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Summary 

Type 2 diabetes is a major source of morbidity and mortality worldwide, accounting for 

approximately 90% of the 415 million individuals who have Diabetes mellitus globally. The 

prevalence of T2D in South Africa is currently estimated at 9% and is expected to increase 

significantly due to the concomitant high prevalence of obesity, a major risk factor for the 

development of T2D. These metabolic disorders pose a major health burden to an already under-

resourced and over-burdened health care system, and create an urgent need to identify therapeutics 

capable of preventing or treating T2D. 

Epigenetic mechanisms, such as microRNAs (miRNAs), reflect the interaction between genetic and 

environmental factors and are attracting considerable interest as strategies to elucidate the 

pathophysiology of disease. Investigation of miRNAs could lead to the development of high risk 

biomarkers for disease prevention, or to therapeutic targets. MiRNAs are dysregulated during T2D, 

however, the mechanisms regulating miRNAs are largely unknown. The aim of this study was to 

explore the role of DNA methylation, another important epigenetic mechanism, in the regulation of 

miRNA genes. Furthermore, we aimed to investigate the relationship between miRNA gene 

methylation and miRNA expression in an in vitro model relevant to T2D. 

To identify miRNA genes potentially regulated by DNA methylation, miRNAs that were 

differentially expressed in the whole blood of n=9 South African women of mixed ethnic ancestry 

during T2D were integrated with miRNA genes that were differentially methylated in the whole blood 

of a different subset of n=9 South African women of mixed ethnic ancestry during T2D. The 

methylation status of the identified miRNA genes were verified using the MassARRAY® 

EpiTYPER® system. To investigate the relationship between DNA methylation and miRNA gene 

expression under defined conditions, 3T3-L1 pre-adipocytes were differentiated in glucose conditions 

that mimic normoglycaemia and hyperglycaemia. 

Data integration showed that 43 miRNAs were differentially expressed during T2D compared to 

normoglycaemia, 21 miRNAs that were differentially expressed during impaired glucose tolerance 

compared to normoglycaemia, and 32 miRNAs that were differentially expressed during T2D 

compared to impaired glucose tolerance, were under the potential regulation of DNA methylation. 

Primers were designed for 26 randomly selected miRNA genes, of which 21 miRNA genes were 

successfully analysed by MassARRAY® EpiTYPER®. The methylation of two of these, mir-98 and 
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mir-150, correlated with DNA methylation data conducted using methylated DNA 

immunoprecipitation sequencing. Differentiation of 3T3-L1 pre-adipocytes in glucose concentrations 

that mimic normoglycaemia and hyperglycaemia resulted in mature adipocytes that differed in 

metabolic activity and oxidative stress. 

 

In conclusion, this study provides support for DNA methylation as a mechanism regulating miRNA 

expression during T2D and demonstrates that 3T3-L1 pre-adipocytes differentiated in different 

glucose concentrations offer a viable model for investigating the relationship between miRNA 

expression and DNA methylation during hyperglycaemia, altered metabolic activity and oxidative 

stress. These findings pave the way for future studies to delineate the effect of DNA methylation on 

miRNA expression during conditions characteristic of T2D. 
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Opsomming 

Tipe 2 diabetes (T2D) is van die grootste oorsake van morbiditeit and mortaliteit wereldwyd, met ‘n 

voorkoms van meer as 90% van die 415 miljoen individue wat wereldwyd diagnoseer was met 

Diabetes mellitus in 2015. Huidiglik word die voorkoms van T2D in Suid Afrika beraam op 9% en 

dit word geskat dat hierdie voorkoms aansienlik gaan verhoog as gevolg van die gepaardgaande hoë 

voorkoms van vetsug en die verhoogde kans wat dit n individu bied vir die ontwikkeling van T2D. 

Ons gesondheidsstelsel is onder geweldige druk en die hoë voorkoms van hierdie metaboliese 

afwykings dra verder daartoe by. Dit beklemtoon dus die behoefte om terapeutiese middels te 

identifiseer wat die vermoë het om T2D te verhoed of effektief te behandel. 

Epigenetiese meganismes, byvoorbeeld mikroRNAs (miRNAs), weerspieel die interaksie tussen 

omgewings- en genetiese faktore wat groot belangstelling begin werf het as ‘n strategie om die 

onderliggende patofisiologie van T2D toe te lig, om ten einde biomerkers te identifiseer wat gebruik 

kan word om T2D te voorkom en as terapeutiese middels. MikroRNAs word disreguleer gedurende 

T2D, maar die meganismes waarby hierdie disregulasie plaasvind, is steeds grootendeels onbekkend. 

Die doel van hierdie studie was om te sien of DNA metilasie, nog ‘n belangrike epigenetiese 

meganisme, een van die maniere is waarop miRNA gene reguleer word. Verder, het ons gemik daarop 

om die verhouding tussen miRNA geen metilasie en miRNA geen uitdrukking in ‘n in vitro model te 

ondersoek. 

Ons het miRNAs wat differensieel uitgedruk was in die bloed van n=9 Suid Afrikaanse kleurling 

vroue met T2D van gemengde etniese afkoms, wat identifiseer was deur geenvolgordebepaling 

(miRNA-Seq), met miRNA gene wat identifiseer was om differensieel metileer te wees, deur DNA 

metilasie immunopresipitasie geenvolgordebepaling (DMIGB), in die bloed van n afsonderlike n=9 

Suid Afrikaanse kleurling vroue met T2D van gemengde etniese afkoms, vergelyk om miRNA gene 

te identifiseer wat moontlik deur metilasie reguleer word. Die metilasie van die ge-identifiseerde 

miRNAs was bevestig deur die MassARRAY® EpiTYPER® analise. Om die verhouding tussen 

DNA metilasie en miRNA geen uitdrukking te bepaal onder spesifieke sellulere kondisies, was 3T3-

L1 adiposiete differensieer in kondisies wat die patologie van T2D naboots. 

Gedurende die vergelykingsproses, was 43 miRNA gene (T2D vs. normoglisemies), 21 miRNA gene 

(prediabetes vs. normoglisemies) en 32 miRNA gene (T2D vs. prediabetes), respektiewelik, 

identifiseer wat moontlik deur DNA metilasie reguleer word. Inleiers was was ontwerp vir 26 lukraak 

gekiesde miRNA gene, waarvan 21 suksesvol geanaliseer was deur MassARRAY® EpiTYPER®. 

Die metilasie vlak van twee van die 21 miRNA gene, miR-98 en miR-150, het ooreengestem met die 

metilasie data gegenereer deur DMIGB. Differensiasie van 3T3-L1 pre-adiposiete in verskillende 
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glukose konsentrasies, het gelei na volwasse adiposiete wat verskillende metabolise aktiwiteite en 

oksidatiewe stres vlakke het. 

Ten slotte, hierdie studie toon dat DNA metilasie wel n meganisme is van miRNA geen uitdrukking 

regulasie tydens T2D en dit demonstreer dat 3T3-L1 pre-adiposiete gedifferensieerd in verskillende 

glucose konsentrasies, ‘n praktiese en gepasde model is vir die ondersoek van die verhouding tussen 

miRNA uitdrukking en DNA metilasie gedurende hiperglisemie en die verandering in metabolise 

aktiwiteit en oksidatiewe stres is. Hierdie bevindings le grond vir toekomstige studies om die effek 

van DNA metilasie op miRNA uitdrukking in T2D patologie af te baken. 
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1. Introduction 

1.1 Diabetes mellitus 

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycaemia due to an 

inability of cells to respond to insulin, or a deficit in insulin production (International Diabetes 

Federation, 2015). The exact mechanisms that lead to hyperglycaemia differ between the three most 

common forms of DM (American Diabetes Association, 2010, 2016; Zimmet, 2000). 

 

1.1.1 Type 1 diabetes 

Type 1 diabetes mellitus (T1D) is a hereditary form of diabetes where affected individuals lack the 

ability to produce insulin due to the autoimmune destruction of pancreatic β-cells (World Health 

Organization, 2006). This form of diabetes is predominantly diagnosed in children, adolescents and 

young adults and requires the administration of exogenous insulin daily for survival. It is estimated 

that T1D accounts for 5-10% of all DM cases worldwide (Melmed et al., 2015; World Health 

Organization, 2016). 

 

1.1.2 Type 2 diabetes 

Type 2 diabetes mellitus (T2D) is characterized by insulin resistance, the condition where peripheral 

tissues fail to increase glucose uptake in response to physiological concentrations of insulin (Kahn et 

al., 2006). Insulin resistance is accompanied by high levels of circulating insulin, due to increased 

insulin secretion by β-cells as a compensatory mechanism, a condition known as hyperinsulinemia. 

However, β-cells become exhausted and dysfunctional, which ultimately leads to hyperglycaemia 

(Gauthier and Wollheim, 2006; Weir and Bonner-Weir, 2004). Type 2 diabetes accounts for more 

than 90 % of DM cases worldwide and is considered the major driving factor of the current DM 

epidemic (Guariguata et al., 2014; International Diabetes Federation, 2015; Zimmet, 2000). Although 

Type 2 diabetes is commonly diagnosed in adults, the increased prevalence of T2D in children and 

adolescents is a major cause for concern (International Diabetes Federation, 2014, 2015). 

 

1.1.3 Gestational diabetes  

Gestational diabetes mellitus (GDM) is characterized by hyperglycaemia first detected during 

pregnancy with return to normal glucose tolerance after delivery (International Diabetes Federation, 

2015). In industrialised countries, it is estimated that up to 10% of pregnancies are complicated by 

GDM (Ratner, 2007). Gestational diabetes confers a greater than 70% risk of developing T2D, while 

offspring born to GDM mothers also face adverse health consequences (Erem et al., 2015; Ferrara, 
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2007; Zhu and Zhang, 2016). 

 

1.2 Global prevalence of Diabetes mellitus 

The 7th Annual Diabetes Atlas issued by the International Diabetes Federation (IDF) estimated that 

the global prevalence of DM in individuals between the ages of 20-79 years in 2015 was 415 million, 

and is projected to increase to 642 million by 2040 (International Diabetes Federation, 2015). 

 

The prevalence of DM in individuals between the ages of 20-79 years in Africa in 2015 was 14.2 

million and is projected to increase by 109% over the next 20 years. Furthermore, Africa has the 

highest number of undiagnosed DM cases, estimated to be up to 75% (Beagley et al., 2014). With a 

prevalence of 9%, South Africa (SA) is estimated to be in the top seven countries with the highest 

DM prevalence in Africa (Bertram et al., 2013). 

 

1.3 Risk factors for the development of Type 2 diabetes 

Type 2 diabetes is a multifactorial disease with both genetic and environmental factors implicated in 

the pathophysiology thereof. Genome wide association and twin studies have identified a total of 80 

susceptibility loci for T2D (Morris, 2014), a total that has increased to 91 during the past two years 

(Stettler et al., 2016). However, these susceptibility variants have a modest effect, accounting for only 

5-10% of all diagnosed T2D cases (Voight et al., 2010). This modest effect of susceptibility loci 

underscores the importance of environmental factors in disease onset and progression. Environmental 

factors, which include the consumption of diets high in fats and sugars, physical inactivity, age, 

ethnicity, poor socio-economic conditions, smoking, drinking, mental illness and obesity play an 

integral role in the development of T2D (Ardisson Korat et al., 2014; Chen et al., 2012a; Ley et al., 

2016; Piccolo et al., 2016; Zoungas et al., 2014). 

 

1.4 Glucose homeostasis 

Glucose homeostasis is required for normal cellular functioning and constitutes one of the most 

important regulatory pathways within the body (Shrayyef and Gerich, 2010). Glucose homeostasis is 

achieved by a tightly regulated balance between insulin and glucagon secretion by the pancreas. 

 

1.4.1 Glucose uptake from circulation 

Glucose is the main source of fuel for cells (Berg et al., 2002). After ingesting a meal, blood glucose 

levels rise, signalling pancreatic β-cells to produce and secrete insulin into the circulatory system 

(Gauthier and Wollheim, 2006). In the pancreas, the secretion of insulin-containing vesicles into the 
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circulatory system is dependent on the second messengers Ca2+, cyclic AMP (cAMP) and 

phospholipid derivatives that control vesicle docking, priming and fusion with the plasma membrane 

(Figure 1). 

 

 
 

Figure 1. Insulin secretion from pancreatic β-cells. 

The uptake of glucose (A) and its metabolism within the cell leads to: ATP production (B), the closing of ATP-

sensitive K+ channels, plasma-membrane depolarization (C), the opening of Ca2+ channels, the influx of Ca2+ 

molecules (D) from the extracellular environment and, finally, insulin secretion. 

 

Since glucose is too large to diffuse into cells, it is transported across the plasma membrane by glucose 

transporters, GLUT 1 and GLUT 3 (Maher et al., 1991; Simpson et al., 2008; Vannucci, 1994), 

responsible for facilitating basal glucose uptake. Insulin-stimulated glucose uptake is facilitated by 

GLUT 2 and GLUT 4 in the liver and muscle, respectively (Ebeling et al., 1998; Leney and Tavaré, 

2009). Insulin binds to the insulin receptor in the plasma membrane leading to the activation of the 

downstream insulin signalling cascade that stimulate the translocation of intracellular vesicles 

containing the protein subunits that make GLUTs to the plasma membrane, where they are 

incorporated and facilitate glucose uptake as illustrated in Figure 2. 
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Figure 2. Insulin stimulated glucose uptake. 

Insulin binding to the insulin receptors on the plasma membrane leads to the activation of the insulin signalling 

pathway and the translocation of glucose transporters to the plasma membrane where they facilitate glucose 

uptake. 
 

1.4.2 Endogenous glucose production 

During starvation or glucose deprivation, pancreatic α-cells are stimulated to produce and secrete 

glucagon. Glucagon and insulin exert antagonistic effects on glucose homeostasis (Giacca et al., 

1997; Lewis et al., 1997; Mittelman et al., 1997). In contrast to insulin which stimulates circulatory 

glucose uptake and breakdown, glucagon stimulates gluconeogenesis (endogenous hepatic glucose 

production) and glycogenesis (conversion of glycogen stored in the liver to glucose), thereby raising 

blood glucose concentrations. 

 

1.5 Diagnosis of Type 2 diabetes 

Type 2 diabetes is diagnosed by measuring fasting plasma glucose (fPG), glycated haemoglobin 

(HbA1c) concentrations or conducting the oral glucose tolerance test (OGTT), according to World 

Health Organization (World Health Organization, 2006) or the American Diabetes Association 

(American Diabetes Association, 2010, 2016) criteria (Table 1). 

 

The fPG test is the most common test for the diagnosis of T2D and measures blood glucose 

concentrations after an eight hour fast. The OGTT is considered the gold standard and measures blood 

glucose concentrations two hours after the ingestion of 75 g of glucose, following an eight hour fast 

(Salmasi and Dancy, 2005). The HbA1c test is a blood test that reflects blood glucose levels over a 

period of three months and does not require fasting (The International Expert Committee, 2009). 

However, all tests have limitations and their use is dependent on the consideration of several factors 

Stellenbosch University  https://scholar.sun.ac.za



5 

 

(American Diabetes Association, 2012; National Institute of Diabetes and Digestive and Kidney 

Diseases, 2015). 

 

Impaired glucose tolerance (IGT) is characterized by elevated blood glucose concentrations that are 

higher than normal, but not high enough to be considered T2D (American Diabetes Association, 

2016; National Institute of Diabetes and Digestive and Kidney Diseases, 2015; World Health 

Organization, 2006). A diagnosis of IGT is associated with an increased risk of developing T2D 

within the next 10 years if no lifestyle changes are implemented (National Institute of Diabetes and 

Digestive and Kidney Diseases, 2015). This stage in the pathophysiology of T2D is reversible and is 

associated with limited micro- and macrovascular damage in tissues and cells, and has therefore 

attracted considerable interest for the intervention and prevention of T2D progression (National 

Institute of Diabetes and Digestive and Kidney Diseases, 2015). 

 

Table 1. World Health Organization and American Diabetes Association diagnostic criteria. 

 
 World Health Organization 

(mmol/L) 

American Diabetes Association 

 (mmol/L) 

Type 2 diabetic 

Fasting plasma glucose 

Two-hour glucose (OGTT) 

HbA1c 

 

≥ 7 

≥ 11.1 

≥ 6.5 

 

≥ 7 

≥ 11.1 

≥ 5.6 

Impaired Glucose Tolerant 

Fasting plasma glucose 

Two-hour glucose (OGTT) 

HbA1c 

 

5.6-6.9 

7.8-11.0 

5.7-6.4 

 

5.6-6.9 

7.8-11.0 

5.1-5.5 

Normoglycaemic 

Fasting plasma glucose 

Two-hour glucose (OGTT) 

HbA1c 

 

≤ 5.4 

≤ 7.7 

≤ 5 

 

≤ 5.4 

≤ 7.7 

≤ 5 

Table adapted from World Health Organization, 2006 and American Diabetes Association, 2012. 

 

1.6 Complications of Type 2 diabetes 

Type 2 diabetes is a chronic disorder that progressively worsens over time, with chronic  

hyperglycaemia leading to microvascular (nephropathy, neuropathy and retinopathy) and 

macrovascular (angina, myocardial infarction, stroke, peripheral artery disease and congestive heart 

failure) complications and early death if not managed well (Fowler, 2008; Vinik and Flemmer, 2002). 

Diabetic retinopathy is the most common diabetic complication. Retinopathy is an eye disease that is 

characterized by damage to the small blood vessels supplying the eyes and leads to blurred vision, 

often progressing to blindness. Nephropathy is a kidney disease that arises because of damage to the 

small blood vessels within the kidney, leading to impaired kidney function or total dysfunction. 

Diabetes mellitus is the leading cause of chronic nephropathy. Neuropathy or nerve damage, is a 
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common complication of DM and injuries often go unnoticed, resulting in ulceration and amputation 

in extreme cases. Macrovascular complications are associated with cardiovascular disease (CVD). 

The development of DM complications depend on the duration and severity of hyperglycaemia 

(Fowler, 2008). 

 

1.7 Epigenetics 

Epigenetics refers to heritable changes in gene expression that are not due to differences in the DNA 

sequence and reflect the interplay between genetic and environmental factors (Eccleston et al., 2007; 

Krupanidhi et al., 2009). Epigenetic mechanisms include chromatin remodelling, histone 

modification, genomic imprinting, DNA methylation and non-coding RNAs such as long non-coding 

RNAs and microRNAs (miRNAs) (Pheiffer et al., 2016; Reik, 2007; Yokochi and Robertson, 2002). 

MicroRNAs, short and highly conserved non-coding RNA, molecules are important mediators of 

biological function (Fabian et al., 2010; He et al., 2007; Rottiers and Näär, 2012), with reports 

suggesting that up to 60% of our genome is regulated by miRNAs (Bajan and Hutvagner, 2014; Yuan 

et al., 2016). They are dysregulated during many diseases, including T2D (Filios and Shalev, 2015; 

Rome, 2013; Wang et al., 2014; Zhao et al., 2010) illustrating their fundamental role in disease 

pathophysiology. 

 

1.7.1 MicroRNAs 

MiRNAs are approximately 22 nucleotides long and regulate gene expression post-transcriptionally 

(He et al., 2007; Rottiers and Näär, 2012). They bind to the 3’-untranslated region (UTR) of 

messenger RNA (mRNA), leading to mRNA degradation or inhibition of translation. One miRNA 

can regulate up to 200 different mRNA targets and one mRNA molecule can be regulated by more 

than one miRNA (Rottiers and Näär, 2012) . Since they are predicted to regulate up to 60% of protein 

coding genes (Bajan and Hutvagner, 2014; Yuan et al., 2016), their dysregulation has been associated 

with aberrant gene expression during many diseases including cancer, neurological and metabolic 

disorders. MiRNAs associated with T2D are indicated in Table 2. 
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Table 2. MiRNAs associated with Type 2 diabetes. 

 
MicroRNA Target tissue Function Reference 

miR-375 

Pancreas 

Insulin secretion, islet 

development (Baroukh and Van Obberghen, 2009) 

miR-124a Pancreas Islet development (Gauthier and Wollheim, 2006) 

miR-9 Pancreas Insulin secretion (Shantikumar et al., 2012) 

miR-

29a,b,c Muscle, adipose, liver Glucose transport (He et al., 2007) 

miR-143 Adipose Adipocyte differentiation (Mao et al., 2013) 

miR-145 Soft tissue, Colon Cell proliferation (Fan et al., 2012; Zhang et al., 2016) 

miR-133 Heart Heart development (Chavali et al., 2012) 

miR-let-7b Pancreas Insulin exocytosis (Tang et al., 2008) 

miR-96 Pancreas Insulin secretion (Shantikumar et al., 2012) 

miR-195 Kidney Apoptosis (Chen et al., 2012b) 

miR-222 

Adipose 

Upregulated during 

hyperglycaemia (Chen et al., 2014) 

miR-126 

Heart 

Negative correlation between miR-

126 expression and development 

of macrovascular complications 

(Babu et al., 2016; Fernandez-

Valverde et al., 2011) 

miR-296 Pancreatic β-cell line 

MIN6 

Downregulated in hyperglycaemic 

conditions (Tang et al., 2009) 

miR-34a Heart Impaired angiogenesis in diabetes (Arunachalam et al., 2014) 

miR-146b Retinal vascular 

endothelial cells, 

liver, pancreatic β-

cells 

Inflammation in diabetes, 

apoptosis of β-cells 

(Fred et al., 2010; Fulzele et al., 2015; 

Prattichizzo et al., 2015; Roggli et al., 

2010) 

miR-30d 

Pancreas, heart 

Insulin transcription, 

Cardiomyoceyte apoptosis (Li et al., 2014; Tang et al., 2009) 

miR-320 Cardiac vascular 

endothelium 

Upregulated in GK rats with 

impaired angiogenesis (Wang et al., 2009) 

miR-21 

Liver, kidney 

Upregulated in diabetes and leads 

to reduced glucose-induced insulin 

secretion (Roggli et al., 2010) 

miR-192 

Kidney 

Development of diabetic 

nephropathy 

(Kato et al., 2007; Krupanidhi et al., 

2009) 

miR-15a, b 

Pancreas 

Pancreatic endocrine 

differentiation (Fernandez-Valverde et al., 2011) 

miR-216 

Pancreas 

Pancreatic endocrine 

differentiation (Fernandez-Valverde et al., 2011) 

miR-217 

Pancreas 

Pancreatic endocrine 

differentiation (Fernandez-Valverde et al., 2011) 

 

1.7.1.1 MicroRNA base pairing to target mRNA 

MiRNAs exert their function by complimentary base pairing of their seed sequence to the 3’ UTR of 

target mRNA molecules (Rottiers and Näär, 2012). The seed sequence is a 2 to 8 nucleotide region 

at the 5’ end of the mature miRNA molecule (Figure 3), which is complementary to the target mRNA 

sequence. Base pairing of the 3’ end of the miRNA to the target mRNA is not strictly required, but 

helps to stabilize the miRNA-mRNA complex. Bulges in the miRNA-mRNA complex occur due to 

the mismatching of bases from nucleotide 10-12 in the miRNA molecule. These bulges inhibit the 

translocation of mRNA translation machinery, resulting in translational repression. MiRNAs increase 

the efficacy of translational repression by additional base pairing with its target. 
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Figure 3. MicroRNA base pairing to the 3’UTR of target mRNA molecules. 

The seed sequence, the region of the miRNA molecule that binds mRNA 3’ UTR, provides most of the binding 

specificity. Binding of miRNAs to their target mRNA mediate translational inhibition or mRNA degradation. 

A-Adenine. C-Cytosine. G-Guanine. U-Uracil. 

 

1.7.1.2 Biogenesis 

MiRNA genes are transcribed by RNA polymerase Ⅱ in the nucleus to produce primary miRNA (pri-

miRNA) transcripts (Figure 4) (Bajan and Hutvagner, 2014; Fabian et al., 2010; Filios and Shalev, 

2015; Ha and Kim, 2014). Pri-miRNAs are 60-70 base pair (bp) molecules with a stem loop structure 

that is recognized and spliced by the nuclear RNase Ⅲ enzyme, Drosha, to produce precursor miRNA 

(pre-miRNA). Pre-miRNAs are double stranded molecules that consists of a guide and passenger 

strand (Meijer et al., 2014) that are transported into the cytoplasm by RAN-GTP energy dependent 

Exportin 5 transmembrane proteins. In the cytoplasm, another RNase Ⅲ enzyme, Dicer, further 

splices the pre-miRNA molecule by removing the stem loop structure, while Argonaute (AGO2) 

proteins unwind the miRNA duplex, to produce the mature, active, single stranded miRNA molecule. 

These AGO2 proteins then facilitate the incorporation of the mature miRNA into the AGO-containing 

RNA-induced silencing complex (RISC) in a manner that leaves the seed sequence exposed for 

interaction with target mRNAs. The miRNA- RISC (miRISC) complex is guided to target mRNAs, 

where the seed sequence of mature miRNAs bind to mRNA targets by Watson-Crick base-pairing 

(Suzuki et al., 2012). 
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Figure 4. Schematic representation of the biogenesis of the mature miRNA molecules. 

MiRNAs are transcribed in the nucleus, where they undergo several processes before being transported to the 

cytoplasm to mediate their biological function. 

 

1.7.1.3 Nomenclature 

The miRBase registry (http://www.mirbase.org/) is a website that provides information on miRNA 

nomenclature, as well as miRNA gene targets and sequences (Griffiths-Jones et al., 2006). According 

this registry, there are four characteristics to naming miRNA molecules. The first one describes the 

species in which the miRNA was discovered, i.e. miRNAs discovered in humans (Homo sapiens) has 

the prefix hsa-miR-99. Secondly, mature miRNA sequences are designated as “miR”, and precursor 

hairpin structures and genes as “mir”. MiRNAs are also named to identify orthologous and 

paralogous sequences. MiRNA orthologues in the mouse and human genomes are named hsa-miR-

99 and mmu-miR-99, respectively. Whilst paralogous sequences within the same species that differ 

only at one or two positions are designated by a letter suffix, i.e. mmu-miR-99a and mmu-miR-99b 

in the mouse. Precursor miRNA sequences that give rise to identical mature miRNAs have numbered 

suffixes, i.e. mmu-mir-99-1 and mmu-mir-99-2 in the mouse. 

 

1.7.1.4 Regulation of microRNA expression  

The mechanisms underlying miRNA expression are not known, although it has been demonstrated 

that the promoters of miRNA genes have CpG sites that are susceptible to methylation, suggesting 

that miRNAs are themselves regulated by epigenetic mechanisms such as DNA methylation (Strmsek 

and Kunej, 2015). 
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DNA methylation has been identified as a mechanism regulating miRNA gene expression in 36 

cancer types, including lung, hepatocellular carcinoma and breast cancer (He et al., 2015; Li et al., 

2015; Shen et al., 2015; Singh and Campbell, 2013; Singh et al., 2016; Strmsek and Kunej, 2015; 

Suzuki et al., 2012). Several of these miRNAs have been shown to be associated with T2D, suggesting 

that DNA methylation as a mechanism regulating their dysregulation during T2D. Recently, studies 

have reported differential methylation of miRNA genes during T2D (Kameswaran et al., 2014). The 

increased expression of miR-375 which inhibits insulin secretion (Baroukh and Van Obberghen, 

2009) during T2D may be due to decreased DNA methylation (Chang et al., 2014a; Cheng et al., 

2013; Sun et al., 2014; Wang et al., 2014). Moreover, DNA methylation of let-7a-3 has been 

associated with diabetic nephropathy (Peng et al., 2015). Recent work in our laboratory has reported 

differential DNA methylation of miRNA genes during T2D (Pheiffer et al., 2016) and has suggested 

that DNA methylation represents an important mechanism regulating miRNA expression during T2D. 

 

1.7.2 DNA methylation 

DNA methylation is the most studied and best characterized epigenetic mechanism, and refers to the 

addition of a methyl group to the carbon 5’ (C5) position of cytosine residues (C) within CpG 

dinucleotides (Bird, 2002, 1980). The modification is catalysed by the enzyme DNA 

methyltransferase (DNMT) (Figure 5). Methylation of CpG islands, unmethylated GC-rich regions 

with high levels of CpG dinucleotides in the promoter regions of genes, is generally associated with 

transcriptional repression of genes due to altering protein binding to target sites on DNA, while loss 

of DNA methylation is associated with gene activation (Bird, 2002) (Figure 6). Recently, CpG islands 

have been identified in non-promoter regions within (intragenic) or between (intergenic) genes 

(Illingworth et al., 2010). The function of these orphan CpGs has not been fully elucidated although 

evidence has suggested that they are transcription start sites for nearby annotated genes or non-coding 

RNAs (Deaton and Bird, 2011). 

 

DNA methylation plays an important regulatory role in cellular physiology, particularly during gene 

regulation, growth, embryonic development and differentiation (Pradhan et al., 1999; Yokochi and 

Robertson, 2002). Aberrant DNA methylation has been associated with many diseases such as cancer 

(Baylin and Ohm, 2006; Jones and Baylin, 2002; Rhee et al., 2002), T2D (Gilbert and Liu, 2012; 

Krupanidhi et al., 2009; Ling and Groop, 2009), CVD (Buysschaert et al., 2008; Zhong et al., 2016) 

and mental illness (Robertson, 2005). 
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Figure 5. Methylation of C5 of cytosine bases. 

DNA methyltransferase (DNMT) catalysis the methylation of Cs within CpG dinucleotides. DNA methylation 

is reversible (demethylation), whereby methyl groups are removed from methylated cytosine residues. 

 

 
 

Figure 6. Effect of DNA methylation on transcription. 

In unmethylated promoters, the DNA sequence is accessible to the transcription machinery and gene 

expression is activated, whereas transcription is inhibited in genes wherein the CpG sites in the promotor 

regions are methylated. 

 

1.7.2.1 DNA methyltransferases  

Three main DNMTs are found in mammalian cells; DNMT1, DNMT3a and b (Chédin, 2011; Gowher 

and Jeltsch, 2001; Kaneda et al., 2004; Suetake et al., 2003). DNMT1 is responsible for the 

methylation of Cs of hemi-methylated DNA after replication and is referred to as the maintenance 

DNMT. DNA hemi-methylation is when only one of two (complementary) strands is methylated. 

DNMT3a and DNMT 3b is referred to as de novo DNMTs and methylates unmethylated CpGs (Kato 

et al., 2007). Although DNMTs show preference to specific DNA sequences, all DNMTs can 

participate in both maintenance and de novo methylation (Yokochi and Robertson, 2002). 

 

1.7.2.2 CpG islands and CpG poor regions 

In the context of DNA methylation, both CpG rich and CpG poor regions occur in the genome. As 

discussed previously, DNA methylation primarily occurs within CpG islands in the promotor regions 
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of genes (Ehrich et al., 2005; Jones and Baylin, 2002). The distribution of CpG islands is highly 

variable in the genome and among different cells types, thereby enabling tissue specific control of 

gene expression (Ehrich et al., 2005; Vinson and Chatterjee, 2012). CpG islands refers to repetitive 

genomic sequences ranging from 500-5000 bp (Jones and Baylin, 2002) and about 55-90% of all CpG 

dinucleotides within CpG islands are methylated, constituting approximately 3% of the genome. 

Exons and introns are referred to as CpG poor regions (Miranda and Jones, 2007). These CpG poor 

regions are methylated under normal cellular conditions, except during X-chromosome inactivation. 
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1.8 This study 

1.8.1 Problem Statement 

Type 2 diabetes is a major source of morbidity and mortality worldwide (International Diabetes 

Federation, 2015). In SA, recent estimates reported that the prevalence of T2D is 9%, increasing from 

5.5% in 2000 (Bertram et al., 2013). Similarly, excess body weight, which contributes to about 90% 

of T2D cases in SA (Joubert et al., 2007) is rapidly increasing. In 2013 it was estimated that more 

than 60% of South African women are overweight, 42% of whom are obese (Ng et al., 2014). Since 

obesity is a major risk factor for T2D, the current trajectory of obesity will increase the prevalence of 

T2D, placing a major burden on the already over-burdened health system in SA. 

 

1.8.2 Rationale 

Type 2 diabetes is a complex metabolic disorder, with both genetic and environmental factors 

implicated in the development of this disease (Ling and Groop, 2009). Epigenetic modifications, such 

as miRNAs, reflect the interplay between genetic and environmental factors and provide a plausible 

mechanism to elucidate the biological processes and pathophysiology of T2D. Furthermore, the 

identification of the mechanisms that regulate these epigenetic signatures are important to facilitate 

the development of effective interventions to curb the rising T2D pandemic. 

 

1.8.3 Hypothesis 

We hypothesize that miRNAs that are dysregulated during T2D, are regulated by DNA methylation, 

and that these differentially methylated miRNA genes can regulate miRNA expression in mouse 

adipocytes cultured in different glucose concentrations. 

 

1.8.4 Aim 

The aim of this study was to investigate whether differential miRNA expression in women with T2D 

is regulated by DNA methylation, and to investigate whether these differentially methylated miRNA 

genes regulate miRNA expression in mouse adipocytes cultured in different glucose concentrations. 

 

1.8.5 Objectives 

• Identify differentially expressed miRNAs in women with T2D that are under the potential 

regulation of DNA methylation; 

• Verify methylation status of miRNA genes using MassARRAY® EpiTYPER®; and 

• Evaluate the methylation status of these miRNA genes in 3T3-L1 mouse adipocytes 

o Establish cell culture model and 

o Evaluate both DNA methylation and expression of candidate miRNAs. 
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2. Materials and Methods 

The media and buffers used in the study are listed in the Appendix. 

 

2.1 Participants 

Participants in this study were women of self-reported “Coloured” ethnicity. This ethnic group refers 

to individuals of mixed ethnic ancestry with European, African and Asian origins dating back to about 

350 years ago (de Wit et al., 2010). Different subsets of women were used for the different analyses. 

MiRNA for miRNA sequencing (miRNA-Seq) (Group A) and DNA for MassARRAY® 

EpiTYPER™ quantitative methylation analysis (Group C), were isolated from women who 

participated in the Human Biomarker Project (HBP) as described previously (Dias, 2016). Group A 

consisted of 12 age-, gender-, ethnicity- and body mass index (BMI)-matched normoglycaemic 

(NGT, n=4), impaired glucose tolerant (IGT, n=4) and type 2 diabetic (T2D, n=4) women, while 

Group C consisted of a different subset of NGT (n=3), IGT (n=2) and T2D (n=4) women from the 

HBP. DNA for methylated DNA immunoprecipitation sequencing (MeDIP-Seq) was extracted from 

NGT (n=3), IGT (n=3) and T2D (n=3) age-, gender-, ethnicity- and BMI-matched women (Group B) 

as previously described (Pheiffer et al., 2016). Participant characteristics are given in Table 7. This 

study was approved by the Health Research and Ethics Committee of Stellenbosch University 

(S15/04/096) and the Ethic Committee of the Medical Research Council (EC010-5/2013) (Appendix). 

 

2.2 Selection of miRNA genes for verification with MassARRAY® EpiTYPER® 

2.2.1 Experimental outline for selection of miRNAs 

The experimental outline describing the selection process of differentially methylated miRNA genes 

for verification with the MassARRAY® EpiTYPER® is illustrated in Figure 7. Briefly, miRNAs 

isolated from peripheral blood mononuclear cells (PBMCs) of NGT, IGT and T2D women (Group 

A) underwent miRNA-Seq to identify differentially expressed miRNAs (Dias, 2016). DNA isolated 

from the whole blood of a different subset of NGT, IGT and T2D women (Group B), were subjected 

to MeDIP-Seq to identify differentially methylated miRNA genes (Pheiffer et al., 2016). Data 

obtained from the two analyses were integrated to identify miRNAs that were differentially expressed 

and whose genes were differentially methylated between NGT, IGT and T2D groups. Thereafter, 

DNA extracted from a different subset of women (Group C) was subjected to MassARRAY® 

EpiTYPER® quantitative methylation analysis to verify the differential methylation of miRNA genes 

identified by data integration. 
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Figure 7. Identifying dysregulated miRNAs potentially regulated by DNA methylation. 
 

2.2.2 Standardization of miRNA nomenclature 

As discussed in section 1.7.1.3, miRNAs are named according to specific criteria 

(http://www.mirbase.org/). To facilitate data integration, the nomenclature of mature miRNAs, which 

were identified with miRNA-Seq, was changed to the same format as MeDIP-Seq data. The different 

formats in which miRNA genes were reported by these two techniques are illustrated in Figure 8. For 

example, the mature miRNA format hsa-miR-99a (miRNA-Seq) was changed to mir99a (MeDIP-

Seq) to facilitate data integration with the Venny 2.1 tool. 

 

 
 

Figure 8. MiRNA annotation using miRNA-Seq and MeDIP-Seq. 

Differences in miRNA nomenclature are indicated by the blue arrows. The 3p delineates on which strand the 

miRNA gene was located, in this example, the miRNA gene is located on the reverse strand (Michael Agostino, 

2012). 

 

2.2.3 Integration of miRNA sequencing and methylated DNA sequencing 

To identify miRNAs under the potential regulation of DNA methylation during T2D pathogenesis, 

differentially expressed miRNAs identified by miRNA-Seq and miRNA genes that were 
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differentially methylated according to MeDIP-Seq were integrated using the web-based Venny 2.1 

tool. MeDIP-Seq further grouped miRNA genes according their gene regions (promoter, intergenic 

and intragenic) as previously described (Pheiffer et al., 2016). 

 

2.2.4 Selection of miRNA genes for MassARRAY® EpiTYPER® analysis 

During the integration of the data obtained from both miRNA-Seq and MeDIP-Seq, several miRNA 

genes were identified that were both differentially expressed and differentially methylated. Due to 

the expensive nature of the MassARRAY® EpiTYPER® analysis, not all of these miRNA genes 

could be analysed. A selection of miRNA genes for further analysis were made based on miRNAs 

literature has suggested to be involved in T2D pathophysiology and miRNA genes that showed 

interesting expression profiles with the miRNA-Seq. 

 

2.3 DNA extraction 

Genomic DNA was extracted from whole blood using the Wizard® Genomic DNA purification kit 

(Promega, Madison, USA), according to the manufacturer’s recommendations. Briefly, 900 µL of 

Cell Lysis Buffer, supplied with the kit, was added to 300 µL of whole blood in a 1.5 mL microfuge 

tube (Eppendorf, Hamburg, Germany), thoroughly mixed by vortexing, and incubated at room 

temperature (RT) for 20 minutes. Tubes were mixed by inversion every five minutes to lyse 

erythrocytes and then centrifuged (5415R, Eppendorf) at 13,000 × g for 30 seconds. The supernatant 

was carefully removed ensuring no disruption of the cell pellet. The cell lysis step was repeated thrice 

or until the pellet formed after centrifugation was white in colour. Thereafter, the pellet was 

resuspended by vortexing briefly, 300 µL of Nucleic Lysis Solution was added and mixed by pipetting 

up and down seven times to lyse white blood cells. Another 100 µL of Nucleic Lysis Solution was 

added to tubes where clumps of cells were still visible, followed by incubation at 37ºC for 60 minutes. 

Thereafter, 130 µL of Protein Precipitation Solution was added to the nuclear lysates and the tubes 

were vortexed for 30 seconds. Tubes were centrifuged at 13,000 × g for three minutes, where after 

proteins were visible as a dark brown pellet at the bottom of the tube. The supernatant of each tube 

was transferred to clean 1.5 mL microfuge tube containing 200 µL of RT isopropanol, gently mixed 

by inversion and incubated at -20ºC overnight. After the overnight incubation, tubes were centrifuged 

at 13,000 × g for two minutes, supernatants decanted and the DNA pellets were washed twice with 

100 µL of 70% (v/v) ethanol. After the final wash step, most of the ethanol was removed and the 

DNA pellet was air-dried for 30 minutes. The DNA pellet was resuspended in 100 µL of DNA 

Rehydration Solution and the concentration and purity was assessed by measuring its wavelength at 

260 nm (A260), 280 nm (A280) and 230 nm (A230), respectively, using the Nanodrop-1000 
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spectrophotometer according the manufacturer’s recommendations (Nanodrop Technologies, 

Wilmington, USA). DNA of good quality had an A260/280 ratio (protein or phenol contamination) of 

1.7-1.9 and an A230/260 ratio (EDTA, salt and other contaminants) of 1.8-2.0. DNA was then aliquoted 

and stored at -20ºC. 

 

2.4 MassARRAY® EpiTYPER® quantitative methylation analysis 

The MassARRAY® EpiTYPER® allows high-throughput, highly accurate and sensitive quantitative 

CpG specific methylation analysis (Liu et al., 2016; Thompson et al., 2009). An illustration of the 

MassARRAY® EpiTYPER® workflow is illustrated in Figure 9. Firstly, DNA is bisulfite treated to 

enable the conversion of unmethylated cytosine (C) to uracil (U). Thereafter, methylation specific 

primers are used to amplify the bisulfite converted DNA, which then undergoes several processes. 

These processes include Shrimp Alkaline Phosphatase (SAP) treatment to deactivate unincorporated 

dNTPs left in the PCR reactions, in vitro transcription to convert the single-strand DNA to RNA; 

followed by base specific cleavage of the reverse strand at the base U forming fragments of different 

sizes. MALDI-TOF mass spectrometry separates the cleavage products, enabling differentiation of 

non-methylated DNA from methylated DNA based on the mass to charge ratio (m/z) of fragments 

that were formed. The larger the m/z, the larger the fragment. DNA with larger m/z contains 

methylated Cs. The MassARRAY® EpiTYPER® analysis was conducted by Inqaba Biotec (Pretoria, 

SA). 

 

2.4.1 Primer design 

Forward and reverse primers for the genomic coordinates obtained by MeDIP-Seq were designed 

using EpiDesigner, a web-based primer design tool recommended by the manufacturers of the 

MassARRAY® EpiTYERP® assay (http://www.epidesigner.com/; Agena Bioscience, San Diego, 

USA). EpiDesigner designs primers for bisulfite converted DNA where all unmethylated Cs are 

considered to be deaminated to form Us and are thus considered as thymine (T) (as during PCR Us 

in the target sequence become Ts in the PCR amplicons generated). For bisulfite conversion, double 

stranded DNA with the forward and the reverse strand delineated as A and B, respectively, in Figure 

10, is used. During bisulfite conversion, DNA is denatured due to the lack of complementarity 

because of the C to U (and thus T) conversion. Only the forward strand i.e. strand A (Figure 10) is 

amplified during the PCR amplification reaction. 
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Figure 9. Overview of the MassARRAY® EpiTYPER® assay. 

The red and blue sequences represent unmethylated and methylated DNA respectively. After bisulfite conversion and PCR amplification, all Cs 

were replaced with Us in the red sequence, while no changes were made in the blue sequence. The amplicons produced by the PCR reaction was 

then treated with SAP, underwent in vitro transcription and a base specific cleavage reaction. The MassARRAY® EpiTYPER® culminated in the 

differentiation of unmethylated and methylated DNA by using MALDI-TOF mass spectrometry. 

m/z: mass to charge ratio. 
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Figure 10. Template DNA and single-stranded DNA obtained after bisulfite conversion. 

Different colours indicate the four DNA bases A, C, G, T, and underlined Cs are methylated. During bisulfite 

treatment, DNA is denatured, resulting in single-stranded DNA with strands that are no longer complementary 

due to the deamination of unmethylated Cs. 

 

The EpiDesigner program designs the forward and reverse primers on the forward strand, as 

illustrated in Figure 11. 

 

 
 

Figure 11. Forward and reverse primers for amplification of bisulfite converted DNA. 

The reverse and forward primers are designed on the bisulfite converted sequence of the forward strand. A 

primer containing a CpG dinucleotide with uncertain methylation status (Y), is designed containing either a 

C- or T-residue. 

 

To facilitate in vitro transcription, a T7 promoter tag and an 8-mer bp insert was added to the 5’ end 

of the reverse primer and a 10-mer tag sequence to the forward primer, as illustrated in Figure 12. 

The purpose of the T7 promotor tag is to enable the generation of RNA from converted DNA, which 

can be cleaved by specific RNAse enzymes. The 10-mer tag is added to the forward strand to balance 

the forward and reverse primers. 

 

 
 

Figure 12. Primer design for in vitro RNA transcription. 

The miRNA gene sequence is indicated as a solid black line. The reverse primer (bold, black dotted line with 

arrow) containing the T7 tag and 8-mer bp insert, is indicated below the miRNA gene sequence. The forward 

primer (bold, black dotted line with arrow) containing the 10-mer bp insert is indicated above the sequence. 
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A screenshot of the EpiDesigner assay design is illustrated in Figure 13. The default primer melting 

temperature (Tm) and primer size (outlined in green) were used since these parameters were already 

optimised by the program. For DNA of good quality, the product size minimum (outlined in blue) 

was increased to 150 bp, while the rest of the parameters in that row were kept the same. Product 

CpGs refers to the number of CpGs contained within a target sequence, whereas the primer non-CpGs 

represent Cs that are not in a CpG dinucleotide context (outlined in yellow). No changes were made 

to the primer non-CpG Cs, the poly X and T settings. However, when no primers could be designed 

on the forward strand, the stringency of these settings were lowered, or the program was instructed 

to design primers on the reverse strand as well. The default settings for the Mass Window section 

(outlined in orange) was used. The Mass Window parameter specifies the mass range within which 

primers can be designed. Only CpGs in the T-reaction was analysed (outlined in purple). The T 

reaction refers to the change in nucleotide sequence after bisulfite treatment and the generation of T-

rich PCR amplicons. 

 

 
 

Figure 13. Screenshot of the primer design program. 

The primer design software used to design the primers for amplification of methylated DNA, EpiDesigner, 

recommends primer pairs for individual assays. The primer Tm was set at a range of 56-64ºC and the primer 

size at a range of 20-30 nt. The primer Poly X was set at 5bp, the primer Poly T at 8bp and the primer non-

CpG Cs at 4. The range for the product size after PCR amplification was set to 100-500 bp. The Mass 

Window was set to 1500-7000 and primers for only the T-reaction was designed. Primer Tm: Primer melting 

temperature. Primer Poly X: The maximum number of a mono-nucleotide repeat allowed in the primer 

sequence. Primer Poly T: The maximum number of T repeats allowed in the primer sequence. 

 

2.4.2 Bisulfite conversion  

Bisulfite conversion is considered the gold standard for DNA methylation analysis, allowing for the 

discrimination between methylated and unmethylated Cs at single base resolution (Patterson et al., 
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2011). The first step of bisulfite conversion involves the sulphonation of unmethylated Cs to cytosine-

sulphonate. Thereafter cytosine-sulphonate is deaminated to uracil-sulphonate, which is 

desulphonated to Us (Figure 14). Methylated Cs are resistant to bisulfite conversion and will therefore 

not be converted to Us (Figure 15). 

 

 
 

Figure 14. The bisulfite conversion of unmethylated Cs. 

Bisulfite conversion is a three-step chemical process that culminates in the conversion of unmethylated Cs to 

Us. 

 

 
 

Figure 15. The effect of bisulfite conversion on DNA. 

Unmethylated Cs (indicated in blue) are converted to Us, and then Ts after PCR amplification. While 

methylated Cs (indicated in dark green with gold M attached) are resistant to bisulfite conversion. 
 

Bisulfite conversion was conducted using the EZ DNA Methylation kit™ (Zymo Research, Irvine, 

USA) according to the manufacturer’s instructions using 1.5 mL microfuge tubes. Briefly, 5 µL of 

M-Dilution buffer (supplied with the kit) was added to 1 µg of DNA, and adjusted to a total volume 

of 50 µL with water. Thereafter, samples were incubated at 37°C for 15 minutes, followed by the 

addition of 100 µL of CT Conversion Reagent (supplemented with water and M-Dilution Buffer 

according to the protocol), lightly vortexed, and incubated in the dark at 50 °C for 16 hours. Thereafter 

samples were incubated on ice for 10 minutes, 400 µL of M-Binding buffer was added, and the 

samples were mixed by pipetting up and down six times. Samples were loaded into a Zymo-Spin™ 

IC Column in a 2 ml collection tube (Zymo Research). Thereafter 100 µL of M-Wash buffer was 

added and the spin columns were centrifuged with the Microfuge 20 centrifuge (Beckman Coulter 

Life Sciences, Brea, California, USA) at 13, 000 × g for 30 seconds. Thereafter 200 µL of M-

Desulphonation buffer was added to the column, after which spin columns were incubated at RT for 
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20 minutes and centrifuged at 13, 000 × g for 30 seconds. Columns were washed by adding 200 µL 

of M-Wash buffer and centrifuging at 13, 000 × g for 30 seconds. The column was placed into a clean 

1.5 mL microfuge tube, and DNA eluted by pipetting 40 µL of M-Elution buffer directly to the 

column membrane, incubating spin columns at RT for one minute, and then centrifuged at13,000 × g 

for 30 seconds at RT. This step was repeated to ensure that all DNA was eluted from the spin column. 

 

DNA was quantified and its purity assessed using the Nanodrop 3300 spectrophotometer (Thermo 

Fisher Scientific, Massachusetts, USA) and the RiboGreen® RNA reagent kit (Thermo Fisher 

Scientific). RiboGreen® is a sensitive fluorescent nucleic acid stain that binds RNA and single 

stranded DNA. DNA was quantified by adding 2 µL of RiboGreen® dye to 2 µL of bisulfite-

converted DNA, where after, samples were loaded on the pedestal of the Nanodrop 3300. 

 

2.4.3 Polymerase chain reaction 

Polymerase chain reaction (PCR) amplification was conducted using the Agena Biosciences PCR 

accessory kit (Sequenom, San Diego, USA) with a Hotstart Taq polymerase (Qiagen, Hilden, 

Germany), according to the manufacturer’s instructions. Briefly, 1 µL (5 ng/ µL) of bisulfite 

converted DNA was added to the wells of a 96-well plate (Corning Inc., Corning, USA) containing 9 

µL of the PCR reaction mix as shown in Table 3. The plate was sealed with sealing film and 

centrifuged for one minute at 560 × g (Allegra X-12, Beckman Coulter Life Sciences, Brea, USA) 

and placed in a thermocycler (Thermo 1, Thermo Fisher Scientific). PCR conditions were 94°C for 4 

minutes to denature double stranded DNA, 45 cycles of 94°C for 20 seconds, 56°C for 30 seconds to 

anneal primers to substrate DNA strands and 72°C for one minute to extend the produced amplicons, 

followed by a final cycle of 72°C for three minutes. 

 

Table 3. EpiTYPER PCR proctocol for a 10 µL reaction. 
 

Reagent Volume (µL) 

10 x PCR Buffer 1.00 

dNTP 25 mM each 0.08 

PCR enzyme (5 u/µl) 0.08 

Forward primer (1 µM) 2.00 

Reverse primer (1 µM) 2.00 

Distilled H2O 3.84 

DNA 1.00 

Total Reaction volume 10.00 
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2.4.4 Processing EpiTYPER® reactions in 96-well plates 

2.4.4.1 Shrimp Alkaline Phosphatase treatment of PCR products 

Shrimp Alkaline Phospatase (SAP) neutralizes unincorporated dNTPs after PCR amplification of 

bisulfite converted DNA by dephosphorylating these dNTPs, thereby ensuring that they cannot be 

used in further reactions. The SAP (included in the EpiTYPER® kit, Sequenom) solution was 

prepared according to the manufacturer’s instructions in a clean 1.5 mL microfuge tube as shown in 

Table 4 and 4 µL dispensed into each well of a 96-well plate (Corning Inc.). Thereafter, 6 µL of the 

PCR product (section 2.4.3) was added to each well. A plastic seal was placed over the plate and the 

SAP/PCR mixture was centrifuged at 3, 000 × g (Allegra X-12, Beckman Coulter Life Sciences) for 

one minute. The plate was then incubated in a thermocycler (Thermo 1, Thermo Scientific) at 37°C 

for 20 minutes, 85°C for five minutes and 4°C overnight, after which it was processed further. 

Table 4.Preparation of the SAP solution. 

 
Reagent Volume (µL) Mastermix (µL) 

RNase free ddH20 3.4 374.0 

Shrimp Alkaline Phospatase 0.6 66.0 

Total 4.0 440.0 

 

2.4.4.2 The MassCLEAVE™ reaction 

The MassCLEAVE™ (hMC) reaction was prepared using the EpiTYPER® Complete Reagent Set 

and SpectroCHIP Set (Sequenom), according to the manufacturer’s instructions. Briefly, the SAP/ 

PCR mixture underwent in vitro RNA transcription and base-specific cleavage by RNase A (included 

in the kit) at converted Us to enable differentiation of methylated and unmethylated DNA according 

to size and mass, depending on the sequence changes generated by bisulfite treatment. Differences 

are detected using the MassARRAY® EpiTYPER® system (Sequenom), which combines MALDI-

TOF mass spectrometry with the EpiTYPER® analytic software to generate quantitative data for each 

analysed fragment. 

 

2.4.4.3 In vitro transcription reaction 

The in vitro transcription reaction was prepared by adding the reagents (included in the EpiTYPER® 

Complete Reagent Set) in order of appearance in Table 5 below. Thereafter, 50 µL of the mixture 

was dispensed into each well of row H of a clean 96-well assay plate (Corning Inc.) as shown in 

Figure 16. The sample plate was sealed with film making sure that all the edges were sealed off 

properly. The 96-well plate that contained the SAP treated PCR amplicons was removed from the 

thermocycler. This SAP/PCR plate as well as the T Cleavage/RNase A cocktail plate was centrifuged 
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(Allegra X-12, Beckman Coulter Life Sciences) at 540 × g for one minute. The plate seals were 

removed from both plates in order of their usage. Two microliters per well from the SAP/PCR plate 

was transferred to the wells of a clean 96-well plate, changing tips between dispensing. The new plate 

was centrifuged at 540 × g for one minute and using a multichannel pipette (Gilson Inc., Middleton, 

USA), 5 µL of the T Cleavage/RNase A cocktail was added to each well of the new plate. Here, too, 

pipette tips were changed after each dispensing. Both the new plate and the SAP/PCR plates were 

sealed and the SAP/PCR plate was stored at -20ºC for future use. The new plate was centrifuged at 

540 × g for one minute again. The new plate was incubated at 37ºC for three hours and processed 

immediately after. 

 

Table 5.Preparation of the T Cleavage Transcription/RNase A cocktail for 5 µL reactions.  
 

T Cleavage Transcription/RNase A cocktail Volume (µL) Mastermix for 96-well assay plate (µL) 

RNase free ddH2O 3.21 409.80 

5× T7 polymerase Buffer 0.89 113.50 

T Cleavage mix 0.22 28.00 

CTT mix, 100 mM 0.22 28.00 

T7 RNA & DNA Polymerase 0.40 51.00 

RNase A 0.06 7.70 

Total 5.00 638.00 

*Mastermix volumes include approximately 33% overhang to account for possible pipetting errors. 

 

 

Figure 16. The T Cleavage/RNase A cocktail dispensed into each well of row H. 
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2.4.4.4 Conditioning the hMC reaction products 

The new plate containing the hMC reaction was conditioned, as it is important for optimal mass 

spectrometry analysis. This was conducted by using clean resin (included in the EpiTYPER® 

Complete Reagent Set) as described in Figure 17. 

 

 

Figure 17. Steps for conditioning the hMC reaction. 

 

2.4.4.5 Preparation of clean resin on a 96-well plate 

Approximately 3 g of clean resin was transferred from its container onto a clean 96-well resin plate 

(Sigma-Aldrich, St Louis, USA) using a clean resin spoon and carefully spread into each well. The 

excess resin was removed from the plate using a clean resin scraper and deposited back into the resin 

container as illustrated in Figure 18. The clean resin plate was incubated at RT for 20 minutes. 

 

 
 

Figure 18. Adding and removing excess resin. 

 

2.4.4.6 Sample dilution 

During incubation of the 96-well resin plate, the new reaction plate containing the hMC (section 

2.4.4.3) was removed from the thermocycler and centrifuged at 540 × g for one minute. Thereafter, 

41 µL of water was pipetted into each well using a twelve-channel multichannel pipette (Gilson Inc.). 

The hMC plate was sealed and centrifuged at 540 × g for one minute. 

Prepare resin on 
96-well plate

Sample dilution
Add resin to 

hMC reaction
Rotation and 
centrifugation
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2.4.4.7 Addition of clean resin to the hMC reaction products 

The clean resin was added to the hMC plate by placing the hMC plate upside down onto the resin 

plate. Then, by holding the hMC and resin plates together, the plates were inverted so that the resin 

fell into the each well of the hMC plate. The resin plate was gently tapped to dislodge all the residual 

resin into the wells of the hMC plate. 

 

2.4.4.8 Rotation and centrifugation of hMC Reaction Products 

The hMC plates containing the resin were rotated using a rotator for 10 minutes at RT. The rotator 

rotated the hMC plate 360º perpendicular to its long axis. Thereafter, the hMC plate was centrifuged 

for five minutes at 3,200 × g. 

 

2.4.4.9 Nanodispensing 

Reaction products were transferred to the SpectroCHIP™ array using the MassARRAY® 

Nanodispenser RS100 (Sequenom) as shown in Figure 19. The Nanodispenser RS1000 is a self-

contained, enclosed instrument that uses computer-controlled robotics to dispense nanoliter volumes 

of fluid from 96-well assay plates onto chips. The system has a video to monitor dispensing onto 

chips and has an auto-tuning system to correct for over- or under-dispensing. The Nanodispenser 

RS100’s pins were washed before spotting samples onto the SpectroCHIP™ by sonication in 70% 

ethanol, rinsing in water, vacuum drying and rinsing with 0.1 M NaOH and 100% ethanol. Spotting 

refers to the transfer of nanoliters of samples onto the SpectroCHIP™ by the pins. 

 

 
 

Figure 19. The MassARRAY Nanodispenser RS1000 with the SpectroCHIP. 

The Nanodispenser RS1000 is shown in the left, upper corner inside the MassARRAY®. The enlarged 

pictures on the right side of the MassARRAY®, illustrates the SpectroCHIP upon which nano volumes of 

the samples are loaded. 
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2.4.5 MassARRAY® EpiTYPER® data analysis 

Methylation values of individual CpG sites within miRNA genes were determined by the 

EpiTYPER® software. For each miRNA gene, the methylation at each of the CpG sites that were 

analysed, was added to obtain the methylation status of the entire miRNA gene sequence analysed. 

The additive methylation status of miRNA genes was averaged for individuals with T2D, IGT and 

NGT, and thereafter the different groups were compared. 
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2.5 Cell Culture 

In vitro studies was conducted on 3T3-L1 mouse embryonic fibroblasts to establish a cell culture 

model for T2D pathophysiology to investigate the relationship between DNA methylation and 

miRNA expression. Cell culture was conducted by using aseptic techniques adhering to the standard 

operating procedures prescribed by the Tissue Culture laboratory, Biomedical Research and 

Innovation Platform, South African Medical Research Council. The experimental outline of the cell 

culture experiments is illustrated in Figure 20. 

 

 

Figure 20. Experimental outline for cell culture of 3T3-L1 pre-adipocytes. 

 

2.5.1 Cell line 

Pre-adipocytes were obtained from the American Type Culture Collection (ATCC, Manassas, USA) 

and cells between passage seven (T7) and passage nine (T9) were used for experiments. The cells 

were grown in a controlled and consistent environment of 37ºC, 5% CO2 in 96% humidified air. 

 

2.5.2 Thawing of cryopreserved cells 

Cryopreserved pre-adipocytes were removed from long-term storage in liquid nitrogen and placed on 

ice prior to use. Frozen vials were then placed in a water bath at 37ºC until at least 75% of the contents 

had thawed. Thereafter, vials were transferred to the biological safety cabinet and the cells pipetted 

into a 15 mL tube (Nest Scientific, Rahway, USA). The cells were then centrifuged at 800 x g for five 

minutes, after which the supernatant was aspirated and the cells were resuspended in 1 mL of pre-

warmed complete growth medium (CGM) (Appendix). The cell suspension was transferred to a 75 
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cm2 flask (Corning Inc., Corning, USA) containing 17 mL of pre-warmed CGM and mixed properly 

by pipetting up and down thrice. To ensure that all cells were removed from the vial, vials were 

washed with one millilitre of pre-warmed CGM, where after the mixture was transferred to the 75 

cm2 flask. The flask containing the cells was incubated at 37ºC with 96% humidity and 5% CO2 and 

after 24 hours, the CGM was aspirated and replaced with 18 mL of fresh medium. The cells were 

subcultured when they were 70-80% confluent. 

 

2.5.3 Subculture of 3T3-L1 pre-adipocytes 

When cells reached 70-80% confluency, as visualised with an inverted light microscope (Olympus 

CKX31, Olympus Life Science, Waltham, USA), the CGM was aspirated and cells were rinsed with 

8 mL of pre-warmed Dulbecco’s phosphate buffered saline (DPBS; Lonza, Basel, Switzerland) to 

remove traces of serum. The flask was gently swirled, where after DPBS was aspirated, taking care 

to remove all DPBS. Thereafter, 2 mL of RT trypsin-versene (Lonza) was added directly to the cell 

monolayer and incubated at 37ºC for five minutes. The rounding of cells and their detachment from 

the flask surface was visualised under the microscope. Trypsinization was stopped by adding 8 mL 

of pre-warmed CGM to the flask and the contents of the flask was pipetted up and down at least five 

times to disaggregate cell clumps and ensure consistency of the cell density. The 10 mL cell 

suspension was transferred to a clean, sterile 50 mL tube (Nest Scientific) and centrifuged at 800 x g 

(SL 16R, Thermo Scientific) for five minutes. Thereafter, the supernatant was aspirated and the pellet 

was resuspended in 10 mL of CGM. Five hundred microliter of the freshly resuspended cell solution 

was pipetted into a clean 1.5 mL microfuge tube for cell counting, while the remaining cell suspension 

was incubated at 37ºC during cell counting. 

 

2.5.4 Cell counting 

Cells were counted using the Countess® Automated Cell Counter (Invitrogen, Carlsbad, USA), 

according to the manufacturer’s instructions. A 10 µL aliquot of the cell suspension in the microfuge 

tube was transferred to a clean tube and mixed with 10 µL of Trypan Blue (Life Technologies, 

Carlsbad, USA), where after, 10 µL of this mixture was pipetted into a Countess® cell counting 

chamber slide. The counting chamber slide was inserted into the automated counter where both live 

(clear) and dead (blue) cells were counted. 

 

2.5.5 Cryopreservation of cells 

A suspension of 2 x 106 cells per mL was needed for the cryopreservation of cells to serve as stocks. 

After determining the concentration of cells/mL (section 2.5.4) and the concentration of cells in 10 
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mL media, the amount of freezing medium to add to cells to obtain the desired 2 x 106 cells per 1 mL 

concentration, was calculated. An example of this calculation is shown in Figure 21. The 50 mL tube 

containing the cell solution was centrifuged at 800 x g, the supernatant aspirated and the cell pellet 

was resuspended in sterile filtered freezing medium (Appendix). After the pellet was dissolved, 1 mL 

of the cell suspension was transferred to labelled, cold cryotubes (Corning Inc.) and temporarily 

placed on ice before being incubating at -80 C overnight. The following day, tubes were transferred 

to liquid nitrogen for long-term storage. 

 

 

Figure 21. The calculation used to obtain cell concentrations for freezing. 

 

2.5.6 Seeding cells into plates 

Before seeding cells into plates, the procedure to thaw, maintain and subculture and split pre-

adipocytes was followed as explained previously. For in vitro assays, cells were seeded into 

CellBIND® plates (Corning Inc.) at different seeding densities according to the assay plates used 

(Table 6). For the determination of intracellular lipid content, cell viability and glucose uptake, cells 

were seeded into 24-well plates, while cells for DNA, RNA and protein extractions were seeded into 

6-well plates. Cells used to analyse oxidative stress were seeded into 96-well plates, of which only 

54 wells were seeded as the perimeter wells were filled with 200 µL of DPBS (Lonza). No cells were 

seeded in the perimeter wells as media in these outside wells, evaporate quickly. 

 

Table 6.Seeding densities 

 
Plate Volume cell 

suspension/well 

Volume cell 

suspension/plate 

Number of plates used/ 

experiment 

Cell 

density/well 

6-well 3 mL 20 mL 5 6 x 104 

24-well 1 mL 25 mL 2 2 x 104 

96-well 200 µL 15 mL 2 5 x 103 
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2.5.8 Adipocyte differentiation 

Adipocyte differentiation is an eleven-day procedure and requires four different types of media 

(Appendix), a) CGM, b) adipocyte differentiation media (ADM), c) adipocyte maintenance media 

(AMM) with insulin and d) AMM only. Cells were differentiated using DMEM, with either 5 mM or 

25 mM glucose, supplemented with 10% FBS or left undifferentiated in CGM for controls. The 

procedures for the preparation of media are described in the Appendix. After the plates were seeded, 

cells were cultured in CGM for three days at 37°, 5% CO2 and 96% humidity until they reached 100% 

confluency. Upon confluency, CGM was aspirated and replaced with either CGM (undifferentiated 

control), 5 mM ADM or 25 mM ADM at the recommended volumes (Table 6) as shown in Figures 

22 to 25, and incubated at 37ºC. This day was referred to as Day 0. The adipocyte differentiation 

timeline is shown in Figure 26. On day 3, the ADM was aspirated and replaced with 5.5 mM or 25 

mM AMM with insulin, while the CGM was refreshed with new CGM. On Day 5, the AMM with 

insulin and CGM was refreshed with 5.5 mM or 25 mM AMM and fresh CGM, respectively. The 

respective media was refreshed again on Day 7. Day 8 was the day all assays were completed. 

 

 
 

Figure 22. Plate layout for Oil Red O, Cell viability and Glucose Uptake assay.  

Blue: Undifferentiated pre-adipocytes. Orange: Pre-adipocytes differentiated at 5.5 mM Glucose. Green: Pre-

adipocytes differentiated at 25 mM Glucose. 

 

 
 
Figure 23. Plate layout for harvesting of cells for DNA and RNA isolation. 

Blue: Undifferentiated pre-adipocytes. Orange: Pre-adipocytes differentiated at 5.5 mM Glucose. Green: 

Pre-adipocytes differentiated at 25 mM Glucose. 
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Figure 24. Plate layout for harvesting cells for protein isolation. 

Blue: Undifferentiated pre-adipocytes. Orange: Pre-adipocytes differentiated at 5.5 mM Glucose. Green: Pre-

adipocytes differentiated at 25 mM Glucose. 

 

 
 

Figure 25. Plate layout for oxidative stress assessment for both DCFH-DA and JC-1 assays.  

Blue: Undifferentiated pre-adipocytes. Orange: Pre-adipocytes differentiated at 5.5 mM Glucose. Green: Pre-

adipocytes differentiated at 25 mM Glucose. 

 

 
 
Figure 26. Timeline for adipocyte differentiation. 

Cells were seeded in CGM that was refreshed on Day 0 for controls or replaced with ADM (5.5 mM or 25 

mM) to differentiate pre-adipocytes. On days, Day 3, 5 and 7, the CGM media was refreshed for controls. 

Whereas on Day 3 for the differentiating pre-adipocytes, the ADM was removed and replaced with AMM (5.5 

mM or 25 mM) with insulin. On Day 5, the AMM with insulin was replaced with just AMM (5.5 mM or 25 

mM). The AMM was then refreshed on Day 7. 
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2.5.9 Oil Red O 

Oil Red O (ORO) is a hydrophobic/lipid, diazo dye used in staining and quantifying lipids in cell 

culture (Wang et al., 2011). It is based on the principle that this stain is more soluble in neutral fats 

than in any other solutes. Therefore, upon adding the dye to formalin fixed cells, it dissolves into the 

lipids contained within mature adipocytes. The crystal violet stain (CV) is used to determine the cell 

density or cell viability as it binds to DNA and proteins of live cells that are bound to the culture plate 

surface. It discriminates between dead and alive cells in that it does not bind dead cells as these cells 

lift from the surface of the plate (Chiba et al., 1998). 

 

After 9 days of differentiation (Day 8), cells were washed twice with pre-warmed DPBS and 

incubated for at least 30 minutes with DMEM (Sigma-Aldrich, St. Louis, USA) without phenol red 

media containing either 5.5 mM or 25 mM glucose, to completely remove phenol red traces. 

Thereafter, the cells were washed once with RT DPBS and fixed with 10% buffered formalin for 15 

minutes and then washed again with DPBS. The DPBS was aspirated to near dryness and the culture 

plate was left to dry for five minutes at RT. When the plate was dry, 200 µL of the ORO working 

solution (Appendix) was added to each well of the plate and incubated at RT for 30 minutes. The 

ORO stain was then removed and the cells were washed thrice with 500 µL of distilled H2O. The 

H2O was removed to near dryness after the last wash and 200 µL of RT isopropanol was added to the 

wells. The culture plate was gently rocked back and forth to completely dissolve the bound ORO 

stain. To detect the level of lipid content, 100 µL of the isopropanol in each of the wells was 

transferred to a labelled 96-well non-binding assay plate (CELLSTAR®, Greiner Bio-One, 

Kremsmünster, Austria) as shown in Figure 27. Lipid content was determined by measuring the 

absorbance of the ORO stain at 510 nm using the Gen 5 software (BioTek, Winooski, United States) 

and the ELx800 absorbance reader (BioTek, Winooski, United States). The remainder of the 

isopropanol was aspirated and the cells were washed with 200 µL of RT 70% (v/v) ethanol. The 

ethanol was removed to near dryness and the plate was incubated at RT for five minutes to evaporate 

the ethanol. 

 

When the wells were dry, 400 µL of the CV working solution (Appendix) was added to each well 

and the plates were incubated for five minutes at RT. The CV was removed completely and the cells 

were washed twice with 500 µL of RT DPBS. The DPBS was then removed and 200 µL of RT 70% 

ethanol was added to each well to extracted the CV stain from the cells. The culture plate was rocked 

back and forth to aid in the stain extraction. Thereafter, 100 µL of the ethanol was transferred to the 

remaining wells of the 96-well non-binding assay plate that was used previously (Figure 27). The CV 

absorbance was measured at 570 nm also using the Gen 5 software (BioTek) and the ELx800 
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absorbance reader (BioTek). 

 

 
 

Figure 27. 96-well plate layout for determination of lipids and cell number using ORO and CV. 

Blue: Undifferentiated pre-adipocytes. Orange: Pre-adipocytes differentiated at 5.5 mM Glucose. Green: Pre-

adipocytes differentiated at 25 mM Glucose. 

 

2.5.10 2-Deoxy-[3H]-D-glucose uptake assay 

Glucose is rapidly metabolized within cells for energy production and is thus hard to measure under 

cellular conditions. Thus, non-metabolizable analogues of glucose, such as 2-deoxy-[3H]-D-glucose 

(2DG) (Perret et al., 2004), are used to measure glucose transport across the cellular membrane by 

GLUTs. A few of the characteristics of 2DG are that it has good tissue specificity, a good interaction 

with the downstream glucose phosphorylating enzyme hexokinase, good affinity for GLUTs and is 

retained at high enough concentrations intracellularly for effective radioactivity analysis (Henry et 

al., 1995; Sols and Crane, 1954). After the transport of 2DG into the cytoplasm, it is then 

phosphorylated by the hexokinase enzymes to form the impermeable 2-deoxyglucose-6-phosphate 

(2DG6P) derivative that can accumulate within the cell. Measurements of 2DG radioactivity was 

conducted in mature adipocytes in the absence (basal glucose uptake) and the presence (insulin-

stimulated glucose uptake) of insulin to determine whether the presence of insulin does, indeed, 

increase glucose uptake by activating GLUT 4 as previously suggested (Leney and Tavaré, 2009). 

 

After 9 days of differentiation (Day 8), cells were washed twice with pre-warmed DPBS and 

incubated for at least 30 minutes in DMEM (Sigma-Aldrich) without glucose and phenol red media, 

to glucose and serum starve cells and to completely remove phenol red traces. During the incubation, 

the basal and insulin media containing either 5.5 mM or 25 mM glucose, without phenol red, was 

prepared (Appendix). Thereafter, the cells were washed once with 500 µL of pre-warmed DPBS, 
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whereafter it was aspirated and 500 µL of the basal and insulin media was added to the wells as 

indicated in Figure 28. The culture plate was incubated for another 15 minutes at 37ºC, after which it 

was removed and transferred to the radioactivity laboratory. In the radioactivity laboratory, the 2DG 

basal and insulin media was prepared (Appendix) during the 15-minute incubation step mentioned 

above. The basal and insulin media was then aspirated and replaced by 500 µL of the 2DG basal and 

insulin media as indicated in Figure 28. The plate was incubated at 37ºC for 15 minutes, after which 

the media was aspirated and cells were washed with RT DPBS to stop the glucose uptake reaction. 

Thereafter, 500 µL of 0.1 M NaOH and 0.1% SDS lysis buffer (Appendix) was added to each well 

and the plate was incubated for 60 minutes at 37ºC on an orbital shaker (VXR basicVibrax®, IKA, 

Staufen, Germany). During this time, scintillation vials (Perkin Elmer, Waltham, USA) were prepared 

with 2.5 mL of scintillation fluid (Perkin Elmer) and 500 µL of distilled H2O. After the incubation, 

500 µL of the cell suspension was added to the scintillation vials. The lid of each vial was labelled 

according to the sample number as indicated in Figure 28. These vials were incubated in the dark for 

60 minutes to equilibrate the samples and then placed into the scintillation counter racks to read the 

3H radioactivity on the 2810 Tri-carb Series liquid scintillation counter (Perkin Elmer, Waltham, 

USA). 

 

 
 
Figure 28. Plate layout for the glucose uptake assay. 

The plate was divided into two section for analysis of both basal and insulin-stimulated glucose uptake. Each 

sample was numbered for ease of analysis. Blue: Undifferentiated pre-adipocytes. Orange: Pre-adipocytes 

differentiated at 5.5 mM Glucose. Green: Pre-adipocytes differentiated at 25 mM Glucose. 
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2.5.12 Cell viability assay 

The Vialight® plus Cell Proliferation and Cytotoxicity BioAssay Kit (Lonza, Basel, Switzerland) 

detects ATP by the measurement of bioluminescence in a reaction catalysed by the enzyme luciferase 

as shown in Figure 29. The intensity of the bioluminescence generated by this reaction is linearly 

related to the ATP concentration within cells. 

 

 
 

Figure 29. The production of light from ATP and luciferin by the action of the enzyme luciferase. 

 

After 9 days of differentiation (Day 8), cells were washed twice with RT DPBS, while the reagents 

in the kit were brought to RT before use. Thereafter the ATP monitoring reagent (AMR) plus was 

reconstituted in the assay buffer and incubated at RT for 15 minutes. During the last five minutes of 

this incubation step, the 24-well plate allocated for the cell viability assay, was taken out of the 

incubator and allowed to reach RT on a benchtop. After these incubation steps, 100 µL of the cell 

lysis buffer (provided in the kit) was added to each well of the 24-well plate and incubated for 10 

minutes. Thereafter, 200 µL of the AMR plus was added to each of the wells and the plate was 

incubated in the dark at RT for two minutes. The samples from each well of the 24-well plate was 

transferred to a 96-well non-binding assay plate (Corning Inc.) as illustrated in Figure 30. The 

bioluminescence was measured using the Gen 5 software (BioTek) with the FLx 800 luminometer 

(BioTek). 

 
 

Figure 30. Plate layout for the cell viability assay. 

Blue: Undifferentiated pre-adipocytes. Orange: Pre-adipocytes differentiated at 5.5 mM Glucose. Green: 

Pre-adipocytes differentiated at 25 mM Glucose. 
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2.5.13 Harvesting of cells for DNA and RNA isolation 

Cells for DNA and RNA extraction were harvested using the QIAzol (Qiagen, Hilden, Germany) 

lysis reagent. At day 9 of differentiation (Day 8), the two 6-well plates allocated to DNA and RNA 

harvesting were removed from the incubator and the media was aspirated. The cells were washed 

twice with 500 µL RT DPBS and the DPBS was aspirated to near dryness after the second wash. 

Thereafter, 250 µL of QIAzol lysis reagent was added to each well and the plate was incubated for 

five minutes at RT. The cells were removed from the plates using a cell scraper (Celltreat®, Pepperell, 

USA) and transferred to labelled (one for each of the three treatment conditions) 2 mL microfuge 

tubes. The harvested cells were stored at -80ºC. 

 

2.5.14 Harvesting of cells for protein isolation 

Cells for protein extractions were harvested using RIPA buffer (Cell Signalling Technologies, 

Danvers, USA). Firstly, the three 6-well plates allocated to protein harvesting were removed from the 

incubator and the media was aspirated. The cells were equilibrated by adding 500 µL of DMEM, with 

5.5 mM or 25 mM glucose, without phenol red to each well. The plates were then incubated at 37ºC 

for 15 minutes. Thereafter, the phenylmethane sulfonyl fluoride (PMSF; Sigma-Aldrich) was 

vortexed until all the crystals in the solution were dissolved. The purpose of adding the PMSF, was 

to inhibit serine protease enzymes that degrade proteins. Thereafter 10 µL of the PMSF was added to 

1 mL of the RIPA buffer and this solution was mixed by vortexing for 30 seconds. The plates were 

removed from the incubator and the DMEM without phenol red media was aspirated and the cells 

were washed twice with 500 µL of RT DPBS. The DPBS was aspirated to near dryness after the last 

wash. One hundred and twenty microliters of the PMSF, RIPA buffer solution was added to the top 

three wells of each 6-well plate. The plates were incubated on ice for five minutes. Then, for each 

plate, the cells from the top three wells were scraped off the plate by using a cell scraper and the cell 

suspensions from these wells were transferred to the bottom three wells as shown in Figure 31. The 

plates were incubated on ice for another five minutes before the cells of the bottom three wells were 

also scraped off the surface of the plate. The resultant cell suspensions were transferred to clean, 

labelled (one for each differentiation condition) 2 mL microfuge tubes. The harvested cells were 

stored at -20ºC. 
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Figure 31. The cell harvesting process for protein isolation from adipocytes. 

One hundred and twenty microliter of RIPA buffer was added to the top three wells of the plate. After an 

incubation of five minutes, the cells were scraped from these wells and the cell suspension transferred to the 

lower three wells. After another five minute incubation step, the cells were also scraped from the wells and 

the final cell suspension transferred to a clean, labelled 1.5mL microfuge tube. 

 

2.5.15 Oxidative stress assay 

The level of reactive oxygen species (ROS) and changes in mitochondrial membrane potential (ΔΨm) 

as a measurement of oxidative stress (OS) generation in mature adipocytes, were detected using 2',7'-

dichlorfluorescein-diacetate (DCFH-DA; Biolabs, Inc., San Diego, USA) and 5,5’,6,6’-Tetrachloro-

1,1’,3,3’-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1; Sigma-Aldrich) dyes by following 

previously described protocols (Dludla et al., 2016). 

Briefly, for the detection of ROS, a 1 µM final concentration was prepared by removing 10 µL of 1 

mM DCFH-DA stock solution and adding it into a 10 mL Hank’s buffered saline solution (HBSS; 

Lonza). Thereafter, after the treatment was removed from each well of a black 96-well tissue culture 

plate and cells washed once with warm HBSS, the mixed 1 µM DCFH-DA working solution was 

added to each well and the cells then incubated at 37°C in humidified air and 5% CO2 for 30 minutes 

the dark. After 30 minutes, the dye was removed and cells washed once with warm HBSS and 

fluorescent intensity (Ex 485 ± 20 nm; Em 528 ± 20 nm) was measured using a BioTek FLx800 plate 

reader and Gen 5 software (Bio-Tek). For JC-1 assay, a 2 µM working solution was prepared by 

transferring 10 µL of the 200 µM JC-1 stock solution into 1 mL Dulbecco's phosphate-buffered saline 

(DPBS; Lonza) and then mixed by vortexing for 30 seconds. The cells were then incubated at 37°C 

in humidified air and 5% CO2 for 30 minutes the dark before fluorescence (Ex 485 ± 20 nm; Em 530 

± 25 nm and 590 ± 35 nm) was measured using a BioTek FLx800 plate reader and Gen 5 software. 

In addition, for both DCFH-DA and JC-1 assays, fluorescent photomicrographs were taken at 10x 
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magnification using a Nikon Eclipse Ti inverted microscope and NIS-Elements imaging software 

(Tokyo, Japan). 

 

2.6 Statistical analysis 

MassARRAY® data was analyzed using the MassARRAY® EpiTYPER® software and Microsoft 

Excel® 2016 (Microsoft Office). For in vitro experiments, data was analysed in Microsoft Excel® 

2016 and represent the average of three independent experiments done in triplicate ± the standard 

error of the mean (SEM), and is represented as a percentage relative to undifferentiated pre-adipocytes 

(control) which was set as 100%. Statistical analysis was conducted using GraphPad Prism® version 

5.04 (GraphPad Software Inc., La Jolla, USA). Differences between groups were analysed by one-

way analysis of variance (ANOVA) and the Tukey post hoc test. When variances between groups 

were significantly different, as measured with the Bartlett's test for equal variances, the non-

parametric Kruskal Wallis test that does not assume Gaussian distribution was used, together with 

the Dunn’s post hoc test. A p value < 0.05 was considered statistically significant. 
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3. Results 

3.1 Population characteristics 

Participant characteristics are indicated in Table 7. Subjects were classified as T2D, IGT or NGT 

based on fasting and two-hour blood glucose concentrations according to the World Health 

Organization criteria. Subjects were women of mixed ethnic ancestry of similar age. 

 

Table 7. Participant characteristics. 

 
 Type 2 diabetic Impaired glucose 

tolerant 

Normoglycaemic 

N 3 2 4 

Gender Female Female Female 

Race Mixed ethnic ancestry Mixed ethnic ancestry Mixed ethnic ancestry 

Age 50.67 ± 6.74 49.50 ± 13.50 49.75 ± 5.76 

BMI (kg/m2) 38.65 ± 3.43 29.40 ± 5.97 32.21 ± 0.29 

Fasting glucose (mmol/L) 6.7 ± 0.5* 5.4 ± 0.3 5.1 ± 0.1* 

2-hour glucose (mmol/L)* 13.4 ± 0.7* 8.9 ± 0.3* 5.6 ± 0.3* 

N= number of participants; BMI= body mass index 

Bold face values indicate significant statistical differences with *p<0.05 
 

3.2 Common differentially expressed and differentially methylated miRNA 

genes 

To identify miRNA genes potentially regulated by DNA methylation, differentially expressed 

miRNAs (miRNA-Seq) and differentially methylated miRNA genes (MeDIP-Seq) between T2D, 

IGT and NGT individuals were integrated using the Venny 2.1 tool. An example of an analysis 

conducted using the Venny 2.1 tool is illustrated in Figure 32. 
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Figure 32. An example of a venn diagram for the comparison of T2D and NGT individuals. 

The diagram shows differentially expressed miRNAs, integrated with differentially hypo- and 

hypermethylated miRNA genes within the intergenic region when individuals with T2D were compared to 

individuals with NGT. The miRNA genes of interest were those that were both differentially expressed and 

differentially methylated, i.e. those encircled in black. MiRNAs that were differentially expressed, but whose 

genes were both differentially hypo- and hypermethylated were excluded (boxed in red). Inter Hypo: 

Hypomethylation within the intergenic region. Inter Hyper: Hypermethylation within the intergenic region. 

 

After analyzing all MiRNA-Seq and MeDIP-Seq data for T2D, IGT and NGT individuals, several 

miRNAs potentially regulated by DNA methylation were identified (Table 8). When individuals with 

T2D were compared to individuals with NGT, 4 and 39 miRNA genes in the promotor and intergenic 

regions, respectively, were both differentially expressed and differentially methylated. In the 

comparison between individuals with IGT and NGT, one and 20 miRNA genes were differentially 

expressed and differentially methylated in the promotor and intergenic regions, respectively. When 

comparing individuals with T2D to individuals with IGT, one and 31 miRNA genes were 

differentially expressed and differentially methylated in the promotor and intergenic regions, 

respectively. Mir-99a was both differentially expressed and mir-99a was differentially methylated in 

the promotor region of individuals with T2D compared to individuals with NGT and IGT. Mir-let-

7A was differentially expressed and differentially methylated in the promotor region of individuals 

with T2D and IGT compared to individuals with NGT. No common differentially expressed and 

differentially methylated miRNA genes were identified in the intragenic regions. 
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Table 8.Differentially expressed miRNAs and differentially methylated miRNA genes. 

 
Type 2 diabetic vs. Normoglycaemic Impaired glucose tolerant vs. Normoglycaemic Type 2diabetic vs. Impaired glucose tolerant 

Promotor Intergenic Promotor Intergenic Promotor Intergenic 

Hyper Hypo Hyper Hypo Hypo Hyper Hyper Hypo Hyper 

mir-let-7a, 

mir-150, 

mir-92b, 

mir-99a 

mir-1180, mir-

126, mir-203a, 

mir-629 

mir-let-7a, mir-let-7d, mir-101, 

mir-122, mir-128, mir-146a, 

mir-148a, mir-15a, mir-181a, 

mir-181c, mir-182, mir-193b, 

mir-194, mir-196a, mir-197, 

mir-2110, mir-21, mir-223, 

mir-26a, mir-29a, mir-30d, 

mir-30e, mir-3158, mir-320b, 

mir-34a, mir-4446, mir-4511, 

mir-502, mir-505, mir-574, 

mir-618, mir-664, mir-98, mir-

99a, mir-99b 

mir-let-7a mir-122, 

mir-183, 

mir-196a, 

mir-340, 

mir-4781, 

mir-574, 

mir-629, 

mir-98 

mir-let-7f, mir-

125b, mir-148a, 

mir-181b, mir-

182, mir-204, 

mir-223, mir-

30b, mir-4511, 

mir-744, mir-

7706, mir-92a 

mir-99a mir-146a, 

mir-148a, 

mir-181a, 

mir-29a, 

mir-30b, 

mir-345 

mir-1180, mir-128, mir-140, 

mir-182, mir-183, mir-193b, 

mir-194, mir-197, mir-2110, 

mir-21, mir-26a, mir-26b, 

mir-3200, mir-331, mir-340, 

mir-34a, mir-363, mir-4732, 

mir-502, mir-505, mir-574, 

mir-629, mir-6513, mir-6852, 

mir-98 

This table contains miRNA genes identified by the Venny 2.1 tool that could be under the potential regulation of DNA methylation within three comparison groups: 

T2D vs. NGT, IGT vs. NGT and T2D vs. IGT. The miRNAs in bold were identified to be both differentially expressed and differentially methylated in two comparison 

groups. 
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3.3 DNA concentration 

DNA was successfully extracted from all 12 samples. DNA concentrations and yields varied between 

112.16-224.35 ng/µL and 33.65 µg-67.31 µg, respectively (Table 9). All samples had an A260/280 ratio 

between 1.84-1.92 and an A260/230 between 2.29-2.57, which was indicative of DNA of good quality 

and purity, and suitable for MassARRAY® EpiTYPER™ analysis. 

 
Table 9. DNA concentration and total yield. 

 
Sample ID Concentration 

(ng/µL)β 

A260/280 (nm)π A260/230 (nm)Ω Yield (µg)∞ 

106 197.98 1.88 2.46 59.39 

4 188.55 1.86 2.29 56.57 

105 224.35 1.89 2.47 67.31 

80 150.62 1.84 2.41 45.19 

200 172.95 1.89 2.40 51.89 

66 112.16 1.90 2.40 33.65 

97 112.755 1.92 2.57 33.83 

100 192.60 1.88 2.46 57.78 

109 151.415 1.86 2.48 45.42 

 βDNA concentration was measured at A260 nm. 

 πPresence of protein contaminants was measured with A260/280.  
ΩPresence of salt/solvent/other contaminants was measured at A260/230. 
∞DNA yield (µg) was calculated by multiplying DNA concentration in ng/µL by sample volume (300 µL) and 

dividing (total ng in sample) by 1000. 
 

3.4 Primer sequences 

Of the miRNA genes selected for analysis with MassARRAY® (Table 8), 27 primer sets were 

designed for 26 miRNA genes. Two primer sets were designed for mir-99a(1). Primer sequences are 

illustrated in Table 10. 

 

Table 10.Primer sequences.  

 
miRNA  Primer Sequence (5’ to 3’ orientation) 

mir-150 Forward: aggaagagagTTGTTTTTAGTATAGGGTGGAGTGG 

Reverse: cagtaatacgactcactatagggagaaggctCTCACCTCACCCCTTAAAACCTAC 

mir-92b Forward: aggaagagagGAATTTTAGATTTTTTGGTTTTGGG 

Reverse: cagtaatacgactcactatagggagaaggctAACATCCTCCCTCAAACACCCTAT 

mir-99a(1) Forward: aggaagagagTGTATTTTTATGTTGTTTTAGTTAATGG 

Reverse: cagtaatacgactcactatagggagaaggctCTTAAAAAACTCACAAAACCCCAC 

Forward: aggaagagagTATATGAGTAGTTTGGGTGGGGTTT 

Reverse: cagtaatacgactcactatagggagaaggctTCAAACAACTACTATCTAAAAAAAACATC 

mir-LET7a3 Forward: aggaagagagTTGAGAAGTTTGATAGGTTTAGGTG 

1.1 

1.2 
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Reverse: cagtaatacgactcactatagggagaaggctAAAAAAAATACCTTAACCTCCCTTC 

mir-99a(2) Forward: aggaagagagTGTTTGTTTTTTGTTATTGAAGTTTG 

Reverse: cagtaatacgactcactatagggagaaggctTTAACAAACAATCCCCAAAATAACT 

mir-99a(3) Forward: aggaagagagATAGAAATATAATTGAAGGAGATTTGGTT 

Reverse: cagtaatacgactcactatagggagaaggctCATTCATCCAAATATATACTTAAAAATCA 

mir-99a(4) Forward: aggaagagagAATAGTTTTGTTTTTGGAGAGGTGA 

Reverse: cagtaatacgactcactatagggagaaggctAACACAAAACACCACAATACACTCT 

mir-99a(5) Forward: aggaagagagTTTAATGTGATAGTATTTGGAGGTGG 

Reverse: cagtaatacgactcactatagggagaaggctAAATTCACTTAAACAACCCATAAAA 

mir-99a(6) Forward: aggaagagagGATTTAGGGGTAATATGTATAGGTTTG 

Reverse: cagtaatacgactcactatagggagaaggctCCCAACAACAAAAAACTACATAAAAAA 

mir-99a(7) Forward: aggaagagagGTTGAGTATGGTGATGGGTATTTGT 

Reverse: cagtaatacgactcactatagggagaaggctTCATTACCTACATTTAAACCTTACTTTT 

mir-98c Forward: aggaagagagGTTTGTTTGTTTGTTTGGTTTTTTT 

Reverse: cagtaatacgactcactatagggagaaggctATTTCCTTACCCCTCTAATTAACACC 

mir-98d Forward: aggaagagagTGGATTTTTTTAGAGTTGTAAGTTTTT 

Reverse: cagtaatacgactcactatagggagaaggctTCCAAATACCTATTCCTTCCCAATA 

mir-29a(1) Forward: aggaagagagTGTTTTTTTAGTTTTAGAATGTGTTGTTAG 

Reverse: cagtaatacgactcactatagggagaaggctTCAAATCCAAATAAATTCAACACAA 

mir-30d Forward: aggaagagagTGAGTTTAAAAATGTATATTATTGGTTAGG 

Reverse: cagtaatacgactcactatagggagaaggctAACATAATCTCTACTCACTACAACCTCC 

mir-30e Forward: aggaagagagTGATTATGATTTAAGTGAGAGTTAAGGATT 

Reverse: cagtaatacgactcactatagggagaaggctACAATTTCATCTTTTCATTCCTCAATA 

mir-29a(2) Forward: aggaagagagTTTGAGATTAGGAGTTTGGGATTAG 

Reverse:  cagtaatacgactcactatagggagaaggctAACAACCCAACAACCATAAAAACTA 

mir-21a Forward: aggaagagagTTGTTTAGGTTGGAATGTAGTGGTT 

Reverse: cagtaatacgactcactatagggagaaggctTTATAAACTCCCAAAAAAACAAAAA 

mir-21b Forward: aggaagagagGATTATTGTTGGTTGGGTATAGTGG 

Reverse: cagtaatacgactcactatagggagaaggctCAAAATCAAACCATTCTCCTACCT 

mir-193b(1) Forward: aggaagagagTTAGGTTGGTTTTAAATTTTTGGGT 

Reverse: cagtaatacgactcactatagggagaaggctAACATACCTTTTATATTTTTCTCTTACAA 

mir-193b(2) Forward: aggaagagagAGGAGAATTTTAGGAGTTTTGTGTT 

Reverse: cagtaatacgactcactatagggagaaggctAAAAAATCTTCCTTTCACTACTACTACTAC 

mir-193b(3) Forward: aggaagagagGGTTTTTGTTAGGAATTTAGTTGGG 

Reverse: cagtaatacgactcactatagggagaaggctTCAATTACAAAATATAAACCAATAACACA 

mir-125b2 Forward: aggaagagagAGGTTTATTGTAAGTTTTGTTTTTTGG 

Reverse: cagtaatacgactcactatagggagaaggctTAATTCACCCCTATAATCCCAACAC 

mir-148(1) Forward: aggaagagagTGAGTGTGTATTATGGATAAGAAAAATAGT 

Reverse: cagtaatacgactcactatagggagaaggctTTTAATAATCATTCAACACCACCAT 

mir-148(2) Forward: aggaagagagGGTTTTTAAGTGTTTAAGTGAAAAGAAGT 

Reverse: cagtaatacgactcactatagggagaaggctAACTAAAACTACAAACACCCACCAC 
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mir-146a(6) Forward: aggaagagagGAATTATTTGAGTTGTGGAGGTTGG 

Reverse: cagtaatacgactcactatagggagaaggctAACTCATTACCATTTCCAAAAAAAA 

mir-34a(1) Forward: aggaagagagAGTTTGGTTAGGATAATAGAAGGTAAA 

Reverse: cagtaatacgactcactatagggagaaggctAACTATACCCAAACTCCTAACCCAC 

*After the identification and selection of common differentially expressed and differentially methylated 

miRNA genes, their sequence data was obtained from the MeDIP-Seq data. During this process multiple 

sequences for the same gene was present within and amongst certain groups, designated by the numbers in 

brackets. For mir-99A, two primer sets were designed to include more CpG sites within this gene, i.e. mir-99a 

1.1 and 1.2. 

 

3.5 Bisulfite conversion 

Of the 5 µg DNA shipped to Inqaba Inc., 1 µg was used for bisulfite conversion. DNA concentrations 

(132.57-452.67 ng/µL) and yields (5.30-18.11 µg) after bisulfite treatment are illustrated in Table 11. 

 
Table 11. DNA concentration and yield after bisulfite treatment 

 

Sample ID ng/µl Yield (µg)∞ 

106 203.67 8.15 

4 132.57 5.30 

105 239.83 9.59 

80 170.50 6.82 

200 452.67 18.11 

66 136.97 5.48 

97 310.97 12.44 

100 232.10 9.28 

109 227.65 9.11 

∞DNA yield (µg) was calculated by multiplying DNA concentration in ng/ µL by sample volume, and dividing 

(total ng in sample) by 1000. 

 

3.6 MassARRAY® EpiTYPER™ quantitative methylation analysis 

MassARRAY® EpiTYPER™ analysis was used to verify the methylation status of miRNA genes 

potentially regulated by DNA methylation. The number of CpG sites covered in both the MeDIP-Seq 

and MassARRAY® EpiTYPER® analyses are shown in Table 12. Only 21 of the 26 miRNA genes 

were successfully analysed including both primers for mir-99a (Table 13). The comparison between 

MassARRAY® EpiTYPER™ results and MeDIP-Seq is illustrated in Tables 14 and 15. When using 

a cut off value of 1.50, only two miRNA genes (indicated in red text in Tables 14 and 15) showed 

correlation between MassARRAY® and MeDIP-Seq. Yet, six other miRNA genes showed slight 

correlations (indicated in blue text in Table 14 and 15) between MassARRAY® and MeDIP-Seq. 

using a less stringent cut off value. 
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Table 12  The number of CpG sites included in the MeDIP-Seq and MassARRAY® analyses. 

 
miRNA gene No. of CpGs analysed by 

MeDIP-Seq* 

No. of CpGs covered by 

primer set# 

No. of CpGs analysed by 

MassARRAY® 

Correlation between MeDIP-

Seq and MassARRAY® 

mir-125b2 12 6 4 0.33 

mir-193b(3) 6 6 6 1.00 

mir-34a(1) (3p) 7 6 7 1.00 

mir-30d 9 6 6 0.67 

mir-LET7a3 15 11 13 0.87 

mir-92b(3p) 6 4 3 0.50 

mir-146a(6) 6 5 5 0.83 

mir-193b(1) 7 4 6 0.86 

mir-29a(2) 13 11 12 0.92 

mir-98 14 8 4 0.28 

mir-99a(4) 7 3 7 1.00 

mir-99a(1.2) 10 3 3 0.30 

mir-99a(5) 7 5 7 1.00 

mir-21b 13 9 8 0.62 

mir-29a(1) 12 9 9 0.75 

mir-30e (3p) 4 3 4 1.00 

mir-99a(1.1) 10 4 7 0.70 

mir-99a(3) 5 4 5 1.00 

mir-150 19 12 8 0.42 

mir-99a(6) 5 3 4 0.8 

mir-99a(7) (3p) 7 5 4 0.57 

mir-21a (3p) 13 11 10 0.77 

*The number of CpG sites found in the entire miRNA gene as indicated by the MeDIP-Seq sequencing data.  
#The number of CpG sites that were included in the sequence that was amplified by the primer set. 

The number of CpG sites that were successfully analysed by the MassARRAY® system. 

The correlation between the number of CpG sites analysed by these two tehniques was calculated by dividing the number of CpG sites that were successfully 

analysed by the MassARRAY® with the number of CpG sites found in the entire miRNA gene as indicated by the MeDIP-Seq sequencing data. 

1.00: 100% Correlation. Values lower than 1.00 indicate a decrease in the correlation between techniques. 
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Table 13. MassARRAY® EpiTYPER™ results. 

 
miRNA gene T2D vs. NGT T2D vs. IGT IGT vs. NGT 

mir-125b2 0.71 0.78 0.91 

mir-193b(3) 1.06 1.10 0.97 

mir-34a(1) 1.05 0.99 1.06 

mir-30d 0.95 1.01 0.94 

mir-LET7a3 1.01 1.04 0.98 

mir-92b 0.92 1.07 0.86 

mir-146a(6) 1.02 1.11 0.92 

mir-193b(1) 1.05 2.01 0.52 

mir-29a(2) 1.33 1.09 1.22 

mir-98c 1.01 2.03 0.50 

mir-99a(4) 0.98 1.02 0.97 

mir-99a(1.2) 1.00 1.01 0.98 

mir-99a(5) 0.97 0.97 1.00 

mir-21b 1.01 0.98 1.03 

mir-29a(1) 0.99 1.00 1.00 

mir-30e 1.00 2.02 0.50 

mir-99a(1.1) 0.96 2.10 0.46 

mir-99a(3) 0.93 0.95 0.99 

mir-150 1.70 1.24 1.36 

mir-99a(6) 1.06 1.05 1.02 

mir-99a(7) 1.01 1.05 0.96 

mir-21a 1.00 1.02 0.98 

Values =1.00: no difference in DNA methylation 

Values < 1.00: Decreased DNA methylation (Hypomethyltation)  

Values > 1.00: Increased DNA methylation (Hypermethylation) 

T2D: Type 2 Diabetes; IGT: Impaired Glucose Tolerant; NGT: Normoglycaemic 
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Table 14. Comparison between the results of the MassARRAY® and MeDIP-Seq in the promoter region. 

 
  

miRNA Gene 

T2D vs. NGT T2D vs. IGT IGT vs. NGT 

MassARRAY® MeDIP-Seq MassARRAY® MeDIP-Seq MassARRAY® MeDIP-Seq 

P
R

O
M

O
T

E
R

 

mir-92b 0.92 Hyper     

mir-LET7a3     0.98 Hypo 

mir-99a(1.1) 0.96 

Hyper 

    

mir-99a(1.2) 1.00     

mir-150 1.70 Hyper     

Blue: Low bidirectional consistency. Red: Increased bidirectional consistency. 

Values =1.00: no difference in DNA methylation  

Values < 1.00: Decreased DNA methylation (Hypomethyltation) 

Values > 1.00: Increased DNA methylation (Hypermethylation) 

T2D: Type 2 Diabetes; IGT: Impaired Glucose Tolerant; NGT: Normoglycaemic 
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Table 15.Comparison between MassARRAY® and MeDIP-Seq in the intergenic region. 

 
  

miRNA Gene 

T2D vs. NGT T2D vs. IGT IGT vs. NGT 

MassARRAY MeDIP-Seq MassARRAY MeDIP-Seq MassARRAY MeDIP-Seq 

IN
T

E
R

G
E

N
IC

 R
E

G
IO

N
 

mir-99a(3) 0.93 Hyper 0.95 Hyper   

mir-99a(4)   1.02 Hyper   

mir-99a(4) 0.97 Hyper 0.97 Hyper   

mir-99a(6)   1.05 Hypo   

mir-99a(7)   1.05 Hypo   

mir-98c     0.50 Hypo 

mir-29a(1) 0.99 Hyper     

mir-29a(1)   1.09 Hypo   

mir-30d 0.95 Hyper     

mir-30e 1.00 Hyper     

mir-21a 1.00 Hyper     

mir-21b   0.98 Hyper   

mir-193b(1) 1.05 Hyper     

mir-193b(3)   1.10 Hyper   

mir-125b2     0.91 Hyper 

mir-146a(6) 1.02 Hyper     

mir-34a 1.05 Hyper 0.99 Hyper   

Blue: Low bidirectional consistency. Red: Increased bidirectional consistency. 

Values =1.00: no difference in DNA methylation 

Values < 1.00: Decreased DNA methylation (Hypomethyltation) 

Values > 1.00: Increased DNA methylation (Hypermethylation) 

T2D: Type 2 Diabetes; IGT: Impaired Glucose Tolerant; NGT: Normoglycaemic 
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3.7 In vitro results 

3.7.1 Increased lipid accumulation after 3T3-L1 pre-adipocyte differentiation 

Although 3T3-L1 adipocytes are commonly used as an in vitro model for obesity studies, 3T3-L1 

pre-adipocytes are generally differentiated in high glucose (25 mM) only. Since we aimed to 

investigate miRNA gene expression in conditions that mimic normoglycaemia and 

hyperglycaemia, 3T3-L1 pre-adipocytes were differentiated in 5.5 mM or 25 mM glucose. 

Differentiated adipocytes demonstrated more lipid accumulation as compared to the 

undifferentiated control (Figure 33). Quantification of these results showed that lipid content was 

increased after differentiation in both 5.5 mM and 25 mM glucose, compared to undifferentiated 

pre-adipocytes (100 ± 5% vs. 153 ± 10% vs. 158 ± 13% for controls, 5.5 mM and 25 mM glucose, 

respectively). 

 

 
 

Figure 33. Increased lipid accumulation in differentiated adipocytes. 
Oil Red O staining of 3T3-L1 adipocytes differentiated in 5.5 mM (A) and 25 mM glucose (B). The 

quantification of these results are shown in C. No image could be obtained for the undifferentiated controls 

as the imaging software was not sensitive enough detect up cells that were not stained. Pre-adipocytes were 

cultured to confluence in CGM and induced to differentiate into matured adipocytes in media containing 

IBMX, Dex and insulin with 5.5 or 25 mM glucose, or left in CGM for undifferentiated adipocytes. Results 

are expressed as a percentage relative to the control (set at 100%), and are shown as the mean ± SEM for 

three independent experiments, each performed in triplicate. Significance is depicted as **P < 0.01, ***P 

< 0.001. 

50px 50px 
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3.7.2 Increased ATP production in adipocytes differentiated in high glucose 

Cell viability, a marker of general cell health and metabolic activity, was assessed by measuring 

intracellular ATP levels. As illustrated in Figure 34, adipocytes differentiated in 25 mM glucose 

produced significantly more ATP than undifferentiated pre-adipocytes (100 ± 3% vs. 119 ± 4%, p 

< 0.01). Although ATP content was increased in adipocytes differentiated in 5.5 mM glucose 

compared to undifferentiated pre-adipocytes (100 ± 3% vs. 114 ± 5%), the difference was not 

statistically significant. 
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Figure 34. Increased ATP production in adipocytes differentiated in 25 mM glucose. 

Pre-adipocytes were cultured to confluence in CGM and induced to differentiate into matured adipocytes 

in media containing IBMX, Dex and insulin with 5.5 or 25 mM glucose, or left in CGM for undifferentiated 

adipocytes (control). Results are expressed as a percentage relative to the control (set at 100%), and are 

shown as the mean ± SEM for three independent experiments, each performed in triplicate. Significance is 

depicted as **P < 0.01. 
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3.7.3 Glucose uptake 

To assess whether differentiation in 5.5 mM or 25 mM glucose affected glucose uptake, basal and 

insulin-stimulated glucose uptake was measured in undifferentiated pre-adipocytes and in 

adipocytes differentiated in different glucose concentrations. No difference in glucose uptake was 

observed in pre-adipocytes, and between basal and insulin-stimulated glucose uptake (Figure 35). 

 

 
 

Figure 35. Glucose production. 

Basal (A) and insulin-stimulated (B) glucose uptake of pre-adipocytes that were cultured to confluence in 

CGM and induced to differentiate into matured adipocytes in media containing IBMX, Dex and insulin 

with 5.5 or 25 mM glucose, or left in CGM for undifferentiated adipocytes (control). Results are expressed 

relative to the control, and are shown as the mean ± SEM for three independent experiments, each 

performed in triplicate. 

 

3.7.4 High glucose increases ROS in 3T3-L1 adipocytes 

Intracellular ROS was measured using the fluorogenic probe 2’, 7’-Dichlorodihydrofluorescin 

diacetate (DCFH-DA), which diffuses into cells and is deacetylated and oxidized to the highly 

fluorescent 2’, 7’-Dichlorodihydrofluorescein (DCF) by ROS (Dludla et al., 2016). The 

fluorescence intensity of DCF is proportional to ROS levels within the cell. As illustrated in Figure 

36, a difference in morphology of cells was observed in the adipocytes differentiated with high 

glucose compared to adipocytes differentiated at low glucose (encircled in white). In addition, 

quantification showed that ROS levels was increased in both 5.5 mM and 25 mM glucose, 

compared to undifferentiated controls (100 ± 1% vs 110 ± 1% vs. 120 ± 1% vs. p < 0.001 for 

controls, 5.5 mM and 25 mM glucose, respectively) in Figure 37. Moreover, adipocytes 
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differentiated in 25 mM glucose accumulated significantly more ROS than adipocytes cultured in 

5.5 mM glucose (120 ± 1% vs. 110 ± 1%, p< 0.001). 

 

Mitochondrial membrane potential was measured using the dye JC-1, which changes fluorescence 

based on mitochondrial membrane potential, and is used as an indicator of mitochondrial health 

within cells. As illustrated in Figure 36, differences in JC-1 fluorescence, indicative of membrane 

potential was significantly higher in differentiated adipocytes compared to undifferentiated pre-

adipocytes, irrespective of glucose concentration (100 ± 3% vs 235 ± 10% vs 256 ± 9%, p < 0.001 

for controls, 5.5 mM and 25 mM glucose). 
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Figure 36. Microscopic images of DCF and JC-1 fluorescence. 

Pre-adipocytes were cultured to confluence in CGM and induced to differentiate into matured adipocytes in media containing IBMX, Dex and 

insulin with 5.5 or 25 mM glucose, or left in CGM for undifferentiated adipocytes (control). Morphological changes in cell shape when comparing 

adipocytes differentiated in 5.5mM and 25mM glucose are indicated in the white circles. Cells differentiated in lower glucose have a more 

spherical shape, whereas cells differentiated in high glucose has a more elongated shape. 
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Figure 37. Increased ROS production in adipocytes differentiated in 25mM glucose. 

Quantification of DCF (A) and JC-1 (B) fluorescence in undifferentiated pre-adipocytes (control), and 

adipocytes differentiated in 5.5 or 25 mM glucose. Results are expressed as a percentage relative to the 

control (set at 100%), and are shown as the mean ± SEM for three independent experiments, each performed 

in triplicate. Significance is depicted as ***P < 0.001. 
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4. Discussion 

Epigenetics involves the interaction between genetic and environmental factors and has attracted 

considerable interest globally, particularly in delineating the complex mechanisms underlying 

metabolic diseases such as T2D (Gilbert and Liu, 2012; Krupanidhi et al., 2009; Ling and Groop, 

2009; Prattichizzo et al., 2015). MiRNAs are one of the most widely studied epigenetic 

mechanisms with potential as a therapeutic target for T2D or as biomarkers to predict disease 

progression (Fernandez-Valverde et al., 2011; O’Connell and Markunas, 2016; Tang et al., 2008). 

Despite their important role in regulating biological processes and disease pathogenesis, not much 

is known about the regulation of miRNA genes themselves. Several researchers, including 

ourselves, have provided evidence that DNA methylation, another important epigenetic 

mechanism, regulates miRNA gene expression (Chang et al., 2014b; Pheiffer et al., 2016). 

In the present study, we explored the role of DNA methylation in regulating miRNA gene 

expression during T2D pathogenesis. Firstly, we verified differentially methylated miRNA genes 

identified by MeDIP-Seq (Pheiffer et al., 2016) in women with T2D, using MassARRAY® 

EpiTYPER® analysis. Thereafter, we aimed to investigate the relationship between DNA 

methylation and miRNA gene expression in an in vitro model that mimics the pathophysiology of 

T2D. 

 

4.1 Poor correlation between MeDIP-Seq and MassARRAY® 

Previously, we reported differential methylation of miRNA genes during dysglycemia (Pheiffer et 

al., 2016). We compared genome-wide DNA methylation patterns in the whole blood of South 

African women of mixed ethnic ancestry using MeDIP-Seq, and found several differences in the 

methylation status of miRNA genes during T2D pathogenesis. These findings, together with other 

reports that miRNA genes are regulated by DNA methylation (Cheng et al., 2013; Kameswaran et 

al., 2014; Suzuki et al., 2012; Wang et al., 2014), sparked further exploration of the miRNA genes 

that were demonstrated to be differentially methylated during T2D. 

 

Methylated DNA immunoprecipitation sequencing (MeDIP-Seq) involves the enrichment of 

methylated DNA sequences using immunoprecipitation with a 5-methylcytosine (5mC) antibody, 

followed by next-generation sequencing (Mohn et al., 2009; Thu et al., 2009). MeDIP-Seq 
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compares well with array-based methods and bisulfite sequencing, which is currently considered 

the gold standard for DNA methylation analysis (Clark et al., 2012). However, MeDIP-Seq does 

not offer single CpG resolution and is prone to false positive results (Liu et al., 2016), therefore, 

we sought to verify MeDIP-Seq data with MassARRAY® EpiTYPER®, a technique that uses 

bisulfite conversion and MALDI-TOF mass spectrometry to discriminate between methylated and 

non-methylated DNA at single base pair resolution (Coolen et al., 2007; Ehrich et al., 2005; Liu et 

al., 2016; Thompson et al., 2009; Xiang et al., 2014). 

 

Of the 26 miRNA genes (27 sequences, since two sequences were analysed for one of the genes) 

compared using the two techniques, eight regions were similarly methylated, with only two of 

these showing significant correlation, mir-98 in the intergenic region when individuals with IGT 

were compared to individuals with NGT, and mir-150 in the promoter region when individuals 

with T2D and NGT were compared. For mir-98 and mir-150, only four of the 14 CpG sites, and 

eight of the 19 CpG sites, respectively, within the miRNA gene was covered using the 

MassARRAY® analysis. This suggests that the CpG sites analysed by the MassARRAY® system 

in these two miRNA genes, are those that offer the greatest contribution to the overall methylation 

status of the entire gene. 

 

The poor correlation between MeDIP-Seq and MassARRAY® could be due to the technical 

differences between the techniques. Disadvantages of MeDIP-Seq include possible antibody cross-

reactivity during immunoprecipitation, reliance on bioinformatic analysis and the challenge of 

mapping sequencing reads accurately within the highly repetitive and complex regions of the 

genome and the identification of methylated regions of approximately 150–200 bp, rather than at 

single nucleotide sites (Clark et al., 2012). With MeDIP-Seq, the entire miRNA gene is analysed, 

which includes all the CpG sites within the gene. However, MeDIP-Seq is an affinity based method 

for DNA methylation analysis and has been shown to be more accurate when analysing regions 

that are highly methylated, with high CpG densities (Li et al., 2010; Xiang et al., 2014). Therefore, 

a capture bias exists when analysing regions with low methylation status and low CpG densities. 

Use of the MAssARRAY® system is reliant on primers and due to the inherent limitations of the 

primer design software used, could not analyse all of the CpG sites identified by MeDIP-Seq. 

Furthermore, MassARRAY® was not able to analyse all the CpG sites predicted by the primer 
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design software due to technical limitations of the methodology. MassARRAY® analyses one 

strand of the DNA sequence only (EpiTYPER® manual), as opposed to MeDIP-Seq that does not 

differentiate between strands. However, MassARRAY® offers the advantage of quantifying an 

average of all CpGs per sequence, with base pair accuracy and without the need to map sequences 

within the complex genome. However, it is dependent on bisulphite conversion, and although 

bisulfite conversion is considered the gold standard for methylation analysis, incomplete 

conversion of unmethylated Cs can lead to inaccurate results (Liu et al., 2016). Furthermore, the 

contradictory results between MeDIP-Seq and MassARRAY® could be due to genetic 

heterogeneity between the individuals analysed. Due to sample limitations, different subsets of 

women of mixed ethnic ancestry were analysed with the two techniques. Although women were 

matched for age, genetic heterogeneity, particularly in individuals of mixed ethnic ancestry (de 

Wit et al., 2010), could contribute to the poor correlation observed. Furthermore, environmental 

differences, such as smoking, drinking and socioeconomic conditions could account for the 

differences observed (Ling and Groop, 2009). 

 

4.2 miR-98 and miR-150 

Human mir-98 is a member of the highly conserved let-7 (lethal-7) family, which is composed of 

nine mature let-7 miRNAs encoded by 12 different genomic loci (Roush and Slack, 2008). Let-7 

was first identified as an essential developmental gene in the nematode Caenorhabditis elegans 

and was subsequently identified as the first human miRNA. The precise function of let-7 members 

in humans is not known, although it is speculated that they promote terminal differentiation in 

development and may function as tumour suppressors (Roush and Slack, 2008). Kajimoto et al. 

demonstrated that miR-98 is upregulated during adipogenic differentiation of 3T3-L1 pre-

adipocytes (Kajimoto et al., 2006). Overexpression of let-7 in mice resulted in impaired glucose 

tolerance and reduced glucose-stimulated insulin secretion, implicating miR-98 in the 

pathogenesis of T2D (Frost and Olson, 2011). More recently, a role for miR-98 in the development 

of GDM was suggested by Cao et al (Cao et al., 2016). These studies are consistent with 

quantitative real time PCR findings in our laboratory that miR-98 is upregulated in the whole blood 

of women with T2D (Dias, 2016), and supports the potential of miR-98 as a therapeutic target 

against T2D. In contrast, decreased expression of miR-98 was reported in the aorta of T2D rats 

(Xie et al., 2012). Although these studies suggest tissue-specific regulation of miR-98, they 
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provide evidence of the importance of this miRNA during T2D. A greater understanding of the 

mechanisms that regulate miR-98 expression is required to enable the development of therapeutics 

against T2D. Peng et al. reported that promoter methylation of let-7 is associated with its 

downregulation during diabetic nephropathy (Peng et al., 2015), thus our findings of decreased 

methylation of the gene encoding miR-98 by both MeDIP-Seq and MassARRAY® is consistent 

with its increased expression in women with T2D and IGT compared to NGT. 

 

MiR-150 is highly expressed in lymphocytes, where it regulates B-cell differentiation and 

activation (Xiao et al., 2007). Ying et al. suggested an important role for miR-150 in regulating 

obesity-associated insulin resistance by B cell regulation (Ying et al., 2016). They demonstrated 

that knockdown of miR-150 expression was associated with increased inflammation and insulin 

resistance. Another study demonstrated that miR-150 was differentially expressed in the plasma 

of T2D compared to IGT individuals (Chien et al., 2015). MiR-150 has also been associated with 

CVD, with monocyte-derived miR-150 being associated with promoting angiogenesis (Li et al., 

2013) and implicated in the regulation of hyperglycaemia induced cardiomyocyte hypertrophy 

(Duan et al., 2013). Reduced expression of miR-150 has been associated with the poor survival of 

individuals with pulmonary hypertension (Rhodes et al., 2013). Increased methylation of mir-150 

in individuals with T2D compared to NGT, as observed in this study, would correspond with 

decreased expression during T2D, as reported by Ying et al. 

 

4.3 Establishment of an in vitro adipocyte cell model for normo- and 

hyperglycaemia 

Metabolic diseases such as T2D are complex and involve the interplay between many cell types 

and tissues within the body (Berg et al., 2002; Chen et al., 2012a; Ley et al., 2016; Zoungas et al., 

2014). Although the relevance of in vitro models to study metabolic disorders is questioned, they 

are easy to manipulate, thus enabling mechanistic studies to be conducted in a controlled 

environment. Obesity, and the dysregulation of biological pathways within adipose tissue, is 

considered the major driving factor of the T2D epidemic (Ng et al., 2014; Rivera and Bennett, 

2010; Shai et al., 2006). Obesity, defined by a BMI above 30 kg/m2 , is tightly linked to the 

development of insulin resistance, the most common characteristic of T2D (Hardy et al., 2012; 

Kahn and Flier, 2000). During obesity, dysregulation of adipose tissue function, leads to 
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dyslipidemia and dysglycaemia, accompanied by increased oxidative stress. Therefore, the 

relationship between the methylation of miRNA genes and their expression was investigated in 

3T3-L1-pre-adipocytes, the most commonly used adipocyte cell line used in obesity research 

(Green and Kehinde, 1974). The cell line was developed at New York University, School of 

Medicine in 1962 and was abbreviated ‘3T3-L1’ because of its 3-day splitting requirement. The 

3T3-L1 pre-adipocyte cell line is an immortalized mouse fibroblast cell which can differentiate 

into adipocyte-like cells under certain conditions (Green and Kehinde, 1975). The differentiated 

cells have the morphology and properties of adipocytes which make them a good model for 

studying adipogenesis and adipolysis, the main biological processes which occur within adipocytes 

(Zezulak and Green, 1985). Although 3T3-L1 cells present an artificial model of obesity, 

Novakofski reported that many of the factors associated with adipogenesis in these cells are 

characteristic of obesity in humans (Novakofski, 2004). 

 

3T3-L1 pre-adipocytes are differentiated into mature adipocytes using chemical inducers of 

adipogenesis (insulin, dexamethasone and 3-isobutyl-1-methylxanthine [IBMX]), that mimic the 

hormonal, dietary and genetic influences of adipocyte differentiation in vivo and this has made a 

significant impact towards understanding molecular events involved in adipogenesis (Pheiffer et 

al., 2013). Generally, these cells are differentiated in media containing high glucose concentrations 

(Pheiffer et al., 2013), which has an adverse effect on the physiology of adipocytes. Studies have 

shown that differentiating 3T3-L1 pre-adipocytes in high glucose media (25 mM), results in 

decreased insulin sensitivity and increased ROS (Lin et al., 2005). Since we aimed to compare the 

relationship between miRNA expression and DNA methylation under conditions that mimic 

normoglycaemia and chronic hyperglycaemia (Lin et al., 2005), pre-adipocytes were differentiated 

in 5.5 mM or 25 mM glucose in this study. 
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4.3.1 Glucose concentration during differentiation does not affect lipid 

content, but increases metabolic activity and reactive oxygen species 

4.4.1.1 Lipid accumulation 

Adipocyte maturity, and therefore their level of differentiation, can be measured by the formation 

of lipid droplets within 3T3-L1 adipocytes (Pheiffer et al., 2013). As expected, differentiated 

adipocytes accumulated more lipids that undifferentiated pre-adipocytes, although the use of low 

(5.5 mM) or high (25 mM) glucose differentiation media did not affect lipid content. These 

findings are consistent with previous studies (Lin et al., 2005) that similarly show that using a 

physiologically relevant glucose concentration does not influence the extent of 3T3-L1 pre-

adipocytes differentiation. However, using electron microscopy, Lin et al demonstrated that 3T3-

L1 pre-adipocytes differentiated with 4 mM glucose accumulated smaller lipid droplets compared 

to 3T3-L1 pre-adipocytes differentiated with 25 mM glucose (Lin et al., 2005). The discrepancy 

between our studies could be due to the fact that ORO staining may not be as sensitive as electron 

microscopy to differentiate between lipid droplet sizes. 

 

4.3.1.2 Increased metabolic activity in adipocytes differentiated in high glucose  

The level of ATP production within 3T3-L1 adipocytes represents the number of metabolically 

active cells in culture. Metabolic activity was increased in mature adipocytes differentiated in 

either low or high glucose, compared to undifferentiated pre-adipocytes. However, the increase in 

adipocytes differentiated with 5.5 mM glucose was not significant compared undifferentiated 

controls. During the process of glucose metabolism, glucose is transported into the cell and 

undergoes processes that culminates in the production of ATP in the mitochondria (Stump et al., 

2003; Wibom and Hultman, 1990). It is thus expected that cells that were differentiated in a higher 

glucose concentration would produce more ATP. Moreover, differentiation of adipocytes in high 

glucose decreased insulin-stimulated glucose uptake (Gagnon and Sorisky, 1998; Lu et al., 2001; 

Tang et al., 2001). Unfortunately, due to the absence of data for the glucose uptake assay attempted 

in this study, this remains speculation. The failure to successfully conduct the glucose uptake assay 

could be due to operator error, or due to technical error with the instrument used for measuring 

radioactivity. Since other researchers in the unit experienced a similar problem, it can be deduced 

that the failure of the assay was due to instrument error. Furthermore, the failure to normalize the 
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glucose uptake results to protein concentrations due to malfunctioning of equipment, may have 

contributed to the unsuccessful glucose uptake assays. 

 

4.3.1.3 Increased oxidative stress in adipocytes differentiated in high glucose  

Oxidative stress (OS) is a result of an imbalance between the production of reactive oxygen species 

(ROS),O2 (superoxide radical), OH (hydroxyl radical) and H2O2 (hydrogen peroxide), and the 

inability of the cell to neutralize these reactive intermediates (Betteridge, 2000). Oxidative stress 

damages all cellular components including proteins, DNA and RNA, and has been shown to be 

involved in the pathogenesis of T2D (Lin et al., 2005; Matough et al., 2012; Wright et al., 2006). 

The level of ROS and OS is indicative of cellular function. To measure the level of OS in mature 

adipocytes, the OxiSelect™ Intracellular ROS Assay kit (Cell Biolabs, Inc., San Diego, USA) was 

used for the 2',7'-dichlorfluorescein-diacetate (DCFH-DA) assay and the JC-1 kit (Sigma-Aldrich) 

was used for the 5,5’,6,6’-Tetrachloro-1,1’,3,3’-tetraethylbenzimidazolyl-carbocyanine iodide 

(JC-1) assay. 

 

The significant increase in ROS production, a marker of oxidative stress (Houstis et al., 2006; 

Inoguchi et al., 2000; Lin et al., 2005), observed in mature adipocytes compared to undifferentiated 

pre-adipocytes, is corroborated by the findings of other studies (Lin et al., 2005; Lu et al., 2001; 

Talior et al., 2003; Wu et al., 2005). Interestingly, DCHF fluorescence was increased in adipocytes 

differentiated in high glucose compared to adipocytes cultured in low glucose, suggesting 

increased oxidative stress in these adipocytes. Another marked difference between the adipocytes 

differentiated at low or high glucose, was that cells were malformed in adipocytes differentiated 

at high glucose concentrations. This could be due to the metabolic changes that result from the 

increased oxidative stress and the hyperglycaemic conditions the cells were differentiated in. In 

other studies, the differentiation of adipocytes in high glucose lead to a decrease in insulin-

stimulated glucose uptake because of insulin resistance but no down-regulation of basal glucose 

uptake (Gagnon and Sorisky, 1998; Lu et al., 2001; Tang et al., 2001). 
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Taken together, these findings demonstrate that using two different glucose concentrations to 

differentiate 3T3-L1 pre-adipocytes, results in mature adipocytes with different metabolic activity 

and oxidative stress. 

 

4.5 Limitations of the study 

This study has several limitations, which include the small sample size, lack of information about 

environmental exposures which affect epigenetics (Ling and Groop, 2009; Piccolo et al., 2016), 

technical challenges and time constraints. In this study women of mixed ethnic ancestry were 

investigated. Individual heterogeneity, particularly within this ethnic group (de Wit et al., 2010), 

could have masked differences. However, a strength of the study is the use of different women 

(with same ethnicity and age) in the different analyses, thus providing strength to the evidence. 

Although women were matched for age, other environmental factors that affect epigenetics, such 

as smoking, drinking and socio-economic circumstances were not known. Due to technical 

challenges and time constraints, the molecular analysis could not be completed. However, cells for 

DNA, RNA and proteins extractions were harvested, and will be analyzed in future. Furthermore, 

due to instrument malfunctioning we were not able to normalize glucose uptake assays, which 

might have contributed to the unsuccessful results obtained. In this study, DNA methylation was 

investigated in whole blood, which is heterogenous and consists of different cell types that may 

influence the methylation results obtained but despite this limitation, whole blood is used often for 

the analysis of methylation because of convenience (Adalsteinsson et al., 2012; Houseman et al., 

2015). Houseman et al provided evidence that despite the limitations of whole blood, important 

biological information may still be obtained from studying DNA methylation in whole blood. 

 

4.6 Future work 

In future, DNA, RNA (enriched for miRNAs) and proteins will be isolated, allowing the 

delineation of the relationship between DNA methylation and miRNA expression, and between 

miRNA expression and their targets genes and proteins. Due to technical challenges with culturing 

and maintaining 3T3-L1 pre-adipocytes, which are inherently difficult to culture (Green and 

Kehinde, 1974), and time constraints, the DNA methylation status of miR-98 and miR-150, and 
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their expression profile should be investigated in future. Moreover, bioinformatics analysis to 

identify miRNA gene targets should be conducted, and the expression of target genes and proteins 

should be correlated with miRNA expression. Glucose uptake assays should be repeated, and the 

results normalized to protein concentrations, to more accurately define the cell model. It would 

also be interesting to investigate DNA methylation of miRNA genes in different ethnicities, since 

Chang et al reported that differential expression of miRNAs in the Han and Kazak Chinese 

populations is mediated by differential DNA methylation (Chang et al., 2014a). 

 

4.7 Conclusion 

In conclusion, this study serves as further evidence that DNA methylation is a mechanism 

regulating miRNA gene expression during T2D and demonstrates that 3T3-L1 pre-adipocytes 

differentiated in different glucose concentrations offer a viable model for investigating the 

relationship between miRNA gene expression and DNA methylation during hyperglycaemia, 

altered metabolic activity and oxidative stress. This study shows that adipocytes in different 

glucose concentrations could reflect the different stages in the pathogenesis of T2D and could 

therefore be an important model for T2D research. These findings pave the way for future studies 

to delineate the effect of DNA methylation on miRNA expression during conditions characteristic 

of T2D. 
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6. Appendix 

Reagents, buffers and solutions 

1. List of reagents 

Product name Supplier 

15 and 50 mL centrifuge tubes Nest Scientific, Rahway, USA 

2-Deoxy-[3H]-D-glucose ARC, St Louis, USA 

3-isobutyl-1-methylxanthine (IBMX) Sigma-Aldrich, St. Louis, USA 

3T3-L1 pre-adipocytes American Type Culture Collection (ATCC), 

Manassas, USA 

Agena Biosciences PCR accessory kit with Hotstart 

Taq polymerase 

Sequenom, San Diego, USA 

Carbon dioxide Air Products, SA 

Cell counting chamber slides Life Technologies, Carlsbad, USA 

CELLBIND® 6-, 24- and 96-well plates Corning Inc., Corning, USA 

Cryotubes Corning Inc., Corning, USA 

Crystal violet (CV)  

Dexamethasone (Dex) Sigma-Aldrich, St. Louis, USA 

Dimethyl-sulfoxide (DMSO) Sigma-Aldrich, St. Louis, USA 

Dulbecco’s modified eagle’s medium (DMEM) 

(w/phenol red): 5.5 mM or 25 mM 

Lonza, Basel, Switserland 

Dulbecco’s modified eagles medium (DMEM) 

powder 

Sigma-Aldrich, St. Louis, USA 

Dulbecco’s phosphate buffered saline (DPBS) Lonza, Basel, Switserland 

EpiTYPER® complete reagent kit Sequenom, San Diego, USA 

Ethanol Sigma-Aldrich, St. Louis, USA 

EZ DNA methylation kit™ Zymo Research, Irvine, USA 

Fetal bovine serum (FBS) Biochrom Gmbh,Berlin, Germany 

Filter pads Sigma-Aldrich, St. Louis, USA 

Formalin  

Glucose powder Sigma-Aldrich, St. Louis, USA 

Hanks buffered saline solution (HBSS) Lonza, Basel, Switserland 

Insulin (10 mg/mL) Sigma-Aldrich, St. Louis, USA 

Isopropanol Sigma-Aldrich, St. Louis, USA 

JC-1 solid kit Sigma-Aldrich, St. Louis, USA 

Microfuge tubes Eppendorf, Hamburg, Germany 

Newborn Calf serum (NSC) Biochrom Gmbh,Berlin, Germany 

Non-cellbinding 96-well plates Corning Inc., Corning, USA 

Oil Red O (ORO) Ambion, Austian, USA 

OxiSelect™ Intracellular ROS Assay Kit Cell Biolabs, inc., San Diego, USA 

Phenylmethane sulfonyl fluoride (PMSF) Sigma-Aldrich, St. Louis, USA 

QIAzol lysis reagent Qiagen, Hilden, Germany 

RiboGreen® RNA reagent kit Thermo Fisher Scientific, Waltham, USA 
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RIPA buffer Cell Signalling Technologies, Danvers, USA 

Scintillation Vials and liquid Perkin Elmer, Waltham, USA 

Sodium Dodecyl Sulfate (SDS) BioRAD, Hercules, USA 

Sodium hydroxide (NaOH) Merck, Whitehouse station, USA 

Sterile TC water (USP-Wifi) Lonza, Basel, Switserland 

Trypan blue Life technologies. Carlsbad, USA 

Trypsin-versene Lonza, Basel, Switserland 

Vialight® plus Cell Proliferation and Cytotoxicity 

BioAssay Kit 

Lonza, Basel, Switserland 

Wizard® Genomic DNA isolation kit Promega, Madison, USA 

Zymo-Spin™ IC column Zymo Research, Irvine, USA 

 

2. Buffers and media used in this study 

Preparation of complete growth medium (CGM): 

Complete growth medium for 3T3-L1 pre-adipocytes was prepared by adding 50 mL of NCS to 

450 mL of 5.5 mM or 25mM glucose DMEM. 

 

Preparation of freezing medium: 

The freezing media was prepared by adding 2 mL of NCS and 1.4 mL of DMSO to 16.6 mL 25 

mM glucose DMEM. The media was sterile filtered into a sterile 50 mL tube and then placed on 

ice. 

 

Preparation of adipocyte maintenance medium (AMM): 

AMM was prepared by adding 50 mL of FBS to 450 mL of 5.5 mM or 25 mM glucose DMEM. 
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Preparation of adipocyte differentiation medium (ADM): 

ADM was prepared freshly on each Day 0 of cell growth by adding the materials as described in 

the table below: 

Reagent Concentration Volume 

AMM 5.5 mM glucose 

25 mM glucose 

98.98 mL 

98.98 mL 

Dex 10 mM 10 µL 

Insulin 10 mg/mL 10 µL 

IBMX 50 mM 1 mL 

Total:  100 mL 

 

Preparation of the ORO and CV stains: 

A) ORO: 

A 1% ORO stock solution was prepared by dissolving 1 g of the ORO powder in 100 mL 

isopropanol. This solution was placed on a magnetic stirrer overnight to dissolve most of the 

ORO powder. A 70% working solution was prepared by adding 30 mL distilled H2O to 70 mL 

ORO from the stock solution. The ORO working solution was mixed by inversion and then 

sterile filtered to remove all the precipitates. The ORO working solution was stored at RT, 

away from direct sunlight. 

B) CV: 

A 2% CV stock solution was prepared by dissolving 2 g CV powder in 100 mL USP-Wifi H2O. 

The CV stock solution was placed on a magnetic stirrer overnight. A 0.5% working solution 

was prepared by adding 49.75 mL distilled H2O to 250 µL of the CV stock solution and it was 

then mixed by inversion. A fresh CV working solution was prepared for every experiment on 

the day of the experiment. 

 

Preparation of 0.1 M NaOH and 0.1% SDS lysis buffer: 

To obtain a lysis reagent with a final concentration of 0.1 M NaOH and 0.1% SDS, 2 g of NaOH 

(Mw= 40.0 g/mol) and 5 g SDS was dissolved in 500 mL distilled H2O. 
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Preparation of DMEM without phenol red: no glucose and 5.5 mM or 25 mM glucose. 

Reagent Final Concentration Mw Amount/L 

DMEM 8.3 g/L - 8.3 g 

BSA (no fatty acids) 0.1% - 1 g 

NaHCO3 3.7 g/L 84.01 3.7 g 

D-glucose 4.5 g/L 180.16 4.5 g 

1 g/L 1 g 

0 g/L 0 g 

 

Preparation of insulin media: 

Reagent Final Concentration Volume 

DMEM (w/o phenol 

red): 

25 mM 4.997 mL 

5 mM 4.997 mL 

Insulin 5.8 µg/mL 2.9 µL 

 

Preparation of 2-DG radioactive media: 

Reagent Final Concentration Volume 

Basal media 

DMEM (w/o phenol red) 25 mM (basal) 9.995 mL 

5.5 mM (basal) 9.995 mL 

2-DG - 0.5 µL 

 Total: 10 mL 

Insulin media: Transferred 4.997 mL of 2-DG basal media to clean tubes 

DMEM (w/o phenol red) 

+ 2-DG 

25 mM 4.997 mL 

5.5 mM 4.997 mL 

Insulin 5.8 µg/mL 2.9 µL 
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The 10 × RIPA buffer contains the following reagents: 

Reagent Concentration 

Tris-HCl (pH 7.5) 20 mM 

NaCl 150 mM 

Na2 EDTA 1 mM 

EGTA 1 mM 

NP-40 1% 

Sodium deoxycholate 1% 

Sodium pyrophosphate 2.5 mM 

B-glycerophosphate 1 mM 

Na3 VO4 1 mM 

Leupeptin 1 µg/ml 

The 10 × RIPA buffer was diluted to a 1 × stock solution with ddH2O and aliquots of 1 mL each 

was prepared. PMSF was added to this aliquot prior to use. 
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3. Ethical approval 

South African Medical Research Council 
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