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Abstract
Primary open angle glaucoma (POAG) is a complex disease and is one of the major leading

causes of blindness worldwide. Genome-wide association studies have successfully identi-

fied several common variants associated with glaucoma; however, most of these variants

only explain a small proportion of the genetic risk. Apart from the standard approach to iden-

tify main effects of variants across the genome, it is believed that gene-gene interactions

can help elucidate part of the missing heritability by allowing for the test of interactions

between genetic variants to mimic the complex nature of biology. To explain the etiology of

glaucoma, we first performed a genome-wide association study (GWAS) on glaucoma

case-control samples obtained from electronic medical records (EMR) to establish the utility

of EMR data in detecting non-spurious and relevant associations; this analysis was aimed

at confirming already known associations with glaucoma and validating the EMR derived

glaucoma phenotype. Our findings from GWAS suggest consistent evidence of several

known associations in POAG. We then performed an interaction analysis for variants found

to be marginally associated with glaucoma (SNPs with main effect p-value <0.01) and

observed interesting findings in the electronic MEdical Records and GEnomics Network
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(eMERGE) network dataset. Genes from the top epistatic interactions from eMERGE data

(Likelihood Ratio Test i.e. LRT p-value <1e-05) were then tested for replication in the

NEIGHBOR consortium dataset. To replicate our findings, we performed a gene-based

SNP-SNP interaction analysis in NEIGHBOR and observed significant gene-gene interac-

tions (p-value <0.001) among the top 17 gene-gene models identified in the discovery

phase. Variants from gene-gene interaction analysis that we found to be associated with

POAG explain 3.5% of additional genetic variance in eMERGE dataset above what is

explained by the SNPs in genes that are replicated from previous GWAS studies (which

was only 2.1% variance explained in eMERGE dataset); in the NEIGHBOR dataset, adding

replicated SNPs from gene-gene interaction analysis explain 3.4% of total variance

whereas GWAS SNPs alone explain only 2.8% of variance. Exploring gene-gene interac-

tions may provide additional insights into many complex traits when explored in properly

designed and powered association studies.

Author Summary

The complex nature of primary-open angle glaucoma (POAG) has left researchers exploring
the genetic architecture and searching for the missing heritability using a number of different
study designs. Over the past decade, many studies have been conducted to explain the etiol-
ogy of POAG; however, a high proportion of estimated heritability still remains unexplained.
GWA studies for POAG have identified significant associations but these associations have
only explained a small proportion of the genetic risk (odds ratios range between 1–3). In this
paper, we sought to confirm the primary genome-wide significant associations that have
been discovered so far for glaucoma in phenotypes developed from EMR data in an effort to
show that EMR data can be a powerful resource for finding genetic variants influencing
POAG susceptibility. Next, we tested for statistical interactions, which can be presented as
an important tool in an attempt to explain POAG heritability. We used a reduced list of vari-
ants filtered by marginal main effect analysis to look for epistatic interactions. We present
our results from replication of gene-based interaction analyses performed in eMERGE and
the NEIGHBOR consortium data. Using expression data and annotations from various pub-
licly available databases, the most significant genes that replicated in our analyses show
expression in the eye and trabecular meshwork. Analysis for estimation of genetic variance
explained by significant associations from previous GWAS and replicated variants from
gene-based interactions suggest that these explain 5.6% of variance in eMERGE dataset and
also explain 3.4% variance in NEIGHBOR dataset.

Introduction
Glaucoma, a chronic degenerative optic neuropathy that results in loss of retinal ganglion cells
and axons, is one of the primary causes of irreversible visual impairment worldwide affecting
approximately 70 million people[1]. Twin and relative studies have estimated the heritability of
primary open angle glaucoma (POAG) to be between 16–20%[2,3]. Genetic linkage studies
have only identified a common mutation found inMYOC which explains a very small fraction
of total risk in different populations[4]. Genome-wide association studies (GWAS) have
proven to be a successful tool in identifying several loci and genes associated with POAG
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which have elucidated important biological information that has enhanced some understand-
ing of the genetic architecture of this disease[5–8]. Family based studies and GWAS taken
together still only explain less than 10% of the heritability of POAG[9].

Phenotypes from electronic medical records (EMR) data are curated and linked to genetic
bio-repositories in the eMERGE (electronic MEdical Records and GEnomics) network at sev-
eral participating institutions nationwide[10–12]. In eMERGE, genotypes in more than 55,000
samples from 9 sites and 9 different genotyping platforms have been imputed to the 1000
Genomes reference panel[13]. We conducted a GWAS on 5,090 eMERGE samples (961 cases
and 4,129 controls) that were extracted from the dataset containing ~55,000 samples for the
purpose of confirming known signals from previous POAG GWAS to show that EMRs are a
powerful resource that can be utilized to explore genetic associations for complex traits. In
addition to disease- associated SNPs identified by GWAS, some studies have also identified
interactions between variants in genes OPTN and OLFM2 to be significantly associated with
open angle glaucoma (OAG)[14]. The genetic architecture of traits with complex inheritance
such as POAG are expected to include complex genetic interactions, that in part, can also
account for disease heritability [15–19]. Many studies in model organisms such as drosophila
and mouse have shown strong evidence of epistasis, or gene-gene interactions, in complex phe-
notypes [20,21]. Because of the complex nature of POAG, it is possible that disease risk is not
mediated only by single loci but also by a harmonious links between different genes.

Many computational techniques have emerged in recent years to explore genetic interac-
tions, yet numerous challenges must be overcome to conduct these analyses, including exten-
sive computational resources and time required to run analyses. Further, exhaustively
searching for pairwise SNP-SNP interactions leads to issues with multiple testing corrections,
which makes discovering interactions even more difficult. To limit the search space, it is impor-
tant to reduce the number of variants being tested[22]. To address this issue, we limited our
SNP-SNP interaction analysis in the eMERGE dataset (Discovery dataset) to only those SNPs
attaining marginal to strong association (p-value< 0.01) in the eMERGE POAG GWAS.

Additional analytic challenges include biological interpretation of all SNP-SNP interactions.
Replication of the exact SNP pairs is extremely difficult and still remains an exasperating task as
it is complicated by linkage disequilibrium (LD) pattern differences as well as genetic and/or clin-
ical heterogeneity [23–25]. Genetic heterogeneity possesses a challenge in replicating exact vari-
ants associated with a disease in different populations, as the variants are spread across multiple
loci in a gene or are in high linkage disequilibrium (LD) with other variants. It has been previ-
ously reported from studies in model organisms such as yeast that understanding the genetic
architecture of diseases precisely in heterogeneous populations such as humans is an arduous
task [26–28]. Therefore, to overcome the problem of replicating exact SNP-SNP pairs and
address the challenge of heterogeneity, we annotated SNPs to genes and then extracted all SNPs
in the top interacting models (results with likelihood ratio test (LRT) p-value<1e-05 in the Dis-
covery dataset) to perform a gene-based SNP-SNP interaction analyses followed by replication in
the NEIGHBOR consortium (Replication dataset; previously genotyped and reported) [29]. The
dataset, which includes 2,132 POAG cases and 2,290 non-POAG controls, was then imputed to
the 1000Genomes reference dataset[30]. In this study, we report our top replicated findings from
the first gene-based interaction study in POAG conducted on two independent datasets.

Results

Generalization results from GWAS
To identify previously reported associations between SNPs and POAG disease status as defined
by the EMR algorithm, we performed a genome-wide scan with samples classified as POAG

Epistatic Gene-Based Interaction Analyses for Glaucoma in eMERGE and NEIGHBORConsortium

PLOSGenetics | DOI:10.1371/journal.pgen.1006186 September 13, 2016 3 / 21



cases (N = 961) and controls (N = 4,129). The POAG cases were electronically phenotyped
using the EMR data in eMERGE (details on the phenotypic algorithm for POAG are provided
in supplementary material S1 Text). Our analysis was adjusted for the first six principal com-
ponents, age, sex, genotyping platform, and eMERGE site. Fig 1A illustrates the results for the
primary GWAS analysis in a Manhattan plot. SNPs in genes that have known association with
glaucoma were annotated with gene names for simplicity of interpretation of results. Fig 1B
shows a quantile-quantile plot of observed and expected p-values. The genomic inflation factor
(λ) is 1.04, which suggests that there is minimal inflation in our results.

From the GWAS analysis, we reviewed 17 previously reported glaucoma-associated loci
that have attained genome-wide significance (i.e. p-values<5e-08) according to the NHGRI
GWAS catalog in one or more studies[31]. Table 1 shows all of the known loci as of March
25, 2016 and with the p-values obtained from our analyses. Although only one of our results
reaches genome-wide significance level (5e-08), six of our results reach Bonferroni signifi-
cance (0.05/17 tests), and 13/17 exceed a p-value<0.05; thus, we observe p-values for known
associations also clearly shows that EMR data can produce non-spurious and relevant find-
ings. Thus, we believe that the data derived from the EMR were able to replicate many of the
signals and demonstrate that in our EHR-derived phenotype we can identify association sig-
nals with glaucoma. A point to note here is that based on previous GWAS’s as cited from
NHGRI GWAS catalog, not all loci reach genome-wide significance in all studies. Here we
have compiled lists of all loci that have reached genome-wide significance in a minimum of 1
study. For example, variants in gene PMM2 have so far only being replicated in Chinese pop-
ulations. Based on power calculations, we had approximately 45% power to detect a common
allele with odds ratio greater than 1.5 at genome wide significance (S1 Table shows power cal-
culation results considering odds ratio in range on 1–3 as reported in previous GWAS studies
for POAG in the NHGRI GWAS catalog and MAF range of 0.05–0.5). Power calculations
were done using Quanto available at: http://biostats.usc.edu/Quanto.html. Thus, we demon-
strate that existing EMR data can be extensively utilized in confirming known GWAS hits
and are powerful resources for applying new methodologies to explore the genetic architec-
ture of complex traits.

Fig 1. POAGGWASResults in eMERGE dataset. (A)Manhattan plot shows chromosome and base pair positions on x-axis and -log10 of p-value on y-
axis. Each point here represents a SNP. Red line is the genome-wide significance line at 5e-08. Highlighted points indicate annotation of SNPs with
previously reported GWAS associated genes. (B) Shows a QQ-plot from GWAS analysis.

doi:10.1371/journal.pgen.1006186.g001
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Gene based SNP-SNP Interactions
Detection of epistasis is of interest in exploring the etiology of complex diseases. In the present
study, markers that showed suggestive marginal association with POAG from the eMERGE
GWAS (4,624 SNPs with p-value<0.01) were chosen as potential candidates to detect epistatic
interactions between genes, a strategy also used by many others (reviewed by Sun et al 2014)
[32]. We performed this analysis in all 5,090 eMERGE samples and also in samples only from
European American (EA) ancestry (4,840 samples). In testing for epistasis, we performed a
pairwise SNP-SNP interaction analysis i.e. each from the 4,624 SNPs were tested against the
remaining 4,623 SNPs. To examine the distribution of observed p-values in this discovery data-
set, we plotted the p-values in a quantile-quantile plot to compare against random expected p-
values. This qq-plot is shown in S1 Fig. We also calculated the inflation factor for the observed
values using the GenABEL package in R[34] and the inflation factor was 1.03. SNPs within or
10kb upstream or downstream of the gene location were mapped to 2,433 genes using the
Library of Knowledge Integration (LOKI) database compiler in Biofilter 2.0[33]. From the
eMERGE dataset, we chose a p-value threshold (1e-05) to obtain approximately the top 100

Table 1. Results fromGWAS analysis, showing previously reported gene regions that are known to be associated with glaucoma; the lowest p-
value of the gene region in eMERGEGWAS analysis for glaucoma is reported.

Gene Region Chromosome Start
Position

End Position SNP Lowest P-
value

Odds
Ratio

Reference Study

CDKN2B-AS 9 21984777 22131096 rs7866783 4.49E-08 1.34 [57]OsmanW (PMID: 22419738)

AFAP1 4 7750440 7951653 rs1320074 1.61E-06 0.77 [5]Gharahkhani P (PMID:
25173105)

SIX6 14 60965669 60989568 rs1018533 6.65E-05 0.80 [5]Gharahkhani P (PMID:
25173105)

[57]OsmanW (PMID: 22419738)

GAS7 17 9803926 10111868 rs12150284 1.95E-04 1.22 [58]van Koolwijk LM (PMID:
22570627)

TXNRD2 22 19853040 19939359 rs58714937 1.43E-03 1.26 [30]Cooke Bailey J (PMID:
26752265)

GMDS 6 1614035 2255868 rs13217030 6.11E-03 1.21 [5]Gharahkhani P (PMID:
25173105)

ABCA1 9 107533283 107790527 rs2472495 1.10E-02 1.17 [45]Chen Y (PMID: 25173107)

FNDC3B 3 171747418 172128493 rs12897 1.24E-02 0.87 [32]Lu Y(PMID: 23291589)

8q22 Region:
LRP12_ZFPM2

8 105491459 106826767 rs1545699 1.23E-02 0.86 [29]Wiggs J (PMID: 22570617)

TMCO1 1 165683528 165806992 rs4233408 1.28E-02 0.82 [58]van Koolwijk LM (PMID:
22570627)

[5]Gharahkhani P (PMID:
25173105)

TGFBR3 1 92135900 92381559 rs2810903 1.77E-02 1.24 [33]Li Z (PMID: 25861811)

PMM2 16 8890670 8944194 rs8057024 3.18E-02 1.11 [45]Chen Y (PMID: 25173107)

CAV2 7 115917434 116158595 rs75347112 2.91E-02 0.79 [7]Thorleifsson G (PMID:
20835238)

CAV1 7 116154839 116211239 rs7795510 8.84E-02 1.09 [7]Thorleifsson G (PMID:
20835238)

ATXN2 12 111880018 112047480 rs653178 1.60E-01 1.08 [30]Cooke Bailey J (PMID:
26752265)

SIX1 14 61100133 61134977 rs7152548 3.17E-01 0.90 [57]OsmanW (PMID: 22419738)

FOXC1 6 1600681 1624132 rs2235718 6.15E-01 0.96 [30] Cooke Bailey J (PMID:
26752265)

doi:10.1371/journal.pgen.1006186.t001
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results to consider for replication. Next, to empirically estimate the null distribution of the test
statistics in the discovery dataset, we conducted the Kolmogorov-Smirnov test for all p-values
above the chosen threshold (1e-05) to test the null hypothesis that p-values come from a uni-
form distribution. The test resulted in a p-value of 0.28 which suggests that we did not have
proper evidence to reject the null hypothesis. Using a LRT p-value<1e-05 as a threshold, we
observed 117 SNP-SNP models that mapped to 91 genes. SNPs (151 out of 224) not located
within 10Kb region of a gene were not tested in replication based on the definition of a gene as
described above. A total of 3,839 SNPs were available in the NEIGHBOR dataset that mapped
to the 91 genes from eMERGE and were subsequently moved forward to the replication stage.
There were 1,361 results that passed p-value criteria for marginal replication i.e. LRT p-value
<0.01 in the NEIGHBOR dataset (S2 Table). Considering LRT p-value<0.001 (to get the top
100 models) for the NEIGHBOR dataset, we observed 117 SNP-SNP models in 33 unique
genes that replicated consistently with the eMERGE results. The flow of this process is
explained in detail in Fig 2. Since we tested 91 unique genes in NEIGHBOR dataset, we calcu-
lated Bonferroni significance at alpha = 0.05 based on these 91 genes (i.e. 0.05/4095 = 1.2E-05
where 4095 is the number of tests for 91 genes), 3 models (ALX4-RBFOX1, OPCML-RYR3 and
ZNF385B-ELMO1) passed Bonferroni corrected p-value (1.2E-05) at alpha = 0.05. Fig 3 illus-
trates all unique gene-gene models (resulted in 17 unique models from a total of 117 SNP-SNP
non-unique models) and their respective lowest p-values from the models in both eMERGE
and NEIGHBOR datasets. Supplementary S2 Table shows all non-unique results that were rep-
licated from both all eMERGE samples as well as only EA eMERGE samples. It is evident from
the table that many tag SNPs spread across the same genes show similar interactions, support-
ing the approach of gene-based interaction analysis rather than finding exact SNP-SNP inter-
action in both discovery and replication analyses.

Fig 2. Flow chart explaining all the steps for gene based interaction analysis in discovery (eMERGE) and replication dataset (NEIGHBOR).

doi:10.1371/journal.pgen.1006186.g002
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Fig 3. Synthesis view plot representing unique gene-gene interaction models and their p-values in
discovery and replication dataset.

doi:10.1371/journal.pgen.1006186.g003
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As additional follow-up, we explored which of the 33 unique genes comprising the 17
unique gene-gene models (described above) showed evidence of expression in eye tissue using
two online databases: Tissue-specific Gene Expression and Regulation (TiGER) and BioGPS
[35]. Fig 4 shows a gene-gene interaction circular plot among the 33 unique genes color-coded
by the genes that are expressed (red) and not expressed (grey) in eye based on these databases.
Next, we looked for expression of these genes in different eye tissues using the ocular tissue

Fig 4. Circular plot representing only unique gene-gene interactions.Genes are colored as red if they are expressed in eye and as grey if not
expressed in the eye. All genes are ordered by chromosome. Links between the genes represent gene-gene interactions that are replicated.

doi:10.1371/journal.pgen.1006186.g004
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database[36] and reported the expression of the genes found in the database in 10 different eye
tissues in Fig 5.We also annotated these 33 unique replicating genes to pathways using Biofil-
ter 2.0. To evaluate the presence of genes in major pathways, only pathways supported by at
least 2 sources in Biofilter were considered. Since Biofilter reports results from all the data
sources, we observed some annotations whose relevance could not be established and these
annotations were discarded. We carefully reviewed pathway annotations from Biofilter and
removed results that were not applicable. Fig 6 represents a Cytoscape hierarchal plot[37] for
16 of the 33 genes that were annotated to 11 major pathways.

Fig 5. Heat map representing expression of the unique genes found in the ocular tissue database fromGXG interaction results.Here, the x-axis
lists all genes and y-axis lists the names of 10 tissues from the eye. Scale and color intensity represent PLIER values as reported in the ocular tissue
database.

doi:10.1371/journal.pgen.1006186.g005
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Fig 6. Hierarchal plot showing 16 genes in red circles and 11 pathways in blue rectangles. Connection
between the genes and pathways was established using Biofilter 2.0.

doi:10.1371/journal.pgen.1006186.g006
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Lastly, to investigate genetic variance explained by these SNPs, we combined 17 SNPs from
Table 1 with the 34 SNPs from Table 2 to estimate variance of POAG risk. Analysis in
eMERGE data using GCTA[38] suggests that GWAS SNPs explain 2.1% of the variance. Add-
ing top significant SNPs from the interaction analysis performed here increases the explained
estimated variance to 5.6%. Analysis in NEIGHBOR dataset for GWAS as well as SNPs repli-
cated from interaction study explain 3.4% of the total variance. Variance explained in the
NEIGHBOR dataset is less than the variance explained in eMERGE mainly because the disease
prevalence (1.86% as suggested by National Eye Institute (https://nei.nih.gov/eyedata/
glaucoma)) used in this analysis is low as compared to the proportion of cases and controls as
suggested in GCTA manual[38].

Discussion
We have successfully completed a discovery and replication study to test gene-based interac-
tions in two large POAG datasets: eMERGE and the NEIGHBOR. We have identified several
gene-gene interactions associated with glaucoma and showed that most of the genes are
expressed in the eye. We annotated all replicating genes from the gene-gene interaction analy-
sis to pathways and observed that 16 genes from the analysis were mapped to 11 major path-
ways based on the sources available in Biofilter.

Our results show several genes involved in cell adhesion, axonal guidance and signaling
pathways, previously hypothesized to impact glaucoma-related optic nerve degeneration [39].
Expression analysis from the ocular tissue database also shows that many genes identified by
this analysis show high expression in optic nerve and optic nerve head especially three genes in
particular GNG7, RYR3 and CTNND2 (See Fig 5).

Zinc finger proteins are also known to be associated with glaucoma[40]. Our results indicate
associations with POAG involving interactions between several zinc finger proteins and other
protein coding genes such as interaction between genes ZNF385B and ELMO1 (LRT p-value
6.53–06 and 1.23E-05 for eMERGE and NEIGHBOR respectively).

Table 2. All replicating gene-gene interactions at LRT p-value <1e-04 for replication dataset.

Gene1_Gene2 eMERGE Var1 eMERGE Var2 eMERGE LRT P-val Neighbor Var1 Neighbor Var2 Neighbor LRT P-val

ALX4_RBFOX1 rs10838251 rs653127 7.29E-06 rs7126447 rs11077011 1.62E-06

OPCML_RYR3 rs2246352 rs2467565 4.34E-06 rs2659614 rs8028442 1.01E-05

ZNF385B_ELMO1 rs2138196 rs918978 6.53E-06 rs13408749 rs2392477 1.23E-05

CTNND2_NRG3 rs1302802 rs11191761 9.23E-06 rs2973515 rs660464 1.60E-05

TMEM97P2_SLC24A3 rs7836543 rs7264540 9.24E-06 rs7826784 rs11907443 1.12E-04

CD247_CYP4F8 rs864537 rs2239367* 8.88E-06 rs704856 rs3794989 1.24E-04

CCDC3_GTF3C1 rs2399892 rs4787965 6.78E-06 rs2580904 rs7184872 1.91E-04

ROBO1_HTR2A rs6802127 rs2070039 5.44E-06 rs1444480 rs9534510 2.18E-04

ERC2_TNC rs7637114 rs7035322 4.88E-06 rs815443 rs7847271 2.42E-04

CARS2_SIRPB2 rs389656* rs12480584 1.83E-06 rs2304767 rs2422575 3.83E-04

FAM167A_NAV2 rs7018324 rs10734289 6.59E-06 rs2618433 rs2584848 3.90E-04

SUMF1_RPS6KA2 rs11919486 rs12208871 2.39E-06 rs13096374 rs1883361 4.32E-04

C8orf12_NAV2 rs7018324 rs10734289 6.59E-06 rs10105588 rs2243437 6.09E-04

SETDB1_ITGA9 rs34207591 rs4678971 9.66E-06 rs198325 rs78196452 6.47E-04

NLN_DCHS1 rs10096 rs937856 2.97E-06 rs1309822 rs2659863 7.03E-04

MYO5A_GNG7 rs1669859 rs759065 3.01E-06 rs2693467 rs7258864 7.84E-04

LOC101928114_LOC101928703 rs12491137 rs6840100 9.30E-06 rs62248525 rs75134552 7.96E-04

doi:10.1371/journal.pgen.1006186.t002
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Among the top associations, is the interaction between protein coding genes OPCML and
RYR3 (LRT p-value 4.34E-06 and 1.01E-05 for eMERGE and NEIGHBOR respectively). The
OPCML gene is an opioid binding protein/cell-adhesion molecule that is closely related to
other proteins including, the NTN (neurotrimin), and genes in the immunoglobin family
(IgLON family)[41]. NTN has been found to be nominally associated with glaucoma in previ-
ous studies[42].

Our results also indicate interaction for ROBO1 andHTR2A (LRT p-values 5.44–06 and
2.18–04 for eMERGE and NEIGHBOR respectively as shown in Table 2). Both of these genes
show co-expression with SNCA as predicted by the GIANT network [43] (Genome-scale Inte-
grated Analysis of gene Networks in Tissues: http://giant.princeton.edu/) web based interface.
Fig 7 shows an interaction network generated by GIANT with genes that show functional
interaction between query genes and other genes expressed only in the eye.HTR2A encodes
receptors of 5-HT2A serotonin molecules. Serotonin molecules work as neurotransmitters and
these molecules also function as receptors for many drugs[44].

Another interesting finding is an interaction between CTNND2 and NRG3 (LRT p-value
9.23E-06 and 1.60E-05 for eMERGE and NEIGHBOR respectively as shown in Table 2).
CTNND2, i.e. Catenin Delta 2 gene, encodes adhesive junction proteins that are involved in ret-
inal morphogenesis and cell adhesion [45,46].

Cadherin molecules are known to support the migration of axons during optic nerve mor-
phogenesis [47][50] and have been previously investigated as POAG susceptibility genes
[48,49]. Our results identify a statistical interaction between NLN and glycoprotein DCHS1

Fig 7. GIANT network representing interaction betweenROBO1 andHTR2A query genes and other genes
for expression in the eye. Scale represents the confidence in the relationship shown.

doi:10.1371/journal.pgen.1006186.g007
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also known as PCDH7 (LRT p-value 2.97E-06 and 7.035E-04 for eMERGE and the NEIGH-
BOR respectively) and also an interaction between NGR3 (neuregulin 3) and cadherin-associ-
ated protein CTNND2 (LRT p-value 9.23E-06 and 1.60E-05 for eMERGE and the NEIGHBOR
respectively).

Pathway analysis using the gene-gene models revealed several interesting pathways includ-
ing signal transduction, cell adhesion and regulation of actin dynamics for phagocytic cup for-
mation. Myocilin, a protein involved in mendelian forms of glaucoma, may impact focal
adhesion and migration of cells [50] but the interaction among other genes with similar func-
tions is unknown. Our analysis highlights several genes with these functions and their role in
glaucoma may require further investigation.

Our interaction analysis showed at least two genes (CTNND2 and RBFOX1) that have been
previously associated with myopia, and are also associated with glaucoma in our datasets.
CTNND2 is known to be associated with myopia[51] and myopia can influence glaucoma risk
[52]. CTNND2 is significantly associated with myopia in an Asian GWAS and RBFOX1 has
been associated with myopia in a multi-ethnic cohort and also in a Chinese population-based
study [53–55]. In eMERGE, POAG cases and controls were not screened for myopia. There-
fore, these associations will need further evaluation to understand if they are due to the co-
morbidities of POAG and myopia in these patients. These results suggest that exploring inter-
action among genes associated with myopia may also be of interest in POAG studies. In con-
clusion, interactions among genes with only marginal POAG association can demonstrate
interesting interactions that may contribute to the complex etiology of POAG.

This is the first replication study to identify gene-gene interactions in POAG in a large case-
control dataset. We found 17 gene-gene replicating models at LRT p-value less than 0.001 and
many of these interacting genes play important roles in cell adherence junction and signal
transduction. Most drugs for glaucoma target synthesis of aqueous humor, which could be
achieved by manipulating trabecular meshwork that maintains the outflow of aqueous humor
in the eye. In most of the glaucoma patients, the outflow mechanism from the trabecular mesh-
work is negotiated when the progression of the disease is accompanied by an increase in intra-
ocular pressure. For all the genes that are expressed in eye, we looked at the genes that are also
expressed in trabecular meshwork via literature search and in the ocular tissue database as
shown in Fig 5 [53,54]. While most of the genes identified in this study show significant
expression in the eye, 9 genes in particular (GNG7, ROBO1, SUMF1, RYR3, SLC24A3, CCDC3,
CARS2, RPS6KA, SETDB1) also show expression in trabecular meshwork. Thus, this suggests
potential genes that could be involved in ocular hypertension and elevated IOP could be linked
to the progression of POAG. Many complex diseases are caused by multiple variants in the
same genes or in different genes. SNP-based association tests do not account for locus based
genetic heterogeneity, and when looking for replication it is highly unlikely that the same vari-
ant might be causal for a complex disease in an independent population. Our analysis high-
lights the importance of performing gene based interaction analysis to utilize complexity in
biology and considering heterogeneity for testing statistical epistasis. Our analysis also indi-
cates that testing for interactions in association studies can help explain additional genetic vari-
ance beyond that accounted for by SNPs associated with a disease via main effects only.
Despite of the advantages to look for gene-based interactions, one limitation of this approach is
that focusing only on the genes could result in missing interactions among the intragenic regu-
latory regions such as distal enhancers. Furthermore, we also did not test for all possible pair-
wise combinations but instead picked variants that show significant to marginal main effect
which could also result in missing some potentially significant epistatic variants. Future studies
could include testing for interactions based on prior-biological knowledge and testing for
regions that are involved in similar pathways or are linked based on regulatory information
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available[32]. More studies or meta-analysis to replicate the interaction results can provide
increased confidence in our analyses.

In conclusion, we identified many significant gene-gene models that are associated with
POAG and our study clearly indicates that we can consider heterogeneity among independent
populations by looking for replication in gene regions rather than exact SNPs. Thus presenting
a gene based SNP-SNP interaction analysis, which has been done by others including Ma et al.
2012 and 2013[56,57], as a powerful approach in replication studies.

Materials and Methods

Discovery dataset
eMERGE-II is a consortium in the United States that consists of seven adult sites and two pedi-
atric sites across the country. There are a total of 55,289 unique samples in eMERGE that have
been genotyped on different platforms and imputed to the 1000 Genomes March 2012 refer-
ence dataset using SHAPEIT2 for phasing and IMPUTE2 for imputation [13]. Five adult sites
(Marshfield Clinic, Group Health, Geisinger Clinic, Northwestern University, and Mayo
Clinic) contributed samples to the glaucoma phenotype. There are a total of 5090 samples that
include 961 cases and 4,129 controls, (2,247 males and 2,843 females). Table 3 shows the distri-
bution of samples across all sites and gender. Glaucoma case and control status was obtained
from EMR data. All cases and controls selected were age 40 or above and had a recent eye
exam within 2 years. Patients with two or more occurrences for ICD-9 codes for open angle
(365.10), primary open angle (365.11) or low-tension open angle glaucoma (365.12) were

Table 3. Demographics for glaucoma samples in eMERGE discovery dataset.

Variable Type Category Observations %

Glaucoma Phenotype Cases 961 0.189

Controls 4129 0.811

Site Cases Group Health 409 0.080

Vanderbilt 71 0.014

Marshfield 289 0.057

Mayo 86 0.017

Geisinger 85 0.017

Northwestern 21 0.004

Controls Group Health 1441 0.283

Vanderbilt 253 0.050

Marshfield 1245 0.245

Mayo 411 0.081

Geisinger 382 0.075

Northwestern 397 0.078

Sex Cases Male 404 0.079

Female 557 0.109

Controls Male 1843 0.362

Female 2286 0.449

Race Cases Black 14 0.003

White 922 0.181

Other 25 0.005

Controls Black 82 0.016

White 3918 0.770

Other 129 0.025

doi:10.1371/journal.pgen.1006186.t003
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diagnosed as cases and all the other samples were further evaluated for controls by following
criteria: excluded any samples that had diagnosis for Ocular Hypertension; patients with Cur-
rent Procedural Terminology (CPT) codes for glaucoma related surgery; patients that were
given intraocular pressure lowering medications (details in supplementary S1 Text). Glaucoma
samples in the eMERGE dataset were extracted from the imputed version3 dataset (dbGaP
accession: phs000888.v1.p1}; all markers and samples below 99% call rate were excluded from
the analysis. For the purpose of running GWAS and GXG common variant analysis, we only
kept markers at MAF> = 0.05. This resulted in 2,914,185 SNPs tested for GWAS. Principal
component analysis was performed using Eigensoft [58] on all non-related samples to look for
individual level population variations. A plot of eigenvector 1 versus 2 from the eigen-analysis
is shown in Fig 8. Adjusting for principal components helps to identify non-spurious and rele-
vant associations that are merely due to ancestral difference.

Replication dataset
DNA from more than 4,900 POAG cases and controls (primarily European Americans) was
collected for the NEIGHBOR study from 12 sites including Massachusetts Eye and Ear Infir-
mary, Brigham andWomen’s Hospital, Duke University, Johns Hopkins University, Marsh-
field Clinic, Stanford University, University of Pittsburgh, University of West Virginia,
University of Miami, University of Michigan, University of California, San Diego, and Vander-
bilt University as previously reported[6,29]. POAG was defined in cases by the presence of
optic nerve disease with visual field loss consistent with nerve fiber layer dropout; when this
information was not available, cases were determined based on a cup-to-disc ratio greater than
0.8 in at least one eye. POAG controls had normal optic nerves, normal intraocular pressure,
and presumed normal visual fields, or a cup to disc ratio less than 0.7. Samples were genotyped
on the Illumina 660W Quad platform at the Center for Inherited Diseases Research (CIDR).
Samples with call rate<97% were excluded, as were samples determined to be related with a
kinship coefficient>0.0312. This resulted in 4,422 individuals (2,132 POAG cases, 2,290 con-
trols). Principal components analysis was run using Eigenstrat and eigenvectors were tested for
association with disease status using a logistic regression model in Stata; eigenvectors 1,2,3, and
10 were significant. The GWAS data were phased and imputed to the March 2012 version of
the 1000Genomes reference data using ShapeIt2 and IMPUTE2. Markers with call rate<97%
and MAF<0.05 were removed, as were markers with imputation quality<0.7; this resulted in
6,287,101 variants to be examined for further analysis. Out of ~6M variants, 3839 SNPs were
used for the purpose of replication as described earlier in methods section.

SNP-SNP interaction analysis
Exploring pairwise SNP-SNP interaction is a two-step process. Steps for filtering of SNPs at dif-
ferent stages are explained in detail in Fig 2. From GWAS results, we extracted all SNPs with
main effect p-value<0.01 and also to test only independent models, we removed any SNPs in
high linkage disequilibrium (LD r2 threshold>0.6). We removed these SNPs in LD using
PLINK. Secondly, we investigated all pairwise SNP-SNP interaction models using logistic
regression in PLATO (https://ritchielab.psu.edu/software/plato-download) assuming an addi-
tive encoding model. All models were adjusted for age, sex, site, platform and first 6 principal
components. Likelihood ratio tests were performed to determine significance of each pairwise
interaction model above and beyond its main effects. This resulted in 117 SNP-SNP models
with LRT p-value<1e-05. To perform replication, these SNPs from the top 117 SNP-SNP
models were annotated to genes using Biofilter 2.0[59] which resulted in 91 unique genes that
were considered for replication. All SNPs in these genes were extracted from NEIGHBOR data
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and then SNPs passing an info score threshold of 0.7, marker call rate of 99%, MAF 0.05 and
SNPs passing LD pruned r2 threshold 0.6 were considered for replication (i.e. 3,839 SNPs). All
genes based on expanded SNP-SNP models were exhaustively tested in the replication dataset.
A total of 7,367,042 pairwise SNP-SNP models (from 3,839 SNPs) in 91 genes were evaluated

Fig 8. Principal component analysis (PCA) of 5090 samples (glaucoma cases and controls) from eMERGE network. Eigenvector 1 is on x-axis
and eigenvector 2 is on y-axis. Each point is a sample and they are color coded by case and control status.

doi:10.1371/journal.pgen.1006186.g008
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in the replication dataset. Unique models with replicating LRT p-value< 0.001 are reported in
Table 2.

Ethics statement
All eMERGE and NEIGHBOR consortium sites have appropriate IRB approvals for this de-
identified research. All relevant data are within the paper and its Supporting Information files.
Raw genotype files for eMERGE (phs000888.v1.p1) and NEIGHBOR (phs000238.v1.p1) are at
dbGaP.
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