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Abstract 

The extracellular matrix (ECM) provides the perfect environment for cells, with 

regard to mechanical strength, delivery of nutrients, facilitation of cell to cell 

communication, and more. The most challenging aspects of tissue engineering, the 

artificial construction of living tissue and organs, is to find a scaffold that is able to 

create an environment that mimics that of the ECM. In the search of such a scaffold, 

polyisocyanopeptide hydrogels, functionalised with oligo(ethylene glycol) side 

chains, have found to be the closest synthetic mimic of the ECM. They mimic, in 

almost in every way, the microenvironment of the cells. The primary aim of the 

current study was to decorate these thermo-responsive hydrogels with CIKVAV and 

cyclo(RGDfC) epitopes, in order to establish whether they can act as scaffolds in the 

promotion of neurite outgrowth in neuronal progenitor cells.  

The polyisocyanopeptides were prepared by a Ni(II)-catalysed copolymerisation of a 

spacer monomer and an ‘azide monomer’ with pendant azide functionality, which 

was used as a reactive handle to click the CIKVAV and cyclo(RGDfC) epitopes. 

Three copolymers were synthesised in two different monomer feed ratios of the 

‘azide monomer’ and ‘spacer monomer’. The polymers were then characterised 

using FT-IR, SEC, AF4, CD and UV-vis analysis. The mechanism of gelation of the 

polymer was investigated using super-resolution fluorescence microscopy, in an 

effort to visualise the gelation behaviour in the solution state. It was observed that 

the polymers accumulate into concentrated clusters of bundles during the transition 

from solution to gel state. 

The polymers were decorated with the epitopes using copper-free click chemistry. 

This was achieved by clicking alkyne functionalised epitopes to the pendant azide 

functional groups onto the polymer. The decoration was then verified using the 

Kaiser test. The functionalised polymers were found to be non-cytotoxic. Thereafter, 

the decorated polymers were seeded with neuronal GT1-7 progenitor cells, in order 

to test the process formation of the cells in the gel environment. However, the cell 

differentiation studies were not very conclusive, the materials do induce cell 

differentiation, but it is not very extensive. It is necessary to optimise the system, in 

the future.   
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Opsomming 

Die ekstrasellulêre matriks (ESM) verskaf die perfekte omgewing vir selle met 

betrekkeing tot hul meganiese krag, aflewering van voedingstowwe, fasiliteite vir sel 

tot sel kommunikasie en meer. Die mees uitdagende aspek van weefsel 

manipulasie, die kunsmatige konstruksie van lewende weefsel en organe, is om ‘n 

steier te vind wat die omgewing van die ESM kan naboots. In die soektog tot so ‘n 

steier is poliisosiaanpeptied hidrojel gefunksionaliseer met oligo(etileenglikol) 

sykettings identifiseer as die  naaste sintetiese nabootsing van die ESM. Hulle boots 

na, in byna elke opsig, die mikro-omgewing van die selle.  Die primêre doel van die 

huidige studie was om hierdie termo-responsiewe hidrojel met CIKVAV en 

siklo(RGDfC) epitope te versier ten einde vas te stel of hulle kan dien as steier in die 

promosie van die uitbreiding van neurone voorloper selle tot neuriete.  

Die poliisosiaanpeptied was voorberei deur ‘n Ni(II) gekataliseerde ko-polimerisasie 

van ‘n spasiêre  monomer en ‘n asied monomeer met hanger asied funktionaliteit 

wat kon dien as reaktiewe handvatsels om die CIKVAV en siklo(RGDfC) epitope te 

kliek. Drie ko-polimere is gesintetiseer deur gebruik te maak van twee verskillende 

invoer verhoudings van die asied monomeer en spasiêre monomeer. Die polimere is 

gekarakteriseer deur gebruik te maak van FT-IR, SEC, AF4, CD en UV-vis analise. 

Die meganisme van jelvorming van die polimeer is ondersoek deur gebruik te maak 

van super-resolusie fluoressensie mikroskopie, in ‘n poging om die jelvorming 

gedrag in oplossing te visualiseer. Daar is opgelet dat die polimeer akkumileer in 

gekonsentreerde groepe bondels tydens die transformasie van oplossing to jel 

toestand.  

Die polimeer is versier met die epitoop deur gebruik te maak van koper-vrye kliek 

chemie. Dit is bereik deur alkyn gefunktionaliseerde epitope te kliek aan die hanger 

asied gefunktionaliseerde groepe op die polimeer. Die versiering is geverifieer deur 

die Kaiser toets. Daar is gevind dat die gefunksionaliseerde polimere nie-sitotoksies 

is nie. Neurone GT1-7 voorloper selle was gekweek in die versierde polimeer ten 

einde die formasie proses van die selle in die jel omgewing te toets. Die sel 

differensiasie studies was egter nie baie oortuigend nie. Die material veroorsaak sel 

differensiasie, maar dit is nie baie ekstensief nie. Dit is nodig om in die toekoms die 

sisteem te verbeter.   
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Chapter 1: Prologue 

1.1 Introduction 

Within the field of Tissue Engineering, there is a considerable need for the 

development of polymer scaffolds that are able to mimic the microenvironment of 

cells. This scaffold must fulfil certain criteria, which must take into consideration the 

chemical, physical and topological factors that regulate the development and 

function of cells.1-3  These criteria include mechanical strength within a three 

dimensional, biocompatible network, bio-decomposition of the scaffold after its 

function has been completed, non-toxicity to cells even of its decomposed parts, 

ability to direct cell adhesion, differentiation, migration, and proliferation of cells as 

well as morphology and gene expression. Furthermore, the scaffold must allow for 

the diffusion of nutrients through the polymer network.4-6 The scaffold should be 

easily modified, and therefore, it has been proposed that synthetic polymers are 

more advantageous as scaffold than naturally-derived polymers.3,7   

 

 

Figure 1.1 A schematic representation of polyisocyanopeptide 
hydrogels grafted with oligo(ethylene glycol) side chains.8  

 

Polyisocyanopeptide hydrogels with oligo(ethylene glycol) side chains, shown in 

Figure 1.1, have been identified as possible scaffolds in tissue engineering.8 They 

have been seen to almost exactly mimic the extracellular matrix (ECM). They 
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possess a rigid carbon backbone in a helical architecture. As seen in Figure 1.1 and 

Figure 1.2, each carbon in the backbone has a side chain consisting of two alanine 

moieties and an oligo(ethylene glycol) chain, with modifiable lengths. The helix is 

stabilised by intramolecular hydrogen bonds between the alanine moieties on the 

side chains. These hydrogen bonds are seen in Figure 1.1 by means of dashed 

lines. The polymer has been seen to have a tuneable and fully reversible, thermal 

gelation temperature, whereby it is believed that the side chains bundle together to 

form transparent gels. This occurs even at very low concentrations. The hydrogels 

are readily modified, due to the possibility of altering each side chain. Therefore, 

these polymers have been identified as having many possible applications, 

especially within the biomedical field. 

 

  

Figure 1.2 A schematic representation from above (left) and from 
the side (right) of the polyisocyanopeptide hydrogels depicting 
the manner in which the side chains arrange themselves on the 
helical, carbon backbone.8  

 

1.2 Objectives 

The motivation for this work is based on the claim that polyisocyanopeptide 

hydrogels grafted with oligo(ethylene glycol) side chains are able to almost exactly 

mimic the ECM.8 This study proposes the use of polyisocyanopeptide hydrogels 

functionalised  with oligo(ethylene glycol) side chains as a possible scaffold for tissue 
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engineering. The investigation will incorporate the conjugation of the polymer with 

IKVAV and cyclo(RGDfC) epitopes to establish the ability of the scaffold to assist in 

the cellular activity of these peptides. This was done by seeding GT1-7 cells into a 

liquid solution of polymer functionalised with the epitopes. After incubating the cell-

polymer solution at 37 °C, the cells were monitored to see whether neurite outgrowth 

was successfully promoted. 

The current study also investigates the mechanism of gelation of these 

polyisocyanopeptide hydrogels in aqueous medium. This research used fluorescent 

microscopy to visualise the polymers in the gel state. A concentration gradient study 

was undertaken whereby the gels were analysed under the fluorescent microscope 

at super resolution. These z-stack images were then compiled into a 3D simulation 

of the gel. Furthermore, a thermal, time lapse fluorescent microscopy study was 

done, whereby the polymers in aqueous medium were visualised during the 

transition from solution state to gel state. The following goals were set for the 

research described in this thesis. 

1. To synthesise isocyanopeptide monomer with an azide functionalised end 

group, or the 'azide monomer'. 

2. To copolymerise and fully characterise the bought, non-functional 

monomer, or spacer monomer, with the synthesised azide monomer, in 

different monomer ratios. 

3. To visualise the polymer in gel and solution phase using fluorescent 

microscopy and then recreate the gel with 3D simulations based on the z-

stack images. 

4. To conjugate the polymers with CIKVAV and cyclo(RGDfC) epitopes and 

establish the scaffolding ability of the polymer in vitro, by visualising the 

cell - polymer interaction under the fluorescent microscope. 

5. To establish the cytotoxicity of the polymers in vitro, as well as the extent 

of promotion of progenitor cells into neuronal cells. 
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1.3 Layout of Dissertation 

The dissertation comprises 6 chapters. 

Chapter 1: Prologue 

Chapter 1 gives a brief introduction to previous research conducted within the area 

of this dissertation as well as an overview of the objectives and aims of the study.  

Chapter 2: Literature Review 

Chapter 2 gives a comprehensive literature review that gives an overview of tissue 

engineering and scaffolds for tissue engineering with a focus on scaffolds used in the 

promotion of neurite outgrowth. The overview also gives a summary of the work that 

has previously been carried out on polyisocyanopeptide hydrogels. 

Chapter 3: Monomer Synthesis and Characterisation 

Chapter 3 addresses the synthetic protocol and characterisation of the synthesis of 

the azide-functionalised monomer, isocyano-D-Ala-L-Ala-(EG)4-N3.  

Chapter 4: Polymer Synthesis and Characterisation 

Chapter 4 describes the copolymerisation and characterisation of polyisocyano-

peptide hydrogels with different monomer ratios and molecular weights. It further 

addresses the gelation properties of the polymers. 

Chapter 5: Polymer Conjugation and Physiological Testing  

Chapter 5 addresses the conjugation of the polymers synthesised in Chapter 4 with 

CIKVAV and cyclo(RGDfC) epitopes. It also describes the results of the 

physiological testing of these conjugated polymers in the presence of cells. 

Chapter 6: Conclusion 

Chapter 6 gives a brief overview of the results obtained in this dissertation as well as 

recommendations for future research to develop the knowledge and understanding 

of polyisocyanopeptide hydrogels with oligo(ethylene glycol) side chains as possible 

scaffolds for tissue engineering. 

  

Stellenbosch University  http://scholar.sun.ac.za



Chapter 1: Prologue 

1.4 References 

 (1) Putnam, A. J.; Mooney, D. J. Nat Med 1996, 7, 824. 

(2) Vacanti, J. P.; Langer, R.; Upton, J.; Marler, J. J. Adv Drug Deliv Rev 

1998, 33, 165. 

 (3) Brandl, F.; Sommer, F.; Goepferich, A. Biomaterials 2007, 28, 134. 

 (4) O'Brien, F. J. Materials Today 2011, 14, 88. 

 (5) Carletti, E.; Motta, A.; Migliaresi, C. Methods Mol Biol. 2011, 695, 17. 

 (6) Chan, B. P.; Leong, K. W. Eur Spine J 2008, 4, 467. 

 (7) Lee, K. Y.; Mooney, D. J. Chem Rev 2001, 101, 1869. 

(8) Kouwer, P. H. J.; Koepf, M.; Le Sage, V. A. A.; Jaspers, M.; van Buul, 

A. M.; Eksteen-Akeroyd, Z. H.; Woltinge, T.; Schwartz, E.; Kitto, H. J.; 

Hoogenboom, R.; Picken, S. J.; Nolte, R. J. M.; Mendes, E.; Rowan, A. 

E. Nature 2013, 493, 651. 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 
 

Chapter 2: Literature Review 

2.1 Tissue Engineering: A General Overview 

Tissue engineering is the artificial manufacturing of living tissue and systems, such 

as organs, which can be done using various methods.1 These methods include the 

manipulation of stem cells to differentiate into specific phenotypes, as well as the 

combination of polymer scaffolds with cells in such a way that the natural 

microenvironment of the cells is mimicked, as depicted in Figure 2.1.2,3 This current 

study will focus on the latter approach.  

 

 

Figure 2.1 Tissue engineering using a polymer scaffold as a 
mimic of the extracellular matrix (ECM) of the cells. Illustration 
by Goldstein, A. S. 
(http://www.tissue.che.vt.edu/home_frame.htm) 

 

2.2 Scaffolds 

Due to cell function and the development of tissue and organs being regulated by 

chemical, physical and topographical factors, efficacious tissue engineering of 

biomaterials must consider all of these factors.2-4 Thus, to properly understand the 

requirements needed to effectively design a three-dimensional scaffold, the 
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extracellular microenvironment of cells must be understood. This complex 

microenvironment is able to guide the development and maintenance of cell function 

by providing bound, multifunctional adhesion proteins, including fibronectin, 

vitronectin and laminin.5,6 These proteins are responsible for the mechanical 

properties of the hydrogel network.7 Furthermore, the matrix is able to direct cell 

adhesion, differentiation, proliferation, morphology, as well as gene expression.8-10 

Each of these variables have specific signalling pathways and, through the 

adjustment of any of these factors, it is possible to tailor the biomaterials for a large 

range of applications.4 West et al.11 proposed that effective tissue engineering 

requires a three-dimensional scaffold that can mimic the extracellular 

microenvironment of the cells, thus allowing it to promote cell growth at the same 

time as controlling cell function and tissue organisation. It is then possible for the 

scaffold to direct the cells to their desired location, act as a site for the tissue to grow, 

as well as control the function and structure of the engineered tissue.2,3,12 They were 

able to demonstrate examples of such scaffolds via the synthesis of hydrogels that 

were decorated with Arg-Gly-Asp-Ser (RGDS) cell adhesive, peptide sequences in a 

three-dimensional conformation. When cells were placed in the environment of this 

scaffold, they were seen to exclusively invade and migrate into regions containing 

RGDS.11  

2.3 Scaffolds that Mimic the Extracellular Matrix 

The importance of the extracellular matrix (ECM) is vast and inconceivable. It is 

largely comprised of various peptides and proteins that mediate intracellular contact, 

control cell function and tissue structure, as well as facilitate diffusion of nutrients, 

metabolites and growth factors. This underscores the critical importance of the 

polymer scaffold that is utilised in tissue engineering, as the scaffold must act as a 

substitute for the ECM.5,13,14 Bissell et al.15 previously showed that, due to 

interactions with the cellular microenvironment, the phenotype is able to supersede 

the genotype and hence concluded that the function and gene expression, and 

ultimately protein expression, of cells is influenced by their microenvironment. Thus, 

the function of a scaffold is more than just a three-dimensional vehicle, as it must 

also be synthesised with the view that it is part of the pathways that direct the 

specific cellular phenotype.7 Moreover, it is now believed that cells should be 

cultured in a microenvironment that mimics the ECM of the cell, including the 
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mechanical and biochemical signals that are present in this microenvironment.16 

Furthermore, these three-dimensional scaffolds should facilitate hierarchical 

processes of the cells, including migration and tissue organisation.7  

Cells are cultured in a single layer when a two-dimensional scaffold is utilised.7 The 

tissue engineering investigations undertaken using two-dimensional scaffolds have 

paved the way for what is now known about complex biological systems within 

molecular biology, stem cell differentiation, and tissue development.17 However, 

Bissell et al. discovered that cell cultures grafted on two-dimensional scaffolds had a 

tendency towards developing into tumours. This tumour formation was not detected 

when using a three-dimensional scaffold.18 Three-dimensional scaffolds are more 

effective than two-dimensional scaffolds, since monolayer matrices restrict the 

cultures to a planar environment, which creates an environment that does not allow 

for the complex morphologies that are seen in nature.5,7 Zhang et al.19 explain this 

phenomenon by describing how the two-dimensional scaffold actually polarises the 

cells in a manner that subsequently only allows a segment of the cell to be available 

to interact with its microenvironment, and with other cells. Hendzel et al.20 concluded 

that the phenotypic fate is then affected, the intracellular signalling is disrupted, and 

unnatural interactions occur between soluble factors. This influences cell migration, 

intercellular communications and cell differentiation.7 In essence, the two-

dimensional structures are unable to provide a platform with the environmental 

signals that are seen in the natural microenvironments of the cells.21 Thus, two-

dimensional scaffolds are unsuccessful in mimicking the natural environment of the 

cell,22 and a scaffold with a three-dimensional, hierarchical architecture is necessary 

for effective cell culture growth.18,22  

Evidence has shown that it is possible, to sufficiently create a model system of the 

ECM using three-dimensional scaffolds. The cell cultures are provided with the 

mechanical cues23 and regulatory signals that are necessary for natural growth, and 

a platform for cell-cell interactions. Furthermore, such a scaffold has been shown to 

be able to develop natural cellular behaviour patterns by providing the necessary 

composition, stiffness and topography necessary for the behaviour and morphology 

of the cells, as well as tissue development.21,22,24 
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ECMs have inspired the use of polymers that are similar in architecture, i.e. a three-

dimensional, porous network on which the cells are able to adhere and proliferate. 

Scaffolds for tissue engineering applications must fulfil certain criteria. These criteria 

include physical parameters, such as degradation and mechanics, as well as 

performance constraints within the biological sector, such as cell adhesion and 

biocompatibility with the host.12,25 The components produced during the gradual 

degradation should also be non-toxic and should be easily eliminated from the 

human body.24 Only when these criteria are reached, can polymers be seen as 

successful scaffolds. There are several factors that must be considered when 

regarding polymers as viable scaffolds, including biocompatibility, biodegradability, 

mechanical properties, scaffold architecture, as well as the manufacturing 

technology.10 Furthermore, a minimally intrusive procedure is preferable when the 

cell culture, incorporated into the polymer scaffold, is transplanted into the human 

body. Injection is often a favoured method, and is possible with polymer systems 

such as hydrogels and amphiphiles.26,27 

The activity of proteins is directly related to their structure due to the ‘lock-and-key’ 

model. Therefore, the secondary structure, based on hydrogen bonding, is essential 

for the function of the protein. In the same manner, scientists have tried to create 

scaffolds that are activated through secondary structures, via self-assembly of the 

scaffold. Self-assembly is a process driven by free energy, whereby the molecules 

are organised into ordered structures. It is possible to regulate self-assembly using 

environmental conditions, e.g. pH, solvents and temperature. One of the main 

factors that drive self-assembly in physiological conditions is hydrophobicity. This 

self-assembly is then stabilised by secondary forces, such as electrostatic 

interactions, intramolecular interactions, etc.28,29 It is important to note that the 

intended goal of self-assembly is not to solely yield stable nanostructures, but rather 

for the nanostructure to carry out a specific function. Indeed, in vivo, it is desirable for 

the scaffold to degrade once it has performed its function.10,30 The degradation 

process of peptide-based scaffolds sees them dissipate into natural, non-toxic amino 

acids, which is perfect for applications within living systems. Furthermore, the 

function of the final nanostructure is controlled by the information contained within 

each individual building block. This allows for the tuning of nanostructures for use in 

different applications. This is especially important within medical applications.  
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There has been a large amount of research surrounding the use of polymers as 

scaffolds for amino acid sequences such as RGD, Ile-Lys-Val-Ala-Val (IKVAV) and 

Tyr-Ile-Gly-Ser-Arg (YIGSR). Cells that are exposed to a scaffold containing the 

laminin-derived epitope, IKVAV, have been observed to differentiate into neurons far 

more effectively, especially in comparison to those that have been exposed to 

laminin itself.31 This research field has especially been pioneered by Samuel Stupp 

and his co-workers.  

2.4 Amphiphiles as Scaffolds 

Prior to Stupp’s research, the majority of the work in this field encompassed the use 

of scaffolds made from biodegradable, non-bioactive polymers, such as poly(L-lactic 

acid), poly(glycolic acid) and combinations thereof,32 as well as from biomaterials, for 

example collagen, alginate and fibrin.33 Cells from the tissue were seeded into these 

pre-assembled scaffolds, and thereafter these structures were either implanted into 

the living system, or they were allowed to develop in a bioreactor, and subsequently 

transferred to their final destination.34 Amphiphiles are one class of polymers that 

have been investigated in this regard. They are compounds that contain both a 

hydrophobic (water-hating) and a hydrophilic (water-loving) moiety, as illustrated in 

Figure 2.2. The original proposal of a peptide amphiphile (PA) as a scaffold was 

designed by Kunitake.35  

 

 

Figure 2.2 Amphiphiles contain a hydrophilic (water-loving) head 
and a hydrophobic (water-hating) hydrocarbon tail. 

Hydrophobic 
Hydrocarbon

Tail

Hydrophilic
Head
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Lin et al. studied the effect of cell adhesion and differentiation when cells were 

exposed to polystyrene surfaces, and a number of other support systems, coated 

with LA-2, which is a multi-domain, synthetic polymer containing IKVAV and a 

heparin-binding domain.36 They observed that using this multi-domain peptide 

showed more cell adhesion than just exposing the cells to IKVAV. They further 

concluded that the peptide coating could be used to enhance cell adhesion and 

differentiation in implants for tissue engineering.  

Zhang et al.37 developed a self-assembling peptide amphiphile (PA), RADA,16  which 

was tested as a scaffold for neural tissue engineering in mice with injured brains.38 

RADA16 is a peptide-based hydrogel, which is able to self-assemble at very low 

concentrations into a three-dimensional, ECM-mimicking structure. When triggered, 

the PA was able to organise itself into a β-sheet structure under physiological 

conditions. It was observed that the scaffold not only promoted neurite extension and 

differentiation of neuronal stem cells, but also acted as a support structure for tissue 

development.  

Silva et al.33 prepared a two-part scaffold containing two peptide amphiphiles, one 

positively charged and the other negatively charged at neutral pH. These 

amphiphiles consist of four parts (see Figure 2.3), where the hydrophobicity 

increases systematically from very hydrophilic, to very hydrophobic from one side of 

the molecule to the other (‘d’ to ‘a’). In Figure 2.1, ‘a’ represents the hydrophobic 

region, which is usually an alkyl chain. Attached to this hydrophobic region is a 

section of hydrophobic peptide sequences (‘b’ in Figure 2.1) that allow for hydrogen 

bonding between amphiphile units. These intermolecular hydrogen bonds usually 

form β-sheets giving rise to the one-dimensional nature of the self-assembled 

nanostructures.39 The interactions in this region are responsible for the high packing 

density of the molecules. The mechanical properties and shape of the 

nanostructures can be tuned by controlling this peptide region. Thereafter, is region 

‘c’, which is typically composed of charged amino acids. These amino acids promote 

electrostatic repulsion between the amphiphiles and this region is accredited for the 

self-assembly of the peptide amphiphiles. The number of charges must be 

controlled. There must be enough charge to ensure solubility and allow for the 

purification of the peptide amphiphiles, but not too high a charge as this would 

interfere with the intermolecular interactions that ensure the 1D self-assembly of the 
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amphiphiles. The final, hydrophilic region (‘d’) contains bioactive signals, usually 

epitopes, which are able to interact with cells and proteins. 

 

 

Figure 2.3 A schematic representation of the amphiphiles used 
in the self-assembly of gel scaffolds by Stupp et al., where a 
represents the hydrophobic region, usually an alkyl chain, b 
represents a short peptide sequence that is able to form 
hydrogen interactions, c contains charged amino acids which 
promotes the electrostatic repulsion, involved in self-assembly 
and d is the region containing bioactive signals, usually an 
epitope. 

 

These PAs self-assemble into cylindrical ‘micelle’-like aggregates, and gel at 

concentrations above 5 mg/mL in aqueous medium. The self-assembly can be tuned 

due to the weak base and acid nature of the charged amino acid region by changing 

the pH of the system, or by changing the concentration of electrolytes. Thus, the 

amphiphiles can be injected into a living system as a liquid and, upon exposure to a 

change of pH, the molecules self-assemble into nanofibers, which subsequently 

bundle to form gelled networks. Due to the hydrophobic region, the peptide 

amphiphiles are able to assemble in such a way that the bioactive signals are on the 

periphery of the nanofiber surface.40 The high density of these molecules, due to 

region ‘b’ (Figure 2.1), allows for a high concentration of epitopes to appear on the 

fibre surface. This can be controlled by the length of the alkyl chains in the 

hydrophilic region. The possibility of the self-assembly being due to the hydrophobic 

collapse of the alkyl chains of either of the two amphiphiles was dismissed due to the 

solubility of both amphiphiles at a neutral pH. In addition to the electrostatic forces, 

hydrogen bonding occurs between the amino acid moieties on the amphiphiles, and 
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hydrophilic and hydrophobic interactions in aqueous medium cause the PAs to take 

their assembled shape. The final shape, size and interfacial curvature of the self-

assembled systems results from a balance between each of the contributing factors. 

The double amphiphile molecule allows for dual functionalisation of these gels, 

whereby they have been labelled with RGD, IKVAV and YIGSR amino acid 

sequences.41 

More recently, Stupp and his coworkers have looked at other self-assembling 

charged nanostructures, where they combine an aqueous solution of positively 

charged PAs and an aqueous solution of negatively charged, high molecular weight 

hyaluronic acid (HA).42 The PAs self-assemble in the same manner as the other PA 

systems explored by Stupp et al.39,43-47  When these two solutions come into contact 

with each other they form a dense fibrous layer within milliseconds at the interface of 

the two liquids.42,48 This layer prevents the two solutions from mixing. Reptation of 

the HA solution occurs through the diffusion barrier into the PA solution due to the 

unbalanced osmotic pressure between the two solutions, thus there are three zones, 

shown in Figure 2.4, of the hierarchical HA/PA membrane.42,48,49 These three layers 

are firstly an amorphous gel (1), then there is the diffusion barrier which is made up 

of nanofibers aligned parallel to the interface (2), and lastly there is a layer of HAs 

and PAs that have complexed due to electrostatics (3). This layer lies perpendicular 

to the interface. The ordered microstructure seen in this membrane is due to the 

molecular interactions between the PA nanostructures and the polyelectrolytes. No 

further processing is necessary. As in the other PAs described by Stupp, bioactive 

peptides can be incorporated into these membranes.49 
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Figure 2.4 A schematic representation of the three hierarchical 
zones of the PA/HA membrane, where 1) is the amorphous gel 
layer, 2) is the nanofibers that align parallel to the plane of the 
membrane, and 3) represents the electrostatically complexed 
HA-PA nanofibers that align perpendicular to the membrane.49 

 

A number of other gelling PA polymers have been studied as possible polymer 

scaffolds, including work done by Zhang,50 Xu51 and others.  

Another such study involved the use of the PA, C16H31O-A3G4D2 IKVAV, whereby 

the 3D nanofiber matrix, consisting of 99.5 wt% water, provided mechanical support, 

as well as a porous medium, through which the diffusion of nutrients, biofactors and 

oxygen, as well as cell migration was possible. The hydrogel allowed for the 

proliferation of cells due to the IKVAV epitope.52 Copolymers of methacrylated 

dextran and aminoethyl methacrylate (Poly(Dex-MA-co-AEMA)) with  

sulfhydryl-terminated peptides, crosslinked using sulfo-succinimidyl-4-(N-

maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC), have also been 

investigated as possible scaffolds in tissue engineering. The primary amine groups 

allowed for the covalent functionalisation of the macroporous scaffold with epitopes. 

These amphiphiles showed positive results with regards to neurite outgrowth. There 

was a higher cellular response when an extended laminin derivative was used, such 

as CQAASIKVAV, rather than a single standing epitope, e.g. SIKVAV.53 

2.5 Polymer Hydrogels as Scaffolds 

Polymer hydrogels are another class of polymer systems that have been 

investigated for their potential use as scaffolds. Hydrogels are typically hydrophilic 

polymers that are composed of cross-linked networks of polymer chains that contain 
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high concentrations of water, up to thousands of times their own (dry) mass.54,55 

Hydrogels can be made up of polymers, proteins or peptides. The use of peptides as 

hydrogels is advantageous, as they do not need any additional factors to promote 

cell attachment or neurite outgrowth. However, the problem is that these peptides 

are expensive and complex to synthesise.56 Polymer-derived hydrogels are usually 

created from natural polymers, such as proteins, e.g. collagen, or from synthetic 

polymers, such as poly(vinyl alcohol) or poly(acrylic acid). These gels have been 

shown to act as effective scaffolds due to their high porosity and three-dimensional 

nature.7 Thus, hydrogels form an integral part of tissue engineering.5 The limitations 

of two-dimensional scaffolds, as well as three-dimensional scaffolds that mimic 

fibrillar extracellular proteins, can be overcome by using hydrogels as scaffolds. The 

main reason for this is the ability of hydrogels to imitate the physiochemical 

characteristics of natural extracellular matrixes.5,7 

A major advantage of hydrogels is their biocompatibility (especially when derived 

from natural polymers12), physiochemical properties, as well as their ability to be 

easily synthesised.5 Limitations associated with naturally derived polymers, such as 

difficulty in functionalising/modification, have caused scientists to alter these natural 

polymers or use synthetic polymers instead. These synthetic polymers are chosen 

based on their chemical and physical properties. Another major advantage of 

synthetically derived hydrogels is their ability to incorporate growth factors and 

mechanical signals, which improve their scaffolding abilities.12 The characteristics 

that are incorporated into the hydrogel assist in providing the cell cultures with the 

appropriate environment needed for cell adhesion, migration, growth and 

differentiation.4 The cells are unable to adhere to hydrogels, due to the lack of 

proteins that bind to the cellular receptors. However, this can be adjusted by 

covalently coupling peptides or proteins to the hydrogels, which would then allow the 

cells to adhere to the polymers. In a similar way, specific peptide sequences can be 

added to the polymer chains, in order to adjust the influence of the scaffold on the 

growth and phenotype of the cell cultures.4 A limitation to the addition of these 

growth factors, as well as the adhesion peptide sequences, is the lack of control over 

the even distribution of these bonded receptors on the hydrogel.56  

Hydrogel formation typically takes place under mild chemical conditions that do not 

affect the viability of cell cultures. As a consequence, the formation of hydrogels can 
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be carried out in vivo. This underscores the ability of the hydrogel scaffolds to mimic 

extracellular microenvironments.5 Although the porosity and highly hydrated, random 

chain network of the hydrogels allow for diffusion characteristics that mimics that in 

the natural ECM, these characteristics also cause the platform to have poor 

mechanical strength.57 It is evident that when these gels are combined with cells, the 

mechanical properties improve.58,59 In tissue engineering, it is crucial that the 

hydrogel scaffold is able to provide the necessary support for the cells, until such a 

time when the cells have produced their own extracellular microenvironment.4 After 

this time, the mechanical properties of the hydrogel are no longer needed, and thus 

they do not need to be retained.12 However, the scaffold must also be able to 

biodegrade in a non-toxic fashion.57  

The building blocks of the hydrogels are manipulated to ensure that the hydrogel 

provides the correct mechanical support necessary for the desired outcome of the 

cell cultures. Thus, the hydrogels are specifically designed for a particular function, 

and it is crucial to take this function into consideration when designing and 

synthesising the hydrogel. Every specific monomer unit of the hydrogel has a role to 

play in the overall outcome of the hydrogel, and this includes the molecular weight 

and the chemical make-up, be it hydrophobicity, ability to form intra/intermolecular 

interactions, etc. The hydrophilic nature of hydrogels, as well as the amount of water 

in the hydrogel, assists them in ensuring that the proteins of the ECM are not 

absorbed.55 Other factors also influence the properties of the hydrogels, such as the 

manner in which the polymer chains were cross-linked, be it physically (reversible) or 

chemically (permanent or reversible).  

A study on a two-dimensional cell culture was conducted using a PEG hydrogel as a 

scaffold, where proteolytic degradation sites, as well as growth factors and cell 

adhesion ligands, were incorporated into the hydrogels. The scaffolds were seen to 

promote neurite outgrowth of PC12 cells. This system showed less neurite outgrowth 

than that of scaffolds that display a 3D matrix,60 such as agarose gels.61  

Another hydrogel that has been investigated is poly(2-hydroxyethyl methacrylate) 

(PHEMA). It is considered to be a good polymer scaffold due to its high mechanical 

strength, versatility in structure, and elasticity. It is possible to copolymerise 2-

hydroxyethyl methacrylate (HEMA) with reactive comonomers containing pendant 

groups, such as carboxylic acids and amino acids, to obtain super porous hydrogels 
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that are readily modified. The radical copolymerisation of HEMA with 2-aminoethyl 

methacrylate (AEMA) yielding P(HEMA-AEMA) was subsequently modified with the 

IKVAV epitope. This modified scaffold was seen to promote neurite outgrowth and 

cell adhesion.62 The non-degradability of the P(HEMA) remains an issue.  

 

Further investigation for a viable scaffold has yielded a thiolated, water-soluble 

methacrylamide chitosan which was coupled to GQASSIKVAV through a maleimide-

thiol bond, as seen in Scheme 2.1. A study investigating the cell penetration into the 

scaffold matrix, and the cell adhesion to the three dimensional, porous scaffolds 

were done. Positive results were obtained regarding both of these aspects, as well 

as the biodegradability of the chitosan upon the addition of lysozyme.63 Another 

chitosan scaffold has been developed, using a tendon chitosan tube with triangular 

section.64 Tendon chitin is obtained from crabs and then deacetylated into tendon 

chitosan. A triangular steel bar was inserted into circular chitosan, upon heating, and 

the chitosan took on the shape of the bar, as seen in Figure 2.5 When the bar was 

removed, the chitosan shrunk. Due to the presence of hydrogen bonds among the 

chitosan molecules, the triangular shape of the tube remained. When placed in 

solution, this triangular shape of the chitosan remained stable. This tube showed 

increased mechanical strength compared to previous chitosan materials, and was 

therefore plausible for scaffold functionality. The study included the addition of 

IKVAV sequences to the tubes. Results showed that these tubes assisted nerve 

tissue extension.  
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Scheme 2.1. Methacrylamide chitosan is synthesised by reacting 
chitosan and methacrylic anhydride. This product undergoes 
free radical polymerisation, producing in a methacrylamide 
chitosan hydrogel. The primary amine functional groups are 
reacted with thioglycolic acid via an EDC-mediated cross-linking 
to finally produce the thiolated methacrylamide chitosan. A 
Michael addition reacts the thiol with a maleimide-containing 
peptide to produce the peptide-functionalised, thiolated 
methacrylamide chitosan. The arrow shows the site where 
cross-linking occurs. 63 
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Figure 2.5 Chitin from crab tendons are transformed into 
triangular chitosan tubes by moulding circular chitosan tubes 
with a triangular steel rod.64  

 

HA hydrogels have also been investigated as possible scaffolds, decorated with an 

IKVAV epitope. HA, a long negatively charged glycosaminoglycan, is a large 

component of the ECM of brain tissue. This highly hydrated acid is known for its 

assistance in healing wounds, and has been shown to play a crucial role in the 

development of the central nervous system (CNS). When conducting this study, they 

implanted the scaffold into the injured brains of rats. Although they observed 

temporary inflammation in the implanted area, this effect was fixed by the presence 

of the hydrogel. Thus, they concluded that their scaffold showed biocompatibility in 

vivo. It also showed favourable results with regard to cell ingrowth and 

angiogenesis.65 

 

A limitation for all of the above mentioned polymer systems is that they have not 

proven to be perfect ECM-mimics. In the hope of finding such a scaffold, the 

intention of this current study is to explore the use of polyisocyanopeptide hydrogels 

as scaffolds for neurite outgrowth. These polymers have shown promise as ECM 

mimics. Through a Ni(II)-catalysed polymerisation of isocyanopeptides, analogues of 

β-helices, with β-helix motifs that are similar to naturally occurring β- sheet helices, 

as seen in Scheme 2.2, have been obtained.66 These polyisocyanopeptides are 

defined as rigid polymers. They contain a carbon backbone whereby each carbon is 

attached to a side chain substituent containing a dipeptide. 66 
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Scheme 2.2 The Ni(II) catalysed random copolymerisation of the 
isocyanopeptide monomers investigated in the current study. 

 

2.6 Polyisocyanopeptide Hydrogels 

The substituents on the polymer backbone are considered to resemble individual β-

strands, and the overall arrangement of the polymer is then regarded as having a β-

sheet-like organisation.66 Due to each carbon in the backbone having a substituent, 

a restricted rotation around the backbone is seen, which then leads to a stiff polymer 

chain.67 This stiffness and the chirality of the side chain lead to stereoisomerism 

(atropisomerism) in the backbone of the polymer. Therefore, it was proposed by 

Millich, on the basis of molecular models, that these dipeptide polymers adopt a   ̴ 41 

(approximately four repeat units per turn) helical conformation.68 This proposed 

conformation was supported by chromatographic evidence carried out by Nolte and 

co-workers, whereby an achiral tert-butyl isocyanide polymer was resolved into two 

antipodes. This optical activity could only exist due to the helical conformation of the 

backbone of the polymer.68 It was further found that this conformation, in aqueous 

medium and in gel phase, was stable at elevated temperatures, of 70 °C.69 The   ̴ 41 

helical conformation of the polymer can be viewed as a ‘polymeric spring’. The 

stretching of this spring causes the carbon backbone to elongate and the rods to 

Stellenbosch University  http://scholar.sun.ac.za



P a g e  | 21 

 

shorten in diameter. In NMR studies of the polymers, a helical pitch of 4.5 Å has 

been reported. Furthermore, an average spacing of 4.7 Å between one monomer 

side chain, n, and the next, parallel monomer side chain, (n + 4) was measured.66 

Moreover, studies using atomic force microscopy (AFM) were done in order to 

visualise the stiffness of the dipeptide polymer chains. In these studies, it was 

possible to visualise the individual molecules with lengths of up to 200 nm. It has 

recently been revealed that the adopted ‘spring conformation’ is the lowest energy 

conformation. This is especially true when the substituents on the side groups of the 

backbone are bulky.68 Conversely, when smaller side chain substituents are present, 

the helix slowly uncoils when the polymer is allowed to stand in solution.66 Thus, the 

stability of the helical secondary structure is dependent on the bulkiness of the side 

groups,67 as well as the substituent’s ability to form intramolecular hydrogen bonds 

between the side chains.68  

Due to the occurrence of hydrogen bonding, polyisocyanopeptides are very rigid 

polymers.68 It has been noted that it is possible to ‘denature’ these helical structures 

in a manner similar to the denaturation of proteins, whereby the hydrogen 

interactions are disturbed by exposing the polymers to a strong acid, by increasing 

the temperature, or by stretching the bonds to such an extent that they break.7,66,70 

Thus, it is possible to fine-tune the polymers’ architecture and properties by 

manipulating the network of hydrogen bonding interactions.66 The helical structure of 

the polyisocyanides has been studied using circular dichroism (CD) spectroscopy by 

monitoring the n-π* transition, at 250-350 nm, of the imine functionality attached to 

the backbone of the polymers.69 The Cotton effect of the n- π* transition is influenced 

by contributions from the side-chains on the backbone. Thus, the determination of 

the helical sense of the polymer is slightly prejudiced. It is interesting to note that the 

hydrogen bonding can be reflected in the Cotton effect of the CD spectrum of the 

polymers, and the denaturation of these interactions can be visualised by changes in 

the spectrum. Hence, these spectra can be used as a tool for studying the hydrogen 

bonding and the denaturation of the polymers.7 

The twist sense of the helical backbone, i.e. left-handed (M) or right-handed (P), can 

be manipulated by controlling the stereochemistry of chiral monomer side chains 

used, or by using an optically active Ni(II) catalyst.66,67 For example, the kinetically 

controlled, Ni(II)-catalysed polymerisation of the L-Alanine monomer causes all L-
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alanine-based polymers to have the same stereochemistry.7 It has been seen that 

polyisocyanides derived from L-D-di-alanine (L,D,-PIAA) are more stable than those 

from L-L-di-alanine (L,L-PIAA). This is due to the unfavourable steric interactions in 

the latter polymer, caused by the second alanine methyl group being in van der Waal 

contact with the methyl group of the first alanine moiety. In the former polymer, this 

interaction is absent due to the positions of the proton and the methyl group 

swapping in the L,D-di-alanine monomer, causing the greater stability of the polymer. 

This differs from the L,L-di-alanine monomer. Due to this stability, it was seen that it 

is possible to polymerise L,D-di-alanine monomers in the absence of the Ni(II) 

catalyst to produce chiroptical polymers similar to the ones formed through the 

catalysed polymerisation.7,66 Clearly, subtle changes in the configuration of the side-

chains of the backbones, due to steric interactions and hydrogen bonding, are able 

to influence the formation of these polymers.7  

There is a large variety of possible polyisocyanides that can be synthesised, all with 

different characteristics. This is due to the different combinations of natural and 

unnatural amino acids that can be polymerised.71 Additionally, these polymers can 

be varied further with a diverse range of side chains and pendent functional groups, 

including nonlinear optical chromophores, which can be attached to these stable and 

robust backbone peptides.71 One example of these polyisocyanopeptides is a 

charged block polymer, which consists of styrene and an optically active 

isocyanodipeptide, isocyano-L-L-di-alanine or isocyano-L-alanine-L-histidine. These 

superamphiphilic diblock copolymers were the pioneers in forming chiral 

superstructures with chiral nano-architecture in aqueous solution, in similar manner 

to low-molecular weight surfactants. The helical structures of these polymers are 

based on the chirality of the side chains of the monomers. As in the above 

mentioned isocyanopeptide polymers, the helical structure of these diblock-

copolymers is due to interactions caused by the sterically bulky side-chains attached 

to the backbone of the polymer, which are then stabilised by the hydrogen 

interactions between the parallel side-chains initiated by the amide functionality of 

the amino acids, as shown through infrared spectroscopy.72 These helical polymers 

have applications within  material science and catalysis.72  

It has recently been claimed that polyisocyanopeptides functionalised with 

oligo(ethylene glycol) side chains  are able to, in almost every way, mimic the ECM 
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of cells.69 With this in mind, the current study will focus on the particular 

polyisocyanopeptides.  

2.6.1 Polyisocyanides with oligo(ethylene glycol) side chains 

The incorporation of the PEG side chains onto polymers has been noted in various 

studies, e.g. in polystyrene73 and poly(methacrylates).73-75 The interest in PEG-

functionalised polymers is due to their water solubility, as well as their inert nature 

and biocompatibility.76 The balance between hydrophilic and hydrophobic units 

allows for a control over the solubility of the polymer. It has been shown that the 

hydrophilicity of PEG is dependent on temperature, through a sharp order-disorder 

phase transition at the LSCT.69 Thus, when incorporated, it allows for a thermo-

responsive polymeric system.77,78 These styrene- and methacrylate-derived PEG 

polymers are highly flexible, and when heated above their thermal transition 

temperature, in aqueous solution, they are seen to coil or globulate.79 Methacrylate 

derived PEG analogues can be classed as reference point for these PEG-derived  

macromolecules, due to the fact that they are so well studied.76 Its phase transition 

has been seen to be fast and independent of external factors or the degree of 

polymerisation and their LCST are highly tunable. These properties have been 

accredited to the inability of the oligo(ethylene glycol) side chains to form inter- or 

intramolecular interactions, neither by hydrogen bonding nor covalent bonding. Due 

to the flexible backbones of these polymers, as well as the inert nature of the PEG-

side chains, the polymers are unable to gel, even at high concentrations. 

Interestingly, when PEG side-chains were incorporated into poly(methacrylates) with 

linear or star-like conformations using initiators such as the example is seen in 

Figure 2.6 (top), it was possible to observe gelation with tunable transition 

temperatures for high concentrations of the polymers.74,75 The gelation of these 

polymers is seen in Figure 2.6 (bottom). 
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Figure 2.6 Top: An example of a four armed ‘star-shaped’ (left) 
and a linear (right) oligo(ethylene glycol) methyl ether 
methacrylate initiators. Bottom: A schematic representation of 
the thermal gelation of the ‘star-shaped’ poly(methacrylate) 
derived PEG analogues.75 

 

Furthermore, Rowan et al. showed that the incorporation of these PEG side chains 

onto polyisocyanides, containing a rigid polymer backbone and a well-defined helical 

secondary structure, allows for a thermo-responsive polymer in aqueous solutions at 

very low concentrations (0.1 wt.%).80 The ethylene glycol allows for the polymers to 

be soluble in aqueous medium. These polymers are able to mimic gels that are 

prepared from intermediate filaments in almost every aspect.69 Until now, there have 

been no other synthetic polymers or low-molecular weight gels possessing the ability 

to display control over the mechanical responses, such as strain stiffening, as seen 

in gels of cytoskeletal proteins, such as actin, fibrin, intermediate filaments, collagen 

and microtubules. These proteins are able to self-assemble into helical structures 

and superstructures.69 All parts of living systems require mechanical responsiveness, 

Stellenbosch University  http://scholar.sun.ac.za



P a g e  | 25 

 

from organs and tissues, and even individual cells. These polyisocyanopeptide 

hydrogels have been prepared through a Ni(II)-catalysed polymerisation, with 

different ratios of oligo(ethylene) glycol dipeptide monomers (see Scheme 2).  The 

gelation of these poly(isocyanidopeptides) is due to the polymers self-assembling 

into supramolecular structures, i.e. superhelices, controlled by non-covalent 

interactions such as hydrogen bonding, van der Waal forces and hydrophobic 

effects.66 Due to the linear relationship between transition temperature and the 

length of the ethylene glycol chain, the transition temperature of these 

polyisocyanides, from solution state to gel, can be adjusted according to the length 

of the oligoethylene group. The gelation transition temperature is 18 C and 40 C for 

triethylene and tetraethylene moieties, respectively.69 By controlling the ratio of 

monomers containing tri- and tetraethylene groups in the polymer, it is possible to 

tune the transition temperature between these values. 

It is possible to functionalise these polymers by copolymerisation with monomers 

containing pendant functional groups, such as azides, as seen in Scheme 2.2.81 

Once polymerisation has occurred, it is then possible to use ‘click’ chemistry to 

functionalise the polymer with peptide sequences.82 The employment of copper-free 

‘click’ chemistry will be discussed in Chapter 4. 

The ease with which these polyisocyanopeptide hydrogels can be modified makes 

them highly versatile and useful in many different applications, especially in the 

biomedical field.69 One noteworthy example of this is their use as effector molecules, 

which possess the ability to dock onto T cells, thereby causing the activation of these 

cells, as depicted in Figure 2.7.83 
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Figure 2.7 Polyisocyanides grafted with oligo(ethylene glycol) 
side chains and functionalised with antibodies act as synthetic 
dendritic cells, causing activation of the T cell. 83 

 

As with other polyisocyanopeptides, hydrogen bonding occurs between the alanine 

moieties on parallel side chains. The interaction forms between the amide on the 

alanine (Ala 1) closest to the oligoethylene group, and the oxygen on the alanine 

(Ala 2) closest to the carbon backbone, as seen in Figure 2.8.67 This causes the 

polymers to have a stiff, helical structure, as shown in other isocyanopeptides.69 CD 

and IR experiments confirmed the helical structure of these polymers, as well as the 

gel’s conformational stability, up to 70 °C.69  
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Figure 2.8 The helical polyisocyanopeptide hydrogel with 
hydrogen bonding occurring between the alanine moieties of the 
side chains. 

 

Due to the ease with which these intermediate filament-mimicking hydrogels can be 

manipulated, the potential applications for these polymers are virtually limitless.69 

Therefore, the objective of this study is to synthesise the isocyanide monomers 

needed for the polymerisation of polyisocyanides grafted with oligoethylene glycol 

chains. Thereafter, the polymers will be functionalised with the IKVAV-laminin-

derived epitope. Based on previous scaffolds used for the epitope, this polymer may 

possess the potential to direct the differentiation of stem cells into neurons. If 

successful, these results would pioneer a new class of tissue-engineering scaffolds 

for the treatment of neurological disorders. 
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Chapter 3: Monomer Synthesis and Characterisation 

Abstract 

In this study, the functional ‘azide monomer' for copolymerisation of polyisocyano-

peptides with oligo(ethylene glycol) side chains was synthesised using an altered 

version of the protocol previously reported.1 The monomers were characterised by 

1H NMR and 13C NMR spectroscopy, IR spectroscopy and mass spectrometry. 

3.1 Introduction 

Polyisocyanopeptide hydrogels decorated with oligo(ethylene glycol) side chains 

have previously been synthesised by the Rowan group.2 The bulk of the polymer is 

made up of the spacer monomer, seen in ‘a’ of Figure 3.1. This monomer can either 

have a tri- or tetraethylene glycol side chain, and the length of this side chain 

controls the gelation temperature of the polymer. It is also possible to copolymerise 

the spacer monomer with azide-functional monomers (‘azide monomer’), as seen in 

‘b’ of Figure 3.1. The pendant azide functionality on the polymer can later be 

modified through (copper-free) click chemistry, as will be elaborated on in Chapter 4. 

 

 

Figure 3.1 The structures of the monomers used to make the 
polyisocyanopeptides in this study where, a) is the ‘spacer 
monomer’ and b) is the azide monomer 

 

 

a  

b  
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In the general protocol for the synthesis of the monomers, seen in Scheme 3.1, the 

alanine moieties are coupled to the glycol through two consecutive N,N’-

dicyclohexylcarbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC) mediated coupling reactions. For this reaction, the amine functionality of the 

alanine is protected by a tert-butyloxycarbonyl (Boc) protecting group, which can be 

readily removed after each coupling, using hydrochloric acid in dioxane. The second 

Boc-Alanine is then coupled and de-protected in a manner similar to the first 

coupling. Thereafter the amine is converted to a formyl group, which is then 

dehydrated to a cyano functional group using methyl N-carbamate (Burgess 

reagent). 

  

 

Scheme 3.1 General protocol used in the synthesis of isocyanide 
monomers 

 

It is very important to ensure that no racemisation of the stereochemistry of the 

alanine moieties occurs during either of the two coupling reactions, more so during 

the second coupling step. It is ensured by using HOBt in the reaction mixture, which 

also serves to improve the efficiency of the peptide synthesis. 

In this chapter, the aim was to synthesise an azide monomer with a tetraethylene 

glycol side chain. This azide monomer can then be copolymerised with the spacer 

monomer, which was purchased from Chiralix. It has been seen that the gelation 

temperature is controlled by the length of the ethylene glycol side chain, where 

triethylene glycol side chains result in a gelation temperature of 18 °C and 
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tetraethylene glycol side chains produce hydrogels with a gelation temperature of  

40 °C. During polymerisation of the two monomers, the spacer monomer will ensure 

that the gelation temperature of the polymer is approximately 18 °C, which means 

that the polymer will be a gel at physiological conditions. By manipulating the fraction 

of the azide monomer in the copolymerization mixture, we could control the gelation 

temperature of the eventual polymer hydrogel. 

3.2 Results and Discussion 

A number of routes were undertaken in attempts to synthesise the azide monomer. 

Scheme 3.2, depicts a previously reported synthetic route towards the azide 

monomer.1 It follows a similar protocol to that described under the general method 

(see Section 3.1), in which a tosylated tetraethylene glycol is first coupled to the two 

alanine moieties, yielding 4 (see Scheme 3.2). Thereafter, the protocol follows a 

different path from the spacer monomer to that described in literature,2 as the tosyl-

group undergoes nucleophilic attack by sodium azide to yield the azide functionality. 

Subsequently, the amine is then converted to a formyl and then dehydrated into the 

isocyanide group.   

 

Scheme 3.2 The complete synthesis of HCN+-D-Ala-L-Ala-(PEG)4-
N3 using the method described by Rowan et al.1 
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The product from the second coupling step, compound 4 (Scheme 3.2), proved 

difficult to purify using column chromatography, as described in literature. Although, 

thin-layer chromatography (TLC) analysis, using 10 % methanol in dichloromethane 

as an eluent, showed a compound at the Rf reported in literature, that particular 

compound could not be isolated after running the crude product through the silica 

column. It is possible that the compound degraded on the column. Therefore, prep-

HPLC was used in an attempt to purify the crude product. 

First, the crude product was analysed using analytical HPLC to determine which 

peak correlates to the desired product, 4 (Scheme 3.2). The chromatogram (shown 

in Figure 3.2) showed that there were many impurities in the sample, which was 

expected for a crude product. As shown in Figure 3.2, a peak with a parent m/z of 

591.23 eluted at 4.8 minutes (taking the 0.1 min delay between diode array detector 

(DAD) and MS into account). This m/z, seen in the insert of Figure 3.2, corresponds 

to the M+1 of 4, and therefore this peak was targeted.  

 

 

Figure 3.2 The analytical HPLC chromatograph of the crude 
product, whereby the arrow points to a product in which the MS 
results show a parent m/z peak correlating to the M+1 (591.5 Da) 
of 4. The mass spectrum for this peak is seen in the insert. 

 

0 2 4 6

Time / min
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The isolation of the compound that eluted at 4.8 minutes, Figure 3.3, allowed for 

NMR analysis of the compound, shown in Figure 3.4. From the 1H NMR spectrum, it 

is possible to see that the isolated compound is not the desired product. This is clear 

from the peaks in the aromatic region (7 – 8.2 ppm), which should show only two 

doublets, each with integrations of 2H. Instead, the NMR spectrum is a 

conglomeration of many peaks that cannot be assigned to what should be a 

completely pure compound. It is possible that 4 rearranged itself through 

intramolecular hydrogen bonds between the PEG end chain and the alanine 

moieties. This will be discussed later in this chapter.  

 

 

Figure 3.3 HPLC-DAD analysis of the purified peak 

 

 

Figure 3.4 1H NMR spectrum of the product, isolated from prep-
HPLC, that eluted at 4.8 min 
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It seemed curious that the synthesis of the spacer monomer, where the product from 

the second coupling step is chemically similar to 4, was performed without problems. 

The only structural difference between the two was the end-groups of the PEG 

chains. Therefore, it was hypothesised that the tosyl group could be the issue. A new 

method, as seen in Scheme 3.1, was attempted, whereby the two alanine moieties 

were first coupled and then added to the PEG moiety. This was done rather than 

sequentially coupling the alanine moieties to the PEG chain, one after the other. This 

methodology of coupling the alanine moieties together has been used in 

synthesising polyisocyanopeptides in the past by Nolte et al.3 One problem identified 

with this method is that protected amino acids can undergo racemisation.4,5 Thus, it 

would be essential to test the final unprotected dipeptide’s optical rotation, and 

compare the results to the values obtained by Nolte et al.3 According to Reetz,
4
 

racemisation is minimized if only cold solvents are used and the α-amino acids are 

freshly prepared. 

 

 

Scheme 3.3 A general outline of the second method that was 
attempted in the synthesis of the azide monomer. 
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To obtain a stereochemically pure dipeptide and avoid self-condensation, it was 

necessary to protect the carboxylic acid of the L-alanine with a protecting group that 

can be removed selectively without removing the Boc-protection group, before 

coupling the dipeptide to the PEG. The best protecting groups are readily installed 

and removed quantitatively, under mild conditions, without forming byproducts that 

are difficult to separate from the product. Another important requirement of the 

protecting group is that it must not influence the reactivity of the adjacent functional 

groups of the amino acid. The most common form of carboxy-protection for amino 

acids is esterification. Therefore, the synthetic protocol in Scheme 3.4 was 

attempted. In this protocol, the L-Alanine-OH was protected as a methyl ester. This 

protection was attempted using the method described by Avinash and Govindaraju,6 

which entailed purifying the product by recrystallization, however, this was 

unsuccessful. Therefore, commercial L-Ala-OMe·HCl was used instead. Thereafter, 

an EDC-mediated coupling reaction was used to obtain 7a. 

 

Scheme 3.4 Synthesis of the azide monomer using method 2 
whereby the dipeptide was first synthesised and thereafter coupled 
to the tetraethylene glycol moiety 
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The deprotection of 7a was attempted in a number of ways, following methods 

described by Casida et al.,7 Joullié et al.,8 and Prabhakaran.9 However, all were 

deemed unsuccessful as proven through NMR and MS analyses. Shortcomings in 

using methyl ester protection groups have been reported previously.5 The use of 

other protecting groups was studied due to the difficulty in de-protecting the methoxy 

ester protecting group without de-protecting the Boc-group. These included benzyl 

and t-butyl esters. If obtained, these compounds would have then followed the same 

protocol, in order to convert them into the azide-functionalised monomer, as seen in 

Scheme 3.4. t-Butyl esters have been widely used as carboxy-amino protecting 

groups due to their stability when exposed to bases, nucleophiles and catalytic 

hydrogenation. Benzyl ester protecting groups are the most widely used in solution 

chemistry.10  

The method used to synthesise 5b was described by Olsen et al.11 This protocol, 

shown in Scheme 3.4, entailed reacting a Boc-protected amino acid with t-butyl 

alcohol in an EDC-mediated coupling reaction. The Boc-protection was then 

removed using the same method as in 3, using hydrochloric acid to yield 6b with a 

yield of 77 %. Thereafter, the coupling of the two alanine moieties followed the same 

method as described above for the methoxy ester protected alanine, with a yield of 

48 % being obtained for 7b. The de-protection of 7b, following the method described 

by Yadav et al.12 was unsuccessful. Literature reveals that the cleavage mechanism 

of t-butyl protecting groups is very similar to Boc-protecting groups. Thus, it is 

possible that the Boc-protecting group was affected during the cleavage step.5 It was 

hoped that using a benzyl ester protecting group would allow for deprotection of the 

dipeptide without affecting the Boc-protection. Benzyl groups are widely used as 

protecting agents in organic chemistry due to their stability.13 In previous work, it has 

been shown to be difficult to remove the benzyl protecting group, while not removing 

other protecting groups.14 However, Hirota et al.14 developed a method in which the 

benzyl group is removed under mild conditions. This method uses hydrogenation in 

the presence of a nitrogen-containing base. Thus, the same synthetic strategy as 

with the t-butyl ester protecting group, 6b, was attempted in order to synthesise the 

benzyl-protected alanine, 6c, seen in Scheme 3.4. Compound 6c was obtained in 

good yield (96 %), and the dipeptide, 7c, was then synthesised in the same manner 

as with 7a.  
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The deprotection via hydrogenation, in the presence of a nitrogen-containing base, 

was then done in order to remove the benzyl protecting group. According to 1H NMR 

spectroscopy, the reaction was unsuccessful. The spectrum revealed that the Boc-

protection group was not only removed, but the product did not contain the two 

alanine moieties. Therefore, a different approach, described by Perosa et al.15 was 

attempted. This reaction used potassium hydroxide instead of a nitrogen-containing 

base, and heated the solution to 50 °C, rather than allowing the mixture to stir at 

room temperature. However, this strategy was also proved to be unsuccessful by 1H 

NMR spectroscopy. Similar conclusions were drawn from the NMR spectrum 

regarding the resulting product as for the previous reaction. 

Although, the strategy of creating a dipeptide first and then connecting it to the PEG 

seemed plausible, the difficulties encountered at the de-protection step made this 

option less viable. Therefore, a new strategy was required. With this in mind, the 

azide-functionalised monomer and the spacer monomer were compared. The 

general procedure for these isocyanopeptide monomers, described by Rowan and 

his coworkers in Scheme 3.1, was re-examined and the different pendent 

functionalities of the two monomers were studied. It was rationalised that the tosyl 

group must be the reason 4 could not be purified. Thus, it was hypothesised that by 

swapping the order in which the monomer is functionalised, it could be possible to 

complete the synthesis and obtain the azide monomer. Thus, the azide functionality 

of the monomer was put in place before the two peptide coupling steps, as seen in 

Scheme 3.5. This approach, towards the azide monomer, was successful. 
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Scheme 3.5 Alternative approach for the azide monomer 
synthesis. 

 

Compound 11 was purified, via silica gel chromatography, albeit with some difficulty, 

because it co-eluted with Boc-D-alanine. It is hypothesised that this co-elution was 

due to the formation of a synthon,16,17 whereby two intermolecular hydrogen bonds 

form between the Boc-alanine and 11 in a spatially arranged manner. It would be 

necessary to expand this theory using computational models, whereby the energy 

associated with the formation of such a synthon and the ‘gain’ in stability energy 

would be calculated. These calculations are beyond the scope of this study. 

However, this co-elution impurity was removed easily, two steps later, after the 

formylation step. 

3.3 Conclusion 

It was seen that the strategy sited in literature was unsuccessful for the synthesis of 

the azide-functionalised monomer. Another approach was attempted, whereby the 

two alanine moieties were initially coupled, with the intention of thereafter coupling 
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the dipeptide to the ethylene glycol chain. However, the necessity of protecting the 

carboxylic acid functionality during the dipeptide coupling introduced another 

complication, as the carboxylic acid and amine functionalities could not be 

deprotected orthogonally. A new synthetic strategy of first changing the tosyl end-

group to the azide-functional end group, and thereafter coupling the two alanine 

moieties to the tetraethylene chain proved successful. The azide-functionalised 

monomer was obtained by following this slightly modified protocol.  

3.4 Experimental 

3.4.1 General 

Chemicals 

All chemicals were purchased from Merck or Sigma Aldrich and used without further 

purification, unless stated otherwise. 

NMR analysis 
1H NMR and 13C NMR spectra were measured using a Varian VXR-Unity (400 MHz) 

spectrometer, a Varian Gemini 300 spectrometer or a Varian 600 MHz Inova 

spectrometer. Chemical shifts were reported in parts per million (ppm) and the 

samples were dissolved in deuterated CHCl3. The spectra were referenced to the 

residual solvent proton peaks. MestReNova (version 6.0.2) was used for data 

analysis. 

FT-IR analysis 

All FT-IR measurements were performed using Thermo Nicolet iS10 FT-IR 

spectrometer. Omnic software (version 6.0a) was used for instrument control and 

data analysis. 32 scans were performed for each sample, and they were scanned 

between 650 and 4100 cm-1
. 

MS analysis 

MS was performed on a Waters Synapt G2 with an ESI probe injected into a stream 

of acetonitrile (and 0.1 % formic acid). ESI positive, Cone Voltage 15 V, was used for 

detection. MassLynx software (version 4.1) was used for instrument control and data 

acquisition. 

TLC analysis 

All reactions were monitored using Machery-Nagel Silica gel 60 plates. 
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Preparative HPLC Instrumentation 

Preparative HPLC separations were performed on a modular Waters HPLC system 

(Waters, Tygervalley, South Africa) consisting of a 2767 sample manager, 2545 

quaternary gradient pump, 1500 series column heater, and a 2998 photodiode array 

detector (PDA) with a Prep 2998 flowcell. MassLynx software (version 4.1) was used 

for instrument control and data acquisition, while FractionLynx software (version 4.1) 

was used to control the collection of HPLC fractions. A Waters Xbridge C18, OBD  

19 x 250 mm preparative HPLC column was used for the fractionations and 

purifications. Xbridge C18, 5 μm, 4.6 x 20 mm and Xbridge C18, 5 μm, 19 x 10 mm 

guard column was connected to the inlet of the preparative HPLC column. 

For the analytical run, an Agilent 1200 Rapid Resolution (600 bar) HPLC system 

consisting of a binary pump, degasser, auto sampler and diode array detector (DAD) 

was used. Chemstation software (V) was utilised for instrument control and data 

acquisition.  

HPLC gradient grade acetonitrile and formic acid (98 – 100%) was purchased from 

Sigma-Aldrich (Kempton Park, South Africa). Water was purified by a Millipore 

Synergy water purification system (Merck South Africa). 

Analytical HPLC method 

Injection volume was 10 μL, the mobile phase flow rate was 0.6 mL/min and the 

column temperature was maintained at 35 °C.  The mobile phase A was 0.1% formic 

acid, and mobile phase B was 0.1% formic acid in acetonitrile. A gradient elution was 

used initially 0% B for 1.2 minutes, and then it went from 0-100% B over 7.5 minutes, 

maintained at 100% B for 7.5 minutes, and then returned to starting conditions. The 

total run was 20 minutes. 

Preparative HPLC method 

Sample solutions for purification / fractionation were prepared at ca. 0.5 g/mL in 50% 

methanol. Injection volumes ranged between 50 μL and 1 mL. The mobile phase 

flow rate was 20 mL/min and the column heater was set at 35 °C. A mobile phase 

gradient was used, using the same mobile phase employed for the analytical HPLC 

analysis.  
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3.4.2 Synthetic Procedures 

The syntheses of 1, 2, 3 and 4 were carried out as in literature.1 

HO-(EtO)4-OTos (1) 

 

1 was yielded as a pale yellow oil (18.60 g, 53.39 mmol, 46.3 %).  

1H NMR (400 MHz, CDCl3) δ 7.79 (aromatic, d, J = 8.3 Hz, 2H), 7.33 (aromatic, d,  

J = 8.1 Hz, 2H), 3.80 – 3.48 (CH2, m, 16H), 2.44 (CH3, s, 3H) 

m/z 349.1313 (calculated 348.41 for [M+H]+), 371.1139 (calculated 371.40 for 

[M+Na])  

Rf (100 % EtOAc) = 0.6; Rf(10 % MeOH/DCM) = 0.6  

Boc-L-Ala-(EtO)4-OTos (2) 

 

2 was obtained as a yellow oil (13.02 g, 25.06 mmol, 52.2 %). 

1H NMR (300 MHz, CDCl3) δ 7.86 – 7.78 (aromatic, m, 2H), 7.39 – 7.33 (aromatic, 

m, 2H), 5.08 (NH, s, 1H), 4.33 – 4.28 (CH, m, 1H), 4.21 – 4.11 (CH2, m, 3H), 3.80 – 

3.56 (CH2, m, 13H), 2.46 (CH3, s, 3H), 1.46 (CH3, s, 9H), 1.40 (CH3, dd, J = 7.2, 2.8 

Hz, 3H). 

L-Ala-(PEG)4-OTos (3) 

 

3 was obtained and used without further purification. 
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1H NMR (300 MHz, CDCl3): δ 7.85 – 7.78 (aromatic, m, 2H), 7.39 – 7.33 (aromatic, 

m, 2H), 4.20 – 4.15 (CH, m, 1H), 3.80 – 3.60 (CH2, m, 16H), 2.46 (CH3, s, 3H), 1.73 

(CH3, d, J = 7.2 Hz, 3H). 

Boc-D-Ala-L-Ala-(EtO)4-OTos (4) 

 

The purification as described in literature did not yield product, as explained in the 

Results and Discussion section. Therefore, prep-HPLC purification was used. 

Boc-D-Alanine-L-Alanine methyl ester (7a) 

 

Acetonitrile (57.5 mL) was added to L-alanine methyl ester hydrochloride (2.15 g, 

0.015 mmol) and cooled to 0 °C. Triethylamine (2.1 mL, 15.06 mmol) was added to 

the solution and stirred for 30 min. HOBt (2.43 g, 18 mmol) and Boc-D-Ala-OH (1.8 

g, 15 mmol) were added to the solution at 0 °C. The reaction mixture was removed 

from the ice bath and it was heated slightly to ensure that all the contents were fully 

dissolved. The ice bath was then replaced. EDC (3.25 g, 17 mmol) was added 

portion-wise, and the solution was stirred for 3 h at 0 °C. Thereafter, the solution was 

filtered and the solvent was removed under reduced pressure. The product was re-

dissolved in ethyl acetate (80 mL), and triethyl ammonium chloride was filtered off.  

The organic layer was washed with water (4 mL), dried over MgSO4, filtered, and the 

solvent was removed under reduced pressure. The crude product was purified by 

column chromatography (eluent gradient: 1:1 to 1:3, Pentane:ethyl acetate) to yield 

product, 7b, as a white solid (1.58 g, 5.76 mmol, 38.4 %). 

Stellenbosch University  http://scholar.sun.ac.za



P a g e  | 46 

 

1H NMR (400 MHz, CDCl3) δ 6.69 (NH, s, 1H), 4.94 (NH, s, 1H), 4.56 (CH, p, J = 7.3 

Hz, 1H), 4.11 (CH, q, J = 7.1 Hz, 1H), 3.74 (OCH3, s, 3H), 1.45 (3CH3, s, 14H), 1.40 

(CH3, d, J = 7.2 Hz, 5H), 1.35 (CH3, d, J = 7.1 Hz, 5H) 

Boc-L-Alanine t-butyl ester (5b) 

 

A solution of Boc-L-Ala-OH (1.0 g, 5.29 mmol), DMAP (0.32 g, 2.645 mmol) and t-

butyl alcohol (0.45 g, 6.01 mmol) was dissolved in CH2Cl2 (19 mL). The solution was 

cooled to 0 °C in an ice bath and EDC (1.12 g, 5.82 mmol) was added portion-wise, 

with stirring. The reaction mixture was stirred at 0 °C for 2 h and thereafter stirred at 

r.t. overnight. The solution was concentrated under reduced pressure (making sure 

that the pressure did not go below 300 mbar, so that the product did not sublime). 

The remaining product was re-dissolved in ethyl acetate (60 mL) and water (12 mL). 

The organic layer was collected and washed with saturated sodium bicarbonate (2 x 

36 mL), dried over MgSO4, filtered, and the solvent was removed under reduced 

pressure (again ensuring that the pressure did not go below 300 mbar so that the 

product did not sublime). The crude product was purified by column chromatography 

(eluent: 100 % ethyl acetate) to obtain product, 5b, in the form of a white powder (0.5 

g, 4.08 mmol, 77%).  

1H NMR (400 MHz, CDCl3) 4.99 (NH, s, 1H), 4.22 (CH, q, J = 7.1, 1H), 1.46 (3CH3 

(Boc), s, 9H), 1.44 (3CH3 (t-butyl), s, 9H), 1.33 (CH3, d, J = 7.1 Hz, 3H). 
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L-Alanine t-butyl ester (6b) 

 

5b (0.55 g, 2.24 mmol) was dissolved in dry ethyl acetate (5 mL), and thereafter 4 M 

HCl (8 mL) in dioxane was added in a drop-wise manner. The mixture was stirred for 

2h. The solvent was carefully removed under reduced pressure, so as to not remove 

the product. Any remaining HCl was removed by adding 1 mL t-BuOH to the 

solution. The excess t-BuOH was removed azeotropically by adding 10 mL DCM and 

then removing the solvents under reduced pressure. 10 mL DCM was again added 

and removed under reduced presseure, this was repeated twice. Product, 6b, was 

used without any further purification. It contained a slight dioxane impurity, as seen 

on 1H NMR. 

Boc-D-Alanine-L-Alanine t-butyl ester (7b) 

 

The same method was used as with 7a to yield 7b (2.93 g, 10.68 mmol, 71.2 %).  

1H NMR (400 MHz, CDCl3) δ 6.70 (NH, s, 1H), 6.60 (NH, s, 1H), 4.45 (CH, m, 1H), 

4.14 (CH, m,  1H), 1.48 (3CH3, s, 9H), 1.47 (3CH3, d, J = 0.9 Hz, 9H), 1.39 (CH3, d, J 

= 7.1 Hz, 3H), 1.37 (CH3, d, J = 7.1 Hz, 3H). 

  

Stellenbosch University  http://scholar.sun.ac.za



P a g e  | 48 

 

Boc-L-Alanine benzyl ester 5c 

 

The same method was used as with 5b to yield 5c in the form of a white powder 

(1.42 g, 5.08 mmol, 96.0 %).  

1H NMR (400 MHz, CDCl3) δ 7.40 – 7.29 (CH,m, 5H), 5.17 (CH2, ABq, J = 12.3 Hz, 

2H), 5.03 (NH, s, 1H), 4.36 (CH, m, 1H), 1.43 (3CH3 (Boc), s, 9H), 1.39 (CH3, d, J = 

7.2 Hz, 3H). 

L-Alanine benzyl ester 6c 

 

6c (0.57 g, 2.04 mmol) deprotected in the same manner as 6b. 

Boc-D-Ala-L-Ala-OtBu (7c) 

 

For 6c (0.50 g, 2.54mmol), the same procedure was used as in 7b, however, the 

eluent for the column chromatography was 1:1 to 1:3 hexane:ethyl acetate. This 

yielded product 7c (0.56 g, 1.6 mmol, 63 %).  

1H NMR (300 MHz, CDCl3) δ 7.45 – 7.32 (CH, m, 5H), 6.72 (NH, s, 1H), 5.26 – 5.12 

(CH2, ABq, 2H), 4.90 (NH, s, 1H), 4.69 – 4.57 (CH, p, 1H), 4.25-4.16 (CH, m, 1H), 

1.47 (3 CH3, s, 9H), 1.44 (CH3, d, J = 7.2 Hz, 3H), 1.37 (CH3, d, J = 7.1 Hz, 3H). 
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HO-(EtO)4-N3 (8) 

 

1 (14.72 g, 48.41 mmol) was dissolved in absolute ethanol (150 mL). Sodium azide 

(31.47 g, 484.1 mmol) was added to the solution, and the reaction mixture was 

refluxed for 12 h. Once cooled to r.t. the precipitate was filtered off, and the solvent 

was removed under reduced pressure. The crude product was purified using column 

chromatography (eluent: EtOAc), to yield the product, 8, as a pale yellow liquid (7.40 

g, 33.75 mmol, 69.7%) 

1H NMR (300 MHz, CDCl3) δ 3.78 – 3.31 (m)  

13C NMR (150 MHz, CDCl3) δ 72.63 (CH2, s), 71.53 (CH2, s), 70.69 (CH2, s),  

70.51 (CH2, s), 70.20 (CH2, s), 61.92 (CH2, s), 50.83 (CH2, s), 42.77 (CH2, s) 

Rf (EtOAc) = 0.4 

Boc-L-Ala-(EtO)4-N3 (9) 

 

8 (6.7 g, 30.56 mmol), Boc-L-Ala-OH (5.78 g, 30.56 mmol) and DMAP (0.37 g, 3.06 

mmol) were dissolved in freshly distilled CH2Cl2 (100 mL) and cooled to 0 °C. DCC 

(6.31 g, 30.56 mmol) was added portion-wise at 0 °C. The reaction mixture was 

stirred at 0 °C for 1 h and then at r.t. for a further 3 h. The precipitate was filtered off 

and washed with EtOAc. The solvent was removed under reduced pressure. The 

crude product was re-dissolved in a minimum amount of EtOAc and placed in the 

fridge for 12 h. The precipitate was then filtered off using a funnel with a cotton wool 

plug and gravity. The solvent was removed under reduced pressure, and the crude 

product was purified using column chromatography (eluent: EtOAc) to yield product, 

9, as a yellow/orange liquid (9.87 g, 25.28 mmol, 82.7 %). 

1H NMR (300 MHz, CDCl3) δ 5.13 – 5.00 (NH, bs, 1H), 4.32 – 4.25 (CH, m, 1H),  

3.79 – 3.35 (8CH2, m, 16H), 1.44 (3CH3, s, 9H), 1.38 (CH3, d, J = 7.2 Hz, 3H) 
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13C NMR (75 MHz, CDCl3) δ 173.45 (C, s), 171.26 (C, s), 71.50 (C, s), 70.17 (CH2, 

s), 69.05 (CH2, s), 64.43 (CH2, s), 60.52 (CH2, s), 50.82 (CH2, s), 49.27 (C, s),  

42.84 (CH2, s), 28.40 (3CH3, s), 18.90 (CH3, s), 14.39 (s) 

m/z 391.2195 (Calculated 391.44 for [M+H]+) 

Rf (EtOAc) = 0.7 

L-Ala-(EtO)4-N3 (10) 

 

9 (9.87 g, 25.28 mmol) was deprotected in the same manner as described in 

literature.1 The product, 10, was used without further purification. 

Boc-D-Ala-L-Ala-(EtO)4-N3 (11) 

 

10 (7.33 g, 25.28 mmol), Boc-D-Ala-OH (4.78 g, 25.28 mmol) and HOBt (3.42 g, 

25.28 mmol) were dissolved in freshly distilled CH2Cl2 (150 mL). The pH was 

adjusted to pH 8 by the addition of DMAP. DIPEA (4.41 mL, 25.28 mmol) was added 

in a drop-wise manner at r.t. as the reaction mixture stirred. The mixture was stirred 

at r.t. until all the contents had completely dissolved. Thereafter, the reaction mixture 

was cooled to 0 °C and EDC (3.92 g, 28.28 mmol) was added in a portion-wise 

manner. The reaction was stirred at 0 °C for 1 h and then for a further 5 h at r.t. The 

solvent was then removed under reduced pressure. The crude product was re-

dissolved in chloroform and washed with water (3 x 15 mL) and then conc. NaHCO3 

(aq). The aqueous layers were extracted with mL chloroform (2 x 100). The 

combined organic layers were dried over MgSO4, filtered, and the solvent was 

removed under reduced pressure. The crude product was purified, with difficulty, 

using column chromatography (gradient eluent: pentane: EtOAc, 1:1, to EtOAc, 
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flushed with 2 % MeOH/EtOAc) to yield product, 11, as a yellow oil (11.44 g, 24.78 

mmol, 81.1 %). The product coeluted with Boc-D-Ala.  

Rf (EtOAc) = 0.5 

D-Ala-L-Ala-(EtO)4-N3 (12) 

 

The same procedure as described for 9 (10.00 g, 21.67 mmol) was followed. The 

product, 12, was used with no further purification.  

Formyl-D-Ala-L-Ala-(EtO)4-N3 (13) 

 

13 (5.12 g, 13.15 mmol, 60.7 %) was synthesised as in literature1. 

1H NMR (400 MHz, CDCl3) δ 8.17 (CH, s, 1H), 6.95 (NH, t, J = 6.4 Hz, 1H), 6.71 

(NH, d, J = 7.0 Hz, 1H), 4.58 (CH, m, 1H), 4.26 (CH2, m, 2H), 4.09 (CH, q, J=7.1, 

1H), 3.79 – 3.56 (CH2, m, 12H), 3.40-3.35 (CH2, m, 2H) 1.41 (CH3,  d, J = 7.2 Hz, 

3H), 1.38 (CH3,  d, J = 7.0 Hz, 3H) 

13C NMR (75 MHz, CDCl3) δ 172.53 (C, s), 171.48 (C, s), 161.30 (C, s), 72.46 (CH2, 

s), 71.32 (CH2,), 70.32 (CH2, s), 70.00 (CH2, ), 68.92 (CH2, s), 64.42 (CH2, s), 61.70 

(CH2, s), 50.65 (CH2, s), 48.32 (C, s), 47.19 (C, s), 42.73 (CH3, s), 17.89 (CH3, s) 

m/z 390.1993 (calculated 390.41 for [M+H]+), 412.1812 (calculated 412.39 for [M + 

Na]+) 

IR 3282. (N-H), 2871. (C-H), 2105 (N3), 1738. (C=O), 1655 (N-H), 1522. (N-H), 1454 

(C-H), 1135 (C-O) 

Rf (10% MeOH/CH2Cl2) = 0.1 
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Cyano-D-Ala-L-Ala-(EtO)4-N3 (14) 

 

13 (0.5 g, 1.28 mmol) was dissolved in CH2Cl2, (150 mL) and Burgess reagent (0.49 

g, 1.92 mmol) was added to the solution. The solution was refluxed for 3-4 h. The 

solvent was then removed under reduced pressure and the crude product was 

purified using column chromatography (packed with CH2Cl2 and eluted with 10% 

ethyl acetate / CH2Cl2), and then purified again with column chromatography eluted 

with a gradient eluent of 100 % pentane to 100 % ethyl acetate) to obtain pure 

product, 14, as a yellow oil (219 mg, 0.59 mmol, 66 %). 

Rf (10% MeOH/CH2Cl2) = 0.7 

1H NMR (300 MHz, CDCl3) δ 7.05 (NH, s, 1H), 4.56 (CH, m, 1H), 4.34 (CH2, m, 2H), 

4.24 (CH, m, 1H), 3.79-3.70 (CH2, m, 2H), 3.69–3.66 (CH2, m, 10H), 3.42 – 3.32 

(CH2, m, 2H), 1.62 (CH3, d, J = 7.0 Hz, 3H), 1.45 (CH3, d, J = 7.2 Hz, 3H).13C NMR 

(75 MHz, CDCl3) δ 196.38 (HCN, s), 172.21 (C, s), 159.64 (C, s), 152.85 (CH, s), 

71.49 (CH2, s), 70.18 (CH2, s), 68.96 (CH2, s), 68.93 (CH2, s), 64.80 (CH2, s), 50.81 

(CH2, s), 48.26 (C, s), 42.85 (CH2, s), 24.49 (CH2, s), 23.93 (CH3, s), 18.24 (CH3, s) 

m/z 372.1889 (calculated 372.40 for [M+]),  394.1707 (calculated 394.38 for  

[M + Na]+) 

IR 3319 (N-H), 2920 (N-H), 2140 (C≡N), 2098 (N3), 1744 (C=O), 1678 (N-H), 1530 

(N-H), 1454 (C-H), 1094 (C-O) 
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Chapter 4: Polymer Synthesis and Characterisation  

Abstract 

Polyisocyanides were obtained in a Ni(II) catalysed polymerisation of the monomers 

that were synthesised in Chapter 3. Five polymers were synthesised with spacer to 

azide-functionalised monomer feed ratios of 1:100 and 1:200. These polymers were 

characterised by FT-IR SEC, AF4, CD and ‘dye test’ experiments.  

The gelation behaviour of the hydrogels was investigated using fluorescence 

microscopy. Using a thermal, time-lapse study, it was possible to visualise the 

hydrogels in aqueous medium, while they undergo the transition from solution state 

into gel state. It was seen that the polymers congregate and form organised clusters 

of bundles. Due to the limited resolution of the confocal lens, it was not possible to 

visualise the discrete bundles. Furthermore, a concentration study was undertaken, 

whereby the hydrogels were analysed under super-resolution at different polymer 

concentrations in aqueous medium. The z-stacks were then reconstructed into a 

three dimensional simulation of the gel. These simulations were able to give a better 

impression of the manner in which the polymers gelled since the images are a true 

three dimensional representation of the gels in their solvated state.  

4.1 Introduction 

The current study focused on the preparation and characterisation of 

polyisocyanopeptides with oligo(ethylene glycol) side chains. The azide-

functionalised (‘azide monomer’) and an unfunctionalisable spacer monomer were 

co-polymerised by the method depicted in Scheme 4.1. 
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Scheme 4.1 Polyisocyanide hydrogels with oligo(ethylene 
glycol) side chains were prepared via the Ni(II)-catalyzed co-
polymerisation of ‘spacer monomer’ and azide monomer. 

 

4.1.1 Ni(II)-catalysed polymerisation of polyisocyanides 

The first polyisocyanides were prepared by Millich1 via an acid-coated glass system 

with a radical initiator or air. As mentioned in Chapter 2, the regular method for the 

polymerisation of isocyanopeptides is now a Ni(II)-catalysed reaction, discovered by 

Drenth et al.2 These catalysts are usual Ni(II) salts, such as NiCl2.6H2O or 

Ni(Acac)2.
3  A superficial overview of this mechanism would show that the lone pair 

on the carbon of the isocyanide moiety of the monomer coordinates to the Ni(II) 

centre. Four isocyanides are able to coordinate to the catalyst, causing the Ni(II) 

centre to obtain a square-planar configuration.3 Nucleophilic attack occurs on the 

monomer ligand by an alcohol or amine, which subsequently initiates the 

polymerisation.4 This nucleophilic attack renders the Carbon-Ni bond nucleophilic. 

Thereafter, this new nucleophile is able to attack another monomer that is 

coordinated to the catalyst, incorporating it into the growing polymer chain through 

an α-insertion. In the presence of a chiral centre on the monomer, one of the two 

neighbouring monomers will be favoured above the other. This will create a chiral 

bias.4 This cycle continues as the polymer grows through a number of consecutive α-
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insertions, as seen in Scheme 4.2. This allows for a sort of “merry-go-round” 

polymerisation.2 In this manner, the fifth side-group of the monomer is inserted in a 

manner in which it is positioned above the side group of the first monomer, and the 

ninth is above the fifth, etc. In this way a 41 helical configuration of the polymer chain 

is obtained.5 The energy released from the conversion of the monomer’s divalent 

carbon into a tetravalent carbon is the driving force behind this polymerisation 

reaction.3 

 

 

Scheme 4.2 A scheme representing the polymerisation 
mechanism, catalysed by a Ni(II) species. 

 

A more in depth investigation of this mechanism would include studies in which the 

reaction was followed using electron spin resonance, cyclic voltammetry and 

magnetic susceptibility measurements.4 The mechanism is believed to be more 

complex due to the presence of Ni(I) species, as well as due to the observed impact 

that the presence of oxygen has on the polymerisation process. This need for 

aerobic conditions was shown by Novak et al.6 It has been witnessed that in the 
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absence of oxygen, the polymerisation rate decreases. The inverse can be seen in 

the presence of oxygen. However, it has also been seen that the presence of oxygen 

can cause the isocyanide monomers to be converted into isocyanates.6 It is 

important to note that, in the presence of an excess of 10 equivalents of the 

isocyanide compared to the catalyst, the catalyst is reduced to Ni(I). However, in the 

presence of oxygen, an oxidation reaction reactivates the Ni-centre.6 

The Ni(II)-catalysed polymerisation of isocyanides is greatly influenced by the 

concentration of the Ni(II) catalyst, as well as the solvent in which the polymerisation 

takes place. The influence of the solvent was studied by Rowan and co-workers7, 

where their investigations incorporated polymerisation studies using toluene, 

dichloromethane, tetrahydrofuran and methanol. It was discovered that the most 

effective solvent for the polymerisations is toluene, as it produced the highest yields. 

Furthermore, the degree of polymerisation for polymers that were polymerised in 

toluene or tetrahydrofuran was higher than that of polymers synthesised in 

dichloromethane or methanol. The rate of polymerisation, studied using the 

isocyanide infrared (IR) stretching band, was also seen to be influenced by the 

solvent used. Toluene was observed to induce the fastest polymerisation, followed 

by dichloromethane. The lowest rate seen was for a polymerisation conducted in 

tetrahydrofuran, where the kinetic rate could not be studied for methanol. The 

conclusion drawn from this was that a decrease in solvent polarity increases the rate 

of polymerisation.7 

4.1.2 Gelation properties of poly(isocyanidopeptide) hydrogels  

It is believed that the thermal transition from solution to gel state occurs due to the 

ability of the side chains to bundle together.8 The thermal transition has been shown 

to be fully reversible, and the transformation from solution state to gel state has been 

shown to occur within seconds. The gel state polymer was visualised using atomic 

force spectroscopy (AFM) and cryo scanning electron microscopy (cryo-SEM), as 

seen in Figure 4.1. It was observed that the polymers formed bundles of polymer 

chains. The extent of bundling was analysed, using AFM, as well as the approximate 

bundle number, i.e. the average number of polymer chains per bundle, and was 

estimated to be 6.9.8 It was noted that the bundle dimensions were independent of 

the concentration of the polymer in solution. Solutions with larger concentrations 

showed a larger number of bundles, rather than thicker bundles.8 Rowan et al. have 
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also done single-particle tracking studies on the gel state of polymers grafted with 

triethylene glycol side chains. The preliminary results from this study showed that the 

nanoparticle diffusion coefficients are dependent on the concentrations.8 This 

indicates that, with a higher concentration of polymers, there are more bundles that 

lead to smaller pore sizes. Hence, the diffusion is more restricted through higher 

concentrations of polymer. The belief is that these results are related to the helical 

structure of the polymer, as well as to the intrinsic stiffness of the polymers, which is 

vital for the polymer’s ability to effectively mimic intermediate filaments. Moreover, 

the intrinsic stiffness of the polymer chains is also vital for the mechanical properties 

of the polyisocyanides.8 

 

 

Figure 4.1 Left: AFM image showing the polymer in the gel 
state. The pore sizes are seen to be around 100 nm and the 
bundles are approximately 1.4 nm, and made up of 6.9 
polymer chains. Right: Cryo-SEM image of the polymer in gel 
state. The nanopore network is similar to that seen in the 
AFM image.8  

 

4.1.3 Functionalising polyisocyanopeptide hydrogels 

The incorporation of the azide monomer allows for further functionalisation of the 

polymer. As mentioned in Chapter 3, this functionalization can be carried out using 

so-called ‘click’ chemistry, which in this case is a 1,3-dipolar cycloaddition of an 

azide and an alkyne, producing a linking 1,2,3-triazole ring.9,10 This post-

polymerisation functionalisation has proven to be a better strategy than pre-

modifying the monomer with the desired functional group, as the process of pre-

modifying the monomer is costly and tedious.10 A normal ‘click’ reaction requires the 
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presence of a copper (I) catalyst in approximately 5-10 mol% concentrations (relative 

to the azide/alkyne), which would compromise the potential use of the resulting 

hydrogels in contact with living cells or tissue. Thus, the copper-catalysed version of 

the click reaction is unsuitable for the functionalisation of such systems.11 To ensure 

that there are no toxic side effects for the cells, due to the presence of the copper 

catalyst, copper-free click chemistry can be utilised instead.12 This reaction has been 

shown to occur under ambient conditions without the need for a catalyst. The 

reaction between the azide and a cyclooctyne occurs spontaneously due to the ring-

strain of the cyclooctyne system. The ring-strain found in this eight-membered ring 

has been calculated to be 18 kcal.mol-1, and it has been seen to release this strain 

when the triazole is produced.13 Due to the absence of any auxiliary agents, this 

‘click’ reaction causes no negative-effects for the viability of living cells.12 These 

reactions have become a useful tool for labelling, or functionalising, polymers and 

proteins with probes.12  

4.2 Results and Discussion 

4.2.1 Synthesis and characterisation of polyisocyanopeptide hydrogels 

Three polymers, with different spacer monomer to “azide monomer” ratios and with 

different catalyst to monomer ratios, were synthesised, as shown in Table 4.1. The 

Ni(II) catalyst was dissolved in ethanol, which acts as the necessary nucleophile to 

activate the polymerisation. The molecular weight of the polymer chains can be 

controlled due to the relationship between the molecular weight and the monomer to 

catalyst ratio ([M]/[cat]).  

 

Table 4.1 A summary of the results obtained from 
polymerisations P1, P2 and P3. 

Sample 
Theoretical 

ratio  
(N3:spacer) 

Catalyst: 
monomer 

ratio 

Yield 
(%) 

Mw 
(SEC) 

(kg/mol) 

Mn (SEC) 
(kg/mol) 

ĐSEC 
Mw 

(AF4) 
(kg/mol) 

Mn 

(AF4) 
(kg/mol) 

Actual 
ratio  

(N3:spac
er) 

P1 1:200 1:10000 84.7 15644 5668 2.7 5876 3780 1:130 

P2 1:100 1:2000 85.6 669 321 2.1 18.20 16.42 1: 25 

P3 1:200 1:2000 58.7 668 321 2.1 19.09 18.03 1:135 
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The Ni(II) catalyst, which could be cytotoxic, was removed by precipitating the 

polymer in diisopropyl ether. The polymer was also purified using dialysis after 

conjugation. Thus, it is expected that all Ni(II) would be removed before the polymer 

has contact with cells. This was checked by doing a cytotoxicity study, in Chapter 5, 

where it was found that cells were viable in the presence of the polymer. Thus, it was 

concluded that the Ni(II) catalyst was sufficiently removed from the polymer system. 

The yield of the polymerisation ranged from 58.6 – 85.6 %. The infrared (IR) 

spectrum, see Figure 4.2 c, of P1 shows that the isocyanide band (2140 cm-1), seen 

in the IR spectra of the monomers, Figure 4.2 a and b, disappeared and was 

replaced with an imine absorption band at approximately 1596 cm-1. This indicated 

the formation of the polyisocyanide. Previous studies have shown that the amide 

vibration band shifts to a lower wavenumber after polymerisation.14 This shift is due 

to the formation of hydrogen bonds between the amide on side chain n and (n+4). 

These results can be seen in Figure 4.2, where the IR spectra for both of the 

monomers and P1 are shown, where the shifts from 3301 cm-1 to 3270 cm-1 can be 

seen when comparing the spectra of the spacer monomer to that of P1, the vertical 

line can be used as a visual aid. 
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Figure 4.2 A comparison of the IR spectra of a) the ‘spacer 
monomer’, b) the azide monomer and c) the polymer (P1) 

 

Due to the rigidity of the helical carbon backbone of polyisocyanides, it is well known 

that SEC is an inefficient method of measuring the absolute molecular weight of the 

polymers.15 Instead it is possible to use viscometry, AFM and field flow fractionation 

(FFF). FFF was first described by Giddings,16,17 and it allows for the separation of 

compounds based on their physicochemical properties, especially size, causing the 

compound’s retention times to differ within a narrow channel in which there is a field 

or a gradient. The retention is driven by a cross-flow field in flow FFF, as well as by a 

temperature gradient in thermal FFF. The compounds are then observed by the 

detector. The asymmetric flow field flow fractionation (AF4) results for P1-P3 are 

seen in Table 4.1. The results show a very high molecular weight for P1. It was 

thought that perhaps the high molecular weight was due to the [M]/[cat] ratio. P2 and 

P3 were synthesised with a lower [M]/[cat]) ratio (1:2000 rather than 1:10 000), with 

the aim to obtain polymers with a molecular weight of approximately 350-400 kg.mol-

1.18 According to SEC, the number average molecular weight (Mn) obtained for P2 

and P3 was 321 kg.mol-1, which is almost the targeted molecular weight. The degree 
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of polymerisation (DP) for both polymers was 1014. The high polydispersity was 

most probably due to the inefficiency of analysing polyisocyanides using SEC. 

However, the molecular weights obtained for P2 and P3 using AF4 are not within the 

targeted molecular weight. The eluent system used for these two polymers (an 

aqueous system) was different to that of P1 (acetonitrile and methanol). During 

analysis, the AF4 chamber is heated to 30 °C, which is above the gelation 

temperature of the polymer in aqueous solution; it is probable that P2 and P3 gelled 

within the chamber causing aggregation of the polymer chains, during the analysis. 

Since AF4 uses a chamber the aggregated polymer will move through the chamber, 

however the molecular weights detected will be below the actual molecular weights 

of the polymers. Since, the [M]/[cat] ratios have been extensively studied with regard 

to the molecular weight of the polymer,18 it is likely that the SEC results gave a more 

accurate indication of the molecular weight for P2 and P3, in this case.  

Circular dichroism (CD) spectroscopy experiments were carried out to study the 

secondary structure of the polyisocyanides, as seen in Figure 4.3. The results 

correspond to those seen in literature,8 whereby a small negative Cotton effect is first 

observed followed by a larger positive Cotton effect. This indicates that the polymer 

adopts a left-handed (M) helical conformation.15  
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Figure 4.3 CD spectra of P1-P3 dissolved in PBS buffer at a 
concentration 0.5 mg/mL 

 

4.2.2 Dye-Functionalising polyisocyanopeptide hydrogels 

The incorporation of the azide monomer in the copolymer allowed for the possibility 

of functionalising the polymer, either with epitopes or dyes. Due to the low feed ratio 

of the azide monomer, 1H NMR and FT-IR are not sensitive enough to be able to 

quantify the amount of azide monomer incorporated into the polymer. Thus, in order 

to determine the number of reactive sites, or free azides, available for 

functionalisation, ‘dye tests’ were conducted. In this test, the polymer is 

functionalised with 5-(N-(1-[(1R,8S,9s)-bicyclo[6.1.0]non-4-yn-9-yl]-3-oxo-2,7,10-

trioxa-4-azadodecan-12-yl]sulfamoyl)-2-[6- (diethylamino)-3-(diethyliminio)-3H-

xanthen-9-yl]benzenesulfonate rhodamine B conjugate  (BCN-rhodamine), as seen 

in Scheme 4.3, through a Cu-free click reaction.  

 

200 250 300 350 400 450

0

20

C
ir

c
u

la
r 

D
ic

h
ro

is
m

 /
 m

d
e

g

Wavelength / nm

 P1

 P2

 P3

Stellenbosch University  http://scholar.sun.ac.za



Chapter 5: Polymer Conjugation and Physiological Testing 

 

 

Scheme 4.3 Functionalisation of the polyisocyanide with 
BCN-rhodamine using 'click' chemistry. 

 

The test exploits the fact that BCN-rhodamin has a UV-vis absorbance at 559 cm-1, 

seen in Figure 4.4, whereas the polymer does not absorb at this wavenumber under 

UV-vis. Thus, if the polymer is dye-functionalised, it will absorb at 559 cm-1, and this 

absorbance depends on the amount of BCN-rhodamine that is attached to the 

polymer. Therefore, it is possible to indirectly calculate the amount of azide monomer 

present in the polymer by measuring the UV-vis absorbance at 559 cm-1 of the dye-

functionalised polymer.  
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Figure 4.4 The UV-vis spectrum of BCN-rhodamin 
functionalised polymer in CH2Cl2 (black) shows that the 
compound absorbs at 559 cm-1

, whereas this absorbance is 
clearly missing in the UV-vis spectrum of the 
unfunctionalised polymer in CH2Cl2 (blue).  

 

To carry out the ‘dye’ test, it was necessary to know the extinction coefficient of the 

BCN-rhodamin in CH2Cl2, which was calculated using the Beer-Lambert law:  

 

𝐴 = 𝜀𝐶𝑙                                                         1 

 

Where, A is the absorbance, C is the concentration, l is the path length and Ɛ is the 

extinction coefficient. The UV-vis absorbance of BCN-rhodamin in CH2Cl2 was 

plotted as a function of concentration, seen in Figure 4.5. From this it was possible to 

deduce that the extinction coefficient of BCN-rhodamin in CH2Cl2 is 10531 M-1cm-1 

with an R2 value of 0.997, was extracted.  
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Figure 4.5 A plot of the absorbance versus the concentration 
of BCN-rhodamine at a wavenumber of 559 cm-1, whereby the 
extinction coefficient can be obtained from the slope of the 
graph due to the Beer-Lambert law. 

 

Using the calculated extinction coefficient, in theory, it would be possible to use the 

absorbance values at 559 cm-1 of the polymers clicked to the dye to calculate the 

actual ratios of the monomers in the synthesised polymers. Previously, there have 

been issues using BCN-rhodamin for the dye test, as there have been difficulties 

with removing free rhodamin from the system.19 Therefore, in this study, the dye-

functionalised polymers were dialysed to remove the free rhodamin from the system 

before conducting the ‘dye’ test. It was found that the actual ratios, seen in Table 

4.1, depicted monomer ratios that were higher than those expected based on the 

ratios in the monomer mixture. Since, the major component of the polymer is the 

spacer monomer, pre-determined by the feed ratio of the monomers, it is believed 

that there is still free rhodamin in the system, accounting for the higher than 

expected results.  
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4.2.3 Gelation characteristics of polyisocyanopeptide hydrogels 

The polyisocyanopeptides in aqueous medium were seen to be in liquid state below  

18 °C, upon heating the solution gelled, as seen in Figure 4.6. 

 

 

Figure 4.6 When heated, polyisocyanides in aqueous solution 
transition from liquid state (left, 12 °C) to gel state (right,  
25 °C). 

 

The theory of the bundle size being independent of concentration was investigated 

through fluorescence microscopy, as seen in Figure 4.7. A concentration series of 

P3 in aqueous medium was visualised using super-resolution fluorescence 

microscopy, while the polymer was in gel state. The images seen in Figure 4.7 are 

three-dimensional structured illuminations of a conglomeration of z-stack images of 

the gels. Using POV-ray and a Python-based program, it was possible to create a 

reconstruction of the gels from the z-stacks.20 These images are shown in Figure 

4.8. These 3D-reconsititutions were carried out by Willie Pretorius (Department of 

Engineering, Stellenbosch University) under the guidance of Thomas Nielser. 
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Figure 4.7 Visualisation of a concentration series of P3, with 
concentrations ranging from 0.125 to 2.00 mg/mL in water, 
using fluorescence microscopy, where a) 0.125 mg/mL, b) 
0.25 mg/mL, c) 0.50 mg/mL, d) 1.0 mg/mL, and e) 2.0 mg/mL.  
1 unit on Scale bar: 5 µm. 

 

a) b) c)

d) e)
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Figure 4.8 3D reconstruction of z-stacked fluorescence 
microscopy images of different concentrations of polymer in 
aqueous medium in gel state, where a) 0.125 mg/mL b) 0.25 
mg/mL c) 0.5 mg/mL d) 1 mg/mL e) 2 mg/mL. 
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According to the results from AFM, as mentioned above, the bundles are 

approximately 1.4 nm in size, and bundle number is 6.9.8 Since the super resolution 

fluorescence microscope has a resolution of 100 nm, it was not possible to visualise 

the individual cluster of bundles. Furthermore, the pores seem to be smaller or 

similar in size compared to the pixels of the images produced through the 3D 

reconstructions, due to this limiting resolution of the fluorescence microscope, thus, it 

was not possible to individually measure the size of the pores. The AFM images 

show pore sizes that are approximately 50 nm in diameter,8 which would indeed be 

below the resolution of the microscope. As a consequence, comparative studies with 

the gelation theory, put forward by Rowan et al., were not possible. However, 

calculations were carried out whereby the amount of filled space in a set volume, i.e. 

the amount of gel in a pre-determine volume for each concentration sample, was 

determined. The calculations were carried out at three different thresholds, 15 %, 20 

% and 30 %. The threshold is a measure of the intensity of the pixel colour where the 

pixel is seen as 'empty'. Thus a threshold of 0 % means that the pixel needs to be 

completely black to be regarded as 'empty', while a threshold of 200 % means that 

even a quite bright pixel is seen as empty. The results were plotted as a function of 

concentration in Figure 4.9. 

 

 

Figure 4.9 A plot of the calculated amount of the volume of 
space filled with polymer as a function as the concentration 
of polymer in the solution at three different thresholds, where 
black represents a threshold of 15%, red is 20 % and blue is 
30 %. 
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A direct and linear relationship was predicted between the concentration and the 

percentage of filled space, or the amount of polymer in the system. This was verified 

between a concentration of 0.5 mg/mL and 2.0 mg/mL, where it is possible to see a 

linear plot, in Figure 4.9. However, samples below a concentration of 0.5 mg/mL do 

not fit within this linear relationship. It is believed that the limited resolution of the 

fluorescence microscope had an impact on the results that were obtained, especially 

at very low concentrations. Therefore, more investigations, at a higher resolution, 

would be necessary to further understand this gelation behaviour.   

4.3 Conclusion 

Three polyisocyanopeptide hydrogels were successfully synthesised using Ni(II)-

catalysed polymerisation. The polymers were characterised using SEC, AF4, CD, 

FT-IR and ‘dye’ tests. The results correlated well to those seen in previous studies.8 

It was found that the ‘dye’ test cannot be used as an absolutely quantitative method 

to obtain the actual comonomer ratios in the polymer, due to the interference of free 

rhodamine in the system. 

The bundling effect was studied using super resolution fluorescence microscopy, 

whereby z-stack images were taken of the gel and subsequently the images were re-

constructed into 3D representations of the gel. Although, it was possible to see pores 

and bundles, no conclusions could be drawn regarding the influence of concentration 

on the pore size, as the resolution of the z-stack images was below the size of the 

pixels of the 3D simulations. The fluorescence microscope has a resolution of 100 

nm, which should have been sufficient for the visualisation of the gel structures; 

however, due to the gel being a dynamic system, it is possible that the movement of 

the gel caused the images to blur slightly, which reduced the resolution of the 

images. The percentage of filled space of each 3D simulation was calculated, and 

thereafter plotted as a function of concentration. A linear relationship was found 

above a concentration of 0.5 mg/mL. It was concluded that more investigations, 

using higher resolution imaging, would be necessary to come to solid conclusions 

regarding the relationship between polymer concentrations and bundle and pore 

sizes of the gel. 
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4.4 Experimental 

4.4.1 General 

Chemicals 

All chemicals were purchased from Merck or Sigma Aldrich and used without further 

purification, unless stated otherwise. The ‘spacer monomer’ was purchased from 

Chiralex. It was purified via column chromatography (eluent: 30 % 

Acetonitrile/CH2Cl2). 

CD analysis 

CD spectra were measured using a Chirascan-Plus CD spectrometer with a 150 W 

air cooled Xe lamp light source. A high-performance UV-vis photomultiplier tube was 

used as a detector. Pro-Data control and viewer, CDNN secondary structure analysis 

software and APL data converter were used for data acquisition. Samples were 

scanned between 200 and 800 nm at a temperature of 25 °C.  

FT-IR analysis 

All FT-IR measurements were performed using Thermo Nicolet iS10 FT-IR 

spectrometer. Omnic software (version 6.0a) was used for instrument control and 

data analysis. 32 scans were performed for each sample, and they were scanned 

between 650 and 4100 cm-1.  

SEC analysis 

SEC was measured using a Shimadzu LC-10AT isocratic pump and a Waters 717+ 

autosampler. The column system was fitted with a PSS guard column (50×8 mm) in 

series with three PSS GRAM columns (300×8 mm, 10 µm, 2 × 3000 Å and 1 × 100 

Å) and a temperature of 40 °C was maintained. The polymer was detected using a 

Waters 2487 dual wavelength UV detector and a Waters 2414 differential refractive 

index (DRI) detector. The eluent was dimethylacetamide (DMAc) which was 

stabilised with 0.05 % BHT (w/v) and 0.03 % LiCl (w/v). The flow rate was  

1 mL.min-1. Before injection, the polymer samples were filtered through 0.45 µm 

GHP filters. This was done to remove any possible impurities. PMMA standard sets 

(690 g.mol-1 to 1.2 x 106 g.mol-1) (Polymer Laboratories) were used as calibration 

standards.  Millennium32 software (version 4) was used for data acquisition. 
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AF4 analysis 

The experiments were performed on an ambient temperature AF4-Instrument 

(AF2000, Postnova Analytics, Landsberg/Germany) which was coupled to a MALLS- 

(PN3609, Postnova Analyticsm Landsberg/Germany) and a RI-detector (PN 3140, 

Postnova Analytics, Landsberg/Germany). The channel was connected to three 

different pumps (tip, focus and cross-flow) while the injection port was coupled to an 

autosampler (PN 5300, Postnova Analytics, Landsberg/Germany).  The membrane 

was a regenerated cellulose membrane with an average cut-off of 10 000 Da.  The 

Mylar spacer used for definition of the channel height had a thickness of 350 μm.   

UV-vis analysis 

An AnalytikaJena Specord 210 plus was used to measure UV-vis spectroscopy. The 

software used for data acquisition was WinASPECTPlus (Version 4.1.0.0). The 

absorbance of the samples was measured at 559 nm. (For the extinction coefficient 

study samples were measured between 200 and 800 nm.) 

Fluorescence microscopy 

A Carl Zeiss Confocal LSM 780 Elyra S1 with SR-SIM super resolution platform was 

used for confocal and super resolution imaging of the gels. An alpha Plan-

Apochromat 100 x/1.46 Oil DIC M27 Elyra objective was used. 

Time-lapse imaging was used for the liquid to gel transition visualisation. It was done 

using MBS: MBS 458/561, MBS_InVis: Plate and FW1: NoneLSM beam splitters and 

a 561 nm laser. The images were taken on a single plane, on time-lapse mode.  

Super-resolution imaging was done with FW1: BP 570-620 + LP 750 Beam splitters 

and a 561 nm laser. The exposure time was 80.0 s and 3 SIM rotations were done. 

Z-stacking images were obtained with z scaling of 0.05-0.1 μm.  

3D Simulations 

POV-ray 3.7.0 (Persistence of Vision(tm) Ray Tracer Version 3.7.0) was used to 

create the 3D reconstructions from .TIF files obtained from the super resolution 

fluorescence microscope. The 3D images were then generated and the volumes 

were calculated using a Python (version 2.7.6)-based program. The simulations and 

calculations were carried out by Willie Pretorius, under the guidance of Thomas 

Niesler.  
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4.4.2 Polymerisation protocol 

Stock solution for Ni(II)(Cl2O4)2 • 6 H2O  Catalyst 

A 100 mL volumetric flask was charged with Ni(II) perchlorate hexahydrate  (39 mg, 

0.11 mmol) was dissolved in 10 mL absolute ethanol and stirred for ca. 1 h, or until 

fully dissolved. Thereafter, the solution was diluted with 90 mL freshly distilled 

toluene, and allowed to keep, up to a maximum of four weeks.  

General polymerisation protocol 

The glassware was dried for 2 h in an oven at 170 C. A 

drying tube containing calcium chloride was placed onto 

the RBF as soon as it was removed from the oven.  

The total mass of ‘azide monomer’ for all 

polymerisations was dissolved in 1 mL freshly distilled 

toluene.  

The total mass of spacer monomer used in all polymerisations was dissolved in 1 mL 

freshly distilled toluene. 

The two monomers were both added to the RBF in the correct ratios, as indicated in 

Table 4.1, and cooled to 0 C. This mixture was stirred. Thereafter, the correct 

volume of Ni (II) catalyst (1:10 000, Ni(II) catalyst : spacer monomer) was added to 

the mixture. Freshly distilled toluene was added to make up a final monomer 

concentration of 25 mg/mL. The reaction was stirred at 0 C and allowed to reach RT 

on its own, and the polymerisation reaction was ran for 72 h. Afterwards the reaction 

was stopped by opening the flask and diluting with minimal CH2Cl2, and the polymer 

was isolated by precipitation from diisopropyl ether and dried. The polymer was then 

re-dissolved in minimal CH2Cl2 and re-precipitated, this was repeated three times. 

Finally, the dried, brown polymer was weighed and stored in the freezer. Varying 

yields of 59 % – 86 % were obtained. 

The ‘dye test’ 

Polymer (3.0 mg) was dissolved in 3 mL CH2Cl2, and the solution was stirred for 1 h 

at r.t. A stock solution of BCN-rhodamine (1.64 mg/mL) was prepared in CH2Cl2. 

BCN-rhodamin was added in a mole ratio of 2:1 BCN-rhodamin to moles of azide 

functionality present in the polymer. The solution was stirred for 1 h at r.t. Afterwards 

the polymer was isolated by precipitation from diisopropyl ether, several times, until 
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colour of the dye was no longer visible in the filtrate. The polymer was then dried and 

weighed. The UV-vis absorbance at 559 cm-1 was measured and plotted as a 

function of concentration and the concentration of azide functionality present in the 

polymer was deduced. The results are shown in Table 4.1. 

  

Stellenbosch University  http://scholar.sun.ac.za



Chapter 5: Polymer Conjugation and Physiological Testing 

 

4.5 References 

 (1) Millich, F. Chem Rev 1972, 72, 101. 

 (2) Nolte, R. J. M. a. D., W. Acc Chem Res 1979, 12, 30. 

 (3) Nolte, R. J. M. Chem Soc Rev 1994, 23, 11. 

(4) Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. 

A. J. M. Chem Rev 2001, 101, 4039. 

(5) Schwartz, E., Koepf, M., Kitto, H. J., Nolte R. J. M. & Rowan, A. E. 

Polym Chem 2011, 2, 33. 

 (6) Deming, T. J.; Novak, B. M. Macromolecules 1991, 24, 326. 

(7) Koepf, M.; Kitto, H. J.; Schwartz, E.; Kouwer, P. H. J.; Nolte, R. J. M.; 

Rowan, A. E. Eur Polym J 2013, 49, 1510. 

(8) Kouwer, P. H. J.; Koepf, M.; Le Sage, V. A. A.; Jaspers, M.; van Buul, 

A. M.; Eksteen-Akeroyd, Z. H.; Woltinge, T.; Schwartz, E.; Kitto, H. J.; 

Hoogenboom, R.; Picken, S. J.; Nolte, R. J. M.; Mendes, E.; Rowan, A. 

E. Nature 2013, 493, 651. 

 (9) Lutz, J. S., H. Polymer 2008, 49, 817. 

(10) Kitto, H. J.; Schwartz, E.; Nijemeisland, M.; Koepf, M.; Cornelissen, J. 

J. L. M.; Rowan, A. E.; Nolte, R. J. M. J Mater Chem 2008, 18, 5615. 

(11) Dommerholt, J.; Schmidt, S.; Temming, R.; Hendriks, L. J. A.; Rutjes, 

F. P. J. T.; van Hest, J. C. M.; Lefeber, D. J.; Friedl, P.; van Delft, F. L. 

Angew Chem Int Ed 2010, 49, 9422  

(12) Agard, N. J.; Prescher, J. A.; Bertozzi, C. R. J Am Chem Soc 2004, 

126, 15046. 

(13) Turner, R. B., Jarrett, A. D., Goebel, P. & Mallon, B. J. J Am Chem Soc 

1973, 95, 790. 

(14) Cornelissen, J. J. L. M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M., PhD 

Dissertation, Radboud University, 2001. 

(15) Schwartz, E.; Palermo, V.; Finlayson, C. E.; Huang, Y.-S.; Otten, M. B. 

J.; Liscio, A.; Trapani, S.; González-Valls, I.; Brocorens, P.; 

Cornelissen, J. J. L. M.; Peneva, K.; Müllen, K.; Spano, F. C.; Yartsev, 

A.; Westenhoff, S.; Friend, R. H.; Beljonne, D.; Nolte, R. J. M.; Samorì, 

P.; Rowan, A. E. Chem Eur J 2009, 15, 2536. 

 (16) Giddings, J. C.; Yang, F. J. F.; Myers, M. N. Science 1976, 193, 1244. 

 (17) Giddings, J. C. Science 1993, 260, 1456+. 

(18) Mabesoone, M.; Rowan, A. E.; Kouwer, P. H. J.; Jaspers, M., BSc 

Dissertation, Radboud University, 2013. 

(19) Voerman, D.; Eksteen-Akeroyd, Z. H.; Rowan, A. E., MSc Dissertation, 

Radboud University, 2014. 

(20) Pretorius, W. & Niesler, T. B.Eng(HONS) Dissertation, Stellenbosch 

University, 2014. 

Stellenbosch University  http://scholar.sun.ac.za



P a g e  | 77 

 

Chapter 5: Polymer Conjugation and Physiological Testing 

Abstract 

Polyisocyanopeptide hydrogels functionalised with oligo(ethylene glycol) side chains 

were decorated with CIKVAV and cyclo(RGDfC) epitopes attached to 

dibenzocyclooctyne-maleimide, through copper-free click chemistry. The Kaiser test 

was used to verify the attachment of the epitopes onto the polymer. Cell viability 

tests showed that the decorated polymers were non-cytotoxic. The decorated 

polymers were, subsequently, tested for their ability to facilitate the cell attachment 

and process formation of GT1-7 cells. After incubation, Hoechst viability assessment 

and also MitoTracker Green tests were used to assess this differentiation of cells. 

The extent of the formation of mitochondrial networks in the cells was assessed by 

calculating the surface area of the networks using Python. It was found that the 

IKVAV epitope promoted neurite outgrowth in the cells more than the RGD epitope. 

However, it was also seen that the cells show better differentiation with more 

prominent mitochondrial network formation in the growth medium control than in the 

growth medium containing the gel. 

5.1 Introduction 

Laminins are a family of glycoproteins that form a major component of basement 

membranes.1,2 At least 14 isoforms of the five α, three β and three γ chains are 

known. Laminin-1 is made up of three chains, α1, β1, and γ1, held together by 

disulphide bonds, and it has been shown to be involved in many biological functions, 

such as cell adhesion, migration, neurite outgrowth, tumour metastasis and 

angiogenesis.3 Studies have found that this glycoprotein is over-expressed in the 

brains of patients suffering from Alzheimers and Down syndrome.4 There have been 

many investigations surrounding laminins, whereby all the chains have been cloned 

and sequenced. A peptide sequence, Ile-Lys-Val-Ala-Val (IKVAV), seen in  

Figure 5.1 (right), was found at the C-terminus of the α-1 chain. This motif has been 

identified as an active region within Laminin-1,5 and it is required for the biological 

activity of the protein.  

Arg-Gly-Asp (RGD), seen in Figure 5.1 (left) is another well-known peptide motif, 

which is found in the cell-binding domain of fibronectin.6 This epitope has been 

extensively studied and identified as the cell adhesion site for many proteins within 
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the extracellular matrix (ECM), blood and on the cell’s surface.7,8 By incorporating 

the RGD sequence into synthetic peptides it is possible to mimic the binding activity 

of the adhesion proteins. It is therefore possible to use RGD peptides, and mimics 

thereof, to promote cell migration, growth, differentiation and apoptosis within 

biological systems. Moreover, RGDs are being studied with the intent to find 

applications within pharmaceuticals.  

 

 

Figure 5.1 The structures of Cyclo(RGDfC) (left) and CIKVAV (right) 
are shown 

 

The primary aim of the current study is to establish the ability of a hydrogel 

decorated with the CIKVAV epitope to promote neurite outgrowth in hypothalamic 

neuronal mouse (GT1-7) cells. As mentioned in Chapter 2, there have been various 

scaffolds that have been tested in this regard. However, none have shown as 

promising ECM-mimicking capabilities as seen in these polyisocyanopeptide 

hydrogels. Therefore, these polymers have been targeted as a possible tissue-

engineering scaffold. 
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Scheme 5.1 General protocol for the preparation of the 
decorated polyisocyanopeptide hydrogels 

 

In order to test the establish the ability of the polymers to promote process formation, 

the development and adhesion of cells, in GT1-7 cells, it will be necessary to be link 

the IKVAV epitope to the hydrogel through a dibenzocyclooctyne-linker, by copper-

free click chemistry.9 The general approach for this is seen in Scheme 5.1. The 

dibenzocyclooctyne-maleimide moiety will be introduced onto the CIKVAV epitope 

by means of a Michael addition. Thereafter, the hypothalamic neuronal mouse (GT1-

7) cells will be seeded into the polymer solution in growth medium. The seeding will 

be carried out at a low enough temperature so that the polymer solution is in the 

liquid state, while ensuring that the cells do not die due to the cold. Thereafter, the 

seeded polymer solution will be incubated to 37 °C. The viability and efficacy of 

polyisocyanopeptide hydrogels decorated with IKVAV as scaffolds for the promotion 

of neurite outgrowth will be tested using fluorescence microscopy, with the aid of 

fluorescent markers, i.e. propidium iodide (PI), Hoechst 33342 (Hoechst) and 

MitoTracker Green (MTG). The hydrogels will also be decorated with cyclo(Arg-Gly-

Asp-D-Phe-Cys) (Cyclo(RGDfC)) which will be used as a control in the cell testing. 

This decorated hydrogel will be prepared in the same manner as mentioned above. 
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5.2 Results and Discussion 

5.2.1 Epitope preparation 

The IKVAV peptide contains a cysteine amino acid attached to the isoleucine, H-

CIKVAV-NH2, so that the thiol functional group can be used to attach the peptide 

sequence to dibenzocyclooctyne-maleimide, seen in Scheme 5.2, to yield compound 

27a. Since cyclo(RGDfC) also contains a thiol group, the same general procedure 

can be followed in the synthesis of compound 27b. The addition of the thiol to a 

cyclooctyne was done as illustrated in Scheme 5.2, whereby dibenzocyclooctyne-

maleimide was reacted with the CIKVAV peptide through a Michael addition.10 Since, 

dibenzocyclooctynes are stable and unreactive with thiols and amines, the Michael 

addition will only occur at the maleimide position, and thus it will not disrupt the 

cyclooctyne ring when coupling the peptide sequence to the cyclooctyne 

compound.11  

 

 

Scheme 5.2 Michael addition reaction between the thiol functional 
group on the CIKVAV and cyclo(RGDfC) peptide sequences with the 
dibenzocyclooctyne-maleimide to obtain the peptide with a 
functional group that can be ‘clicked’ copper free onto the polymer. 

 

Both of the reaction mixtures formed precipitates, therefore, at the end of the 

reaction, the mixtures were centrifuged. The pellets were separated from the 

supernatant, and both the pellet and supernatant were analysed by LC-MS. The 

chromatograms for the pellets are seen in Figure 5.2 and Figure 5.3, for compounds 

27a and 27b, respectively. It was found that the pellet contained a higher 
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concentration of the products and a lower concentration of the reagents, where 27b 

was seen to elute at 4.66 minutes. The LC-MS spectrum for the pellet of 27a, did not 

show a sharp peak as a representation of the product eluting. Instead, a broad band 

with a number of compounds eluting was seen. It is believed that this is possibly due 

to the formation of a mixture of diastereomers due to the chiral centre formed 

between the thiol and the maleimide. Furthermore, it is possible that intramolecular 

hydrogen bonds form, causing the compound to interact slightly differently with the 

LC column, thus the product shows a broad elution time. 

 

 

Figure 5.2 LC-MS Chromatogram of the pellet obtained in the 
synthesis of 27a. Main chromatogram: Total ion chromatogram 
(TIC); Insert: Extracted Ion Chromatogram with red representing 
the CIKVAV reagent (m/z 630-631), green represents the 
dibenzocyclooctyne-maleimide reagent (m/z 427-428) and the 
purple and blue chromatograms represent the product (m/z 529-
531, which is the doubly charged species and m/z 1059-1060, 
respectively). 
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Figure 5.3 LC-MS spectra of the pellet of 27b. The peak that eluted at 
4.66 minutes is compound 27b, and the compound that eluted at 5.47 
minutes is the reagent dibenzocyclooctyne.  

 

5.2.2 Polymer functionalization 

 

Table 5.1 Sample names and components of each of the 
decorated polyisocyanopeptides 

Sample name Components 

28a P2 + dibenzocyclooctyne + CIKVAV + BCN-maleimide 

28b P2 + dibenzocyclooctyne + cyclo(RGDfC) + BCN-maleimide 

28c P2 + dibenzocyclooctyne + BCN-maleimide 

28d P2 + BCN-maleimide 

 

It is then possible, using Cu-free click chemistry, to use the dibenzocyclooctyne as a 

linker between the polymer and the epitopes. It has been observed that electron-

withdrawing groups, attached to the cyclooctyne, may increase the rate of the Cu-

free click reaction.11 Dibenzocyclooctyne has been shown to react quickly with 

azides to produce triazoles with quantitative yields. Due to difficulty in purifying 27a 

and 27b, the pellets for both were used without further purification to functionalise P2 

(Table 4.1 page 62) with the IKVAV and the RGD epitopes forming 28a and 28b, 

respectively, following the method described in Scheme 5.3. The polymer is only 

able to react with a cyclooctyne-containing compound in the Cu-free click reaction 
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conditions. Therefore, any remaining free-CIKVAV or cyclo(RGDfC) reagents in 27a 

and 27b, respectively, would be removed from dialysing the polymer system after 

conjugation. In order to eliminate any interference in possible results, a control, 28c, 

was prepared whereby the polymer was clicked to unreacted dibenzocyclooctyne-

maleimide, as this reagent was still present in both 27a and 27b.  A final polymer 

control, 28d, was prepared from P2-coupled only to BCN-rhodamine. 28d was 

prepared due to the presence of BCN-rhodamine in each of the other decorated 

polymers. Each of the decorated polymers and their components are described in 

Table 5.1, above. 

 

 

Scheme 5.3 This represents the Cu-free ‘click’ chemistry whereby 
CIKVAV or cyclo(RGDfC) epitopes attached to the 
dibenzocyclooctyne linker are reacted with the azide pendant 
group on the polymer. 
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Due to the low spacer monomer to ‘azide monomer’ feed ratio, NMR spectroscopy is 

not sensitive enough to show whether the epitopes were successfully conjugated to 

the polymer. Therefore, the Kaiser test was performed to verify this.12 This test, also 

known as the ninhydrin test, is able to detect the presence of primary amines 

through a colour change from yellow (negative) to blue-green (positive). The strength 

of the colour is directly related to the concentration of primary amines. Dialysis was 

used in order to purify the decorated polymer, before the Kaiser test was performed. 

The results of the test are seen in Figure 5.4. 

 

 

Figure 5.4 The visual results of the Kaiser test, where 1) Control, 
2) P2, 3) 28a, 4) 28b, 5) 28c and 6) 28d. 

 

Negative results for the Kaiser test are seen in the Control (Test tube 1), containing 

only DMF and the reagents for the Kaiser test, P2 (Test tube 2), 28c (Test tube 5), 

and 28d (Test tube 6), as seen in Figure 5.4, which correspond to the lack of primary 

amines in all of the samples. However, the samples containing 28a (Test tube 3) and 

28b (Test tube 4), also seen in Figure 5.4, show a positive result for the Kaiser test, 

which indicates that the CIKVAV and cyclo(RGDfC) epitopes  were successfully 

clicked to P2 in 28a and 28b. 

5.2.3 Polymer testing with cells 

Initially, a test reaction, S1, was done using GT1-7 cells and a solution of 28d in 

growth medium (made from Dulbecco's modification of Eagle's medium (DMEM), 

antibiotics and anti-fungal agent) to acquire the cytotoxicity of the polymer. It has 

been found that a more desirable outcome is achieved when cell cultures are 

introduced to the hydrogel before the sol-gel transition has taken place. This is due 

1 2 3 4 5 6
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to the pores of the hydrogel being smaller than a cell’s diameter.13 Therefore, the 

GT1-7 cells were seeded into a solution of polymer in growth medium, below the 

gelation temperature. Thereafter the cell-polymer solution was incubated at 37 °C, 

which is the correct physiological temperature for the cells as well as being above 

the gelation temperature of the hydrogel, thus the cell-polymer solution was in gel 

state. In cell studies, it is important to have a way of identifying the viability of the cell 

as well as a manner in which to determine the effect that a specific study has on the 

cells being investigated. Staining cells with fluorescent compounds allows for 

visualisation of the cell and further provides a large amount of information about the 

cell function. It is possible to target specific cell activities as well as cell structures, 

including cell membranes, organelles, proteins and nucleotides. It has become 

convention to stain cells with various fluorescent markers for which the cell 

membrane is permeable or impermeable. The viability of the cells was visualised 

after 24 h of incubation by adding propidium iodide (PI) and Hoechst dye to the cell 

samples. PI intercalates with the DNA double helix,14 whereas Hoechst attach 

themselves to the minor groves of the DNA double helix.15,16 At physiological 

conditions, Hoechst molecules are positively charged and are, therefore, able to 

move through the viable cell membrane. Thus, they are used to evaluate the nuclear 

morphology of cells within the cytoplasm.17 Hoechst can also be used to assess 

pathogen nuclear morphology, such as nuclear condensation, which is an indication 

for apoptotic cell death. If PI is able to permeate the cell membrane, i.e. the cell is 

stained red, it indicates necrotic cell death. Viable cell membranes are impermeable 

to PI.18 No quantifiable difference was seen between the viability of the cells seeded 

in only growth medium (Control) and in the presence of 28d. The images are seen 

in Figure 5.5 (Control) and Figure 5.6 (28d). Thus, the polymer was judged to be 

non-cytotoxic. Some debris was seen around the cells. However, the cells did not 

seem to show signs of distress as adhesion took place and there was little cell death. 

The debris did not contain DNA as they did not illuminate as blue from Hoechst dye. 

Therefore, it was concluded that the debris was not a bacterial contamination, and 

was not considered important to the cell study. 
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Figure 5.5 Fluorescence micrographs and transmission 
micrographs of the Control of the cytotoxicity test, S1, after 
incubation for 24 h and after PI and Hoechst dye were added to 
the samples. The channels used were A) blue, B) red,  
C) transmission and D) all channels. Scale bar: 20 µm . 

 

Figure 5.6 Fluorescence micrographs and transmission 
micrographs of the sample containing 28d (1.0 mg/mL) of the 
cytotoxicity test, S1, after incubation for 24 h and after PI and 
Hoechst dye were added to the samples. The channels used 
were A) blue, B) red, C) transmission and D) all channels. Scale 
bar: 20 µm. 
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Thereafter, GT1-7 cells were seeded into solutions of 28a, 28b, 28c, 28d in growth 

medium as well as a Control at a cell density of 20 000 cells per sample, S2. After 

72 h of incubation, the cell samples were stained with Hoechst and MTG. MTG is a 

fluorochrome that is used to stain mitochondria.19 Mitochondria are important 

organelles when testing cell viability and cell function. This is due to their presence in 

almost all eukaryotic cells as they are the ‘power house’ of the cell, due to their 

assistance in producing adenosine triphosphate (ATP), the cell’s major energy 

source.20 The cell type, cell cycle and cell viability can be assessed through 

evaluating the shape, abundance and location of the mitochondria in the cell. MTG 

molecules are able to permeate the cell membrane, and their intensity signal is 

directly related to the concentration of ATP in the mitochondria.19  After adding the 

fluorochromes to the cell samples, they were then viewed under the fluorescence 

microscope using blue, red, green and transmission (Trans) channels for 

illumination, see Figure 5.8. The images of 28c and 28d are in the Experimental 

Section below, see Figure 5.13. Due to the polymer being functionalised with BCN-

rhodamine, the red illumination from the Red lamp is due to the presence of P2. After 

visualising that the decorated polymer material was not cytotoxic, use of PI was not 

necessary in the case of the further cell studies, as the viability of the cell can also 

be indicated by the morphology of the mitochondria, as they are very sensitive to the 

cellular health and play an important role in cell death.21 Furthermore, a healthy and 

happy cell will adhere and then begin to spread, whereas a cell that is under stress 

or is in an undesirable environment will remain a small circle, as seen in Figure 5.7. 

 

 

Figure 5.7 Examples of transmission micrographs indicating 
adhering (happy) cells (A) and cells that are not adhering (less 
happy) (B). Scale bar: 100 µm. 
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Figure 5.8 Fluorescence micrographs and transmission 
micrographs of the samples containing Control (left) 28a 
(middle) and 28b (right) in S2, after incubation for 72 h and after 
MTG and Hoechst dye were added to the samples. The channels 
used were A) blue, B) green, C) red, D) trans and E) all channels. 
Scale bar: 20 µm. 

 

It was seen that the GT1-7 cells in all of the samples, including the Control, did not 

adhere as effectively as anticipated 72 hours post seeding. The seeding density was 

increased so that more cells per field of view could be assessed, to provide a better 

understanding of their adhesion. Therefore, the experiments were repeated with 

30 000 GT1-7 cells per sample, S3 and 60 000 GT1-7 cells per sample, S4. The cell-

polymer samples were incubated for 48 h. The images for the Control, 28a and 28b 

in S3 can be seen in Figure 5.9, and 28c and 28d can be seen in Figure 5.14, in the 

Experimental section. The images for 28a and 28b in S4 can be seen in Figure 5.10, 

and 28c can be seen in Figure 5.15. Since S3 and S4 were cultured on the same 

plate, only one Control was necessary for both tests, this control was cultured with 

30 000 GT1-7 cell density. 
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Figure 5.9 Fluorescence micrographs and transmission 
micrographs of the Control (left), 28a (middle) and 28b (right) for 
S3, after incubation for 48 h and after MTG and Hoechst dye 
were added to the samples. The channels used were A) blue,  
B) green, C) red, D) trans and E) all channels. Scale bar: 20 µm. 

 

Figure 5.10 Fluorescence micrographs and transmission 
micrographs of the samples containing 28a (left) and 28b (right) 
in S4, after incubation for 48 h and after MTG and Hoechst dye 
were added to the samples. The channels used were A) blue,  
B) green, C) red, D) trans and E) all channels. Scale bar: 20 µm. 
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More process formation was seen with the increase in cell density. S4, which 

contained 60 000 cells per sample showed more process formation than S3, 

containing 30 000 cells per sample, seen in Figure 5.9 and Figure 5.10, for S3 and 

S4 respectively. In order to quantify this process formation one of the major 

techniques in life sciences was employed, whereby the mitochondrial networks, an 

interconnected and complex system of mitochondria,22 are detected and quantified 

as a method of monitoring cell function and cell growth. Pixel-wise co-localisation 

analysis can be used in the determination and quantification of the extent of 

mitochondrial networking, although it is not always the preferred method for this 

analysis, as it is vulnerable to noise and background fluorescence.23 A python-based 

program, was used to calculate, from images rendered by Pov-ray, the surface area 

of the mitochondrial network for each cell culture of S3 and S4. The results are seen 

for S3 in Figure 5.11 (green) and for S4 in Figure 5.12 (green). Furthermore, it is 

possible to measure the surface area occupied by the cells relative to the total area 

within a fluorescence microscopy image. As shown in Figure 5.7, a more suitable cell 

environment would allow for more axon and dendrite formation, leading to larger cell 

surface areas. Small, round cells is an indication that the cells have undergone less 

process formation. Therefore, this measurement lends itself to being a quantitative 

measure of process formation. The surface area occupied by the cells was relative to 

the total area was measured using ImageJ, the results can be seen in Figure 5.11 

(red) and Figure 5.12 (red), for S3 and S4, respectively.  
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Figure 5.11 The surface area relative to the total area that is 
occupied by the cell (red) and by the mitochondrial network 
(green) in S3. 

 

 

 

Figure 5.12 The surface area relative to the total area that is 
occupied by the cell (red) and the mitochondrial network (green) 
in S4. 
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The Control shows the largest surface area occupied by mitochondrial networking 

as well as the largest amount of surface area occupied by the cells. A more tubular 

network is seen in the Control, which shows that more mitochondrial fusion is taking 

place in the Control than in the rest of the samples, indicating a likely more viable 

environment for the cells. The cells within the Control have undergone more 

dendrite and axon formation than cells in any other sample of the same cell density. . 

No conclusions can be drawn regarding the influence of the epitopes conjugated to 

the polymers, on cell development. This is due to the fact that all of the cell samples, 

cultured in polymer, developed to a similar degree. However, it was observed that 

the cells were not inhibited from developing in the presence of the gel, since cell 

processing was observed in all of the cell studies. Therefore, this study can be 

viewed as a preliminary base for the physiological testing, however better refinement 

and optimisation is necessary to study the polymer’s scaffolding abilities. This should 

include the optimisation of the concentration of the gel, as well as the concentration 

of the IKVAV epitopes conjugated to the polymer, in order to obtain the most suitable 

environment for cell differentiation. Further, the refinement of the composition of the 

growth medium is necessary, in order to obtain an environment that is fully 

dependent on the polymer for differentiation, in other words, no cell processing 

would be observed in the Control sample. Furthermore, the type of cells used in the 

cell studies should be revisited, since GT1-7 progenitor cells are perhaps not the 

best option for the study at hand.  

5.3 Conclusion 

It was possible to use a dibenzocyclooctyne-maleimide linker to decorate the azide 

pendent end group of polyisocyanopeptide hydrogels, functionalised with 

oligo(ethylene glycol) side chains, with CIKVAV and cyclo(RGDfC) epitopes, through 

Cu-free click chemistry. This decoration was verified using the Kaiser test, whereby 

the polymers decorated with both of the motifs tested positive for primary amines, 

whereas the polymers without the two epitopes tested negative. 

Furthermore, the polyisocyanopeptides proved to be non-toxic to cells. This was 

shown through fluorescent microscopy by adding PI and Hoechst dye to samples 

containing GT1-7 neuronal cells after incubation for 24 h in a solution of growth 

medium containing the polymer. Moreover, it was shown that a cell density of 30 000 

cells was necessary for cell attachment to take place, although a higher cell density 
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of 60 000 cells led to more process formation. In addition, it was noted that the cells 

surrounded by only growth medium, the Control, showed higher levels of cell 

attachment and mitochondrial networking than those seeded into growth medium 

containing polyisocyanopeptide hydrogels. The difference in neurite extension 

between the polymer-containing samples is not very conclusive, more testing would 

be necessary in the future, and a larger sample size would be required to achieve 

higher statistical relevance. Furthermore, a more viable polymer environment would 

be necessary for the cells. With this aim in mind, perhaps a lower concentration of 

gel, or a different approach for cell seeding could be attempted. 

5.4 Experimental 

5.4.1 General 

Chemicals 

All chemicals were purchased from Merck or Sigma Aldrich and used without further 

purification, unless stated otherwise. CIKVAV was purchased from jpt and 

cyclo(RGDfC) was purchased from GLS (GL Biochem (Shanghai) LTD). 

Fluorescence Microscopy 

An Olympus IX-81 inverted fluorescence microscope system was used for cell 

imaging with objectives of x40 and x60 and an F-view cooled CCD camera. The 

instrument uses a Xenon-Arc burner as a light source and it is equipped with 360 

nm, 492 nm and 572 nm excitation filters as well as a U/B/G triple-band pass 

emission filters for the detection of blue, green and red fluorescent markers. The 

software used for data acquisition and processing was Cell R Live Imaging Software.  

Mitochondrial network measurements 

POV-ray (Persistence of Vision(tm) Ray Tracer Version 3.7.0) was used to create 

the reconstructions from .TIF files obtained from the Olympus fluorescence 

microscope. Two-dimensional images were then generated and the surface areas of 

the mitochondrial networks were calculated using a Python (version 2.7.6)-based 

program. Three images were assessed per sample group. The calculations were 

carried out by Willie Pretorius, under the guidance of Thomas Niesler.25  
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Measurements of surface area occupied by cell  

ImageJ (version 1.48) was used to measure the cell surface area. Three images 

were assessed per sample group. In this method, random fields of view were 

selected. 

5.4.2 Synthetic Protocol 

Dibenzocyclooctyne-maleimide-CIKVAV (27a) 

Dibenzocyclooctyne-maleimide (2.22 mg, 5.19 μmol) was dissolved in 50 μL dry 

DMSO. CIKVAV (1.635 mL, 2 mg/mL in PBS buffer) was added to the 

dibenzocyclooctyne-maleimide solution. A white precipitate formed immediately with 

the addition of the dibenzocyclooctyne-maleimide. The mixture was shaken/stirred 

for 12 h. Catalytic amounts (1 %) of ethylene diamine were added to the solution24 

and the reaction mixture was stirred for a further 12h. The solution contained a white 

precipitate. A pellet was obtained by centrifuging the mixture and removing the 

supernatant. Both the pellet and supernatant were analysed using LC-MS. 27a, as 

well as the two reagents, were seen in the pellet. The pellet was used without further 

purification.  

Dibenzocyclooctyne-maleimide-cyclo(RGDfC) (27b) 

The same procedure was used as with 27a, however, the reaction was allowed to 

stir for 72 h without adding any catalyst. LC-MS was used to analyse the pellet and 

supernatant. It was seen that the pellet containing mainly 27b and 

dibenzocyclooctyne-maleimide reagent, while the supernatant contained more of the 

reagents. The pellet was used without further purification. 

Dibenzocyclooctyne-CIKVAV-P2 (28a) 

P2 (20 mg) was dissolved in 15 mL acetonitrile, ensuring that the polymer was 

completely dissolved. The mass of 27a corresponding to 75 % of the P2 molar 

azide:spacer monomer ratio was added to the solution, as well as the mass of BCN-

rhodamine corresponding to 25 % of the P2 molar azide:spacer monomer ratio were 

added to solution of P2, and the reaction was stirred at 4 °C for 4 days. The solution 

was dialysed in 50 % MeOH/Water for 48 h and then 100 % MeOH for a further 12 h. 

The polymer was precipitated into diisopropyl ether, as described above, and then 

dried. 
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Dibenzocyclooctyne-cyclo(RGDfC)-P2 (28b) 

The same procedure was followed as for 28a, but using 27b instead of 27a. 

Dibenzocyclooctyne-P2 (28c)  

The same procedure was followed as for 28a, but using dibenzocyclooctyne-

maleimide instead of 27a. 

BCN-rhodamine-P2 (28d)  

The same procedure was followed as for 28a, except only the BCN-rhodamine was 

added. 

Cell-polymer seeding cytotoxicity test (S1) 

28d was dissolved, at 4 °C, at a concentration of 1.0 mg/mL and 2.0 mg/mL in 

aqueous growth medium made up of Dulbecco's Modified Eagle's medium (DMEM) 

and antibiotic/antimycotic solution from Sigma Aldrich, containing penicillin and 

amphotericin B. After the polymer was fully dissolved, 200 μL of each of the solutions 

was separately added to 200 μL of GT1-7 cells in the same growth medium (20 000 

cells per sample), at 12 °C, making a final concentration of 0.5 mg/mL and 1.0 

mg/mL of polymer, respectively. The cell-polymer solution was incubated at 37 °C for 

24 h.  

Process formation test 1 (S2) 

28a, 28b, 28c and 28d were dissolved in aqueous growth medium at 2.0 mg/mL, at 

4 °C. 100 μL of the 2.0 mg/mL solutions were separately added to 150 μL of the 

GT1-7 cells in growth medium (20 000 cells per sample), at 12 °C. The cell-polymer 

solutions were incubated at 37 °C for 16 h and then imaged on the fluorescence 

microscope. Thereafter, the cells were incubated at 37 °C for a further 56 h. 

Process formation test 2 (S3) 

28a, 28b, 28c and 28d were dissolved in aqueous growth medium, at 4 °C, at a 

concentration of 2.0 mg/mL. 200 μL of the polymer solutions were separately added 

to 200 μL of the GT1-7 cells in growth medium (30 000 cells per sample), at 12 °C. 

The cell-polymer solutions were incubated at 37 °C for 48 h. 
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Process formation test 3 (S4) 

28a, 28b, 28c were dissolved in aqueous growth medium at a concentration of 2.0 

mg/mL, at 4 °C. 200 μL of the polymer solutions were separately added to 200 μL of 

the GT1-7 cells in growth medium (30 000 cells per sample), at 12 °C. The cell-

polymer solutions were incubated at 37 °C for 48 h. 

5.4.3 Supplementary images 

 

 

Figure 5.13 Fluorescence micrographs and transmission 
micrographs of the samples containing 28c (left) and 28d (right) 
in S2, after incubation for 72 h and after MTG and Hoechst dye 
were added to the samples. The channels used are A) blue, B) 
green, C) red, D) trans and E) all channels. Scale bar: 20 µm. 
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Figure 5.14 Fluorescence micrographs and transmission 
micrographs of the samples containing 28c (left) and 28d (right) 
in S3, after incubation for 48 h and after MTG and Hoechst dye 
were added to the samples. The channels used are A) blue, B) 
green, C) red, D) trans and E) all channels. Scale bar: 20 µm. 

 

Figure 5.15 Fluorescence micrographs and transmission 
micrographs of the samples containing 28c in S4, after 
incubation for 48 h and after MTG and Hoechst dye were added 
to the samples. The channels used are A) blue, B) green, C) red, 
D) trans and E) all channels. Scale bar: 20 µm. 
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Chapter 6: Conclusion and Future Perspectives 

6.1 Conclusion 

The current study investigated the possibility of using polyisocyanopeptide hydrogels 

functionalised with oligo(ethylene glycol) side chains, as scaffolds for tissue 

engineering. The particular focus on these polymers was due to the claims that they 

are able to mimic, in almost in every manner, the extracellular matrix of cells.1 

Polyisocyanopeptide hydrogels were decorated with the laminin-derived epitope, 

IKVAV, in the hope of promoting neurite extension and differentiation of neuronal 

GT1-7 progenitor cells.  

Furthermore, the study explored the mechanism with which the polyisocyanides in 

question are able to gel. Previous studies, using atomic force microscopy, have 

shown that the polymers form clusters of bundles and pores in the gel state.1 These 

bundles have been shown to be independent of concentration, but the number of 

bundles in a cluster increases with increased concentration of polymer; and in so 

doing, it causes an inverse relationship between pore size and concentration. This 

theory was investigated using fluorescence microscopy, and further through three-

dimensional reconstruction of the gel.  

Chapter 1 gave a brief introduction to polyisocyanopeptide hydrogels functionalised 

with oligo(ethylene glycol) side chains. The chapter also described the primary 

objectives of the study, whereby the polymer would be decorated with IKVAV 

epitope and tested for its ability to act as a scaffold for the promotion of GT1-7 

neuronal progenitor cells into neurons. Chapter 2 presented a more in-depth 

discussion on the importance of an ECM-mimicking scaffold. In addition, it also 

described other important characteristics of scaffolds, such as biocompatibility, non-

toxic biodegradability, mechanical strength, etc. The chapter also introduced 

scaffolds that have been studied previously in neuronal tissue engineering. It 

especially discussed the importance of the work from Stupp et al. in this field, 

focusing especially on their peptide amphiphile systems. Moreover, Chapter 2, 

motivated the study of polyisocyanides functionalised with oligo(ethylene glycol) side 

chains as potential tissue engineering scaffolds. This was achieved by first 
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describing previous work that has been carried out on a range of 

polyisocyanopeptides, and subsequently focusing on the hydrogel system at hand. 

Chapter 3 described the various methods that were attempted in producing the 

‘azide monomer’. It was found that the method described in literature did not yield 

the desired results. Instead, the monomer was synthesised by first attaching the 

azide functionality to the tetraethylene glycol. Thereafter, DCC- and EDC-mediated 

Boc-alanine coupling reactions were performed, with a Boc-deprotection step 

between the two coupling steps. After a second deprotection, the primary amine was 

formylated, and finally dehydrated, forming the ‘azide monomer’. This monomer was 

used in Chapter 4, where it was copolymerised with a bought, non-functional spacer 

monomer, in different monomer feed ratios and Ni(II) catalyst to monomer ratios. The 

resulting polymers were characterised using 1H NMR, SEC, AF4, CD, FT-IR and 

‘dye’ tests.  

The mechanism of gelation was also a focal point in Chapter 4. The theory brought 

forward by Rowan et al. regarding the gel being a porous structure due to the 

formation of clusters of bundles of the polymer, was investigated using SR-SIM 

fluorescence microscopy. The z-stack images that were obtained were thereafter 

reconstructed into a three-dimensional representation of the gels. However, due to 

the limited resolution of the obtained microscopy images relative to the feature sizes 

in the gel, no conclusive evidence was obtained to prove or disprove the theory. 

However, it was possible to calculate and plot the percentage of filled space within 

the simulated image as a function of concentration. A linear relation was found 

between 0.5 to 2.0 mg/mL. However, below 0.5 mg/mL inconclusive results were 

obtained. It was believed that this could be due to the low concentration of polymer 

in combination with the limited resolution of the microscope. 

Chapter 5 described the preparation of the CIKVAV and cyclo(RGDfC) epitopes. 

This included the Michael addition of the thiol moiety of these peptides to a 

dibenzocyclooctyne-maleimide linker. Thereafter, Cu-free click chemistry was utilised 

in order to conjugate the epitopes to the polymer. These click reactions were verified 

by use of the Kaiser test, which indicates the presence of free amines. The polymer 

was then tested to ascertain the absence of cytotoxicity. It was found that after 24 h 

of incubation, the cells, seeded in a polymer-growth medium solution, showed equal 
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viability to that seen in the Control (containing just growth medium). Moreover, these 

decorated polymers, as well as two control polymers, were seeded with GT1-7 cells. 

Thereafter, their ability to differentiate the cells into neurons was tested. It was found 

that the cells formed better and obtained more mitochondrial networks in the Control 

containing no polymer, than in the samples containing the gel. However, within the 

polymer samples, it was seen that the IKVAV-decorated polymer showed the highest 

levels of neurite outgrowth. This was measured by calculating the surface area of the 

mitochondrial network, as well as the occupied surface area of cells related to the 

total area.  

6.2 Future Perspectives 

To further establish whether polyisocyanopeptide hydrogels grafted with 

oligo(ethylene glycol) side chains can act as an ECM-mimicking scaffold, it is 

necessary to investigate a number of other factors. One such factor is the 

biodegradability of the polymer. The strength of the polyisocyanide carbon backbone 

could pose problems with regard to the degradation of the polymer. Since very low 

concentrations of the polymer are necessary for it to act as a 3D scaffold, it is 

possible that this degradation is unnecessary. This must be established. Another 

route would to perhaps look at using a helical polypeptide backbone that is able to 

attain similar properties as the polyisocyanide carbon backbone. This polymer would 

then possibly be able to break-down after it has performed its function as a scaffold, 

in order to allow for the ECM of the cells/tissue to take over.  

A study has been proposed whereby the density of IKVAV along the backbone, 

necessary to promote neurite outgrowth, is tested. A polymer would be decorated 

with varied concentrations of the IKVAV epitope. These polymers would then be 

seeded with GT1-7 cells. After incubation, the cells would be stained with fluorescent 

markers in order to track their process (axon and dendrite) formation. In a manner 

similar to the one reported in this study, this process formation can then be 

quantified by measuring the surface area occupied by the cells, as well as by the 

mitochondrial network as a function of the total surface area. A similar study is 

suggested, which allows for the establishment of the optimum concentration of gel. A 

concentration gradient of each of the above-mentioned IKVAV-decorated polymers 

Stellenbosch University  http://scholar.sun.ac.za



P a g e  | 103 

 

would be seeded with GT1-7 cells and thereafter the process formation would be 

tracked, as above. Furthermore, in order to gain higher statistical power, larger 

sample size should be used for the cell seeding experiments. In order to obtain 

better quality results, a number of refinements should be made, such as ensuring 

that the cells do not clump together, or form a homogenous layer. This could 

possibly be achieved by using a different approach for the cell seeding. 

The possible information to be drawn from the three-dimensional reconstructions of 

the gels was restricted, due to the limited resolution of the SR-SIM fluorescent 

microscope. It would be interesting to use a higher resolution microscope, capable of 

taking z-stacks of the gel, to further investigate the mechanism of gelation of the 

polymer in solution state. It would then be possible to generate reconstructions of 

these images, in the same manner as in the current study, whereby it would be 

possible to infer more information regarding bundle and pore size. In so doing, there 

may be some possibility to increase the understanding of the mechanism of gelation. 
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