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Abstract 

 

Background: The assignment of radiation weighting factors to high energy neutron 

sources is important as there is reason to believe that neutron relative biological 

effectiveness (RBE) may be related to the inherent radiosensitivity of different 

individuals. A study was undertaken to quantify the inherent radiosensitivities of 

lymphocytes obtained from different donors to 60Co γ-rays and p(66)/Be neutrons. 

For this a novel semi-automated image analysis process has been employed. In 

addition the responses of lymphocytes with different inherent radiosensitivities have 

also been tested using Auger electrons emitted by 123I. 

 

Methods: The RBE of neutrons was determined from dose-response curves for 

lymphocytes from different donors. Isolated T-lymphocytes irradiated in vitro were 

cultured to induce micronuclei in binucleated cells and micronuclei (MN) formations 

numerated using a semi-automated Metafer microscope system. The accuracy in 

obtaining dose response curves with this method has been tested by evaluating 

dispersion parameters of MN formations in the response to the different treatment 

modalities. Differences in the inherent radiosensitivities of cells from different donors 

were ascertained using 95 % confidence ellipses. [123I]Iododeoxyuridine was 

prepared in a formulation that allows incorporation of 123I into the DNA of 

lymphocytes. Micronucleus formations to this treatment were evaluated in 

lymphocytes with established differences in inherent radiosensitivities.  

 

Results: The image analysis system proved to be consistent in detecting micronuclei 

frequencies in binucleated lymphocytes. As a result, differences in the inherent 

radiosensitivities of different individuals were distinctive and could be stated at the 

95% confidence level. The inter-individual radiosensitivity variations were 

considerably smaller for blood cells exposed to high energy neutrons compared to 

60Co γ-rays. Relative biological effectiveness (RBEM) values between 2 and 13 were 

determined that are highly correlated with the inherent radioresistance of 

lymphocytes obtained from different individuals. As such radiation weighting factors 

for high energy neutrons cannot be based on cytogenetic damage determined in 

lymphocytes from a single donor. Dispersion parameters for micronuclei formations 
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proved to vary according to ionization density. The variation in RBE with neutron 

dose changed according to theoretical considerations and automated image analysis 

detection of MN is thus a suitable method to quantify radiation weighting factors. 

 

A clear reduction in the variation in radiosensitivity is noted for lymphocytes exposed 

to Auger electrons compared to 60Co γ-rays. The effectiveness of Auger electrons 

from [123I]IUdR to induce biological damage is demonstrated as the number of 

disintegrations needed to yield micronuclei formations was found to be more than 

two orders of magnitude less than that of other compounds. An increase in the RBE 

of Auger electrons with radioresistance can be inferred from these findings and 

constitutes a basis for therapeutic gain in treating cells compared to using 

radioisotopes emitting low-LET radiation. 
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Opsomming 

 

Agtergrond: Die bepaling van straling gewigsfaktore vir hoë energie neutron bronne 

is belangrik, aangesien daar rede is om te glo dat die relatiewe biologiese 

effektiwiteit (RBE) kan verband hou met die inherente stralings sensitiwiteit van 

verskillende individue. Hierdie studie is onderneem om die inherente 

radiosensitiwiteit van limfosiete verkry vanaf verskillende skenkers te kwantifiseer na 

blootstelling aan 60Co γ-strale en p(66)/Be neutrone. Vir hierdie doel is daar van 'n 

semi-outomatiese beeldontleding metode gebruik gemaak. Daarbenewens is die 

reaksie van limfosiete met vooraf bepaalde inherente radiosensitiwiteite ook getoets 

aan die hand van Auger elektrone wat uitgestraal word deur 123I. 

 

Metodiek: Die RBE van neutrone was bepaal uit dosis mikrokerne frekwensie 

verwantskappe verkry vir limfosiete. Geïsoleerde T-limfosiete was in vitro bestraal en 

gekweek om mikrokerne te vorm in dubbelkernige selle. Die mikrokerne was 

gekwantifiseer deur die gebruik van 'n semi-outomatiese Metafer mikroskoop stelsel. 

Die akkuraatheid in die verkryging van dosis-effek krommes met hierdie metode is 

getoets deur die ontleding van verspreidings parameters van MN vorming in reaksie 

op behandeling met die verskillende stralings modaliteite. Verskille in die inherente 

stralingsensitiwiteite van die selle van verskillende skenkers was vasgestel deur die 

konstruksie van 95 % betroubaarheidsinterval ellipse. [123I]Iododeoxyuridine was ook 

berei om 123I in die DNA van limfosiete in te bou. Die mikrokerne vorming op die 

behandeling is beoordeel in limfosiete met gevestigde verskille in inherent 

radiosensitiwiteite. 

 

Resultate: Die beeld analise stelsel bewys om konsekwent te wees in die opsporing 

van mikrokerne wat vorm in dubbelkernige limfosiete. Verskille in die inherente 

radiosensitiwiteite van verskillende skenkers kon vasgestel word op die 95 % 

betroubaarheidsvlak. Die skommeling in inter-individuele stralings sensitiwiteite was 

kleiner vir bloed selle blootgestel aan hoë-energie neutrone in vergelyking met 60Co 

γ-strale. Relatiewe biologiese effektiwiteit (RBEM) waardes tussen 2 en 13 is bepaal 

wat sterk verband hou met die inherente radioweerstandbiedendheid van limfosiete 

verkry vanaf verskillende persone. As sodanig kan straling gewigsfaktore vir hoë 
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energie neutrone nie gebaseer word op sitogenetiese skade in limfosiete van 'n 

enkele skenker nie. Verspreidings parameters vir mikrokern vorming het gewissel as 

‘n funksie van ionisasiedigtheid van die straling. Die verandering in RBE met neutron 

dosis verloop volgens teoretiese oorwegings en die semi-outomatiese 

beeldontledings metode om mikrokerne op te spoor is dus geskik om stralings 

gewigsfaktore te kwantifiseer. 

 

'n Duidelike afname in die verandering in die stralingsensitiwiteite is waargeneem vir 

limfosiete blootgestel aan Auger elektrone in vergelyking met 60Co γ-strale. Die hoë 

doeltreffendheid van Auger elektrone afkomstig van [123I]IUdR om biologiese skade 

te veroorsaak, word weerspieël deur die feit dat die getal disintegrasies wat nodig is 

om mikrokerne te vorm meer as twee ordes grootte minder is as dié van ander 

verbindings. 'n Toename in die RBE van Auger elektrone in selle wat 

radioweerstandbiedend is kan afgelei word uit hierdie bevindinge. Dit vorm 'n basis 

vir terapeutiese wins in die behandeling van selle in vergelyking met die gebruik van 

radio-isotope wat lae ionisasie digthede tot stand bring. 
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Chapter 1 

 

Introduction 

 

The biological effects of ionizing radiation are determined by both the radiation dose 

and the radiation quality (ionization density). To understand the radiation protection 

concerns associated with different types of ionizing radiation, knowledge of both the 

extent of exposure and consequent macroscopic absorbed dose, measured in gray, 

as well as the microscopic dose distribution of the radiation modality is required. The 

definitions of these variables are discussed below but in general to advance the 

knowledge of the biological effects of different radiation types one needs to know the 

dose absorbed, the radiation quality and effectiveness of a particular radiation type.  

 

In this study the biological effect of high energy neutrons was compared to that of a 

reference radiation type 60Co γ-rays for cells obtained from a cohort of donors, 

mostly radiation workers. Comparisons were made at different dose levels in blood 

cells from each donor to ascertain the relative biological effectiveness of the test 

radiation modality against that of a reference radiation (Lam, 1990). Such studies are 

essential to determine the radiation quality for high energy neutron sources 

applicable to practises in radiation protection.  

 

In some nuclear medicine applications radionuclides are used to treat malignant 

disease. For this the use of short lived alpha particle emitters or other radiation 

modalities that deliver high ionization densities in cells, are particularly attractive. 

These modalities are used as the cellular response in relation to inherent 

radiosensitivity of the effected cells is thought to be more consistent compared to the 

use of radionuclides that emit radiation with a lower ionization density e.g. β-

particles. The relative biological effectiveness of the high energy neutrons used in 

this study was tracked as a function of the inherent radiosensitivity of different 

individuals. This allows the identification of cell populations that are relatively 

sensitive or relatively resistant to radiation. Furthermore Auger electron emitting 

radionuclides, known to induce biological damage comparable to that of alpha 
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particles, are available at iThemba LABS; hence variations in the inherent 

radiosensitivity of cells obtained from different individuals were evaluated. 

 

A short description of the physical and biological variables applicable to this study is 

summarised below.  

 

Ionizing Radiation 

 

Ionizing radiation refers to both uncharged particles (e.g., photons or neutrons) and 

charged particles (e.g., electrons or protons) that can deliver enough energy to 

atoms and molecules to cause ionizations. Ionization produced by particles is the 

process by which one or more electrons are removed from atoms or molecules in 

collisions with the particle (ICRU, 2011).  

 

Interaction of Ionizing Radiation with Matter 

 

The effects of ionizing radiation are not limited to ionization events. Other physical 

and chemical effects in matter such as: heat generation, excitation of atoms and 

molecules, destruction of chemical bonds, atomic displacements and nuclear 

reactions may occur. The effects of ionizing radiation on matter depend on the type 

and energy of radiation, the absorbing medium and the irradiation conditions (ICRU, 

2011).  

 

Radiation can be categorized in terms of how it induces ionizations: 

• Directly ionizing radiation, consist of charged particles such as electrons, 

protons and alpha particles.   

• Indirectly ionizing radiation consists of neutral particles such as neutrons 

and/or electromagnetic radiation such as photons (γ-rays and X-rays).  

 

Ionising radiation interacts with matter by: 

• Interaction with the electron cloud of the atom, or by 

• Interaction with the nucleus of the atom. 
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Types of Ionizing Radiation Used In This Study 

 

Ionizing Photons 

 

Ionizing photons (X- and γ-rays) are categorised as indirectly ionising radiation. X- 

and γ-rays have zero rest mass and carry no electrical charge. Low energy photons 

with quantum energy less than the rest mass of two electrons (E<2m0c
2), only 

interact with orbital electrons and give rise to fast moving secondary electrons 

(Grosswendt, 1999). The photons can be absorbed in photo-electric interactions or 

scattered and knock out atomic electrons in the process known as Compton scatter. 

If the energy of the incident photon exceeds 1.02 MeV the probability to create a pair 

of β- β+ particles in the pair production process dominates. Photons with very high 

energy (E>>2m0c
2) may be absorbed by atomic nuclei and initiate nuclear reactions 

(Cember, 1969). The charged electrons emitted from the atoms, produce the 

excitation and ionisation events in the absorbing medium.  

 

Neutrons 

 

Neutrons are similar to ionizing photons in that they are indirectly ionizing. There is 

negligible interaction between neutrons and the electron cloud of atoms since 

neutrons do not have a net electrical charge (Henry, 1969). The principle interactions 

of these particles occur through direct collisions with atomic nuclei of the absorbing 

medium during elastic scattering events. In this process, ionization is produced by 

charged particles such as knock-on-protons recoil nuclei and nuclear reaction 

products. The production of secondary ionizing photons will result in the release of 

energetic electrons. In turn the secondary charged particles can deposit energy at a 

significant distance from the interaction sites (Pizzarello, 1982).  

 

Auger Electrons 

 

Auger electron emission is an atomic and not a nuclear process. In this process an 

electron is ejected from an orbital shell of the atom. Following electron capture (EC) 
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or internal conversion (IC) the atom is left with a vacant state in its electron 

configuration. An electron from a higher energy shell may drop into the vacant state 

and the energy difference will be emitted as a characteristic X-ray (Cember, 1969). 

The energy of the X-ray (EX-ray) being the difference in energy (E) between the two 

electron shells L and K. 

EX-ray = EL –EK 

 

Alternatively, the energy may be transferred to an electron of an outer shell, causing 

it to be ejected from the atom (Fig. 1.1). The emitted electron is known as an Auger 

electron and similarly to the X-ray has energy: 

 

EAuger = E∆ –EB 

 

where:  E∆ = the energy of inner-shell vacancy - energy of outer-shell vacancy 

  EB = binding energy of emitted (Auger) electron  

 

Auger electron emission is favoured for low-Z materials (e.g. 123I) where electron 

binding energies are small. Auger electrons have low kinetic energies; hence travel 

only a very short range in the absorbing medium (Cember, 1969). 

 

 

Figure 1.1: Schematic representation of the Auger electron emission process, where 

an orbital electron is ejected following an ionization event (Cerruti, 2011).  
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Dosimetric Quantities 

 

Several dosimetric quantities have been defined to quantify energy deposition in a 

medium when ionizing radiation passes through it. Radiation fields are well 

described by physical quantities such as particle fluence or kerma in air. However 

these quantities do not describe the effects of exposure to ionizing radiation on 

biological systems (ICRP, 2007).  

 

Absorbed dose (D) is used to quantify energy deposition by any type of radiation in 

any absorbing material. The International System of Units (SI) of absorbed dose is 

joule per kilogram (J.kg-1) and is termed the gray (Gy).  

 

Absorbed dose is defined as the quotient of the energy (dε) imparted by ionising 

radiation to matter with mass (dm) (Cember, 1969). 

 

�	 = 	 ���� 

 

Absorbed dose quantitatively describes the energy imparted per unit mass absorbing 

medium. This value is linked to the level of biological damage to cells or tissue but 

only within a specific radiation type. To connect the quantity, absorbed dose, to 

biological damage induced to biological systems by ionizing radiation, the radiation 

weighted dose (HT) is used. It is calculated as: 

 

�� =		
���,�
�

 

 

where DT,R is the absorbed dose in a tissue T due to radiation of type R and wR is the 

corresponding dimensionless radiation weighting factor for the specific radiation 

quality.  

 

The unit of radiation weighted dose is J.kg-1 and is named the sievert (Sv). Radiation 

weighting factors are recommended by the International Commission on Radiological 
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Protection (ICRP, 2007) and are derived from studies on the effect of the micro-

deposition of radiation energy in tissue and on its carcinogenic potential.  

 

Linear Energy Transfer   

 

Ionizing radiation deposits energy in the form of ionizations along the track of the 

ionizing particle. The spatial distribution of these ionization events is related to the 

radiation type. The term linear energy transfer (LET) defines the average rate at 

which charged particles deposit energy in the absorbing medium per unit distance 

(keV/µm). LET is regarded as a realistic measure of radiation quality (Duncan and 

Nias, 1977). 

 

LET of charged particles in an absorbing medium is defined as the quotient of dE/dl 

where dE is the energy deposited in the absorbing medium by a charged particle 

with defined energy over a distance dl (Pizzarello, 1982). 

 


�� =	����  

 

For high energy photons, fast electrons are ejected when these interact with the 

absorbing medium. The primary ionization events along the track of the ionizing 

particle are well separated. This type of sparsely ionizing radiation is termed low-LET 

radiation. The LET of a 60Cobalt teletherapy source (1.3325 and 1.1732 MeV) is in 

the range of 0.24 keV/µm (Vral et al., 1994).   

 

Neutrons cause the emission of recoil protons, alpha particles and heavy nuclear 

fragments during scatter events. These charged particles interact more readily with 

the absorbing medium and cause densely spaced ionizing events along its tracks. 

The p(66)/Be neutron beam used in this study has an average ionization density of 

20 keV/µm and hence is regarded as high-LET radiation (Slabbert et al., 1989).  

 

Auger electrons emitted by 123I travel very short distances, just a few nanometres, in 

the absorbing medium due to their low kinetic energies of a few hundred electron 
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volt. All the energy of these particles is liberated in small volumes over short track 

lengths. Ionization densities are therefore very high; up to 40 keV/µm which is 

comparable to high-LET alpha particles (Goddu et al., 1994). 

  

Relative Biological Effectiveness  

 

The degree of damage caused by ionizing radiation depends on the absorbed dose 

and on the radiation quality. Variances in the biological effects of different radiation 

qualities can be described in terms of the relative biological effectiveness (RBE). 

RBE defines the magnitude of biological response for a certain radiation quality 

compared to a distinct reference radiation. It is expressed in terms of the ratio (Luu 

and DuChateau, 2009): 

  

	��� = Dose�reference	radiation 	to	attain	a	given	level	of	biological	damage	for	an	endpoint
Dose�test	radiation 	to	achieve		the	same	level	of	biological	damage		for	the	same	endpoint	

 

60Co γ-rays is often used as the reference radiation.  

 

Therefore, for the same dose neutrons will produce more biological damage 

compared to 60Co γ-rays. The essential difference between these radiation 

modalities is in the micro deposition of energy. Furthermore, RBE varies as a 

function of the dose applied. An increase in RBE is noted for a decrease in dose. By 

evaluating dose response curves (Fig. 1.2), it is evident that the shoulder of the 

neutron curve is much less pronounced compared to the reference radiation curve. 

As such changes in the RBE of a test radiation are prominent at low doses (Hall and 

Giaccia, 2005). 
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Figure 1.2: Dose response curves based on the linear quadratic model demonstrate 

differences in RBE as a function of dose (Hall and Giaccia, 2005). 

 

Evaluation of the shape of dose/biological effect curves shows that the RBE for a 

specific radiation quality is dose dependant. The RBE increases with a decrease in 

dose, to reach a maximum RBE denoted RBEM. This is calculated from the ratio of 

the initial slope of the dose response curves for both radiation modalities. 

 

RBE is further influenced by the type of tissue or cells in which it is evaluated. Also 

this variable is determined by dose rate, oxygen status, the phase of the cell cycle 

and inherent radiosensitivity of cells. These factors influence the level of biological 

damage more in the reference radiation compared to that following exposure to the 

test radiation. As a result these factors influence the relative biological effectiveness 

of the test radiation. 

 

RBE LET Relationship 

 

With an increase in ionization density a specific dose of radiation is absorbed in cells 

using fewer tracks. In any track the number of ionizing events per unit distance 

increases with LET. Thus the probability of direct interaction between the particle 

track and target molecules in cells increases with ionization density. 
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The RBE of radiation can be correlated with the estimates of LET values. Below 10 

keV/µm the RBE value is constant (Barendsen, 1968). However, when the LET 

exceeds 10 keV/µm it is no longer possible to assign a single value for RBE. Beyond 

this LET, the shapes of cell survival curves changes markedly with the result that 

RBE values increase systematically up to 100 keV/µm.  

 

The average separation in ionizing events at a LET of 100 keV/µm is about equal to 

the width of deoxyribonucleic acid (DNA) double strand molecule (Fig. 1.3). Further 

increase in LET results in a decrease in RBE, since ionizing events occur at smaller 

intervals than the separation distance between the DNA molecule strands. Thus the 

additional energy imparted is effectively wasted and does not contribute to DNA 

damage. 

 

 

 

Figure 1.3: Average spatial distribution of ionizing events for different LET values in 

relation to the DNA double helix structure (Hall and Giaccia, 2005). 

 

Cellular Radiosensitivity 

 

In general cells in tissue that are more sensitive to radiation include those that are  

rapidly dividing (high mitotic activity), cells with a long dividing future (stem cells) and 

cells of an unspecialised type. 
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Ancel and Vitemberger later adapted the “law” of Bergonie and Tribondeau. They 

established that radiation damage was governed by two factors:  

• the biological stress on the cell. 

• pre and post irradiation conditions to which the cell is exposed.  

 

A comprehensive system of classification of radiosensitivity was proposed by Rubin 

and Casarett in which cell populations were grouped into 4 categories based on the 

reproduction kinetics:  

• Vegetative intermitotic cells were defined as rapidly dividing undifferentiated 

cells. These cells usually have a short life cycle. For example: erythroblasts 

and intestinal crypt cells and are very radiosensitive. 

• Differentiating intermitotic cells are characterized as actively dividing cells with 

some level of differentiation. Examples include: myelocytes and midlevel cells 

in maturing cell lines, these cells are radiosensitive. 

• Reverting postmitotic cells do not divide regularly and are generally long lived. 

Liver cells is an example of this cell type, these cell types exhibit a degree 

radioresistance. 

• Fixed postmitotic cells do not divide. Cells belonging to this classification are 

regarded as being highly differentiated and highly specialized in both 

morphology and function. These cells are replaced by differentiating cells in 

the cell maturation lines and are regarded as the most radioresistant cell 

types.  Nerve and muscle cells are prime examples (Hall and Giaccia, 2005). 

 

Thus according to the above classifications undifferentiated rapidly dividing cells are 

most radiosensitive. 

 

Cell Cycle Dependent Radiosensitivity 

 

As cells progress through the cell cycle various physical and biochemical changes 

occur (Fig. 1.4). These changes influence the response of cells to ionizing radiation. 

In general following the law of Bergonie and Tribondeau which states that cells with 

high mitotic activity are most radiosensitive. Cells in the mitotic phase (M-phase) of 
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the cell cycle are most radiosensitive. Late stage gap 2 (G2-phase) cells are also 

very sensitive with gap 1 (G1-phase) being more radioresistant and synthesis (S-

phase) cells the most radioresistant (Domon, 1980).  

 

 

Figure 1.4: Schematic representation of the cell cycle. The G0 resting phase for cells 

that do not actively proliferate is also shown since T-lymphocytes in their normal 

state are non-proliferating (Hall and Giaccia, 2005). 

 

Non-proliferating cells may enter the rest phase G0 from G1 and remain inactive for 

long periods of time. Peripheral blood T-lymphocytes rarely replicate naturally and 

remain in G0 indefinitely. 

 

Lymphocyte Radiosensitivity 

 

The hematopoietic system is very sensitive to radiation. Differential blood cell counts 

are routinely employed as a measure of radiation exposure. These measurements 

are based on the sensitivity of stem cells and the changes observed in the 

constituents of peripheral blood due to variations in transit time from stem cell to 

functioning cell (Hall and Giaccia, 2005).  

 

It has been shown that lymphocytes do not meet the criteria of a radiation sensitive 

cell type. Lymphocytes are resting cells (G0 phase) that do not actively proliferate nor 

do they have a long dividing future. Even so these cells are sensitive to radiation but 

the reasons for this are not fully explained (Hall and Giaccia, 2005). 
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T-lymphocytes have two distinct subpopulations with different inherent 

radiosensitivity. CD 8 cells are generally more sensitive than CD 4 cells (Kataoka 

and Sado, 1974, Knox et al., 1982). 

 

Cytogenetic Expression of Ionizing Radiation Induced Damage  

 

The primary target for ionizing radiation is the double helix deoxyribonucleic acid 

(DNA) molecule (Burdak-Rothkamm and Prise, 2009). This macro molecule contains 

the genetic code which is critical to the development and functioning of most living 

organisms. The DNA molecule consists of two strands held together by hydrogen 

bonds between the bases. Each strand is made up of four types of nucleotides. A 

nucleotide consists of a five-carbon sugar (deoxyribose), a phosphate group and a 

nitrogen containing base. The nitrogen containing bases are adenine, guanine, 

thymine or cytosine. Base pairing between two nucleotide strands is universally 

constant with adenine pairing with thymine and guanine with cytosine (Fig. 1.5). This 

attribute permits effective single strand break repair since the opposite strand is used 

as a template during the repair process. The base sequence within a nucleotide 

strand differs; the arrangement of bases defines the genetic code. The double helix 

DNA molecule is wound up on histones and bound together by proteins to form 

nucleosomes. This structure is folded and coiled repeatedly to become a 

chromosome.  
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Figure 1.5: The double helix structure of a DNA molecule consists of two nucleotide 

strands held together by hydrogen bonds between the bases (Hall and Giaccia, 

2005). 

 

Ionizing radiation can either interact directly or indirectly with the DNA strand. When 

an ionization event occurs in close proximity to the DNA molecule direct ionization 

can denature the strand. Ionization events that occur within the medium surrounding 

the DNA produce free radicals such as hydrogen peroxide through radiolysis of 

water. Damage induced by ionizing radiation to the DNA include base damage (BD), 

single strand breaks (SSB), abasic sites (AS), DNA-protein cross-links (DPC), and 

double strand breaks (DSB) (Fig. 1.6).  
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Figure 1.6: Examples of several radiation induced DNA lesions (IAEA, 2011). 

 

More than one track of low-LET radiation is generally required to induce a double 

strand break. High-LET radiation damage is dominated by direct interactions with the 

DNA molecule producing double strand breaks within a single track. Densely ionizing 

radiation has a greater probability to induce irreparable or lethal damage. 

 

Several techniques to quantify chromosomal damage and chromatid breaks have 

been established. These range from isolating DNA and passing it through a porous 

substrate or gel by applying an external potential difference to advanced techniques 

of visually observing and enumerating chromosomal aberrations of interphase cells 

(IAEA, 2011).  

 

Cytogenetic chromosome aberration assays for peripheral blood lymphocytes 

include premature chromosome condensation (PCC), metaphase spread dicentric 

and ring chromosome analysis (DCA), metaphase spread fluorescence in situ 
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hybridisation (FISH) translocation detection and cytokinesis blocked micronuclei 

(CBMN) counting (Fig. 1.7).  

 

 

 

 

Figure 1.7: Different cytogenetic assays on peripheral T-lymphocytes for use in 

biological dosimetry (IAEA, 2011). 

 

PCC involves the use of a fusing technique of interphase cells with mitotic cells. The 

fusion causes interphase cells to prematurely condense chromosomes. This 

happens within hours of exposures and chromosomal aberrations can thus be 

analysed immediately following irradiation without the need for mitogen stimulation or 

cell culturing.  

 

Enumeration of dicentrics in metaphase spreads has been used with great success 

to assess radiation damage in lymphocytes since the 1960’s (Vral et al., 2011). The 

incidence of these aberrations follows a linear quadratic response with respect to the 

dose. Unstable aberrations like dicentrics or centric rings are lethal to the cell hence 

do not passed on to daughter cells. By contrast translocations are stable aberrations 

that are not lethal to the cell and can be passed on to daughter cells. Examination of 

translocations thus provides a long term history of exposure to ionizing radiation. 
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Although the abovementioned techniques are very accurate and well described, the 

complexity and time consuming nature of the assays has stimulated the 

development of automated methods to measuring chromosomal damage.  

 

Micronuclei (MN) formation in peripheral blood T-lymphocytes lends itself to 

automation, since the outcome of radiation damage is visually not too complex with 

limited variables. DNA damage incurred from ionizing radiation or chemical 

clastogens cause the formation of acentric chromosome fragments. The acentric 

chromosome fragments and whole chromosomes that are unable to engage with the 

mitotic spindle lag behind during anaphase (IAEA, 2011). Micronuclei originate from 

these acentric chromosome fragments or whole chromosomes which are excluded 

from the main nuclei during the metaphase/anaphase transition of mitosis. The 

lagging chromosome fragments or whole chromosomes form a small separate 

nucleus visible in the cytoplasm of cells.  

 

Image recognition software can thus be more readily employed to quantify radiation 

damage. This requires the use of image classifiers that describe cell size, staining 

intensity, cell separation, aspect ratio and cell characteristics.  

 

Rationale for This Study  

 

The principal objective of this study was to define RBE variations for high-LET 

radiation with respect to radiosensitivity in human lymphocytes. Specifically this was 

done for very high energy neutrons and Auger electrons. The study was relevant as 

the relationship between neutron RBE and radiosensitivity of cells was unclear.  

 

In general the response of different cell types varies much more to treatment with 

low-LET radiation compared to high-LET radiation (Broerse and Barendsen, 1973). 

Radiosensitivity differences have been demonstrated for different cancer cell lines 

(Slabbert et al., 1996) as well as various other clonogenic mammalian cells (Hall and 

Giaccia, 2005) exposed to both high and low-LET radiation. In general there is an 

expectation and in certain cases some experimental evidence to support less 

variations in radiosensitivities of cells to high-LET radiation. Furthermore the ranking 
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in the relative radiosensitivity of cell types differs for neutron treatments compared to 

exposure to X-rays (Broerse and Barendsen, 1973). 

 

To quantify the radiation risk of individuals exposed to cosmic rays or mixed radiation 

fields of neutrons and γ-rays, several experiments were conducted to ascertain 

biological damage induced by neutron beams of various energies (Nolte et al., 

2007). Clonogenic survival data (Hall and Giaccia, 2005), dicentric chromosome 

aberrations (Heimers, 1999) and micronuclei formation (Slabbert et. al 2010) have 

been followed. Chromosome aberration frequencies have been quantified which 

allow estimation of radiation risk from neutrons with energies ranging from 36 keV up 

to 14.6 MeV (Schmid et al., 2003). To complement these studies additional 

measurements have been made for blood cells exposed to 60 MeV (Nolte et al., 

2005) and 192 MeV (Nolte et al., 2007) quasi monoenergetic neutron beams. 

Comparisons of RBE values obtained in these studies are shown in Fig. 1.8. 

Significant changes in the maximum relative biological effectiveness (RBEM) of these 

neutron sources are demonstrated as a function of neutron energy, with a maximum 

value of 90 at 0.4 MeV. RBEM drops to approximately 15 for neutron energies higher 

than 10 MeV and it appears that the RBEM remains constant up to 200 MeV. The 

RBEM values of 47 to113 reported by Heimers, (1999) are not consistent with these 

observations. 

 

 

Figure 1.8: RBEM values for neutrons of different energies (Nolte et al., 2007).   
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The data shown in Fig. 1.8 was obtained by using the blood cells of a single donor. 

This was to ensure consistency in the biological response for different neutron 

energies used in different radiation facilities in different parts of the world. Keeping 

the donor constant has the advantage that only a single data set for the reference 

radiation was needed. These measurements were done over several years. In all 

these studies, dicentric chromosome aberrations were followed. As informative as 

these investigations may be, it is doubtful if RBE values obtained from blood 

samples from a single donor are indeed representative for the wider population to 

state radiation weighting factors. 

 

It is unclear if RBE values for high energy neutrons will vary when measured with 

cells with different inherent radiosensitivities. Warenius et al. (1994) demonstrated 

that the RBE of a 62 MeV p+/Be neutron beam increases with an increase in 

radioresistance to 6 MV X-rays. Similarly Slabbert et al. (1996) using a p(66)/Be 

neutron with an average energy of 29 MeV, noted a statistically significant increase 

in the RBE values for cell types with increased radioresistance to 60Co γ-rays. 

Although these investigators used 11 different cell types, few of these were indeed 

radioresistant to 60Co γ-rays. Close inspection of the data shows that the relationship 

between neutron RBE and radioresistance to photons disappears when the cell type 

with the highest resistance to γ-rays (Gurney melanoma) is removed from the data 

set Slabbert et al. (1996).  

 

In a follow up study the authors failed to demonstrate the relationship between RBE 

and radioresistance for a p(66)/Be neutron beam but such a relationship was 

demonstrated for a d(14)/Be neutron beam with a mean energy of 5.5 MeV (Slabbert 

et al., 2000). It therefore appears that the relationship for RBE and radioresistance is 

dependent on the selection of cells used in the study as well as the neutron energy.  

 

Using lymphocytes Vral et al. (1994) demonstrated a clear reduction in RBEM values 

for 5.5 MeV neutrons with an increase in the α-values of dose effect curves obtained 

for 60Co γ-rays. This data was derived from lymphocytes obtained from six healthy 

donors. Using only four donors Slabbert et al. (2010) also demonstrated a 

relationship between RBEM neutrons and radiosensitivity to 60Co γ-rays. In the latter 

case the RBEM values were found to be lower - as can be expected since these 
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investigators used a higher energy neutron source. Although a significant 

relationship between these parameters has been demonstrated by the investigators, 

the cohort of 4 donors in the study is very small. In fact 2 out of the 4 donors have 

different RBEM values but appear to have the same radiosensitivity to 60Co γ-rays.  

 

A study employing a larger number of donors with blood cells exposed to high 

energy neutrons is clearly needed. It is particularly relevant to verify the findings 

above in order to indicate the correct wR values for donors with different inherent 

radiosensitivity.  

 

The studies of RBE variations with neutron energy by Schmid et al. (2003) and Nolte 

et al. (2005) were conducted by observing dicentric formations in metaphase 

spreads. This is an extremely labour intensive exercise. Indeed, it took more than six 

months to analyse the data for different doses for blood cells obtained from a single 

donor exposed to a single neutron energy and reference radiation. It follows that 

some method of automation is essential to assist the radiobiological evaluation of 

cellular radiation damage to quantify wR values as a function of radiosensitivity.  

 

Recently a semi-automated image analysis system has become available at 

iThemba LABS. This apparatus allows for semi-automated detection of micronucleus 

formations in irradiated cells. The main objective of this study is to ascertain the 

usefulness of this instrument to quantify micronuclei formations in large numbers of 

cells after exposure to high energy neutrons or 60Co γ-rays. Of particular interest was 

to establish the minimum dose that such an automated process required firstly to 

distinguish MN formations from background readings secondly the accuracy in 

obtaining dose response curves that reflect both the quantitative and qualitative 

effects of the respective radiation modalities. This includes testing the ability of this 

image analysis method to accurately detect multiple MN formations in cells. The 

latter is reflected in dispersion parameters that are distinctly different for neutrons 

and 60Co γ-rays. Also to establish if cytogenetic damage could be identified with 

sufficient accuracy to distinguish the inherent radiosensitivity of different donors. In 

addition it was important to know if RBE values as a function of dose obtained using 

this image analysis method was consistent with theoretical expectations. 
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An important aspect of this study is to establish if there is indeed a definitive 

correlation of the RBEM values and inherent radioresistance of lymphocytes obtained 

from different individuals.  

 

An additional objective of the study is to compare the variations in MN formations 

induced by an Auger electron emitter in lymphocytes to that of 60Co γ-rays using 

blood from donors that were identified in the first part of the study as radiosensitive, 

radioresistant and an intermediate. It is important to ascertain the potential for 

therapeutic gain in oncology when treating cells with different inherent 

radiosensitivities using radionuclides that emit high-LET radiation. 
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Chapter 2 

 

Materials and Methods 

 

p(66)/Be Neutrons 

 

Central to this study was the use of a high energy neutron beam, one of only two in 

the world currently used for neutron therapy. This beam was produced with a 

separated sector cyclotron (SSC) directing 66 MeV protons on to a beryllium (Be) 

target. The mean energy of the neutrons is 29 MeV (Jones et al. 1992). The beam is 

hardened as it passes through a hydrogenous filter that removes the low energy 

neutron component which has been shown to have a significant effect on the 

biological outcome in irradiated cells (Slabbert et al., 1989). Helpful in these 

experiments is the fact that the beam can be delivered at 0 degrees pointing 

downwards so that experimental cell samples placed on a treatment couch can 

easily be irradiated.  

 

Cell samples were irradiated in test tubes placed on a 10 cm thick 30 x 30 cm stack 

of perspex used as back scatter material. Samples were covered by a 2 cm thick 30 

x 30 cm nylon sheet that was used as build-up material. During the irradiations the 

dose rate was measured by monitoring the target current. This was kept at 15 µA 

which translates to a dose rate of 0.169 Gy/min depending on the setup and field 

size. A 29 x 29 cm field was used throughout the study. Using this setup the gamma 

dose component of this beam was 6.9 % (Slabbert et al. 1989).  

 

Blood samples of different donors were irradiated on different days. Before each 

session dose output factors were measured to confirm dose delivery parameters 

monitored by a transition ionization chamber. These readings were done using a 

calibrated tissue equivalent ionization chamber. 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 

22 
 

60Co γ-rays 

 

A teletherapy unit (Theratron 780) was used to expose cells to 60Co γ-rays. Cell 

samples were placed on a 0.5 cm thick 30 x 30 cm perspex table and a 10 cm thick 

30 x 30 cm perspex block was placed on top of the cells to provide full scattering 

conditions. The beam points vertically upwards and has a source surface distance 

(SSD) of 75 cm. This setup has a dose rate of 0.5 Gy/min. 

 

Calibration and dose verification on the Theratron 60Co γ-ray teletherapy unit was 

performed with a NE farmer-type 0.6cc ionization chamber and matched 

electrometer. Measurements were performed in the same orientation and with the 

same setup parameters as described above for the cells. 

 

Dose rate corrections were applied weekly during this study using a half-life of 5.272 

years for 60Co γ-rays. The dose rate applicable to the specific experiment AT was 

calculated as: 

 

(� =	()*+,- 
 

where            ./
0
= 12	�3 

,  

 

AT – dose rate at time T 

A0 - initial dose rate measured 

4 - decay constant 

t – time between date of measurement and experiment 

t½- half-life 
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Blood Sample Collection 

 

This work was conducted with consent from the Health Research Ethics Committee 

(Ethics Reference #: S12/04/091). This procedure was performed by a registered 

healthcare worker in a hospital clinic: Blood samples were obtained from ten 

consenting adults of varying age (26 to 64). This includes 6 males and 4 females. 

Peripheral blood was collected aseptically by venipuncture into lithium heparin 

vacutainer tubes. From each donor ten tubes of 4.5 mℓ blood were collected. 

Immediately after collection the tubes were inverted carefully to mix blood and anti-

coagulant.  Blood samples where coded to safeguard subjects’ identity and kept at 

room temperature (approximately 20˚C) for 1 hour before it was processed in the 

laboratory.  

 

Lymphocyte Isolation  

 

Although cultures of lymphocytes can be setup from whole-blood samples, 

lymphocytes were isolated in this study to ensure consistency in cell preparations to 

support automated image analysis. Cell numbers per samples were kept constant by 

pooling the isolated lymphocytes and dividing aliquots evenly between controls and 

samples irradiated at different doses and to different radiation qualities.   

 

All cell preparation procedures were carried out in a biological safety cabinet. 

Lymphocytes were isolated from whole blood samples using a density gradient 

centrifugation method. For this whole blood was mixed in a ratio of 1:1 with Roswell 

Park memorial Institute (RPMI) 1640 tissue culture medium. From this 9 mℓ medium 

and blood mixture was carefully layered onto 3 mℓ Lymphocyte Separation Medium 

(LSM) in a 15 mℓ centrifuge tube.   

 

Following centrifugation for 30 min at relative centrifugal force of 180 g the several 

layers of cells and serum were clearly visible. The erythrocytes accumulated at the 

bottom of the tube and a cloud of lymphocytes clustered in the plasma LSM 

interphase. The blood plasma layer was aspirated, without disturbing the cloud of 

lymphocytes. Lymphocytes were then collected with a 10 mℓ pipet. Excess platelets 
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and plasma was removed from this using a wash with phosphate buffered saline 

(PBS).  

 

Lymphocytes pellets were pooled and resuspended in 10 mℓ RPMI 1640 medium 

supplemented with 15 % fetal calf serum and antibiotics. The concentration of cells 

in the stock suspension was determined with a Neubauer hemocytometer. From the 

lymphocyte stock 16 cell cultures per donor were prepared in test tubes that 

consisted of about 1x106 cells in 5 mℓ growth medium. 

 

External Beam Exposures 

 

Test tubes containing cell cultures were placed in a water bath at 37˚C for 15 

minutes prior to irradiations. The samples were irradiated with doses of 0.05, 0.1, 

0.2, 0.5, 1, 2 Gy neutrons. Immediately after this additional samples from the same 

donor were exposed to doses of 0.05, 0.1, 0.2, 0.5, 1, 2, 4 Gy 60Co γ-rays.  

 

Cell Cultures 

 

Following the completion of all the irradiations the mitogen Phytohaemagglutinin M-

form (Sigma-Aldrich) was added to the cultures to a final concentration of 20 µg/mℓ. 

This stimulates T-lymphocytes into mitosis. Cultures were incubated at 37°C and 5% 

CO2. After 44 hours cytochalasin B (Sigma-Aldrich) was added to the cultures to a 

final concentration of 3 µg/mℓ. This inhibits cytokinesis and renders cells binucleated 

when allowed to grow for another 28 hours. After a total period of 72 hours cultures 

were terminated. Firstly cell suspensions were centrifuged at 180 g for 5 minutes. 

Then the supernatant was removed and 7 mℓ of 75 mM KCl was added. This 

hypotonic treatment renders cells in a swollen state to facilitate microscopic analysis. 

Samples were then centrifuged for 8 min at 180 g and the supernatant removed. 

 

Cells were fixed in a two-step procedure. First by adding 5 mℓ of a 4:1:5 methanol: 

acetic acid: Ringer’s solution. The ringer solution was made up by dissolving 6.5 g 

NaCl (Merck), 0.42 g KCl (Merck), 0.25 g CaCl2 (Merck) in 1 ℓ deionized water. Cell 

suspensions were kept in the refrigerator at 2 ˚C overnight. The next day 
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suspensions were centrifuged at 180 g for 8 min and the supernatant was removed. 

Then 5 mℓ 4:1 methanol:acetic acid was added. This fixation procedure was 

repeated 3 times to ensure a cell preparation free of debris that can influence the 

automated detection and analysis of samples.  

 

Four slides were made per culture by dropping 50 µℓ cell suspension on a clean 

microscope slide. Once the slides were dry, cells were stained by adding a drop of 

Vectashield DAPI (Vector Labs) before applying a 24 x 50 mm glass coverslip. 

Slides were kept in the dark for 1 hour before microscopic analysis. 

 

Automated Detection of Cells and Scoring Of Micronuclei 

 

Micronuclei (MN) formations in binucleated (BN) lymphocytes were enumerated 

semi-automatically by means of a software module developed by MetaSystems 

explicitly for the Metafer 4 platform. This consists of a Zeiss Axio Imager microscope 

equipped with a high-resolution charge coupled device (CCD) camera. The camera 

captures images of cells illuminated with an epi-florescence filter set with an 

excitation wave length of 358 nm and emission wavelength of 461 nm. With this cell 

nuclei have a characteristic blue fluorescence. The software drives a Märzhäuser 

motorized microscope stage that accommodates 8 microscope slides at a time.  

 

This system automatically identifies BN cells that meet programmed criteria defined 

by a set of image classifiers. Cells are only scored as binucleates if the main nuclei 

are of approximately equal size and shape.  

 

A second classifier is applied to all the identified BN cells. This classifier numerates 

MN frequency in the BN cells. To qualify as a MN the diameter of the MN should be 

less than one-third of the main nucleus. Also MN should be separated from the main 

nuclei and the MN should have similar staining characteristics’ as the main nucleus. 

The software interphase, displays the total number of BN cells, the MN frequency 

distribution histogram and a screen gallery of cell images (Fig. 2.1).  
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Figure 2.1: Metafer4 software interface display for MN analysis. 

 

The system was set up to detect 1000 BN per slide on a predefined area covering 

about 90 % of the microscope slide. Before the scanning of slides can take place an 

initial focus point needs to be set manually on each of the 8 slides on the motorized 

stage. Following this the system automatically identifies several grid focus points on 

the slide to enable faster scanning of cell images on each slide.  

 

Poor image quality of some samples resulted in less than 1000 BN cells identified 

per slide. Of the four slides prepared per culture, the 2 slides with the highest cell 

counts were used in the analysis. In this a minimum of 500 BN cells were counted 

per slide. Thus a minimum of 1000 cells per sample were analyzed for MN 

formations.  

 

The images were backed up on a hard drive. The classifiers for the identification of 

BN and MN were based on the criteria developed in a previous collaborative study 

between iThemba LABS and the University Ghent, Belgium (Willems et al. 2009). 
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These sets of classifiers were optimized for detecting BN cells and enumerating MN 

in slides prepared from whole-blood cultures. Minimal adjustments to the parameters 

displayed below were made to optimize the classifier for scanning cell samples 

prepared from isolated lymphocytes.  

 

 

 

Figure 2.3: Classifier parameters describing the constraints imposed on BN cells’ 

selection. 

 

 

 

Figure 2.4: Classifier parameters describing the constraints imposed on MN  

selection. 
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Manual Verification of Cellular Radiation Damage 

 

Following each scan, cells identified by the classifier that contain MN were manually 

inspected. Visual scrutiny of the MN formations was done to verify the number of MN 

noted per cell. This was done to exclude false positive MN that resulted from debris 

or image aberrations. 

 

Statistical Analysis 

 

Dose Response Curve 

 

The biological responses to a wide range of doses were investigated for different 

treatment modalities and for different donors. To estimate the dose response 

parameters as accurately as possible the experimental design included data for 

several low dose treatments as well as high doses. MN frequencies (MNF) defined 

as the number of MN observed in 1000 BN cells were related to the radiation dose 

as follows.  

 

567 = 8+∝ � + ;�3		 
 

where:  

MNF – Number of MN per 1000 BN cells 

D – Dose (Gy) 

c – Spontaneous background MN count 

α and β - Represent the initial slope and bending component of each dose 

response curve. These values reflect the inherent radiosensitivity and the 

capacity of cells to accumulate repairable damage respectively.  

 

GraphPad prism 4 was used to plot the dose response curves and to perform non-

linear regression analysis. In cases where the β-component did not significantly differ 

from zero, the value was set to 0 and the α-parameter recalculated. The package 

was also used to calculate the mean and standard deviation (SD) of the different 

data sets.  
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95 % Confidence Ellipses  

 

In addition a computer program has been developed on a Matlab platform to perform 

advanced statistical analysis. Essentially this program calculates the 95 % 

confidence ellipse for the co-variance parameters α and β that describe the dose 

response curve. The program is based on the method used by Slabbert et al. (1989). 

This is needed to ascertain if the differences in radiosensitivity of different donors 

can be stated on the 95 % confidence level. The probability of induction of intra-track 

cellular radiation damage – reflected by the α-value is co-variant to the induction of 

inter-track damage reflected by the β-value. When α is large, β becomes smaller. 

The computer program calculates an ellipse region around a coordinate that is 

defined by the mean estimate of the α-value - plotted on the X-axis and the β - value 

plotted on the Y-axis. The inherent radiosensitivity of lymphocytes obtained from 

various donors differs on a 95 % confidence level, only when the ellipses do not 

overlap. An overlapping region indicates that the same α and β value can be used to 

describe dose response relationships for different donors. Donors were ranked in 

terms of their radiosensitivity to 60Co γ-rays. For this radiation modality all least 

square estimates of the respective β values were positive. Negative β values were 

calculated only for some dose response curves to high-LET radiation. The dose 

response curves resembled straight lines due to the small β values with increasing 

uncertainties. Therefore should the negative β values be set to zero for all the 

neutron ellipses, more overlapping between ellipses of data for different donors will 

occur. This advances the argument that variation in radiosensitivity amongst the 

different donors diminishes with increased LET. Variation in the inherent 

radiosensitivity amongst the donors is thus best expressed using responses to low-

LET radiation. 

 

Dispersion Parameters 

 

In this study it is important to understand both the quantitative and qualitative 

responses to neutrons and γ-rays. Assuming a Poisson distribution applies to the 

induction of MN it can be expected that the ratio of the variance (σ2) to the mean (ȳ) 

should be a value of 1 (Huber et al. 1992). The numerical package Mathcad 15 was 

used to estimate the dispersion parameters for MN inductions as follows: 
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σ3
ȳ = ∑ �?@ − 	ȳ 3BCDEF

�6@ − 1 	 
 

where ki is the number of MN in the lth of N cells ȳ is the mean MN frequency (Huber 

et al. 1992). 

 

To determine whether the mean and the variance of the observed distributions were 

significantly different, the standard normal deviate of σ2/ȳ was calculated according 

to Savage (1970): 

H = 	 � − �6 − 1 
I2�6 − 1 �1 − 16ȳ 

 

 

where         � = �6 − 1 K0
ȳ 	 

 

A positive value of µ indicates an over-dispersion of MN and negative value under-

dispersion compared to that expected from a Poisson distribution. If the µ-value of is 

larger than 1.96, the under-or-over dispersion is significant on a 95 % confidence 

level. 
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Chapter 3 

 

Results 

  

Cell Cultures 

 

It is essential that the cell cultures set up for these experiments could be successfully 

stimulated from normal non-dividing lymphocytes into mitosis and to arrest them in a 

state of binucleation. The cell culture kinetics for the different donors is listed in 

Table 3.1.  

 

Table 3.1: Cell culture kinetics for unirradiated lymphocyte cultures from 10 different 

donors. 

                    

  

 1 

Nucleus 

 2 

Nuclei 

 3 

Nuclei 

 4 

Nuclei 
Gender 

Nucleation  

index 

Percentage 

BN   

  Donor 1 49 43 6 2 Male 1.61 47   

  Donor 2 68 28 4 0 Female 1.36 29   

  Donor 3 55 41 4 1 Male 1.53 43   

  Donor 4 37 53 9 0 Male 1.70 59   

  Donor 5 63 33 5 0 Female 1.44 34   

  Donor 6 65 32 3 0 Male 1.38 33   

  Donor 7 76 23 1 0 Female 1.25 23   

  Donor 8 56 40 3 1 Male 1.49 42   

  Donor 9 68 26 3 3 Female 1.41 28   

  Donor 10 55 39 3 1 Male 1.46 41   

                    

 

 

The cell culture kinetics were shown as the percentage of cells observed to have 2 

nuclei (binucleated cells) as well as a nucleation index calculated for the cultures 

control cells that received no radiation. The nucleation index was indicated as the 

total number of main nuclei noted in the total number of cells analysed. The 
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percentage binucleated cells (BNC) ranged from 23 % to 59 % and nucleation 

indices ranged from 1.25 to 1.61. It was interesting to note that blood collected from 

females resulted more frequently in poorer stimulations compared to that collected 

from male donors. This has periodically been noted by investigators using 

lymphocyte cultures.  

 

All the cultures set up in this study proved to be successful to produce sufficient 

number of BNC’s that could be used to prepare microscopic slides for MN analysis.  

 

Dose Response Curves 

 

Background Readings 

 

MN observed in non-irradiated cell cultures ranged from 4 to 15 MN per 1000 BNC’s 

for the different donors. Differences in spontaneous MN formation were correlated to 

donors’ gender. The mean spontaneous MN frequency for male donors was 7 ± 0.8 

whilst that for females was 12 ± 2.1. On average the background MN frequency was 

almost double that for male donors and the difference is statistically significant (p-

value 0.0343).  

 

Radiation Induced MN 

 

The minimum dose where radiation induced MN could be distinguished from 

background readings for all donors was 200 mGy γ-rays. At 100 mGy MN 

frequencies for 7 donors were higher than that of their respective control samples. 

For 6 donors the MN frequency observed for a dose of 50 mGy was in fact larger 

than the back ground readings, although not significantly.  

 

Clear dose response curves could be established for all donors in this study for 

blood cells irradiated with either neutron or γ-rays (Fig. 3.1). The neutron and γ-ray 

induced MN formations were clearly different in each instance. Out of the 160 dose 

points analysed in this study only one neutron dose point recorded for donor 7 was 

not consistent with this observation.  
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Figure 3.1: Dose response curves for MN formations in isolated T-lymphocytes of 10 

different donors after exposure to various doses of 60Co γ-rays or p(66)/Be neutrons. 

The Poisson error is indicated in each instance. 
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The shapes of the response curves for the different donors were not the same. In 

general a clear linear-quadratic relationship was noted for γ-rays and a more linear 

response with dose was prominent for neutrons. The fitted dose response 

parameters are listed in Table 3.2.  

 

Table 3.2: Dose response parameters for lymphocytes irradiated with different doses 

of neutrons or γ-rays. 

                        

  Donor ID 
60

Co γ-rays p(66)/Be neutrons   

      α (Gy
-1

) β (Gy
-2

) α (Gy
-1

) β (Gy
-2

)   

  Donor 1 19.39  ± 5.7 43.4 ±1.4 251.1 ±4.9 3.1 ±2.4   

  Donor 2 71.45  ± 11.7 6.6 ±2.9 118.7 ±10.0 0 0   

  Donor 3 91.13  ± 10.2 11.2 ±2.6 197.9 ±75.9 0 0   

  Donor 4 54.06  ± 10.9 37.8 ±2.7 255.3 ±17.8 19.6 ±8.8   

  Donor 5 54.38  ± 7.1 27.8 ±1.7 175.5 ±7.4 10.1 ±3.6   

  Donor 6 49.81  ± 7.6 46.3 ±1.9 195.6 ±17.2 40.7 ±8.5   

  Donor 7 13.84  ± 10.8 38.8 ±2.7 174.1 ±61.2 0 0   

  Donor 8 79.05  ± 12.4 19.6 ±3.1 193.3 ±11.9 13.6 ±5.8   

  Donor 9 62.33  ± 5.7 1.6 ±1.4 149.3 ±50.2 0 0   

  Donor 10 66.84  ± 22.2 13.7 ±5.2 139.5 ±71.0 0 0   

                        

 

The initial slopes represented by the α-values for all γ-irradiated dose response 

curves were larger than zero. This notwithstanding the fact that the minimum dose of 

50 mGy used in this study induced MN formations less than the respective 

background. The latter was included in the curve fitting procedure. α-values varied 

from 13.8 Gy -1 to 91.1 Gy-1 with a mean value of 56.2 Gy-1. The quadratic 

component β-value was also larger than zero in all samples. β-values between 1.6 

Gy-2  and 46.2 Gy-2 are noted with a mean value of 24.7 Gy-2. 

 

For neutron irradiations larger α-values than that seen for γ-rays were observed for 

all samples. It was noted that the standard error in some instances is relatively large 

in particular in the case of Donor 7, who also exhibited a large uncertainty in the γ-

dose response curve. 
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Unlike the γ-dose response curves, the β-component for neutron irradiations was not 

larger than zero. The β-value for 5 of the 10 neutron dose response curves proved to 

be not significantly different than zero.  

 

Although the dose response parameters for the different donors varied in magnitude, 

any changes in the inherent radiosensitivity of the different donors could only be 

ascertained once the uncertainties around the α- and β-values were analysed 

correctively. For this reason 95 % confidence ellipses have been constructed for 

lymphocytes irradiated with γ-rays (Fig. 3.2). 

 

Radiosensitivity Specifications of Lymphocytes from Different Donors 

Exposed to 60Co γ-rays and Neutrons Using 95 % Confidence Ellipses 

 

 

 

Figure 3.2: The 95 % confidence ellipses for dose response parameters for 

lymphocyte samples of different individuals irradiated with 60Co γ-rays.  

 

Variations in the inherent radiosensitivities of lymphocytes of donors to γ-rays could 

be stated to be statistically significant at the 95% level of confidence for most donors. 
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The confidence ellipses around the mean α- and β-value estimated in each instance 

were separate. The only exception was the MN formations for donors 5 and 7 and 5 

and 8. For these individuals an overlap of the confidence ellipses were noted. This 

represents a common set of α-and β-values that could be used to describe both 

dose response curves.  

 

 

Figure 3.3: The 95 % confidence ellipses for dose response parameters for 

lymphocyte samples of different individuals irradiated with p(66)/Be neutrons. 

 

Variations in the inherent radiosensitivities of lymphocytes of donors to neutrons 

were significantly different to that seen for γ-rays. The confidence ellipses for 

neutrons were generally larger than those observed for γ-rays (Fig. 3.3). The size 

difference was in part due to the fact that the physical dose range over which the 

dose response curves were constructed was smaller for neutrons (0 - 2 Gy) 

compared to γ-rays (0 - 4 Gy). As a result larger variations in the estimation of α-and 

β-values were noted. Even so many overlaps of the confidence ellipses for 

lymphocytes treated with neutrons could be seen for the different donors. Only the 

response of lymphocytes from donor 7 to neutrons was uniquely different from the 

rest. Even so, statistical significant differences in the response to high energy 
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neutrons for lymphocytes of some donors could be stated with respect to that of 

others. For example the confidence ellipse for donor 9 was significantly different from 

donors 2 and 8 but not from donor 10. In general a reduced variation in the 

radiosensitivities to neutrons for lymphocytes of different donors was evident.  

 

The 10 donors were ranked in terms of their radiosensitivities noted for lymphocytes 

exposed to 60Co γ-rays. Their corresponding radiosensitivity rank observed following 

exposure to neutrons is shown in red (Fig. 3.4). Notable differences in the ranking of 

different individuals exposed to two different radiation modalities are noted. Donors 

sensitive to 60Co γ-rays were assumed to be equally sensitive to neutrons. This is 

however not the case, as the increase in relative neutron sensitivity exhibits no 

correlation to the increase in relative sensitivity to 60Co γ-rays. 

 

 

Figure 3.4: Subjects ranked in terms of radiosensitivity to 60Co γ-rays with their 

corresponding radiosensitivity rank to p(66)/Be neutrons displayed in red (10 = most 

sensitive and 1 = most resistant). 

 

Dispersion Parameters 

 

Parameters that describe the distribution of MN in the irradiated cell population were 

required for several reasons. The number of cells containing 0, 1, 2 up to 8 MN per 

cell was a reflection of the ionization density of the radiation used in the experiments. 
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Of interest in this study was to establish if the semi-automated image analysis 

method used in evaluating cellular radiation damage, was able to detect a 

distribution pattern of MN formations that is consistent with expectations. 

 

Using the numerical methods described in the previous chapter, the dispersion index 

σ2/ȳ and the standard normal deviate, µ-value was calculated for each cell sample 

analysed. These are listed in Table 3.3 for 60Co γ-rays and Table 3.4 for neutrons. A 

Poisson distribution was expected for MN observed in control samples where the 

ratio of σ2/ȳ should have a value of 1. Under-dispersion was noted for 4 out of the 10 

background readings made in this study - σ2/ȳ < 1 where µ is a negative number. 

The mean dispersion index for all the control samples was 1.06 and the readings 

noted were expected. 

 

For cell samples irradiated with 60Co γ-rays a Poisson distribution of cytogenetic 

damage was expected (IAEA, 2011). The number of MN observed per cell ranged 

from 0 to 8. Even so relative few samples displayed under-dispersion. Statistically 

significant (µ > 1.96) over-dispersed distributions were noted in most readings. A 

mean value for dispersion indices of 1.12 was determined for all cell samples 

exposed to 60Co γ-rays. The corresponding µ-value was 3.92. An unexpected small 

over-dispersion was noted for MN, which could be the result of observing this type of 

cytogenetic effect in BN cells. 

 

Lymphocytes exposed to neutrons consistently yield MN formations with a larger 

dispersion index for each donor. The range of MN induced per cell was from 0 to 6. 

The maximum number noted was less than that for γ-rays but it was for neutron 

doses resulting in lower MN frequencies on average. Statistically significant over-

dispersions were noted for all cell samples exposed to neutrons with a mean value of 

1.19 and a corresponding µ-value of 7.05. The increase in these dispersion 

parameters have previously been consistent with cytogenetic damage observed in 

other studies (IAEA, 2011).  These investigators indicated dispersion parameters of 

1 for γ-rays compared to 1.19 for alpha particles with corresponding mean µ-values 

of 0.32 and 1.54 respectively.  
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By observing MN by eye different dispersion parameters has previously been noted 

for 60Co γ-rays and p(66)/Be neutrons at iThemba LABS (unpublished data). In these 

studies average σ2/ȳ values of 1.04 were noted for γ-rays with a µ-value of 1.08. For 

neutrons these values increased to 1.15 and 2.62 respectively. When the build-up 

from neutron irradiations was removed, the secondary charged particles depositing 

dose is made up predominantly of short range alpha particles and heavy recoil 

fragments. Under these irradiation conditions, the σ2/ȳ value for MN formations in 

lymphocytes increased to 1.30 and a µ-value of 6.25 was observed. Comparing the 

results of the current study with these values it is clear that the semi-automated 

image analysis system was indeed able to detect MN formations in irradiated cells 

with a distribution pattern that reflects the qualitative characteristics of the radiation 

modality. This was summarized in Fig. 3.5 showing the mean distribution parameters 

for the different donors. 
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Table 3.3: The dispersion parameters describing the distribution of MN in the 60Co γ-

ray irradiated lymphocyte samples.  

        Number of cells observed with n number of MN      

  Dose Total MN Total BN n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 σ
2
/ȳ µ-value   

  Donor 1 
             

  

 0 30 3794 3765 28 1       1.06 2.5  

  0.05 38 3762 3728 31 2 1 1.25 11.0   

  0.1 31 2561 2531 29 1 1.05 1.9   

  0.2 61 3708 3653 50 4 1 1.21 9.2   

  0.5 125 3215 3095 116 3 1 1.06 2.3   

  1 217 3398 3203 174 20 1 1.15 6.1   

  2 743 3296 2677 509 98 10 2 1.13 5.3   

  4 1602 2049 1087 523 294 100 37 6 1 1 1 1.39 12.5   

  Donor 2   

  0 49 2944 2901 40 2 1 1.08 2.5   

  0.05 51 2827 2781 42 3 1 1.35 13.3   

  0.1 68 3562 3499 58 5 1.13 5.4   

  0.2 55 2404 2354 45 5 1.16 5.5   

  0.5 70 2652 2588 59 4 1 1.17 6.3   

  1 220 2661 2466 173 19 3 1.17 6.3   

  2 509 2678 2255 348 66 7 2 1.20 7.3   

  4 298 749 549 131 43 23 3 1.48 9.2   

  Donor 3   

  0 31 1843 1819 19 3 2 1.09 4.0   

  0.05 53 3059 3016 36 5 1 1 1.51 20.0   

  0.1 43 3478 3439 36 2 1 1.22 9.2   

  0.2 37 1897 1870 24 1 1 1 2.71 52.7   

  0.5 126 2892 2770 118 4 1.02 0.8   

  1 151 1503 1363 130 9 1 1.06 1.6   

  2 309 1263 1005 213 39 6 1.13 3.1   

  4 350 639 413 129 71 25 1 1.32 5.8   

  Donor 4   

  0 29 3933 3905 27 1 0.99 -0.3   

  0.05 25 3859 3835 23 1 1.07 3.2   

  0.1 41 3774 3736 35 3 1.13 5.9   

  0.2 36 3702 3666 36 0.99 -0.4   

  0.5 127 3774 3652 117 5 1.05 2.0   

  1 287 3788 3517 256 14 1 1.04 1.9   

  2 773 2806 2148 552 97 9 1.05 1.7   

  4 2471 3014 1454 892 478 147 33 10 1.16 6.4   

  

 

*Table 3.3 continues on next page 
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Number of cells observed with n number of MN  
 

  

  Dose Total MN Total BN n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 σ
2
/ȳ µ-value   

  Donor 5 
             

  

  0 66 3724 3665 53 5 1 1.13 5.7 

  0.05 90 3768 3691 66 9 2 1.31 13.4 

  0.1 49 3335 3288 46 0 1 1.11 4.4 

  0.2 75 2652 2585 61 4 2 1.24 8.7 

  0.5 153 3421 3280 131 8 2 1.14 5.7 

  1 272 3086 2851 204 27 3 0 1 1.25 9.8 

  2 422 1739 1379 305 50 4 0 1 1.10 2.9 

  4 1132 1674 960 411 212 70 19 1 1 1.32 9.1 

  Donor 6 

  0 12 2823 2811 12 1.00 -0.1 

  0.05 36 3714 3679 34 1 1.05 2.0 

  0.1 44 3491 3449 40 2 1.08 3.3 

  0.2 63 3589 3528 59 2 1.05 2.0 

  0.5 143 3756 3619 132 4 1 1.06 2.6 

  1 331 3767 3458 288 20 1 1.05 2.2 

  2 1070 3577 2682 737 143 13 2 1.06 2.7 

  4 1950 2069 920 599 357 146 38 7 2 1.21 6.8 

  Donor 7 

  0 39 3322 3290 26 5 1 1.20 8.0 

  0.05 49 3790 3745 41 4 1.15 6.6 

  0.1 55 2929 2876 51 2 1.05 2.1 

  0.2 35 1996 1963 31 2 1.10 3.1 

  0.5 132 3417 3290 122 5 1.04 1.5 

  1 113 1307 1201 99 7 1.04 1.0 

  2 236 1279 1079 167 30 3 1.23 5.8 

  4 449 645 364 160 81 34 5 1 1.30 5.4 

  Donor 8 

  0 22 3616 3595 20 1 1.00 -0.2 

  0.05 27 3782 3755 27 0.99 -3.0 

  0.1 34 3838 3807 28 3 1.16 7.4 

  0.2 40 3760 3722 36 2 1.09 3.9 

  0.5 119 3817 3702 111 4 1.04 1.6 

  1 201 2493 2305 177 10 1 1.02 0.7 

  2 810 3222 2542 570 96 11 1 1 1 1.07 2.7 

  4 792 1267 746 320 145 44 10 2 1.28 6.7 

  

*Table 3.3 continues on next page 
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    Number of cells observed with n number of MN    

  Dose Total MN Total BN n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 σ
2
/ȳ µ-value   

  Donor 9   

  0 22 2638 2617 20 1 1.08 3.0   

  0.05 11 881 870 11 0.99 -0.2   

  0.1 1 300 299 1 1.00 0.0   

  0.2 36 2180 2144 36 0.98 -0.5   

  0.5 63 2056 1996 57 3 1.07 2.1   

  1 35 555 523 29 3 1.11 1.8   

  2 82 586 510 70 6 1.01 0.1   

  4 86 309 255 30 18 5 1 1.73 9.0   

    

  Donor10   

  0 18 1978 1960 18 0.99 -0.2   

  0.5 50 1993 1949 40 3 1 1.33 10.6   

  1 131 1992 1878 105 7 2 1.09 2.9   

  2 402 1996 1661 272 60 2 1 1.16 5.0   

  4 959 1992 1403 317 191 64 17 1.53 16.8   
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Table 3.4: The dispersion parameters describing the distribution of MN in the neutron 

irradiated lymphocyte samples. 

    Number of cells observed with n number of MN   

  Dose Total MN Total BN n=0 n=1 n=2 n=3 n=4 n=5 n=6 σ
2
/ȳ µ-value   

  Donor 1   

  0 28 3777 3752 22 3 1.06 2.6   

  0.05 91 3884 3803 75 4 1 1 1.35 15.4   

  0.2 241 3878 3665 188 22 3 1.20 8.6   

  0.5 391 2866 2528 294 36 7 1 1.19 7.0   

  1 982 3678 2900 614 127 35 1 1 1.24 10.2   

  2 1632 2968 1853 733 276 80 23 3 1.29 11.1   

  Donor 2   

  0 21 1824 1804 19 1 1.08 2.5   

  0.05 79 3706 3637 61 7 1 1.31 13.3   

  0.1 88 3538 3456 76 6 1.11 4.7   

  0.2 80 2552 2482 60 10 1.22 7.8   

  0.5 263 3663 3436 197 24 6 1.25 10.6   

  1 372 2692 2358 301 29 3 1 1.10 3.6   

  2 460 1861 1503 270 76 10 2 1.27 8.1   

  Donor 3   

  0 39 3747 3710 35 2 1.09 4.0   

  0.05 69 3785 3721 59 5 1.13 5.5   

  0.1 127 3772 3660 98 13 1 1.22 9.5   

  0.2 149 3362 3228 123 8 2 1 1.22 9.2   

  0.5 305 2760 2499 225 29 6 1 1.24 8.8   

  1 879 3173 2476 546 126 20 4 1 1.22 8.9   

  2 354 927 676 170 61 18 2 1.30 6.5   

  Donor 4   

  0 23 3834 3811 23 0.99 -0.3   

  0.05 66 3779 3721 51 6 1 1.26 11.1   

  0.1 82 3609 3533 70 6 1.12 5.3   

  0.2 164 3318 3179 118 17 4 1.30 12.4   

  0.5 457 3738 3329 369 36 2 1 1 1.15 6.6   

  1 972 3411 2630 627 124 23 7 1.20 8.2   

  2 1267 2153 1290 568 220 47 23 4 1 1.29 9.4   

  Donor 5   

  0 54 3689 3639 46 4 1.13 5.7   

  0.05 95 3761 3680 69 10 2 1.31 13.5   

  0.1 94 2787 2703 77 5 1 1 1.27 9.9   

  0.2 215 3671 3489 155 22 4 1 1.31 13.5   

  0.5 93 877 802 61 11 2 1 1.39 8.2   

  1 506 2511 2103 325 69 13 1 1.12 8.8   

  2 1216 2971 2110 581 217 52 10 1 1.32 12.3   

  
 

  

 *Table 3.4 continues on next page  
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     Number of cells observed with n number of MN   

  Dose Total MN Total BN n=0 n=1 n=2 n=3 n=4 n=5 n=6 σ
2
/ȳ µ-value   

  Donor 6   

  0 23 3440 3418 21 1 1.00 -0.1   

  0.05 59 3844 3789 51 4 1.12 5.3   

  0.1 97 3813 3722 85 6 1.10 4.3   

  0.2 139 3822 3698 109 15 1.18 7.9   

  0.5 385 3796 3455 300 38 3 1.14 6.2   

  1 808 3263 2612 520 106 24 1 1.21 8.4   

  2 1558 2809 1722 723 277 69 16 2 1.22 8.1   

    

  Donor 7   

  0 19 3061 3044 15 2 1.20 8.0   

  0.05 33 2058 2025 33 0.98 -0.5   

  0.1 85 2283 2204 74 4 1 1.13 4.3   

  0.2 156 2745 2616 106 20 2 1 1.35 13.1   

  0.5 367 3173 2840 302 28 3 1.09 3.4   

  1 535 2981 2542 355 73 10 1 1.22 8.8   

  2 306 1506 1263 193 39 9 2 1.31 8.4   

    

  Donor 8   

  0 16 3876 3860 16 1.00 -0.2   

  0.05 53 3800 3749 49 2 1.06 2.7   

  0.1 107 3828 3733 84 10 1 1.22 9.4   

  0.2 175 3799 3645 135 17 2 1.22 9.5   

  0.5 355 3712 3397 278 34 3 1.15 6.3   

  1 790 3643 2999 524 98 18 4 1.23 9.8   

  2 1361 3059 2081 683 225 54 14 2 1.28 10.8   

    

  Donor 9   

  0 19 1301 1283 17 1 1.09 2.3   

  0.05 17 792 775 17 0.98 -0.4   

  0.1 19 739 722 15 2 1.19 3.6   

  0.2 67 1247 1187 53 7 1.16 3.9   

  0.5 109 1134 1038 83 13 1.14 3.4   

  1 72 341 288 39 10 3 1 1.49 6.4   

  2 281 937 748 126 43 14 4 1 1 1.66 14.2   

    

  Donor 10   

  0 15 1991 1976 15 0.99 -0.2   

  0.2 74 1990 1923 60 7 1.15 4.8   

  0.5 141 1990 1873 97 18 1 1 1.37 11.7   

  1 409 1994 1701 245 40 7 1 1.04 1.2   

  2 560 1997 1555 340 88 13 1 1.21 6.6   
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Figure 3.5: Comparison of mean dispersion indices (σ2/ȳ) for the number of cells 

observed with N number of MN for cells exposed to 60Co γ-rays and p(66)/Be 

neutrons. 

 

Relative Biological Effectiveness  

 

The principal interest in this study was to establish if a correlation exists between the 

neutron RBE and the inherent radiosensitivity of lymphocytes obtained from different 

donors. Significant variations in radiosensitivity to γ-rays - by a factor of 7 - 

established at a 95% confidence level (Fig. 3.2), allowed one to test for an increase 

in RBE with a decrease in radiosensitivity.  

 

The dose limiting RBE values observed in lymphocytes of different donors were 

calculated as follows: 

 

	���L = M	NOP-QRNS	�TU+F 
M VR	WX 	Y+QZ[S	�TU+F  

 

where αneutrons (Gy-1) represents the initial slope of the dose response curve for 

p(66)/Be neutrons and αγ-rays (Gy-1) represents the initial slope of the dose response 

curve for 60Co γ-rays. 
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The RBEM is the maximum value that can be assigned to the relative biological 

effectiveness of neutrons when the dose approaches a minimum. This was shown 

for the different donors as a function of the inherent radiosensitivity (α-values) to 

60Co γ-rays (Fig. 3.6). A statistical significant relationship (R2= 0.8349, p = 0.0002) 

was noted between the reduction in neutron RBEM values and an increase in the 

radiosensitivity of donor lymphocytes to 60Co γ-rays.  

 

Results from the present study were compared to that of a previous study for the 

same neutron beam (Fig. 3.6). MN formations in the study of Slabbert et al. (2010) 

were obtained using conventional microscopy. Also the 60Co γ-ray doses used in 

their study ranged between 1 Gy to 5 Gy, the minimum doses used is thus much 

higher than that used in the current study. As a result the value of the initial slope for 

lymphocytes of each donor is better estimated using the semi-automated method.  

 

RBE values from this study were for the most part compatible to that noted before.  

Vral et al. (1994) reported a mean RBEM value for 5.5 MeV neutrons of 7.6 for 

lymphocytes obtained from 6 donors. A mean RBEM value of 4.8 with a standard 

deviation of 4.2 was noted in the current study for a neutron source with a mean 

energy about six times higher. The lower RBE observed in the current study was 

consistent with the higher energy neutrons used. The mean RBEM value of 5.3 

reported by Slabbert et al. (2010) using the same neutron source, fall within the 

standard deviation of the results obtained. Mean RBEM values of different studies 

were characterized by large standard deviations – as it should be when it is derived 

from cells obtained from different donors. As such the mean value was only of use to 

make simple comparisons with other studies. Even so one expected the general 

trend to change with neutron energy. 
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Figure 3.6: Dose limiting RBEM values calculated for lymphocytes of different donors. 

 

RBE As a Function of Neutron Dose 

 

The dose response curves for the reference 60Co irradiations were linear-quadratic in 

all cases compared to the more linear relationships between MN formations and 

neutron dose (Fig. 3.1). As a result systematic increase in neutron RBE could be 

expected at lower doses.  The RBE values for neutron doses used in this study were 

calculated as follows: 

 

��� =
M
2 9

\M3 9 4 ^ 567 ^ ;
2

;
�	NOP-QRNS

 

 

where the α and β are the dose response parameters that correspond to the MN 

formation frequency noted for a dose of neutrons (Dneutrons) applied in the study. 

 

The formula employed is based on the solution of a quadratic equation. In this case 

the iso-effective 60Co γ-rays dose (Dγ-rays) is calculated from the linear quadratic 

curve fit of the dose response curve for each individual. The isoeffect RBE is then 

calculated from the quotient of Dγ-rays / Dneutrons (Vandersickel et al., 2010). 
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The relationship between neutron RBE and neutron dose is shown in Fig. 3.7 for all 

donors. In all cases an increase in neutron RBE was evident based on MN 

frequencies observed for lower neutron doses in comparison to the iso-effective 

dose of 60Co γ-rays. The extent of the increase in RBE at lower doses was not the 

same for all donors. A maximum neutron RBE value at low doses of 10.8 was noted 

compared to a minimum of 3.4 amongst the cell samples used in the study.  
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Figure 3.7: The relationship between neutron RBE values for different neutron doses 

applied in this study. An arbitrary line is fitted to the different values as a function of 

neutron dose and no underlying biophysical model is assumed. 
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It was of great interest to establish if the neutron RBE determined by this semi-

automated image analysis system varied as a function of neutron dose compared 

with that expected from theoretical considerations (Kellerer and Rossi, 1978). The 

generalized formulation of the theory of dual radiation action is based in part on the 

observation that loge (neutron RBE) as a function of loge (neutron dose) is a straight 

line with a slope of -½ Gy-1 (Wambersie et al., 1979). The mean neutron RBE values 

obtained in this study for all donors were plotted as a function of neutron dose (Fig. 

3.8). The slope of the fitted line, -0.4 Gy-1 was consistent with similar relationships 

established for a wide variety of biological endpoints exposed to d(50)/Be neutrons 

(Wambersie et al., 1979). Given the fact that RBE values can vary considerably 

between neutron doses of 0.1 Gy and 10 Gy, observed for chromosomal aberrations 

in plant cells to lung damage in mice, as quantified by these investigators, the slope 

of -0.4 Gy-1 determined for lymphocytes was compatible with these results. 

 

 

Figure 3.8: The mean neutron RBE values obtained in this study for all donors 

plotted as a function of neutron dose. 
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Chapter 4 

 

Micronuclei Formations in Lymphocytes with Different Inherent 

Radiosensitivities to Auger Electrons Emitted By 123I 

 

Introduction 

 

Differential variations in radiosensitivities of cells to low- and high-LET radiation are 

also important in nuclear medicine. In particular to understand targeted cell 

treatments employing radionuclides emitting low- and high-LET radiation using β- 

and α-emitters (Jansen et al., 2010 and Yong and Brechbiel, 2011). Several isotopes 

emitting Auger electrons are used in the treatment of disease (Morgenroth et al., 

2011 and Terry and Vallis, 2012). These include: 55Fe, 67Ga, 99mTc, 111In, 113mIn, 

115mIn, 123I, 125I, 193mPt, 195mPt, 201Tl, and 203Pb (Chen, 2008). These particles have a 

distinct high-LET characteristic with RBE values around 12 which is comparable to 

that of alpha particles (Ginj et al. 2005). The identification of donors with 

lymphocytes with different inherent radiosensitivities noted in the previous chapter, 

allows one to investigate variations in response in relation to radioresistance using 

an Auger electron emitter.  

 

However, to date no studies with human lymphocytes have been conducted where 

an Auger electron emitter has been incorporated selectively into the DNA of the 

cells. This is not surprising as the incorporation of a suitable organic compound 

labelled with an Auger electron emitter can only take place in cells that are actively 

dividing. Lymphocytes are in a permanent state of G0 and will thus not normally 

integrate a nitrogenous base compound as part of the DNA.  

 

Experiments are reported in this chapter that are aimed at establishing a protocol for 

the use of a radioactive halogenated pyrimidine to study Auger electron damage in 

lymphocytes. 
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Materials and Methods 

 

Isotope Used in this Study 

 

123I is produced weekly at iThemba LABS for use by the nuclear medicine community 

in diagnostic imaging. As a result it is readily available in large quantities for 

radiobiological research and without any cost implications. It is produced by 

bombarding a NaI target with 66 MeV protons. This results is the formation of 123Xe 

with a T1/2 of 2.08 hours that decays into 123I. As the 123Xe parent nuclide decays the 

123I daughter nuclide fraction increases. Radioactive equilibrium is reached within 5.5 

hours post target bombardment.  

 

123I is a suitable radionuclide for use in radiobiological studies when the need for a 

labeled organic compound exists. The chemistry of this halogen is well understood. 

The relative short T1/2 of 13.2 hours makes it possible to deposit biologically 

detectable quantities of radiation energy over a short period of time. By contrast 

many studies on the effects of Auger electrons are conducted using 125I. This has a 

relatively long T1/2 of 60 days and as a result cells need to be exposed to the isotope 

for weeks to accumulate enough disintegrations that result in detectable levels of 

biological damage since the uptake into cellular DNA is limited. Using long lived 

isotopes requires cryo-freezing (-196 ˚C) of cell samples in a mixture containing 

dimethylsulfoxide (DMSO). The latter is a free radical scavenger with radio-protective 

properties. It is much better to expose cell samples to the radionuclide under normal 

physiological conditions. This has been done using 123I (Kassis et al. 1990, Slabbert 

et al. 1999 and Smit et al. 2001). 

 

123I emits a γ-ray with energy 159 keV. This energy is ideal for imaging using a NaI 

scintillation crystal since the efficiency of the detector is high over this energy range. 

Furthermore the radioactive decay cascade of this isotope comprises on average of 

11 Auger electrons per disintegration (Lobachevsky and Martin, 2005). Also the short 

range of Auger electrons in the absorbing medium results in multiple ionizations in 

close proximity to the DNA molecule for DNA incorporated 123I. This makes it a 

suitable candidate for use in targeted radiotherapy. 
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Radiosynthesis of 5-[123I]iodo-2′-deoxyuridine  

 

Auger electrons emitted by 123I have a range in the order of 5 to 20 nanometers in 

cells (Kassis et al., 1990 and Karamychev et al. 2000). Therefore it is essential to 

incorporate the radionuclide into cellular DNA to effect biological damage. 

Extracellular disintegrations are of limited biological consequence (Slabbert et al.  

1999). A well-established method is to make use of a halogenated pyrimidine, for 

example the thymidine analog 5-[123I]iodo-2′-deoxyuridine ([123I]IUdR) (Baranowska-

Kortylewicz et al., 1991 and Kassis et al., 1998).  

 

For this study labeling of 123I to the precursor 5-trimethylstannyl-2′-deoxyuridine 

(TMS-UdR) was done by a radiochemist at iThemba LABS. This resulted in the 

compound shown in Fig. 4.1. In short an ion exchange reaction method was followed 

by adding 0.1 M phosphate buffered saline (PBS) pH 7.4 (35 µℓ), [123I]NaI solution (2-

3 µℓ; 140 MBq), a solution of TMS-UdR(20 µg) in ethanol (2 µℓ), and a solution of 

chloramine-T trihydrate (50 µg) in water (2 µℓ). The constituents were mixed in a 

Vortex mixer for 10-15 min and then a solution of Na2S2O5 (30 µg) in water (3 µl) 

was added. To isolate the pure product fraction, the mixture was injected into a high-

pressure liquid chromatography (HPLC) column and the fraction was collected 

between 23.2 and 24.6 minutes. 

 

The activity of the fraction was measured in a radioactivity counter (Isocal II- 

Radionuclide Assay Calibrator). The collected fraction of [123I]IUdR was diluted with 

RPMI 1640 growth medium to a final activity of 60 µCi/mℓ.  
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Figure 4.1: Chemical structure of of 5-[123I]iodo-2′-deoxyuridine ([123I]IUdR). Drawing 

from ChemSpider (CSID:10481938). 

 

Incorporating [123I]IUdR into Cellular DNA 

 

[123I]IUdR is built into the cell DNA during the DNA synthesis phase (S-phase) of the 

cell cycle. To ensure that [123I]IUdR is incorporated as part of the DNA the cells in 

cultures used in the study must be dividing actively. Only then will cells in S-phase 

be available to take up the labeled compound. This needs to be verified before 

radiobiological investigations can be done. Also the purity of the preparation of the 

[123I]IUdR needs to be tested as it can adversely affect the kinetics of cells in 

cultures.  

 

Cell Culture Kinetics After Exposure to [123I]IUdR 

 

Cell kinetics in a long term presence of [123I]IUdR, prepared as described above, was 

followed in Chinese hamster ovary cells (CHO-K1). These epithelial cells have a 

doubling time of about 12 hours and have more than 40 % of cells in S-phase at any 

one time (Theron et al., 1997 and Nakahara et al. 2002).  

 

Exponentially growing CHO-K1 cells were trypsinized by adding 1 mℓ 0.05% trypsin 

to the growth flask after the medium was decanted aseptically. Cells were exposed 

briefly to trypsin before it was removed. The proteolytic action of the trypsin 
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hydrolyses protein thus releasing the cells from the surface of the culture flask. Cell 

cultures were incubated for 3 min where after they were resuspended in 10 mℓ RPMI 

1640 growth medium. The FBS in the medium inactivates the proteolytic action of 

trypsin.  

 

Cells were counted using a Neubauer hemocytometer. From the stock cell 

suspension multiple 2 mℓ cultures in 24 well plates were prepared. Then 100 000 

cells were plated per well. The cultures were incubated for 4 hours to allow cells to 

attach to the growth surface. Then 50 µℓ [123I]IUdR  (6 µCi) was added to each well. 

For comparison 50 µℓ [123I]NaI (6 µCi) was added to a different set of wells. As a 

control, cell cultures in some wells were left untreated.  

 

Cell cultures were incubated for 24 hours at 37 ˚C and 5 % CO2. Post incubation the 

medium was removed and the cell monolayers fixed with a 2 mℓ solution of buffered 

formalin. Using a phase contrast microscope (Nikon Model TMS) it was observed 

that the 100 000 cells seeded had initially multiplied but were still in a state of sub 

confluence. The fixative was removed after 10 minutes and a 1 mℓ 0.01 % crystal 

violet solution added to stain the cells. After 1 minute, the wells were rinsed in a 

basin using tap water and the plates were left to air dry. The stain absorbed in the 

monolayers of cells was released by adding 1 mℓ 10 % sodium lauryl sulphate (SDS) 

solution to each well. Plates were then incubated at 37 ˚C overnight. The optical 

density of the solution in each well was measured at 590 nm using a HP diode array 

spectrophotometer. The optical density represents a measure of cell growth in 

cultures treated with [123I]IUdR. By comparing it to control cultures the underlying cell 

kinetics were revealed. 

 

Cell Cycle Dependent Uptake of [123I]IUdR 

 

Peripheral blood T-lymphocytes do not normally divide and remain in the G0 phase 

of the cell cycle. A different method of cell preparation from that described in Chapter 

2, is needed to incorporate [123I]IUdR into lymphocytes. For this isolated T-

lymphocytes were stimulated with the mitogen PHA (Sigma-Aldrich), 44 hours before 

radiation treatments were done. Typically this started on a Monday and the time of 
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adding the PHA (Sigma-Aldrich) was judged to coincide with the availability of 

[123I]IUdR the following Wednesday.  

 

After 44 hours of culture time G0 cells have progressed through the cell cycle to the 

S-phase allowing uptake of [123I]IUdR. To 4 S-phase rich cultures [123I]IUdR was 

added to final concentrations of 20, 40, 60 and 80 µCi/mℓ respectively. This was 

repeated for 4 un-stimulated, S-phase deficient cell cultures. The cultures were 

incubated for 2 hours to allow incorporation of the [123I]IUdR into cellular DNA. 

Thereafter cell culture tubes were centrifuged at 180 g. for 5 minutes. The 

extracellular radioactivity was removed by aspirating the supernatant and adding 7 

mℓ cold PBS. This PBS rinse step was repeated three times to remove residual 

extracellular radioactivity. Following centrifugation at 180 g. for 5 minutes, cell pellets 

were isolated by aspirating the PBS. Cell pellets were then lysed with 1 mℓ 1M NaOH 

and the contents of each tube was transferred to 5 mℓ glass test tubes to quantify the 

radioactivity. 

 

The radioactivity of the contents of each tube was measured in a γ-counter (LB 2111 

Berthold Multi Crystal gamma counter). The counts per minute (cpm) obtained from 

the γ-counter were converted to counts per second (cps) and then disintegrations 

per second (dps), assuming 91 % detector efficiency (E) and finally to activity as 

follows: 

  

8_` = 8_�/60 

 

�_` = 8_`/� 

 

( = �_`/3.7 ^ 10F) 

 

Where A represents the Activity measured in curie (Ci).  

 

Radioactive decay corrections were made to relate the measured activity to the 

activity (A0) added to cell cultures at a reference time as follows: 

 

Stellenbosch University  http://scholar.sun.ac.za



 

57 
 

(g =	
(�

*+,- 

 

where        h = 12	(3)
�/
0

 

 

AT – Activity measured at time T 

A0 - Activity at reference time 

4 - decay constant 

t – time between measurement and experimental reference time 

T½- half-life 

 

MN Response Observed in Lymphocytes Following Exposure to [123I]IUdR 

 

To investigate the biological response induced by Auger electrons incorporated into 

cellular DNA by [123I]IUdR, S-phase rich lymphocyte cultures were exposed to 

different concentrations [123I]IUdR. For this isolated T-lymphocytes were stimulated 

with the mitogen PHA (Sigma-Aldrich) 44 hours before radiation treatments were 

done.  

 

After 44 hours of culture time G0 cells have progressed through the cell cycle to the 

S-phase allowing uptake of [123I]IUdR. To S-phase rich lymphocyte cultures 

[123I]IUdR was added to final concentrations of 40 and 80 µCi/mℓ respectively. The 

cultures were incubated for 2 hours to allow incorporation of the [123I]IUdR into 

cellular DNA. Pulse labeling was terminated after 2 hours by centrifugation at 180 g. 

for 5 minutes and aspirating the extracellular activity. Cells were rinsed 3 times with 

RPMI 1640 growth medium by centrifugation at 180 g. for 5 minutes and replacing 

the RPMI 1640 growth medium. Culture volumes were then reduced to 1mℓ by 

centrifugation at 180 g. for 5 minutes and removing the excess growth medium. 

Cultures were kept in a dark sterile biological safety cabinet at room temperature (18 

˚C) for 22 hours to allow the accumulation of disintegrations.  

 

Culture volumes were then adjusted to 5 mℓ with RPMI 1640 growth medium 

warmed to 37 °C. PHA (Sigma Aldrich) concentration of 20 µg/mℓ was maintained 
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and cytochalasin B (Sigma-Aldrich) which inhibits cytokinesis was added to a final 

concentration of 3 µg/mℓ. Cultures were incubated for another 24 hours at 37 °C and 

5 % CO2 to arrest cells in the binucleated state. After a total of 92 hours cultures 

were terminated, cells were fixed and microscope slides prepared and MN 

formations numerated as described in Chapter 2. 

 

MN Response of Lymphocytes from Donors with Different Inherent 

Radiosensitivity Following Exposure to [123I]IUdR 

 

In chapter 3, inherent radiosensitivity differences in lymphocytes obtained from 10 

donors was established after exposure to 60Co γ-rays. Following exposure to high-

LET radiation a decrease in differential radiosensitivity has been observed for 

different cell lines (Niemantsverdriet, 2012). To assess the biological effect of high-

LET Auger electrons on the inherent radiosensitivity variations observed in 

lymphocytes obtained from different donors, lymphocytes from 3 donors identified as 

being radioresistant (donor 4), radiosensitive (donor 3) and of intermediate 

radiosensitivity (donor 8) were treated as follows: 

 

Lymphocyte cultures obtained from the 3 donors were prepared in 10 mℓ tissue 

culture tubes. The lymphocytes in the cultures were stimulated to divide as described 

in the protocol above. 

 

After 44 h incubation time, [123I]IUdR , was added to the S-phase rich cultures to a 

final concentration of 45 µCi/mℓ. One culture per donor was not treated. Pulse 

labeling was terminated after 2 hours by removing the extracellular activity through 

repeatedly rinsing the cells with fresh RPMI. Culture volumes were reduced to 1 mℓ. 

Cultures were kept in a dark sterile biological safety cabinet for 22 hours to allow the 

accumulation of disintegrations.  

 

Culture volumes were adjusted to 5 mℓ with complete RPMI medium warmed to 37 

°C. PHA (Sigma-Aldrich) was added to a final concentration of 20 µg/mℓ and 

cytochalasin B (Sigma-Aldrich) which inhibits cytokinesis was added to a final 

concentration of 3 µg/mℓ. Cultures were placed in the incubator for another 24 hours. 
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After a total of 92 hours cultures were terminated. Cells were fixed and microscope 

slides prepared as described in Chapter 2. 

 

Results 

 

Cell Culture Kinetics After Exposure to [123I]IUdR and [123I]NaI 

 

In this study a compound was prepared that allowed 123I to be incorporated into 

cellular DNA using the thymidine analogue [123I]IUdR. Before this could be used for 

radiobiological studies, it was imperative to assess the effects of chemicals used in 

the synthesis of the compound on the kinetics of cell cultures in which it was used. A 

number of different methods to prepare [123I]IUdR other than the method used in this 

study, failed to incorporate [123I]IUdR into cellular DNA. This is thought to be due 

mainly to the cellular kinetics being adversely affected by chemicals used in the 

preparation. The testing of these compounds is not reported here as they showed 

little promise. In all cases a severe slowdown in cellular kinetics was evident using 

simple phase contrast microscopy. As a result there was no need for a quantitative 

analysis of cell growth.  

 

The synthesis of [123I]IUdR using the method reported here resulted in cells 

undergoing normal growth when exposed to the compound overnight.  As a result a 

quantitative method using crystal violet stain was used to assess the suitability of the 

compound. The optical densities reflecting cell concentrations for treated and 

untreated cell cultures following a 24 hour exposure are shown in Fig. 4.2. No 

difference was noted in the growth rate of cell samples exposed to [123I]IUdR or 

[123I]NaI and control samples.  
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Figure 4.2: Optical densities of SDS solutions containing crystal violet reflecting the 

cell concentrations for treated and untreated cell cultures following an exposure 

period of 24 hour of cell cultures prepared in a multiwall plate and treated with the 

compounds indicated.  

 

Radioactivity Uptake by Lymphocyte Cultures 

 

Due to the complex culture method needed to incorporate [123I]IUdR into S-phase 

lymphocytes it was essential to establish if the protocol described under Materials 

and Methods Chapter 2, resulted in successful uptake of [123I]IUdR and if cells could 

be successfully cultured following a 22 hour period of standing at room temperature. 

All the cultures in this study proved to be successful in stimulating lymphocytes into 

S-phase and allowing uptake of [123I]IUdR (Fig. 4.3 ).  

 

The thymidine analogue [123I]IUdR was selectively incorporated into cellular DNA for 

lymphocytes with an S-phase fraction. Higher radioactivity counts were seen in 

lymphocyte cultures stimulated with PHA compared to unstimulated lymphocytes. 

The radioactivity reading shown in Fig. 4.3 is that of lymphocyte culture samples that 

had been pulse labelled for 2 hours using different concentrations of [123I]IUdR. 

Lymphocytes were washed 3 times with cold PBS and then the radioactivities were 

determined. The readings show an increase in the radioactive count with the amount 

of [123I]IUdR added to the original cell cultures. Un-stimulated cells, by contrast show 

much lower levels of radioactivity. A small increase with an increase in activity added 

to the cultures is noted. This is likely to be as a result of the 3 PBS wash steps used 

not fully removing non-specific radioactivity.  
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Figure 4.3: Comparison of [123I]IUdR uptake for stimulated T-lymphocyte cultures (S-

phase rich) and non-stimulated lymphocyte cultures (S-phase deficient).  

 

MN Formation in Response to Auger Electron Damage 

 

Following the pulse labelling of cells with [123I]IUdR, unbound activity was removed 

by washing the cells 3 times with cold PBS. Then cell suspensions were left for 22 

hours at room temperature in a laminar flow cabinet. Then cytochalasin B was added 

to the cell suspensions and then the lymphocytes were re-cultured at 37 ˚C for an 

additional 28 hours. It was important to establish if this complex culture process 

which is needed to incorporate the [123I]IUdR and then allow accumulation of 

disintegrations, would successfully result in BN cells that can be analysed for MN 

formation. Therefore, the nucleation indices and percentage BN cells observed in the 

cell cultures of the 3 different donors are listed in Table 4.1. The percentage BN cells 

ranged between 34 and 44 %. This is consistent with the percentage BN cells 

observed in Chapter 3 following a less disruptive cell culture method. In these normal 

culture procedures the percentage BN cells for cultures ranged between 23 and 59 

%. Moreover some cells in the experimental group contained 3 and 4 main nuclei 

which is an indication of cells dividing normally.  
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Table 4.1: Number of cells containing different numbers of main nuclei seen in 

cultures for 3 different donors. This reflects the cell culture kinetics of lymphocytes. 

                    

  

1 

Nucleus 

2 

Nuclei 

3 

Nuclei 

4 

Nuclei 

Nucleation  

index 

 Percentage 

BN   

  Donor 3 60 39 1 1.44 39.39   

  Donor 4 53 42 5 1.52 44.21   

  Donor 8 64 34 1 1 1.35 34.69   

                    

 

 

MN Response Observed in Lymphocytes Following Exposure to [123I]IUdR 

 

The cytogenetic response of T-lymphocytes exposed to [123I]IUdR was evaluated by 

enumerating MN frequencies in treated samples. MN frequencies induced by pulse 

labelling of cell cultures with 40 µCi/mℓ were more than that of the mean background 

of 8 MN per 500 BN cells. Cultures pulse labelled with 80 µCi/mℓ [123I]IUdR resulted 

in MN formations more than double that seen for 40 µCi/mℓ (Fig. 4.4). The 

importance of this result is twofold. Firstly the abnormal culture conditions do result 

in the formation of increased measurable levels of MN. Secondly, the information 

obtained from these readings are indicative of how much activity should be used in 

pulse labelling.  
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Figure 4.4: Micronuclei induction in T-lymphocytes following pulse labelling with 

different radioactivity concentrations. 

 

MN Response of Lymphocytes from Donors with Different Inherent 

Radiosensitivity Following Exposure to [123I]IUdR 

 

MN formations induced in lymphocytes obtained from 3 donors with different inherent 

radiosensitivities were followed after pulse labelling with 45 µCi/mℓ [123I]IUdR. The 

two hour pulse labelling of stimulated lymphocytes with 45 µCi/mℓ resulted in 0.2 µCi 

being incorporated into the DNA of the stimulated lymphocyte fraction. This reading 

represents the mean radioactivity for lymphocyte cultures from 3 different donors 

after cells were repeatedly washed with PBS. The decay of 0.2 µCi over a period of 

22 hours resulted in the irradiation of cellular DNA with Auger electrons from 123I. 

This treatment induced 53, 56 and 58 MN per 1000 BN cells respectively amongst 

the 3 donors used in the study (Fig. 4.5). This is slightly lower than the results 

obtained in the dose finding experiment (Fig. 4.4).  
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Figure 4.5: Biological dose response variations for 3 donors with predetermined 

inherent radiosensitivity differences exposed to different radiation qualities. Donor 3 

was found to be most radiosensitive and donor 4 most radioresistant to 60Co γ-rays.  

 

The variation in MN formations induced in lymphocytes obtained for donors with 

different inherent radiosensitivities following pulse labelling with 45 µCi/mℓ [123I]IUdR 

needs to be compared with that for MN formations in lymphocytes obtained from the 

same donors exposed to 60Co γ-rays and neutrons. For this MN formations for each 

donor noted after doses of 60Co γ-rays or neutrons that are closest to that seen for 

Auger electrons are compared. The coefficient of variation (CV) of MN induction by 

Auger electrons for the three donors is 4.5 % (Table 4.2). This compares to a CV of 

5.4 % for exposure to neutrons and a CV of 18.7 % for 60Co γ-rays. A larger than 

threefold increase in the variations in response of different donors to high-LET 

radiation modalities are noted compared to 60Co γ-rays (Table 4.2). This is 

notwithstanding the fact that higher levels of biological damage for neutrons and 

Auger electrons are compared to that for γ-rays. Moreover the variation in responses 

to Auger electrons of lymphocytes from different donors with established differences 

in inherent radiosensitivities is marginally less than that of neutrons. A systematic 

reduction in the coefficient of variation in response is thus noted with an increase in 

the ionization density used in the treatment of T-lymphocytes (Fig. 4.5). 
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Table 4.2: The coefficient of variation (CV) for MN formations in lymphocytes from 3 

donors with an established difference in inherent radiosensitivities.  

              

  

Radiation modality 

Mean 

number 

MN per 

1000 BN 

Standard 

Deviation 

Standard 

Error 

Coefficient 

of 

variation 
  

  

     

  

  0.5 Gy 60Co γ-rays 36.33 6.80 3.93 18.73%   

  
     

  

  

0.2 Gy p(66)/Be 

neutrons 
46.33 2.52 1.45 5.43% 

  

  
     

  

  45 µCi [123I]IUdR 55.67 2.52 1.45 4.52%   

  
     

  

              

 

 

Biological Effectiveness by Auger Electrons Induced by [123I]IUdR Compared 

to that Induced by [123I]antipyrine and [123I]NaI 

 

The only other study available in the literature where the effects of Auger electrons 

were followed in T-lymphocytes was that by Slabbert et al. (1999). Using 123I labelled 

to the organic compound antipyrine. Antipyrine allows 123I to cross the cell and 

nuclear membrane. MN formations were observed and compared to that noted in 

CHO-K1 cells. As a control irradiation, lymphocytes and CHO cells were exposed to 

[123I]NaI that is not taken up by cells, however cells are exposed to the 159 keV γ-ray 

emitted by 123I. Large variations in the response of lymphocytes (radioresistant cells) 

and CHO cells (radiosensitive cells) are noted for exposure to [123I]NaI. A much 

smaller variation in the response of these cell types is noted when exposed to 

[123I]antipyrine where the Auger electrons emitted by 123I effect cellular damage. The 

data obtained for [123I]IUdR is consistent with this.  

 

To compare the differences in efficiency of inducing MN formations by [123I]IUdR with 

that by [123I]antipyrine, the number of disintegrations per unit volume for the 
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radioactivity incorporated into the cellular DNA of lymphocytes used in this study 

needs to be calculated. The number of nuclear disintegrations per 1 mℓ culture 

volume was calculated for the radioactivity incorporated into cells and allowed to 

decay for 22 hours. The total number of disintegrations divided by the volume of the 

culture is expressed disintegrations per cubic micrometre (d/µm3).  

 

The mean MNF induced by [123I]IUdR in the lymphocytes of 3 donors was 56 MN per 

1000BN. The number of disintegrations per micrometre needed to yield this 

frequency is 4 X10-4 d/µm3.  This compares to 8 X10-2 d/µm3 for lymphocytes treated 

with [123I]antipyrine.  
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Chapter 5 

 

Discussion 

 

In this study the accuracy of a semi-automated image analysis system to detect 

differences in inherent radiosensitivities of lymphocytes obtained from different 

donors exposed to different radiation qualities was assessed. This was done to 

determine radiation weighting factors for a high energy neutron beam.  

 

Micronuclei induction in lymphocytes was chosen as the biological endpoint to 

measure RBE differences of high energy neutrons with respect to 60Co γ-rays the 

reference radiation. Cytogenetic damage in lymphocytes has been well documented 

by several authors for such studies (Huber et al., 1992, Mill et al., 1996, Schmid et 

al., 2002 and Slabbert et al., 2010). Furthermore MN induction has been shown to be 

a suitable endpoint to quantify lymphocyte radiation damage using a semi-automated 

image analysis system (Verhagen and Vral, 1994 and Vral et al., 1994). 

 

Cell Cultures 

 

MN formations following radiation damage can only be observed if T-lymphocytes 

samples have been successfully stimulated to complete nuclear division (IAEA, 

2011). MN frequencies were therefore numerated only in BN cells, as this is a 

verification that cells have completed nuclear division. The cell culture methods 

employed in this study proved to be most suitable as only one failure had been noted 

out of 144 cultures set up for this study. The nucleation indices observed 

representing the mitogenic response of the cells in culture were much larger than 1 

(Table 3.1). This is an indication that a significant fraction of lymphocytes completed 

at least one nuclear division. The lowest percentage BN in a culture was 23 %. This 

represents 230 000 BN cells available for analysis compared to about 2000 BN cells 

needed to quantify MN.  
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Dose Response Curves 

 

Background Readings 

 

A notable disadvantage of the MN assay is the variable spontaneous background 

MN frequencies between different donors. Spontaneous variation in background 

MNF ranging from 0 to 40 MN per 1000 BN cells have been reported in human 

lymphocytes (Verhagen and Vral, 1994, Vral et al., 1994, Wuttke, 1998 and Fenech, 

1999). Several studies have shown that apart from exposure to clastogens, the 

biggest contributing factors to spontaneous MN are age and gender (Fenech et al., 

1999). Background readings noted in this study ranged from 4 to 15 MN per 1000 

BN cells and thus is not as variable as that noted by other investigators. A possible 

explanation for this is that only health donors within a working age were used in this 

study. The variable spontaneous background in MNF limits the sensitivity of 

detection of damage induced by low doses of radiation (Mill et al., 1996). The mean 

spontaneous MN frequency for male donors was 7 ± 0.8 whilst that for females was 

12 ± 2.1. The higher spontaneous MNF noted for female donors was consistent with 

that noted in previous studies (Thierens et al. 2000 and Pala et al, 2008).  

 

Radiation Induced MN 

 

The detection limit of radiation induced MN is reported to be 0.2 to 0.3 Gy (Vral et al., 

2011). In this study an increase in MNF above the background was noted for 6 

donors for a dose of 0.05 Gy 60Co γ-rays. The increase in MNF was however not 

statistically significant when comparing the data for all donors used in the study. For 

a dose of 0.1 Gy, 60Co γ-rays, 7 donors displayed MNF significantly higher than 

background readings. The other 3 donors only display significant differences for 

doses higher than 0.2 Gy. It is concluded that the image analysis system is able to 

detect readings from the background for 70 % samples at 0.1 Gy and 100 % 

samples at 0.2 Gy. The higher precision of the Metafer system is likely the result of 

consistent readings using the same image analysis classifier. 
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The ability to detect differences in MNF after lower doses in this study will have 

contributed to the accuracy in construction of dose response curves for lymphocytes 

obtained from each donor in the study. Higher α-values for 60Co γ-rays were noted 

compared to those of previous studies (Vral et al., 1994 and Slabbert et al., 2010). 

Close inspection of the aforementioned studies reveal that MN formations were not 

quantified over the same low dose range used in the current study. Using low dose 

points of 0.05, 0.1 and 0.2 Gy ensures an accurate estimate of the initial slope of the 

dose response curve represented by α-value (Malaise et al., 1994 and Ono, et al. 

1994). 

 

Dose response curves determined using the automated scoring system for both 

high- and low-LET radiations exhibit distinct characteristics consistent with those 

noted using manually scoring methods in assessing radiation damage in 

lymphocytes (Slabbert et al. 2010) and in the estimation of cell survival (Hall and 

Giaccia, 2005). The MN response observed for each donor is higher after all doses 

of neutrons used in the study compared to the corresponding doses of γ-rays. This 

confirms the dependence of MN induction frequency as a function of radiation quality 

(Wuttke et al., 1998). Secondly, a clear linear-quadratic relationship is noted for γ-

rays with β-values significantly larger than zero (Table 3.2). Typically DNA DSBs are 

induced by low-LET radiation as a result of 2 DNA lesions that are formed by two 

separate tracks of ionizing radiation. At low doses the probability of a coincidence of 

two DNA lesions in close proximity is small. At higher doses there is an increased 

probability of a coincidence of two single strand breaks in close proximity. In this 

dose region the biological effect is proportional to the square of the dose.  

 

By contrast the overwhelming linear response noted for neutrons is in part due to the 

quality of the radiation of which the biological effect is proportional to the dose (Hall 

and Giaccia, 2005). In three of the 10 donors a significant β component was 

observed for the neutron irradiations. The bending component observed for these 

donors is due the ability of the affected cells to accumulate repairable damage. 

Furthermore the physical properties of p(66)/Be neutron beam used in this study are 

such that about 36% of the dose is induced by secondary charged particles that 

overlaps with the 60Co γ-ray spectrum (Slabbert et al., 1989). 

 

Stellenbosch University  http://scholar.sun.ac.za



 

70 
 

95 % Confidence Ellipses 

 

Distinct differences in dose response curves for the different donors to 60Co γ-rays 

were observed. To qualify inherent radiosensitivity differences at the 95 % 

confidence level, ellipses have been constructed that relate the covariance 

parameters of α and β that determine the dose response curve for lymphocytes from 

each donor. The mean and variances were used to calculate a set of α and β 

coordinates that demarcates the 95 % confidence interval (Sokal et al., 1995). Thus 

the ellipse represents the inherent radiosensitivity of an individual (α-value) as well 

as the capacity to accumulate repairable damage (β-value). The confidence ellipses 

around the mean α- and β-value estimated were separate for most donors. The only 

exceptions were those for donors 5 and 7 and 5 and 8 (Fig. 3.2). To identify different 

inherent radiosensitivities in lymphocytes of different donors it is important that the 

confidence ellipses for dose curves must be relatively small. The automated image 

analysis results in consistent MNF counts that follow the fitted dose response curves 

very closely. The consistent MN detection of the Metafer is most likely the principal 

reason why lymphocytes form 8 of the 10 donors proved to have statistically 

significant variations in their radiosensitivities to 60Co γ-rays. The α-values observed 

in the study ranged from 13 to 91 Gy-1 and thus vary by a factor of 7. 

 

Confidence ellipses noted for neutron irradiations are relatively larger for all donors 

and also cluster together with several overlapping (Fig. 3.3). The relative larger 95 % 

confidence ellipses noted for neutron irradiations is the result of using fewer dose 

points over a smaller dose range compared to that used for 60Co γ-rays. Survival 

curves for different types of clonogenic mammalian cells exposed to 300 kV X-rays 

or 15 MeV neutrons, showed markedly less variation in radiosensitivity for cells 

irradiated with the neutrons (Hall and Giaccia, 2005). The smaller variation in 

radiosensitivity exhibited by these cells is characteristic of the local dose deposition 

nature for this type of radiation, thus a lack of sublethal repair is apparent 

(Barendsen, 1994).  

 

Using the ellipses in Fig. 3.2 donors were ranked according to their radiosensitivity to 

low-LET 60Co γ-rays and this is compared to the ranking of individuals’ lymphocytes 

to neutrons (Fig. 3.3). The donors radiosensitivity rank established for 60Co γ-rays 

Stellenbosch University  http://scholar.sun.ac.za



 

71 
 

did not follow the same trend after exposure to p(66)/Be neutrons (Fig. 3.4). This 

demonstrates a reduced variation in the relative radiosensitivity of lymphocytes from 

different donors to γ-rays and neutrons. A similar observation was published for 

mammalian cell lines exposed to 60Co γ-rays and a 15 MeV neutron beam (Broerse 

and Barendsen, 1973).  

 

Dispersion Parameters 

 

The dispersion indices for MN formations noted in lymphocytes is an indication 

whether the automated image analysis system used in the study is able to detected 

qualitative differences in radiation quality. Comparing σ2/ȳ for 60Co γ-rays and 

p(66)/Be neutrons, showed that MN formations in lymphocytes were consistently 

more over-dispersed for neutron irradiations compared to 60Co γ-rays (Fig. 3.5).  

 

Statistically significant (µ > 1.96) over-dispersed distributions were noted in the 

number of MN observed in cells following exposure to 60Co γ-rays or neutrons. 

However the mean µ-value of 3.92 for cell samples exposed to 60Co γ-rays was 

significantly less than the corresponding µ-value of 7.05 for neutrons. This implies 

that the spatial distribution of ionization events induced by neutrons is readily 

detectable using the automated image analysis system. 

 

Relative Biological Effectiveness 

 

RBE is a complex quantity dependant on several factors including radiation quality, 

radiation dose, fractionation protocol, dose rate and the biological system or end 

point used in its estimation (Hall and Giaccia, 2005). Biological end points such as 

clonogenic cell survival (Thomas et al., 2007), jejunal crypt regeneration (Gueulette 

et al., 2005), dicentric formations in lymphocytes (Nolte et al., 2007) and MN 

induction in lymphocytes (Slabbert et al., 2010) have been used with great success 

to determine RBE of different radiation qualities. Using apoptosis in lymphocytes as 

an endpoint to determine RBE for a 280 keV neutron beam compared to 137Cs γ-

rays, Ryan et al., (2006) found the RBE to be close to one. By contrast Nolte et al., 

(2007) noted an RBE of approximately 90 for the same energy neutron beam, but 
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using dicentric formations in lymphocytes as endpoint. The latter is however a very 

time consuming method. The quantification of apoptosis in cells with a flow 

cytometer is a well described process enabling the user to analyse large numbers of 

cell samples over a short period of time (Lacombe and Belloc, 1996 and 

Darzynkiewicz et al., 2001). But this endpoint is not able to discern between different 

radiation qualities and yield RBE values larger than 1. It is thus important to choose 

an appropriate endpoint for doing such studies. Micronuclei formations in 

lymphocytes proved to be a suitable endpoint to determine radiation damage on a 

cytogenetic level. In the past cytogenetic damage expressed as MN has been used 

to distinguish between radiation damage induced by different radiation modalities 

with success (Vral et al., 1994 and Slabbert et al. 2010). When radiation weighting 

factors are assigned to different radiations, the probability of inducing neoplastic 

disease is investigated. Hence cytogenetic damage has to be related to the radiation 

quality. Furthermore MN enumeration is now possible using semi-automated image 

analysis (Willems et al. 2009). It is thus appropriate to study this endpoint using the 

Metafer microscope system. 

 

The principal objective of this study was to establish if high energy neutron RBEM 

values and a variation in the inherent radiosensitivity of lymphocytes from different 

donors to 60Co γ-rays are related. The range and variation of inherent radiosensitivity 

represented by the α-values for 60Co γ-rays (Fig. 3.6) are marginally higher than that 

reported previously (Slabbert et al. 2010). To date there is no other data available for 

high energy neutrons to compare with the current study.  

 

A clear correlation between neutron RBEM values and radiosensitivity of donor 

lymphocytes to 60Co γ-rays could be established. This finding using 10 donors 

confirm the conclusions made by Slabbert et al. (2010) using the results of 4 donors 

exposed to the same neutron beam. The RBEM values noted in this study ranged 

from two to thirteen. The highest RBEM values are those for the two most 

radioresistant donors. Values for the other 8 donors are consistent with that reported 

for this neutron beam (Slabbert et al. 2010). The greater variation in RBEM values 

seen may be attributed in selecting in this study donors with bigger variation in 

inherent radiosensitivity differences to 60Co γ-rays in this study. This is consistent 

with using a larger cohort of donors.  
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The mean neutron RBEM determined for the 29 MeV neutron beam in this study is 

4.8. This is lower than the mean RBEM of 7.6 noted for a 5.5 MeV neutron beam 

(Vral et al., 1994). It is also lower than the RBE of 12.2 for micronuclei in 

lymphocytes exposed to a mixed fission neutron-gamma-ray beam reported by 

Hubber et al. (1994). The RBE of neutron beams is expected to increase with a 

decrease in neutron energy.  

 

The mean RBEM value of 4.8 determined in this study is consistent with mean RBEM 

value of 4.2 reported previously for the same neutron source (Slabbert et al., 2010). 

Both these findings support the value of 9 found by Nolte et al., (2007) using 

dicentric formations in lymphocytes exposed to a 192 MeV beam. The RBEM value of 

113 for simulated neutron spectra at flight altitudes reported by Heimers, (1999) is 

clearly at variance with the results of the current study.  

 

RBEM values can be expected to remain unchanged for neutron energies above 20 

MeV (Nolte et al., 2005).  

 

The range of RBEM values for a p(66)/Be neutron beam reported  here is 3.5 to 12. 

Moreover the unequivocal relationship established in this study between neutron 

RBE and radioresistance points to the need to determine radiation weighting factors 

using cells from multiple donors. The study of Nolte et al., (2007) is thus incomplete 

and RBEM values as a function of neutron energy needs to be established for both 

sensitive and radioresistant donors. The relationship between neutron RBE and 

radioresistance obtained in this study using a mean neutron energy of 29 MeV 

clarifies the need to obtain weighting factors at high neutron energies (>20 MeV). 

Moreover at energies lower than 20 MeV a correlation between neutron RBE and 

radioresistance can be expected.  This has been demonstrated by Vral et al., (1994) 

for 5.5 MeV neutrons source and Slabbert et al., (2000) for a 6 MeV neutron source. 
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RBE as a Function of Neutron Dose 

 

Mean neutron RBE values of all donors as function of dose are plotted in Fig. 3.8. 

The log neutron RBEM is expected to relate to the log neutron dose as a straight line 

considering theoretical arguments by Kellerer and Rossi, (1978). The generalized 

formulation of the theory of dual radiation action is based in part on the observation 

that loge (neutron RBE) as a function of loge (neutron dose) is a straight line with a 

slope of -½ Gy-1. In this study a slope of -0.4 Gy-1 is determined for lymphocytes. 

This is consistent with similar relationships established for a wide variety of biological 

endpoints exposed to d(50)/Be neutrons (Wambersie et al., 1979). RBE values 

obtained by these investigators for diverse endpoints including chromosomal 

aberrations in plant cells to lung damage in mice spanning doses of 0.1 to 10 Gy 

approximate this theoretical slope of -½ Gy-1. Given the variation in neutron RBE 

values for different cell types at different doses the slope of -0.4 Gy-1 noted in the 

current study for lymphocytes is in line with theoretical expectations. 

 

Micronuclei Formations in Lymphocytes with Different Inherent 

Radiosensitivities to Auger Electrons Emitted By 123I 

 

In this part of the study micronuclei induction in lymphocytes was monitored to 

measure differences in cytogenetic damage induced by Auger electrons emitted by 

123I. This was done for 123I incorporated into cellular DNA. This investigation is 

unique as a survey of the literature reveals that cytogenetic damage in lymphocytes 

has not been studied to date using a radioactive halogenated pyrimidine. It has been 

attempted as knowledge of cellular response in relation to radiosensitivity is also 

important in nuclear medicine applications using radionuclides emitting high-LET 

radiation. 

 

The protocol followed in the chemical preparation of [123I]IUdR proved to be suitable 

for studies using cells in culture. This was demonstrated by following the cell culture 

kinetics of CHO cells exposed to [123I]IUdR and [123I]NaI and compare it to that of 

untreated cell samples. The preparation method of [123I]IUdR used in this study 
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demonstrated not to involve any chemicals that interfere with cellular kinetics. This 

allowed the incorporation of [123I]IUdR into lymphocyte DNA.  

 

The thymidine analogue [125I]UdR is readily incorporated in cellular DNA replacing 

the pyrimidine nucleobase thymine during DNA synthesis (Sokolov et al., 2007). As 

such only cells in S-phase incorporate [123I]IUdR into cellular DNA (Bradley et al., 

1975). Peripheral blood lymphocytes normally reside in the G0 phase of the cell 

cycle. Incorporation of [123I]IUdR into cellular DNA during this phase of the cell cycle 

is not possible. Differential uptake of [123I]IUdR between S-phase rich and S-phase 

deficient lymphocyte populations could clearly be demonstrated (Fig. 4.3). This 

confirms that cells were successfully stimulated and that detectable quantities of 

[123I]IUdR could be incorporated into lymphocytes. To ensure effective uptake and 

incorporation of a radiolabelled compound the addition of [123I]IUdR to cell cultures 

has to coincide with the period where most cells are actively synthesizing DNA 

(Vaidyanathan et al., 1996). It has been shown that the largest fraction of PHA 

stimulated lymphocytes enter a period of DNA synthesis between 48 and 72 h after 

stimulation (Sören, 1973). However cell cycle analysis of PHA stimulated 

lymphocytes reveals that only 10 to 20 % cells are in S-phase at any one time during 

this period (Darzynkiewicz et al., 1976). Cells were exposed to [123I]IUdR starting at 

44 hours and ending 46 hours post stimulation. Ideally the exposure period should 

be such as to expose all cells to [123I]IUdR. However due to the short half-life of 123I 

(13.2 hours) this is not practical as a substantial amount of radioactive decay over 

this period would lead to the incorporation of non-radioactive IUdR.  

 

The prolonged cell culture method of 92 hours attempted in this study proved to be 

successful to allow the incorporation of [123I]IUdR into lymphocytes and to effect the  

accumulation of enough disintegrations of the isotope to yield measurable cellular 

damage. From the lymphocytes of all three donors used in this study sufficient 

numbers of BN cells were obtained for microscopic analysis notwithstanding the fact 

that cell cultures were interrupted for 22 hours in the process. During this time 

lymphocytes were left at room temperature to allow decay of 123I. This method can 

be used to study Auger electron damage from other isotopes in lymphocytes.  
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MN formations induced in lymphocytes obtained from 3 donors with established 

differences in inherent radiosensitivities were followed after pulse labelling with 

[123I]IUdR. These three donors include a donor sensitive to γ-rays, resistant to γ-rays 

and a donor with an intermediate sensitivity to γ-rays. It is of interest to compare the 

variation in lymphocyte response to Auger electrons to that of 60Co γ-rays and 

p(66)/Be neutron exposures. To achieve this MN in lymphocytes for the same three 

donors exposed to neutron and γ-rays are used for comparison (Fig. 4.5). MN 

formations to doses of neutrons and γ-rays closest to that seen for [123I]IUdR 

treatments arre compared. Clear differences in the variation of biological response 

for the three different donors to the different radiation qualities are evident. Large 

dose response variations of up to 19 % are seen for 60Co γ-ray exposures. This 

dropped to 5 % for neutrons and 4 % for Auger electron damage. This reduced 

variation in the lymphocyte response between donors sensitive and resistant to 60Co 

γ-rays is consistent with the progressive increase in ionization densities of the 

treatment modalities. The differences in MN formations for lymphocytes from the 

three donors for neutron treatments relative to that for Auger electrons is less than 

expected. This is logical as Auger electrons are expected to have ionization densities 

similar to that of α-particles (Laster et al., 1996).  

 

Considering that only about 10 to 20 % of lymphocytes are in S-phase during the 

pulse labelling period between 44 and 46 hours (Darzynkiewicz et al., 1976) only a 

limited fraction of the cells exposed to [123I]IUdR in this study could be expected to 

incorporate the compound. A substantial number of cells will not incorporate 

[123I]IUdR, hence not exhibit any cytogenetic damage. As a result the results 

reported here is most likely an underestimation of the biological damage by 

[123I]IUdR.  

 

The high-LET characteristics of Auger electrons have also been noted in other 

studies. Survival curves established for Auger electrons incorporated into DNA 

exhibit no shoulder at low doses (Makrigiorgos et al., 1990). Thus the β-component 

of the linear quadratic model that describes the cells’ capacity to repair sublethal 

damage has disappeared. This finding is consistent with cells exposed to high-LET 

α-particle sources (Goddu et al., 1994).  
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Calculation of RBE values for DNA incorporated Auger electrons will be challenging 

as the dose deposition is confined to nanometre volumes. This can in principle be 

done using Monte Carlo simulations, but falls outside the scope of this investigation. 

In order to calculate an RBE for Auger electrons, lymphocyte samples will need to be 

exposed to different activities of 123[I]IUdR that result in different levels of 

disintegrations in cellular DNA. The corresponding MN dose response curve can 

then be used in conjunction with the 60Co dose response curve to estimate the RBE 

of Auger electrons. 

 

Being able to incorporate [123I]IUdR into lymphocytes it is now possible to compare 

the effect of Auger electrons delivered in this manner with that done using the same 

cell type as in previous studies with [123I]antipyrine (Slabbert et al., 1999). Using the 

MN formations observed in three donors the number of disintegrations per cubic 

micrometre needed to induce 1 MN is calculated to be 7 x10-6 d/µm3. This compares 

to 1 x10-3 d/µm3 for lymphocytes treated with [123I]antipyrine. Disintegrations by 123I 

effected in cells when labelled to deoxyuridine is thus more than three orders of 

magnitude more efficient in inducing MN formations. This is logical as all the Auger 

electrons emitted by [123I]IUdR are in close proximity to the DNA, whilst that of 

[123I]antipyrine are not necessary within range of this critical target. From this it is 

clear that the therapeutic use of Auger electron emitters when labelled to an antibody 

or an organic compound that allows intra cellular disintegrations is highly efficient to 

induce cellular radiation damage. 

 

The reduced variation in MN formations by Auger electrons for cells with different 

inherent radiosensitivities noted in this study has implications for selecting a suitable 

radionuclide for therapeutic purposes. In all probability the response of cancer cells 

with different radiosensitivities will vary when treated with a β-emitter. Treatment with 

an α-particle or Auger electron emitter is likely to result in a more uniform response. 

As a result it is reasonable to expect that the relative biological effectiveness of α-

particle or Auger electron emitters will increase when used in the treatment of 

radioresistant disease (Barendsen, 1996). An increase in the RBE of Auger electrons 

with radioresistance can be inferred from these findings and constitutes a basis for 

therapeutic gain in treating cells compared to using radioisotopes emitting low-LET 

radiation (Todd, 1977). Consequently the response of cancer cell types with 
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established differences in inherent radiosensitivities should be followed to verify the 

therapeutic gain for its application in target radiotherapy.  
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Conclusions 

 

1. The semi-automated image analysis system used in this study detects MN 

formations in peripheral blood lymphocytes accurately to show differences in 

the inherent radiosensitivity of different donors.  

 

2. Quantitative and qualitative differences in MN formations in response to 

changes in radiation quality can be detected using the Metafer microscope 

system.  

 

3. The MN assay is a suitable biological endpoint when investigating inherent 

radiosensitivity differences and related RBE values.  

 

4. A clear relationship between neutron RBE and inherent radiosensitivity to 

60Co γ-rays could be established for high energy neutrons. 

 

5. When determining radiation weighting factors for neutrons of all energies it is 

essential to base this on the cellular response of different donors. 

 

6. Biological damage induced by Auger electrons can be studied in peripheral 

blood lymphocytes using the thymidine analogue [123I]IUdR. 

 

7. The high-LET characteristics of Auger electrons result in a reduced variation 

in the response of lymphocytes obtained from donors with different inherent 

radiosensitivities. 
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