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Abstract 

Emerging infectious diseases are mostly zoonotic in origin and defined as “infections that have newly emerged 

in a population or have existed but are rapidly increasing in incidence or geographic range". Zoonotic viruses 

are directly (e.g. bite from a rabid bat) or indirectly (via an intermediate host or vector) transmitted from 

animals to humans. Bats have received increasing attention as potential hosts for zoonotic diseases. Bats belong 

to the order Chiroptera, which consists of two suborders: Yinpterochiroptera and Yangochiroptera. More than 

1 300 species have been described globally, occurring on almost all continents excluding Antarctica. Specific 

physiological and ecological characteristics make bats extraordinary evolutionary vessels to carry numerous 

infectious agents including pathogens.  

Astroviruses (AstVs) are amongst the vast array of viruses that have been detected in bats. AstVs are single 

stranded, positive sense, RNA viruses that are transmitted via the faecal-oral route. Infection with AstVs causes 

acute diarrhoea, however, more serious clinical presentations such as neurological deficits, stunted growth and 

encephalitis have also been documented. Bats on the other hand, seem to be asymptomatically infected with 

AstVs. Little attention has been given to the evolution, phylogenetic relationship, ecology and diversity of 

AstVs in South African bats. In 2013 the first study in South Africa screening for a variety of viruses in small 

mammals, including SAn bats, found that bats were frequently co-infected with AstVs and coronaviruses.  

The overall aims of the current study were to describe the prevalence, diversity and ecology of AstVs in South 

African bats, to determine the potential threat to environmental and animal health at wastewater treatment 

works (WWTW) through testing water and bat samples for the presence of AstVs, to monitor AstV and CoV 

co-infection in a Neoromicia capensis colony over time and to isolate and propagate a bat AstV in vitro. The 

results will be used to determine the potential One Health implications of AstVs in a South African setting.  

Sample collection was done via non-invasive capture and release methods by collaborating zoologists. 

Morphological and ecological data of each bat were recorded. Bat faecal samples (n=500) were screened for 

AstVs using the hemi-nested screening assay that targets the RNA-dependent RNA polymerase (RdRP) gene 

of the virus. Plasmid positive controls were generated to ensure an optimal AstV screening PCR assay. 

The One Health concept emphasizes the interlinkage between human, animal and environmental health. To 

determine the impact that potential exposure to human AstVs at WWTW might have on animal and 

environmental health, water samples upstream and downstream of two WWTW were also collected and 

screened for AstVs. 

The overall detection rate of AstVs across bat species was 13%, but it differed significantly between species 

(Miniopterus natalensis, 55%; Rhinolophus capensis, 39%; and R. clivosus, 17%). Positive samples were 

further analysed to try and amplify the capsid protein gene (ORF2), which is highly variable and only one 

ORF2 gene fragment was obtained. 
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Twenty-five novel AstV RdRp sequences and one ORF2 sequence were identified, bringing the total RdRp 

sequences available for South African bat AstVs to forty-four. Maximum likelihood analyses of the RdRp gene 

fragments suggest that South African bat AstVs are not restricted by host species identity or geographical 

location. Interestingly, the maximum likelihood analyses of the ORF2 sequence suggest that the South African 

bat AstVs might be more similar to human AstVs from Japan compared to any bat AstVs.  

The water samples collected from the WWTW tested negative for the presence of AstVs and only one bat 

sample collected at the WWTW tested positive for AstV.  

Two real-time PCR assays were designed to monitor AstVs and coronaviruses in a N. capensis colony over 

time, as these two viruses regularly co-infect bats. The results indicated that both these viruses had a single 

amplification peak that was associated with colony formation after migration. Interestingly the peak in viral 

loads did not correlate with the pupping season of the bats, as was found by another study conducted on these 

two viruses in Germany.  

Statistical analyses of ecological and individual bat factors suggest that being a sexually active adult male bat, 

species identity and occurrence in the Succulent Karoo biome could contribute to AstV positivity. 

The current study was the first ever to successfully isolate and propagate a Miniopterus bat derived AstV in 

vitro. During the isolation attempts three different cell lines were used, human adenocarcinoma, Neoromicia 

capensis kidney and baby hamster kidney cells. Isolation and propagation was only successful in the baby 

hamster kidney cells. The refined protocol for isolation and propagation of bat AstVs in cell culture will enable 

future studies to successfully isolate bat AstVs as well as enable genomic and functional studies. The results 

also gave insight into the potential zoonotic risk of bat AstVs.  

The findings of the current study indicated that bat AstVs are diverse and relatively prevalent in South African 

bats. Phylogenetic analyses of the 24 novel RdRp and one ORF2 genes from this study indicated that the virus 

was not limited by species identity or host geographical range. Furthermore, the phylogenetic analyses of the 

bat AstV ORF2 gene would suggest that the bat AstV is more similar to human AstVs, which could imply that 

South African bat AstVs have zoonotic potential. The results of current study gave some potential insights into 

the One Health implications of AstVs in the SA setting.  
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Opsomming  

Opkomende aansteeklike siektes word gedefinieer as “infeksies wat onlangs verskyn het in ŉ populasie of wat 

al lank reeds teenwoordig was in ŉ populasie maar vinnig toeneem in insidensie of geografiese verspreiding”. 

Die meerderheid van opkomende aansteeklike siektes is zoonoties in oorsprong, wat beteken dat hul 

oorspronklik in diere voorgekom het, maar nou na mense oorgedra kan word. Zoonotiese virusse kan direk 

oorgedra word na die mens bv. deur gebyt te raak deur ŉ hond met hondsdolheid of indirek deur ŉ tussenganger 

gasheer of vektor. Met die soeke na wilde diere wat dien as gashere van moontlike zoonotiese siektes was 

vlermuise geïdentifiseer as belangrike gashere vir verskeie potensiële zoonotiese siektes. Vlermuise behoort 

aan die orde Chiroptera wat verder in twee subordes verdeel word, naamlik Yinpterochiroptera en 

Yangochiroptera. Die orde Chiroptera is baie divers met meer as 1300 spesies wat globaal beskryf is en 

voorkom op alle vastelande, uitsluitend Antarktika. Daar is verskeie eienskappe (fisiologies en ekologies) wat 

vlermuise besonderse evolusionêre vaartuie maak om as draers te dien vir verskeie patogene. 

Astrovirusse (AstVs) is een groep van verskeie virusse wat in vlermuise voorkom. AstVs is enkelstring, 

positiewe sense, RNA virusse wat via die fekale-orale roete versprei word. Infeksie met AstVs veroorsaak 

gewoonlik akute diarree, maar meer ernstige simptome soos neurologiese afwykings, vertraagde groei asook 

enkefalitis is al waargeneem. Dit wil voorkom of vlermuise asimptomaties geïnfekteer word deur die virus. 

Baie min aandag is geskenk aan die evolusie, filogenetiese verwantskappe, ekologie en diversiteit van AstVs 

wat in Suid Afrikaanse (SA) vlermuise voorkom. Die enigste bestaande studie wat AstVs bestudeer het in SA 

vlermuise was uitgevoer deur Dr Ithete tydens haar doktorale studie. Die studie deur Ithete (2013) was 

hoofsaaklik ŉ verkenning studie om te bepaal watter virusse in klein soogdiere voorkom in SA, daar was egter 

nie ŉ in-diepte ondersoek na die diversiteit en ekologie van AstVs nie. Tydens die huidige studie was die 

diversiteit en ekologie van AstVs in SA vlermuise bestudeer deur gebruik te maak van molekulêre-, 

filogenetiese- en statistiese metodes.  

Vlermuis monsters wat gebruik is tydens die huidige studie, was verskaf deur samewerkende dierkundiges met 

etiese toestemming. Die meerderheid van die monsters was versamel deur nie-indringende metodes, wat vang 

en vrylating van die vlermuise vereis het. Tydens die versameling van vlermuise morfologiese data was 

gedokumenteer asook ekologiese data. 

ŉ Totaal van vyfhonderd mis monsters was getoets vir die teenwoordigheid van AstVs deur gebruik te maak 

van ŉ polimerase ketting reaksie (PKR). Die PCR toets teiken die RNA-afhanklike RNA polimerase (RdRp) 

geen van die virus. Om te verseker dat die PKR toets wat reg toegepas word, was ŉ plasmied positiewe kontrole 

geproduseer. Die plasmied positiewe kontrole was in vitro getranskribeer na RNA om te verseker dat al die 

stappe, vanaf omgekeerde transkripsie van onttrekte RNA, gevolg deur die AstV PKR toets, reg verloop. Die 

virus was opgespoor in 13% van al die monsters wat getoets was vir AstVs. Die opsporing het wel verskil 

tussen vlermuis spesies, met die hoogste voorkoms van die virus in Miniopterus natalensis (55%) gevolg deur 

Rhinolophus capensis (39%) en Rhinolophus clivosus (17%). Monsters wat positief getoets het vir AstV is 
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verder geanaliseer om ŉ groter fragment van die virus te probeer bekom, naamlik die kapsied proteïen 

voorloper geen (ORF2). ŉ PKR toets wat ontwikkel is deur Atkins et al., (2009) was gebruik. Aangesien die 

kapsied proteïen geen baie divers is, het meeste pogings misluk en slegs een ORF2 geen fragment is bekom.  

ŉ Totaal van 25 nuwe AstV RdRp gene asook een ORF2 geen is geïdentifiseer. Dit bring die totaal van AstVs 

RdRp geen volgordes wat beskikbaar is vir AstVs van SA vlermuise na 44. Die filogenetiese analise van die 

RdRp gene het gedui dat daar geen definitiewe patroon is in terme van groeperings nie, dit wil voorkom of SA 

vlermuis AstV nie beperk word deur gasheer spesie of geografiese verspreiding nie. Interessant genoeg het die 

maksimum waarskynlikheidsanalise van die ORF2 geen aangedui dat die SA vlermuis AstVs meer soortgelyk 

is aan mens AstVs as aan vlermuis AstVs. 

Tydens die studie was daar gebruik gemaak van twee real-time qPCR (werklike tyd kwantitatiewe polimerase 

ketting reaksie) toetse om AstVs asook caronavirusse te monitor in ŉ Neoromicia capensis vlermuis kolonie. 

Die resultate het getoon dat albei virusse een amplifikasie hoogtepunt bereik het na kolonie formasie na 

migrasie. Die piek in virus lading was nie geassosieer met die geboorte van nuwelinge nie, soos wat voorheen 

deur ander studies bevind was nie.  

Statistiese analises van ekologiese- en individuele vlermuis metings het getoon dat die volgende faktore 

moontlik kan bydra tot AstV positiwiteit in vlermuise: geslag (seksueel aktiewe mannetjies), spesies identiteit 

asook bioom (Sukkulente Karoo). 

Die huidige studie was die eerste ter wêreld om ŉ vlermuis AstV suksesvol te isoleer en propageer in vitro. 

Tydens die isolasie pogings was drie verskillende sellyne gebruik: menslike adenokarsinoom (Caco-2), 

Neoromicia capensis nier selle (NCK) asook hamster nier selle (BHK G43). Die isolasie was slegs suksesvol 

in die hamster nier selle. Daar is verskeie faktore wat ŉ bydra kon lewer tot die sukses van die isolasie poging 

naamlik die monster tipe wat gebruik was as inokulum, die media komposisie, sellyn tipe asook die inkubasie 

tydperk na die sellyn geïnokuleer is. Die suksesvolle isolasie van ŉ vlermuis AstV in vitro sal opkomende 

studies in staat stel om ook suksesvolle isolasies te doen asook verdere genetiese toetse bv. volledige genoom 

toetse. 

Die bevindinge van die huidige studie toon dat SA vlermuis AstVs relatief volop is en dat hul ook divers is. 

Vyf-en-twinting RdRp geen volgordes en een ORF2 geen volgorde is bekom in die studie. Filogenetiese 

analises van die RdRp geen volgordes het getoon dat die virus nie deur gasheer spesie of geografiese 

verspreiding beperk word nie. Interessant genoeg het die filogenetiese analise van die ORF2 geen volgorde 

getoon dat die SA vlermuis AstV nader verwant is aan menslike AstVs as aan vlermuis AstVs, wat moontlike 

zoonotiese potensiaal impliseer. Die suksesvolle isolasie van ŉ vlermuis AstV in vitro is ŉ groot bydra tot 

toekomstige studies wat die genoom asook funksionele biologie van die virus verder wil bestudeer. 
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Chapter 1 Introduction & Literature Review 

1.1 Emerging Infectious Diseases  

Emerging infectious diseases (EIDs) are defined as “infections that have newly emerged in a 

population or have existed but are rapidly increasing in incidence or geographic range” (Morse, 

1995). The majority of EIDs are zoonotic in origin. Zoonotic viruses are transmitted from animals to 

humans, either directly (e.g. bite from a rabid bat) or indirectly via an intermediate host or vector 

(Ludwig et al., 2003, Halpin et al., 2007; Mendenhall et al., 2015). Emergence of a disease is 

influenced by various factors which include but are not limited to: acquired resistance of pathogens 

to antibiotics and other antimicrobial medicine, an increase in the mobility of humans which enhances 

the spread of disease causing agents, host range, taxonomy of the pathogen, and molecular 

characteristics of the pathogen (Taylor et al., 2000, Cleveland et al., 2001, Jones et al., 2008, 

Mendenhall et al., 2015).  

1.2 Bats as important hosts of various EIDs  

In the search for wildlife that serve as hosts to potentially zoonotic diseases, bats have received 

increasing attention (Newman et al., 2011, Baker et al., 2013; Mendenhall et al., 2015). Bats belong 

to the order Chiroptera which consists of two suborders Yinpterochiroptera and Yangochiroptera 

(Teeling, 2009; Monadjem et al., 2010). Chiropterans are highly speciose, with more than 1300 

species described globally, occurring on almost all continents excluding Antarctica (Teeling et al., 

2005; Teeling, 2009). This fascinating group of flying mammals have divergent morphologies, 

ecologies and behaviours (Monadjem et al., 2010). There are ample characteristics (physiological and 

ecological) that make bats extraordinary evolutionary vessels to carry numerous pathogens, of which 

the most important will be discussed. 

Bats and their associated pathogens have co-evolved for 50 to 100 million years. In rare cases some 

pathogens carried by bats spilled over to humans, e.g. Hendra virus in Australia (Teeling, 2009; 

Playford et al., 2010; Wibbelt et al., 2010). This is largely due to habitat destruction and human 

encroachment of natural habitats, resulting in increased contact between bats and humans, as well as 

between bats and domesticated animals (Baker et al., 2013).  

Some infectious agents carried by bats may be transmitted through direct contact with the infected 

bat (e.g. a bite from a rabid bat) or indirectly through an intermediate or amplifying host. Findings by 

Corman et al. (2014) suggest that the Middle East respiratory syndrome coronavirus (MERS-CoV), 

isolated from camels and humans, potentially originated from bats. This study furthermore indicated 

Stellenbosch University https://scholar.sun.ac.za



2 

that the virus has undergone host switching events and that the origin of the virus may be in Africa, 

from where camels are imported into the Arabian Peninsula (Corman et al., 2014). It should however 

be mentioned that not all pathogens carried by bats will become emerging infectious diseases that 

will spill over to humans.  

Chiropterans are the only flying mammals on earth and this specific characteristic facilitates short- 

and long-distance dispersal of diseases, e.g. big brown bats (Eptesicus fuscus) can travel an average 

distance of 35 km per night. Migratory bat species are known to travel vast distances and even cross 

from one continent to another e.g. large flying foxes (Pteropus vampyrus) have been recorded to 

travel distances of up to 2 500 km during migrations, making them extraordinarily good long-distance 

dispersers of diseases (Halpin et al., 2007; Epstein et al., 2009; Monadjem et al., 2010; Wibbelt et al., 

2010; Mendenhall et al., 2015).  

Another trait that has also been identified as important to their ability to carry disease is their sociality. 

Bats display a range of social behaviour such as allogrooming and food sharing. Vampire bats 

(Desmodus rotundus) are known to share blood meals with roost members resulting in the spread of 

pathogens from one individual to another (Wilkinson, 1984).  

Roosting behaviour also differs between bat species, with some bats roost in isolation whilst others 

form large roosts. The largest known roost is located at Bracken Cave in the United States of America 

(USA) where millions of Mexican free-tailed bats (Tadarida brasiliensis) inhabit the cave. Maternity 

roosts are a particularly interesting roost type, as the roost consists solely of female bats and their 

pups. Not only does roosting increase contact rates between individual bats of the same species, but 

it also allows for interactions with other bat species, which could facilitate pathogen sharing (Calisher 

et al., 2006; Wibbelt et al., 2010).  

While it is evident that bats are important reservoirs for various pathogens, little is known about the 

underlying mechanisms that drive pathogen maintenance, spread, diversity and epidemiology within 

individual bats, within colonies and possibly between colonies and between species (Calisher et al., 

2006; De Benedictis et al., 2011; Drexler et al., 2011). Even though it is assumed that bats are 

asymptomatic whilst testing positive for various pathogens, e.g. detection of rabies in apparent 

healthy bats, a study by Mühldorfer et al. (2011) found that 12 % of bat fatalities investigated during 

their study could be attributed to infectious agents and parasites. The exact functioning of the bat’s 

immune system is not yet fully understood. Fortunately, research in this particular field is increasing 

(Kunz & Fenton, 2003; Calisher et al., 2006; Wibbelt et al., 2010; Moratelli & Calisher, 2015). 

Studies conducted on bat immunology have identified orthologous bat immune genes, which include 

major histocompatibility class II genes and numerous alleles in Noctilio albiventris and E. fuscus. 
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Some of the alleles identified have been linked to parasite burden. Antiviral, innate and interferon 

genes have also been identified in Pteropus vampyrus, P. lecto and Myotis lucifugus. Microbial 

pattern recognition receptors have also been detected in Pteropus genome scans (Wibbelt et al., 2010). 

These studies have highlighted the importance of continuing research into bat immunology (Moratelli 

& Calisher, 2015). 

1.3 Introduction to astroviruses  

Members of the family Astroviridae are non-enveloped, positive-sense, single-stranded RNA 

(ribonucleic acid) viruses with a characteristic star-like surface structure when observed under an 

electron microscope (Gray & Desselberger, 2009; De Benedictis et al., 2011; Osborne et al., 2015). 

The virus was first discovered in 1975 in stool samples from infants suffering from diarrhoea 

(Appleton & Higgins, 1975).  

1.4 Taxonomy  

The family Astroviridae has been divided into two genera based on the class of host the viruses infect, 

avastroviruses (infect birds) and mamastroviruses (infect mammals) (Mendez & Arias, 2007). The 

mamastrovirus genus contains 19 species whilst the avastrovirus genus contains three species. The 

current species classification of astroviruses (AstVs), from both mamastro- and avastrovirus groups 

is based on the host species from which the virus has been isolated, as such the species do not 

correspond to genetic phylogenies (Bosch et al., 2014). The classification of these viruses will be 

redefined based on the complete capsid region at the amino acid level (Boujon et al., 2017). According 

to the new method AstVs will then be divided into two genogroups: genogroup I and genogroup II 

(Boujon et al., 2017). The genogroups consist of various genotypes that infect different host species. 

The mean amino acid genetic distance (p-dist) between two genogroups is 0.704 ± 0.013. The amino 

acid genetic distance between genotypes within a genogroup ranges between 0.576 and 0.741. 

Mamastroviruses can also be divided into two genogroups based on the capsid protein amino acids, 

Genogroup I and Genogroup II (Figure 1.1.). The mean amino acid genetic distance (p-dist) between 

genogroups is 0.671 ± 0.016 and the genetic distance between genotypes ranges between 0.338 and 

0.783 (Bosch et al., 2012). Serotypes within genotypes are defined based on two-way cross-

neutralization titres (of 20-fold and greater) and are then given consecutive numbers (Bosch et al., 

2014).  

However, some evidence suggests that cross-genus and cross-species infection has taken place in the 

past e.g. an AstV isolated from a stranded California sea lion pup (Zalophus californianus) is thought 

to have originated through recombination of a human AstV isolate (belonging to genotype human 
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AstV-3 (HAstV-3)) with a marine mammal AstV, resulting in California sea lion AstV-3 (CslAstV-

3) (Rivera et al., 2010). Furthermore, inter-genotype recombination has been recorded for HAstV 

genotypes (Pativada et al., 2011), this has not yet been investigated for bats and other non-human 

hosts harbouring AstVs. There is also a large gap in the literature with regards to co-infections and 

the chance of recombination of AstVs strains in non-human hosts (Xiao et al., 2013; Mendenhall et 

al., 2015).  

 

Figure 1.1. Phylogenetic relationship between members of the family Astroviridae based on the analyses of 

the capsid polyprotein gene (King et al., 2012) (Image used with permission from Elsevier) 

1.5 Replication and pathogenesis  

Very little is known about AstV attachment and cell entry. Based on what is known about other RNA 

viruses, it is suggested that multiple receptors are utilized for virus attachment and entry, but no 

studies have identified the specific receptors. Donelli et al. (1992) suggest that AstVs might enter 

cells through receptor-mediated endocytosis. Once the virus enters a cell, the virus promotes 

intracellular membrane rearrangement to produce vesicle-like structures (singe- and double-

membrane vesicles), that are associated with protein and viral RNA synthesis as well as virus particle 
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assembly (Mendez & Arias, 2007). The release mechanism of virus particles from infected cells is 

also undetermined (Gray & Desselberger, 2009; De Benedictis et al., 2011). 

1.6 Genome structure 

The length of the AstV genomes varies from 6.1 to 7.3 kilobases (kb) (Mendez & Arias, 2007; Gray 

& Desselberger, 2009). The genome contains 5’ and 3’ untranslated regions (UTRs) and three open 

reading frames (ORFs); ORF1a, ORF1b and ORF2 (Figure 1.2.) (Mendez & Arias, 2007; Strain et 

al., 2009; Gray & Desselberger, 2009). ORF1a is 2.8 kb in length and encodes an 110kDa 

polypeptide, which contains an array of conserved motifs (e.g. immunoreactive epitope, putative 

nuclear localization signal, serine protease) (Mendez & Arias, 2007). The polypeptide is cleaved into 

five peptides by cellular proteases and viral proteases (Mendez & Arias, 2007). The three ORFs code 

for different proteins: ORF1a for non-structural proteins, ORF1b codes for RNA-dependent RNA 

polymerase (RdRp) and is separated from ORF1a by a frameshift. Between ORF1a and ORF1b there 

is an overlap of 70 bases containing sequences that direct ribosomal frameshifting (to a-1 frame) 

which enables reading of ORF1b (Gray & Desselberger, 2009). ORF1b is the most conserved region 

between the three ORFs and is usually used in genetic analyses to determine genetic relatedness of 

viruses (Strain et al., 2009). ORF2 codes for a structural viral polyprotein which is utilized in the 

production of virions and thus experiences more selective pressures and is therefore more divergent 

than the other ORFs that code for non-structural proteins (Gray & Desselberger, 2009). 

Approximately 56 complete AstV genome sequences are available on Genbank 

(http://www.ncbi.nlm.nih.gov/genome/?term=astrovirus on 1st of January-2019). However, there is a 

large amount of partial RdRp gene sequences available; the RdRp gene is the target of the detection 

assays used in this study which was designed by Chu et al. (2009). 

 

Figure 1.2. Genome organization of human astrovirus (Bosch, Pintó, Guix, 2014). “Genomic and 

subgenomic RNA organization, with ORF1a, ORF1b, ORF2, and putative ORFX represented as 

boxes. Nucleotide sequences represent highly conserved sequences located in the ribosomal 
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frameshift (RFS) signal and upstream of the initiation site of subgenomic RNA transcription. 

Putative RNA secondary structures conserved in the RFS and in the 3′ end of the genome are 

depicted.” With permission from the journal Clinical Microbiology Reviews.  

1.7 Astrovirus infection in humans 

AstVs are transmitted through the faecal-oral route, either through contact with contaminated surfaces 

or ingestion of food or water contaminated with infected faecal material (Moser & Schultz-Cherry, 

2005; Gray & Desselberger, 2009; De Benedictis et al., 2011). As is the case for many enteric viruses, 

AstVs are exceptionally durable in the environment, which increases the risk of exposure and 

infection of other individuals (De Benedictis et al., 2011; Krishnan, 2014; Mendenhall et al., 2015). 

The incubation period of the infection is two to three days whereafter symptoms appear, such as 

gastroenteritis and vomiting. More severe symptoms, such as encephalitis and hepatitis, have been 

documented in immunocompromised patients (Moser & Schultz-Cherry, 2005; Gray & Desselberger, 

2009; De Benedictis et al., 2011).  

Demographically children, the elderly and immunocompromised individuals are most susceptible to 

AstV infection (De Benedictis et al., 2011; Bosch et al., 2014; Jeong et al., 2012). These infections 

occur globally and the reported prevalence amongst children with gastroenteritis ranges from 2 to 9% 

annually. However, a pilot study conducted in South Africa (SA) screened faecal samples (n = 191 

adults and n = 105 children under the age of 5) of individuals with diarrhoea for the presence of AstVs 

and found a similar incidence in adults (3.1%) and children (4.8%). This study did not disclose 

whether the samples collected from adults were from individuals that could potentially be 

immunocompromised (HIV status) (Page, 2002). 

A higher incidence of infection is positively correlated with high population density areas, including 

hostels, old age homes and hospitals (Abad et al., 2001; Moser & Schultz-Cherry, 2008; Bosch et al., 

2014). AstV infections occur year-round, however seasonal variation has been documented in 

humans. In tropical areas high incidence is correlated with the rainy season and in temperate regions 

infections peak during the winter months (Pativada et al., 2012).  

Treatment is supportive as the infection is self-limiting and as such only the accompanying symptoms 

such as dehydration and vomiting are treated (Glass & Bresee, 2011; Bosch et al., 2014).  

1.8 Astrovirus infection in animals 

AstV screening in animals is not common practice and most reports of animal AstV infections have 

resulted from tests conducted on symptomatic infections in livestock and poultry, as well as 
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opportunistic screening of wildlife (Moser & Schultz-Cherry, 2008). Different AstVs presents with 

different symptoms in different hosts, e.g. in kittens and puppies, infection may cause mild diarrhoea 

and pyrexia, whereas in minks the virus causes debilitating shaking mink syndrome. Infected adult 

pigs and cattle seem to be asymptomatic, whereas infection in juveniles often lead to diarrhoea (Gray 

& Desselberger, 2009; De Benedictis et al., 2011; Krishnan, 2014). In captive cheetahs infection is 

associated with anorexia, lethargy, regurgitation and diarrhoea (Atkins et al., 2009).  

In avian hosts AstV infection can present as gastroenteritis, but stunted growth and fatal hepatitis 

have been observed in ducks, as well as interstitial nephritis in chickens (King et al., 2012).  

Numerous AstV infections have been described in wildlife species, which include but are not limited 

to cheetahs, roe deer, crab-eating foxes, sea lions, rodents and bats (Atkins et al., 2009; Chu et al., 

2011; Alves et al., 2018). AstV infection in bats seems to be asymptomatic, similar to numerous other 

viruses that infect this mammal group (Calisher et al., 2006; De Benedictis et al., 2011; Drexler et al., 

2011; Mühldorfer et al., 2011).  

1.9 Identification and diagnosis of infection  

Since the first observation of AstVs in 1975 using electron microscopy (EM), numerous other 

methods have been developed to identify and diagnose AstV infection in both humans and animals. 

With the virus being an enteric virus, it is common practice to collect faecal material from the 

suspected infected individual, however, some studies have also utilized other specimen types, such 

as the gastro intestinal tract (GIT), brain, sputum and urine samples (Boujon et al., 2017; Fischer et 

al., 2017; Alves et al., 2018). Although EM was one of the first methods used for diagnosing AstV 

infection, there are numerous shortcomings, e.g. high virus concentrations (107 particles per 10 grams 

of faecal material) are needed for successful identification, and misidentification is common as only 

10% of particles exhibit a star-like surface structure under EM (Busch et al., 2014). Misdiagnosis due 

to misidentification has therefore led to this method being phased out as a diagnostic tool (Pérot et 

al., 2017). Other AstV identification methods commonly used include virus isolation, 

immunodetection and antigenic typing, multiplex reverse transcription polymerase chain reaction 

(RT-PCR) panels, nanofluidic PCR, microarrays and next-generation sequencing (NGS).  

1.9.1. Molecular diagnostics: RT-PCR, Real-time PCR, NGS 

Since the development of molecular approaches that amplify the viral genome or transcripts the use 

of EM, virus isolation and immunoassays was phased out as diagnostic tools for AstV infections 

(Pérot et al., 2017). Molecular methods are widely used in clinical diagnostic and veterinary 

laboratories. RT-PCR allows detection and typing of AstVs. There is currently no universal PCR 
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setup for the detection of all known AstVs. Consensus primers such as those designed by Chu et al. 

(2011) detect a vast array of AstVs, but not all. The primers are routinely used in bat screening, but 

human, domesticated animal and wildlife samples usually have their own accompanying set of 

primers specific for the target of interest. The reason that a universal primer set has not been 

developed is probably due to high levels of genetic diversity between different AstV strains (Pérot et 

al., 2017). Real-time PCR methods can diagnose AstVs in a shorter time frame, it reduces the number 

of false positives and also enable viral load quantification.  

Next generation sequencing (NGS) is not routinely used as a diagnostic tool for AstV infection due 

to the high costs compared to conventional screening RT-PCR or real-time PCR assays. NGS is more 

commonly used as an exploratory investigative method in research settings and this technology has 

enabled researchers to obtain partial or complete AstV genomes, which in turn provide invaluable 

insight into pathogenesis, viral diversity and emergence of novel AstV strains (Pérot et al., 2017). It 

has successfully been used for both clinical specimens and specimens from wildlife and domesticated 

animals.  

Even though NGS is not usually used as diagnostic tool, it has aided in the diagnosis of neurotropic 

AstV infections (in humans, minks and cattle), that could not be detected through conventional 

screening PCR assays (Blomström et al., 2010; Ng et al., 2014; Nagai et al., 2015; Pérot et al., 2017). 

1.9.2. Virus isolation 

Isolation in cell culture is not routinely used as a diagnostic tool as it is labour intensive, time-

consuming and challenging (Pérot et al., 2017). Virus isolation is further complicated by the fact that 

most wild type AstVs do not grow in standard cell cultures that are routinely used in diagnostic 

laboratories. However, virus isolation is still a valuable tool to study AstVs, as various AstV strains 

have been successfully isolated in vitro (Table 1.1.), although no in vitro attempts to isolate and 

propagate bat AstVs had been successful to date. 

1.10 Current knowledge on bat astroviruses 

1.10.1 South African bat astroviruses  

From literature it is evident that AstV infectious dynamics has been biased towards human hosts and 

little attention has been given to the ecology and infection dynamics of AstVs in wild animals, this is 

particularly true for bat AstVs (Mendenhall et al., 2015). Little attention has been given to the 

evolution, phylogenetic relationship, ecology and diversity of AstVs in South African (SAn) bats 
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(Ithete, 2013). The only known study thus far to investigate SA bat AstVs was conducted by Ithete 

(2013).  

Table 1.1. Astroviruses and the cell lines that were successfully used to isolate and culture the virus 

AstV Cell line for culture 

Human AstV serotypes 1-7 Caco-2 Human colon adenocarcinoma 

T84 Human colon carcinoma 

HT-29 Human colon adenocarcinoma 

SK-CO-1 Human colon adenocarcinoma 

SK-CO-1 Human colon adenocarcinoma 

MA-104c African green monkey foetal kidney 

PLC/PRF/5 cell line 

PLC/PRF/5 hepatoma 

HAstV serotype 1 only HCT-15 Human colon adenocarcinoma 

Chicken astrovirus (CAstV) isolates LMH cell line 

Porcine AstV ESK Porcine embryonic kidney cell 

Feline AstV Feline embryonic kidney cell 

Bovine AstV Bovine embryonic kidney cell 

Sources: Shimizu et al., 1990; Taylor et al., 1997; Brinker et al., 2000; Moser & Schultz-Cherry, 2005; Crameri et al., 

2009; De Benedictis et al., 2011; Xiao et al., 2011; Xiao et al., 2013 

AstVs were identified in seven bat species from the Miniopteridae, Molossidae, Rhinolophidae and 

Vespertilionidae families. The sequences belonged to genus mamastrovirus in genogroup II, 

clustering with bat AstVs found in China (Chu et al., 2009). Genogroup II viruses can further be 

divided into four clades; clade 1 comprises of Chinese and SAn bat AstVs, clade 2 includes German 

and Chinese bat AstVs; clade 3 contains bat, mink, human and ovine AstVs and clade 4 consists of 

bat, rabbit and porcine AstVs. Bat AstVs occur in all four genogroup II clades. Another interesting 

finding by Ithete (2013) was that AstV strains isolated from a single bat species did not always cluster 

together, similar to the findings of Drexler et al. (2011). The viral sequences did not cluster according 

to geographical location and it was found that SAn strains clustered with AstV from China. Viral 

sequences isolated from Tadarida aegyptiaca and Miniopterus natalensis bats trapped at various 

locations in the Western Cape exhibited the highest sequence similarity (97%). The results suggested 

that BtAstV/MSTM12 and BtAstV/TAr1 could potentially have evolved from a common prototype 

strain or could have emerged as the result of recombination events (Ithete, 2013).  
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1.10.2 Bat astrovirus studies in other parts of the world  

The first ever study to discover AstVs in insectivorous bats was conducted by Chu et al. (2008) in 

China. This study built the framework for future bat AstV research studies, by developing a screening 

PCR that targets a conserved region of the genome, the RdRp gene. Since this study, various other 

research groups have investigated AstVs in bats. The literature shows that bat AstV studies are 

concentrated in certain areas (Figure 1.3.) and the majority are from China, Europe and West Africa. 

After the publication by Fischer et al. (2017), AstVs were investigated in three more locations  which 

include Madagascar, Singapore and Mozambique (Lebarbenchon et al., 2017; Mendenhall et al., 

2017; Hoarau et al., 2018).  

 

 

Figure 1.3. Geographic distribution of study sites for the detection of astrovirus RNA in bats (Fischer et al., 

2017). Image was used with permission of Elsevier.  

 

AstVs have been identified in one-third of known bat families (Table 1.2.) indicating the diversity of 

hosts within the order Chiroptera (Fischer et al., 2017). Noted from the literature is that the sequences 

were highly divergent and that the prevalence differed significantly between species, but also over 

time (Drexler et al., 2011; Fischer et al., 2017; Lebarbenchon et al., 2017; Mendenhall et al., 2017). 

It is thought that multiple factors, including ecological as well as host-factors, influence virus 

prevalence (Mendenhall et al., 2017).  
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Table 1.2. Species and number of bats that were investigated for the presence of astrovirus RNA/genome by 

semi-nested RT-PCR. (Adapted from Lebarbenchon et al., 2017; Mendenhall et al., 2017; Fischer 

et al., 2017; Hoarau et al., 2018) 

Family Species Region Number Positive 

   of animals Results (%) 

Vespertilionidae Barbastella barbastellus Hungary 13 0 (0%) 

 Eptesicus nilssonii Czech Republic 1 0 (0%) 

 Eptesicus serotinus Hungary 3 0 (0%) 

  Hungary 7 0 (0%) 

  Czech Republic 1 1 (100%) 

 Hesperoptenus spp. Cambodia 1 0 (0%) 

 Hypsugo savii Czech Republic 4 1 (25%) 

 Ia io China 11 4 (36.4%) 

  Lao PDR 32 1 (3.1%) 

 Miniopterus gleni Madagascar 2 1 (50%) 

 Miniopterus griveaudi Madagascar 26 15 (57.7%) 

 Miniopterus inflatus Gabon 155 16 (10.3%) 

 Miniopterus magnate China (Hong Kong) 122 67 (54.9%) 

 Miniopterus pusillus China (Hong Kong) 73 31 (42.5%) 

 Miniopterus schreibersii China (Hong Kong) 3 3 (100%) 

  China 19 12 (63.2%) 

  China 187 22 (11.8%) 

  Hungary 15 12 (80%) 

 Myotis alcathoe Hungary 16 0 (0%) 

 Myotis bechsteinii Hungary 22 1 (4.5%) 

  Hungary 125 5 (4%) 

  Czech Republic 1 0 (0%) 

  Germany 321 35 (10.9%) 

 Myotis brandtii Hungary 3 0 (0%) 

 Myotis blythii Hungary 2 0 (0%) 

  Hungary 10 0 (0%) 

 Myotis chinensis China (Hong Kong) 9 3 (33.3%) 

 Myotis dasycneme Hungary 11 0 (0%) 

 Myotis daubentoniid Hungary 7 3 (42.9%) 

  Hungary 81 6 (7.4%) 

  Czech Republic 3 0 (0%) 

  Germany 47 30 (63.8%) 

 Myotis dasycheme Hungary 4 0 (0%) 

 Myotis emarginatus Hungary 5 1 (20%) 

  Czech Republic 1 1 (100%) 

 Myotis horsfieldii Cambodia 47 20 (42.6%) 

 Myotis goudoti Madagascar 11 1 (9%) 

 Myotis Hungary 6 0 (0%) 

  Hungary 29 0 (0%) 

 Myotis mystacinus Hungary 1 0 (0%) 

  Czech Republic 1 1 (100%) 

 Myotis nattereri Hungary 4 0 (0%) 

  Hungary 37 1 (2.7%) 

  Germany 248 99 (39.9%) 

 Myotis pilosus China (Hong Kong) 12 10 (83.3%) 

  China 16 2 (12.5%) 

  China 1 0 (0%) 

 Myotis spp.  China 5 3 (60%) 

  Singapore 1 0 (0%) 

 Nyctalus leisleri Hungary 6 0 (0%) 
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Family Species Region Number Positive 

   of animals Results (%) 

 Nyctalus noctula Hungary 14 4 (28.6%). 

  Czech Republic 7 1 (14.3%) 

 Nyctalus plancyi velutinus China 1 0 (0%) 

 Pipistrellus abramus China (Hong Kong) 2 1 (50%) 

  China 20 1 (5%) 

 Pipistrellus hesperidus Madagascar 5 0 (0%) 

 Pipistrellus nathusii Hungary 3 0 (0%) 

  Czech Republic 1 0 (0%) 

  Germany 22 6 (27.3%) 

 Pipistrellus Hungary 1 0 (0%) 

  Hungary 12 0 (0%) 

  Czech Republic 12 1 (8.3%) 

  Germany 7 0 (0%) 

 Pipistrellus pygmaeus Hungary 6 1 (16.7%) 

  Czech Republic 1 1 (100%) 

  Germany 12 6 (50%) 

 Pipistrellus stenopterus Singapore 1 0 (0%) 

 Pipistrellus spp. China 5 0 (0%) 

  Cambodia 29 0 (0%) 

 Plecotus auritus Hungary 11 1 (9.1%) 

  Hungary 29 1 (3.4%) 

  Czech Republic 2 0 (0%) 

  Germany 118 24 (20.3%) 

 Plecotus austriacus Hungary 3 0 (0%) 

  Czech Republic 2 0 (0%) 

 Scotophilus kuhlii China 38 6 (15.8%) 

  China 2 0 (0%) 

 Scotophilus spp. Cambodia 524 39 (7.4%) 

 Tylonycteris pachypus China 2 0 (0%) 

 Tylonycteris spp. Cambodia 1 0 (0%) 

 Vespertilio murinus Hungary 3 0 (0%) 

  Czech Republic 5 1 (20%) 

  TOTAL 2514 486 (19%) 

Rhinolophidae Rhinolophus affinis China 2 0 (0%) 

 Rhinolophus Euryale Hungary 3 0 (0%) 

 Rhinolophus ferrumequinum China 7 0 (0%) 

  China 4 2 (50%) 

  Hungary 12 0 (0%) 

 Rhinolophus hipposideros Hungary 3 0 (0%) 

  Czech Republic 2 1 (50%) 

 Rhinolophus Lepidus China 11 0 (0%) 

  Singapore 1 0 (0%) 

 Rhinolophus macrotis China 2 0 (0%) 

  China 1 0 (0%) 

 Rhinolophus pearsonii China 1 1 (100%) 

 Rhinolophus rouxii China (Hong Kong) 8 1 (12.5%) 

 Rhinolophus sinicus China 1 0 (0%) 

 Rhinolophus spp. Cambodia 53 1 (1.9%) 

  Lao PDR 102 4 (3.9%) 

  TOTAL 213 10 (4.7%) 

Hipposideridae Aselliscus stoliczkanus China 1 0 (0%) 

 Aselliscus spp. Lao PDR 7 0 (0%) 

 Hipposideros armiger China (Hong Kong) 10 0 (0%) 

  China 109 21 (19.3%) 

 Hipposideros gigas Gabon 226 7 (3.1%) 
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Family Species Region Number Positive 

   of animals Results (%) 

 Hipposideros larvatus China 29 4 (13.8%) 

  China 1 0 (0%) 

 Hipposideros Pomona China 95 13 (13.7%) 

  China 15 0 (0%) 

 Hipposideros ruber Gabon 394 17 (4.3%) 

 Hipposideros spp. Cambodia 4 1 (25%) 

  Lao PDR 26 1 (3.8%) 

 Paratriaenops furculus Madagascar 31 11 (35%) 

 Triaenops menamena Madagascar 40 0 (0%) 

  TOTAL 988 75 (7.5%) 

Pteropodidae Cynopterus bra chyotis Singapore 144 0 (0%) 

 Cynopterus sphinx China (Hong Kong) 11 0 (0%) 

 Cynopterus spp. Cambodia 321 0 (0%) 

  Lao PDR 19 0 (0%) 

 Eonycteris spelaea Singapore 169 30 (17.75%) 

 Eonycteris spp. Cambodia 28 0 (0%) 

  Lao PDR 51 3 (5.9%) 

 Macroglossus minimus Singapore 1 0 (0%) 

 Macroglossus spp. Cambodia 21 0 (0%) 

  Lao PDR 1 0 (0%) 

 Megaerops spp. Cambodia 29 0 (0%) 

  Lao PDR 69 0 (0%) 

 Penthetor lucasi Singapore 79 0 (0%) 

 Pteropus spp. Cambodia 10 0 (0%) 

 Rousettus aegyptiacus Gabon 162 2 (1.2%) 

 Rousettus leschenaultia China 59 1 (1.7%) 

 Rousettus madagascariensis Madagascar 41 2 (4.8%) 

 Rousettus spp. Cambodia 11 1 (9.1%) 

  Lao PDR 322 23 (7.1%) 

  TOTAL 1235 62 (5%) 

Emballonuridae Coleura afra Gabon 25 2 (8%) 

 Taphozous melanopogon China 172 160 (93%) 

 Taphozous spp. Cambodia 147 4 (2.7%) 

  TOTAL 344 166 (48.3%) 

Megadermatidae Megaderma lyra China 1 1 (100%) 

  Cambodia 21 2 (9.5%) 

  TOTAL 22 3 (13.6%) 

Molossidae Mormopterus jugularis Madagascar 40 0 (0%) 

 Otomops madagascariensis Madagascar 6 0 (0%) 

  TOTAL 46 0 (0%) 

 

1.10.3 Cross species transmission and zoonotic potential  

Until relatively recently AstV infections were thought to be species-specific. More and more findings 

are suggesting that the host tropism of AstVs might be wider than previously thought. Currently there 

exists no evidence of cross-species transmission of a bat AstV to a species of another mammalian 

order (Fischer et al., 2017). As there is no strict host restriction of bat AstVs within the Chiroptera 

group it could be that there have been cross-species transmission that are yet undiscovered. There is 

however evidence of cross-species transmission in other mammalian groups. Livestock farming 

readily puts different domesticated animals in close proximity to one another, increasing the 
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probability of spill-over from one species to another. Interestingly, a recent study reported a single 

AstV species that infected different host organisms in different geographical areas. The neurotropic 

AstV identified in a sheep in Sweden with encephalitis shared 95% amino acid similarity in the capsid 

protein gene region, with a bovine AstV identified in Germany (Boujon et al., 2017). As the similarity 

was so high between the capsid protein gene regions these AstV strains could be seen as the same 

species according to the International Committee on Taxonomy of Viruses (ICTV) guidelines 

(Boujon et al., 2017).  

Similar to most viruses that originated from animals, the same is true for newly discovered human 

AstV serotypes, HAstV-MLB1-3, HMO AstVs A, B, and C, and HAstV-VA1-4. These serotypes are 

phylogenetically more similar to AstVs isolated from animals than the “classical” human AstV 

serotypes (HAstV1-8) (Bosch et al., 2012).  

Another interesting study reported that non-human primates (NHP) harboured diverse AstV strains 

that were related to human and avian AstVs (Karlsson et al., 2015). This study revealed that members 

of the avastrovirus group could in fact spill over to mammals, which was thought to be restricted to 

birds (Karlsson et al., 2015). The study also identified an AstV strain in NHP, which was a 

recombination between a NHP AstV and a HAstV strain. These NHP were in close contact with 

human settlements and it is highly plausible that a spill-over event occurred. Also, of interest are the 

accounts of possible reverse zoonoses that were documented in captive cheetahs that were infected 

with an AstVs strain that was similar to a human AstV strain (Atkins et al., 2009).  

Considering the high diversity of AstVs and their ability to adapt to different environments and 

different hosts species, it would not be impossible for a bat AstVs to spill over to humans or other 

animals. This highlights the importance of disease surveillance efforts in both humans and bats. 

1.11 One Health Approach  

One Health is a concept that recognizes the interconnectedness of human, environmental and animal 

health (United Nations 2008; Narrod et al., 2012). This concept is not new to the 21st century (Evans 

& Leighton, 2014) and the first documented reference thereto can already be found in the writings of 

Hippocrates (460 BCE - 367 BCE) in ‘On Airs, Waters and Places’, where he discusses the 

interrelationship of human health and a clean environment (Evans & Leighton, 2014). Even though 

the fundamental concept of One Health has been acknowledged for hundreds of years, human and 

animal health remained separate fields of study until the 20th century. In recent years there has been 

a surge in emerging EID and zoonotic disease studies with a One Health focus (Narrod et al., 2012).  
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Many of these animal studies have investigated diseases carried by bats, as bats are important hosts 

for numerous EIDs. Several disease ecology studies have found that anthropogenic disturbances of 

natural habitats have caused bats to inhabit peri-urban areas, increasing the contact rates between bats 

and humans, as well as bats and domestic animals (Daszak et al., 2007; Narrod et al., 2012). This in 

turn leads to an increased likelihood of disease spill-over events, not only from wildlife to humans, 

but also from humans to wildlife (Daszak et al., 2007).  

The objectives of the current study fit well with the One Health concept for various reasons. Firstly, 

AstVs have been identified to be of medical and veterinary importance; secondly, the virus is 

regularly used as indicator of environmental contamination with human and animal waste, and lastly 

the virus has proven zoonotic potential (Meleg et al., 2006).  

A subsection of the current study investigated bats trapped at wastewater treatment works (WWTW) 

in Kwazulu Natal (KZN), to ascertain whether these bats were more likely to be infected with 

HAstVs, due to exposure to heavy metals and other pollutants. Naidoo (2012) reported that bats 

foraging at these specific WWTWs accumulated heavy metals in various soft tissue, which in turn 

reduced their immune system functioning.  

1.12 Rationale to proposed research project 

During the current study we aimed to investigate the diversity, ecology and zoonotic potential of 

AstV strains that occur in SAn bats. Information collected during the current study will also help 

frame the One Health implications of AstVs in SA. The zoonotic potential of bat AstVs is still 

undetermined, however literature indicates that cross-species transmission is possible (Atkins et al., 

2009; Mendenhall et al., 2015; Boujon, 2017; Waruhiu et al., 2017). A study by Xiao et al. (2011) 

revealed that bat AstVs are phylogenetically closely related to some other mamastroviruses (including 

HAstVs VA-1, -2 and -3), suggesting possible transmission to humans and other animals. Studying 

the occurrence, diversity and biology of bat AstVs could provide insight into the origin of viruses that 

are regarded as “human” viruses and could potentially lead to better preventative and / or 

management strategies in future.  

One might argue that more emphasis should be placed on viruses known to pose an immediate threat 

to humans, e.g. rabies and Ebola. However, these are the subject of extensive scientific studies 

already. Therefore, AstVs were chosen for this study for the following reasons: (1) they seem to occur 

commonly in various bat species (Chu et al., 2008; Drexler et al., 2011; Ithete, 2013; Dufkova et al., 

2015; Fischer et al., 2017; Lebarbenchon et al., 2017;); (2) they are RNA viruses like most emerging 
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viruses; (3) very little is known about AstVs in wild animal hosts; and (4) AstVs have been 

understudied in SAn bat species.  

The main focus of the current study was to investigate the diversity and ecology of AstVs in SA bats. 

However, there were subsections to the current project which enabled a more holistic approach to 

AstVs in SA bats, as well as the possible One Health implications of AstVs.  

The subsections of the current study were as follows:  

1) General surveillance of bats for the presence of AstVs. This was achieved through opportunistic 

sampling of bats throughout SA. Phylogenetic data (RdRp gene sequences and ORF2 sequence 

data) were used in phylogenetic reconstructions. Ecological and biological information of 

individual bats recorded during sampling, were statistically analysed to determine factors that 

could influence AstV positivity. 

2) Longitudinal surveillance of a N. capensis bat colony for AstVs and CoVs, via monthly faecal 

collections. This data was used to determine if the colony was co-infected with the virus, as well 

as how the viral loads fluctuated over time. 

3) Surveillance of bats at WWTW for the presence of human AstVs. Samples were collected from 

bats at the WWTW and from pristine sites that were far enough removed from the WWTW to 

allow for comparison. Furthermore, environmental samples, in the form of water samples were 

collected upstream and downstream from the WWTW and were also analysed for the presence of 

human AstVs. 

4) In vitro isolation of bat AstV in different cell lines that will enable indirect determination of 

zoonotic potential. 

The results of the four subsections would then be used to discuss the possible One Health implications 

of AstVs through framing it in the three subsections of the One Health principles; (1) Animal Health, 

general screening of bats for AstVs across SA; (2) Human health, determining zoonotic risk through 

in vitro isolation and via phylogenetic analyses of bat AstV sequences; and (3) Environmental Health, 

through collection and screening of WWTW samples for the presence of AstVs in conjunction with 

screening bats collected at these sites for AstVs to determine the impact of possible exposure to 

human AstVs.  
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1.13 Research Question, Hypothesis, Aims & Objectives 

1.13.1 Research question  

Which environmental and / or host factors drive the diversity and ecology of bat AstVs in selected 

SAn bat species?  

1.13.2 Hypothesis  

Host and environmental factors, such as species identity, age, reproductive state, rainfall and biome 

influence AstV diversity and ecology.  

1.13.3 Aims 

1. Describe the genetic diversity and ecology of AstVs occurring in various bat species across 

Southern Africa. 

2. Determine ecological and demographical factors (e.g. seasonality, age, reproductive state) that 

could influence AstV diversity and ecology in SAn bats. 

3. Determine the phylogenetic relatedness of SAn bat AstVs in relation to other mammalian AstVs. 

4. Describe the results of this study against the background of / in relation to possible One Health 

implications of AstVs. 

1.13.4 Objectives 

1. To use sequencing and phylogenetic techniques to characterize novel bat AstV RdRp strains 

detected during current study.  

2. To use quantitative real-time PCR to detect and monitor AstVs and CoVs in a Neoromicia capensis 

colony in Velddrif, Western Cape, over time.  

3. To analyse biological and ecological data collected on sampled bats to increase understanding of 

which ecological and demographic factors may drive AstV diversity in SAn bats. 

4. To attempt isolation and propagation of one or more bat AstV strains in vitro to determine the 

zoonotic potential of the virus. 

5. To determine whether bat populations near WWTW can become infected with human AstV strains 

by comparing the AstV strains from bats in this study to human AstV strains, as well as virus 

isolation from water samples collected at the WWTW.  
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Chapter 2 Materials & Methods 

2.1 Biosafety considerations 

This study used samples that were collected and stored in RNAlater® (Sigma-Aldrich, St. Louis, 

USA). These samples were handled under biosafety level (BSL) 2 conditions when standard 

molecular biology methods were used. Virus isolation attempts and cell culture techniques were 

performed in a BSL-3 laboratory in the Division of Medical Virology in accordance with various 

safety standard operating procedures as prescribed by the World Health Organization (World Health 

Organization 2004).  

2.2 Ethical considerations  

Samples were collected in collaboration with expert zoologists, Dr. Corrie Schoeman (University of 

KZN), as well as with the help of public collaborators (Quartus Laubscher and Tanja Jane Kerr). All 

fieldwork procedures adhered to established best practices under the guidance of trained zoologists 

with permits obtained from the relevant conservation authorities (Appendix A). The majority of 

samples were collected through non-invasive techniques to minimize disturbance to colonies and 

harm to animals. Tissue specimens were obtained from bats that were euthanized to obtain voucher 

specimens by Dr Richards at the Museum of Natural History. Ethics approval for the usage of the 

samples collected by collaborators was granted by the HREC of Stellenbosch University (SU-

ACUD16-00008). 

2.3 Sample processing  

The samples that were selected for processing (n = 500 faecal samples) during the current study were 

all processed by members of the emerging viruses research group and me. Where possible, our 

research group participated with sample collection with collaborating zoologists (especially in the 

Western Cape and Northern Cape regions). Virus recovery from water samples were also planned 

and executed by me with assistance from Mr Vurayai Ruhanya. In vitro virus isolation and cell culture 

experiments were all conducted by me.  

2.4 Sample availability and collection 

2.4.1 Previously collected samples / Archived samples 

Aliquots from previously collected samples (2011-2014) were stored in -80°C freezers and were 

available for use in this study. The available sample repository consisted of an estimated 590 bat 
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samples and included faecal material (n = 400), oral- (n = 60) and urine- (n = 30) swabs, as well as 

tissue samples (n = 100).  

2.4.2 Sample collection 

Samples were collected by collaborating zoologist, Dr Schoeman, from the University of KZN and 

his research group. Sampling sites were selected based on previous trapping experience of 

collaborating zoologists. Sample collection took place on two levels; colony surveillance and general 

surveillance across SA.  

General surveillance entailed the collection of samples from various bat species through opportunistic 

sampling across Southern Africa, aiding in determining the overall diversity of AstVs in various bat 

species across space and time. Where possible, samples were collected across different geographic 

locations and biomes in an attempt to obtain a diverse sample set. 

Colony surveillance involved a continuous surveillance of known bat colonies. Faecal material was 

collected monthly from a N. capensis colony in the Western Cape Province (Velddrif) with the help 

of public collaborator, Mr Laubscher. Standardized sampling protocols and personal protective 

equipment (PPE), such as gloves and masks, were supplied with clear instructions to the collaborating 

sample collectors. Colony samples were collected for the duration of one calendar year (2015-2016).  

2.4.3 Wastewater treatment works samples 

In an attempt to determine if bats feeding and drinking at WWTW were infected with human AstVs, 

bats were sampled from the selected WWTW; i.e. Verulam Wastewater Works (S29º38.38; 

E31º03.49) which is located on the Mdloti River, and the Umbilo Wastewater Works (S29º50.44; 

E30º53.31) on the Umbilo River (Naidoo et al., 2015). These two WWTWs both receive industrial 

and domestic wastewater. 

Bat trapping at WWTW 

N. nana bats were trapped at WWTW, as well as in pristine downstream localities (3 km away from 

the WWTW). A total of 50 N. nana bats were screened from WWTW and 47 N. nana from pristine 

areas.  

Collection of water samples from WWTW 

Ten litres of water was collected upstream and downstream of each WWTW. More details are given 

in Section 2.15.  
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2.4.4. Bat trapping, data recorded & sample collection  

During active sampling, bats were caught with mist nets and / or harp traps (Francis, 1989; Monadjem 

et al., 2010). Upon capture, bats were retained in a cloth bag until processing by the research team 

commenced. The following data was recorded: (1) morphological data (measurements of forearm, 

tail, tragus, wingspan and mass); (2) population demographic data (sex, age, reproductive state); and 

(3) locality data (GPS coordinates and biome type). Non-invasive sampling techniques were used, 

such as anal and oral swabs and collection of faecal pellets. Where possible, for further confirmation 

of species identity, an echolocation recording was taken (EM3 Wildlife Acoustics, Massachusetts, 

USA). After data collection, bats were released.  

2.4.5 Sample handling and storage 

Faecal samples of individual bats were placed in separate 2 ml cryogenic vials (Corning, New York, 

USA) containing either 1 ml RNAlater® (Sigma-Aldrich, USA) solution or 1 ml viral transport 

medium (VTM), consisting of DMEM (Lonza, Switzerland), Penicillin-Streptomycin (Lonza, 

Switzerland) and 10% foetal bovine serum (FBS) (Biowest, France). Anal and oral swabs were stored 

in 5 ml of VTM consisting of DMEM (Lonza, Switzerland), Penicillin-Streptomycin (Lonza, 

Switzerland) and 10% FBS (Biowest, France).  

2.5 Nucleic acid extraction from faecal material 

Following faecal disruption and homogenization, RNA was manually extracted using the 

NucleoSpin® RNA virus kit (Macherey-Nagel, Germany). The extraction protocol for samples 

collected as part of the colony surveillance required five faecal pellets (Drexler et al., 2011) to be 

homogenized in 1 000 μl of phosphate-buffered saline (PBS) (Gibco®, California, USA) with five 

metal beads. For samples acquired from individual bats, one faecal pellet was homogenized in 600 μl 

of PBS (Gibco®, USA) with five metal beads (Drexler et al., 2011). Faecal pellets were disrupted 

with the Qiagen TissueLyser LT (QIAGEN, Hilden, Germany), followed by centrifugation for 2 

minutes at 11000 x g (5424 Microcentrifuge, Eppendorf, Hamburg, Germany). The supernatant of 

approximately 150 μl was transferred to a 2 ml safe-lock tube (Eppendorf, Hamburg, Germany) and 

600 μl of the provided lysis buffer, RAV1, (RAV1 contains reconstituted carrier RNA) was added 

and vortexed (S0200, Labnet, New Jersey, USA) for 5 -10 seconds. Samples were incubated at 70°C 

for 5 minutes. After the incubation step, 600 μl molecular biology grade ethanol (Sigma-Aldrich, 

USA) was added to the sample and briefly vortexed (S0200, Labnet, USA). The sample was added 

stepwise to the column and centrifuged for 1 minute at 11 000 x g. The flow-through was discarded 

and the column placed back in the collection tube. The column was then washed with 500 μl of the 
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provided buffer, RAW, and centrifuged at 8 000 x g for 1 minute. The flow-through was discarded 

again and the column was placed in a new collection tube. A second wash step was performed by 

adding 600 μl RAV3 to the column and centrifuging it for 1 minute at 8000 x g. The flow-through 

was discarded once again and the column placed in a new collection tube. To ensure that all the 

residual ethanol was removed, the column was centrifuged again for 5 minutes at 11 000 x g. The 

column was then placed in a new 2 ml collection tube. Fifty microliters of nuclease-free water was 

added to the column and incubated at room temperature for 2 minutes and centrifuged for 1 minute 

at 8 000 x g. The eluted RNA was stored at -80°C until reverse transcription could be performed. 

2.6 Reverse transcription  

Extracted RNA was reverse transcribed to complementary DNA (cDNA) using RevertAid Reverse 

Transcriptase (ThermoScientific, USA). The reverse transcription took place in two reactions; the 

components are listed in Tables 2.1. and 2.2., respectively. Once the reagents listed in Table 2.1. were 

pipetted (Eppendorf, Germany) into PCR strip-tubes (Nest Scientific Inc., Wuxi, China), the mixture 

was briefly vortexed and centrifuged. The reaction mixture was incubated (9700 GeneAmp® 

thermocycler, Applied Biosystems, California, USA) at 65°C for 5 minutes and then chilled on ice 

for 1 minute before adding the second reaction’s master mix that consisted mostly of the enzyme 

components of the reaction (Table 2.2.). The combined reaction mixture was then incubated at 25°C 

for 10 minutes and 42°C for 60 minutes. The resulting cDNA was stored at -20°C until PCR screening 

commenced.  

Table 2.1. Reagents for the first reaction of reverse transcription 

Reagents Stock Final Volume 

 Concentration  per run (µl) 

Random hexamer primer (ThermoScientific, USA) 200 ng/µl 400 ng 2 

Diethylpyrocarbonate water (DEPC) (ThermoScientific, USA)   13 

RNA Template - - 10 

 

Table 2.2. Reagents used for the second reaction of reverse transcription  

Reagents Stock Final Volume 

 Concentration Concentration per run (µl) 

5x RT Buffer 5X 1X 4 

dNTP Mix (40mM) 10 mM  2 

RNase inhibitor 2 500 µl 20 U 0.5 

RevertAid Reverse Transcriptase enzyme 200 µl 200 U 1 
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2.7 PCR positive control  

To ensure optimal running of the AstV screening PCR designed by Chu et al. (2008), plasmid positive 

DNA controls were generated to be used as DNA positive controls or in vitro transcribed to RNA. 

The process for creating the AstV positive control is described in short below.  

A 420bp RdRp gene fragment from a Miniopterus natalensis derived sequence was used that was 

obtained from a faecal sample by Ithete (2013). Shortly, the selected fragment was amplified using 

the PCR assay and primers designed by Chu et al. (2008) and purified with the Rapid PCR Enzyme 

Cleanup Set (New England Biolabs, USA) described in Section 2.10. The resulting positive control 

underwent in vitro transcription (Section 2.7.7.). The sensitivity of the PCR assay was then 

established through creating a serial dilution of the quantified positive control RNA (Section 2.7.9.) 

that underwent reverse transcription and amplification with the hemi-nested AstV RdRp PCR (Section 

2.8.1. & 2.8.2.). 

2.7.1 Ligation reaction  

A recombinant plasmid was constructed by covalently connecting the sugar backbone of the vector 

and the RdRp gene by using T4 DNA ligase enzyme (ThermoScientific, USA). The enzyme catalyses 

the formation of covalent phosphodiester linkages which permanently joins the nucleotides together. 

The InsTAclone kit (ThermoScientific, USA) was chosen for a few reasons; 1. It allows for relatively 

easy cloning of Taq-amplified PCR products, 2. It allows cloning of PCR products with TA overhangs 

and 3. Enables blue / white colony screening.  

The reaction was set up as indicated in Table 2.3. The amount of PCR product needed for the ligation 

reaction was calculated according to the manufacturer’s instructions (ThermoScientific, USA) as 

approximately 86 ng.  

Table 2.3. Reagents of the ligation reaction  

Reagents Volume per reaction 

Vector pTZ57R/T (0.17 pol ends) 3 µl 

5X ligation buffer 6 µl 

PCR product made up to 4 μl (~86 ng) 

T4 DNA ligase 1 µl 

Nuclease-free water made up to 29 µl 

Total volume 30 µl 
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The ligation reaction was run on the 9700 GeneAmp® Thermocycler (Applied Biosystems, USA) 

using the following temperature profile and cycling parameters as described in the InsTAclone kit 

user manual: 25°C for 120 minutes, 4 cycles: 4°C for 120 minutes, 1 cycle: 75°C 5 minutes, 4°C hold. 

2.7.2 Transformation  

After the ligation, the plasmid with the insert DNA is introduced through transformation into 

competent bacteria, Escherichia coli strain JM109. This E. coli strain contains a lacZΔM15 deletion 

mutation, while the plasmid vectors contain a short segment of the lacZ gene that codes for β-

galactosidase, an enzyme that metabolizes lactose. The plasmid vectors are manipulated in such a 

way that this α-complementation process serves as an indicator of successful recombination. Plasmid 

vector contains a multiple cloning site within the lacZ sequence, this sequence is altered by restriction 

enzymes to insert the desired gene. The transformation reaction was performed as described below.  

For transformation, agar plates were prepared by dissolving 10 g LB broth (Sigma-Aldrich, USA) 

and 7.5 g agar (Sigma-Aldrich, USA) in 500 ml distilled water. LB agar was autoclaved at 121°C for 

30 minutes at 100 kPA pressure (STA-400/STA-410, St. Francis, Taipei, Taiwan). After the mixture 

had cooled sufficiently, to about 60°C, 250 μl ampicillin, to a final concentration of 50-100 μg/ml 

(Melford Biolaboratories Ltd., Ipswich, UK) was added. Approximately 25 ml of agar was poured 

into sterile plastic Petri dishes (Gibco®, USA) and allowed to set. To allow for blue / white colony 

selection, each agar plate was treated with 16 μl X-gal ready to use solution, to a final concentration 

of 80 μg/ml and 40 μl IPTG, to a final concentration of 20 mM (ThermoScientific, USA) and 

incubated at 37°C for 30 minutes. Single-use tubes of Mix & Go cells (strain: JM109) (Zymo Research 

Corp, California, USA) were thawed on ice and 1-5 μl of ligation reaction was added and mixed 

gently for a few seconds. The cells were then incubated on ice for 2-5 minutes. To reduce overgrowth 

on plates, 25 μl of the transformation reaction was spread per plate. The plates were incubated 

overnight at 37°C. 

2.7.3 Colony picking  

The successful transformation of the vector, containing the foreign DNA, into competent cells will 

lead to the production of dysfunctional β-galactosidase resulting in white colonies. These colonies 

were picked and cultured in LB broth, to allow for production of more of the bacteria with the gene 

of interest. The colony picking process is described in detail in the following section.  

Luria broth (LB) media was prepared by adding 10 g LB broth (Sigma-Aldrich, USA) to 500 ml 

distilled water and mixing with magnetic stirrers, until all the particles were dissolved. To sterilize 

the LB broth, it was autoclaved at 121°C for 30 minutes at 100 kPA pressure (STA-400/STA-410, 
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St. Francis, Taipei, Taiwan). After the broth had cooled sufficiently to about 60°C, 250 μl of 

ampicillin (Melford Biolaboratories Ltd., Ipswich, UK) was added to a final concentration of 50-100 

μg/ml. Added ampicillin served as an inhibitor for other bacteria that might have been present, as the 

bacterial strain used during cloning is ampicillin resistant and its growth should not be affected. Five 

millilitres of LB broth was added to each 14 ml round bottom polypropylene tubes (Falcon™ Corning, 

New York, USA) and a single white colony was picked using a sterile pipette tip and placed in the 

Falcon tube (Corning, USA) containing the broth. The tubes with the picked colonies were incubated 

overnight at 37°C on a shaker at 200-250 rpm. 

2.7.4 Plasmid DNA purification  

Following overnight culture of successfully transformed bacterial cells, the plasmid DNA of interest 

was purified using the GeneJet Plasmid MiniPrep system (ThermoScientific, USA). Falcon® tubes 

(Corning, USA) containing bacterial growth were centrifuged (Eppendorf, Germany) for 2 minutes 

at 12 000 rpm. The supernatant was discarded, and the pellet was resuspended in 250 μl of 

resuspension solution and transferred into a 2 ml microcentrifuge tube. The solution was vortexed 

(S0200, Labnet, USA) until it was homogenous, where after 250 μl of lysis solution was added and 

mixed by inverting the tube 4-6 times, until the solution became viscous and slightly clear. The lysis 

solution was neutralized by adding 350 μl of neutralization solution. The mixture was then 

centrifuged for 5 minutes at 1 200 x g. The supernatant was transferred to the GeneJet spin column, 

and centrifuged (Eppendorf, Germany) for 1 minute at 12000 x g. The flow-through was discarded 

and the column placed back in the collection tube. The column was washed by adding 500 μl of wash 

solution to the column followed by centrifugation (Eppendorf, Germany) for 1 minute at 12 000 x g. 

The flow-through was discarded and the column placed back in the collection tube and the wash step 

was repeated. The column was placed back into the collection tube and centrifuged (Eppendorf, 

Germany) for an additional 1 minute to remove residual ethanol from the column. To elute the 

plasmid DNA, the column was placed in a new 1.5 ml microcentrifuge tube and 50 µl of elution 

buffer was added to the centre of the column and incubated for 2 minutes at room temperature. The 

column was then centrifuged (Eppendorf, Germany) for 2 minutes at 12 000 x g and the resulting 

purified plasmid DNA was stored at -20°C. 

2.7.5 Linearization and in vitro transcription  

Before the plasmid DNA can be transcribed into RNA the plasmid needs to be linearized as the T7 

RNA Polymerase enzyme used during transcription will not dissociate from the plasmid and will 

continue to transcribe around the circular template multiple times. This produces a transcript that is 

much longer that and that contains mostly vector-derived sequences. Linearization downstream from 
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the cloned target insert will produce an RNA transcript, of which the length is defined by the 3’ end 

of the template and the transcription product will only contain a small amount of vector sequence. 

During transcription RNA molecules are synthesized from the DNA sequence by utilizing the T7 

promotor sequence in the bacteriophage. Linearization and in vitro transcription was conducted as 

described in Sections 2.7.6. and Section 2.7.7.  

2.7.6 Linearization  

Linearization was conducted with a restriction enzyme, EcoRI (New England Biolabs, USA), 

according to the manufacturer’s instructions. The reagents for the reaction are listed in the table below 

(Table 2.4.). Once the reaction was set up it was incubated at 37°C for 1 hour followed by heat 

inactivation at 65°C for 20 minutes (9700 GeneAmp® thermocycler, Applied Biosystems, USA). 

 

Table 2.4. Reagents used during the linearization of the plasmid 

Reagents Volume per reaction 

Restriction Enzyme (EcoRI) 1 µl 

DNA 1 µl 

10X NEBuffer 5 μl 

DEPC Water (ThermoScientific, USA) made up to 18 µl 

Total reaction volume 20 µl 

 

 

Purification of linearized product was done to remove excess enzymes as well as to desalt the reaction 

and concentrate DNA. The purification was done with MinElute Reaction Cleanup Kit (QIAGEN, 

Germany) as mentioned in Section 2.11.1. with an amendment, instead of adding 5 volumes of the 

binding buffer to the sample, 300 µl of ERC buffer was added.  

2.7.7 In vitro Transcription 

The purified linearized product was then in vitro transcribed by adding the components in Table 2.5 

together and centrifuged (Eppendorf, Germany) before incubation at 37°C for 2 hours. 

Following in vitro transcription residual DNA template was removed through DNAse treatment. For 

each 1 µg of in vitro transcribed DNA 2 U of DNAse I (Thermo Fisher Scientific) was added and the 

reaction was incubated at 37°C for 15 minutes. The reaction was terminated by RNA purification.  
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Table 2.5. The components of the in vitro transcription reaction  

Reagents Volume per reaction 

5X TranscriptAid reaction buffer 4 µl 

ATP/CTP/GTP/UTP mix 8 µl 

Template DNA 1 μ1 

TranscriptAid enzyme mix 2 µl 

DEPC Water (ThermoScientific, USA) made up to 20 µl 

Total reaction volume 20 µl 

 

 

2.7.8 RNA purification  

Inactivation of the DNAse I reaction was achieved through RNA purification with the Purelink® RNA 

Mini Kit (Thermo Fisher Scientific, USA). One volume of lysis buffer was added to one volume of 

sample and mixed by vortexing. The mixture of sample and lysis buffer was added to the spin column 

and centrifuged for 15 seconds at 12 000 x g. The flow-through was discarded and two wash steps 

were performed with 500 µl wash buffer followed by centrifugation at 12 000 x g for 1 minute. The 

column was then transferred to an elution tube and 35 µl of RNAse free water was added to the centre 

of the column. The column containing RNAse free water was incubated at room temperature for 2 

minutes, whereafter it was centrifuged for 2 minutes at 12 000 x g to elute the RNA from the column.  

2.7.9 Quantification of RNA copies  

To determine the limit of detection of the screening PCR it was necessary to determine the copy 

number of the positive control. RNA concentration was determined with the Qubit® 3.0 fluorometer 

(ThermoScientific, USA). The protocol followed is described below. For each standard and sample, 

250 μl of Qubit® working solution was prepared by diluting the Qubit® RNA Reagent (1:200) in 

Qubit® RNA Buffer. Samples and controls for quantification were prepared according to Table 2.6. 

The components were added to 0.5 ml Qubit® assay tubes (ThermoScientific, USA), vortexed (S0200, 

Labnet, USA) for 2-3 seconds and incubated at room temperature for 2 minutes. The Qubit® was 

calibrated with the standards, followed by readings of the samples by following the prompts on the 

Qubit® 3.0 fluorometer (ThermoScientific, USA). The readings (ng/µl) were converted to copy 

number by using online tools (http://cels.uri.edu/gsc/cndna.html). To determine the limit of detection 

of the screening PCR, serial dilutions were made from the starting concentration of 1012 to 10 per μl. 

However, single use aliquots of concentration of 104 of the positive control were frozen and used as 

is to compensate for degradation of the RNA during freeze thawing.  
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Table 2.6. Reagents used for RNA quantification in plasmid positive control 

Reagent Volumes for Standards Volumes for Samples 

Working Solution 190 μl 180-199 μl 

Standard 10 μl - 

Sample - 1-20 μl 

Total volume 200 μl 200 μl 

 

 

2.8 Astrovirus PCR assays  

2.8.1 General screening PCR for the detection of astroviruses 

The hemi-nested AstV screening PCR developed by Chu et al. (2008) amplifies the RdRp gene (422 

bp) of bat AstVs but also a host of other mammalian AstVs (Fischer et al., 2017). The hemi-nested 

PCR was successfully used by Ithete (2013) to detect AstV in SAn bats and as such this protocol was 

also used during the current study. The screening PCR consists out of a pre-nested amplification and 

nested amplification, as detailed below.  

2.8.2 PCR assay for amplification of the capsid protein gene (ORF2) 

AstV species classification and identification is based on the capsid protein gene (ORF2), which is 

important for virus phylogenetics and classification. The ORF2 region is notoriously difficult to 

amplify for bat AstVs, as such only a small number of these sequences are available on Genbank® 

(https://www.ncbi.nlm.nih.gov/nuccore/?term=bat+astrovirus+capsid+protein+gene, visited 10 

September 2018) (Fischer et al., 2017). The amplification of this region is either a hit or miss (personal 

communication Dr Freiden, St Jude Children’s Hospital, Memphis USA). Based on some partial 

ORF2 bat AstV sequences on Genbank®, it was suggested to use the primer set developed by Atkins 

et al., (2009). AstV samples that were identified as positive by hemi-nested AstV PCR (Chu et al., 

2008) and sequencing, were subjected to a second PCR reaction with primers targeting the capsid 

protein of the virus (Atkins et al., 2009) (Table 2.7.). The PCR assay also entails a pre-nested and 

nested amplification round as described below. The nested PCR product size is about 800 - 1000 bp.  
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Table 2.7. Summary table of the primer sets used with different PCR assays during in the amplification of 

two regions of the AstV genome. 

Screening assay & region of amplification Oligo Name 5’→3’ Oligo Sequences 

Pre-nested amplification of RdRp gene Pan-Astro_F1 GAR TTY GAT TGG RCK CGK TAY GA 

(Chu et al., 2008) Pan -Astro_F2 GAR TTY GAT TGG RCK AGG TAY GA 

 Pan-Astro_R GGY TTK ACC CAC ATN CCR AA 

Nested amplification of the RdRp gene Pan-Astro_HNF1 CGK TAY GAT GGK ACK ATH CC 

(Chu et al., 2008) Pan-Astro_HNF2 AGG TAY GAT GGK ACK ATH CC 

 Pan-Astro_R GGY TTK ACC CAC ATN CCR AA 

Pre-nested amplification of ORF2 gene Astr_4811F TTTGGNATGTGGGTNAARCC 

(Atkins et al., 2009) Astr_5819R TCATTNGTGTYNGTNANCCACCA 

Nested amplification of ORF2 gene Astr_5159F GGAGGGGMGGACCAAAG 

(Atkins et al., 2009) Astr_5819R TCATTNGTGTYNGTNANCCACCA 

 

 

2.8.3 Pre-nested amplification of the RdRp gene  

The pre-nested reaction was set up following the protocol by Chu et al. (2008), with TrueStart Hot 

Start Taq DNA polymerase (ThermoScientific, USA). The reagents and volumes used are listed in 

Table 2.8. After the reagents were added to a 2 ml microcentrifuge tube (Nest Scientific Inc., China), 

the mastermix was vortexed (S0200, Labnet, USA) and centrifuged briefly. A volume of 23 µl of 

mastermix was pipetted (Eppendorf, Germany) into PCR strip-tubes (Nest Scientific Inc., China) 

followed by 2 µL of cDNA template. The strip-tubes containing the reaction mixture and cDNA 

template was briefly vortexed (S0200, Labnet, USA) and centrifuged (Eppendorf, Germany). The 

reaction was run on the 9700 GeneAmp® thermocycler (Applied Biosystems, USA) using the 

following temperature profile: 95°C for 2 minutes, 40 cycles: 95°C for 30 seconds, 55°C for 30 

seconds, 68°C for 30 seconds and a final extension at 72°C for 5 minutes. 

Table 2.8. Reagents used for the pre-nested amplification reaction of the RdRp gene 

Reagents Stock Final Volume 

 Concentration Concentration per run (µl) 

Nuclease-free water   10.87 

TrueStart Buffer 10X 1X 2.5 

MgCl2 25 mM 1.5 mM 1.5 

dNTP Mix 10 mM 200 µM 0.5 

Pan-Astro_F1 10 µM 1 µM 2.5 

Pan-Astro_F2 10 µM 1 µM 2.5 

Pan-Astro_R 10 µM 1 µM 2.5 

TrueStart Taq 5 U/µl 0.625 U 0.125 

cDNA template - - 2 

Total reaction volume    25µl 
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2.8.4 Hemi-nested amplification of the RdRp gene  

The nested reaction was set up on ice following the protocol of Chu et al. (2008) with TrueStart Hot 

Start Taq DNA polymerase (ThermoScientific, USA). The reagents and volumes used are listed in 

Table 2.9. After the reagents were added to a 2 ml microcentrifuge tube (Nest Scientific Inc., China) 

the mastermix was vortexed (S0200, Labnet, USA) and centrifuged (Eppendorf, Germany) briefly. 

Each reaction consisted out of 48 µl of mastermix and 2 µL of pre-nested PCR product. The reaction 

was run on the 9700 GeneAmp® thermocycler (Applied Biosystems, USA) using the following 

temperature profile: 95°C for 2 minutes, 30 cycles: 95°C for 30 seconds, 55°C for 30 seconds, 72°C 

for 30 seconds and a final extension at 72°C for 5 minutes. 

Table 2.9. Reagents used for the nested amplification reaction of the RdRp gene 

Reagents Stock Final Volume 

 Concentration Concentration per run (µl) 

TrueStart Buffer 10X 1X 5 

MgCl2 25 mM 1.5 mM 3 

dNTP Mix 10 mM 200 µM 1 

Primer (Pan-Astro_HNF1) 10 µM 1 µM 5 

Primer (Pan-Astro_HNF2) 10 µM 1 µM 5 

Primer (Pan-Astro_R) 10 µM 1 µM 5 

TrueStart Taq 5 U/µl 1.25 U 0.25 

Nuclease-free water - - 23.75 

Pre-nested product - - 2 

Total reaction volume    50µl 

 

2.9 Amplification of AstV capsid protein gene (ORF2) fragment  

2.9.1 Pre-nested amplification of the ORF2 gene fragment 

The pre-nested reaction was set up on ice following the protocol of Atkins et al. (2009), using 

SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNA Polymerase 

(ThermoScientific, USA). The reagents and volumes used are listed in Table 2.10. After the reagents 

were added to a 2 ml microcentrifuge tube (Nest Scientific Inc., China), the mastermix was vortexed 

(S0200, Labnet, USA) and centrifuged briefly. A volume of 23 µl of mastermix was pipetted 

(Eppendorf, Germany) into PCR strip tubes (Nest Scientific Inc., China) and 2 µl of cDNA template 

was added. The strip-tube containing the reaction mixture and cDNA template was vortexed (S0200, 

Labnet, USA) and centrifuged (Eppendorf, Germany) briefly. The reaction was run on the 9700 

GeneAmp® thermocycler (Applied Biosystems, USA) using the following temperature profile and 

cycling parameters: 55°C for 30 minutes, 94°C for 2 minutes, 40 cycles: 94°C for 15 seconds, 55°C 

for 30 seconds, 68°C for 2minutes and a final extension at 68°C for 5 minutes.  
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Table 2.10. List of reagents used for the pre-nested amplification of the ORF2 gene  

Reagents Stock Final Volume 

 Concentration Concentration per run (µl) 

2x Reaction Mix - - 12.5 

Primer (Astr_5159F) 10 µM 1 µM 0.5 

Primer (Astr_5819R) 10 µM 1 µM 0.5 

SuperScript III RT/Platinum taq mix - - 1 

Nuclease-free water - - 5.5 

RNA template - - 5 

Total reaction volume    25µl 

 

 

2.9.2 Nested amplification of the ORF2 gene fragment  

The nested reaction was set following the protocol by Atkins et al. (2009), using SuperScript™ III 

One-Step RT-PCR System with Platinum™ Taq DNA Polymerase (ThermoScientific, USA). The 

reagents and volumes used are listed in Table 2.11. After the reagents were added to a 2 ml 

microcentrifuge tube (Nest Scientific Inc., China), the mastermix was vortexed (S0200, Labnet, USA) 

and centrifuged briefly. A volume of 20 µl of mastermix was pipetted (Eppendorf, Germany) into 

PCR strip tubes (Nest Scientific Inc., China) and 5 µl of pre-nested product was added. The strip-tube 

containing the reaction mixture and pre-nested product was vortexed (S0200, Labnet, USA) and 

centrifuged (Eppendorf, Germany) briefly. The reaction was run on the 9700 GeneAmp® 

thermocycler (Applied Biosystems, USA) using the following temperature profile and cycling 

parameters: 55°C for 30 minutes, 94°C for 2 minutes, 40 cycles: 94°C for 15 seconds, 55°C for 30 

seconds, 68°C for 2 minutes and final extension at 68°C for 5 minutes. 

Table 2.11. List of reagents used for the nested amplification of the ORF2 gene. 

Reagents Stock Final Volume 

 Concentration Concentration per run (µl) 

2x Reaction Mix - - 12.5 

Primer (Astr_4811F) 10 µM 1 µM 0.5 

Primer (Astr_5819R) 10 µM 1 µM 0.5 

SuperScript III RT/Platinum taq mix - - 1 

Nuclease-free water - - 5.5 

Pre-nested product - - 5 

Total reaction volume    25µl 
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2.10 Host species identification by cytochrome b gene amplification  

Bat species identification based on morphological features and echolocation can be complicated and 

unreliable, due to the existence of subspecies or cryptic species (Bradley and Baker, 2001; Bastos et 

al., 2011), thus species identity was confirmed using primers that target the cytochrome b gene of the 

host organism (Table 2.12.). The protocol by Bastos et al. (2011) was used with modifications to the 

cycling parameters.  

Table 2.12. Primer sets used in the amplification of the cytochrome b gene to determine host species identity 

(Bastos et al., 2011) 

Oligo Name 5’→3’ Oligo Sequences 

L14724 TGA YAT GAA AAA YCA TCG TTG 

H15915R CAT TTC AGG TTT ACA AGA C 

 

 

The reaction consisted out of the reagents listed in Table 2.13. A volume of 25 µl of mastermix was 

added to PCR strip tubes (Nest Scientific Inc., China), followed by 5 µl of DNA template. The mixture 

was vortexed (Labnet, USA) briefly and centrifuged (Eppendorf, Germany).  

The reaction was run on the 9700 GeneAmp® thermocycler (Applied Biosystems, USA) using the 

following cycling parameters: 95°C for 2 minutes, 2 cycles: 95°C for 12 seconds, 52°C for 30 seconds 

and 70°C for 60 seconds, followed by 3 cycles with a lower annealing temperature at 50°C and 45 

cycles with the annealing step at 48°C and final extension at 72°C for 5 minutes. 

Table 2.13. Reagents used for the amplification of the cytochrome b gene  

Reagents Stock Final Volume 

 Concentration Concentration per run (µl) 

10x PCR buffer 10X 1X 3.0 

Primer (L14724) 10 µM 0.4 µM 1.2 

Primer (H15915R) 10 µM 0.4 µM 1.2 

MgCl2 50 mM 1.5 mM 0.9 

dNTP Mix 10 mM 0.2 mM 0.6 

Platinum Taq - - 1.2 

Nuclease-free water - - 17.9 

cDNA template - - 5 

Total reaction volume    30µl 
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2.11 Visualization of PCR products 

PCR products were visualized using gel electrophoresis. The DNA electrophoresis workflow that was 

followed is described below (Brody & Kern, 2004).  

Sodium borate (SB) buffer was used during agarose gel electrophoresis, as it has a lower conductivity, 

runs at higher speeds and produces brighter bands compared to TBE and TAE buffers (Brody & Kern, 

2004). A stock solution of 20X SB buffer was prepared by adding 45 g Boric acid and 8 g NaOH to 

1 litre of distilled MilliQ water and mixing with magnetic stirrers. The stock solution was then diluted 

with distilled MilliQ water to produce 1X SB buffer solution that was used during gel electrophoresis.  

PCR products were visualised on a 2% agarose gel for fragments up to 1kb, and 1% agarose gel for 

larger fragments. The gel was prepared by mixing 2 g of Lonza® LE agarose (Lonza BioWhittaker, 

Verviers, Belgium) with 1X SB buffer to make a 100 ml mixture. The mixture was heated in a 

microwave for 3 minutes or until no undissolved particles were visible. The mixture was allowed to 

cool while stirring. Once cooled sufficiently 5 µl of Pronasafe gel dye (Laboratorios CONDA, 

Madrid, Spain) was added to the gel mixture. The gel mixture was poured into an electrophoresis tray 

and a gel comb, of approximately 1mm was placed in the tray. The gel was left to set for 30 minutes 

at room temperature. The comb was removed, and the gel was covered with 1X SB buffer.  

Five microliters of PCR product was mixed with 1 µl of 6X orange loading dye (ThermoScientific, 

USA) and loaded into the wells. Once the samples were loaded into the wells, a Generuler® 100 bp 

or 1 kb ladder (ThermoScientific, USA) was loaded to the gel as a reference sizing marker. The 

electrophoresis tray was connected to a power pack and run at 90 volts for 40 minutes. 

Following DNA electrophoresis, the PCR products were visualised using the UVItec gel 

documentation system, chemiluminescence and fluorescence system (UVItec Alliance, Cambridge, 

UK), using the transilluminator at 254 nm. Images were captured and enhanced using UVIband 

(UVItec Alliance, Cambridge, UK) software. The expected fragment size for the RdRp gene was 422 

bp, and the capsid protein gene fragment was 800 bp. Images were saved electronically and printed.  

2.12 PCR product purification 

Two PCR purification kits were used during the study. The Rapid PCR Enzyme Cleanup Set (New 

England Biolabs, USA) was used to purify small volumes of PCR product, and the MinElute® PCR 

purification kit (QIAGEN, Germany) was used when larger volumes of PCR product were purified.  
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2.12.1 Rapid PCR Cleanup Enzyme Set  

Positive PCR products were purified using the Rapid PCR Cleanup Enzyme Set (New England 

Biolabs, USA). To each 5 µl of PCR product, 1 µl of each enzyme, Exonuclease I and rSAP were 

added and briefly mixed by pipetting up and down. The reaction was run on the 9700 GeneAmp® 

thermocycler (Applied Biosystems, California, USA) using the following temperature profile and 

cycling parameters (per manufacturer’s instructions): incubation at 37°C for 5 minutes and heat 

inactivation at 80°C for 10 minutes. The purified PCR product was stored at -20°C until sequencing 

was performed.  

2.12.3 MinElute® PCR purification kit  

PB buffer (100 µl) was added to 20 µl of PCR product and vortexed (S0200, Labnet, USA) briefly. 

The MinElute® column was placed in a 2 ml collection tube and the sample was added to the column 

and centrifuged (Eppendorf, Germany) for 1 minute at 17 900 x g. The flow-through was discarded 

and the column placed back into the collection tube. The column was washed by adding 750 µl of the 

provided PE buffer, containing ethanol, to the MinElute® column and then centrifuged (Eppendorf, 

Germany) for 1 minute at 17 900 x g. The flow-through was discarded and the column placed back 

into the collection tube. The column was centrifuged (Eppendorf, Germany) for an additional 1 

minute at maximum speed to remove residual ethanol. The column was placed into a new 1.5 ml 

collection tube and 10 µl EB buffer was added to the centre of the membrane. The column was 

incubated for 1 minute at room temperature and centrifuged (Eppendorf, Germany) for 1 minute at 

17 900 x g. The purified DNA was stored at -20°C until sequencing commenced.  

2.13 Sequencing PCR  

Sanger sequencing was performed using the Big-dye terminator cycle sequencing kit v3.1 (Applied 

Biosystems, California, USA). A mastermix was prepared for each primer used for the specific region 

of interest being sequenced. According to the manufacturer’s instructions 2 µl of purified PCR 

product (15-25 ng) was added to a reaction mix containing the reagents mentioned in Table 2.14. The 

reaction was set up as follows on the PE GeneAmp® 9700 thermal cycler or the Veriti® (Applied 

Biosystems, USA) using the manufacturer’s protocol: 95°C for 1 minute, 30 cycles at 95°C for 10 

seconds, 55°C for 5 seconds and 60°C for 4 minutes. 
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Table 2.14. Reagents used for the sequencing PCR setup  

Reagents Stock Final Volume 

 Concentration Concentration per run (µl) 

BigDye™ Terminator 3.1 Ready Reaction Mix - - 4 

Primer 2.5 µM 2.5 pmol 1 

Nuclease-free water - - up to 10 

PCR product - - 2 

Total reaction volume    10µl 

 

 

2.13.1 Sequencing clean-up  

Following the sequencing PCR, the PCR product was purified using the Big-dye X-terminator kit 

(Applied Biosystems, California, USA). To each sequencing reaction a mixture of 10 µl Big-dye X-

terminator and 45 µl SAM solution was added. The reactions were then placed on a shaker at 1800 

rpm for 30 minutes. After incubation, the reactions were centrifuged (Rotanta 460R Hettich 

centrifuge, Massachusetts, USA) at 2 000 × g for 5 minutes and the sequences were read on the 3130xl 

genetic analyser (Applied Biosystems, USA) using the standard protocol. The ORF2 fragments were 

sent to the Stellenbosch University’s Central Analytical Facility for sequencing.  

2.14 Sequence and phylogenetic analyses 

2.14.1 RdRp phylogenetic analyses 

The fragment used in the analyses is relatively small (420 bp), however due to the diversity of AstVs 

amongst bats, this conserved region of the AstV genome is readily used in the literature when 

performing phylogenetic analyses for bat AstVs (Fischer et al., 2016; Fischer et al., 2017; 

Lebarbenchon et al., 2017). As the sequences obtained during Ithete (2013) study were only used in 

a neighbour-joining phylogenetic reconstruction, they will also form part of the subsequent 

phylogenetic analyses and inferences. Sequences obtained by Ithete (2013) are denoted with NI at the 

end of the sequence label.  

2.14.2 ORF2 phylogenetic analyses 

The capsid protein gene is a highly diverse gene in the AstV genome, and notoriously difficult to 

obtain. During the study numerous attempts were made to amplify the capsid protein gene (ORF2). 

Twenty-five samples of which the RdRp gene of the virus was successfully sequenced, were used to 

try and amplify the ORF2 gene, however it was only successful for one sample. The ORF2 region 

highly diverse and difficult to amplify, as such not many bat ORF2 sequences are available on 
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GenBank (Fischer et al., 2017). One capsid protein gene (ORF2) sequence obtained from a M. 

natalensis bat was used for the phylogenetic analysis. The size of the fragment obtained by PCR was 

800 bp long. The ORF2 gene fragment obtained was compared to all the available ORF2 sequences 

on GenBank. Sequences with a similarity score greater than 50%, query coverage of 50% and above 

and an e-score value close to 0 were selected for the analyses.  

2.14.3 Phylogenetic reconstruction process that was followed 

Sequence data files were uploaded to Geneious R10 (Biomatters Inc., New Zealand) and analysed. 

Primers were trimmed and De Novo assembly function was used to create contigs for each sample, 

where possible. To determine whether the obtained sequences were bat AstVs, the National Centre 

for Biotechnology Information’s (NCBI) online Basic Local Alignment Sequence Tool (BLAST) was 

used. The related sequences were downloaded from GenBank®, which is the National Institute of 

Health’s genetic sequence database of all publicly available DNA sequences. It forms part of the 

International Nucleotide Sequence Database Collaboration, which comprises the DNA DataBank of 

Japan, the European Nucleotide Archive and GenBank®. A list of the sequences downloaded from 

GenBank® is included in Appendix B. 

Sequences were imported and edited in Geneious R10 (Biomatters Inc., New Zealand) and aligned 

using MAFFT online alignment tool. In MEGA7 (Pennsylvania State University, USA) neighbour 

joining (NJ) trees were created using the percentage distance model. Using the percentage distance 

model enables inferences about the phylogenetic relationship of the sequences to be made. To validate 

the accuracy of the consensus tree that was produced, 1 000 bootstrap replicates were performed.  

To determine the best model to use for phylogenetic inferences based on maximum likelihood, 

sequence alignments were run through JModelTest v2.1.4 (Darriba et al., 2012). Based on the results 

obtained by the program, the best model was selected, and sequence data was used in maximum-

likelihood analyses in PhyML v3.1 (Guindon et al., 2010). Tree editing was done in FigTree v1.4.3 

(Rambaut, University of Edinburgh, UK).  

To determine the nucleotide similarities in the sequences pairwise distance matrixes were generated 

in MEGA7 (Pennsylvania State University, USA) using p-distance model with 1 000 iterations.  

2.15 Quantitative Real-time PCR for monitoring of AstVs and CoVs in a N. capensis colony 

A bat colony in Velddrif in the Western Cape was monitored over time for the presence of AstVs and 

CoVs using two qPCR assays. These two viruses have been regularly found to co-infect bat species 

(Drexler et al., 2011; Kemenesi et al., 2014). Real-time assays were utilized to determine whether the 
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bat colony was co-infected with these two viruses, as well as how the relative viral loads fluctuated 

over time. qPCR assays are highly sensitive and more specific than conventional screening PCRs, 

especially when assays are probe-based. Conventional PCR does not allow for relative viral load 

quantification, which is needed to determine if there were fluctuations of the viruses over time, hence 

the use of qPCR assays (Arya et al., 2005). Realtime assays do however have some drawbacks, the 

region that they amplify is too small to utilize for phylogenetics.  

The AstV real-time assay designed was also assessed to determine how it compared in terms of limit 

of detection and percentage positive sample detection, in comparison with the conventional AstV 

screening PCR designed by Chu et al. (2008). 

2.15.1 Design of AstV qPCR probe and primers  

To develop primers and probes for the real-time PCR assay, RdRp sequences obtained during the study 

were aligned in Geneious R10 (Biomatters Inc., New Zealand) and primers were designed to target a 

fragment approximately 180 bp (Table 2.15.). For real-time PCR, it is important that the amplicon be as 

small as possible, as smaller amplicons amplify more efficiently and are more resistant to reaction 

conditions. For this real-time PCR assay, a FAM (6-carboxyfluorescein) reporter dye was attached at 

the 5’ end and a black hole quencher dye at the 3’ end of the probe. The following was also considered 

during primer design; the Tm of the primers should not differ more than 2°C, the GC content of the 

primers should range between 20-80% and the optimal length for single stranded primers should be 

between 15 and 20 bp (Arya et al., 2005).  

 

Table 2.15. Astrovirus real-time PCR primers and probe set designed to target a 180 bp of the RdRp gene  

Oligo Name 5’→3’ Oligo Sequences 

331_R (Primer) AGG YCA TGA TYA CAC TCT GT 

131_F (Primer) ACA GGA GAG GTT ACC GTA CA 

272 (Probe) FAM -CGT GAW TGG ZGG AAG TGT GA/3IABkFQ 

 

 

2.15.2 Betacoronavirus primers and probe  

Primers and probe for the real-time PCR assay for beta-CoVs were designed by Dr Ndapewa Ithete and 

Dr Nadine Cronje of our research group (Table 2.16.). The primer and probe set targets a 200 bp 

fragment of the RdRp gene.  
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Table 2.16. Real-time PCR primer and probe set designed to target a 200 bp fragment of the RdRp gene of 

βCoV  

Oligo Name 5’→3’ Oligo Sequences 

2c_RdRp_qPCR_F (Primer) GTG YGC TCA AGT GYT WAG TGA RTA TGT 

2c_RdRp_qPCR_R (Primer) CCA TTA GCR CYC ATA AGT GCA CTA ACA 

2c_RdRp_qPCR_P (Probe) FAM-GCW TAY GCC/ZEN/ AAT AGT GTY TTT AAC AT/3IABkFQ 

 

 

2.15.3 Astrovirus and Coronavirus RNA quantification standards 

The AstV standard used was created by myself and the CoV standard was created and supplied by Dr 

Nadine Cronje of our research group. In short, the CoV standard was created from a 900 bp fragment of 

the RdRp gene of a MERS-related beta-CoV detected in a N. capensis bat (Cronje, 2017). The AstV 

standard was generated by cloning the amplified region (3’ end of the genome) and in vitro transcribing 

the plasmid (as described in Section 2.7.6.). Quantification of RNA was performed as mentioned in 

Section 2.7.6. The viral copies per μl was 3.4 x 109 for AstV and 1.9 x 109 for CoV. Single-use aliquots 

were stored at -80°C and diluted before use. Ten-fold serial dilutions (104, 103, 102 and 101) were made 

and used as standards for each real-time reaction.  

2.15.4 Sample preparation for qPCR  

RNA was re-extracted from faecal material as previously described in Section 2.4.1. Single-use aliquots 

were prepared of each sample and stored at -80°C. Each sample was analysed in duplicate to eliminate 

technical variability.  

2.15.5 Quality of mRNA  

To determine the mRNA quality, spectrophotometer measurements are not sufficient for the following 

various reasons: (1) the measurements give no indication of degradation, it only supplies information 

about RNA; and (2) most samples contain rRNA and not only mRNA, which is targeted by the qPCR 

reaction. The spectrophotometer gives a reading of all the RNA (rRNA and mRNA), without being able 

to distinguish between the two (Eissa et al., 2016). To determine the mRNA integrity of the samples, 

the Tata Box binding protein housekeeping gene assay was used (Biesold et al., 2011). The reaction was 

set up with the primer and probe set mentioned in Table 2.17 and reagents mentioned in Table 2.18. 

Since the RNA was extracted from faecal material no normalization using Ct values of the housekeeping 

gene could be done as the number of cells shed by bats in their faecal material cannot be standardised. 

The number of faecal pellets used in the extraction was five pellets.  
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Table 2.17. Primers and probe of the Tata Box binding gene qPCR assay (Biesold et al., 2011) 

Oligo Name 5’→3’ Oligo Sequences 

bTBP_Fwd (Primer) TTGCTGCTGTGATCATGAGAATT 

bTBP_Rev (Primer) 6-FAM-CCCGGACCACGGCCCTGA-TAMRA 

bTBP_Pr (Probe) ACACCATCTTCCCAGAACTGAAG 

 

 

2.15.6 Real-time RT-PCR reaction 

The 20 μl SensiFAST™ Probe No-ROX One-Step kit (Bioline, London, United Kingdom) reaction was 

set up (on ice) as indicated in Table 2.18. The master mix and sample RNA was added to a Bio-Rad 

Hard-Shell® 96 well plate (Bio-Rad, California, USA). The plate was sealed with optically clear heat 

seal (Bio-Rad, USA) using the PX1 PCR plate sealer (Bio-Rad, USA) and covered with tinfoil, due to 

the light sensitivity of the probe. The plate was centrifuged (MPS 1000 mini plate spinner, Labnet, USA) 

for 2 minutes at 1 200 rpm to ensure mixing of RNA and master mix and to eliminate air bubbles. 

Following the Bio-Rad CFX program manager prompts, the plate setup was entered, and the cycling 

parameters were selected. The different cycling parameters of each qPCR assay is given below in 

Sections 2.14.8-2.14.10. 

 

Table 2.18. Reagents used for the qPCR reactions  

Reagents Stock Final Volume 

 Concentration Concentration per run (µl) 

2x SensiFAST™ No-ROX One-Step Mix - 1X 10 

Forward primer 10 µM 400 nM 0.8 

Reverse primer 10 µM 400 nM 0.8 

Reverse transcriptase - - 0.2 

RiboSafe RNAse Inhibitor - - 0.4 

EEPC-treated water (TermoScientific, USA) - - 3.6 

RNA template - - 4 

Total reaction volume    20µl 

 

 

2.15.7 Cycling parameters of the AstV qPCR 

The cycling parameters were as follows; 45°C for 20 minutes, 95°C 2 minutes, 45 cycles: 95°C for 5 

seconds, 51.9°C for 20 seconds. Due to a probe being used, no melting curve analyses was conducted.  
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2.15.8 Cycling parameters of the CoV qPCR assay  

The cycling parameters were as follows; 45°C for 20 minutes, 95°C 2 minutes, 40 cycles: 95°C for 5 

seconds, 60°C for 20 seconds.  

2.15.9 Cycling parameters of the housekeeping gene assay  

The cycling parameters were as follows; 95°C for 30 seconds, 45 cycles: 95°C for 5 seconds, 58°C for 

30 seconds.  

2.15.10 Comparing qPCR and conventional AstV screening PCR detection results 

To compare the sensitivity and detection for each of the screening methods used during this study, 

150 samples were randomly selected to be screened using the AstV qPCR screening assay. The 

percentage difference in detection was calculated between the assays.  

2.16 WWTW water sample collection and analyses 

To determine how potential exposure to HAstVs through ingestion of water from wastewater works 

affects bat AstV diversity, water samples were collected from these WWTW and analysed for the 

presence of AstVs. As viruses are highly diluted in water bodies, the viruses needed to be concentrated 

by using glass wool and polyethylene glycol (PEG). 

2.16.1 Water sample collection and preparation  

Water samples were collected upstream and downstream from each WWTW (Umbilo (S29º50.44; 

E30º53.31) and Verulem (S30º04.29; E30º51.26)). Ten litres of water was collected upstream and 

downstream from each site. Samples were kept at 4°C and shipped overnight from the University of 

KZN to the Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch 

University.  

2.16.2 Viral adsorption-elution (VIRADEL) using glass wool 

To concentrate viruses from large volumes of water samples, a widely used method of glass wool 

filtration was employed. Custom filter casings needed to be built to allow for work with the glass 

wool. The filter casings were constructed out of irrigation piping with a length of 20 cm and internal 

diameter of 30 mm. Each column was packed with 15 g of Sodocalcic glass wool (Merck, Darmstadt, 

Germany). To positively charge glass wool to allow for adsorption of virus particles, the glass wool 

was chemically pre-treated by soaking it in sterile distilled water, and then consecutively treating it 

with 40 ml 1M HCl (Merck, Germany), 100 ml sterile distilled water, and 40 ml 1M NaOH (Merck, 
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Germany). The pH of the charged glass wool was adjusted to 7 using distilled water (Venter, 2004; 

Vivier et al., 2004).  

2.16.3 Seeding experiment to validate filtration method  

To validate the glass wool filtration method, 1 litre of sterile reverse osmosis water was spiked with 

0.5 ml of Coxsackie virus B6 (CV-B6 TCID50 1.5 x 107 /ml), provided by National Health Laboratory 

Service (NHLS) Tygerberg Medical Virology laboratory. A qPCR was performed on the samples by 

the NHLS and the sample tested positive for the virus (estimated copy number 1.48 x 102). 

2.16.4 Filtration of water samples  

No pre-treatment of water samples was necessary due to the use of positively charged glass wool 

filters. Water samples were filtered through the glass wool columns with the use of a vacuum pump 

(2522 WOB-L Welch®, Welch-Ilmvac, Illinois, USA) and vacuum trap, constructed out of a five litre 

Erlenmeyer flasks and rubber stoppers with serological pipettes. 

2.16.5 Elution  

Sterile glycine-beef-extract buffer pH 9.5 (GBEB: 3.754 g/l glycine (Merck, Germany); 5 g/l beef 

extract powder (Merck, Germany)) was used to elute viruses that bound to the glass wool column. 

The elution buffer (GBEB) was left in contact with the glass wool for 15 minutes before being passed 

through the filter under vacuum. The pH of the eluate was adjusted to 7.0 with 1 M HCl (Merck, 

Germany). The flow-through was collected and used for secondary precipitation using PEG (Abcam, 

Cambridge, USA) (Vivier et al., 2004, Venter, 2004). 

2.16.6 Secondary virus precipitation  

A secondary virus precipitation method is routinely employed in conjunction with glass wool filtration. 

Precipitating the virus after filtration contributes to the successful detection of the virus in downstream 

analyses. Various viruses have been successfully precipitated using PEG 8000 as precipitation agent 

(Lewis and Metcalf, 1998; Vilaginès et al., 1997; Mattison and Bidawid, 2009). For each 10 ml of water 

sample, 2.5 ml of PEG (Abcam, USA) solution was added and vigorously vortexed and incubated at 

4°C overnight on a shaker. Samples were centrifuged (Eppendorf, Germany) at 3 200 x g for 30 minutes. 

The supernatant was removed, and the white pellet was resuspended with 100 μl of virus resuspension 

solution (Abcam, USA). Samples were stored at -80°C until RNA extraction could be performed. 
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2.16.7 RNA extraction, cDNA generation and Screening by PCR 

Following the precipitation of virus using PEG, viral RNA was extracted using the same protocol as 

mentioned in Section 2.4.1. using the NucleoSpin® RNA virus kit (Macherey-Nagel, Germany). cDNA 

was made using the protocol described in Section 2.5 using RevertAid reverse transcriptase 

(ThermoScientific, USA). The AstV screening PCR described in Section 2.6. was used to screen for all 

known mammalian AstVs in the water samples. Extracted RNA was screened for the presence of AstVs 

using the hemi-nested screening PCR of Chu et al. (2008) and the AstV qPCR assay designed during 

the current study. 

2.17 Virus isolation in vitro  

AstVs are classified as a BSL II virus, however isolation and propagation were performed in a BSL 

3 laboratory (Marvin, Meliopoulos and Schults-Cherry. 2014). Experiments were conducted in 

duplicate and negative controls were also utilized to ensure no contamination has taken place. More 

details about the experimental design is given in Appendix I. 

2.17.1 Isolation and propagation of bat astroviruses in human cell line 

To determine whether bat AstVs are capable of infecting human cells, and as such pose a possible 

zoonotic threat, human intestinal adenocarcinoma cells (Caco-2) were used during attempted isolation 

and propagation. The Caco-2 cells used were supplied by the University of the Western Cape, Faculty 

of Biomedical Sciences (ATCC, catalogue number: HTB-37). 

Caco-2 cells are the most preferred cell lines for studying AstVs in cell culture, due to their ability to 

form differentiated intestinal epithelium that mimics that of the human intestine (Brinker, Blacklow, 

and Herrmann, 2000).  

2.17.2 Propagation and isolation attempt of bat astroviruses in bat cells and BHK G43 cells 

Bat AstVs have not yet been successfully isolated and propagated in cell culture. A bat derived cell 

line (N. capensis kidney cells (NCK)) established by Dr Tasnim Suliman in collaboration with the 

Institute of Virology, University of Bonn Medical Centre, Germany, was used to attempt isolation of 

bat AstVs in vitro.  

Baby hamster kidney cells (BHK), specifically the strain G43, was used in bat AstV isolation 

attempts.  
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2.17.3 Cell line resuscitation and maintenance 

Cryovials containing aliquots of cell lines of interest, previously frozen in DMSO, were removed 

from liquid nitrogen storage and thawed in a dry bath (AccuBlock digital dry bath, Labnet, USA) set 

to 37°C. Cells were gently swirled in the dry bath while defrosting. The vial containing the cells was 

transferred to a laminar flow hood (NU-425-400 Series-24, NuAire, Minnesota, USA) where it was 

sterilized with 70% ethanol. Complete media, pre-warmed to 37°C, was added into a 15 ml Falcon® 

tube (Corning, USA), cells were transferred to the tube dropwise. The suspension was centrifuged 

(Rotanta 460R Hettich centrifuge, Beverley, Massachusetts, USA) at 200 x g for 5 minutes. The 

supernatant was removed via aspiration (Gilson Safe Aspiration Station F110741, Gilson, Wisconsin, 

USA) without disturbing the cell pellet. The cell pellet was gently resuspended in complete media 

and transferred into a cell culture flask (Corning, USA). Cells were placed in an incubator (Air-

Jacketed DHD Autoflow Automatic CO2 incubator, NuAire, Minnesota, USA) at 37°C with 5% CO2. 

Cells were inspected daily under a microscope (Nikon, Eclipse TS 100, Minato, Tokyo, Japan) to 

establish the state of their growth and confluence. Media was changed when necessary. Media was 

aspirated (Gilson, Wisconsin, USA), and cells were washed with 1x PBS (Gibco®, USA). Fresh 

complete media was then added to the flask (Table 2.19.). 

 

Table 2.19. Recipes for the different media used during cell culture maintenance and inoculation of cell 

cultures with virus 

Media type Reagents 

Complete Media used for cell line 

growth and maintenance DMEM (Lonza BioWhittaker®, Verviers, Belgium) solution with: 

- 1% penicillin/streptomycin mixture (Lonza BioWhittaker®, Belgium) 

- 1% non-essential amino-acids (Lonza BioWhittaker®, Belgium) 

- 1% sodium pyruvate (Lonza BioWhittaker®, Belgium) 

- 1% L-glutamine (Lonza BioWhittaker®, Belgium) 

- 10% FBS (foetal bovine serum) (Gibco®, USA) 

Serum Free Media (SF) used for  

inoculation of cell cultures with virus DMEM (Lonza BioWhittaker®, Belgium) solution with:  

- 1% penicillin/streptomycin mixture (Lonza BioWhittaker®, Belgium) 

- 1% non-essential amino-acids (Lonza BioWhittaker®, Belgium) 

- 1% sodium pyruvate (Lonza BioWhittaker®, Belgium) 

- 1% L-glutamine (Lonza BioWhittaker®, Belgium) 

 

 

2.17.4 Passaging of cells 

When cells reached 80-90% confluency they were passaged. The supernatant was aspirated (Gilson, 

Wisconsin, USA), and the cells washed with 1X PBS (Gibco®, USA). Cells were then detached using 
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Accutase® (Biowest, France) or 1X trypsin EDTA (Gibco®, USA) and incubated at 37°C for 2-5 

minutes, or until all cell detached from the surface of the cell culture flask. The cell suspension was 

then transferred to a Falcon tube (Corning, USA) and centrifuged (Rotanta 460R Hettich centrifuge, 

Massachusetts, USA) at 1 000 x g for 5 minutes. The supernatant was aspirated (Gilson, Wisconsin, 

USA), and the cell pellet resuspended in DMEM (see Table 2.20. for volumes). For the specific 

protocol used for the propagation of AstVs in cell culture (Marvin, Meliopoulos, and Schults-Cherry, 

2014), a specific number of cells needed to be seeded into new flasks. Cell counting, and seeding was 

performed as described in Section 2.15.5.  

2.17.5 Cell counting and seeding  

Cells were counted manually using a haemocytometer and microscope (Nikon, Tokyo, Japan). The 

haemocytometer and coverslip were cleaned using 90% ethanol (Sigma-Aldrich, USA). The coverslip 

was moistened and affixed to the haemocytometer. Newton’s refraction rings were used to determine 

if adhesion was successful before continuing. The protocol used for counting of cells is given in 

Appendix C. 

 

Table 2.20. Volumes of reagents per volume flask for the different treatment steps during passaging of cells 

Treatment Reagent Volume of reagent  

  per volume of flask 

Wash PBS (1x PBS) if Accutase® is used for detachment) T25 ~ 1 ml 

 Repeat wash X 3 (1x PBS) if trypsin EDTA is used for detachment T75 ~ 7 ml 

  T175 ~ 25 ml 

Detach cells Trypsin EDTA or Accutase® T25 ~ 1 ml 

  T75 ~ 3 ml 

  T175 ~ 7 ml 

Resuspension DMEM Supplemented T25 ~ 4 ml 

  T75 ~ 7 ml 

  T175 ~ 21 ml 

Seeding DMEM Supplemented (+ cell suspension) T25 ~ 5 ml total 

  T75 ~ 18 ml total 

  T175 ~ 25 ml total 
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2.18 Bat astrovirus isolation and propagation attempt  

2.18.1 Identification and selection of astrovirus positive bat samples  

Samples stored in VTM that were confirmed to be AstV positive were identified and used during the 

isolation and propagation attempts. Saliva and urine swabs were used from two bat species 

(Rhinolophus clivosus and M. natalensis) from the same locality, Steenkamps Kraal in the Northern 

Cape. For each attempt approximately 500 µl sample was filter sterilized with a 0.4 µm syringe filter, 

before infecting cell lines to reduce chances of contamination with bacteria and other pathogens that 

could be present in the sample. The filtered sample was then supplemented with 2.5 ml SF media 

containing 5 µg/ml porcine trypsin (Sigma-Aldrich, USA).  

2.18.2 Human astrovirus positive control 

PCR-confirmed AstV-positive human stool samples were supplied as positive controls for the 

experiment. The stool samples were courier overnight from the National Institute of Communicable 

Diseases (NICD) in Johannesburg to the Division of Medical Virology, Faculty of Medicine and 

Health Sciences, Stellenbosch University. Samples were filter sterilized before infecting cell lines.  

2.18.3 Protocol for the propagation of astroviruses in cell culture 

T75 flasks (Corning, USA) were seeded with 2.5-5 x 106 various cells lines in complete media (Table 

2.19.). Two flasks were prepared for each cell line, one for the virus infection experiment and one to 

serve as negative control. For the human positive control one flask of Caco-2 cells were prepared.  

Cells were grown at 37°C with 5% CO2 for 3-4 days until cells reached 100% confluency. Media was 

aspirated (Gilson, Wisconsin, USA), and cells were washed with 1x PBS (Gibco®, USA).  

AstV positive samples that were prepared as mentioned in Section 2.15.6.1. were added to the cells 

and incubated for 90 minutes at 37°C (Air-Jacketed DHD Autoflow Automatic CO2 incubator, 

NuAire, Minnesota, USA). 

The infective media was aspirated and 7 ml SF media with 10 μg/ml porcine trypsin (Sigma-Aldrich, 

USA) was added. 

Cells were then incubated for 3-4 days at 37°C with 5% CO2 (Air-Jacketed DHD Autoflow Automatic 

CO2 incubator, NuAire, Minnesota, USA).  

Supernatant and cells were collected 3-4* days post inoculation and stored at -80°C. For cells infected 

with bat AstV positive samples supernatant was collected 5 days post-inoculation. 
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2.18.4 Blind passaging of bat astrovirus infected cells and supernatant 

AstV isolation in cell culture is further complicated by the fact that cytopathic effects are rarely 

observed, thus the presence of the virus could only be confirmed molecularly. Inoculated cells and 

supernatant were passaged blindly to increase the chances of successful virus isolation. Cells were 

prepared as mentioned earlier (Section 2.15.2-2.15.5.4). Once the cells reached 90-100% confluency, 

1 ml AstV infected cells and supernatant were used to infect the new cultures. The protocol mentioned 

in Section 2.15.6.3. was followed and supernatant and cells were removed 5 days post infection and 

stored at -80°C.  

2.19 Screening of cells and supernatant for AstV 

Viral RNA was extracted as mentioned in Section 2.4. and screened for the presence of AstVs using 

the qPCR assay (Section 2.14.). 

2.20 Data analyses 

Statistical analyses were conducted in R v3.4.3 (Foundation for Statistical Computing, Vienna, 

Austria) and Statistica R13.3 (Tibco, California, USA).  

The morphological and ecological data recorded for individual bat samples (n = 495) were used for 

the analyses, the database used for the analyses is included in Appendix D. The data was divided into 

bat biological data (bat individual measurements; sex, age, forearm mass index (FMI), species 

identity) and ecological data (biome, altitude and rainfall) and analysed separately to determine if 

either host or environment have a significant effect on AstV positivity.  

2.20.1 Bat morphological and biological data recorded 

Measurements taken on the individual bat level included sex, age and forearm mass index (FMI). Sex 

is a relatively straight forward category to comprehend, bats were classified as either male or female. 

The reproductive statuses for males were: scrotal, non-scrotal. For females the reproductive statuses 

were: pregnant, not-pregnant, lactating, post-lactation.  

Bat age is determined by epiphyseal-diaphyseal fusion. By examining the closure or fusion of the 

cartilaginous epiphyseal growth plates of the fourth metacarpal-phalangeal joint, through illumination 

with a flashlight the age of the bat is determined. If the joint was fused, the bat was classified as adult 

and if the joint was not fully fused, the bat was classified as sub-adult or juvenile (Brunet-Rossinni 

and Wilkinson, 2009). As only a small number of juvenile bats (n = 10) were sampled, age was not 

used in any analyses.  
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FMI is a relatively new method of determining the overall body condition of the bat (Meng et al., 

2016). It is similar to the body condition index that is used as a proxy for human health. FMI 

calculation was made by using the following formula: 

FMI = 
𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑏𝑎𝑡 (𝑘𝑔)

𝑓𝑜𝑟𝑒𝑎𝑟𝑚 𝑙𝑒𝑛𝑔𝑡ℎ (𝑚2)
 

2.20.2 Statistical analyses of bat morphological and biological data 

Most of the variables recorded on the individual bat level were classified as categorical variables (sex, 

reproductive status, species identity), except FMI which was classified as a continuous variable. 

Categorical variables take on a value or within a specified set of categories (Joshi, 1990). As opposed 

to continuous variables that can take on an infinite number of variables (Joshi, 1990).  

The database of bat morphological and biological variables was imported from Excel into statistical 

software, R v3.4.3 (Foundation for Statistical Computing, Vienna, Austria). 

Individual Chi-squared analyses were conducted on the variable sets where the dependent variable 

(AstV status) and independent variable (sex, reproductive status, species identity) were classified as 

categorical. 

• Sex, reproductive status and AstV positivity  

Sex and reproductive status were used in individual Chi-squared analyses. To account for 

dependencies of observations within trapping site (locality), the Roa-Scott adjustment was used.  

• Species identity and AstV positivity 

To account for differences in sample size between bat species, the screening results (AstV status per 

species) were converted to percentages and then used in a Chi-squared analyses. Due to small counts 

in the cells for the crosstab table, the generalized Fisher exact test was also performed. Both the Fisher 

exact test and the Chi-squared analysis indicated that species identity was a significant (p = 0.01) 

factor for AstV positivity. To account for repeated measures within locality (trapping site), Roa-Scott 

adjustment was incorporated.  

• FMI and AstV positivity  

FMI was the only continuous variable in the dataset. The FMI measurements were used in a mixed 

model one-way ANOVA with Restricted Maximum Likelihood (RMl). To account for repeated 

measures in the dataset, locality (trapping site) was selected as a random effect in the analyses.  
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2.20.3 Ecological variables 

The biome variable was classified as one of seven different vegetation types: Succulent Karoo, Nama 

Karoo, Savanna, Grasslands, Forests or Albany thicket. Altitude was a measure of the trapping 

location’s position in meters above sea level. This was determined by taking the GPS coordinates of 

the trapping location and importing it into GPS visualizer software to determine the altitude. The 

database of ecological variables was imported from Excel into statistical software, R v3.4.3 

(Foundation for Statistical Computing, Vienna, Austria). 

2.20.4 Statistical analyses of ecological variables  

The Generalized Estimating Equations (GEE) approach was used to determine which ecological 

factors (biome, altitude and rainfall) might have contributed significantly to AstV positivity. GEE 

was selected to take into account repeated measures within the locality (trapping site) units. AstV 

status was the dependent variable and also binary in nature and therefore the Binomial distribution 

was selected as underlying distribution. Dependent variables included in the analyses were biome, 

altitude and rainfall. GEE results indicated that biome significantly (p = 0.01) influenced AstV 

positivity. Fisher LSD post-hoc test was used to determine the significance between the different 

biomes.   
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Chapter 3 Results 

Chapter Outline 

This chapter is structured in such a way as to reflect the outline of Chapter 2 as far as possible. This 

chapter starts with the AstV PCR screening results and sample localities where bats that tested 

positive for AstV RNA were trapped. Thereafter the phylogenetic relationships of the obtained RdRp 

sequences and ORF2 sequence follows. Based on the sequences obtained, real-time PCR assays were 

designed to monitor the amplification of AstVs and CoVs in a colony over time. To determine how 

AstV diversity in bats might be impacted by exposure to human AstVs at WWTW, bat faecal material 

and water samples were screened for the presence of AstVs. In vitro isolation of bat AstVs were 

attempted and the findings presented. The last section of the results focuses on the statistical analyses 

of the screening results and the comparison between the screening results of the qPCR and 

conventional PCR assay.  

3.1 Identification and characterization of astroviruses in South African bats  

3.1.1 Screening results of individual bat samples 

During the current study 500 individual bat faecal samples were screened for the presence of AstV 

RNA. The overall prevalence of the virus across the nine species was 13%. Prevalence on species 

level was highly variable ranging from the highest of 55% for M. natalensis to the lowest of 4% in 

N. nana (Table 3.1.). The only other available study that investigated bat AstVs in SA is that of Dr 

Ithete (2013). The screening results of Ithete (2013) and that of the current study were combined in a 

summary table to depict all SAn bat species that have tested positive for AstV RNA (Table 3.2.). The 

spatial distribution of sample localities across SA is given in Figure 3.1.a), and the localities where 

bats tested positive for AstV RNA is given in Figure 3.1.b). A detailed list of sample localities and 

GPS coordinates is included in Appendix E.  
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Table 3.1. Prevalence of AstV RNA detected in different SA bat species using primers designed by Chu et al. 

(2008) that targets the RdRp gene of the virus 

Family Species Total AstV AstV Prevalence 

  Screened Negative Positive (%) 

Miniopteridae M. natalensis 22 10 12 55 

Molossidae Chaerephon pumilus 13 13 0 0 

 Mops midas 6 6 0 0 

 Myotis bocagii 5 5 0 0 

 Tadarida aegyptiaca 15 13 2 14 

Rhinolophidae R. capensis 23 14 9 39 

 R. clivosus 121 101 20 17 

 R. darling 10 10 0 0 

 R. denti 10 10 0 0 

 R. simulator 14 14 0 0 

 R. smithersi 1 1 0 0 

 R. swinnyi 10 10 0 0 

Vespertilionidae Myotis tricolor 16 15 1 7 

 N. capensis 120 107 13 11 

 N. nana 47 45 2 4 

 Pipistrellus hesperidus 56 50 6 11 

 Kerivoula lanosa 1 1 0 0 

 Scotophilus dinganii 10 10 0 0 
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Table 3.2. Summary of all South African bat species that have tested positive for AstV RNA during the 

current study and during the study by Ithete (2013) 

Family Species Total PCR Prevalence 

  Screened Positive (%) 

Hipposideridae Hipposideros caffer 6 2 33 

Miniopteridae  M. natalensis (Ithete, 2013) 13 12 92 

 M. natalensis 22 12 55 

 M. fraterculus (Ithete, 2013) 6 6 100 

Molossidae Tadarida aegyptiaca (Ithete, 2013) 3 2 67 

 Tadarida aegyptiaca 15 2 13 

Rhinolophidae R. clivosus (Ithete, 2013) 8 1 13 

 R. clivosus 121 20 17 

 R. swinnyi (Ithete, 2013) 3 1 33 

 R. capensis 23 9 39 

Vespertilionidae N. nana (Ithete, 2013) 6 1 7 

 N. nana 47 2 4 

 N. capensis (Ithete, 2013) 10 8 80 

 N. capensis 120 13 11 

 Myotis tricolor 16 1 6 

 Pipistrellus hesperidus 56 6 11 

 

 

 

 

Figure 3.1. a) Localities sampled during the course of this study;  

b) Spatial distribution of all PCR positive sample localities in SA including those detected by 

Ithete (2013). Maps were created using GPS visualizer online software 
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3.2 Phylogenetic analyses  

3.2.1 Phylogenetic analyses based on the RNA dependant RNA polymerase (RdRp) gene  

Using the conventional hemi-nested AstV screening PCR (Chu et al., 2008) which targets a 420 bp 

fragment of the AstV genome, a total of 25 novel RdRp sequences were obtained during the current 

study. Bringing the total number of SA bat AstV RdRp sequences to 44 (Ithete, 2013). The 

phylogenetic relationship of all available SA bat AstVs and their related sequences is depicted in 

Figure 3.2., and magnifications are presented in Figures 3.3-3.5. 

The novel RdRp sequences were also used to determine their relationship within the larger scope of 

AstV sequences available on GenBank, a ML tree was constructed that included members of 

Mamastrovirus genogroup I and genogroup II (Appendix F). 

The evolutionary divergence of the RdRp gene sequences as determined by pairwise distance matrix 

analysis is given in Appendix G.  

3.2.2 Phylogenetic inferences based on the RdRp gene fragment  

Based on the phylogenetic reconstruction depicted in Figure 3.2., the following observations can be 

made; the sequences are highly diverse with numerous clusters having poor bootstrap support, there 

is not one clear trend with regards to the clustering of sequences with some sequences seen to cluster 

according to bat genera whilst others cluster according to locality. Figure 3.2. was split into three 

sections for better illustration of the clustering of sequences and each section will be discussed in the 

following subsections. Only clusters with bootstrap support values above 70 were discussed. 

• Section A  

Section A (Figure 3.3.) is a magnification of Figure 3.2. and the grouping of sequences will be 

discussed systematically from the bottom (avastrovirus outgroup) to the top, numbered from 1-5. 

Sequences at position 1 indicate two sequences isolated from the same bat species, N. capensis, from 

the same colony trapped in Greyton in the Western Cape (BatAstV/Greyton/NC7 & 

BatAstV/Greyton/NC1). From Figure 3.3, the cluster of sequences from SA at position 1 appears to 

share a common ancestor with several sequences obtained from Miniopterus bats from China (Chu et 

al., 2008; Wu et al., 2012) (Genbank IDs: EU847157.1, EU847150.1 & JQ814860.1).  
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Figure 3.2. Phylogenetic relationship of SAn bat AstVs with related bat AstV sequences. The RdRp fragment 

(420 bp) (corresponding to positions 3659-4041 bp in HAstV NC_001943.1) was used to 

construct a maximum likelihood tree on the nucleotide level in PhyML. The evolutionary history 

was inferred using the General Time Reversible model with Gamma distribution and invariant 

sites (GTR+G+I) (Nei & Kumar 2000) with 1000 Bootstrap replicates. Bootstrap support values 

above 50% are indicated at supported nodes. The tree is outgroup rooted with avastrovirus 

sequences. Each sequence is designated by a unique sequence name comprising of GenBank 

accession number, virus abbreviation (Appendix H), bat host species abbreviation, individual 

sample ID, country of origin and year when the sample was collected. The SAn bat sequences are 

colour coordinated according to bat family.  

Rhinolophidae 

Vespertilionidae 

Molossidae 

Hipposideridae  

Miniopteridae  

Color key 
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The sequence clustering indicated by number 2 is two SAn bat AstV sequences 

(BatAstV/TableMountain/MSTM1 & BatAstV/Greyton/Tar1) from different bat species, M. 

natalensis and T. aegyptiaca, sampled at different locations, Greyton and Table Mountain. The next 

two sequences at position 3 were obtained from the same bat species, M. natalensis, from two 

different provinces in SA, Pietermaritzburg in KZN and Table Mountain in the Western Cape. In 

Figure 3.3, above the two Miniopterus sp.-derived sequences at position 3, is a sequence 

(BatAstV/TableMountain/HC3) from a different bat species, H. caffer, also from Table Mountain. 

The two Miniopterus derived sequences possibly share a common ancestor with the Hipposoderus-

derived sequence. At position 4 two sequences (BatAstV/TableMountainMSTM12 & 

BatAstV/Greyton/NC5) obtained from two bat species from different locations, M. natalensis and N. 

capensis, cluster together. The Miniopterus-derived sequence was from a bat trapped at Table 

Mountain and Neoromicia-derived sequence from a bat trapped at Greyton. At position 5, a SAn bat 

AstV sequence (BatAstV/Hopefield/HFP1RCL9) from a R. clivosus bat appears to cluster with a bat 

AstV sequence from a M. schreibersci bat from China (GenBank ID: JQ814862.1) (Wu et al., 2012).  

 

Figure 3.3. Magnification of section A of Figure 3.2. Sequence groupings with significant bootstrap support 

(>70%) were numbered 1-5. 
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• Section B  

The magnified section B (Figure 3.4.) of Figure 3.2. shows various sequences obtained from bats in 

SA clustering with Chinese bat AstV sequences (Chu et al., 2008; Zhu et al., 2009; Wu et al., 2012). 

The cluster of sequences at position 1 in Figure 3.4. shows SA bat AstV sequences 

(BatAstV/Hopefield/HFPRCL1, BatAstV/Hopefield/HFPRCL13 & BatAstV/Babanango/BVL1RCL1) 

appearing to share a common ancestor with a Chinese bat AstV sequences (Genbank ID: 

EU847193.1). The SAn bat sequences at position 1 were all obtained from bats within the same genus, 

Rhinolophus. Interestingly, the Chinese sequence (GenBank ID: EU847193.1) with which these 

sequences appear to cluster was obtained from a bat from a different family, Miniopteridae. Although 

the SAn sequences at position 1 were all obtained from R. clivosus bats, sampling took place at 

different localities, namely Hopefield in the Northern Cape, and Babanango in KZN. The second 

cluster of interest in Section B of Figure 3.2. at position 2 depicts a SAn bat AstV sequence 

(BatAstV/Hopefield/HFPMN3) obtained from M. natalensis, being ancestral to Chinese sequences 

(Genbank IDs: JQ814868.1, JQ814870.1, JQ814856.1 & JQ814858.1) that were also obtained from 

species within the Miniopteridae family.  

 

Figure 3.4. Magnification of section B of Figure 3.2. Sequence groupings with significant bootstrap support 

(>70%) were numbered 1-2. 
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• Section C 

At position 1 in Section C of Figure 3.5., is a single cluster of SA AstV sequences of particular 

interest. The cluster consisted of six sequences, four sequences obtained from N. capensis bats, one 

from a R. clivosus and one from Pipestrellus hesperidus. Three of the four N. capensis sequences in 

the cluster were obtained from a single colony in Velddrif (BatAstV/Velddrif/VD34, 

BatAstV/Velddrif/VD44 and BatAstV/Velddrif/VD59) in the Western Cape of SA. The other N. 

capensis sequence (BatAstV/Napier/HWKNC4) in the cluster was obtained from the same bat species 

but from a different locality, Napier in the Western Cape. The Rhinolophus derived sequences 

(BatAstV/Steenkampskraal/SKKRCL9) was obtained from a R. clivosus bat collected from a 

decommissioned radioactive mine in the Northern Cape. There was also an AstV sequence obtained 

from a P. hesperidus bat (BatAstV/Ph2NGR/Pip hesperidus) that was collected in Greyton.  

 

Figure 3.5. Magnification of section C of Figure 3.2. The sequence grouping with significant bootstrap 

support (>70%) was numbered. 

3.3 Phylogenetic analyses based on the Capsid Protein Gene (ORF2) 

3.3.1 Phylogenetic inferences based on ORF2 fragment  

The SA bat ORF2 sequence obtained from a Miniopterus natalensis bat appears to share a common 

ancestor with human AstV isolates from Japan, albeit with very weak Bootstrap support (Figure 3.6). 
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Figure 3.6. Phylogenetic relationship of AstVs based on a partial capsid protein precursor sequence using 

the ML method on the nucleotide level. A ML phylogenetic tree was constructed using AstV capsid 

protein precursor sequences (800 bp in size) (corresponding to positions 4583-5383 bp in HAstV 

NC_001943.1) including the sequence obtained during this study. The evolutionary history was 

inferred by using the General Time Reversible model with Gamma distribution and invariant sites 

(GTR+G+I) (Nei & Kumar 2000) with 1000 Bootstrap replicates. Bootstrap support values above 

40% are indicated at supported nodes. The tree is outgroup rooted (AstV). Each sequence is 

designated by a unique sequence name containing the isolate or species name, virus abbreviation, 

host species abbreviation, country of origin and year when the sample was collected. The SAn bat 

ORF2 sequence is highlighted in green. 

3.3.2 Pairwise distance matrix  

To further investigate the evolutionary distance between the SAn bat AstV ORF2 sequences and 

related ORF2 sequences, a pairwise distance matrix was constructed. Pairwise distance matrixes 

measure the number of nucleotide substitutions occurring between the sequences in question. This 

matrix analysis of the ORF2 sequences indicated that the SA bat ORF2 sequence was in fact more 

similar to bat AstV sequences than to the human AstV sequences (Table 3.3.) The bat AstV ORF2 

sequences with the highest similarity to the SAn bat ORF2 sequence were FJ571069 (22%) and 

EU847155 Mamastrovirus isolate number 18 (22%). The sequences that differed the most from the 

SAn bat AstV ORF2 sequence was the Turkey AstV sequences (47%), followed by the human AstV 

isolates (32%) (Table 3.3.). 
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Table 3.3. Estimates of Evolutionary Divergence between ORF2 Sequences. The number of base differences per site from between sequences are shown. The analysis 

involved 15 nucleotide sequences using the p-distance model with 1000 iterations. Evolutionary analysis was conducted in MEGA7 (Kumar et al., 2016). 

1 Turkey_AstV 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

2 AB025808_Human AstV4/isolate: _O-24/93-439 48%              

3 AB025812_HumanAstV4/isolate: _O-33/87-25 48% 0%             

4 AB025811_HumanAstV4/isolate: _O-29/90-276 48% 1% 1%            

5 AB025809_HumanAstV4/isolate: _O-25/93-197 48% 0% 0% 0%           

6 FJ571074_BatAstV/Guangxi/LC03/2007 51% 36% 36% 37% 37%          

7 FJ571068_BatAstV_Ha/Guangxi/LS11/2007 50% 36% 36% 36% 36% 28%         

8 EU847155_Mamastro18/isolate_AFCD337 50% 39% 39% 39% 39% 27% 27%        

9 Bat AstV/HFPMN1/South Africa 47% 32% 32% 32% 32% 32% 27% 22%       

10 FJ571069_BatAstV/Guangxi/LD04/2007 46% 38% 38% 38% 38% 27% 25% 21% 22%      

11 FJ571072_BatAstV/Guangxi/LD45/2007 48% 39% 39% 39% 39% 27% 20% 22% 25% 15%     

12 FJ571073_BatAstV/Guangxi/LD54/2007 48% 37% 37% 38% 38% 28% 30% 23% 26% 15% 17%    

13 FJ571065_BatAstV/Guangxi/LD38/2007 47% 36% 36% 36% 36% 28% 26% 20% 25% 17% 17% 15%   

14 FJ571070_BatAstV/Guangxi/LD27/2007 48% 38% 38% 38% 38% 28% 25% 23% 26% 16% 18% 16% 11%  

15 FJ571071_BatAStV/Guangxi/DX19/2007 48% 38% 38% 38% 38% 29% 25% 23% 26% 16% 17% 16% 11% 0% 
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3.3 Real-time PCR results  

3.3.1 Amplification of AstVs and CoVs in a bat colony 

The amplification of AstV and CoV was monitored in a N. capensis bat colony in the Western Cape 

of SA, using real-time PCR assays. During the month of January AstV RNA was detected in the 

colony, but CoV RNA was absent (Figure 3.7.). From February until April, no AstV RNA was 

detected. During April CoV RNA was present in the colony. The relative viral loads (AstV 240 per 5 

faecal pellet and CoV 155 per 5 faecal pellets) indicated that the amplification of both viruses 

increased significantly in September and steadily declined towards the end of November (Figure 3.7.). 

The absence of samples from May until August is due to the bats migrating from the roost. During 

September, the bats recolonized the roost again.  

 

Figure 3.7. AstrV and CoV amplification in a bat colony over the span of a calendar year (2015). AstV is 

indicated in orange and CoV in yellow. The gap from May until August corresponds with the 

migration of the bats from the roost and as such no samples were collected during this time. The 

y-axis represents the relative viral copy number per 5 faecal pellets, the amount of faecal material 

was used as a normalizer.  

3.3.2 Real-time PCR screening assay versus conventional PCR screening assay 

To determine whether the AstV real-time PCR assay designed during the current study could serve 

as an alternative improved screening and detection tool, 150 selected samples were re-screened using 

both the conventional hemi-nested AstV PCR assay (Chu et al., 2008) and the AstV qPCR assay 

designed during the current study.  
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The results indicated that the real-time assay was more sensitive, as it was able to detect as low as 10 

viral RNA copies per reaction, compared to the conventional PCR only being able to detect 102 viral 

RNA copies per reaction. The results of both assays are given in Table 3.4. The samples that were 

found to be positive by conventional AstV screening PCR were also positive using the qPCR 

screening and the qPCR detected more positives than the conventional AstV screening assay.  

Table 3.4. Comparison of the screening results of the conventional AstV screening assay with the Real-time 

PCR assay 

Calculated Conventional PCR Real-time PCR 

Positives 17 47 

Negatives 133 103 

% positives 11.4 31.5 

% negatives 88.6 68.5 

% difference in positives  20 

 

3.4 Wastewater treatment works samples 

3.4.1 Water samples  

Water samples that were collected upstream and downstream from two WWTWs in KZA; Verulam 

Wastewater Works (S29º38.38; E31º03.49) and Umbilo Wastewater Works (S29º50.44; E30º53.31) 

were analysed for the presence of AstVs as described in Section 2.14. The water collected from the 

two facilities tested negative for the presence of AstVs. 

3.4.2 Bat samples 

The N. nana samples collected from WWTW only delivered one positive sample out of 50 (field code 

DC 28 for reference in phylogenetics). No N. nana bats tested positive in the pristine localities. 

3.5 In vitro virus isolation 

Three different cell lines were used during the attempts: Caco-2, BHK-G43 and NCK cells. A human 

AstV positive stool sample was used as a cell culture positive control to infect Caco-2 cells. Images 

were taken of the cell cultures before and after infection (Zeiss Axiocam ERc 5 S, Zeiss, Oberkochen, 

Germany), however AstV infected cells do not exhibit cytopathic effects (CPE) (Brinker et al., 2000). 

It should be noted that in the post-infection images (Figures 3.8.-3.10.), cells are clumping and 

detached, this is due to the minute amounts of porcine trypsin which was added to the SF media. The 

porcine trypsin activates the proteins in the capsid of the virus, which should enable infection.  
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Figure 3.8. a) Human colon adenocarcinoma cells (Caco-2) at 90-100% confluency, pre-infection.  

b) Caco-2 cells three days post infection with a human AstV positive faecal sample.  

c) Caco-2 cells four days post infection with human AstV positive faecal sample. Images were taken with Zeiss Axiocam ERc 5 S (Zeiss, Oberkochen, 

Germany). 

 

Figure 3.9. a) Baby hamster kidney cells (BHK-G43) at 90-100% confluency pre-infection.  

b) BHK-G43 cells day three post infection with an AstV positive bat sample.  

c) BHK-G43 cells day five post infection with AstV positive bat sample. Images were taken with Zeiss Axiocam ERc 5 S (Zeiss, Oberkochen, Germany). 

b c a 

b c a 
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Figure 3.10. a) Neoromicia capensis kidney cells (NCK) at 90-100% confluency pre-infection.  

b) NCK cells five days post infection with AstV positive bat sample. Images were taken with Zeiss Axiocam ERc 5 S (Zeiss, Oberkochen, Germany). 

 

b a 
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To determine whether the cells were infected with AstV, the supernatant and cells were harvested on 

day five post-infection. Extracted RNA was screened using both conventional hemi-nested AstV 

screening PCR assay (Chu et al., 2008) and the AstV qPCR assay developed during the current study 

(Section 2.13.). The qPCR results indicated that a bat AstV from a M. natalensis bat (field code 

SKKMN1) was successfully isolated and propagated in BHK-G43 cells after the first passage 

(Figures 3.11. & 3.12.). These results were also confirmed with Sanger sequencing. The cell culture 

positive control was also confirmed with the hemi-nested AstV screening PCR and Sanger 

sequencing. 

 

Figure 3.11. Amplification of bat AstV (SKKMN1) in BHK-G43 cells five days post-inoculation (bright pink 

curve) and five days post inoculation after the first blind passage (purple curve). The lowest 

amplification was that of the supernatant of the infectious material that was removed after the 

90-minute incubation on the cells during infection.  

 

Figure 3.12. Amplification of bat Astrovirus SKKMN1 in BHK G43 cells and supernatant. Passage one of 

SKKMN1, day five post inoculation (red curve), day five post inoculation (green curve), inoculum 

(purple curves). 
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3.6 Statistical analyses of factors associated with astrovirus positivity 

For the statistical analyses, only individual bat samples with host biological data documented, were 

included (n = 497) in the database. The database consisted of ecological data collected about the 

trapping location (altitude, rainfall, biome) and biological and morphological data of the individual 

bats sampled (sex, age, reproductive status, FMI, weight).  

3.6.1 Morphological and biological variables of individuals bats  

Statistical analyses were conducted on the data collected from individual bats. Most of the factors 

were categorical variables, excluding FMI, and were used in individual Chi-squared analyses.  

3.6.1.1 Sex, reproductive status and astrovirus positivity 

Chi-squared analysis of the individual bat data indicated that scrotal (sexually reproductive male) 

bats, were significantly (p < 0.05) more likely to be positive for AstVs than females of all 

reproductive stages. A visual representation of the results is given in Figure 3.13.  

 

Figure 3.13. Visual representation of differences in AstV positivity between male and female bats. On the x-

axes AstV positive status is indicated by 1 and a negative status by 0.  

3.6.1.2 Species identity and astrovirus positivity 

Chi-squared analyses and Fisher exact tests of the screening results between bat species indicated that 

species identity was a significant (p = 0.01) factor for AstV positivity. When adjusting for repeated 

measures within locality (trapping site) with Roa-Scott adjustment, the species identity was not 

significant (p > 0.05). A visual representation of screening results per species is given in Figure 3.14. 
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Figure 3.14. AstV screening results per bat species. On the y-axes of the graphs are the number of bats sampled 

(number of observations) and on the x-axes is the AstV status,  positivity is demarcated with 1 

and negativity with 0.  

3.6.1.3 FMI 

The mixed model one-way ANOVA with AstV positivity as the fixed effect and location (trapping 

site) as random effect, indicated a weak trend (p = 0.07) between lower FMI measurements and AstV 

positivity.  

3.6.2 Environmental factors  

GEE results indicated that biome significantly (p = 0.01) influenced AstV positivity (Table 3.5.). The 

best model that predicts AstV positivity is biome (Model: Astro~Biome) (Table 3.5.). The LSD post-

hoc analyses indicated that bats trapped in the Succulent Karoo (SK) were more likely (p < 0.05) to 

be positive than bats trapped in other biomes (Figure 3.15.). 
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Table 3.5. GEE model output for environmental factors 

 Distribution: binomial Model: ASTRO ~ ALT+RAIN+Biome 

 Df Wald p value 

ALT 1 2.15 0.14 

RAIN 1 0.23 0.63 

BIOME 6 5 573.3 0.01* 

 

Wald(6)=5573.30, p<0.01

Vertical bars denote 0.95 confidence intervals
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Figure 3.15. LSD post-hoc analyses results of GEE on AstV positivity in different biomes. Abbreviations of 

biome names: G: Grasslands, AT: Albany Thicket, F: Fynbos, S: Savannah, NK: Nama Karoo, 

SK: Succulent Karoo and FO: Forest. 
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Chapter 4 Discussion & Concluding Remarks 

Chapter Outline 

The overall objective of this study was to investigate the ecology and diversity of AstVs in SAn bats 

using molecular, phylogenetic and statistical tools. This study was only the second to investigate 

AstVs in SAn bats and builds on the initial study by Dr Ndapewa Ithete in 2013 (Ithete, 2013). The 

structure of this chapter will mirror that of the methods and results chapters as far as possible.  

4.1 Prevalence of AstV RNA detected in South African bats compared to other studies 

During this study, AstVs were detected in eleven different bat species belonging to four families; 

Miniopteridae, Molossidae, Rhinolophidae and Vespertilionidae (Table 3.1.). The overall prevalence 

of AstV RNA across all individual bat samples screened was 13% (65/500). A summary of the 

prevalence rates recorded by various studies is given in Table 4.1. There are substantial differences 

in the prevalence rates of the virus reported by different published studies (Xiao et al., 2011; Hu et 

al., 2014; Kemenesi et al., 2014; Rougeron et al., 2016; Lacroix et al., 2017). The cause for this 

variability is unclear, but it seems that study design, host species sampled, sample type, geographical 

location, and time of year when sampling occurred could be the most important contributing factors 

(Fischer et al., 2017).  

The highest AstV prevalence was reported by Chu et al. (2008) with 46% (121 positives out of 264 

samples) across the nine different bat species sampled. Similar results were obtained by Zhu et al. 

(2009) who detected AstV RNA in 44.8% of 500 individual bat samples. Other studies that recorded 

higher prevalences compared to the results of the current study, include Fisher et al. (2011) with an 

overall prevalence of 25.8% in 653 bats sampled in Germany, with the highest prevalence noted in 

one colony at 65%. A recent study conducted in Madagascar reported an overall prevalence of 22% 

(Lebarbenchon et al., 2017). It is difficult to interpret these differences as these studies were 

conducted in different parts of the world, with their own unique species and habitat types, utilizing 

different sampling and testing protocols, all of which are factors that could influence the prevalence 

of virus detection. A summary of all presently published bat AstV studies listing the study location, 

number of samples, sample type, prevalence recorded, and sample handling is presented in Table 4.1.  

A recent meta-analysis of bat virus discovery studies found that the following factors significantly 

influenced the probability of a single sample testing positive for a virus: (1) specimen type; (2) 

detection methods; (3) viral family tested; and (4) number of specimens tested (Young & Olival, 

2016). AstV studies were included in the meta-analysis and it clearly showed that the optimal 
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specimen type for AstV detection was faecal material. Even though AstVs were also detected in urine, 

this sample type had a much lower median viral prevalence (Young & Olival, 2016). All the studies 

mentioned in Table 4.1. used the primer sets developed by Chu et al. (2008). The study by Young 

and Olival (2016) did however not elaborate whether the use of different DNA polymerases may 

affect the probability of detection of a virus. Some of the studies used different DNA polymerases, in 

conjunction with the PCR assay developed by Chu et al. (2008), which could also significantly affect 

virus detection, as experienced in our own research group. For example, Dr Cronje found that using 

Maxima Hot Start Taq DNA Polymerase (ThermoScientific, New York, USA) worked better for the 

detection of CoVs compared to Go Taq (Promega, Wisconsin, USA) (Cronje, 2017). During the 

current study TrueStart Hot Start Taq DNA polymerase (ThermoScientific, USA) worked best for the 

detection of the RdRp gene fragment of AstVs, compared to Go Taq (Promega, Wisconsin, USA). 

For the amplification of the larger ORF2 gene fragment SuperScript™ III One-Step RT-PCR System 

with Platinum™ Taq DNA Polymerase (ThermoScientific, USA). 

4.2 Variation in the detection rate of astroviruses between bat species  

The results obtained by this study showed a significant difference in detection rates of AstV RNA 

between bat species. The highest detection was found in M. natalensis with 55% (12/22), followed 

by R. capensis with 39% (9/23) and R. clivosus with 17% (20/121). Interestingly only two 

Rhinolophid individuals (2/7) tested positive for AstV RNA during Ithete's study (2013), while during 

the current study it was found abundantly in both Rhinolophid species screened (R. capensis in 39% 

and R. clivosus in 17%). Ithete (2013) detected AstV RNA abundantly in members of the Miniopterus 

genus, with a 100% (6/6) detection rate in M. fraterculus followed by a 92% (12/13) detection rate in 

M. natalensis. Overall a higher prevalence rates were noted across the species screened by Ithete 

(2013), even though the sample size (n = 82) was much smaller than that of the current study 

(n = 500). This could in part be due to the fact that most individuals from one species were trapped 

at a single location belonging to a single roost. Interestingly during the current study and Ithete’s 

(2013) study, the highest detection rates for AstV RNA were documented in species belonging to the 

Miniopterus genus. Various other studies have also found that species of Miniopterus genus have the 

highest detection rates of the virus (Zhu et al., 2009; Xiao et al., 2011; Hu et al., 2014; Rougeron et 

al., 2016). The study by Rougeron et al. (2016) conducted in Gabon found that the detection rate was 

significantly higher in M. inflatus (10.9%) compared to Coleura afra (8%), R. aegyptiacus (1.23%), 

Hipposideros cf. ruber (4.31%) and for H. gigas (3.10%). 
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Table 4.1. Summary table of all known bat astrovirus research studies conducted globally adapted from Fischer et al. (2017) 

Study location Sample size Overall 

Prevalence 

Type of specimens 

screened 

Sample storage condition Kits 

Mozambique 

(Hoarau et al., 2018) 

Total n=259 

Breakdown per 

site: 

Mayotte =79 

Mozambique= 180 

20.1% Mayotte: Rectal swabs 

(21) & faecal samples (58) 

Mozambique: Rectal 

swabs (180) & oral swabs 

(180)  

VTM and flash frozen in liquid 

Nitrogen 

Extraction: QIAamp Viral RNA Mini Kit 

(Qiagen, California, USA) 

cDNA&screening: ProtoScript II Reverse 

Transcriptase (New England BioLabs, USA) 

Chu et al., 2008 hemi-nested screening PCR 

Cambodia & Lao 

PDR (Lacroix et al., 

2017) 

Total n=1876 

Breakdown per 

site: 

Cambodia=1247 

Lao PDR=629 

5.5% Faecal pellets (187), 

oral swabs (1211), 

rectal swabs (1684) & 

328 organs (328) 

Phase 1 collection: VTM and flash 

frozen in liquid Nitrogen  

Phase 2: collection from guano farms 

– RNAlater.  

Dead bats RNAlater / VTM 

RNA Extraction: QIAamp viral RNA mini kit 

(Qiagen, Hilden, Germany) and RNeasy Mini 

Kit (Qiagen, Hilden, Germany) 

cDNA & screening: SuperScript III kit 

(Invitrogen, USA) 

Chu et al., 2008 hemi-nested screening PCR  

Madagascar 

(Lebarbenchon et al., 

2017) 

178 22% Rectal swabs (178) Swabs were placed in brain heart 

infusion medium (Conda, Spain) 

supplemented with penicillin G (1000 

units/mL), streptomycin (1 mg/mL), 

kanamycin (0.5 mg/mL), gentamicin 

(0.25 mg/mL) and amphotericin B 

(0.025 mg/mL). Frozen in liquid 

nitrogen. Stored in − 80°C freezer @ 

research facility.  

RNA Extraction: QIAamp Viral RNA Mini 

Kit (Qiagen, Valencia, CA, USA). 

Reverse transcription: ProtoScript II Reverse 

Transcriptase (New England BioLabs, USA) 

Screening PCR: GoTaq G2 Hot Start Green 

Master Mix (Promega, Wisconsin, USA) 

Chu et al., 2008 hemi-nested screening PCR  
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Study location Sample size Overall 

Prevalence 

Type of specimens 

screened 

Sample storage condition Kits 

Singapore 

(Mendenhall et al., 

2017) 

431 44.9% 

(faecal 

pellets), 

9.9% (oral & 

rectal swabs) 

Faecal pellets, oral swabs & 

rectal swabs 

Not mentioned.  Extraction: QIAamp virus 

RNA mini kit (Qiagen, Germany) 

Super Script III One Step RT-PCR Kit 

(Invitrogen, USA) 

Hemi-nested: Accuprime Taq DNA 

polymerase (Invitrogen, USA) 

Chu et al., 2008 hemi-nested screening PCR 

assay 

Kenya (Waruhiu et 

al., 2017) 

 

1029 

 

12.8% Faecal pellets 

Collected at roost site, did 

not sample individual bats 

(1029) 

 

Collection with polythene sheets 

underneath bat roosts (left at roost 

about 11 hours). Individual faecal 

pellets per tube with RNAlater 

(Qiagen, Germany). Samples were 

transported from sample site in 

cooled iceboxes. Stored at -80℃ at 

lab. Identification of bat species at 

roost site by chiroptologist & 

cytochrome b. 

RNA Extraction: High pure Viral RNA kit 

(Roche, Mannheim, Germany) 

RT-PCR & Screening: Invitrogen OneStep-

RT PCR kit using gene specific primers (Chu 

et al., 2008) 

Chu et al., 2008 hemi-nested screening PCR 
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Study location Sample size Overall 

Prevalence 

Type of specimens 

screened 

Sample storage condition Kits 

Germany (Fischer et 

al., 2016) 

775 samples 

(653 individual 

bats) 

23.5% Oral swabs (47), urine 

swabs (430) & faecal 

pellets (480) 

  

Cell culture media (Minimal 

Essential Medium; Collection of Cell 

Lines in Veterinary Medicine, 

Friedrich-Loeffler-Institute, 

Germany) 

RNAlater 

Extraction: Viral RNAMini Kit (Qiagen, 

Germany) 

cDNA & Pre-nested: Super Script III One 

Step RT-PCR Kit (Invitrogen, USA) 

Hemi-nested PCR: PWO DNA Polymerase 

Kit (Roche, Germany) 

Chu et al., 2008 hemi-nested screening PCR  

Gabon, Central 

Africa 

(Rougeron et al., 

2016)  

962 4.57% Organs – intestine samples 

(962) 

Trapping locations were in caves. 

Organs were frozen in field and 

transported to lab and frozen @ -80℃ 

Extractions: EZ1 RNA Tissue Mini Kit 

(Qiagen, Germany) 

cDNA & Screening: Superscript III One-step 

RT-PCR kit (Invitrogen, USA) 

Chu et al., 2008 hemi-nested screening PCR 

assay 

Czech Republic 

(Dufkava et al., 

2015) 

43 20.9% Intestine samples of 

deceased bats (40) & 

3 pooled faecal samples 

40 deceased animals  

3 Mist netted individuals 

No information with regards to 

storage.  

Extraction: QIAamp Viral RNA Mini Kit 

(Qiagen, Germany) 

cDNA: Transcriptor First Strand cDNA 

Synthesis Kit (Roche, Germany) 

Chu et al., 2008 hemi-nested screening PCR  
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Study location Sample size Overall 

Prevalence 

Type of specimens 

screened 

Sample storage condition Kits 

China  

(Hu et al., 2014) 

620 7.6% Rectal swabs (620) Rectal swabs placed in RNAlater and 

stored at -80℃ 

Extraction: QIAamp virus 

RNA mini kit (Qiagen, Germany) 

Super Script III One Step RT-PCR Kit 

(Invitrogen, USA) 

Hemi-nested: Accuprime Taq DNA 

polymerase (Invitrogen, USA) 

Chu et al., 2008 hemi-nested screening PCR 

Hungary 

(Kemenesi et al., 

2014) 

  

60 8.3% (5/60) Faecal pellets (60) Faecal pellets collected from 

individual caught bats, placed in bat 

bags for approx. 30 min. medium 

stored in is unclear.  

Extraction: DiaExtract Viral RNA Isolation 

Kit (DIAGON Ltd., Hungary) 

cDNA & Screening: OneStep RT-PCR Kit 

and Dia Taq Kit (DIAGON Ltd., Hungary) 

Chu et al., 2008 hemi-nested screening PCR 

Hungary 

(Kemenesi et al., 

2014) 

 

447 6.93% Faecal pellets (447) Faecal pellets collected from 

individual caught bats, placed in bat 

bags for approx. 30 min. Pellets were 

stored in PBS and kept on dry ice. 

Stored at -80℃ @ research facility. 

Extraction: DiaExtract Viral RNA Isolation 

Kit (DIAGON Ltd., Hungary) 

cDNA & Screening: OneStep RT-PCR Kit 

and Dia Taq Kit (DIAGON Ltd., Hungary) 

Chu et al., 2008 hemi-nested screening PCR  
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Study location Sample size Overall 

Prevalence 

Type of specimens 

screened 

Sample storage condition Kits 

Southern China 

(Xiao et al., 2011) 

321 9% (29/321) Rectal swabs (321) Rectal swabs placed in RNAlater 

and stored at -80℃ 

Extraction: Roche High Pure Viral RNA Kit 

(Roche, Germany) 

cDNA: AMV Reverse Transcriptase (Promega, 

USA) 

Pre-nested and Hemi-nested PCR: Ex Taq Hot 

Start Version Kit (TaKaRa) 

Chu et al., 2008 hemi-nested screening PCR 

China  

(Zhu et al., 2009) 

500 44.8% 

(224/500) 

Rectal swabs (500) Rectal swabs placed in VTM QIAamp virus 

RNA mini kit (Qiagen, Germany) 

Super Script III One Step RT-PCR Kit 

(Invitrogen, USA) 

Hemi-nested: Accuprime Taq DNA polymerase 

(Invitrogen, USA) 

Chu et al., 2008 hemi-nested screening PCR 

China  

(Chu et al., 2008) 

Total=262 bats 

were sampled 

46% rectal 

swabs (116/250) 

8% oral swabs 

(19/246) 

Rectal swabs (250) & 

oral swabs (246) 

Swabs placed in VTM QIAamp virus 

RNA mini kit (Qiagen, Germany) 

Super Script III One Step RT-PCR Kit 

(Invitrogen, USA) 

Hemi-nested: Accuprime Taq DNA polymerase 

(Invitrogen, USA) 

Chu et al., 2008 hemi-nested screening PCR 
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4.3 South African bat Astrovirus diversity based on phylogenetic analyses 

During this study, 25 AstV RdRp sequences and one capsid protein (ORF2) sequence were obtained, 

bringing the available bat AstV sequences from SA to 44 RdRp sequences and one ORF2 sequence 

(not yet available on GenBank) (Ithete, 2013). Multiple attempts were made to obtain more RdRp 

gene sequences and ORF2 sequences, but some were of very poor quality even after attempting to 

clone them. According to the ICTV AstVs are classified as species based on the capsid protein gene 

(ORF2) (Fauquet et al., 2005). The ORF2 region of the AstV genome is more variable compared to 

the conserved RdRp gene (Fischer et al., 2017; Rougeron et al., 2016; Chu et al., 2008). This region 

has successfully been obtained for many other AstVs infecting mammals and birds, but amplification 

of the ORF2 gene of bat AstVs has been relatively challenging as this region is highly diverse 

(Shimizu et al., 1990; Koci & Schultz-Cherry, 2002; Chu, 2011; Karlsson et al., 2015; Fischer et al., 

Eloit, 2017; Alves et al., 2018).  

Only a few studies have managed to obtain the ORF2 sequence of bat AstVs as reflected by the 

limited number of bat AstV ORF2 sequences available on GenBank (approximately 14 ORF2 

sequences are available on GenBank, 

(https://www.ncbi.nlm.nih.gov/nuccore/?term=bat+astrovirus+capsid+protein/ visited 23 January 

2019)) compared to the number of RdRp sequences (approximately 600) (Chu et al., 2008; Zhu et al., 

2009; Rougeron et al., 2016; Fischer et al., 2017). It is therefore common practice to use the smaller, 

more conserved RdRp region of the genome for diversity and phylogenetic analyses (Chu et al., 2008; 

Chu, 2011; Rougeron et al., 2016; Lebarbenchon et al., 2017; Mendenhall et al., 2017; Waruhiu et 

al., 2017; Hoarau et al., 2018).  

4.3.1 Phylogenetic inferences based on the RdRp phylogeny 

ML analyses of the RdRp gene sequences of SAn bat AstVs (Ithete, 2013) place them in genogroup 

II in the Mamastrovirus genus. The SA bat RdRp sequences were separate from all other mammalian 

AstV sequences. The sequences obtained were not closely related to any other mammalian AstV 

sequence. Many studies on bat AstV sequences have similar results (Chu et al., 2008; Chu, 2011; 

Rougeron et al., 2016; Lebarbenchon et al., 2017; Waruhiu et al., 2017; Hoarau et al., 2018), however 

there are studies that have found that their bat AstV sequences were closely related to sequences 

originating from avian and other mammalian hosts. The bat AstV sequences found by Fischer et al. 

(2016) were closely related to AstV sequences originating from humans, birds, foxes and rodent hosts.  

The results of the current study support the suggestions made by Xiao et al. (2011) that bat AstVs do 

not exhibit strict host tropism and could potentially infect other host species. Our results further 
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suggest that clustering does not follow geographical location, as sequences from different localities 

were observed clustering. Similar findings were made by Rougeron et al. (2016) in Gabon where 

sequences obtained from different bat species inhabiting three different roosts clustered together. 

Furthermore, the results of the current study also indicated that sequences did not cluster according 

to host species. Hoarau et al. (2018) also found that AstVs sequences from different bats species from 

different geographic locations clustered together, suggesting that host species restriction is limited. 

The SAn bat AstVs were found to be highly diverse with no apparent trend in terms of restriction of 

sequence clustering. Poor bootstrap support was also noted for most sequence clusters, which is a 

common phenomenon noted in AstV phylogenetic analyses (Rougeron et al., 2016; Waruhiu et al., 

2017; Hoarau et al., 2018). The poor resolution of the phylogenetic trees can be attributed to limited 

sequences available for SA bat AstVs, the size of the RdRp gene used for the phylogenetic analyses 

and the high saturation of their genome (Mendenhall et al., 2015; Hoarau et al., 2018). Groupings that 

had significant bootstrap support of more than 70% will be discussed (Efron et al., 1996).  

Three types of sequence clusters were noted: (1) clusters of sequences from the same species from 

the same location; (2) clusters of sequences from species within the same bat family from different 

locations; and (3) clusters of sequences from different species from different locations. The 

phylogenetic tree was split into three sections (A, B, & C) for ease of reference. Groupings with 

significant bootstrap support will be discussed.  

4.3.1.1 Clustering of sequences from the same species from the same locality  

The first grouping of interest in Section A (Figure 3.3.) is that of two RdRp sequences derived from 

N. capensis bats (BatAstV/Greyton/NC7 and BatAstV/Greyton/NC1) from the same locality, Greyton 

in the Western Cape. The pairwise distance matrix indicated that these two sequences are highly 

similar, with a 1% difference at the nucleotide level (Appendix G). This grouping could potentially 

suggest that these two bats from the same roost had two very similar, if not the same, AstV strain. It 

was not uncommon for bats from the same roost to be infected with the same AstV strain, e.g. the 

Myotis myotis colony studied by Drexler et al. (2011) was infected with the same AstV strain. AstV 

strains discovered in Kenyan bats were highly diverse, but there were sequences from the same bat 

species, Cardioderma cor from the same location that clustered together (Waruhiu et al., 2017). 

4.3.1.2 Clustering of AstVs RdRp sequences derived from bat species belonging to the same 

genus from different localities across South Africa 

There was also a grouping in Section B (Figure 3.4.) of sequences from members of the same bat 

genus from different geographic localities; i.e. M. fraterculus from Pietermaritzburg 
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(BtAstV/Pietermaritzburg/Mf2/Min fra/KZN) and M. natalensis from Table Mountain 

(BtAstV/TableMountain/MSTM9/Min nat/WP). According to the pairwise distance matrix these two 

sequences had a nucleotide similarity of 94% (Appendix G). These sampling locations are very far 

apart (approximately 1 500 km) and it would be unlikely for individuals to migrate between these 

areas (Monadjem et al., 2010). Rougeron et al. (2016) reported that bats that inhabited different cave 

systems had similar AstV strains circulating in them, and that individuals from the same cave roost 

had more divergent strains. The most plausible explanation is that these sequences evolved through 

convergent evolution.  

4.3.1.3 Clustering of sequences from different species sampled from different geographical 

locations  

In Section A (Figure 3.3.), there are two sequence clusters that include sequences found in bats from 

Greyton and bats occurring on Table Mountain. The different clusters were between T. aegyptiaca 

(BatAstV/GreytonTAr1) and M. natalensis (BatAstV/TablemountainMSTM1), and N. capensis 

(BatAstV/Greyton/NC5) and M. natalensis (BatAstV/TableMountainMSTM12) sequences. Based on 

the pairwise distance matrix these sequence clusters were highly similar with a 0% difference on the 

nucleotide level. The two sampling locations are approximately 160 km apart. It is however 

documented in the literature that M. natalensis can migrate distances of up to 250 km between roosts, 

this could suggest that M. natalensis co-roosted with T. aegytiaca in Greyton and migrated back to 

the roost on Table Mountain. The study by Voigt et al., (2014) found that M. natalensis exhibited 

seasonal elevational movements in search of cold hibernacula at higher elevations at Mount 

Kilimanjaro. This could also be the case for M. natalensis in the Western Cape, where they might 

utilize caves on Table Mountain as winter hibernacula (Voigt et al., 2014), making it more plausible 

that M. natalensis transmitted the virus between multiple bat colonies. As with many bat species little 

information is available on T. aegyptiaca’s home range size or migratory ecology (Monadjem et al., 

2010). As such it is speculated that M. natalensis might be the carrier of the virus between the different 

roosts.  

The third cluster of interest in Section C (Figure 3.5.) consisted of six sequences obtained from three 

different bat species, belonging to different bat genera, sampled at four different locations. Based on 

the pairwise distance matrix these sequences were 100% similar on nucleotide level (Appendix G). 

Four of the six sequences were obtained from N. capensis, one sequence from a R. clivosus and one 

sequence from a P. hesperidus. Three of the four N. capensis sequences in the cluster were obtained 

from a single colony in Velddrif located in the Western Cape of SA (BatAstV/Velddrif/VD34, 

BatAstV/Velddrif/VD44 and BatAstV/Velddrif/VD59). The other N. capensis sequence 
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(BatAstV/Napier/HWKNC4) in the cluster was obtained from a different sampling locality, 

Haarwegskloof Nature Reserve in the Overberg in the Western Cape. The Rhinolophus-derived 

sequence (BatAstV/Steenkampskraal/SKKRCL9) was obtained from a R. clivosus bat collected from 

a decommissioned radioactive mine in the Northern Cape. There was also an AstV sequence obtained 

from a P. hesperidus bat (BatAstV/Ph2NGR/Pip hesperidus) that was collected in Greyton. These 

four localities are far apart from each other, about 280-350 km. It would be most unlikely for the bats 

to fly these distances between the roosts. A more likely scenario is that these bat colonies have co-

evolved with a common AstV strain.  

These findings are in contrast with those by Dufkova et al. (2015). AstV sequence similarity was 

greater between different bat species at the same location compared to sequences derived from the 

same species, but from different geographical locations (Dufkova et al., 2015). The study by Zhu et 

al. (2009) also suggested that bat AstVs group according to host bat species, family or genera; this 

was not the case during the current study. Our findings were more similar to those of Rougeron et al. 

(2016), who found that their bat AstVs were not species-specific or limited by geography of the bat 

species. This could be suggestive of a long evolutionary history between bats and AstVs. As the RdRp 

gene region is highly conserved, it is possible that the different bat species co-evolved with a common 

prototype AstV strain. To ascertain whether these sequences are truly as similar as suggested by the 

phylogenetic reconstruction of the RdRp region, it will be invaluable to obtain the capsid protein gene 

(ORF2) sequences as this region is more variable.  

4.3.1.4 Clustering of South African bat astrovirus sequences with sequences from China 

In Section A (Figure 3.3.) a SAn R. clivosus-derived sequence (BatAstV/Hopefield/HFP1RCL9) 

appears to share a common ancestor with a sequence derived from a Chinese M. schreibersci bat. In 

Section B (Figure 3.4.) a cluster of SAn Rhinolophus-derived sequences 

(BatAstV/Hopefield/HFPRCL1, BatAstV/Hopefield/HFPRCL13 & 

BatAstV/Babanango/BVL1RCL1) share a common ancestor with sequence (GenBank ID: 

EU847193.1) derived from a bat within the Miniopteridae family from China. In section B (Figure 

3.4.) a second cluster of SAn and Chinese sequences was noted. The SAn sequence 

(BatAstV/Hopefield/HFPMN3) appears to be ancestral to the Chinese bat AstV sequences (GenBank 

ID’s: JQ814868.1, JQ814870.1, JQ814856.1 & JQ814858.1) that were obtained from M. pteridae.  

The phylogenetic analyses of the current study found that there was no strict level of host restriction 

or geographical distance. The findings further mirror the suggestions and findings of other studies in 

that bat AstVs are highly diverse, adaptable to new environments and new host species, and that they 

have a long evolutionary history with bats (Mendenhall et al., 2015; Mendenhall et al., 2017). To be 

Stellenbosch University https://scholar.sun.ac.za



78 
 

able to make more meaningful deductions about the co-evolution between bats and AstVs, more 

studies are needed on the basic ecology of SAn bats, as there is a large gap in available knowledge 

(Monadjem et al., 2010; MacEwan et al., 2016; African Bats NPC, 2018). To better understand the 

true diversity of AstVs in SAn bats, or bats in general, it is of utmost importance to obtain more 

sequences of the ORF2 gene, which is a better reflection of true diversity, as it is under constant 

evolutionary pressure (Bosch et al., 2014).  

4.3.2 Phylogenetic analyses of ORF2 

The SAn ORF2 bat AstV sequence was found to be more similar to HAstV sequences than bat AstV 

sequences. This is not an uncommon finding, as Fischer et al. (2016) discovered two sequences from 

M. nattereri bats clustering with human AstVs. The cluster of the SA bat AstV ORF2 sequence and 

the HAstV strains had weak bootstrap support, possibly due to the fact that there are not many ORF2 

bat sequences available for analysis and that the SAn bat-derived sequence is more similar to 

fragments in the human ORF2 sequences compared to other known bat ORF2 sequences. Another 

factor that could have influenced the results could be the different lengths of the sequences used 

during the analysis. The ORF2 fragment obtained during the current study was shorter (1 kb) than the 

other sequences used (2 kb – 2,5 kb) (Xia, 2016). Furthermore, the alignment of multiple highly 

divergent sequences could result in poor sequence alignment that in turn affected the subsequent 

phylogenetic analyses (Xia, 2016).  

Interestingly the pairwise distance matrix analysis of the ORF2 genes (on the nucleotide level) 

indicated contrasting results, suggesting that the bat ORF2 sequences were more similar (similarity 

of 73-78%) compared to the human ORF2 sequences (similarity of 68%). One plausible explanation 

for the difference between the phylogenetic output is the fact that the phylogenetic models used for 

the ML analysis takes different aspects into account and is more in-depth than the pairwise distance 

matrix analysis (Tamura et al., 2010; Kumar et al., 2016; Xia, 2016). The ORF2 ML analysis further 

suggests that SAn bat AstVs could be more diverse than depicted by the shorter RdRp gene analyses, 

highlighting the importance to attempt to obtain more ORF2 sequences in future studies, perhaps 

through NGS methods.  

4.4 Astrovirus and Coronavirus amplification within a Neoromicia capensis colony  

A colony of N. capensis bats residing in bat boxes on a farm in Velddrif, on the West Coast of SA, 

were monitored over a period of twelve months during 2015. The bat boxes were affixed to the outside 

of a farm storage building. The colony consisted of both sexes and the colony size was estimated at 

50 individuals. Faecal droppings were collected monthly by a lay collaborator. It was noted that the 
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colony migrated during the winter months (May-July) and only recolonized the roost in late August. 

The colony was monitored for two different viruses, AstVs and MERS-related beta-CoVs, using real-

time PCR assays (Section 2.13.1, Methods Chapter), as bats are regularly co-infected with these two 

viruses (Chu, 2008; Drexler et al., 2011; Seltmann et al., 2017). A single amplification peak was 

noted for both viruses, with the relative viral loads reaching a peak during September, correlating 

with the recolonization of the roost (Figure 3.7.). The increase in viral loads of both species did not 

seem to correspond to changes in seasonality, however, seasonal variation cannot be excluded as there 

was a gap in sampling during the winter months. During the current study there was no correlation 

between the increase in viral loads and the pupping season of N. capensis, which usually takes place 

during November (Taylor, 2000; Monadjem et al., 2010). This could in part be due to the drought 

that was experienced in the area. A study by Adams (2010) documented that a reduction in 

precipitation and water available as drinking sources for bats can lead to a 50% decline in bat 

reproduction. Furthermore, the survival of pups during drought periods are very low, hence it is 

plausible that pups that might have been born during November might have succumbed and not 

contributed immunologically naïve individuals to the colony that could have led to an increase in 

viral loads (Voigt & Kingston, 2016).  

Another study that also monitored the amplification of AstVs and CoVs in a bat colony was conducted 

by Drexler et al. (2011). The study conducted by Drexler et al. (2011) span over three years and the 

amplification of AstVs and CoVs were monitored in a Myotis myotis maternal colony. The results of 

their study indicated that the AstVs also had a single amplification peak which is similar to the results 

of the current study, except for the third year of the study where a second amplification peak was 

noted and correlated to the introduction of a novel AstV strain. The peak in amplification of the AstV 

was associated with colony formation and parturition. There were differences between the current 

study and the one conducted in Germany. The Myotis myotis colony monitored by Drexler et al. 

(2011) was much larger in size (maximum population size 200 individuals compared to 50) and was 

a maternity roost, only consisting out of female bats and their pups (Drexler et al., 2011). Another 

aspect that differed between the two roosts was that the roost monitored by Drexler et al. (2011) was 

enclosed within a roof of a building, with samples collected from plastic sheets placed on the roof 

floor, i.e. inside, whereas the N. capensis roost was in a bat box affixed to a barn and pellets were 

collected from below the bat box, subjecting the samples to possible UV radiation, heat etc. The 

results also indicated that the viral loads were much lower (highest viral load 240 for AstVs and 150 

for CoVs) than that found by Drexler et al. (2011), ranging from 103 to 108 for AstVs and 103 to 1010 

for CoVs. This could be attributed to colony size, differences in sample collection and sample 

exposure to elements at the Velddrif colony. During the winter months the SAn colony migrated, and 
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recolonization only started during the end of August, thus no virus data was recorded to rule out that 

the viral loads were not subject to seasonal changes. A study by Seltmann et al. (2017) noted that 

AstV shedding fluctuated seasonally and was positively correlated with the rainy season. For the 

current study it seems that both viruses reached their peak amplification during the end of September, 

this is most likely when the roost was recolonized, and the population reached the critical population 

size for the virus to replicate and spread (Chu, 2011, Drexler et al., 2011). However, 2015 was also 

the first year of a four-year draught cycle that was experienced in the Western Cape of SA. It was 

noted that the bats left the roosts completely during 2016, which could be attributed to the drought. 

This halted the long-term surveillance of AstVs and CoVs in the colony. 

4.5 Virus isolation in vitro  

Various mammalian and avian AstVs have been successfully isolated and propagated in cell culture 

(Lee & Kurtz, 1981; Shimizu et al., 1990; Brinker et al., 2000; Fischer et al., 2017). The only available 

account of a failed bat AstV isolation attempt in vitro is that of Chu (2011). The present study 

describes the first isolation and propagation of what is likely to be a bat AstV in BHK-G43 cells. The 

sample material used as inoculum during the isolation attempts were saliva and urine samples 

collected from R. clivosus and M. natalensis bats, the samples were pre-screened for AstVs using 

hemi-nested screening PCR (Chu et al., 2008) and confirmed as a bat AstV through Sanger 

sequencing. The inoculum that led to the successful isolation was the saliva sample collected from a 

M. natalensis bat (field code SKKMN1). Three days post-inoculation changes were observed in the 

cell cultures, cells started to detach and clump, it was difficult to ascertain whether the changes 

observed were due to cytopathic effects of the virus or due to the porcine trypsin (Figures 3.8-3.10.). 

The isolation results were confirmed by Sanger sequencing and qPCR. Sanger sequencing confirmed 

that it was in fact a bat AstV that was isolated and not contamination. The qPCR results confirmed 

that the viral loads increased following the first passage and that it was not merely residual virus 

particles left behind after inoculation. Factors that could have played a role in the successful isolation 

include sample type used as inoculum, cell line, media constitution and post infection incubation 

period.  

4.5.1 Samples used as inoculum  

Most AstV isolation studies conducted on mammalian AstVs have used faecal material as inoculum 

for cell cultures (Shimizu et al., 1990; Brinker et al., 2000; Moser & Schultz-Cherry, 2005; Crameri 

et al., 2009; De Benedictis et al., 2011; Xiao et al., 2011; Xiao et al., 2013). During the current study’s 

attempts, saliva and urine swabs stored in VTM at -80°C were used to infect cell cultures. A HAstV 
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positive stool sample was used as a positive isolation control. The human stool sample was used to 

inoculate Caco-2 cells (Marvin, Meliopoulos, and Schults-Cherry, 2014). 

4.5.2 Cell lines used for virus isolation attempts 

From the literature successful AstV isolation attempts utilized either kidney or colon derived cell 

lines (Shimizu et al., 1990; Brinker et al., 2000; Moser & Schultz-Cherry, 2005; Crameri et al., 2009; 

De Benedictis et al., 2011; Xiao et al., 2011; Xiao et al., 2013). As mentioned in the literature review, 

the cell receptors used by AstVs to gain entry into the cell are still undetermined, contributing to the 

complexity of in vitro isolation of this virus (Brinker et al., 2000). During the current study three cell 

lines were experimented with during the isolation attempts namely, Caco-2, BHK-G43 and NCK 

cells. Isolation and propagation were only successful in BHK-G43 cells, while isolation in NCK and 

Caco-2 cell lines could not be achieved. It is unclear why the NCK cells were not permissive to 

infection, it could be that the cells were not adapted to grow in SF media. Another possibility could 

be that bat cell lines are more resistant to infection compared to the baby hamster kidney cell line 

used. A study by Hoffman et al. (2013) found that lung and kidney bat cell lines from both 

Yinpterochiroptera and Yangochiroptera were not susceptible to infection by transmissible 

gastroenteritis virus (TGEV), a porcine CoV or SARS-CoV. They propose that bat cell lines might 

be more resistant to infection with the CoVs through receptor-dependent restriction. This might also 

be the case for the Neoromicia cell line used in the current study. BHK-G43 cells are transgenic BHK-

21 cell clones that can be manipulated to express vesicular stomatitis virus (VSV) G protein with 

mifepristone (Moreira et al., 2016). During the current isolation attempts the BHK-G43 cells were 

not manipulated to express VSV G proteins, as such they can be regarded as BHK-21 cells (Kalhoro 

et al., 2009). in Vitro bat AstV isolation attempts by Chu (2011) made use of primary cell lines (lung 

and kidney) derived from M. magnater, as well as Caco-2 cells. All attempts of AstV isolation and 

propagation by Chu (2011) were unsuccessful. Table 4.2. compares the methods used during the 

current study with those used by Chu (2011). 

Table 4.2. Comparison between bat astrovirus isolation and propagation attempts 

Cell culture factors Current study Chu (2011) 

Cell lines Caco-2, BHK-G43 & NCK M. magnater primary cell lines (lung 

  & kidney) & Caco-2 

Media type DMEM MEM 

Sample type (as inoculum) Urine & saliva Not specified 

Porcine trypsin added 5 µg / ml during inoculation step 10 µg / ml 

 10 µg / ml during post-inoculation  

 incubation 

Antibiotics Yes Yes 
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Incubation post-inoculation 5 days 14 days 

Passaging Yes, once five days post inoculation. Yes, once 14 days post-inoculation.  

 Both cells and supernatant were passaged. Not mentioned 

 

4.5.3 Media 

Serum free media has been used for the isolation and / or propagation of numerous viruses. Scientists 

were able to propagate a chimeric parainfluenza virus type 3 respiratory syncytial virus to 100-fold 

higher titres in Vero cells with the use of SF media compared to serum-rich media (Yuk et al., 2006). 

Numerous AstVs have been successfully isolated in cell culture by using SF media with the addition 

of porcine trypsin (Lee & Kurtz, 1981; Shimizu et al., 1990; Brinker et al., 2000; Marvin et al., 2014). 

It is postulated that porcine trypsin activates the proteins in the capsid of the virus which might play 

a role in the attachment of the virus to the cell and cell entry (Lee & Kurtz, 1981). Experiments have 

shown that CPE-causing AstVs ceased to cause CPE in the absence of porcine trypsin (Lee & Kurtz, 

1981; Brinker et al., 2000). It was also found that more virus particles were released from cells when 

porcine trypsin was added to the media, resulting in higher virus titres (Lee & Kurtz, 1981). Many 

publications were not forthcoming with the exact concentration of porcine trypsin that should be 

added to the SF media, which could have hampered previous bat AstV isolation attempts. The virus 

isolation protocol used during this study is routelinely used for the isolation of HAstVs in vitro 

(Marvin et al., 2014). The exact composition of the SF media with the addition of porcine trypsin 

plays an important role in isolation attempts (Lee & Kurtz, 1981). For isolation of laboratory strains 

of viruses, no antibiotic and antimycotics are added, however during the current isolation attempts 

antibiotics and antimycotics were added, as the sample material was collected from animals and other 

microorganisms could be present in the sample. AstVs have been successfully isolated from faecal 

samples of pigs with diarrhoea with the use of SF media with antibiotics and antimycotics added 

(Shimizu et al., 1990).  

4.5.4 Incubation period post inoculation 

Another factor that might have played a role is the incubation period post-inoculation of the cell 

cultures. The protocol that was used during this study was based on HAstVs strains with high viral 

titres infecting Caco-2 cells, according to the protocol cells should be incubated three to four days 

post-inoculation. However, it was suggested by collaborating AstV isolation expert Dr. Meliopoulos 

(St. Jude’s Children’s Research Hospital, Memphis, USA) that the bat AstV infected cells be 

incubated for at least five days, as the titre of the virus in the sample was unknown. Furthermore, 

there are no known protocols for the successful isolation and propagation of bat AstVs. The cells 

were therefore incubated for five days post-inoculation. Cells and supernatant were used to inoculate 
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a second batch of BHK-G43 cells, resulting in the first blind passage. These cells were also incubated 

for five days following inoculation. The blind passage might play an important role in increasing the 

viral load, as the qPCR results indicate that the amplification was higher in the second passage 

compared to the initial inoculation.  

Some viruses might take months to be isolated successfully in cell culture, and as there is no protocol 

for isolation of bat AstVs in vitro previous attempts could have failed due to the incubation period 

post-inoculation being too short or too long. The bat AstV isolation attempt by Chu (2011) reported 

a post-inoculation incubation period of 14 days. This period might have been too long. The optimal 

post-inoculation period should be investigated in future studies.  

4.6 Statistical analyses  

Statistical analyses correlating viral presence with host biological measurements or environmental 

measurements are useful tools to gain insight into the ecology of viruses in their hosts. To make more 

meaningful assumptions, long-term longitudinal studies need to be conducted. The statistical analyses 

indicated that bat species identity, sex and biome where the bats occurred in were significant 

contributors to AstV positivity. Statistical analyses on the ecological and biological data recorded 

during the current study provided a snapshot in time of factors that could possibly have played a role 

in virus prevalence, as the ecological fallacy points out some factors might be overshadowed due to 

the scale of the investigation. “The ecological fallacy consists in thinking that relationships observed 

for groups necessarily hold for individuals” (Freedman et al., 1998).  

4.6.1 Individual bat factors that possibly play a role in astrovirus positivity 

Species identity was indicated as a possible significant contributing factor in terms of AstV positivity 

in bats sampled in SA. A closer look at the ecology of the three bat species with the highest AstV 

prevalence might provide additional information on the ecology of the virus itself.  

4.6.1.1 Miniopterus natalensis 

The highest detection rate of AstV RNA was recorded in M. natalensis (55%). This species is widely 

distributed throughout Africa and the Arabian Peninsula. The extent of occurrence of M. natalensis 

is estimated to be 1 387 139 km2 (Figure 4.1.), due to its large extent of occurrence and adaptability 

this species is classified as least concern by the IUCN (Monadjem et al., 2010; MacEwan et al., 2016). 

This species is predominantly cave roosting, but they have also been documented roosting in crevice 

type roosts. Interestingly, they make use of two different cave systems, cooler cave systems are used 

as winter hibernacula and warmer caves are utilized during the summer as maternity roosts (MacEwan 
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et al., 2016). The females migrate between the cave systems and the distances between caves can 

range up to 260 km. The size of the colony in a specific roost can vary from a few individuals to more 

than 2 500 animals; at De Hoop Guano Cave on the Western Cape's south coast the colony size is 

estimated to be 200 000 during certain seasons (Monadjem et al., 2010). The migratory nature of this 

species coupled with its ability to form large roosts could be important factors in the maintenance and 

spread of AstVs. Another interesting aspect of their ecology that could play a role in virus 

dissemination is the use of different cave systems during the year.  

 

Figure 4.1. Distribution of Miniopterus natalensis in South Africa (MacEwan et al., 2016) 

4.6.1.2 Rhinolophus capensis 

R. capensis was the species with the second highest detection rate of AstV RNA in the current study 

(39%). This species is endemic to Southern Africa and is restricted in distribution to the coastal belt 

of the Southern Cape (Figure 4.2.) and is readily found in the Succulent Karoo and Fynbos biomes 

(Monadjem et al., 2010). According to the IUCN red list R. capensis is of least concern, due to the 

documentation of large colonies and their occurrence within protected areas (MacEwan et al., 2016). 

The estimated extent of occurrence of this species is 639 540 km2. This species prefers roosting in 

coastal sea caves but is also readily found in abandoned mines and dark lofts. They readily co-roost 

with R. clivosus and M. natalensis (Monadjem et al., 2010). This species is not known for long-

distance migrations and will only travel short distances of about 10 km. As this species occurs in 
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coastal areas the temperatures allow for abundant prey during the winter months, hence the rarity of 

hibernation in this species (Monadjem et al., 2010). Ecological factors that could possibly be of 

importance for the spread and maintenance of AstVs is their co-roosting behaviour, colony size and 

potentially roost sites (Nunn et al., 2015). Co-roosting behaviour could enhance interspecies transfer 

of the virus resulting in recombinant strains. As mentioned earlier, M. natalensis is a migratory 

species, and as these two species readily occur together M. natalensis could serve as a source of novel 

viruses when returning to communal roosting sites after migration.  

 

Figure 4.2. Distribution of Rhinolophus capensis in South Africa (MacEwan et al., 2016) 

4.6.1.3 Rhinolophus clivosus  

During the current study AstV RNA detection was recorded at 17% in R. clivosus bats. R. clivosus 

share many ecological similarities with R. capensis. This species roosts in caves, rock crevices, 

abandoned mines, rural and urban buildings and hollow baobab trees (Adansonia species) (Monadjem 

et al., 2010). They also make use of feeding roosts during the evening, where they eat their insect 

prey before returning to their roosts (Monadjem et al., 2010). Unlike R. capensis this species’ 

distribution is not limited to coastal areas or even to SA (Stoffberg et al., 2012; Stoffberg, 2013). 

They occur in a wide variety of biomes throughout SA and greater Africa and is classified as least 

concern by the IUCN. The estimated extent of occurrence is 1 196 606 km2 (Figure 4.3.), however 

due to the existence of cryptic species this range will probably be re-assessed in the future (Stoffberg 
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et al., 2012; Stoffberg, 2013). Another fascinating difference between R. clivosus and R. capensis is 

that R. clivosus undergoes prolonged periods hibernation, which is less common in R. capensis. 

Hibernation could also play an important role in virus maintenance and spread. A study by George et 

al. (2011) on hibernation’s effect on rabies in big brown bats (E. fuscus), found that the incubation 

period of the rabies virus and the reduced metabolic effect of colder temperatures during hibernation 

supress virus activity. This causes a temporal maintenance reservoir of the rabies virus, keeping the 

virus dormant until the hosts emerge from hibernation and naïve individuals are introduced into the 

colony via parturition (George et al., 2011).  

 

Figure 4.3. Distribution of Rhinolophus clivosus in South Africa (MacEwan et al., 2016) 

Observations made by collaborating zoologists who conducted the sampling of bats, could also shed 

some light as to why Rhinolophus bats were found to have high detection rates of AstV RNA. One 

sampling locality where numerous R. clivosus bats tested positive for AstV RNA was located in an 

abandoned mine in Babanango in KZN. It was noted that most of the cave system where the bats 

roosted was waterlogged. It was postulated that these colonies of hundreds of individuals, defecate in 

the stagnant water, which could then serve as a reservoir for virus maintenance within the cave 

system, as these bats might drink the water. 

Another interesting observation made is that of colony size at trapping locations. Sites with larger 

colonies (100 individuals and more) tended to have higher detection rates of AstV RNA; however, 
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colony size was not recorded for all sampling localities and could therefore not be used in statistical 

modelling.  

4.6.2 Sex a significant predictor of astrovirus positivity  

The findings of the current study suggest that sexually active male bats were more likely to have 

active AstV infections (40/242, 17%) than females (23/255, 9%). Male-biased infection rates of 

AstVs in bats were also documented by Mendenhall et al. (2017). However, several other bat AstVs 

studies did not document a significant difference in infection between male and female bats 

(Mendenhall et al., 2017; Hoarau et al., 2018). 

Various physiological and behavioural differences exist between male and female bats, which could 

significantly influence their susceptibility to different infections (Christe et al., 2007). Hormones 

could play an important role; testosterone is a known immunosuppressant and it is widely documented 

that the production of this hormone increases susceptibility to infections (Klein, 2012).  

Monadjem et al. (2010) noted differences in the roosting behaviour between male and female bats of 

M. natalensis. At De Hoop Guano cave, it was found that males and females of the species M. 

natalensis inhabited different sections of the cave. These different sections have different 

temperatures and most likely different microclimates, which could be important to AstV transmission. 

Furthermore, roosting behaviour during different times of the year differ significantly between the 

sexes. As mentioned in the previous section, it is documented that female M. natalensis bats migrate 

from the coastal regions of the Western Cape to more inland locations during the winter, to induce 

hibernation, whereas the males tend to stay behind at the roost.  

Differences in torpor behaviour between male and female bats could also play a role. Torpor is a 

physiological mechanism bats use to reduce their energy consumption by lowering their metabolism 

and body temperature. It is suggested that intrahost pathogen replication could be temperature-

dependent, and that seasonal torpor could suspend virus replication (Sadler & Enright, 1959; Sulkin 

et al., 1960; Luis & Hudson, 2006). Thus, species and sex differences in torpor behaviour might affect 

the co-evolution of pathogen variants and their transmission. 

4.6.3 Environmental factors  

The results of the generalized estimating equation suggest that biome type, specifically Succulent 

Karoo, could play an important role in AstV positivity in bats. This could be linked to the species in 

which the virus was found during this study. AstV RNA was frequently detected in R. capensis and 

R. clivosus that were often trapped in localities in this biome. The Succulent Karoo biome only occurs 
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in SA and no data currently exists that could explain why AstVs might be more prevalent in bats 

trapped in this biome. Further studies are required to elucidate these findings in the future. 

4.7 qPCR vs conventional astrovirus screening PCR  

During this study a real-time PCR assay was designed based on the bat AstV RdRp sequences 

obtained. The qPCR assay was a probe-based assay that enhances specificity. The qPCR assay was 

used to monitor the relative viral load fluctuations within a bat colony over time as well as to assess 

the virus isolation attempts. The assay was also assessed to determine if it could provide a more 

sensitive detection tool compared to the conventional hemi-nested screening PCR developed by Chu 

et al. (2008). For the subset of samples that were rescreened (n = 150), the real-time assay detected 

20% more positives than Chu's assay, including all the samples in the subset that had been positive 

via the screening PCR. The results indicated that the real-time PCR assay developed is highly 

sensitive and able to detect the presence of AstVs at low copy numbers, suggesting that qPCR assays 

could be alternative AstV screening tools. Studies that have investigated AstVs in sewage and 

WWTW routinely use real-time assays, as they are able to detect AstVs at low concentrations (Le 

Cann et al., 2004). qPCR assays could also be used to detect AstV in samples that might have lower 

viral loads, which are not detectible with the conventional hemi-nested screening PCR assay. 

However, it is important to consider that sequence data cannot be generated from qPCR reactions, 

and that the sequence fragment would be insufficient for phylogenetic analysis due to the small size 

of the amplicon. If positives are identified they can be re-screened using the hemi-nested PCR assay 

developed by Chu et al. (2008) to allow for Sanger sequencing. 

4.8 Possible One Health implications of AstVs in South Africa 

The One Health concept acknowledges that the health of humans, animals and the environment are 

interlinked and dependant on one another. One of the aims of the study was to frame the results as 

possible One Health implications.  

During the current study the host species that was studied was bats (Chiroptera) and the AstVs that 

they harbour. The zoonotic potential of wildlife AstVs, including those harboured by bats, has not yet 

been determined, however numerous studies suggest that the zoonotic potential of wildlife AstVs is 

high due to limited host species restriction, cross species transmissions, as well as the error proneness 

of the viral genome. However, numerous factors influence the zoonotic potential of a virus, including 

the number of viruses harboured by the primary host organisms, phylogenetic proximity between the 

host organism and humans, contact rates between the host and humans, habitat destruction and virus 

factors (Olival et al., 2017).  

Stellenbosch University https://scholar.sun.ac.za



89 
 

The possible zoonotic potential of SAn bat AstVs were deduced from the results obtained from the 

phylogenetic analyses of the ORF2 gene fragment and the in vitro isolation and propagation attempts. 

The phylogenetic results of the ORF2 gene suggest that bat AstVs are more closely related to HAstVs 

than to bat AstVs and could potentially pose a threat to human health. As the analyses only included 

one SAn bat AstV ORF2 gene, it would be advisable to obtain more ORF2 gene fragments to support 

this theory. Furthermore, as clinical samples of patients with gastroenteritis are not routinely screened 

for the presence of AstVs there is not a lot of genetic data available on SAn HAstVs (Pager, 2002; 

Nadan et al., 2003). To better understand the phylogenetic relationship between SAn bat AstVs and 

SAn HAstVs it will be crucial to obtain more SAn HAstV sequences. 

The in vitro isolation and propagation attempt of the bat AstV revealed that it was not capable of 

propagating in Caco-2 cell lines, but the virus was however capable of propagating in BHK-G43 cells. 

This could suggest that the virus could make use of an intermediate rodent or murine host through 

which it can then potentially adapt to infect humans. It could also suggest that the Caco-2 cell line 

does not have the correct receptors to allow bat AstV entry and replication. More in-depth research 

should be conducted to further elucidate the true zoonotic risk of bat AstVs.  

The potential impact of AstVs on environmental and animal health in terms of anthropogenic 

alteration of environments through the possible contamination of water sources with HAstVs were 

investigated at WWTW in KZN. Bats were trapped at various WWTW in KZN and tested for the 

presence of AstV RNA. In conjunction with bat samples, water samples were also collected from the 

WWTW sites and tested for the presence of AstV RNA. Interestingly only one bat (out of 50) tested 

positive from these sites. Furthermore, the phylogenetics of the RdRp sequence derived from the bat, 

were also not closely related to HAstVs, suggesting limited reverse zoonotic potential of the virus. 

The WWTW water samples were analysed and tested negative for the presence of AstV RNA. This 

could be indicative that the WWTW that were investigated were functioning optimally and posed 

limited threat in terms of environmental contamination with HAstVs. 

4.7 Conclusion  

The current study aimed to investigate the diversity and ecology of AstVs in SAn bats using 

phylogenetic-, molecular-, cell culture- and statistical methods.  

The results of the current study demonstrated the diversity of AstVs in SA bats, as predicted in the 

hypothesis. Twenty-five novel RdRp sequences and one ORF2 sequence were obtained during the 

current study bringing the available bat AstV RdRp sequences to forty-four. The phylogenetic 

analyses highlighted how diverse these sequences are, as clustering was not restricted by species 
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identity or host geographic distribution. The phylogenetic analysis of the ORF2 gene fragment 

suggests that SAn bat AstVs might be more similar to human AstVs than bat AstVs.  

The monitored N. capensis colony was co-infected with AstVs and CoVs, but the amplification of 

these viruses was not correlated to seasonality. The single peak in virus amplification corresponded 

with the recolonization of the roost after migration during September, and not with seasonality. 

Furthermore, the peak in virus amplification was not associated with the pupping season of N. 

capensis, which was the case for a Myotis myotis bat colony monitored by Drexler et al. (2011). These 

results disproved the hypotheses that AstVs and CoV infection in this specific bat colony would be 

correlated to seasonality. The results did however support the hypothesis that the N. capensis colony 

would be co-infected with AstVs and CoVs.  

Host and environmental factors were found to influence AstV detection in bats. The statistical 

analyses indicated that bat species identity, being a sexually active male bat and occurring in the 

Succulent Karoo, are important factors in bat AstV positivity. This also supports the hypotheses that 

both host factors and environmental factors influence AstVs positivity. 

The current study was the first to successfully isolate and propagate a bat AstV in vitro using a saliva 

sample collected from a M. natalensis bat in BHK-G43 cells. The methods used during the isolation 

attempts might enable other studies to successfully isolate bat AstVs in vitro. The successful isolation 

of a bat AstV in vitro will enable future studies to obtain larger fragments of the genome or full 

genomes with NGS technology.  

The results of the current study provided some insight into the possible One Health implications of 

bat AstVs in SA. Phylogenetic analysis of the ORF2 gene suggests that bat AstVs are more similar 

to HAstVs than to bat AstVs, and as such could potentially pose a threat to human health. The in vitro 

isolation and propagation of a bat AstV in vitro demonstrated that the virus is capable of infecting 

cells originating from hamsters, which suggest that the virus can easily cross the species barrier and 

can be of possible veterinary importance. The analyses of water samples from WWTW for the 

presence of AstVs were indicative that these treatment works were functioning optimally and pose 

little threat environmentally. 

The current study contributes significantly towards the body of knowledge of AstVs in SAn bats in 

terms of phylogenetic networks and factors that influence AstVs positivity. Furthermore, an 

optimized protocol for the successful isolation of bat AstVs in vitro was developed, which is 

invaluable for future functional studies.  
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4.7.1 Shortcomings of the current study 

The current study investigated AstVs in numerous insectivorous bats occurring in SA, however no 

fruit bat samples were screened, as these bats were not sampled by our collaborators. Future studies 

should attempt to include as many bat species as possible to enable comparability with other studies. 

Furthermore, the samples used during the current study was collected opportunistically and could 

obscure the true prevalence of the virus. Direct sampling of sufficient numbers of each bat species 

will give a more accurate indication of virus prevalence and diversity. 

Only a few juvenile bats were sampled during the current study, as such the influence of age on AstV 

prevalence in bats could not be determined. Future studies should include more juvenile bats to 

elucidate the influence of age on AstV prevalence.  

Even though the study was the first to obtain a SAn bat AstV ORF2 fragment, only one sequence was 

obtained and only limited phylogenetic inferences could be made. It would have been advantageous 

to explore NGS methods to obtain longer ORF2 fragments or complete genome sequences, however 

due to time and financial constraints these methods could not be employed during the current study. 

The longitudinal surveillance study of AstVs and CoVs in a N. capensis colony provided some 

valuable insights into the ecology of both viruses, however it would have been more advantageous if 

the monitoring could have been for two or three years. With the extreme drought conditions in the 

area the bats completely vacated the roost, resulting in the shorter timeframe for monitoring.  

4.7.2 Future directions  

One very important aspect that is lacking in bat virus research in general is the lack of information 

on the ecology and habits of the bats. To fully understand the intricate role bats play as carriers of 

various zoonotic diseases, it is of utmost importance to understand their ecology and behaviour. This 

could be achieved through in-depth longitudinal research that focuses on species specific colonies 

that documents their ecology and behaviour using radio telemetry or GPS trackers, as well as 

behavioural observations by researchers.  

To obtain a better understanding of potential One Health implications of bat AstVs, the surveillance 

of this virus in bats should be coupled with screening of clinical as well as environmental samples. It 

would be advantageous to test bat colonies that live in close proximity to humans, and then also screen 

the human population and even domesticated animals for the presence of AstVs.  
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The optimised protocol developed in this study for the isolation and propagation of a bat AstV in 

vitro, can be used in future studies to obtain whole genome sequences of these viruses and virus 

isolates for phenotypic studies, in which cell tropism and cell receptor usage can be determined.  
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Appendix A - Ethics approval of collaborators for trapping of bats 

Cape Nature Permit number: 0056-AAA041-00091 

Ezemvilo Permit number: 3899/2015 

Biodiversity of Northern Cape permit number: FAUNA 1541/2014 
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Appendix B - Genbank identification number and description of sequences 

downloaded for RdRp phylogenetic analyses 

JQ814870 Tylonycteris robustula astrovirus 1 RNA-dependent RNA polymerase (RdRp) gene, partial cds 

JQ814856 Miniopterus schreibersii astrovirus 1 RNA-dependent RNA polymerase (RdRp) gene, partial cds 

JQ814868 Myotis ricketti astrovirus 1 RNA-dependent RNA polymerase (RdRp) gene, partial cds 

EU847198 Bat astrovirus 1 isolate AFCD271 polyprotein 1AB gene, partial cds 

EU847207 Bat astrovirus 1 isolate AFCD94 polyprotein 1AB gene, partial cds 

KU510453 Bat astrovirus strain 09GB409Mi RNA-dependent RNA polymerase-like (RdRp) gene, partial 

sequence 

KY575651 Astrovirus sp. RNA-dependent RNA polymerase gene, partial cds 

KY575647 Astrovirus sp. RNA-dependent RNA polymerase gene, partial cds 

KY575652 Astrovirus sp. RNA-dependent RNA polymerase gene, partial cds 

FJ571065 Bat astrovirus Tm/Guangxi/LD38/2007 non-structural polyprotein 1AB (pol) gene, partial cds; 

and capsid protein precursor (ORF2) gene, complete cds 

KU510460 Bat astrovirus strain 09GB552Hg RNA-dependent RNA polymerase-like (RdRp) gene, partial 

sequence 

KY575670 Astrovirus sp. RNA-dependent RNA polymerase gene, partial cds 

EU847211 Bat astrovirus 1 isolate AFCD198 polyprotein 1AB gene, partial cds 

EU847213 Bat astrovirus 1 isolate AFCD254 polyprotein 1AB gene, partial cds 

EU847203 Bat astrovirus 1 isolate AFCD317 polyprotein 1AB gene, partial cds 

EU847154 Bat astrovirus 1 isolate WCF214 polyprotein 1AB gene, partial cds 

EU847164 Bat astrovirus 1 isolate WCF96 polyprotein 1AB gene, partial cds 

EU847195 Bat astrovirus 1 isolate AFCD208 polyprotein 1AB gene, partial cds 

JQ814871 Miniopterus schreibersii astrovirus 13 RNA-dependent RNA polymerase (RdRp) gene, partial cds 

KJ571393 Bat astrovirus Mm/NX29/Hainan nonstructural polyprotein 1AB gene, partial cds 

EU847219 Bat astrovirus 1 isolate AFCD293 polyprotein 1AB gene, partial cds 
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KY575661 Astrovirus sp. RNA-dependent RNA polymerase gene, partial cds 

JQ814865 Miniopterus schreibersii astrovirus 10 RNA-dependent RNA polymerase (RdRp) gene, partial cds 

JQ814862 Miniopterus schreibersii astrovirus 7 RNA-dependent RNA polymerase (RdRp) gene, partial cds 

EU847147 Bat astrovirus 1 isolate WCF98 polyprotein 1AB gene, partial cds 

KJ571381 Bat astrovirus Ms/LS007/Hainan nonstructural polyprotein 1AB gene, partial cds 

EU847191 Bat astrovirus 1 isolate AFCD166 polyprotein 1AB gene, partial cds 

KU510456 Bat astrovirus strain 09GB438Mi RNA-dependent RNA polymerase-like (RdRp) gene, partial 

sequence 

EU847159 Bat astrovirus 1 isolate WCF16 polyprotein 1AB gene, partial cds 

KU510474 Bat astrovirus strain 09GB1224Mi RNA-dependent RNA polymerase-like (RdRp) gene, partial 

sequence 

FJ571077 Bat astrovirus Ms/Guangxi/A629/2005 RNA-dependent RNA polymerase (pol) gene, partial cds 

KJ571431 Bat astrovirus Myr/QX60-2/Guangxi nonstructural polyprotein 1AB gene, partial cds 

BtAstV/CGC/Neo_capensis4/WC/South_Africa 

KY575665 Astrovirus sp. RNA-dependent RNA polymerase gene, partial cds 

KY575657 Astrovirus sp. RNA-dependent RNA polymerase gene, partial cds 

Avastrovirus1 (isolate_MPJ1601) 
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Appendix C - Protocol for counting cells with haemocytometer 

Preparing the cell suspension for cell counting 

Media was aspirated (Gilson, Wisconsin, USA) from the cell culture flask and cells were washed with 1x PBS 

(Gibco®, USA). Trypsin EDTA was added and the flask was incubated for 2-5 minutes, or until all the cells 

completely detached from the flask’s surface. Media was added to neutralize the trypsin. Cells were then 

transferred to a 50 ml Falcon tube (Corning, USA). Cells were resuspended by gently pipetting up and down. 

The cell suspension was centrifuged (Rotanta 460R Hettich centrifuge, Massachusetts, USA) for 5 minutes at 

1 000 x g. The supernatant was aspirated (Gilson, Wisconsin, USA), and care was taken not to disrupt the cell 

pellet. The cell pellet was resuspended with growth media to the original volume used in the starting culture 

and 0.5 ml of cell suspension was transferred to a sterile 2 ml tube (Eppendorf, Germany). In a new 2 ml tube 

(Eppendorf, Germany), 100 μl of cell suspension was added to 400 μl (0.4%) Trypan Blue (MBL international, 

Massachusetts, USA) and mixed gently by inverting the tube (“Counting cells using a haemocytometer | 

Abcam,” n.d.).  

Counting of cells 

A volume of 100 μl of the Trypan Blue (MBL international, USA) treated cell suspension was added to the 

chambers underneath the coverslip of the haemocytometer. The haemocytometer was viewed under the 10x 

objective of the microscope (Nikon, Eclipse TS 100, Minato, Tokyo, Japan). Cells that were unstained, 

indicative of live cells, were counted in all 4 sets of 16 squares (Figure 1.) (“Counting cells using a 

haemocytometer | Abcam,” n.d.).  

  

Figure 1. Representation of the 4 grids of the haemocytometer used during manual cell counting 

Calculating the number of viable cells per ml 

The following equation was used to determine the number of viable cells per ml:  

Viable cells per ml = (
𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡

4
× 104) × 5 (𝑡𝑜 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑤𝑖𝑡ℎ 𝑇𝑟𝑦𝑝𝑎𝑛 𝐵𝑙𝑢𝑒)  

Cells were counted in 

the highlighted squares 
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Appendix D - Snapshot of the datasheet used for data analyses  

month Prov site sample_ 

code 

alt bio sex age rep. 

state 

mass FA FMI AstV Train 

January KZN LNR NC11 1568 G F SA NP 6 34 5.190311 0 130.2 

October EC ABA PH10 57 AT M A NS 4.5 33 4.132231 0 25.4 

October EC ABA PH13 57 AT F A P 8 34 6.920415 0 25.4 

October EC ABA PH9 57 AT F A NP 5.5 34.5 4.620878 0 25.4 

October EC ABA PH5 57 AT F A P 8.5 34 7.352941 0 25.4 

July EC ABA NC1 57 AT M A NS 7.5 34 6.487889 0 108.4 

July EC ABA PH1 57 AT F A NP 8.5 36 6.558642 0 108.4 

July EC ABA NC2 57 AT M A NS 6.5 34 5.622837 0 108.4 

July EC ABA NC3 57 AT M A NS 6.5 35 5.306122 0 108.4 

July EC ABA NC4 57 AT M A NS 7.5 34 6.487889 0 108.4 

July EC ABA NC5 57 AT M A NS 6 34 5.190311 0 108.4 

July EC ABA NC7 57 AT M A NS 6 33.5 5.346402 0 108.4 

October EC ABA PH11 57 AT F A P 7.5 34 6.487889 0 25.4 

October EC ABA PH2 57 AT M A S 5.5 33 5.050505 0 25.4 

October EC ABA PH4 57 AT F A P 9 33.5 8.019603 0 25.4 

October EC ABA PH6 57 AT F A P 8.5 35 6.938776 0 25.4 

October EC ABA PH7 57 AT F A P 8.5 36.5 6.380184 0 25.4 

October EC ABA PH8 57 AT F A P 9.5 35 7.755102 0 25.4 

October EC AEL PH4 83 AT F A NP 8.5 34 7.352941 0 94.6 

October EC AEL PH3 83 AT F A P 8 34 6.920415 0 94.6 

January EC AHHB NC4 1227 G M A NS 7 33 6.427916 0 52.2 

January EC BCHB NC1 1229 G M A NS 6 33 5.509642 0 52.2 

January EC BCHB NC2 1229 G F A  PL 5 34 4.32526 0 52.2 

January WC CCK NC1 17 F F A NP 8 37 5.843682 0 9.6 

January WC CCK NC7 17 F F A NP 9 38 6.232687 0 9.6 

January WC CCK NC3 17 F M A S 8 37 5.843682 0 9.6 

January WC CCK NC8 17 F F A NP 9 38 6.232687 0 9.6 
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Appendix E - Table with Bat trapping sites. All bat trapping sites, with 

abbreviated site codes, where samples were collected. 

Province  Site and code in brackets GPS coordinates 

Eastern Cape 

 

Aardvark Backpackers, Addo (ABA)  -33.5350 25.6955 

Arena Resort East London (AEL) -32.8839 28.0612 

Arminel Hotel Hogsback (AHHB) -32.5919 26.9332 

Sleepy Hollow Maitland (SHM) -33.9568 25.3132 

Table Farm Grahamstown (TFG)  -33.2853 26.4276 

KwaZulu-Natal 

Albert Falls (AF)  -29.4452 30.4301 

Babanango Exploratory Mine 2 (BVLEM2)  -28.2852 31.0137 

Babanango Exploratory Mine 1 (BVLEM1)  -28.2871 31.0129 

Babanango Main Mine (BVLMM)  -28.2867 31.0133 

Babango Valley (BVL)  -28.2867 31.0133 

Buffelsdrift (BDF)  -29.7567 30.6791 

Doornhoek Mine (DHM)  -29.6000 30.5200 

Hilton Train Tunnel (HTT)  -29.5497 30.2958 

Inkunzi Lodge. Babanango (ILB)  -28.5617 31.2404 

Lotheni Nature Reserve (LNR)  -29.4375 29.5150 

Mooiplaas Gold Mine (MPG) -28.5582 31.1653 

Spionkop Lodge (SKL)  -28.6950 29.5355 

Umbilo WWTW (DC2)  -29.8455 30.8919 

Verulum WWTW (DC1)  -29.6439 31.0636 
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Limpopo 

Royal Macadamia (LRM)  -23.0553 30.1495 

Kim's Farm (LKF) -23.0222 29.7989 

Peter Taylor's House (LPT) -23.0326 29.9296 

Northern Cape 

La Fugue Guesthouse (LFU) -28.4402 21.2945 

Blinkklip Grotte (BKP)  -28.3001 23.1156 

Hopefield Farm 1 (HFP1)  -28.6188 23.3242 

Hopefield Farm 2 (HFP2)  -28.6305 23.3397 

Western Cape 

Steenkampskraal Mine (SKK)  -30.9750 18.6343 

Cloeteskraal Farm Velddrif * (CCK)  -32.8732 18.2236 

De Kelders Cave 1 (CDK1)  -34.5556 19.3642 

De Kelders Cave 2 (CDK2)  -34.5500 19.3710 

Drie Kuilen Nature Reserve (CDK)  -33.5815 20.0312 

Forest Edge Knysna (FEK)  -33.9294 22.9386 

Gecko Rock Cottage (CGC)  -33.5184 20.1310 

Gecko Rock Main House (CGR) -33.5184 20.1188 

Haarwegskloof Nature Reserve (HWK)  -34.3383 20.3261 

Knysna Millwood Mines (KMM)  -33.8900 22.9910 

May's Lane Greyton (GML)  -34.0548 19.6054 
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Appendix F - Phylogenetic relationship of novel astroviruses with in the 

Astroviridae family. ML analyses based on the RdRp gene with 1 000 iterations 
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Appendix G - Estimates of evolutionary divergence between RdRp sequences. The number of base differences per site 

between sequences are shown. The analysis involved 45 nucleotide sequences using the p-distance model with 1000 

iterations. Evolutionary analysis was conducted in MEGA7 (Kumar et al., 2016) 

1 GreytonTAr1Tad_agy_WP_SA2012 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

2 MSTM1Min_nat_WP_SA2010 0%

3 BtAMSTM10Min_nat_WP_SA2010stV 21% 21%

4 BtAstVMSTM9Min_nat_WP_SA2010 16% 16% 23%

5 Mf2Min_fra_SA2013 16% 16% 21% 6%

6 HCA3_Hip_caf_SA2013 16% 16% 21% 8% 7%

7 GreytonTAr2Tad_agy_WP_SA2012 18% 18% 34% 18% 18% 17%

8 MSTM5Min_nat_WP_SA2010 22% 22% 27% 27% 23% 21% 17%

9 GreytonNC4_WP_SA2012 23% 23% 27% 23% 15% 20% 16% 25%

10 CDK2RCL13 33% 33% 41% 31% 31% 39% 23% 37% 28%

11 M-52Mus_mus_USA2008 29% 29% 44% 25% 29% 31% 28% 49% 34% 27%

12 HWKNC4 27% 27% 29% 32% 24% 22% 34% 38% 30% 29% 37%

13 VD_44 27% 27% 29% 32% 24% 22% 34% 38% 30% 29% 37% 0%

14 VD_34 27% 27% 29% 32% 24% 22% 34% 38% 30% 29% 37% 0% 0%

15 VD59 27% 27% 29% 32% 24% 22% 34% 38% 30% 29% 37% 0% 0% 0%

16 SKKRCL9 27% 27% 29% 32% 24% 22% 34% 38% 30% 29% 37% 0% 0% 0% 0%

17 DC28 28% 28% 33% 23% 20% 26% 38% 40% 24% 23% 32% 14% 14% 14% 14% 14%

18 CGCNC4 26% 26% 25% 25% 20% 23% 29% 36% 27% 23% 41% 21% 21% 21% 21% 21% 19%

19 GreytonNC5_WP_SA2012 23% 23% 25% 12% 18% 19% 16% 29% 22% 25% 27% 48% 48% 48% 48% 48% 35% 34%

20 MSTM12Min_nat_WP_SA2010 23% 23% 25% 12% 18% 19% 16% 29% 22% 25% 27% 48% 48% 48% 48% 48% 35% 34% 0%

21 GreytonNC2_WP_SA2012 23% 23% 23% 25% 23% 22% 27% 28% 25% 30% 42% 27% 27% 27% 27% 27% 25% 20% 25% 25%

22 HFPMN1 29% 29% 29% 23% 18% 23% 28% 23% 19% 19% 38% 21% 21% 21% 21% 21% 18% 13% 29% 29% 11%

23 Rsw2_Rhi_swi_SA2013 23% 23% 25% 23% 18% 16% 26% 24% 23% 30% 41% 19% 19% 19% 19% 19% 20% 18% 34% 34% 8% 8%

24 GreytonNC6_WP_SA2012 32% 32% 26% 26% 21% 25% 35% 35% 29% 26% 36% 20% 20% 20% 20% 20% 25% 22% 29% 29% 15% 11% 11%

25 Mf5Min_fra_SA2013 24% 24% 25% 31% 25% 25% 33% 30% 18% 19% 39% 14% 14% 14% 14% 14% 13% 17% 34% 34% 14% 12% 13% 15%

26 Mf6Min_fra_WP_SA2013 17% 17% 25% 24% 19% 21% 28% 30% 21% 20% 39% 20% 20% 20% 20% 20% 16% 16% 33% 33% 10% 10% 7% 12% 7%

27 BVL1RCL1 32% 32% 33% 27% 29% 27% 31% 37% 29% 29% 39% 29% 29% 29% 29% 29% 34% 22% 29% 29% 20% 13% 19% 17% 25% 19%

28 HFPRCL1 32% 32% 33% 27% 29% 27% 31% 37% 29% 29% 39% 29% 29% 29% 29% 29% 34% 22% 29% 29% 20% 13% 19% 17% 25% 19% 0%

29 HFP1RCL13 32% 32% 33% 27% 29% 27% 31% 37% 29% 29% 39% 29% 29% 29% 29% 29% 34% 22% 29% 29% 20% 13% 19% 17% 25% 19% 0% 0%

30 MSTM8Min_nat_WP_SA2010 25% 25% 30% 23% 14% 19% 30% 30% 19% 28% 40% 30% 30% 30% 30% 30% 22% 18% 27% 27% 15% 13% 13% 16% 16% 13% 14% 14% 14%

31 GreytonNC3_WP_SA2012 34% 34% 38% 35% 33% 33% 29% 35% 31% 30% 48% 30% 30% 30% 30% 30% 35% 34% 39% 39% 27% 23% 21% 24% 22% 24% 36% 36% 36% 27%

32 GreytonNC_WP_SA2012 34% 34% 38% 35% 33% 33% 29% 35% 31% 30% 48% 30% 30% 30% 30% 30% 35% 34% 39% 39% 27% 23% 21% 24% 22% 24% 36% 36% 36% 27% 0%

33 CDK1_MN1 47% 47% 41% 37% 30% 30% 33% 40% 34% 30% 49% 26% 26% 26% 26% 26% 31% 23% 42% 42% 31% 19% 25% 26% 20% 28% 38% 38% 38% 27% 11% 11%

34 BVL1RCL14 58% 58% 64% 48% 44% 53% 47% 56% 53% 35% 64% 37% 37% 37% 37% 37% 40% 39% 61% 61% 36% 23% 33% 32% 32% 35% 44% 44% 44% 41% 24% 24% 22%

35 HCA1_Hip_caf_SA2013 27% 27% 29% 32% 25% 29% 29% 31% 22% 19% 36% 17% 17% 17% 17% 17% 21% 12% 35% 35% 13% 10% 14% 14% 8% 11% 18% 18% 18% 18% 32% 32% 32% 39%

36 HFP1RCL9 24% 24% 25% 29% 23% 23% 29% 25% 25% 21% 44% 19% 19% 19% 19% 19% 21% 10% 39% 39% 17% 10% 11% 16% 11% 11% 24% 24% 24% 23% 32% 32% 28% 38% 9%

37 Mf4_Min_fra_SA2013 29% 29% 29% 30% 26% 29% 33% 34% 30% 33% 53% 27% 27% 27% 27% 27% 30% 24% 28% 28% 12% 22% 18% 20% 18% 16% 30% 30% 30% 22% 42% 42% 41% 51% 15% 19%

38 SKKRCL8 24% 24% 21% 27% 18% 21% 26% 28% 18% 22% 47% 19% 19% 19% 19% 19% 21% 15% 25% 25% 13% 14% 19% 21% 11% 12% 23% 23% 23% 18% 41% 41% 35% 47% 9% 11% 11%

39 SKKMN1 29% 29% 22% 31% 31% 29% 32% 36% 25% 21% 37% 30% 30% 30% 30% 30% 27% 19% 24% 24% 14% 21% 23% 20% 15% 13% 31% 31% 31% 27% 35% 35% 33% 49% 18% 16% 18% 13%

40 GreytonNC1_WP_SA2012 21% 21% 18% 32% 23% 28% 32% 28% 23% 28% 47% 21% 21% 21% 21% 21% 23% 18% 31% 31% 10% 17% 16% 15% 8% 10% 29% 29% 29% 15% 29% 29% 28% 47% 13% 15% 13% 10% 14%

41 GreytonNC7_WP_SA2012 21% 21% 19% 32% 23% 28% 32% 28% 23% 28% 47% 21% 21% 21% 21% 21% 23% 18% 33% 33% 11% 17% 16% 15% 8% 10% 29% 29% 29% 15% 29% 29% 28% 47% 13% 15% 14% 11% 16% 1%

42 BVL1_RCL1_(B) 34% 34% 28% 41% 34% 39% 40% 41% 26% 29% 47% 16% 16% 16% 16% 16% 23% 25% 47% 47% 29% 27% 25% 22% 14% 21% 32% 32% 32% 30% 37% 37% 41% 57% 19% 23% 27% 23% 23% 18% 18%

43 BVL1RCL12 31% 31% 20% 25% 18% 27% 34% 27% 21% 23% 35% 18% 18% 18% 18% 18% 16% 20% 37% 37% 23% 14% 18% 18% 13% 16% 27% 27% 27% 19% 32% 32% 26% 37% 17% 17% 26% 19% 21% 16% 16% 19%

44 HFPMN3 21% 21% 21% 31% 29% 25% 29% 26% 21% 19% 37% 17% 17% 17% 17% 17% 19% 14% 34% 34% 11% 10% 13% 15% 5% 7% 18% 18% 18% 19% 25% 25% 27% 34% 6% 8% 19% 11% 13% 11% 11% 19% 15%

45 CGCRC3 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 92% 100% 100% 94% 107% 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 88% 95% 100% 99% 100% 100%
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Appendix H - Abbreviations used in sequence names in Figure 3.2.  

The names of the sequences were as follows: abbreviation of the type of virus (BtAstV)/locality/Species 

abbreviation/province/continent/ year (Sequenced by KB or NI) 

BtAstV- Bat astrovirus  

Species abbreviations used 

South African bat species  

Hip caf: Hipposideros caffer 

Neo cap: Neoromicia capensis 

Pip hesperidus: Pipistrellus hesperidus 

Rhi capensis: Rhinolophus capensis 

Rhi clivosus: Rhinolophus clivosus 

Other bat species abbreviations  

Min pus: Miniopterus pusillus 

Min sch: Miniopterus schreibersii 

Him arm: Hipposideros armiger 

Hip pom: Hipposideros pomona 

Min mag: Miniopterus magnater 

Myo Myo: Myotis myotis 

Myo ric: Myotis ricketti 

Pip abr: Pipistrellus abramus 

Rhi fer: Rhinolophus ferrumequinum 

Rhi pea: Rhinolophus pearsonii 

Rhi sin: Rhinolophus sinicus 

Rou les: Rou les 

Tap mel: Taphozous melanopogon 

Tyl rob: Tylonycteris pachypus 

SA province abbreviations 

WC: Western Cape  

NC: Northern Cape  

KZN: KwaZulu-Natal 
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Appendix I - Outline of experimental designs for different subsections of the 

project  

1. General surveillance of AstVs across SAn bat species  

Bats were sampled opportunistically across SA by collaborating Zoologists. A total of 500 individual bat 

samples were used during the current study. The bat faecal material was screened for the presence of AstVs 

using the hemi-nested screening PCR assay designed by Chu et al. (2008).  

Positive and negative controls were used during each step from extraction of RNA as well as during the 

screening PCR and sequencing process.  

If the PCR positive controls did not come up during gel electrophoresis (indicating possible failure of RNA 

extraction or cDNA failure), the entire process was repeated for the batch of samples. If negative PCR controls 

came up as positive during gel electrophoresis (indicating possible contamination), the entire process was 

repeated for the batch of samples in question.  

2. Surveillance of a specific colony of N. capensis bats in the Western Cape of SA for the presence of 

AstVs and CoVs 

Faecal material was collected on a monthly basis over the period of one calendar year (January-December 

2015). These samples were screened for the presence of AstVs and CoVs by means of two qPCR assays. 

Standard curve approach was used to determine relative viral loads for each virus. Negative controls were 

included in each qPCR run to rule out contamination. To further rule out any inconsistencies, samples were 

analysed in triplicate during each run. 

3 Screening of bats (N. nana) at WWTW for the presence of AstVs 

N. nana bats were sampled at WWTW (n=50) and pristine areas 3km away from WWTW (n=47). These 

samples were screened for the presence of AstVs using the hemi-nested screening PCR assay designed by Chu 

et al. (2008), as well as with the AstV qPCR assay designed. Positive and negative controls were utilized during 

each step of the experiment, from extraction of RNA as well as during the screening PCR and sequencing 

process. 

During qPCR runs, samples were run in triplicate to rule out any pipetting inconsistencies. 

4 Bat AstV isolation in vitro  

During isolation attempts of the bat AstV in different cell lines. Negative controls for each experiment (each 

cell line) was included. Negative cell culture controls contained no sample material and were utilized to rule 
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out contamination. A cell culture positive control (HAstV positive faecal sample) was also utilized to establish 

that the isolation protocol was performed correctly.  

To minimize the possibility of contamination between the different cell lines used, cells were not handled at 

the same time in the laminar flow hood. Cleaning was also performed after working with each cell line.  

To further justify positive findings the isolation and propagation attempts were performed in duplicate.  
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