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Abstract 

Introduction: 

The major barrier to curing HIV-1 infection is a latent reservoir of long-lived, replication-competent 

proviruses that persists despite suppressive antiretroviral therapy (ART). Initiating ART during acute infection 

limits the development of phylogenetically diverse reservoirs. Novel approaches for reservoir elimination are 

emerging, providing hope for a cure. Perinatally infected, early-treated children, are likely good candidates 

for cure interventions as they have low immune activation states and a low proportion of central memory T-

cells. We studied the post-CHER cohort of perinatally infected children, who initiated ART during acute 

infection and are in long-term follow-up. To inform cure interventions, we aimed to: (i) quantify latently 

infected cells and describe longitudinal genetic diversity, (ii) describe mechanisms that enable long-term 

reservoir persistence, (iii) describe the extent to which early therapy shapes the proviral landscape.  

Methods: 

In Aim I, we used a sensitive quantitative PCR assay for HIV-1 cell associated DNA (iCAD), followed by cell-

associated DNA-single genome sequencing (CAD-SGS) of 1200bp in HIV-1 gag-pol to investigate genetic 

evolution in the reservoir during long-term ART. We performed 3 tests for evolution: (i) average pairwise 

distance (APD) for intra-patient viral population diversity, (ii) panmixia for probability of shifts in viral 

population structure, (iii) maximum likelihood (ML) root-to-tip distances to detect emergence of new viral 

populations. 

In Aim II, we performed integration site analysis (ISA) on samples from close to therapy initiation (baseline) 

and after 6-9 years on ART to investigate clonal expansion as a mechanism for reservoir persistence despite 

early, suppressive therapy. 

In Aim III, near full length- proviral amplification and sequencing (NFL-PAS) was performed to determine the 

proportion of genetically intact vs defective proviruses after 6-9 years on ART. 

Findings: 

We found low iCAD levels (median iCAD:22.45cp/106) in 16 children who initiated ART within the first 18 

months of life. No significant changes in intra-patient proviral diversity, shifts in viral population structure or 

emergence of new viral populations were detected in children who were fully suppressed on ART, suggesting 

that ART prevents ongoing replication that replenishes the reservoir. 

ISA detected expanded clones in baseline samples of 6 children treated as early as 2 months of age, 

suggesting that infected cells begin clonally expanding before ART. Furthermore, there was a significant 

increase in the proportion of expanded clones after several years.  
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A total of 738 NFL amplicons were generated from 9 children. Of these, 72.9% had large internal deletions, 

23.7% were hypermutated, 1.4% had small internal deletions, and 1% had deletions in the gag-leader region. 

Intact proviruses were detected at a frequency of 1%. 

This study showed that early therapy and long-term suppression in children leads to limited reservoir size 

and genetic diversity, factors that are favourable for cure interventions. The reservoir appears to be 

maintained by clonal expansion that begins before therapy is initiated. Although a large proportion of proviral 

DNA in long-term suppressed children is defective, genetically intact variants persist and likely form part of 

expanded clones. This suggests the need for novel approaches that target HIV reservoirs by reducing 

proliferation of cells that harbour replication-competent proviruses. 
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Opsomming 

Inleiding: 

Die groot hindernis in die soektog na ’n geneesmiddel vir MIV-1-infeksie is ’n latente reservoir langlewende, 

replikasievaardige provirusse wat ondanks doeltreffende antiretrovirale terapie (ART) oorleef. Die aanvang 

van ART gedurende akute infeksie beperk die saaiing en ontwikkeling van filogeneties diverse reservoirs. 

Namate die vakgebied verder ontwikkel, kom nuwe benaderings aan die lig om dié reservoir uit te wis, wat 

hoop bied vir ’n geneesmiddel. Kinders wat perinataal geïnfekteer is en vroeg reeds met behandeling begin, 

is waarskynlik goeie kandidate vir genesingsintervensies omdat hulle laer immuunaktiveringstoestande en 

minder sentralegeheue-T-selle as volwassenes het. Die CHER-kohort (“Children with HIV Early Antiretroviral 

Therapy”) is ’n groep perinataal geïnfekteerde kinders van wie sommige gedurende akute infeksie reeds met 

ART begin het en die afgelope dekade deur middel van opvolgbesoeke gemoniteer is. Om die soektog na ’n 

geneesmiddel te ondersteun, was die doel van hierdie studie (i) om latent geïnfekteerde selle te kwantifiseer 

en provirale genetiese diversiteit oor tyd te beskryf, (ii) om meganismes te beskryf wat die reservoir in staat 

stel om op lang termyn te oorleef, en (iii) om te beskryf watter invloed vroeë terapie op die provirale landskap 

by ’n substel van die CHER-kohort het.  

Metodes: 

Vir doelwit I is ’n sensitiewe kwantitatiewe PCR-toets vir MIV-1-selverwante DNS (CAD) by 16 kinders gebruik, 

gevolg deur selverwante DNS-enkelgenoomreeksvorming (CAD-SGS) van ’n 1 200 bp-fragment wat oor MIV-

1-gag-pol strek, om die genetiese evolusie in die reservoir ná ses tot nege jaar op behandeling te ondersoek. 

Daarna is drie sensitiewe evolusietoetse uitgevoer: (i) gemiddelde paarsgewyse afstand (APD) om virale 

populasiediversiteit binne pasiënte te bepaal, (ii) panmiksie (lukrake paring) om die waarskynlikheid van 

verskuiwings in virale populasiestruktuur vas te stel, en (iii) maksimumaanneemlikheids- (ML-)afstande van 

wortel tot punt om die ontwikkeling van nuwe virale populasies op te spoor. 

Vir doelwit II is integrasiesetelontleding (ISA) op monsters van 12 kinders uitgevoer na aan terapieaanvang 

(basislyn) en weer ná ses tot nege jaar op ART. Die doel hiermee was om klonale uitbreiding te ondersoek as 

’n meganisme vir reservoir-oorlewing ondanks vroeë, langdurige onderdrukkingsterapie. 

Vir doelwit III is byna-vollengte- provirale versterking en reeksvorming (NFL-PAS) op nege kinders uitgevoer 

om die MIV-1- provirale landskap te beskryf en die hoeveelheid geneties ongeskonde teenoor disfunksionele 

provirusse ná ses tot nege jaar op ART te bepaal. 

Bevindinge: 

CAD-ladings was laag (mediaan: 22,45 cp/106) vir die 16 kinders wat binne die eerste 18 maande ná geboorte 

met ART begin het, wat daarop dui dat vroeë behandeling die frekwensie van latent-geïnfekteerde selle 

beperk. Geen beduidende veranderinge in provirale diversiteit binne pasiënte, verskuiwings in virale 
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populasiestruktuur óf ontwikkeling van nuwe virale populasies is opgemerk by kinders wie se toestand ten 

volle onderdruk is op ART nie. Dít gee te kenne dat ART voortdurende replikasiesiklusse, wat die reservoir 

kan aanvul, voorkom. 

ISA het op uitgebreide klone afgekom in voor-ART-monsters van ses kinders wat op so jonk as twee maande 

met terapie begin het, wat daarop dui dat geïnfekteerde selle klonaal begin uitbrei reeds voordat ART kort 

ná geboorte by kinders aangevoor word. Daarbenewens het die hoeveelheid uitgebreide klone ná ’n aantal 

jaar beduidend toegeneem.  

Van die 738 NFL-amplikone wat van nege kinders verkry is, het 72,9% groot interne delesies gehad, 23,7% 

hipermutasie, 1,4% klein interne delesies, en 1% delesies in die verpakkingsein/groot splitsskenkersetel. 

Seldsame ongeskonde provirusse is teen ’n frekwensie van 1% opgespoor, wat soortgelyk is aan volwassenes 

wat gedurende akute infeksie behandel word. 
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Chapter 1  

1.1 Introduction 

1.1.1 Global HIV burden and the need for a cure  

As of 2017, 36.9 million people worldwide are living with the Human Immunodeficiency Virus (HIV)  (UNAIDS, 

2018a). Of these, 1.8 million are children below the age of 15 years (UNAIDS, 2018a). The highest HIV rates 

globally are in sub-Saharan Africa where 19.6 million people are currently infected (UNAIDS, 2018a). Since 

the introduction of antiretroviral therapy (ART), several studies have reported a significant decline in 

morbidity and mortality as well as an improved life expectancy among infected children and adults (Brady et 

al., 2010; Gona et al., 2006; Gortmaker et al., 2001; Judd et al., 2007; Palella et al., 1998; Walensky et al., 

2006).  ART has been effective in limiting sexual transmissions by reducing the plasma viral loads of well-

suppressed individuals to below the detection limit of commercial assays (Castilla et al., 2005; Granich et al., 

2010). There has also been great success in using ART as prophylaxis to prevent mother to child transmissions 

(Teasdale et al., 2011). With 80% of pregnant women worldwide now having access to ART, there is a 

continued decline in new infections among children (UNAIDS, 2018a). 

Despite this, a cure is still warranted. South Africa has the largest ART programme in the world. Between 

2014 and 2015, 350 million US dollars (USD) was spent on ART programmes (Venter et al., 2017). The recent 

change in treatment guidelines to accommodate all infected people regardless of CD4 threshold, coupled 

with the increase in the life expectancy of people on effective ART means that the national budget must cater 

for several millions of infected people who will need ART for many decades (Sabin, 2013). The high cost of 

providing life-long ART for over 36 million individuals (and counting) is not economically sustainable. 

Women of child bearing age in sub-Saharan are a major risk group for acquiring the infection and of concern 

because of the potential for continued mother to child transmissions (UNAIDS, 2018b). In addition, drug 

toxicities, psychological and socio-economic factors still have a significant impact on ART adherence (Mellins 

et al., 2004; Williams et al., 2006). The lack of proper adherence could lead to development of drug resistance 

to current regimens as well as the possible spread of infection to others (Bangsberg et al., 2004; Sethi et al., 

2003). Treatment adherence is of particular concern in perinatally infected children and adolescents from 

resource limited settings. While there is evidence to suggest that disclosure of HIV status may have a positive 

impact on ART adherence (Bikaako-Kajura et al., 2006; Corneli et al., 2009; Fetzer et al., 2011; Montalto et 

al., 2017) there is an increased risk of non-adherence to ART above the age of 15 years (Bygrave et al., 2012; 

Mellins et al., 2011). Challenges such as the poor palatability of liquidate ART formulations, gastro-intestinal 

intolerance to the drugs, co-morbidities (e.g malaria), low nutritional status, cultural/environmental factors, 

and psychosocial changes during adolescence all influence paediatric adherence (Agwu and Fairlie, 2013; 

Davies et al., 2008; Phelps and Rakhmanina, 2011; Schlatter et al., 2016).  
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Furthermore, the drug toxicities associated with life-long ART, especially in children who have been treated 

since birth are largely unknown. In older people living with HIV, some ART related morbidities have been 

reported. The use of some nucleoside reverse transcriptase inhibitors (NTRI) can cause loss of bone mineral 

density increasing the risk of osteoporotic fractures (Borges et al., 2017). Long-term ART use has been 

associated with an increased risk of developing kidney disease and liver toxicity (Fernandez-Fernandez et al., 

2011; Kovari and Weber, 2011; Scherzer et al., 2012). Efavirenz and dolutegravir have been associated with 

impaired neurocognitive functioning and adverse neuropsychiatric events (Hoffmann et al., 2017; Ma et al., 

2016; Treisman and Kaplin, 2002) and protease inhibitors (PI) have been reported to increase the risk of 

myocardial infarction (Lai et al., 2009; Sabin et al., 2016). The search for a cure is therefore high priority in 

the HIV research community (Barré-Sinoussi et al., 2013). Increasing global efforts are now focused on 

understanding the mechanisms that allow the virus to persist despite effective ART and developing strategies 

to overcome these barriers. 

1.1.2 HIV genome and the active replication cycle:  

HIV belongs to the Lentivirus genus from the Retroviridae family and is classified under two species that infect 

humans, namely HIV-1 and HIV-2. HIV-1 is the predominant species and is further divided into groups M 

(main), O (Outlier) and N (new). Under group M are nine subtypes (ranging from A-D, F-H and J-K) as well as 

several Circulating recombinant forms (CRFs) and Unique recombinant forms (URFs) (Robertson et al., 2000). 

The HIV genome is 9.7kb in length and consists of 9 genes that encode 15 viral proteins. The translated gene 

products result in structural proteins of the viral exterior and core, polymerases that enable viral replication, 

and regulatory as well as accessory proteins that enhance entry and viral reproduction. Each virion has an 

outer envelope derived from the env gene precursor which gives rise to the gp120 surface membrane and 

gp41 transmembrane (Freed, 1998). Within the envelope are the matrix protein (p17), capsid protein (p24), 

and nucleocapsid (p7) encoded by the gag gene. The capsid encloses two copies of unspliced, positive sense, 

single stranded viral RNA genomes (Freed, 1998).  Also within the viral core are three enzymes essential for 

infection and replication namely Protease (PR), Reverse transcriptase (RT) and Integrase (IN), all derived from 

the pol gene (Hill et al., 2005). In addition, the viral genome encodes proteins with regulatory function namely 

tat (trans-activator of transcription) and rev (regulator of viral expression) as well as four accessory proteins 

namely nef (negative factor), vpr (viral protein r), vif (viral infectivity factor), and vpu (viral protein u) (Ranki 

et al., 1994). The viral genome also includes non-coding regions known as the 5’ and 3’ long terminal repeats 

(LTR) that are duplicated on both ends of the genome when it is in DNA form (Kao et al., 1987). The other 

non-coding regions are the primer binding site (PBS), packaging signal (ψ), polypurine tract (PPT), Rev-

responsive element (RRE) and cis-acting repressive sequences (CRSs) (Paillart et al., 1996). 
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Figure 1.1: HIV-1 Gene map (HXB2): Image taken from 
(https://www.hiv.lanl.gov/content/sequence/HIV/MAP/landmark.html); accessed 01/06/2017. 

 

Figure 1.2: HIV Virion. Image by Thomas Splettstoesser (www.scistyle.com) 
https://commons.wikimedia.org/w/index.php?curid=38751738; accessed 09/09/2017. 

The HIV-1 replication cycle begins when viral glycoprotein receptors bind to CD4 molecules and chemokine 

co-receptors CCR5 or CXCR4 on the surface of CD4 T cells (Chan and Kim, 1998). The fusion of viral and cellular 

membranes follows and leads to partial uncoating of the virion. Reverse transcription of the viral RNA by the 

RT enzyme occurs in the cytoplasm and results in a double stranded DNA product that together with viral 

and cellular proteins forms a nucleoprotein called the pre-integration complex (PIC). The PIC is transported 

through the cytoplasm to the nucleus. Following nuclear entry, integration of the viral DNA into the host 

cell’s chromosomal DNA is mediated by the viral encoded Integrase enzyme (Ciuffi and Bushman, 2006). The 

integrated provirus serves as the template for transcription by the host cell’s DNA-dependent RNA 

polymerase II and remains as part of the host cell’s genome for the lifespan of the infected cell. HIV integrates 

preferentially in actively transcribed cellular genes and its expression depends on the host cell’s metabolism 

and activation state (Craigie and Bushman, 2012; Mitchell et al., 2004; Wu et al., 2003). If the infected cell is 

activated, viral replication is efficient and rapid due to the expression of tat, increased nucleotide pools, and 
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the availability of host transcription factors that bind to the viral LTR region to initiate transcription (Frankel, 

1992). Transcription results in the production of messenger RNA (mRNA) some of which are spliced and 

transported into the cytoplasm where they are translated into proteins while others are packaged as genomic 

RNA for progeny virions. Gag-pol poly proteins are transported to the cell’s plasma membrane where mature 

virions are assembled and budd from the host cell (Park and Morrow, 1991). Following budding, viral protease 

performs proteolysis and enables the formation of mature viral particles (Park and Morrow, 1991).   

 

Figure 1.3: The HIV-1 viral life cycle. Image taken from: https://courses.lumenlearning.com, modified from work by NIAID, 
NIH; accessed 20/09/2017. 

1.1.3 Latent reservoirs of HIV and their maintenance at a cellular level:  

In most cells, HIV infection leads to active replication which results in the release of new virions and the 

destruction of the infected cell by viral cytopathic effects. However in a small subset, replication-competent 

proviruses remain dormant within the host cell’s genome and HIV is able to persist in this form for the 

duration of the life-span of the infected cell (Brooks et al., 2001; Siliciano and Greene, 2011).These cells 

remain hidden from effects of the immune response, are unaffected by antiretroviral drugs (which target 

various stages of viral replication in an actively infected cell) and are capable of reactivating to produce new 
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cycles of replication when therapy is interrupted. Such cells are referred to as latent reservoirs (Chun et al., 

1997b). Research shows that reservoir seeding occurs very early during infection (Chun et al., 1998). Although 

the exact mechanism by which a reservoir is established in these cells is not entirely understood, multiple 

mechanisms have been proposed:  

I. Latent infections are thought to occur in cells that are entering a resting state where the down 

regulation of coactivating factors such as NF-kB and P-TEFb in the nucleus prevent transcription 

(Brooks et al., 2001; Finzi et al., 1999).  

II. Because HIV mostly integrates within introns of actively transcribed genes, ongoing transcription 

from an upstream host promoter could interfere with viral transcription and result in latency (Han et 

al., 2008; Lenasi et al., 2008).  

III. Histone modifications due to the recruitment of histone deacetylases (HDACs) at the site of insertion 

can result in repressive chromatin structure and reduce the accessibility of DNA templates to 

transcription factors leading to the downregulation of HIV expression (Coull et al., 2000; Jenuwein 

and Allis, 2001; Verdin et al., 1993; Ylisastigui et al., 2004).  

IV. Histone CpG methylation (methylation of CG rich DNA) in the LTR region of the integrated viral 

genome can cause the winding of LTR chromatin structure blocking the binding of transcription 

factors and consequently expression of the viral genome (Blazkova et al., 2009).  

V. Cellular micro RNAs that are upregulated in latent cells can directly target viral transcripts or 

indirectly repress translation of transcripts thus interfering with protein synthesis and inhibiting viral 

production (Chiang et al., 2012; Huang et al., 2007; Wang et al., 2015). 

VI. Immune checkpoint molecules such as PD-1, TIGIT and LAG-3 that are highly expressed on the surface 

of latently infected memory CD4 T cells, serve to down-regulate the immune response and have been 

shown to play a role in the establishment and maintenance of latency (Evans et al., 2018; Fromentin 

et al., 2016). 

 

 1.1.4 Cellular and anatomical locations of the reservoir  

Several cell types are susceptible to HIV infection and have the potential to harbour latent forms of the virus. 

CD4 T cells, particularly the central memory (TCM) and transitional memory (TTM) subsets have been identified 

as the main cellular reservoirs of HIV. These cells are able to survive for several years through cellular 

proliferation and have the capacity to reactivate when they encounter a cognate antigen making them ideal 

reservoirs (Chomont et al., 2010; Chun et al., 1997b; Chun et al., 1998; Siliciano and Greene, 2011; Whitney 

et al., 2014). More recently, stem cell-like CD4 T cells (TSCM) with relatively longer lifespans and enhanced 

proliferative capacity have been reported to make an increasing contribution to the total cellular reservoir 

over time on ART (Buzon et al., 2014b; Gattinoni et al., 2012). Follicular helper CD4 T-cells, another subset of 
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the TCM CD4 T cell compartment, have also been implicated as major reservoirs that serve as a source of HIV 

persistence in chronically infected individuals (Pallikkuth et al., 2016). 

CD4 T cells are found in lymphoreticular tissues - predominantly the gut associated lymphoid tissues, 

peripheral blood and in low concentrations at many anatomic sites. Although most studies describing cellular 

reservoirs are conducted on peripheral blood due to ease of sampling, circulating CD4 T cells comprise  <2% 

of total body CD4 T cells (Mascio et al., 2009; Westermann and Pabst, 1992). During HIV infection, CD4 T cells 

disseminate throughout the body and establish reservoirs in tissue compartments. Tissue reservoirs are 

thought to be immunologically sheltered and lack sufficient drug penetration making them potential sites of 

ongoing viral replication and latent reservoir persistence. The detection of viral RNA in tissue despite being 

undetectable in peripheral blood during ART was thought to be an indication of ongoing compartmentalized 

viral replication (Fletcher et al., 2014). However, there has been no evidence of compartmentalization of viral 

populations in the lymph nodes of long-term ART suppressed individuals suggesting that there is circulation 

of virus and/or infected cells between lymphoid tissues and peripheral blood (Kearney et al., 2015; McManus 

et al., 2018) . Compartmentalization and ongoing replication on ART are further discussed in section 1.1.8.2 

below. 

The gut mucosa plays a critical role in HIV pathogenesis. It is the earliest site of infection, has high expression 

of CCR5 and CD4 (Brenchley et al., 2004; Li et al., 1999; Mehandru et al., 2004; Veazey et al., 1998), and 

contains 40-60% of the body’s lymphocyte population (Olivares-Villagómez and Van Kaer, 2018). Most CD4 

T cells in the gut mucosa are of the activated memory phenotype and therefore readily infected (Olivares-

Villagómez and Van Kaer, 2018). CD4 T cells in the gut associated lymphoid tissue (GALT) have been shown 

to harbour HIV DNA (Yukl et al., 2013) at levels that remain constant even after long-term ART making it the 

most significant tissue reservoir. 

Cells of the myeloid lineage including monocytes, macrophages and dendritic cells have been implicated as 

cellular reservoirs of HIV. Macrophages are a key target for infection (Koenig et al., 1986; Sharova et al., 2005) 

but differ from CD4 T cells in that they are already terminally differentiated, have longer persistence of 

unintegrated virus and are more resistant to viral cytopathic effects (Coleman and Wu, 2009; Ho et al., 1986; 

Kelly et al., 2008). Although their relative contribution to the latent reservoir appears smaller than CD4 T 

cells, they are found in almost all tissues and potentially transmit virus to different anatomic sites (Groot et 

al., 2008; Kumar and Herbein, 2014). As antigen presenting cells (APCs), macrophages transfer virus to by 

stander CD4 T cells through cell to cell contact (Groot et al., 2008; Kumar and Herbein, 2014). They also engulf 

infected CD4 T cells thus increasing their chance of infection and latency formation (Baxter et al., 2014). 

Natural killer (NK) cells have also been implicated as possible reservoirs (Coleman and Wu, 2009; Crowe et 

al., 2003; Valentin et al., 2002).  

The central nervous system (CNS) is major tissue reservoir of HIV. Reservoir establishment in this 

compartment occurs early after peripheral infection and is maintained due to limited ART penetration as a 
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result of the ‘blood-brain barrier’. Microglial and perivascular macrophages are critical cellular reservoirs in 

the CNS where they are resistant to viral cytopathic effects and are able to sustain the infection for long 

periods of time (Cassol et al., 2006; Churchill et al., 2006; Thompson et al., 2011; Williams et al., 2001).  

Astrocytes are another cell type that play a role in spreading the virus across the blood brain barrier (Churchill 

et al., 2006; Eugenin and Berman, 2013; Narasipura et al., 2012). A recent study detected viral immune 

escape populations in cerebrospinal fluid (CSF) of patients on long-term suppressive ART further implicating 

the CNS as a site of viral persistence (Joseph et al., 2018). 

Studies in SIV infected animals have shown that lymph nodes are a site for reservoir formation (Horiike et al., 

2012). Macrophages and dendritic cells play significant roles in spreading and sustaining the infection within 

secondary lymphoid tissues (Baxter et al., 2014; Kumar and Herbein, 2014; Zhang and Perelson, 2013). 

Dendritic cells are capable of retaining infectious virions on their cell surfaces and transmit virus via cell to 

cell spread (Burton et al., 2002; Spiegel et al., 1992). Also more recently described are follicular helper CD4 T 

cells within B cell follicles in lymphoid tissue that are highly susceptible to infection and comprise the main 

reservoir in this compartment (Perreau et al., 2013).  

Several other anatomic sites harbour latent reservoirs. The detection of HIV DNA in T lymphocytes and 

macrophages from semen implicate the genital tract as a site for HIV reservoirs (Coombs et al., 2003; Diem 

et al., 2008; Quayle et al., 1997). HIV has also been recovered from alveolar lymphocytes and alveolar 

macrophages (Costiniuk et al., 2018; Cribbs et al., 2015) pointing to potential reservoirs in the lungs.  

1.1.5 Current Cure approaches:  

Current cure strategies aim to either eliminate all latently infected cells (sterilizing cure) or induce a state of 

viral remission where viral replication is suppressed, and patients are non-infectious for prolonged periods 

in the absence of ART (functional cure). Viremia typically rebounds 2-3 weeks after ART interruption (Davey 

et al., 1999; García et al., 1999) and the ‘time to rebound’ has been shown to correlate with the size of the 

reservoir (Li et al., 2016; Williams et al., 2014). As a result, the gold standard to evaluate the efficacy of any 

cure intervention is to perform an analytical treatment interruption (ATI) of ART followed by frequent viral 

load testing to monitor the time to detectable viral loads. However, a functional cure response may exhibit 

an initial viral rebound followed by immune mediated suppression as is the case in therapeutic vaccine 

approaches (Borducchi et al., 2016).  

1.1.5.1 Early ART 

Studies in non-human primates (NHP) have shown high levels of integrated SIV DNA in resting CD4 T cells as 

early as 3 days post infection, suggesting very rapid reservoir establishment (Nishimura et al., 2009; Whitney 

et al., 2014). There are several benefits of initiating ART during acute infection (Ananworanich et al., 2015). 

Early ART limits the establishment of reservoirs particularly in long-lived CD4 T cell subsets (Archin et al., 

2012). Strain et al and others have shown that over time on therapy, HIV DNA in CD4 T cells of individuals 
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who initiate ART in acute infection decays faster than those initiating in chronic infection (Buzon et al., 2014; 

Chun et al., 2007; Strain et al., 2005). Early therapy also preserves HIV specific B and T cell responses and 

reverses the chronic mucosal and systemic immune activation that contributes to reservoir spread 

(Ananworanich et al., 2014; Jain et al., 2013; Schuetz et al., 2014). Furthermore, early ART can lead to 

functional cure. During the VISCONTI and SPARTAC trials, a small percentage of the individuals who initiated 

ART during acute infection were able to maintain undetectable viral loads after ART was interrupted (Frange 

et al., 2016; Sáez-Cirión et al., 2013). Post treatment control has also been reported in a South African child 

from the CHER cohort who was diagnosed with HIV at 32 days of age and initiated ART at 8.5 weeks of age 

for up to 1 year (Violari et al., 2019). The child was later interrupted as per the trial and has remained aviremic 

for 9 years (Violari et al., 2019). The immune mediated mechanisms by which post treatment viral control is 

achieved in such cases are yet to be understood. Other recent cases of paediatrics who following very early 

ART, had delayed viral rebound with no detectable virus in peripheral blood despite no evidence of immune 

mediated control further highlight the role of early ART in limiting reservoir establishment (Frange et al., 

2016; Luzuriaga et al., 2015; Persaud et al., 2013). However, early therapy alone is not sufficient to prevent 

the establishment of reservoirs or lead to their eradication (Luzuriaga et al., 2000). Furthermore, the 

implementation of early ART at a population level especially in resource limited settings may not always be 

feasible. Early therapy therefore needs to be used in combination with other approaches to eliminate the 

persisting reservoir. 

1.1.5.2 ‘Shock and Kill’ approach 

Certain compounds referred to as latency reversing agents (LRAs) have been shown to reactivate latently 

infected cells. These include protein kinase agonists (PKC) that initiate transcription (e.g PMA), histone 

deactylase inhibitors (HDACi/s) which inhibit cellular histone deactylases, histone methlytranferases (HMT) 

inhibitors, DNA methlytranferase inhibitors (Rasmussen and Lewin, 2016), agonists of innate immune 

receptors TLR7 or TLR9, inhibitors of the PI3/Akt pathway that influences cell survival, and others (Offersen 

et al., 2016; Tsai et al., 2017). The ‘shock and kill approach’ uses LRAs in combination with ART such that 

latently infected cells are reactivated to induce viral production and cleared by immune effector cells or virus 

mediated cytolysis while ART prevents further spread of the released virions to new cells. Several LRAs have 

been tested in clinical trials, these include: vorinostat (Archin et al., 2017; Archin et al., 2012; Elliott et al., 

2014), panobinostat (Rasmussen et al., 2014), romidepsin (Søgaard et al., 2015), disulfiram (Elliott et al., 

2015; Spivak et al., 2014; Xing et al., 2011), bryostatin-1 (Gutierrez et al., 2016), and the TLR9 agonist 

MGN1703 (Vibholm et al., 2017). All except byrostatin-1 have shown an increase in plasma HIV RNA but none 

has shown a reduction in infected cells. This is thought to be due to the lack of effective ‘killing’ of reactivated 

cells. There are multiple potential mechanisms that prevent the clearance of reactivated cells including: (i) 

the over expression of cellular pro-survival protein Bcl-2 that inhibits virus mediated killing (Cummins et al., 

2016) (ii) immune escape mutations in latently infected cells of individuals treated during chronic infection 
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(Deng et al., 2015), (iii) direct inhibition of CD8 + T-cells and natural killer (NK) cells by HDACis (Pace et al., 

2016), (iv) inherent resistance of reservoir cells to killing by CD8 effector cells (Huang et al., 2018). These data 

collectively highlight the fact that more effective approaches to ‘kill’ reactivated cells are required. 

Furthermore, the potential for global activation of immune cells, cellular toxicity, and tumor inducing 

potential of LRAs remain of concern with the ‘shock and kill’ approach (Rasmussen and Lewin, 2016). 

 

Figure 1.4: Shock and Kill approach to reactivate and eliminate latently infected cells. Image taken from Kim et al., 2017. 
(https://www.ncbi.nlm.nih.gov/pubmed/29324227); accessed 05/02/2018.  

1.1.5.3 ‘Block and Lock’ approach  

More recently, an alternative to the ‘shock and kill’ approach referred to as ‘block and lock’ is aimed at 

inducing a state of deep latency using latency promoting strategies. In one study, mice treated with small 

interfering RNAs (siRNA) that target conserved promoter regions of the integrated provirus have shown a 

reduction in HIV RNA levels in serum (Suzuki et al., 2013). In another cell-culture study, a new compound (L-

HIPPO) captures the HIV Pr55 protein that mediates virion budding and blocks it from translocating from the 

cytoplasm to plasma membrane thus inducing cellular apoptosis (Tateishi et al., 2017). Yet another approach 

uses a novel drug didehydro-cortistatin A to bind to promoter regions and restrict the recruitment of tat and 

other host factors required for transcription (Kessing et al., 2017). In a mouse model this approach showed 

delayed viral rebound off ART. Lastly, small molecule inhibitors called LEDGINS have been shown to interfere 

with integration site selection and shift viral integrations to inner nuclear compartments away from active 

genes (Debyser et al., 2018). 

1.1.5.4 Gene editing approaches 

The cases of the ‘Berlin’ and ‘London’ patients who to-date are the only individuals to be cured of HIV 

suggested that reduced or no cell surface expression of CCR5 could be protective and have served as proof 

of concept that long-term remission/cure is possible if the reservoir size is sufficiently reduced (Gupta et al., 

2019; Hutter et al., 2009). The ‘Berlin patient’ received hematopoietic stem cell transplantation (HSCT) as 

treatment for acute myeloid leukemia (AML) from a donor who was homozygous for the Δ32 mutation in the 

CCR5 gene that makes cells resistant to HIV infection (Hutter et al., 2009). The patient has remained off ART 

for over 10 years without evidence of residual virus even after extensive tissue sampling (Hutter et al., 2009). 
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However, the Berlin patient scenario was high risk and may not be a scalable approach for cure. Multiple 

attempts to replicate this model have been unsuccessful with exception of the ‘London patient’. All other 

recipients of HSCT from a homozygous Δ32 donor developed fatal complications due to the transplant or 

failed to maintain long-term viral remission (Henrich et al., 2014; Kordelas et al., 2014). Alternative 

approaches to block viral entry by knocking out the CCR5 gene in hematopoietic stem/progenitor cells 

(HSPCs) using zinc finger nucleases (ZFN) or CRISPR/Cas9 have been tested in HIV infected individuals (Cannon 

and June, 2011; Tebas et al., 2014). All patients eventually had viral rebound following ATI due to the low 

frequency of modified CD4 T cells that were adoptively transferred (Cannon and June, 2011; Tebas et al., 

2014). However, a patient heterozygous for the CCR5 Δ32 mutation experienced better control of viral 

replication post-treatment interruption suggesting that the reduction of cell surface CCR5 expression might 

be protective (Tebas et al., 2014).   HSCs have also been used in vivo to generate HIV specific cytotoxic T cells 

that inhibit viral replication (Kitchen et al., 2012). Another approach is the direct excision of HIV proviruses 

from cellular genomes using gene-editing enzymes such as zinc finger nucleases (ZFNs), homing 

endonucleases, transcription activator-like effector nucleases (TALENS) and CRISPR/Cas9 (Ebina et al., 2015, 

2013; Kaminski et al., 2016; Qu et al., 2013; Sarkar et al., 2007; Yin et al., 2017). This approach has been 

effective in culture with primary cell lines and humanized mouse models but has not proceeded to clinical 

trials due to poor efficacy of gene delivery, off target effects, the low frequency of latently infected cells and 

the challenge of targeting multiple sites of proviral integration in the host cell genome (Ebina et al., 2015, 

2013; Kaminski et al., 2016; Qu et al., 2013; Sarkar et al., 2007; Yin et al., 2017).  

1.1.5.5 Immunotherapy  

Various immunotherapeutic approaches towards a cure are on-going. Therapeutic vaccines composed of 

attenuated viral vectors or plasmid viral DNA have been used to express HIV antigens and induce an HIV 

specific immune response (Katlama et al., 2013; Shan et al., 2012). Several of these vaccines appear 

promising. In a macaque model, an adenovirus-based vaccine used in combination with a TLR7 agonist was 

able to induce post-treatment control following ART interruption (Borducchi et al., 2016). Likewise, a CMV-

based vaccine was able to induce a broad range of cellular immune responses resulting in control of SIV 

infection (Hansen et al., 2013, 2011). 

The use of passively administered broadly neutralising antibodies (bnAbs) against various viral strains has 

shown promise with reports of delayed viral rebound following ART interruption (Barouch et al., 2013; Scheid 

et al., 2016).These bNabs target both cell free virus and infected cells and contribute to boosting HIV specific 

T cell responses (Barouch et al., 2013; Caskey et al., 2015; Lu et al., 2016; Williams et al., 2017). In humanized 

mouse models, bNabs have shown efficacy in reducing viral rebound when used in combination with LRAs 

(Halper-Stromberg et al., 2014). However, their short half-life, limited accessibility to all anatomical reservoir 

sites, and high cost are some of the current hurdles in their use as cure interventions. 
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Another immunotherapeutic approach is to enhance the CD8 T cell response by reversing chronic cell 

activation and exhaustion. Immune regulators such as the programmed cell death protein (PD-1), act to blunt 

cell activation during chronic HIV infection (Velu et al., 2015). The ligands PD-L1 and PD-L2 block the PD1 

pathway and their administration has been shown to restore T cell function resulting in the reduction of viral 

reservoirs (Gardiner et al., 2013; Shetty et al., 2012). Studies in SIV infected macaques showed that the 

administration of PD-1 ligands resulted in a reduction in viral loads and immune activation (Shetty et al., 

2012; Velu et al., 2009). Clinical trials to assess the efficacy of PD-L1 and PD-L2 in humans are on-going. 

Other cure strategies under investigation include the use of nanocarriers and chimeric antigen receptor (CAR) 

T cell therapy (Lisziewicz and Toke, 2013; Zhen et al., 2015). It is becoming more apparent that the most 

effective approach includes a combination of reservoir reduction and immune control.  

1.1.6 Paediatric HIV infection, CHER and early treated children as good candidates for cure 

interventions 

 In 2017, approximately 180 000 children aged 0-14 years were newly infected with HIV worldwide (UNAIDS, 

2018a). Without the administration of ART prophylaxis, 35%–49% of children born to HIV-infected mothers 

become infected. Of these, 8% are estimated to be infected during pregnancy, 15% during labour and 

delivery, and 12%–26% during breast-feeding (Jourdain et al., 2007; Leroy et al., 1998). When a combination 

of maternal and infant ART prophylaxis is administered, transmission rates are reduced to below 5% (WHO, 

2015).   

1.1.6.1 The CHER study and post CHER cohort 

High mortality rates have been reported among children who become infected and initiate ART during the 

symptomatic phase of infection, suggesting that earlier therapy is required to prevent disease progression 

(Lilian et al., 2013; Newell et al., 2004). The Children with HIV Early antiRetroviral therapy (CHER) randomised 

trial was conducted on HIV infected infants in South Africa to determine whether early, time-limited therapy 

soon after primary infection, during the time when the immune system was most immature could result in 

long-term benefit and delay the time to commencement of life-long ART (Cotton et al., 2013). The first line 

ART regimen for CHER was lopinavir, lamivudine and zidovudine (LPV/r + 3TC + ZDV). Asymptomatic infants 

with CD4≥25% were randomised to receive ART for either 40 (arm 2) or 96 weeks (arm 3) or deferred ART 

according to concurrent guidelines (arm 1). Children in arm 2 and 3 had slower disease progression compared 

to those in the deferred arm (Cotton et al., 2013). Moreover, children who initiated earlier were more likely 

to have undetectable HIV-specific antibodies by the age of 2 years and had lower HIV cell associated DNA 

(CAD) and RNA (CAR) compared to those who initiated later (Cotton et al., 2013; Payne et al., 2015; Van Zyl 

et al., 2014). Children from the CHER study were later retained in follow up cohort studies to investigate 

neurocognitive outcomes and HIV-1 persistence.  
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1.1.6.2 Early treated children as good candidates for cure interventions  

The CHER study findings have been corroborated by several others showing that children who initiate 

treatment within days of diagnosis and maintain adherence have improved virologic and immunological 

outcomes compared to those who initiate based on clinical criteria (Ananworanich et al., 2014; Bitnun et al., 

2014; Luzuriaga et al., 2014; Persaud et al., 2012). Treatment initiation during acute infection halts new 

rounds of viral replication and limits the spread and establishment of a replication competent reservoir in 

long-lived cells (Luzuriaga et al., 2014). Furthermore, early treatment increases the reservoir’s decay rate and 

limits the development of phylogenetically diverse viral quasi-species which allow evasion of specific immune 

responses (Luzuriaga et al., 2014; Persaud et al., 2007).  

The case of the ‘Mississippi baby’ who initiated ART within hours of life and showed no evidence of HIV 

replication for a period of 27months off therapy, indicates a very low reservoir and provides support that 

early treated infants may be ideal candidates for curative interventions (Hill et al., 2014; Persaud et al., 2013). 

With current international guidelines recommending early initiation of therapy for all infected infants, there 

is a growing number of early treated, long- term suppressed children that are surviving to adolescence and 

older (Department of Health Republic of South Africa, 2013; Klein et al., 2015). Thymic activity in children is 

significantly higher than in adults and provides the advantage of an increased capacity to restore a functional 

immune repertoire –which may facilitate de novo vaccine- specific responses (Lynch et al., 2011). The 

immune system in children is characterised by a higher number of naive CD4 T cells, lower activation states, 

and a lower proportion of central memory T cells – all factors that would facilitate a smaller and less diverse 

reservoir than would be present in adults (De Rossi et al., 2002; Klein et al., 2013). Early treated children have 

better CD4 T cell function than early treated adults which could mean an enhanced capacity to respond to 

new antigens when therapeutic T cell vaccines are administered (Adland et al., 2018). Also, most early treated 

children become sero-negative after 2 years on suppressive ART and therefore lack HIV-specific cellular 

immune responses that would likely interfere with investigating vaccine specific responses (Klein et al., 2015). 

To lay the ground work for therapeutic vaccine trials and other novel cure interventions, it is vital that current 

cohorts of early-treated, long term suppressed children be thoroughly characterised. Factors such as 

reservoir size, genetic diversity over time and proviral landscape of the reservoir need to be determined in 

order to understand the mechanisms that drive persistence in this key population. 

1.1.7 Measuring the replication competent reservoir  

1.1.7.1 Quantitative measurement of HIV nucleic acids 

Quantitative polymerase chain reaction (qPCR) assays, namely real-time PCR (RT-PCR) and digital PCR (dPCR), 

have been used to quantify HIV nucleic acids in peripheral blood, tissues, plasma and other compartments 

(De Oliveira et al., 2015; Henrich et al., 2012; Kiselinova et al., 2014; Strain et al., 2013). Following extraction 

of viral DNA or RNA, these samples are reverse transcribed (in the case of RNA) and then amplified using 
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primers that target conserved regions of the HIV genome including LTR, gag or pol. During real-time PCR, the 

PCR cycle where fluorescence reaches a pre-determined cycle threshold (Ct) is measured in both serial 

dilution standards and unknown samples. RNA or DNA concentrations are then determined by log-linear 

regression from a standard curve. Digital PCR quantification entails limiting dilution of target RNA/DNA in 

miniaturized reactions, determining the proportion of reactions that are positive and estimating the original 

concentration by Poisson statistics (De Oliveira et al., 2015; Eriksson et al., 2013; Henrich et al., 2012; 

Kiselinova et al., 2014). 

Different assays have been developed for the ultrasensitive quantification of either total HIV DNA, integrated 

HIV DNA or episomal DNA formed from failed integration attempts (i.e 1LTR and 2LTR circles) (Eriksson et al., 

2013). Similarly, ultrasensitive assays are available to quantify free virion HIV RNA that persists below the 

limit of detection of commercial viral load assays, also referred to as residual viremia. In order to characterize 

transcriptional activity of HIV infected cells, assays are available to determine cell associated unspliced and 

multiply spliced RNA transcripts. The detection limits differ depending on the assay used but range from 150 

HIV RNA copies per ml of plasma to less than 1 HIV RNA copy and have been useful in clinical trials to analyse 

changes in viral transcription or release of virions into plasma after administration of LRAs (Cillo et al., 2014b, 

2014a; Palmer et al., 2003). Quantitative PCR approaches have the benefit of being highly sensitive, high 

throughput and relatively inexpensive. A big limitation however, is their inability to distinguish between 

genetically defective or intact proviruses due to the majority of proviral HIV being defective (Ho et al., 2013). 

They have been shown to overestimate the true size of the reservoir by over 300-fold (Ho et al., 2013). There 

is also variability and bias among the different assays (Eriksson et al., 2013). Differences in gene targets and 

even different labs settings have affected their reproducibility.  

1.1.7.2 Quantitative Viral Outgrowth Assays 

The quantitative viral outgrowth assay (qVOA) is currently the gold standard for measuring the replication 

competent reservoir. qVOA involves the mitogenic reactivation of resting CD4 T cells at limiting dilution in 

the presence of feeder cells to enable subsequent rounds of infection (Chun et al., 1997a; Eriksson et al., 

2013; Siliciano and Siliciano, 2005). Maximum likelihood statistics are then used to estimate the amount of 

reactivated virus as infectious units per million (IUPM) (Rosenbloom et al., 2015). There are some limitations 

with qVOA; it is expensive, time consuming, and requires large blood volumes and thus not ideal for use in 

large scale clinical trials. The assay is also not ideal for quantifying tissue reservoirs and therefore does not 

give a true representation of the full body reservoir load. Furthermore, qVOA underestimates the reservoir 

size by 25-fold in patient treated during acute infection and 27-fold in chronic phase treated patients because 

not all genetically intact proviruses are sufficiently reactivated in-vitro and may require multiple rounds of 

stimulation (Bruner et al., 2016). However, there are continued improvements to the assay, a recent modified 

version where resting CD4 T cells are fed into a humanised mouse model followed by measurement of viral 

outgrowth has shown increased sensitivity (Metcalf Pate et al., 2015) 
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1.1.7.3 Inducible virus recovery assays   

Inducible virus recovery assays measure viral induction (i.e transcriptional activity, translation and virion 

release) following stimulation. Resting or total CD4 T cells from suppressed individuals are reactivated in the 

presence of ART followed by measurement of viral RNA in supernatants or directly from cell extractions. 

Unlike infectious virus recovery assays, they do not require that rounds of replication take place and are 

therefore less cumbersome. 

One such assay is the tat/rev-induced limiting dilution assay (TILDA) developed by Procopio and colleagues 

which measures cells that are capable of producing multiply spliced (ms) HIV RNA (Procopio et al., 2015). As 

opposed to unspliced (us) HIV RNA which is produced at low levels in latently infected cells, multiply spliced 

HIV transcripts contain tat and rev viral genes that are used as a surrogate marker for viral release and 

therefore show the ability of infected cells to produce virus. The assay involves T cell activation using potent 

mitogens at limiting dilution similar to qVOA but is followed by ultra-sensitive PCR measurement of ms HIV 

RNA.  

Other inducible virus recovery assays have been used to describe the transcriptional profile of CD4 T cells in 

ART suppressed individuals using a panel of transcripts that reflect the various stages of the transcription 

process (Bullen et al., 2014; Yukl et al., 2016). Bullen et al compared the potency of various LRAs with 

PMA/ionomycin using dPCR measurement of various HIV RNA transcripts i.e poly-A transcripts (mature), 

tat/rev transcripts (ms), LTR transcripts (elongated) and found that vorinostat had no effect on the levels of 

mature polyadenylated RNA (Bullen et al., 2014).  

Cillo et al and Massanella et al described the relationship between viral transcription and virion production 

by stimulating resting (Cillo et al., 2014a) or total CD4 T cells (Massanella et al., 2016) with anti-CD3 and ant-

CD-28 antibodies at limiting dilution in the presence of ART followed by qPCR quantification of cell-free viral 

RNA from culture supernatants (Cillo et al., 2014a; Massanella et al., 2016). 

Compared to qVOA, inducible virus recovery assays have the advantage of being high throughput, requiring 

fewer cells, and being relatively shorter and easier to perform. However, TILDA has been shown to measure 

6-27 times less than quantitative DNA assays but 48 times more than qVOA suggesting that inducible virus 

recovery assays may overestimate the size of the latent reservoir (Procopio et al., 2015). Furthermore, these 

assays do not prove replication competence, as it is possible for defective proviruses to have intact tat and 

rev (Bruner et al., 2016; Ho et al., 2013). 

1.1.7.4 Fluorescent In-Situ hybridization  

Fluorescent in-situ RNA/DNA hybridization (FISH) assays allow for the quantification and visualization of HIV 

nucleic acids in blood and tissue (Deleage et al., 2016b, 2016a). During these assays, fluorescent or 

chromogenic probes are hybridized to HIV RNA or DNA fragments, amplified and visualized by microscopy. 

Improved versions of the assays use branched DNA hybridization and flow cytometry detection, which 
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increase sensitivity to a single cell level.  This approach has been used to identify latent cells that produce 

mRNA also described as the ‘transcriptionally active reservoir’ (Grau-Expósito et al., 2017). There are 

variations of the assay, some combined with the detection of viral proteins (Baxter et al., 2016).  FISH has 

also been used to visualize SIV infected cells in lymphoid tissues (Fukazawa et al., 2015). However, HIV-FISH 

assays are unable to discern between intact and defective viral sequences. 

1.1.8 Understanding how the reservoir persists despite early, long-term suppressive ART  

1.1.8.1 Clonal expansion 

The half-life of the latent reservoir in patients who initiate antiretroviral therapy during chronic infection is 

about 44- 48 months (Finzi et al., 1999; Siliciano et al., 2003). As a result, ART alone cannot lead to its decay 

over the lifespan of the infected individual. The proliferation of infected cells is one mechanism that enables 

this remarkable stability. It is not surprising that latently infected cells are able to proliferate because HIV 

integrates into central memory (TCM) and transitional memory (TTM) T cells that proliferate in-vivo in response 

to homeostatic or antigen driven stimuli (Chomont et al., 2010). Studies aimed at characterising the 

persistent low level viremia in plasma of long-term suppressed individuals have reported the detection of 

identical viral sequences by single genome sequencing (Anderson et al., 2011; Bailey et al., 2006; Kearney et 

al., 2014). These monotypic sequences rebound after treatment interruption (Joos et al., 2008), are identical 

to DNA sequences from resting CD4+ T cells (Anderson et al., 2011) and can be detected in the 

gastrointestinal (Evering et al., 2012) and genital tracts (Bull et al., 2009). Monotypic proviral sequences have 

also been shown to increase in proportion over time in early-treated children (Wagner et al., 2013). 

Integration site analysis of these monotypic variants reveals that many latently infected cells have identical 

sites of HIV integration in the host cell genome providing evidence that these sequences are clonal 

(Simonetti, 2015; Simonetti et al., 2016). Furthermore, even though most proviral DNA is defective, expanded 

cell clones can harbour intact proviruses that produce infectious virions. Interestingly, a recent study 

reported an enrichment of intact clonally expanded cells in Th1-polarized cells which naturally have a high 

proliferative rate (Lee et al., 2017). The proliferation and clonal expansion of latently infected cells is now 

recognized as a major mechanism that drives persistence of the reservoir in early-treated long -term 

suppressed individuals (Reeves et al., 2018).  

T cell proliferation can be driven by several factors. It has been shown in a cell model, that homeostatic 

stimuli such as IL-5 and IL-7 can lead to cellular proliferation without reactivation of resting cells (Hosmane 

et al., 2017). Latent cells also proliferate in response to antigenic stimuli (Douek et al., 2002; Simonetti et al., 

2016). Also, several studies have suggested that the site of integration in the host genome, particularly in 

genes responsible for cell growth and survival can ‘turn-on’ cellular proliferation (Maldarelli et al., 2014; 

Wagner et al., 2014). However, a recent study suggests that antigenic stimuli rather than integrations into 

growth genes is a larger contributor to clonal expansion (Wang et al., 2018). 
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Integration site analysis (ISA) is used to detect clonally expanded cell populations because of their identical 

sites of proviral integration in the host cell genome (Maldarelli et al., 2014). The assay involves fragmentation 

of cellular genomic DNA, linker-mediated amplification, sequencing of fragments that contain the host-virus 

junctions and mapping of integration sites in the host genome (Maldarelli et al., 2014). Although ISA is high 

throughput and has the advantage of mapping the site of integration, it is unable to determine whether 

proviruses are genetically intact because only a short fragment of the integrated provirus is sequenced.  

VOA followed by HIV-1 gag-pol RNA sequencing to identify identical RNA sequences in different positive wells 

and sequence confirmation by overlapping half-genome sequencing,  has also been used to detect intact 

clonal populations (Bui et al., 2017). However, this approach is most feasible when there is a high enough 

proviral diversity (e.g in patients who initiate ART during chronic infection) to ensure that the identification 

of identical HIV-1 RNA sequences in different wells is due to outgrowth from cells belonging to the same 

clone rather than the detection of homogenous founder viruses. 

1.1.8.2 Persistent low-level viral replication   

In well-suppressed patients with clinically undetectable viral loads, persistent low-level viremia (LLV) is 

usually detected by ultra-sensitive assays (Hatano et al., 2011; Lorenzo-Redondo et al., 2016)  and is of 

concern because of its potential to replenish the reservoir in long-lived cells (Bailey et al., 2006; Persaud et 

al., 2004; Tobin et al., 2005). There is ongoing debate in the field as to the source of this persistent viremia. 

On one hand, it is thought to be a result of poor ART penetration in lymphoid tissue and the subsequent 

trafficking of released virus into peripheral blood (Chun et al., 2005; Cory et al., 2013; Fletcher et al., 2014; 

Huang et al., 2016; Lorenzo-Redondo et al., 2016). Supporting this notion is a study that showed an inverse 

correlation between ART penetration and the amount of virus detected in lymph nodes (Fletcher et al., 2014). 

In another study, ART intensification by the addition of the integrase inhibitor,  raltegravir,  resulted in a brief 

increase of 2 LTR circles, thought to have been indicative of abortive integration attempts and suggestive 

that ongoing replication was inhibited by raltegravir (Buzon et al., 2010). More recently, a study used time-

stamped phylogenetic analysis and mathematical modelling of viral sequences from various compartments 

to show ongoing replication in lymphoid tissues(Lorenzo-Redondo et al., 2016). However, the study included 

only 3 participants, sampled a very small number of non-identical sequences, and the conclusions could not 

be reproduced by others, even when analysing the same data (Kearney et al., 2017). Moreover samples used 

to measure evolution in this study were from the first 6 months after ART initiation when it is known that 

shorter lived subpopulations undergo rapid decay and could give a false signal of viral evolution (Rosenbloom 

et al., 2017).  

On the other hand, sequencing of viral RNA or proviral DNA in infected individuals over time on ART has 

revealed a lack of evolution or the detection of drug resistant strains, suggesting that ART completely halts 

ongoing viral replication (Bailey et al., 2006; Dinoso et al., 2009; Gandhi et al., 2012; Joos et al., 2008; 

Josefsson et al., 2013; Kearney et al., 2016, 2014; Mok et al., 2018). Furthermore, several other studies have 
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shown that ART intensification does not reduce persistent low-level viremia (Dinoso et al., 2009; Gandhi et 

al., 2012; Henrich, 2018; Rasmussen et al., 2018) or have any significant effect on markers of viral persistence 

(Gandhi et al., 2012). In most patients, LLV is genetically identical to proviruses in resting CD4+ T cells, similar 

to variants which circulated shortly after infection and is likely an indication of release from a stable, early-

established reservoir. The stochastic reactivation of latent cells that were infected before ART followed by 

release into periphery is more likely the source of persistent low-level viremia observed in long-term 

suppressed individuals (van Zyl et al., 2018). 

 

 

Figure 1.5: HIV latency. Image taken Margolis et al., 2016. (https://www.ncbi.nlm.nih.gov/pubmed/27463679); accessed 
10/10/2017.   

1.1.9 The HIV-1 proviral landscape during long-term ART  

Describing the HIV-1 proviral landscape and understanding factors that influence its composition during long-

term ART may enhance our ability to accurately measure the replication competent reservoir and provide 

insight on the mechanisms by which intact proviruses persist. 

In adults, longitudinal qPCR measurements of proviral DNA after ART initiation reveal that different cell 

subsets decay at different rates.  The largest decay of proviral DNA occurs in the first year on ART where 

there is a reported 86% decline in proviral DNA (Ananworanich et al., 2016; Archin et al., 2012; Besson et al., 
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2014a; Buzon et al., 2014a; Fischer et al., 2008). This is likely due to the death of productively infected cells, 

decay of un-integrated virus and concurrent blocking of new infections by ART. In year 1-4 there is a slower, 

23% decline per year, this is the second phase and represents decay of cells with a longer half-life (Blankson 

et al., 2000; Koelsch et al., 2008; Murray et al., 2012). There is eventual plateau after 4 years on ART which 

represents long-lived HIV-1 infected cells (Ananworanich et al., 2016; Besson et al., 2014). Measurements of 

the inducible, replication competent reservoir by VOA over a few years on ART also shows a slight decay of 

the replication competent reservoir over time with a half-life of 3.6 years (Crooks et al., 2015; Siliciano et al., 

2003). The decay rate of HIV-1 DNA in children who initiate ART within days of birth however, is much more 

rapid. Veldsman et al showed that DNA levels in a large proportion of children who initiated ART within 8 

days of birth reached undetectable levels between 6 days to 3 months on therapy (Veldsman et al., 2018). 

Although it is known that the majority of proviral DNA during long-term ART is defective, a recent study 

showed that these defects accumulate within weeks of infection (Bruner et al., 2016). The study reported 

92% of proviral DNA being defective in patients initiating ART during chronic infection and 98% in patients 

treated during acute infection (Bruner et al., 2016). Full length genome sequencing revealed the various 

mutations arising from errors during reverse transcription. These genomes contain guanine-to-adenine (G to 

A) hyper-mutations caused by cytidine deaminases APOBEC3F and APOBEC3G which act as HIV restriction 

factors, large internal deletions due to template switching during reverse transcription, frameshifts and 

nonsense mutations because of the error prone reverse transcriptase enzyme (Bebenek et al., 1989; Ho et 

al., 2013; Kieffer et al., 2005; Sanchez et al., 1997). 

Pollack and colleagues recently showed that some defective proviruses, particularly those with defective 

major splice donor (MSD) sites, are able to use alternative novel splice sites to transcribe and produce 

antigens that are recognized by cytotoxic T lymphocytes (CTLs) (Pollack et al., 2017). Additionally, the lack of 

downregulation of MHC-1 due to the absence of functional nef may further allow some defective proviruses 

to more efficiently present antigens to CTLs (Pollack et al., 2017). CTLs can therefore exert selective pressure 

on these antigen producing defective cells allowing intact proviruses and those with severe mutations to 

persist. The HIV-1 proviral landscape is dynamic and shaped by the decay of shorter lived cell subsets, 

selective pressures of CTLs and clonal expansion over time on ART. 

  

Stellenbosch University https://scholar.sun.ac.za



19 

1.2 Study Rationale 

The persistence of HIV-1 reservoirs in long-lived cells despite effective ART is now recognised as the main 

obstacle to achieving a cure.  The health system costs of ART (which include treatment, personnel, facility, 

laboratory costs and the necessity to maintain supply), long term drug toxicities and the risk of drug 

resistance are some of the major challenges associated with life-long ART and point to the need for a cure 

(Mellins et al., 2004; Wada et al., 2015; Williams et al., 2006). As the field advances, new technologies and 

novel approaches to eliminate the reservoir are emerging, providing hope for a cure. Consequently, research 

is ongoing to describe HIV persistence in adults and several cure interventions have been tested in adult 

cohorts (Barouch et al., 2013; Halper-Stromberg et al., 2014; Rasmussen and Lewin, 2016; Scheid et al., 2016). 

On the other hand, the incidence of perinatal HIV infection has declined significantly and successful 

treatment of infected children has resulted in an increasing number of HIV infected children who are 

surviving to adolescence and older and have to remain on life-long ART (UNAIDS, 2018a). Perinatally infected, 

early treated children are likely better candidates for cure interventions as they have naïve immune systems 

and smaller reservoirs than adults (De Rossi et al., 2002; Klein et al., 2013). However, not much is known 

about the reservoir dynamics in early treated children, much less in the context of HIV-1 subtype C infection. 

In order to lay ground for cure interventions, there is need for a thorough characterization of the reservoir 

size, mechanisms that enable long-term persistence and the extent to which early therapy shapes the proviral 

landscape in this population. The post-CHER cohort is a unique population of perinatally infected children, 

some of whom initiated ART during acute infection and have been in follow-up for close to a decade (Cotton 

et al., 2013). This provides an ideal context in which to study the latent reservoir in long-term suppressed 

children. This study sought to characterise reservoirs in a subset of the post-CHER cohort after 6-9 years on 

suppressive ART. We focused on three main aspects: 

 Study Aim I (Chapter 2): Using HIV-1 cell associated DNA (CAD) as a biomarker for latently infected 

cells, we sought to quantify latently infected cells in early treated children after 6-9 years on ART. 

Secondly, we described the changes in genetic diversity of latently infected cells after 6-9 years on 

ART. 

 Study Aim II (Chapter 3): We investigated the role of clonal expansion as a mechanism by which 

latently infected cells persist despite early, long-term suppressive therapy. 

 Study Aim III (Chapter 4): Through near full length single genome amplification and sequencing (NFL-

PAS), we described the HIV-1 proviral landscape and determined the proportion of proviruses that 

were genetically intact vs defective after 6-9 years on ART. 
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Chapter 2  

2.1 Introduction 

Early ART in children has been shown to limit the establishment of long-lived reservoirs and accelerate their 

decay rate during long-term ART (Ananworanich et al., 2015; Persaud et al., 2012). Starting ART early also 

prevents the development of phylogenetically diverse viral quasi-species. Markers of persistence such as cell 

associated DNA (CAD) are used as biomarkers of reservoir size (Hong et al., 2016). In this sub-study, we 

quantified HIV-1 cell associated DNA after 6-9 years on ART and described the longitudinal HIV-1 genetic 

diversity in a subset of the post-CHER cohort. We hypothesized that in these children, the frequency of HIV-

1 infected cells would be low and the HIV-1 genetic diversity over time on ART would be limited.  

2.2 Study Aim I 

To characterise the size and longitudinal genetic diversity of latently infected cells after 6-9 years on 

suppressive ART in a subset of the post CHER cohort. 

 2.3 Objectives 

 Quantify total HIV-1 DNA as a biomarker for the frequency of latently infected cells using a cell 

associated HIV-1 DNA quantitative real-time PCR assay targeting the Integrase gene (iCAD). 

 Compare iCAD values between participants who initiated ART at 0-3, 3-8 and 9-18 months of age.  

 Perform single genome sequencing (SGS) to characterise HIV cell-associated DNA and plasma RNA 

genetic diversity close to the time of ART initiation (baseline) and after several years on ART and 

determine whether there is evidence of evolution in viral populations during suppressive therapy. 

 Determine the clinical and virologic factors associated with low HIV-1 DNA loads and genetic 

diversity. Factors investigated included age at therapy initiation, duration of virologic suppression, 

HIV-1 cell-associated DNA load, time to viral load suppression, area under viral load curve, nadir CD4 

count, CD8 count, CD4 percentages and CD4:8 ratios. 

2.4 Study Population and Inclusion criteria 

The study population consisted of 16 children aged 6-9 years, a subset of the post-CHER cohort. Parents or 

legal guardians provided consent for participation in the study. All 16 children initiated ART between 7 – 42 

weeks of age and had HIV-1 RNA loads of <400 copies/ml for up to the most recent 36 months of the 6-9 year 

sample. This allowed us to investigate long-term HIV DNA persistence in these children. Of the 16, 10 were 

viral load suppressed from after therapy was initiated until the 6-9year sample. As shown in table 2.1 below, 

three children had isolated viremic episodes while on ART and 2 children had delayed suppression probably 
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due to poor adherence, evidenced by detectable viremia during consecutive visits (longitudinal viral load 

curves: appendix A, section 2.10). One child initiated ART at 17.1 months of age, much later than the others.
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Table 2.1: Clinical characteristics of study participants 

AZT – zidovudine, 3TC – lamivudine, LPV-r: Lopinavir-ritonavir, EFV – efavirenz     

PID 

 

Gender CHER study 

Arm 

Age ART 

Initiated 

(months) 

ART regimen Baseline HIV 

Viral load 

(copies/mL) 

Nadir CD4 

(%) 

Time to Viral 

load 

suppression 

(years) 

Longitudinal Viral loads Age (years)  CD4 % at 

sample 

335106 Female 2 1.8 AZT/3TC/LPV/r 510000 28 0.46 Suppressed 8.4 39 

337336 Male 3 1.8 AZT/3TC/LPV/r >750,000 25.4 0.47 Suppressed 8.5 41 

337916 Male 1 1.9 AZT/3TC/LPV/r >750,000 17 0.46 Suppressed 8.2 21 

360806 Female 2 2 AZT/3TC/LPV/r >750,000 12 3.76 Suppressed 9.3 29 

341862 Female 3 2.2 AZT/3TC/LPV/r >750,000 19 0.44 Viremic episode 2 years on 

ART 

6.95 36 

333056 Female 1 2.6 AZT/3TC/LPV/r >750,000 26.3 0.46 Suppressed 8.8 40 

332406 Male 3 2.8 AZT/3TC/LPV/r >750,000 26 1.38 Viremic episode 6 months on 

ART 

9 46 

341146 Male 1 3.9 AZT/3TC/LPV/r >750,000 30.1 0.92 Suppressed 8.14 37 

335836 Male 1 5.1 AZT/3TC/LPV/r 277000 17 0.93 Suppressed 8.6 31 

333466 Female 1 6.0 AZT/3TC/LPV/r >750,000 29.3 0.92 Viremic for first 15 months 8.8 38 

334696 Male 1 6.1 AZT/3TC/LPV/r >750,000 16 0.47 Suppressed 8.5 41 

339266 Female 1 9.2 AZT/3TC/LPV/r 635000 28 0.44 Suppressed 8.2 50 

340116 Female 1 9.3 AZT/3TC/LPV/r >750,000 28 2.29 Viremic blip 6 ½ years on ART 8.1 54 

338206 Male 1 10 AZT/3TC/LPV/r >750,000 26 0.92 Suppressed 9.7 35 

334436 Female 1 11.1 AZT/3TC/LPV/r 696000 28 3 Viremic for first 3 years 8.8 47 

337286 Male 1 17.7 AZT/3TC/LPV/r 654000 22 1.37 Delayed start 8.3 33 
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2.5 Sample collection and patient visits 

Fifteen to 20 mL of ethylene-diamine tetra-acetic acid (EDTA) blood was collected 6-monthly at the Children’s 

Infectious Diseases Clinical Research Unit (KIDCRU) of Tygerberg Hospital. Peripheral blood mononuclear cells 

(PBMC) were separated according the HANC Cross-Network PBMC processing SOP 

(https://www.hanc.info/labs/labresources/procedures/Pages/pbmcSop.aspx) and stored in aliquots of 2.5 

million cells in liquid nitrogen. In addition, stored plasma and PBMC samples collected prior to or soon after 

ART initiation (a sample time point referred to as ‘Baseline’) were included in the study. 

2.6 Ethical Considerations 

For all three study aims, ethical approval was obtained from the Human Research Ethics Committee of 

Stellenbosch University (ethics numbers N13/04/046 and M14/07/029). 

2.7 Methods 

2.7.1 HIV-1 Integrase Cell-associated DNA (iCAD) for subtype C 

Real-time PCR quantification of total HIV-1 DNA is often used as a biomarker of reservoir size. Although it 

does not discriminate between unintegrated, replication competent and defective proviruses it is a high 

throughput and affordable assay. 

2.7.1.1 Preparation of an HIV-1 subtype C Integrase standard 

To prepare a real-time PCR standard, the primers (table2.2) and PCR conditions (table 2.3), below were used 

to generate a 418 base pair (bp) amplicon (table 2.4) from within the HIV Integrase gene using an infectious 

HIV subtype C clone (PMJ4) as the template. PCR was conducted using GoTaq G2 Hot Start Polymerase 

(Promega, WI, USA) on an ABI Veriti thermal cycler (Applied Biosystems, CA, USA). This 418bp fragment 

served as a standard for the iCAD assay. 

    

Table 2.2: HIV-1 subtype C Integrase primers for generating iCAD standard 

Primer description Primer name Sequence (5’ to 3’) HXB2 binding 

Position 

Forward primer HIV_Int_FP CCCTACAATCCCCAAAGTCA 4653 → 4672 

Reverse primer HIV_Int_RP CACAATCATCACCTGCCATC 5051 → 5070 
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Table 2.3: PCR reaction to generate iCAD standard 

Reagent Stock 

concentration 

Final concentration Volume (µL)/Rxn  

Molecular Grade Water NA NA 25.75 

GoTaq Buffer 5X 1X 10 

dNTPs 40mM total 1,25mM each 1 

MgCl2 25mM 2mM 4 

Forward Primer 10µM 0.4uM 2 

Reverse Primer 10µM 0.4uM 2 

GoTaq Enzyme 5U/µL 1.25U 0.25 

DNA 2ng/µL 10ng 5 

Total   50 

 

Table 2.4: PCR cycling conditions for generating iCAD standard 

Temperature Time Number of cycles 

94 °C 2 min 1X 

94 °C 30 s  

44 °C 30 s               30X 

72 °C 30 s  

72 °C 7 min 1X 

4 °C ∞  

 

The 418bp PCR product was visualised by loading 5µL of PCR product on a 1% agarose gel with Novel Juice™ 

DNA stain (Promega; WI; USA) alongside a 1 kb molecular weight marker (Promega; WI; USA). 

In order to eliminate non-specific products, the amplicon was gel extracted using the QIAquick Gel Extraction 

Kit (Qiagen; Hilden; Germany) according to manufacturer’s instructions followed by ethanol precipitation to 

eliminate carry-over salt contamination from the gel extraction kit. The DNA was precipitated by adding 1/10 

DNA volume of 3M sodium acetate followed by adding three times DNA volume of ice-cold 100% ethanol. 

The mixture was incubated at -20⁰C for 1 hour and then pelleted by centrifuging at 13 000rpm for 30 minutes. 

The DNA pellet was washed twice with 0.5ml of ice-cold 75% ethanol and then allowed to air-dry before re-

suspending in 50µL of 5mM Tris. 
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2.7.1.2 Quantification of the iCAD standard 

The purified standard was quantified on two instruments that use distinct technologies to determine DNA 

concentration; namely: the NanoDrop™ 2000 Spectrophotometer (Thermofisher Scientific; MA; USA) and 

the Qubit 2.0 fluorometer (Thermofisher Scientific; MA; USA). The DNA copy number was determined using 

an online DNA copy number calculator which uses the known DNA sequence, DNA concentration from the 

nanodrop/qubit and Avogadro’s constant to determine the exact copy number. 

(http://endmemo.com/bio/dnacopynum.php ). Results were as follows:  

  

Table 2.5: Quantification of CAD standard 

 NanoDrop™ 2000 

Spectrophotometer  

Nanodrop 

A260/230 ratio# 

Nanodrop 

A260/280 ratio* 

Qubit 2.0 

fluorometer 

Estimated stock 

DNA 

concentration  

176 ng/µL 1.9 1.75 118.8 ng/µL 

Calculated copy 

DNA number 

3.0 x1011 cp/µL NA NA 2.6 x1011 cp/µL 

 # A value of ≈1.8 is acceptable and indicates the absence of protein contaminants that absorb near 280nm  

* A value in the range of 1.8 – 2.2 is acceptable and indicates the absence of organic salts and other contaminants that 

absorb near 230nm 

 

Following quantification, the DNA standard was serially diluted in 5mM Tris as described elsewhere (Hong et 

al., 2016) according to the Qubit fluorometer readings. The standard was stored in 20 µL single use aliquots 

at a concentration of 1 x105 copies/ µL. 

2.7.1.3 Optimisation of iCAD cycling conditions 

To determine the optimal primer and probe concentrations for the iCAD assay, the primers and probe were 

titrated and the iCAD assay was performed as described elsewhere (Hong et al., 2016). 

The primer titration ranged from 100nM to 900nM final concentration per reaction. 1x103 and 1x104 copies 

of the standard was used as template in each reaction respectively and each primer concentration was run 

in triplicate. This experiment was repeated three times and the optimal concentration (corresponding to the 

concentration with the lowest cycle threshold (Ct)) was determined to be 900nM as shown in figure 2.1 and 

table 2.6 below: 

Stellenbosch University https://scholar.sun.ac.za

http://endmemo.com/bio/dnacopynum.php


26 

 

Figure 2.1:  Experiment #1 primer titration ranging from 100nM to 900nM per reaction 

 

Table 2.6: iCAD primer titration results 

Primer concentration (nM) Mean Cycle Threshold 

(Ct) 

Ct Standard Deviation  

100 27.23 0.179 

200 27.55 0.094 

300 27.79 0.356 

400 28.51 0.160 

500 26.92 0.244 

600 26.61 0.011 

700 26.46 0.216 

800 26.76 0.068 

900 26.04 0.326 

No template control 0 - 

 

Likewise, probe titrations ranging from 100nM to 400nM per reaction were performed in three separate 

experiments using 1x103 and 1x104 copies of the standard respectively as template. Each probe concentration 

was run in triplicate. The mean optimal concentration was determined to be 400nM as shown in figure 2.2 

and table 2.7 below: 
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Figure 2.2: Experiment #1 probe titration ranging from 100nM to 400nM per reaction 

  

Table 2.7: iCAD probe optimisation results 

Probe Concentration (nM) Mean Cycle Threshold 

(Ct) 

Ct Standard 

Deviation 

100 28.23 0.130 

200 27.30 0.065 

300 27.01 0.006 

400 27.12 0.162 

No template control 0 - 

 

2.7.1.4 Optimised iCAD protocol 

Below (table 2.8, 2.9 and 2.10) are the optimised iCAD reaction conditions using the LightCyler ® 480 probes 

master mix (Roche, Switzerland) and adapted from a published protocol (Hong et al., 2016).  

 

Table 2.8: iCAD subtype C primers and probe 

Primer 

description 

Primer name Sequence (5’ to 3’) HXB2 binding 

Position 
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Forward primer iSCA subtype 

C_Fwd 

TTTGGAAAGGACCAGCCAA 4930 → 4948 

Reverse primer iSCA subtype 

C_Rev 

CCTGCCATCTGTTTTCCA 5042 → 5059 

Probe iSCA subtype 

C_probe 

6FAM- AAAGGTGAAGGGGCAGTAGTAATACA - 

BHQ1 

4959 → 4984 

 

Table 2.9: iCAD master mix 

Reagent Stock concentration Final concentration Volume (µL)/Rxn  

Molecular Grade 

Water 

NA NA 1.97 

2x Roche MasterMix 

LC480 

2X 1X 12.5 

Forward Primer 100µM 0.9µM 0.23 

Reverse Primer 100µM 0.9µM 0.23 

Probe 100µM 0.3µM 0.075 

DNA 90-130ng/µL 36-52ng/µL 10 

Total   25 

  

Table 2.10: iCAD cycling conditions 

Temperature Time Number of cycles 

95 °C 5 min 1X 

95 °C 15 s              50X 

60 °C 1 min                

37 °C ∞ Hold 

 

In each iCAD experiment, patient PBMC samples were simultaneously tested for the number of copies HIV-1 

integrase and the ccr5 gene. The ccr5 assay was used to normalise for the number of lymphocytes tested in 

each sample. Below (table2.11) are ccr5 reaction conditions:  
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Table 2.11: ccr5 primers and probe 

Primer 

description 

Primer name Sequence (5’ to 3’) 

Forward primer CCR5_Fwd ATGATTCCTGGGAGAGACGC 

Reverse primer CCR5_Rev AGCCAGGACGGTCACCTT 

Probe CCR5_probe 6FAM- AACACAGCCACCACCCAAGTGATCA - 

BHQ1 

 

 The ccr5 quantitative PCR (qPCR) reaction components and cycling conditions were the same as those used 

for iCAD. 

2.7.1.5 Endpoint dilution and Probit regression for validation of the standard  

To determine the sensitivity of the assay and ascertain how accurately the standard was quantified, an 

endpoint dilution real-time PCR experiment was performed on the CFX 96 qPCR thermocycler (Bio-rad; CA; 

USA). The standard was serially diluted 3-fold with input copy numbers ranging from 3000 copies to 1 copy 

per reaction. Each concentration was tested in replicates of 10. Probit analysis of the data estimated the 95% 

hit rate to be 11.7 copies, 95% CI (4.8 – 51.7). The 50% hit rate was estimated to be 3.4 copies, 50% CI (1.64 

– 6.20). 

2.7.1.6 Extraction of total genomic DNA (gDNA) from patient PBMC 

Total genomic DNA (gDNA) was extracted from 1.25x106 PBMC as described elsewhere (Hong et al., 2016). 

The cells were pelleted, incubated in proteinase K and guanidine hydrochloride to facilitate the lysis of cell 

walls and release of nucleic acids. Guanidine thiocyanate and glycogen were then added to the nucleic acid 

and the solution was precipitated in absolute isopropanol followed by a wash with 70% ethanol. The nucleic 

acid was pelleted, air dried, resuspended in 5mM tris and stored at -80⁰C until use. 

 

2.7.2 HIV-1 Cell-associated DNA Single-genome sequencing (CAD-SGS) and plasma single genome 

sequencing (plasma-SGS) 

Single genome sequencing (SGS) involves the amplification and sequencing of individual HIV genomes at 

limiting dilution and allows for the assessment of proviral diversity at a given time (Fig 2.3). Performing SGS 

within a patient across several time-points can inform about the changes in genetic diversity of HIV-1 proviral 

DNA, cell-associated HIV-1 RNA or plasma virus during long-term ART. 
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2.7.2.1 CAD-SGS Serial dilutions and nested PCR 

Genomic DNA from 1.25 x 106PBMC was extracted as described in section 2.7.1.6 from samples at a time 

point of 6-9yrs after ART initiation. The extraction protocol was modified to exclude sonification of the DNA 

and ensure the integrity of long templates. Nested PCR (table 2.13 – 2.15) targeted a 1.5kb region of the gag-

pol gene spanning p6, protease and the first 900 nucleotides (nt) of reverse transcriptase (p6-PR-RT; nt 1893 

- 3408, HXB2 positions (Korber et al., 1998)). The primers were described elsewhere (Kearney et al., 2009, 

2008; Palmer et al., 2005) but adapted for subtype C (table 2.12).  The extracted DNA was then serially diluted 

such that each PCR reaction was seeded by a single HIV-1 DNA molecule. According to the Poisson 

distribution, dilutions at which 30% of all reactions are positive, are most likely derived from a single template 

(Kearney et al., 2009, 2008; Palmer et al., 2005). Initially, a ‘screening PCR plate’ was performed for each 

sample to determine the target dilution at which about 30% of replicates were PCR positive. Each screening 

plate consisted of three-fold serial dilutions ranging from 1:3 to 1:81 with multiple replicates at each dilution. 

Once the target dilution was determined, multiple ‘expansion PCR plates’ at the target dilution were 

performed until a sufficient number of positive PCR reactions had been obtained. 

  

Table 2.12: Nested PCR primers for HIV gag-pol subtype C SGS 

Primer 

description 

Primer name Sequence (5’ to 3’) HXB2 binding 

Position 

Forward outer 1849(C)+ GATGACAGCATGTCAGGGAG 1849 → 1868 

Reverse outer 3500 (C)- CTATYAAGTCTTTTGATGGGTCATAA 3500→ 3525 

Forward Inner 1870(C)+ GAGTGTTGGCTGAGGCAATGAG 1870→ 1892 

Reverse Inner 3410(C)- CAGTTAGTGGTACTATGTCTGTTAGTGCTT 3410→ 3439 

 

Table 2.13: Pre-nested and Nested PCR reactions for gag-pol SGS 

Reagent Stock 

concentration 

Final concentration Volume (µL)/Rxn  

PCR buffer (Invitrogen) 10X 1X 1µL 

MgCl2  50mM 2mM 0.4µL 

dNTPs 10mM 0.2mM 0.2µL 

Primers (ea) 50µM 0.2µM 0.04µL 

Plat Taq Enzyme (Invitrogen) 5U/µL 0.4U 0.08µL 
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Molecular-grade water - - 6.24µL 

DNA - - 2µL 

Total   10µL 

 

Table 2.14: Pre-nested gag-pol SGS reaction 

Temperature Time Number of cycles 

94 °C 2 min 1X 

94 °C 30 s  

50 °C 30 s               44X 

72 °C 1 min 30 s  

72 °C 3 min 1X 

4 °C ∞  

 

The pre-nested PCR plate was diluted by adding 83µL of 5mM tris. After this, 2µL of the diluted pre-nested 

reaction was added into the corresponding PCR well in the nested plate. 

  

Table 2.15: Nested gag-pol SGS reaction 

Temperature Time Number of cycles 

94 °C 2 min 1X 

94 °C 30 s  

44 °C 30 s               40X 

72 °C 1 min  

72 °C 3 min 1X 

4 °C ∞  

 

Sanger sequencing (table 2.16 – 2.18) was performed on all PCR positive reactions using the BigDye™ 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems; CA; USA).  
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Table 2.16: HIV gag-pol subtype C sequencing primers 

Primer 

description 

Primer name Sequence (5’ to 3’) HXB2 binding 

Position 

Forward outer 2030(C)+ TGTTGGAAATGTGGAAAGGAAGGAC 2030 → 2055 

Forward Inner 2600 (C)+ ATGGCCCAAAGGTTAAACAATGGC 2600→ 2623 

Reverse Inner 2610(C)- YTCTTCTGTCAATGGCCATTGTTTAAC 2610→ 2636 

Reverse Outer 3330(C)- TTGCCCAGTTTAATTTTCCCACTAA 3330→ 3354 

 

Table 2.17: Big Dye Terminator sequencing master mix 

Reagent Stock concentration Final concentration Volume (µL)/Rxn  

BigDye Ready 

Reaction mix  

2.5X 0.25X 1 µL 

BigDye Sequencing 

Buffer 

5X 1.5X 3 µL 

Primer 5µM 0.5µM 1 µL 

Molecular-grade 

water 

- - 4 µL 

DNA - - 1µL 

Total   10 µL 

  

Table 2.18: Sequencing cycling conditions 

Temperature Time Number of cycles 

96 °C 10 s  

50 °C 5 s               25X 

60 °C 4 min  

4 °C ∞  
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2.7.2.2 Plasma-SGS 

In patients where there was no PBMC sample available at baseline, single genome sequencing was performed 

on baseline plasma samples. The assay was performed by our collaborators at the ‘HIV Dynamics and 

Replication unit’ of the National Cancer Institute.  

Virion RNA was extracted from plasma containing 10 000 copies as previously described but with some 

modifications (Hong et al., 2016). The plasma was subjected to an initial pre-spin step to remove cellular 

debris. This was followed by a spin at 4⁰C for an hour at 16,000xg to pellet the virions. The virion pellet was 

then treated with proteinase K and incubated at 55⁰C for 30 minutes to facilitate the release of viral nucleic 

acid. Guanidine thiocyanate and glycogen were added to the nucleic acid solution followed by precipitation 

in absolute isopropanol. A wash with 70% ethanol followed. The nucleic acid pellet was then air dried, 

resuspended in a 5mM tris buffer and stored at -80⁰C until use. For each sample, 10% of the RNA suspension 

was removed for use as a ‘no reverse transcription control’ (NRT). The extracted RNA was denatured at 65⁰C 

for 10 minutes in the presence of 1mM dNTPs and 0.2µM gene specific primer. The cDNA synthesis cocktail 

was prepared as shown in table 2.19 below and added to the denatured RNA. The incubation protocol is 

shown in table 2.20 below: 

Table 2.19: cDNA Synthesis cocktail 

Reagent Stock 

concentration 

Final concentration Volume (µL)/Rxn  

10X RT buffer (Invitrogen) 10X 1X 10µL 

MgCl2  25mM 5mM 20µL 

DTT 100mM 1mM 1µL 

Superscript III Reverse 

Transcriptase (Invitrogen) 

200U/µL 100U 0.5µL 

Rnase-Out (Invitrogen) 40U/µL 40U 1µL 

RNase-free water - - 17.5µL 

 

Table 2.20: cDNA Synthesis protocol 

Temperature Time 

45 °C 50 min 

85 °C 10 min 

4 °C ∞ 
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Following cDNA synthesis, screening and expansion plates were generated followed by sanger sequencing as 

described for CAD-SGS in section 2.6.2.1 above. 

2.7.2.3 Sequence alignments  

Bidirectional sanger sequences from a region that spans HIV-1 p6- protease – reverse transcriptase genes 

were aligned to the ancestral HIV-1 subtype C reference sequence from the HIV Los Alamos database and 

trimmed to a length of 1200bp to exclude poor quality reads at the ends of the sequences. Sequence 

alignments, contigs and consensus sequences for each sample were generated using a sequence alignment 

pipeline developed by our collaborators at the National Cancer Institute (MD, USA). The pipeline detected 

and scored sequences with single nucleotide polymorphisms (SNPs) with a cut off value of <85 indicating that 

there was more than one template present in those reactions. Such sequences were excluded from further 

analysis. Each single genome sequence was analysed for the presence of drug resistance mutations to current 

and previous patient ART regimens (hivdb.stanford.edu). Sequences were also analysed for evidence of G to 

A hypermutation caused by the host restriction factor APOBEC using the ‘Hypermut’ program 

(https://www.hiv.lanl.gov/content/sequence/HYPERMUT/background.html). 

 

Figure 2.3: CAD-SGS Workflow 
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2.7.2.4 Phylogenetic tests for genetic diversity and evolution  

To assess whether viral evolution occurred between the baseline and on-ART time points, the single genome 

sequences from each time point were included in the following analyses of population structure and 

evolution:  

a) Calculation of the average pairwise distance (APD) as a measure of intra-patient viral genetic diversity 

at a given time point. This was followed by construction of neighbour joining phylogenetic trees using 

the Molecular Evolutionary Genetics Analysis software, version 6.0 (MEGA6) 

(http://www.megasoftware. net) p-distance algorithm. 

  

b) The probability of shifts in viral population structure was determined using a subdivision test for 

panmixia ( http://wwwabi.snv.jussieu.fr/achaz/hudsontest.html). The test was derived from a 

geographic population structure test proposed by Hudson et al (Hudson et al., 1992). The panmixia 

test compared longitudinal single genome sequences from a patient and calculated the probability 

that the populations were the same across the two time points. A p value of less than 10–3 was set 

as the significance cut-off (as described by the original report and other publications) to account for 

the high number of comparisons between sequences and nucleotide sites (Achaz et al., 2004; Hudson 

et al., 1992; Rouzine and Coffin, 2010) . 

 

c) Maximum likelihood (ML) models to assess root to tip distance before and after long-term ART: 

PAUP4.0 (http://paup.sc.fsu.edu/) was used to construct ML trees. The model used in the tree 

construction was GTR+I+Γ4.  HIV-1 consensus C or the majority sequence at baseline were set as the 

outgroup. Root-to-tip length was calculated on the basis of the ML trees with TreeStat, version 1.6.2 

in the BEAST package (http://beast.bio.ed.ac.uk/)  to detect the emergence of new viral populations.  

 

2.7.3 Data Correlations 

Correlation between variables was assessed with the Spearman’s rank-order correlation test in R software 

for the following variables: “Age of ART initiation”, “Time to viral load suppression”, “Area under viral log 

load curve”, “Total HIV-1 DNA”, “Percent proviral diversity by SGS” and “Number of identical sequence 

clusters by SGS”. A p value of less than 0.05 was accepted as statistically significant. 
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2.8 Results 

2.8.1 HIV-1 Cell-associated DNA (CAD) during long-term ART: 

This was a cross-sectional analysis to quantify HIV-1 cell-associated DNA as a biomarker of reservoir size after 

long periods on suppressive ART. The median time on ART at time of testing was 8 years (range 7-9.3 years). 

The cohort of 16 children was divided into three tertiles based on the age at which ART was initiated i.e ART 

initiated between 0-3 months, 3-8 months and 9-18 months of age respectively as shown in table 2.21 below. 

The median time to first viral load suppression was 0.92 years (range 0.44 – 3.76 years). HIV-1 cell-associated 

DNA values ranged from 0 copies/106 PMBC to 186.2 copies/106 with a median iCAD value of 22.45 copies/106 

PBMC. Seven of the 16 patients (47%) had very low iCAD values (< 20 copies/106). Two children had 

undetectable iCAD. This could have been due to the proviral load being so low that more cells would need to 

be tested to determine the proviral load. Primer mismatches in the Integrase gene because of the high 

genetic diversity of HIV-1 subtype C could also have resulted in undetectable iCADs in these two patients. 

There was no significant difference in iCAD values among the three tertiles.  

The area under the log viral load curve, measured in log10 HIV-1 RNA copy years, shown in table 2.21, is a 

measure of amount of exposure to HIV antigen or replication over time on therapy. It was determined by 

calculating the area beneath a plot of log viral load against time. A spearman’s rank correlation between HIV 

cell associated DNA (iCAD) on long-term therapy and area under the log viral load curve showed a significant 

positive correlation (rho=0.8, p<0.05) figure 2.4.  

 

Table 2.21: HIV-1 Cell-associated DNA in early-treated children after 7-9 years on ART 

PID Age ART 
start 
(months) 

Time to 
Viral load 
Suppression 
(years) 

Area Under 
Viral load 
curve (log 10 
HIV copy 
years) 

Duration 
of ART at 
sample 
(years) 

iCAD (DNA 
copies /106 
PBMC) 

Total cell 
equivalents 
assayed for 
HIV DNA 

335106 1.8 0.46 1.74 8.4 4.5 348 300 

337336 1.8 0.47 1.78 9.2 0 379 350 

337916 1.9 0.46 1.82 8.2 1.5 321 750 

360806 2 3.76 12 9.3 186.2 770 895 

341862 2.2 0.44 4.78 7 42.3 406 350 

333056 2.6 0.46 1.88 8.6 0 345 150 

332406 2.8 1.38 6.35 9 23.6 997 500 

341146 3.9 0.92 2.61 7.8 32.5 483 300 

335836 5.1 0.93 3.14 8.6 11.9 331 200 

333466 6.0 0.92 4.77 8.3 2.2 762 300 

334696 6.1 0.47 3.53 8.5 9.2 520 650 

339266 9.2 0.44 5.11 8.2 46.7 701 550 
340116 9.3 2.29 10.34 8.1 181.5 454 050 
338206 10 0.92 6.31 9.7 21.3 360 900 
334436 11.1 3 13.01 8.8 86.3 333,900 
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337286 17.7 1.37 9.74 8.3 32.8 391 050 
Median 4.5 0.92 4.8 8.45 22.5 398 700 

 

      ART initiated between 0 - 3 month 

      ART initiated between 3 – 9 months 

     ART initiated between 9 – 18 months 

 

Figure 2.4: Correlation of Total HIV-1 DNA with cumulative viremia  

 

2.8.2 Neighbour joining phylogenetic trees 

The single genome sequences spanning a 1200bp region in HIV-1 gag-pol were generated for 10 of the 

children who had iCAD values above 10copies/106 PBMC and aligned to the ancestral subtype C reference 

sequence from the Los Alamos HIV database. All sequences that had evidence of G to A hypermutation when 

analysed in the ‘Hypermut’ program (www.hiv.lanl.gov) was excluded from phylogenetic analysis as these 

sequences are defective and unable to replicate. 
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Figure 2.5 below shows neighbour joining phylogenetic trees of each participant. Sequences were generated 

from two time points. The sample closest to therapy initiation was referred to as baseline. The second sample 

was from 6-9 years after ART initiation. Baseline sequences were derived from either plasma RNA or cell 

associated DNA depending on sample availability whereas sequences from 6-9 years on ART were derived 

from cell-associated DNA. 

Participants were categorised as either being fully suppressed on ART or having had periods of partial viral 

suppression (longitudinal viral load graphs in Appendix A: Section 2.10). Eight participants had been fully 

suppressed since therapy initiation whereas two participants had earlier periods of delayed or poor 

suppression following ART initiation.  

In the two partially suppressed participants, phylogenetic trees showed the clustering of sequences from 

long-term therapy on longer branches (blue clusters fig 2.5) indicating that these were distinct variants that 

had diversified from baseline populations. In patients who were fully suppressed however, sequences from 

the two different time points were randomly distributed in the tree with no particular clustering of sequences 

from either time point indicating a lack of diversification.  

In all participants, there were sequences that were identical in the 1200bp region (indicated in purple 

bracket), in some cases this clustering was between viral RNA/DNA from baseline and DNA from long-term 

ART. This could be an indication of clonal expansion of latently infected cells during long-term ART. 

Participants partially suppressed on ART: 
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Participants fully suppressed on ART: 
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Figure 2.5: Neighbour joining phylogenetic trees of fully ART suppressed and partially ART suppressed children 

 

2.8.3 Change in diversity between baseline and long-term ART by SGS 

The sequences were used to analyse the diversity of viral populations by calculating the average pair-wise 

distance (APD) using the p-distance algorithm in MEGA6 at baseline and after 6-9 years on ART. The high cost 

of performing SGS and inadequate amount of sample limited the number of single genome sequences that 

could be generated for each participant. However, the likelihood of missing viral variants that were present 

in the circulatory but not sampled has been calculated elsewhere (Salazar-Gonzalez et al., 2008). Power 

calculations using probability theory estimated that the likelihood that a particular ‘missed’ variant comprises 

a fraction of the virus population is less than 14% when 20 single genome sequences are analysed (Salazar-

Gonzalez et al., 2008). Therefore, sampling 10-20 sequences was sufficient to provide a reasonable estimate 

of population diversity as sequencing more than 20 but less than 100 genomes would not significantly 

decrease the standard error (personal communication: Mary Kearney, National Cancer Institute).  

Either plasma RNA or cell associated DNA was used to assess the diversity at baseline. ART prevents new 

rounds of replication. Before an individual is suppressed on ART, viral replication ensures that circulating free 

viral variants in plasma match viruses infecting cells such that proviral diversity in cells reflects the circulating 

virus in plasma (Boritz et al., 2016; Gupta et al., 2013; Lorenzo-Redondo et al., 2016). It was thus appropriate 

to use either DNA or RNA as a baseline sample. Table 2.22 shows the percent diversity calculated as average 
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pair wise distance (APD) at baseline while Table 2.23 shows diversity after 6-9 years on ART for both the 

partially suppressed participants (red) and fully suppressed participants (blue). 

 

Table 2.22: Average Pairwise Distance (APD) at baseline 

PID Age ART 
start 
(months) 

Pre-ART 
Viral 
Load 

Baseline 
Sample 
Type 

Baseline 
iCAD 

Months 
relative to 
ART 
initiation at 
sample 

Number of 
single 
genome 
sequences 

Average 
Pair-wise 
distance 
(APD)(%) 

334436 11,1 696,000 PBMC 458,7 4 14 0,15 

337286 17,1 654,000 Plasma NA -16 20 0,10 

337916 1,9 >750,000 Plasma NA 0 23 0,04 

332406 2,8 >750,000 PBMC 2 342,1 9 14 0,11 

334696 6,1 >750,000 PBMC 435,3 8 18 0,19 

339266 9,2 635,000 PBMC 340,4 5 21 0,30 

338206 10 >750,000 PBMC 65,1 5 16 0,25 

341862 2,2 >750,000 PBMC 1 567,7 0 22 0,21 

360806 2 >750,000 PBMC 28 084,2 6 20 0,24 

335106 1,8 510,000 PBMC 63,4 6 19 0,21 

   

       Participants not suppressed on ART for duration of sampling 

      Participants fully suppressed on ART for duration of sampling 

 

Table 2.23: Average Pairwise Distance (APD) at after 6-9 years on ART 

PID Age ART 
start 
(months) 

Viral 
Load at 
sample 

Sample 
Type 

 iCAD 
at 
sample 

Months 
relative to 
ART 
initiation at 
sample 

Number of 
single 
genome 
sequences 

Average 
Pair-wise 
distance 
(APD) 

334436 11,1 TND PBMC 86,3 95 13 0,43 

337286 17,1 TND PBMC 32,8 82 12 0,57 

337916 1,9 TND PBMC 1,5 97 7 0,11 

332406 2,8 TND PBMC 23,6 105 16 0,09 

334696 6,1 TND PBMC 9,2 96 10 0,22 

339266 9,2 LDL PBMC 46,7 89 20 0,26 

338206 10 TND PBMC 21,3 99 18 0,18 

341862 2,2 TND PBMC 42,3 105 13 0,19 

360806 2 TND PBMC 186,2 110 13 0,33 

335106 1,8 TND PBMC 4,5 100 8 0,13 

  

‘TND’: Target not detected’ ‘LDL’: Lower than detection limit (indicating that target was detected but 

unquantifiable) 
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      Participants not suppressed on ART for duration of sampling 

      Participants fully suppressed on ART for duration of sampling 

 

 

 

Figure 2.6: Change in diversity oversampling period 

Figure 2.6 above illustrates the change in diversity between baseline and 6-7 years on ART for each 

participant. There was a significant change in diversity over time in the partially suppressed controls 

(coefficient of determination r = 0.91, p=0.05) whereas in those who were fully suppressed on ART, no 

significant change in diversity was observed between baseline and 6-9years on ART. 



2.8.4 Further analysis for change in diversity 

In addition to APD, two tests for change in diversity between baseline and long-term ART were performed 

on the sequences:  

(i) A subdivision test for panmixia was used to determine the probability of shifts over time in viral population 

structure. A p value of less than 10–3 was set as the significance cut-off.  

(ii) A maximum likelihood model to assess root to tip distance between sequences from baseline and 6-9 

years on ART was performed. The root-to-tip slope measured the genetic distance from the majority 

sequence at baseline as well as the distance from the ancestral subtype C sequence respectively. The root-

to-tip slope was calculated on the basis of the maximum likelihood (ML) trees with TreeStat, version 1.6.2, in 

the BEAST package. A significant root to tip distance was set at a p value of 10-3. 

Table 2.24 below compares APD, panmixia and root-to-tip slope for changes in diversity between baseline 

and long-term ART. A significant change in APD over time was determined using a 2-tailed, 1-sample t test, 
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where the assumed mean was the APD of the early time point and the sample distribution was the APD of 

the late time point, with variance estimation performed using 1,000 bootstrap replicates. For the two 

participants who were partially suppressed on ART, all three tests gave significant results for changes in 

diversity over time by APD, shifts in viral population structure by panmixia, the root to tip slope when rooted 

on consensus C and the majority baseline sequence. Participants on continuous ART suppression had no 

significant results when the three tests were applied. 
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Table 2.24: Phylogenetic tests for change in diversity over time 

Participant 
group  

PID Sample time point Months 
relative to 
ART 
initiation 

HIV 
Diversity 

Panmixia p-
value 

Root to Tip Slope 
(rooted on 
consensus C) 
(sub/site/months) 
(x10-5) 

p-value (rooted 
on consensus C) 

Root to Tip Slope 
(rooted on baseline 
majority) 
(sub/site/months)( 
x10-5) 

p-value 
(rooted on 
baseline 
majority) 

Not 
suppressed on 
ART for 
duration of 
sampling 

334436 Baseline (PBMCs) 4 0.18% 0.002 3.91 0.0008 3.91*10
-5

 0.0008 
Long-term ART 
(PBMCs) 

95 0.42% 

337286 Baseline (plasma) -16 0.10% <10
-4

 2.3 0.002 3.35*10
-5

 7*10
-7

 
Long-term ART 
(PBMCs) 

82 0.57% 

Continuous 
Suppression 
on ART 

337916 Baseline (plasma) 0 0.04% 0.3 2.8 0.3 2.84*10
-6

 0.3 
Long-term ART 
(PBMCs) 

97 0.10% 

332406 Baseline (PBMCs) 9 0.11% 0.5 -0.075 0.8 -3.56*10
-7

 0.9 
Long-term ART 
(PBMCs) 

105 0.09% 

334696 Baseline (PBMCs) 8 0.19% 0.8 0.29 0.7 1.56*10
-6

 0.8 
Long-term ART 
(PBMCs) 

96 0.22% 

339266 Baseline (PBMCs) 5 0.29% 0.06 0.021 1.0 -1.11*10
-6

 0.7 
Long-term ART 
(PBMCs) 

89 0.25% 

338206 Baseline (PBMCs) 5 0.25% 0.04 -0.55 0.3 -2.48*10
-6

 0.4 
Long-term ART 
(PBMCs) 

99 0.18% 

341862 Baseline (PBMCs) 0 0.21% 0.4 -0.13 0.8 -2.73*10
-6

 0.7 
Long-term ART 
(PBMCs) 

105 0.19% 

360806 Baseline (PBMCs) 6 0.24% 0.4 0.43 0.4 6.28*10
-6

 0.1 
Long-term ART 
(PBMCs) 

110 0.33% 

335106 Baseline (PBMCs) 6 0.21% 0.4 0.0062 1.0 6.30*10
-8

 1.0 

Long-term 
ART(PBMCs)  

100 0.17% 

A p value of less than 10–3 was set as the significance cut-off for panmixia. Likewise, a significant root to tip distance was set at p value of 10-3
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2.8.5 iCAD and APD on long-term ART  

Cell associated DNA and the average pairwise distance after 6-9 years on ART were positively associated. 

 

Figure 2.7:  Spearman’s rank correlation between iCAD and % Diversity 
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2.9 Discussion 

2.9.1 HIV-1 cell associated DNA loads after 7-8 years on ART 

After 7-8 years on ART, HIV-1 cell associated DNA loads (iCAD) in 16 children who initiated ART within the 

first 18 months of life were low. Although our iCAD values were in similar ranges as those found in children 

who were tested at 6 years on ART after initiating ART before 6 months of age (Ananworanich et al., 2014), 

we found no significant difference in proviral loads between children who initiated therapy before 3 months, 

between 3-8 months or within 9-18 months of age. It is likely that we did not detect a difference among the 

treatment age groups in our cohort because some children (i.e participants: 334436, 337266, 341862, 

332406, 340116, 333466 (figure 2.1)) had periods after ART initiation where there was viral replication that 

may have replenished their proviral loads.  

In contrast to our findings, a study in 20 well suppressed children from the post-CHER cohort found 

significantly lower cell-associated DNA and RNA loads in those who initiated ART within two months of birth 

compared to those who initiated later (Van Zyl et al., 2014). A similar study found that children who initiated 

ART within 3 months of age had CADs 6-fold lower than those who initiated after 3 months but within a year 

of life (Martínez-bonet et al., 2015). Luzuriaga et al compared children who initiated ART within the first year 

of life to those who initiated after 4 years and found significantly higher proviral loads, recoverable 

replication competent virus, T cell activation and slower proviral decay in the latter group (Luzuriaga et al., 

2014). These findings have been mirrored by others (Foster et al., 2017) and along with ours highlight the 

long-term benefits of early initiation of ART in limiting the size of the reservoir. However, despite the benefit 

of early ART, the recent case of a Mississippi baby who initiated ART within 30 hours of life but later had viral 

rebound shows that early ART is unable to prevent the establishment of long-lived reservoirs (Luzuriaga et 

al., 2015; Persaud et al., 2013). 

There was a significant positive association between cumulative viremia and the total HIV-1 DNA after 7-8 

years on ART suggesting that the more viral replication over time, the larger the reservoir. This agrees with a 

recent study showing a positive correlation between RNA area under viral load curve in the first year of life 

and HIV DNA levels at one year (McManus et al., 2016). Studies by Persuad et al showing that time to first 

viral load suppression was strongly positively associated with infectious virus levels when using the gold 

standard viral outgrowth assay further support our findings (Persaud et al., 2014, 2012). 

Due to limited sample availability, we were unable to perform further analysis using the gold-standard 

quantitative viral outgrowth assay (qVOA) that reactivates resting cells and quantifies the amount of 

infectious virus that grows out. A recent study attempted to detect infectious virus by qVOA in a cohort of 

early treated children and found no outgrowth showing that HIV-1 reservoirs are very limited in early-treated, 

long term suppressed children (Rainwater-Lovett et al., 2017). This suggests that we may have obtained 

similar VOA results in our cohort where proviral loads were low and, in some cases, undetectable. Total HIV-
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1 DNA quantification provides a sensitive and feasible approach to estimate the reservoir in early treated 

children, where the expected reservoir size is small. Nevertheless, there is a need for more specific, but cost-

effective assays that can distinguish between defective and intact proviral genomes. Such assays would be 

valuable to assess the effect of interventions that are aimed at eradicating or reducing the size of the latent 

reservoir especially for paediatric cohorts where sample availability is limited. One such assay using 

quantitative PCR that incorporates multiple probes to differentiate between intact, hypermutated and 

defective proviruses has recently been described (Bruner et al., 2019). 

2.9.2 No evidence of viral evolution on suppressive ART 

There have been conflicting views on whether ART completely halts ongoing cycles of viral replication that 

could replenish and maintain the reservoir in patients with clinically undetectable viral loads. Most of the 

children included in this study had low pre-treatment diversity, which increased our ability to detect any 

subsequent evolution. Our results show that when early treated children are fully suppressed on ART, there 

is no detectable evolution over time on ART suggesting that ART prevents ongoing viral replication. 

Three phylogenetic tests to assess changes in viral population diversity, population divergence and maximum 

likelihood phylogenetics between baseline and 7-8 years on ART showed no evidence of viral evolution in 8 

children that had been fully suppressed whereas in 2 children who were partially suppressed, all three tests 

showed significant evidence of viral evolution. 

A recent study used the same methods to compare sequences from the plasma of adults before, during and 

after ART interruption (Kearney et al., 2014). The study found no significant difference between proviruses 

prior to ART and plasma virus that rebounded after ART interruption, suggesting that the reservoir is likely 

maintained by persistence and proliferation of cells that were infected before ART initiation. In another 

study, there was no divergence or evidence of evolution over time on ART in 12 children when replication 

competent viral sequences from an end point dilution culture assay were analysed  (Persaud et al., 2007).  

 Our findings conflict with a recent report of ongoing viral evolution in lymphoid tissues of ART suppressed 

individuals (Lorenzo-Redondo et al., 2016). In that study, time-stamped Bayesian evolutionary analyses,  

which assumes that a genetic distance exists between sequences, was performed in the programme BEAST 

using a strict molecular clock and an evolutionary rate of 6.24 × 10–4 substitutions/site/month (Lorenzo-

Redondo et al., 2016). Rose et al used a similar evolutionary rate in sequences from lymphoid tissues of ART 

treated and naïve patients and also found evidence of evolution when comparing across tissues of patients 

(Rose et al., 2016).  

However, we have shown through further analysis published elsewhere (Kearney et al., 2017), that the use 

of time-stamped Bayesian phylogenetics with a strict molecular clock applied in the program BEAST can 

generate the appearance of HIV evolution, even in sets of identical sequences because it assumes that a 

genetic distance exists between sequences from different time points. It is therefore, not an accurate method 
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for addressing the question of ongoing HIV replication during ART. It is important to note that our study does 

not directly compare with the above mentioned as we sampled virus in the blood as opposed to the lymph 

nodes. However, it is widely accepted that over a period of 7-9 years, there would be migration of cells from 

the lymph nodes to the blood (Boritz et al., 2016; Lorenzo-Redondo et al., 2016).  

 Our findings agree with the notion that the low-level viremia that often persists below the detection limit of 

commercial assays in ART suppressed individuals (Maldarelli et al., 2007) is due to the occasional release of 

virus from cells infected before ART was initiated rather than ongoing cycles of viral replication due to 

suboptimal ART suppression. This is further supported by studies (Dinoso et al., 2009; Gandhi et al., 2012; 

McMahon et al., 2010; Rasmussen et al., 2018) showing that treatment intensification by the addition of a 

third drug did not reduce the low level viremia. Recent evidence further supports the notion that ongoing 

replication (evidenced by evolution) is not responsible for long-term reservoir persistence. A re-analysis of 

the Lorenzo-Redondo data does not support ongoing evolution (Kearney et al., 2017). Additionally, another 

group provided evidence that the observation of evolution could be an artefact of differential decay of 

proviruses rather than evolution (Rosenbloom et al., 2017). Recent evidence that dolutegravir intensification 

does not further suppress low level viremia (Rasmussen et al., 2018) further supports our findings. 

The clustering of monotypic sequences in phylogenetic trees of all 10 participants is suggestive of clonal 

expansion. These clusters are similar to what was reported by Wagner et al where an increase in the 

proportion of monotypic sequences was observed in PBMC and sputum samples from early treated, long-

term suppressed children (Wagner et al., 2013). Several studies have shown that clonal expansion and 

proliferation of latent cells can occur before and during ART (Maldarelli et al., 2014; Simonetti et al., 2016; 

Wagner et al., 2014) resulting in populations of cells with identical sites of integration in blood and tissue 

which are the source of infectious virus in plasma (Simonetti et al., 2016). Furthermore, clonal viral species 

have been shown contribute to rebound viremia when ART is interrupted (Kearney et al., 2016) and have 

been recovered from multiple viral outgrowth experiments providing strong evidence that clonal expansion 

is the major mechanism by which reservoirs are maintained on suppressive ART (Bui et al., 2017; Hosmane 

et al., 2017; Lorenzi et al., 2017). Samples from these 10 individuals in our study were further investigated 

for evidence of clonal expansion in chapter 3 of this project. 

Lastly, we found a significant positive association between HIV-1 cell- associated DNA loads after 7-8 years 

on ART and proviral diversity (calculated as average pairwise distance) at the same time point suggesting that 

the higher the cell-associated DNA load, the more diverse the viral populations are.  

2.9.3 Strengths and limitations of the study: 

We were able to adapt a sensitive quantitative PCR assay to detect total HIV-1 DNA loads in long-term 

subtype C infected children. Furthermore, most of the children included in this study had low pre-treatment 

diversity, which increased our ability to detect any subsequent evolution. 
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A limitation of the study was that we were only able to quantify HIV-1 cell-associated DNA in peripheral blood 

and this may not be reflective of cell-associated DNA loads in other anatomical sites where HIV reservoirs 

persist (Boritz et al., 2016). We also could not show that there is no compartmentalized viral evolution in 

lymphoid tissues. Additionally, it is well known that a large proportion of HIV-1 cell-associated DNA  is 

defective (Bruner et al., 2016) and quantitative PCR assays that detect cellular biomarkers of latent HIV 

overestimate the amount of infectious virus that can be re-activated in cell culture by 300-fold (Eriksson et 

al., 2013). Due to limited sample availability, we were unable to perform further analysis using the gold-

standard viral outgrowth assay (VOA) that reactivates resting cells and quantifies the amount of infectious 

virus that grows out. Also, because we sequenced a section of the HIV genome, we could not determine 

whether the single genome sequences represented defective or genetically intact variants. Lastly, in the 

neighbour joining phylogenetic trees, we detected monotypic clusters that could have been indications of 

expanded clones in proviral DNA but could not link the sequences to integration sites to prove clonality.  

2.9.4 Conclusion: 

Our work shows that early initiation of ART halts ongoing cycles of replication and limits the establishment 

of long-lived reservoirs that persist overtime. In light of these findings, efforts should be focused on 

developing strategies to eliminate latently infected cells that were present before therapy was initiated 

rather than the development of better ART regimens.

Stellenbosch University https://scholar.sun.ac.za



50 

2.10 Appendix A: Supplementary figures 

Longitudinal Viral load graphs: 
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2.11 Published Article 

 

The full article is available online at: https://www.jci.org/articles/view/94582 
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Chapter 3  

3.1 Introduction 

Neighbour joining phylogenetic analysis of the single genome sequences obtained in chapter 2 revealed the 

clustering of monotypic sequences from baseline and 6-9 years on-ART in 10 participants (fig 2.5). This 

clustering could be indicative of clonal expansion of latently infected cells or represent the homogenous viral 

populations from pre-therapy that were archived and persisted on long-term ART. To further investigate 

whether expanded clones were present in all participants at these time points, integration site analysis (ISA) 

was performed. The integration site assay is a method used to determine the exact location in the infected 

cell’s genome where an HIV provirus has integrated.  

3.2 Study Aim II  

To investigate the role that clonal expansion plays in the persistence HIV in early-treated, long term 

suppressed children from the CHER cohort.  

3.3 Objectives 

 Conduct Integration Site Analysis (ISA) on samples from prior to ART initiation to determine whether 

clonal expansion of latently infected cells occurs before ART is initiated in early treated children   

 Conduct ISA on post-ART samples to determine whether the clones from pre-ART are detectable and 

more expanded after long periods of ART suppression. 

 Describe genomic regions of HIV integration 

3.4 Study population and Inclusion criteria 

The participants included in this sub-study were the same as those studied in chapter 2. Each participant 

needed to have an available baseline PBMC sample as well as an additional PBMC sample from periods of 

long-term suppression on ART. The baseline and on-ART sample time points differed with each participant. 

Baseline samples ranged from 0 months before to 5 months after ART was initiated. On-ART samples ranged 

6 to 9 years on ART. To ensure detection of persisting infected cells rather than short lived cells, participants 

also had to have undetectable viral loads for the most recent 36 months of the on-ART sample. Twelve 

participants were identified with these criteria shown in table 3.1 below. iCAD and APD values were not 

available for the baseline time-points as there was insufficient sample available to perform those tests. 
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Table 3.1: Participant characteristics 

PID Gender Age ART 
start 
(months) 

Time to viral load 
suppression (years) 

Longitudinal Viral 
Load 

Time relative to ART start at 
sample (years) 

APD at time of 
sample (%) 

iCAD at time of 
sample (per 106 cells) 

337286 Male 17.7 1.37 Suppressed 0 - - 

6.87 0.6 32.8 

337916 Male 1.9 0.46 Suppressed -0.03 - - 

8.06 0.1 1.5 

332406 Male 2.7 1.38 Suppressed 0 - - 

8.76 0.1 23.6 

334696 Male 6.1 0.47 Suppressed 0 - - 

8.04 0.8 9.2 

339266 Female 9.0 0.44 Suppressed 0 - - 

7.45 0.3 46.7 

338206 Male 9.9 0.92 Suppressed -0.44 - - 

8.24 0.2 21.3 

341862 Female 2.2 0.44 One episode of 
viremia at 2yrs on ART 

0 - - 

6.77 0.3 42.3 

360806 Female 2.0 3.76 1 viremic episode 6 
months after ART 

-0.23 - - 

9.13 0.3 186.2 

335106 Female 1.8 0.46 Suppressed -0.08 - - 

8.35 0.2 4.5 

340116 Female 9.3 2.29 Suppressed -0.57 - - 

7.35 0.6 181.5 

335836 Male 5.1 0.93 Suppressed -0.27 - - 

8.6 0.3 11.9 
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3.5 Methods  

3.5.1 Isolation and purification of CD4+ T cells  

To enrich the ISA sample for cells that contained proviral DNA, total CD4+ T cells were isolated and purified 

from cryopreserved PBMC by positive selection using the EasySep cell separation technology (Stem Cell 

technologies; VA Canada). CD4+ T cell isolations were from the 6-9 year on-ART samples as the children were 

older and larger blood volume collection was feasible and allowable(Stellenbosch University and HEALTH 

RESEARCH ETHICS COMMITTEE, 2015).  

Cells were thawed, pelleted and re-suspended in EasySep buffer to a concentration of 50 x106 cells/ml. The 

EasySep total CD4+ T-cell enrichment cocktail was added to the cells followed by the addition of magnetic 

particles. The mixture was then incubated on the easy 50 magnet for 10 minutes at room temperature. The 

CD4+ T-cell enriched cell suspension was taken, pelleted and re-suspended in PBS before sample extraction. 

3.5.2 Extraction of total gDNA 

Due to limited sample available from the pre-therapy time-point, gDNA was extracted from PBMC. 

Extractions from CD4+ T cells and PBMC were performed using Guanidinium Isothiocynate and precipitated 

in Isopropanol as previously described (Hong et al., 2016). DNA extracts were stored at -80⁰C until use. 

3.5.3 PCR reactions to amplify U3 and U5 regions 

The ISA assay uses primers targeting U3 and U5 regions on the terminal ends of the HIV genome and linker 

specific primers that are complementary to a linker ligated to the ends of fragments. To improve the 

sensitivity of the assay, patient specific primers were designed. This required sequencing of the LTRs of each 

participant. First, patient U3 and U5 LTR sequences were amplified using nested PCRs, followed by Sanger 

sequencing of the PCR products. The following optimised PCR reactions (Tables 3.2-3.11) were used to 

generate a 311bp amplicon from the U3 region and a 766bp amplicon from the U5 region for each participant 

(Fig 3.1 and 3.2). These amplicons contained the ISA primer binding site. PCR was conducted using GoTaq G2 

Hot Start Polymerase (Promega, WI, USA) on an ABI Veriti thermal cycler (Applied Biosystems, CA, USA). 

 

Table 3.2: Primers to amplify U3 region 

Primer 

description 

Primer 

name 

Sequence (5’ to 3’) HXB2 

binding 

Position 

Forward outer U3-FO CACATACCTAGAAGAATAAGACAGGGCTT 8748-8776 
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Forward Inner U3-FI ACATGGGTGGCAAGTGGTCAAAA 8795-8817 

Reverse Inner U3-RI GGTCTAACCAGAGAGACCCAGTACAGG 9557-9531 

Reverse Outer U3-RO GCACTCAAGGCAAGCTTTATTGAGGCTTA 9604-9632 

 

Table 3.3: PCR master-mix for pre-nested U3 amplification 

Reagent Stock 

concentration 

Final concentration Volume (µL)/Rxn  

Molecular Grade Water NA NA 19.25 

GoTaq Buffer 5X 1X 10 

dNTPs 40mM total 0.8mM total 1 

Forward Primer 10µM 0.5µM 2.5 

Reverse Primer 10µM 0.5µM 2.5 

MgCl2  25mM 2mM 4 

GoTaq Enzyme 5U/µL 3.75U 0.75 

DNA 30ng/µL 300ng 10 

Total   50 

 

Table 3.4: Cycling conditions for U3 pre-nested reaction 

 Cycles Temperature Time 

Initial Denaturation 1X 94°C 2min 

Denaturation 35X 94°C 1min 

Annealing 62°C 1min 

Extension 72°C 30sec 

Final extension 1X 72°C 7min 

Hold  4°C ∞ 
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Table 3.5: PCR master-mix for nested U3 amplification 

Reagent Stock 

concentration 

Final concentration Volume (µL)/Rxn  

Molecular Grade Water NA NA 28.25 

GoTaq Buffer 5X 1X 10 

dNTPs 40mM total 0.8mM total 1 

Forward Primer 10µM 0.5µM 2.5 

Reverse Primer 10µM 0.5µM 2.5 

MgCl2  25mM 2mM 4 

GoTaq Enzyme 5U/µL 3.75U 0.75 

DNA 30ng/µL 300ng 1 

Total   50 

 

Table 3.6: Cycling conditions for U3 nested reaction 

 Cycles Temperature Time 

Initial Denaturation 1X 94°C 2min 

Denaturation 35X 94°C 1min 

Annealing 60°C 1min 

Extension 72°C 30sec 

Final extension 1X 72°C 20min 

Hold  4°C ∞ 
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Figure 3.1: U3 Amplicons 311bp. L= 1kb DNA ladder; NC= No Template Control; S1 – S12 = patients 

Table 3.7: Primers to amplify U5 region 

Primer 

description 

Primer 

name 

Sequence (5’ to 3’) HXB2 

binding 

Position 

Forward 

outer 

U5-FO GAACCCACTGCTTAAGCCTCAAT 507-529 

Forward 

Inner 

U5-FI TAAGCCTCAATAAAGCTTGCCTTGAGTGC 519-547 

Reverse 

Inner 

U5-RI TCTAATTTTCCGCCTCTTAATATTGACGCIIIIICACCCAT 790-830 

Reverse 

Outer 

U5-RO GGCCTGGTGTACCATTTGCCCTTG 1204-1227 

 

Table 3.8: PCR master-mix for pre-nested U5 amplification 

Reagent Stock 

concentration 

Final concentration Volume (µL)/Rxn  

Molecular Grade Water NA NA 19.25 

GoTaq Buffer 5X 1X 10 

dNTPs 40mM total 0.8mM total 1 

Forward Primer 10µM 0.5µM 2.5 
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Reverse Primer 10µM 0.5µM 2.5 

MgCl2  25mM 2mM 4 

GoTaq Enzyme 5U/µL 3.75U 0.75 

DNA 30ng/µL 300ng 10 

Total   50 

 

Table 3.9: Cycling conditions for U5 pre-nested reaction 

 Cycles Temperature Time 

Initial Denaturation 1X 94°C 2min 

Denaturation 35X 94°C 1min 

Annealing 60°C 1min 

Extension 72°C 30sec 

Final extension 1X 72°C 7min 

Hold  4°C ∞ 

 

Table 3.10:  PCR master-mix for nested U5 amplification 

Reagent Stock 

concentration 

Final concentration Volume (µL)/Rxn  

Molecular Grade Water NA NA 28.25 

GoTaq Buffer 5X 1X 10 

dNTPs 40mM total 0.8mM total 1 

Forward Primer 10µM 0.5µM 2.5 

Reverse Primer 10µM 0.5µM 2.5 

MgCl2  25mM 2mM 4 

GoTaq Enzyme 5U/µL 3.75U 0.75 

DNA 30ng/µL 300ng 1 

Total   50 
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Table 3.11: Cycling conditions for U5 nested reaction 

 Cycles Temperature Time 

Initial Denaturation 1X 94°C 2min 

Denaturation 35X 94°C 1min 

Annealing 63°C 1min 

Extension 72°C 30sec 

Final extension 1X 72°C 20min 

Hold  4°C ∞ 

 

 

Figure 3.2: U5 amplicons 766bp. L=1kb DNA ladder; N= No Template Control; S1-S12=patients 

 

3.5.4 Cloning of U3 and U5 amplicons 

Initial attempts to directly sequence the U3 and U5 amplicons using the second round primers produced poor 

quality sequences. In order to obtain good quality sequences, each amplicon was cloned into the PTZ57R/T 

vector using the Instaclone PCR cloning kit (Thermofisher Scientific, MA, USA). The final extension for U3 and 

U5 nested PCRs was 20 minutes to allow for the addition of 3’ dA overhangs. The amplicons were then 

purified using the MinElute PCR clean up Kit (Qiagen, Hilden, Germany) according to manufacturer’s 

instructions. All the purified PCR products were quantified and diluted to the recommended quantity 

required for the ligation reaction. The ligation mix was incubated as shown in table 3.12 below: 
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Table 3.12: U3 and U5 Ligation reaction  

 Cycles Temperature Time 

 

 

Incubation 

1X 25°C 60min 

1X 25°C 60min 

8X 4°C 60min 

4°C 60min 

1X 75°C 5min 

1X 4°C ∞ 

  

The ligation product was transformed into ‘Mix &Go’ chemically competent E.Coli cells (Zymo Research, CA, 

USA) according to manufacturer’s instructions. The transformation mixture was then spread onto pre-

warmed LB agar plates containing Ampicillin, IPTG and Xgal and incubated for 12-15 hours at 37°C. Three 

individual colonies per agar plate were picked and added to pre-warmed culture flaks containing LB broth 

and Ampicillin. The flasks were incubated at 37°C while shaking at 200-250 rpm for 12-16 hours. The bacterial 

cultures were harvested by centrifugation at 8000rpm for 2 minutes at room temperature. The supernatant 

was discarded, and the plasmids purified using the GeneJet Plasmid Miniprep Kit (Thermofisher Scientific, 

MA, USA). 

3.5.5 Sequencing U3 and U5 plasmids 

For each patient, U3 and U5 plasmid preps were quantified and diluted such that 150-300ng was added into 

the sequencing reaction. The insert was sequenced using M13 forward and reverse primers. The sequencing 

reaction is shown in table 3.13 and 3.14 below: 

 

Table 3.13: Sequencing reaction for U3 and U5 plasmids 

Reagent Concentration 1X rxn 

Nuclease free H2O - 4ul 

Primers  5uM 1ul 

Reaction Mix 1X 1ul 

EDTA buffer 5X 3ul 
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Table 3.14: Sequence cycling conditions 

 Cycles Temperature Time 

Denaturation 25X 96°C 0.10sec 

Annealing 50°C 0.05sec 

Elongation 60°C 4min 

Hold  4°C ∞ 

3.5.6 Integration Site analysis 

The ISA assay (Fig 3.3) has been previously described (Maldarelli et al., 2014), and was conducted by our 

collaborators at the HIV Dynamics and Replication Program (NCI, MD, USA). During the assay, DNA from 1.25 

million cells was randomly sheared to give fragment sizes of 300bp-500bp using the Covaris Adaptive 

Acoustics (Covaris, MA, USA). The sheared fragments were then end-repaired using the End-it DNA repair kit 

(Epicentre, Wi, USA). A single dA was added to the 3’ ends of the fragments using a dA tailing kit (NEB, MA, 

USA). This allowed for ligation of a partially double stranded linker that contained a 3’ dT overhang. 

Amplification using primers specific for HIV LTR and a primer complementary to the single stranded portion 

of the linker was performed to select for integration sites. This was followed by a nested PCR using HIV LTR 

and linker specific primers. During the second round PCR, Illumina sequencing adapters and bar codes were 

introduced into the sample. This was followed Illumina paired end next generation sequencing (Illumina, CA, 

USA) to generate sequence reads that contained the host cell-virus junctions. The sequences were mapped 

to human genome hg19. Considering the size of the human genome, sequence reads with identical HIV-1- 

human genome junctions were considered to represent a particular integration event. Therefore, the 

identification of a particular HIV-1 human junction with sequence reads that show multiple different genome 

break points (due to random shearing) represented clonal expansion of a particular HIV infected cell (as each 

cell only harbours a diploid genome copy and the assay recovers approximately 10% of integration sites in a 

sample). For each participant, we attempted to obtain at least 100 integration sites from the baseline and 

on-therapy time points to ensure that proper comparisons could be drawn between the two time points. All 

integration site data was entered into the Retrovirus Integration Database (https://rid.ncifcrf.gov/). 
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Figure 3.3: Integration Site Analysis schematic 
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3.6 Results 

3.6.1 Integration site analysis (ISA) at baseline and after 6-9 years ART 

For each of the 11 participants, ISA was performed on a sample from close to ART initiation (baseline) and 

another sample after 6-9 years on therapy. For each integration site (IS), data included the following variables 

that described the proviral integration into the host cell: a) the specific chromosome, b) gene name (when 

not in an intergenic region), c) the exact base pair location and d) the orientation of the provirus (+/-) relative 

to the gene (when not in intergenic regions). An integration event (IE) was defined as the historic infection 

and integration of a provirus into a specific site in the host cell’s genome and considering the size of the 

human genome each unique IS in the human genome uniquely identifies a single IE. Therefore, when ISA 

recovered multiple cases of the same IE it indicated cellular proliferation.  

To ensure adequate sampling, we aimed to obtain at least 100 IS at both time points for each participant. For 

the 6-9 year on-ART time point where participants were suppressed, a clone was defined as two or more 

identical integration sites. At baseline, participants were not yet viral load suppressed by ART. As there was 

active viral replication at this time point, it was possible that clonally expanding cells could represent short 

living subsets (such as effector CD4 T-helper cells). Clones at baseline were therefore defined as three or 

more identical integration sites.  

Tables 3.15 and 3.16 below show: the number of integration sites obtained, number of clonal populations, 

proportion of integration sites in clones, and the size of the most expanded clone from baseline and 6-9 years 

on ART respectively. The proportion of integration sites that formed part of clones was calculated in two 

ways: 

Method A:    
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑜𝑛𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝐸𝑣𝑒𝑛𝑡𝑠 (𝐼𝐸)
 

 

Method B:    
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑡𝑒𝑠 𝑏𝑒𝑙𝑜𝑛𝑔𝑖𝑛𝑔 𝑡𝑜 𝑐𝑙𝑜𝑛𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑖𝑜𝑛 𝑆𝑖𝑡𝑒𝑠 (𝐼𝑆) 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑
 

In method A, the number of clones was divided by the number of unique integration events, this gives an 

idea of the number of infection events that resulted in detectable clonal expansion. 

In method B, the number of times each clone was recovered was added together and then divided by the 

total number of integration sites recovered, this gives an indication of the fraction of the total population 

that consists of expanded clones. 
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Table 3.15: ISA at Baseline 

CHER 

PID 

Age ART 

Start 

(months) 

Months 

relative 

to ART 

start at 

sample# 

Number of 

Integration 

sites (IS) 

detected 

Number 

of 

clones 

detected 

Proportion 

IS in clones       

(Method A) 

Proportion 

IS in clones 

(Method B) 

Size of the largest 

clone (Gene name) 

337286 17.7 0 438 14 0.03 0.09 7 (MAPKAPK2) 

337916 1.9 -0.5 772 26 0.04 0.1 11 (PFKFB3) 

332406 2.7 0 407 7 0.02 0.04 4 (PKN1) 

334696 6.1 0 291 - - - - 

339266 9.0 -4.7 194 - - - - 

338206 9.9 -5.3 197 5 0.03 0.09 8 (NUP50) 

341862 2.2 0 472 - - - - 

360806 2.0 +5.8 249 - - - - 

335106 1.8 0 279 - - - - 

340116 9.3 -19 148 5 0.04 0.08 4 (PDE4B) 

335836 5.1 +2.3 703 6 0.01 0.02 3 (RXRA) 

#:    (+) = Months after ART start  

        (-) = Months before ART start 

 

Table 3.16: ISA after 6-9 years on ART  

CHER 

PID 

CAD Age ART 

start 

(months) 

Years on 

ART at 

sample 

Number of 

Integration 

sites (IS) 

detected 

Number 

of clones 

detected 

Proportion 

IS in clones 

(Method 

A) 

Proportion 

IS in clones 

(Method 

B) 

Size of the 

largest clone 

(Gene name) 

337286 32.8 17.7 6.87 100 2 0.02 0.10 8 (STAT5B) 

337916 1.5 1.9 8.06 124 14 0.13 0.26 4 (PHKB) 

332406 23.6/-- 2.7 7.92/8.76 256 21 0.11 0.31 14 (ROCK1) 

334696 9.2 6.1 8.04 77 3 0.05 0.20 7 (MYB) 

339266 46.7 9.0 7.45 110 16 0.23 0.52 12 (GPC1) 

338206 21.3 9.9 8.24 85 6 0.12 0.48 18 (SRSF10) 

341862 42.3 2.2 6.77 116 10 0.10 0.21 4 (GPATCH8) 

360806 186.2 2.0 9.13 125 5 0.04 0.09 3 (ZNRF2) 

335106 4.5 1.8 8.35 110 3 0.03 0.18 16 (RUNX2) 

340116 181.5 9.3 7.35 149 5 0.04 0.12 6 (PPM1D) 

335836 11.9 5.1 8.6 431 30 0.08 0.20 7 (C10orf76/ 

QRICH1) 
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A median of 310 integration sites per participant (range:148-808) from baseline and 128 from 6-9 years on 

ART (range: 94-454) were obtained. There were more integration sites obtained at baseline than the 6-9 year 

on ART time point due to the expected higher proviral load at baseline. Of note, infected cell clones were 

detected in 6 participants from baseline (including two participants who initiated ART at <3 months of age) 

and in all 11 participants at the 6-9 years on ART time point, reflective of the monotypic clusters observed 

from the neighbour joining trees of the 10 participants in Aim 1 (Fig 2.5). At baseline, the number of clonal 

populations ranged from 5 to 26 while the size of the largest clone ranged from 3 to 11 proviruses in a clone. 

At 6-9 years on ART, the number of clonal populations ranged from 2 to 30 clonal populations and the size of 

the largest clone ranged from 3 to 18 proviruses in a clone. 

3.6.2 Increase in proportion of integration sites in clones over time on ART 

Fishers exact tests were performed for individual participants to compare proportions of integration sites in 

clones (method B) between the baseline and 6-9 year ART sample. As shown in table 3.17 below, there was 

a significant increase in the proportion of IS in 9 of the 11 participants. Figure 3.4 further illustrates this by 

plotting the proportion of integration sites in clones against years treated. 

 

Table 3.17: Fishers exact test on proportion of IS in clones between baseline and 6-9 years on ART 

CHER PID Months relative 

to ART start at 

Baseline sample 

Proportion IS in 

clones (Method B) 

at Baseline 

Years on 

ART at 6-9 

year sample 

Proportion IS in 

clones (Method B) 

at 6-9 years on 

ART 

Fishers exact 

P value  

337286 0 0.09 6.87 0.10 0.049 

337916 -0.5 0.1 8.06 0.26 <0.0001 

332406 0 0.04 7.92/8.76 0.31 <0.0001 

334696 0 0 8.04 0.20 <0.0001 

339266 -4.7 0 7.45 0.52 <0.0001 

338206 -5.3 0.09 8.24 0.48 <0.0001 

341862 0 0 6.77 0.21 <0.0001 

360806 +5.8 0 9.13 0.09 <0.0001 

335106 0 0 8.35 0.18 <0.0001 

340116 -19 0.08 7.35 0.12 0.003 

335836 +2.3 0.02 8.6 0.20 <0.0001 

 

Using data from all 11 participants, a paired t-test was conducted on baseline and 6-9 years ART clone 

proportions (using method B) to assess whether there was an overall significant change in the proportion of 

integration sites in clones over time on ART. Results showed a highly significant change in proportion of IS in 

clones over time on ART [ t = 4.4; p<0.005; CI (0.14 – 0.41)]. 
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Figure 3.4: Proportion of integration sites in clones at baseline and after 6-9 years on ART 
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3.6.3 Longitudinal detection of integration sites 

A distinct integration site (IS) was described as having the same: chromosome, gene name, bp position in the gene and provirus orientation. As shown in table 3.18 

below, the same integration sites were detected at baseline and after 6-9 years on ART in 4 participants (337286, 332406, 338206, and 335836). In participant 

332406, one integration site at baseline was detected 3 times after 8.76 years on ART suggesting the long term persistence and expansion of an infected cell clone.  

 

Table 3.18: Longitudinal detection of integration events 

CHER 

PID 

Chromosome  Gene 

name  

Bp position 

in gene 

Provirus 

orientation 

relative to gene 

Duration between 

baseline and On-

ART samples 

(years) 

Frequency of particular IS 

at Baseline 

 (total number unique IE at 

baseline) 

Frequency of particular IS on long-

term ART  

(total number unique IE on long-term 

ART) 

337286 chr6 BACH2 90726507 (-) 6.87 1  (414) 1  (92) 

chr17 STAT5B 40408920 (-) 1  (414) 1  (92) 

337916 - - - - - - - 

332406 chr16 ZCH74 11870250 (+) 8.76 1  (398) 3  (196) 

334696 - - - - - - - 

339266 - - - - - - - 

338206 chr22 NUP50 45578851 (-) 8.24 8  (184) 1  (50) 

chr20 RNF24 3932944 (+) 2  (184) 1  (50) 

341862 - - - - - - - 

360806 - - - - - - - 

335106 - - - - - - - 

340116 - - - - - - - 

335836 chr3 ACAP2 195084598 (+) 8.6 1  (696) 1  (375) 

chr16 RBBP6 24562603 (+) 1  (696) 1  (375) 
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3.6.4 Integrations into genes of interest 

Several studies have suggested that the long-term persistence of expanded clones is associated with 

integrations into human genes responsible for cell growth, survival and regulation of cellular proliferation 

(Cohn et al., 2015; Ikeda et al., 2007; Maldarelli et al., 2014; Wagner et al., 2014). In this study, distinct 

integrations into four such genes: BACH2, STAT5B, MKL1 and MKL2 genes were observed in 9 of the 11 

participants at baseline (table 3.19) and 8 of the 11 participants after 6-9 years on ART (table 3.20). 

 In participant 337286, there were 13 distinct integrations into BACH2 at baseline (table 3.19). Interestingly, 

this participant also had its largest clone consisting of 8 proviruses in the STAT5B gene (table 3.16). This was 

also the only participant were there was longitudinal detection of the same integration events between 

baseline and 6.85 years on ART in both BACH2 and STAT5B (table 3.18).  

Further analysis is ongoing to compare the fraction of integration sites in genes to an ex-vivo infected PBMC 

library to investigate whether integrations into genes of interest is selective or random. Those findings will 

be compiled in a separate publication. 

 

Table 3.19: Integrations into genes of Interest at baseline 

CHER PID Age ART 

Start 

Months relative to 

ART start at sample# 

Number of Integration 

sites (IS) detected 

Distinct integrations 

into Genes of interest   

337286 17.7 0 438 BACH2 (13) 

MKL1 (1) 

MKL2 (1) 

STAT5B (4) 

337916 1.9 -0.5 772 MKL1 (1) 

STAT5B (3) 

332406 2.7 0 407 BACH2 (1) 

MKL2 (1) 

STAT5B (1) 

334696 6.1 0 291 MKL1 (2) 

339266 9.0 -4.7 194 BACH2 (1) 

MKL2 (1) 

338206 9.9 -5.3 197 - 

341862 2.2 0 472 MKL1 (1) 

STAT5B (3) 

360806 2.0 +5.8 249 - 

335106 1.8 0 279 BACH2 (1) 

STAT5B (1) 

340116 9.3 -19 148 MKL1 (1) 

335836 5.1 +2.3 703 BACH2 (1) 

STAT5B (1) 
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Table 3.20: Integrations into genes of Interest after 6-9 years on ART 

CHER PID iCAD Age ART start 

(months) 

Years on 

ART at 

sample 

Number of 

Integration 

sites (IS) 

detected 

Distinct integrations into 

Genes of interest 

337286 32.8 17.7 6.87 100 BACH2 (4)  

STAT5B (6) 

337916 1.5 1.9 8.06 124 STAT5B (2) 

332406 23.6/-- 2.7 7.92/8.76 256 BACH2 (7) 

MKL1 (3) 

MKL2 (1) 

STAT5B (8) 

334696 9.2 6.1 8.04 77 -- 

339266 46.7 9.0 7.45 110 -- 

338206 21.3 9.9 8.24 85 STAT5B (5) 

341862 42.3 2.2 6.77 116 MKL2 (1) 

360806 186.2 2.0 9.13 125 MKL1 (1) 

STAT5B (2) 

335106 4.5 1.8 8.35 110 -- 

340116 181.5 9.3 7.35 153 BACH2 (2) 

MKL2 (2) 

STAT5B (7) 

335836 11.9 5.1 8.6 431 STAT5B (4) 
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3.7 Discussion 

3.7.1 Expanded clones in early treated children 

This is the first study to show that infected cells begin clonally expanding before ART is initiated in early 

treated children. These clones persist and increase significantly in proportion over several years on ART. In 

some participants, there were multiple integrations into genes responsible for cell growth and survival. The 

detection of expanded clones using ISA mirrored the monotypic sequences observed by CAD-SGS in chapter 

2. 

The detection of clones in the pre-therapy samples of children who were treated as early as two months of 

age shows that the latent reservoir begins to expand even before early therapy. A similar observation has 

been reported (Maldarelli et al., 2014) where in one adult, the same integration site was detected at pre-

therapy and after long-term ART. Likewise, another group (Haworth et al., 2018) recently characterized clonal 

expansion during acute untreated HIV-1 infection in a humanized mice model and found evidence of clonal 

expansion associated with integration in genes involved in signalling pathways, which may alter transcription, 

translation or cell cycle regulation. Although a large proportion of infected cells are defective (Bruner et al., 

2016; Ho et al., 2013), it has been shown that highly expanded infected cell clones can contain intact 

proviruses and result in viremia (Simonetti et al., 2016).  The recent case of a child, who despite initiating ART 

within hours of birth (Luzuriaga et al., 2015), eventually rebounded after treatment interruption shows that 

long-lived cells are infected very early. The potential for these early infected cells to persist through 

proliferation poses a major barrier to cure. Altogether, these observations suggest that ART has no effect on 

the proliferation and expansion of infected cells but instead prevents new rounds of infection and allows 

shorter-lived infected cell subsets to die (Coffin and Swanstrom, 2013; Hellerstein et al., 2003) making it 

easier to detect expanded clones. We did not however, detect clones in the pre-therapy samples of all our 

participants. It is likely that clones were present but not detected. The ISA method is relatively insensitive as 

it detects a small fraction of infected cells and therefore only the most expanded clones. This, coupled with 

the large HIV-1 infected cell population at pre-therapy, sampling restricted to PBMCs, as well as the presence 

of shorter lived infected cell subsets during unsuppressed replication (that then decay at different rates over 

time on ART) could have made it difficult to detect clones in all participants at the pre-therapy time point 

(Coffin and Swanstrom, 2013; Hellerstein et al., 2003). 

We observed the persistence of clones over several years on ART and an increase in the proportion of 

integration sites that formed part of clones. Wagner et al showed that in 6 paediatric patients during a 

median of 10 years on ART, monotypic DNA sequences detected with single genome sequencing increased 

in proportion (Wagner et al., 2013). Furthermore, using an alternative assay for integration sites, the 

Integration Site Loop Amplification Assay (ISLA)  in 3 individuals over 10 years on ART, there was an increase 

in sequences that formed part of clones (Wagner et al., 2014). Several other studies have since reported that 
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after several years on ART, 40-60% of integrations are in clonally expanded cells (Cohn et al., 2015; Kim and 

Siliciano, 2016; Maldarelli et al., 2014; Pinzone et al., 2018; Simonetti et al., 2016).   

The increase in proportion of persisting cells in clones could in part be due to the high cell turnover and 

clearance of protein expressing cells during unsuppressed infection leading to the loss of shorter lived cell 

subsets over time on ART (Coffin and Swanstrom, 2013). However, there is evidence of ongoing proliferation 

and expansion of infected cells during ART. Latently infected cells can proliferate in response to antigen 

stimulation of T cell receptors (Douek et al., 2002) which often leads to reactivation of the latently infected 

cell. The residual clonal viremia detected in participants on long-term suppressive ART provides evidence for 

antigen driven clonal expansions that result in proviral reactivation and release of virions into the blood 

(Bailey et al., 2006; Kearney et al., 2016; Simonetti et al., 2016; Tobin et al., 2005). 

On the other hand, it has been shown that HIV integrates into memory subsets that can undergo homeostatic 

proliferation in response to cytokine stimulation (Chomont et al., 2010). It is possible for this to occur without 

reactivation of the provirus and subsequent immune clearance (Bosque et al., 2011; Chomont et al., 2010; 

Wang et al., 2018). It has recently been reported in an individual where 50% of the reservoir was composed 

of an intact clone, that only a small proportion of that expanded clone was expressing virus during long term 

ART. Likewise, latently infected cells containing intact provirus can proliferate in vivo in response to mitogens 

without producing virus (Hosmane et al., 2017). Ultimately, it is likely that both antigen-driven and 

homeostatic proliferations play a role in maintaining the reservoir. This notion is supported by recent work 

showing that some intact clones remain detectable (due to homeostatic proliferation) while others appear 

and disappear (due to antigen induced proliferation) over several years on ART (Wang et al., 2018). 

The ongoing clonal expansion of intact proviruses during suppressive ART poses a challenge for cure. 

Currently, ‘functional cure’ interventions aim to reduce the number of infected cells using either therapeutic 

vaccines or agents that reactivate latent cells followed by elimination of reactivated cells by immune effectors 

(Douek, 2018; Margolis et al., 2016; Mylvaganam et al., 2016; Rasmussen and Lewin, 2016). However, if 

therapy is interrupted, there is a chance that the few remaining infected cells could expand. This is likely to 

have occurred in the two ‘Boston patients’ where there was rebound viremia within 6 months of ART 

interruption following the elimination of 99% of their infected cells (Henrich et al., 2014). This highlights the 

need for approaches that specifically target clonal expansion of infected cells. 

 Several studies have suggested that the long-term persistence of expanded clones is associated with 

integrations into human genes responsible for cell growth, survival and regulation of cellular proliferation 

(Cesana et al., 2017; Cohn et al., 2015; Ikeda et al., 2007; Maldarelli et al., 2014; Wagner et al., 2014). Wagner 

et al looked at 534 proviruses from 3 individuals and found a significant proportion integrated into genes 

associated with cancer, regulation of cell proliferation and survival (Wagner et al., 2014). We detected in 

multiple participants, distinct integrations into four such genes: BACH2, STAT5B, MKL1 and MKL2. However, 

the fact that clones wax and wane (Wang et al., 2018) challenges the idea that integrations into certain genes 
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results in a steady increase in proportion of proviruses in clones. It is likely that antigen driven and 

homeostatic proliferation rather than integration into growth genes drives the long-term persistence of 

expanded clones. In our study, further analysis is ongoing to compare the fraction of integration sites in genes 

to an ex-vivo infected PBMC library and investigate whether integrations into these genes of interest is 

selective or random. Those findings will be compiled in a separate publication. 

Although total HIV DNA levels remain relatively constant with a very slow rate of decay after 4 years on 

suppressive ART (Besson et al., 2014), the composition of the reservoir (intact vs defective) is dynamic and 

mostly shaped by selective pressures of the immune system. In our work, we were unable to link integration 

sites with intactness of the provirus and could not determine what proportion of expanded clones were 

replication competent. However, we know that majority of proviral DNA is defective (Bruner et al., 2016; Ho 

et al., 2013). Despite this, Bui et al recently showed that a large proportion of the replication competent 

reservoir is clonal (Bui et al., 2017). During suppressive ART, a proportion of intact clones continue 

transcribing and expressing protein (Kearney et al., 2016; Simonetti et al., 2016; Wiegand et al., 2017) while 

the other fraction of these cell survive because they don’t release antigen (Boritz et al., 2016). As a result, 

intact proviruses in clones that express proteins are selected against and decline overtime on ART (Pinzone 

et al., 2018). The recent report of a post treatment controller with an intact clone but suppressed virus shows 

that cytotoxic T lymphocytes (CTLs) control the expression of intact clones in such individuals (Veenhuis et 

al., 2018). 

Severely defective proviruses that are unable to express proteins are enriched over time on ART (Imamichi 

et al., 2014). On the other hand, recent studies have shown that some defective clones are expressed and 

induce CTL responses that shape the proviral landscape during suppressive therapy (Pinzone et al., 2018; 

Pollack et al., 2017). These defective clones are able to recruit transcription factors to their LTRs (Lusic et al., 

2003), express HIV-1 RNA transcripts at similar levels as those without defects (Barton et al., 2016; Wiegand 

et al., 2017) and induce a CTL response (Imamichi et al., 2016). Therefore, both CTL selection pressure and 

clonal expansion shape the proviral landscape overtime on therapy. 

The ISA method used in our study is high throughput and informative for describing host genomic regions of 

integration and the proportion of proviruses in clones. However, ISA is relatively insensitive and only detects 

the most expanded clones in the blood sample at a given time. Previous studies have shown that expanded 

clones are widely distributed throughout various anatomic sites (Simonetti et al., 2016; Wagner et al., 2013). 

The clones detected in our participants are therefore only a conservative picture of the extent of clonal 

expansion throughout the body. In addition, the ISA assay provides a very short terminal U5 or U3 proviral 

sequences and can therefore not inform about the intactness of clones.   

In this study, there was a correlation between the ISA results from study Aim 2 and SGS results from study 

Aim 1, participants with detectable monotypic sequences by SGS had detectable clones by ISA. However, in 

our cohort of early treated children with low background diversity, monotypic sequences detected by SGS 
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could also have been a result of evolutionary bottlenecks caused by rapid burst of replication without enough 

time for evolution. We show that ISA is able to identify expanded clones even when the background diversity 

is low. 

An alternative to ISA is the integration site loop mediated assay (ISLA) which uses loop mediated PCR to 

sequence a 2.8kb fragment that includes part of the provirus and the integration site and therefore allows 

some matching of integration sites with partial proviral sequences (Wagner et al., 2014). However, the assay 

is cumbersome as it has to be performed at limiting dilution and has relatively low yield when preceded only 

by linear (unidirectional primer) amplification of provirus-human-genome junctions. Yield may be increased 

by whole genome amplification prior to linear amplification of junctions, but this increases costs.  

In order to detect the proportion of intact proviruses that form part of clones, several studies have used an 

approach that combines variations of the quantitative outgrowth assay (qVOA) to reactivate latent cells 

followed by single genome sequencing (Bui et al., 2017; Hosmane et al., 2017; Lorenzi et al., 2017). This 

approach, however, is time consuming, laborious and requires large volumes of blood that are not feasible 

for studies in younger paediatric cohorts where sample availability is limited. There is therefore a need for 

more efficient methods that can detect rare clones and link integration sites to full length viral genomes to 

ascertain intactness. 

3.7.2 Strengths and Limitations of the study 

This is the first study to investigate clonal expansion in 11 early treated, long-term suppressed children. 

Although we detected clones in all 11 children after long-term ART, the ISA assay was unable to link 

integration sites to proviral sequences in order to determine intactness. We sampled only a fraction of 

infected cells that were circulating in the sample, and this may therefore not be fully representative of 

expanded clone populations in other anatomical sights throughout the body. Nonetheless, the fact that 

clones are detectable despite limited sampling of the total infected cell population highlights the significant 

extend to which clones persist and expand over long-term ART in early treated children. 

3.7.3 Conclusion 

We were able to show that infected cells begin clonally expanding before ART is initiated in children who 

start therapy as early as two months of age. These clonal populations persist and increase in proportion over 

several years on ART and are possibly the main mechanism driving persistence of the latent reservoir. It is 

likely that both antigen-driven and homeostatic proliferations play a role in inducing these expansion. The 

potential for these early infected cells to persist through proliferation poses a major barrier to cure. To 

understand the full extent to which clonal expansion maintains the replication competent reservoir, there is 

a need for more efficient methods that can detect rare clones and link integration sites to full length viral 

genomes to ascertain intactness.
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Chapter 4  

4.1 Introduction 

Studies have shown that HIV-1 DNA decays rapidly in individuals who initiate ART during acute infection, with 

long-lived infected cell populations that constitute the latent reservoir emerging after 4 years on suppressive 

ART (Besson et al., 2014; Buzon et al., 2014a). More recently, studies describing the composition of these 

long-lived infected cell populations in adults starting ART during acute infection have shown that the majority 

of proviral DNA is defective due to the error prone RT enzyme and hypermutations caused by APOBEC 3G, a 

host restrictive factor (Bruner et al., 2016; Hiener et al., 2017). Only 2-5% of proviruses have been shown to 

be genetically intact by full-length sequencing (Bruner et al., 2016; Hiener et al., 2017). There is limited data 

on the proviral landscape in early treated, long-term suppressed children, particularly in Sub-Saharan Africa 

where HIV-1 subtype C predominates. In an observational paediatric from the United states of America, no 

intact full-length proviral sequences were detected out of 162 near full length sequences (Rainwater-Lovett 

et al., 2017). Investigating the sequence-intact reservoir could provide insight on the mechanisms by which 

intact proviruses persist and is informative for ongoing cure efforts. 

4.2 Study Aim III 

To screen HIV-1 proviral DNA in 9 early treated, long-term suppressed children from the post-CHER cohort 

by near full length proviral amplification and sequencing (NFL-PAS) in order to describe the distribution of 

intact vs defective proviruses. 

 4.3 Objectives 

 Amplify 8.8kb near full length single genome proviral amplicons in 9 participants from the post-CHER 

cohort who initiated ART at variable time points. 

 Screen 8.8kb amplicons by sequencing 1.5kbs within the gag-pol region to identify sequences with 

stop codons in the gag-pol gene that would render them defective. 

 Perform barcoded Illumina MiSeq next generation sequencing on samples that have no stop codons 

in the 1.5kb gag-pol amplicon 

 Construct consensus sequences from MiSeq sequence reads demultiplexed by sample barcode to 

determine whether there are further defects (deletions, insertions or hypermutations) elsewhere in 

the viral genome that would render the proviruses defective 

 Further asses viral intactness by amplifying and sequencing the packaging signal (psi) and major splice 

donor site (MSD), from the pre-nested (PCR-1) wells of samples that appear intact by MiSeq 
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4.4 Study Population and Inclusion criteria 

The study cohort consisted of 9 children who started ART at variable ages ranging from 1.7 to 11.1 months. 

These participants were selected on the basis of having a total HIV-1 DNA iCAD above 40 copies/106 PBMC. 

Some participants had undergone therapy interruption as per the CHER trial whereas others had no 

treatment interruption since ART was initiated. At the time of testing, participants had been on ART for a 

period ranging from 6 -9 years. Table 4.1 below is a summary of participants’ clinical characteristics.
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Table 4.1: Clinical characteristics of study participants 

PID Gender Age ART 
start 
(months) 

CHER 
study 
Arm 

Treatment History  ART Regimen  Nadir 
CD4%  

Time to first 
viral load 
suppression 
(years) 

Time on 
ART at 
sample 
(years) 

CD4% 
at 
sample 

CAD at 
sample 
(copies/106 
PBMC) 

333676 Female 1.7 Arm 2 Interrupted after 9 months on 
ART; reinitiated after 3.6 years; 
viremic until after re-initiation 

AZT/3TC/LPV/r 19.7 0.58 8.57 36 55.5 

360806 Female 2.0 Arm 2 Continuous therapy; Delayed 
suppression for first 6 months on 
ART, good suppression thereafter 

AZT/3TC/LPV/r 
Single drug switch to 
AZT/3TC/EFV after 
7.7 years on ART  

12.9 3.76 9.13  29 186.2 

341622 Female 2.16 Arm 2 Interrupted after 9.9 months on 
ART; reinitiated after 13 months; 
viremic until after re-initiation 

AZT/3TC/LPV/r  
 

24.2 0.76 6.9 43.65 81.9 

341862 Female 2.20 Arm 3 Continuous therapy; Detectable 
viral load after 2.2 years on ART, 
supressed 5 months later and 
good suppression thereafter 

AZT/3TC/LPV/r 19.2 0.63 6.96 36 42.3 

333716 Female 2.3 Arm 3 Interrupted after 2 years on ART; 
blip 4months after interruption; 
reinitiated 4 months after 
interruption; viremic until after 
re-initiation 

AZT/3TC/KLT 25.9 0.46 8.55 37 
 
 
 
 
 

129.6 

339606 Male 8.5 Arm 1 Continuous therapy AZT/3TC/LPV/r 17.1 1.34 7.93 48 247.6 

340116 Female 9.23 Arm 1 Continuous therapy AZT/3TC/LPV/r 
 

28.4 2.3 7.31 54 181.5 

339266 Female 9.32 Arm 1 Continuous therapy AZT/3TC/LPV/r 28.2 1.2 8.2 50 46.7 

334436 Female 11.1 Arm 1 Poorly suppressed for first 2.5 
years on ART 

AZT/3TC/LPV/r 28 0.92 8.83 47 86.3 

AZT – zidovudine, 3TC – lamivudine, LPV-r: Lopinavir-ritonavir, EFV - efavirenz
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4.5 Methods 

4.5.1 Validation of the Near Full Length Proviral Amplification and Sequencing (NFL-PAS) protocol 

for HIV-1 Subtype C 

The NFL-PAS protocol was developed by our collaborators in Prof. John Mellors’ lab at the University of 

Pittsburgh and was designed for HIV-1 subtype B. To implement the assay in our lab, validation experiments 

were conducted to establish the sensitivity and the influence of background human genomic DNA in 

generating the 8.8kb near full length amplicons. Optimisation was conducted using the HIV-1 LAV infected 

8E5 T cell line that contains one integrated copy of HIV per cell. The cell line was obtained through the NIH 

AIDS Reagent Program, Division of AIDS, NIAID, NIH: from Dr. Thomas Folks.  

4.5.1.1 Quantification and serial dilution of 8E5 cells 

Total DNA was extracted from 1x106 8E5 cells as previously described (Kearney et al., 2009, 2008; Palmer et 

al., 2005). The extracted DNA was diluted 1:10 and quantified on the Qubit spectrophotometer using the 

Qubit dsDNA BR Assay kit (Thermo Fisher Scientific; MA; USA). The Qubit reading for this sample was 

11,4ng/µL. Taking the DNA concentration and the length of the DNA template (3.3x109 bp of human genome 

per cell) into account, this corresponded to 3.3x103 copies/µL. An online copy number calculator 

(http://cels.uri.edu/gsc/cndna.html) was used to determine this. Thereafter, 10-fold serial dilutions were 

performed ranging from 320 copies/µL; 32 copies/µL; and 3.2 copies/µL. 

4.5.1.2 Background spike experiments 

DNA from 8E5 cells was spiked into varying amounts of HIV negative DNA to mimic patient samples where 

there is a low HIV-1 cell-associated DNA load in a high background of cellular genomic DNA. The aim of these 

experiments was to determine whether there would be inhibition when amplifying samples with low total 

HIV-1 DNA or whether there would be non-specific priming in human genome resulting in non-specific 

amplification due to the high concentration of background human genomic DNA. HIV negative DNA was 

extracted from 1.25 x106 cells and serially diluted 2-fold over 5 dilution concentrations ranging from 50 000 

to 1 563 cells per PCR reaction. Each dilution was spiked with 60 copies of 8E5 cells. For each of the 5 dilutions, 

PCR was performed in replicates of 6 as shown in figure 4.1 below. PCR amplicons were stained with EZ vison 

blue light DNA dye (AMRESCO; PA; USA) and viewed under ultraviolet (UV) light. Amplicons were run on a 

1% sodium borate (SB) agarose gel. Results showed that proviral HIV was amplified in various amounts of 

background genomic DNA with no inhibition or non-specific priming (fig 4.2). 
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Figure 4.1: 96 well PCR plate with 8E5 spiked into negative PBMC DNA. NEG=Negative Control; NTC= No Template 
Control; A-F = 8E5 dilutions. 

 

 

Figure 4.2: 1% SB agarose gel of products from the 'Background spike' experiment. A-F = 8E5 dilutions as shown in figure 
4.1. 

 

4.5.1.3 Sensitivity of NFL-PAS 

This experiment aimed to determine the lowest 8E5 copy number that gives an NFL product when spiked 

into a background of DNA from HIV negative cells. To do this, 8E5 cells were serially diluted 2-fold ranging 

from 60 copies/reaction to 1.9 copies/reaction. Each dilution was spiked into a background of DNA from 1.25 

x106 HIV negative cells which equated to the expected amount of DNA that would be extracted from patient 

samples. This was then loaded into PCR reactions of 12 replicates for each dilution and viewed on an agarose 

gel (fig 4.3 and 4.4).  
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Figure 4.3: 96 well PCR plate with serial dilutions of 8E5 spiked into a background of DNA from 50,000 HIV negative PBMC. 
NEG= Negative Control; NTC= No Template Control.   

 

 

Figure 4.4: 1% SB agarose gel of products from the 'Sensitivity’ experiment 

 

As shown in figure 4.4 above, the dilution at which 30% of the replicates amplified was 7.5 copies/reaction. 

Considering that some margin of error is to be expected with Qubit quantification and taking into account a 

recent study (Busby et al., 2017) that reports a loss of integrated HIV copies in 8E5 cells with subsequent 

passages (we did not know the passage number of the aliquot we received), it is likely that there were fewer 

than 7.5copies HIV-1 DNA/reaction at that dilution. Altogether, the assay appeared to have high sensitivity. 
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4.5.2 Extraction and NFL-PAS on participant samples 

Genomic DNA was extracted from 1.25x106 PBMC as previously described but modified to exclude 

sonification in order to preserve the integrity longer fragments (Hong et al., 2016). Single genome PCR 

followed. Genomes were amplified with a nested PCR using Ranger mix (Bioline; OH; USA) and previously 

described primers (Li et al., 2010; Salminen et al., 1995; Wang et al., 2005). Reaction conditions and primers 

are listed in tables 4.2, 4.3, 4.4 and 4.5 below. Single genome amplification was achieved as follows: first, the 

target dilution was determined using a ‘screening plate’ which was generated by performing 3-fold serial 

dilutions on the extracted DNA (fig 4.5). Each dilution had 20 replicate PCR reactions. According to Poisson 

statistics, the dilution at which only 30% of the replicates had PCR amplification was chosen as the target 

dilution at which it is likely that a single template was amplified. To obtain a sufficient number of single 

genome sequences, DNA at the target dilution was spread across an ‘expansion plate’ of 96 wells (fig 4.6). 

For each NFL-PAS plate, two reactions with 8E5 as the template were used as a positive control. Two no-

template controls (NTC) were also included on each plate. PCR reactions on the 96 well plates were stained 

with EZ vison blue light DNA dye (AMRESCO; PA; USA) and viewed under UV light. All fluorescing wells were 

run on a 1% SB buffer agarose gel to assess the size.  If the provirus had no internal deletions, a fragment of 

8.8kb was expected after nested PCR. Samples that were 8.8kb were selected for further analysis while 

shorter fragments were considered as having large internal deletions. 

 

Figure 4.5: Screening plate for participant 340116. POS= Positive Control; NTC= No Template control. 
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Figure 4.6: Expansion plate for participant 340116 at target dilution of 1:3. POS= Positive Control; NTC= No Template 
Control. 

 

Table 4.2: NFL-PAS primers 

Primer 

description 

Primer name Sequence (5’ to 3’) HXB2 binding 

Position 

Forward Outer 

primer 

Li_Outer F AAATCTCTAGCAGTGGCGCCCGAACAG 623 – 649 

Reverse Outer 

primer 

Li_Outer R TGAGGGATCTCTAGTTACCAGAGTC 9662 – 9686 

Forward Inner 

primer 

Li_Inner F GCGGAGGCTAGAAGGAGAGAGATGG 769 – 793 

Reverse Inner 

primer 

Li_Inner R GCACTCAAGGCAAGCTTTATTGAGGCTTA 9604 – 9632 

 

Table 4.3: NFL-PAS master mix 

Reagent Stock 

concentration 

Final concentration Volume (µL)/Rxn  

Ranger Mix 2x 1x 5  

Forward Primer 10µM 400nm 0.4µl 

Reverse Primer 10µM 400nm 0,4µl 

Molecular grade H2O NA NA 2,2µl 
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DNA NA NA 2µl 

Total   10µl 

 

Table 4.4: NFL-PAS Pre-nested PCR cycling conditions 

Temperature Time Number of cycles 

95 °C 2 min 1X 

98 °C 10 s  

61 °C 10 min               30X 

72 °C 10 min 1X 

4 °C ∞  

 

PCR products were diluted by adding 80µl of cold 5mM tris, thereafter 2µl of the pre-nested product was 

loaded into the nested PCR mastermix. 

 

Table 4.5: NFL-PAS Nested PCR cycling conditions 

Temperature Time Number of cycles 

95 °C 2 min 1X 

98 °C 10 s  

65.5 °C 10 min               30X 

72 °C 10 min 1X 

4 °C ∞  

 

4.5.3 Selection of 8.8kb fragments for MiSeq  

For all 8.8kb amplicons, a 1.5kb region spanning gag P6, Protease and the first 900nt of Reverse Transcriptase 

(p6-PR-RT; nt 1893 - 3408, HXB2 positions (Korber et al., 1998)) was sequenced. Sequences were aligned 

using ClustalW (http://www.ebi.ac.uk/Tools/msa/ clustalw2/) and those that were not true single genome 

products (i.e two or more templates) were excluded. This allowed the identification of sequences with stop 

codons in this region that would render them defective. All sequences that passed these two criteria where 

selected as candidates for next generation sequencing by Illumina MiSeq (Illumina; CA; USA). These samples 

were gel extracted from a 1% SB agarose gel using the NucleoTrap Gel Extraction Kit (Macherey-Nagel; 

Germany) according to manufacturer’s instructions.  
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Figure 4.7: NFL-PAS workflow  

4.5.4 MiSeq library preparation 

MiSeq library preparation and sequencing was performed at the Institute for Microbial Biotechnology and 

Metagenomics (IMBM) at the University of Western Cape. The Illumina Nextera DNA library prep kit (Illumina; 

CA; USA) was used. In a single reaction, DNA was enzymatically fragmented, and adapters added to the 

template. The DNA was then purified and amplified by a PCR that indexed the samples by adding different 

primer pairs to individual samples. The 300 cycle V2 MiSeq Reagent kit (Illumina; CA; USA) was used to 

sequence the library. 

4.5.5 Bioinformatic analysis of MiSeq data 

After sequencing, all reads with the same index were assembled to form a consensus sequence. The 

sequences were then subjected to checks for viral intactness in an ‘Intactness pipeline’ developed by a 

collaborator Dr. Imogen Wright. Sequences were first checked for correct size (i.e 8.8kb). Next, sequences 

that appeared to be mixed templates were detected and eliminated from further analysis. The remaining 

sequences were then translated to allow further analysis of the 9 viral open reading frames (ORFs). A 

sequence was determined to be intact if within these ORFs, there were no: stop codons, frameshift 

mutations, or hypermutations that could preclude viral infectivity.  
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4.5.6 Amplification and sequencing of the HIV Packaging Signal and Major Splice Donor site 

The NFL-PAS protocol has the benefit of using primers that bind in conserved regions of the HIV genome. 

However, the 8.8kb NFL-PAS product (fig 4.8) excluded the first 793 nucleotides (gag-leader region) of the 

viral genome (p17- 3’LTR; nt 794 - 9857, HXB2 positions (Korber et al., 1998))  that encode the viral packaging 

signal (psi) and major splice donor site (MSD) (gag pr55; nt 634 – 789, HXB2 positions (Korber et al., 1998)) 

which play essential roles in viral replication. In the literature, Ho et al found deletions in this region in 6% of 

sequences (8-98bp deletions); Bruner et al, in 5% (15-97bp deletions) and Hiener et al,  in 11% of sequences 

(Bruner et al., 2016; Hiener et al., 2017; Ho et al., 2013). Deletions, mutations, or deleterious stop codons in 

these regions destroy viral infectivity (Ho et al., 2013). Eighteen of the NFL-PAS products that were sent for 

MiSeq appeared to be intact after analysis in the bioinformatic pipeline. To determine whether the psi, and 

MSD were intact in the 18 samples, a forward primer was designed to bind upstream of the NFL product (gag 

Pr55; nt 642, HXB2 position (Korber et al., 1998)). For each limiting dilution that yielded an 8.8kb intact 

sequence, pre-nested PCR product was added to a nested PCR, using the newly designed forward primer and 

the pre-nested reverse primer (fig 4.9) to generate an amplification product that included the gag-leader 

region. The generated product was 9044bp in length (Gag Pr55 – 3’LTR; nt 642 – 9686, HXB2 position (Korber 

et al., 1998)) .  

 

Figure 4.8: NFL-PAS PCR 1 and PCR2 primer binding sights; product length 8,835kb 
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Figure 4.9: Nested PCR to obtain psi & MSD; A forward primer that bound internal to the PCR 1 product was used with 
the PCR1 reverse primer to generate a product of 9044bp 

Table 4.6 – 4.8 below show primers and PCR conditions that were used to generate the NFL product 

containing psi and MSD regions: 

Table 4.6: psi & MSD PCR primers 

Primer 

description 

Primer name Sequence (5’ to 3’) HXB2 binding 

Position 

Forward  primer NFL_alt_in_FW CCGAACAGGGACBHGAAAGCGAA 642 – 664 

Reverse  primer Li_Outer R TGAGGGATCTCTAGTTACCAGAGTC 9662 – 9686 

 

Table 4.7: psi & MSD mastermix 

Reagent Stock 

concentration 

Final concentration Volume (µL)/Rxn  

Ranger Mix 2x 1x 12.5µl 

Forward Primer 10µM 400nm 1µl 

Reverse Primer 10µM 400nm 1µl 

Molecular grade H2O NA NA 8.5µl 

DNA NA NA 2µl 

Total NA NA 25µl 
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Table 4.8: psi & MSD PCR cycling conditions 

Temperature Time Number of cycles 

94 °C 2 min 1X 

94 °C 30 s  

44 °C 30 s               30X 

72 °C 7 min 1X 

4 °C ∞  

 

The 9044bp fragment was gel extracted from a 0.8% TAE buffer using the NucleoTrap gel extraction kit 

(Macherey-Nagel; Germany). A 1 kb region containing the psi, MSD and PBS was Sanger sequenced. The 1kb 

length ensured enough overlap with the region that was previously sequenced by Miseq and confirmed that 

the same variant was sequenced. In table 4.9 below are the sequencing primers: 

 

Table 4.9: psi and MSD sanger sequencing primers 

Primer 

description 

Primer name Sequence (5’ to 3’) HXB2 binding 

Position 

Forward  

primer 

NFL_alt_in_FW CCGAACAGGGACBHGAAAGCGAA 642 – 664 

Forward  

primer 

Li_Inner F GCGGAGGCTAGAAGGAGAGAGATGG 769 – 793 

Reverse  primer gag-P17 TGACGCTCTCGCACCCATCT 788 - 807 
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4.6 Results 

4.6.1 Obtaining intact proviral genomes 

Figure 4.10 below illustrates the process by which genetically intact sequences were obtained from 9 children 

after 6-9 years on ART. A total of 738 single-genome amplicons were obtained by NFL-PAS. Of these, 538 had 

large internal deletions. Of the remaining 200 amplicons, a 1.5kb region of gag-pol was amplified and 

sequenced. One hundred and sixty-six were shown to be hypermutated, characterized by stop codons. 

Following bio-informatic analysis, 10 NFL-PAS amplicons appeared to be intact, 9 were hypermutated and 15 

had small internal deletions. To determine whether psi, and MSD were intact in the 10 samples, the viral 

packaging signal and major splice donor site were amplified and sequenced. Of these, 3 sequences were 

characterized by mutations in the psi and/or MSD region. Finally, 7 sequences were shown to be genetically 

intact. 

 

Figure 4.10: Schematic for obtaining intact proviruses by NPL-PAS 
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4.6.2 NFL-PAS participants 

Table 4.10 below shows characteristics of the 9 participants that formed the NFL-PAS cohort. The median age of ART initiation was 2.3 months (range: 1.7 – 11.1). 

Three participants had periods when ART was interrupted as part of the CHER trial. Periods of interruption ranged from 4 months to 3.6 years. One participant was 

poorly suppressed for the first 2.5 years on ART probably due to poor adherence. The remaining 4 participants had never been interrupted and were fully suppressed 

on ART. At the time of testing, participants had been on ART for a median of 8.2 years (range: 6.9 – 9.1). The median iCAD at time of testing was 86.3 copies/106 

(range: 42.3 – 247.6). 

 

Table 4.10: Patient characteristics and NFL sequences 

PID Gender Age ART 

start 

(months) 

Durati

on of 

ART at 

sample 

(years) 

HIV CAD 

(copies/106 PBMC) 

Sequence

s with  

internal 

deletions 

Sequences with 

hyper-mutations 

and stop codons 

Sequences with 

packaging 

signal/MSD 

defects 

Intact 

Sequences 

Total 

number 

of single 

genomes 

Total 

number 

of cells 

assayed 

333676 F 1.7 8.6 55.5 4 1 0 0 5 2.6x106 

360806 F 2.0 9.13 186.2 68 19 0 0 88 9.2x106 

341622 M 2.16 6.9 81.9 30 4 0 0 34 2.6x106 

341862 F 2.2 6.96 42.3 89 101 0 0 190 6.1x106 

333716 F 2.3 8.55 129.6 18 3 0 0 21 3.9x106 

339606 M 8.5 7.93 247.6 27 9 1 2 39 3.9x106 

340116 F 9.23 7.31 181.5 207 23 2 1 233 9.6x106 

339266 F 9.32 8.2 46.7 56 15 0 4 75 6.6x106 

334436 F 11.1 8.82 86.3 54 0 0 0 54 1.8x106 

Total NA Median= 2.3 Median = 8.2 Median = 86.3 553  175  3  7  738 46.3x106 
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4.6.3 Distribution of sequences by participant: 

Figure 4.11 below illustrates the distribution of single genome PCR products in each of the 9 participants. 

 

Figure 4.11: Distribution of sequences per participant 

 

4.6.4 Overall distribution of intact and defective sequences 

Figure 4.12 below illustrates the distribution of the 738 amplicons from all 9 participants, 72.9% had large 

internal deletions and 23.7% had hypermutations that rendered them defective. As the packaging 

signal/MSD mutations (gag-leader) were only assessed in 10 cases that were provisionally intact, this 

proportion (1%) and the proportion of sequences with small internal deletions (1.4%) were adjusted using 

the expected rate as found in those that had a gag-leader sequence. Only 0.9 % were genetically intact. When 

compared to data from adults who initiated ART in acute infection (Hiener et al., 2017) using Fisher’s exact 

tests, the proportion of intact sequences and psi/MSD deletions were significantly lower (p<0.05). 

In figure 4.13, the proportion of intact and defective sequences were compared between the 5 participants 

who were fully suppressed and 4 who were partially suppressed on ART. The distribution of intact vs defective 

in the fully suppressed participants appeared similar to what was observed in total sequences from all 

participants.  
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Figure 4.12: Distribution of Amplicons in the 9 participants 
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Figure 4.13: Distribution of amplicons in fully suppressed vs partially suppressed participants 

 

4.6.5 Evidence of clonally expanded intact sequences 

Participants 340116, 360806 and 339266 had intact NFL sequences and had gag-pol single genome sequence 

data from Aim 1. For each of these participants, an alignment was made of intact NFL sequences and gag-pol 

sequences from Aim 1 to assess whether the intact NFL sequences would form part of a monotypic cluster 

with gag-pol sequences, indicating the probability of an expanded clone. 

 In participant 339266, two sets of intact NFL sequences were identical in the 9kb region. When these 

sequences were assembled in a neighbour-joining phylogenetic tree (fig 4.14 below) with 1.2kb gag-pol 

sequences from pre-therapy plasma RNA, PBMC DNA from 1.2 years on ART and cell associated DNA 

sequences from 8 years on ART, two of the intact NFL sequences formed part of a monotypic cluster (blue 

bracket) with a gag-pol DNA sequence from 1.2 years on ART, suggesting the persistence of a possible intact 

clone that was present soon after ART was initiated. Intact sequences from participant 360806 and 339266 

were not identical in the 1.2kb gag-pol region. 
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Figure 4.14: Neighbour joining phylogenetic tree for participant 339266 
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4.7 Discussion 

4.7.1 Intact HIV proviruses can be detected in early treated children after long-term ART   

To our knowledge, this is the first study to show that after 6-9 years on suppressive ART, genetically intact 

HIV-1 proviral sequences are detectable by near full-length sequencing in children who initiate ART within 

the first year of life. Our aim was to investigate proviral intactness and we classified sequences as genetically 

intact when we found none of the known defects on sequencing. Nevertheless, this does not prove 

replication competence, which would require identifying the integration sites, amplifying full-length HIV from 

the host, cloning and transfection with production of infectious virus and should be done in future studies.  

In one participant, we observed two sets of identical, intact near full-length sequences. When aligned with 

gag-pol sequences from 1.2 years after ART initiation, two of the intact sequences formed a monotypic 

cluster, suggesting the persistence of an intact expanded clone. Our findings show that early ART does not 

prevent the establishment of long-lived reservoirs. Although rare in early treated children, these reservoirs 

can be detected after several years on ART and are probably, just as in adults (Bui et al., 2017; Hosmane et 

al., 2017; Lorenzi et al., 2017; Simonetti et al., 2016), maintained by clonal expansion/proliferation of cells 

infected before ART initiation. 

A recent study found no intact HIV proviral sequences out of 164 near full length sequences derived from 

viral outgrowth culture wells in 11 early treated, long-term suppressed children who initiated ART before 6 

months (Rainwater-Lovett et al., 2017). We generated 738 single-genome amplicons and found 7 (0.9%) to 

be intact. Whereas in the previous study, proviruses were sequenced from non-induced viral outgrowth 

wells, we performed NFL-PAS directly on DNA from PMBC samples. On the other hand, the different findings 

between the two cohorts could be due to differences in age of ART initiation. In our study we detected intact 

sequences from children who initiated ART after 8 months of age and thus likely had a larger proportion of 

intact sequences while in the previous study, all participants initiated ART within 4 months of age and had 

no detectable intact sequences. Furthermore, the difference in viral genotypes between the two cohorts 

could have played a role. In our setting, HIV-1 subtype C predominates whereas the previous cohort was of 

subtype B infection which supports the need for representation of paediatric cohorts across different 

geographical regions as differences in viral genotypes and host factors may affect HIV persistence in children.  

We found that the majority (99%) of HIV-1 proviruses in our cohort were defective either due to large internal 

deletions or stop codons that led to hypermutation similar to what has been reported in both children and 

adults (Bruner et al., 2016; Hiener et al., 2017; Ho et al., 2013; Rainwater-Lovett et al., 2017). The large 

internal deletions are a result of template switching of the reverse transcriptase enzyme between the two 

viral RNA copies during reverse transcription (Golden et al., 2014; Temin, 1993; Zhuang et al., 2002). Reverse 

transcriptase also lacks proof reading activity which leads to errors that increase the accumulation of stop 

codons (Battula and Loeb, 1977). Furthermore, the host cell’s cytidine deaminases APOBEC3F and APOBEC3G 
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induce G to A hypermutations during the minus strand cDNA synthesis step of reverse transcription which 

render proviruses defective (Bishop et al., 2004; Harris et al., 2003; Mangeat et al., 2003). The proportion of 

intact proviruses in our cohort (1%) was similar to the 2% (Bruner et al., 2016) and 5% (Hiener et al., 2017) 

reported in adults who initiated during acute infection but distinct from the 12% reported in adults who 

initiated ART during chronic infection (Ho et al., 2013). It is not known if the children in our study were 

infected intra-uterine or perinatally. However, the three children who had intact proviruses started ART after 

8 months of age, based on clinical or CD4 criteria. Nevertheless, the proportion of intact proviruses were 

more similar to acutely treated adults than adults who initiated ART in chronic infection.  

In one child, we detected two identical intact sequences from 8 years on ART which formed a monotypic 

cluster with a sequence from 14.4 months after ART initiation. This suggests that clonal expansion of intact 

proviruses could be the mechanism that maintains the replication competent reservoir in these children. 

Similar identical sequences have been observed in adults treated during acute infection (Hiener et al., 2017).  

Furthermore, it has been shown that genetically intact clonal proviral sequences are replication competent 

in viral outgrowth assays (Bui et al., 2017; Hosmane et al., 2017; Lorenzi et al., 2017; Simonetti et al., 2016). 

These findings complicate the prospect of eradicating reservoirs in these children as latently infected cells 

can become activated and proliferate without viral antigen expression, and therefore remain hidden to the 

immune system or immune-based therapies (Bosque et al., 2011; Chomont et al., 2010; Hosmane et al., 2017; 

Wang et al., 2018). 

Our cohort consisted of 5 children who were fully suppressed on ART and 4 children who either had periods 

of ART interruption or were poorly suppressed for a brief period. All 7 intact sequences obtained in this study 

were from three children who were fully suppressed on ART, but who started ART after 8 months of life, 

whereas the children without detectable intact proviruses, started ART before 2.3 months, but had 

subsequent periods of poor suppression or therapy interruption. More sequences were obtained from the 

suppressed children than the interrupted thus intact proviruses in ART interrupted children could have been 

missed due to insufficient sampling. However, a recent study (Clarridge et al., 2018) showed that the 

proportion of intact vs defective proviruses remained the same before and after brief ART interruptions of 

about three months. In our study, some patients were interrupted for up to 3 years yet did not have 

recoverable intact proviruses. These findings corroborate previous studies showing that the largest 

proportion of the long-surviving reservoir is established before therapy initiation (Ananworanich et al., 2015; 

Archin et al., 2012; Buzon et al., 2014) with limited replenishment during periods of therapy failure (Miller et 

al., 2000) or interruption (Clarridge et al., 2018; Strongin et al., 2018). Early treatment initiation may 

therefore be the most important for reducing the reservoir size, whereas short monitored periods of 

interruption, necessary to assess the effect of curative interventions, may not have long-term effects on 

reservoirs (Clarridge et al., 2018).  
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 The fact that intact proviruses were not detected in some participants does not mean they are not present. 

During the CHER trial, all interrupted children, except one, eventually had rebound viremia regardless of how 

early ART was initiated proving that infectious virus was present (Cotton et al., 2013). The one participant 

that showed post therapy control or remission, initiated ART at 2 months, interrupted after 40 weeks and 

has maintained viral suppression for 8.5 years (Violari et al., 2019). This child was not included in our study, 

as this child was recruited at another site. It is not known if intact proviruses are present or whether control 

is due to unique immune responses. Another French child from the  ANRS EPF-CO10 paediatric cohort 

received ART from birth, interrupted after 5 years and has maintained viral suppression for over 11 years 

(Frange et al., 2016). The mechanisms of long term viral remission after early infant ART are unknown and 

warrant further investigation to understand possible host immune factors that could play a role. In contrast, 

infectious virus could be recovered from viral outgrowth assays, on samples from children who started ART 

at a median age of 8.1 weeks for up to 2 years of age(Persaud et al., 2012). In children who start earlier, 

infectious virus is often not recoverable (Bitnun et al., 2014; Luzuriaga et al., 2014), or DNA undetectable 

(Bitnun et al., 2014), suggesting a smaller reservoir size, but this does not constitute cure. Mathematical 

models (Hill et al., 2014) and studies in adult cohorts (Steingrover et al., 2008; Williams et al., 2014) suggest 

that a very small reservoir may be associated with  delayed rebound. In the case of the Mississippi baby who 

initiated therapy within 30 hours of birth, virus rebounded 27 months after therapy cessation (Luzuriaga et 

al., 2015; Persaud et al., 2013). In contrast, another infant who received immediate antiretroviral therapy, 

continued for 4 years, rebounded within 7 days of therapy interruption (Butler et al., 2015). This shows that 

the reservoir is seeded very early during infection and persists over long periods on ART despite being 

undetectable by culture and molecular methods.  

Although the quantitative viral outgrowth assay (qVOA) is considered a gold- standard for detecting 

replication competent viruses, not all intact proviruses are reactivated in cell culture and it has recently been 

reported that qVOA underestimates reservoir size by 25-fold in patients treated during acute infection and 

27-fold in chronic phase treated patients because not all genetically intact proviruses are sufficiently 

reactivated in-vitro and may require multiple rounds of stimulation (Bruner et al., 2016). Therefore, 

molecular assays such as the one used in this study provide a more sensitive estimate of the reservoir and 

are even more appropriate for paediatric studies where sample availability is often limited. There is however, 

a need for more efficient methods that can generate near-full-length amplicons and differentiate between 

intact and defective proviruses. A recent study (Bruner et al., 2019) highlights one such approach where a 

quantitative PCR assay utilises multiple probes (based on the known distribution of defects in long-term 

treated patients) to detect full-length proviruses and simultaneously differentiate between intact, 

hypermutated and defective variants. On the other hand, host and viral factors may influence the proviral 

landscape. Whereas cells with hypermutated proviruses that produce peptides through alternative splicing 

can be recognised and killed by cytotoxic T lymphocytes (CTLs), cells that do not produce HIV-1 antigen may 

preferentially survive after long term therapy (Pollack et al., 2017). It is therefore not clear if this real time 
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PCR assay would be equally valid in populations that differ by HIV-1 genotype, patient age, duration of 

treatment or having started therapy during acute or chronic HIV infection.  

4.7.2 Strengths and Limitations of the study 

To our knowledge, this is the first study to detect potentially intact HIV-1 proviruses in early treated-long 

term suppressed children through near full length single genome sequencing. The detection of identical 

intact sequences provides evidence for possible clonal expansion as the mechanism of persistence of the 

reservoir in these children. Through extensive sampling, were able to generate 738 amplicons from 9 

participants.  Our study adds to the limited data available on early treated children especially those with 

subtype C infection. 

The near full length sequencing approach did not amplify the entire HIV genome due to the lack of conserved 

primer binding sites in the LTR gene. There could have been primer binding mismatches that led to missed 

detection of some variants in these patients. Furthermore, we did not perform viral outgrowth experiments 

to prove that the intact proviruses were infectious because sample availability was limited and the assay 

requires large sample volumes for optimal sensitivity. Our study cohort consisted of only 9 participants where 

there was sufficient sample and a high enough proviral load and thus our findings may not be fully 

representative of reservoirs in long-term suppressed subtype C infected children. In addition, the NFL-PAS 

assay is cumbersome and would not be feasible in children with ultra-low proviral loads such as very early 

treated infants (Veldsman et al., 2018). Lastly, we did not sequence integration sites of the identical 

proviruses detected in this study to prove that these are expanded clones rather than homogenous variants 

that persisted from the time of infection. 

4.7.3 Conclusion  

Although rare, intact proviruses are detectable in early treated, subtype C infected children after 6-9 years. 

As is seen in adults, these proviruses are probably maintained by clonal expansion/proliferation of cells 

infected before ART initiation. We did not observe intact proviruses in interrupted children, this is likely due 

to the fact that they initiated ART earlier than the uninterrupted children.  Future work could include linking 

intact proviral sequences to CD4 T cell clones and to plasma virus that rebounds after therapy cessation or 

due to latency reversing agents. There is also a need for more efficient sequencing of long proviruses, possibly 

involving third generation sequencing platforms (Parikh et al., 2017). 
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4.8 Appendix B: Supplementary figures 

Longitudinal Viral load graphs: 
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Chapter 5  

5.1 Conclusion 

Long-lived cells that harbour dormant forms of infectious HIV are known as latent reservoirs and currently 

the major barrier to cure despite optimal ART suppression (Brooks et al., 2001; Siliciano and Greene, 2011). 

Reservoir establishment occurs early after infection and is facilitated by various host and viral factors (Baldauf 

et al., 2012; Blazkova et al., 2009; Brooks et al., 2001; Chun et al., 1998; Lenasi et al., 2008; Wang et al., 2015; 

Ylisastigui et al., 2004). The CHER randomised trial showed that early ART lead to increased survival and long 

term benefits in HIV infected South African infants (Cotton et al., 2013; Payne et al., 2015; Van Zyl et al., 

2014). Other studies have since shown that perinatally HIV infected children who initiate ART soon after 

infection have limited reservoirs with increased decay rates (Ananworanich et al., 2014; Luzuriaga et al., 

2014; Persaud et al., 2012; Veldsman et al., 2018). Furthermore, early treated children have a lower 

proportion of central memory CD4 T cells, better CD4 T cell function and lower immune activation states, 

factors that would make them good candidates for cure interventions (Adland et al., 2018; De Rossi et al., 

2002; Klein et al., 2013; Lynch et al., 2011). There is therefore a need to characterize the latent reservoir in 

this population and describe the mechanisms by which it persists during long-term ART in order to inform 

cure strategies. This study was aimed at characterising latent reservoirs in a subset of the post-CHER cohort 

who have been maintained on long-term suppressive ART.  

In chapter two we investigated the size of the persisting reservoir by quantifying cell associated DNA (CAD) 

as a biomarker in 16 post-CHER children. To do this, a previously described highly sensitive CAD assay was 

adapted for HIV-1 subtype C (Hong et al., 2016). Its implementation involved the preparation of a real-time 

PCR standard and optimization of real-time PCR conditions on the Bio-Rad CFX 96 platform. This was followed 

by quantification of CAD in patient PBMC samples after 6-9 years on ART. Participants were divided into three 

categories based on the age at which at which ART was initiated (0-3 months / 3-8 months and 9-18 months). 

We found overall that the CAD loads were low (ranging from 0 copies/106 PMBC to 186.2 copies/106 with a 

median CAD value of 22.45 copies/106) in the 16 participants who initiated ART within the first 18 months of 

life. However, where others have found lower CADs in children who start ART earlier than 2-3 months 

(Martínez-bonet et al., 2015; Van Zyl et al., 2014), we did not see a significant difference in the three 

treatment categories in our study. This could have been due to some of the earlier treated patients having 

had periods of poor ART suppression where viral replication likely replenished the reservoir.   

We found that the amount of viral replication over time on therapy (calculated as ‘area under log viral load 

curve’) was significantly associated with CAD levels, further showing that unsuppressed viral replication leads 

to increased reservoir size and highlighting the importance of early and good adherence to ART in perinatally 

infected children. However, qPCR approaches detect both intact and defective proviruses and thus over-
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estimate the reservoir by over 300-fold (Eriksson et al., 2013; Ho et al., 2013). Due to limited sample 

availability, we were unable to assess reservoir size using the gold-standard viral outgrowth assay. 

We also investigated whether there is genetic evolution in the reservoir over time in long term ART 

suppressed children. Our findings allowed us to contribute to an ongoing debate in the field on whether the 

reservoir is maintained by ongoing viral replication in tissues sanctuaries where ART penetration is sub-

optimal and resulting in the low level viremia typically seen in well treated patients. The fact that the children 

were early treated provided a low background genetic diversity which would be ideal to detect any evidence 

of viral evolution over time. We selected eight children who had been fully suppressed on ART since initiation 

and two children who had earlier periods of poor suppression; this allowed us to draw comparisons. We 

performed single genome sequencing in each participant and compared sequences from two time points, 

one close to ART initiation and another after 6-9 years on ART. We then utilised 3 sensitive tests for evolution 

i.e (i) average pairwise distance (APD) to determine intra-patient population diversity, (ii) panmixia to look 

for probability of shifts in viral population structure and (iii) maximum likelihood (ML) root-to-tip distances 

to detect emergence of new viral populations. With all three tests, no significant change in intra patient 

diversity, shifts in viral population structure or emergence of new viral populations were detected in the eight 

fully suppressed children whereas significant changes were observed in the two partially suppressed children. 

We were thus able to show that in well-suppressed children, ART prevents cycles of ongoing replication that 

could replenish the reservoir. Our findings are supported by a recent study in adults where similar methods 

were used to show no significant difference in viral populations before and after ART interruption (Kearney 

et al., 2014). Furthermore, it has been shown that treatment intensification with an addition of a third drug 

has no effect on low level viremia (Dinoso et al., 2009; Gandhi et al., 2012; McMahon et al., 2010; Rasmussen 

et al., 2018). These findings once again highlight the benefits of early, fully suppressive ART in preventing the 

development of phylogenetically diverse reservoirs that would further complicate cure efforts. The detection 

of identical single genome sequences on neighbour-joining phylogenetic trees of each participant pointed to 

clonal expansion rather than ongoing viral replication as the possible means by which the reservoir persists 

despite effective ART. This was further investigated in chapter 3.  

It has been established in the field, that latently infected cells have the capacity to clonally expand and 

maintain the reservoir over time on ART (Simonetti et al., 2016). There has also been recent evidence that 

intact proviruses are present in clonally expanded cells (Einkauf et al., 2019).The monotypic sequences we 

detected in chapter 2 were likely evidence of expanded clones. However, since most children were treated 

early and long-term suppressed, we could not exclude the possibility that identical sequences were a result 

of homogenous viral populations that persisted from the pre-therapy era. We performed integration site 

analysis (ISA) to detect expanded clones in samples close to ART initiation and after 6-9 years on therapy. 

Because HIV infected cells in our participants were rare in a high background of negative cells, we sequenced 

patient specific U3 and U5 LTR regions for each of the 12 participants to increase the specificity of the ISA 
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assay. ISA involved the random fragmentation of cellular DNA, ligation of a linker and then amplification using 

linker specific primers followed by Miseq Illumina sequencing.  

ISA detected clones in pre-ART samples of 6 participants who started as early as 2 months of age showing 

that the latent reservoir begins to expand even before ART is initiated. The recent case of an infant who was 

treated within hours of birth but eventually had viral rebound after ART interruption further illustrates the 

early infection of long-lived cells and possible rapid clonal expansions soon after (Luzuriaga et al., 2015; 

Persaud et al., 2013). We also found an increase in the proportion of integration sites that formed part of 

clones across the two time points possibly a combination of the decay of shorter lived cells (Ananworanich 

et al., 2016; Besson et al., 2014) and expansions turned on by antigenic or homeostatic stimuli (Chomont et 

al., 2010; Wang et al., 2018). Although ISA is high throughput, it is a relatively insensitive assay that detects 

the most expanded clones in a sample and likely gives a conservative estimate of clonal expansions. 

Additionally, it has been shown that clones wax and wane over time on ART (Wang et al., 2018). We therefore 

could not rule out that single integrations were part of clonal populations not detected by the assay.  

We were limited in our ability to link integration sites with proviral intactness as the ISA assay provides only 

a few bases of the proviral genome sequence. We therefore could not show the extent to which clonal 

expansions maintain the replication competent reservoir. This highlights the need for more efficient methods 

that can detect rare clones and link integration sites to full length viral genomes to ascertain intactness. It 

has however been shown elsewhere, that the majority of replication competent proviruses are part of clonal 

populations (Bui et al., 2017) and a recent mathematical model further estimates that after 1 year on ART, 

more than 99% of infected cells are part of clonal populations (Reeves et al., 2018). 

A recent study in adults who initiated ART during acute infection showed that 98% of proviruses are defective 

due to stop codons, hypermutations and large internal deletions that arise during reverse transcription 

(Bruner et al., 2016). In another study, no intact proviruses were detected out of 164 sequences from a cohort 

of early treated children (Rainwater-Lovett et al., 2017). Chapter 4 of this study aimed to describe the proviral 

landscape in children from the post-CHER cohort using near full length single genome sequencing (NFL-PAS). 

Following assay validation, we generated 738 near full length sequences from 9 children and found that intact 

proviruses were detectable in children who initiated ART after 2.3 months of age and similar to acutely 

treated adults, 99% were defective. We also detected identical intact sequences in one participant and 

although we did not obtain integration sites, it is likely that these were part of an expanded clone that 

persisted over long-term ART. The participants who initiated ART before 2.3 months, had later periods of ART 

interruption yet no detectable intact proviruses after long-term ART, supporting that the largest proportion 

of the reservoir is established before ART is initiated (Ananworanich et al., 2015; Buzon et al., 2014a) and 

short analytical treatment interruptions may not significantly affect reservoir size (Clarridge et al., 2018). Our 

findings show that intact proviruses in early treated children are rare and point to a need for sensitive 
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methods that can quantitatively differentiate between intact and defective proviruses similar to what has 

recently been described (Bruner et al., 2019). 

Altogether, this study showed that early therapy and long-term suppression in children leads to limited 

reservoir size and genetic diversity, factors that are favourable for cure interventions. In well-suppressed 

individuals, the reservoir appears not to be maintained by ongoing viral replication but rather clonal 

expansion that begins even before therapy is initiated. Furthermore, although a large proportion of proviral 

DNA in long-term suppressed children is defective, genetically intact variants are detectable in some patients 

and most likely form part of expanded clones. Clonal expansion appears to be the main mechanism that 

drives persistence of the latent reservoir in early treated, long-term suppressed children. This suggests the 

need for novel approaches that target HIV reservoirs by reducing proliferation of cells that harbour intact 

and replication competent proviruses in order to reduce the reservoir size. It has yet to be seen whether such 

approaches could result in SIV/HIV reservoir reduction in pre-clinical studies when used in isolation or 

combined with other interventions before this can be considered for clinical studies.  
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