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General summary 

With only about 12% of the Earth’s surface under some form of official protection and the 

human population on the rise exponentially, production landscapes can and should contribute 

significantly towards biodiversity conservation in the future. Globally, management practices 

that balance production and conservation are important for creating sustainable agriculture 

and timber production landscape. This study aims to determine how a heterogeneous, 

unfenced national park in South Africa, containing a mosaic of commercial plantations, natural 

forests and fynbos is affected by land transformation. This was achieved by focussing on 

artificially created and natural edges found in this landscape, through analysing and comparing 

the composition and species richness of arthropods across linear transects. Specifically I 

determined if natural edges next to southern Cape Afrotemperate forests are altered by 

anthropogenic influences such as forestry plantations, and their felling, as measured by 

epigaeic arthropod diversity. The effects of different road types, and directions that these roads 

dissect the forest, were also assessed. I found that pine plantations provide little suitable 

habitat for either forest or fynbos arthropods. The natural fynbos-forest ecotone harbours a 

unique composition of arthropod assemblages, with the smallest edge effect into the forest. 

Once this is replaced by commercial pine plantations, an edge effect up to 30 m into the forests 

from the plantation edge is detected. When plantations bordering natural forests are felled, 

the edge effect increases to 50 m into natural forests. Research on edge effects created by 

roads showed that both wider, arterial roads as well as secondary roads affected the diversity 

of forest arthropods up to 50 m into the natural forest. These effects are therefore similar to 

that observed after clear felling of plantations except that, in contrast to possible regeneration 

of natural edge habitat after clear felling, these edges are now permanent fragmentary 

features in the forest with little chance of recovery. Even hiking trails affected overall arthropod 

assemblages in the adjacent forests up to 10 m. Although this likely does not lead to forest 

fragmentation due to an in-tact forest canopy, these areas alter natural assemblages with 

unknown population dynamic consequences. I also show that east-west directed roads have 
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stronger fragmentary effects as determined by arthropod diversity, along their southern edge 

than north-south directed roads, with east and west facing edges. Increased sunlight 

penetration, with its accompanying changes in microclimatic conditions is put forward to 

explain these differences. Habitat loss due to the establishment of commercial plantation 

forestry in the region not only leads to a decrease in suitable fynbos habitat, but also impacts 

adjacent natural forest arthropod diversity. The remaining southern Cape Afrotemperate 

forests are greatly fragmented by a network of roads. Due to the uniqueness of these forests, 

special management is needed to ensure that the biodiversity in the region is optimally 

conserved without adversely affecting production yields. Some possible mitigation actions are 

put forward. However, these should be assessed for their effectiveness in future research 

studies before they are implemented.   
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Opsomming 

Met slegs sowat 12% van die Aardoppervlak tans amptelik beskerm en die aanhoudende, 

eksponensiële groeikoers van die mens, het die tyd ryp geword vir die mens om te besef dat 

landskappe wat nie amptelik beskerm word nie kan en sal moet bydra tot 

biodiversiteitsbewaring. Wêreldwyd is bestuurspraktyke rakende volhoubare landskappe, wat 

poog om ‘n balans te handhaaf tussen bewaring en produksie, bewys om suksesvol by te dra 

tot bewaring. Hierdie studie het beoog om te bepaal hoe ‘n heterogene, onomheinde nasionale 

park in Suid-Afrika, met kommersiële plantasies, natuurlike woude en fynbos wat groot areas 

binne die grense van die park bedek, geraak word deur die rande van hierdie aangrensende 

habitat-tipes te bestudeer. Dit was gedoen deur na beide die natuurlike en versteurde 

woudrand te kyk. Spesifiek het ek bepaal of natuurlike woudrande se grondlewende 

arthropoda beïnvloed word deur kommersiële denne-plantasies en hul verwydering. Die 

moontlike effekte van verskillende pad-tipes en padrigtings op woudfragmentasie is ook 

bepaal. Ek het bevind dat denne-plantasies min geskikte habitat vir beide woud- en fynbos-

arthropoda bied. Ook, sodra plantasies aangrensend aan natuurlike woude kaalgekap word, 

vergroot die afstand wat effekte penetreer tot sowat 50 meter binne woude. Die resultate in 

verband met paaie wat deur die woud loop toon aan dat wyer, hoofpaaie sowel as sekondêre 

paaie arthropoda gemeenskappe tot 50 meter in die woud in affekteer. Hierdie rand-effek 

afstand is vergelykbaar met dié van kaalkap-plantasie areas, alhoewel dit verskil in die feit dat 

die paaie permanente fragmentasie veroorsaak en kaalkap areas moontlik gerehabiliteer kan 

word. ‘n Interessante bevinding was dat ook staproetes die diversiteit van arthropoda 

beïnvloed tot en met 10 meter langs die roetes. Alhoewel dit nie tot fragmentasie lei nie, 

aangesien die blaredak steeds onbeskadig is, verander die natuurlike gemeenskappe met 

onbekende gevolge rakende hul populasie dinamika. Resultate toon ook aan hoe paaie wat 

in ‘n oos-wes rigting loop meer invloed uitoefen op woude aan die suiderkant van hierdie 

paaie, teenoor noord-suid paaie wat minder invloed uitoefen. Verhoogde vlakke van sonlig-

penetrasie, met gepaardgaande mikro-klimatiese veranderings, kan moontlik hierdie 
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bevindings verduidelik. Die verlies van habitat vanweë die plant van grootskaalse plantasies 

lei nie net tot ‘n vermindering in geskikte fynbos habitat nie, maar dit affekteer ook die 

aangrensende woude se natuurlike arthropoda diversiteit. Ter opsomming is gevind dat paaie 

wel die oorblywende Suid-Kaapse woude fragmenteer. Vanweë die uniekheid van hierdie 

woude, word spesiale bestuur vereis om te verseker dat die groter area se biodiversiteit 

optimaal bewaar word sonder om opbrengste te danke aan produksie te beïnvloed. ‘n Aantal 

moontlike versagtings-aksies word ter tafel gesit. Dit word egter aangeraai om die sukses van 

hierdie metodes eers te bepaal voordat dit geïmplementeer word.  
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1) Chapter 1 

1.1) General Introduction 

 

1.1.1) The biodiversity crisis and defining state of landscape disturbance 

As the human population and its effects on the landscape increases, natural ecosystems are 

becoming increasingly under pressure. Globally, natural landscapes are being transformed on 

a daily basis; a stark reality of the ever growing human population and its growing 

requirements. The price paid is often loss of biodiversity that result in severe negative effects 

on ecological functions (Loreau et al. 2001). Attempts to counter biodiversity loss have been 

made, with most governments recognising the need for healthy, functional ecosystems. At the 

World Summit for Sustainable Development in 2002 (WSSD), world leaders agreed to 

significantly decrease the loss of biodiversity by the year 2010 (Hanski 2005), indicating at 

least an interest by world leaders in global environmental issues. However, the implementation 

of these targets is often difficult or non-existent (Veitch et al. 2012). Accountability seems to 

be lacking, although there has been a steady increase in areas under protection since the 

dawn of the green revolution, starting in the 1960’s (Pingali 2012). During the 1970’s, 

approximately 4 000 000 km² of terrestrial land was considered protected. By 2003 this figure 

rose to more than 16 000 000 km² (Chape et al. 2005). Today, between 8.85 and 11.5% of 

Earth’s surface is under some form of protection (IUCN 1998; Rodrigues et al. 2004), with 

more recent figures estimating it at around 12.2% (Chape et al. 2005). The need to assess 

the effectiveness of these areas in protecting biodiversity arises. Viewed from a landscape 

level, protected areas can often be seen as islands of biodiversity surrounded by a matrix of 

land-uses that are hostile environments for most biodiversity. Habitat transformation, 

fragmentation, harvesting of species, limited migration both into and out of reserves, edge 

effects and climate change are just some of the potential challenges often, but not exclusively, 

experienced by areas under protection (Newmark 1987; Liu et al. 2002; Berger 2003). Habitat 

Stellenbosch University  https://scholar.sun.ac.za



 

7 
 

transformation is currently the single greatest threat to biodiversity within large tracts of land 

getting converted to agricultural and urban environments (Brooks et al. 2002), yet these 

transformed areas may also effect neighbouring natural areas through edge effects and the 

breakdown of the metapopulation (i.e. through fragmentation) (see Fahrig 1997; Hanski 1998)  

Therefore, it is important to understand that anthropogenic threats to biodiversity are not 

confined to areas outside of reserves only and that ecosystems face on-going disturbances 

even under formal protection. Failure to effectively conserve biodiversity in areas already 

protected could render our attempts in maintaining sustainable landscapes futile. 

  

A big task and responsibility of 21st century ecologists is to properly define and measure 

landscape transformation and habitat loss and the resulting disturbance on ecosystems, first 

and foremost, where after solutions and mitigation strategies can be formulated.  However, a 

single disturbance is often multiple in its effect, possibly leading to a cascade of effects in the 

ecosystem as a whole (Pace et al. 1999). A well-studied example of cascades in ecosystems 

is from the Costa Rican wet forests, where the presence of a top predator (Clerid beetle) is 

associated with lower amounts of intermediate predators (specialized ants), and in turn linked 

to greater herbivory and less abundance of plants (Letourneau & Dyer 1998). These indirect 

effects, of species on one another through a series of linked biotic interactions, could 

eventually completely alter ecological integrity if disturbed (Wootton 1994). Moreover, these 

effects are often difficult to measure by the researcher due to the fact that the ideal state to 

which we are working towards is often poorly understood. Ecological intactness without a 

comparative ecological reference state is immeasurable (Rykiel 1985). The concept of an 

ecological reference in ecosystems remains widely discussed and ever-evolving  and could 

possibly provide useful information on future monitoring as well as current status, if attainable 

(Hawkins et al. 2010). More often than not, an ecological reference condition is lacking. 

Ecological reference typically refers to a natural ecological condition with minimal or no human 

disturbances or alterations, or alternatively a condition from the past that serves as a 

comparable benchmark of biodiversity for a certain area (Stoddard et al. 2006). Several 

Stellenbosch University  https://scholar.sun.ac.za



 

8 
 

categories of reference conditions have been put forward, including minimally disturbed 

condition (MDC), historical condition (HC), least disturbed condition (LDC) and best attainable 

condition (BAC)  (Stoddard et al. 2006). These have been suggested due to the disparity in 

what a reference condition is defined to be and the difficulty of finding a true natural state. 

Natural fluctuations in time and space are difficult to separate from unnatural disturbances, 

and the limited time scale in which many studies are performed further hinder the possible 

correct quantification of an ecological reference (Willis & Birks 2006). Therefore, it is not 

always easy to truly monitor protected areas, or identify a disturbance unless it is conspicuous.  

 

1.1.2) Indicators of ecological health 

Even with an ideal ecological reference state mostly lacking or difficult to gather, gateway has 

been made towards defining and measuring ecological disturbance with the advancement of 

use of bioindicators. Indicative of the state of a given environment, these indicators provide 

the researcher with a tool to assess ecological integrity as a whole, and importantly, indicate 

the presence of a disturbance (McGeoch 1998). Ecological integrity, defined as the intactness 

of an ecosystem with all its natural species assemblages and processes, is measurable given 

that appropriate indicators are identified (Karr 1991). Indicators should be measurable 

surrogates for larger environmental conditions, or end-points, and therefore need to be 1) 

sensitive towards stress, 2) widely distributed, 3) easy to collect, 4) distinguishable in their 

reaction between natural and human-induced stress and 5) relevant to the phenomenon in 

question (Noss 1990). Ecological indicators are defined as characteristic taxa that responds 

in a predictable manner towards disturbance, also indicating stress on other taxa in the 

ecosystem (McGeoch 1998). It may take many forms, for example witnessing changes in the 

spatial distribution of species in assessing landscape level disturbance, monitoring population 

sizes in assessing disturbance in a particular species or comparing species richness through 

space and time in measuring ecosystem-level disturbance (Karr 1991). Another form of 

indication of disturbance in ecological systems are environmental indicators. Environmental 
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indicators, as defined by McGeoch (1998), are those indicative of a change in a given 

environment. They are species or a set of species that respond in predictable, measurable 

ways towards stress of whichever form (see Spellerberg 1991). They are used to detect and 

monitor specific changes in the environment, whereas ecological indicators differ by 

demonstrating the impact, usually in long term monitoring (McGeoch 1998). A third form of 

indication is that of biodiversity indicators. Biodiversity indicators refer to measurable 

parameters in an ecosystem, such as species richness and endemism, genetic variables in 

populations, landscape parameters (which may include variables such as the shape of an 

ecosystem and dispersal between viable areas, for example), parameters pertaining to 

species and the community compositions they form part of and also community-ecosystem 

parameters (referring to how diversity is spread across a certain geographical range). An 

umbrella term encompassing most indicators of ecological integrity, as used by most authors, 

is the term ‘bioindicator’. Bioindicators are single species or alternatively a group of species 

indicative of a larger interactive system, which with its presence, absence or community-level 

changes could indicate disturbance in an ecosystem (McGeoch 1998). It needs to be able to 

reflect not only the state of a system, but also be indicative of the impact of the disturbance 

on the habitat, larger species communities and the whole ecosystem by being intricately 

connected to a subset of taxa or diversity in general (McGeoch 1998). For example, 

bioindicators could indicate the diversity of other species, an important tool when considering 

indirect, cascading effects that a disturbance might have on ecosystems (Rainio & Niëmela 

2003). In ecosystems facing anthropogenic disturbances, the use of any of these sets of 

indicators reflective of the system’s status is much needed and can be used to make important 

managerial decisions. This is especially true in areas already protected, or ecosystems where 

restoration of disturbed areas is a key priority. Important is the selection of taxa for indication, 

and countless studies have been done using, and in effect testing, a wide array of possibilities. 

Whereas vegetation surveys are often used in restoration ecology and biodiversity monitoring 

(Keenan et al. 1997; Moore et al. 1999; Seabloom & van Der Valk 2003), arthropods remain 

one of the most widely used indicators of ecological health. Due to their abundance, ecological 
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role, unique life history and diversity in behaviour, arthropods are regarded as the epitome of 

bioindication (McGeoch 2007). Also, having short reproductive spans and being able to show 

rapid responses to micro-environmental change, they further fit the bill in terms of indication 

(McGeoch 2007). Capturing arthropods is also not too difficult a task, with numerous trapping 

methods in existence, each one specializing on a certain guild or niche of arthropods. 

Furthermore, arthropods provide us with vital ecosystem services, furthering their importance 

in ecosystems and value in biodiversity surveys (Longcore 2003). Examples of studies where 

arthropod bioindicators are used in monitoring restoration are plentiful (Longcore 2003; 

Nakamura et al. 2003; Gratton & Denno 2005; Moreira et al. 2007; Zeppelini et al. 2009). 

Biological indication, whichever taxa is used, may take many forms, including species 

compositional changes, species richness changes and changes in abundance of certain taxa 

(Uehara-Prado et al. 2009). An example of where a specific arthropod taxon is used as 

indicators include the Dragonfly Biotic Index, or DBI, where the sensitivity of Odonata species 

to their environments may be used as a tool to measure the health of the environment, and 

especially water bodies, in question (Simaika & Samways 2011). How we define indicators 

and their role in research though, should be kept in mind. The purpose of bioindicators will 

always be limited to indication, whether it be indication towards disturbance, successful 

restoration or indication of ecological health, remaining largely unconcerned with the countless 

mechanisms driving these outcomes. The outcomes are variable and largely depend on the 

focal taxa used. For example, studies done in the Atlantic Forests in Brazil showed a difference 

in restoration success outcomes when using gall insects compared to ants as bioindicators 

(Moreira et al. 2007). In using vegetation survey data compared to spider diversity in 

measuring restoration success on limestone quarries, Wheater et al. (2000) found 

dissimilarities between restored and natural sites, indicating the importance of using more than 

one focal group. It also highlights the differences in sensitivity towards disturbance by different 

taxa. The choice of bioindicator could also be area specific, in the sense that certain species 

are better equipped as bioindicators than others for a given area (Latha & Thanga 2010). It is 

commonly advised that different taxa should be included in monitoring studies in order for the 
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researcher to gather a wider perspective on the ecological interactions possibly affected by 

disturbance, and to better measure successful restoration (Di Castri et al. 1992; Solbrig 1991; 

Hammond 1994; Gardner et al. 2010; Feest et al. 2011). In fact where feasible a multi taxon 

approach is considered vitally important for studies monitoring biodiversity responses to 

ecological factors (Gerlach et al. 2013).  

 

1.1.3) Arthropods as indicators of forest ecosystem health 

Forests are unique ecosystems. With at least half of all species on earth found in tropical 

forests, it is important to note that tropical forests are being depleted at unparalleled rates 

compared to other biomes (Myers 1988). Globally, the ecosystem services provided by tropical 

forests are irreplaceable and humanity is directly and indirectly dependent on these areas for 

our wellbeing (Daily 1997). Therefore, we need to continually assess global forest integrity, 

working with the biological tools available indicative of healthy forest ecosystems. The 

abundance of arthropods in especially tropical forests, and their micro-niche specifications, 

adds credence to their use in bioindication (Erwin 1982). They play vital roles in upholding 

forest ecosystems (see Seastedt & Crossley 1984). Forest invertebrates in general also prefer 

cooler temperatures and higher humidity compared to non-forest species, and are sensitive to 

even the smallest changes in their preferred niches (Pearce & Venier 2006). It is this sensitivity 

of many specialized arthropods that indicate the smallest environmental change that makes 

them valuable as bioindicators (Gerlach et al. 2013).  

 

In terms of disturbance indicators, ants, ground beetles, dung beetles and spiders are among 

the most often used taxa in forests when assessing human altered landscapes (Maleque et 

al. 2009). Ground beetles (Coleoptera: Carabidae) have been proven for example to be good 

indicators of forest fragmentation due to their biology. Carabid beetles are, with a few 

exceptions, large and conspicuous, easily sampled by use of pitfall trapping (New 2010). Also, 

their assemblages readily change in relation to habitat modifications or – characteristics, 
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holding implications for ecological studies across landscapes (i.e. reserve design) (Baker et 

al. 2006). Being one of the larger families of Coleoptera, with estimates ranging from 25 000 

– 40 000 species (Thiele 1977; Lovei & Sunderland 1996), they hold large variety and have 

very high local endemism (New 2010). In New Zealand, for example, a total of 50 genera of 

ground beetles are endemic out of a known total of 78 (Larochelle & Lariviere 2007).  Due to 

ground beetles being ‘abundant, speciose and ecologically well-known’ (Niëmela 1996), they 

are important in conservation planning and evaluating human-altered landscapes (Holland & 

Luff 2000). Dung beetles (Coleoptera: Scarabaeidae) as well are excellent indicators of 

disturbance in forests and useful in overall biodiversity monitoring (Klein 1989; Koivula et al. 

2002; Magura 2002; Spector 2006). Their close association with their host species, mostly 

herbivores, makes them useful as indicators of the diversity of other species (Koch et al. 2000). 

Not only limited by dung presence, the habitat structure and soil type also largely influence 

the occurrence of dung beetles (Hill 1996). Davis et al. (2000) found lower dung beetle species 

diversity in plantations compared to rain forest, with plantations containing generalist and 

some natural forest species and virtually no forest-interior endemics. Ground moisture could 

also influence dung beetle diversity, with a study showing increases in dung from an increased 

deer population in Japan did not manifest in a higher dung beetle turnover; instead, higher 

exposure due to tree mortality altered soil moisture levels, limiting increases in dung beetle 

numbers (Kanda et al. 2005). The close association of dung beetles to their hosts and habitat, 

coupled with the fact that as a family they are well-described, makes them useful as tools of 

indication in conservation studies. Ants (Hymenoptera: Formicidae) is another taxonomic 

group often used as bioindicator (Samways 1983; Samways et al. 1996; Andersen 1997; 

Andersen et al. 2002; Nakamura et al. 2007). Their abundance, use of habitats, easy 

identification and easy sampling makes them useful tools of indication (Schmidt et al. 2013). 

Spiders in forests, another possible indicator of ecological health, are abundant and react 

readily to altered systems (Coddington et al. 1996; Churchill 1998), and have been used in 

their capacity as indicators of ecosystem health (Bromham et al. 1999; Willet 2001).  
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1.1.4) Threats to forests: Habitat loss and the forest edge 

The loss of natural landscapes is one of the major contributors towards species extinction 

(Groombridge 1992; Burkey 1995; Didham et al. 1996; Niemelä 1997). Of all the factors 

leading to losses of natural ecosystems, anthropogenically caused habitat destruction 

contributes the most towards this phenomenon (Pimm & Raven 2000). The effects of habitat 

loss are countless and found to be more severe than habitat fragmentation (Fahrig 1997). The 

major cause of forest loss globally is the clearing of forests for production landscapes in order 

to supply for a growing human demand (Sharma & Rowe 1992). Although the most observable 

effect of forest loss is the extinction of species, as mentioned, the important role of forests in 

providing us with vital ecosystem services are equally relevant when assessing the effects of 

forest loss. Global hydrologic and carbon cycles are important regulatory processes performed 

by forests, which in turn contribute meaningful feedback to global changes (Laurance 1999). 

Forest loss is therefore not only a local catastrophe, but a global problem with wide-reaching 

effects. On top of this, human activities in and around forests usually tend to increase the 

amount of forest edge, often transforming the natural landscape’s ‘soft edges’ into ‘hard 

edges’, referring to the permeability of an edge (Stamps et al. 1987). Edge permeability is the 

concept ascribed to the flow of energy and matter across an edge, with ‘hard’ edges referring 

to a starker contrast in vegetative characteristics than ‘soft’ edges (Laurance et al. 2002; 

Strayer et al. 2003; Lopez-Barrera et al. 2006). Ecotones, defined as the interface between 

two differing ecological communities (Kark 2013), is an important field of study in ecology as 

human altered landscapes tend to increase ecotonal areas in natural ecosystems. In mosaic 

landscapes, where we find natural areas occurring amidst human-altered areas, the interface 

between natural versus altered habitats and how species perceive it could play significant 

roles in the success of conserving optimal biodiversity (Pryke & Samways 2012). Viewed on 

a landscape-level, ecotones serve either as barriers for certain species, or as corridors 

between habitats (Magura 2002), with the permeability of the edge being an important factor. 

For example, forest dung and carrion beetles have been found to be severely affected by clear 

cut areas in Central Amazonia, perceiving a clear cut edge as an impenetrable barrier, thereby 
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hindering dispersal to other forest fragments (Klein 1989). Furthermore, altered areas amidst 

native forests often fail to serve as stepping stones between forest fragments for arthropod 

species, limiting their possible dispersal and associated gene flow (Magura et al. 2001). Hard 

edges have been proven to impact ground beetle dispersal compared to soft edges, in a study 

done by radiotracking individuals, by serving as a barrier for dispersal (Charrier et al. 1997). 

The composition of taxa found at the undisturbed, natural ecotone is often unique too, having 

conservation value in itself as edge specialists (Magura 2002). Their role in forest succession 

and acting as source populations for recovering habitats should not be overlooked (Molnár et 

al. 2001).  

 

The edges of forests and how species perceive it are thus as crucial as the intact habitat itself 

in optimal forest protection. Not only are there significant changes in species compositions 

and abundances at the edge, the micro-climatic changes encountered at the edge might have 

significant effects penetrating deeper into the forest interior. Whereas an intact forest canopy 

serves as a buffer, protecting the interior from external factors, a degraded edge allows for 

severe micro-climatic changes (Laurance et al. 1998). These micro-climatic changes often 

reach deep into the forest interior, altering natural ecological functioning and species 

compositions (Ferreira & Laurance 1997). These effects, termed edge effects, are measured 

by the distance the effect penetrates into a natural ecosystem (Murcia 1995), or alternatively 

the magnitude of the effect at any given distance into an ecosystem (Laurance & Yensen 

1991). The effect of the edge into natural ecosystems is variable, depending on the habitat 

type and bordering land-use (Bieringer & Zulka 2003; Baker et al. 2007; Pryke & Samways 

2012). The magnitude and distance of the edge effect are directly related to the differences in 

composition and structure of the two bordering communities (Didham & Lawton 1999; Harper 

et al. 2005). Importantly, unprotected landscapes have potential to contribute towards 

biodiversity conservation, and could be incorporated in conservation planning to assist 

protected areas towards this purpose (Bhagwat et al. 2008). For example, soft edges, i.e. 

selective logging instead of total deforestation around natural forested areas could aid 

Stellenbosch University  https://scholar.sun.ac.za



 

15 
 

biodiversity conservation in the remaining forest, by having less of an edge effect (Broadbent 

et al. 2008). Also, edges being left to naturally regenerate and not being exposed to fire have 

been found to be 2-5 times less severe in their penetrating effect in central Amazonia (Didham 

& Lawton 1999). Land-uses such as commercial plantations will predictably thus have less of 

an edge effect than clear cut areas, for example, being similar in structure and vegetation 

height than natural forests (Peyras et al. 2013).   

 

Due to differences in responses by different species, the edge effect will predictably not be 

similar for any two taxa (Matlack 1994; Murcia 1995). An edge effect, in definition, is a broad 

term with many encompassing factors possibly affecting biodiversity. These factors include 

any abiotic changes, for example wind increases, sunlight increases and temperature 

increases, indirectly facilitating biotic changes, such as tree diameter changes, species 

compositional changes and changes in species richness (Foggo et al. 2001). Therefore, each 

study conducted on edge effects will possibly harbour different results, depending on the 

vegetative characteristics of both the natural habitat and the bordering altered area. In a 

Tasmanian wet Eucalyptus forest, bordering a regenerating natural forest edge, beetle 

assemblages have been found to be similar to interior assemblages only at 22 m into the 

natural forest (Baker et al. 2006). Whereas most edge effects in forests are found to stop at 

around 20-50 m (Murcia 1995), some research suggests edge effects of more than 1 

kilometre, depending on forests type and taxa used in assessments (Ewers & Didham 2008). 

In the Amazon, the world’s largest tropical forest, the median edge effect is approximately 100 

metres, when comparing a multitude of affected taxa across 146 literature reviews (Broadbent 

et al. 2008). Studies using ants as bioindicator of a possible edge effect in tropical forests 

bordering human altered areas, were dissimilar in outcome when comparing the distance of 

the penetrating effect: From zero edge effect (Majer et al. 1997) to 200 m (Carvalho & 

Vasconcelos 1999; Wirth et al. 2007). Laurance et al. (1997) proposed a penetration effect of 

80 m, in terms of changes in the forest structure and microclimate, into natural forests. In 

general, for forest invertebrates, species richness and abundances are usually affected in the 
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first 100 m from the forest edge, with assemblages showing significant changes at 200-300 m 

(Ries et al. 2004; Laurance et al. 2002; Ewers & Didham 2008). There seem to be no general 

pattern regarding the distance of an edge effect and taxa affected, with much disparity from 

the literature. It is clear though that altered edges influence the occurrence and dispersal of 

native forest arthropods. The extent to which this is happening though is specific to multiple 

local conditions and extrapolation from previous studies should be done with caution.  

 

1.1.5) Threats to forests: Habitat fragmentation and roads in forests 

Throughout the world, and especially in the tropics, forest fragmentation is having significant 

effects on forest integrity and species dispersal (Turner 1996). For example, it has been found 

that carabid assemblages are more species rich in smaller forest patches than larger, 

unfragmented forests due to the increasing influx of generalist species from the surrounding 

matrix with decreasing forest patch size (Niëmela & Halme 1992; Halme & Niëmela 1993; 

Pihlaja et al. 2006). Homogenization of species compositions often tends to increase as 

fragmented areas become more abundant, and edge specialist species often flourish in areas 

altered by human activities, predictably to the demise of deep forest specialists (Didham et al. 

1998). For example, species occurring at forest edges have been proven to be positively 

affected by increases in fragmentation (Cappuccino & Root 1992; Didham et al. 1998). 

Considering their provision of vital ecosystem services and role in maintaining forest health, 

changes in arthropod diversity due to fragmentation could have devastating cascading effects 

on forest ecosystems. Human activities, such as forest clear-cutting, road construction or fire, 

often result in the removal of the forest canopy, indirectly impacting forest specialists. Without 

an intact forest canopy, increases in wind flow, temperatures and drier soil conditions directly 

impact forest arthropods by altering their preferred niche-zones (Pearce & Venier 2006). This 

makes forests especially vulnerable to fragmentation. A similar principle of forest edge effects 

applies for forest roads. From the literature it is evident that the edge effect created by roads 

in forests is unique to every situation. In natural landscapes, we find edges where two habitat 
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types, or biomes, border, with species naturally adapted to these areas. In forests, temporal 

gaps in the canopy occur naturally, whether it is due to fire, windfall trees or floods. Roads, on 

the other hand, are unnatural in their creation of a permanent edge, and in forests, contribute 

towards networks of linear canopy gaps creating unnatural abiotic changes (Coffin 2007). By 

doing this, roads increase the amount of edge in a forest and could result in a fragmented 

landscape as opposed to a continuous habitat (Reed et al. 1996). Many studies from around 

the globe indicate a negative response from indigenous forest biodiversity towards the 

establishment of roads (Reed et al. 1996; Tinker et al. 1998; Coffin 2007). Microclimatic 

changes caused by roads could affect leaf litter and vegetation composition, soil macro-

invertebrates and overall species richness with variable effects in time (Coffin 2007). The edge 

effect created by roads might be even greater than clear cut areas, dissecting larger forest 

areas into smaller patches (Reed et al. 1996). Also serving as an unnatural edge as perceived 

by the bordering forest’s species, roads may severely alter ecological intactness several 

metres into a forest (Avon et al. 2010). Research conducted in the Chequamegon National 

Forest, Wisconsin, have found an edge effect of 15 metres into the forest based on plant 

assemblages, with most invasive species being found at the road verge (Watkins et al. 2003). 

The facilitation of invasive species by roads is not uncommon (Forman et al. 2003; Gelbard & 

Belnap 2003). Other studies found the effect of roads on plants to be less than 5 metres (Avon 

et al. 2010), while road effects of up to 200 metres have also been reported (Angold 1997). 

Arthropods are also affected by roads dissecting forests. Roads could also serve as physical 

barriers for specialized forest beetles, limiting their dispersal abilities (Koivula & Vermeulen 

2005). For example, Keller & Largiader (2003) found that roads are absolute barriers for gene 

flow in Carabus violaceus, a species of ground beetle found in Europe and Japan, causing a 

loss in genetic variability. On the other hand, it has been suggested that roads can act not only 

as corridors, facilitating species dispersal, but also serve as unique habitats hosting mostly 

generalist open habitat species (Koivula 2005). In the Netherlands, roads with broad verges 

have been found to contribute towards ground beetle dispersal between heathland fragments, 

with the width of the roadside verge influencing dispersal success (Vermeulen & Opdam 
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1995). Again, the edge effect created by roads in forests is unique to every situation. Road 

type, -width, -age, amount of traffic and forest type will all influence how species perceive 

roads (Coffin 2007).   

 

1.2) Study Area 

1.2.1) Forests in South Africa: the southern Cape forest complex 

In South Africa, forests cover only 0.56% of the total land area, making it the smallest biome 

in the country (Low & Rebello 1996; Mucina & Rutherford 2006). Compared to other forests 

situated in temperate regions across the globe, South Africa’s forests are highly diverse 

regions with tropical features (Phillips 1931; Berliner 2011). Naturally, the indigenous forests 

of South Africa are patchy in their distribution, with most forest patches being less than 1 km² 

in size (Cooper 1985; Geldenhuys 1989; Low & Rebello 1996). In total, about 20 000 forest 

patches are found in South Africa (Berliner et al. 2006). The discontinuity of South Africa’s 

forest biome is a result of historic climatic fluctuations and disturbance regimes, especially 

during the last 180 000 years (Partridge et al. 1990; Eeley et al. 1999; Lawes et al. 2000). 

From lignite deposits, it has been revealed that the southern Cape region supported 

subtropical vegetation with Restionaceae, palms and forest elements (Thiergart & Frantz 

1962; Helgren & Butzer 1977; Coetzee et al. 1983). These tropical elements have been in 

existence before the development of the circum-Antarctic ocean system, the cold Benguela 

current on the west coast of South Africa and the enlarged Antarctic ice sheet (Shackleton & 

Kennet 1975; Van Zinderen Bakker 1975; Vail & Hardenbol 1979). During the Late Miocene, 

a shift from subtropical forests to typical fynbos and strandveld elements occurred (Coetzee 

& Rogers 1982; Hendey 1984; Scott 1995). Today, forests are confined to kloofs, large screes 

and zones safe from fire, especially in the Western Cape Province. However, even with its 

small size and fragmented nature, these forest relics contain much biodiversity worthy of 

conserving (Geldenhuys 1989). In terms of plant species richness per unit area, South African 
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forests are second only to the highly diverse fynbos biome (Gibbs Russel 1985; Gibbs Russel 

1987). On a global scale, these forests have the highest tree diversity of any warm-temperate 

forest on earth and are unrivalled in the southern Hemisphere despite its small surface area 

(Silander 2001). Also, the diversity of genera and families are unmatched globally (Silander 

2001; Cowling 2002). The conservation of the biodiversity within these forests becomes 

increasingly important as approximately 42.5% have been transformed and continue to be 

transformed (Eeley et al. 2001).  

In Southern Africa today, two major forest types exist: Afrotemperate forests and Indian Ocean 

coastal belt forests (Moll & White 1978; Berliner 2011). The indigenous forests of the southern 

Cape are considered as the largest forest complex in South Africa (Phillips 1931; Acocks 

1988), comprising approximately 60 561 hectares (Geldenhuys 1991). The Southern Cape 

Afrotemperate Forest complex, stretching roughly from Mossel Bay in the West to 

Humansdorp in the East, can be subdivided into three categories based on species 

composition: Firstly, the mountain forests, which is typical Afromontane forest (White 1978); 

secondly the coastal escarpment forests, which in terms of species composition largely 

coincides with the Indian Ocean coastal belt forests more to the north (Moll & White 1978); 

and lastly the plateau forests which includes many species associated with Afromontane 

forests (Geldenhuys 1982). Within the mountain forests, Cunonia capensis and Ocotea bullata 

are the most abundant tree species, whereas the most common species within the plateau 

forest are Olea capensis subsp. macrocarpa, Podocarpus latifolius, Pterocelastrus 

tricuspidatus and Gonioma kamassi (Geldenhuys 1982). Since the discovery of the forest by 

Europeans in 1750, the forests have been utilized with associated anthropogenic disturbances 

due to the high timber value of many of these species (Geldenhuys 1991). From 1778 to 1939, 

conservation policies gradually developed, with a practical conservation system being 

implemented in 1874 (Phillips 1931). By 1939 the forests were closed for exploitation 

(Geldenhuys 1991). Re-opened in 1965, due to sufficient recovery of the indigenous forests, 

the state controlled exploitation from there on through scientific measures (von Breitenbach 
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1974). In the area of the southern Cape, stands of alien trees were planted by the government 

from 1876 onwards (Phillips 1931). These trees, mostly of Pinus, Eucalyptus and Acacia, were 

planted on native fynbos bordering the natural forests, as well as areas of unnaturally opened 

forests (Phillips 1931). Since 2009, with the formation of the Garden Route National Park, the 

southern Cape forests are officially protected, with the only exploitation of indigenous timber 

being limited to individually identified trees. Today, the landscape is typically in a patchwork 

mosaic. The forests have been fragmented historically by fire (Geldenhuys 1994), grazing, 

exploitation and clearing, and today are limited physically by rainfall (Geldenhuys 1991). 

Ongoing commercial forestry practices further limit natural forest establishment in the area, 

but plantations show the potential of encouraging the establishment of forest species 

(Geldenhuys 1991). In 1991, exotic plantations of mainly pine and eucalypts occupied a total 

area of 76 750 hectares (compared to 60 561 ha of forest) with few major changes since. The 

landscape is continually changing, due to the commercial forestry practices occurring within 

the area. Clear felled plantation areas cover extensive land, often bordering indigenous 

forests, and these open areas take years to recover to either exotic plantation trees or, if left 

to recover, to natural veld. Naturally, forests in the southern Cape would border fynbos, a very 

diverse, fire-adapted biome consisting of low- to medium sized shrubs. Different subdivisions 

of fynbos bordering the forests of Knysna are found in the southern Cape. This includes South 

Outeniqua Sandstone Fynbos, Tsitsikamma Sandstone Fynbos and most importantly, Garden 

Route Shale Fynbos (Mucina & Rutherford 2006). The latter occurs within the study range of 

the present study, with wide belts of Virgilia oroboides occurring at the interface between 

fynbos and forest (Mucina & Rutherford 2006). This fynbos vegetation type is classified as 

endangered, with more than half of the area already transformed due to crop cultivation and 

the establishment of pine and eucalypt plantations (Mucina & Rutherford 2006).  

1.2.2) Climate 

The climate of the southern Cape, coupled with the topography of the area, enables the 

persistence of the large southern Cape forest complex. The southern Afrotemperate forest 
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vegetation unit is mostly determined by high rainfall throughout the year (Mucina & Rutherford 

2006), persisting in areas with a mean annual precipitation of 863 mm. Whereas a high 

average rainfall is a definite determinant of forest persistence, the extent of southern Cape 

forests are locally driven intensely by fires which in turn are driven by dry mountain winds 

(Geldenhuys 1994). The endemic fynbos naturally bordering the forests of the region is in fact 

a fire-prone biome even though fires rarely penetrate the Afrotemperate forest (van Wilgen et 

al. 1990). This is partially due to the unique topography of the southern Cape, with a mountain 

shadow effect of particular importance in the area, allowing for much of the precipitation 

received whilst excluding fires to penetrate the forests. The Fynbos bordering the southern 

Cape forests receives a mean annual rainfall of 700mm (310-1 120mm) (Mucina & Rutherford 

2006).  

 

1.2.3) Geology of the study area 

The larger southern Cape region has a range of substrates with a unique geographical history. 

The fynbos soils are mostly acidic, moist clay-loam, prismacutanic and pedocutanic soils 

derived from Caimans Group and Ecca (Mucina & Rutherford 2006). The southern 

Afrotemperate Forest are found on soils varying from shallow Mispah, Glenrosa and 

Houwhoek forms to sandy Fernwood form. These soils are derived from the Table Mountain 

sandstone group and shales from the Cape Supergroup. These soils are also partly derived 

from Cape Granite.  

 

1.3) Problem statement, aim and thesis outline 

The forest biome of South Africa is unique, not only locally, but globally. Whereas by far the 

most studies on the southern Cape forest complex focused on trees and optimal forest 

management, today little is known regarding especially arthropods within this area. Previous 

studies focusing on birds included some monitoring of invertebrate numbers (re: Koen 1988; 
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Koen 1992). There is a lack of data pertaining to the native arthropods (Fynbos and 

Afrotemperate forests) and their role in upholding these ecosystems which are in a constant 

battle for space at the fynbos-forest interface. Also, forestry production areas cover vast tracts 

of land in the region, often established on areas where Fynbos naturally bordered the forests. 

The effect of mature pine stands (some being up to 30 years old before being felled) and their 

clear felling on the ecological integrity of forests bordering these areas remains unknown. The 

main aim of this thesis is to determine whether or not edge zones, as measured in epigaeic 

arthropod diversity, exist in the broader southern Cape region as a cause of human-induced 

disturbance. Chapter 2 of this thesis focuses on the different major land-uses / biotopes in the 

southern Cape forest complex, namely fynbos, natural forests, mature pine plantations and 

clear felled plantations, and how they differ and interact with one another with regards to their 

respective epigaeic arthropod biodiversity. Specifically, I determine the effect of alteration of 

the natural fynbos-forest ecotone on the arthropod assemblages associated within natural 

Afrotemperate forests. I determine this effect in terms of the penetrating distance into forests, 

compared between fynbos, pine blocks and clear felled areas bordering forests. In Chapter 3 

I investigate the effect of different road types and road direction on forest arthropod 

assemblages by using forest arthropod biodiversity as indicators of the existence of forest 

edge zones. In Chapter 4 I summarize my main findings and give indication of management 

implications of this research for optimal forest conservation.  
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2) Chapter 2 

The response of epigaiec arthropods to the edge effect of natural 

Afrotemperate forest edges created by alien timber plantations and their 

removal 

 

2.1) Abstract 

Landscape mosaics are diverse, interacting areas characterised by patches of different 

biotopes occupying spaces in close proximity to each other. Most landscapes today however 

have vast areas of production occurring throughout natural ecosystems, impacting species 

dispersal and occurrence. I determined whether, and to what extent, commercial plantations 

and their felling affect the natural arthropod biodiversity associated with the Afrotemperate 

forest edge. Forest arthropods are excellent indicators of overall forest integrity and have been 

used in their capacity as bioindicators across the globe. This study was done in the southern 

Cape Afrotemperate forest complex of South Africa, the largest continuous forest in South 

Africa. In this landscape, natural forests and –fynbos co-occur with exotic plantations to form 

a heterogeneous landscape where production and biodiversity conservation interlink. I use the 

natural edge between forest and fynbos as a reference for natural edges. Pine plantations 

directly bordering natural forests had a larger edge effect than the forest-fynbos ecotone. Once 

plantations are clear felled, arthropods in the adjoining forest were affected the most severely. 

Responses in terms of species richness and assemblage compositions were mostly taxon 

specific. The results emphasise the need for effective restoration of clear felled areas, with 

ongoing monitoring being conducted in both the disturbed patch as well as in the adjoining 

natural forest. The results also show that pine plantations are not effective in conserving native 

forest arthropod diversity, and that a stark edge exists between these two structurally similar 

vegetation communities. 
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2.2) Introduction 

Natural forests world-wide are faced with anthropogenic disturbances that threaten their long 

term sustainability (Laurance et al. 2012). To mediate this loss of timber there has been a 

great increase in surface area covered by exotic plantations (Andersson et al. 2015). Totalling 

about 34% of the world’s timber production, plantations today produce more timber than any 

other form of forestry (Sedjo & Botkin 1997) and may directly result in even greater reduction 

of natural forests (Clapp 1995; Smith-Ramirez 2004; Wilson et al. 2005; Echeverria et al. 

2006). In South Africa, commercial timber plantations cover about double the 0.56% surface 

area covered by indigenous forests (Low & Rebelo 1996; Shackleton 2004; Berliner 2011). 

Although indigenous forests are rarely commercially utilised for timber in South Africa, these 

are under threat from resource extraction by rural communities (von Maltitz & Grundy 2000; 

Shackleton et al. 2007) and the transformation of adjacent land-uses, for example timber 

production areas occurring within natural landscapes (Pryke & Samways 2012).   

 

Indigenous forests in South Africa have a natural patchy distribution, with the largest 

continuous complex situated in the southern Cape occupying an area of approximately 60 651 

hectares (Geldenhuys 1991). These forests are unique; although being typically temperate in 

nature, they contain many tropical features due to their unique evolutionary history and 

location (Geldenhuys 1992). As a result, these forests are surprisingly high in biodiversity 

when compared to other temperate forests across the globe (Phillips 1931; Silander 2001).  

 

The southern Cape region today is characterized by the native fynbos- and forest biomes 

intermingled with human settlement and agricultural- and forestry production areas, creating 

a mosaic landscape of different land-uses. Fynbos is an evergreen, sclerophyllous and fire-

adapted veld-type that naturally borders forest edges in this region (Geldenhuys 1994). This 

vegetation is highly diverse in terms of its floral diversity (Holmes & Cowling 1997), but differs 

substantially in composition to forests as it is dominated by shrubs and grassy, leafless plants 

(Holmes & Cowling 1997). In the southern Cape, fynbos both surround indigenous forests and 
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naturally occur as fynbos ‘islands’ within forests (Midgley & Bond 1990). However, many areas 

previously covered by fynbos have been converted to commercial forestry plantations to 

supply for a growing timber need (Geldenhuys 1994). Exotic plantations in this region occupy 

a total area of approximately 76 750 hectares (Geldenhuys 1991), some of which have 

recently been clear-felled for restoration purposes.  

 

Although it is apparent that stands of timber plantation trees have a relatively less adverse 

impact on the ecological health of native forests compared to other land-uses, or serve as 

alternative habitat for some species (Geldenhuys et al. 1986; Knight et al. 1987; Bonham et 

al. 2002; Hartley 2002), they still impoverish biodiversity, and as such contribute little to native 

biodiversity conservation (Samways & Moore 1991; Wood & Samways 1991; Pryke & 

Samways 2009). In plantations globally, 94% of studies report a decrease in biodiversity when 

compared to natural forests (Stephens & Wagner 2007). Also, the risk of losing specialist 

ecotonal species found at the fynbos-forest border increases with the establishment of exotic 

stands of trees, regardless of the possible beneficial aspects to the natural forest interior. For 

example, studies on forest arthropods have shown that anthropogenically-created edges, 

such as those created by commercial plantations bordering native forests, have significant 

negative effects on assemblages of native arthropods occurring within the natural landscape 

(Ingham & Samways 1996; Malcolm 1997; Ozanne et al. 1997; Didham et al. 1998; Magura 

2002; Baker et al. 2006; Pryke & Samways 2009). However, research conducted on 

arthropods in the southern Cape forests are sparse and of little conservation value (re: Koen 

& Breytenbach 1988). 

 

Modification of landscapes for production purposes not only effects the patch that is 

transformed, but can also lead to changes in neighbouring patches through the altering of 

edge effects (Donovan et al. 1997; Magura 2002; Ries et al. 2004). Edge effects are naturally 

found in most pristine landscapes and occur between structurally different vegetation types. 

These edges are important for biodiversity as many species use these transition zones as 
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habitat (Kotze and Samways 2001).   In transformed landscapes, there is much more edge 

than would naturally occur and there may be fundamental differences between these 

transformed edges compared to natural edges (Pryke and Samways 2012).  

 

Edge effects can be measured by the distance that the effect penetrates into a natural 

ecosystem (Murcia 1995), or alternatively by the magnitude of the effect at any given distance 

into an adjoining ecosystem (Laurance & Yensen 1991). The magnitude and distance of the 

effect are directly related to the differences in composition and structure of the two bordering 

biotic communities (Harper et al. 2005). Mechanisms that drive edge effects are diverse but 

include factors such as increased predation levels (Batary & Baldi 2004) as well as differences 

in wind speed, temperature and radiation levels (Chen et al. 1995). Moreover, unnatural 

alterations in the abiotic parameters at the forest edge could lead to a variety of edge effects, 

including decreases in leaf litter decomposition (Didham 1999), altered tree recruitment 

(Laurance et al. 1998) and influxes of alien species (Vitousek et al. 1997; Cadenasso & Pickett 

2001). In turn, these effects could impact the natural biodiversity of the edge and how native 

species interact (Alverson et al. 1988; Fagan et al. 1999; Batary et al. 2014). 

 

Forest arthropods make up an important component of forest biodiversity (Taylor & Doran 

2001, Oxbrough et al. 2010). They occupy all areas from soil and leaf litter layers, to 

herbaceous understory layers as well as the canopy (Taylor & Doran 2001; Oxbrough et al. 

2010). Arthropods also play an important role in many ecosystem processes such as nutrient 

cycling and pollination (Taylor & Doran 2001; Lawes et al. 2005; Lencinas et al. 2008; 

Oxbrough et al. 2010). Furthermore, arthropods have a vital role in food webs acting as 

herbivores, predators and also serving as the main food source for many vertebrates (Taylor 

& Doran 2001; Oxbrough et al. 2010). Understanding the ecological interactions that exist 

between arthropod communities and vegetation characteristics is essential for indigenous 

forest management. Predictably, the transformed ecosystems and land-uses that surround 

and occur within the southern Cape forests will influence and have influenced arthropod 
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communities within the forest itself (Kotze & Samways 1999), possibly with an effect on the 

natural ecological functioning of the forest. Studies from other forests in South Africa indicate 

that transformed landscapes, especially those under commercial plantations stands, do 

impact native arthropod assemblages (Kotze & Samways 1999; Pryke & Samways 2009, 

2012). Plantations have also been found to be less species rich in terms of ant biodiversity 

compared to fynbos (Donnelly & Giliomee 1985; Manders 1989). However, the effects of 

transformation and/or restoration efforts on arthropod assemblages have not been evaluated 

in the southern Cape Afrotemperate forest complex, or any forest that is associated with 

endemic South African fynbos vegetation.  

 

Terrestrial invertebrates serve as excellent indicators of the health of many ecosystems, and 

have become an increasingly important tool for biological surveys over the last three decades 

due to their importance in ecological processes (Oliver & Beattie 1996; Whitmore et al. 2002; 

McGeoch et al. 2011). Given their high value as indicators of ecological integrity, I use ground 

dwelling arthropods to get a better understanding of the anthropogenic disturbances faced by 

the bordering indigenous forests of the southern Cape. The aim of this study is to use 

arthropod diversity in Fynbos, pine plantations and natural forest to determine the impact of 

the different land-uses on the edge effects around natural southern Cape Afrotemperate 

forests. Specifically I determined whether exotic timber plantation blocks alter the distance of 

the edge effect between natural forest/fynbos boundaries and how the removal of these 

plantations affects arthropod assemblages in the forest. I hypothesize that plantation blocks 

bordering natural Afrotemperate forest will have less of an edge effect than clear cut areas, 

due to the shading effect provided by mature pine trees favouring forest species. Fynbos, 

forming a soft edge due the thickness of the vegetation associated with the natural fynbos-

forest ecotone, will predictably have the least amount of edge effect.  
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2.3) Materials and methods 

2.3.1) Study area and site selection 

The study area ranged from Bergplaas in the West (33.912116 S, 22.736818 E) to Harkerville 

in the East (34.02456 S, 23.17470 E), southern Cape, South Africa in the Garden Route 

National Park (GRNP) and surrounds (Appendix 1). The GRNP is an unfenced reserve 

encompassing a mosaic of different habitats, including indigenous Afrotemperate forests and 

fynbos, as well as extensive protected wetlands. Incorporated within and surrounding the 

national park are large tracts of commercial pine and eucalypt plantations, cattle pastures and 

human settlements. The southern Cape Afrotemperate forest complex comprises about 

60 651 hectares, contains 465 vascular plant species, with 206 species reaching their 

distribution limit within this area (Geldenhuys 1992). The study area has a moderate climate 

and receives rain all year round, with March being the wettest month. Little difference in both 

average rainfall and temperature was recorded during the sampling period (Appendix 2). The 

greater southern Cape forest complex, stretching roughly from Mossel Bay in the West to 

Humansdorp in the East, can be subdivided into three landscape zones with an own distinct 

plant species composition: Firstly, the mountain forests, which is typical Afromontane forest 

(White 1978); secondly the coastal escarpment forests, which in terms of species composition 

largely coincides with the Indian Ocean coastal belt forests more to the north (Moll & White 

1978); and lastly the plateau forests which includes many species associated with 

Afromontane forests (Geldenhuys 1982). Within the mountain forests, Cunonia capensis and 

Ocotea bullata are the most abundant tree species, whereas the most common species within 

the plateau forests are Olea capensis subsp. macrocarpa, Podocarpus latifolius, 

Pterocelastrus tricuspidatus and Gonioma kamassi (Geldenhuys 1982).  

 

Since 1750 the forests have been utilized for the high value of the timber of these species for 

construction and furniture (Geldenhuys 1991). By 1939 the forests were closed for exploitation 

due to perceived degradation of forest structure. By 1965 they were re-opened for controlled 
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timber harvesting because of sufficient recovery of the indigenous forests (von Breitenbach 

1974; Geldenhuys 1991). Stands of alien trees (Pinus, Eucalyptus and Acacia) were planted 

in the fynbos bordering the natural forests, as well as in areas of unnaturally opened forests 

from 1876 onwards (Phillips 1931). These stands still exist today with pine being the most 

dominant and the focus of this study. Since 2009, with the formation of the Garden Route 

National Park, the forests are officially protected, with the only exploitation of indigenous 

timber being limited to individually identified trees. Today, the landscape is typically a mosaic 

of natural forest, fynbos, timber plantations and agriculture, with the forests fragmented 

historically by fire, grazing and clearing (Geldenhuys 1991, 1994). Clear felled plantation 

compartments cover extensive areas, often bordering indigenous forests. These areas are 

either under rotation (i.e. to be replanted) or the blocks are being removed and restored for 

conservation purposes. Once plantations are clear felled, these areas transform to even 

harder edges as vegetation that remains is very sparse and there is no protection effect on 

the edge by the remaining adjoining vegetation (Appendix 3, fig.  5.1). Here, the age of the 

clear felled areas varied between 5 and 156 months. Naturally, forests in the southern Cape 

would border fynbos with the ecotone gradually changing from forest to a vegetation type 

comprising of both forest and fynbos species, then into pure fynbos, creating a closed edge. 

 

2.3.2) Arthropod sampling 

Sampling was conducted over two seasons; late autumn (April-May) and late spring (October-

November) 2014. Six line transects were established from the interior of the indigenous forest 

and into the interior of each of the three adjacent habitat types (pine blocks, clear felled areas 

or fynbos). In total, 18 line transects were established across the study area. Ten stations 

were established on each line transect, with  five stations situated at 5 m, 10 m, 20 m, 30 m 

and 50 m distances from the forest edge, running into the natural forest and five stations at 

the same distances into the adjoining habitat type. The forest edge was defined as the area 

directly below the canopy edge of the first indigenous forest tree. In addition, another six 

Stellenbosch University  https://scholar.sun.ac.za



 

47 
 

stations were established at deep forest locations which were at least 100 m from any forest 

edge or trail, to serve as natural reference sites for comparative purposes. At each station, 

four pitfall traps were placed at the corners of a 0.5 m × 0.5 m square, with the ten stations 

forming a line parallel to the edge during both sampling occasions. Each pitfall trap consisted 

of a plastic cup (7.5 cm in diameter and 9.5 cm in depth) that was buried so that its rim was 

flush with the ground and was left open for 7 days. One trap per station was baited with a pig-

dung and chicken liver mix (Pryke et al.  2013) to attract dung and carrion feeders (Appendix 

3, fig. 5.5). All traps contained one-quarter ethylene glycol and water (1:1 ratio) as 

preservative. All captured arthropods were preserved in 70% ethanol until identification. Each 

individual arthropod was assigned to a morphospecies (a taxonomic unit based on 

morphological differences) and identified to order and family level. Voucher specimens are 

housed in the Entomology Museum, Department of Conservation Ecology and Entomology, 

Stellenbosch University.  

2.3.3) Data analyses 

Data from the two collection seasons were pooled. Species estimates (Chao2 and Jacknife2) 

for the different habitat types were calculated in Estimate S, for each habitat type, after all 

stations per habitat type were pooled. The Coleoptera (beetles), Scarabaeidae (scarab 

beetles), Orthoptera (crickets, grasshoppers, and locusts), Arachnida (spiders, scorpions, and 

harvestmen), Diptera (flies) and Formicidae (ants) were selected as focal taxa due to their 

high collection rates here. Scarabaeidae were also included in the focal group Coleoptera. 

 

The seven biotopes included in this study are deep forest, forest bordering pine, forest 

bordering clear felled areas, forest bordering fynbos, pine plantations, clear felled areas and 

fynbos. To test the influence that each of the seven biotopes had on arthropod species 

richness, Generalized Linear Mixed Models (GLMM’s) were calculated for the overall 

arthropods collected and for arthropods in the different focal taxonomic groups respectively. 
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The GLMM’s were performed by using the lme4 package (Bates & Sarkar 2007) in R (R 

Development Core Team 2007). The overall model incorporated the fixed effects of transect 

and habitat type, as well as the random effect of elevation and season.  Further analyses use 

the GLMM’s to determine the differences in species richness between the 10 stations and 

deep forest stations. For all analyses, a GLMM fit by Laplace approximation and with a 

Poisson distribution was used (Bolker et al. 2009). Post-hoc analyses were performed only on 

the factors significantly affecting species richness using a Tukey post-hoc test in R in the 

multcomp package (Hothorn et al. 2008).  

 

To determine differences in arthropod assemblage composition between the seven different 

biotopes, I calculated Permutational multivariate analyses of variance (PERMANOVA) in 

PRIMER 6 (PRIMER-E 2008) for the habitat type and then again for each station along the 

transect compared to the deep forest sites. Bray-Curtis similarity measures were performed, 

after the data were square-root transformed to reduce the weight of common species 

(Anderson 2001). These analyses were performed for the overall arthropod assemblage 

composition as well as the compositions of specific focal arthropod taxa. The arthropod 

assemblage data of the different biotopes data were also investigated by means of a canonical 

analysis of principal coordinates (CAP) (Anderson & Willis 2003). This analysis is performed 

to effectively delineate certain aspects of interest within a dataset with high background 

variance. CAP analyses were only conducted for overall arthropod similarities.  

 

2.4) Results 

2.4.1) Arthropod assemblages in the different biotopes 

A total number of 7 306 individual specimens were sampled, comprising 484 morphospecies 

from 17 arthropod orders. Overall, fynbos had the highest number of species sampled (n=217, 
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Table 2.1). Chao2 estimated clear felled alpha diversity at 405.75 and Jacknife2 estimated 

333.3, the highest estimates of all the habitats. Coleoptera was found to be the most species 

rich order, followed by Diptera and Orthoptera (Table 2.1). The taxonomic group Arachnida 

and the families Scarabaeidae and Formicidae also had relatively high species richness. 

Fynbos as a habitat had a significantly higher mean species richness compared to four of the 

other six habitat types (Fig. 2.1). Biotopes that were significantly less species rich compared 

to fynbos were pine plantations, clear felled areas, forests bordering fynbos and forests 

bordering clear felled areas. Lower percentages of arthropods shared between the biotopes 

and deep forest stations are artefacts of lower sampling effort at deep forest stations (n = 6 

stations for deep forest sites vs. n = 30 stations for the respective biotopes).
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Table 2.1: Summarised results of sampled species richness with Chao2 and Jacknife2 diversity estimates included for each of the seven biotopes. P-Forest = 

natural forests bordering pine blocks, F-Forest = natural forests bordering fynbos, C-Forest = natural forests bordering clear felled areas.  

Taxa 

Diversity 

index Pine Fynbos Clear felled P - Forest F - Forest C - Forest Deep Forest 

Overall Sampled 194 217 211 172 175 199 90 

 Chao2 234,4 (SD±22.9) 285,68 (SD±26.51) 405,75 (SD±65.73) 255,18 (SD±32.74) 296,83 (SD±47.54) 290,24 (SD±34.54) 110,39 (SD±15.52) 

 Jacknife2 253,53 308,3 333,3 253,27 263,4 292,07 122,93 

Coleoptera Sampled 53 61 71 43 45 55 21 

 Chao2 61,05 (SD±9.83) 89,04 (SD±18.09) 205,6 (SD±86.16) 67,66 (SD±19.55) 109,22 (SD±48.94) 73 (SD±18.3) 56,2 (SD±16.81) 

 Jacknife2 67,23 92,16 116,36 62,86 73,4 70,33 39,43 

Scarabaeidae Sampled 14 21 23 11 14 15 9 

 Chao2 14,2 (SD±0.64) 23 (SD±5.48) 66,83 (SD±29.15) 11,83 (SD±1.93) 29 (SD±19.75) 15,87 (SD±2.88) 19,41 (SD±14.34) 

 Jacknife2 14,43 25,4 37,5 14 22,46 17,43 15,96 

Formicidae Sampled 15 16 11 12 12 12 3 

 Chao2 25,2 (SD±11.04) 17,66 (SD±2.27) 11,83 (SD±1.6) 12,75 (SD±1.27) 28,4 (SD±14.43) 25,33 (SD±13.82) 3,41 (SD±1.13) 

 Jacknife2 24,43 19,86 13,93 13,83 21,5 22,93 3,96 

Orthoptera Sampled 13 17 17 13 11 16 6 

 Chao2 13,55 (SD±1.13) 17,41 (SD±0.9) 37,41 (SD±25.99) 28 (SD±19.75) 11,41 (SD±1.13) 29,33 (SD±13.82) 6,2 (SD±0.64) 

 Jacknife2 14,4 17,86 26,96 21,46 11,96 26,93 6,43 

Diptera Sampled 31 29 30 31 27 26 17 

 Chao2 47,3 (SD±12.08) 39,08 (SD±8.21) 47,77 (SD±12.23) 46 (SD±12.09) 50,47 (SD±19.41) 31,62 (SD±5) 18,73 (SD±2.16) 

 Jacknife2 49,33 42,83 43,33 46,86 44,9 36,3 21,3 

Arachnida Sampled 25 36 28 25 21 29 14 

 Chao2 45 (SD±16.93) 60,08 (SD±16.63) 38,73 (SD±8.78) 48,47 (SD±19.41) 25,08 (SD±4.12) 104,2 (SD±63.99) 20,66 (SD±6.32) 

 Jacknife2 41,4 58,83 43,3 42,9 28,83 56,43 23,86 
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Figure 2.1: Between habitat comparisons of overall alpha diversity. Mean (±1 SE); different letters 
above bars indicate significantly different means (5% level). PP: Pine plantation. FF: Fynbos. CC: Clear 
felled areas. PN: Forest bordering pine blocks. FN: Forest bordering fynbos. CN: Forest bordering clear 
felled areas. DF: Deep forest reference stations. 

 

Forests bordering clear felled and pine areas shared the highest number of species between 

them than any other two biotopes, both in the number of species shared (n=120) and the 

percentage shared between them (Table 2.2). Deep forest reference stations shared the 

fewest number of species with fynbos and clear felled areas respectively (n=63 and 61) with 

less than 45% of deep forest species found in these biotopes. Clear felled areas shared high 

numbers of species with most of the biotopes, although most were shared with fynbos (n=115 

or 75.65%). Fynbos had the highest observed species richness as well as the highest number 

of unique species (n=53). 
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Table 2.2: The total number of unique species per habitat type* and number of species shared 

between the respective habitat types (Rare species (n≤4) excluded) 

 

Unique 

spp. CN PN FN CC PP FF DF 

CN 36 *       

PN 28 

120 

(81.63%) *      

FN 30 

103 

(72.02%) 

103 

(73.57%) *     

CC 49 

107 

(71.33%) 

110 

(73.82%) 

96 

(63.57%) *    

PP 33 

109 

(72.66%) 

109 

(75.17%) 

98 

(65.33%) 

110 

(73.82%) *   

FF 53 

90 

(57.69%) 

110 

(72.36%) 

109 

(73.15%) 

115 

(75.65%) 

119 

(78.81%) *  

DF 9 

65 

(49.61%) 

67 

(54.03%) 

66 

(53.65%) 

61 

(44.52%) 

65 

(48.87%) 

63 

(43.75%) * 

*CN-forest bordering clear felled; PN-forest bordering pine; FN-forest bordering fynbos; CC-clear 

felled; PP-pine; FF-fynbos; DF-deep forest 

 

 

All habitat types differed significantly in terms of overall arthropod assemblage compositions 

(Table 2.3; Fig. 2.2). Forests bordering clear felled areas significantly differed from deep forest 

locations for beetles, scarab beetles and flies. Forest bordering pine, however, revealed no 

significant differences for these focal groups compared to deep forest locations (Table 2.3; 

Fig. 2.2). Also, forests bordering fynbos were also similar to the reference stations for both the 

scarab beetles and flies. Arthropod assemblages showed a definite clustering pattern into the 

respective habitat types (Fig. 2.2). Clear felled assemblage compositions had little 

resemblance to fynbos or forest, but did overlap with pine areas to some extent (Fig. 2.2). 

Fynbos and forests yielded different arthropod assemblages with little overlap.  
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Table 2.3: Permutational multivariate analysis of variance (PERMANOVA) of the selected focal 

taxon's assemblage compositions compared between the different habitats. 

Beta diversity   

Taxa df Pseudo - F p-value Post-hoc*  

Overall 6 08.1919 0.001** All biotopes different 

Beetles 6 15.037 0.001** All biotopes different except: 

PN=DF 

Scarabs 6 24.709 0.001** All biotopes different except: 

DF=FN, PN 

Arachnida 6 02.2166 0.001** CC≠CN, FF,FN,; CC≠PN,PP; 

CN≠FF, FN; FF≠FN, PN, PP, PN, 

PP 

Dipterans 6 08.2038 0.001** All biotopes different except: 

DF=FN, PN; FN=PN 

Orthoptera 

 

 

Ants 

6 

 

 

6 

03.7591 

 

 

06.7727 

0.001** 

 

 

0.001** 

All biotopes different except: 

CC=PP; CN=DF, PN; DF=FN, PN; 

FN=PN, PP 

All biotopes different except: 

CC=CN, PP; CN=PN, PP; FN=PP  

*CC=Clear felled; PP=Pine; FF=Fynbos; CN=Forest bordering clear felled; PN=Forest bordering pine; 

FN=Forest bordering fynbos; DF=Deep Forest*  

*P ˂ 0.05, **P ˂ 0.001, ***P ˂ 0.0001 

 

 

Figure 2.2: Canonical analysis of principal coordinates (CAP analysis) indicating similarity of arthropod 
assemblage compositions between the six different habitats (with Deep Forest reference sites 
included). CC: Clear felled areas; CN: Forests bordering clear felled; DF: Deep forest; FF: Fynbos; FN: 
Forests bordering fynbos; PN: Forests bordering pine; PP: Pine plantations. 
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2.4.2) Edge effects on indigenous forest arthropod assemblages  

Overall, arthropods did not show a significant difference in species richness along the Pine-

Forest and Clear felled-Forest transects, but showed for the Fynbos-Forest transect (Fig. 2.3). 

There were significantly more species occurring at 10 m, 20 m, and 30 m in the fynbos from 

the forest edge than 20 m into the forest.  

 

 

Figure 2.3:  Overall species richness (mean±1SE) across transects for different land-uses bordering 
indigenous Afrotemperate forest at differing distances from the forest edge. Different letters above bars 
represent significantly different means (5% level). 

 

Selected focal taxa had different responses to the forest edge in terms of species richness. 

Ant species richness was significantly higher at the 50 m clear felled sites than 50 m into the 

forest on the same transect. The FN-transect (fynbos-forest) also showed significant 

differences in ant species richness, with the fynbos boasting overall higher species richness 

than the bordering natural forest (Fig. 2.4). The PN-transect did not have differences in species 

richness for ants (Fig. 2.4). Beetles (Coleoptera) had a general similarity along transects in 

terms of species richness, although a decrease in species richness was observed along the 
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Clear felled-Forest (CN) transect, with the forest being less species rich than the clear felled 

areas bordering it. Scarab beetles followed a similar trend, although significant differences in 

species richness were also found along the Pine-Forest (PN) transect. For scarab beetles, 

significantly more species were found in general in the pine and clear felled areas than in the 

natural forests bordering it. Fynbos and the forests bordering it had similar species richness 

of both scarab beetles as well as all beetles. For both the CN- and PN-transects, Diptera 

increased in species richness along the transect towards the deep forest stations, with 

significantly lower species richness found on stations furthest away from the natural forest 

edge within the clear felled and pine land-use areas. Diptera species richness reaches its peak 

in deeper forest sites bordering pine and clear felled areas. Along the natural forest-fynbos 

ecotone (FN-transect), Diptera species richness remained similar. The Orthoptera and 

arachnids did not show any significant differences in species richness for any of the three 

transects.   

 

Overall, species assemblage composition showed significant differences between all stations 

outside of the natural forest compared to deep forest reference sites. Along the FN-transect, 

overall forest arthropod compositions are significantly different up to 20 m into the natural 

forest. Forest stations bordering clear felled areas are significantly different in species 

assemblage compositions compared to deep forest reference stations up to 50 m into the 

natural forest. Along the PN-transect, natural forest stations were significantly different in 

species assemblage compositions compared to the deep forest reference stations up to 30 m 

from the forest edge (Table 2.4, Fig. 2.5).  
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Diptera species composition on natural forest/fynbos transects was generally similar to deep 

forest station up to 20 m into the natural fynbos (Table 2.4). However, when bordering pine 

plantations or clear felled areas, assemblages generally differed up to five meters into the 

natural forest. Ant assemblage composition from all stations was generally similar to deep 

forest reference sites, but differed significantly from all fynbos sites in natural fynbos / forest 

transects (Table 2.4).  Both pine and clear felled areas significantly changed this pattern with 

numerous stations outside of forests having similar assemblages to those at deep forest 

Figure 2.4: Species richness (mean±1SE) for selected focal taxa across the respective transects. Different letters 
represent significantly different means (5% level). Red letters: Clear felled-Forest. Blue letters: Pine-Forest. Golden 
letters: Fynbos-Forest. 
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stations and numerous forest stations hosting significantly different ant assemblages than 

reference deep forest stations (Table 2.4). Orthoptera assemblage composition was generally 

unaffected by station position, except in deep pine plantation sites (30 m and 50 m) that 

differed significantly from deep forest reference sites. All three land-uses showed little effect 

on arachnid assemblage composition within forests. The coleopteran (Scarabaeidae included) 

and the Scarabaeidae showed little variation in assemblage composition between different 

natural forest stations and the deep forest reference sites, but significantly differed from natural 

fynbos sites. The same was true for transects between pine plantations and natural forest. 

However, for these two taxa, forests bordering clear felled areas were significantly different in 

species composition compared to the deep forest reference stations up to 30 m into the natural 

forest (Table 2.4).  
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Figure 2.5: Canonical analysis of principal coordinates (CAP analysis) indicating similarity of arthropod 
assemblage compositions between the 10 different stations (in metres) along the ecotone (with Deep Forest (DF) 
reference sites included). FF: Fynbos. FN: Forest bordering fynbos. CC: Clear felled. CN: Forest bordering clear 
felled. PP: Pine. PN: Forest bordering pine. 
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Table 2.4: Permutational multivariate analysis of variance (PERMANOVA) of arthropod assemblage compositions for selected focal taxa across the different 

land-use transects compared to deep forest reference compositions (>100 m from a forest edge) (reported pairwise t-values). 

   

Focal taxa Land-use type Outside forest (m) Within forest (m)   

    50 30 20 10 5 5 10 20 30 50  

Diptera Fynbos  2.43** 2.09** 1.37 1.28 1.67* 0.90 1.19 1.19 0.90 1.35  

  Clear felled  2.61** 1.81** 1.89** 1.85* 1.59* 1.38* 1.07 1.36 1.28 1.35  

  Pine  2.06** 1.49* 1.23 1.15 1.65** 1.56* 1.15 1.07 1.48* 1.37  

Formicidae Fynbos  2.64** 2.62** 2.45* 2.16** 2.08* 1.46 1.30 1.51 2.18** 1.19  

  Clear felled  1.59 1.40 1.75* 1.25 1.31 1.91* 1.38 1.66* 1.66* 3.26*  

  Pine  1.16 0.96 1.89* 1.24 1.37 1.02 1.64* 2.02** 1.91** 1.36  

Orthoptera Fynbos  1.27 1.01 1.38 1.51 1.55 1.42 0.87 1.54 0.80 1.23  

  Clear felled  1.68 1.62 1.54 1.38 1.70 1.12 0.83 1.52 1.36 1.15  

  Pine  1.71* 1.69* 1.32 0.65 1.23 1.45 1.02 1.08 0.47 0.69  

Arachnida Fynbos  1.30 1.68** 1.15 1.39 1.01 1.04 1.35 1.15 1.54 0.84  

  Clear felled  1.50* 1.44* 1.86** 1.21 1.23 1.37 1.53* 0.70 1.04 1.08  

  Pine  1.51* 1.12 0.91 1.30 1.21 1.24 1.28 0.74 1.01 1.14  

Scarabaeidae Fynbos  2.73** 2.40** 1.92* 2.2* 1.86* 1.37 0.5 1.17 1.16 0.94  

  Clear felled  3.09** 3.25** 3.16** 2.3** 3.18** 1.78* 1.28 2.23* 1.83* 1.08  

  Pine  2.59** 2.98** 2.31* 2.81** 2.90** 1.14 1.35 1.53 0.69 0.96  

Coleoptera Fynbos  2.21** 2.00** 1.58* 2.02** 1.82** 1.37 1.00 1.28 1.12 0.86  

  Clear felled  2.48** 2.56** 2.63** 2.07** 2.41** 1.49* 1.18 1.73** 1.56* 1.06  

  Pine  0.98** 2.29** 1.84* 2.14** 2.18** 1.25 1.36 1.17 0.99 0.98  

Overall Fynbos  2.22*** 1.85*** 1.70** 1.8*** 1.66** 1.33* 1.19 1.33* 1.25 1.1  

  Clear felled  2.52*** 2.23*** 2.35*** 1.79*** 1.93*** 1.59*** 1.07 1.52** 1.32* 1.3*  

  Pine  1.86** 2.03*** 1.72** 1.64** 1.67*** 1.35** 1.28* 1.24* 1.29* 1.06  

* P ˂ 0.05, **P ˂ 0.001, ***P ˂ 0.0001 
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2.5) Discussion  

2.5.1) Arthropod assemblages in the different habitat types 

Here, I show that the open habitat types, fynbos and clear felled areas, were the most species 

rich. Other studies support these findings, which have shown that clear felled areas support 

both open-habitat species and forest generalists (Niëmela et al. 1993; Koivula et al. 2002; 

Pawson et al. 2008). Interestingly, the highest species estimates were in the clear felled areas, 

typically containing a mixture of alien invasive species, fynbos and scattered logs (Appendix 

3, fig. 5.4). These findings support the view by Pryke & Samways (2009), in that the 

naturalness of an area does not always result in a higher alpha diversity of arthropods. It is 

known that open, mixed areas provide habitat for generalist species that opportunistically 

colonise areas previously unsuitable for their persistence (Didham et al. 1996; Kaila, 

Martikainen & Punttila 1997). Also, these findings lend evidence towards the co-existence of 

species under the Intermediate Disturbance Hypothesis (IDH). The high number of species 

shared between clear felled areas and fynbos, and to a lesser extent forest (competetively 

superior species) together with the large number of unique species (rapid colonizers), does 

indeed fit well in to the IDH (Shea et al. 2004). The large number of species that were unique 

to these clear felled areas in our study may therefore be a mixture of such opportunistic 

generalist species and non-native species usually associated with pine plantations. The latter 

is supported by results of assemblage composition analyses that showed that pine plantations 

and clear felled areas have more similar composition to each other than either of these have 

with natural fynbos sites. This also indicates that areas cleared from pine are less beneficial 

in sustaining native arthropods and that these assemblages have not yet been restored to a 

more natural state. Pine stands, although being less species rich, do support at least some 

native arthropod assemblages, compared to recovering fynbos (previously pine plantation) 

that harbours many unique species, from a study by Pryke & Samways (2009). However, once 

clear felled areas are fully restored given adequate time (to either fynbos or forest depending 

on the historic biome and vegetational succession), the scenario will predictably change 
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towards favouring historically clear felled areas instead of mature pine stands with regards to 

sustaining viable populations of native arthropods (Butterfield 1997; Magura et al. 2003; 

Pawson 2006).  

 

Arthropod assemblages sampled from the three respective natural forest types overlapped to 

some extent with the bordering habitats that differ in land-use type. In fact, all transect types 

shared more than a hundred species (over 70% of all taxa collected per transect type) between 

bordering habitat types. There is therefore some degree of movement, or spill-over, of 

arthropods between bordering habitats and any change that leads to altered arthropod 

assemblages in one of these habitats would result in a change in the other. The spill-over of 

insects from one habitat / land-use into the bordering habitat is not uncommon (Rand et al. 

2006).  The fact that between-biotope movement is readily witnessed in the southern Cape 

forest complex, makes restoration of disturbed areas a key priority. Influxes of foreign 

arthropods into natural systems could vastly alter insect food web dynamics (Rand et al. 2006; 

Tscharntke et al. 2005), and, in turn, forest integrity (Maleque et al. 2006). Alternatively, the 

movement of forest arthropods into adjacent land-uses / habitats indicates that strong, viable 

source populations are able to recolonize disturbed areas. Edges do act as source areas for 

species dispersal (Molnár et al. 2001) and the high movement of species across edges found 

here highlights their conservation value. However, the extent to which they do this is limited 

and will predictably remain limited unless areas are adequately restored (Barnes et al. 2014).  

 

2.5.2) Edge effects on indigenous forest arthropod assemblages  

Fynbos boasts the highest diversity of arthropod species across the ecotone. Both plantation 

blocks and clear cut areas shared uniformly low species richness with natural forests when 

compared to fynbos. The significantly higher overall species richness found in the fynbos 
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bordering forests could be ascribed to natural patterns in species richness, as these two 

biomes are very different in their structure, composition and abiotic parameters (van Wilgen 

et al. 1990). Previous work found similar results, with fynbos being more species rich in terms 

of arthropod diversity compared to afrotemperate forests (Pryke & Samways 2009). These 

differences are reflected in the composition of species as well, with the fynbos and forest 

harbouring significantly different overall arthropod assemblage compositions. Fynbos do not 

border the forest as a hard edge; instead, the forest-fynbos ecotone often form a continuous 

clump of mixed vegetation with a gradual decrease in canopy height moving away from the 

forest (Appendix 3, fig. 5.3). The Keurboom (Virgilia oroboides) are typically found at the 

interface of these two biomes, but are usually absent from production areas where pine trees 

were clear cut. These ecotonal areas have a unique floristic composition, acting as a buffer 

zone around the natural forest protecting the forest from penetrating sunlight, dust, water run-

off and exotic arthropod influxes (Mucina & Rutherford 2006; Delgado et al. 2007). The 20 m 

edge effect reported in forests bordering fynbos though could be explained as a natural 

adaptation of arthropod species to the forest-fynbos ecotone. Specialization of species at the 

ecotone of two biomes is not uncommon (Molnár et al. 2001; Ribeiro et al. 2008). Natural edge 

adapted species are vital components of any ecosystem, and could significantly contribute 

towards ecological intactness by acting as source populations for dispersal (Molnár et al. 

2001).  

 

When pine trees replace the natural forest-fynbos border, non-forest arthropod assemblages 

penetrate deeper into these forests (up to 30 m) indicating that pine stands allow for less 

buffering of natural forest assemblages against the surrounding assemblages. Deep forest 

arthropods decrease the extent of their range in forests bordering pine plantations. Pine 

plantations do however provide a buffer against abiotic and biotic influxes into the natural 

forest; (Norton 1998; Brockerhoff et al. 2001; Hartley 2002; Denyer et al. 2006; Campbell et 

al. 2011) when pines are felled non-forest arthropod assemblages could penetrate at least to 
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50 m into natural forest. This indicates that this action creates more suitable habitat for 

arthropod taxa not normally associated with forests. The gradual increase in height of 

vegetation associated with natural borders deteriorates completely with the formation of 

plantation forestry. Once clear felled, environmental factors acting on the forest edge will 

increase in their penetrating ability due to the removal of any bordering vegetation (Peyras et 

al. 2013), thus supporting Peyras et al. (2013) in the existence of a gradient of hardness.   

 

The Orthoptera did not perceive the forest edge as a barrier for dispersal as it was equally 

species rich both sides of the forest edge and did not generally differ in species composition. 

Contrasting research from the KwaZulu-Natal Midlands in South Africa, where forests, 

grasslands and timber plantations interlink to create a mosaic landscape, revealed a strong 

relationship between habitat edge and distance from edge on both grasshopper richness as 

well as compositions (Pryke & Samways 2012). The variety of biologies found in orthopterans 

and the fact that different trapping methodologies attract different functional types could 

explain these differences (Bidau 2014). The methodology used in this study (pitfall trapping) 

is not especially favourable for trapping most orthopterans (compared to sweep nets, re: 

Larson et al. 1999). However, these results highlight the fact that extrapolation of results must 

be done with caution, and that species in different regions or with different biologies may have 

different responses towards different forms of disturbance. 

 

At the natural fynbos-forest ecotone, no significant differences in Diptera species richness 

were witnessed. However, the Diptera species richness was lowest at the clear felled and pine 

stations furthest away from the forest. Similar results were obtained by Helle & Muona (1985), 

where Diptera species richness were significantly higher in mature forest in Finland than clear 

cut areas bordering the forest. In the tropical Australian countryside, Diptera species richness 

decreased significantly moving from larger forest sites to pasture lands (Smith & Mayfield 
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2015). This indicates a lack of dipterans to adapt to these disturbed areas. Suggestions have 

been made by Smith & Mayfield (2015) that significant decreases in diptera species richness 

and compositions could result in ecosystem services mediated by dipterans to be lost 

(services such as pollination and pest control). The demise of dipterans is alarming and the 

monitoring of these species could provide useful insights into restoration success. Edge 

effects reaching into the natural forest for diptera were not severe, although significant 

differences in assemblage compositions did occur at individual forest stations bordering clear 

felled and pine areas.  

 

At the open habitats (fynbos and clear felled) there was an increase in ant species richness 

moving out from the forest edge into these open areas, yet no significant differences across 

the pine-forest interface and species richness remained uniformly low. The assemblage 

composition of ants was also significantly different between fynbos and forest stations, 

suggesting that these two biomes harbour different species assemblages as expected (Koen 

& Breytenbach 1988). Fynbos were the only biotope bordering forests that showed a 

significant difference in this regard towards deep forest stations. Also, the concentration of 

resources at forest edges should be considered when explaining the increases in ant species 

richness (Banschbach et al. 2012). The fact that ant species richness were significantly higher 

in only the two habitats with low- to medium growing vegetation in this study, compared to the 

mature pine stands and indigenous forests, suggests that sunlight availability and/or 

temperature might be the causal factor leading to an increase in species numbers. Recent 

findings support the view that temperature are in fact more influential on ant species richness, 

independent of tree canopy cover or macro-habitat (Werenkraut et al. 2014). The increase in 

ant species richness in the clear felled areas and fynbos, together with the natural forest ant 

species assemblage shift outward from the natural forest into the clear felled and pine areas, 

suggest that ants of this area prefer open habitat.  
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Deep forest arachnids utilize the immediate forest edge where forests border clear felled 

areas; however, they lack the ability to disperse deeper into clear cut areas due to a possible 

lack of prey availability, suitable shelter or an altered micro-climate (Larrivée et al. 2008). At 

least some spiders have a tendency for forest edges, with increased species richness found 

at the immediate forest edge (Pajunen et al. 1995; Horvath et al. 2002). Here, I found that 

spider species richness was uniform across transects for all three land-uses. However, a 

recent study by Larriveé et al. (2008) found no relation between edge zones and species 

richness, rather a change in community assemblages. Their study strongly suggests the 

abruptness of the forest edge, i.e. soft versus hard, to play a significant role in spider 

assemblage changes across the habitat interface (Larriveé et al. 2008). In their comparison of 

clear cut edges versus wildfire edges, the latter being a softer edge relative to the clear cut 

edge, spider assemblage changes is more abrupt at the clear cut edges. The present study 

support their results in that clear felled areas were the only land use to affect interior forest 

stations at 10 m in, whereas stations within the clear felled zones had significantly different 

spider assemblages. Fynbos and pine stands, both being categorized as softer edges relative 

to clear felled areas in this study, had no edge effect on spider compositions. This study 

strongly suggests that ground-dwelling forest spiders readily utilise fynbos as well as the soft 

forest edge linking fynbos with natural forests. Also, few species specialize on the natural 

forest-fynbos ecotonal niche, as the spider assemblages at edge stations did not differ from 

either interior forest or fynbos stations. Pine plantations also harboured spider assemblages 

similar to those found in native forests, however; once clear felled, the composition of spider 

assemblages changed significantly. Their role in food webs (Atlegrim & Sjoberg 1995; Nyffeler 

2000) and nutrient recycling in the early stages of natural forest succession (Hodkinson et al. 

2001) highlights their importance in restoration monitoring. 

 

For the Coleoptera, including Scarabaeidae, all fynbos stations differed significantly in their 

assemblage compositions from deep forest reference stations; however, all forest stations 
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bordering fynbos were similar in their assemblage compositions. The fact that both the pine 

and fynbos habitats did not have any edge effect on both beetle and scarab beetle 

assemblages within the forest, compared to the severe edge effect found in forests bordering 

clear felled areas, provides strong evidence towards altered micro-climatic changes 

associated with the hard forest edge. Both the order Coleoptera and the family Scarabaeidae 

was more species rich and had different assemblage compositions in the clear felled areas 

than the forests bordering these areas, similar to a study on carabid beetles in boreal forest 

fragments, where clear cut areas boasted significantly higher species richness (Heliola et al. 

2001). The hard edge associated with clear felled areas could allow increased sunlight, -water 

runoff and an influx of foreign species usually unable to penetrate natural forests (Laurance 

2002). Beetles are very sensitive towards anthropogenic disturbances (Klein 1989; Nichols et 

al. 2007). Plantation forestry, characterised by regular harvesting and replanting, could 

severely impact native beetle diversity, even 27 years after disturbance (Spence et al. 1996). 

Dung beetles have been found to be strongly affected by altered vegetation characteristics, a 

different than normal micro-climate (Davis et al. 2001) as well as dung availability produced 

by native mammals (Estrada & Coates-Estrada 2002), all which are possibly affected by the 

hard edge associated with clear felled-forest interfaces. A combination of these factors is 

typically used to explain edge effects as severe as found here. Encouraging though is recent 

findings that dung beetles rapidly respond to vegetation restoration efforts in Afromontane 

forest patches in Nigeria, with a 53% increase in dung beetle abundances after only three 

years of passive restoration of disturbed forest areas (Barnes et al. 2014). No edge effects 

are reported for forests bordering pine plantations, as beetle assemblages were similar to 

deep forest stations in all natural forest stations bordering pine stands, although the edge 

between forest and pine plantations are stark for beetles. This indicates that natural forest 

beetle assemblages do not utilise commercial plantations as corridors for dispersal. However, 

other studies show that pine plantations could provide important alternative habitats for typical 

forest beetles (Pawson et al. 2008). This is not the case here as forest beetles did not use the 

commercial plantation blocks. The structure of pine plantations, with a high tree canopy and a 
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general cooling effect, could explain the fact that beetles associated with deep forest stations 

could utilise forests up to 5m from the pine edge due to the blocking out of sunlight at the 

natural forest edge (Tabor et al. 2007). Shading effects have been proven to significantly 

influence beetle compositions (Spence et al. 1996; Namakura et al. 2009). However, within 

pine stands few natural understory floral species persisted, and the drastic difference in 

vegetation characteristics between pine stands and afrotemperate forests could explain the 

absence of deep forest beetle assemblages within the pine stands (Appendix 3, fig. 5.2).  

 

2.6) Conclusion 

The southern Cape forest complex does have both natural and artificial edge effect, with the 

fynbos-forest ecotone comprising of a unique zone, effectively displaced once commercial 

forestry commences at the forest edge. A loss of fynbos specialist species occurs as a result 

of the establishment of plantations on former fynbos areas and an increase in edge effect 

occurs once the fynbos-forest ecotone gets displaced by plantations. This edge effect reaches 

up to 30 m into the bordering natural forest. Furthermore, once pine stands are clear felled, 

the edge effect increases, penetrating up to 50 m into the adjacent forest. The impact of these 

changes on arthropod responses could alter forest integrity. This suggests that not only fynbos 

and forest should be conserved in this landscape, but conservation should also consider the 

edge between the two biotopes as critically important. Thus, these two biotopes should be 

conserved as a single conservation unit, retaining both fynbos and natural forest, as well as 

the edge between them. Arthropod diversity, too, should be monitored throughout the duration 

of restoration in both the clear felled areas as well as the adjacent forest. The high-use value 

of arthropods in monitoring ecosystem health should be incorporated in the Garden Route 

National Park’s management plans together with vegetation restoration to insure sufficient 

recovery of disturbed areas.  
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3) Chapter 3 

How road size and direction fragments ancient Afrotemperate forest arthropod 

assemblages 

 

3.1) Abstract 

Forests are sensitive ecosystems naturally characterised by a closed canopy with a unique 

micro-climate to which forest species have adapted. In pristine forests, these conditions alter 

in areas with sun flecks or where trees have fallen over, as well as on forest edges.  However, 

roads through forests may lead to permanent fragmentation by increasing the amount of edge 

as perceived by forest biota. I determined how different types of roads and their direction affect 

forest arthropod biodiversity in the southern Cape Afrotemperate forest complex of South 

Africa. This was achieved by focussing on different types of road running through the forest, 

through analysing and comparing the composition and species richness of selected arthropod 

groups across linear transects. Results show changes in arthropod species richness, 

abundance and assemblage composition due to differences in road type in especially the 

Diptera, Coleoptera, Formicidae and dung associated arthropods. Edge effects of up to 50 m 

were reported for both the wide arterial roads and the narrower, secondary roads. Hiking trails 

affected arthropod assemblages only up to 10 m into the forest. Roads directed east-west 

affected forest arthropods more negatively than roads directed north-south. These results 

suggest that the largest continuous forest in South Africa is highly fragmented by roads in 

terms of arthropod biodiversity which could lead to cascading effects on overall forest integrity. 

 

3.2) Introduction 

Ecosystem edges naturally occur where two biotopes converge. Forests are usually 

characterised by a closed high canopy, but often have areas of naturally opened gaps in the 
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canopy caused by treefall (Bouget & Duelli 2004). This affects the dynamics of the forest as 

well as the radiation energy penetrating to the forest floor, altering the micro-climate and 

various biological processes (Falinski 1978). Schowalter (1994), for example, found an 

increase in sap-sucking arthropods and a decrease in Lepidopterans, predaceous beetles and 

decomposers in newly formed canopy gaps in Puerto Rico. However, these areas play a vital 

role in forest succession and are only temporal in nature (Bouget & Duelli 2004). Also, many 

forest tree species are reliant on these openings to reach canopy status (Canham 1989).  

 

Of special concern are the effects of human-caused, permanent gaps in the forest canopy. 

Road construction and -utilisation are widely reported to have adverse effects on 

environments, especially in sensitive forest habitats, mainly due to the opening of the tree 

canopy. This allows for influxes of unnatural environmental factors (Delgado et al. 2007), 

creating access to remote areas for logging (Nagendra et al. 2003; Fearnside 2007) and 

facilitating the influx of alien plant species (Arévalo et al. 2005). Reported adverse impacts on 

ecosystem functioning further include, amongst others, altered air quality, -soil properties, -

vegetation and –wildlife abundances and occurrences (Forman & Alexander 1998; Coffin 

2007). The effect of roads on vertebrates, especially birds and mammals, are well studied 

(Benitez-Lopez et al. 2010; McGregor et al. 2008; Gryz & Krauze 2008). However, exactly 

how insects are affected by roads that penetrate natural environments remains understudied 

(Muñoz, Torres & Megías 2015) especially in Africa. Previous findings have shown that roads 

impact insect diversity, with studies reporting an increase in insect abundance and diversity 

moving away from the roadside into the habitat interior (Haskell 2000; Dunn & Danoff-Burg 

2007). Most importantly, roads often act as barriers for forest species that perceive these as 

forest edges (Kolasa & Zalewski 1995; Murcia 1995). Roads could also assist the movement 

of generalist, open-habitat arthropods along road corridors through forests (Koivula 2005). 

Due to the open canopy above roads, they exposed the adjacent forest with limiting factors 

such as drier conditions, increased light and altered nutrient levels (Coffin 2007), making roads 

ideal spaces for the influx of foreign species (Parendes & Jones 2000; Gelbrad & Belnap 
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2003). Importantly, the effects of roads regularly penetrate the surrounding habitat several 

metres in (Forman et al. 2003), often causing changes in micro-climatic conditions (Haskell 

2000; Godefroid & Koedam 2004). As a result, roads affect the ecological functioning and 

dynamics of the system, creating ‘road-effect zones’ that may vary in time and space (Coffin 

2007). An understudied concept is that the impact of a road through natural forest may also 

depend on the direction of the road.  Differences in road direction will relate the angle of the 

sun and how far into the forest sunlight will penetrate these forest edges (Matlack 1993). 

Sunlight in turn dries leaf litter and increases surface temperature in naturally cool forests 

(Kapos 1989), while also deterring the naturally photonegative forest species. In the southern 

hemisphere it is expected that, due to the constant more northerly  position of the sun during 

the entire day, the southern edges of roads running in an east-west direction will receive more 

sunlight penetrating into the forests than the edges of roads running in a north-south direction. 

The forest edges next to north-south directed roads will receive penetrating sunlight (sunlight 

angled into the forest edges) only during the morning or afternoon, depending on which side 

of the road. It is therefore likely that forests next to roads in an east-west direction (and 

particularly their southern side) would be more prone to desiccation and have larger edge 

effects into the forest than forests next to north-south direction.  

 

Differences in the size of a canopy gap can have different effects on arthropod assemblages 

(Phillips & Shure 1990). The effect of road width on arthropods in forests is still a relatively 

understudied field of research (Muñoz, Torres & Megías 2015). Traffic volume has received 

far greater attention in assessing the impact of roads penetrating natural environments 

(McKenna et al. 2001; Roa & Girish 2007; Seshardi & Ganesh 2011). In the southern Cape 

forest complex, which has a long history of forestry road creation and -utilisation, roads are 

predicted to have significant effects on forest biodiversity due to the creation of permanent 

forest canopy gaps (Phillips & Shure 1990; Schowalter 1994). In the Knysna forest, 

observations on vegetation regrowth along forest roads and canopy gaps above 0.1 hectare 

in size revealed a micro-climate that deteriorate forest communities. For example, few 
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seedlings establish in these areas due to unnatural drier soil conditions (Geldenhuys 1982). 

The impact of forestry roads on forest arthropod biodiversity in the southern Cape forest 

complex is still unknown.  

 

The high value of arthropods for assessing ecological integrity is well-documented (Magura 

2002; McGeoch 2007; Maleque et al. 2009). In forests, with its unique micro-climate that is 

sustained by a closed tree canopy, arthropods are especially sensitive towards disturbance 

and provide good indicator taxa for assessing changes in forest systems (Klein 1989; Koivula 

et al. 2002; Magura 2002; Spector 2006; Maleque et al. 2009). Within the southern Cape forest 

complex, the largest continuous forest in South Africa, forestry roads form a network of linear 

gaps, creating permanent and continuous areas with unnaturally high levels of light and other 

environmental variables penetrating the forest interior. The aim of this study was to determine 

how roads of different width and orientation through the Southern Cape Afrotemperate forests 

affect the magnitude of the edge effect into the forest as measured by the diversity of different 

epigaiec arthropod groups.  

 

3.3) Materials and Methods 

3.3.1) Study area and site selection 

The study area in the southern Cape, South Africa, ranged from Bergplaas in the West 

(33.912116 S; 22.736818 E) to Diepwalle in the East (33.94058 S; 23.16141 E), in the Garden 

Route National Park (GRNP) (Table 3.1). The GRNP contains a suite of different biomes, with 

indigenous Afrotemperate forests occupying 60 651 ha of the park (Geldenhuys 1991). 

Forestry roads occur throughout the GRNP, with many of these roads being accessible to the 

public (Fig. 3.1). Initially being created as trails by which early woodcutters transported timber 

out of the forest, today these roads are permanent gravel roads dissecting large parts of the 

forest. The widest gravel road running through the forest is the R339, a public road that 
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connects Uniondale in the north with Knysna in the south. This road is a relatively wide two 

lane gravel road, which on a daily basis is used by commercial timber trucks transporting 

mostly exotic timber (Appendix 3, fig.5.6). The majority of the wood is harvested from the 

commercial plantations dominating large tracts of the landscape around the natural forest. 

Furthermore, many secondary roads form a network of canopy gaps throughout the forest. 

These roads are not as often utilized as the R339 and receive far less traffic volumes 

(Appendix 3, fig.5.6). For recreational purposes, hiking trails are abundant within the forest, 

and often penetrate deep into undisturbed forest (Appendix 3, fig.5.6). All arterial sites were 

selected off the R339, with sites being at least one kilometre apart to reduce pseudo-

replication. Secondary road and hiking trail sites were selected across the study area at 

random, with secondary roads also at least one kilometre apart.  

 

Table 3.1: Location of sampling sites. Sites in bold were those sites selected to test for the influence 
of road direction on arthropod assemblages. Along all east-west roads only the southern edges were 
sampled. 

Transect Road Type Road Direction Latitude Longitude 

1 Arterial North-South -33.94058 23.16141 

2 Arterial Diagonal -33.945960 23.155617 

3 Arterial North-South -33.95135 23.14805 

4 Arterial East-West  -33.95465 23.15156 

5 Arterial East-West -33.958028 23.156155 

6 Arterial East-West -33.96256 23.15738 

7 Arterial Diagonal -33.96976 23.14793 

8 Arterial Diagonal -33.973524 23.147332 

1 Secondary Diagonal -33.920287 22.958593 

2 Secondary North-South -33.906888 22.963660 

3 Secondary North-South -33.95153 23.15332 

4 Secondary Diagonal -33.94550 23.09763 

5 Secondary East-West  -33.94400 23.10210 

6 Secondary East-West  -33.94614 23.12980 

7 Secondary North-South -33.94928 23.05733 

8 Secondary Diagonal -33.95331 23.05652 

1 Hiking trail   -33.915149 22.735434 

2 Hiking trail   -33.914001 22.737021 

3 Hiking trail   -33.916405 22.956244 

4 Hiking trail   -33.913965 22.95383 

5 Hiking trail   -33.94303 23.05279 

6 Hiking trail   -33.94486 23.05327 

7 Hiking trail   -33.94750 23.14162 
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8 Hiking trail   -33.94794 23.14214 

1 Deep Forest  -33.912116 22.736818 

2 Deep Forest  -33.913965 22.95383 

3 Deep Forest  -33.943455 23.05389 

4 Deep Forest   -33.945394 23.102132 

5 Deep Forest   -34.075695 23.22961 

6 Deep Forest   -33.948844 23.141793 

7 Deep Forest   -33.976461 23.191346 

8 Deep Forest   -33.94898 23.166639 
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Figure 3.1: Map indicating location of road sites. Sites labelled in blue are transects next to secondary roads. Sites labelled in red are transects next to 

arterial roads.
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3.3.2) Arthropod sampling 

Sampling was conducted over two seasons; late autumn (April-May) and late spring (October-

November) 2014. Eight line transects per road type were erected perpendicularly to each of 

the three categories of road (arterial, secondary, hiking) (Appendix 3, Fig. 5.6). A subset of 

ten transects were used to test for the effect of road direction on arthropod assemblages 

(Table 3.1; Figure 3.1). Five of these were selected for east-west running roads (transects 

directed southwards from these roads) and five for north-south running roads (transects 

directed eastwards and westwards from these roads) (Table 3.1). On each line transect, five 

stations were established at 5 m, 10 m, 20 m, 30 m and 50 m from the edge of the road into 

the forest. The 5 m stations were placed directly next to the road, underneath the edge of the 

canopy of the first indigenous forest tree. An additional 8 reference stations were selected at 

randomly chosen deep forest locations that were at least 100 m from any road or 

anthropogenic disturbance. For analyses of the effect of road direction on arthropod 

assemblages, five deep forest stations were selected at random from the eight deep forest 

stations to avoid possible biases created by unbalanced sampling design (Anderson & Walsh 

2013). At each station, four pitfall traps were placed at the corners of a 0.5 m × 0.5 m square 

during both sampling occasions. Each pitfall trap consisted of a plastic cup (7.5 cm in diameter 

and 9.5 cm in depth) that was buried so that its rim was flush with the ground and was left in 

the field for 7 days. One trap per station was baited with a pig-dung and chicken liver mix 

(Pryke et al. 2013) to attract dung and carrion feeders. All traps contained one-quarter 

ethylene glycol and water (1:1 ratio) as preservative. All captured arthropods were preserved 

in 70% ethanol until identification. Each individual arthropod was assigned to a morphospecies 

and identified to order and family level. Voucher specimens are housed in the Entomology 

Museum, Department of Conservation Ecology and Entomology, Stellenbosch University. 
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3.3.3) Statistical procedures 

Data from the two respective collection seasons were pooled. Species estimates (Chao2 and 

Jacknife2; Hortal et al. 2006) were calculated in EstimateS v.7.5.2 (Colwell 2009) with 999 

randomizations of samples for each of the road type (arterial, secondary, hiking). These non-

parametric species estimators provide the best overall species estimates when many rare 

species are present (Novotny & Basset 2000; Hortal et al. 2006) and when working with 

relatively small sample sizes (Colwell & Coddington 1994). The Coleoptera (beetles), 

Orthoptera (grasshoppers, crickets, and locusts), Arachnida (spiders, scorpions, and 

harvestmen), Diptera (flies) and Formicidae (ants) were selected as focal taxa due to their 

high abundances in this study. Arthropods were also classified according to their functional 

feeding guild based on the dominant feeding behaviour of the particular life stage collected 

(juvenile or adult) of the particular family (Scholtz & Holm 1985) and as indicated by their 

mouthparts (Labandeira 1997). These included the herbivores, predators (including 

parasites), detritivores (including fungivores, scavengers and omnivores) and dung associated 

species. Ants were treated as a separate taxonomic and functional group due to their wide 

range of feeding habits. Dung associated species mostly comprised of dung beetles and flies 

that were attracted to the dung bait and were not included in the detritivores due to their 

specialised feeding habits. 

 

To test the influence of road type and direction on arthropod species richness and abundance, 

data from the 5 stations per transect were compared to the deep forest reference stations, 

Generalized Linear Mixed Models (GLMM’s) were calculated for the overall arthropods 

collected and for arthropods in the different focal taxonomic- and functional groups 

respectively. The GLMM’s were performed by using the lme4 package (Bates & Sarkar 2007) 

in R (R Development Core Team 2007). The overall models incorporated the fixed effects of 

road type or road direction, as well as the random effects of elevation and season.  For all 

analyses, a GLMM fit by Laplace approximation and with a Poisson distribution was used 

(Bolker et al. 2009). Post-hoc analyses were performed only on factors found to significantly 
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affect species richness and abundance using a Tukey post-hoc test in R in the multcomp 

package (Hothorn et al. 2008).  

 

To test the influence of road type and direction on arthropod assemblage composition, data 

from the 5 stations respectively were compared to deep forest reference stations using 

Permutational multivariate analyses of variance (PERMANOVA) in PRIMER 6 (PRIMER-E 

2008). Data were square-root transformed to reduce the weight of abundant species 

(Anderson 2001) where after Bray-Curtis similarity measures were calculated. These analyses 

were performed for the overall arthropod assemblage composition as well as the compositions 

of specific focal arthropod taxa and functional groups. Arthropod assemblages were further 

compared by means of canonical analysis of principal coordinates (CAP) which can effectively 

delineate aspects of interest within a dataset with high background variance (Anderson & Willis 

2003).  

 

3.4) Results 

3.4.1) Road type  

A total number of 4 507 individuals were sampled, comprising 209 morphospecies from 17 

orders. The Coleoptera was the most species rich order (57 species) overall, followed by the 

Diptera (34 species), Arachnida (31 species), Orthoptera (15 species) and Formicidae (14 

species). The most species rich functional group was the predators (60 species), followed by 

the herbivores (43 species), dung associated arthropods (33 species) and detritivores (32 

species). Overall, sampled species richness was similar between forests bordering the three 

different types of road for all taxa and functional groups (Table 3.2). Chao2 and Jacknife2 

diversity indices however estimated higher species richness in forests bordering arterial roads.  
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Table 3.2: Summarised results of sampled species richness with Chao2 and Jacknife2 diversity 

estimates included for each of the types of road. 

 Diversity index Arterial Hiking Secondary 

Overall Sampled 132 130 131 

 Chao2 187.46 (SD±20.42) 168.51 (SD±15.32) 162.81 (SD±13.38) 

 Jacknife2 204.96 188.33 181.85 

Arachnida Sampled 21 25 21 

 Chao2 22.56 (SD±1.96) 30.6 (SD±5.24) 23.33 (SD±3.09) 

 Jacknife2 24.62 34.78 25.57 

Coleoptera Sampled 36 37 33 

 Chao2 64 (SD±20.49) 46 (SD±6.89) 38.9 (SD±5.21) 

 Jacknife2 59.42 52 43.76 

Scarabaeidae Sampled 10 11 9 

 Chao2 11.31 (SD±2.04) 11.21 (SD±0.65) 9.43 (SD±1.18) 

 Jacknife2 12.94 11.33 9.98 

Diptera Sampled 23 24 25 

 Chao2 25.73 (SD±3.25) 27.64 (SD±4.32) 35.71 (SD±11.56)  

 Jacknife2 28.55 30.19 35.08 

Formicidae Sampled 9 10 10 

 Chao2 12.93 (SD±6.33) 11.75 (SD±2.36) 17 (SD±10.24) 

 Jacknife2 13.23 13.92 15.85 

Orthoptera Sampled 14 10 11 

 Chao2 19.46 (SD±6.65) 11.31 (SD±2.3) 11.43 (SD±1.18) 

 Jacknife2 20.83 14.23 11.96 

Predators Sampled 42 45 38 

 Chao2 50.21 (SD±6.03) 52.39 (SD±5.44) 40.67 (SD±2.77) 

 Jacknife2 57.33 59.69 44.24 

Herbivores Sampled 26 22 23 

 Chao2 82 (SD±49.07) 35.23 (SD±10.98) 28.6 (SD±5.24) 

 Jacknife2 50.71 37.30 32.78 

Detritivores Sampled 14 13 20 

 Chao2 49.44 (SD±43) 34.43 (SD±27.26) 41 (SD±17.74) 

 Jacknife2 27.98 23.73 37.57 

Dung 
associated Sampled 28 25 26 

 Chao2 31.06 (SD±3.12) 25.87 (SD±1.67) 33 (SD±10.24) 

 Jacknife2 34.87 26.96 31.85 

 

 

High numbers of species were shared between forests adjoining the different road types 

(Table 3.3). Lower percentages of arthropods shared between roads and deep forest stations 

are artefacts of lower sampling effort at deep forest stations (n = 8 stations for deep forest 

sites vs. n = 40 stations for forests next to roads). However, compared to arterial and 
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secondary roads, hiking trails still shared a slightly higher percentage of arthropod species 

with deep forest reference stations.  

 

Table 3.3: Number of species shared between forests bordering the different road types (rare species 

(n ≤ 4) excluded). 

Road type Arterial Secondary Hiking 

Arterial *   

Secondary 83 (89.25%) *  

Hiking 83 (90.22%) 86 (92.47%) * 

Deep Forest 63 (70.79%) 65 (70.65%) 64 (72.22%) 

 

 

Overall species assemblage compositions differed significantly between all forest types (forest 

bordering arterial, secondary and hiking roads) (Table 3.4). Overall, arthropod composition of 

forest sampling points along hiking trails did not differ from the deep forest reference stations, 

even if sampling effort in deep forest stations were smaller (Table 3.4, Fig 3.2). Reference 

stations were dissimilar to forests bordering arterial- and secondary roads and stations in the 

latter two tended to separate in the CAP analysis (Table 3.4, Fig 3.2).  

 

Table 3.4: Permutational multivariate analysis of variance (PERMANOVA) of the selected focal 
taxon's assemblage compositions compared between the different forest types based on the 
bordering road type. 

Arthropod group df Pseudo - F p-value* Post-hoc 

Overall 3 3.5251 0.0001*** DF=H 

Arachnida 3 1.8024 0.0157* DF=H, S, A  

Coleoptera 3 5.1309 0.0001*** DF=H 

Diptera 3 3.7293 0.0001*** DF=H, S, A 

Formicidae 3 1.6618 0.0918 DF=H, S, A  

Orthoptera 3 3.3487 0.0001*** DF=none 

DF=Deep Forest; A=Arterial road; S=Secondary road; H=Hiking trail 
*P < 0.05, **P < 0.001, ***P < 0.0001 
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Figure 3.2: Canonical analysis of principal coordinates (CAP) indicating similarity of arthropod 
assemblages between forests bordering different road types with deep forest reference sites included 
(A-arterial road; DF-deep forest; H-hiking trail; S-secondary road). 

 

Hiking trails generally had the highest number of species per station along transects and was 

always statistically similar to deep forest stations (Fig. 3.3). Secondary roads generally had 

intermediate species richness per station although their numbers never differed significantly 

from deep forest stations. Arterial roads, in contrast, generally contained the least number of 

species and their overall, Diptera and dung associated groups were significantly lower 

compared to deep forest stations (Fig. 3.3). More than 40 arthropod species were found at the 

deep forest stations, compared to less than 30 species encountered at stations directly next 

to arterial roads. Diptera species richness were highest at deep forest stations (11±1.9) and 

stations directly next to hiking trails (11.63±0.86), but was lowest at stations 5 m from arterial 

roads (5±0.8). Dung associated arthropods showed a similar trend (Fig. 3.3) with highest 

species richness at deep forest stations (16.75±1.69) and directly next to hiking trails 

(18.75±1.08), whereas stations 5 m from arterial roads harboured the lowest species richness 

(9.38±0.71).  
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Figure 3.3: Species richness (mean ± SE) along transects next to three different road types at different 

distances from the road edge compared to deep forest reference stations. Different letters represent 
significantly different means (5% level). 
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Overall, arthropod abundance decreased from deep forest stations moving towards both 

secondary and arterial roads (Table 3.5). The most significant drop in overall species 

abundance was found at stations directly bordering arterial roads (71.88±8.36) compared to 

deep forest reference stations (212.75 ±41.42). Secondary roads, however, were significantly 

different at all stations along transects with regards to overall arthropod abundance. Hiking 

trails had lowest impact on overall arthropod abundance as all stations were statistically similar 

to deep forest stations (Table 3.5). Secondary roads had a greater effect on Coleoptera 

abundance compared to arterial roads, with significant decreases at all stations along 

transects compared to deep forest stations. In forests bordering arterial roads, only the 5 m 

station were significantly lower in species abundances compared to deep forest stations for 

Coleoptera.  Diptera abundance was lowest at stations 5 m from arterial roads and differed 

significantly from deep forest reference stations. Both the Arachnida and Orthoptera showed 

little response to roads with regards to abundance.  Formicidae were less abundant at stations 

5 m from hiking trails and stations 30 m and 50 m from secondary roads compared to deep 

forest stations. Road type also had seemingly little effect on arthropod functional groups (Table 

3.5). Herbivores were unaffected by roads in terms of abundance (Table 3.5). However, a 

variety of responses were found for the predators, detritivores and dung associated arthropods 

with arterial roads showing the greatest responses (Table 3.5). 
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Table 3.5: Abundance of arthropod taxa along transects bordering different road types. Stations that significantly differ from deep forest stations are indicated 

in bold. 

Taxa Road type Distance from road edge (m) 

  5 10 20 30 50 100 

Overall Arterial 71.88 (SE±8.36)*** 124.125 (SE±15.41) 109.13 (SE±6.85)* 107.13 (SE±9.6)* 120.63 (SE±14.6) 212.75 (SE±41.42) 

 Secondary 99.13 (SE±7.53)** 107.88 (SE±13.83)* 100 (SE±10.82)** 92.25 (SE±4.97)*** 106.75 (SE±12.06)*  

 Hiking 142.13 (SE±16.45) 115.63 (SE±10.88) 153.25 (SE±26.36) 129.63 (SE±16.9) 134.88 (SE±24.15)  

Coleoptera Arterial 37.625 (SE±5.07)** 61.13 (SE±14.33) 59.75 (SE±4.69) 53 (SE±6.94) 68.5 (SE±12.88) 105.88 (SE±22.52) 

 Secondary 40.38 (SE±5)** 38.5 (SE±4.49)** 37.75 (SE±6.06)** 36 (SE±4.8)*** 36.88 (SE±7.61)**  

 Hiking 66.63 (SE±11.44) 49.12 (SE±7.04) 63.38 (SE±17.96) 60.38 (SE±10.91) 71.38 (SE±22.38)  

Arachnida Arterial 3.38 (SE±0.56) 3.29 (SE±0.6) 4.25 (SE±0.73) 2.88 (SE±0.44) 3.5 (SE±0.82) 6 (SE±1.63) 

 Secondary 4.25 (SE±0.59) 3.5 (SE±0.68) 3.86 (SE±0.32) 5.25 (SE±0.59) 4.75 (SE±0.81)  

 Hiking 4.5 (SE±0.87) 3.5 (SE±0.6) 4.63 (SE±0.98) 2 (SE±0.41)* 4.63 (SE±1.02)  

Diptera Arterial 11.25 (SE±2.3)*** 29.63 (SE±4.36) 24.63 (SE±3.08) 26.75 (SE±5.13) 25.5 (SE±3.51) 51.5 (SE±18.49) 

 Secondary 28.5 (SE±4.45) 34.63 (SE±10.29) 26.25 (SE±3.78) 21 (SE±3.42) 30.63 (SE±5.55)  

 Hiking 35.88 (SE±4.16) 28.25 (SE±2.64) 43.5 (SE±11.47) 18.13 (SE±3.39) 26.5 (SE±7.99)  

Orthoptera Arterial 5.63 (SE±1) 9.5 (SE±0.93) 5.5 (SE±0.82) 6.25 (SE±1.73) 5.38 (SE±1.21) 7.75 (SE±2.86) 

 Secondary 8 (SE±1.05) 8.63 (SE±1.86) 6.5 (SE±1.21) 6.5 (SE±1.21) 9.75 (SE±1.33)  

 Hiking 6.57 (SE±1.64) 7.13 (SE±1.52) 7.75 (SE±1.64) 7.13 (SE±2.26) 6.38 (SE±1.13)  

Formicidae Arterial 2.13 (SE±0.9) 3.88 (SE±0.79) 2.13 (SE±0.91) 3.5 (SE±1.45) 4.13 (SE±1.43) 6.5 (SE±1.68) 

 Secondary 3.13 (SE±0.4) 3.75 (SE±1.19) 4.29 (SE±0.6) 2.57 (SE±0.35)* 2.14 (SE±0.59)**  

 Hiking 1.75 (SE±0.53)* 2.38 (SE±0.32) 3.75 (SE±1.13) 5.5 (SE±1.55) 4 (SE±1.2)  

  *P < 0.05, **P < 0.001, ***P < 0.0001 
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Table 3.5 continued: 

Functional 
group Road type 

Distance from road edge (m) 

  5 10 20 30 50 100 

Dung 
associated Arterial 31.63 (SE±6.2)*** 64.88 (SE±15.13) 58.38 (SE±5.91) 57.88 (SE±8.52)* 67.5 (SE±11.12) 121.38 (SE±33.71) 

 Secondary 41.25 (SE±5.78)* 43.5 (SE±11.26) 42.38 (SE±6.67) 31.63 (SE±6.11)** 44.5 (SE±9.59)  

 Hiking 77.75 (SE±9.06) 55.13 (SE±8.09) 83.5 (SE±17.4) 61.88 (SE±8.87) 71.75 (SE±21.65)  

Predators Arterial 18.5 (SE±2.51)*** 26.5 (SE±3.41) 29 (SE±2.48) 24 (SE±2.88)* 29.13 (SE±5.19) 40.38 (SE±6.81) 

 Secondary 30.25 (SE±4.5) 31.63 (SE±3.2) 24.38 (SE±4.9)* 25 (SE±3.42) 25.5 (SE±3.43)  

 Hiking 28.38 (SE±4.6) 24.88 (SE±1.44) 27.38 (SE±5.06) 17.63 (SE±3.53)*** 30 (SE±5.82)  

Herbivores Arterial 6.75 (SE±1.1) 9.75 (SE±1.03) 5.88 (SE±1.2) 5.75 (SE±1.43) 5.25 (SE±1.83) 8.25 (SE±2.9) 

 Secondary 8.63 (SE±1.21) 9.5 (SE±2.15) 11.25 (SE±2.45) 8.63 (SE±1.58) 11.13 (SE±1.43)  

 Hiking 5.75 (SE±1.69) 7.13 (SE±1.44) 7.88 (SE±1.63) 6.88 (SE±1.64) 6.88 (SE±1.01)  

Detritivores Arterial 2.13 (SE±0.58) 2.25 (SE±0.65) 0.63 (SE±0.26)* 1 (SE±0.38) 0.75 (SE±0.41)* 3.25 (SE±0.86) 

 Secondary 2.63 (SE±0.65) 1.63 (SE±0.32) 2.5 (SE±0.85) 3.25 (SE±0.94) 1.5 (SE±0.5)  

 Hiking 1.75 (SE±0.45) 1.38 (SE±0.6) 1.63 (SE±0.56) 1.63 (SE±0.38) 1.63 (SE±0.56)  

   *P < 0.05, **P < 0.001, ***P < 0.0001 
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Along transects, both arterial roads and secondary roads affected the overall arthropod 

assemblage composition in forests up to 50 m (Table 3.6). Stations bordering hiking trails were 

only affected at the 5 m and 10 m zones; thereafter all stations were statistically similar to 

deep forest stations. Formicidae assemblages were significantly different along the total length 

of both the arterial- and secondary road transects, but only up to the 5 m station on hiking 

trails. Diptera, detritivores and dung associated arthropod assemblage composition were only 

affected when close to arterial roads. Coleoptera assemblage composition was significantly 

different to deep forest reference stations along transects bordering secondary roads. Arterial 

roads and hiking trails however had little overall impact on Coleoptera assemblage 

composition. The Orthoptera, Arachnida, herbivores and predators were little influenced by 

any road type.  

 

Table 3.6: Permutational multivariate analysis of variance (PERMANOVA) of arthropod assemblage 
composition for selected focal taxa and functional groups along transects bordering different road types 
compared to deep forest reference stations (>100 m from a forest edge). T-values are reported.  

Taxa 
Road 
type Distance from road edge 

  5 10 20 30 50  

Overall Arterial 1,43** 1,38** 1,25* 1,25* 1,23*  

 Secondary 1,31* 1,37** 1,39** 1,29* 1,28*  

 Hiking 1,26* 1,32* 1,09 1 0,88  

Diptera Arterial 1,78** 0,85 1,17 0,61 1,42  

 Secondary 1,16 1,04 1,10 1,01 1,14  

 Hiking 1,09 0,84 0,75 0,79 0,57  

Formicidae Arterial 2,55** 1,68* 1,99* 1,63* 1,74*  

 Secondary 1,66* 1,34 1,53* 2,04** 2,08**  

 Hiking 2,31** 1,33 1,32 0,72 1,41  

Coleoptera Arterial 1,36 1,32 1,15 1,23 0,68  

 Secondary 1,57* 1,79** 1,27 1,4* 1,47*  

 Hiking 1,35 1,76* 0,77 0,84 0,85  

Orthoptera Arterial 1,29 2,44*** 1,48 1,64 1,51  

 Secondary 1,11 1,34 1,84* 1,13 1,58  

 Hiking 1,46 1,56 2,23** 1,42 1,10  

Arachnida Arterial 0,56 0,80 1,21 0,78 0,98  

 Secondary 1,08 1,16 1,62* 1,05 0,50  

 Hiking 0,94 0,88 0,55 1,01 0,92  

Detritivores Arterial 1,54** 1,52* 1,42 0,99 1,08  

 Secondary 1,34 1,31 1,21 1,37 1,24  

 Hiking 0,72 0,75 0,97 0,89 1,04  

Stellenbosch University  https://scholar.sun.ac.za



 

100 
 

Predators Arterial 1,10 1,06 1,37* 1,22 1,28  

 Secondary 1,21 1,39* 1,59** 1,08 1,21  

 Hiking 1,10 1,21 0,83 1,18 0,69  

Herbivores Arterial 1,26 2,10** 1,20 1,52 0,94  

 Secondary 1,12 1,61* 1,49 1,13 1,44  

 Hiking 1,34 1,28 1,91** 1,19 1,33  

Dung associated Arterial 1,57* 1,24 0,91 0,81 1,20  

 Secondary 1,23 1,35 1,03 1,06 0,83  

 Hiking 1,18 1,50 0,53 0,62 0,29  

*P < 0.05, **P < 0.001, ***P < 0.0001 

 

3.4.2) Road direction 

Overall arthropod species richness along transects in forests bordering roads that differ in 

direction was only significantly different along east-west directed roads (i.e. forests to the south 

of these roads, northern exposed forest edge) (Fig. 3.4). Stations up to 30 m into the forests 

from these roads had significantly less species compared to deep forest reference stations. 

For the selected focal taxa and functional groups, only the Diptera and dung associated 

species revealed significantly lower species richness, and only at 5 m stations into forests 

along transects of east-west directed roads (Fig. 3.5).  

 

 

Figure 3.4: Species richness (mean ± SE) along transects for roads of different direction at different 

distances from the road edge. Different letters represent significantly different means (5% level). 
Transects perpendicular to roads in the north-south direction are indicated by the solid line while 
transects perpendicular to roads in the east-west direction are indicated by the broken line.  
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Compared to deep forest stations, overall arthropod numbers were significantly less up to 30 

m next to both the north-south directed roads (east /  west facing forest edge) as well as east-

west (north facing forest edge) directed roads (Fig. 3.6). The Diptera, Arachnida, dung 

associated arthropods and predators were significantly less abundant compared to deep 

forest stations only next to the east-west directed roads at individual stations. The Coleoptera 

were significantly less abundant next to both east-west directed roads as well as north-south 

directed roads (Fig. 3.6).  

 

 

 

In terms of species assemblage composition, arthropods were overall significantly different at 

the 5 m and 10 m stations next to east-west directed roads compared to deep forest reference 

stations (Table 3.7). For transects next to north-south directed roads the effect was only 

evident up to 5 m from the road. The Coleoptera, Arachnida, detritivore, herbivore and dung 

associated groups were little affected by road direction in terms of assemblage composition 

(Table 3.7). The Diptera was influenced up to 5 m next to roads in both directions. The 

Orthoptera and Formicidae showed significant different assemblages mostly associated with 

roads in the east-west direction. The Formicidae however also revealed statistically significant 

Figure 3.5: Species richness (mean ± SE) of Diptera and dung associated arthropods along transects for the two road 

direction categories at differing distances from the forest edge. Different letters represent significantly different means (5% 
level). Transects perpendicular to roads in the north-south direction are indicated by the solid line while transects 
perpendicular to roads in the east-west direction are indicated by the broken line. 
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differences next to north-south directed roads at the 5 m and 10 m stations (Table 3.7). North-

south directed roads also had a significant influence on predaceous arthropod assemblages 

when compared to deep forest stations. 

 

 

 

In a CAP analysis, the five randomly selected deep forest stations grouped closely together 

(Fig. 3.7). Except for the 50 m and 5 m stations, stations next to the north-south directed roads 

grouped fairly closely together. These forests were pooled, regardless of edges facing east / 

west. The 50 m stations on transects next to north-south and east-west directed roads were 

Figure 3.6: Abundance (mean ± SE) of overall arthropods and selected arthropod groups along transects for the two 

road direction categories at differing distances from the forest edge. Different letters near bars represent significantly 
different means (5% level). Transects perpendicular to roads in the north-south direction are indicated by the solid line 
while transects perpendicular to roads in the east-west direction are indicated by the broken line. 
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the closest in resembling deep forest stations. Stations at 5 m on the north-south directed 

roads revealed little similarities with deep forest stations and grouped close to the 5 m and 10 

m stations next to the east-west directed roads (Fig. 3.7).  

 

 

Table 3.7: Permutational multivariate analysis of variance (PERMANOVA) of arthropod assemblage 
composition for selected focal taxa and functional groups along transects perpendicular to roads that 
are directed in different directions. Arthropod assemblage composition of each station is compared to 
that of deep forest reference stations (>100 m from a forest edge). Pairwise t-values are reported. 

Taxa Road direction Distance from road edge     

  5 10 20 30 50 

Overall east-west 1.27* 1.21* 1.12 1.18 0.97 

 north-south 1.32* 1.11 1.14 1.08 1.15 

Coleoptera east-west 0.96 1.11 0.82 0.96 0.82 

 north-south 1.21 0.93 0.99 1.04 1.24 

Diptera east-west 1.64* 0.86 0.87 0.79 0.89 

 north-south 1.54* 0.96 0.97 0.9 1.12 

Orthoptera east-west 1.09 2.05** 1.69* 1.08 0.8 

 north-south 1.17 1.16 1.48 1.55 1.03 

Formicidae east-west 1.73* 1.31 1.72 2.78** 1.58 

 north-south 1.84* 1.53* 1.73 1.29 1.42 

Arachnida east-west 1.23 1.12 1.13 1.29 1.03 

 north-south 1.55 1.17 1.47* 0.91 1.29 

Detritivores east-west 1.33 1.06 1.28 0.92 1.06 

 north-south 1.29 0.99 1.12 1.39 1.1 

Predators east-west 1.12 1.31 1.1 1.32 0.93 

 north-south 1.45* 1.21 1.42* 1.03 1.5** 

Herbivores east-west 1.13 1.85** 1.38 1.16 0.94 

 north-south 1.22 1.33 1.42 1.65 1.1 

Dung associated east-west 1.38 0.95 0.81 0.8 0.74 

  north-south 1.14 0.88 0.63 0.52 0.7 

*P < 0.05, **P < 0.001, ***P < 0.0001 
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Figure 3.7: Canonical analysis of principal coordinates (CAP analysis) indicating similarity of arthropod 
assemblage composition between the 5 different stations (in metres) in transects perpendicular to east-
west directed roads (EW; along the southern edge only) and north-south directed (NS) roads 
respectively (with Deep Forest (DF) reference sites included). 

 

 

3.5) Discussion 

In this study, I show that the southern Cape forest complex is fragmented by roads dissecting 

these ancient Afrotemperate forests. Edge effects were present along both major road types 

investigated. The impact of increased edge habitat (i.e. fragmentation) in natural ecosystems 

is known to alter ecological integrity of forest systems by allowing for foreign abiotic and biotic 

parameters to enter the system (Matlack & Litvaitis 1999; Tscharntke et al. 2002). These 

harder edges prevent movement and can lead to metapopulation break through inbreeding 

depression and reduced rescue effects (Hanski 1998). The impact of changes in arthropod 

species assemblages due to increased edge habitat in Afrotemperate forests remains 

unknown. However, Roland & Taylor (1995) showed that forest fragmentation in Canada alters 

the interaction between forest herbivore populations and their natural enemies, with increased 

fragmentation leading to unnatural outbreak durations of forest defoliators. Fragmentation that 

lead to a decline in abundance of insectivorous birds (Stouffer & Bierregaard 1995; Stratford 
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& Stouffer 1999) and bats (Kalko 1998) near forest edges decreased predation on litter 

dwelling and foliage insects, which lead to increases in herbivory (Benitez-Malvido et al. 1999). 

Although no increase in herbivore abundance was detected in this study, the composition of 

herbivore assemblages were altered at near-road stations. Therefore it seems as if alterations 

in vegetation characteristics near roads may cause assemblages to change rather than 

decreased predation. Furthermore, whereas previous work found an increase in predatory 

arthropods near forest edges (Didham et al. 1998), I found a significant drop in predator 

abundance next to arterial roads. Importantly these vegetation changes do not necessarily 

infer differences in plant species composition. For example, trees growing at forest edges can 

produce higher concentrations of nitrogen and soluble-sugars than trees in deep forest, which 

affect insect populations (Fortin & Mauffette 2001). Alterations to the phenology of the forest 

vegetation at the exposed edges can also lead to changes in nutrient availability for forest 

floor arthropods that cause changes in herbivorous arthropod assemblages (Restrepo et al. 

1999)  

 

The magnitude of edge effects next to arterial and secondary roads in these Afrotemperate 

forests were up to 50 m from the road edge as measured in altered assemblage composition 

of arthropods. Significantly altered assemblages were also detected up to 50 m into natural 

forests from arterial roads for some groups (e.g. Formicidae). The magnitude of the edge 

effects created by arterial and secondary roads is comparable to the large edge effects created 

by forestry plantations and clear felling of these on adjoining forest arthropod biodiversity in 

these same forests (Chapter 2). This supports findings from previous work that showed that, 

rather than creating a fairly soft edge, the effect of roads on forests are more similar to clear 

cut areas and effectively increases the amount of hard forest edge (Reed et al. 1996). Another 

South African study estimated an edge zone of 25 m bordering a highway in grassland 

savannah in KwaZulu-Natal (Samways et al. 1997). The reason for approximately double the 

width of the road edge zone here indicates that natural forest is predictably much more 
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sensitive towards increases in penetrating light and other factors than a grassland savannah 

(Forman & Alexander 1998; Spellerberg 1998; Trombulak & Frissell 2000).  

 

Most previous studies on road edge effects were conducted in the tropics (e.g. Lovejoy et al. 

1986; Carvalho & Vasconcelos 1999; Laurance et al. 2002; Laurance 2004; Wirth et al. 2007; 

Broadbent et al. 2008) and the penetrating effects reported are often far greater than 100 m. 

A study of road edge effects on litter invertebrate communities by Delgado et al. (2013), found 

a road edge zone of only 10 m into the adjoining forest. Their study was conducted in both 

laurel forests and natural pine forests. Edge effects on soil macroinvertebrate fauna were 

restricted to the first 100 m from the road edge in mixed-mesophytic deciduous forests in the 

USA (Haskell 2000). Road edge effects of ca. 10 m are found in the southern Appalachian 

forests in North Carolina Jackson et al. (2014). The temperate forests of the southern Cape 

therefore seems to be more comparable with forests occurring on relatively similar latitudes 

across the globe in terms of road edge effects as perceived by forest invertebrates. However, 

extrapolation from previous work needs to be done with caution as results seem fairly localised 

due to differences in a range of factors.  

 

Increased road width is known to contribute towards road-induced ecosystem disturbance. 

For example, Dunn & Danoff-Burg (2007) found that paved two-lane roads and highways 

running through a New York forest caused a lower diversity and abundance of some arthropod 

taxa compared to a one-lane unpaved road. These results are similar to a study by Bohac et 

al. (2004) that found a higher diversity of beetles bordering a small road compared to a 

highway in a cultural landscape in the Czech Republic. The greater width of and higher traffic 

loads on arterial roads in this study should then, according to previous work, be more 

detrimental to forest arthropod diversity (e.g. Koivula & Vermeulen 2005). However, even 

though the arterial road had a greater effect across multiple taxa studied, secondary roads 

were not much different in terms of overall edge effects. It should be noted here that both 

roads were unpaved and thus were not influenced by the presence of asphalt. It therefore 
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seems that in general, the creation of the canopy gap has a more significant influence on 

arthropod diversity than the actual road width and/or traffic volume, here. Therefore any road 

that creates a gap in the forest canopy would be detrimental to forest biodiversity and function.  

 

Light availability is predicted to increase in forests as one moves closer to a road (Delgado et 

al. 2007). Coupled with an increase in temperature, it is suggested that altered micro-climatic 

conditions associated with light and temperature causes arthropod compositional changes 

(Murcia 1995; Werenkraut et al. 2014). In the present study both overall arthropod species 

richness and –abundance significantly decreased next to roads when compared to deep forest 

sites. This likely indicates a loss of forest specialist species that are sensitive to microclimatic 

changes such as light and temperature, with little influx of open-habitat generalists. Forest 

interiors have been shown to contain rare and specialist species of various taxonomic groups 

which are absent from road edge zones (Koivula 2005; Carpio et al. 2009; Delgado et al. 

2013). For example, Carpio et al. (2009) assessed the effect of a newly constructed road on 

dung beetle diversity and showed that specialist dung beetles were much less common next 

to roads. In the current study dung associated species were also greatly affected in terms of 

both species richness and assemblage composition in forests bordering arterial roads. Flies 

associated with deep forest stations ignored the arterial road edges zone in this study likely 

due to altered micro-climatic conditions (Kapos 1989; Murcia 1995). Although the Diptera are 

not often used as bioindicators compared to more well-known groups such as carabid beetles, 

scarab beetles, ants and Arachnida, this study indicates that flies could be good indicators of 

forest disturbance due to their diverse life-cycles and environmental requirements (Durska 

2013; Delgado et al. 2013).  

 

As expected, hiking trails affected arthropod assemblages the least of the three road types 

studied. They shared numerous arthropod species with deep forest reference stations, they 

had similar numbers of arthropod species richness and abundance, and had similar arthropod 

assemblage composition for nearly all taxonomic and functional groups. However, even these 
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seemingly benign recreational pathways created an edge effect when assemblage 

composition of all taxa collected are collectively compared to deep forest reference stations. 

Hiking trails affected arthropod assemblage composition up to 10 m into the adjoining forest. 

Despite the lack of disturbance of the forest canopy and its associated microclimatic changes, 

arthropods therefore still seemed to respond to these as a low magnitude edges. Recreational 

trails are prone to soil erosion (Hinckley et al. 1983; Deluca et al. 1998), soil compaction and 

root exposure (Li et al. 2005), factors that could impact epigaeic arthropod assemblages. 

However, few previous studies focused on the effects of recreational trails on biodiversity. A 

study on arthropods revealed how ski trials are barriers to the movement of flightless and 

short-winged forest beetles due to changes in plant composition near the edges (Strong et al. 

2002). In forest and mixed-grass prairie ecosystems, specialist bird species were less 

common near recreational trails (Miller et al. 1998). In the Rocky Mountain forests, hiking trails 

were found to be conduits for the movement of certain plant species along trails (Benninger-

Truax et al. 1992). Similarly, certain arthropods such as dipterans could also increase in 

activity along hiking trails as these areas increase ease of dispersal and opportunities for prey 

searching (Delgado et al. 2013). Here, the Diptera were also more abundant and species rich 

near hiking trails again emphasising their possible use as indicators of disturbances in forests. 

 

In this study I have shown that road direction could influence the magnitude of edge effects in 

natural forests. East-west directed roads had a greater edge effect along their southern edge 

(with a northern exposure of the forest edge) in terms of arthropod species richness and 

assemblage composition, when compared to north-south directed roads. This is likely due to 

forests to the south of east-west directed roads experiencing a higher level of sunlight 

penetration relative to forests bordering north-south directed roads which in turn creates a 

bigger edge (Matlack 1993; Murcia 1995; Didham & Lawton 1999). Other studies focusing on 

the aspect of edges found results similar to those obtained here. Matlack (1993) showed how 

north-facing edges in the United States were unaffected by variables such as litter moisture, 

temperature and radiation, whereas south-, west- and east facing edges showed strong 
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gradients linked to edge orientation. This strongly suggests that variables dependent on 

sunlight penetration, in turn dependent on edge orientation, to have significant effects on the 

forest micro-environment. It has also been revealed how edge zones could have higher air 

temperature and decreased humidity (Kapos 1989). Kapos (1989) showed how 

photosynthetically active radiation increased in the understory up to 40 m from the edge into 

a natural forest in Brazil, whereas soil moisture was found to be depleted up to 20 m from the 

edge. Increased stomata conduction in plants near edges was also found. Owing to these 

altered edge zones and the effects thereof on edge vegetation, it is suggested that the 

increased levels of sunlight penetration to not only directly, but also indirectly, affect arthropod 

diversity. Whereas multiple taxa showed a decrease in abundance moving towards east-west 

directed roads, only a single taxonomic group, Coleoptera, revealed such decreases moving 

towards north-south directed roads. These significant declines could be indicative of 

phototactic organisms, adapted to shaded forest environments, responding negatively 

towards increases in sunlight penetration (Xiang-Feng & Chao-Liang 2004). Diptera, along 

with dung associated arthropods, revealed the strongest response, being both less species 

rich and less abundant at stations bordering east-west directed roads. They also revealed 

different assemblage compositions next to both road direction categories. 

 

Apart from flies, Formicidae assemblages seemed particularly good as indicators of habitat 

disturbance in this study as also recognised in previous studies (Dauber & Wolters 2004; Chen 

et al. 2011; Majer & Beeston 1996; Kaspari & Majer 2000; Andersen et al. 2006; Nakamura et 

al. 2007; Palladini et al. 2007). These results also echo those of previous work in other forest 

types (e.g. Brühl et al. 2003) where ants were found to be good indicators of forest 

fragmentation. In the present study ant assemblages indicated edge effects of up to 50 m for 

both arterial and secondary roads, and up to 5 m for hiking trails. Interestingly, a study on ant 

species richness and compositional changeover in the forests of Brazil also detected an edge 

effect of 50 m (Sobrinho & Schoereder 2007). Ant compositional changes were also evident 

next to roads in both directions evaluated. However, when overall effects of fragmentation on 
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forest biota are studied, it is evident that a multitude of different taxa should be considered as 

different taxa responded differently towards disturbances created by the various road types 

assessed here. Where feasible, a multi-taxon approach is considered critically important for 

studies that monitor biodiversity responses to ecological factors (Gerlach et al. 2013). 

 

This study is the first of its kind in the greater southern Cape region of South Africa and 

provides evidence that a distinct edge effect of up to 50 m is detectable for arthropods 

bordering both arterial- and secondary roads. The 10 m effect penetrating forests bordering 

hiking trails is likely due to the creation of unique zones with slightly different biotic (e.g. cleared 

plant communities) and abiotic (e.g. compaction and increased erosion) effects whilst the 

effects of the larger roads seems to be directly related to the creation of canopy gaps rather 

than factors associated with increased road width ad traffic volumes. Sunlight penetration and 

its cascading effects on other variables seems to play a major role in these perceived edge 

effects as it was shown that road direction was an important factor in explaining arthropod 

assemblage compositional changes. Further studies are however needed to evaluate 

differences in specific microclimatic variables and their impact on arthropod assemblages. It 

is possible that other forest biota, apart from arthropods, might also be influenced by the 

increase in forest edge, and that the southern Cape forests are much more fragmented than 

previously believed. This baseline research shows that forest integrity needs active 

management to be maintained. Ecosystem services mediated by dipterans especially are at 

risk of being lost from arterial road verges if not mitigated. These services include pollination 

and pest control, key services within any natural ecosystem (Smith & Mayfield 2015).  
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4) Chapter 4 

General conclusions and management recommendations 

 

The transformation of natural landscapes into production areas is a major cause of biodiversity 

loss (Ewers & Didham 2006). Little doubt exist that there is a need for production and 

biodiversity conservation to co-exist, rather than being mutually exclusive. With a rapidly 

growing human population and an increase in demand for natural resources, we are yet to 

achieve true ecological sustainability coupled with socio-economic growth.  

 

Attempts towards creating sustainable landscapes have been made though. Ecological 

networks (ENs) that act as large scale, interconnected corridors between habitats for species 

dispersal and movement can alleviate some pressures associated with habitat fragmentation 

(Jongman 1995; Samways, Bazelet & Pryke 2010; Pryke & Samways 2012). Research on 

ENs in South Africa has shown that it is possible for species to use set-aside corridors in 

landscape mosaics in a grassland matrix (Pryke & Samways 2012). Although not empirically 

tested, the same may be true for arthropods in the southern Cape Afrotemperate forest 

complex that contain a mosaic of commercial plantations, Afrotemperate forests and fynbos 

over large tracts of land. The establishment of ENs in this research area has received little 

attention and needs ongoing research to carefully select priority areas (Blasi et al. 2008). 

Understanding biotic responses to edge effects will go a large way in providing vital information 

for the selection and implementation of effective ENs (Sala et al. 2002; Pryke & Samways 

2012).  

 

In the southern Cape, exotic plantations cover wide tracts of land effectively replacing the 

natural fynbos-forest ecotone as well as large areas once covered by fynbos and some natural 

forests (Phillips 1931). I have shown that forest arthropod assemblages do not perceive pine 

plantations as alternative forest habitat. Pine plantations, as expected, also fail to provide 
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habitat for fynbos species and these affect natural forest assemblages up to 30 meters into 

adjacent forests (Chapter 2). It is however possible to manage plantations in such a way that 

these contribute significantly towards sustaining natural biota with little loss in timber 

production (Norton 1998). It should therefore in theory be possible that plantations in the 

southern Cape could be specifically managed in order to alleviate their effect on natural forests 

and even increase regional biodiversity (Gjerde & Saetersdal 1997) without incurring large 

economic costs (Hartley 2002). Most importantly a strong correlation exists between 

biodiversity and the amount of native vegetation left within plantations (Staines 1983; Parker 

et al. 1994). Therefore habitat loss should be minimised and movement between patches 

should be encouraged (Fig. 4.1; Pryke & Samways 2012). To provide ecological stepping 

stones some practices include having large-diameter, native trees scattered throughout a 

plantation (dispersed retention), in linear strips or alternatively in clumps (aggregated 

retention) (Franklin et al. 1997). Alternatively, remnant patches of indigenous trees, covering 

between 5% and 10% (Woodley & Forbes 1997; Hartley 2002) should be conserved within 

large plantation blocks (Franklin et al. 1997).   

 

My research shows that plantations, and especially their periodic removal (felling), have 

enormous effects on the edges of forests bordering these. Pine plantations open the naturally 

denser fynbos-forest edges and allow conditions to change up to 30 meters into the forests. 

Felling these (e.g. for harvesting) opens the edge up to even greater negative influences that 

penetrate these forests up to 50 meters. The preservation and possibly restoration of the 

natural fynbos-forest ecotone should therefore be prioritised (Fig. 4.1). This would especially 

be important in small remnant forest patches as, if one considers that edge effects penetrate 

forests up to 50 meters, patches of ca. 150 meters in diameter and smaller would essentially 

be entirely altered in terms of arthropod assemblages. Future research should aim to 

determine the width of the edge effect on the fynbos side in order to make management 

recommendations on the size of natural vegetation tracts next to forests patches that are 

needed to effectively buffer these from unnatural influences.  
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Natural ecotones along the edges of natural forests comprise a unique zone of arthropod 

diversity with overlap between taxa from both biotopes (Chapter 2). Their preservation would 

therefore go a long way in protecting both forest arthropod diversity and some natural fynbos 

arthropods. This is important since most plantations in the region occupy land previously 

covered by e.g. Garden Route Shale Fynbos (Mucina & Rutherford 2006) and, as I have 

shown here (Chapter 2), fynbos house numerous specialised arthropod taxa. This veld type 

today is considered endangered, with more than half of it lost to cultivation and the 

establishment of plantations (Mucina & Rutherford 2006). More research is needed on the 

effect of plantations, and their edge effects on fynbos arthropod communities in order to make 

sound management recommendations with regards to the implementation of effective ENs 

(Fig 4.1). This would be an essential first step in identifying priority areas for the establishment 

of ENs. Work on other systems such as grasslands in South Africa indicates that corridor width 

should be a minimum of 64 m (Pryke & Samways 2012), reaching widths of up to 250 m wide 

(Pryke & Samways 2001). 

 

 

Figure 4.1: Proposed optimal biodiversity conservation could include the protection of the natural forest-
fynbos edge to alleviate unnatural edge effects (A), creating fynbos corridors through production areas 
(B) and, where plantations and natural forest directly border without the possibility of restoring a natural 
edge zone, incorporate indigenous floral components at the edge inside the plantation (C).  
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Human induced edge zones into forests are not confined to production landscapes. I have 

shown that the multitude of arterial and secondary roads that pass through large tracts of 

indigenous forests create edge effects similar in magnitude to those created by clear felling of 

plantations (Chapter 3). These roads therefore permanently fragment these forests and lead 

to a retraction in forest specialist species, the consequences of which are still largely unknown. 

The creation of any road accessible for a motor vehicle would open the forest canopy and 

would be detrimental to forest biodiversity and function. In the plantation forestry areas, roads 

are often constructed between plantation edges and natural forests. The effect of these on 

forest biota is likely just as large as public roads if the natural fynbos-forest edge is not left 

intact. Roads in such areas should therefore preferentially be constructed as far away from 

the natural forest edge as possible. Road verges are often incorporated into ecological 

corridors in grasslands (Tanghe & Godefroid 2000; Hopwood 2008)  However, if roads also 

affect lower growing vegetation types (e.g. grasslands and fynbos) by creating large edge 

effects, the effectiveness of these corridors for biodiversity conservation could be 

compromised (Samways et al. 1997). Fairly large edge effects in these vegetation types 

seems very likely as even seemingly benign recreational paths had effects on arthropod 

biodiversity of up to 10 meters into the adjoining forest in this study (Chapter 3). It has to be 

mentioned that it is unlikely that these recreational paths would lead to forest fragmentation 

but rather that arthropods respond to changes in a variety of biotic and abiotic variables such 

as altered soil properties and understory plant assemblage composition. Any creation of 

additional roads should be carefully planned in line with these results. However much research 

still need to be conducted on this topic, as factors here not previously considered to be 

important (e.g. road direction) impact arthropod diversity.  

 

The typical landscape is driven by numerous factors, including the economic climate of a 

region, political decision-making and the socio-economic status of its people, with biodiversity 

conservation being an aspect thereof (Antrop 2005). The Garden Route National Park is a 

heterogeneous national park and unique in South Africa due to it firstly being unfenced and 
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secondly by having large tracts of land not currently set aside for conservation but rather 

production. Because of this, the park should enjoy special management treatment balancing 

both production and conservation, working with major plantation owners in the region. Mankind 

today face a rather difficult task in balancing its priorities and needs. Research pertaining to 

sustainable landscapes, where both biodiversity conservation and production co-occur should 

receive more attention globally. It is becoming more and more relevant, and even more 

necessary.  
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Appendices 

Appendix 1: Location of sampling sites with additional information for the forestry production 

areas 

Deep Forest Latitude Longitude Approximate age Species 

Cut down 

date  

Beervlei -33.912116 22.736818    

Millwood -33.913965 22.95383    

Gouna -33.943455 23.05389    

Kom-se-Bos -33.945394 23.102132    

Diepwalle -33.948844 23.141793    

Rabbet -33.94898 23.166639    

Fynbos      

Fisantehoek -34.00315 23.22357    

Gouna -33.98647 23.04413    

Ysternek -33.92887 23.16090    

Dal van Varings -33.91406 23.14294    

Rabbet 1 -33.946404 23.166475    

Rabbet 2 -33.946653 23.168235    

Clear felled      

Karatara 1 -33.91070 22.81273 5 months Pinus radiata 01-01-2014 

Karatara 2 -33.89618 22.78257 24 months Pinus radiata 01-05-2012 

Farleigh -33.893618 22.884537 8 months Pinus radiata 01-09-2013 

Millwood -33.89961 22.97584 73 months Pinus pinaster 01-04-2008 

Gouna -33.964514 23.051484 156 months Pinus radiata 01-05-2001 

Greenfern -34.02456 23.17470 Recently replanted Pinus eliotti  

Pine      

Bergplaas 1 -33.89646 22.72569 23 years Pinus radiata  

Bergplaas 2 -33.89606 22.74831 ˃30 years Pinus radiata 01-04-2015 

Karatara -33.91124 22.80313 27 years Pinus radiata  

Beervlei -33.91750 22.73464 17 years Pinus radiata  

Spruitbos -33.94481 23.08410 20 years Pinus radiata  

Gouna -33.962458 23.05481 ˃30 years Pinus radiata 01-04-2015 

Stellenbosch University  https://scholar.sun.ac.za



 

128 
 

Appendix 2: Climatic data for the sampling periods 

Season 1: Late Autumn Season 2: Late Spring 

Month Day 

Average 

minimum 

temperature 

Average 

maximum 

temperature 

Total 

rainfall 

(mm) Month Day 

Average 

minimum 

temperature 

Average 

maximum 

temperature 

Total 

rainfall 

(mm) 

April 11 19 29 0,0 October 31   0,0 

 12 15 30 0,0 November 1 14 16 1,0 

 13 9 30 0,0  2 16 17 0,0 

 14 18 25 11,2  3 16 19 30,0 

 15 15 20 6,6  4 11 20 27,6 

 16 15 22 0,0  5 15 19 0,0 

 17 14 24 0,0  6 15 19 0,0 

 18 17 22 0,0  7 15 21 0,0 

 19 18 22 0,0  8 16 19 0,0 

 20 18 21 0,0  9 17 20 0,0 

 21 18 19 6,8  10 14 16 10,2 

 22 16 19 17,6  11 16 20 1,4 

 23 12 14 45,8  12 15 19 8,8 

 24 14 20 0,8  13 13 19 3,4 

 25 16 20 0,0  14 13 19 4,8 

 26 15 17 26,2  15 8 16 23,2 

 27 14 19 1,4  16 9 17 1,2 

 28 16 21 0,0  17 13 20 0,0 

 29 17 20 9,6  18 12 19 0,0 

 30 14 19 0,0  19 13 19 0,0 

May 1 14 21 0,0  20 11 19 5,0 

 2 15 25 0,0  21 14 20 0,0 

 3 17 20 0,0  22 16 21 0,0 

 4 15 24 8,6  23 15 18 23,0 

 5 9 18 0,2  24 15 19 3,4 

 6 13 20 0,0  25 16 20 0,0 
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 7 11 29 0,0  26 17 21 0,0 

 8 16 19 14,8  27 14 23 0,0 

 9 15 21 0,2  28 17 20 2,6 

Total    149,8     145,6 

Mean  15 21,72413793 5,165517241   14,14285714 19,10714286 5,020689655 
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Appendix 3: Supporting photos of study area and trap methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Examples of the three forest edge types included in this 
study. Top: Clear felled area. Middle: Mature pine stand. Bottom: 
Natural fynbos / forest ecotone. 
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Figure 5.2: A comparison of the typical understory 
vegetation between mature pine blocks (A) and natural 
afrotemperate forests (B). 
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Figure 5.3: Photos that illustrate the typical fynbos-
forest ecotone. A - Fynbos site 1 at Fisantehoek, B 
- Fynbos site 6 at Rabbet Island (Diepwalle). Notice 
the abundance of Keurboom. 
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Figure 5.4: Evidence of alien invasive species 
colonising areas that have been clear cut for 
relatively longer periods of time, with scattered logs. 
A – Clear felled site 4 at Millwood. B – Clear felled 

site 5 at Gouna. 
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Figure 5.5: Examples of both unbaited (top) and baited 
(bottom) pitfall traps used in this study. 
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Figure 5.6: Examples of arterial roads (top left) and secondary roads (top right). Hiking 
trails are exposed to trampling (bottom left) as well as increased water run-off (bottom 
right). 

Stellenbosch University  https://scholar.sun.ac.za




