐹(𝑋𝑖) − 𝐹𝑛(𝑋𝑖−1)} (5) 

 𝐷𝑛 = max{𝐷𝑛
+, 𝐷𝑛

−} (6) 

 

Table 5-7: Summary of the right-continuous step-function 𝐹(𝑋), Fn(X) and K-S statistic Dn for Number 

of delays per week 

Number of delays per week 

  Observed Model Estimate K-S statistic 

  Xi Frequency 𝑭(𝒙) Frequency 𝑭𝒏(𝒙) 𝑫𝒏 

X1 0 0 0 0 0 0 

X2 50 0 0 2 0.01 0.01 

X3 100 0 0 2 0.03 0.03 

X4 150 0 0 0 0.03 0.03 

X5 200 1 0.04 0 0.03 0.01 

X6 250 4 0.19 11 0.11 0.08 

X7 300 5 0.38 98 0.84 0.46 

X8 350 5 0.58 21 1 0.42 

X9 400 6 0.81 0 1 0.19 

X10 450 1 0.85 0 1 0.15 

X11 500 1 0.88 0 1 0.12 

X12 550 1 0.92 0 1 0.08 

X13 600 0 0.92 0 1 0.08 

X14 650 1 0.96 0 1 0.04 
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Number of delays per week 

  Observed Model Estimate K-S statistic 

  Xi Frequency 𝑭(𝒙) Frequency 𝑭𝒏(𝒙) 𝑫𝒏 

X15 700 1 1 0 1 0.00 

 

3 K-S goodness-of-fit test 

As seen in Table 5-7 the supreme value (coloured in red) for Dn is 0.46. According to Law & 

Kelton[44] to compare Dn to the critical value - c1-α - the following test condition applies: 

 
(√𝑛 + 0.12 +

0.11

√𝑛
) 𝐷𝑛 > 𝑐1−𝛼 

(7) 

      For 𝑛 = 26, 1 − 𝛼 = 0.975 and 𝑐 = 𝟏. 𝟒𝟖 the result is:  

 2.40 > 𝟏. 𝟒𝟖  

Therefore the H0 is rejected, and the Number of delays parameter produced by the model cannot be 

deemed valid. The observed and modelled cumulative distributions can be seen in Figure 5-9. It is 

clear that the model under-estimates the number of delays per week. The modelled distribution is also 

much narrower that the observed data. This can be explained by the fixed frequency by which delays 

are instigated, resulting in similar amounts of delays happening in each week. However, the reason 

why the modelled distribution shows some variation in the amount of delays is because the time 

between delays are dependent on both the previous delay duration (which is a random amount) and the 

fixed frequency as explained in Section 4.3. 

 

Figure 5-9: Cumulative distributions describing the Number of delays per week from the observed and 

modelled data sets 
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5.4.2 Total minutes delay 

As mentioned in Section 5.4.1, Total minutes delay will also be tested by sampling the minutes 

delayed in each week giving a sample size of 26. The same K-S procedure will be followed as with 

Number of delays. 

1 Null Hypothesis – H0 

The observed data have a theoretical cumulative distribution 𝐹(𝑋) with mean 𝜇 = 4703 and 𝜎2 =

3154810. 

2 Calculation of right-continuous step-function 𝑭(𝑿), Fn(X) and K-S statistic Dn 

Table 5-8: Summary of the right-continuous step-function 𝐹(𝑋), Fn(X) and K-S statistic Dn for Total 

minutes delayed per week 

Total minutes delay per week 

  Observed Model Estimate K-S statistic 

  Xi Frequency F(X) Frequency Fn(X) Dn 

X1 0 0 0 0 0 0 

X2 500 0 0 1 0.01 0.01 

X3 1000 0 0 3 0.03 0.03 

X4 1500 0 0 0 0.03 0.03 

X5 2000 0 0 0 0.03 0.03 

X6 2500 2 0.08 0 0.03 -0.05 

X7 3000 4 0.23 0 0.03 -0.20 

X8 3500 1 0.27 6 0.07 -0.19 

X9 4000 3 0.38 28 0.28 -0.10 

X10 4500 3 0.50 36 0.55 0.05 

X11 5000 1 0.54 34 0.81 0.27 

X12 5500 4 0.69 16 0.93 0.23 

X13 6000 3 0.81 8 0.99 0.18 

X14 6500 3 0.92 1 0.99 0.07 

X15 7000 0 0.92 1 1 0.08 

X16 7500 0 0.92 0 1 0.08 

X17 8000 0 0.92 0 1 0.08 

X18 8500 0 0.92 0 1 0.08 

X19 9000 2 1 0 1 0 

 

3 K-S goodness-of-fit test 

As seen in Table 5-8 the supreme value (coloured in red) for Dn is 0.27. According to Law & 

Kelton[44] to compare Dn to the critical value - c1-α - the following test condition applies: 

 
(√𝑛 + 0.12 +

0.11

√𝑛
) 𝐷𝑛 > 𝑐1−𝛼 

(7) 

      For 𝑛 = 26, 1 − 𝛼 = 0.975 and 𝑐 = 𝟏. 𝟒𝟖 the result is:  

 1.40 < 𝟏. 𝟒𝟖  
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Therefore, there is not enough evidence to reject H0. The model can therefore be considered valid for 

the Total delay minutes parameter. From Figure 5-10 it can be seen that again the model produced a 

narrower distribution that what is seen from data. The reason is that the model did not include the 

major outliers from data into the delay duration distributions used to determine the length of delays. 

Including the outliers would cause the model to be excessively random. If the model is too random, it 

becomes difficult to produce results with a small enough variance to be able to explain the behaviour 

of a system. The goodness-of-fit test however indicates that the model’s estimation of total weekly 

delay minutes is close enough to be able to consider the model valid for this parameter. 

 

  

Figure 5-10: Cumulative distributions describing the Total minutes delay per week from the observed 

and modelled data sets 

5.4.3 Average delay duration 

To validate the Average delay duration parameter the same approach was followed as with Number of 

delays and Total minutes delayed parameters, where the Average delay duration was calculated after 

each week. The value of Average delay duration is therefore simply a function of Number of delays 

and Total delayed minutes. 

1 Null Hypothesis – H0 

The observed data have a theoretical cumulative distribution 𝐹(𝑋) with mean 𝜇 = 13 and 𝜎2 =

204. 
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2 Calculation of right-continuous step-function 𝑭(𝑿), Fn(X) and K-S statistic Dn 

Table 5-9: Summary of the right-continuous step-function 𝐹(𝑋), Fn(X) and K-S statistic Dn  for 

Average delay duration per week 

Average delay duration per week 

  Observed Model Estimate K-S statistic 

  Xi Frequency F(X) Frequency Fn(X) Dn 

X1 0 0 0 0 0 0 

X2 8 0 0 0 0 0 

X3 9 0 0 1 0.01 -0.01 

X4 10 2 0.08 0 0.01 0.07 

X5 11 2 0.15 0 0.01 0.15 

X6 12 5 0.35 0 0.01 0.34 

X7 13 6 0.58 2 0.02 0.55 

X8 14 3 0.69 9 0.09 0.60 

X9 15 1 0.73 29 0.31 0.42 

X10 16 1 0.77 31 0.54 0.23 

X11 17 3 0.88 33 0.78 0.10 

X12 18 1 0.92 18 0.92 0.01 

X13 19 2 1 6 0.96 0.04 

X14 20 0 1 5 1 0 

 

3 K-S goodness-of-fit test 

As seen in Table 5-9 the supreme value (coloured in red) for Dn is 0.60. According to Law & 

Kelton[44] to compare Dn to the critical value - c1-α - the following test condition applies: 

 
(√𝑛 + 0.12 +

0.11

√𝑛
) 𝐷𝑛 > 𝑐1−𝛼 

(7) 

      For 𝑛 = 26, 1 − 𝛼 = 0.975 and 𝑐 = 𝟏. 𝟒𝟖 the result is:  

 3.16 > 𝟏. 𝟒𝟖  

H0 is therefore rejected and it can be concluded that the model is not valid for the Average delay 

duration parameter. From Figure 5-11 it can be seen that the model over-estimates the Average delay 

duration. 
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Figure 5-11: Cumulative distributions describing the Average delay duration per week from the 

observed and modelled data sets 

5.4.4 Conclusion 

It can be concluded that only one of the three test parameters for this model is valid according to the 

K-S goodness-of-fit test. Figure 5-9 shows that the model under-estimates the Number of delays per 

week, while Figure 5-11 shows that the model over-estimates Average delay duration per week. For 

the Total delay minutes parameter, however it was found that the model’s cumulative distribution is 

slightly narrower than the observed distribution (reference to Figure 5-10) and that the K-S test found 

the model’s distribution a good fit.  

Since only one parameter is found to give a good fit to the observed data, the usefulness of the model 

can be questioned. However, as explained in Section 4.1.1 the key parameter by which punctuality is 

measured is Total minutes delayed which in this case was found to be the valid parameter. It was 

found that the way the model is constructed and the assumptions that had to made, forces the modeller 

to compromise the validity of Number of delays and Average delay duration parameters in order to 

ensure the validity and distribution fit of the key punctuality parameter - Total minutes delayed. 

Even though not all the parameters were found representative of reality, it must be understood that the 

same model will be used to compare different scenarios in the same simulation environment. 

Additionally, the size of the fault in Number of delays and Average delay duration can be expected to 

be consistent since the standard deviations of 70 model runs (as mentioned in Section 5.4) for these 

two parameters are within 5%. 
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 Scenarios and model outputs 

6.1 Overview 

PRASA’s plan is to phase in the new trains as they are rolled out of production because of various 

political and operational constraints. There are several factors that have to be taken into account as to 

where these new rolling stock are commissioned. It has to be mentioned that socio-economic factors 

play a major role in projects like this, especially in a country like South Africa. Thus besides the 

technical complexities that have to be considered, there also exists a social factor that might enjoy 

priority above the technical factors. Socio-economic factors do not fall in the scope of this study. 

The fleet currently running on the Chris Hani to Cape Town route has 14 old trains shuttling to and 

from Cape Town. The model was run first to be calibrated with no new trains in the fleet as discussed 

in previous chapters. Thereafter one new train was added to the fleet replacing one old train for each 

scenario. New trains were added until all 14 old trains were replaced with new trains. As shown in the 

calibration stage of the model, each Scenario had to be run 5 times in order to get a reasonable 

standard deviation for each of the performance measures. This will be the base case. 

The subsequent case will simulate the same scenarios but with an improvement of the system 

reliability as a whole by 50%. This Case is included to test the effect on punctuality if not only rolling 

stock related delay causes are mitigated. Fifty percent is simply an arbitrary value to create a different 

simulation environment. In practice this implies that all the components that have the potential to 

cause a train delay will be assumed to have been refurbished or maintained to such an extent that they 

have a 50% less chance of experiencing a delay-causing failure. In terms of the model, this was 

implemented by changing the systemRel factor to (1 + 0.5) resulting in the delay frequency to be 

lengthened by 50% (refer to Figure 4-7).  

This chapter will therefore cover the simulation results of the following 2 cases: 

1. Case 1 – 0% system improvement but with the incremental addition of new trains that will 

eventually mitigate rolling stock related delays. 

2. Case 2 – 50% system improvement and with the incremental addition of new trains that will 

eventually mitigate rolling stock related delays. 

It is assumed that the new trains are 100% reliable and therefore will not experience any rolling stock 

related delays. For Case 1 it is then expected that after all 14 old trains are replaced with new trains the 

25% contribution of rolling stock related delays to the total minutes delay, as seen in Figure 6-2, will 

be mitigated and the total will be approximately 25% less than with zero new trains. The same applies 

to the number of delays, where rolling stock contributes 26% (see Figure 6-1).  
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For Case 2 it is expected that for all the scenarios, the number of delays and total minutes delay will be 

33% less than for Case 1. 

 

 

Figure 6-1: Number of delays for each department  

 

Figure 6-2: Total delay minutes for each department 

6.2 Case 1 

Figure 6-3 shows number of delays for each scenario. Here we see a 29% decrease in number of 

delays which is very close to the expected the 26% (refer to Figure 6-1) which refers to the 

percentage of delays related to rolling stock. Since the new trains are 100% reliable, replacing the 

whole fleet will mean that no more rolling stock related delays will occur. The extra 3% decrease 

predicted by the model accounts to 110 delays over the 6 months simulated period which means 
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that the model simulated one delay too little every 2.4 days. The 3% difference can therefore be 

accounted to the stochastic method with which delays were instigated. 

 

Figure 6-3: Number of delays for Scenarios 0-14 and Case 1 

In Figure 6-4 a 37% decrease in total minutes delayed is observed. This is significantly more than the 

expected 25%. This can be explained by the 11% decrease in average delay duration shown in Figure 

6-5, i.e. even though the number of delays decreased by the predicted 29%, the additional decrease in 

duration of delays resulted in the total minutes delay to decrease by a further 11%.  

In practical terms this can be explained by imagining the journey of two consecutive trains. In 

Scenario 0, train B would run and be delayed for 5min (secondary delay) by train A ahead busy 

experiencing a rolling stock delay which started 5min earlier (i.e. 10min primary delay). When train B 

then proceeds again, it will run and later experience its own primary delay of 12min related to a 

perway failure. If train B then arrives at Cape Town station the model will calculate train B 

experienced one delay of 17min (5min + 12min). For both train A and B the model calculates two 

delays with a total of 27min at an average delay duration of 13.5min. 

In Scenario 14 for the same situation, train A will be a new train and will therefore not experience the 

10min primary delay. Train B (also a new train) will then only experience the perway related delay of 

12min and in the end the model will calculate one delay of 12min at an average delay duration of 

12min for both train A and B.  

It is now clear that by introducing new rolling stock the number of delays were reduced by a 

predictable one delay, but the total delay minutes and average delay duration was reduced by less 

predictable amounts of 15min and 1.5min respectively. 
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Figure 6-4: Total sum of delays for Scenarios 0-14 and Case 1 

Figure 6-5 shows how the mean delay duration changed for each scenario or the adding of new trains. 

An 11% improvement can be seen from 0 new trains to 14 new trains. The average line might seem 

rather un-even, however the large increase seen from 5 new trains to 7 new trains is but 21 seconds 

(2%). This un-expected deviation is thus relatively small, and can be accounted to the random nature 

of the model. The mean delay duration decreased because the new trains are assumed to be 100% 

reliable which leads to an incremental reduction of rolling stock related primary delays. Rolling stock 

was found to have the largest average delay duration of all the departments. Therefore by eliminating 

rolling stock related delays it can be expected that the mean delay duration will decrease. The 1% 

extra decrease in delays predicted by the model can also be accounted to the stochastic nature of the 

model. This figure is expected to move closer to 26% if more simulations runs are done. 
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Figure 6-5: Mean delay duration for Scenarios 0-14 and Case 1 

6.3 Case 2 

As mentioned, in Case 2 the system was assumed to be 50% more reliable in all the departments. This 

was facilitated by simply lengthening the frequency of delays by 50%. 

In Figure 6-6 an overall decrease of 31% can be seen between Scenario 0 and 14. This is a 2% larger 
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covered in Section 6.4. 
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Figure 6-6: Number of delays for Scenarios 0-14 and Case 2 

The total minutes delay for Case 2 can be seen in Figure 6-7. Similar to the number of delays, a larger 

overall decrease of 36% in Case 2 is observed than what is observed in Case 1. This is because, as also 

explained in Section 6.2, when less primary delays occur; secondary delays reduce by a larger amount.  

 

Figure 6-7: Total minutes delays for Scenarios 0-14 and Case 2 
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sum of delays by varying the length of a single primary delay for a specific time of day. An 

exponential relationship between the duration of a primary delay and the sum of delays is therefore an 

expected result. In Figure 6-8 the sum of all the primary delays and total delays over a period of six 

months are plotted, and therefore the same of the curve differs. Nevertheless the insight to be acquired 

from Figure 6-8 is that the relationship between primary delay duration and the sum of delays is not 

linear and therefore if primary delays are reduced an extended amount of total delay minutes can be 

saved. 

 

Figure 6-8: Relationship between primary delay duration and sum of delays from modelled data 

Figure 6-9 shows a 7% decrease in mean delay duration when comparing Scenario 0 and 14.  

 
 

Figure 6-9: Mean delay duration for Scenarios 0-14 and Case 2 
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6.4 Comparison of Case 1 and Case 2 

In this Section the results for Case 1 and Case 2 will be compared. This will provide insights to how 

the addition of new trains and improvement in system reliability will affect the three performance 

parameters used to measure punctuality namely, delay duration, number of delays and total minutes 

delay. A summary of the results discussed in this section is shown in Table 6-1. 

6.4.1 Number of delays 

The number of delays improved by an average of 13% across all the Scenarios. In Scenario 0, Case 2 

is 12% (438 delays) less than Case 1 and in Scenario 14, Case 2 is 15% (388 delays) less than Case 1 

(see Figure 6-10). The total improvement from Case 1, Scenario 0 to Case 2 Scenario 14 is 39% (1453 

delays). Since the frequency of delays was lengthened by 50% in Case 2, it is expected that for the 

same scenario, there would be 33% less delays in Case 2. However, following the same argument 

made in Section 6.2, it can be explained that if a train in a 0% improved environment, experiences 2 

delays during a trip, it will only be counted as one delay when it arrives at the destination station. In a 

50% improved environment the same train will for instance only experience 1 delay during its trip, 

which then will also only be counted as one delay at the destination station. The effect of the reliability 

improvement is therefore diluted in the measurement of the number of delays. 

 

Figure 6-10: Number of delays comparison of Case 1 and Case 2 

6.4.2 Total minutes delay 

The total minutes delay improved by an average of 19% across all scenarios. In Scenario 0, Case 2 is 

18% (11 360 min) less than Case 1 and in Scenario 14, Case 2 is 16% (6 548 min) less than Case 1 

(see Figure 6-11). The total improvement from Case 1, Scenario 0 to Case 2 Scenario 14 is 47% (29 

934 min). Since the frequency of primary delays are lengthened and new rolling stock is introduced, 

resulting in an even larger decrease in primary delays, the same extended reduction in total delay 

minutes is seen as when Case 1 and 2 was studied individually.  
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Figure 6-11: Total minutes delay comparison of Case 1 and Case 

6.4.3 Mean delay duration 

The mean delay duration improved by an average of 6% across all Scenarios. Improvements of 7% for 

Scenario 0 and 2% for Scenario 14 (see Figure 6-12) were also made. The total improvement from 

Case 1, Scenario 0 to Case 2, Scenario 14 is 13% (0:02:15). Since reliability improvement from Case 1 

to Case 2 was enforced by means of only lengthening the time between primary delays, it can be 

questioned why mean delay duration decreases at all. The same concept explained in Section 6.2 

applies where it is possible for a train to experience more than one delay per trip. In a 0% improved 

environment it is more likely for a train to experience two or three delays per trip than in a 50% 

improved environment. Furthermore, as mentioned, in this model a train’s delay duration is measured 

at the destination station (i.e. the sum of the train’s delays for that trip), and therefore if the number of 

delays per trip reduce with system improvement the mean delay duration will also decrease.  

 

Figure 6-12: Mean delay duration comparison of Case 1 and Case 2
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Table 6-1: Summary of results 

 
Number of delays Total delay minutes Average delay duration 

Scenario Case 1 Case 2 % Change Case 1 Case 2 % Change Case 1 Case 2 % Change 

0 3686 3248 12% 63257 51897 18% 0:17:09 0:15:59 7% 

1 3598 3139 13% 61993 50259 19% 0:17:14 0:16:00 7% 

2 3411 3002 12% 57192 48025 16% 0:16:46 0:16:00 5% 

3 3361 2957 12% 56019 46214 18% 0:16:40 0:15:38 6% 

4 3187 2787 13% 52813 43824 17% 0:16:34 0:15:43 5% 

5 3193 2727 15% 51894 41383 20% 0:16:15 0:15:10 7% 

6 3112 2683 14% 51526 41125 20% 0:16:33 0:15:19 7% 

7 2938 2557 13% 48724 38269 21% 0:16:35 0:14:58 10% 

8 2913 2478 15% 46855 36656 22% 0:16:04 0:14:47 8% 

9 2865 2461 14% 45844 37565 18% 0:16:00 0:15:16 5% 

10 2787 2366 15% 44411 35575 20% 0:15:56 0:15:02 6% 

11 2736 2409 12% 42176 35921 15% 0:15:25 0:14:55 3% 

12 2623 2262 14% 40999 34044 17% 0:15:38 0:15:03 4% 

13 2600 2204 15% 40377 32127 20% 0:15:32 0:14:35 6% 

14 2621 2234 15% 39871 33323 16% 0:15:13 0:14:55 2% 

Average improvement 
  

13% 
  

19% 
  

6% 

Case improvement 29% 31% 
 

37% 36% 
 

11% 7% 
 

Overall improvement 
 

39% 
  

47% 
  

13% 
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  Conclusion 

The objective of the study was to determine what the effect will be on punctuality when adding new 

trains to a fleet of old trains. The following three performance parameters were used to measure 

punctuality: 

 Total number of delays 

 Total minutes delay 

 Mean delay duration 

A case study was made of the Western Cape Metrorail network with specific focus on the line between 

Chris Hani and Cape Town. This line consists of a fleet of 14 trains and 18 stations. In Case 1, 14 

scenarios were simulated with each representing an incremental addition of a new train. Scenario 0 

was the base case and simulated the current fleet of 14 old trains. Scenario 14 simulated the ideal 

future fleet which consists of 14 new trains. 

An additional set of scenarios for Case 2 were created to test the effect on punctuality when increasing 

the general reliability of the whole system by 50% and incrementally adding new trains to the fleet.  

There are therefore two different ways in which reliability was improved: 

1. The incremental addition of new rolling stock 

2. The improvement of the whole system’s reliability 

The effect on the performance parameters with the addition of new rolling stock can be found by 

analysing the two cases individually, however the effect of the improvement in the whole system’s 

reliability can only be analysed by comparing Case 1 and Case 2. 

A general note to consider is that the Number of delays and Average delay duration parameters were 

not proven valid and a -19.6% and +28.5% maximum error respectively, can be expected in the results 

presented here. 

7.1 Case 1 

The total number of delays decreased by a total of 29% from Scenario 0 to 14. From data it was found 

that rolling stock related delays contributed to 26% of all the delays logged. The 29% total reduction 

in delays is therefore a predictable result for the same reason that the new trains are assumed to be 

100% reliable. 

The total minutes delay decreased by a total of 37% from Scenario 0 to 14. This large decrease is a 

result of the compounding effect of 11% reduction in delay duration and 29% reduction in number of 

delays. 

Mean delay duration decreased by a total of 11% from Scenario 0 to 14. This was because Rolling 

Stock was found to be the department with largest average delay duration, and since the new trains 
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were assumed to be 100% reliable (i.e. no rolling stock related delays), it can be expected that mean 

delay durations will decrease with the addition of new trains. 

7.2 Case 2 

Case 2 shows similar results with, total number of delays decreasing by 31% (2% more than in Case 

1), total minutes delay decreasing by 36% (1% less than in Case 1) and mean delay duration 

decreasing by 7% (4% less than in Case 1).  

7.3 Case 1 and Case 2 comparison 

When each corresponding scenario for Case 1 and Case 2 is compared with each other the following 

differences were found: 

 13% reduction in number of delays from Case 1 to Case 2 

 19% reduction in total minutes delay from Case 1 to Case 2 

 6% reduction in mean delay duration from Case 1 to Case 2 

Considering that in Case 2 the whole system was assumed to be 50% more reliable, it would seem that 

these differences are rather small. With the addition of the new trains the performance measures 

decreased as expected, however the same could not be said of when the system’s reliability was 

improved. It was expected that if the probability that a delay-causing failure could occur was reduced 

by 50%, the performance measures of Case 2 would be 33% less than in Case 1. To understand why 

this is not the case, it must be understood as to how the two ways of improving reliability was 

implemented. 

The addition of new rolling stock was simply replacing old trains with a high probability of 

experiencing a rolling stock related delay with a new train that is 100% reliable. Once the whole fleet 

was replaced the probability of a rolling stock related delay was 0% and therefore produced a 

predictable result. 

The system reliability improvement was enforced by lengthening the frequency of primary delays by 

50%. This only meant that the fleet of trains will experience 33% less primary delays, but not 

necessarily 33% less primary and secondary delays. Additionally, delays are measured only at the 

destination station, and therefore regardless of if a train experiences 2 or 3 delays during a trip, it will 

be counted as one delay and the duration will be the sum of the delays. The results are therefore a 

diluted representation of the system’s reliability improvement. 

The last finding indicates to what extent the punctuality of the service could be improved if the whole 

fleet is replaced and the rest of the system’s reliability is improved by 50% through capitalisation and 

refurbishment. This was found by comparing the performance parameters of Case 1, Scenario 0 to 

Case 2, Scenario 14. The results reflecting the possible improvement that can be made for one 

direction of the line, over 6 months and are as follow: 

 Total number of delays is reduced by 39% (1 453 delays) 
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 Total delay minutes is reduced by 47% (29 934 min) 

 Mean delay duration is reduced by 13% (0:02:15) 

These are significant improvements that can be made. The challenge however is to utilise the capital 

allocated by the government for this modernisation program effectively and efficiently. This can only 

be done if proper project planning is in place to prioritise capital spending and to ensure operational 

readiness before new technologies are introduced. This model assumed the new trains to be 100% 

reliable while operating on an aged and unreliable infrastructure. This is however unsustainable since 

the new trains are designed for a functional and well maintained infrastructure. It is therefore 

PRASA’s mandate to provide not only an improved service by use of new trains, but also to ensure 

that the improved service is sustained long into the future.  

In conclusion, to assist PRASA with this mandate, this model provides insight into the dynamic 

relationship between railway system improvement and passenger service improvement in terms of 

punctuality. It can therefore be used to support decision making with regards to capital expenditure for 

service improvement.  
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 Recommendations 

The following recommendations are made with regard to further research and introduction of the new 

rolling stock fleet. 

8.1 Further research 

It is recommended that this Anylogic model be expanded to include the down line, as well as the 

Kapteinsklip and Sarepta lines. The model will however have to be improved in terms of the validity 

of the Number of delays and Average delay duration, and computational time. A function must also be 

created that will allow the model to run pre-specified scenarios continually without user intervention 

between scenarios. This will allow more scenarios to be tested in a shorter time. 

It is also recommended that a full agent based model be built of this exact line. This will allow the 

train to have acceleration and deceleration abilities. It will also localise the train’s reliability. A delay 

will therefore not be enforced by signals but rather by the train’s inherent capability to fail and stop at 

any point on its route. The model will then be much easier to calibrate since the train’s behaviour is 

much closer to reality.  

It will be very interesting to compare results of such a model with the one developed in this study. It 

will provide useful insight into new ways to simulate train fleet punctuality on a large scale. 

8.2 Introduction of new trains 

Introducing new trains one by one (as is currently the plan) may have socio-economic advantages (e.g. 

improved commuter comfort), however it is not recommended. If the new trains are to run at their 

design speeds, it will imply that a new schedule be created every time a new train is introduced. It will 

also have to be considered that the new train will be in much higher demand from passengers which 

holds the risk of overcrowding. The other risk is that if the infrastructure is not operationally ready, the 

new trains will not provide an improved service. This can lead to vandalism of the new trains. 

It is therefore recommended that the introduction of the new trains be postponed until the necessary 

maintenance and refurbishments are done to the current infrastructure. It is also better to replace a fleet 

on a specific route completely rather than to replace them incrementally. This will create a 

homogeneous fleet which is simpler to schedule and will immediately provide an improved service. 

The old trains that are replaced can then be reallocated to other lines to help meet demand. 
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Appendix A1 – Timetables and trip times 

 

 
 

Chris Hani Kayelitsha Phillipi

04:20:00

05:01:00

05:05:00

05:20:00

05:35:00 05:35:00

05:50:00 05:50:00

06:05:00

06:10:00

06:15:00

06:16:30

06:30:00

06:41:00

06:42:00

06:45:00

06:52:00

06:55:00

07:10:00

07:15:00

07:16:00

07:25:00

07:35:00

07:45:00

07:50:00

08:00:00

08:20:00

08:40:00

09:10:00

09:40:00

10:10:00

10:45:00

11:15:00

11:45:00

12:15:00

12:45:00

13:20:00

13:50:00

14:25:00

14:55:00

15:25:00

15:50:00

16:15:00

16:33:00

17:08:00

17:40:00

18:05:00

18:25:00

19:00:00

Week day departure schedule

Chris Hani Kayelitsha Phillipi

04:20:00

05:05:00

05:50:00

07:25:00

07:50:00

08:20:00

09:10:00

09:40:00

10:10:00

10:45:00

14:10:00

14:40:00

15:10:00

15:50:00

16:30:00

17:10:00

17:50:00

18:10:00

18:40:00

19:22:00

Saterday departure schedule

Chris Hani Kayelitsha Phillipi

05:20:00

05:50:00

06:00:00

06:05:00

06:40:00

07:20:00

08:00:00

08:40:00

09:40:00

10:40:00

11:40:00

12:40:00

14:40:00

15:40:00

16:40:00

17:30:00

18:20:00

19:10:00

Sunday departure schedule
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Appendix A2 – Delay causes 

 

Department 
Delay cause 

Customer 
Services Passenger Related - Overcrowding of trains 

Electrical Bonding - Bonding failure 

 
Capital Works - Projects 

 
Endemic Faults - Any 

 
Maintenance - Emergency 

 
Maintenance - On track maintenance machines 

 
Occupations - Exceeded Time 

 
Signals - Signal power failure/supply 

 
Traction power - Panto Hookups 

 
Traction power - Traction power failure/supply 

Facilities Capital Works - Projects 

 
Endemic Faults - Any 

Perway Block joints - Faulty Block joints 

 
Foreign Objects - Block Joints 

 
Instructions - Temporary Speed Restrictions 

 
Maintenance - Emergency 

 
Maintenance - Material Defects 

 
Occupations - Exceeded Time 

 
Occupations - Planned Occupation 

 
Points - Dry Chair 

 
Rails - Alignment faults 

 
Rails - Broken Rails 

Protection 
services Assault/Robbery - Assault on Train 

 
Assault/Robbery - Robbery on Train 

 
Cable Theft - Signal 

 
Cable Theft - Traction wire 

 
Collisions / Derailments - Level crossing 

 
Collisions / Derailments - Person Struck 

 
Escorts - Waiting Escort 

 
Investigations - Protection Service Investigations 

 
Passenger Related - Drug Related Incidents 

 
Passenger Related - Injured / Sick passengers 

 
Passenger Related - Other reasons 

 
Passenger Related - Passengers outside trains 

 

Passenger Related - Passengers traveling between 
coaches 

 
Sabotage / Theft / Vandalism - Electrical 

 
Sabotage / Theft / Vandalism - Other reasons 

 
Sabotage / Theft / Vandalism - Perway 

 
Sabotage / Theft / Vandalism - Rolling Stock 

 
Sabotage / Theft / Vandalism - Signals 
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Department 
Delay cause 

Public Civil Commotion - Demonstrations 

Rolling stock Endemic Faults - Any 

 

Mandatory Modifications - Intersite/SARCC Contract 
Action 

 
Points - Faulty Points 

 
Signals - Signal Failures 

 
Track circuits / Axles Counters - Faulty 

 
Track circuits / Axles Counters - Track Detection 

 
Train Sets - Faulty doors (sliding & cab) 

 
Train Sets - Late Ex SFF 

 
Train Sets - Motor Coach/Loco Defects 

 
Train Sets - Panto Hookups 

 
Train Sets - Set Compilation 

 
Train Sets - Unavailability 

Signals Cable Faults - Cable faults 

 
Capital Works - Projects 

 
Foreign Objects - Objects in Points 

 
Points - Faulty Points 

 
Signals - Faulty Signal Equipment 

 
Signals - Signal Failures 

 
Track circuits / Axles Counters - Faulty 

 
Track circuits / Axles Counters - Track Detection 

Operations Driver Problems - Availability of Personnel 

 
Driver Problems - Combi 

 
Driver Problems - Operating Irregularities 

 
Driver Problems - Roster Compiler 

 
Driver Problems - SPAD 

 
Driver Problems - Time lost by driver 

 
Guard Problems - Availability of Personnel 

 
Guard Problems - Operating Irregularities 

 
Guard Problems - Roster Compiler 

 
Marshaling Yard Delays - Operating Irregularities 

 
Marshaling Yard Delays - Section on Train 

 
Operating Office Irregularities - Wrong / None  Reporting 

 
Personnel Issues - Availability of Personnel 

 
Planning Office Irregularities - Change / Poor  schedule 

 
TCO Problems - Availability of Personnel 

 
TCO Problems - Operating Irregularities 

 
TCO Problems - Poor operating arrangements 

Other Conditions - Moisture/Skidding 

 
Launch & New Services - Any 

 
Weather - Frost 

 
Weather - Strong winds 
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Appendix B – Model algorithms 

delayType = Random number (0;1)

Start

Switch (delayType)

  Case (0;0.084): delay = “Customer”
  Case [0.084;0.3726): delay = “Rolling stock”
  Case [0.3726;0.4934): delay = “Protection services”
  Case [0.4934;0.5938): delay = “Perway”
  Case [0.5938;0.7371): delay = “Speed restriction”
  Case [0.7371;0.8719): delay = “Signals”
  Case [0.8719;1): delay = “Other”

Switch (delayLocation)

  Case (0;0.0625): signal_8656.unblock()
  Case [0.0625;0.125): signal_8656.unblock()
  Case [0.125;0.1875): signal_8656.unblock()
  Case [0.1875;0.25): signal_8656.unblock()
  Case [0.25;0.3125): signal_8656.unblock()
  Case [0.3125;0.375): signal_8656.unblock()
  Case [0.375;0.4375): signal_8656.unblock()
  Case [0.4375;0.5): signal_8656.unblock()
  Case [0.5;0.5625): signal_8656.unblock()
  Case [0.5625;0.625): signal_8656.unblock()
  Case [0.625;0.6875): signal_8656.unblock()
  Case [0.6875;0.75): signal_8656.unblock()
  Case [0.75;0.8125): signal_8656.unblock()
  Case [0.8125;0.875): signal_8656.unblock()
  Case [0.875;0.9375): signal_8656.unblock()
  Case [0.9375;1): signal_8656.unblock()

Next delay type determined

Change previous delay signal 
from red to green

Random number assigned 
delayType parameter

t1=time(MINUTE)

t>=t0+timeToDelay

t=time(MINUTE)

TRUE

FALSE

if (peakTimeStart<t<peakTimeFinish)
then 
timeToDelay = peakDelayFreq*(1+systemRel)
else 
timeToDelay = offpeakDelayFreq*(1+systemRel)

Check if time of the day is in 
peak time and determine 
delay 
frequency(timeToDelay)

Determine time of the day/ 
time step

t0=0
delayLocation=0

Seed values

delayLocation = Random number (0;1)

Switch (delay)

  Case “Customer”: delayDuration = exponential (0.14,5)
  Case “Rolling stock”: delayDuration = exponential (0.08,5)
  Case “Protection services”: delayDuration = exponential (0.0857,5)
  Case “Perway”: delayDuration = exponential (0.1,5)
  Case “Speed restriction”: delayDuration = exponential (0.125,5)
  Case “Signals”: delayDuration = exponential (0.0833,5)
  Case “Other”: delayDuration = exponential (0.1,5)

Switch (delayLocation)

  Case (0;0.0625): signal_8656.block()
  Case [0.0625;0.125): signal_8656.block()
  Case [0.125;0.1875): signal_8656.block()
  Case [0.1875;0.25): signal_8656.block()
  Case [0.25;0.3125): signal_8656.block()
  Case [0.3125;0.375): signal_8656.block()
  Case [0.375;0.4375): signal_8656.block()
  Case [0.4375;0.5): signal_8656.block()
  Case [0.5;0.5625): signal_8656.block()
  Case [0.5625;0.625): signal_8656.block()
  Case [0.625;0.6875): signal_8656.block()
  Case [0.6875;0.75): signal_8656.block()
  Case [0.75;0.8125): signal_8656.block()
  Case [0.8125;0.875): signal_8656.block()
  Case [0.875;0.9375): signal_8656.block()
  Case [0.9375;1): signal_8656.block()

Determine delay duration 
based on the delay type 
determined in the Undelayed 
State

Assign random number to 
delayLocation parameter

Turn allocated signal to red

t >= t1+delayDuration

t=time(MINUTE)

FALSE

t0 = time(MINUTE)

TRUE

Delayed State

Undelayed State

If timeToDelay expires the 
system will move in the 

Delayed State

Time step

If the delayDuration expires 
the system will return to the 

Undelayed State

Delay start time

Delay finish time
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Switch (delayLocation)

  Case (0;0.0625): signal_1366.unblock() && signal_1366_new.unblock()
  Case [0.0625;0.125): signal_1656.unblock() && signal_1656_new.unblock()
  Case [0.125;0.1875): signal_2066.unblock() && signal_2066_new.unblock()
  Case [0.1875;0.25): signal_3656.unblock() && signal_3656_new.unblock()
  Case [0.25;0.3125): signal_4156.unblock() && signal_4156_new.unblock()
  Case [0.3125;0.375): signal_4556.unblock() && signal_4556_new.unblock()
  Case [0.375;0.4375): signal_6036.unblock() && signal_6036_new.unblock()
  Case [0.4375;0.5): signal_6066.unblock() && signal_6066_new.unblock()
  Case [0.5;0.5625): signal_6356.unblock() && signal_6356_new.unblock()
  Case [0.5625;0.625): signal_6666.unblock() && signal_6666_new.unblock()
  Case [0.625;0.6875): signal_6856.unblock() && signal_6856_new.unblock()
  Case [0.6875;0.75): signal_7256.unblock() && signal_7256_new.unblock()
  Case [0.75;0.8125): signal_756.unblock() && signal_756_new.unblock()
  Case [0.8125;0.875): signal_8056.unblock() && signal_8056_new.unblock()
  Case [0.875;0.9375): signal_8356.unblock() && signal_8356_new.unblock()
  Case [0.9375;1): signal_8656.unblock() && signal_8656_new.unblock()

 

Switch (delayLocation)

   Case (0;0.0625): signal_1366.block() && signal_1366_new.block()
         if (delay == “Rolling stock”)
         then signal_1366_new.unblock()

  Case [0.0625;0.125): signal_1656.block() && signal_1656_new.block()
         if (delay == “Rolling stock”)
         then signal_1656_new.unblock()

  Case [0.125;0.1875): signal_2066.block() && signal_2066_new.block()
         if (delay == “Rolling stock”)
         then signal_2066_new.unblock()

  Case [0.1875;0.25): signal_3656.block() && signal_3656_new.block()
         if (delay == “Rolling stock”)
         then signal_3656_new.unblock()

  Case [0.25;0.3125): signal_4156.block() && signal_4156_new.block()
         if (delay == “Rolling stock”)
         then signal_4156_new.unblock()

  Case [0.3125;0.375): signal_4556.block() && signal_4556_new.block()
         if (delay == “Rolling stock”)
         then signal_4556_new.unblock()

  Case [0.375;0.4375): signal_6036.block() && signal_6036_new.block()
         if (delay == “Rolling stock”)
         then signal_6036_new.unblock()

  Case [0.4375;0.5): signal_6066.block() && signal_6066_new.block()
         if (delay == “Rolling stock”)
         then signal_6066_new.unblock()

  Case [0.5;0.5625): signal_6356.block() && signal_6356_new.block()
         if (delay == “Rolling stock”)
         then signal_6356_new.unblock()

  Case [0.5625;0.625): signal_6666.block() && signal_6666_new.block()
         if (delay == “Rolling stock”)
         then signal_6666_new.unblock()

  Case [0.625;0.6875): signal_6856.block() && signal_6856_new.block()
         if (delay == “Rolling stock”)
         then signal_6856_new.unblock()

  Case [0.6875;0.75): signal_7256.block() && signal_7256_new.block()
         if (delay == “Rolling stock”)
         then signal_7256_new.unblock()

  Case [0.75;0.8125): signal_756.block() && signal_756_new.block()
         if (delay == “Rolling stock”)
         then signal_756_new.unblock()

  Case [0.8125;0.875): signal_8056.block() && signal_8056_new.block()
         if (delay == “Rolling stock”)
         then signal_8056_new.unblock()

  Case [0.875;0.9375): signal_8356.block() && signal_8356_new.block()
         if (delay == “Rolling stock”)
         then signal_8356_new.unblock()

  Case [0.9375;1): signal_8656.block() && signal_8656_new.block()
         if (delay == “Rolling stock”)
         then signal_8656_new.unblock()
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Appendix C – Published article 
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ABSTRACT 

Railway systems can pose complex problems for the scheduling and 
operation of trains. A passenger rail service’s first priority is to 
provide a punctual and safe transport service to its customers. But 
doing so is a major challenge for rail network operators, as 
disruptions are inevitable, especially in densely-populated 
networks. Disruptions can be caused not only by infrastructure or 
rolling stock breakdowns, but also by maintenance activities, new 
rolling stock, or new train services. Managing these disruptions and 
predicting the extent of its effects is a crucial part of rail network 
operation. Mathematical models and simulation can be applied to 
these problems. This paper will review the literature concerning 
the modelling of train networks. 

OPSOMMING 

Spoorweg stelsels skep soms komplekse probleme met betrekking 
tot skedulering en die bedryf van treine. ’n Passasiers-spoordiens 
se eerste prioriteit is om stiptelike en veilige vervoer te verskaf 
aan sy gebruikers. Om ’n stiptelike en betroubare diens te lewer is 
uiter aard ’n groot uitdaging vir netwerk operateurs, aangesien 
treindienste maklik ontwrig word in dig bevolkte netwerke. 
Ontwrigtinge word nie net deur infrastruktuur en rollende 
materiaal falings veroorsaak nie, maar ook deur infrastruktuur 
onderhoud, nuwe rollende materiaal, en nuwe treindienste wat 
ingestel kan word. Die bestuur van dié ontwrigtinge en die 
akkurate vooruitskatting van die effek op die res van die netwerk is 
’n kritiese komponent van die bedryf van ’n trein netwerk. 
Wiskundige modelle en simulasie metodes kan toegepas word op 
dié tipe probleme. Hierdie artikel sal dus die literatuur bespreek 
wat handel oor die modellering van trein netwerke. 

1 INTRODUCTION 

Railway network companies often need to model and simulate the operation of their trains. This 
need usually arises with the expansion or maintenance of infrastructure, or the addition of new 
rolling stock and services. Infrastructure expansion entails adding new links, stations, or additional 
lines on a specific route. Furthermore, perway, electrical, and signals maintenance all contributes 
to train operations being disrupted to some extent. And adding train services or new rolling stock 
requires major operations planning and rescheduling. Forecasting the effect on the operation of 
the network before the implementation of such changes is a crucial component of planning. 
Bottlenecks, line capacities, demand satisfaction, and delay propagations are all areas that need 
to be identified and calculated before large capital amounts are spent. This can be done through 
the use of mathematical models and simulation. The optimisation of existing operations can also 
be done using these tools. 
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2 OBJECTIVE 

The objective of this paper is to review the literature on the different modelling techniques that 
are used to describe the operation of train networks. This will lay the groundwork for developing 
the most appropriate application of these techniques on whichever case study of train networks 
needs to be modelled by future research work. The two spectrums of modelling train networks, 
analytical models and simulation models, will be discussed. In section 2, mathematical models and 
heuristic algorithms will be discussed, while in section 3 simulation models will be covered.  

2.1 Mathematical models and heuristics algorithms 

Analytical models tend to be limited in scope and complexity, but they mostly form the basis on 
which simulation models are built. With the advances made in computer capabilities in the last 10 
years, the use of analytical models has become scarce. Kozan and Higgens [1] developed an 
analytical model to estimate delays for individual trains and track links in an Australian rail 
network. They compared the results with those obtained from a simulation algorithm. For 93 per 
cent of the 157 scheduled trains, the analytical model’s delay estimates were within 20 per cent 
of those of the simulation algorithm’s estimates. This shows that if the scope of the model is small 
enough, analytical and simulation models can produce similar answers.  

When it comes to optimising train schedules, heuristic algorithms are used, such as job shop, 
genetic, and Tabu-search algorithms. These heuristic algorithms will be discussed in later sections. 

2.2 Queuing models 

Queuing theory, which was originally referred to as ‘telegraphic theory’, was developed in the 
1920s for telecommunication services. The application of this theory has since expanded to the 
computer, manufacturing, retail, services, and transport industries. 
 
Queuing processes are usually described by six characteristics; these are listed by Gross et al. [2] 
as: 
 
1. Arrival pattern of customers. 
2. Service pattern of servers. 
3. Number of service stages. 
4. Number of service channels. 
5. Queuing discipline. 
6. Capacity of the system. 
 
The arrival pattern in most queuing models is stochastic in nature, and follows a certain 
probability distribution of inter-arrival times. It can, however, also be deterministic, depending on 
the systems being modelled. When setting up the parameters for arrival, it is necessary to know if 
agents can arrive in bulk – i.e., simultaneously – and if so, the probability distribution of the size 
of the bulk. In some models, an agent can decide not to join the queue upon arrival; this is 
referred to as ‘balked’. In some cases, an agent can enter a queue, and then lose patience after a 
while, and leave the queue; this is referred to as ‘reneged’. Another case may be when there is 
more than one queue and an agent switches from one queue to another; this is called ‘jockeying’. 
Further on, when an arrival distribution does not change over time, it is referred to as 
‘stationary’; and when it does change, it is called ‘nonstationary’. Note that jockeyed and reneged 
arrivals are not considered in rail systems. Trains cannot arrive in bulk because of headway 
constraints forcing trains to have a certain time or distance buffer between them. Similarly, trains 
cannot renege or jockey in a queue (waiting track) if the driver becomes impatient. It is possible, 
however, for a train to balk. When a serious disruption occurs on a route, oncoming trains can be 
rerouted where possible, or even be cancelled. 
 
Similar to arrival patterns, service patterns also have distributions describing the time an agent 
spends being serviced. Agents can also be serviced in bulk or individually. The service time can, 
however, be influenced by the size of the queue or arrival pattern. In such a case, it is referred to 
as a ‘state-dependent service’, but generally arrival and service patterns are assumed to be 
independent [1]. Another aspect of service time, as with arrival patterns, is that it may change 
over time – e.g., when learning takes place and the service process becomes quicker and more 
efficient. The same terms mentioned previously, ‘stationary’ and ‘nonstationary’, are used for 
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such service processes. This is not usually applicable in rail systems, as trains have specified dwell 
times at stations. 
 
How an agent is chosen for service from a queue is referred to as the queuing discipline. The most 
common discipline is the first-come-first-served (FCFS) principle; however, in some inventory 
systems, the last-in-first-out (LCFS) principle applies. Other systems have priority schemes that 
are usually called either ‘pre-emptive’ or ‘non-pre-emptive’. Pre-emptive priority is when a high 
priority agent enters a queue, the service on a low priority agent is paused. and the high priority 
agent is serviced first. In the case of a non-pre-emptive priority, the high priority agent will be 
moved to the front of the queue, but will only be serviced when the agent being served at that 
moment is finished. Passenger rail systems mostly work on the FCFS principle, whereas freight rail 
systems might have different disciplines that take into account the importance of the freight 
content. 
 
Some systems have limited queues, which creates a limited system capacity, such as a doctor’s 
waiting room with a limited number of chairs. On the other hand, some queuing systems have 
infinite capacity, as in the case of judicial processes or waiting lists. In the case of rail systems 
where stations and sections are the servers, queues are limited. 
 
Queuing systems can have more than one service channel. In general, it is preferred to have a 
single queue feeding multiple channels – e.g., customs at airports and railway stations with more 
than one platform. This usually applies in systems where the agents have no preference about 
which service channel they want to use. On the other hand, in systems like most supermarkets 
with multiple tills, customers line up in multiple queues. 
 
The last aspect of queuing systems is stages of service. Systems may have more than one service 
stage; manufacturing systems are good examples of this. Parts will, for instance, be assembled and 
then moved forward to be checked for quality. If the quality is not satisfactory, the assembly will 
be fed back to the previous stage, or else the assembly will move forward to be painted. Passenger 
rail systems only have one service stage, while freight trains may have more (e.g., freight being 
unloaded and then the train moving to the hump yard). 
 
The following points summarise queuing systems: 
 
1. An agent arrives according to a certain probability distribution or fixed inter-arrival time. 
2. The agent then enters or does not enter the queue, depending on the type of system. 
3. The agent then moves from the queue to get serviced for a duration specified by the 

modeller. This can be for a stochastic or fixed time period. 
4. After the agent is serviced, it leaves the system and the next agent in the queue is serviced, 

depending on the queuing discipline. 
 
Huisman et al. [3] developed a queuing network model to compute the long-term performance of 
rail networks. To achieve this, a decomposition of the network and its detailed components was 
necessary. These components include stations, junctions, and sections. The network performance 
was measured by the mean delay and delay probability of the trains arriving at their destinations. 
Because train movements are not known over the long term, assumptions were made to simplify 
the modelling of stations. One of the assumptions is to model the storing tracks outside of the 
model. Thus, when a train finishes its route, it exits the model and is stored in a queue outside the 
model. The halting track is where the train starts its route and where the passengers alight or 
board the train. The next train can only enter the model after the train on the halting track has 
departed.  
 
The occupation times at the halting tracks are assumed to be distributed exponentially and to be 
equal for all train types. The stations are modelled as multi-server queuing systems (since stations 
have more than one platform), with Poisson arrival distributions.  
 
The same principles were applied to junctions and sections, except that these were single server 
queues. If a junction is occupied, the next train falls into the queue, until the junction is clear. 
This occupation time is also distributed exponentially. 
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Sections were broken up into signal blocks, with each block acting as a separate queuing system. 
Bottlenecks and delays were then calculated by adding up all the waiting times in the queues. 
These waiting times were compared with the practical delay times of the trains.  

Table 1: Queueing notation [1] 

Queuing notation A/B/X/Y/Z 

Characteristic Symbol Explanation 

A  

B 

Inter-arrival time 
distribution  

Service time 
distribution 

M Exponential 

D Deterministic 

Ek Erlang type (k=1, 2, 
3…) 

Hk variety of k-
exponentials 

PH Phase type 

G General 

X Number of parallel 
servers  

1, 2, ∞   

Y System capacity  1, 2, ∞   

Z Queue discipline  FCFS First come, first 
served 

LCFS Last come, last 
serveD 

RSS Random selection  

PR Priority 

GD General 

 
The model showed good accuracy, even though the timetable was not taken into account. Yuan 
and Hansen [4] and Meester and Muns [5] have both emphasised the lack of queuing models to 
consider timetables, since they are reliant on probability distributions for inter-arrival times. 
Moreover, fixed arrival and departure times were also not considered, and the impact of speed 
variations was neglected. Huisman et al. [3] instead suggested a way to capture speed variances 
among different train types by ignoring block (signalling) sections in a section between stations. 
However, the model does include one block section before and after each station, to ensure that 
trains do not arrive in bulk at stations. This means that, for instance, if a section has five 
signalling blocks, the middle three sections will be removed from the model and only the first and 
last sections will be included. This allows enough distance for a train with a different speed to 
have a significant variance in free running time; here, free running time refers to the time a train 
takes to travel between stations without any disruptions. The model of Huisman et al. [3] was 
applied to two major lines of the Dutch network, Rotterdam to Utrecht, and Den Haag to Utrecht. 
The traffic on this network is extremely heterogeneous, with three different train types (implying 
three different train speeds) running three different services.  
 
De Kort et al. [6] also applied a similar queuing model, based on Wakob’s approach, to Den Hague 
station in the Netherlands. Wakob’s approach breaks up all the components of a station and 
analyses them independently as separate queues. Arrival and service times are both assumed to fit 
an Erlang distribution, resulting in Ek(λ)/Et(µ)/1 queues for the whole queuing system. De Kort et 
al. [6] argued that service time variations should be dependent on running time and dwell time 
variations, instead of on independent probability distributions. It was found that this approach 
overestimates delays and, alternatively, models the ‘worst case scenario’. This may be related to 
the fact that Wakob’s approach returns the upper bound of the delay duration instead of the mean 
and standard deviation. Although this approach is inappropriate for delay propagation analysis, it 
can be useful for capacity planning purposes [6]. 
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Queuing models can serve as a good alternative to simulation in order to estimate delays, although 
– as mentioned previously – modelling large networks becomes difficult to solve analytically. Kozan 
and Higgens [1] explain this complexity of train networks: 
“A train network is complex in that it includes many intersections, uni- and bidirectional track 
links of various lengths, sidings, and track capacity. Train services vary with different upper 
velocities, slack time, scheduled stops, non-uniform departure times, and include train 
connections as described in the introduction of the paper. In the case of train connections and 
intersections, a train can suffer a delay from another that is scheduled much earlier and from a 
different part of the network.” 
 
“As well, the distribution of arrival times for each train at any station or intersection depends on 
the distribution of current delay, which can be different for each train service. Hence, delay to 
both the trains and at stations (or intersections) are interdependent. Therefore, the calculation of 
expected delay requires a solution of equations.” 

2.3 Job shop models 

Branch and bound algorithms have been used to develop and optimise timetables. These models 
transform train networks into large job shop models. Typically, trains will be jobs and stations and 
sections will be machines. In job shop models, a number of different jobs need to be completed by 
a number of machines. A job will have a specified time and order that it has to spend at each 
machine. For example, Job A will use Machine 1 for two minutes, then Machine 2 for five minutes, 
and lastly Machine 3 for three minutes. Job B will first use Machine 2 for three minutes, then 
Machine 1 for five minutes, and end off with Machine 3 for one minute. Figure 1 shows an 
illustration of this simple model. It is important to note that each machine can only work on one 
job at a time. This means that when Job B is finished with Machine 2, Job A can move to Machine 
2. Similarly, when Job A is finished with Machine 1, Job B can move to Machine 1. Whichever job 
finishes using Machines 1 and 2 first then moves to Machine 3. The other job will then have to wait 
for the first job to finish before moving to Machine 3. In the example illustrated in Figure 1, both 
jobs will arrive at Machine 3 at the same time. In such cases, priority rules can be implemented. 
Problems of this nature create the need to determine what the optimal sequence of machine use 
is; i.e., which job should use which machine when. Branch and bound algorithms are used to solve 
these problems. For further explanations of job shop models and branch and bound algorithms, 
refer to Gross et al. [2]. 
 

 
Figure 1: Simple job shop model 

Rail networks can be similarly modelled, where trains are seen as jobs, and stations, sections, and 
junctions are seen as machines. There are, however, key differences between train network 
models and classical job shop models. These are listed as follows [7]: 
 

 Jobs and machines do not have lengths as do trains and sections. 

 While moving from one section to another, a train’s ‘head’ will occupy the next section, 
while the ‘tail’ will occupy the current section. A train may thus occupy two sections at a 
time, whereas jobs can normally only occupy one machine. 

 Train acceleration, deceleration, and cruising speed for a specific section cannot always be 
pre-defined, since it is dependent on the train in front. 

 Trains can visit sections more than once, whereas jobs are mostly assumed to visit machines 
only once. 
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 Passing facilities such as passing loops on rail sections are equivalent to capacitated buffers 
or parallel machines. These are very difficult features to model with a standard job shop 
model. 

 

 
Figure 2: Small network with block sections [8] 

In Burdett and Kozan's [7] paper, the authors explain how these differences were incorporated in 
order to produce realistic results. D’Ariano et al. [8] developed a job shop model for the Dutch 
railway network. Figure 2 shows a small network on which the model in Figure 3 is based. Note 
that each block section is represented by a machine or a resource, as referred to in this paper, 
and Trains A and B are the jobs. A minimum headway of one signal block between trains is 
modelled and indicated by the dotted arrows in Figure 3. For example, Train A can only enter 
Block 5 when Train B has exited Block 7. 
 

 
Figure 3: Job shop graph of two trains [8] 

This model was expanded to model the Schiphol rail network, which includes the stations of 
Nieuw-Vennep, Hoofddorp, Amsterdam Lelylaan, and Amsterdam Zuid. The network consists of 86 
block sections, 16 platforms, traffic in two directions, and 54 trains. 
 
The model wished to solve the train scheduling problem for real-time rail network management. 
The objective function was to minimise the maximum secondary delays at all stations by all trains. 
It was found that these algorithms perform better than the despatching rules commonly used in 
relation to average and maximum delays.  
 
Burdett and Kozan [9] used a hybrid job shop model with time window constraints to solve the 
train scheduling problem when adding additional train services. In their later work [7], they again 
used the job shop approach, but then further refined the solution using simulated annealing and 
local search meta-heuristics. This allowed them to shift trains more easily and feasibly within the 
solution. 

2.4 Tabu search 

Tabu search is a meta-heuristic algorithm that memorises the most recent local optimum. As soon 
as a solution is found that is better than the previous best solution, the algorithm will store it and 
discard the previous best solution (i.e., the solution becomes tabu). This also implies that the 
algorithm will never return to the same solution twice. The tabu search thus eliminates the 
possibility for the search to get stuck on a local maximum, and continually searches for new local 
optima in the solution space.   
 
Corman et al. [10] compare a tabu search algorithm with a local search algorithm and various 
hybrid algorithms previously developed [8,11] to solve routing and scheduling problems in the 
Dutch rail network. The study focused on a bottleneck at the dispatching area of Utrecht Den 
Bosch, which consists of 191 block sections, 21 platforms, and 50 kms of track. The algorithms had 
to search through 356 possible routes for the best solution. The results showed that the tabu 
search algorithm reached better solutions faster than did the other heuristic algorithms. 
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Similar conclusions about the quality and speed of solutions reached by tabu search methods were 
reached by Higgins et al. [12], who solved the problem of a single track line with occasional 
sidings for opposing trains to pass each other. 
 

2.5 Genetic algorithms 

Genetic algorithms are very effective and robust algorithms to determine global optima. Gradient-
based methods, such as Steepest Accent, Conjugate Gradient, or Lagrangian Multiplier, usually 
converge faster to local optima or a local optimum than a genetic algorithm. In cases of multi-
modal functions, however, they may miss the global optimum more often than not. Genetic 
algorithms are based on the theory of genetic evolution, where the fittest genes in a chromosome 
survive and the weakest genes die away in the process of reproduction. To put it differently, the 
offspring of two parent chromosomes will only consist of the best genes found in both parents. In 
this way, continual improvement in fitness takes place with every generation. 
 
Considering the algorithm, each solution is represented by a chromosome. Stochastic mutation of 
some of these offspring is brought in at pre-determined instances in order to make sure the 
algorithm does not get stuck on a local optimum. The numerical values of a solution’s parameters 
are converted to a series of binary digits, and each parameter is then represented by a gene. 
When a gene thus evolves, the digits of its binary code change to either 1 or 0 [13]. 
 
Genetic algorithms are not commonly used for solving train scheduling problems. However, Higgins 
et al. [12] used a genetic algorithm to solve a single line train scheduling problem. In their study, 
each gene contained three attributes: the delayed train, the train with the highest priority or right 
of way, and the track section where the conflict will occur. With each parent in this instance 
consisting of six genes (e.g., six train schedule solution), the fittest two parents are chosen to 
mate and produce two children with genes from both parents with a single randomly-selected 
crossover point. The genes before the crossover point are transferred to the first child, while the 
genes after the crossover point are transferred to the second child. Mutation in this algorithm has 
a very low probability, however, when mutation happens and the conflict gene changes, and the 
neighbouring genes also change. Changing only one conflict gene by mutation is not good in train 
scheduling problems [12]. The genetic algorithm in this study proved to outperform the tabu 
search and local search heuristics, which the authors also used to solve the same problem. 
 
It is seems that most of the cases where genetic algorithms were used were in cases of single track 
lines with traffic in both directions [3,14,15].  

3 SIMULATION MODELS 

Saayman and Bekker [16] explain simulation as an attempt to solve real world problems by first 
building a model that represents the current state and operation of a system as realistically as 
possible. This is achieved by making argued simplifications and assumptions. The model can then 
be used to solve, experiment with, or optimise the modelled system. Saayman and Bekker [16] 
explain further that simulation allows the modeller to include the stochastic nature of a real world 
system. It allows for big scopes and high complexity systems. It is difficult, however, to validate a 
model, since the whole point of simulation is to forecast the effects of change to a system before 
spending capital to implement the intended change. Model validation is usually done by comparing 
the ‘current state’ model with actual system behaviour. In this way, the modeller can make the 
assumption that the model is a realistic representation of the system. Simulation is thus a tool that 
should be applied with care, since getting answers is easy, but getting realistic answers is a fine 
skill [16]. 
 
Hwang and Liu [17] developed a simulation model to forecast the effect of increasing demand for 
railway capacity of the regional railway system in Taiwan. The idea was not only to model the 
increase in the line capacities, but to also improve the efficiency of the current capacity. The 
model’s objective was the accurate estimation of knock-on delays (secondary delays) as a result of 
a primary delay. The following input parameters were used to represent the network: 
 

 Railway condition: the line, stations, and track layouts of the stations. 

 Traffic condition: minimum dwell time and scheduled timetable. 
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 Control condition: minimum headways, section capacity, and recovery time. 
 
With these parameters, the model was run assuming no delays; i.e., strictly following the 
scheduled timetable. To determine the effect of a primary delay on the network, a delay event 
had to be created. This event or primary delay is defined by four parameters: location of delay, 
delay start time, delay release time, and the magnitude of the delay. The magnitude of the delay 
is simply the difference between the delay start time and the delay release time. The resulting 
secondary delays were thus one of the outputs of the model. These delays were then used to 
create a simulated timetable. 
 
To validate their model, Hwang and Liu [17] used actual train operating data. The arrival-
departure time data of a specific day was retrieved from the Centralised Train Control database of 
the Taiwan Railways Administration. Later, actual delay data was also collected in order to 
compare it with the simulation output. A route conflict delay was chosen as the real event that 
serves as the primary delay. The model proved to be within 120 seconds of the actual delay time 
77.5 per cent of the time, and 62.5 per cent of the time it was within 60 seconds.  Figure 4 shows 
the Marvey diagram of the normal timetable without any delays, and Figure 5 shows the diagram 
for the simulated timetable. It is clear that a delay occurred between Shongshan and Taipei 
stations, and that the next seven trains were affected by it.  
 

 

Figure 4: Normal timetable without delays [17] 
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Figure 5: Simulated timetable diagram with delays [17] 

Hwang and Liu [17] went further and compared different delay reduction strategies and how they 
influence the total secondary delays; the effect of three strategies are shown in Figure 6. It is 
interesting to note the exponential relationship between primary (or first delay) and secondary 
delays (or knock on delays). This can be explained by the fact that the larger the primary delay is,  

 

Figure 6: Total knock-on delays at the destination station [17] 

the harder it is for a train to recover any of the lost time. A train is naturally limited by its ability 
to use these three strategies to recover the lost time created by the primary delay. A train has a 
minimum allowed dwell time at stations, and is also subject to speed limits on sections. These 
limitations thus translate into knock-on effects on later trains, which results in an exponential 
growth in the total delays.  
 
Middelkoop and Bouwman [18] demonstrated the use of Simone simulation software to model the 
entire Dutch rail network. The software requires the following as inputs to the model: 
 

 Infrastructure data. 

 Timetable. 

 Simulation-specific parameters. 

 Network properties in relation to disruptions and disturbances. 

 Operational rules. 

 Statistical indicators for the simulation output. 
 
The software then produces the indicators pre-specified by the user and an animation of the 
network operation. Figure 7 shows an example of the animation output that Simone produces. The 
figure shows a part of the Dutch rail network and all the trains operating on it, with the red circle 
indicating a highly congested part of the network. Each type of train has a unique colour. Most 
parts of the model were constructed by the software’s automatic model generator. The model 
included 600 stations, 1,100 track sections, and 350 trains, which is significantly large. The model 
was able to show, for example, the punctuality of trains in certain parts of the network and the 
relationship between initial delays and the sum of delays (as done by Hwang and Liu [17]). 
 

Stellenbosch University  https://scholar.sun.ac.za



 

201 

 

Figure 7: Simone simulation animation output [18] 

Van Dijk [19] suggested that queuing theory and simulation can be combined. He argued that the 
advantages of queuing theory (e.g., generic components and few detailed data needed) reduce 
the disadvantages of simulation (i.e., high levels of complexity and the need for detailed data). In 
the same way, a simulation’s advantages (i.e., real-life complexity and real-life uncertainties) 
reduce the queuing theory’s disadvantages (i.e., over-simplification and unrealistic constraints). 
 
Azadeh et al. [20] used a Visual SLAM coding language to develop a simulation model of a complex 
rail system consisting of 50 stations and both passenger and freight trains. An analytical hierarchy 
process (AHP) method was used to weight the qualitative and quantitative inputs and outputs, 
which were then converted to a data envelopment analysis (DEA). The objective of the model was 
to find ways to increase passenger train reliability and decrease the turn-around time of both 
passenger and freight trains. 
 
Ho et al. [21] developed a general-purpose multi-train simulator that enables users to model 
without carrying out program code modifications. The simulator has been used in Hong Kong and 
China for studies of traffic control at conflict areas, scheduling optimisation, and the energy 
management of trains. 
 
Train networks can be simulated in two ways. One is time-based modelling, where a time span is 
broken up into equal intervals and train movement is calculated at each interval. Although this is a 
very realistic representation of train movement, it requires a large amount of information with 
every update, which makes it computationally intensive. Time-based models are typically used in 
signalling layout design and energy consumption analysis [21].  
 
The second way of simulating train movement is event-based. This method is similar to the 
queuing models discussed in Section 2.2. The train’s movement is described in terms of a chain of 
events. For example, the train arrives at a station at a specified arrival rate and stays for a certain 
time period. The train then leaves and enters a track section, which marks the start of the next 
event. Each event’s duration is characterised by a certain probability distribution. Although event-
based models may reduce computational time significantly compared with time-based models, 
train movement updates are not synchronised between events [21]. 

4 CONCLUSION 

This paper discussed the various ways to model and schedule train networks. First, purely 
analytical models were covered that showed that networks can be modelled accurately without 
advanced computational methods. They are, however, very limited in terms of scope and network 
complexity. 
 
Second, heuristic methods were discussed. It can be concluded that these methods are very 
effective in optimising large complex networks. They allow the modeller to find global optima 
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amid a solution plane consisting of many local optima. Optimising train schedules for dense rail 
networks seem to be possible with the right combination of these heuristic algorithms. 
 
Last, the use of simulation was discussed. Simulation allows for very large scopes and even entire 
networks to be modelled [18]. It also has the ability to include important infrastructure detail and 
simulate reality fairly accurately. Moreover, it possesses the ability to animate the model, making 
the complex nature of a rail network visual and easier to understand. 
 
The challenge is to combine these mathematical modelling techniques and simulation software to 
represent and predict real-life situations as accurately as possible. For future work, it is suggested 
that these techniques be applied to a case of the Passenger Rail Agency of South Africa (PRASA). In 
this case, PRASA has to introduce new and faster trains into a homogeneous rail system. The rail 
traffic will then become heterogeneous, implying that the network will have to be re-scheduled. 
The other issue is the following question: On which routes and in what quantity should the new 
trains be introduced so that service reliability will improve? The answers to this question can be 
estimated with the use of simulation modelling. Since most advanced simulation software 
available uses discrete events to model systems, and train operations can easily be described by 
discrete events, it is proposed to use discrete event simulation. Once a validated model is 
developed, heuristic methods can then be used to optimise the operation of trains in very specific 
scenarios. A very clear objective function and constraints are necessary, however, which could 
lead to a reduction of scope.  
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