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Abstract

Forecasting Stock Returns: A Comparison of Five Models

Vhahangwele Cedrick Ramuada

Department of Mathematical Sciences,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MSc

October 2018

Forecasting the movement of stock returns prices has been of interest to re-
searches for many decades. Due to the complex and chaotic nature of the
stock market, it has been difficult for researches to find a model which can
be used to accurately predict the movement of stock returns prices. Many
statistical models have been proposed for forecasting the direction of move-
ment of stock returns prices. The objective of this study was to use ARMA-
type models and an Artificial Intelligence Neural Network model to predict
the direction of movement of stock returns prices of four JSE listed com-
panies, namely, Netcare Group Ltd, Santam Ltd, Sanlam Group Ltd, and
Nedbank Group. The models were assessed in terms of their ability to pre-
dict whether the next day’s returns price will go down or up.

Four ARMA-type models, namely, ARMA-Maximum Likelihood, ARMA-
State Space, ARMA-Metropolis Hastings, AR(3)-AVGARCH(1,1)-Student-t
model and an Artificial Neural Network (ANN) model were implemented
to try to predict the direction of movement of stock returns prices. Historical
(past) stock returns prices were used to make inference about future direc-
tional movement of stock returns prices. Empirical results show that the
ARMA-Maximum Likelihood, ARMA-State Space, AR(3)-AVGARCH(1,1)-
Student-t model, and Artificial Neural Network (ANN) models have a strong
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ABSTRACT iii

ability to predict whether the next day’s returns price will go down or up
with acceptable accuracy. However, the ARMA-Metropolis Hastings model
performed very poorly, its highest accuracy was a mere 68%. Overall, em-
pirical results show that the Artificial Neural Network model was superior
or outperformed all the ARMA-type models, the highest accuracy achieved
by the model was 89%. The results of the Superior Ability Test also showed
that the ANN model was indeed superior to the Box-Jenkins ARMA type
models in at least 5 cases.
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Uittreksel

Vooruitskatting van voorraadopbrengste :´ n Vergelyking
van vfy modelle

(“Forecasting Stock Returns: A Comparison of Five Models”)

Vhahangwele Cedrick Ramuada

Departement Wiskuudige Wetenskappe,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MSc

Oktober 2018

Die voorspelling van die beweging van voorraad opbrengs pryse, is van
groot belang vir navorsing vir dekades. As gevolg van die komplekse en
chaotiese natuur van die aandele mark, dit mooilik vir navorsers om ´ n
model te vind wat gebruik kan word om akkurate voorspelling van die be-
weging van die voorraad opbrengs pryse te maak. Verskeie statistiese mo-
delle is voorgestel om rigting van beweging te voorspel van die aandele op-
brengs prys. Die doel van hierdie studie was om die ARMA- tipe model en
´ n “kunsmatige intelligensie neurale netwerk"(Artificial Intelligence Neu-
ral Network) model te gebruik om die rigting van beweging van aandele
obrengs prys van vier JSE genoteerde maatskappye te voorspel; naamlik,
Netcare Group Ltd, Santam Ltd, Sanlam Group Ltd, and Nedbank Group.
Die modelle is beoordeel in terme van hul vermoë om te voorspel of die
volgende dag se pryse sal op of afwaarts gaan.

Vier ARMA-tipe modelle, naamlik ARMA-Maksimum Waarskynlikheid, ARMA-
Staat Ruimte, ARMA- Metropolis Hastings, AR(3)-AVGARCH(1,1)-Student-
t modelle en ´ n Kunsmatige Neurale Network (Artificial Neural Network :
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ANN) model is geimplementeer om die bewegingsrigting van aandele op-
brengs pryse te voorspel. Historiese aandele pryse is gebruik om afleidings
te maak oor toekomstige rigtingbewegings van aandele pryse.
Gebaseer op ondervinding die resulte bewys dat die ARMA-Maksimum
Waarskynlikheid, ARMA-Staat Rruimte, AR(3)-AVGARCH(1,1)-Student-t
Modelle en Kunsmatige Neutral Netwerk (ANN) modelle ´ n sterk vermöe
het, om die volgende dag se obrengs pryse af of hoër te voorspel met aan-
vaarbare akkuraatheid. Nietemin, die ARMA-Metropolis Hastings modelle
het baie swak gevaar , die hoogste akkuraatheid was ´ n blote 68%. In die
algemeen, gebaseer op ondervinding die resultate wys dat die ANN model
beter was en die ARMA-tipe modelle geklop het, die hoogste akkuraatheid
behaal van die model was 89%. Die resultate van die Superior Ability Test
het aangetoon dat die ANN model beter was as die Box-Jenkins ARMA-
tipe modelle in ten minste 5 gevalle.
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Chapter 1

Introduction

Forecasting of stock prices is one of the most important topics in academic
and financial studies. However, the stock market prices can be influenced
by many factors such as political situations, economic events, and natural
disasters etc. As a result, forecasting stock prices is a challenging task due
to the complexity of the stock market. Financial time series forecasting in-
volves trying to understand the data generation process using historic (past)
observations and applying a chosen model to try to extrapolate the returns
series into the future (Tang et al., 2003).

Many studies has been carried out to find the best models for forecasting
stock prices. Two of the most popular categories for modelling time series
are linear models e.g ARMA Models, and Exponential smoothing. The sec-
ond category is nonlinear models (artificial intelligence based models) e.g
Support Vector Machines, Genetic Algorithms, and Artificial Neural Net-
works. The most popular of the linear models is the ARMA model first
developed by Box-Jenkins in 1976. The ARMA model is widely used in
financial time series forecasting because its quite flexible as it is made up
of a combination of different types of time series models, namely, the Au-
toregressive (AR) and the Moving Average (MA) model, hence the name
Autoregressive Moving Average (ARMA).

However, many financial time series studies carried out have shown that
there is little evidence that the stock market is perfectly linear. To deal with
this problem, mixture models have been proposed. The most popular mix-
ture model is the combination of ARMA models together with non-linear

1
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CHAPTER 1. INTRODUCTION 2

models such as Autoregressive Conditional Heteroscedasticty (ARCH) and
the Generalised Autoregressive Conditional Heteroscedasticty (GARCH).
The ARMA-GARCH types models have been successfully used for fore-
casting of financial time series (Majumder and Hussian, 2007). The ARCH
model was first introduced by Robert F. Engle and Clive W. Granger in 1982
to model time varying volatility. Engle and Granger were awarded the No-
bel prize for Economics in 2003 for this work. In 1986, Bollerslev introduced
the Generalised ARCH model. The Generalised ARCH model is simply an
extension of the ARCH model.

The rise in computer power, the availability of large amount of data, and
advancements made in neural network theory has lead to a wide use of Ar-
tificial Neural Networks (ANN) in financial literature. The main advantage
of using ANN in predicting stock returns is their ability to find non-linear
relationships in the data (Majumder and Hussian, 2007, p.3). ANN are used
to overcome the drawbacks of linear models. Another advantage of ANN
is that they can use non-linear activation functions such as the sigmoid, and
tangent sigmoid which are able to detect non-linear patterns in a data set.
As a result, accuracy of predictions can be improved by using these non-
linear models (Majumder and Hussian, 2007),(Rather, 2014). Because of
the chaos and complex nature of the system, traditional statistical models
sometimes tend to be inadequate to understand the relationship between
input data and output of the particular system. Artificial Neural Networks
models are data driven, they do not require any prior assumption about
the knowledge of the relationship that may exist between input and output
of the system. Some researchers claim that the stock market behaves like
a chaotic system. Neural networks have been widely used to model these
chaotic systems because they have few assumptions about dynamic depen-
dencies.

1.1 Aim of the Study

The aim of this project is to predict the financial log-returns of Johannes-
burg Stock Exchange (JSE) listed companies. We will use Autoregressive
Moving Average model, State Space ARMA Model, Autoregressive Moving
Average model with parameters estimated through the Metropolis Hastings
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CHAPTER 1. INTRODUCTION 3

algorithm, Autoregressive GARCH type models, and an Artificial Neural
Network to make predictions. We will then evaluate each of the model in
terms of how good it can predict whether the next day’s returns price will
go up or down. The results will then be summarised using a confusion ma-
trix. The Superior Predictive Ability (SPA) test will be used to determine the
“best” model for predicting the direction of change of stock returns prices.

1.2 Research Objectives

Time series models and computational intelligence techniques have been
widely used for forecasting of stock returns. However, few studies have
been carried out to try to forecast the returns of emerging market such as
the South African Market the JSE. Hence, the first objective of this project
is to use ARMA-Metropolis Hastings algorithm, ARMA Maximum Like-
lihood, State Space ARMA, AR-GARCH-type, and Artificial Neural Net-
works models to forecast the log returns of JSE listed companies. The second
objective is to assess whether the proposed models are able to accurately
predict whether the next day’s returns price will go down or up. The third
objective would be to identify the best model for forecasting log returns of
the JSE listed companies.

1.3 Significance of the Study

During periods of economic instability or financial market turmoil, investors
can suffer huge losses. As a result, prediction of the direction of movement
of stock returns has gained more attention in recent times, this is because
if we can successfully predict direction of movement of stock returns, then
investors can be able to make profits from trading and investing in the stock
market. If a system can be developed to predict movements and trends of
stock market, then the owner of such a system would be wealthy. As a re-
sult, findings emerging from this study will help investors to minimise risk
to their portfolios, regulators in policy making, and hedge fund managers.
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1.4 Structure of the Thesis

The structure of the research project is as follows: Chapter 2 reviews previ-
ous literature on forecasting stock returns. Chapter 3 gives a introduction to
statistical models to be used in the study. In Chapter 4, we discuss the meth-
ods used for analysis, in Chapter 5 results are discussed. Finally in Chapter
6, we draw conclusion and also propose future work which may be carried
out.
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Chapter 2

Literature Review

In this chapter, we review some literature on stock returns forecasting. We
will also review some of the models used in our study to see how well they
performed when applied to different stock exchanges.

2.1 Studies on Forecasting Stock Returns Using
Time Series and Computational Intelligence
Models

A study was carried out by (Hansson, 2017) in an effort to forecast the log
returns series using data from three stock markets the S&P 500, Bovespa
(Brazil), and OMX 30 (Sweden). Two models used in the study for fore-
casting the log returns were the ARMA(1,1)-GJRGARCH(1,1) and the Long
Short Term Memory (LSTM). Results emerging from the study showed that
both the ARMA(1,1)-GJRGARCH(1,1) and the LSTM achieves similar re-
sults when regression approach is taken. But, the LSTM outperformed the
ARMA(1,1)-GJRGARCH(1,1) in terms of prediction of direction of change
for only the small Swedish market.

In their study, (Ferenstein and Gasowski, 2004b) used the AR(1)-GARCH
types models to predict the stock returns prices of two companies from the
Warsaw stock exchange. Results emerging from the study showed that the

5
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AR(1)-GARCH(1,1) model outperformed the AR(1)-EGARCH model. The
results showed that the AR(1)-GARCH(1,1) had the lowest Mean Squared
Error (MSE) out of all models considered in the study.

The ARIMA-EGARCH model was used by (Hossain et al., 2015) to model
stock volume data of the Dhaka Stock Exchange (DSH). Results from the
study showed that the ARIMA-EGARCH model was able to forecast the
stock volume series, with the model producing low Mean Absolute Error
(MAE) and Mean Squared Error (MSE).

A study was carried out by (Majumder and Hussian, 2007), In an effort to
try to predict the direction of the movement of the stock returns of the S&P
500, CNX 500, and NIFTY index using ANN based models. In their study,
various features of the data and structures of the ANN model were used to
predict direction of stock returns. Results emerging from the study showed
that in terms of direction of price movements, the highest accuracy achieved
by ANN was 89%, and an average of 69.72% was achieved for all different
structures of ANN models.
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Chapter 3

ARMA-Type Time Series and
Artificial Intelligence Techniques

In this chapter, statistical properties of log returns will be discussed. We will
also discuss the models to be used in the study, this include the assumptions
and parameter estimation methods for these models.

3.1 Financial Log Returns

Instead of using prices of assets, most financial studies uses returns (Tsay,
2005, p.2). (Campbell et al., 1997) specified two major reasons for using the
returns

• Asset returns have attractive statistical properties. As a result, they
are easier to handle than actual prices series.

• For a typical average investor, returns are a scale free and complete
summary of an investment opportunity (Tsay, 2005, p.2).

The financial log returns are given as

rt = log
(

Pt

Pt−1

)
, (3.1)

where Pt is the closing price at time t, and rt are the log returns.

3.1.1 Statistical Properties of Financial Asset Returns

Financial log returns often exhibit the following statistical properties (Fry-
zlewicz, 2005, p.1-2).

7
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• The expected value of the returns sample is close to zero.

• The returns have a distribution with heavy tails (higher kurtosis).

• They exhibits volatility clustering. That is, period of large changes in
the price of a financial asset tend to be followed by period of large
changes, and also period of small changes tend to be followed by pe-
riod of small changes (Rachev et al., 2008, p.185).

• The Autocorrelations for the sample are relatively small for almost all
the lags.

Weakly Stationary

Suppose rt is a time series, then this time series is said to be weakly sta-
tionary if its long term expected value (mean) and variance converge to a
constant as time goes to infinity (t → ∞). Weakly stationary simply means
that data points of the series fluctuate around a fixed level (Tsay, 2005, p.29-
30). Under weakly stationary, we assume that the first moment (mean) and
the second moment of rt are finite. In statistical finance literature, asset re-
turns series are usually assumed to be weakly stationary (Tsay, 2005, p.30).

White Noise

A time series rt is said to be Gaussian White noise if it has a mean of zero and
a constant variance, thus E(rt) = 0 and var(rt) = σ2. This can be expressed
mathematically as {rt} ∼WN(µ = 0, σ2) (Tsay, 2005, p.36).

3.2 AutoRegressive (AR) Model

A simple AR(1) model is given as (Tsay, 2005, p.37-38)

rt = φ0 + φ1rt−1 + εt, (3.2)

where rt−1 is the returns price at previous step t− 1, εt is a white noise se-
ries, and φ0, φ1 are the model parameters which will be estimated using the
maximum likelihood approach (mle). The white noise series εt is indepen-
dent and identically distributed with a mean of zero and constant variance.
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3.2.1 Statistical Properties of the AR Model

Below we will discuss the statistical properties of AR(1) model, AR(2) model
and then proceed to give a generalization of the results of the general AR(p)
model. If we assume that the time series rt is weakly stationary, then from
the properties discussed earlier it follows that E(rt)=µ and var(rt)=ρ (Tsay,
2005, p.38)
Proof:

E(rt) = E(φ0 + φ1rt−1 + εt)

= φ0 + φ1E(rt−1).
(3.3)

But, under the stationary assumption we have that E(rt)=E(rt−1)=µ (Tsay,
2005, p.38-39). Therefore, according to (Tsay, 2005, p.38)

E(rt) = φ0 + φ1E(rt−1)

µ = φ0 + φ1E(rt−1)

µ = φ0 + φ1µ

E(rt) = µ =
φ0

(1− φ1)
.

(3.4)

The above results implies that the expected value of rt exists if φ1 6= 1, and
E(rt) = 0 if φ0 = 0.
Since µ = φ0

1−φ1
=⇒ φ0 = µ(1− φ1), then we can rewrite the AR(1) model as

(Tsay, 2005, p.38)

rt = φ0 + φ1rt−1 + εt

rt = µ(1− φ1) + φ1rt−1 + εt

rt − µ = φ1(rt−1 − µ) + εt.

(3.5)

To find the variance, we take the square of the results above and apply the
expected value (Tsay, 2005, p.38-39).

r2
t − µ2 = φ2

1(rt−1 − µ)2 + ε2
t (3.6)

E(r2
t )− µ2 = φ2

1E(rt−1 − µ)2 + E(ε2
t ). (3.7)

(3.8)

But, we know that var(rt)=E(r2
t )−µ2, var(rt−1)=E(r2

t−1)−µ2, and E(ε2
t )=σ2

ε .
Therefore,

var(rt) = φ2
1var(rt−1) + σ2

ε . (3.9)

(3.10)
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But, under stationary assumption it is known that var(rt)=var(rt−1) (Tsay,
2005, p.39). Therefore,

var(rt) = φ2
1var(rt−1) + σ2

ε

var(rt)− φ2
1var(rt) = σ2

ε

var(rt) =
σ2

ε

1− φ2
1

, φ2
1 < 1.

(3.11)

The condition that φ2
1 < 1 is to ensure that the variance is non-negative.

Consequently, by definition of weakly stationary of AR(1) model we have
that −1 < φ1 < 1. Therefore, the necessary condition required for Autore-
gressive model of order 1 to be weakly stationary is | φ1 |< 1 (Tsay, 2005, p.
39). For more details about the proof see (Tsay, 2005, p.37-39).

AR(2) Model

Lemma: The AR(2) model is weakly stationary if the roots x1, x2 of x2 −
φ1x− φ2 = 0 satisfy | x1 |< 1 (i=1,2) and | φ1 | + | φ2 |< 1. The long term
mean

µ = lim
t→∞

E(rt)

and the long term variance

ρ = lim
t→∞

var(rt)

are given by

E(rt) = µ =
φ0

(1− (φ1 + φ2))
(3.12)

and

var(rt) = ρ =
σ2

ε

(1− (φ2
1 + φ2

2))
. (3.13)

The results above implies that the variance of return series rt exists if φ2
1 +

φ2
2 6= 1.

Proof: Weakly stationary can be proved similarly to the AR(1) case by using
the variation of constants formula for rt. We omit this portion of proof.
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AR(p) Model

The AR(p) model is a generalization of AR(1) model. It is given as (Tsay,
2005, p.46)

rt = φ0 + φ1rt−1 + φ2rt−2 + · · ·+ φprt−p + εt, (3.14)

where εt is the white noise process, φ0 is the model constant, and φ0, φ1, · · · , φp

are the model parameters which are estimated using the maximum likeli-
hood method. Applying the same techniques as that of AR(1), and AR(2)
cases we have that (Tsay, 2005, p.46)

E(rt) = µ =
φ0

1− (φ1 + φ2+, · · · ,+φp)
(3.15)

and

var(rt) =
σ2

ε

1− (φ1 + φ2+, · · · ,+φp)
. (3.16)

For a detailed explanation of Autoregressive models see (Tsay, 2005, p.36-
47).

3.3 Moving Average (MA) Model

The MA model is a finite linear combination of the residuals εt. In many
statistical finance literature, the MA model is simply known as the extension
of the white noise series (Tsay, 2005, p.57). The MA(1) model is given as
(Tsay, 2005, p.57-58)

rt = c0 + εt − θ1εt−1, (3.17)

where εt
iid∼ N(0, σ2

ε ), this implies that εt are independent and identically
distributed, each with a gaussian distribution with mean of zero and a con-
stant variance, and c0 is the model constant.

3.3.1 Statistical Properties of the MA Model

The first and second moment of rt are time invariant, therefore Moving Av-
erage models are weakly stationary. To prove this, we will use the property
E(εi) = 0 for all i.
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Proof:

Taking the expected value of Equation (3.17)

E(rt) = E(c0 + εt − θ1εt−1)

E(rt) = E(c0) + E(εt)− θ1E(εt−1) = c0.
(3.18)

Hence, E(rt)=c0 is time invariant as also shown on (Tsay, 2005, p.58). We can
also show that the variance is time invariant.

var(rt) = E(r2
t )− (E(rt))

2

= E[(c0 + εt − θ1εt−1)(c0 + εt − θ1εt−1)]− c2
0.

(3.19)

But for all i E(εi) = 0. Therefore,

var(rt) = c2
0 + E(ε2

t ) + θ2
1E(ε2

t−1)− c2
0

= E(ε2
t ) + θ2

1E(ε2
t−1)

= σ2
ε + θ2

1σ2
ε

= σ2
ε (1 + θ2

1).

(3.20)

Therefore, we have show that var(rt) is time invariant. Similarly, we can
also show that the properties of MA(1) model holds for MA(2) case. Con-
sider MA(2) model given as

rt = c0 + εt − θ1εt−1 − θ2εt−2. (3.21)

Then, taking the expected value of the MA(2) model above we obtain

E(rt) = E(c0 + εt − θ1εt−1 − θ2εt−2)

E(rt) = E(c0) + E(εt)− θ1E(εt−1)− θ2E(εt−2) = c0.
(3.22)

Hence, the results are similar to those of the MA(1) case.

MA(q) Model

The MA(q) model is an extension of the simple MA(1) model. The MA(q)
model is given as (Tsay, 2005, p.57-58)

rt = c0 + εt − θ1εt−1 − · · · − θqεt−q, (3.23)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ARMA-TYPE TIME SERIES AND ARTIFICIAL INTELLIGENCE
TECHNIQUES 13

where q is the number of lags of the model, and c0, εt were discussed ear-
lier. We can also show that the expected value of the MA(q) model is time
invariant. Taking the expectation of Equation (3.23), we obtain

E(rt) = E(c0 + εt − θ1εt−1 − · · · − θqεt−q)

E(rt) = E(c0) + E(εt)− θ1E(εt−1)− · · · − θqE(εt−q) = c0.
(3.24)

Hence, the expected value of MA(q) model is time invariant. Furthermore,
the variance of the MA(q) model is also time invariant. To show this, we
generalise the results obtained from the cases of MA(1) and MA(2) models.
Therefore, the variance of MA(q) model is

var(rt) = (1 + θ2
1 + θ2

2 + · · ·+ θ2
q)σ

2
ε , (3.25)

see (Tsay, 2005, p.59) for more details.

3.4 Auto Regressive Moving Average (ARMA)
Model

To sufficiently describe the structure of a data set, both the AR and MA
models usually need to be of higher order. As a result, the models will have
many parameters that needs to be estimated. The ARMA model was first
introduced by Box-Jenkins in 1994 to deal with this problem. The ARMA
stands for Autoregressive Moving Average. The ARMA model is a combi-
nation of the AR and the MA models. Suppose rt are returns series, then the
ARMA(1,1) model is given as (Tsay, 2005, p.64)

rt = φ0 + φ1rt−1 − θ1εt−1 + εt, (3.26)

where εt is the white noise series with mean zero and variance σ2
ε , φ0 is

the model constant, and φ1,θ are the Autoregressive and Moving average
parameters respectively. Note that

εt = σtzt, where zt ∼ N(0, 1). (3.27)

Financial returns usually exhibit fat tails and higher peak, as a result other
statistical distributions such as the Student-t and the Generalised Error dis-
tributions are used as the distribution of zt. It is important to note that the
ARMA model assumes that the variance is constant. Later we will introduce
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an AR model which assumes that the model variance (σ2
t ) is non-constant.

That is, an AR model which assumes that the variance follows a GARCH
processs (Shumway and Stoffer, 2006, p.280). More details about the ARMA
model can be found on (Tsay, 2005, p.64-66).

3.4.1 Properties of the ARMA(1,1) Model

Taking the expected value of ARMA(1,1) model in Equation (3.26) we obtain

E(rt) = E(φ0) + φ1E(rt−1)− θ1E(εt−1) + E(εt). (3.28)

But, E(εi)=0 for all i. Therefore,

E(rt) = φ0 + φ1E(rt−1)

µ = φ0 + φ1µ

E(rt) = µ =
φ0

1− φ1
.

(3.29)

The above results implies that the expected value of rt exists if φ1 6= 1, and
E(rt) = 0 if φ0 = 0. These results are similar to those of an AR(1) model de-
scribed earlier. For simplicity reasons, suppose that we assume that φ0 = 0
and we multiply Equation (3.26) by εt, and taking the expectation we obtain
(Tsay, 2005, p.64-65)

rtεt − εtφ1rt−1 = εtφ0 + ε2
t − θ1εtεt−1

E(rtεt)− φ1E(εtrt−1) = φ0E(εt) + E(ε2
t )− θ1E(εtεt−1)

E(rtεt) = E(ε2
t )− θ1E(εtεt−1)

E(rtεt) = E(ε2
t ) = σ2

ε .

(3.30)

The ARMA(1,1) model in Equation (3.26) can be written as (Tsay, 2005, p.64)

rt − φ1rt−1 = φ0 + εt − θ1εt−1. (3.31)

Recall that if the returns series rt is weakly stationary, it then follows that
var(rt) = var(rt−1). Taking the variance of Equation (3.31) we obtain (Tsay,
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2005, p.65)

var(rt) = φ2
1E(r2

t−1) + E(ε2
t )− 2φ1θ1E(rt−1εt−1) + θ2

1E(ε2
t−1)

var(rt) = φ2
1var(rt−1) + σ2

ε − 2φ1θ1σ2
ε + θ2

1σ2
ε

var(rt)− φ2
1var(rt−1) = σ2

ε (1− 2φ1θ1 + θ2
1)

var(rt)− φ2
1var(rt) = σ2

ε (1− 2φ1θ1 + θ2
1)

var(rt) =
σ2

ε (1− 2φ1θ1 + θ2
1)

1− φ2
1

.

(3.32)

Since we know that the variance is always positive, we should have that
| φ1 |< 1. This stationary condition is similar to that of the AR(1) and AR(2)
models discussed earlier.

ARMA(p,q) Model

The ARMA(p,q) model is a natural extension of the ARMA(1,1) model with
longer lags and it is given as (Tsay, 2005, p.66)

rt = φ0 +
p

∑
i=1

φirt−i −
q

∑
i=1

θiεt−i + εt, (3.33)

where εt are the residuals of the series, p and q are non-negative integers
representing the number of lags of the model. It is important to note that
signs of the MA terms may be reversed from those in some statistical text-
books. For more details about the ARMA model see (Shumway and Stoffer,
2006, p.93-97) and (Tsay, 2005, p.64-66).

3.5 Autoregressive Integrated Moving Average
(ARIMA) Model

ARIMA stands for Autoregressive Integrated Moving Average. Suppose
that rt is a time series, such that 4rt = rt − rt−1 follows an invertible and
stationary ARMA(p,q) model, then rt is said to be an ARIMA(p,1,q) pro-
cess (Tsay, 2005, p.76). Differencing is the most commonly used technique
for converting a non-stationary time series to a stationary one. In finance
literature, the asset price series are usually non-stationary. As a result, the
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log returns described in Equation (3.1) are usually used for modelling stock
prices, largely because they are stationary. In time series literature, trans-
forming a time series from a non-stationary to a stationary one by using its
changes series is known as differencing.

3.6 Parameter Estimation Using the Maximum
Likelihood Method

After defining our models, we need to estimate the model parameters. The
parameters for these models will be estimated using the maximum likeli-
hood estimation method. If r1, r2, · · · , rT, for i = 1, 2, 3, · · · , T are iid data
whose marginal probability density function is f (rt,θ), then, the joint den-
sity function for that particular sample can be defined as the product of the
marginal densities, that is,

f (r;θ) = f (r1, · · · , rT;θ) =
T

∏
t=1

f (rt;θ). (3.34)

Then, the likelihood function can be described as

L(θ | r) = L(θ | r1, · · · , yT) =
T

∏
t=1

f (rt;θ). (3.35)

Then, the log-likelihood function is given as

L(θ | r) =
T

∑
t=1

log f (rt;θ). (3.36)

3.6.1 Estimating Parameters of the AR(1) Model

If we have samples that are independent and identically distributed, then
the likelihood is defined as the product of marginal density of these individ-
ual samples. But, in time series analysis we cannot simply use the product
of marginal density to evaluate the likelihood. In the study of time series,
we use conditional density to evaluate the likelihood function. Consider a
simple AR(1) model given as

rt = φ0 + φ1rt−1 + εt, where εt ∼ N(µ = 0, σ2) (3.37)
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for t = 1, · · · , T. Then, from the model above we let θ = (φ0, φ1, σ2) to
be a vector which contains the parameters of AR(1) model that we want to
estimate. So, the goal of MLE is to find a set of parameters that are likely to
have generated the sample data r1, r2, · · · , rT. Earlier we showed that for a
stationary AR(1) process we have that

E(rt) =
φ0

1− φ1
(3.38)

and

var(rt) =
σ2

ε

1− φ2
1

. (3.39)

Furthermore, since we assumed that
{

εt
}∞

t=−∞ is a Gaussian process, it then
follows that r1 is also Gaussian. Then, for the initial value r1, the marginal
density is given as

r1 ∼ N
(

φ0

1− φ
,

σ2
ε

1− φ2
1

)
(3.40)

⇒
fr1(r1;θ) = fr1(r1; φ0, φ1, σ2)

= (2πσ2)−
1
2 exp

{
− 1

2σ2 (r1 − µ)2
}

=

(
2π

σ2
ε

1− φ2
1

)− 1
2

exp
{
−

(1− φ2
1)

2σ2
ε

(
r1 −

φ0

1− φ1

)2}
.

(3.41)

The above is the marginal density for the initial value r1. The log-likelihood
function of Equation (3.41) is

log fr1(r1;θ) = log
((

2π
σ2

ε

1− φ2
1

)− 1
2

exp
{
−

(1− φ2
1)

2σ2
ε

(
r1 −

φ0

1− φ1

)2})
= −1

2
log
(

2π
σ2

ε

1− φ2
1

)
−
(

1− φ2
1

2σ2
ε

)(
r1 −

φ0

1− φ1

)2)

= −1
2

log(2π)− 1
2

log
(

σ2
ε

1− φ2
1

)
−

(
r1 − φ0

1−φ1

)2

(2σ2
ε )/(1− φ2

1)
.

(3.42)

The equation above represents the log-likelihood function of the marginal
density for the initial value r1. Generally, the value of r1, r2, · · · , rt−1 is re-
lated to rt only through rt−1. Furthermore, the density of observation at
time t conditional on the previous observations t− 1 is given as
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frt|rt−1,rt−2,··· ,r1
(rt | rt−1, · · · , r1;θ) = frt|rt−1

(rt | rt−1;θ)

=
1√

2πσ2
exp
(
− 1

2
(rt − φ0 − φ1rt−1)

2

σ2

)
(3.43)

frt|rt−1
(rt | rt−1;θ) =

1√
2πσ2

exp
(
− 1

2
(rt − φ0 − φ1rt−1)

2

σ2

)
log( frt|rt−1

(rt | rt−1;θ)) =
T

∑
t=2

log
(
(2πσ2)−

1
2 exp

(
− 1

2
(rt − φ0 − φ1rt−1)

2

σ2

)
=

T

∑
t=2

(
− 1

2
log(2π)− 1

2
log(σ2)

+

(
− 1

2
(rt − φ0 − φ1rt−1)

2

σ2

))
=

(
− (T − 1)

2
log(2π)− (T − 1)

2
log(σ2)

+
T

∑
t=2

(
− 1

2
(rt − φ0 − φ1rt−1)

2

σ2

))
.

Then, the log likelihood function is given as

logL(θ | r) =
T

∑
t=2

log frt|rt−1
(rt | rt−1;θ) + log fr1(r1;θ). (3.44)

The full log-likelihood function defined above is known as the exact log-
likelihood. The first part on the RHS is known as the conditional log-likelihood
and the second part is known as the marginal log-likelihood for the initial
values. Using Equation (3.42) and (3.44), we can write the log likelihood
function for a Gaussian AR(1) process with T sample size as

log L(θ | r) =
(
− (T − 1)

2
log(2π)− (T − 1)

2
log(σ2)

+
T

∑
t=2

(
− 1

2
(rt − φ0 − φ1rt−1)

2

σ2

))

− 1
2

log(2π)− 1
2

log
(

σ2
ε

1− φ2
1

)
−

(
r1 − φ0

1−φ1

)2

(2σ2
ε )/(1− φ2

1)
.
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The equation above represents a Gaussian log-likelihood for an AR(1) pro-
cess. The log-likelihood equation above can also be used for AR models of
different lags.

3.6.2 Estimating Parameters of the MA Model

To estimate parameters of the Moving Average model, we will use the same
approach used for estimation of Autoregressive model parameters. Con-
sider a simple Gaussian Moving Average process of order 1 given as

rt = c0 + εt − θ1εt−1, where εt ∼ N(0, σ2). (3.45)

Let θ = (c0, θ1, σ2) be a vector which contains parameters to be estimated.
Using the results from Equation (3.19) and (3.20) we can construct the joint

marginal densities for each observation. For
{

rt

}T

t=1
, then

rt ∼ N
(

c0, σ2
ε (1 + θ2

1)

)
.

The sequence
{

ε1, ε2, · · · , εT
}

can be calculated using r1, r2, · · · , rT through
iterating on

εt = rt − c0 − θ1εt−1 (3.46)

for t = 1, 2, 3, · · · , T.
Then, the likelihood function for Moving Average process of order 1 is given
as

L(θ | r) =
T

∏
t=1

f (rt;θ)

= −T
2

log(2π)− T
2

log(σ2)−
T

∑
t=1

ε2
t

2σ2 .

(3.47)

3.6.3 Estimating Parameters of the ARMA Model

Consider an ARMA(1,1) process defined earlier in Equation (3.26) as

rt = φ0 + φ1rt−1 − θ1εt−1 + εt, (3.48)

where εt
iid∼ N(0, σ2). Let θ = (φ0, φ1, θ1, σ2) be a vector which contains

parameters to be estimated. The sequence
{

ε1, ε2, · · · , εT
}

can be calculated
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using r1, r2, · · · , rT, through iterating on

εt = rt − (φ0 + φ1rt−1)− (θ1εt−1), (3.49)

for t = 1, 2, 3, · · · , T. Then, the log likelihood function is given as

logL(θ) =
T

∑
t=1

log
(
(2πσ2)−

1
2 exp

{
− 1

2σ2 (rt − µ)2
})

=
T

∑
t=1

log
(
(2πσ2)−

1
2 exp

{
− 1

2σ2 (εt)
2
})

= −T
2

log(2π)− T
2

log(σ2)−
T

∑
t=1

ε2
t

2σ2 .

(3.50)

3.7 Estimation of Parameters Using Bayesian
Methods

The Bayes theorem was first introduced by Thomas Bayes (1701-1761). In
Bayesian methods, probabilities represents the degree of belief that we have
about an unknown event (Rachev et al., 2008).

Bayes theorem: Suppose the probability distribution of θ is given as p(θ),
then we can rewrite the posterior distribution of θ in terms of the Bayes
theorem given as

p(θ | y) =
p(y | θ)p(θ)∫

θ p(y | θ)p(θ)dθ
, (3.51)

where p(y | θ) is the likelihood function, θ is the vector which contains
model parameters, y is the data, and p(θ) is the prior distribution of θ. The
prior distribution represent prior belief that we have before we see the data
y. The posterior distribution given by Equation (3.51) represents the distri-
bution of θ after we have seen the data y. In Equation (3.51), the denomi-
nator is computed by averaging all possible values of θ see (Rachev et al.,
2008, p.19). As a result, the denominator expression is not dependent on θ,
so we can rewrite Equation (3.51) as

p(θ | y) ∝ p(y | θ)p(θ). (3.52)

Equation (3.52) is called the continuous version of the Bayes’s theorem. In
Bayesian methodology, all inference are made based on p(θ | y) (the poste-
rior distribution).
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Markov Chain Monte Carlo (MCMC)

The Markov Chain Monte Carlo is a simulation based algorithm which
is used in Bayesian framework to sample from the posterior distribution
p(θ | y) (Rachev et al., 2008, p.66). The MCMC algorithm generates sam-
ples, such that each sample is dependent only on the previous one, hence
the name Markov Chains. Formally speaking, the Markov chain is a se-
quence of random variables where a given state of the process is dependent
only on its previous state, this implies that the state does not depend on
other states except its previous state (Rachev et al., 2008, p.67). The MCMC
allows us to draw i.i.d samples from the posterior distribution which is of
complicated form (Rachev et al., 2008, p.66). The Metropolis Hastings algo-
rithm and the Gibbs sampler are the most commonly used MCMC methods
for sampling from the posterior distribution.

Monte Carlo

Suppose y represents the observed data set, and θ is a vector which contains
unknown parameters, then the posterior expectation (mean) of the function
g(θ) is given by (Rachev et al., 2008, p.61-62).

Eg(θ | y) =
∫

g(θ)p(θ | y)dθ, (3.53)

where p(θ | y) is the posterior distribution defined earlier in Equation (3.51).
Suppose that θ(1), · · · , θ(N) are N samples which were drawn from the pos-
terior distribution p(θ | y). Then, by Law of large numbers the Monte Carlo
approximation

ĝN(θ) =
1
N

N

∑
n=1

g(θ(n)) (3.54)

converges to E g(θ | y) as N goes to infinity (Rachev et al., 2008, p.62).
This implies that, if we can obtain a large samples from the posterior dis-
tribution, then we can be able to accurately approximate the mean of g(θ)
(Rachev et al., 2008, p.62). This approximation is known as the Monte Carlo
integration. See (Rachev et al., 2008, p.61-63) for more details about the

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ARMA-TYPE TIME SERIES AND ARTIFICIAL INTELLIGENCE
TECHNIQUES 22

Monte Carlo integration.

The Monte Carlo Standard Error (MCSE)

The Monte Carlo Standard Error indicates the amount of error in the es-
timates as a result of using MCMC. The MSCE is given as

MCSE =
SD√

n
, (3.55)

where SD is the standard deviation given as

SD =

√√√√ 1
N

N

∑
n=1

(g(θ(n))− ĝN(θ))2. (3.56)

As the number of iterations increases the value of the MCSE approaches 0.
From Equation (3.55) we can see that if the sample size n is large, then the
MCSE will be small.

3.7.1 MCMC: Metropolis Hastings (M-H) Algorithm

The Metropolis Hastings is an MCMC algorithm which was first introduced
by Nicholas Metropolis in 1953 and later modified by Wilfred Hastings in
1970, hence the name Metropolis Hastings (MH) algorithm. The algorithm
is used to obtain or generate samples from the posterior distribution. The
Markov Chain Monte Carlo algorithm works by returning a sequence of N
samples θ(1), · · · , θ(N) such that each sample is generated from the posterior
distribution Rachev et al. (2008). That is,

θ(i) ∼ p(θ | y), for i = 1, · · · , N. (3.57)

The MCMC algorithm produces a bag of samples
{

θ(i)
}N

i=1, such that this
sample is a proxy for the posterior distribution p(θ | y).

Metropolis Hastings (MH) Algorithm (Rachev et al., 2008, p.67-69)

Let θ = (θ1, θ2, · · · , θn) be a vector which contains model parameters, and
q(θ | θ(t−1)) be the proposal (candidate) distribution. The M-H algorithm
is made up of two major stages. In the first stage, a sample is drawn from

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ARMA-TYPE TIME SERIES AND ARTIFICIAL INTELLIGENCE
TECHNIQUES 23

the proposal distribution. In the second stage, the drawn sample is either
accepted or rejected. The accepted sample are then used to form the Markov
chains, while the rejected ones are discarded.

1. Specify the initial value of the chain, that is, set a value for θ(0).

2. At each time step t, draw θ∗ from the proposal distribution q(θ | θ(t−1)),
where θ(t−1) is the parameter value at the previous step t− 1.

3. Compute the acceptance probability given as (Rachev et al., 2008, p.67-

68) α(θ∗, θ(t−1)) = minimum
(

1, p(θ∗)q(θt−1|θ∗)
p(θ(t−1))q(θ∗|θ(t−1))

)
,

where p(θ(t−1)) represents the probability that the next state of the
chain is θ(t−1) (the previous state), and p(θ∗) represents the probability
that the next state of the chain is θ∗ (the value drawn from the proposal
distribution). To find the value of the acceptance probability we take

the minimum of 1 and p(θ∗)q(θt−1|θ∗)
p(θ(t−1))q(θ∗|θ(t−1))

4. Draw a random variable u from the Uniform distribution whose sup-
port is (0, 1), that is, u ∼ U(0, 1).

• if u ≤ α(θ∗, θ(t−1)), then we set θ(t) (current state of the chain) to
be equal to θ∗ (the value drawn from the proposal distribution),
that is, θ(t) = θ∗.

• else, set θ(t) (current value of chain) to be equal to θ(t−1) (the value
at the previous step), that is, θ(t) = θ(t−1).

5. Repeat the algorithm from step 2 to step 4 n times. This will produce
a sequence of Markov chains

{
θ(i)
}N

i=1. In order to ensure that the
samples drawn are indeed from the posterior distribution, we run the
simulations for a long period of time.

For more information on the Metropolis Hastings algorithm see (Rachev
et al., 2008, p.63-69).

Diagnostics: Convergence of Markov Chains and the Burn-in Period

The samples obtained using MCMC are used to make inferences about the
posterior distribution. But, we have to first ensure that these chains has con-
verged to the stationary distribution. As stated earlier, we run the MCMC
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simulations for a large number of time in order to ensure that these chains
converged. The starting point of the Markov Chain is influential. In order
to minimise the effects of the initial state of the chain, we discard a fraction
of these simulations. This fraction is known as the burn-in fraction. Only
subsequent draws would be used for posterior inference after we remove
the burn-in period (Rachev et al., 2008, p.75).

Estimating Parameters of a Model Using MCMC

• Start by specify the model and our prior knowledge about each pa-
rameter.

• Specify the initial value for each model parameter.

• Run the MCMC algorithm and obtain the chains.

• Discard the initial Burn-in period and use only subsequent draws to
make inference about the posterior distribution.

3.8 Volatility Models

Volatility can simply be described as the variability of a financial time series
(Rachev et al., 2008, p.185). In many statistical finance literature, it is de-
fined as the magnitude and speed of fluctuations of a financial time series
(Rachev et al., 2008, p.185). Volatility is expressed mathematically as the
standard deviation of a financial returns asset.

Characteristics of Volatility

• The volatility of financial asset returns is non-constant through time
(Rachev et al., 2008, p.185). As a result, we say that asset returns are
heteroskedastic.

• Volatility reacts differently to both negative and positive returns shocks.
That is, volatility tends to be high when the markets falls than when
they rise. (Rachev et al., 2008, p.186).
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Volatility models were first introduced to try to explain these stylised facts
about financial asset returns (Rachev et al., 2008, p.186).

3.8.1 ARCH Model

The Autoregressive Conditional Heteroscedasticity (ARCH) Model was first
introduced by Engle in 1982 to capture time varying volatility in returns se-
ries. The ARCH(1) model is the simplest of the ARCH model. If we let pt to
be stock price at time t, then as shown earlier, the log returns denoted by rt

are given as

rt = log
(

pt

pt−1

)
. (3.58)

The expected value of the log returns is very close to zero and the variance
is generally dependent on time, and they also exhibits serial correlation. In
this study, we model log returns by

rt = µt + σtεt, (3.59)

where σt, µt will be discussed later, εt is the white noise process which is
independent and identically distributed with expected value of 0 and vari-
ance of 1. That is, εt ∼ N(0, 1). The assumption that εt is independent
implies that the mean of εt is independent of the past, i.e

εt | Ft−1 ∼ εt, (3.60)

where Ft−1 represents a set of information available at previous step t− 1.
We will write

yt = rt − µt. (3.61)

Furthermore,

yt = σtεt. (3.62)

The ARCH model is the simplest of all volatility models. It can be expressed
as a deterministic function of past squared returns. In this case, volatility at
time t is determined at time t − 1 (Rachev et al., 2008, p.185). We assume
that the equation for ARCH(1) model is given as (Shumway and Stoffer,
2006, p.281)

σ2
t = α0 + α1y2

t−1. (3.63)
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From Equation (3.61) and (3.62), it follows that when given yt−1, the vari-
ance σt is a deterministic constant. The conditional mean of yt given yt−1 is
given as

E(yt | yt−1) = E(σtεt | yt−1) = σtE(εt | yt−1) = σtE(εt) = 0. (3.64)

The conditional variance of yt given yt−1 is given as

var(yt | yt−1) = E(y2
t | yt−1) = E(σ2

t ε2
t | yt−1) = σ2

t E(ε2
t | yt−1) = σ2

t E(ε2
t ) = σ2

t .(3.65)

Using Equation (3.64) and (3.65), we have that

yt | yt−1 ∼ N(0, α0 + α1y2
t−1). (3.66)

Using Equation (3.64), we have that

E(µt | yt−1) = E(rt | yt−1) (3.67)

and

E(ε2
t | yt−1) = E(ε2

t ) = 1. (3.68)

Now

σ2
t = σ2

t E(ε2
t | yt−1) = E(σ2

t ε2
t | yt−1) = E(y2

t | yt−1). (3.69)

Using Equation (3.61) and (3.67), we now have that

σ2
t = E((rt − µt)2 | yt−1)) (3.70)

= var(rt | yt−1). (3.71)

From the results above µt, σ2
t are the conditional expectation and variance of

rt. Applying the tower law for conditional mean and using Equation (3.66)
we obtain

E(yt) = E(E(yt | yt−1)) = E(0) = 0. (3.72)

From the above it is clear that the expected value of yt is equal to zero. By
subtracting Equation (3.62) and (3.81), we obtain (Shumway and Stoffer,
2006, p.281)

y2
t − (α0 + α1y2

t−1) = σ2
t εt − σ2

t (3.73)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ARMA-TYPE TIME SERIES AND ARTIFICIAL INTELLIGENCE
TECHNIQUES 27

Now, the equation can be rewritten as

yt = (α0 + α1y2
t−1) + σ2

t εt − σ2
t

yt = α0 + α1y2
t−1 + σ2

t (εt − 1)

yt = α0 + α1y2
t−1 + vt,

(3.74)

where vt = σ2
t (εt − 1). But, since ε2

t is a square of the Normal distribution
with mean zero and variance one (i.e N(0,1)), then ε2

t−1 is a χ2
1 random vari-

able whose mean is zero (Shumway and Stoffer, 2006, p.281-282). For an
integer p > 0 and by using Equation (3.72) we have that

cov(yt+p, yt) = E(ytyt+p) = EE(ytyt+p | yt+p−1) (3.75)

= E(ytE(yt+p | yt+p−1)) = 0. (3.76)

Hence, we have shown that yt are uncorrelated. For more details see (Shumway
and Stoffer, 2006, p.281-282).
Assumption: Suppose that the variance of vt is a a constant and 0 ≤ α1 < 1.
From the assumption above, it follows that yt is weakly stationary, and as a
result the unconditional variance of yt is constant.
Proof:

var(yt) = E(y2
t ) = E(E(y2

t | yt−1)) = E(α0 + α1y2
t−1) = α0 + α1E(y2

t−1)

= α0 + α1E(y2
t ).

(3.77)

But, E(y2
t ) = var(yt), therefore

var(yt) = α0 + α1var(yt)

var(yt) =
α0

1− α1
.

(3.78)

According to (Shumway and Stoffer, 2006, p.282), the results above implies
that E(y2

t ) and var(y2
t ) are constant with respect to time.

E(y4
t ) =

3α2
0

(1− α1)2
(1− α2

1)

1− 3α2
1

, 3α2
1 < 1. (3.79)
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Then, the kurtosis is (Shumway and Stoffer, 2006, p.282), (Tsay, 2005, p.118)

k =
E(y4

t )

[E(y2
t )]

2

=

3α2
0

(1−α1)2
(1−α2

1)

1−3α2
1(

α0
1−α1

)2

= 3
1− α2

1
1− 3α2

1
.

(3.80)

Notice that the kurtosis will always be greater than 3 (unless if α1 = 0).
But, we know that the Normal distribution has a kurtosis of 3. The results
above implies that the distribution of yt has fat “tails", or it is leptokurtic.
For more details about the proof see (Shumway and Stoffer, 2006, p.282) and
(Tsay, 2005, p.118).

ARCH(p) Model

The ARCH(p) is an extension of the basic ARCH(1) model, it is given as

σ2
t = ω + α1y2

t−1 + · · ·+ αpy2
t−p, (3.81)

where αj ≥ 0, and p represents the number of lags of the model. The param-
eters αj, ω are the error and constant parameters respectively. To ensure that
the conditional variance σ2

t is positive we restrict α1 to take positive values
only, thus α1 > 0 (Shumway and Stoffer, 2006). From Equation (3.81), we
can see that the conditional variance is dependent upon its own previous
residuals. The residuals are innovations of a time series.

Weakness of the ARCH Model

The ARCH model assumes that negative and positive shocks have the same
impact on volatility. In reality, stock prices reacts differently to positive and
negative shocks. For more details about the characteristics, properties, and
some applications of ARCH model see (Shumway and Stoffer, 2006, p.280-
289). Also, (Tsay, 2005, p.109-131) gives a detailed presentation of the ARCH
model and some excellent examples of the model being applied to solve fi-
nancial problems.
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3.8.2 Generalised Autoregressive Conditional
Heteroscedasticity (GARCH) Model

The restrictions placed on the parameters of ARCH(p) model defined ear-
lier can be violated. As a result, Bollerslev in 1986 introduced an exten-
sion of the ARCH model called the GARCH model to deal with these restric-
tions. GARCH stands for Generalised ARCH. To show some properties of
the GARCH model, we will use properties of the ARCH model which were
discussed earlier. The symmetric GARCH model assumes that negative and
positive shocks have the same magnitude or effect on volatility (Alexander,
2009, p.132). Consider a mean equation given as

yt = c + ut, (3.82)

where c is the constant parameter and E(ut) = 0. The Equation (3.82) rep-
resents the mean of yt. We write

var(ut) = σ2
t = E(u2

t ), (3.83)

where E(u2
t ) represents the conditional variance of yt given some available

information Ft−1. Note that σt represents the volatility of process yt. The
volatility process σt is non-constant, as a result yt is said to be heteroskedas-
tic (a process where the variance is not constant).
The GARCH(1,1) model is given as (Shumway and Stoffer, 2006, p.286)

σ2
t = γσ̄2 + αy2

t−1 + βσ2
t−1, (3.84)

where 0 < α + β < 1 and ω = γσ̄2. We will discuss the notation σ̄2 later.

Suppose we write mt = E(σ2
t ) = E(u2

t ). Therefore, if we take the expec-
tation of Equation (3.84) we have that

E(σ2
t ) = E(γσ̄2 + αy2

t−1 + βσ2
t−1)

mt = γσ̄2(α + β)mt−1.
(3.85)

Suppose that we let γ = 0, then a homogeneous equation is obtained. That
is,

mt = (α + β)mt−1. (3.86)
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It can be show that
mt = m0(α + β)t. (3.87)

Given the value of m0, it then follows that the solution of the difference
equation is unique. From the chain of equalities below, it can be easily seen
that

mt = (α + β)mt−1 = (α + β)2mt−2 = · · · = (α + β)2m0. (3.88)

If we also include γσ̄2, then, it follows that we have a general solution for
homogeneous equation. We can be able to shown that mt = σ̄2 satisfies the
GARCH model equation described earlier. Then, it follows that the general
solution is given as

mt = m0(α + β)n + σ̄2.

But, we have restrictions placed on parameters α and β such that 0 < α +

β < 1. Therefore,
lim
t→∞

mt = σ̄2. (3.89)

The above results implies that the process mt would converge to a long term
equilibrium σ̄2 (the equilibrium is the long term variance of the GARCH
model). The process described in Equation (3.89) is known as the mean-
reverting process. Mean reversion implies that the volatility of asset returns
would eventually settle down to a mean state, where the mean is that of the
GARCH model.

Persistence in Volatility

The GARCH model parameters α and β are together known as the persistence parameters.
According to (Rachev et al., 2008, p.192) these parameters determines the
speed of mean reversion of the volatility to its long term average value.
From Equation (3.84), if α + β = 1, then mt = σ̄2 would no longer be a so-
lution to Equation (3.84). As a result, we say that the GARCH model has a
unit root (non-stationary).

Long Term Volatility in the Market

In the absent of market shocks, the variance of the GARCH model would
eventually settle down to a constant or state value (Alexander, 2008). That
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is, σ2
t = σ̄2, where σ̄2 is called the unconditional variance of GARCH model

defined in Equation (3.84). In many financial econometrics literature, the
unconditional variance σ̄2 is called long term variance.

Proof:

Properties of the ARCH model which where discussed earlier will be used
to derive the long term volatility equation. The unconditional variance is
constant through time (it does not change), as a result we have that

var(ut) = var(ut−1) = var(ut−2) · · · = var(ut−n). (3.90)

Using results from Equation (3.83), it then follows that

E(u2
t ) = E(u2

t−1) = · · · = E(u2
t−n). (3.91)

Now

σ2
t = ω + αu2

t−1 + βσ2
t−1, apply the expectation

E(σ2
t ) = E(ω + αu2

t−1 + βσ2
t−1)

E(σ2
t ) = E(ω) + αE(u2

t−1) + βE(σ2
t−1)

lim
t→∞

E(σ2
t ) = ω + α lim

t→∞
E(u2

t−1) + β lim
t→∞

E(σ2
t−1).

(3.92)

By using Equation (3.83) and Equation (3.89), we have that (Rachev et al.,
2008, p.187)

σ̄2 = ω + ασ̄2 + βσ̄2

ω = σ̄2 − ασ̄2 − βσ̄2

ω = σ̄2(1− α− β).

(3.93)

Finally, the long term variance is given by

σ̄2 =
ω

1− (α + β)
. (3.94)

To find the long term unconditional volatility, we take the square root of
the unconditional variance (σ̄2). The condition that 0 < α + β < 1 ensures
that the variance is positive. The volatility would be relatively high in the
market if the value of the unconditional volatility is large (Alexander, 2008).
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The GARCH(p,q) is an extension of the simple GARCH(1,1) model with
lags p and q. It is given as (Shumway and Stoffer, 2006, p.286)

σ2
t = ω + α

p

∑
i=1

u2
t−j + β

q

∑
j=1

σ2
t−j.

From the equation above, we can see that large shocks would result in large
variance. The GARCH model assume symmetric, that is, negative and pos-
itive shocks have the same effect.

Properties of the GARCH(1,1) Process

The GARCH(1,1) process has the following four important properties (Rachev
et al., 2008, p.190-192).

• Stationarity is the most important feature of the GARCH(1,1) process.
A stochastic process is said to be stationary if it has finite moments,
that is, its variance, mean, and covariance are constant through time
(Rachev et al., 2008, p.190). If we assume that the returns rt are nor-
mally distributed, then, the GARCH(1,1) process is stationary if its
persistence parameters α + β are less than one (Rachev et al., 2008,
p.190).

• If the returns are assumed to be Student-t distributed, then the sta-
tionary inequality of the GARCH(1,1) model is given as (Rachev et al.,
2008, p.191)

α
ν

ν− 2
+ β < 1, (3.95)

where ν is the degree of freedom parameter. On the other hand, if we
assume that the returns follows a Normal distribution, then the neces-
sary condition for GARCH(1,1) process to be considered stationary is
(Rachev et al., 2008, p.191)

α + β < 1 (3.96)

• The long-term unconditional variance is given as (Rachev et al., 2008,
p.191).

σ2 =
ω

1− (α + β)
. (3.97)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ARMA-TYPE TIME SERIES AND ARTIFICIAL INTELLIGENCE
TECHNIQUES 33

• Since the autocovariance between returns at time t and t− h is equal
to zero, that is, cov(rt−h, rt) = 0, then the autocorrelations between the
returns is equal to zero (Rachev et al., 2008, p.191).

3.8.3 Estimating Parameters of the GARCH Model Using
the Maximum Likelihood Method

The Maximum Likelihood method is used to estimate parameters of the
GARCH model. Suppose that r1, r2, · · · , rT, for i = 1, 2, 3, · · · , T is some
available data and θ is a vector of parameters. Then, the Likelihood function
of parameter θ given the data r1, r2, · · · , rT is given as

L(θ | r1, r2, · · · , rn) =
T

∏
t=1

f (rt | θ) = f (r1 | θ) f (r2 | θ) · · · f (r2 | θ), (3.98)

where f (r1 | θ), f (r2 | θ), · · · , f (rn | θ) are known as the conditional density
of the series rt given parameter vector θ. Note that parameter θ is a vector
which contains the model parameters to be estimated.
Lemma:
According to (Rachev et al., 2008, p.192), if we assume that returns rt are
Normally distributed with expected value r̄ and conditional variance σ2

t ,
then we can describe the log-likelihood of the GARCH(1,1) model as

log L(θ | r) =
T

∑
t=1

log f (rt | θ)

= const− 1
2

T

∑
t=1

(
log(σ2

t ) + (
yt

σt
)2
)

,

(3.99)

where r = r1, r2, · · · , rT , θ = (ω, β, α) is a vector which contains the GARCH
model parameters that we want to estimate, and σ2

t is the variance given by
Equation (3.84).

Proof:
Since we assumed that the returns rt are Normally distributed, then we can
define their distribution as

f (rt | r̄, σ2) =
1√

2πσ2
exp

(
− rt − r̄

2σ2

)2

. (3.100)
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Therefore, the likelihood function is given as

L(θ | r) = ∏T
t=1 f (rt | θ) =

T

∏
t=1

1√
2πσ2

exp
(
− 1

2

(
rt − r̄

σt

)2)
.(3.101)

Taking the log of the likelihood in Equation (3.101) we obtain

log L(θ | r) =
T

∑
t=1

log
(

1√
2πσ2

t

exp
(
− 1

2

(
rt − r̄

σt

)2)

=
T

∑
t=1

log
(
(2π)−

1
2 (σ2

t )
− 1

2 exp
(
− 1

2

(
rt − r̄

σt

)2)
=

T

∑
t=1

(
− 1

2
log(2π)− 1

2
log(σ2

t )−
1
2

(
rt − r̄

σt

)2)
=

T

∑
t=1

(
− 1

2
log(2π)−

T

∑
t=1

1
2

log(σ2
t )−

T

∑
t=1

1
2

(
rt − r̄

σt

)2)
= −T

2
log(2π)−

T

∑
t=1

(
1
2

log(σ2
t ) +

1
2

(
rt − r̄

σt

)2)
= const−

T

∑
t=1

(
1
2

log(σ2
t ) +

1
2

(
rt − r̄

σt

)2)
= const− 1

2

T

∑
t=1

(
log(σ2

t ) +

(
yt

σt

)2)
,

(3.102)

Equation (3.102) represents the log-Likelihood of the GARCH model with
normal distributed returns.

The GARCH(1,1) Model With Student-t Returns

Financial returns usually have a distribution with fat tails and higher peak.
As a result, a Student-t distribution has been widely used as an alternative
distribution for returns. A Student-t distribution with v degree of freedom
is given as

f (yt; v) =
Γ((v + 1)/2)

Γ(v/2)
√

π(v− 2)σ2
t

(
1 +

y2
t

(v− 2)σ2
t

)− v+1
2

, v > 2 (3.103)
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where σ2
t is conditional variance represented by Equation (3.84) and θ is

a vector which contains model parameters, thus θ = (ω, β, α, v), Γ(v) =∫ ∞
0 e−xxv−1dx is the Gamma function, and parameter v measures the thick-

ness of the tail of the distribution. According to (Alberg et al., 2008, p.1203),
if rt are financial asset returns which are Student-t distributed, then we can
express the log-Likelihood of these returns as θ

log L(θ | rt) =T
(

logΓ
(

v + 1
2

)
− log(

v
2
)− 1

2
log(π(v− 2))

)
− 1

2

T

∑
t=1

(
log(σ2

t ) + (1 + v)log
(

1 +
y2

t
σ2

t (v− 2)

))
Proof:

L(rt | θ) =
T

∏
t=1

Γ((v + 1)/2)

Γ(v/2)
√

π(v− 2)σ2
t

(
1 +

y2
t

(v− 2)σ2
t

)− v+1
2

. (3.104)

Taking the log-likelihood of Equation (3.104), then it follows that

log L(rt | θ) =
T

∑
t=1

log
(

Γ
(

v + 1
2

)
Γ
(

v
2

)−1(
π(v− 2)

)− 1
2

(σ2
t )
− 1

2

(
1 +

y2
t

σ2
t (v− 2)

)− v+1
2
)

=T log
(

Γ
(

v + 1
2

)
Γ
(

v
2

)−1(
π(v− 2)

)− 1
2
)
− 1

2

T

∑
t=1

log(σ2
t )−

T

∑
t=1

(
v + 1

2

)
log
(

1 +
y2

t
σ2

t (v− 2)

)

=T log
(

Γ
(

v + 1
2

)
Γ
(

v
2

)−1(
π(v− 2)

)− 1
2
)
− 1

2

( T

∑
t=1

log(σ2
t ) +

T

∑
t=1

(
v + 1

2

)
log
(

1 +
y2

t
σ2

t (v− 2)

))
=T
(

log Γ
(

v + 1
2

)
− log(

v
2
)− 1

2
log(π(v− 2))

)
− 1

2

T

∑
t=1

(
log(σ2

t ) + (1 + v) log
(

1 +
y2

t
σ2

t (v− 2)

))
.
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The equation above represents the log-likelihood function of a GARCH model
with Student-t returns.

3.9 GARCH-type Models for Volatility
Estimation

Some of the drawbacks of the GARCH model are:

• The GARCH model tends to react slowly to large isolated return shocks.
As a result, the model usually over predict volatility (Shumway and
Stoffer, 2006, p.287).

• Since constraints are placed on the model parameters, it results in the
model being too restrictive (Shumway and Stoffer, 2006, p.287).

• The GARCH model assumes that negative and positive returns have
the same effect, as a result of the model being dependent upon past
squared returns (Shumway and Stoffer, 2006, p.287).

Some of the weakness of the GARCH model are similar to those of the
ARCH model described earlier. To overcome some of the shortcomings of
the GARCH model mentioned above, various extensions of the GARCH
model have been proposed. In this study, we look at the Threshold Autore-
gressive Conditional Heteroscedasticity (TARCH), Exponential Weighted
Moving Average (EWMA), Absolute Value Generalised Autoregressive Con-
ditional Heteroscedasticity (AVGARCH), and the Exponential Generalised
Autoregressive Conditional Heteroscedasticity (EGARCH) models.

3.9.1 Exponential GARCH (EGARCH) Model

The GARCH model is not adequate to capture asymmetric volatility. In
1991, Nelson proposed the Exponential GARCH model to deal with the is-
sue of asymmetric volatility. Asymmetric volatility can simply be described
as a condition in which the impact of negative stock price moves are big-
ger on future volatility than that of positive price moves (Sjöholm, 2015).
In many financial literatures, asymmetric volatility is described as a phe-
nomenon in which there are higher market volatility levels in declining
markets than in rising markets. The proposed EGARCH model assumes
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that negative and positive shocks do not have the same effect on volatility.
As a result, the EGARCH model is able to capture asymmetric volatility.
The EGARCH(p,q) model is given as (Tsay, 2005, p.144)

ln(σ2
t ) = α0 +

q

∑
i=1

αi
| yt−i | +γiyt−i

σt−i
+

p

∑
j=1

ln(σ2
t−j), (3.105)

where γ is just a constant. Since we model the log(σ2
t ), then even if the

model parameters are negative, σ2
t will always be positive. More impor-

tantly, the model is able to account for leverage effects, that is, if the relation-
ship between volatility and returns is negative, then γ will be negative. In
financial markets, negative shocks tends to have a bigger impact on volatil-
ity than positive shocks, this condition is known as leverage effects.

3.9.2 Exponential Weighted Smoothing Moving Average
(EWMA) Model

The EWMA model is given as

σ2
t = λσ2

t−1 + (1− λ)y2
t−1, (3.106)

where λ is a constant whose value lies between 0 and 1. The parameter λ

is known as the smoothing parameter. Large values of λ are an indication of
slow decay in the returns series. The EWMA model is a simplified version
of the GARCH model. The advantage of the EWMA model is that more
weight is given to the most recent returns, this implies that current returns
would have more weight than past returns.

3.9.3 Absolute Value Generalised Autoregressive
Conditional Heteroscedastic (AVGARCH) Model

The Absolute Value GARCH (AVGARCH) is also commonly known as the
Taylor-Schwart GARCH (TS-GARCH). The model is given as (Basu and
Saha, 2013, p.263)

σt = α0 +
q

∑
i=1

αi | yt−i | +
q

∑
j=1

β jσt−j. (3.107)
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The AVGARCH model reduces the influence of large observations by using
the absolute value (Basu and Saha, 2013, p.263). The model assumes that
negative and positive shocks have the same effect on volatility.

3.9.4 Threshold ARCH (TARCH) Model

In the TARCH model, volatility is modelled using absolute values. The
TARCH model is closely related to the GJR-GARCH model of Glosten, Ja-
gannathan and Runkle (1993). The variance process in the Threshold ARCH
(1,1) model is given as (Bollerslev, 2008, p.29)

σ2
t = ω + αy2

t−1 + γIt−1[yt−1 < 0]y2
t−1 + βσ2

t−1, (3.108)

where It−1 is known as a dummy variable, if yt−1 is negative it takes a value
of 1 and takes a value of 0 if yt−1 ≥ 0 (Franses, 1998, p.172). When γ > 0,
then negative shocks will have a greater impact on volatility than positive
shocks (Franses, 1998, p.172). Parameter γ is known as the Assymetric term.
If γ = 0, then the model becomes a standard GARCH model. The main ad-
vantage of the TARCH is that it is able to capture asymmetric effects. Three
excellent books on GARCH type models are (Rachev et al., 2008),(Shumway
and Stoffer, 2006), and (Tsay, 2005).

3.10 AutoRegressive-GARCH type Models

In many financial literature, returns are modelled using an Autoregressive
model whose random disturbances follows a GARCH process. Earlier we
described the AR(p) and GARCH type models. We will use the properties
described earlier to form an AR(p) model with GARCH noise. Suppose that
rt are returns series, then an Autoregressive model of order p with GARCH
noise of order p, q is given as (Ferenstein and Gasowski, 2004a, 56).

rt = φ0 + φ1rt−1 + φ2rt−2 + · · ·+ φprt−p + εt,

εt = σtzt,
(3.109)

where εt is the white noise process with mean of zero and variance of one,
and σt is the volatility. The volatility process σt satisfies the recurrence equa-
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tion

σ2
t = ω + α

p

∑
i=1

u2
t−j + β

q

∑
j=1

σ2
t−j,

which is the GARCH(p,q) model described earlier. The volatility process σt

can also be described by any of the models in Equation (3.105),(3.106),(3.107),
and (3.108). In financial literature, the most popular distributions for zt are
the Normal, Student-t, Generalised error and Hyperbolic distributions. The
latter three distributions have heavier tails (leptokurtic property) than the
Gaussian distribution (Ferenstein and Gasowski, 2004a, p.56). The AR(p)-
GARCH type model described above is able to better capture the features
of financial returns series such as leptokurtic property and volatility clus-
tering.

3.11 ARMA Model in State-Space form

The state space approach is also known as the unobserved components time
series models, because they try to incorporate unobserved components into
a statistical time series model (Commandeur and Koopman, 2007, p.133).
The state space approach is an alternative to the Box-Jenkins approach used
for time series analysis. For the state space approach, we assume that if
we have a time series (rt)

n
t=1, then this time series depends on some un-

observed states (xt)n
t=1. So, a model which uses the state space approach

tries to specify a relationship between time series rt and unobserved states
xt. The unobserved state xt encodes the unknown state of the system which
we are studying, and rt represents the observable quantities that dependent
upon the state.
In the Box−Jenkins (ARIMA) framework, seasonal and trend effects are re-
moved from the time series before statistical analysis can be performed. The
state space methods do not require stationarity of a time series (Comman-
deur and Koopman, 2007, p.133). To shows properties of the state space
method, we will consider several examples. Consider an AR(2) model which
is expressed as

rt = φ1rt−1 + φ2rt−2 + εt, where εt ∼ NID(0, σ2). (3.110)

Then, the AR(2) model in Equation (3.110) can be written in state space
form.
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Let the state Xt be defined by Xt =

[
φ1 φ2

1 0

]
Xt−1 +Wt , where Wt =

[
εt

0

]
,

rt = [1 0]Xt, and Xt−1 =

[
rt−1

rt−2

]
. Using the properties above, we have

that

rt = [1 0]Xt = [1 0]
[

φ1 φ2

1 0

]
Xt−1 + Wt (3.111)

rt = [1 0]
[

φ1 φ2

1 0

][
rt−1

rt−2

]
+ Wt

=
[
φ1 φ2

][rt−1

rt−2

]
+ Wt

= φ1rt−1 + φ2rt−2 +

[
εt

0

]
= φ1rt−1 + φ2rt−2 + εt.

Hence, we have shown that the AR(2) model can be written in state space
form.

3.11.1 ARMA(1,1) Model in State Space form

Consider an ARMA(1,1) model given as

rt = φrt−1 + θεt−1 + εt, where εt ∼ NID(0, σ2), (3.112)

where θ and φ are model parameters.
Then, the state space representation of ARMA(1,1) model is

Xt =

[
φ 1
0 0

]
Xt−1 + Wt, (3.113)

where Wt =

[
εt

0

]
and Xt−1 =

[
rt−1

θεt−1

]
.
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Proof:

rt = [1 0]Xt

rt = [1 0]
[

φ 1
0 0

]
Xt−1 + Wt

= [1 0]
[

φ 1
0 0

][
rt−1

θεt−1

]
+

[
εt

0

]

= [φ 1]
[

rt−1

θεt−1

]
+

[
εt

0

]
= φrt−1 + θεt−1 + εt.

(3.114)

Hence we have shown that the ARMA(1,1) model can be written in state
space form.
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3.12 Artificial Neural Network (ANN)

The first concept of a neuron based model was introduced by Walter Pitts
and Warren McCullock in 1943. The model was designed to “mimic" the
human brain. Neurons are nerve cells in the brain that are responsible for
processing and transmitting electrical and chemical signals, as illustrated in
Figure below.

Figure 3.1: A biological neuron (Raschka, 2015, p.18)

Inputs signals arrives at the dendrites, they are then incorporated into the
cell body. Then, the signals are summed together, if the sum exceeds a spec-
ified threshold then the neuron fires (output signal is generated). In 1957,
Frank Rosenblatt introduced the concept of perceptron learning rule based
on the neuron model proposed by Walter Pitts and Warren McCullock. The
perceptron learning rule algorithm proposed by Rosenblatt automatically
learns optimal weights, these weights are then multiplied by the input fea-
tures (Raschka, 2015, p.17-18). Then, a decision will be made whether the
neuron fires or not (Raschka, 2015, p.17-18). In supervised learning and clas-
sification problems, such an algorithm will then be used to predict whether
a given sample falls within one class or another. Summary of the concept of
perceptron learning rule is illustrated in the figure below.
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Figure 3.2: Concept of perceptron (Raschka, 2015, p.24)

The preceding figure shows how the perceptron works. The inputs X are
combined with weights W to obtain the net input. This net input is then
passed through the activation function. The activation function would then
generate an binary output or continuous output depending on whether we
are dealing with a classification or a regression problem. During the learn-
ing phase, the output obtained is used to compute the error of the pre-
dictions and to update the synoptic weights (Raschka, 2015, p.24). These
weights shows the strength of the connections. The larger the value of
the weights the stronger the connections. The types of activation func-
tion that can be used would be discussed later. More formally, the above
can be summarised mathematically. Suppose z is the net input given as
z = w1x1 + · · ·+ wnxn, then the activation function is given as φ(z). This
activation function is a linear combination of input features X and their cor-
responding weights vector W, such that

W =


w1

w2
...

wn

 , X =


x1

x2
...

xn

 (3.115)

Minimizing the Cost Function Using the Gradient Descent Technique

The most important aspect of supervised machine learning algorithm is
the need to define a cost function J(w) that would be optimized during the
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learning process. One of the most commonly used cost function is the sum
of squared error (SSE) which is given as (Raschka, 2015, p.34)

J(W) =
1
2 ∑

i

(
y(i) − φ(z(i))

)2

, (3.116)

where y(i) is the target value of sample i, φ(z(i)) is the activation func-
tion output for sample i, and the term 1

2 is added for convenience reasons
(Raschka, 2015, p.34). Suppose we have a linear activation function

φ(z) = wTx, (3.117)

then this activation function is just an identity function of the net input de-
fined earlier. The main advantage of using a continuous linear activation
function is that the cost function in Equation (3.116) becomes differentiable.
Another advantage of the SSE cost function is that it is convex, as result, we
can use a powerful optimization algorithm known as the gradient descent.
This algorithm is used to find the weights that will minimise the cost func-
tion J(W). The figure below illustrate the principle behind gradient descent
algorithm. Gradient descent can simply be described as climbing down the

Figure 3.3: Gradient descent (climbing down a hill) (Raschka, 2015, p.35)

hill until we reach global or local cost minimum (Raschka, 2015, p.34). At
each iteration, we take a step in the opposite direction of gradient descent,
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and the size of the step is determined by the value of the learning rate λ

(Raschka, 2015, p.34). We update the weights by taking a step away or in
the opposite direction of gradient5J(W) (gradient of the cost function).

W := W +4W. (3.118)

The weight change4W is defined by

4W = −λ4 J(W), (3.119)

where −λ is the learning rate. In order to compute the gradient of the cost
function J(W), we have to compute the partial derivative of J(W) with
respect to individual weights Wj. Therefore, using Equation (3.116) and
φ(z) = wTx, then we have that

∂J
∂Wj

=
∂

∂Wj

1
2 ∑

i

(
y(i) − φ(z(i))

)2

=
1
2 ∑

i
2
(
y(i) − φ(z(i))

) ∂

∂Wj

(
y(i) − φ(z(i))

)
= ∑

i

(
y(i) − φ(z(i))

) ∂

∂Wj

(
y(i) −∑

i
W(i)

j x(i)j
)

= ∑
i

(
y(i) − φ(z(i))

)
(−x(i)j ).

(3.120)

The results above implies that

4W = −λ4 J(W) = −λ ∑
i

(
y(i) − φ(z(i))

)
(−x(i)j ). (3.121)

The weight update is computed using all samples in the training set, hence
this is why the approach is also known as “batch" gradient descent (Raschka,
2015, p.36).

Activation Function

One of the most important aspect to consider when constructing an ANN is
choosing appropriate activation functions for the hidden and output layers.
The activation function should be differentiable, this is because calculating
the backpropagated error signal requires that we should first compute the
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gradient of the activation function. The most commonly used activation
functions are the linear activation function, the hyperbolic tangent, and the
logistic sigmoid function. The hyperbolic tangent is given as

φ(z) =
ez − e−z

ez + e−z =
sinh(z)
cosh(z)

. (3.122)

The hyperbolic tangent is sigmoidal (“s-shaped") and it outputs values in
the range (-1,1). Its derivative is given as

φ(z)′ =
∂

∂z
sinh(z)
cosh(z)

=
∂
∂z sinh(z) ∗ cosh(z)− ∂

∂z cosh(z) ∗ sinh(z)
cosh2(z)

=
cosh2(z)− sinh2(z)

cosh2(z)

= 1− sinh2(z)
cosh2(z)

= 1− tanh2(h).

(3.123)

The logistic sigmoid is given as

φ(z) =
1

1 + e−z . (3.124)

It outputs values in the range (0,1), and its derivation is given as

φ(z)′ =
∂

∂z

(
1

1 + e−z

)
, using the chain rule we obtain

=
e−z

(1 + e−z)2

=
1 + e−z − 1
(1 + e−z)2

=
1 + e−z

(1 + e−z)2 −
1

(1 + e−z)2 , but φ(z) =
1

1 + e−z , so that

= φ(z)(1− φ(z))

(3.125)
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Introduction to Multilayer Neural Network (MLP)
Architecture

The figure below illustrates how we can connect multiple neurons to form a
multilayer feedforward neural network, this type of fully connected neural
network is known as the Multilayer Perceptron (MLP)

Figure 3.4: Concept of Multilayer Perceptron (MLP) (Raschka and Mirjalili,
2017, p.548)

The Multilayer Perceptron (MLP) depicted in Figure 3.4 is made up of one
input layer, one hidden layer, and one output layer. The input layer is fully
connected to the hidden layer, and all units in the hidden layer are fully
connected to the output layer of the network. A neural network with more
than one hidden layer is often referred to as a Deep Artificial Neural Network.
From the preceding figure, a(l)i represents the ith activation unit in the lth

layer of the network. Therefore, a(in)i is the ith unit in the input layer, a(h)i

represents the ith unit in the neural network hidden layer, and a(out)
i rep-

resents the ith unit in the final (output) layer (Raschka and Mirjalili, 2017,
p.549). The weight coefficient W(l)

k,j represents the connection weight be-

tween kth unit in layer l and jth unit in the next layer l + 1. Therefore, W(h)

is the weight matrix that connects the input layer to the hidden layer of the
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network, and W(out) represents the weight matrix that connects the hidden
layer to the output layer.

Forward Propagation

Forward propagation process is used to compute the output of a Multilayer
Perceptron model (MLP). To better understand how forward propagation
works, we summarize the MLP learning process as follows (Raschka and
Mirjalili, 2017, p.553).

• Beginning from the input layer, we forward propagate our training
data through the neural network so that we can generate the output.

• Using the network’s generated output, we compute the error that will
minimise the cost function in Equation (3.116).

• Then, in the final stage we backpropagated the error, and then com-
pute the derivative of the error with respect to individual weights in
the neural network, and then update our model.

The forward propagation process described above can be expressed mathe-
matically as

z(h) = a(in)W(h), (3.126)

a(h) = φ(z(h)), (3.127)

z(out) = a(h)W(out), (3.128)

where z(h) is the net input of the hidden layer, z(out) is the net input of the
output layer, a(h) and W(out) were defined earlier. For more details about the
forward propagation process see (Raschka and Mirjalili, 2017, p.553-556).

Training a Neural Network

The backpropagation algorithm is the most popular algorithm used to train-
ing an artificial neural network. In simple terms, we can define the back-
propagation algorithm as machine learning algorithm used in multilayer
neural networks to compute the partial derivatives of a cost function (Raschka
and Mirjalili, 2017, p.584) . Then, we use those derivatives to learn the
weights for parameterizing that particular multilayer neural network (Raschka
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Figure 3.5: Backpropagation (Raschka and Mirjalili, 2017, p.586)

and Mirjalili, 2017, p.584). The figure above illustrates how the backpropa-
gation algorithm works.

Before we apply the backpropagation algorithm, we first need to apply the
forward propagation process discussed earlier. The first step in backpropa-
gation algorithm is to compute the error of the output layer using :

δ(out) = a(out) − y, (3.129)

where y is the vector of actual values, and a(out) is the activation of the net-
work output layer. Then, the error of the network’s hidden layer is com-
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puted by (Raschka and Mirjalili, 2017, p.587-588)

δ(h) = δ(out)(W(out))(T) ∗ ∂φ(z(h))
∂z(h)

, (3.130)

where ∂φ(z(h))
∂z(h)

is the derivative of the activation function, this activation
function could be one of those described in Equation (3.122),(3.117), and
(3.124). Suppose we choose the logistic sigmoid as the activation function,
then taking the derivative of this activation function, the error of the hidden
layer becomes (Raschka and Mirjalili, 2017, p.588)

δ(h) = δ(out)(W(out))(T) ∗ φ(z)(1− φ(z)). (3.131)

The name backpropagation comes from the fact that we start to compute
the delta (error) from the output layer and then go backward to compute
the delta terms for the preceding layers. After we obtain the δ (errors), we
can now compute the derivation of the cost function in Equation (3.116)
with respect to the weights.

∂

∂W(out)
i,j

J(w) = a(h)j δ
(out)
i , (3.132)

∂

∂W(h)
i,j

J(w) = a(in)j δ
(h)
i . (3.133)

The next step is to a accumulate all the partial derivatives in every layer
and the error of the node in the next layer of the neural network. Expressed
mathematically as
∆(out) = ∆(out) + (a(h))Tδ(out) and ∆(h) = ∆(h) + (a(in))Tδ(h). The last step is
to add the regularization term to the accumulated partial derivatives.

∆(l) = ∆(l) + ρ(l), (3.134)

where ρ(l) is the regularization term. Regularization is a technique used in
machine learning to prevent overfitting. The regularization term could be
L1 or L2 given respectively as

L1 = η
m

∑
i=1
| wi |, (3.135)

L2 = η
m

∑
i=1

w2
i . (3.136)
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The L2 regularization is simply the sum of squares of the weights, while
L1 is the sum of the weights. After we compute the gradients, we can now
be able to update the weights by taking a step in the opposite direction of
gradient for each layer l in the neural network. That is,

W(l) = W(l) − λ∆(l). (3.137)

For more details on how to construct a multilayer perceptron model see
(Raschka, 2015, p.17-47),(Raschka and Mirjalili, 2017, p.565-592).
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Methodology

In this Chapter, we discuss the data to be used in the study. We also look
at the techniques and methods which will be used for data analysis. Lastly,
we will discuss the model diagnostics.

Data

The time series data used in this study was from the Johannesburg Stock
Exchange (JSE). The JSE is the largest and oldest stock exchange in Africa,
with a market capitalisation of around R10 trillion rands as of 2013. It is
located in Sandton, Johannesburg, and was founded on 18 November 1887.
The time series data contains the historical opening, closing, high, and low
prices. The prices are in South African Rands. The log returns are computed
using Equation (3.1). The data used in this study was obtained from Google
finance website. Data to be used is from 02 January 2013 to 04 January 2017.
In this study, we will model financial log-returns using closing prices from
Four JSE listed companies namely

• Netcare Health Limited, Sanlam Limited group, Nedbank Group Lim-
ited, Santam Limited.

4.1 Techniques For Data Analysis

As stated earlier in Chapter 1, statistical time series models such as the Au-
toregressive Moving Average model, State Space ARMA Model, Autore-
gressive Moving Average model with parameters estimated through the

52
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Metropolis Hastings algorithm, Autoregressive GARCH type models, and
an Artificial Neural Network will be used for forecasting stock prices of the
Four JSE listed companies. We will split the data into two training and test-
ing sets, as follows

• Train 500 Test 200

• Train 700 Test 200

Then, our models will be evaluated on how best they can predict the direc-
tion of movement of prices, we will use a Confusion matrix to summarize
the results. The SPA test will be used to choose the “best" model out of all
competing models.

4.1.1 Decay rate and Amplitudes

The stationarity of the ARMA and GARCH models implies that there could
be an initially large component which decays quickly to 0. The rate of decay
is in fact dependent on the initial value and the coefficients, and unfortu-
nately in these models, it affects the amplitude and the variance as well, but
as a kind of positive amplifier. However, the data available does not reflect
the decay but only the steady state, so there is not sufficient data to ensure
that the decay rate and the amplitudes are correct. We do not deal with this
problem in this thesis, since it needs much further investigation, but for our
up/down problem it is not necessary to know the amplitudes, so we defer
the investigation to another context.

4.2 Model Diagnostics and Statistical Tests

(Tsay, 2005, p.36-50), (Box and Jenkins, 1976) suggested that some diagnos-
tics and statistical tests should be carried out to determine if the fitted sta-
tistical time series model is adequate.

Testing for Presence of ARCH or GARCH Effects

Before applying the ARCH or GARCH model, it is important to first test
for the presence of ARCH \ GARCH effects. Suppose we let εt = rt − µt to
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be the residuals of the mean equation described earlier. Then, we can use ε2
t

to detect the presence of ARCH\GARCH effects. Two tests normally used
for testing for the presence of the effects are Ljung-Box test statistic, and the
Lagrange Multiplier test. The Lagrange Multiplier test is equivalent to the
F statistic test for testing that all parameters of a linear regression are equal
to zero (Tsay, 2005, p.114). According to (Andersen et al., 2009, p.g121-124),
the test is applied to the residuals from the fitted conditional mean equation
or to the squared and absolute financial returns. Now

ε2
t = φ0 + φ1ε2

t−1 + · · ·+ φmε2
t−m + et, (4.1)

for t = m + 1, · · · , T, where et is the error term, T denotes the sample size,
and m represent a positive integer. The null hypothesis is that there is no
ARCH effects, that is,

H0 = φ1 = φ2 = · · · = φm = 0. (4.2)

We then have that,

F =
(SSR0 − SSR1)/m

SSR1/(T − 2m− 1)
, (4.3)

where SSR0 = ∑T
t=m+1(ε

2
t − ω̄)2, ω̄ = 1

T ∑T
t=1 ε2

t (mean of squared residu-
als), and SSR1 = ∑T

t=m+1 ê2
t ( where ê2

t represents the least square residuals
of the linear regression we defined earlier). It is important to know that
the F statistic is asymptotically distributed as chi-square distribution with
m degree of freedom (Tsay, 2005, p.114). The decision rule is that we reject
the null hypothesis if F > χ2

m(α). For more details about the Lagrange Mul-
tiplier test and the importance of testing for ARCH effects see (Andersen
et al., 2009, p.121-123), and (Tsay, 2005, p114-115).

Testing for Stationarity

The Augumented Dickey Fuller (ADF) test is used to test for stationarity
of the returns series. Nonstationarity in stock market occurs because stock
prices have no fixed price, they fluctuate depending on many factors, e.g
political events, natural disasters (Tsay, 2005, p.72). The ADF test is based
on the model

∆yt = α + γyt−1 + δt + ∆yt−1ζ1 + ζ2∆yt−2 + · · · ζk∆yk−t + et, (4.4)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4. METHODOLOGY 55

where α is the constant term of the model, ζi are the model parameters, δt

is the time trend, k is the number of lags, and ∆ represents the differencing
operator. The ADF tests the null hypothesis of presence of unit root (nonsta-
tionary) against alternative hypothesis of no unit root (stationarity). From
Equation (4.4), the null hypothesis of unit root is equivalent to letting γ = 0
and the alternative hypothesis of no unit root is equivalent to setting γ > 0.
The test statistic for the ADF test is given as

τ =
γ̂

σγ̂
, (4.5)

where σγ̂ represents the standard error of the coefficient estimate, and γ̂ rep-
resents the estimated coefficient. The decision rule is that we reject the null
hypothesis if the value of the test statistic is less than the critical values for
the 0.05 significance level. The smaller the p-value the stronger the evidence
that the returns series is stationary.

The Phillips Perron (PP) test is another statistical test which is used to test
for the presence of a unit root in a series. It is named after Peter Phillips
and Pierre Perron. It tests the null hypothesis that the series contains a unit
root against the alternative hypothesis that the series was generated by a
stationary process. The PP test has become popular in the analysis of finan-
cial time series data. For a univariate time series y, the PP test tests the null
hypothesis of the presence of a unit root . The test is based on the model

yt = c + δt + ayt−1 + et, (4.6)

where δ and c are the deterministic trend and drift coefficients respectively,
et represents the innovations of the process. The null hypothesis restricts a
to be equal to 1. For a detailed explanation of the Phillips Perron test see the
original work of (Phillips and Perron, 1988).

Testing for Independence

The Ljung-Box test statistic was named after Greta Ljung and George P. Box.
It is a statistical test used to test whether autocorrelations of a particular time
series are different from zero. It tests the null hypothesis that the data are
independently distributed against an alternative hypothesis that the data
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are not independently distributed. Suppose rt and rt−l are returns at time t
and t− l respectively, then the correlation coefficient is given as (Tsay, 2005,
p.31)

ρl =
Cov(rt, rt−l)√

Var(rt)Var(rt−l)
, (4.7)

where Cov(rt, rt−l) is the covariance between rt and rt−l, Var(rt) is the vari-
ance of rt, and Var(rt−l) is the variance of rt−l. For a weakly stationary
series, we have that Var(rt) = Var(rt−l) (Tsay, 2005, p.31). For more details
about the correlation coefficient see (Tsay, 2005, p.30-32). The Ljung Box test
statistic is given as (Tsay, 2005, p.32)

Q(n) = K(K + 2)
n

∑
l=1

ρ̂l
2

K− l
, (4.8)

where K is the size of the sample. It tests the null hypothesis that H0 : ρ1 =

ρ2 = · · · = ρn = 0 against alternative hypothesis Ha : ρi 6= 0. The deci-
sion rule is to reject the null hypothesis if Q(n) > χ2

α, where χ2
α represents

a 100(1− α)th percentile of the well known Chi-square distribution which
has n degrees of freedom. Also note that if the null hypothesis is true, Q(n)
has a Chi-square distribution with n degrees of freedom. If the p-value is
less than the significance level (denoted by α) of 0.05, then we reject the
null hypothesis of independence of residuals and conclude that the model
does not meet the independence assumption. Once the null hypothesis is re-
jected, the proposed model may not fit the data and we should be cautious
when we interpret the results. A small p-value is an indication of strong
evidence against the null hypothesis. For more details about the Ljung Box
test see (Tsay, 2005, p.30-33).

Testing for Normality

One of the most important task in statistical analysis is the need to char-
acterize the variability and location of a data set. This includes using tech-
niques such as Skewness and Kurtosis.

Kurtosis is usually described as the measure of thickness of the tails of a
distribution relative to that of a Gaussian distribution. A data set with a
high kurtosis value tend to have “heavier" tails or many outliers. Similarly,
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a data set with small kurtosis value tend to have few outliers or “light" tails.
Suppose that y is a random variable, then its kurtosis (K) is given as

Kurtosis(K) =
E(y− µ)4

σ4 , (4.9)

where σ and µ are the standard deviation and the expected value of y. For
a Gaussian distribution, kurtosis is equal to three. If kurtosis (K) > 3, then
the distribution of that particular data set has heavy tails and it is highly
peaked around the mean. If kurtosis (K) < 3, then the sample data has a
flatter distribution than that of a Gaussian distribution.
Skewness can be described as the measure of symmetry or lack of symme-
try of a distribution. A distribution is said to be symmetric if it “looks" the
same on both the right and left hand side of the main centre point of the
distribution. The Skewness (S) for a random variable y is given as

Skewness(S) =
E(y− µ)3

σ3 , (4.10)

where σ and µ are the standard deviation and expected value of y. If the
skewness value is equal to zero, it is an indication that the distribution
would be symmetric around the mean. While a negative skewness value
indicates that the distribution will have a long left tail. On the other hand,
a positive skewness value indicates that the distribution will have a long
right tail.

Shapiro Wilk Test

The Shapiro Wilk test was first introduced by Samuel Sanford Shapiro and
Martin Wilk in 1965, hence the name Shapiro Wilk. The Shapiro Wilk test
tests the null hypothesis that the sample y1, y2, · · · , yn comes from a nor-
mally distributed population against an alternative hypothesis that the sam-
ple does not come from a population which is normally distributed. The
Shapiro Wilk test statistics is given as

W =

(
∑n

i=1 aiy(i)
)2

∑n
i=1(yi − ȳ)2 , (4.11)

where ai are constants which are generated from the variances, covariances,
and means of the order statistics of a normal distribution with a sample of
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size n, and y(i) are the ordered sample values (they are arranged from the
smallest y(1) to the largest y(n) ). If the p-value is less than the 0.05 signifi-
cance level, then we reject the null hypothesis of normality. If the data fails
the normality test, then we can state with 95% confidence that the data is
not Gaussian distributed. On the other hand, if the normality assumption is
accepted, then we can conclude that there is no significant departure from
normality. For more details about the Shapiro Wilk test see (Shapiro and
Wilk, 1965).

Testing for Autocorrelations

The Durbin Watson (DW) test statistic is used to detect the presence of au-
tocorrelations in the residuals. It tests the null hypothesis that there is no
significant autocorrelations in the residuals against the alternative hypothe-
sis of the presence of autocorrelations in the residuals. The DW test statistic
is given as

DW =
∑T

t=1
(
et − et−1

)2

∑T
t=1 e2

t
, (4.12)

where et is the error at time step t. The DW test statistic is approximately
equal to 2(1− ρ), where ρ represents the sample autocorrelation of the model
residuals. If ρ = 0, then this is an indication that there is no serial correla-
tion in the residuals, and DW test statistic would be equal to 2. The value
of the DW test statistic always lies between 0 and 4. A DW value near 2
indicate that there is no autocorrelation in the sample. On the other hand,
values approaching 0 are a clear indication of the presence of positive au-
tocorrelations, while values approaching 4 are an indication of presence of
negative autocorrelation. To get conclusive results from the test, the DW
test statistic is compared to the upper and lower critical bounds from the
Durbin Watson significance table. The upper critical value is denoted by du

and the lower critical value by dl. The significance level for the DW test is
0.05. For more details about the Durbin Watson test statistic see the original
paper of (Durbin and Watson, 1951).

Assessing the Adequacy of the Fitted ARMA Model

After fitting any ARMA type model, It is important to examine the model
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residuals to check for model inadequacy (Tsay, 2005, p.50). The residuals
of the fitted model should behave as a white noise process in order for
the fitted model to be considered adequate (Tsay, 2005, p.50). Suppose the
estimate of φi is denoted by φ̂i and of θi is denoted by θ̂i, then the fitted
ARMA(1,1) model is given as

r̂t = φ̂0 + φ̂1rt−1 − θ̂1εt−1 + εt, (4.13)

then the associated residual is given as (Tsay, 2005, p.49-50)

ε̂t = rt − r̂t, (4.14)

where rt is given by Equation (3.26). The series
{

ε̂t
}

is known as the residual series.
The residuals in Equation (4.13) are assumed to be white noise, this implies
that they are independent and identically distributed from a Gaussian dis-
tribution with a mean of zero and constant variance. The Ljung-Box test and
the ACF are used to check how close the residuals are to the white noise pro-
cess (Tsay, 2005, p.50). For more details on checking for model adequacy see
(Tsay, 2005, p.49-51).

Significance of Coefficients of ARMA Model

For each estimated ARMA model coefficient, the Z score is calculated as

Z-score =
Estimated coefficient

Standard error of coefficeint
. (4.15)

If | Z-score |> 1.96, then the estimated ARMA model coefficient is signif-
icantly different from zero. It is well known that 95% of the area under
the normal curve lies within 1.96 standard deviations of the expected value
(mean). So, by the central limit theorem we construct the confidence inter-
val using 1.96. Large Z-scores negative or positive are an indication that the
estimated coefficients are significantly different from zero.

Evaluating the Performance of the Model

A confusion matrix is a statistical technique used for summarizing the per-
formance of a classification model. It gives us a general idea of how the
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model is performing. Classification can simply be described as the ratio of
correct model predictions to total number of all predictions made. Suppose
that the predictions made by a classification algorithm is given on the table
below:

Predicted Down Up
Down γ β
Up ρ θ

Table 4.1: A Confusion Matrix

Where γ, β, ρ, θ ∈ N. Then, from Table 4.1, we can deduce the following
properties of a Confusion Matrix:

• Accuracy: It represents the percentage of all correct predictions made
by the classification algorithm, and it is given as:

Accuracy =
γ + θ

γ + θ + β + ρ
. (4.16)

• Misclassification: It represents the percentage of all incorrect predic-
tions made by the classifier, and it is given as

Misclassification = 1− γ + θ

γ + θ + β + ρ
. (4.17)

The misclassification rate is also known as the Error rate. There are
other statistics such as Sensitivity, Specificity, and Prevalence which
can be obtained from the output of a Confusion matrix, but in this
study, we will only focus on the accuracy and misclassification rate. In
financial stock returns forecasting, classification is done by predicting
whether the next day’s stock returns price will be lower or higher than
the stock returns price at the previous day.
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Superior Predictive Ability (SPA) Test

The Superior Predictive Ability test also known as the Reality Check is a sta-
tistical test used to determine whether any model in a given set of models
outperforms the benchmark model. It was first introduced by Peter Hansen
in 2001. The procedure takes losses as inputs. As a result, smaller val-
ues are favoured over large values. To implement the procedure we need
n−element array of benchmark model losses and n by m element array of
model losses. The SPA tests the null hypothesis that no model outperforms
or is better than the benchmark model, that is,

H0 = m
i

ax E[Li] ≥ E[Lbm], (4.18)

where Lbm are losses from the benchmark model, and Li are losses from
model i. The p-values from the SPA test represents the probability that the
null hypothesis is true. The test has three p-values: the lower, consistent,
and upper p-value. Each of the p-value represents different re-centerings of
the model losses. we should have that

lower p-value ≥ consistent p-value ≤ upper p-value (4.19)

We reject the null hypothesis if the p-values are less than the 0.05 signifi-
cance level. The p-value is a probability that measures the “amount" of evi-
dence we have against the null hypothesis of a statistical test. For more de-
tails about the SPA test see the original papers (Hansen et al., 2003), (Hansen
et al., 2001).
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Data Analysis and Results

In this chapter, results and analysis of the fitted models will be discussed.
The statistical software packages used for data analysis are Python 2 and
Python 3. Analysis of the JSE stock returns using ARMA-type time se-
ries models is performed in six steps, that is, preliminary tests on returns
series, model fitting, model diagnostics, assessing adequacy of the fitted
model, evaluating the performance of the model, and selecting the overall
best model using Superior Predictive Ability test. Preliminary tests are car-
ried out on the returns series, this includes tests such as ADF test, PP test,
Shapiro Wilk test for normality, and LM test for testing for ARCH effects.
The models would then be fitted to the returns series after the appropriate
statistical preliminary tests have been carried out. Diagnostics tests are car-
ried out on the residuals of the fitted model. The ACF is then used to assess
the adequacy of the fitted time series model. Accuracy of the models is eval-
uated using a Confusion Matrix, and the SPA test is then used to choose the
overall “best" model.

62
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Plots of the Actual Closing Price Series

Figure 5.1: Daily closing prices series of JSE listed companies

From Figure 5.1 above, we can see that the mean and the variance of the
closing prices are not asymptotically constant, this implies that the series
are not stationary. So, we have to perform some transformations in order to
make the time series stationary.
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Plots of the Log Returns Series

Figure 5.2: Log returns series of JSE listed companies

It can be seen from the time series plots in Figure 5.2 that periods of low
volatility tend to be followed by period of low volatility and periods of
high volatility tend to be also followed by period of high volatility. This
phenomenon is common in financial markets and is known as Volatility clus-
tering.

Table 5.1: Summary statistics for the entire returns series

Mean Skewness Kurtosis
Netcare 0.000132 -0.307577 2.937779
Sanlam 0.000349 -0.339099 2.238172
Nedbank 6.78049469903e-05 -0.221069 2.642788
Santam 0.000254 0.000254 6.127645
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As stated earlier in Chapter 2, the kurtosis of the Normal distribution is
equal to 3. For Santam group limited returns series, the kurtosis is greater
than that of a Normal distribution, as a result, we say that the return se-
ries exhibits excess kurtosis. In simple terms, this implies that the San-
tam returns series data has heavy tails. We conclude that the distribution
of Santam Group Limited returns series is leptorkutic since its kurtosis is
larger than 3. Leptorkutosis is a common phenomenon in financial time se-
ries data. For Netcare group limited, Sanlam limited, and Nedbank group
limited returns series the kurtosis is close to that of a Normal distribution,
so in this case the distribution of these returns series does not have heavy
tails. The Normal distribution is symmetric around the mean, as a result
its skewness parameter is zero. For Nedbank, Sanlam, and Netcare returns
series the skewness parameter is negative, this implies that their distribu-
tion has longer negative tails. The skewness parameter for Santam group
returns series is positive and almost close to zero, so the skewness value is
close to that of a Normal distribution.
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5.1 ARMA(1,1) Model Results

Train:500 Test:200

Preliminary tests for the ARMA(1,1) model

Table 5.2: Testing for Stationarity of returns series using Augmented
Dickey Fuller (ADF)

Stock Test statistic P-value
Netcare -9.050 0.000
Sanlam -9.272 0.000
Nedbank -8.738 0.000
Santam -9.272 0.000

Critical Values: −3.44(1%), −2.86(5%),−2.57(10%)

For all the returns series data, the ADF test statistic is less than the critical
value at 1%, 5%, and 10% significance levels. This implies that we reject
the null hypothesis of a unit root and conclude that the returns series data
for all Four JSE listed companies are stationary. The stationary assumption
simply means that the time series fluctuates around a common mean. The
p-values are also extremely small, suggesting that we have strong evidence
against the null hypothesis of presence of a unit root.

Table 5.3: Testing for Stationarity of returns series using Phillips Perron
test

Stock Test statistic P-value
Netcare -36.361 0.000
Sanlam -35.677 0.000
Nedbank -36.165 0.000
Santam -39.027 0.000

Critical Values: −3.44(1%), −2.86(5%),−2.57(10%)

The Phillips Perron test is another statistical test which can be used to test
for stationarity of a time series. From Table 5.3, we can see that the test
statistic for all the returns series is less than the critical values at 1%, 5%, and
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10% significance levels. As a result, stationary of the series has be achieved.
These results confirms the findings of the ADF test shown earlier in Table
5.2. We are confident that all the returns series are stationary.

Figure 5.3: Summary results of ARMA(1,1) fit on Netcare returns series

From the output of the ARMA(1,1) model in Figure 5.3 above, we can see
that the estimated coefficients lies within the 95% confidence interval, so we
are 95% confident that the true parameters are within the computed inter-
vals. The standard errors are a measure of how precise our estimates are.
From the results above, we can see that the computed standard errors are
relatively small. Small standard errors are an indication that the estimated
model’s coefficients are close to the true values. For the ARMA(1,1) model
to be considered stationary, all the roots of the model’s characteristic equa-
tion should be greater than one in unity. From the output above, we can
see that the roots of the characteristic equation are greater than 1 in modu-
lus. Hence, the ARMA(1,1) model fit on Netcare returns series is stationary
(does not have a unit root). The estimated coefficients are significantly dif-
ferent from zero since all the Z scores are greater than 1.96. The estimated
ARMA(1,1) model fitted on Netcare returns series is given by

rt = 0.3842rt−1 − (−0.5170)εt−1 + εt. (5.1)
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Figure 5.4: Summary results of ARMA(1,1) fit on Sanlam returns series

From the output of the ARMA(1,1) model above, both the Auto Regressive
and the Moving Average coefficients lies within 95% confidence interval.
The values of the standard errors are close to zero, this is an indication that
the estimated AR and MA coefficients are close to the true value. The roots
of the characteristic equation are greater than 1 in modulus, so this shows
that the ARMA(1,1) model is stationary. The Z scores for both the Autore-
gressive and Moving Average parameters are less than 1.96, so there is room
for further improvement of the model since the estimated coefficients are
not significantly different from zero. The estimated ARMA(1,1) model for
Sanlam return series is given as

rt = 0.0399rt−1 − (−0.1279)εt−1 + εt. (5.2)
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Figure 5.5: Summary results of ARMA(1,1) fit on Santam return series

As seen in Figure 5.5, the estimated ARMA(1,1) model’s coefficients lies
within the 95% confidence interval. So, we are 95% confident that the true
parameters are within the computed intervals. The estimated standard er-
rors are close to 0, so, this shows that the estimated model parameters are
close to the true values. Since the roots of the characteristic equation are
greater than 1 in modulus, then the ARMA(1,1) model is stationary. The
Z-score for the Autoregressive (AR) parameter is greater than 1.96, that is,
| Z = 42.562 |> 1.96. So, the estimated AR parameter is significantly differ-
ent from zero. For the Moving Average (MA) parameter, the Z score is also
greater than 1.96, so the estimated MA parameter is significantly different
from zero. The estimated ARMA(1,1) model fitted on Santam returns series
is given as

rt = 0.9308rt−1 − (0.9789)εt−1 + εt. (5.3)
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Figure 5.6: Summary results of ARMA(1,1) fit on Nedbank returns series

Summary results of the ARMA(1,1) model fit on Nedbank returns series in
Figure 5.6 shows that the coefficients of the estimated model lies within 95%
confidence interval. Since the estimated standard errors are close to 0, we
can conclude that the estimated model parameters are close to the true pa-
rameter values. The ARMA(1,1) model fitted on Nedbank returns series is
stationary since all the roots of the characteristic equations are greater than
1 in Modulus. Since all the Z scores are greater than 1.96, then this implies
that both the estimated Autoregressive and the Moving average coefficients
are significantly different from zero. The estimated ARMA(1,1) model fitted
on the Nedbank returns series is given by

rt = 0.4345rt−1 − (−0.5993)εt−1 + εt. (5.4)

Assessing the Adequacy of the Fitted ARMA(1,1) Models

The Autocorrelation Function (ACF) plots of the residuals from the fitted
ARMA(1,1) models in Figure 5.7,5.8,5.9 shows that the spikes do not ex-
ceeds the significance bounds from the first lag to the tenth lag. The ACF
of the residuals also do not show any pattern. This implies that the residu-
als are independent. Hence, the ACF of the residuals confirms that we did
not misspecified the model. The ACF plot in Figure 5.10 shows one spike
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around the 9nth lag which slightly exceeds the significance bound, but over-
all we can see that the residuals appears to be independent.

Figure 5.7: ACF plot of residuals of ARMA(1,1) model fitted on Netcare
returns series

Figure 5.8: ACF plot of residuals of ARMA(1,1) model fitted on Santam
returns series
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Figure 5.9: ACF plot of residuals of ARMA(1,1) model fitted on Nedbank
returns series

Figure 5.10: ACF plot of residuals of ARMA(1,1) model fitted on Sanlam
returns series

Table 5.4: Independence test of residuals of ARMA(1,1) model fitted on
Netcare series

Lag Ljung statistic P-value
0 0.0179 0.8935
5 2.4368 0.8755
10 2.9631 0.9912
15 5.4338 0.9931
20 6.0147 0.9994
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From Table 5.4, the results of the Ljung Box test shows that the residuals
from the fitted model are independent at 5% significance level since all p-
values are greater than the 0.05 level of significance. Hence, we conclude
that the residuals of the ARMA(1,1) model meets the independence assump-
tion.

Table 5.5: Independence test of residuals of ARMA(1,1) model fitted on
Sanlam returns series

Lag Ljung statistic P-value
0 0.0011 0.9733
5 2.6204 0.8548
10 11.0985 0.4350
15 20.6624 0.1919
20 26.8007 0.1775

All the p-values are greater than the 0.05 significance level, so we fail to
reject the null hypothesis of independence. Hence, the residuals from the
ARMA(1,1) model fitted on Sanlam return series are independent.

Table 5.6: Independence test of residuals of ARMA(1,1) model fitted on
Santam returns series

Lag Ljung statistic P-value
0 0.15208 0.2175
5 3.4569 0.7497
10 3.9195 0.9722
15 8.4999 0.9326
20 11.6163 0.9494

From Table 5.6, it is clear that the residuals of the model are independent
since all the p-values are greater than the 0.05 significance level. Large p-
values are an indication of strong evidence against the alternative hypothe-
sis.
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Table 5.7: Independence test of residuals of ARMA(1,1) model fitted on
Nedbank returns series

Lag Ljung statistic P-value
0 0.0267 0.8703
5 2.7699 0.8371
10 12.5540 0.3235
15 25.6425 0.0592
20 38.3579 0.0117

The p-values for the Ljung Box test statistic for lags 1 through 19 are well
above the 0.05 significance level. This is an indication of independence
of the model’s residuals. However, the p-value for Ljung Box test at lag
20 is less than the 0.05 significance level, indicating some degree of non-
independence of residuals of the fitted ARMA(1,1) model.

Table 5.8: Testing for autocorrelation of residuals from the fitted
ARMA(1,1) model

Stock Durbin Watson test statistic
Netcare 1.9982
Santam 2.0882
Sanlam 1.9988
Nedbank 2.0105

As seen in Table 5.8, all the DW test statistic values are close to 2. This is an
indication that the the residuals from the fitted ARMA(1,1) models do not
have any significant autocorrelation.
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Histogram of residuals of ARMA(1,1) fit on Netcare return series

Histogram of residuals of ARMA(1,1) fit on Santam return series

Histogram of residuals of ARMA(1,1) fit on Sanlam return series

Histogram of residuals of ARMA(1,1) fit on Nedbank return series

Figure 5.11: Histograms of residuals from the ARMA(1,1) models
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Figure 5.11 shows the histogram of residuals (green) from the fitted ARMA(1,1)
models and probability density function (pdf) whose mean is zero and a
standard deviation of residuals. As seen in Figure 5.11, the residuals of
ARMA(1,1) model fit on Netcare returns series has a few outliers in both
the left and right side of the centre of the distribution. But, the distribu-
tion of the residuals seems to be symmetric. The residuals of ARMA fit on
Santam series are centered around the mean suggesting some bell shaped
characteristic. For ARMA(1,1) fit on Nedbank returns series, residuals are
clustered around the mean and are slightly skewed to the right of the distri-
bution due to the presence of some outliers.

Results for ARMA(1,1) Model’s Predictions

The graphs in Figure 5.12 and 5.13 shows the predicted returns series using
ARMA(1,1) model. The Confusion matrix in Table 5.9,5.10,5.11, and 5.12
shows the accuracy of the fitted ARMA(1,1) model in predicting whether
the next day’s stock return price will go down or up.
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Figure 5.12: Daily returns series predictions using ARMA(1,1) model

From Figure 5.12 above, blue indicates the actual returns and yellow indi-
cates the predicted returns. In Figure 5.12, the top panel shows that the
ARMA(1,1) model was able to capture the volatility clusters well as com-
pared to the bottom panel.

Predicted Down Predicted Up
True Down 75 19
True Up 27 79

Accuracy= 77%

Table 5.9: Confusion Matrix for ARMA(1,1) predictions of Netcare returns
series
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Predicted Down Predicted Up
True Down 68 39
True Up 25 68

Accuracy= 68%

Table 5.10: Confusion Matrix for ARMA(1,1) predictions of Sanlam Ltd
returns series

The confusion matrix in Table 5.9 shows that the ARMA(1,1) model achieved
a relatively “good” accuracy of 77% in terms of predicting the direction of
movement of Netcare Ltd returns series. On the other-hand, the model
achieved an accuracy of 68% for the Sanlam Ltd returns series as seen in
Table 5.10.

Figure 5.13: Daily returns series predictions using ARMA(1,1) model
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In Figure 5.13, the top panel shows that the ARMA(1,1) model did not ad-
equately capture the volatility clusters, but according to (Hansson, 2017,
p.23), better capturing variance process of the series does not necessarily
imply that we will have better forecasts. The model seems to be operating
around the mean of the series. By visual investigation, there seems to be
high variance in the predictions of Nedbank Group series as seen in the bot-
tom panel in Figure 5.13. The ARMA(1,1) model has successfully captured
the variance at the end of the series .

Predicted Down Predicted Up
True Down 60 41
True Up 29 70

Accuracy= 65%

Table 5.11: Confusion Matrix for ARMA(1,1) predictions of Santam Ltd
returns series

Predicted Down Predicted Up
True Down 73 28
True Up 25 74

Accuracy=73.5%

Table 5.12: Confusion Matrix for ARMA(1,1) predictions of Nedbank Ltd
returns series

From the confusion matrix in Table 5.11 and Table 5.12, the ARMA(1,1)
model has achieved an accuracy of 65% and 73.5% for the Santam Ltd and
the Nedbank Group Ltd returns series respectively.
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Table 5.13: Summary results of predictions of the ARMA(1,1) model

JSE listed company Accuracy
Netcare Group Ltd 77%
Sanlam Group Ltd 68%
Santam Ltd 65%
Nedbank Group Ltd 73.5%

From Table 5.13, we can see that the highest accuracy achieved by the ARMA(1,1)
model is 77% for the Netcare Group Ltd returns series and the lowest accu-
racy is 65% for the Santam Ltd returns series.

Discussion

Using steps suggested by (Box and Jenkins, 1976), we constructed the ARMA(1,1)
model and then used the estimated model to make predictions. The confu-
sion matrix shows that the ARMA(1,1) model has a good ability to predict
whether the next day’s return price will up or down.

5.2 AR(3)-AVGARCH(1,1)-Student-t Model
Results

Train:500 Test:200

Preliminary Statistical Tests on the Returns Series
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Table 5.14: Test for normality of returns using Shapiro Wilk test

Stock Shapiro Wilk test statistic Kurtosis Skew-
ness

Netcare 0.9806
(0.000003)

1.5979 -0.07229

Santam 0.9506
(0.00000)

3.7361 -0.3081

Sanlam 0.9833
(0.00002)

1.1667 -0.1727

Nedbank 0.9922
(0.01055)

0.7639 0.1072

Notes: p-values of the test are in parentheses

Table 5.14 shows values of the Shapiro Wilk test statistic computed from re-
turns of JSE listed companies, with p-values in parentheses. There is clear
evidence of non-normality of all the returns series since the p-values are all
less than the 0.05 level of significance. The kurtosis of a Gaussian distri-
bution is equal to 3, however from the results above it is clear that all the
returns series have a kurtosis value which is either less than or greater than
that of a Gaussian distribution. A Gaussian distribution has a skewness
value of 0, for the Netcare, Santam, and Sanlam returns series the skew-
ness is negative, while for Nedbank returns series the skewness is positive
suggesting that there is more weight in the right tail of the constructed dis-
tribution. In all cases the null hypothesis of normality of returns series is
rejected.

Table 5.15: Testing for ARCH effects in the returns using Lagrange Multi-
plier test

Stock Lagrange Multiplier test statistic P-value
Netcare 36.0644 0.0069
Santam 50.1404 0.00007
Sanlam 38.3782 0.0034
Nedbank 17.6544 0.4786

Table 5.15 shows values of the Lagrange Multiplier (LM) test for ARCH ef-
fects in the returns series. The null hypothesis of no ARCH effects is rejected
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for Netcare, Santam, and Sanlam return series since all the p-values are less
than 0.05 level of significance. However, the p-value for LM test on Ned-
bank return series is greater than 0.05 level of significance, so we fail to
reject the null hypothesis of no ARCH effects.

Netcare Limited Group: Estimated
AR(3)-AVGARCH(1,1)-Student-t model

Figure 5.14: Summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t model fit on Netcare returns series

Figure 5.14 shows summary output of AR(3)-AVGARCH(1,1)-Student-t model.
The standard errors of the mean and volatility models are extremely small,
this indicates that the estimated parameters of the AR(3)-AVGARCH(1,1)-
Student-t model are close to the true parameters. The degree of freedom
parameter ν(nu) = 5.11, hence confirming non-normality of returns. The
volatility model’s parameter beta (β) is equal to 0.7890, this value is rela-
tively large indicating that the impact of last period’s variance to the cur-
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rent conditional variance is large. The last two parameters of the mean
model are statistically insignificant since their t-statistics are less than two.
So, they do not provide significant information to the model. The AR(3)-
AVGARCH(1,1)-Student-t model estimated for the Netcare Group Ltd re-
turns series is of the form

rt = 0.0016853 + (−0.1109)rt−1 + (−0.0532)rt−2 + (−0.0465)rt−3 + εt,
(5.5)

where the error term εt = σtzt, such that zt is a Student-t process with (v ≈
5) degree of freedom and the conditional variance

σ2
t = 0.0013133 + 0.1761 | ε2

t−1 | +0.7890σ2
t−1, (5.6)

where εt represents the error term in the regression model.

Post-estimation diagnostics for the fitted AR(3)-AVGARCH(1,1)-Student-
t model

Table 5.16: Diagnostics on standardised residuals of AR(3)-
AVGARCH(1,1)-Student-t model

ARCH effects Durbin Watson Ljung Box
20.2833
(0.3171)

1.9335 18.1114
(0.6419)

Notes: p-values of the tests are in parentheses

The Durbin Watson test statistic value is close to 2, this is an indication
of non-autocorrelation of the standardised residuals. On the other hand,
the p-values for the ARCH effects and Ljung box independence tests are
all greater than 0.05 level of significance, suggesting that the standardised
residuals have no ARCH effects and they are independent. These results
suggests that the AR(3)-AVGARCH(1,1)-Student-t model is adequate for
forecasting Netcare returns series.
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Figure 5.15: Netcare Group Ltd returns series predictions using AR(3)-
AVGARCH(1,1)-Student-t model

Predicted Down Predicted Up
True Down 76 18
True Up 26 80

Accuracy= 78%

Table 5.17: Confusion Matrix for AR(3)-AVGARCH(1,1)-Student-t
model’s predictions of Netcare Group Ltd returns series

Figure 5.15 shows the actual returns (blue lines) and predicted returns (yel-
low lines) obtained using a AR(3)-AVGARCH(1,1)-Student-t model. The
confusion matrix presented in Table 5.17 shows that the AR(3)-AVGARCH(1,1)-
Student-t model has a good ability to predict the direction of stock returns
since the model achieved a relatively high accuracy of 78%.
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Santam Limited: Estimated AR(3)-AVGARCH(1,1)-Student-t
model

Figure 5.16: Summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t model fit on Santam group returns series

Figure 5.16 shows the estimated AR(3)-AVGARCH(1,1)-Student-t model’s
parameters together with their corresponding standard errors. The stan-
dard errors are a measure of how precise our estimated parameters are. The
standard errors for the parameters of the mean equation (AR(3) model) and
the volatility (AVGARCH(1,1)-Student-t) model are extremely small, this
suggests that the estimated parameters are close to the true values. The de-
gree of freedom parameter is relatively small (about 3), this confirms non-
normality of the returns series. The constant parameter and the first param-
eter of the mean equation (AR model) are statistically insignificant since
their t-values are less than 2, suggesting that they do not provide significant
information to the model.
The estimated AR(3)-AVGARCH(1,1)-Student-t model for Santam Group
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Ltd returns series is of the form

rt = 0.00012019 + (−0.0853)rt−1 + (−0.0041582)rt−2 + 0.0189rt−3 + εt,
(5.7)

where εt = σtzt , and zt is a Student-t distributed process with v ≈ 3 (de-
grees of freedom). The conditional variance process is given as

σ2
t = 0.0020311 + 0.1707 | ε2

t−1 | +0.7639σ2
t−1. (5.8)

Post-estimation diagnostics for the fitted AR(3)-AVGARCH(1,1)-Student-
t model

Table 5.18: Diagnostics on standardised residuals of AR(3)-
AVGARCH(1,1)-Student-t model

ARCH effects Durbin Watson Ljung Box
20.2662
(0.3180)

2.0372 13.0417
(0.9072)

Notes: p-values of the tests are in parentheses

Based on the p-value of the Ljung Box test statistic at lag 20, one can not
reject the null hypothesis of independence of the residuals. Furthermore,
the p-value for Lagrange multiplier test is greater than 0.05 level of signifi-
cance, this suggests that there are no remaining ARCH effects in the resid-
uals series. If the residuals are uncorrelated, the Durbin Watson test statis-
tic value should be close to 2, in our case, it is 2.0372, therefore we have
strong evidence that the residuals from AR(3)-AVGARCH(1,1)-Student-t fit
on Santam return series are uncorrelated. Since none of the statistical tests
is significant, this suggests that the AR(3)-AVGARCH(1,1)-Student-t fits the
Santam returns series “well”.
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Figure 5.17: Santam Group returns series predictions using AR(3)-
AVGARCH(1,1)-Student-t model

Predicted Down Predicted Up
True Down 74 27
True Up 30 69

Accuracy= 71.5%

Table 5.19: Confusion Matrix for AR(3)-AVGARCH(1,1)-Student-t
model’s predictions of Santam Group returns series

Predictions obtained using AR(3)-AVGARCH(1,1)-Student-t model are shown
in Figure 5.17. Although the model did not capture periods of high variance
well, this does not necessarily lead to poor forecasts (Hansson, 2017, p.g 23).
As seen in the confusion matrix presented in Table 5.19, the model achieved
a good accuracy (about 71.5%).
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Sanlam Group Limited: Estimated
AR(3)-AVGARCH(1,1)-Student-t model

Figure 5.18: Summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t model fit on Sanlam group returns series

Based on the small standard errors for the estimated parameters, both the
mean and the volatility model’s estimated parameters are close to the true
values. The t-statistics for the second and third parameter of the mean
model (AR(3)) are statistically insignificant. The degree of freedom pa-
rameter (ν) is relatively small (about 6), indicating non-normality of the re-
turns. From the output in Figure 5.18, the estimated AR(3)-AVGARCH(1,1)-
Student-t model for the Sanlam Group returns series is

rt = 0.001048 + (−0.1088)rt−1 + (−0.0210)rt−2 + (−0.0186)rt−3 + εt, (5.9)

where the error term is expressed as εt = σtzt, and zt represents a Student-t
distributed process with (v ≈ 6) degrees of freedom. The conditional vari-
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ance is given as

σ2
t = 0.00085291 + 0.0639 | ε2

t−1 | +0.9011σ2
t−1. (5.10)

Table 5.20: Diagnostics on standardised residuals of AR(3)-
AVGARCH(1,1)-Student-t model

ARCH effects Durbin Watson Ljung Box
22.8606
(0.1960)

1.9574 26.5428
(0.1865)

Notes: p-values of the tests are in parentheses.

The Ljung Box test for independence of the standardised residuals at lag 20
has a p-value greater than 0.05 level of significance, suggesting that we can
not reject the null hypothesis of independence of the standardised residu-
als. Since the p-value for the Lagrange Multiplier test is greater than the 5%
level of significance, this suggests that there are no ARCH effects remaining
in the standardised residuals. On the other hand, the DW test suggests that
the residuals are uncorrelated since the test statistic is very close to 2. Con-
sequently, the fitted AR(3)-AVGARCH(1,1)-Student-t model is adequate for
forecasting stock returns of Sanlam Group Limited.
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Figure 5.19: Sanlam Group Ltd returns series predictions using AR(3)-
AVGARCH(1,1)-Student-t model

Predicted Down Predicted Up
True Down 69 38
True Up 24 69

Accuracy= 69%

Table 5.21: Confusion Matrix for AR(3)-AVGARCH(1,1)-Student-t
model’s predictions of Sanlam Group Ltd returns series

As seen in Figure 5.19, the variance of Sanlam Group Ltd predictions seems
to be similar to that in Figure 5.15. Table 5.21 shows that the AR(3)-AVGARCH(1,1)-
Student-t model has a fairly adequate ability to accurately predict whether
the next day’s return price will go down or up.
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Nedbank Group Limited: Estimated
AR(3)-AVGARCH(1,1)-Student-t model

Figure 5.20: Summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t fit on Nedbank group returns series

Figure 5.20 shows the estimated parameters of the AR(3)-AVGARCH(1,1)-
Student-t model and their corresponding standard errors. All the estimated
coefficients lies within the 95% confidence interval, this suggests that we are
95% confident that the true parameters lies within the computed intervals.
Small standard errors are an indication that our estimated coefficients are
close to the true values. Also notice that the constant parameter and the
last parameter of the mean model are statistically insignificant. This implies
that they can be dropped from the model as they do not provide useful in-
formation in the model. The degree of freedom parameter ν is quite high
(about 15), this suggests that the distribution of the returns is closer to the
normal distribution. For the Nedbank returns series, we obtain the follow-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. DATA ANALYSIS AND RESULTS 92

ing AR(3)-AVGARCH(1,1)-Student-t model

rt = 0.00054678 + (−0.1281)rt−1 + (−0.0842)rt−2 + 0.0119rt−3 + εt. (5.11)

The model errors εt = σtzt, such that zt is a Student-t distributed process
with v ≈ 15 degrees of freedom. Furthermore, the conditional variance
model is of the form

σt = 0.002347 + (3.7599e− 14) | ε2
t−1 | +0.8315σ2

t−1. (5.12)

Table 5.22: Diagnostics on standardised residuals of AR(3)-
AVGARCH(1,1)-Student-t model

ARCH effects Durbin Watson Ljung Box
13.3214
(0.4346)

1.9616 25.0738
(0.2440)

Notes: p-values of the tests are in parentheses.

The p-values for the Lagrange Multiplier (at lag 20) and the Ljung Box test
are 0.4346 and 0.2440 respectively, they are relatively large and are greater
than the 0.05 level of significance. Hence, this suggests that the standardised
residuals are independent and have no ARCH effects. The Durbin Watson
test statistic is close to 2, this indicates that there are no correlations in the
residuals. Consequently, the fitted AR(3)-AVGARCH(1,1)-Student-t is ade-
quate for forecasting stock returns of Nedbank Group Limited.
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Figure 5.21: Nedbank Group Ltd returns series predictions using AR(3)-
AVGARCH(1,1)-Student-t model

Predicted Down Predicted Up
True Down 66 35
True Up 26 73

Accuracy= 69.5%

Table 5.23: Confusion Matrix for AR(3)-AVGARCH(1,1)-Student-t
model’s predictions of Nedbank Group Ltd returns series

As seen in Figure 5.21, when predicting Nedbank Group returns series, the
AR(3)-AVGARCH(1,1)-Student-t model seems to have captured the volatil-
ity clustering well especially at the end of the series. However, the ability
to capture the variance of the series does not necessarily results in better
forecast (Hansson, 2017, p.g 23). The results of the AR(3)-AVGARCH(1,1)-
Student-t model’s ability to predict the direction of movement of returns
prices is presented in Table 5.23. The model achieved an “acceptable” accu-
racy of 69.5%.
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Table 5.24: Summary accuracy results of AR(3)-GARCH type models

Prediction accuracy AR(3)-GARCH type models
Stock Model Distribution Accuracy (%)
Netcare AR(3)-GARCH(1,1) Normal 76.5%

AR(3)-EGARCH(1,1) Student-t 78.5%
AR(3)-EWMA Normal 77.5%
AR(3)-EWMA Student-t 77.5%
AR(3)-TARCH(1,1,1) Normal 74.5%
AR(3)-TARCH(1,1,1) Student-t 78%
AR(3)-AVGARCH(1,1) Normal 74.5%
AR(3)-AVGARCH(1,1) Student-t 78%

Santam AR(3)-GARCH(1,1) Normal 66%
AR(3)-EGARCH(1,1) Student-t 70.5%
AR(3)-EWMA Normal 68%
AR(3)-EWMA Student-t 67.5%
AR(3)-TARCH(1,1,1) Normal 65.5%
AR(3)-TARCH(1,1,1) Student-t 72%
AR(3)-AVGARCH(1,1) Normal 65%
AR(3)-AVGARCH(1,1) Student-t 71.5%

Sanlam AR(3)-GARCH(1,1) Normal 69%
AR(3)-EGARCH(1,1) Student-t 65.5%
AR(3)-EWMA Normal 67%
AR(3)-EWMA Student-t 68.5%
AR(3)-TARCH(1,1,1) Normal 70%
AR(3)-TARCH(1,1,1) Student-t 70%
AR(3)-AVGARCH(1,1) Normal 68.5%
AR(3)-AVGARCH(1,1) Student-t 69%

Nedbank AR(3)-GARCH(1,1) Normal 68.5%
AR(3)-EGARCH(1,1) Student-t 76%
AR(3)-EWMA Normal 69%
AR(3)-EWMA Student-t 70%
AR(3)-TARCH(1,1,1) Normal 68.5%
AR(3)-TARCH(1,1,1) Student-t 69%
AR(3)-AVGARCH(1,1) Normal 68.5%
AR(3)-AVGARCH(1,1) Student-t 69.5%

Table 5.24 shows summary accuracy results of AR(3)-GARCH type mod-
els in predicting whether the next day’s returns price will go up or down.
For the Netcare Group Ltd returns series, the AR(3)-EGARCH(1,1)-Student-
t achieved the highest accuracy (about 78.5%). The AR(3)-TARCH(1,1,1)-
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Student-t model achieved the highest accuracy (72%) for Santam Ltd return
series. Again for Sanlam Group Ltd returns series, the AR(3)-TARCH(1,1,1)
model under the Student-t and Normal distribution achieved the highest ac-
curacy (about 70%). The AR(3)-EGARCH(1,1)-Student-t achieved the high-
est accuracy (about 76%) for Nedbank Group Ltd returns series.

Discussion:
AR(3)-GARCH type models were fitted on various JSE listed companies re-
turns series, these models performed well in terms of forecasting the direc-
tion of movement of returns prices. Summary results presented in Table
5.24 shows that the models have a good ability to predict whether the next
day’s returns price will go down or up. The highest accuracy achieved by
one of these models was about 78.5%.

5.3 ARMA(1,1)-State Space Model Results

Train:500 Test:200

Netcare Group Limited: Estimated State Space ARMA(1,1)
Model

Figure 5.22: Summary results of State Space ARMA(1,1) model fit on Net-
care Limited Group returns series
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Figure 5.22 shows the estimated parameters of the State Space ARMA(1,1)
model fit on Netcare returns series. The estimated parameters lies within
the confidence interval, so we are confident that the true parameters lies
within the computed intervals. Small standard errors are an indication that
the estimated parameters are close to the true values. For an ARMA model,
the residuals are assumed to have a constant variance. The p-value for the
heteroskedasticity test (0.76) is greater than the 0.05 level of significance, so
we fail to reject the null hypothesis that the residuals of the fitted State Space
ARMA(1,1) model have a constant variance. The p-value for the Jarque Bera
(JB) test is extremely small (about 0.00), suggesting that the residuals are
not normally distributed. Furthermore, the kurtosis of residuals is around
4, this confirms the results of the JB test that the residuals are not from a
normal distribution. A large p-value for the Ljung Box test (about 0.52) is
an indication that the residuals of the State Space ARMA(1,1) model fit on
Netcare Limited Group series are independent. Consequently, other times
series models which assume non normality of residuals should be explored
to better capture the statistical properties of the Netcare Limited Group re-
turns series. The estimated model is given as

rt = 0.4305rt−1 + (−0.5184)εt−1 + εt, εt ∼ N(0, σ2 = 0.0002) (5.13)

Figure 5.23: Netcare Group Ltd returns series predictions using State
Space ARMA(1,1) model
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Predicted Down Predicted Up
True Down 75 19
True Up 27 79

Accuracy= 77%

Table 5.25: Confusion Matrix for State Space ARMA(1,1) model’s predic-
tions of Netcare returns series

The confusion matrix in Table 5.25 shows the accuracy of the fitted State
Space ARMA(1,1) model in predicting whether the next day’s return price
will go down or up.

Santam Limited (Ltd): Estimated State Space ARMA(1,1)
Model

Figure 5.24: Summary results of State Space ARMA(1,1) fit on Santam
Limited returns series

Summary results of the State Space ARMA(1,1) model fit on Santam Ltd
series are shown in Figure 5.24. The estimated parameters are within their
computed confidence intervals. The estimated variance parameter (sigma2)
has a very small standard error, this suggests that the parameter is close to
the true value. The null hypothesis that the residuals have the same vari-
ance (homoscedastic) is rejected since the Heteroskedasticity test statistic
value is extremely small (around 0.71) and the p-value is less than the 0.05
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level of significance. Since the p-value for the Jarque Bera test is less than
0.05 level of significance, we reject the null hypothesis that the residuals
are normally distributed. The skewness value is −0.30, this suggests that
the distribution of residuals is fairly skewed to the left. The distribution of
the residuals has heavier tails than the normal distribution since its kurto-
sis value (around 6) is greater than 3 (that of a normal distribution). Lastly,
the Ljung Box test does not reject the null hypothesis of independence of
residuals since the p-value is greater than 0.05 (level of significance). The
estimated model for Santam Limited returns series is given as

rt = 0.5524rt−1 + (−0.5825)εt−1 + εt, εt ∼ N(0, σ2 = 0.0002) (5.14)

Figure 5.25: Santam Group returns series predictions using State Space
ARMA(1,1) model

Predicted Down Predicted Up
True Down 73 28
True Up 26 73

Accuracy= 73%

Table 5.26: Confusion Matrix for the State Space ARMA(1,1) model’s pre-
dictions of Santam Group returns series
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Using a confusion matrix, we evaluated the ability of the State Space ARMA(1,1)
model to predict whether the next day’s Santam Group Ltd returns price
will go down or up ( as seen in Table 5.26). The model achieved a satisfac-
tory accuracy (about 73%).

Sanlam Group Ltd: Estimated State Space ARMA(1,1) Model

Figure 5.26: Summary results of the State Space ARMA(1,1) model fit on
Sanlam Group Limited returns series

Figure 5.26 shows the summary of the estimated State Space ARMA(1,1)
model fitted on Sanlam Group Limited returns series. The estimated pa-
rameters are within their confidence intervals, suggesting that the true pa-
rameters lie within the computed intervals. Since the p-value for the het-
eroscedasticity test is fairly large (around 0.10), this indicates that we have
weak evidence against the null hypothesis. Hence, the residuals of the fitted
State Space ARMA(1,1) model have a constant variance. For the residuals
to be considered normally distributed, the Jarque Bera test statistic value
should be close to 0. In our case, we reject the null hypothesis of normal-
ity since the JB test statistic is very large (about 32). The kurtosis value is
around 4, suggesting that the distribution of residuals has slightly “heavier
tails" than the normal distribution. We accept the null hypothesis of inde-
pendence of the residuals since the p-value for the Ljung Box test is greater
than the 0.05 significance level. The estimated model for the Sanlam Group
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Ltd returns series is given as

rt = (−0.0704)rt−1 + (−0.0240)εt−1 + εt, εt ∼ N(0, σ2 = 0.0003) (5.15)

Figure 5.27: Sanlam Group Ltd returns series predictions using State
Space ARMA(1,1) model

Predicted Down Predicted Up
True Down 70 37
True Up 24 69

Accuracy= 69.5%

Table 5.27: Confusion Matrix for State Space ARMA(1,1) model’s predic-
tions of Sanlam Group Ltd returns series

Results of the confusion matrix presented in Table 5.27 shows that the State
Space ARMA(1,1) achieved an accuracy of 69.5% and a misclassification rate
(percentage of incorrect predictions) of about 30.5%.
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Nedbank Group Ltd: Estimated State Space ARMA(1,1)
model

Figure 5.28: Summary results of State Space ARMA(1,1) fit on Nedbank
Group Ltd returns series

Summary results of the estimated State Space ARMA(1,1) model fit on Ned-
bank Group Ltd returns series are presented in Figure 5.28. The estimated
Autoregressive parameter phi (φ) and Moving Average parameter theta (θ)
are all within the confidence intervals, suggesting that the true parameters
lie within the computed intervals. The heteroscedasticity test statistic value
is 1.20 (this value is extremely small), suggesting that we can not reject the
null hypothesis that the residuals have the same variance. The Jarque Bera
test statistic value is large (about 13.29), this suggests that the null hypothe-
sis of normality of residuals can not be accepted. The kurtosis for a normal
distribution is equal to 3, in our case the kurtosis of the residuals is around
3.77 ≈ 4, this implies that the distribution of the residuals has “slightly"
heavier tails than the normal distribution. The distribution of the residuals
is “slightly" right skewed since the skewness value is positive (about 0.11).
A more appropriate time series model which assumes non normality of re-
turns should be considered for modelling stock returns of Nedbank Group
Ltd returns series. The estimated State Space ARMA(1,1) model for Ned-
bank Group Ltd returns series is given as

rt = 0.5955rt−1 + (−0.7221)εt−1 + εt, εt ∼ N(0, σ2 = 0.0002) (5.16)
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Figure 5.29: Nedbank Group Ltd returns series predictions using State
Space ARMA(1,1) model

Predicted Down Predicted Up
True Down 74 27
True Up 25 74

Accuracy= 74%

Table 5.28: Confusion Matrix for State Space ARMA(1,1) model’s predic-
tions of Nedbank Group Ltd returns series

For the Nedbank Group Ltd returns series, the State Space ARMA(1,1) model
achieved a very good accuracy (74%), the high accuracy show that the model
has a strong ability to predict the direction of movement of the returns se-
ries.

Discussion:

As seen in the confusion matrix presented in Table 5.25, 5.26, 5.27, and 5.28
, accuracy achieved by the State Space ARMA(1,1) model for all four time
series was satisfactory. However, some of the statistical assumptions such
as normality of residuals were not entirely satisfied by the fitted model, this
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suggests that other advanced time series model such as the ARMA-GARCH
type models can be appropriate for modelling of JSE listed companies re-
turns series as they can assume other statistical distributions such as the
Student-t, and Skewed Student-t distribution.

5.4 ARMA(1,1)-Metropolis Hastings (MH)
Algorithm Results

Train:500 Test:200

We implemented the ARMA(1,1) model (with parameters estimated via Metropo-
lis Hastings algorithm) using a powerful Python 2 package called Pymc. Re-
call that the Metropolis-Hastings ARMA(1,1) model has the following three
parameters: The autoregressive parameter phi (φ), the moving average pa-
rameter theta (θ), and the variance parameter σ2 (precision). Following (Ful-
ton, 2017), we specify Uniform prior distributions for φ and θ, with support
(-1,1). For the precision parameter 1/σ2 we assume a Gamma prior distri-
bution, with support Γ(2, 4).
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Netcare Group Ltd: Estimated ARMA(1,1)-Metropolis
Hastings model

Figure 5.30: Summary results of ARMA(1,1) Metropolis Hastings model
fit on Netcare Group Limited returns series

In Bayesian methods, the expected value (mean) is used as a best estimator
of a parameter. The Monte Carlo Standard Error (MC error) indicates the
amount of error in the estimates due to the use of MCMC method. As seen
in Figure 5.30, for all parameters the MC error are close to 0, this is a clear
indication that the estimated mean parameters are close to the true value. In
Bayesian statistics, standard deviation (SD) is used to describe uncertainty
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in the estimated mean parameter. Since the standard deviations (SD) for the
autoregressive (phi) and moving average parameters (theta) are small, this
suggests that the degree of uncertainty in the estimated mean parameters is
relatively small. However, there is some degree of uncertainty in the vari-
ance parameter (precision (σ2)) since its SD is relatively high (about 3.819).
From Figure 5.30, the estimated ARMA(1,1)-Metropolis Hastings model for
the Netcare Group Ltd returns series is of the form

rt = (−0.026)rt−1 + (−0.033)εt−1 + εt, (5.17)

where εt ∼ N(0, σ2), the precision parameter 1/σ2 = 1
61.869 .

Figure 5.31: Netcare Group Ltd returns series predictions using
ARMA(1,1)-MH model

Predicted Down Predicted Up
True Down 68 26
True Up 37 69

Accuracy= 68.5%

Table 5.29: Confusion Matrix for ARMA(1,1)-MH model’s predictions of
Netcare Group Ltd returns series
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Figure 5.31 shows the actual (blue line) and predicted (yellow line) returns
series obtained using ARMA(1,1)-Metropolis Hastings model. By visual in-
vestigating the plot in Figure 5.31, we can clearly see that there is low or
small variance in the predictions made by the ARMA(1,1)-MH model. The
model seems to be operating around the expected value (mean). Confusion
matrix for ARMA(1,1)-MH model’s prediction results are presented in Table
5.29.
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Santam Limited (Ltd): Estimated ARMA(1,1)-Metropolis
Hastings model

Figure 5.32: Summary results of ARMA(1,1) Metropolis Hastings model
fit on Santam Ltd returns series

The degree of uncertainty in the precision parameter is quite high since its
standard deviation (SD) value is large (3.713). The Monte Carlo Standard Er-
ror (MC error) for all parameters are extremely small, this suggests that the
estimated mean parameters of the model are very close to the true values.
Furthermore, all the estimated mean parameters lies within the 95% High-
est Posterior Density (HPD) interval, suggesting that the true estimates are
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within the computed interval. The estimated ARMA(1,1)-Metropolis Hast-
ings model fitted on Santam Ltd returns series is of the form

rt = (−0.039)rt−1 + (−0.012)εt−1 + εt, (5.18)

where εt ∼ N(0, σ2). The precision parameter 1/σ2 = 1
61.953 , this value is

close to that in Figure 5.30.

Figure 5.33: Santam Ltd returns series predictions using ARMA(1,1)-MH
model

Predicted Down Predicted Up
True Down 69 32
True Up 30 69

Accuracy= 69%

Table 5.30: Confusion Matrix for ARMA(1,1)-MH model’s predictions of
Santam Ltd returns series

Santam Ltd returns series predictions made by the ARMA(1,1)-MH model
are presented in Figure 5.33. The structure of these predictions seems to be
similar to those in Figure 5.31.. The confusion matrix presented in Table 5.30
shows that the ARMA(1,1)-Metropolis Hastings model achieved an overall
accuracy of 69%.
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Sanlam Group Ltd: Estimated ARMA(1,1)-Metropolis
Hastings model

Figure 5.34: Summary results of ARMA(1,1) Metropolis Hastings model
fit on Sanlam Group Ltd returns series

The standard deviations for the autoregressive (phi) and moving average
(theta) parameters are 0.509 and 0.476 respectively. The degree of uncer-
tainty in these estimated mean parameters is insignificant since their stan-
dard deviations are very small. But for the variance parameter (precision)
the uncertainty is quite high since its standard deviation has a very large
value (about 3.754). Small values for the Markov Chain standard (MC) er-
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rors for all the estimated mean parameters are an indication that the error
in the estimates is quite low, suggesting that the estimated parameters are
close to the true value. All the estimates lies within the 95% HPD intervals,
this indicates that the true parameters values lies within the computed inter-
vals. The estimated ARMA(1,1)-Metropolis Hastings model for the Sanlam
Group Ltd returns series is of the form

rt = (−0.039)rt−1 + (−0.029)εt−1 + εt, (5.19)

where εt ∼ N(0, σ2), and the precision parameter value is 1/σ2 = 1
61.791

Figure 5.35: Sanlam Group Ltd returns series predictions using
ARMA(1,1)-MH model

Predicted Down Predicted Up
True Down 68 39
True Up 24 69

Accuracy= 68.5%

Table 5.31: Confusion Matrix for ARMA(1,1)-MH model’s predictions of
Sanlam Group Ltd returns series
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As seen in the predictions of ARMA(1,1)-MH model in Figure 5.35, the
model seems to be operating around the mean and the structure of the pre-
dictions is similar to that in Figure 5.31, and 5.33. For the Sanlam Group Ltd
returns series, the ARMA(1,1)-Metropolis Hastings model achieved a fairly
adequate accuracy of 68.5%.

Nedbank Group Ltd: Estimated ARMA(1,1)-Metropolis
Hastings model

Figure 5.36: Summary results of ARMA(1,1) Metropolis Hastings model
fit on Nedbank Group Ltd returns series
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The standard deviation for the variance parameter (precision) is 3.883, this
value is similar to the values obtain in Figure 5.30, 5.32, and 5.34. Such a
large value indicates the existence of some degree of uncertainty in the es-
timated mean parameters. All the Monte Carlo (MC) errors are small, this
implies that there are relatively small errors in the estimated mean param-
eters. Since all the estimated mean parameters lies within the 95% HPD
interval, this suggests that true parameters will be within the computed
intervals. The estimated ARMA(1,1)-Metropolis Hastings model fitted on
Nedbank Group Ltd returns series is given by

rt = (−0.057)rt−1 + (−0.015)εt−1 + εt, (5.20)

where εt ∼ N(0, σ2). The precision parameter is 1/σ2 = 1
62.195 .

Figure 5.37: Nedbank Group Ltd returns series predictions using
ARMA(1,1)-MH model

Predicted Down Predicted Up
True Down 69 32
True Up 29 70

Accuracy= 69.5%

Table 5.32: Confusion Matrix for ARMA(1,1)-MH model’s predictions of
Nedbank Group Ltd returns series
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As seen in Figure 5.37, when predicting the Nedbank Group Ltd returns se-
ries the ARMA(1,1)-Metropolis Hastings model seems to have poorly cap-
tured the volatility clusters in the series. However, (Hansson, 2017) argue
that accurately capturing the variance does not necessarily imply that we
will obtain better forecasts of the series. The structure of predictions in Fig-
ure 5.37 is similar to those obtain in Figure 5.31,5.33, and 5.35. The predic-
tions made by the ARMA(1,1)-MH model are extremely close the mean.

Discussion:

We constructed an ARMA(1,1)-Metropolis Hastings model using pymc pack-
age in Python 2. The model was fitted on various time series and predictions
were made. Results shows that the ARMA(1,1)-MH model has a fairly ade-
quate ability to forecast the direction of returns prices. However, the model
seems to be operating around the mean. This phenomenon is similar to
that observed in a study carried out by (Hansson, 2017), were they used
ARMA(1,1)-GJRGARCH(1,1) and LSTM models to predict S&P and OMX
returns series. In their study, both the models made predictions which are
close to the mean.

5.5 Artificial Neural Network (ANN) results

Netcare Group Ltd: ANN model results

For the Netcare Group Ltd returns series, we constructed an ANN model
with the following architecture: 2 hidden layers, a learning rate of 0.0006,
4800 epochs, and a l2 regularization term of 0.0006. A tangent activation
function is used on the input and output layers of the neural network.
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Figure 5.38: Netcare Group Ltd returns series predictions using ANN
model

Predicted Down Predicted Up
True Down 75 19
True Up 29 77

Accuracy= 76%

Table 5.33: Confusion Matrix for ANN model’s predictions of Netcare
Group Ltd returns series

Figure 5.38 shows the out of sample predictions of Netcare Group Ltd re-
turns series using ANN model. By visual inspecting the plot in Figure 5.38,
there seems to be low variance in the predictions. The ANN model seems
to be operating around the mean. This phenomenon was also observed in a
study carried out by (Hansson, 2017, p.g 22-26). Confusion matrix for ANN
model’s prediction results is presented in Table 5.33. The results shows that
the model has a good ability to predict the direction of Netcare returns se-
ries. An “acceptable” accuracy of 76% was achieved by the model.
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Santam Ltd: ANN model results

A simple ANN model with 2 hidden layers, a learning rate of 0.0006, 4800
passes over the training data set, and a L2 regularization term of 0.0006 is
constructed for Santam Ltd series. For the hidden layers and the output
layer a tangent activation function is used.

Figure 5.39: Santam Ltd returns series predictions using ANN model

Predicted Down Predicted Up
True Down 75 26
True Up 32 67

Accuracy= 71%

Table 5.34: Confusion Matrix for ANN model’s predictions of Santam Ltd
returns series

Figure 5.39 shows the Santam Ltd forecasts made by ANN model, the struc-
ture of the predictions is similar to that in Figure 5.38. Again, the model is
operating around the mean. A seen in the confusion matrix presented in
Table 5.34, the model achieved an accuracy of 71%. The reason for the ade-
quate performance of the model could be due to the model being unable to
capture the dynamics of the returns series data.
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Sanlam Group Ltd: ANN model results

We constructed an ANN neural network with 2 hidden layers, a learning
rate of 0.0007, an L2 regularisation term of 0.00054, and 3930 (epochs) passes
over the training data set. A tangent activation function is used for the input
and output layers.

Figure 5.40: Sanlam Group Ltd returns series predictions using ANN
model

Predicted Down Predicted Up
True Down 90 17
True Up 16 77

Accuracy= 83.5%

Table 5.35: Confusion Matrix for ANN model’s predictions of Sanlam
Group Ltd returns series

As seen in Figure 5.40, the ANN model predictions (yellow line) are ex-
tremely close to the mean. The variance of these predictions is also very
small. When predicting log returns of S&P and OMX stock indices using
LSTM and ARMA(1,1)-GJRGARCH(1,1) model, (Hansson, 2017, p.g 22-26)
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also observed the same phenomenon. However, the confusion matrix pre-
sented in Table 5.35 shows that the ANN model has a good ability to predict
the direction of Sanlam Group Ltd returns series.

Nedbank Group Ltd: ANN model results

Architecture of the ANN model fitted on Nedbank Group Ltd returns series
is as follows: the model has 2 hidden layers, a learning rate and L2 regular-
ization term of 0.0006, 5400 epochs (number of iterations over training set),
and a tangent activation function for the hidden layers and the output layer.

Figure 5.41: Nedbank Group Ltd returns series predictions using ANN
model

Predicted Down Predicted Up
True Down 92 9
True Up 12 87

Accuracy= 89%

Table 5.36: Confusion Matrix for ANN model’s predictions of Nedbank
Group Ltd returns series
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ANN model’s Nedbank Group Ltd returns series predictions are presented
in Figure 5.41. The structure of the predictions is similar to that in Fig-
ure 5.38,5.39, and 5.40. The predictions are extremely close to the mean.
As seen in the results of the confusion matrix presented in Table 5.36, the
ANN model has a good ability to correctly predict the direction of Nedbank
Group Ltd returns series. The model achieved an accuracy of 89%.

Discussion

We fitted an Artificial Neural Network model on four JSE listed companies
returns series. The model was evaluated in terms of its ability to correctly
predict the direction of returns prices. The model has a strong ability to
predict whether the next day’s return price will go up or down, the lowest
accuracy achieved by the model was 71% and the highest was 89%. The
predictions from the fitted ANN models were operating around the mean.
This phenomenon was also observed in studies carried out by (Hansson,
2017) and (Björklund and Uhlin, 2017).
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5.6 ARMA(1,1) Model Results, Train:700 Test:200

Preliminary tests for ARMA model

Table 5.37: Testing for Stationarity of the returns series using Augmented
Dickey Fuller (ADF)

Stock Test statistic P-value
Netcare -6.335 0.000
Sanlam -6.221 0.000
Nedbank -6.205 0.000
Santam -7.618 0.000

Critical Values: −3.44(1%), −2.87(5%),−2.57(10%)

To apply a time series data to an ARMA model, it is important to first test
for stationarity of the time series. We reject the null hypothesis of non-
stationarity (unit root) since the ADF test statistic is less than the critical
values at 1%,5%, and 10% significance level. Hence, all the time series are
stationary. Small p-values are also a clear indication that there is strong ev-
idence against the null hypothesis of existence of a unit root in the series.

Table 5.38: Testing for Stationarity of the returns series using Phillips Per-
ron test

Stock Test statistic P-value
Netcare -30.460 0.000
Sanlam -28.946 0.000
Nedbank -31.916 0.000
Santam -28.934 0.000

Critical Values: −3.44(1%), −2.87(5%),−2.57(10%)

For all four time series, the Phillips Perron test statistic is less than the criti-
cal values at 1%,5%, and 10% level of significance. So, the null hypothesis of
non-stationarity is rejected in favour of the alternative hypothesis of no unit
root. The p-values for the test statistic are also extremely small, suggesting
strong evidence against the null hypothesis.
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Netcare Group Ltd: Estimated ARMA(1,1) model

Figure 5.42: Summary results of ARMA(1,1) model fit on Netcare returns
series

Figure 5.42 shows summary results of the estimated ARMA(1,1) model fit-
ted on Netcare Group Ltd returns series. The estimated coefficients for the
Autoregressive (AR) and the Moving Average (MA) parameters lies within
the confidence interval, this suggests that the true parameters lie within the
computed intervals. When using the 95% confidence level, the critical Z
scores are ±1.96 standard deviations. The p-value associated with the 95%
confidence level is 0.05. Since the | Z |- statistic values are greater than the
critical value (1.96), this suggests that the estimated AR and MA parameters
are significantly different from zero. Small standard errors are a clear indi-
cation that the estimated parameters are close to the true values. The roots
of the AR and MA parameters are greater than 1 in modulus, suggesting
that the fitted ARMA(1,1) model is stationary. The estimated ARMA(1,1)
model for Netcare Group Ltd returns series is

rt = 0.4960rt−1 + (−0.6827)εt−1 + εt, (5.21)

where error term εt ∼ N(µ = 0, σ2).

Assessing the Adequacy of the ARMA(1,1) Model Fitted on Netcare Re-
turns Series
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Figure 5.43: ACF of residuals of ARMA(1,1) model fitted on Netcare re-
turns series

Table 5.39: Independence test of residuals of ARMA(1,1) fitted on Netcare
series

Lag Ljung statistic P-value
0 0.0651 0.7956
5 6.1609 0.4054
10 7.6300 0.7460
15 9.4744 0.8926
20 11.5930 0.9499

The ACF plot in Figure 5.43 shows that the residuals seems to be uncorre-
lated and they appear to be patternless. Hence, this indicates that the is no
autocorrelations in the residuals. Summary results of Ljung Box test statis-
tic presented in Table 5.39 shows that the residuals are independent since
all the p-values are greater than the 0.05 level of significance.
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Figure 5.44: Histogram of residuals of ARMA(1,1) model fitted on Netcare
Group Ltd returns series

Apart from summary statistics, histogram of residuals and density plots are
used to better understand the distribution of residuals (errors). Figure 5.44
shows the histogram of residuals (green) and probability density function
(pdf) of a Gaussian distributed process with mean of zero and standard de-
viation of residuals. The distribution seems to be symmetric and the resid-
uals are clustered around the mean. The Durbin Watson (DW) test statistic
value for residuals from the fitted ARMA(1,1) model is 1.9797, this value is
very close to 2 suggesting that there is no autocorrelations in the residuals.
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Figure 5.45: Netcare Group Ltd returns series predictions using
ARMA(1,1) model

Predicted Down Predicted Up
True Down 79 25
True Up 25 71

Accuracy= 75%

Table 5.40: Confusion Matrix for ARMA(1,1) model’s predictions of Net-
care Group Ltd returns series

Figure 5.45 shows the predicted Netcare returns series using ARMA(1,1)
model. The model seems to have adequately captured the volatility clusters
in the series. As seen in the summary results of the confusion matrix pre-
sented in Table 5.40, the model has a good ability to accurately predict the
direction of movement of Netcare returns prices. The model achieved an
accuracy of 75%.
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Santam Ltd: Estimated ARMA(1,1) model

Figure 5.46: Summary results of ARMA(1,1) model fit on Santam Ltd re-
turns series

The summary results of the estimated ARMA(1,1) model fit on Santam Ltd
returns series are presented in Figure 5.46. All the estimated ARMA model’s
parameters lies within the 95% confidence interval, indicating that the true
parameters lie within the computed intervals. The standard errors for the
AR and MA parameters are 0.282 and 0.261 respectively, this suggests that
the estimated parameters are close to the true values. The Z score for the
AR parameter is slightly less than the 1.96 critical value, suggesting that
the parameter may be insignificantly different from zero. The estimated
ARMA(1,1) model is

rt = 0.5427rt−1 + (−0.6338)εt−1 + εt, (5.22)

where εt ∼ N(0, σ2).

Assessing the adequacy of the ARMA(1,1) model fitted on Santam returns
series

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. DATA ANALYSIS AND RESULTS 125

Figure 5.47: ACF of residuals of ARMA(1,1) model fitted on Santam re-
turns series

Table 5.41: Independence test of residuals from ARMA(1,1) model fitted
on Santam series

Lag Ljung statistic P-value
0 0.0459 0.8311
5 1.1485 0.9794
10 3.4202 0.9839
15 5.1466 0.9950
20 8.7889 0.9900

By visual inspecting the ACF plot in Figure 5.47, we can see that there are
no “spikes" which exceeds the significance bounds, this indicates that the
residuals from the ARMA(1,1) model fitted on Santam returns series are
uncorrelated. Since all the p-values for the Ljung Box test statistic are greater
than 0.05 level of significance, this suggests that we have weak evidence
against the null hypothesis of independence of the residuals of the fitted
model.
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Figure 5.48: Histogram of residuals of the ARMA(1,1) model fitted on San-
tam Ltd returns series

Figure 5.48 shows the histogram of residuals (green) from the fitted ARMA(1,1)
model and the pdf of a Gaussian process with mean of zero and standard de-
viation of residuals. By visual inspecting the histogram in Figure 5.48, the
residuals seems to be centered around the mean, the distribution has “thin”
tails and is symmetric. The DW test statistic for independence of residuals
test is 2.0137, so we fail to reject the null hypothesis that the residuals are
uncorrelated since the test statistic value is close to 2.
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Figure 5.49: Santam Ltd returns series predictions using ARMA(1,1)
model

Predicted Down Predicted Up
True Down 77 19
True Up 27 77

Accuracy= 77%

Table 5.42: Confusion Matrix for ARMA(1,1) model’s predictions of San-
tam Ltd returns series

ARMA(1,1) model’s Santam Ltd returns series predictions are presented in
Figure 5.49. The model seems to be operating extremely close to the mean.
Results from the confusion matrix presented in Table 5.42 shows that the
model has a “very strong” ability to predict whether the next day’s returns
price will go up or down. It achieved an overall accuracy of 77%.
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Sanlam Group Ltd: Estimated ARMA(1,1) model

Figure 5.50: Summary results of the ARMA(1,1) model fit on Sanlam
Group Ltd returns series

Summary results of the ARMA(1,1) model fitted on Sanlam Group Ltd re-
turns series are presented in Figure 5.50. Both the estimated AR and MA
parameters lies within the 95% confidence level, this is a clear indication
that the true parameters lie within the computed intervals. The standard
errors are extremely close to zero, this indicates that the estimated AR and
MA parameters are close to the true values. The estimated AR and MA pa-
rameters are significantly different from zero since they have | Z | statistics
values which are greater than the 1.96 critical value. The fitted ARMA(1,1)
model is stationary since all its roots are greater than 1 in modulus. The
estimated ARMA(1,1) model for Sanlam Group Ltd series is

rt = 0.9181rt−1 + (−0.9529)εt−1 + εt, (5.23)

where εt ∼ N(0, σ2).

Assessing the Adequacy of the ARMA(1,1) Model Fitted on Sanlam Re-
turns Series
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Figure 5.51: ACF of residuals from the ARMA(1,1) model fitted on Sanlam
returns series

Table 5.43: Independence test of residuals from the ARMA(1,1) model fit-
ted on Sanlam returns series

Lag Ljung statistic P-value
0 0.1799 0.6714
5 1.7578 0.9406
10 7.7706 0.7337
15 10.6101 0.8329
20 12.1246 0.9362

From the ACF plot of residuals in Figure 5.51, there is one significant “spike"
at the 9th lag, but overall the the residuals appears to be patternless. Sum-
mary results of the Ljung Box test statistic in Table 5.43 shows that we have
strong evidence to accept the null hypothesis of independence of the resid-
uals since all p-values are greater than 0.05 (level of significance).
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Figure 5.52: Histogram of residuals of ARMA(1,1) model fitted on Sanlam
Group Ltd returns series

If the distribution of the residuals is distinctly non-normal (Gaussian), it
implies that the assumption made by the ARMA modelling process are in-
correct and a different modelling technique should be considered. The his-
togram of residuals in Figure 5.52 looks Gaussian, and roughly symmetric.
The DW test statistic is 1.9690 , so we fail to reject the null hypothesis that
the residuals from ARMA(1,1) model fitted on Sanlam Group Ltd returns
series are uncorrelated.
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Figure 5.53: Sanlam Group Ltd returns series predictions using
ARMA(1,1) model

Predicted Down Predicted Up
True Down 73 28
True Up 28 71

Accuracy= 72%

Table 5.44: Confusion Matrix for ARMA(1,1) model’s predictions of San-
lam Group Ltd returns series

Figure 5.53 looks similar to Figure 5.53. The model did not adequately cap-
ture volatility clustering in the series. But, better capturing the variance of
the series does not necessarily mean that the model would produce better
forecasts (Hansson, 2017, pg. 24). The model achieved an accuracy of 72%.
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Nedbank Group Ltd: Estimated ARMA(1,1) model

Figure 5.54: Summary results of ARMA(1,1) model fit on Nedbank Group
Ltd returns series

Figure 5.54 shows summary results of the estimated ARMA(1,1) model fit-
ted on Nedbank Group Ltd returns series. Since the estimated AR and MA
parameters lies within 95% confidence interval, this suggests that we are
95% confident that the true parameters lies within the computed intervals.
Small standard errors are an indication that the estimated ARMA model’s
parameters are close to the true values. The roots of the AR and MA param-
eters are 1.4053 and 1.2724 respectively, since these values are greater than 1
this suggests that the fitted ARMA(1,1) model is stationary. Relatively large
Z statistic values indicates that both the AR and MA parameters are signif-
icantly different from zero. The estimated ARMA(1,1) model for Nedbank
Group Ltd returns series is

rt = 0.7116rt−1 + (−0.7859)εt−1 + εt, (5.24)

where εt is a normally distributed process with mean of zero and constant
variance.

Assessing the Adequacy of the ARMA(1,1) Model Fitted on Nedbank Re-
turns Series
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Figure 5.55: ACF of residuals from the ARMA(1,1) fitted on Nedbank re-
turns series

Table 5.45: Independence test of residuals of ARMA(1,1) model fitted on
Nedbank series

Lag Ljung statistic P-value
0 0.3495 0.5544
5 2.0293 0.9170
10 5.0414 0.9291
15 8.0586 0.9471
20 12.4164 0.9277

The residuals from the ARMA(1,1) model fitted on Nedbank Group returns
series seems to be patternless and uncorrelated as seen in the ACF plot in
Figure 5.55. No spikes exceeds the significance bounds, this suggest that
there is no significant autocorrelations in the residuals. We cannot reject the
null hypothesis of independence of residuals since all the p-values for the
Ljung Box test statistic are greater than the 0.05 level of significance.
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Figure 5.56: Histogram of residuals of ARMA(1,1) model fitted on Ned-
bank Group Ltd returns series

As seen in Figure 5.56, the residuals from the ARMA(1,1) model are clus-
tered around the mean (center of the distribution) and they look Gaussian.
Hence, this suggests that the assumptions of the modelling process are cor-
rect. The DW test statistic value for residuals from the ARMA(1,1) model
fitted on Nedbank Group Ltd returns series is 1.9587, this value is close to 2,
suggesting that we can not reject the null hypothesis that the residuals are
uncorrelated.
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Figure 5.57: Nedbank Group Ltd returns series predictions using
ARMA(1,1) model

Predicted Down Predicted Up
True Down 72 28
True Up 34 66

Accuracy= 69%

Table 5.46: Confusion Matrix for ARMA(1,1) model’s predictions of Ned-
bank Group Ltd returns series

When predicting the Nedbank Group returns series, the ARMA(1,1) model
seems to have adequately captured the volatility clusters in the series. But,
(Hansson, 2017) argue that better capturing the variance of the series does
not necessarily result in better forecast of the returns series. The model
achieved a “fairly adequate” accuracy of 69%.

Discussion

An ARMA(1,1) model was fitted on the Netcare, Sanlam, Santam, and Ned-
bank returns series using steps recommended by (Box and Jenkins, 1976).
Summary results of the confusion matrix shows that the model has a “good”
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ability to correctly predict the direction of movement of these time series.
The highest accuracy achieved by the model was 77% (for Santam Ltd re-
turns series) and the lowest was 69% (for Nedbank Group Ltd returns series
). All the assumptions of the ARMA modelling process were satisfied, this
suggests that the model is an appropriate modelling technique for these
time series.

5.7 AR(3)-AVGARCH(1,1) -Student-t results,
Train:700 Test:200

Preliminary statistical tests on the returns series

Table 5.47: Test for normality of returns using Shapiro Wilk test

Stock Shapiro Wilk test statistic Kurtosis Skew-
ness

Netcare 0.9822
(0.0000)

1.6783 0.0323

Santam 0.9580
(0.0000)

3.6849 0.0087

Sanlam 0.9898
(0.0000)

1.1448 -0.0271

Nedbank 0.9917
(0.0006)

1.0232 0.0881

Notes: p-values of the test are in parentheses

Table 5.47 shows summary results of the Shapiro Wilk test statistic, kurto-
sis, and Skewness values. Since all the p-values for the Shapiro Wilk test
statistics are less than 0.05 level of significance, we have strong evidence to
reject the null hypothesis of normality of the returns series. Hence, all the
returns series are non-normal. A normal distribution has a kurtosis of 3 and
a skewness of 0. A kurtosis value of less than 3 for the Netcare, Sanlam
, and Nedbank returns series suggests that their distribution has “lighter"
tails than the normal distribution. The skewness value for all the returns
series is extremely close to 0, this suggests that the distributions of these
returns series are almost symmetric.
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Table 5.48: Testing for ARCH effects in the returns using Lagrange Multi-
plier (LM) test

Stock Lagrange Multiplier test statistic P-value
Netcare 48.0507 0.0004
Santam 48.3021 0.0004
Sanlam 67.3852 0.0000
Nedbank 62.1455 0.0000

In order to model a time series using GARCH-type models, it is important
to first test for presence of ARCH behaviour (effects) in the series. Table
5.48 shows summary results of the Lagrange Multiplier test for presence
of ARCH effects. Since all the p-values for LM test are less than 0.05 level
of significance, we have strong evidence against the null hypothesis of no
ARCH effects. Hence, we reject the null hypothesis and conclude that there
are ARCH effects in all four time series. Hence, we can model these time
series using GARCH-type models.
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Netcare Group Ltd: Estimated
AR(3)-AVGARCH(1,1)-Student-t model

Figure 5.58: Summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t model fitted on Netcare returns series

Figure 5.58 shows summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t model fitted on Netcare Group Ltd returns series. Since the stan-
dard errors are close to 0, this indicates that the estimated parameters of
the AR(3)-AVGARCH(1,1)-Student-t model are close to the “true” parame-
ters. As the degree of freedom parameter approaches infinity (i.e ν → ∞),
the Student-t distribution reduces to a Normal distribution. In our case, the
degree of freedom parameter ν is equal to 57.17, this value is large, this sug-
gests that the distribution of the residual series is closer to the normal dis-
tribution. All the parameters of the Mean model (AR(3)) are significantly
different from 0 since their t-statistics are greater than 2. The estimated
AR(3)-AVGARCH(1,1)-Student-t model for Netcare Group Ltd returns se-
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ries is given as

rt = 0.0047091 + (−0.8063)rt−1 + (−0.5580)rt−2 + (−0.1874)rt−3 + εt,
(5.25)

where the error term of the model εt = σtzt, and zt is a Student-t distributed
process with ν = 57.17 degrees of freedom. The conditional variance equa-
tion is

σ2
t = 0.0449 + 0.000014166 | ε2

t−1 | +0.0693σ2
t−1. (5.26)

Post-estimation diagnostics for the fitted AR(3)-AVGARCH(1,1)-Student-
t model

Table 5.49: Diagnostics on standardised residuals of the AR(3)-
AVGARCH(1,1)-Student-t model

ARCH effects Durbin Watson Ljung Box
24.3141
(0.4512)

1.9865 20.1856
(0.7651)

Notes: p-values of the tests are in parentheses

Results of the diagnostics tests carried out on the standardised residuals
from the fitted model are presented in Table 5.49. There are no ARCH effects
remaining in the residuals since the p-value for the LM test is greater than
the 0.05 level of significance. We accept at 5% significance level the null
hypothesis that the standardised residuals are uncorrelated since the DW
test statistic is extremely close to 2. The p-value of the Ljung Box test is
greater than 0.05 (level of significance), hence the null hypothesis that the
residuals are independent is accepted.
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Figure 5.59: Netcare Group Ltd returns series predictions using the AR(3)-
AVGARCH(1,1)-Student-t model

Predicted Down Predicted Up
True Down 71 33
True Up 25 71

Accuracy= 71%

Table 5.50: Confusion Matrix for AR(3)-AVGARCH(1,1)-Student-t
model’s predictions of Netcare Group Ltd returns series

In Figure 5.59, the blue line indicates the true returns and the yellow line
indicates the predictions. The variance of Netcare predictions is very high,
and the model seems to have captured the volatility clusters well. Summary
results of the confusion matrix for AR(3)-AVGARCH(1,1)-Student-t model
prediction results is presented in Table 5.50. The model has a “very good”
ability to predict the direction of movement of Netcare Group Ltd returns
prices.
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Santam Ltd: Estimated AR(3)-AVGARCH(1,1)-Student-t
model

Figure 5.60: Summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t model fitted on Santam returns series

As seen in Figure 5.60, the estimated coefficients of the Mean model have ex-
tremely small standard errors, this suggests that these estimated parameters
are close to the true parameters. The constant, second and third parameters
of the Mean model are statistically insignificant since their t-statistics values
are less than 2, this suggest that these parameters do not provide much in-
formation in the model. On the other hand, the t-statistics for the estimated
parameters of the volatility model are all greater than 2, this indicates that
they are significantly different from 0 (they provide useful information in
the model). The estimated AR(3)-AVGARCH(1,1)-Student-t model for the
Santam returns series is

rt = 0.000034273 + (−0.0884)rt−1 + (−0.0204)rt−2 + (−0.0035617)rt−3 + εt,
(5.27)
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where εt is a Student-t distributed process with 3.86 degrees of freedom.
The conditional variance equation is

σ2
t = 0.0018598 + 0.1540 | ε2

t−1 | +0.7791σ2
t−1. (5.28)

Post-estimation diagnostics for the fitted AR(3)-AVGARCH(1,1)-Student-
t model

Table 5.51: Diagnostics on standardised residuals of the AR(3)-
AVGARCH(1,1)-Student-t model

ARCH effects Durbin Watson Ljung Box
18.2346
(0.5720)

2.0316 13.6354
(0.8847)

Notes: p-values of the tests are in parentheses

Table 5.51 shows summary results of diagnostics tests carried out on stan-
dardised residuals from the AR(3)-AVGARCH(1,1)-Student-t model fitted
on Santam Ltd returns series. Since the p-value for the Lagrange Multiplier
test is greater than the 0.05 level of significance, we cannot reject the null
hypothesis that there are no ARCH effects in the residuals. The null hy-
pothesis that the standardised residuals are uncorrelated at 5% significance
level is accepted since the DW test statistic value (2.0316) is close to 2. Large
p-value for the Ljung Box test statistic indicates that we cannot reject the
null hypothesis that the standardised residuals are independent.
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Figure 5.61: Santam Ltd returns series predictions using AR(3)-
AVGARCH(1,1)-Student-t model

Predicted Down Predicted Up
True Down 70 26
True Up 30 74

Accuracy= 72%

Table 5.52: Confusion Matrix for AR(3)-AVGARCH(1,1)-Student-t
model’s predictions of Santam Ltd returns series

Figure 5.61 shows Santam Ltd returns series predictions obtained using
AR(3)-AVGARCH(1,1)-Student-t model. The predictions from the model
have low variance and the model seems to be operating near the mean. The
confusion matrix for AR(3)-AVGARCH(1,1)-Student-t model predictions re-
sults is presented in Figure 5.54. The model achieved an accuracy of 72%,
this shows that the model has a “fairly” strong ability to correctly predict
the direction of the returns prices.
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Sanlam Group Ltd: Estimated
AR(3)-AVGARCH(1,1.)-Student-t model

Figure 5.62: Summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t model fitted on Sanlam returns series

Figure 5.62 shows summary results of the AR(3)-AVGARCH(1,1)-Student-t
model fitted on Sanlam Group Ltd returns series. The standard errors for
both the Mean (AR(3)) and the Volatility (AVGARCH(1,1)-Student-t) mod-
els are extremely small, this suggests that the estimated parameters for both
of these models are close to the true parameters. The constant, the second,
and the third parameters of the Mean model are statistical insignificant (i.e
they do not provide significant information in the model ). The degrees of
freedom parameter ν is 9.17, this suggests that the Student-t distribution
is an appropriate distribution for the returns series. The estimated AR(3)-
AVGARCH(1,1)-Student-t model for Sanlam Group Ltd returns series is

rt = 0.00068512 + (−0.0850)rt−1 + (−0.0181)rt−2 + (0.0087625)rt−3 + εt,
(5.29)
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where εt is a Student-t distributed process with ν = 9.17 degrees of freedom.
The conditional variance is given as

σ2
t = 0.00063434 + 0.0590 | ε2

t−1 | +0.9175σ2
t−1. (5.30)

Post-estimation diagnostics for the fitted AR(3)-AVGARCH(1,1)-Student-
t model

Table 5.53: Diagnostics on the standardised residuals of the AR(3)-
AVGARCH(1,1)-Student-t model

ARCH effects Durbin Watson Ljung Box
34.5603
(0.0226)

1.9948 23.1133
(0.3371)

Notes: p-values of the tests are in parentheses

We reject the null hypothesis of no ARCH effects at 5% significance level
since the p-value for the Lagrange Multiplier test is 0.0226. A DW test
statistic value close to 2 is an indication that there are no autocorrelation in
the standardised residuals from the fitted AR(3)-AVGARCH(1,1)-Student-t
model. We fail to reject the null hypothesis that the standardised residu-
als are independent since the p-value (about 0.3371) for the Ljung box test
statistic is is greater than the 0.05 significance level.
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Figure 5.63: Sanlam Group Ltd returns series predictions using AR(3)-
AVGARCH(1,1)-Student-t model

Predicted Down Predicted Up
True Down 71 30
True Up 30 69

Accuracy= 70%

Table 5.54: Confusion Matrix for AR(3)-AVGARCH(1,1)-Student-t
model’s predictions of Sanlam Group Ltd returns series

Figure 5.63 shows AR(3)-AVGARCH(1,1)-Student-t model’s Sanlam Group
Ltd returns predictions. These predictions looks similar to those in Figure
5.61. The model achieved an accuracy of 70%, this shows that the model has
an “adequate” ability to predict the direction of Sanlam Group Ltd returns
series.
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Nedbank Group Ltd: Estimated
AR(3)-AVGARCH(1,1)-Student-t model

Figure 5.64: Summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t model fitted on Nedbank returns series

Figure 5.64 shows summary results of the estimated AR(3)-AVGARCH(1,1)-
Student-t model fitted on Nedbank Group Ltd returns series. Since the stan-
dard errors for both the Mean and Volatility models are small, this suggests
that the estimated coefficients for these models are close to the true param-
eters. All the estimated parameters lies within the 95% confidence interval,
so we are 95% confident that the true parameters are within the computed
intervals. The constant and third parameter of the Mean model are statisti-
cally insignificant (they do not provide significant information in the model)
since their t-statistics are less than 2 (critical value). The estimated AR(3)-
AVGARCH(1,1)-Student-t model is

rt = 0.00050487 + (−0.1426)rt−1 + (−0.0793)rt−2 + (−0.0354)rt−3 + εt,
(5.31)
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where the residuals (error) term εt is a Student-t distributed process with
ν = 11.68 (degrees of freedom). The conditional variance equation is given
as

σ2
t = 0.0010823 + 0.0586 | ε2

t−1 | +0.8794σ2
t−1. (5.32)

Post-estimation diagnostics for the fitted AR(3)-AVGARCH(1,1)-Student-
t model

Table 5.55: Diagnostics on the standardised residuals of the AR(3)-
AVGARCH(1,1)-Student-t model

ARCH effects Durbin Watson Ljung Box
23.5574
(0.2623)

2.0074 32.6364
(0.0504)

Notes: p-values of the tests are in parentheses

There are no ARCH effects remaining in the residuals since the p-value for
the Lagrange Multiplier test statistic is greater than the 0.05 significance
level. The p-value for the Ljung Box test statistic is 0.0504, this value is
“slightly” greater than the 0.05 level of significance suggesting that the null
hypothesis of independence of residuals is “barely" accepted. The DW test
statistic is 2.0074, this value is extremely close to 2, implying that the stan-
dardised residuals are independent.
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Figure 5.65: Nedbank Group Ltd returns series predictions using AR(3)-
AVGARCH(1,1)-Student-t model

Predicted Down Predicted Up
True Down 70 30
True Up 29 71

Accuracy= 70.5%

Table 5.56: Confusion Matrix for AR(3)-AVGARCH(1,1)-Student-t
model’s predictions of Nedbank Group Ltd returns series

The variance of Nedbank Group Ltd returns series predictions is slightly
higher than that in Figure 5.61, and 5.63. The model has adequately cap-
tured the volatility clusters in the Nedbank returns series. Confusion matrix
in Figure 5.56 shows that in terms of predicting the direction of movement
of Nedbank Group Ltd returns series, the model achieved an accuracy of
70.5%.
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Table 5.57: Summary accuracy results of AR(3)-GARCH type models

Prediction accuracy AR(3)-GARCH type models
Stock Model Distribution Accuracy (%)
Netcare AR(3)-GARCH(1,1) Normal 73%

AR(3)-EGARCH(1,1) Student-t 71.5%
AR(3)-EWMA Normal 72.5%
AR(3)-EWMA Student-t 72.5%
AR(3)-TARCH(1,1,1) Normal 70.5%
AR(3)-TARCH(1,1,1) Student-t 72.5%
AR(3)-AVGARCH(1,1) Normal 70.5%
AR(3)-AVGARCH(1,1) Student-t 75%

Santam AR(3)-GARCH(1,1) Normal 68.5%
AR(3)-EGARCH(1,1) Student-t 71.5%
AR(3)-EWMA Normal 71%
AR(3)-EWMA Student-t 68.5%
AR(3)-TARCH(1,1,1) Normal 72%
AR(3)-TARCH(1,1,1) Student-t 71.5%
AR(3)-AVGARCH(1,1) Normal 72%
AR(3)-AVGARCH(1,1) Student-t 72%

Sanlam AR(3)-GARCH(1,1) Normal 68.5%
AR(3)-EGARCH(1,1) Student-t 66%
AR(3)-EWMA Normal 68.5%
AR(3)-EWMA Student-t 68%
AR(3)-TARCH(1,1,1) Normal 69.5%
AR(3)-TARCH(1,1,1) Student-t 69%
AR(3)-AVGARCH(1,1) Normal 70%
AR(3)-AVGARCH(1,1) Student-t 70%

Nedbank AR(3)-GARCH(1,1) Normal 71%
AR(3)-EGARCH(1,1) Student-t 71%
AR(3)-EWMA Normal 71%
AR(3)-EWMA Student-t 70%
AR(3)-TARCH(1,1,1) Normal 71.5%
AR(3)-TARCH(1,1,1) Student-t 71%
AR(3)-AVGARCH(1,1) Normal 71.5%
AR(3)-AVGARCH(1,1) Student-t 70.5%

Table 5.57 shows summary results of predictions accuracy of various AR(3)-
GARCH type models. For the Netcare Group Ltd returns series, the AR(3)-
AVGARCH(1,1)-Student-t model achieved the highest accuracy (about 75%),
this shows that the model has a “good ability” to predict the direction of
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movement of the returns series. Both the AR(3)-AVGARCH(1,1)-Student-
t model and the AR(3)-AVGARCH(1,1)-Normal model achieved the high-
est accuracy (about 72%) for Santam returns series. For the Sanlam Group
Ltd returns series, the highest accuracy (about 70%) was achieved by the
AR(3)-AVGARCH(1,1)-Student-t, and AR(3)-AVGARCH(1,1)-Normal mod-
els. In terms of predicting the direction of movement of Nedbank Group
Ltd returns series, the highest accuracy achieved was 71.5% by the AR(3)-
AVGARCH(1,1)-Normal and AR(3)-TARCH(1,1)-Normal models.

Discussion:

AR(3)-GARCH type models were fitted on various JSE returns series using
steps suggested by (Shumway and Stoffer, 2006), and (Tsay, 2005). Sum-
mary accuracy results presented in Table 5.57 shows that the AR(3)-GARCH
type models have a “strong” ability to correctly predict the direction of
movement of the returns series. However, the models can be further im-
proved by including the moving average component in the mean model.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. DATA ANALYSIS AND RESULTS 152

5.8 State Space ARMA(1,1) Model results,
Train:700 Test:200

Netcare Group Limited (Ltd): Estimated State Space
ARMA(1,1) model

Figure 5.66: Summary results of the State Space ARMA(1,1) fitted on Net-
care Group Ltd returns series

Figure 5.66 shows summary results of the estimated State Space ARMA(1,1)
model fitted on Netcare Group Ltd returns series. Both the estimated Au-
toregressive (phi) and Moving Average (theta) parameters lies within the
computed intervals, this suggests that the true parameters also lie within
this intervals. The standard errors are relatively small, this is a clear indi-
cation that the estimated parameters are close to the true parameters. The
Moving Average (theta) and the Variance (sigma2) parameters are statisti-
cally significant since their Z-statistics are greater than 1.96 (critical value).
On the other hand, the Autoregressive parameter is statistically insignificant
since its Z-statistic is “slightly” less than the 1.96 critical value. The p-value
for the Ljung Box test statistic is 0.59, this value is extremely large, sug-
gesting that we have weak evidence against the null hypothesis of indepen-
dence of the residuals. The residuals from the fitted State Space ARMA(1,1)
model are not normally distributed since the p-value for the Jarque Bera
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test is less than 0.05 significance level. The p-value for the Heteroscedastic-
ity test is 0.02, this value is less than the 0.05 level of significance, suggesting
that we reject the null hypothesis that the residuals have a constant variance.
The distribution of the residuals has “heavier” tails and is “slightly" skewed
to the left since it has a kurtosis value of 4.65 and a negative skewness
value. Since the normality and constant variance assumptions are violated,
this suggests that an ARMA model which include a conditional variance
process such as GARCH-Student-t process would be more appropriate for
modelling the Netcare returns series. The estimated State Space ARMA(1,1)
model is

rt = 0.3854rt−1 + (−0.5182)εt−1 + εt, (5.33)

where εt ∼ N(µ, σ2 = 0.0003).

Figure 5.67: Netcare Group Ltd returns series predictions using the State
Space ARMA(1,1) model
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Predicted Down Predicted Up
True Down 78 26
True Up 25 71

Accuracy= 74.5%

Table 5.58: Confusion Matrix for State Space ARMA(1,1) model’s predic-
tions of Netcare returns series

Figure 5.67 shows the actual (true) and predicted returns obtained using
State Space ARMA(1,1) model. Confusion matrix in Table 5.58 shows pre-
diction accuracy of the State Space ARMA(1,1) model . The model achieved
an accuracy of 74.5%, so it has a “strong” ability to predict the direction of
movement of Netcare Group returns prices.

Santam Ltd: Estimated State Space ARMA(1,1) model

Figure 5.68: Summary results of the State space ARMA(1,1) model fitted
on Santam Ltd returns series

The standard errors for the estimated parameters are fairly small, this sug-
gests that these parameters are close to the true values. The estimated pa-
rameters are all significantly different from zero since their Z-statistics are
greater than the 1.96 critical value. The null hypothesis that residuals are
independent at 5% significance level is accepted since the p-value for the
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Ljung Box test statistic (about 0.97) is greater than 0.05. The Heteroscedas-
ticity test is inconclusive since the p-value of the test is equal to the sig-
nificance level (0.05). The Jarque Bera test statistic value is extremely large
(about 378), this indicates that we cannot accept the null hypothesis that
the residuals are normally distributed. A skewness value of 0.00 suggests
that the distribution of residuals is symmetric. The distribution of the resid-
uals has “heavier” tails than that of a normal distribution since its kurto-
sis value is larger than 3. Due to violations of some of the assumptions of
the ARMA modelling process, an ARMA model which incorporate a con-
ditional GARCH process would be more appropriate for modelling Santam
returns series as the model would be able to capture the statistical dynamics
of the series. The estimated State Space ARMA(1,1) model for Santam Ltd
returns series is

rt = 0.5368rt−1 + (−0.6020)εt−1 + εt, (5.34)

where the error term εt ∼ N(µ, σ2 = 0.0002)

Figure 5.69: Santam Ltd returns series predictions using State Space
ARMA(1,1) model
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Predicted Down Predicted Up
True Down 72 24
True Up 28 76

Accuracy= 74%

Table 5.59: Confusion Matrix for the State Space ARMA(1,1) model’s pre-
dictions of Santam returns series

As seen in Figure 5.69, the variance of the predictions made by the State
Space ARMA(1,1) model is very small. (Hansson, 2017) also observed that
when predicting the log returns series, Box and Jenkins ARMA-type models
operates around the mean. In terms of predicting the direction of movement
of Santam returns prices, the model achieved an accuracy of 74%.

Sanlam Group Ltd: Estimated State Space ARMA(1,1) model

Figure 5.70: Summary results of State Space ARMA(1,1) model fit on San-
lam Group Ltd returns series

Figure 5.70 shows summary results of the estimated State Space ARMA(1,1)
model fitted on Sanlam Group Ltd returns series. Small standard error are
an indication that the estimated parameters are close to the true parame-
ters. The Z-statistics for the Moving Average (theta) and Variance (sigma2)
parameters are greater than the 1.96 critical value, this suggests that these
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parameters are significantly different from zero. On the other hand, the Au-
toregressive parameter (phi) is statistically insignificant since its Z-statistic
value is less than the 1.96 (critical value). The null hypothesis that the resid-
uals are independent at 5% significance level is accepted since the p-value
for the Ljung Box test statistic is greater than 0.05 (level of significance). The
residuals of the fitted State Space ARMA(1,1) have a constant variance since
the p-value for the Heteroscedasticity test is greater than 0.05 significance
level. Results of the Jarque-Bera test suggests that the residuals are not nor-
mally distributed since the p-value of the test statistic is less than 0.05 (level
of significance). The estimated State Space ARMA(1,1) model for Sanlam
Group Ltd returns series is

rt = 0.5164rt−1 + (−0.5832)εt−1 + εt, (5.35)

where εt is a normal distributed process with mean µ and variance σ2, that
is, εt ∼ N(µ, σ2).

Figure 5.71: Sanlam Group Ltd returns series predictions using State
Space ARMA(1,1) model
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Predicted Down Predicted Up
True Down 62 39
True Up 36 63

Accuracy= 62.5%

Table 5.60: Confusion Matrix for State Space ARMA(1,1) model’s predic-
tions of Sanlam returns series

Plot in Figure 5.71 shows that the predictions from the State Space ARMA(1,1)
model are extremely close to the mean and they have low or small variance.
The predictions looks similar to those in Figure 5.69. The accuracy achieved
by the model is very poor (about 62.5%). The model is as good as a random
walk.

Nedbank Group Ltd: Estimated State Space ARMA(1,1)
model

Figure 5.72: Summary results of State Space ARMA(1,1) model fitted on
Nedbank Group Ltd returns series

The estimated coefficients for the Autoregressive, Moving Average, and the
Variance parameters are 0.4628, −0.6247, and 0.0002 respectively. All these
estimated coefficients lies within the confidence intervals, suggesting that
the true parameters are also within these intervals. All the estimated State
Space ARMA(1,1) model’s parameters are statistically significant since their
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Z-statistics are greater than the 1.96 critical value. The Ljung Box test for
independence of residuals is inconclusive since the p-value of the test is
equal to the 0.05 level of significance. The Jarque-Bera test rejects the null
hypothesis that the residuals are normally distributed at 5% significance
level. Residuals from the fitted State Space ARMA(1,1) model do not have
a constant variance since the p-value for the Heteroscedasticity test is less
than the 0.05 level of significance. Consequently, since the normality and the
heteroscedasticity test are violated, this suggests that an ARMA model with
a conditional variance process (such as the GARCH or EGARCH) should
be used, so that the dynamics of the returns series can be better captured.
The estimated State Space ARMA(1,1) model for the Nedbank Group Ltd
returns series is

rt = 0.4628rt−1 + (−0.6247)εt−1 + εt, (5.36)

where εt ∼ N(µ, σ2 = 0.0002).

Figure 5.73: Nedbank Group Ltd returns series predictions using State
Space ARMA(1,1) model
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Predicted Down Predicted Up
True Down 72 28
True Up 33 67

Accuracy= 69.5%

Table 5.61: Confusion Matrix for State Space ARMA(1,1) model’s predic-
tions of Nedbank returns series

The predictions made by the State Space ARMA(1,1) model have higher
variance than those in Figure 5.69, and 5.71. The model achieved an accu-
racy of 69.5% and a misclassification rate (percentage of incorrect predic-
tions) of 30.5%.

Discussion

In some cases, the assumptions of the ARMA modelling process were not
satisfied, this includes the Normality and Heteroscedasticty assumptions.
Consequently, an ARMA model with a conditional variance process could
be used to accurately capture the dynamics of the returns series. The ad-
vantage of including a conditional variance process in the ARMA process
is that we can assume other statistical distribution such as Skewed Student-
t, Student-t, and Generalised Error Distribution (GED) for the returns se-
ries. The highest accuracy achieved by the State Space ARMA(1,1) model is
74.5% for the Netcare returns series and the lowest is 62.5% for the Nedbank
returns series (suggesting that this model is as good as a random walk for
this particular series).

5.9 ARMA(1,1)-Metropolis Hastings (MH)
algorithm Model Results, Train:700 Test:200

The Metropolis-Hastings ARMA(1,1) model was implemented using the
following assumptions for the prior distributions: the Autoregressive (phi)
and Moving Average (theta) parameters are assumed to have a Uniformly
distributed prior whose support is (-1,1), that is , U ∼ (−1, 1). The precision
parameter is assumed to have a Gamma prior, that is, 1/σ2 ∼ Gamma(2, 4).
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Netcare Group Ltd: Estimated Metropolis-Hastings
-ARMA(1,1) model

Figure 5.74: Summary results of ARMA(1,1)- Metropolis Hastings model
fitted on Netcare Group Limited returns series

Figure 5.74 shows summary results of the estimated Metropolis-Hastings
ARMA(1,1) model fitted on Netcare Group Ltd returns series. The estimated
Autoregressive, Moving Average, and precision parameters are−0.032,−0.069,
and 85.843 respectively. The standard deviation (SD) for the precision pa-
rameter is relatively large (about 4.591), this suggests that there is some de-
gree of uncertainty in the estimated precision parameter. Since the Monte
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Carlo (MC) errors for all the estimated parameters are small, this is a clear
indication that there is a small amount of error in the estimates.

Figure 5.75: Netcare Group Ltd returns series predictions using
ARMA(1,1)-MH model

Predicted Down Predicted Up
True Down 65 39
True Up 30 66

Accuracy= 65.5%

Table 5.62: Confusion Matrix for ARMA(1,1)-MH model’s predictions of
Netcare Group Ltd returns series

Figure 5.75 presents predictions of Netcare Group Ltd returns series ob-
tained using the ARMA(1,1)-Metropolis-Hastings model. Yellow line in-
dicates the predicted returns and blue line indicates the true returns. The
structure of the predictions is similar to that in Figure 5.31 (they have small
variance). The model did not adequately capture the variance in the Net-
care series (although this does not necessarily imply that we will have poor
forecasts). Accuracy results of the ARMA(1,1)-MH model’s predictions are
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presented in Table 5.62. The model achieved an accuracy of 65%, hence the
model is almost as good as a random walk model.

Santam Ltd: Estimated ARMA(1,1)-Metropolis Hastings
model

Figure 5.76: Summary results of the ARMA(1,1) Metropolis Hastings
model fitted on Santam Ltd returns series

The estimated precision parameter and its standard deviation are close to
that in Figure 5.74. In Bayesian statistics, standard deviations represents un-
certainty in the estimated parameters. The degree of uncertainty in the Au-
toregressive and Moving Average parameters is very low since their stan-
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dard deviations are close to zero. All the estimated parameters lies within
their 95% HPD interval.

Figure 5.77: Santam Ltd returns series predictions using ARMA(1,1)-MH
model

Predicted Down Predicted Up
True Down 69 27
True Up 37 67

Accuracy= 68%

Table 5.63: Confusion Matrix for ARMA(1,1)-MH predictions of Santam
Ltd returns series

Figure 5.77 shows predictions from ARMA(1,1)-Metropolis Hastings model.
In terms of the ability to predict the direction of Santam returns series, the
ARMA(1,1)-MH model achieved an accuracy of 68%.
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Sanlam Group Ltd: Estimated ARMA(1,1)-Metropolis
Hastings model

Figure 5.78: Summary results of ARMA(1,1) Metropolis Hastings model
fitted on Santam Group Ltd returns series

The estimated precision parameter and its standard deviations are close to
those in Figure 5.74, and 5.76. Since the MC errors for all the estimated
model’s parameters are close to zero, this suggests that the amount of error
in these estimates is small. Since all the estimated parameters lies within the
95% HPD interval, then we are sure that the true parameters also lies within
this interval.
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Figure 5.79: Sanlam Group Ltd returns series predictions using
ARMA(1,1)-MH model

Predicted Down Predicted Up
True Down 66 35
True Up 32 67

Accuracy= 66.5%

Table 5.64: Confusion Matrix for ARMA(1,1)-MH model’s predictions of
Sanlam Group Ltd returns series

As seen in Figure 5.79, the variance of Sanlam returns series predictions
seems to be less volatile and similar to that in Figure 5.75. The model
achieved an accuracy of 66.5% and a misclassification rate of about 33.5%.
This shows that the model has a “poor” ability to correctly predict the di-
rection of movement of Sanlam returns series.
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Nedbank Group Ltd: Estimated ARMA(1,1)-Metropolis
Hastings model

Figure 5.80: Summary results of ARMA(1,1) Metropolis Hastings model
fitted on Nedbank Group Ltd returns series

A large standard deviation (SD) for the precision parameter (about 4.639)
indicates that there is some degree of uncertainty in this parameter. On the
other hand, the Monte Carlo error for this parameter is small, suggesting
that the amount of error in this estimate is small. The Monte Carlo (MC)
errors for the Autoregressive and Moving Average parameters are equal
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(about 0.025), this value is extremely close to zero, this suggests that the
amount of error in these estimates is very small.

Figure 5.81: Nedbank Group Ltd returns series predictions using
ARMA(1,1)-MH model

Predicted Down Predicted Up
True Down 65 35
True Up 35 65

Accuracy= 65%

Table 5.65: Confusion Matrix for ARMA(1,1)-MH model’s predictions of
Nedbank Group Ltd returns series

Figure 5.81 shows forecasts for Nedbank returns series obtained using ARMA(1,1)-
MH model. Blue indicates the true returns and yellow indicates the predic-
tions. The model has a “poor" ability to predict the direction of Nedbank
returns series. It is as good as a random walk since its accuracy is only 65%.

Discussion:

For all four time series data sets considered, the ARMA(1,1)-Metropolis
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Hastings model failed to achieve an accuracy of more than 68%. The poor
performance could be due to the inability of the model to capture the dy-
namics of the returns series. Stock returns are non-linear in nature, as a
result a linear model such as the ARMA(1,1)-Metropolis Hastings model
cannot accurately capture the complex structure of these returns series.

5.10 Artificial Neural Network (ANN) results,
Train:700 Test:200

Netcare Group Ltd: ANN model results

Architecture for ANN model constructed for the Netcare Group Ltd returns
series: 2 hidden layers, 4600 epochs (passes over the training set), a learning
rate of 0.0006, and a l2 regularization term of 0.0006. A tangent activation
function is used on the input and output layers of the neural network, it
output values between −1 and 1.

Figure 5.82: Netcare Group Ltd returns series predictions using ANN
model
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Predicted Down Predicted Up
True Down 74 30
True Up 24 72

Accuracy= 73%

Table 5.66: Confusion Matrix for ANN model’s predictions of Netcare
Group Ltd returns series

Graph in Figure 5.82 shows the comparison between the true returns and
the predicted returns. The structure of the predictions is similar to those in
a study carried out by (Hansson, 2017). As seen in Table 5.66, the model
achieved an accuracy of 73%.

Santam Ltd: ANN model results

Architecture for ANN model constructed for the Santam Ltd returns series:
2 hidden layers, 9800 epochs (passes over the training set), a learning rate of
0.0003, and a l2 regularization term of 0.0006. A tangent activation function
is used in the input and output layers of the neural network.

Figure 5.83: Santam Ltd returns series predictions using ANN model
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Predicted Down Predicted Up
True Down 74 22
True Up 23 81

Accuracy= 77.5%

Table 5.67: Confusion Matrix for ANN model’s predictions of Santam Ltd
returns series

Figure 5.83 shows the comparison between the actual returns and the pre-
dicted returns (from ANN model). The confusion matrix in Table 5.67 shows
that the ANN model has a strong ability to learn the complex (non-linear)
relationship that exists between the output and the input. The model has
a misclassification rate of only 22.5%. These results indicates that the ANN
model is a suitable machine learning algorithm for prediction of direction
of movement of Santam Ltd returns series.

Sanlam Group Ltd: ANN model results

Architecture for ANN model constructed for the Sanlam Group Ltd returns
series: 2 hidden layers, 4600 epochs, a learning rate of 0.00056, and a l2
regularization term of 0.00054. For the input and output layers of the neural
network, a tangent activation function is used (it output values between −1
and 1).
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Figure 5.84: Sanlam Group Ltd returns series predictions using ANN
model

Predicted Down Predicted Up
True Down 75 26
True Up 25 74

Accuracy= 74.5%

Table 5.68: Confusion Matrix for ANN model’s predictions of Sanlam
Group Ltd returns series

Figure 5.84 shows the predicted returns (yellow) and the actual returns
(blue). Better capturing the volatility of the series does not necessarily lead
to better forecasting accuracy as illustrated in the study by (Hansson, 2017).
In terms of accurately predicting whether the next day’s Sanlam Group Ltd
returns price will go up or down, the ANN model achieved an accuracy of
74.5%.

Nedbank Group Ltd: ANN model results

Architecture for ANN model constructed for the Nedbank Group Ltd re-
turns series: 2 hidden layers, 4900 passes over the training data set (epochs),
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a learning rate of 0.0006, a l2 regularization term of 0.0006, and a tangent ac-
tivation function for both the input and output layers.

Figure 5.85: Nedbank Group Ltd returns series predictions using ANN
model

Predicted Down Predicted Up
True Down 83 17
True Up 26 74

Accuracy= 78.5%

Table 5.69: Confusion Matrix for ANN model’s predictions of Nedbank
Group Ltd returns series

The graph in Figure 5.85 shows the comparison between the true returns
(blue) and the predicted returns (yellow). The confusion matrix in Figure
5.69 illustrates how accurate the ANN model is in terms of its ability to pre-
dict the direction of movement of returns prices. The model achieved a very
high accuracy of 78.5% and a misclassification rate (percentage of incorrect
predictions) of only 21.5%.

Discussion:
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One notable observation from the predictions of the ANN models is that
they are extremely close to the mean. This phenomenon was also observed
in studies carried out by (Hansson, 2017), and (Björklund and Uhlin, 2017).
One of the advantage of Artificial Intelligence models is that they are able to
capture the dynamics of “complex" data sets. In our case, the ANN model
was able to correctly predict (with high accuracy) whether the next day’s
returns price for the various series will go up or down. The highest accuracy
achieved by the model was 78.5% for the Nedbank returns series, and the
lowest was 73% for the Netcare Group Ltd returns series.

5.11 Discussion of the Results

Accuracy Results

Table 5.70: A comparison of forecasting accuracy of ARMA-type models
and an Artificial Neural Network model, Train: 500 Test: 200

Technique (Model) Netcare Santam Sanlam Nedbank
ARMA(1,1)-Maximum Likelihood 77% 65% 68% 73.5%
ARMA(1,1)-State Space 77% 73% 69.5% 74%
ARMA(1,1)-Metropolis Hastings 68.5% 69% 68.5% 69.5%
AR(3)-AVGARCH(1,1)-std 78% 71.5% 69% 69.5%
ANN Model 76% 71% 83.5% 89%

Table 5.71: A comparison of forecasting accuracy of ARMA-type models
and an Artificial Neural Network model, Train: 700 Test: 200

Technique (Model) Netcare Santam Sanlam Nedbank
ARMA(1,1)-Maximum Likelihood 75% 77% 72% 69%
ARMA(1,1)-State Space 74.5% 74% 62.5% 69.5%
ARMA(1,1)-Metropolis Hastings 65.5% 68% 66.5% 65%
AR(3)-AVGARCH(1,1)-std 75% 72% 70% 70.5%
ANN Model 73% 77.5% 74.5% 78.5%
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Table 5.70 and 5.71 shows forecasting accuracy results of ARMA-type mod-
els and an Artificial Intelligence model. As seen in Table 5.70, the ANN
model outperforms the ARMA-type models in two cases (for the Sanlam
and Nedbank returns series). Furthermore, as seen in Table 5.71 the ANN
model again outperforms ARMA-type models in terms of predicting whether
the next day’s returns price will go up or down in three cases ( for San-
tam, Sanlam, and Nedbank returns series). The results indicate that the
ANN model is a suitable machine learning algorithm for prediction of di-
rection of movement of stock returns of the four JSE listed companies. The
ANN technique outperforms the ARMA-type models in most cases this
may be because stock returns data have a “complex” structure, are non-
linear, and they behave in a “chaotic” manner. As a result, linear mod-
els such as the Box Jenkins ARMA-type models cannot adequately capture
these behaviours.

Test for Superior Model

The Superior Predictive Ability (SPA) test is used to find the model with
a superior forecasting ability out of all competing models, that is, we use
the procedure to compare two or more competing statistical models. We
test if there is any model which produce better forecasts than the bench-
mark model. We evaluate the forecasts using a pre-specified loss function
(Hansen et al., 2003, p.g 6). In our study, we used the Mean Square Error
(MSE) loss function. The model with the smallest expected (average) loss
is chosen as the “best" forecasting model (Hansen et al., 2003, p.g 6). In
general, we test if there is any model out of all competing models which
produces better forecasting results than the benchmark model (Costa, 2017,
p.g 35).

We test the null hypothesis that no model is better than the benchmark
model against the alternative hypothesis that there is a competing model
which is better than the benchmark (Costa, 2017, p.g 35). The SPA test has
three p-values: lower p-value, consistent p-value, and the upper p-value.
However, only the consistent p-value is used to evaluate the forecasting abil-

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. DATA ANALYSIS AND RESULTS 176

ity of the statistical models (Costa, 2017, p.g 35). If the Consistent p-value
is small, one should therefore reject the null hypothesis and conclude that
there is another model which is better the benchmark model.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. DATA ANALYSIS AND RESULTS 177

Table 5.72: Superior Predictive Ability (SPA) test, Train: 500 Test: 200

Netcare Group Ltd
Technique Average Loss SPA test p-values
ARMA(1,1)-Maximum Likelihood 0.230 SPALower=0.650
ARMA(1,1)-State Space 0.230
ARMA(1,1)-Metropolis Hastings 0.315 SPAConsistent=0.855
AR(3)-AVGARCH(1,1)-std * 0.220
ANN Model 0.240 SPAUpper=0.908

Santam Group
Technique Average Loss SPA test p-values
ARMA(1,1)-Maximum Likelihood 0.350 SPALower=0.453
ARMA(1,1)-State Space * 0.270
ARMA(1,1)-Metropolis Hastings 0.310 SPAConsistent=0.685
AR(3)-AVGARCH(1,1)-std 0.285
ANN Model 0.290 SPAUpper=0.774

Sanlam Group Ltd
Technique Average Loss SPA test p-values
ARMA(1,1)-Maximum Likelihood 0.320 SPALower=0.455
ARMA(1,1)-State Space 0.305
ARMA(1,1)-Metropolis Hastings 0.315 SPAConsistent=0.545
AR(3)-AVGARCH(1,1)-std 0.310
ANN Model * 0.165 SPAUpper=0.998

Nedbank Group Ltd
Technique Average Loss SPA test p-values
ARMA(1,1)-Maximum Likelihood 0.265 SPALower=0.405
ARMA(1,1)-State Space 0.265
ARMA(1,1)-Metropolis Hastings 0.305 SPAConsistent=0.506
AR(3)-AVGARCH(1,1)-std 0.315
ANN Model * 0.105 SPAUpper=1.00

Note: This table shows the computed expected (average) loss for each
model and the p-values for the Superior Predictive Ability (SPA) test. The

table is divided into four parts, each part corresponding to a time series (by
order : Netcare Group Ltd, Santam Group, Sanlam Group Ltd, Nedbank
Group). For each time series data, the model with the smallest expected

(average) loss is used as the benchmark model and is indicated by an
asterisk.
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In Table 5.72, the consistent p-values are greater than the 5% level of signifi-
cance this suggests that for all four time series considered, the are no mod-
els which produces better forecasting results than the respective benchmark
models. Large consistent p-values provides strong evidence against the al-
ternative hypothesis. Hence, for the Netcare Group Ltd returns series no
model outperforms the benchmark ARMA(1,1)-MLE model, for the Santam
Group series the benchmark ARMA(1,1)-State Space model is better than all
the competing models since it has the lowest average loss and its SPA test
consistent p-value (about 0.685) is greater than 0.05 level of significance.
For the Sanlam Group Ltd and the Nedbank Group Ltd returns series the
benchmark ANN model outperformed all the competing models.
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Table 5.73: Superior Predictive Ability (SPA) test, Train: 700 Test: 200

Netcare Group Ltd
Technique Average Loss SPA test p-values
ARMA(1,1)-Maximum Likelihood * 0.250 SPALower=0.653
ARMA(1,1)-State Space 0.255
ARMA(1,1)-Metropolis Hastings 0.345 SPAConsistent=0.855
AR(3)-AVGARCH(1,1)-std 0.290
ANN Model 0.270 SPAUpper=0.975

Santam Group
Technique Average Loss SPA test p-values
ARMA(1,1)-Maximum Likelihood 0.230 SPALower=0.459
ARMA(1,1)-State Space 0.260
ARMA(1,1)-Metropolis Hastings 0.320 SPAConsistent=0.631
AR(3)-AVGARCH(1,1)-std 0.280
ANN Model * 0.225 SPAUpper=0.648

Sanlam Group Ltd
Technique Average Loss SPA test p-values
ARMA(1,1)-Maximum Likelihood 0.280 SPALower=0.486
ARMA(1,1)-State Space 0.375
ARMA(1,1)-Metropolis Hastings 0.335 SPAConsistent=0.748
AR(3)-AVGARCH(1,1)-std 0.300
ANN Model* 0.255 SPAUpper=0.841

Nedbank Group Ltd
Technique Average Loss SPA test p-values
ARMA(1,1)-Maximum Likelihood 0.310 SPALower=0.466
ARMA(1,1)-State Space 0.305
ARMA(1,1)-Metropolis Hastings 0.350 SPAConsistent=0.959
AR(3)-AVGARCH(1,1)-std 0.295
ANN Model * 0.215 SPAUpper=0.974

Note: This table shows the computed average (expected) loss of each
model and the p-values for the SPA test. The model with the smallest

average (expected) loss is used as a benchmark model and is indicated by
an asterisk.

As seen in Table 5.73, for the Netcare Group Ltd returns series, the ARMA(1,1)-
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MLE model had the lowest expected loss and was used as the benchmark.
The SPA test shows that the model produces “better" forecasting results than
all other models since the consistent p-value is relatively large (about 0.855).
For the Santam Group, Sanlam Group Ltd, and the Nedbank Group Ltd
returns series the ANN achieved the lowest average loss and the SPA test
suggests that the model produces better forecasting results than all other
competing models.
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Chapter 6

Conclusion

In this chapter, conclusion that is aligned to the research problem and ob-
jectives (outlined in Chapter 1) is presented. In this Chapter we discuss the
findings and explore possible limitations of the study. We further propose
future work which can be carried out.

6.1 Research Findings

The models were evaluated in terms of their ability to predict whether the
next day’s returns price will go down or up i.e. the study only concentrated
on trying to predict the direction of movement of returns series of JSE listed
companies. The SPA test was used to find the “best" model out of all the
competing models.

The returns series from the four JSE listed companies exhibited the follow-
ing characteristics: volatility clustering, leverage effects, and non-normality
of returns. These characteristics are common in financial markets (espe-
cially in emerging markets). One notable observation from fitting ARMA
model on the returns series was that the constant variance and the nor-
mality assumption were usually violated. These violations suggest that an
ARMA model which includes a conditional variance process such as the
GARCH model should be used. One of the advantage of including a con-
ditional variance process in the ARMA model is that we can assume that
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the returns are from a specific statistical distribution such as the Student-t,
Skewed Student-t, Hyperbolic or the Generalised Error Distribution (GED).
The four distributions have leptorkurtic properties (heavier tails than the
Gaussian/Normal distribution) (Ferenstein and Gasowski, 2004a, p.g.56).

The predictions from all the fitted models were operating around the mean,
that is, they were very close to the mean. One notable characteristic of these
predictions was that their variance was very “small”. This phenomenon
was also observed in studies carried out by (Hansson, 2017) and (Björklund
and Uhlin, 2017). According to (Hansson, 2017, pg.23), better capturing the
variance does not necessarily lead to better forecasts. The rate of decay of
the transient is part of the formula for the variance, but since the data does
not contain evidence of the transient component, it means that the estima-
tion procedure does not estimate the rate correctly and therefore it affects
the size of the variance.

Results emerging from the study showed that the ARMA-Maximum Likeli-
hood, ARMA-State Space, AR(3)-AVGARCH(1,1)-Student-t, and ANN mod-
els have a strong ability to predict the direction of future returns prices
(whether the price will go down or up). The highest accuracy achieved
was 89% by the Artificial Intelligence Neural Network model. However,
the ARMA-Metropolis Hastings model performed poorly, overall it failed
to achieve an accuracy greater than 68%. Overall, the Artificial Intelligence
Neural Network model outperformed all the time series ARMA-type mod-
els. The SPA test also confirmed the superiority of the ANN model over
other models in at least 5 cases. In those cases, the model produced the
smallest expected (average) loss. These results are similar to those of a
study by (Marwala, 2010) which showed that when predicting the direc-
tion of movement of the JSE stock index artificial intelligence techniques
such as ANN, Support Vector Machines, and Fuzzy models outperforms
the ARIMA model and the Random Walk. A study carried out by (Ade-
biyi et al., 2014) also found that in terms of forecasting accuracy, Artificial
Neural Network models were superior to Box Jenkins ARIMA models. Our
study has shown that past stock returns can be used to predict the direction
of movement of future returns prices.
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6.2 Limitations and Recommendations

There are many factors which affect the movement of returns prices e.g po-
litical events, interest rates, natural disasters e.tc. This study was only con-
fined in using past stock returns to make inference about future direction of
movement of returns prices. As a result, our study is only limited to using
one input (past stock returns) to try to understand the future movement of
stock returns. The results emerging from the study sends a good message to
fund managers, stock traders, and investors that statistical time series mod-
els and artificial neural networks can be used for predicting the direction of
movement of future returns prices (whether the price will go down or up).
Individual discretion has to be exercised if the investor wants to use these
models to make a profit.

6.3 Areas of Further Research (Furture Work)

Future work should include combining the unique strength of linear ARMA-
type models with Artificial Neural Network model to form a hybrid model,
this would enable us to better capture both the linear and non-linear chaotic
behaviour of stock returns. Another area of interest would be to use the
Bayesian GARCH-type model as the conditional variance process of the
ARMA model. Future research should also look at using macroeconomic
variables such as GDP, inflation, interest rate etc. as inputs of the models to
see if they contribute in improving the forecasting/ predictive power of the
models.
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Appendix A

Python Codes

Statistical software packages Python 2 and Python 3 were used for analysing
the data. The codes can be found on github: https://github.com/vhahangwele/
Thesis-Python-Codes
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