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Abstract

In a pioneering project for the University of Stellenbosch, and indeed South Africa, an
automatic music transcription system was designed to explore the underlying theory,
concepts and problematies of polyphonic music transcription.

Automatic music transcription involves knowledge from the fields of acoustics, music
theory, digital signal processing and information theory. The key concepts from these
contributing fields as they relate to transcription systems are described in overview. A
transcription system is then developed which includes components for FFT-based multi-
pitch estimation, basic post-processing, estimation of the degree of polyphony, key deter-
mination, note duration quantisation and score output. The operation of the system is
explained and tested at the hand of a synthetic polyphonic signal.

The system produced usable transcriptions of real monophonic input signals to scores
with standard notational symbols. The success of the system (as are the successes of
all published polyphonic transcription systems) was limited for real polyphonic music
signals. Nonetheless, the initial results are encouraging and indicate that the current
implementation can serve as a platform for a more sophisticated and accurate system.
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Opsomming

In 'n baanbrekersprojek vir die Universiteit van Stellenbosch (en die breër Suid-Afrika) is
'n outomatiese musiek transkripsie stelselontwerp om die onderliggende teorie, konsepte
en problematiek van polifoniese musiek transkripsie te ondersoek.

Outomatiese musiek transkripsie kombineer kennis uit die navorsingsvelde van akoestiek,
musiekteorie, syferseinverwerking en informasieteorie. Die sluitelkonsepte van elkeen van
hierdie velde word kortliks weergegee soos dit van toepassing is op transkripsie stelsels.
'n Transkripsie stelsel met modules vir FFT-gebaseerde afskatting van polifoniese toon-
hoogtes, basiese naverwerking, afskatting van die graad van polifonie, bepaling van die
sleutel, nootlengte kwantisering en bladmusiek notasie word aansluitend ontwikkel. Die
werkswyse van die stelsel word aan hand van 'n sintetiese polifoniese sein verduidelik en
getoets.

Die stelsel lewer bruikbare transkripsies van enkelstemmige intreeseine na bladmusiek
met standaard musieksimbole. Die sukses van die stelsel is beperk vir polifoniese musiek,
soos ook die algemene geval is vir ander gepubliseerde meerstemmige transkripsie stelsels.
Tog is die aanvanklike resultate belowend, met aanduidings dat die huidige implementering
kan dien as 'n beginpunt vir die ontwikkeling van 'n meer gesofistikeerde en akkurate
stelsel.
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Chapter 1

Introduction

Like everything else in nature, music is a becoming, and it becomes its full
self when its sounds and laws are used by intelligent man for the production

of harmony, and so made the vehicle of emotion and thought.
Theodore Mungers

1.1 Motivation

Music is one of humanity's great achievements. It expresses our deepest desires, longings
and sorrows, captures monumentous events from our pasts, constructs elaborate fantasy
worlds or portrays our weakest moments, using sound as a brush, pitch as paint, harmony
to blend these together and rhythm to give it shape.

The advent of the information age has brought sophisticated tools with which music
can be analysed and musical styles compared. However, automatic music transcription
remains the proverbial "holy grail" of computer music analysis. Numerous factors con-
tribute to this. It is a very broad field which involves and combines aspects of computer
engineering and digital signal processing, music theory, physics and acoustics, and psy-
choacoustics and auditory perception, to name but a few disciplines that contribute crucial
knowledge towards a solution. Automatic music transcription is a wonderful combination
of the worlds of man and machine, the arts and the sciences.

Automatic music transcription is also one of the few fields in digital signal processing
which is still wide-open. Few researchers have contributed to the field (compared to image
and speech processing), and a comprehensive general solution to the problem, though
seemingly ever lurking just across the horizon, has yet to be discovered.

This thesis is an attempt at creating a rudimentary yet functional automatic tran-
scription system that can be used as the basis for further development. It also serves as
a platform for stimulating interest in music technology, a fledgling field at our university.

1
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CHAPTER 1 - INTRODUCTION 2

The applications of music transcription are legion:

• Music analysis: Given an automatic music transcription system with a high de-
gree of accuracy, experiments can be conducted to compare the styles of different
composers, historical eras or compositional forms in terms of harmony, harmonic
progression, and melody and rhythm structure, or even to analyse the expressive
performance characteristics of various artists. Automatic music transcription would
also be especially useful in analysing unnotated music (be it the many different
forms of non-Western music which have thus far only been superficially examined,
or the vast corpus of modern popular music which has also for the greater part not
been exhaustively analysed).

• Computer-assisted music instruction: Automatic music transcription systems form
the backbone of sight-singing tutors and aural training software (see [41]).

• Sound separation: Automatic music transcription is closely related to the field of
sound separation of polyphonic music signals, since most transcription techniques
strive to extract pitch and partial information from musical signals. This informa-
tion could be used either to reconstruct individual parts separately, or to suppress
certain parts in a mixture. Perhaps somewhat further afield, yet nonetheless relying
on many of the same principles as music transcription, is the use of psychoacoustic
properties and music analysis tools for the reconstruction of damaged or imperfect
audio recordings.

• Score generation for unnotated music: This is probably the most obvious applica-
tion of automatic music transcription. Although many forms of music, like Western
classical music, are readily available as sheet music, it would nonetheless be con-
venient to be able to produce electronically editable and distributable scores. As
mentioned above, there are also many valuable forms of music which have not been
committed to paper yet.

• Melody databasing: An application which is becoming increasingly popular today
is the use of melody databases to electronically store and retrieve specific melodies
at will. Quite often, the retrieval can be achieved by whistling or humming a tune
which is transcribed and compared to the melodies in the database. Although
commercial software is already available to achieve this (see [40]), improvements
such as automatic melody identification in polyphonic music would ease the input
of such tunes.

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 1 - INTRODUCTION 3

1.2 Literature Synopsis

Automatic music transcription can be defined as "the act of listening to a piece of music
and of writing down music notation for the notes that make up the piece" [38] or, more
basically, as a problem of "allocating harmonics to notes and notes to instruments" [60].

The problem of automatic monophonic music transcription has been well researched
and solutions have been documented for more than 25 years. Automatic music transcrip-
tion, however, has only been solved for a very specific and very narrow set of musical
signals. Generally even the best transcription systems struggle with degrees of polyphony
greater than four, and most transcription systems place severe limits on the specific mix-
tures of pitches or the specific mixtures of instruments that can be transcribed.

A mlmber of techniques have been proposed to deal with various subproblems within
the broad field of automatic transcription. Multi-pitch estimation is at the heart of auto-
matic music transcription: finding the component pitches in a mixture of different notes
sounded at the same time. Methods based on autocorrelation which model certain aspects
of human audition seem to be the current trend in multi-pitch estimation. Many classic
music transcription systems made use of sinusoid tracks, which can be most conveniently
analysed with frequency domain methods such as the Discrete Fourier Transform (DFT)
and Constant Q and Bounded Q analysis. Other techniques which have been explored by
various researchers include wavelet analysis and neural networks.

A problem that is generally solved in parallel with multi-pitch estimation is rhythm
analysis which strives to detect time periodicities in the music. A number of techniques
have been reported in literature which address this problem fairly successfully, either
by investigating the intervals between the onsets of note pairs, or (perhaps with more
accuracy) by detecting periodicities in the time envelope of musical waveforms.

Other subproblems that have been addressed in literature include the identification of
instruments and the construction of instrument models to aid in multi-pitch estimation,
key signature identification, and the use of higher level musicological models to enhance
the accuracy of various steps in the music transcription process. Chapter 2 discusses all
of these issues in greater depth.

1.3 Objectives

The main objective of the present thesis is to implement a functional automatic music
transcription system which takes acoustic signals (in wav files) as input and produces a
transcription using an appropriate symbolic representation. The system should have at
least the following properties:

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 1 - INTRODUCTION 4

• As an automatic system, it should require minimal human intervention.

• It should be able to transcribe music accurately to the extent that an audio recon-
struction of the transcription output should be recognisable as a representation of
the original acoustic signal.

• The system should be able to detect the key of the input signal accurately.

• For monophonic input signals, the symbolic output should be in the form of a MIDI
file as well as in MusiXTEXscore representation.

• For polyphonic input signals, the symbolic output should be in the form of a MIDI
file.

Secondary objectives of this study include the following:

• As this is one of the first large-scale music technology projects undertaken by our
faculty, the basic concepts underlying human audition, auditory scene analysis, mu-
sical acoustics and music theory have to be explored.

• The present thesis should be able to serve as a platform for further research into
the field of computer music analysis. To this end, a library of usable functions has
to be developed which can be used in future music processing software.

It can hardly be stressed enough that this thesis is mostly exploratory in nature, being
the first automatic music transcription project of this scale undertaken on the African
continent. Existing published solutions are generally the fruit of many years of dedicated
research. It would be unrealistic to expect to turn a tone-deaf computer into a Mozart
in the span of mere months. Thus the objective was not to aim for a phenomenal and
unprecedented transcription success rate, but rather to design and test a simple system
that serves to highlight certain issues of automatic transcription. It is also noteworthy
that this thesis attempted to design components at virtually every processing level, and
thus provides an overview of the field in (virtually) its entirety. In that sense, this thesis is
a journey through the rough seas of automatic music transcription, and not a destination
in itself. The resulting system should similarly be seen as the embryonic genesis of an
on-going research project, as opposed to providing closure on the issue.

1.4 Contributions

Following contributions were made to the automatic transcription field at large:

• A heuristics-based frequency-domain multi-pitch estimator was developed, which
includes a powerful non-linear spectral smoothing algorithm for detecting spectral
peaks.
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CHAPTER 1 - INTRODUCTION 5

• A number of useful algorithms were developed which can be implemented in other
transcription systems to enhance their accuracy. These include algorithms for the
elimination of soft notes, key identification, estimation of the degree of polyphony
and note duration quantization.

• The transcription system produces MIDI and written score output for monophonic
input signals that are sufficiently accurate so that they can be read and edited by
musicians.

• Although the success of the system with polyphonic input signals is moderate due
to the lack of incorporation of higher-level musicological information, the output
is nonetheless acoustically similar to the input. This suggests that the approach
followed in designing the system has merit. This is further underlined by the success
of the system when applied to synthetic polyphonic signals.

1.5 Overview of work

Firstly the successes, limitations and architectures of existing transcription systems, as
well as various techniques that have been applied to subproblems, will be described in
the literature review in Chapter 2. The fundamental concepts of acoustics and theory of
music are then examined in Chapter 3 to determine the basic building blocks of music
that need to be dealt with by a transcription system, as well as to determine possible
solution strategies.

After the literature overview, the architecture of the system is discussed in Chapter 4
in terms of the design philosophy and the system components. Chapter 5 will build up
the theory for a frequency-domain based multi-pitch estimator and pitch tracker. The
following chapter then explores the further processing of the data from raw pitch tracks
to symbolic output in MIDI format (for monophonic and polyphonic music signals) and
MusiXTEX score output (for monophonic music signals). Algorithms are proposed to
eliminate spurious notes, detect the key signature and scale type (major and minor),
estimate the degree of polyphony and quantise the note durations to appropriate musical
symbols. All the algorithms are explained and tested with a synthetic music signal.

Chapter 8 documents signals at various stages of the transcription process, from raw
waveforms to piano rolls (and score output for monophonic music). Four signals are
tested and the system performance discussed. The samples are, in increasing order of
complexity:

• a slow monophonic recorder sample,

• a fast monophonic violin sample,
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CHAPTER 1 - INTRODUCTION 6

• a polyphonic organ sample, and

• a polyphonic piano sample.

In the concluding Chapter 9, the system performance is summarised and recommenda-
tions are made for further research. These recommendations include the implementation
and use of

• music knowledge sources at various levels of processing to enhance the accuracy of
the system,

• top-down information flow so that data extracted from higher levels can be used to
increase the processing accuracy at lower levels,

• a robust rhythm and meter analysis component to allow for time signature iden-
tification, measure segmentation, and alignment of processing frames with metric
events, and

• musical instrument models to increase the accuracy of multi-pitch estimation.
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Chapter 2

Literature Review:
Existing Solutions

2.1 A Brief History of Transcription

Gerhard provides a good and gentle introduction to computer music analysis, with partic-
ular emphasis on automatic music transcription [20]. Klapuri, Martin, Scheirer and Walm-
sley also provide information surrounding the development of the field [28, 38, 55, 60].

One of the most comprehensive solutions to monophonic music transcription has been
given by Martin Piszczalski, with later modifications by Galler [20], where the mid-level
representation of the audio signal was the FFT. Today there exists a plethora of systems
that can perform monophonic music transcription, to varying degrees of success.

James Moorer provided the first documented polyphonic music transcription system,
for two voices. The restrictions were very severe, such that the instrument sounds had to
be piecewise constant (no vibrato, glissando, etc.), and most significantly, that the pitch
and harmonics were not allowed to overlap [20, 28]. Moorer's system was later slightly
improved upon by Maher, with the restriction that instruments had to occupy mutually
exclusive pitch ranges [28, 38].

Hawley in 1993 reported a system that was capable of transcribing piano music quite
accurately, based on differential spectra obtained with the FFT [38].

The current champions on the transcription scene are systems developed independently
at Tokyo University and MIT. Both systems are reported to transcribe 3 and 4 voice
polyphonies quite reliably [27, 28, 38].

However, in spite of some improvements in the reliability of transcription systems,
partly due to more sophisticated architectures and the implementation of (still limited)
top-down processing, the generality of current transcription systems is still severely re-
stricted in terms of range, instrumentation and polyphony.

7
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CHAPTER 2 - LITERATURE REVIEW: EXISTING SOLUTIONS 8

Fully notated score

Symbolic performance data

Chords

Raw notes

Mid-level representation

Time waveform

Figure 2.1: Levels of representation of a signal

2.2 Transcription system considerations

2.2.1 Levels of representation

The levels of representation of a music signal are shown in Figure 2.1. The first (bottom)
level of representation is the sampled waveform. Although some processing techniques
(like pitch detection by counting zero crossings) make use of this first level of represen-
tation, the signal is generally transformed to a different level of representation to allow
more convenient processing of certain features of the signal [28]. Mid-level representation
is generally either time-domain based with the correlogram (which allows more directly
for periodicity analysis) or frequency-domain based with the spectrogram (which allows
more directly for harmonicity analysis), although a technique like the wavelet transform
combines features of both domains. The advantages and uses of different mid-level rep-
resentations will be discussed in Section 2.3. The desired top-level representation of a
successful transcription system would be a musical score in standard music notation. It is
however fiendishly difficult to transform pitch tracks into a complete and accurate perfor-
mance score, and thus many transcription systems opt for writing their output to MIDI
files (the "symbolic performance data" level) instead [20].

2.2.2 Computational vs. psycho-physiological models

The human auditory perception system is an example of a working system capable (given
sufficient talent, experience and training) of transcribing very complex musical pieces.
Thus it can be argued that transcription systems should try to simulate the biological
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CHAPTER 2 - LITERATURE REVIEW: EXISTING SOLUTIONS 9

and neuro-biological properties of hearing and perception. The study of human auditory
perception is undeniably a vital contributing field to automatic music transcription. How-
ever, trying to comprehensively and consistently mimic the characteristics of the human
ear to provide mid-level representations of musical signals seems senseless at best. Our
understanding of human auditory perception is still very sketchy (hence the ongoing de-
bate as to the validity and relationship of the place vs. periodicity theories of hearing")

[20]. Thus techniques like the cochleagram, which tries to mimic the "filter bank" of the
cochlea and is thus valuable and interesting from a perception modelling perspective, are
quite often clumsy and cumbersome from a digital signal processing perspective when
applied to pitch detection.

Another very important consideration in this regard is the fact that

[ ] music often tries to fool the auditory system into hearing fictional streams.
[ ] In order to get sounds to blend, the music must defeat the scene-analysis
processes that are trying to uncover the individual sources of sound. [3, p. 457]

This implies that a transcription system that tries to mimic human audition too
closely will similarly be fooled into observing "fictional streams". Successful transcrip-
tion thus needs to incorporate some knowledge of the individual sources in order to
"reverse-engineer" the sound mixture into the physical sources (as opposed to the perceived
sources).

2.2.3 System designs

Different researchers have used slightly different approaches in designing and integrating
the different components of their transcription systems. Figure 2.2 shows block diagrams
of two of the most recent published transcription systems in (a) and (b), along with
Martin's more recent processing front-end in (c) and Klapuri's system break-down in (d).
All diagrams are based on figures by the original authors, as cited in the captions.

The OPTIMA (Organised Processing Toward Intelligent Music Scene Analysis) system
of Kashino et al. depicted in Figure 2.2(a) is perhaps the most advanced system yet
implemented and published, given its strong emphasis on knowledge integration and top-
down processing. This greatly enhances the accuracy of transcription results, as reported
by the authors [27].

Martin's initial blackboard system (Figure 2.2(b)) is also fairly sophisticated in that
it integrates numerous knowledge sources and implements processing rules to form hy-
potheses at each layer of the data hierarchy. Figure 2.2(c) shows Martin's more recent

IThese concepts will be elaborated on in Section 3.1.
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processing front-end for multipitch estimation which is correlogram-based, unlike his ear-
lier FFT-based front-end.

The following are the most important conclusions that can be drawn from a study of
various systems and the literature from which they are taken:

• The necessity of a multi-pitch estimator and a rhythm/beat analyser: Transcription
systems require a component which can detect note onsets and a component which
can estimate polyphonic pitch. The rhythm analysis can be used to align the multi-
pitch estimator with note onset events.

• The importance of using knowledge sources: Without making use of any external
knowledge about the mixture signal, the transcription problem remains an unsolv-
able single linear equation in multiple unknowns (see Equation 3.18). Martin lists
three categories of knowledge sources: knowledge about human auditory physiology,

knowledge about the physics of sound production and knowledge about the rules

and heuristics governing tonal music [38]. Each of these knowledge sources pro-
vides a wealth of information that can be used by various steps in the transcription
process.

• The use of top-down processing: The system diagrams of Kashino and Klapuri make
reference to top-down processing in addition to bottom-up processing. In bottom-
up processing, the flow of data is exclusively from the raw input signal towards the
final output. In top-down processing, results from components higher up in the
processing hierarchy are used as an additional input to lower levels to refine the
results with expectations about the data. For example, if the tonality of a piece
becomes known after some processing, the grouping of partials into notes can be
assisted with rules which favour certain combinations of notes above others. The use
of top-down processing is equivalent to the way in which humans tend to uncover
more and more depth in a piece of music with each listen because familiarity with the
music creates knowledge and expectations which help them to "look out" for events
like chord resolutions or key changes. In effect, top-down processing introduces a
dynamic knowledge source into the system which uses knowledge extracted from the
signal itself.

• The enormous scope of the problem: OPTIMA is reported to consist of 60 000 lines
of C-code (excluding the GUl) [27], and its solution to the transcription problem is
still far from being generally applicable! Although improvements have since been
made, Martin's initial system was restricted to a range of B3 to A5 and required
that no two notes ever be played simultaneously an octave apart [38]. The consensus

amongst researchers seems to be that a complete solution is still a way off.
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Figure 2.3: Correlation-based pitch estimation methods (based on (58))

2.3 Pitch estimation

2.3.1 Correlation-based methods

Correlation-based pitch estimation methods have found widespread use in monophonic
pitch tracking [41, 42]. However, most early polyphonic pitch estimation methods were
frequency-domain (DFT jConstant Q) based [20]. In fact, in his M.Sc. thesis, Klapuri
noted that "utilisation of autocorrelation is a problem here, since autocorrelation fuses
information on perceptual grounds in such a way that it prevents a separate treatment
of each harmonic partial that we consider necessary in order to resolve musical poly-
phonies" [28]. However, ever since Martin's 1996 paper in which he proposed the use
of log-lag correlograms for pitch estimation [37], a shift seems to have occurred towards
autocorrelation-based methods. These models strive to emulate human auditory percep-
tion from a periodicity theory point-of-view and are less reliant on instrument models for
octave detection and sound separation [37, 58].

In [25] and [58], two correlation-based methods are discussed: the multi-channel pitch
analysis method of Meddis and O'Mard, and a two-channel method that has some simi-
larities with the former. A block diagram of the Meddis-O'Mard model is given in Fig-
ure 2.3(a). The input is first divided into a number of bands corresponding roughly with
the bandwidth channels of human audition. Each band is subsequently half-wave rectified
and lowpass filtered to provide the signal envelope in each of the corresponding bands.
Each band signal is then autocorrelated to detect periodicities, and all bands summed to
produce the Summary Autocorrelation Function (SACF) which provides a measure of the
overall periodicities in the signal.

The method developed by Karjalainen and Tolonen reduces the multi-channel ap-
proach to two channels. Their approach is visualised in Figure 2.3 (b). The signal is
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pre-whitened with a warped linear prediction filter to remove short time periodicities in
the signal. The signal is then split into a high frequency (> 1kHz) component and a
low frequency component « 1kHz). Generalised autocorrelations (calculated from the
IDFT of a magnitude compressed DFT of the signal) are calculated for the low frequency
component and the amplitude envelope of the high frequency component respectively, and
summed to provide the SACF. This division of the signal is chosen to emulate the neural
firing in human audition (which exhibits direct time synchrony for low frequencies and
envelope-based synchrony for higher frequencies).

The SACF will typically provide strong peaks for the common root of chords, and
does not in itself provide clear peaks for the individual component notes. For this reason,
the Enhanced SACF is calculated from the SACF. The SACF is clipped to positive values
and then time-stretched by a factor 2. The stretched signal is then subtracted from the
original clipped SACF to remove repeated peaks at double the time lag. The process
is repeated by time-stretching by factors of 3, 4, 5, etc. For component note sounds
with similar amplitudes, the component pitches can be determined from the remaining
prominent peaks.

Tolonen and Karjalainen report promising results for this multi-pitch estimation
method, provided that the component sounds have similar amplitudes and have fun-
damental frequencies less than the 1 kHz band cross-over frequency. They suggest that
for mixtures of tones with dissimilar amplitudes, the tones with higher amplitudes should
first be detected and filtered out (using, for example, a comb filter) so that the softer
tones can be detected in the residual signal.

2.3.2 FFT

Of all frequency-based analysis methods, the Discrete Fourier Transform (DFT) is prob-
ably the most widely used in digital signal processing, and any DSP programming toolkit
typically contains a number of computationally efficient implementations. The Short-
Time Fourier Transform (STFT) is characterised by both constant time and constant
frequency resolution, and assumes (as do most other analysis techniques) that the signal
is stationary for the duration of an analysis frame. The FFT is discussed in more depth
in Chapter 5 in the context of multi-pitch estimation.

2.3.3 Constant Q

In order to address the time/frequency resolution trade-off of the FFT, Brown and others
have developed a spectral analysis method with a constant Q [4]. The quality factor Q
is defined as the ratio of center frequency to frequency resolution for a specific spectral
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Figure 2.4: Time-frequency resolutions for various signal transforms. The shaded tiles
are those which constitute one analysis [rame.
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component ik:

(2.1)

The Constant Q transform, visualised in Figure 2.4(c) with four bins per octave, is
conceptually equivalent to an FFT with logarithmic frequency bins. Thus the Constant
Q transform has the advantage that lower notes can be resolved equally well as higher
notes, because the CQ bin centre frequencies can be chosen to coincide with the semitones
(or quarter tones) of the equal-tempered/ chromatic scale. Another advantage of the
logarithmic frequency axis is that the harmonics h of all notes bear the same relationship
to the fundamental, due to:

fh hfo

::::} log fh = log hfo

log h + logfo

(2.2)

(2.3)

(2.4)

Brown proposes a technique whereby the Constant Q transform can be calculated
from the FFT by straightforward multiplication of the FFT with frequecy domain kernels
which represent the way each FFT bin contributes to a specific Constant Q bin [5].

Constant Q analysis has found widespread use in computer music analysis and auto-
matic music transcription due to its convenient relationship to the properties of equal-
tempered scales and instrumental harmonics.

2.3.4 Bounded Q

Instead of Constant Q analysis, researchers at Stanford have proposed a Bounded Q
transform which is essentially an STFT analysis on an octave-by-octave basis [4, 6, 28].
The FFT is calculated for a signal frame. All frequency-domain values except for the
highest desired octave are then discarded. The signal frame is subsequently filtered and
downsampled by a factor of 2. Another FFT operation with the same number of points is
performed on the downsampled signal frame. The new FFT thus has twice the resolution
of the first one. This time only frequency-domain points in the second-highest octave are
kept. The process is repeated until the lowest octave desired is reached. The Bounded Q
Transform thus gives a constant number of frequency-domain samples (typically around
32) per octave. The time-frequency resolution of the Bounded Q Transform is visualised
in Figure 2.4(b) for four bins per octave.

2Defined in Section 3.3.3.
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2.3.5 Other

Walmsley [60] discusses a variety of other methods for spectrum estimation in the context
of music analysis. These methods include filter-based AR and ARMA models (AutoRe-
gressive/ AutoRegressive Moving-Average methods) which analyse data by considering
each sample as part of a time series and finding models and associated parameters to
"predict" the next sample x[n]. The AR model is an all-pole model, corresponding to an
IIR filter driven by white noise e. For a model of order Np with coefficients a, x[n] is
calculated as:

Np

.:r[n] =L ap.:r[n - p] + ern]
p=l

(2.5)

ARMA models have poles and zeros and, being more general, can thus model signals
using fewer parameters. ARMA models are given by:

Np Nq

.:r[n] = L apx[n - p] +L bqe[n - q] (2.6)
p=l q=l

where Nq gives the number of zeros and b are the corresponding zero coefficients. The
poles and zeros of AR and ARMA models can be evaluated on the discrete unit circle to
provide spectral estimates.

Another method which can be used for (pseudo-) spectrum estimation is MUSIC (MUl-
tiple SIgnal Classification), which is a signal subspace method. Subspace methods can
resolve closely spaced frequencies due to their good frequency resolution. However, if the
model order is chosen inappropriately, MUSIC can give spurious frequency components.
Furthermore, MUSIC gives (theoretically) infinite peaks at sinusoids and and can thus
not be used for estimating the amplitudes of the harmonics.

2.4 Wavelets

A technique related to Constant Q analysis is the wavelet transform, a multi-resolution
analysis technique which trades off time resolution for greater frequency resolution at
low frequencies (see Figure 2.4(d)). Cemgil describes a wavelet theoretical approach to
monophonic music transcription in his M.Sc. thesis [6]. A basis function that is matched
to the properties of the signal is used: The wavelet basis function is a linear combination
of complex exponentials to simulate the harmonic nature of musical sounds (hence the
term "matched basis function"). The advantage of this approach is that if the analysis is
done in the frequency band where the signal is expected, energy information from higher
harmonics can be combined to the analysis band.
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Another wavelet-based monophonic pitch tracking approach is documented in [17],
which finds the locations of local maxima at various scales in a wavelet-transformed signal
and calculates the pitch as the time distance between two consecutive maxima. This is
the wavelet-domain equivalent of pitch determination by counting zero-crossing.

2.5 Neural Networks

A few researchers have investigated the use of neural networks in computer music analysis.
Neural networks are typically higher level processing techniques which take as input some
mid-level representation like Fourier-transformed or wavelet-transformed data.

Klingseisen and Plumbley [31] have applied neural nets to musical instrument sepa-
ration making use of the multiple cause model first described by Saunders. Unlike most
other neural nets which are "winner-takes-all" techniques which can account for only a
single cause, multiple cause models try to take all underlying causes into account and are
thus well suited for analysing mixtures and separating the causes. Good results were re-
ported for simple synthetic mixtures of artificial spectra. Real instruments however have
a number of features which complicate an analysis with neural networks: Different notes
played on the same instrument have different spectra, and even the same note played at
different intensities has different spectra. Training the network with all possible combina-
tions of different notes, instruments and volumes may prove a major hurdle in the success
of this technique.

Shuttleworth and Wilson [56] initially took a slightly different approach in their ap-
plication of neural networks to music analysis: instead of trying to separate musical
instruments, they tried to detect and classify musical triads. Figure 2.5 shows the net-
work that they used. However, they reported an asymptotic successrate of only 53% in
their experiments which is "almost certainly too low a rate to be of direct use in a tran-
scription system" [56]. They then proceeded to investigate the use of neural networks in
note recognition using the following linear model:

y = Hx+n (2.7)

where x contains impulses at the elements representing active pitch positions which are
transformed into the "blurred" spectrum y by the spectral "blurring" matrix (where each
column represents the template spectra for each note), with an additive noise term n
for inharmonic and incidental noise. They proceed to construct a neural network to find
x (given y and an approximate H) by minimising an error function. This approach
contains an interesting perspective on the transcription problem, inspite of the relatively
poor reported successful recognition rate (38%) of all three notes in tested musical triads.
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Figure 2.5: Triad classification network architecture (based on [56])

2.6 Rhythm estimation

Rhythm estimation is a parallel task to pitch tracking, and is often treated separately as a

different specialised area. Rhythm is generally divided into three metrical levels, namely

the tatum (the time quantum or smallest note duration of which all other durations are

integer multiples), the beat (foot-tapping rate) and the measure. These three values are

interrelated and can be used together as a feature vector [30J.

For automatic music transcription purposes, it is desirable to uncover temporal period-

icities directly from the acoustic input. Klapuri describes a generalised algorithm to find

registral accent signals ve[nJ (the degree of accentuation as a function of time) in various

frequency bands [30J. These signals are calculated from the smoothed power envelopes

and their derivatives in various frequency bands of the acoustic signal and thus express

at each time instance the degree of loudness and change of loudness in the input signal.

Periodicities in the registral accent signals can then be estimated by a variety of

methods, such as enhanced cross-correlation, phase-locking resonat.ors and comb-filter

Time-
frequency Resonators Probabilistic

acoustic analysis model
input signal ve[nJ s[T,nJ

meter

Figure 2.6: Overview of Klapuri's meter estimation method (based on [30])
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resonators. A function S[T, n] of the strength of different metrical pulses at each time
instant is used as the input to a probabilistic meter estimation algorithm. In order to
allow the meter to change over time, an HMM-type state machine is used to determine
the most likely development of the meter over time.

Klapuri describes promising results with this method which was developed as a syn-
thesis of techniques by a number of other researchers. An overview of this method is
depicted in Figure 2.6.

A number of techniques for rhythm analysis use symbolic input in the form of MIDI
files instead of acoustic waveforms from which they perform their periodicity analysis.
Dixon describes a beat tracking technique based on the scoring of inter-note onset intervals
!:It = t2 - t, between pairs of notes which are not separated too far in time. The beat
interval is estimated as the value which best accounts for the set of inter-onset intervals
[15].

Cemgil describes a tempo tracking system which makes use of Kalman filtering. The
tempo tracker is modelled as a stochastic dynamical system where the tempo is a hidden
state variable which can be estimated with a Kalman filter [8].

2.7 Instrument Identification

Martin [39] describes a possible approach to instrument identification. For each instru-
ment in a sample set, 31 features are extracted, including pitch variance, tremolo frequency
and strength, average spectral centroid, odd/even harmonic ratio, vibrato amplitude and
frequency, and onset duration. Instruments are then classified down an instrument tax-
onomy, as shown in Figure 2.7: first the instrument family is recognised using the feature
vector, and then the instrument itself is recognised within that family. This is, according
Martin, based on common human experience: first we recognise a certain sound as being,
say, produced by a bowed string instrument before we recognise it as either a violin or vi-
ola sound. He reports accuracies of upwards of 70% for classifying individual instruments
in a set of 14 orchestral instruments.

2.8 Key signature identification

The importance of a key-finding algorithm is addressed by Krumhansl, as follows:

For automatic music analysis of tonal music, the key needs to be deter-
mined in order for the structural roles of melodic and harmonic events to
be coded meaningfully. For example, in connection with harmonic analysis,
Winograd (1968) noted the inherent ambiguity of chords and the necessity
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Figure 2.7: A possible taxonomy of orchestral instrument sounds (based on (39])

to ascribe meaning to them in terms of their functions within the system of
interrelated tonalities. [33, p. 77]

Identifying the key signature of a performance is addressed briefly in [30]. The method
described uses Bayes' formula

P(klm) = ?(mlk)?(k)
P(m)

(2.8)

to estimate the probability of the occurrence of a note's pitch class m in the key k. For a
sequence of notes M = {ml, m2, ... ,mT}, the probability of key k is given by the product
of the Bayesian probabilities for each note:

T

P(kIM) = IIP(klmt)
t=l

(2.9)

The probabilities P(mlk) can be calculated from the table of tonal distributions in
[33, p. 67].

2.9 Bayesian networks

A number of researchers have used Bayesian probability models for various purposes:

• Kashino et al. made extensive use of Bayesian networks for information integration
in their system [26, 27]. Their network has three layers: a component level, a note
level and a chord level. The component level is connected to the note level with a
single link (a link which corresponds to one temporal processing step). The note
level is connected to the chord level with a multiple link (a link which connects
notes from possibly several temporal processing steps due to the fact that multiple
notes along the time axis may form a single chord). The various chord notes are
connected to each other with a temporal link which encodes chord progression. All
the links use Bayesian probabilities to formulate and score various hypotheses.
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Table 2.1: Published transcription systems (based on [28J)

Main Author Institute Polyphony Range Knowledge

Moorer 1975 Stanford University 2 severe limitations on content 24 Heuristic approach

Sounds: Violin, guitar
Chafe 1982 Stanford University 2 presented simulation results 19 Heuristic approach

insufficient Sounds: Piano
Maher 1989 Illinois University 2 severe limitations, pitch Heuristic approach

ranges must not overlap
Sounds: Clarinet, bassoon,
trumpet, tuba, synthesised

Katayose 1989 Osaka University 5 several errors allowed 32 Heuristic approach

Sounds: Piano, guitar,
shamisen

Nunn 1994 Durham University :S8 several errors allowed, 48 Perceptual rules

perceptual similarity Architecture: Bottom-up

Sounds: organ abstraction hierarchy
Kashino 1993 Tokyo University 3 quite reliable Sounds: Flute, 18 Perceptual rules, timbre

piano, trumpet (automatic models, tone memories,
adaptation to tone) statistical chord transition

dictionary
Architecture: Blackboard,
Bayesian probability

networks
Martin 1996 MIT 4 quite reliable Sounds: Piano 33 Perceptual rules

Architecture: Blackboard

• Klapuri [30], Cemgil [7] and others have applied Bayesian analysis to beat tracking
and rhythm quantisation, as described in Section 2.6.

• Klapuri [30], Krumhansl [33] and others have used Bayesian probability analysis for
key detection.

• Walmsley et al. [61] have investigated the use of Bayesian modelling to estimate
harmonic model parameters, and the use of time-domain variation of model param-
eters to model the variation of the harmonie structure over time (as the sound goes
through attack, sustain, decay). The general linear model, whieh is similar to the
model in Equation 2.7, is used to describe the way note harmonies are superimposed
in polyphonic music signals. This model is then analysed in a Bayesian framework.

In summary it can be said that Bayesian modelling is a powerful and commonly used
way to introduce prior knowledge (chord transitions, harmonic models, etc.) into a system.

2.10 Comparison of Different Systems

In concluding the literature review, an overview of published transcription systems IS

given in Table 2.1.
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From the table it can be seen that even two-and-a-half decades after the first published
polyphonic transcription system, the degree of polyphony, the instruments and ranges of
transcription systems are still very restricted.
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Chapter 3

Basic Acoustics & Theory of Music

Music is an expression of our dreams, fears and hopes that dates back virtually to the dawn
of our species. Music as an art is a human creation and developed out of our ancestor's
experience of what constitutes "pleasant" and "unpleasant" sounds and combinations of
sounds, and their desire to mimic these sounds from their surroundings [13]. ]\/1usic exploits
the characteristics of human hearing and perception and thus there are certain features
common to all forms of music throughout the ages and in all cultures. However, as with
all artforrns, whether visual or aural, music also has certain features which are culturally
determined. This has led to a vast array of different forms of music with different rules
and syntaxes.

An investigation of the basic properties of human audition, acoustics and music theory
will attempt to define more precisely what is meant by "music". Such a study also serves
to outline the properties of human audition which can be incorporated in processing
models and to determine the features of music which can be exploited to make automatic
music transcription possible.

3.1 An overview of human audition

3.1.1 The human ear

A schematic diagram of the human ear is given in Figure 3.1. The outer ear collects sound
with the pinna. The sound is then conducted through the auditory canal, which acts as a
pipe resonator that boosts hearing sensitivity in the range of 2000 to 5000 Hz. The outer
ear terminates in the ear drum, the beginning of the middle ear. The ear drum changes
the slight pressure variations of incoming sound waves into mechanical vibrations with
the help of the ossicles: three small bones shaped like a hammer, an anvil and a stirrup
respectively.

The stirrup vibrates against the oval window of the cochlea in the inner ear. "The spiral

23
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Figure 3.1: The human ear (taken fram [45, Fig 7.l))

Figure 3.2: Schematic view af the human hearing mechanism (taken from [45, Fig 7.3))

cochlea, a masterpiece of minituarisation, contains all the mechanisms for transforming
pressure variations into properly coded neural impulses" [53, p. 63J. When the cochlea
is uncoiled (as in Figure 3.2), it appears as a tapered cylinder divided into two sections
by the basilar membrane which runs down the length of the cochlea. The cochlea is filled
with fluids which transmit pressure waves through its length when the stirrup vibrates
against the oval window. The fluids in turn induces ripples in the basilar membrane.
High tones cause the greatest ripples near the oval window where the basilar membrane
is narrow and stiff, whilst low tones create the ripples with the largest amplitude where
the membrane is slack at the far end. The mechanical vibrations are transformed into
electrical neural impulses through the hair cells of the organ of Corti. When the membrane
vibrates, the hairs are bent, which causes neurons leading to the brain to fire, depending
on the intensity and frequency of the sound.

The great 19th century scientist Helmholtz studied the hearing mechanism and is con-
sidered one of the founding fathers of psychoacoustics. Rossing summarises Helmholtz's
conclusions as follows:
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Helmholtz envisioned the fibers of the basilar membrane as selective res-
onators tuned, like the strings of a piano, to different frequencies. Thus a
complex sound would be analysed into its various components by selectively
exciting fibers tuned to the frequency of one of the components. [53, p. 66]

This is the essence of the "place theory" of hearing. Although modern researchers
have determined that hearing likely also entails an operation akin to autocorrelation
for finer pitch resolution of especially lower tones (the so-called "periodicity theory"),
Helmholtz's theories are nonetheless useful in getting a handle on the basic mechanism
whereby humans perceive sound, namely that the human ear acts like a filter bank with
logarithmically spaced centre frequencies.

3.1.2 Auditory streaming

The human ear, a marvel of biology in itself, is not sufficient on its own to account for
all the amazing abilities of humans to track sounds even in noisy environments. Albert
Bregman [3] systematised the study of human auditory perception. His main thesis is
that human auditory perception is based on the Gestalt law of common fate, namely that

When different partials in the spectrum undergo the same change at the
same time, they are bound together into a common perceptual unit and seg-
regated from partials whose time-varying behavior is different. This principle
applies both to changes in intensity and changes in frequency. [3, p. 394]

He gives four auditory cues based on common fate which the human auditory percep-
tion system uses for stream separation:

1. Common onset: If a number of frequencies start at exactly the same time, they are
likely to originate from the same source.

2. Harmonicity: Frequencies that are part of a harmonic series are more likely to be
grouped into a single auditory stream than harmonically unrelated frequencies.

3. Common frequency variation: Partials whose frequencies vary at approximately the
same rate are likely to belong to the same auditory stream.

4. Common amplitude variation: Partials whose amplitudes vary at approximately the
same rate are likely to belong to the same auditory stream.

The above cues can be used to group related partials into auditory streams, along
with other cues such as common spatial allocation which states that sounds coming from
the same spatial location are likely to be perceived as originating from the same source.
However, Bregman also describes the mechanism whereby existing streams are traced:
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Figure 3.3: Auditory Streams: Tracers and Watchers

One of the main rules that the system uses is that if the neural activity
evoked by an earlier sound resembles a subset of the current neural activity,
that subset should be interpreted as due to the continuation of the earlier
sound. Then the difference between the subset and the whole neural activity
should be interpreted as due to the continuation of the earlier sound. Then the
difference between the subset and the whole neural activity should be treated
as a residual-evidence pool. This is called the "old-plus-new heuristic". The
residual may be heard as a sound in its own right or be further broken down.
[3, p. 393]

This mechanism can be summarised as a flow-chart such as Figure 3.3. Bregman's
auditory cues and stream separation theories form the basis of most modern transcription
systems.

3.2 Basic musical acoustics

At risk of stating the obvious, music is sound, albeit sound with very specific properties.
Rossing defines sound waves as "longitudinal waves that travel in a solid, liquid, or gas"
[53, p. 37]. Sound can be roughly divided into two categories for the purpose of this
discussion (cf. [14, p. 3]):

• Noise, consisting of a group of non-periodic pulses due to irregular vibrations and
thus having no definite pitch .

• Musical sounds, being (more or less) strictly periodic and thus having a definite
pitch.

Musical sounds differ in pitch, loudness, duration and timbre.
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3.2.1 Pitch

Pitch vs. Frequency

Although the term pitch is often used interchangeably with the term frequency, the two
are not, in fact, equivalent. The former is a subjective quantity describing the "position
of a sound in a musical scale" [14, p. 35], the latter is an objective value describing the
number of oscillations per second of a sonorous body.

Though pitch is often related to the fundamental frequency of a sound, the apparent
pitch fpitch of a sound is sometimes linked to the difference tone produced by partials of
frequency Ja and Jb:

(3.1)

such that a sound containing frequencies of 700, 800, 900 and 1000 Hz will typically will
be perceived to have a pitch of 100 Hz. Moreover, it seems that the ear can pick out a
series of nearly harmonic partials and determines the pitch to be the largest near-common
factor of the series [53, p. 110]. For example, a sound with component tones of 1040,
1240 and 1440 is commonly perceived to have a pitch of 207 Hz because 1040/5 = 208,
1240/6 :::::::207, and 1440/7:::::::206, even though the difference between the partials is 200
Hz. Similarly, a complex tone with frequencies of 300, 500, 700 and 900 Hz will typically
be perceived to have a pitch of 100 Hz [24, p. 58].

Pitch Duration

For a tone to produce a definite pitch, it has to be of a certain minimum duration that
varies with frequency, though early experiments suggested that pitch develops after two
cycles of the sound (shown as the dashed line in Figure 3.4). Modern research has shown
that tones with a duration less than the solid line in Figure 3.4 are perceived as "clicks".

Pitch Perception and Loudness

Pitch perception of pure tones (sinusoidal tones without overtones) of fixed frequencies
varies somewhat according to the sound level: in some experiments the apparent pitch
deviation was found to be up 1.3 semi tones when the sound level was raised by 40 dB
[14, p. 48], though modern research has shown that this effect is smaller than previously
assumed [53, p. 108]. Fortunately, musical sounds are generally rich in overtones, and
in such sounds the apparent pitch is largely unaffected by the sound level [14, p. 48],
[53, pp. 108-109]. Because of the fact that apparent pitch and fundamental frequency so
closely agree in musical sounds, this thesis will follow the common practice of using the
terms pitch and fundamental frequency interchangeably.
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Figure 3.4: Minimum durations for pitch sensation (taken from [53, Fig 7.8])

Pitch Standard

Pitch perception is generally relative, meaning that most people can (given some training)
hear and classify intervals between two tones. Very few people « 0.01% of the population)
are blessed with absolute pitch ("perfect pitch") which allows them to recognise and define
the pitch of a tone without the use of a reference tone. To standardise tuning a fixed pitch
reference tone is provided according to which instruments are commonly tuned. Concert
or standard pitch is defined as:

fA4 = 440 Hz (3.2)

Pitch Discrimination

Pitch discrimination, taken to be the smallest difference in pitch that humans can recog-
nise, is dependent on frequency. Below 60 Hz, this just noticeable difference is nearly a
semitone", In the frequency band of 500 and 4000 Hz where the ear is most sensitive,
changes in frequency of around 0.3% or 5 cents'' can be discerned. Pitch discrimination is
also dependent to some extent on training: Culver mentions that skilful piano tuners can
recognise the difference between a just-tempered and an equal-tempered:' fifth, implying
a pitch discrimination of 2 cents [14, p. 47]'

1Most people that I queried about this, myself included, cannot distinguish between the lowest two
notes of the piano.

2Cent is a logarithmic unit of measurement for pitch, and is defined in Section 3.3.3.

3Temperament is discussed in Section 3.3.3.
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3.2.2 Timbre

Harmonics occur at integer multiples of a fundamental frequency fo:

fh = hfo (3.3)

In practice, many musical instruments have "harmonies" (overtones) that occur at values
that are approximately (but not exactly) integer multiples of the fundamental frequency.
Thus the word partial has come to apply to signify the fundamental or one of its (not
necessarily perfectly harmonie) overtones.

The timbre of a musical sound is chiefly determined by the number, intensity and
distribution of partials that enter into its composition [14, p. 61]. However, the timbre of
many instruments is also dependent upon the transient attack and thus the time envelope
of the sound. In general, the upper partials are relatively strong during the attack, but
due to damping decrease in amplitude before the steady phase of the tone.

As an example of a real musical instrument and its timbre properties, the piano will
be briefly examined. Pianos produce their sound when strings are set into vibration by a
"hammer". An ideal string would vibrate in a series of modes that are exact harmonics
of the fundamental. Actual strings have some stiffness, which creates a restoring force in
addition to the tension, whieh slightly raises the frequency of all the modes. This restoring
force is greater in the case of higher harmonics due to the greater number of bends in
the string. The modes are thus spread slightly apart in frequency, and the partials are
therefore no longer exact harmonics of the fundamental.

This relationship can be written as (cf. [53, p. 264]):

(3.4)

where A is given for solid wires without wrapping by the equation:

(3.5)

where r is the radius of the string, Y is Young's modulus, T is the tension and l is the
length of the string. The ramification of this is that the tuning of pianos is "stretched"
to allow the slightly stretched upper partials of a lower note to coincide with the lower
partials of a simultaneously sounded higher note and thus reduce dissonance. Although
piano tuning deviates very little from equal temperament in the middle registers, low
notes are typically down-tuned by as much as 60 cents. Conversely, extremely high notes
are typically tuned much higher than the true equal-tempered values.

Typical piano spectra are given in Figure 3.5. It can be seen that different notes have
different spectral characteristics. It should also be mentioned that spectral characteristics
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Figure 3.5: Piano spectra for various notes (taken from (53, Fig 14.5J)

are a function of amplitude, and thus a loud note will typically have a different spectrum
compared to a soft note at the same pitch. The dependence of timbre on pitch and
loudness complicates accurate instrument modelling significantly.

3.2.3 Loudness

Sound levels

Sound waves are, in effect, minuscule variations in atmospheric pressure to which our hear-
ing responds, as described in Section 3.1. Although the exact values differ, the pressure
amplitude at the threshold of pain is approximately 106 greater than at the threshold
of hearing. Because of this tremendous range in values, sound pressure levels Lp are
measured on a logarithmic scale, the decibel (dB) scale:

Lp = 20logpjpo (3.6)

where p is the sound pressure and Po = 20 J-lPa is the sound pressure reference for a sound
at the threshold of hearing. This places the threshold of pain at 120 dB.

Loudness and musical dynamics

The sensitivity of the ear varies with frequency, being relatively insensitive to very low-
pitched « 50 Hz) and very high-pitched (> 15kHz) sounds, with two very sensitive
regions at 3500-4000 Hz and 13kHz which correspond with the resonance frequencies of
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the outer ear canal. A scale in units of phon is used to measure loudness levels, and graphs

of equal loudness curves can be found in many standard reference works like Rossing [53] to
convert decibels to phons. Another unit of measurement is used to indicate the subjective

loudness of tones: the sane, with conversion curves provided again in Rossing and others.

Both of these scales are however flawed when applied to music perception: firstly,

they are subjective scales that vary eonsirably from person to person, and secondly, they

are generally only given for loudness perception of pure tones. Calculating values for the

loudnes of complex sounds is an involved process, though the formula

(3.7)

can be used to calculate the loudness Ls in sones of the complex sound 5, using loudness

indexes for the perceived loudness of the sound content in 10 standard octave bands. The

loudness indexes for these bands are given by ISO Recommendation No. 532 [53, pp. 87-

88]. In the above formula, Lm is the greatest loudness index, and L:: Li is the sum of the

remaining indexes. Equation 3.7 suggests that the perceived loudness of a complex sound

is determined chiefly by the loudest sound in a complex mixture.

Variations in loudness (called musical dynamics) are a major tool for expressive musi-

cal performance: loud sections are more appropriate for triumphant climaxes or outbursts

of musical "anger" whilst soft sections may better convey a sense of intimacy and intro-

spection. Musical dynamics are often suggested in the score, and are generally indicated

in six levels from pp (pianissimo = very soft) to JJ (fortissimo = very loud), or eight levels

from ppp to JJ! Studies have been conducted into the maximum dynamic ranges which

instrumentalists use and it was found that the average maximum dynamic range is only

around 10 dB (with slight variations for different instruments) for a given note played

loudly and softly [53, p. 90]. This suggests that most instrumentalists would have a hard

time producing six (or even eight) distinguishable levels of loudness. Thus it seems that

the dynamic indications for a musical passage are much more an indication of a sentiment

that has to be evoked rather than a required actual sound level. It should also be noted

that although the dynamic range on a given note is fairly small, many instruments are

capable of producing much louder tones at the top of their range than at the bottom.

A fortissimo on a French horn is found to be nearly 30 dB greater at C5 than at C2,

according to [53].

Implications for automatic music transcription

The above discussion of sound and loudness levels has some implications for automatic

music transcription:
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• It may prove non-trivial to calculate the perceived loudness of notes and to convert
these values to musical dynamic indications .

• Because the dynamic range of music covers approximately 40 dB [53, p. 89], a musical
performance may contain a mixture of sounds that differ in amplitude by a factor
of 100 or more. It is thus very possible that louder sounds in the mixture will mask
softer sounds during pitch extraction.

A complete automatic transcription system should address these issues.

3.2.4 Superposition

In general, the superposition of two or more sounds is a simple addition of their waveforms.
Because the spectrum is calculated through a linear transformation of the time waveform,
the superposition spectrum can also be obtained be a simple summation of the individual
complex spectra.

For two pure tones of identical frequency f but possibly different amplitudes (AI and
A2) and different phases (fh and O2), the superposition will be a pure tone of frequency
f with an amplitude As in the range of lAl - A21 :::; As :::; Al + A2 depending on
/:::,.0 = 101 - 021.

When two pure tones of different frequencies I, and 12 = fl + /:::"f are superimposed,
the resulting combination tone S will be given by:

S = Al sin(21l'!It + OI) + A2 sin(21l'ht + O2)

Al sin(21l'fIt + Ol) + Al sin(21l'ht + O2) + (A2 - AI) sin(21l'ht + O2)

2AI sin [21l'(!I; »,+ (Ol; O2)] cos [21l'(!I; »,+ (Ol ; O2)]

+ (A2 - AI) sin(21l'ht + O2)

(3.8)

(3.9)

(3.10)

where (3.10) was obtained from (3.9) by applying the trigonometric identity:

sin A + sin B = 2 sin ~ (A + B) cos ~ (A - B) (3.11)

From (3.10) it can be seen that if the component tones have similar amplitudes (such
that the second term is negligible) and /:::"f is small, the superposition will be a tone at the
average frequency frequency f = ~(!I + h) (from the sin factor) and an envelope that is
amplitude modulated with the difference frequency /:::"f (from the cos factor, taking note
that the envelope taken from absolute amplitude peak to absolute amplitude peak has
half the period of the modulating cos). Since the ear has a finite pitch resolution, even
sounds of dissimilar amplitudes will be perceived to be pitched at the "average" frequency
if /:::"f is small.
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Figure 3.6: Superposition of two tones (based on (53, p. 132))

If ~f is less than around 10Hz, the relatively slow change in the envelope's amplitude
IS perceived as audible (and uncomfortable!) beats. Although these beats are highly
undesirable under normal performance conditions, they are used to tune instruments such
as the piano by reducing the number of beats that result from the interference of a note
and a reference tone. As ~f increases above 15Hz, the beat sensation disappears and is
replaced by a sensation of auditory roughness. If ~f is increased above some frequency
F the perceived tone at the average frequency is replaced by two tones at the frequencies
ft and 12, though the sensation of roughness remains until ~f exceeds some critical value
related to the critical bands of hearing. This process is depicted in Figure 3.6.

The "roughness" due to the interference of two tones described above gives rise to
the phenomena of consonance and dissonance. Helmholtz described the origin of these
phenomena

[...] by referring to Ohm's acoustical law, which stated that the ear performs
a spectral (Fourier) analysis of sound, separating a complex sound into its
various partials. Helmholtz concluded that dissonance occurs when partials of
the two tones produce 30-40 beats per second. The more the partials of one
tone coincide with the partials of the other, the less chance of beats in this
range that produce roughness (dissonance). This explains why simple ratios
define the most consonant intervals. [53, p. 138]

More recent studies have shown that the frequency differences ~f which produce audi-
tory "roughness" differ with frequency, leading to the critical bands of hearing mentioned
before, though Helmholtz still summarised the causes of consonance and dissonance very
aptly. This discussion of consonance and dissonance serves as background for the theory
of diatonic scales in Section 3.3.2.
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Figure 3.7: Piano keyboard with notes (MIDI), pitch (Hz), octave registers and staff

notation

3.3 Basic music theory

Given the vast corpus of world music, the scope of music under consideration needs to
be narrowed down to reduce the complexity of the transcription problem. Thus for the
purpose of this thesis, we shall limit our theory to that of Western music based on diatonic
scales. It is hoped that future work will be extended to include other forms of music, such
as various traditional African musical expressions.

3.3.1 Notation

Music is a "language", with rules and vocabulary of its own. As with any language, a
standard form of notation is crucial for written transmission.

The Keyboard and Octave Registers

Pitches are named according to the first seven letters of the alphabet, A, B, C, D, E,
F and G [32, p. 3]. This pitch alphabet is related to the piano keyboard using C as a
reference. The C nearest to the middle of the keyboard is called middle C or C4 because
it falls into the fourth octave register. Every note that falls within the same octave as a
given C (i.e. all 12 notes from a C up to B) is said to lie in the same octave register. The
C an octave above middle C is thus named C5, the one below C3 etc. Refer to Figure 3.7
for a visual representation of this convention (which will be used throughout the rest of
this thesis). A more detailed version of this figure is given in Appendix A.

It should be noted that the term pitch class is used "to group all pitches that have an
identical sound or that are identical except for the octave or octaves that separate them"
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[32, p. 52]. Under equal-tempered tuning, the notes B~, C and Dbb belong to the same
pitch class, as do C4, C5, C3 etc.

Notation on the Staff

Musical pitch is distributed exponentially in frequency (as shall be seen presently in
Section 3.3.3). For "plotting" pitch, a form of semi-logarithmic plot is used: the musical
staff. The logarithmic "y axis" indicates pitch and the "x axis" indicates time. A modern
staff consists of five lines and four spaces, with ledger lines used to extent the staff up and
down if necessary. To indicate the pitch reference of the lines, two clefs are commonly
used: the G (or treble) clef, whose "curl" indicates the position of G4, and the F (or bass)
clef, which indicates the position of F3.

F3
~

G4

The notes on the staffs without any accidentals indicate the notes of the C major
scale (the white notes on the piano). Accidentals are used to modify the pitch as it is
displayed. A sharp (~) indicates that the pitch of the note is to be raised a semitone, a flat
(b) indicates that the displayed pitch is to be lowered a semitone, a natural (q) restores
the pitch of the note (i.e. cancels any previous accidentals ), a double sharp (x) raises the
displayed pitch by two semitones, and a double flat (bb) lowers the pitch by two semitones.

Except for the C major and natural a4 minor scales, all scales contain notes corre-
sponding to the black notes on the piano. It would be tedious to indicate these pitches
with accidentals every time they occur. Thus a key signature is used at the beginning of
every staff to indicate which pitches should be raised/lowered throughout the piece. For
example, following the note intervals given in Section 3.3.3, D major is defined as D, E,
F~, C, A, B and C~. The key signature is said to contain two sharps, F~ and C~. The
order in which sharps are added to the key signature is as follows: F~, C~,C~,D~, A~,E~
and finally B~. The line "Father Charles Goes Down And Ends Battle" is frequently used
to remember the increasing order of sharps. Flats are added in the reverse order, and
thus the line "Battle Ends And Down Goes Charles' Father" can be used as a mnemonic.
To determine the number of accidentals in the key signature for different scales, the circle
of fifths is often used. It gives the key signatures for both major scales and their related
minor scales, as shown in Figure 3.8.

4The key of major scales is generally capitalised, whilst the key of minor scales is usually given in
lower-case.
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Figure 3.8: Circle of fifths for key signatures (based on (32, p. 1S})

Notation on the Piano Roll

There are times when notation on the staff is impractical, especially when plotting seg-
ments for which only the pitch (in cents/semitones) and duration (in seconds) is known,
but not the tempo, time signature or key signature. This situation is common when in-
putting notes on MIDI keyboards, and also during the early stages of music transcription
before the "musical context" of the note candidates is determined. In this case, pitch is
plotted on a semitone grid placed against a vertical piano keyboard (simultaneously the
Y axis and the axis legend), with time being the horizontal dimension. An example of a
plot on a piano roll is Figure G.2 in the experimental investigation.

3.3.2 Diatonic Scales

As mentioned in Section 3.2.1, many humans can recognise specific ratios of frequencies.
Furthermore, most humans can recognise that certain combinations of tones induce a
pleasing auditory effect, whilst other combinations produce an unpleasant effect (keeping
in mind that "pleasing" and "unpleasant" are to some extent determined by the cultural
milieu). In general, musical intervals are given by:

hifI = mln (3.12)
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Table 3.1: Pleasant Note Intervals (based on [24, p. 80))

Interval Name Ratio Example

Unison 1:1 C4 - C4

Octave 1:2 C4 - C5

Perfect Fifth 2:3 C-C
Perfect Fourth 3:4 C-F
Major Sixth 3:5 C-A
Major Third 4:5 C-E
Minor Sixth 5:8 C-Ab
Minor Third 5:6 C-Eb

Table 3.2: Construction of the C Major Scale
C D E F GAB C' D'
4 5 6

4 5 6

4 5 6

where mand n are generally small integers for "pleasing" ratios. Values for such pleasant
diads are given in Table 3.1.

These intervals are considered "pleasant" or consonant because the dissonant combi-
nations between harmonics of the two tones are minimal.

Similarly, certain musical triads (three notes) are also particularly pleasing to the ear.
Remarkably, the most pleasing of these triads (called a major triad) consists of tones
whose frequencies bear the ratio 4:5:6. The C major scale is constructed from the three
major triads C - E - C, F - A - C and C - B - D on the first, fourth and fifth notes
of the scale respectively as shown in Table 3.2.

From Table 3.2 it becomes simple to calculate the ratios relative to C of each note of
the scale:

E 5/4C
C 6/4C = 3/2C
B 5/4C = 5/4 x 3/2C = 15/8C
D' 6/4C = 3/2 x 3/2C = 9/4C (3.13)

D D'/2 = 9/8C

A 5/6C' = 5/6 x 2C = 5/3C
F 4/6C' = 2/3 x 2C = 4/3C
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C D E F G A B C

Ratio to C: 1 9/8 5/4 4/3 3/2 5/3 15/8 2

\/\/\/\/\/\/\/
Ratio of interval: 9/8 10/9 16/15 9/8 10/9 9/8 16/15

Figure 3.9: Frequency ratios in the diatonic major scale (based on (53, Fig 9.1})

A B C D E F G A

Ratio to A: 1 9/8 6/5 4/3 3/2 8/5 9/5 2

\/\/\/\/\/\/\/
Ratio of interval: 9/8 16/15 10/9 9/8 16/15 9/8 10/9

Figure 3.10: Frequency ratios in the diatonic minor scale (based on (14, p. 'lg})

The above results of the ratios of each note relative to C, as well as the ratios between
successive notes are demonstrated in Figure 3.9.

In addition to scales constructed from the major triad, scales can be constructed with
the minor triad with ratios of 10:12:15. Following a similar procedure to the one described
above for major scales, the minor scale can be constructed from triads on the first, fourth
and fifth notes of the scale respectively. The resulting minor scale is shown in Figure 3.10.

It is interesting to note that only three ratios between notes are involved, namely the
major whole tone (9/8 = 1.125), the minor whole tone (10/9 ~ 1.111) and the semitone
(16/15 ~ 1.067). The semitone interval is slightly greater than half a major whole tone
interval (16/15 x 16/15 ~ 1.138).

3.3.3 Temperament

Equal Temperament

The discussion in the foregoing section describes the diatonic scale, with intervals of just
intonation. In practice, just intonation proves to be impractical because it does not allow
for key changes without re-tuning the instrument. For example, in the C major scale as
shown in Figure 3.9, the interval between 0 and E (the second of the scale) is a minor
whole tone or 10/9. When the scale is transposed to D, the interval between 0 and E (the
first of the scale) is a major whole tone or 9/8. If provisions were made for all possible
key changes, instruments with fixed tones (such as the piano or the oboe) would require
at least 72 notes to the octave [14, p. 80].

Thus equal temperament was devised whereby the octave is divided into 12 notes
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Table 3.3: Equal tempered scales

Scale type Nate Intervals in Semitanes

major 2 2 1 2 2 2 1

natural minor 2 1 2 2 1 2 2

harmonic minor 2 1 2 2 1 3 1

melodic minor ascending 2 1 222 2 1

melodic minor descending 2 1 2 2 1 2 2

(semitones), separated in frequency by a factor of 21/12~ 1.05946. Whole tones are then
simply spaced two semitones apart, a factor of 22/12~ 1.12246. Whilst this compromise
reduces the complexity of scale construction consirably, it has the unfortunate side ef-
fect that most notes in any given scale are now slightly false (as shown in Table A.l in
Appendix A).

Equal temperament has the advantage of greatly simplifying music theoretical calcu-
lations. The pitch frequency hVf in Hz of any given note M (numbered according to the
MIDI standard, whereby middle C is numbered 60 and A4 = 440 Hz is numbered 69) can
be calculated as:

M-69JM = 440 X 2-12- (3.14)

and conversely, the note can be calculated from the pitch as:

JM
M = 1210g2 440 + 69 (3.15)

Since it becomes tedious to compare different tones using ratios due to their expo-
nential spacing, intervals are generally specified in cents. A semi tone is divided into 100
cents spaced a factor 21/1200apart in frequency. An interval specified in cents has the
same musical meaning across all octaves because cent linearises pitch.

Although equal temperament will be assumed by our transcription system to simplify
the algorithms, it should be noted from Table A.l that all pitches of the just-tempered
scale round to the same nearest 100cents as the equal-tempered values.

Equal-tempered scales

Although the major and minor scales III use today were derived as discussed in Sec-
tion 3.3.2, equal temperament allows for the easy definition of scales in any key by simply
making use of the note intervals given in Table 3.3. The chromatic scale, composed of all
of the twelve chromatic semitones, is omitted from the list.
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Table 3.4: The relationship between the harmonic series and pitch
9 10 II 12 13 14 15 16

ITI fo 2fo 3f" 4fo 5fo 6fn 7 fn 8f" 9fu IOfu lifo 12f" 13fn 14fo 15f" 16fu

Ac 0 1200 1902 2400 2786 3102 3369 3600 3804 3986 4151 4302 4441 4569 4688 4800

AM 0 12 19+ 24 28- 31+ 34- 36 38+ 40- 4r 43+ 44+ 46- 47- 48

Note that the minor scale can be arrived at by right-rotating the intervals of the
major scale by two positions. The consequence of this is that every minor scale has a
related major scale with which it shares a key signature. This fact will be exploited by
the transcription system to extract the best key signature from transcribed data.

The Harmonic Series and Equal Temperament

The notes of the equal-tempered scales constitute a geometric progression, whilst the
harmonic series is an arithmetic progression. In processing musical spectra, it is often
useful to express the frequency Jh of the h-th harmonic (as given by Equation 3.3) of a
certain note frequency Jo in terms of an interval in cents Docor semitones DoJvI, as follows:

!It hJo
1210g2 Jo = 1210g2 Jo
1210g2 h

1200 log2h

(3.16)

(3.17)Doc

These equations yield the results in Table 3.4, where + indicates that the harmonic is
"sharper" than the corresponding note at that position and - indicates that the note is
"flatter" .

The relationship between C2 and its harmonics can be represented in musical notation
as follows:

-&- -&- b g.a. -&-#5 Q

1:)= 0

&5 ~s 0 s 0
0 S

-&-

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3.3.4 Meter and Rhythm

Music has a horizontal and a vertical aspect, the former being rhythm, the latter being
harmony. Rhythm is related to note duration, and thus a set of symbols is used to indicate
the relative durations of notes, so that each symbol represents twice the duration of the
next shorter symbol. Duration symbols for commonly used notes are given in Table A.2.

A dot extends the length of a note by half its value, so that .I. = .I+ ) and .I..=.1 +) + ). .
The beat is the basic pulse of a passa.ge. The rate at which the beat occurs (the

"foot-tapping rate") is the tempo of the piece. Tempo is specified either qualitatively
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Table 3.5: Meter types (based on (32, p. 28])

Grouping Meter type Metric accent pattern

Two-beat measure Duple
Three-beat measure Triple
Four-beat measure Quadruple

Strong-weak
Strong-weak-weak
Strong-weak-less strong-weak

with Italian words like Allegro (=fast) or quantitavely by a metronomic indication like
J = 72 which specifies the number of beats per minute (72 in this case).

Beats can be generally grouped into patterns that remain consistent throughout a
passage; such patterns are the meter. Groups of two, three or four beats are most common,
although other meters occur. The groups of beats are called measures and in musical
notation, the end of a measure is indicated with a vertical line through the staff called
a bar line. The most common classical meter types are summarised in Table 3.5, along
with the typical metric accent (stress) patterns for each.

In most music, the beat is divided into shorter durations. Beats that are generally
divided in two equal parts are called simple beats, whilst beats that are generally divided
into three equal parts are called compound beats. The smallest note duration that is
found more than incidentally is called the tatum. The division of the beat and measure
is summarised by the time signature:

A time signature is a symbol that tells the perfomer how many beats will
occur in each measure, what note value will represent the beat, and whether
the beat is simple or compound. [32, p. 31]

Typical time signatures are given in Table A.3.
6

Note that many time signatures are functionally equivalent. For example, a piece
8

can be notated as 6 with all note duration symbols scaled by a factor 2. This is just one
4

of numerous ambiguities in the identification and notation of rhythm; another ambiguity
comes from the fact that the identification of meter is often a matter of interpretation
of stress patterns [32, p. 28]. The ambiguity of meter and rhythm implies that even
sophisticated automatic transcription systems with complex metric analysing components
may not be able to reproduce the original rhythmic notation without human intervention.

3.3.5 Polyphony defined

For the automatic transcription problem, the terms monophony and polyphony are often
contrasted against each other to designate two categories of signals. It seems that software
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engineers and musicians at times differ in their definitions of these terms. The New Grove
Dictionary of Music and Musicians defines the terms as follows:

monophony Music for a single voice or part. In many non-Western cultures it may have
improvised or drone accompaniment. [18]

homophony Form of polyphony with rhythmic similarity in a number of parts or in
which all melodic parts move together at more or less the same pace. Many instances
of choral church music are examples of homophony. [23]

heterophony The simultaneous sounding of a melody and variations of it. [12]

polyphony Music in more than one part, music in many parts, or the style in which all
or several of the musical parts move to some extent independently. [19]

From the above definitions it can be seen that polyphony can refer to several dis-
tinct categories of music, whilst monophony may include simple accompaniment. For the
purposes of this thesis, the terms shall be defined as follows:

monophony Music for a single voice or part, without any form of accompaniment (i.e.
musical waveforms containing only one distinct sound).

polyphony Music for more than one voice or part (i.e. musical waveforms that are a
mixture of more than one distinct sound).

This is in line with the usage of the terms by researchers III the automatic music
transcription field.

3.3.6 Harmony

Harmony is defined by Kostka [32, p. ix] as follows:

Harmony is the sound that results when two or more pitch classes are per-
formed simultaneously. It is the vertical aspect of music, produced by the
combination of the components of the horizontal aspect.

Furthermore, tonal harmony is of special significance, as the Western music composed
during the period from 1650 to 1900 made almost exclusive use of tonal harmony, although
it developed much earlier than that and is still employed today in many genres of music (of
which popular music is perhaps the most significant, at least in volume). Tonal harmony
can be outlined as follows [32, p. xi]:

1. Tonal harmony makes use of a tonal centre, a key pitch class that provides a centre
of gravity.

2. It makes almost exclusive use of major and minor scales.
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3. Chords are primarily tertian in structure (i.e. are built from intervals of thirds).

4. Chords built on various scale degrees relate to each other and to the tonal centre
in fairly complex ways. However, each chord has a standard role (function) within
a key, and thus the term functional harmony is often used to refer to this kind of
music.

Music based on tonal harmony is well-suited for the development of automatic music
transcription systems because of the well-defined structure of chords as well as their rela-
tion to each other. Such systems can make use of the rules of tonal music as a probabilistic
knowledge source to identify tonal centres, keys, chords and harmonic progressions, and
to enhance the accuracy of the transcription.

3.4 Problems to be solved for complete music tran-
scription

Initially it may seem that the problem of automatic music transcription is the sheer
impossible task of solving a mixture S of N superimposed sounds for the component
sounds Sc from the single equation:

(3.18)

Fortunately, this chapter outlined a number of characteristics of the human auditory
system, musical sound and music theory which can be used to solve the transcription
problem.

The complete transcription problem can be divided into the following sub-tasks:

• Polyphonic pitch detection: Perhaps the foremost and most crucial task in music
transcription is to identify the component pitches in a mixture of simultaneous
musical sounds. For full transcription, these sounds need not be restricted to voiced
harmonic sounds but should be extended to include percussive sounds also.

• Instrument recognition: Hand-in-hand with the previous point, the instruments
which generated each sound should be identified.

• Rhythm and meter detection: An important task in music transcription is identifying
the tatum, beat and measure pulses.

• Time signature and tempo recognition: Based on the results of the rhythmic analysis,
the time signature and tempo should be detected. It should be noted that the time
signature and tempo can change from one segment of a piece to the next.
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• Key detection: The key of a piece needs to be identified if one wants to conduct an
analysis of harmony. It is also used to notate pitch in such a way that the meaning
of each note becomes apparent. The key can also change several times during the
course of a piece.

• Identifying harmony and harmonic progression: Notes that were sounded concur-
rently can be grouped into chords, each with a harmonic root and a chord type. The
sequence in which chords are sounded (i.e. the harmonic progression) is generally
well defined for certain types of music.

• Identifying expressive performance features: Ornamentation (like trills, mordents
and glissandos) and other performance indications (such as staccato, sforzando and
legato) need to be identified appropriately. Furthermore, the loudness of note se-
quences and the changes in musical dynamics (crescendos, decrescendos) need to be
identified.

• Voice and part segmentation: Notes generated on a certain instrument need to be
grouped int.o parts. Furthermore, for notes sounded on a certain inst.rument., each
note has to be assigned meaningfully to a specific voice. After t.his st.ep, t.he original
signal should have been segmented into individual voices in such a way that no voice
contains more than one simultaneous note.

• Notation: The results of the analysis should be notated according to some conven-
tion.

Solving all of the above tasks comprehensively and satisfactorily would involve a sys-
tem that is comparable in conceptual complexity to a complete speech recognition engine.
Following the investigative path chosen in this chapter, our transcription system is based
on the theory of tonal, non-percussive, equal-tempered Western music which can be ex-
pressed in standard modern music notation.

The insights gleaned from the investigation of acoustics and music theory are crucially
important in the development of the algorithms in the following chapters even though not
all aspects of music as outlined above are covered by the current transcription system.
However, the references in this chapter can serve as the basis for further research into
those neglected areas.
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Chapter 4

System Design

Armed with knowledge from the musical and engineering domains, the focus of the discus-

sion shall now turn to the design of an automatic transcription system that fulfills some

of the requirements of complete transcription, as set forth in Section 3.4. This chapter

will outline our transcription system and describe its restrictions. Chapters 5 and 6 will

develop the individual system components in greater depth.

4.1 System components

4.1.1 Overview

The transcription system takes digitised waveform files of musical performances as input.

Generally, the input signals need to be pre-processed to ease further processing.

With the data in a processable format, a full transcription system then requires three

major components for extracting "raw" information from the music waveform:

1. a component that determines beat, meter and rhythm,

2. a component that determines polyphonic pitch, and

3. a component that determines which instruments were used to generate the sounds.

There is a large degree of correlation between the components: pitch and harmony

changes are generally aligned with the beat and meter whilst multi-pitch estimators will

often make use of instrument models to enhance their accuracy. The results from these

components are then combined and submitted to further processing to try to enhance

the raw transcription by comparing the results with expectations about the signal, using

knowledge sources such as music theory.

Each of the system components will now be described in greater detail in order to

outline the significance of each component in the context of the transcription problem.

45
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4.1.2 Preprocessor

Many audio signals that are suited for transcription are recorded in 16-bit stereo at a
sampling frequency of 44.1 kHz. Although stereo signals may contain one of Bregman's
cues for auditory stream separation, namely spatial allocation, the current system does
not make use of it 1. Thus it is desirable to downmix the signal to mono as follows:

[] Xteft[n] + X1'ight[n]
Xmono n = 2 where 0 ~ n ~ L - 1 (4.1)

4.1.3 Extracting physical information from the waveform

A meaningful first step in processing the waveform is to perform a rhythmic analysis of
the signal to detect the time instants when musical "events" occur. The most important
event type that can be analysed is the note onset. The attacks of notes generally show
up in the waveform envelope as amplitude spikes (for instruments with a strong attack)
or show up as large positive changes in the power distribution of the signal in various
frequency bands. Note endings are difficult to determine precisely for instruments like
the piano whose sound decays naturally over time after the initial attack. On instruments
with sustained sounds, note endings can be detected as large negative changes in the
power envelopes in corresponding frequency bands.

If note onsets (and note endings of sustained notes) can be detected accurately, the
signal can be assumed to be quasi-stationary in the intervals between these events. This
has a number of advantages for multi-pitch analysis:

• The multi-pitch estimator can dynamically adapt the analysis frame size: in slow
passages, longer frames can be chosen to trade time resolution for greater frequency
resolution; in fast passages, shorter frames can be chosen to allow for finer time
resolution.

• Labelled note events also allow for the alignment of the analysis frames to note
borders so that the analysis is not "blurred" across note boundaries.

• It is computationally more efficient to perform multi-pitch analysis only when there
is a significant change in the signal, instead of analysing the signal with a constant
frame rate.

Pitch analysis consists of two components, pitch estimation and pitch tracking. The
pitch estimator finds a list of component pitches for each analysis frame. The pitch

1In fact, no complete published transcription syst.em in lit.erature caters for this auditory cue. Future
research into ways of using the distribution of sounds in stereo space to aid in stream separation may
well prove very useful in enhancing the accuracy of transcription systems.
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tracker then tries to trace pitch components across consecutive frames to form notes with
a definite onset and duration.

A third component of a transcription system that extracts "raw" information is an
instrument detector. If the individual parts making up a multi-instrument score are
to be distinguished, an instrument detector has to be implemented to determine which
instrument generated each note. An instrument detector would need training data for
each instrument to be detected, preferably at different pitches and intensity levels, from
which it can construct timbre models using the spectrum and time envelope. Such a set of
training data generally comes in the form of a sample bank. Instrument models extracted
from instrument sample data can also be used in the development of more sophisticated
algorithms to separate sounds with partially or completely overlapping spectra. The
problem of overlapping spectra is discussed in the following chapter.

The combined results of these three components is ideally a set of "raw" notes with
attributes that describe:

• Timing: the note onset and duration, in seconds or samples

• Pitch: the fundamental frequency, in Hz or cents

• Timbre: the instrument whose characteristics best match the sound

• Loudness: the relative intensity of the sound, in dB or another appropriate measure

These values describe the physical attributes of the sound. Being able to transcribe a
complex piece accurately to such a "raw" score would already be a major accomplishment
and would constitute a huge leap towards a complete transcription solution. In fact, the
attributes listed above are sufficient to transcribe the waveform accurately to a MIDI
representation. However, in order to generate a score in standard musical notation, the
raw notes need to be placed in an appropriate musical context which gives shape to the
structure of the music.

4.1.4 Integrating the musical information

Each of the four attributes of raw notes need to be transformed to values that have musical
meaning. Most importantly, the pitch needs to be discretised to chromatic semitones, and
note timings need to be discretised to musical note durations.

The notes also need to be grouped vertically to form chords and horizontally to empha-
sise their metric structure. Notes belonging to a particular instrument need to be grouped
into a part for that instrument. Additionally, expressive performance characteristics such
as dynamics and ornamentation can be identified to give texture to the score.
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Key and time signatures need to be identified for the piece or segments of the piece.
Notes and chords then need to be notated sensibly according to the key signature, and
grouped correctly into measures according to the time signature.

Most of these steps are incredibly complex. This stems partly from the inherent
complexity of music as a medium which encompasses many different musical styles with
different underlying rules. Transcription is further complicated by the fact that performed
music is an expressive and artistic rendition of the original score, and not a precise and
rigorous execution of it. Thus there are two sources of errors in the transcription process:

• Errors caused by flawed analysis: At virtually every step in the transcription process,
decisions need to be made as to what value best represents a particular aspect of the
signal (be it pitch, rhythm, key signature, etc.). Inevitably, some incorrect decisions
(possibly based on flawed assumptions) will be made, giving rise to transcription
errors. These machine errors can be eliminated or minimised by increasing the scope
of the knowledge sources which the system employs, as well as by implementing
top-down processing structures to allow for decision-making based on knowledge
extracted from the signal itself.

• Errors in the recorded performance: To err is human, and even virtuoso musicians
make many minor mistakes in every performance, and deviate to a greater or lesser
extent from the original score. These "inaccuracies" help to give music its soul
and serves to differentiate humans from machines". Eliminating these human errors
is more difficult, as the system has to compensate for mistakes over which it has
no control. Using probabilistic "soft" decisions based on a note's meaning in the
overall context of the performance instead of "hard" decisions based only on the
note's physical attributes might help to enhance the accuracy of transcriptions of
human performances.

4.2 Restrictions

The scope of the complete automatic transcription problem outlined above is daunting.
In order to reduce the scope of the problem for this exploratory thesis, a number of
simplifications to the transcription problem were undertaken. The most important of
these simplifications is the fact that the system architecture is purely bottom-up.

Furthermore, of the three major components for extracting physical data from the

2lt is interesting to note that many modern sequencers, such as Sibelius, incorporate probabilistic

mechanisms to slightly vary performance parameters such as rhythm so that the machine performance
sounds more "natural", "warm" and "artistic".
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waveform, only multi-pitch determination was implemented. The absence of a rhythm
tracker has the following important disadvantages:

• A fixed frame length: The same frame length has to be used for fast and slow
performances, and thus no dynamic trade-off between frequency and time resolution
can be negotiated.

• Ouerlap of notes that were played sequentially: Each analysis frame is assumed to
contain a stationary signal segment. Because the frames cannot be aligned with note
onsets, some frames will blur the data across note boundaries because stationarity
obviously is an invalid assumption at those points of the signal.

• Loss of important information about the signal: Rhythm is a crucial component of
music. Without a separate rhythm analyser, much of this information cannot be
extracted from the signal, making a sensible metrical grouping of notes impossible.

The absence of instrument models and classifiers also impacts on the effectiveness of
the system:

• Part separation is impossible: It is impossible to group notes according to the in-
struments which generated them if the generating instruments are not determined.
Thus the best that can be done is to recognise chord structures in the music.

• Multi-pitch estimation is less accurate: Without timbre models, notes with com-
pletely overlapping harmonics cannot be resolved, and notes with partially over-
lapping harmonics can only be resolved with reduced accuracy. This problem is
discussed in more detail in the following chapter.

These limitations can be overcome to some extent by making assumptions about the
signal or by attempting to extract the lacking data from the pitch tracker output. Such
assumptions and techniques are discussed in the appropriate sections in the following
chapters.

The higher-level processing capabilities of the system are also scaled down. The fol-
lowing parts of the system were designed and implemented to some degree of success:

• Basic post-processinq

• Key signature detection

• Estimation of the degree of polyphony

• Note duration quantisation

However, a number of important processing components were not designed and exper-
imentally investigated:

• Analysis of the meter

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 4 - SYSTEMDESIGN 50
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Figure 4.1: Breakdown of the AMADEUStranscription system

• Time signature detection

• Assigning of notes to voices and parts

• Analysis of harmony

As the final step of processing, the output of the system is written to MIDI files and
MusiXTEX score files, with the restriction that the latter is only done for monophonic
music signals and with the understanding that the accuracy of the output can obviously
not rise above the limitations of the processing modules of the system. For example, the
MusiXTEX scores cannot have coherent bar divisions if the system does not group the
notes meaningfully into measures.

Figure 4.1 provides an overview of the transcription system, named AMADEUS(Auio-

mated Music Analyser DEveloped at the University of Stellenbosch) after the great com-
poser W.A. Mozart:'. The components with solid lines are implemented parts of the sys-
tem, those with dash-dotted lines are only partially implemented for monophonic signals,
and those with dashed lines are planned future extensions.

3The 12-year old Mozart is said to have transcribed Gregorio Allegri's "Miserere Mei Deus" from
memory after one hearing, to the consternation of the Vatican which jealously guarded against the
transcription of this musical treasure [10].
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Chapter 5

Multi-Pitch Estimation

5.1 Background

This chapter documents the algorithms in the transcription system which transform the
pre-processed waveform into raw notes. The two main steps in this process are pitch
estimation on a frame-by-frame basis, and the integration of these pitch values into raw
notes by tracking pitch across frames.

5.1.1 Importance and limitat.ions

Pitch extraction is one of the most important steps in the transcription process, and it
seems that many researchers have focused on developing multi-pitch estimation methods
as the "Holy Grail" of automatic transcription. Even though the success of subsequent
steps of processing hinges upon the success of the polyphonic pitch extractor, the structure
of the music (harmony, harmonic progression, rhythm, etc.) itself provides a vast wealth
of clues that can be used to eliminate unlikely combinations of pitch candidates.

The foregoing comment should in no way detract from the importance of this step of
processing. It should just be kept in mind that satisfactorily solving the transcription
problem in future will be determined ultimately by the development of successful musical
models that employ various form of musical foreknowledge.

5.1.2 Requirements

The requirements of a multi-pitch estimator would be, at the very least, to (1) detect all
component pitches (2) accurate to the nearest semitone (3) in the correct octave.

Fulfilling the first of these requirements is complicated by the nature of the polyphonic
pitch determination problem. The ease with which the second criterium can be fulfilled
depends on the mid-level representation from which the pitch is estimated; in the case
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of the FFT, the inevitable frequency-time resolution trade-off makes it somewhat more
difficult to determine the pitch of low notes accurately. The last requirement is to safe-
guard against harmonic errors, typically to an octave or twelth above or below, due to
incorrectly resolving a harmonic series to its fundamental. These problems, and ways to
overcome them, will form the basis of much of the remainder of this chapter.

5.1.3 The Basic Pitch Determination Problem

Monophonic Pitch Determinat ion

Fairly successful monophonic transcription systems have been in existence for several
decades already. Nevertheless, it is a simplified instance of the more general polyphonic
case and it is helpful to build the theory up from the monophonic case.

Assuming a single voiced instrument with partials that are harmonic, the time-
discretised sound S can be described with:

H

S[n] = L Ah sin(27rhfon + eh)
h=1

(5.1)

where S[n] is the n-th sample in the steady-state portion of the signal, fo is the funda-
mental frequency ("pitch") of the note, H is the total number of harmonics, and Ah and
(h are the amplitude and phase of the h-th harmonic respectively. Ah and (h depend on
the instrument, the note that is played and the loudness with which it is played, although
they can be modelled to some accuracy for each note of an instrument. The specific series
A = {Al, A2' ... } contributes significantly towards the timbre of a particular instrument.

From the above, the spectrum of the note will have significant components at the
frequencies:

fh = hfo (5.2)

with strengths at each fh that are proportional to Ah,

Although a number of different monophonic pitch tracking strategies exist, for the
purposes of this development the pi t.ch tracking problem can be viewed as finding the fo
for a specific time frame which best accounts for the significant spectral components.

If A is compared to models of different instruments, the closest match can be taken
to be the instrument I which produced the sound. This procedure then gives us values
for pitch fa and instrument I at a specific point in the signal.
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Polyphonic Pitch Determination

The pitch determination problem outlined above becomes a lot more involved when the
sound 5 is a mixture of NJ different voiced instruments. The sound waveform at discrete
time instant n can then be approximated by:

Nl Hj

S[n] =L L Ah,i sin(27rhJo.1n+ (h,i)
;=1 hj=l

(5.3)

Given any two random notes with fundamental frequencies Jp and Jq that are sounded
together, the frequencies of any of their respective harmonics hand k will be given by:

(5.4)

(5.5)

The harmonic h of the note Jp will overlap with harmonic k of note Jq if:

(5.6)

Thus:

(5.7)

(5.8)

(5.9)

From the above it can be seen that there will be overlapping harmonics in the spectrum
of the composite sound if the fundamental frequencies Jp and Jq are ratios of integers of
each other. In Section 3.3.2, it has been discussed that scales and chords are defined in such
a way that intervals are given by ratios of small integers of the fundamental frequencies
of notes. Thus when any two notes from standard scales are sounded together, there will
be at least some overlapping harmonics.

As long as the two notes contain significant non-overlapping harmonics, the set of sig-
nificant frequencies F in a sound mixture can be resolved into the fundamental frequencies
Jp and Jq that best account for the mixture.

However, if the fundamental t, of one of the notes is located at any frequency

where N E N (5.10)

then any arbitrary harmonic h of Jq will be given by:

(5.11)
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where k = hN E N since it is the product of two natural numbers. The fact that every
harmonic of Jq is an integer multiple of Jp implies that every harmonic of Jq coincides with
a harmonic of Jp! In other words, if Jq coincides with the frequency of a harmonic of Jp,
then the spectra of the two notes overlap completely and the fundamental frequency Jq
cannot be resolved by simply applying the criterion of harmonicity to the set of frequencies
F.

This then is the fundamental problem of multi-pitch estimation. In order to sepa-
rate musical sounds with completely overlapping partials, different techniques and more
knowledge about the signal have to be applied, including:

• Knowledge of the instrument partials

• Auditory cues as discussed in Section 3.1.2

However, these knowledge sources and cues do not form part of the current system.
Their integration into the implementation is recommended as an important area of future
research.

5.1.4 Mid-level representation

When designing a multi-pitch estimation algorithm, a mid-level representation needs to be
chosen. The modern approach to multi-pitch estimation seems to lean towards correlation-
based methods, as discussed in Section 2.3. However, for this thesis, a Fourier-based
method was developed, for the following reasons:

• The correspondence oj the spectral representation with the physical signal: Equa-
tion 5.3 established that voiced musical signals can be thought of as the sum of
harmonically-related sinusoids. Significant peaks in a spectral-based representation
can conveniently be determined and processed to provide the frequencies of the
signal's component sinusoids. Other techniques such as orthogonal wavelets and
correlation-based methods relate in more abstract and subtle ways to the physical
signal. Given the exploratory nature of this work, it was deemed most appropriate
to choose an analysis method which correponds closely with the physical nature of
musical signal.

• Stability and predictable behaviour: Unlike in the case of many spectral and pseudo-
spectral estimation methods like ARMA and MUSIC (both of which were investi-
gated during the initial stages of development), no assumptions concerning the num-
ber of component sinusoids need to be made for FFT analysis. The FFT thus gives
very reliable estimates! of amplitude and phase of significant components across the

IWithin the time-frequency resolution framework of a chosen window type and analysis frame size
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spectrum, making it fairly easy to extract data for all significant components.

The FFT has a fundamental flaw when processing musical signals though. As was
shown in Section 3.3.2, musical scales are based on a geometric progression of frequencies.
However, the FFT has a fixed frequency resolution !:::.f due to the linear frequency spacing
of the bins. The frequency ik of the k-th bin is given by:

(5.12)

where the frequency resolution 6.f of the FFT and the true frequency resolution !:::.ftl'ue
(the closest sinusoids that can still be separated) are given by:

!:::.f fs (5.13)
NFFT

!:::.ftrue
fs (5.14)

Nwin

This last equation points out another inconvenience of the FFT for musical processing.
There is a Heisenberg-type trade-off between time resolution and frequency resolution be-
cause the product !:::.ftrue x Nwin = Is is constant. The frequency resolution of the FFT
can be improved through a combination of good peak-picking with the LULU algorithm
described in detail in Appendix B and the frequency sharpening method described in Ap-
pendix C. Furthermore, if a sound has H prominent harmonic partials, the fundamental
fo can be resolved to a resolution of ¥ because:

fH - !:::.f ::; f H ::;

::; H fo ::;

::; fo ::;

fH + !:::.f

H fa + !:::.f
!:::.f

fo+-
H

(5.15)

(5.16)

(5.17)

=> H fo - !:::.f
fo _ !:::.f

H

Thus the frequency resolution problem can be circumvented.

5.1.5 Synthetic signal

The algorithms given in this chapter were tested during development with synthetic sig-
nals, to ensure that the system works as expected. In order to illustrate the way the
algorithms operate on data, results from one such signal will be used throughout the fol-
lowing sections. The demonstration signal is the first one-and-a-half measures of Michael
Nyman's "The Heart Asks Pleasure First" from the soundtrack to the movie The Piano:
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The sample was synthesised in MATLAB by summing sinusoids of appropriate dura-

tions at various pitch and harmonic frequencies, according to Equation 5.3. The compo-
nent synthetic sounds all have the same harmonic structure H, as shown in Figure 5.1,
and the sounds were all synthesised with the same loudness. These simplifications were
necessary to overcome some of the inherent design limitations, as discussed in Section 5.4.
The fact that the notes were strictly mixtures of sinusoids and with all notes having iden-
ticalloudnesses made the polyphonic signal sound like a fairly realistic organ sample. The
sample was synthesised with 50 ms breaks between repeated notes to separate them. The
tempo was chosen as J=50, so that quavers have a duration of 0.4 s. It should be noted
that this sample has a degree of polyphony of four.

A spectrogram of the synthetic signal is given in Figure 5.2. Note that the signal
contains up to three simultaneous notes with completely overlapping component spectra
(the fourth from last chord has three simultaneous A's in different octaves). This property
of the sample enables for a very real demonstration of the multi-pitch estimation problem
defined in Section 5.1.3.

Harmonic structure of synthetic sound

0.8

0.4

0.2

o '------'---------'-:-----'------'---~_rL.._____L______j____J
0.5 1.5 2.5 3 3.5 4.5 5.5

Harmonic number

Figure 5.1: Harmonic structure of synthetic "instrument" sound
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Spectrogram of synthetic signal

Time

Figure 5.2: Spectrogram of synthetic polyphonic sample

5.2 Pitch estimation algorithm

In this section an algorithm for an FFT-based multi-pitch estimator is developed and
discussed. The transcription problem was approached by first developing a robust mono-
phonic pitch tracking method with which the simpler case of monophonic transcription
was investigated. The current multi-pitch estimation algorithm is an expansion of the
original monophonic pitch estimator".

5.2.1 Algorithm outline

The pitch detection algorithm can be outlined as follows:

2Care was taken to ensure that the algorithm reduces to monophonic pitch estimation for monophonic
signals.
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Step 1: FFT The FFT is calculated for each time frame, with windows 46.4 ms long
and with 87.5% overlap between frames. Square windows (boxcar windows) are
used to achieve the narrowest possible main lobes.

Step 2: LULU The power spectrum is then filtered with a non-linear impulse transfor-
mation (refer to Appendix B) of order Nui ui = 1 to remove the FFT sidelobes.
Peak-picking is subsequently performed on the spectrum to find significant frequen-
cies :F.

Step 3: Frequency sharpening The frequencies of found peaks are then sharpened
with a technique borrowed from phase vocoding (refer to Appendix C), assuming a
sinusoid at each peak.

Step 4: Determine Candidates A list of pitch candidates is calculated from the sig-
nificant frequencies obtained in Steps 2 and 3.

Step 5: Score candidates Candidates are scored by summing the power contained in
each partial.

Step 6: Validate candidates Candidates are validated using a number of heuristics.
The validated candidate with the highest score is added to the list of pitch mixture
components for the current frame.

Step 7: Remove partials of highest scoring candidate from list The partials of
the highest scoring valid candidate are removed from the list :F of significant fre-
quencies.

Iterate Steps 4-7 The procedure is iterated until no significant contributing pitch can-
didates can be found in the current frame.

These steps will now be illustrated and discussed in greater depth in Sections 5.2.2
to 5.2.6.

5.2.2 Determining spectral peaks

When the signal is FFT'ed, the window size is chosen so as to give a true frequency
resolution of around 20 Hz at a sampling rate of 44.1 kHz. This provides a window size
of 2048 samples or 46.4 ms. Because frequency resolution is very important for resolving
low notes, square windows are used to achieve the narrowest possible main lobes. The
frequency response of the square window has main lobes that are R = NNFFT bins wide,

WIn

with side lobes that are half as wide. Unfortunately, this good frequency resolution is
accompanied by a peak side lobe which is only 13dB below the main lobe [47, p. 628]. The
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Figure 5.3: Peak picking on the spectrum of a synthetic polyphonic sound

side lobes are suppressed by applying a non-linear impulsive smoother to the spectrum.
Such a LULU smoother of order Nww suppresses impulsive artifacts narrower than
Nww + l. Thus the smoother's degree is chosen as Nuuu = R - 1 in order to "filter
out" the sidelobes.

Assuming that spectral peaks were generated by sinusoids, the true frequency of the
generating sinusoid can be determined by examining the phase difference over two frames
of the FFT bin which contains the peak. The result of this series of operations (FFT,
LULU-smoothing, peak-picking and frequency sharpening) is a list of significant frequen-
cies F for the current frame.

An example of this process for one frame of the synthetic demonstration signal is
given in Figure 5.3. It can be seen that all peaks are correctly identified (even though
there are a few spurious ones also). The effect of the LULU-smoother on the spectrum is
quite remarkable, suggesting that such smoothers are very effective for removing outliers
from data. It can also be seen that the peaks are sharpened correctly: the instantaneous
frequencies are given more accurately than the actual spectral resolution.

5.2.3 Determining pitch candidates

The relationship between the fundamental frequency and its harmonics is used to deter-
mine possible pitch candidates from the list of spectral peaks. Each peak fpeak E F gives
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a number of pitch candidates by iterating through h = {1, ... ,5} to calculate:

f fpeak
JO,cand = -h- (5.18)

provided that fO,cand lies in the range of 80 to 2500 Hz (E2 to E7).

This procedure generates a lot of duplicate pitch candidates because many harmonics
will resolve to similar fundamentals. However, the above procedure is used to ensure
that pitch candidates are generated even when a number of peaks have been missed by
the peak picking procedure. It also ensures better frequency resolution when frequency
sharpening was unsuccessful.

The duplication of pitch candidates (as well as the generation of invalid pitch cancli-
dates) in the above procedure is not problematic because all candidates are examined and
validated in subsequent steps of processing.

5.2.4 Candidate scoring

The pitch candidates are "scored" by calculating the total candidate power Ptot,cand by
summing the powers P(J) at the harmonics frequencies f of each pitch candidate:

H

Ptot,cand =L P(hfo,cand)
h=l lfs/2Jwhere H = To (5.19)

The normalised harmonic structure K = {Kl, K 2, K 3, ... , K H} of each candidate is
also determined:

K _ P(hfo,cand)
il -
. max P(kfo,cand)

where 1 ~ h ~ H (5.20)

This harmonic structure is used to validate candidates in the following step. In fu-
ture versions of the system K can also possibly be used for instrument identification by
matching it to known (trained) values for various instruments.

5.2.5 Candidate validation

The pitches and their power scores are then used to validate the candidates. Candidates
must satisfy the following conditions:

l. They must either have a strong fundamental (Kl> 0.05),
or
They must have strong second to fifth harmonics (K" > 0.05, where 2 ~ h ~
5). These criteria are meant to ensure that the combination of harmonics of the
candidate stimulates a strong sensation of pitch at the candidate frequency.

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5 - MULTI-PITCH ESTIMATION 61

2. The odd partials must contribute significantly to the total power of the note:

L Kodd ~ 0.2L Keven (5.21)

This is to reduce the occurrence of downward octave errors, where the candidate
fundamental is half the true fundamental, implying that the odd harmonics of the
incorrect candidate will all have relatively low amplitudes.

3. The total candidate power Ptot,cand must constitute a significant fraction of the total
power n: in all the found peaks: Ptot,cand ~ 0.2Ptot'

All of the above validation criteria are heuristically founded on the spectra of a variety
of instrumental and vocal sounds. Nonetheless, a better strategy would be to compare
the harmonic structure K of each candidate with spectral models of instruments at that
pitch to determine whether the candidate K is valid in terms of the models. However,
the required instrument models do not currently form part of the system. The listed
validation criteria can also not be guaranteed to produce results that correspond exactly
with the physical mixture of notes that produced the compound sound in a given frame.
Instead, these criteria were chosen to provide results that are a reflection of the perceptual

mixture, which is the best that can be done without a knowledge source for instrument
timbres.

Sounds which were generated on instruments like the violin and the oboe typically
have partial structures where the fundamental is relatively weak compared with some of
the upper partials. In such cases the separation of notes with completely merged spectra
is impossible without using instrumental models and a variety of auditory streaming cues.

In some special cases, however, notes with merged spectra can be separated, if the
following assumptions are made:

1. The fundamental is the strongest partial of a note's response.

2. Notes that are sounded simultaneously have similar intensities, or less strictly: notes
of higher pitch have greater intensities.

Many notes on the piano, acoustic guitar and other plucked string instruments, along
with the organ, flute, recorder and other air reed instruments have dominant fundamen-
tals, especially for notes above Middle C. The synthetic signal also fulfills both of the
above requirements. In such cases, merged notes can be separated with the criterium:

Kh > K, ::::} hio is a separate note. (5.22)

5.2.6 Removing partials from the partial candidate list

The highest scoring validated pitch candidate io,max is added to the pitch list for the
current frame. In order to find further notes in the current frame, all partials belonging
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Figure 5.4: Raw pitch points of synthetic polyphonic sample

to fo,max are removed from the list of significant frequencies F. In order to account for
some degree of inharmonicity in the partials, a frequency fpeak E F is removed if an h
can be found such that:

0.98hfo,max :S fpeak :S 1.02hfo,max (5.23)

The factor 1.02 is chosen because it is somewhat less than half asemitone (21/24 =
1.0293) and partial candidates falling in that range can thus be assumed to belong to
fo,max.

With the reduced list of partial candidates, the process of finding, scoring and validat-
ing pitch candidates is iterated again, until such time as no more viable pitch candidates
can be found.

The result of the pitch esimation algorithm for the synthetic signal is given in Fig-
ure 5.4. It can be seen that virtually all pitch points (including those with completely
merged spectra that had to be detected with the condition in Equation 5.22) were found
correctly, with only a number of small errors at the note onsets and endings. The pitch
of 0 Hz that is given in every frame serves as a terminating value for each frame's pitch
list.

5.3 Pitch tracking algorithm

The above pitch estimation procedure results in a list of pitch points for each frame. The
pitch points from successive frames are then grouped into notes across time frames. The
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pitch tracker provides a set of "raw" notes with the properties:

• NstaTt: the analysis frame in which the pitch was first encountered

• Lnote: the length of the note in number of analysis frames

• M: pitch specified as a MIDI semitone

• Pavg: the average power of the sound

5.3.1 Algorithm

The pitch tracking algorithm is outlined as follows:

Step 1: Convert all pitch points from Hz to MIDI semitones using Equation 3.15.

Step 2: For all frames 1 ::; NeuT ::; N frames, do step 2.1:

Step 2.1: For all pitch values in frame NeUT that have not been marked "processed", do
steps 2.1.1-2.1.2:

Step 2.1.1: Find pitch points at the same pitch in the following frames Nnext > New',

not skipping more than Nskip frames between each two frames with matching pitch
points. All pitch points in successive frames that are thus found need to be marked
as "processed". Let Ntast be the last frame that contains a matching pitch point
and Nstart = NeuT' Then the note length Lnote = Ntast - NcUl' + 1.
If at any time during the described forward searching there is an increase in the
sound power of more than a factor 10 from a matching pitch point to the next,
stop the forward search at that frame (which becomes Ntast). Such a power increase
signals the attack of a new note.
The average note power Pavg is the mean of the individual powers of the matching
pitch points.

Step 2.1.2: If Lnote > Lmin, add it to the list.

A sensible minimum note length Lmin in the above algorithm would be the equivalent
of a duration of around 60 ms, which is the duration of a demisemiquaver (J) played at
j = 120. Nskip can be assigned half the value of Lmin.

Pitch tracks obtained with this algorithm are given in Figure 5.5 for the synthetic
signal. It can be seen that all notes given in the original score are present in the pitch
tracks, and no incorrect notes were detected.
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Figure 5.5: Unprocessed pitch tracks of synthetic polyphonic sample

5.3.2 Discussion

The described pitch tracking algorithm makes two restrictive assumptions about the sig-
nal:

• Instruments are tuned close to the standard: The instruments which generated the
sounds are tuned in such a way that no note is more than 50 cents off A440-based
equal-tempered pitch. If a note is more than 50 cents off standard equal-tempered
pitch, it will be discretised to the wrong semitone in Step 1.

• Vibrato depth is restricted: Although the fact that the system tracks notes with
semi tone resolution allows for a relatively deep vibrato, a frequency deviation of
greater than a semi tone (peak-to-peak) will show up in the note tracks as an oscil-
lation between several adjacent semitones.

The algorithm proposed above is not well-suited for transcribing vocal music. Unac-
companied singers will generally have a (more or less constant.) offset to standard pitch,
due to the fact. that most. humans do not have perfect pitch. This offset needs to be
determined and subtracted from the pitch (in logarithmic cents). Moreover, many singers
have a very deep vibrato (we have measured depths of a whole tone peak-t.o-peak for some
singers!) which obviously violates t.he vibrato depth assumption of the algorithm.

Both of t.hese rest.rict.ions have been overcome in one of our prototype monophonic
transcription syst.ems by segmenting t.he signal with an algorit.hm that has a cert.ain
"inertia" which favours regions where the mean pitch is stable for a certain period of t.ime.
The mean offset of the stable regions to their nearest semitone can then be subtract.ed
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Figure 5.6: Singing sample with deep vibrato

from the pitch curves to shift them to standard chromatic pitch. The stable regions are
assumed to be notes with a pitch equivalent to the mean of the region. This algorithm
was found to work well for monophonic singing samples. An example of a sample with
deep vibrato as segmented by this alternative algorithm is given in Figure 5.6. The mean
offset to standard tuning has already been removed from the given pitch track.

5.4 Limitations

The multi-pitch estimation and tracking method proposed in this chapter has a number
of inherent limitations. The absence of tone models in the system is probably the most
severe limiting factor. Because of this, it is impossible to separate fused tones. Even more
fundamentally, without knowledge of what a specific instrument's spectrum for a certain
pitch looks like, it is impossible to say with certainty whether a pitch candidate together
with the magnitudes of its harmonics actually constitutes a valid component sound for a
given mixture.

The multi-pitch estimation algorithm makes explicit use of only one of Bregman's
auditory cues, namely that of harmonicity. It is imperative that future systems make use
of at least the common onset cue in addition to harmonicity. Using common onset, notes
with overlapping spectra but different onset times can be separated by always grouping
only new frequencies that were absent in the previous frame. We attempted to integrate
a version of the "stream tracers and watchers" algorithm in Figure 3.3 into the pitch
estimation algorithm. This extension component added all validated pitches from the
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previous frame to the list of pitch candidates in the current frame. However, it was found
that this sometimes led to an unstable pitch tracker which generated an ever-increasing
number of "ghost pitches".
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Post- Processing

6.1 Introduction

As important, or perhaps even more important, than an accurate pitch tracker is a post-
processing module that transforms the raw notes into usable results through the applica-
tion of different rules.

6.2 Basic post-processing

The results of the pitch tracker are sometimes very rough in that many spurious notes may
have been found. In this section, algorithms are presented which are used in the current
transcription system to weed out two types of such notes: those with a low average power
(soft notes) and those that exceed the estimated degree of polyphony of a piece.

6.2.1 Eliminating notes with low power

Soft background noises (coughs, air conditioners) during silences in the music are often
detected by the pitch tracker as notes. Note that such noises are not generally detected in
segments with true sound content because of the restriction that every note in a certain
frame must constitute some significant fraction of the total power. To eliminate the "noise
notes", the power values of the notes are sorted into an array, which is then partitioned
with the Lloyd-Max quantisation algorithm (see Appendix D) into two groups: loud notes

and soft notes. If there is a sufficient distinction between the loud partition and the soft

partition, the notes in the soft category are eliminated from the note list.

The detail of the algorithm is as follows:

67
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Step 1: Cluster all values of average note power in dB (1010glOPavg) into two partitions
having cluster means /11 and /12 respectively. The logarithm of power is used so as
to allow for the fact that sound levels during a performance may vary considerably.

Step 2: Ensure that 1/12 - /111 > 20dB. If not, terminate the algorithm. This ensures
that valid notes are not eliminated in a signal that is mostly free of background
noise.

Step 3: The threshold for minimum valid note power is set at Pmin,dB = ~(111 + {l2).

the boundary between the clusters. Eliminate all notes with power lower than this
threshold.

In effect, this method chooses a dynamic (as opposed to a hard-coded) threshold as
its elimination criterium. This is necessary because the approximate loudness of the
component sounds can vary considerably from sample to sample. Furthermore, using two
centroids instead of the single mean is necessary if an appreciation of the spread of values
is to be gained.

6.2.2 Detecting polyphony

It is useful to detect the degree of polyphony of a piece. For example, this allows for
elimination of excess simultaneous notes.

An approximation of the degree of polyphony is easily obta.ined using the following
strategy:
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Step 1: Obtain a list of note events (note starts and note endings), sorted according to

the instants at which they occur.

Set some variable curpoly <= O.
Initialise an array polyhistogramf-] of indefinite size to zero.

Step 2: For all note events, do steps 2.1-2.2:

Step 2.1: If the current event is a note start, set curpoly <= curpoly + 1.

If the current event is a note stop, set curpoly <= curpoly - 1.

Also set ~T <= (instant of current event) - (instant of previous event)

Step 2.2: Set polyhistogram(curpoly) <= polyhistogram(curpoly) + ~T

Step 3: Calculate the cumulative sum polycumsum <= cumsum(polyhistogram)

Step 4: The first bin degpoly for which

polycumsum( degpoly) ~ 0.8max polycumsum
gives the approximate degree of polyphony.

In the current transcription system, the degree of polyphony is used to eliminate the

softest notes in segments where the degree of polyphony exceeds degpoly. Another more

sophisticated use could be to use the approximate degree of polyphony to detect and

correct the absence of notes in chords. For example, if a certain chord consists of only

two notes, but the degree of polyphony was found to be three, then it is possible that the

multi-pitch estimator missed one of the component notes.

For the synthetic demonstration signal, the program generated following output whilst

calculating the degree of polyphony:

---POLYPHONY ELIMINATION---
0 simultaneous voices: 0%
1 simultaneous voices: 0.490998%
2 simultaneous voices: 24.2226%
3 simultaneous voices: 28.6416%
4 simultaneous voices: 46.4812%
Eliminate notes when >4 voices ...
ORIG # NOTES = 36, NEW # NOTES = 36, # NOTES ELIMINATED = 0

The degree of polyphony was thus detected accurately. Because there were no incorrect

insertions, no notes were eliminated.
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6.3 Key Determination

6.3.1 Introduction

Determining the key of a transcribed piece is of cardinal importance for further processing.
Many forms of harmony employ chords and sequences of chords that have specific meaning
according to the degree of the scale on which they are constructed. Although musical
models are not used for the purposes of this thesis, a simple yet effective algorithm for
determining the key of a piece is developed.

6.3.2 Algorithm

The approach chosen for the current system employs circular convolution to determine
the key signature (as opposed to the key itself, which can be either major or minor). In
Section 3.3.3 and Table 3.3, we have seen that there is a correlation between major and
natural minor scales with regards to their semitone intervals, even though they differ in
their choice of tonic. In general, music written in a minor mode contains both raised and
natural <5 and 71. However, this does not impact on the choice of key signature as the
intervals for the remaining scale degrees are the same for all types of major and minor
scales; these intervals are used to find the key signature. Finding the key signature can
thus be defined as the problem of finding the pitch class which acts as the base for an
"averaged" scale pattern which is valid for both major and minor keys.

First, histogram tallies V (C) are calculated for occurrences of notes in each of the
twelve pitch classes 0 ::; C ::; 11. Pitch class C is determined from semitone Mas:

C = M mod 12 (6.1)

so that C = 0 represents C, C = 1 represents C~, etc.

The tallies V(C) are then circularly convolved [47, p. 416] with a model U(C) which is
a combination of the major and minor scales, as shown as the bottom graph in Figure 6.1.
The pitch class Cbase is taken to be the maximum value of this circular convolution W.
This process is best described by the following equations:

W(C) U(C) ® V(C)
11L U(C)V((C + j) mod 12)

(6.2)

where 0 ::; C ::; 11 (6.3)
j=O

argmax W(C) (6.4)

[The notation 11 indicates the n-th scale degree.
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Figure 6.1: Models of various scale types: Shown from top to bottom are the C major

scale, the corresponding natural a minor scale (which is also the pattern for the

descending melodic minor scale), the harmonic a minor scale, the descending melodic a

minor scale and the combination model which is used for key signature detection.
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The key signature can be derived from Cbase by using the circle of fifths in Figure 3.8.
For example: Cbase = 0 indicates a key of C major or corresponding a minor and thus the
piece has an empty key signature; Cbase = 1 indicates a key of CU or Db major (or their
corresponding minors) and thus the signature is given by 5 flats (with the assumption
that an "emptier" key signature is easier to read than one with more accidentals); etc.

A further condition is needed to distinguish between major and minor scales. Given
a key signature, the way to determine the scale type (major or minor) is to determine
the significant presence of raised minor 7' which is characteristic of music in minor modes
(minor 7' corresponds with 5 of a major scale, a note which is generally not consistently
raised). The pitch classes C5,unmised and C5,raised for natural and raised major 5 respec-
tively are given by the following equation for an earlier determined Cbase:

CS,unrai.sed = (Cbase + 7) mod 12 C5,raised= (Cbase+8) mod 12 (6.5)
Then, if

V (C5,mised) > O.4V (C5,unraised) (6.6)
the scale type is taken to be minor, else it is taken to be major.

6.3.3 Complete algorithm

The complete algorithm is summarised as follows:

Step 1: Calculate tallies V (C) for the pitch classes C of all notes.

Step 2: Match V(C) to the "averaged" scale model U(C) with circular convolution:
W(C) = U(C) ® V(C). The best match is: Cbase = arg max W(C).

Step 3: Look up the key signature for a major scale based on Cbase using the circle of
fifths (Figure 3.8).

Step 4: Detect the scale type based on the possible presence of a large proportion of
raised notes five scale degrees above Cbase'

Although the multi-pitch estimator is not very accurate, the key was detected correctly
for all real samples that were tested. This suggests that the multi-pitch estimator is
accurate enough to allow for key detection. This begs for the implementation of top-down
processing structures to use the key for enhancing the accuracy of multi-pitch estimation.
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6.3.4 Discussion

For the synthetic input signal, the following output was generated:

---DETERMININGKEY---

noteTally [OJ 3

noteTally [lJ 0

noteTally [2J 0

noteTally [3J = 0

noteTally [4J 12

noteTally [5J 0

noteTally [6J 0

noteTally[7J = 1

noteTally [8J 0

noteTally [9J = 13

noteTally [10J = 0

noteTally u n = 7

=> C major

The internal procedure which is followed to determine the key is visualised in Fig-
ure 6.2. It can be seen that the key signature is ambiguous if the circular convolution
met.hod is used, because only 5 pitch classes are involved in the first few notes of the piece.
The program chose the first pitch class with the highest value in the convolution result
as the key signature, which gives C major / a minor. The distinction between major
and minor is trivial here because there are no raised minor 7 in the extract, suggesting a
major scale. However, even though there are no raised minor 7, the context of the music
suggests a minor scale. Thus, for this 3.6 second short synthetic sample, the key signature
was identified correctly only by chance from a set of 9 viable candidates. Furthermore,
the scale type was misidentified. The lesson learned from this is t.hat the key detection
algorithm needs a larger and more representative data set than the 36 notes with which
it was presented here. Additionally, it should be kept in mind that Nyman's music falls
somewhat outside of the classical music theory on which the key detection algorithm was
based.
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Determining the key signature
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Figure 6.2: Visualisation of key signature detection for the synthetic signal

6.4 Note duration quantisation

6.5 Overview

As discussed earlier, the current system does not include a separate beat and meter track-
ing component. For score generation, however, the note durations need to be quantised
in some or other fashion. For that reason a least squared error quantisation algorithm
was devised.

This algorithm involves finding a base note duration (a "beat"), to which note dura-
tions are related through some factor. It should be noted that the "beat" as it is found
and used here is not necessarily the true beat of the piece.

In Section 3.3.4, it was mentioned that the basic musical note durations differ from
each other by factors of 2, although virtually any duration can be simulated with the use
of grouplets, dotted notes and slurred notes.

The beat duration Tbeat is related to the tempo B (typica.lly expressed as beats per
minute) as follows:

(6.7)

The beat should be chosen within a. sensible range. Standard metronomes generate
tempos in the range of 40-208 bpm. The symbol (J, j, )' etc.) chosen for the beat is
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somewhat arbitrary, and a piece notated with a beat = cJ could just as easily be notated
with beat =.1 (and all note duration symbols downscaled appropriately by half).

The algorithm for note duration quantisation works as follows:

The logarithms of the durations of the notes found by the pitch tracker are clustered
into six groups using Lloyd-Max quantisation. The logarithms are used because note
durations are typically related to each other by powers of 2. Six groups are used because
there are six simple note durations from) to 0 • This provides six cluster centroids Pj,

where Pj denotes the mean log-duration of notes in cluster j.

The note duration T, represented by each flj can be calculated by

(6.8)

Each Tj is then scaled to a value in the range of 0.375 s ~ T, ~ 1.2 s (the equivalent tempo
range of 50-160 bpm) .

The ratios between the note duration Tnote and the beat duration neat (which IS

assumed to be a notational quarter note) are calculated for each note using

R _ Tnote
T---

Tbeat
(6.9)

The closest match RT III the set of "standard" note durations Ra
{k, i, ~,1,2,3,4,6,8} is determined for each RT. The values in Ra represent the fac-
tors by which certain note durations are related to crotchets (quarter notes). Thus a
value of 1 indicates a quarter note, whilst a value of 4 is used for whole notes, k for 32nd

notes, etc. The set Ra is chosen in such a way that simple note durations are favoured
above triplets: grouplet values have been omitted from Ra. This is so that true compound
beats will not end up being notated with triplets.

The enol' for note j is then calculated as

el = (Rr ;,RT ) 2 (6.10)

The mean squared enol' is then
_ 1 Nnotes

2 _ """ 2e - y::;-- ~ ej
notes j=1

(6.11)

Finally, note durations are quantised to standard musical duration values using the
Tbeat which gives the lowest discretisation error. The scaling factors of Tbeat which are
used for duration quantisation are:

{
Ill 13 3 }

R= 8'4'3'2'4,1'2,2,3,4,6,8 (6.12)

The discretisation is done according to the procedure described above for finding the
closest RT.
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6.5.1 Algorithm

The note duration quantisation algorithm can be summarised as follows:

Step 1: Cluster the note durations into six clusters.

Step 2: Scale the cluster centroids to fall within a range of sensible "beat" durations.

Step 3: For each centroid, find the mean square error of note duration quantisation.

Step 4: Quantise to the "beat" duration which gives the smallest MSE.

6.5.2 Example

For the synthetic signal, the following output was produced:

Best fit base note duration (quarternote) = 0.380227 sees
Tempo = 157 bpm

The system did indeed find the most sensible base note duration. The piece was

generated at 50 bpm with dotted crotchets, which give quaver durations of 0.4 s. However,

some notes were somewhat shortened (by 50 ms) to prevent repeated notes from merging.

Thus the base note duration is a little bit shorter than the true quaver length.

6.5.3 Limitations

The above method, even if it were accurate in finding the true beat of a piece, is insufficient

to provide information about the phase of the beat".

Currently, note durations are only quantised for monophonic music so as to allow for

score generation with standard duration symbols. From the results in Chapter 8 it can

be seen that even such a crude quantisation provides results that are intelligible enough

to gain an impression of the original rhythmic phrasing.

Future versions of the system should implement ways to quantise note durations to

values that are musically meaningful in the context of a phrase. For example, discreti-

sation to triplet values should only be done if there are two or three notes that can be

grouped into a valid triplet structure. This requires accurate estimates of the tatum, the

2By definition, the beat has a certain periodicity, and thus has a frequency and a phase. The phase
describes at which fraction of the beat a cert.ain note is locat.ed. Thus integer values of the phase
correspond with the locations of the beat pulse [15].
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beat and the measure of the signal. These estimates could then be used together with
probabilistic meter grouping models for results that conform more closely to standard
rhythmic notation.

6.6 Output

The last step performed by the transcription system is to generate output for all the
notes which have been detected and processed. Most transcription systems generate
MIDI output - a standard which forms the basis of computer music processing and data
exchange, as discussed in Appendix E. MIDI files can be played with freely available
players on all computer platforms, and are thus a convenient way to provide output
that. can be compared aurally t.o the original. Moreover, MIDI files can be import.ed
into many score editing software packages. In fact, some researchers have chosen t.o
write t.heir t.ranscription output exclusively to MIDI files, and leave the nitty-grit.ty of
score generation (such as choosing suitable note groupings, beams, slurs, clefs, etc.) to
commercial score editing packages. The problem with this is that MIDI files contain
information about physical notes (pitch, start, end, velocity) toget.her with some optional
information (key signature, time signature, tempo) but do not store information about
how individual notes should be notated.

For this reason, a first attempt at score generation for monophonic music was under-
taken, in addition to MIDI output. MusiXTEX was chosen as the score output format
because it is powerful, flexible and well-documented, MusiXTEX files can be compiled
to Post.Script files with freely available packages. Also, since MusiXTEX files are text
documents, the output scores can be edited and corrected with any text editor.

The motivation for implementing score generation as a component in a transcription
system (as opposed to using an external program) is that the transcription system has
vastly more information about the signal at various levels at its disposal than would an
external commercial package which uses MIDI files only. However, score generation is a
very difficult process which would entail (amongst many others):

• displaying chords correctly,

• inserting beams and slurs correctly,

• deciding on the best way to represent accidentals (for example, the same pitch can
be written as C~, B x or Db depending on the context), and

• notating repetitions in the performance.
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In our system, notes were notated individually", using the correct pitch height and
accidentals for each note, according to the key signature as extracted from the music.
Since the system does not perform an analysis of the meter, and thus does not extract
information about the beat or the measure, coherent bar divisions could not be done. The
system groups every six notes into one bar to make the output more readable. Due to
limitations of the system, score generation could not be standardised further than this.
This attempt at generating score output was nonetheless an exercise that proved how
much work still remains to be done even at such a high level where most of the processing
is generally considered to be finished already!

6.7 Comments based on the synthetic signal

A piano roll excerpt plot.ted from the MIDI output for the synthetic signal is given 111

Figure 6.3. All component. notes of the original signal were correctly identified, and there
are no insertions or deletions. The synthetic signal had some very special properties which
are not universally applicable to real signals:

• It contained no noise".

• All partials were perfectly harmonie.

• All component notes were equally loud.

• Each note was composed of a limited number of harmonics only, of which the fun-
dament.al dominated.

The synthetic mixture did however conform with the generally accepted model of
polyphonic music signals as the sum of concurrent sinusoids (cf. Equation 5.3). The fact
that many of the algorithms gave correct results for synthetic signals indicates that t.he
basic underlying concepts were correctly identified and implemented.

A last important comment needs to be made so as to emphasise the significance of
the success of the system with synthetie signals: Synthetic signals were not successfully
transcribed because they were synthetic; instead, they were successfully transcribed be-
cause they conformed with some model of instrument sounds. As has been pointed out
several times during the course of this work, the lack of instrument models is the single
most important reason for the relatively mediocre performance of the current multi-pitch
estimator when used with real signals. It is imperative that future refinements to the
system make use of more accurate models in all aspects of processing.

31.e. with no slur or beam formation

4Apart from an impulse at. the beginning and end of each note resulting from the synthesis method.
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----- "---- - ---r--- -- --
"- • • ---- . -- -
----- "-----

Figure 6.3: Piano roll excerpt [or the synthetic polyphonic sound

After a brief discussion of the implementation of the system in the next chapter,
transcription results obtained with the system are given in Chapter 8.

Stellenbosch University http://scholar.sun.ac.za



Chapter 7

Implementation issues

7.1 Development of a music processing library

Due to the lack of an established culture of music technology research at our university,
most of the basic building blocks of the transcription system were implemented from
scratch, excepting a WAY reader and an FFT implementation, both of which were taken
from the PatRecII pattern recognition system developed at the University of Stellenbosch.
During implementation, special care was taken to design the system components in such
a way that they can later be used or integrated in other music analysis programs also.
For the storage and processing of symbolic music data, a data hierarchy was formed, as
shown in Figure 7.1.

7.2 Speed

Initial development was undertaken in the MATLAB environment, due to its large tool-
box of signal processing functions and easy-to-use visualisation features. However, once
promising solutions were found, MATLAB'S execution speed proved a daunting hurdle

Melody
....

Name Melody s.gment
Copyright info
Annotation Time Signature Not. Sequenc.
Melody segments Tempo

Key Instrument Not.
Nole sequences Voice

Noles Pitch
Start
Duration
Attack velocity
Release velocity

Figure 7.1: Hierarchy of the symbolic music data in the system
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to quickly fine-tuning certain parameters or testing aspects of the system on different
samples.

The transcription system was thus implemented in C++, where even with some awk-
ward programming in certain parts of the system, the duration it takes to process a sample
is of the same order as the actual duration of the sample. The slowest part of the tran-
scription system is the multi-pitch estimation stage because the volume of data at this
stage is very large, whilst the information density is fairly low. Each subsequent stage
takes less processing time because as the information quality increases, t.he data quantity
decreases, as shown in Figure 2.1.

The current implementation is not suited for real-t.ime use due t.o the fact that all
pitch tracking is completed first before moving on to the post-processing phase. This
is done to allow the system t.o process informat.ion bot.h forward and backward in time
so that it. needs less prior knowledge of the signal and has to make t.he least number of
assumptions regarding the content.

7.3 U ser- friendliness

For a transcription system t.o be truly useful, it needs a user-friendly front.-end, where
segments of the signal can be visualised and processed, extracted information displayed,
and the results examined and possibly edit.ed. The current syst.em is command-line based,
wit.h little or no user intervention. Output. is done to format.s which require external soft-
ware. The IvIIDI files that the syst.em produces can be list.ened to with any multimedia
player with MIDI capabilities, and can also be edited by a number of commercially avail-
able packages. For the reasons explained in Section 6.6, scores are output. to l'vlusiXTBX
format, which can be edited with any t.ext editor and for which there are freely available
distributions on most computer platforms. A simple MATLABprogram was also written
to visualise MIDI files on piano rolls.

Neither the MIDI nor the MusiXTBX output of the implementat.ion is currently suf-
ficiently formatted and musically accurate for comfortable use and general application.
It is to be hoped t.hat in future, a more user-friendly front-end for the program will be
written which would make it easier to relate different aspects of the system (waveform,
spectrogram, raw and processed pitch tracks, piano rolls, sound and notation) to each
other.
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Chapter 8

Experimental Investigation

8.1 Introduction

In the foregoing chapters, algorithms were described which were implemented as part of
a transcription system. Several music files were transcribed and are presented here to
give an impression of the different successes and failures of the transcription system. The
results are given in increasing order of complexity, from simple monophonic transcriptions
to drastically more involved polyphonic music transcriptions.

Because of the (relatively) simple nature of monophonic output data, objective ac-
curacy measures can be calculated for them by comparing the acoustic input with the
transcribed scores and piano rolls. Such measures will thus be given for the two mono-
phonic transcriptions.

For polyphonic samples, the output is still so raw that valid objective measures can
hardly be calculated efficiently. For example, the most common transcription mistakes
are octave errors and deleted (missing) notes. Both of these types of errors are determined
by the inherent design limitations of the system: as has been reiterated numerous times
throughout the previous chapters, a system that does not incorporate extensive music
knowledge sources, instrument models and advanced auditory cues cannot work reliably
on general polyphonic signals. For that reason, the system was shown to work earlier
with controlled synthetic polyphonic signals which met the constraints placed upon the
algorithms. The polyphonic signals tested here serve to underline the described limitations
of the system.

Because of their bulk which would necessarily distract from the flow of the follow-
ing discussions, the visual representations of transcription results were relegated to Ap-
pendix G.
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8.2 Transcription of a monophonic recorder sample

8.2.1 Results

Recorder and flute music are relatively simple to transcribe, and indeed, numerous tran-
scription systems described in literature expect such samples [16J. The reason for this is
the approximately sinusoidal nature of such signals: the fundamental of the signal is by
far the most prominent partial by a margin of at least lOdB, as seen in Figure G.1(a).

The chosen sample is the recorder part of G.F. Handel's "Sonata in a minor for
Recorder and figured bass (Op. I, no. 4)", for which the first few bars are given as
follows:

Results for various steps during the transcription process are given in Figure G.l. The
final result is plotted as a piano roll in Figure G.2.

The corresponding bars of the MusiX'IEX transcription were generated as follows:

J = 122

I@ i ft W r #r

3 3 333
The 3's under some notes indicate triplet values. The accuracy of the first 20 seconds

of the transcription of the recorder sample is given in Table 8.1. It is noteworthy that
the system did not make a single transcription mistake. Although there are notes which
do not appear in the original score, these all formed part of the recording in the form of
ornamentation or performance mistakes.

Table 8.1: Accuracy of the recorder transcription

Original notes Correct Insertions Deletions Substitutions
42 42 0 0 0
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8.2.2 Discussion

The recorder transcription is remarkably accurate due to the "ideal" spectrum of recorder
sounds. The sample was played with some insecurity, which gave it a somewhat unsteady
beat and led to a number of minor erroneous notes. Any resulting deviations of the
transcription from the original score are thus attributable to performance inaccuracies,
one of the two sources of errors described in Section 4.1.4. The sample contained fairly
loud breathing noises, all of which were removed by the post-processor.

Monophonic music transcription is often viewed disparagingly as a "glorified" version
of straightforward pitch tracking. That is most definitely not an accurate assessment: the
higher-level processing components required for generating notated scores for monophonic
signals are far from trivial. Even though recorder samples are hardly representative of
general music samples due to their simple spectral characteristics, the results of mono-
phonic transcription summarised here mark a very positive first step in the evolution of
a comprehensive transcription system.

8.3 Transcription of a monophonic violin sample

8.3.1 Results

Spectrally less ideal than the recorder is the violin; as can be seen from Figure G.3(a)
the violin's fundamental is typically not the strongest partial in its spectrum. Apart
from a more complex spectrum, the tested violin sample was also significantly faster than
the Handel recorder sample, with a wider range of notes played. Furthermore, it can be
seen in the spectrogram of the sample in Figure G .3(c) that the fundamental and second
partials of the sound often disappear. The first few bars of the original score of Partita
NO.2: Allemanda by J.S. Bach are given as follows:

I'. ti J ~ ;I ij) 4£3 !JJ J"'j L l iJ ~~ 1
I'. tlJjcru [cr r Ufj 1br J JJ JuJJJJj 151

The results of various stages of the transcription process are provided in Figure G.3
together with a corresponding piano roll in Figure G.4.
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The transcription program generated the following output for the first few bars of the
violin sample:

I&.! ~J~7;J~»6J~)J;jglju~ )~"bJh
333 3 33 i3

1&.gJ)g JJlI )))~ Jg I JJJ)} Jl ~g ; g~Jl ~ gJJJ~I
333

1&·g)~Uv I ;gg1~ lP gig"1 ~;g~~ Jl )~D })d1 I
3 3 33 3 33

An overview of the accuracy of the first 20 seconds of the transcription is given in
Table 8.2.

8.3.2 Discussion

As can be seen from Table 8.2, the violin transcription is less accurate than the recorder
transcription. This is mostly due to the fact that the harmonic structure of violin sounds
is much more complex, with very strong upper partials. Because of this, the transcription
is prone to octave errors: all of the substitutions in Table 8.2 are octave and other
harmonic errors. The system is especially prone to transcribing notes lower than Middle
C an octave higher. This is probably a result of the fact that on most instruments, the
fundamental becomes relatively weaker as the pitch is lowered. Apart from the harmonic
errors, a number of notes appear in the transcription that were not part of the original
score. However, these can all be explained as either performance inaccuracies or incidental
sounds (such as the bow scraping on adjacent strings) generated at note transitions and
are thus not truly insertions.

Inspite of the few small mistakes, the transcription is still a very precise rendition of
the performance, and a good approximation of the original score. As with the recorder
sample, the key was detected correctly. The note duration symbols are not rhythmically
coherent, for the reasons that were explained in Section 6.5.3. Nevertheless, they do give

Table 8.2: Accuracy of the violin transcription

Original notes Correct Insertions Deletions Substitutions
80 73 0 0 7
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an accurate impression of the relative note durations in the context of the performance.

8.4 Transcription of a polyphonic organ sample

8.4.1 Results

The "Toccata in D Minor (BWV. 565)" by J.S. Bach was chosen as an organ test sample.
From Figure G.5(a) it can be seen that the organ spectrum has strongly sinusoidal partials.
Organ recordings could thus be assumed to be fairly convenient polyphonic music to
transcribe. However, as can be seen and heard from the results (a piano roll is given in
Figure G.6), this is not necessarily the case.

8.4.2 Discussion

In the transcription of the Bach sample it becomes apparent that although a large fraction
of the notes are in fact detected, the majority of them do not stay in one fixed octave
register. The effect of this when listening to the MIDI transcription is disconcerting:
although the melody can be identified, the constant octave changes (coupled with occa-
sional incorrect notes) cause a constant maelstrom of sounds which obscures the flow of
the piece to a large extent.

Organ sounds have incredibly rich spectra which cause their bombastic and majes-
tic timbre. The unfortunate side effect for "untrained" music transcription systems is
that when a number of notes are played together, their spectra overlap and fuse to cre-
ate pseudo-notes which can "fool" the heuristics of the current multi-pitch estimation
algorithm into validating them incorrectly as true notes.

This effect will need to be overcome in future enhancements.

8.5 Transcription of a polyphonic piano sample

8.5.1 Results

The track "The Heart Asks Pleasure First" by Michael Nyman (from the soundtrack to
the movie The Piano) was used to demonstrate the transcription of an non-synthetic,
acoustic piano sample. Note that the score of this composition was used for generating
the synthetic test signal in Chapters 5 and 6. A piano roll of the transcription is shown
in Figure G .8.
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8.5.2 Discussion

Whilst the synthetic version of this composition was analysed flawlessly, the genuine piano
performance was transcribed only very roughly. Notes often break up erratically; octaves
are detected incorrectly; many notes are missing. The reasons for this include:

• Real piano sounds have prominent attacks, after which they slowly decay. In the
current system, given its limited pitch tracking abilities (due to the lack of a metric
pulse analysis front-end), decaying notes are often "lost" amidst the general spectral
mayhem generated by new note attacks.

• The sample was played with generous use of the sostenuto pedal, and thus all
notes from one measure decay whilst new ones are continuously added, creating a
very dense, fairly flat spectrum. This effect can also be seen in the very "white"
spectrogram of the sample in Figure G.7(c).

• The sample was played very fast, and thus new notes are introduced at an alarmingly
quick rate. The transcription system is thus faced with a dense spectrum that it
cannot handle effectively. This implies that the stream tracing mechanism depicted
in Figure 3.3 should be implemented to subtract detected streams from the mixture
so that only new streams have to be analysed. This would remove the burden of
having to detect all component pitches (including those detected before) in every
frame. Instead, with "old" pitches subtracted, only new pitches need to be detected
in a much cleaner spectrum. This idea will be revisited in the recommendations for
further research in the concluding chapter.

8.6 Observations

The results discussed above lead to the following general observations:

• Monophonic music transcription was achieved successfully within the limited scope
of the project. Refinements can be made to format the output and to eliminate
the few errors that do occur, but all-in-all the system should not require major
re-designing in future.

• Polyphonic music transcription was only achieved successfully for synthetic signals
(which were transcribed flawlessly). For non-synthetic signals, the number of tran-
scription errors exceeds the number of successfully detected true notes. Octave
errors (which qualify as substitions) are the main cause of problems, though dele-
tions (often arising from merged spectra which the system failed to separate) are
also common. If octave errors were disregarded, and only the detected pitch classes
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examined, the system actually performs well". This is also the main reason why the
system managed to correctly identify the keys for a large number of tested music
signals.

• The samples which were used were not chosen to play into the strengths of the
system. In fact, signals that "break" a system have much greater instructional
value in that they point out weaknesses and deficiencies. In that sense, the mediocre
performance of the system on polyphonic samples serves to indicate areas of future
research as given in the conclusion.

• For monophonic samples, the main cause of errors are imperfections in the perfor-
mance (i. e. human errors). For polyphonic music, errors arise mostly from erro-
neous processing decisions stemming from the lack of sufficient knowledge sources
(i. e. machine errors).

• Because of the lack of labelled polyphonic data, the discussions for the tested poly-
phonic signals were necessarily based on subjective measures. Once an appropriate
sequencer with a large sample bank is obtained, the system should be tested more
exhaustively with MIDI synthesised signals, which would allow for direct calculation
of objective accuracy measures.

In conclusion it can thus be said that the system does work, as proven by the synthetic
signal, but only under very controlled, limited conditions. Overcoming these will be the
main challenge for further work.

1Many published transcription systems in fact only detect pitch classes. Martin's first blackboard
system formed chords without knowledge of the precise octaves involved.
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Chapter 9

Conclusions and Recommendations

9.1 The story thus far

Over the foregoing chapters, the AMADEUSmusic analysis and transcription system was
developed based on some of the more important theories of human audition, musical acous-
tics and music theory. Exploring the field of automatic music transcription is daunting,
and the familiarity with the subject matter gained throughout the course of the project
has only deepened our impression that the implementation of a complete and successful
automatic transcription system is a vast undertaking. Initial optimism quickly gave way
to consternation as the scope of the problem became apparent! The following seem to be
the key reasons which make the automatic transcription of polyphonic music so complex:

• Reverse-engineering of a non-invertible operation: The superposition of sound wave-
forms is a non-invertible operation. Even worse: music is often composed in such
a way that the generating sources blend together even more completely to fool the
human auditory system so that individual physical sources cannot be identified.

• The interdependence of solutions to the various sub-problems: None of the sub-
problems of automatic music transcription can be seen in isolation. The results
of each processing component need to be integrated with the results from virtually
every other processing component in order to provide accurate results. This suggests
that extensive horizontal, bottom-up and top-down processing structures need to
be implemented in order to solve the problem.

• The human factor: Music is an art form that strives to express ideas and emotions -
human traits that are not well suited for machine processing. As with all expressions
of art, there are many subtle and less subtle ambiguities in music; the tomes that
have been written throughout history advocating often wildly divergent interpreta-
tions of certain music pieces attest to this! These ambiguities in composition and
performance add to the allure of music, yet they also beg the question: if humans
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themselves (being the target audience) are not given to agreement on the correct
analysis of a music piece, how can a machine fare better?

Given this complexity of the problem, the outcomes of a transcription system need
to be better defined. It is hardly realistic to define automatic music transcription as the
process whereby the original score is reconstructed from a single performance instance.
Even Mozart's transcription of Allegri's Miserere was said to have contained the perfor-
mance improvisations typical of the era. Automatic music transcription is better defined
by requiring the following outcomes:

• The score output of the program should be a valid, reasonable representation of the
recorded performance which was analysed.

• The system should eliminate those features which are obviously expressive perfor-
mance characteristics to allow for less cumbersome output, without over-simplifying
the content. In other words, the system should "filter" the output to make the mu-
sical content clearer than a raw transcription would be, without losing the nuances
of the original composition.

• Features that remain strictly constant irrespective of the particular performance
should be accurately detected. Such features include tonality and key signature.

Given the above refined requirements, it is time to take stock of the status of our
transcription system. The many inherent limitations of the system have been detailed
throughout the development in Chapters 4 to 6 and will not be repeated here. These
limitations stem from the fact that the system is not intended as the be-all and end-all
of automatic music transcription. Instead, the development of the system served as an
exploratory study of the field of automatic music transcription and analysis.

The following comments can be made about the system and its performance:

• The system contains components from all stages of processing. Very few tran-
scription systems have been designed that even attempt to run the full course of
transcription. Most research focuses on individual aspect of transcription only. As
such, the scope of the project (given the limited time frame and scarce resources)
was very ambitious': However, the results do indicate that the system gives results
which, inspite of being deeply flawed in the general polyphonic case, are nonethe-
less recognisable renditions of the original signal because they generally correctly
identify pitch classes as opposed to the correct pitches.

• It is to be kept in mind that all the samples discussed in the previous chapter
were real signals. Many algorithms in literature were tested mainly with fairly well-

IThe saying "Fools rush in where angels fear to tread" comes to mind.
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behaved synthetic signals by their authors. Such tests allow for a more controlled
and quantifiable evaluation of various algorithms. However, we felt that more insight
into the nature of music and the difficulties of transcription could be obtained by
focussing on real signals, even though the output generated from them may be less
than ideal.

• Monophonic music can be transcribed by AMADEUSto a large degree of accuracy,
even generating raw scores with standard music symbols (though without musical
phrasing). The results of monophonic transcription are good enough that people
who are musically literate would be able to use them in conjunction with the original
audio signal to recreate accurate scores of the original performance.

• The system struggles with multi-pitch extraction from actual polyphonic music sig-
nals, as can realistically be expected. The multi-pitch estimation algorithm itself
would not appear to be the weak link in the system, as tests with synthetic signals
succeeded, suggesting that the underlying mechanisms of the algorithm are correct.
The problem lies in the combined facts that no accurate signal models are used and
that the knowledge sources of the system are extremely limited.

• The key detection algorithm works correctly, even with the flawed output of the
polyphonic pitch tracker. The implications of this are two-fold: Firstly, this indicates
that the pitch tracker does in fact provide much accurate data about the signal.
Secondly, the fact that some higher level data can be extracted accurately from
the raw transcription suggests that top-down processing structures feeding into the
pitch estimators and trackers may greatly improve the transcription accuracy.

9.2 The road ahead

From our conclusions above, it can be seen that even though the current system is an
important first step towards a fully functional system, a long and winding road lies yet
ahead. Following are the areas of research which we propose for future improvements to
the AMADEUSsystem:

• It is imperative that extensive knowledge sources be formulated and incorporated
at all levels of the system. First and foremost of these is the development of instru-
ment timbre models which form a crucial knowledge source for multi-pitch extrac-
tion. Another outcome of timbre modelling is instrument recognition, a very useful
processing tool in its own right.

• The second deficiency of the system that urgently needs to be addressed is the
current lack of a beat tracking component. The state-of-the-art beat tracking algo-

Stellenbosch University http://scholar.sun.ac.za
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rithms have been described in Chapter 2. These should be used as a starting point
for future expansions of AMADEUS.

• Fourier-based analysis, as used in the current pitch estimation algorithm, works fine
for resolving partials of frequencies above 1kHz where the true resolution is finer
than a quarter tone when 46.4 ms frames are used. However, for polyphonic music
with mixtures of many simultaneous notes below Middle C, the poor frequency
resolution becomes a real problem in resolving the individual signals. Furthermore,
the fact that the FFT bins are spaced linearly in frequency is non-ideal for music.
For these reasons, other multi-pitch extraction techniques should be investigated:

As discussed in earlier chapters, correlation-based pitch trackers have been
intensively researched over the past half-decade, and a number of published re-
sults indicate that such techniques may produce the most viable multi-pitch es-
timation method. Our future research should experimentally investigate these
methods.

An early implementation of our monophonic multi-pitch estimation component
used the Constant Q transform. Constant Q signals were correlated with a
harmonic model, and the largest correlation value indicated the pitch. This
method is a very elegant solution to pitch detection, but our preliminary results
suggested that this method is not very robust for signals with even low levels
of noise. However, an interesting path of research would be to investigate
the possibility of using a database of chord models (instead of single notes)
as the data with which the signal is correlated. The best-matching chord
for each analysis frame can be determined from the set of correlation results".
Furthermore, calculating the derivatives of Constant Q values between adjacent
frames would generate large positive values at all frequencies which correspond
with newly-initiated signal streams, and large negative values for all frequencies
that ended simultaneously. An algorithm based on this would incorporate
Bregman's auditory cues of common onset, harmonicity and common amplitude
variation, as well as the method he described whereby humans trace existing
streams". It can also be noted that removing already detected notes from the
mixture is a great deal simpler for Constant Q representations than for typical
FFT spectra because of the typically greater frequency width of the Constant
Q bins. The bell shape and side lobes of sinusoidal components complicate

2This is in keeping with research that suggests that humans recognise chords instead of individual
notes [20].

3This would be an expansion of the work of Hawley, as described by Martin in [38].



CHAPTER 9 - CONCLUSIONS AND RECOMMENDATIONS 93

spectral subtraction in FFT spectra.

Human audition is explained by two different theories: place theory and pe-

riodicity theory". Modern theories of hearing venture that a combination of
the methods is used by the auditory system. Thus it would be worthwhile
to investigate a polyphonic pitch tracker which calculates several multi-pitch
estimates from both the time- and the frequency-domains, and combines these
in some fashion". Such a scheme would compensate for the deficiencies of one
representation by complementing it with the strengths of another. Given the
tremendous advances in computer processing power over the past few years,
such a computationally expensive algorithm appears considerably less absurd
today than it would a decade ago .

• Of all the aspects of automatic music transcription, the use of higher-level musicolog-
ical models has been the least researched and published. Such models would include
chord, chord transition and rhythmic knowledge. A variety of pattern recognition
methods such as Neural Networks, Hidden Markov Models and Bayesian Probabil-
ity Networks would be worthy of investigation in applying the models to the data.
Conversely, an interesting application of a transcription system would be to au-
tomatically extract these models from transcribed data, creating a truly powerful
automatic music analysis tool.

• Encompassing all of the foregoing recommendations, a top-down framework should
be implemented to allow for the flow of information both up and down the data
abstraction and processing hierarchies.

The field of automatic music transcription thus remains wide-open with vast oppor-
tunities for original research. The journey has only just begun ...

Transcription is a difficult thing

Finding every note Jrom every string

Rhythm, beat and key

Notated Jar all to see

Oh what joy doth music bring!

4As explained in Chapter 3.

5Such a combined estimate has precedent in monophonic pitch tracking with the Gold-Rabiner method
which uses six independent pitch estimators [41].
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Appendix A

Pitch and Notation

A.I Pitch conversions

Important pitch conversions are summarised again by the following equations:

JM M-69
(A.1)440 x 2-12-

M JM (A.2)12log2 440 + 69

Jc c-6900
(A.3)440 x 2l2oO

C 1200 log, ~eO + 6900 (A.4)

c 100M (A.5)

Ó.M = 12log2 j: (A.6)

ó'c 1200 log2 j: (A.7)

A.2 Notation

Various aspects of music notation, nomenclature and conventions are shown in the figures
and tables over the next pages. Figure A.1 shows the notation and frequencies for all
notes on the piano keyboard, along with selected sounding ranges.

Table A.1 lists the ratios and relative pitches of notes for scales based on C, for
various tuning systems. The Pythagorean scales create the largest possible number of
perfect fourths and fifths, and can be derived by traversing the circle of fifths (see [53, p.
156] for more details).

Table A.2 lists the standard duration symbols for notes and rests, along with their
names.

Table A.3 gives the beat and meter divisions for time signatures that are common in
classical music.
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Table A.l: Notes of scales based on C (based on [53, Table 9.3])

Tempered Just Pythagorean

Note Cents Ratio Cents Ratio Cents

C 1200 2.000 1200 2.000 1200

B~ 1200 1.953 1159 2.027 1224

CD 1100 1.920 1129 1.873 1086

B 1100 1.875 1088 1.898 1110

BD 1000 1.800 1018 1.778 996

A~ 1000 1.758 977 1.802 1020

A 900 1.667 884 1.688 906

AD 800 1.600 814 1.580 792

G~ 800 1.563 773 1.602 816

G 700 1.500 702 1.500 702

GD 600 1.440 631 1.405 588

FU 600 1.406 590 1.424 612

F 500 1.333 498 1.333 498

E~ 500 1.302 457 1.352 522

FD 400 1.280 427 1.249 384

E 400 1.250 368 1.266 408

ED 300 1.200 316 1.185 294

D~ 300 1.172 275 1.201 318

D 200 1.125 204 1.125 204

DD 100 1.067 112 1.054 90

CU 100 1.042 71 1.068 114

C 0 1.000 0 1.000 0

Table A.2: Duration symbols (based on [32, p. 26])

Value Name Note Rest

Whole Semibreve 0= d+ d ._=.-+.-
Half Minim d=~+~ .-=~+~
Quarter Crotchet ~=)+) ~=7+7
Eighth Quaver )=)+ ) 7=~+~
Sixteenth Semiquaver )=)+ ) ~=~+~
Thirty-second Demisemiquaver )=J+J ~=#+#
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Table A.3: Typical time signatures

Time Signature Beats per measure Beat note Division of the beat
2 J 2X)4 2
2 d 2xJ2 2
1
3
6 3 )1 2x)1

3 j 2X)4 3
4 ) 2x)18 4
4 J .:4 4

g 2 J 3x)
6 J 3xJ4 2
9 » 3x)116 3
g 3 J 3X)
12 J 3x)8 4
12 J 3xJ4 4



Appendix B

LULU Smoothing & Peak Detection
Algorithm

B.1 Introduction

Peak detection is a common problem in DSP applications. A smoothing and peak detec-
tion algorithm that works weU for FFT-based spectra is outlined briefly in this chapter.
The technique uses non-linear LU LU-smoothers developed by C.H. Rohwer of the Uni-
versity of Stellenbosch and is based on multiresolution analysis with pulses [52, 51].

The underlying principle of smoothing is variation reduction: the spread of values in
the window under consideration must be reduced to an acceptable level. Linear smoothers
replace each data point with some weighted average of points from its immediate neigh-
borhood. A disadvantage to such a smoothing strategy is that linear filters smear large
impulsive noise components across a number of points, instead of removing the noise. By
contrast, non-linear filters generally replace each data point (which can contain a large
additive noise component) with an acceptable value from its surroundings; non-linears
smoothers are said to be rank-based selectors which select values from a window based on
the relative ordering of the values in the window. The most popular non-linear smoother
is the median smoother which replaces each signal point with the median of the points
surrounding it. However, the median smoother is not idempotent, meaning that succes-
sive applications of the smoother to its own output can give different interpretations of
the same original input data. This results in a degree of uncertainty or unpredictability
in the smoother's behaviour [36].

Rohwer proposed a basic pair of non-linear smoothers, namely L and U, which can be
used to overcome the limitations of the median smoothers. L removes upward outliers,
whilst U removes downward outliers. In order to remove both up and down outliers, the
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smoothers can be concatenated to form ULand LU smoothers". When designing these
smoothers, the order n of the smoot hers should be chosen as "at least the maximum
number of consecutive expected outliers. A sequence of more than n "outliers" (in the
same direction) is interpreted as a significant pattern in the data." [36]

When filtering FFT spectra, the order n should be chosen so as to remove all side
lobes, whilst leaving the main lobes intact. The main lobes of sinusoids are R = %;:;:
samples wide if square windows are used for the FFT. The main lobes are "significant
patterns" in the data, the narrower side lobes are "outliers". n should thus be chosen as
n = R - 1 to remove the side lobes.

B.2 Algorithm

The following describes the basic algorithm for the smoother UnLn [36]:

U Lx('i) min Z(i, i + n)

min{z(i), ... , z(i + n)}, where (B.1)

z( i) maxY(i - n,i + n)

max{y(i - n), ... , y(i), ... , y(i + n)}, with (B.2)

y(i) min X(i - n, i)

min{x(i - n), ... ,x(i)} (B.3)

The smoother LU exchanges all minima and maxima in the above equations, and
can be calculated as LU(x) = -U L( -x). Marquardt et al. describe more advanced
algorithms with which the above equations can be implemented efficiently using circular
buffers [36].

Rohwer suggests that smoothing should be done successively by UI LI, U2L2, ... , UnLn
to reduce the variation of the signal at each level of decomposition [51]. This was chosen
as the method in which the smoother is implemented.

Peaks can be picked in a straight-forward manner from the spectrum by defining a peak
to be a value that is greater than either of its neighbouring values. Provision has to be
made for the fact that LULU-smoothed signals generally have n repetitions of significant
values, and peaks in such data are thus "peak plateaus". The true peak is then found
as the largest value in the original data in the range of indeces of a LU LU peak plateau.
Various elimination criteria based on thresholds can be devised to eliminate weak peaks.

IRohwer proves that U L smoothers provide the lower bound of median smoothed data, whilst LU
smoot hers provide an upper bound [51].
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Original and Smoothed Spectrum (Organ Sound)
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Figure B.l: Example of a LU LU -filtered spectrum

The above procedure is best illustrated with an example: Figure B.l shows an organ
spectrum smoothed with a UL-smoother. It can be seen that the smoot.her effect.ively
removes all side lobes.

LU LU -smoot.hers have found application in a wide variety of fields, including seismic
dat.a evaluat.ion and image processing''.

2An interesting image processing application is the use of LU LU-smoothers to detect golf balls in
photographs of golf courses.



Appendix C

Frequency Sharpening With The
Phase Vocoder

C.l Introd uction

It is often desirable to find the instantaneous frequency of sinusoids in FFT spectra to
a greater degree of accuracy than the time-frequency resolution allows. For that reason,
a technique borrowed from the phase vaeader can be used to estimate the instantaneous
frequency by making use of the phase changes of a certain FFT component from one
frame to the next.

C.2 Algorithm

The calculation of the instantaneous frequency for a specific bin can be summarised as
follows (for the detailed derivation, consult [43]):

1. Calculate the phase increment Z between two successive STFT spectra with N FFT

points and frame non-overlap lengths of Nhop samples, given the phases ¢ for both
frames (frame 2 being the one further along in time) in FFT bin number Nbin:

NbinZ=¢2-¢1-----
21fNFFTNhop

2. Unwrap the phase increment Z to values between -1f and tt , naming the result Z.

(C.l)

3. The exact location Nbin,true of the sinusoid in a bin can then be estimated using:

NFFTZ
Nbin,true = Nbin + 2 N

1f hop

Note that whereas Nbin is an integer, Nbin,t,·ue is a real number.

The most important constraints placed on the STFT analysis to allow for this method

(C.2)

of frequency sharpening is that the window must be longer than 4 pitch-periods and that
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Spectrum
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Figure C.l: Instantaneous frequency of a sinusoid

successive analysis windows must have a muurnum overlap of 75% [43]. The latter of
these constraints is satisfied in the multi-pitch estimation algorithm by letting the frames
overlap by 87.5%. However, the former of these constraints is not necessarily satisfied, for
two reasons: Firstly, with 46.4 ms frames, the lowest pitch which satisfies the constraint
is 86 Hz (which is nearly an octave higher than the lowest note that typically needs to be
detected). Secondly, for polyphonic signals, the pitch-period is not well-defined and thus
the success of the sharpening cannot be guaranteed. However, because the sharpening
technique is relatively computationally inexpensive, and because it is very successful for
monophonic signals, it was left in the system when it was expanded from the monophonic
to the polyphonic case. Moreover, the program makes use of partial candidates to increase
the effective frequency resolution (as shown in Equation 5.17).

C.3 Results

A sharpened peak is shown in Figure C.l. The instantaneous frequency of the peak lies
in-between two centre frequencies of FFT bins, as can be estimated from the bell shape
of the peak. The peak position is accurately determined by the frequency sharpening
algorithm.

As a demonstration of the practical use of instantaneous frequency determination, a-
monophonic pitch track for a scale sung by a male singer is given in Figure C.2. The
actual resolution of the FFT for the analysis was around 20 Hz (__h_N 8 ), yet as seen in

FFT
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Figure C.2: Pitch track of sung scale when sinusoidal frequencies are sharpened

time (5)

the figure, the pitch was ultimately resolved much closer than that: even the slightly
sharp attacks on ascending notes and slightly fiat attacks on descending notes (typical of
singing) can be clearly identified.



Appendix D

Lloyd-Max Quantisation

D.l Introd uction

A number of algorithms in the current transcription system make use of scalar quantisation
to group data or to find dynamic thresholds. The quantisation algorithm chosen for this
is the well-known Lloyd-Max quantiser, which can be viewed as the one-dimensional case
of the more general K-means algorithm which is commonly used for vector quantisation.

The quantiser finds the cell intervals C, (with lower boundaries given by 9i) and
corresponding interval centroids Yi which optimally fit the data to L levels ("bins"), as
shown in Figure D.l. As in the more general case of K-means clustering, the intervals that
are thus found may constitute a local optimum only, as opposed to the global optimum.

D.2 Algorithm

The Lloyd-Max scalar quantisation algorithm is given in [35] as follows:

1
9i '2(Yi + Yi-1), 2':5: i ':5: L (D.l)

91 = -00, gL+1 = 00

Yi = cent(Ci), 1 ':5: i ':5: L (D.2)

where the centroid of C, is simply the mean value of the data points in that interval.

x

Figure D.l: Partitioning of the real line into cells (based on (35))
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The equations are solved iteratively to obtain a set of optimal values, though these

may be only local optima. Initial values are chosen such that all initial intervals ei contain
an equal number of data points (N / L, where N is the total number of data points).



Appendix E

The MIDI File Format

MIDI is the acronym for "Musical Instrument Digital Interface", a data communications
protocol that is used to exchange messages between music equipment, computers and
software. It is a very broad and general standard which allows for the compact exchange
of very nuanced data about musical performances. As such, MIDI provides the backbone
of electronic music.

The specification of "Standard MIDI Files" was adopted as an addendum to the MIDI
specification in 1988. The MIDI file format is the aspect of the MIDI specification which
is most directly of concern in automatic music transcription, since transcription systems
typically write their output to MIDI files. Exhaustive documentation of the MIDI file
format is readily available on the Internet", as well as in countless books (for a good
introduction, see [54]). Only the most important concepts will be outlined here.

MIDI files consist of one header chunk, which specifies the MIDI file format (of which
there are currently three), the number of tracks, and a value for the division (which often,
though not necessarily, gives the number of delta-time units per quarter-note). After the
header chunk follows one or more track chunks.

Each track is encoded in a track chunk, which (apart from some house-keeping data)
consists of a list of {Delta-Time, Track Event} pairs. The delta-time value specificies the
amount of time (in MIDI clock ticks) which has elapsed since the previous track event.
Track events can be MIDI events, system exclusive events, or meta-events. Meta-events
provide "meta data" such as tempo, key signature, time signature, lyrics, instrument
names and copyright information about the music. The MIDI events which are of most
interest to automatic music transcription systems are the "Note on" and "Note off" mes-
sages. These messages encode the MIDI key, strike/release velocity and MIDI channel for
each note event. These values correspond broadly with pitch, loudness and instrument,
respectively. A corresponding "note off" message should be generated for all "note on"

1For example: http://crystal.apana.org.au/ghansper /midUntroduction/contents.html
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messages.

To put the compactness of the MIDI representation in perspective: "Note on/off"
messages are encoded with three bytes in addition to the variable-length delta-time value
(typically three or four bytes). Thus each note can be represented in MIDI files by only
a dozen or so bytes, as opposed to the dozens of kilobytes of each note in a studio-quality
sampled waveform. Given a good sample bank, extremely natural-sounding performances
can be reconstructed from MIDI files.

Because notes are encoded in terms of {"Note on", "Note off"} message pairs, MIDI
files are not well-suited as a format for storing musical notation. Although the meta-
events can be used to derive some notational information for each note, notated scores
are generally stored in more suitable formats, one of which is described in Appendix F.



Appendix F

The MusiX'IEX Format

If you are not familiar with 'lEX at all I would recommend to find another
software package to do musical typesetting. Setting up 'lEX and MusiX'lEX
on your machine and mastering it is an awesome job which gobbles up a lot

of your time and disk space. But, once you master it ...
HANS HUYKENS [57]

The MusiX'lEX format is an extremely powerful set of 'lEX macros to typeset poly-
phonic music. The MusiX'lEX manual [57] provides in-depth information about all facets
of the package; this discussion serves merely to illustrate some of the aspects of its use.

MusixTE)( requires that scores be set-up before notes are entered: the number of
instruments, the number of staffs for each instrument, the clefs for each of these staffs,
the general key signature and the general time signature need to be specified. Notes are
then entered in columns of groups of simultaneous notes, by using appropriate macros for
note duration and pitch. Refer to Figure F.l for an overview of the appropriate macros.

Score input is best illustrated with a short example. One bar from the
score for Michael Nyman's "The Heart Asks Pleasure First" is given as follows:

Pian

,., I I I I
I

tJ r I I r I J

0< J )~ )
I .

The MusiX'lEX sequence which was used to generate this is as follows:

\begin{music}
\parindentlOmm
\instrumentnumber{l}

113



ApPENDIX F - THE MUSIXTEX FORMAT 114

\setstaffs 1{2}
\setnamel{Piano}
\interstaff{12}
\setclefl\bass
\generalsignature{O}
\generalmeter{\meterfrac68}
\startextract
\notes\zqu c\ibblOMO\qbO{caLa}\zcu c\qbOc\tblO\qbOa%
\nextstaff\ibul10\zqbpl l\ibblOgO\qbO{leh}\tbul\zqbpl l\qbO{le}\tblO\qbOh%
\enotes
\notes\zqu b\ibblOLO\qbO{bNKN}\zcu b\qbOb\tblO\qbON%
\nextstaff\ibul10\zqbpl l\ibblOgO\qbO{leh}\tbul\zqbpl k\qbO{ke}\tblO\qbOh%
\enotes
\endextract
\end{music}

Although this seems prohibitively complex at first, the commands themselves are very
straight-forward (for example, \ibbu ... initiates a double upper beam for demisemiqua-
ver groups, whilst \tbu ... terminates the beam). The fact that the commands are very
simple yet powerful makes MusiXTEXan ideal tool for automated score generation". Also,
MusiXTEX is not restricted to using standard modern notation: a large number of pack-
ages have been developed for typesetting anything from percussive music to Gregorian
chant to guitar chords. This versatility also contributes to its usefulness as a score output
format.

A MusiXTEX reference chart is given in Figure F .1.

IAll musical extracts in this thesis were prepared by hand using MusiXTEX. However, it should be
kept in mind that MusiXTEX is discussed here in the context of automatic music transcription, and
not in terms of its potential as a stand-alone typesetting package. As suggested by the introductory
quote above, this method of musical typesetting requires a great deal of patience and experience before it
produces rewarding results, and thus it is not necessarily suitable for the painstaking manual generation
of complex scores.
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MusiX'TEX-Reference T .80
Pitches

'A 'Il 'C 'D 'E 'F 'G A Il C D E F G H I J K L ~1 ~ a b c d e
'a 'b 'c 'd 'e 'f 'g e- Jol. e-

e 0

I'>' 'j e lj
'j e

c' e
0 e

e- U" e- 'A 'D 'c 'D 'E 'F 'G "A "Il "C "D "EU"
.a- U" e-

U" e- U" e- Jol.e- e- Jol.U" e- Jol.
Jol. e- Jol.

Jol. e-It_ O e-c, e
e LJ e"e Cj e

U" e- O 'a 'b 'c 'd 'e 'f 's "a "b "c "d "e "f "g ma '"b me "'d 'nee-
a b c d e f g h j k I m n 0 p q r s t u v w x y ?

Notes, Accidentals, Accents, Clefs and Rests
\?Ion~a \?wq \wh \hu \hl \qu \ql \cu \el \ccu \cel \cccu \ccel \ccccu \cccel

t~,maxJma__2:breve ~

I ~ ) '1' ) "r '<~, ~<~ ~<, i C:= - Ei lel x~ --F a~ E qJ1 ~ W f b1~ :Jl .. ~

\grcu \grcJ

Accidentals: i, \cds~' \csh = \cna _ \dl i \cdfl

\dqu n3\;rqu )23\dcqu2\dhqu~doqu~xqu2 \oxqu2\roqu2 \tgqu2 \kqu2 \squ3 \lsqu3 \rsqu3 \cqu4 \cql4 \chu4 \ch14lt el t J J J IJ J J JJ. ~ , J r J F
1 muslxdia.tex 2 musixper.tex 3 musixgre.tex 4 rnusixlit.tex 5 musixext.tex

It J t J f J r J t J r
\downqow \flageolett

\lp7,st \UP7,st 1""1 Vupbow \ whp

J r r r t e'

\qupp\Ip? \up? \Isf \usf \Ist \ust \Ipp? \upp? \Isf? \usf?
A J, I

Accent on beam::;;;ith prefix band bearnrefnumber instead pitch V

\trebleclef \bassclef \smallaltoclef \drumcJe(J
smalltrebleclef smallbasselef

\qqs \hs \qs \ds \qp \hpause \hpausep --- \pause \pausep \PAuse \PAUSe \Hpause4

It' \lifthpause \liftpause

q y j' E _' _,

Other Symbols
\shake \Shake \mordent \Mordent \turn \backturn\Shakel \Shakesv.\Shakene\Shakenwlt tir- lii;+3¢ $ ,., 11 ';!!) ~ ~ tw ~ c-,

\ Trille \trille

\!terfrac \meterplus\a1labreve \reverseallabreve \meterC \reverseC \duevolte \IP~4rpar
\coda \ Codasegno \Segno \caesura \cbreath

<1> 111 ~

II I
I \setvoltabox \setvolta
- = 99 Il 112.! \metron

I~ I :11 I
, \PED \sPED\DEP \sDEP

I
~. * *\fermatau~ \arpeggio dil \uptrio

Fermataup \bracket__.."..-,~. r 3 _

\octfinup

8- - --l

slide''

~ ~\Fermatadown
\fermatadown ~iO

\o<.:tfindown
8 J

\boxit A

lAl
\circleit D

®

\Ieftrepeat \ right repeat
\Ieftrightrepeat

Figure F.1: MusiX'fEX Reference Chart (taken from (57J)



Appendix G

Experimental Results

Results from the experimental investigation are given in the following figures, which de-
scribe:

• A monophonic recorder transcription

• A monophonic violin transcription

• A polyphonic organ transcription

• A polyphonic piano transcription

Sheet music extracts for the monophonic samples are given in Chapter 8. For the
sheet music for the Bach and Nyman samples, consult [2] and [44] respectively.
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Figure G.2: Piano roll plot of results for the recorder sample
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Figure G.5: Steps during the transcription of a polyphonic organ sample
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Figure G.6: Piano rall plot of results for the organ sample
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Figure G.B: Piano roll plot of results for the piano sample




