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Abstract 
 
This study is aimed at testing the possibility of using woody biomass from three invasive 

woody vegetation types (Spider Gum, Myrtle and Acacia) for production of bioenergy in the 

Cape Agulhas Plain. Physical recoverability of the woody biomass was studied by means of 

a semi-mechanized harvesting system to evaluate potential productivity, operational costs 

and the estimated yield energy gain.  

 

The system consisted of five components: manual harvesting, motor-manual harvesting, 

extraction, chipping and road transport. Data on the system productivity was obtained using 

activity sampling and time study techniques. Activity sampling was applied on manual and 

motor-manual harvesting in order to record harvesting time and standard time study 

techniques were used to obtain time data for extraction, chipping and road transport 

operations.  

 

Findings revealed benefits associated with the utilisation of invasive woody vegetation as 

energy feedstock. Therefore, the problem of exotic tree species can be dealt with by 

transforming them into energy feedstock, thus minimising the effect of invasive plants. At 

the same time essential biomass energy can be produced, while some of the cost of 

production could be offset by the benefits accruing from the biomass energy.  

 

The Acacia site, characterized by larger mature dense trees, had the highest amount of 

harvested biomass compared to the rest of the vegetation types (i.e. Myrtle and Spider 

Gum).  

 

The overall system productivity was found to be significantly influenced by a low equipment 

utilisation rate, estimated at 50%. This resulted in low production rates in general. The low 

supply rate of material to the chipper by the three-wheeled loader (1.5 – 5.3 oven-dry tonne 

per production machine hour) was found to be a major constraint in the chipping process, 

especially when considering that the chipper is potentially capable of chipping 4 – 9.4 ODT 

PMH-1 at the harvesting sites. This resulted in a significant energy balance of 463 GJ 

between output and input energy of the system. The overall total supply chain system costs 

based various road transport distances of species ranged from R 322.77 ODT-1 to R 689.76 

ODT-1 with an average of R 509 ODT-1. This was found to be costly compare to the case 
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where high machine utilisation rate and optimal productivity are used (average of R 410 

ODT-1), biomass recoverability in this field trial had a higher total system cost due to low 

productivity, resulting from the low equipment utilisation rate applied.  

 

Key words: Invasive tree species, energy feedstock, productivity, biomass recoverability, 

operational cost, man-day, energy balance 
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Uittreksel 
 
Hierdie studie was gemik daarop om die moontlikheid van die gebruik van houtagtige 

biomassa, afkomstig van uitheemse plantegroei (Bloekom, Mirte en Akasias) op die 

Agulhasvlakte vir bio-energie te ondersoek.  Potensiële produktiwiteit, bedryfskostes en die 

geskatte energie opbrengs toename is gebruik, om die fisiese opbrengs van houtagtige 

biomassa van ŉ semi-gemeganiseerde ontginningstelsel te evalueer. 

 

Die stelsel het uit vyf komponente bestaan: Handontginning, motor-handontginning, 

uitsleep, verspandering en padvervoer.  Data oor die stelselproduktiwiteit is uit tydstudie en 

aktiwiteit steekproewe verkry.  Aktiwiteit steekproewe is toegepas op hand- en motor-

handontgining om ontginingstyd te verkry, terwyl tydstudie standaardtegnieke gebruik is om 

tyd data vir uitsleep, verspandering en padvervoer werksaamhede te verkry. 

 

Bevindings het die voordele met bettrekking tot die gebruik van uitheemse plantegroei as 

energiebron bevestig.  Die uitdaging rondom die verspreiding van uitheemse plantegroei 

kan dus aangespreek word deur dit as energiebron te benut. Die produksiekoste vir die 

toegang tot die bruikbare biomassa kan moontlik voorsien word uit die voordele van die 

gebruik van die energie wat uit die benutting van die biomassa verkry word. 

 

Die groter meer volwasse en digte Akasia opstand het die meeste ontginde biomassa 

gelewer vergeleke met die ander opstande in die studie (d.i. Mirte en Bloekom). 

 

Die stelselproduktiwiteit is beduidend beïnvloed deur die lae toerustinggebruik wat minder 

as 50% beloop het.  Dit het ook laer produksievermoë in die algemeen tot gevolg gehad.  In 

die verspandering werksaamheid blyk die lae invoer tempo (1.5 – 5.3 oonddroog ton per 

produktiewe masjienuur) van die driewiellaaier die beperking op die proses te wees, veral 

as in ag geneem word dat die verspandering teen 4-9.4 ODT PMH-1 kan geskied.  Die 

resultaat was ŉ beduidende energie balans van 463 GJ tussen uitset- en invoerenergie van 

die stelsel.  Die totale toevoerketting kostes gegrond op verskeie padvervoer afstande van 

die spesies was tussen R 322.77 ODT-1 tot R 689.76 ODT-1, met ŉ gemiddelde rondom R 

509 ODT-1.  Die resultaat is duur gevind in vergeleke met gevalle waar hoë masjiengebruik 

en optimale produktiwiteit (gemiddeld van R 410 ODT-1), moontlik was.  Die 
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biomassaherwinning in die studie het ŉ hoer totale stelselkoste gehad veroorsaak deur lae 

produktiwiteit, wat verwant is aan die laer toerusting gebruikstempo wat verkry is. 

 

Sleutelwoorde: Uitheemse plantegroei, energiebron, produktiwiteit, biomassaherwinning, 

bedryfskoste, mandag, energiebalans. 
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1. Introduction 

1.1 Background and justification 

 
Since the acceptance of the Kyoto protocol in 1997, interest in replacing fossil fuels with 

renewable alternatives has continued to increase. Reports and predictions of climate 

change and global warming have resulted in the recognition of the societal benefit of using 

alternative energy sources that are environmentally and socio-economically friendly. In 

recent years, South Africa has committed itself to the target of producing 10 000 GWh of 

electricity from renewable energy by 2013 (Department of Minerals and Energy, 2003). In 

order to reach this goal, many studies in the development and production of renewable 

energy are currently underway. Although South Africa has limited land potential for 

bioenergy production from woody biomass resources, it is playing a leading role as a 

technology developer in this field in Africa. One remarkable example for biomass utilisation 

is within the sugarcane industry, which is considered the most efficient bio-ethanol source in 

South Africa.  

 

Several investigations have already been undertaken for various biomass types, including 

agricultural crops and wood harvesting residue. However, little attention has been paid to 

invasive vegetation as energy feedstock, creating the need to focus research on this widely 

unknown biomass resource.  

 

Invasive vegetation in South Africa, as in other parts of the world, is becoming increasingly 

widespread (Richardson and Van Wilgen,  2004). A government program known as Working 

for Water (WfW) monitors the spread of invasive vegetation, but despite the efforts of WfW, 

invasive vegetation continues to spread and threaten the South African plant biodiversity 

and water resources. It is estimated that invasive vegetation occupies  8% of the South 

African land area (Marais et al., 2001; Richardson and Van Wilgen, 2004). 

 

Clearing invasive vegetation in South Africa is a large and complex problem, with high 

harvesting cost and low efficiency (Theron et al., 2004), as indicated by the R800 million 

spent from 1995 to 2001 on the clearing of invading alien vegetation (Marais et al., 2001). 

The return on investment in terms of biomass energy production has not been satisfactorily 
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established and benefits that can accrue from harvested invasive plants are yet to be 

investigated.   

 

An important consideration in the exploitation of invasive woody vegetation for energy 

production is the selection of the most efficient harvesting and transportation systems. This 

will ensure efficient and low-cost methods of harvesting and delivering biomass material 

from selected areas to processing plants. Fundamental factors to be considered in selecting 

a harvesting system are productivity, operational costs and net energy gain. These factors 

are crucial for the production of energy from invasive plants, since no managed plantation 

setup facilitating the harvesting and transport can be presumed. 

 

This study was conducted in the Fynbos ecosystem of the Cape Agulhas Plains. A semi-

mechanized harvesting system operated by a WfW team was used as a pilot study.  The 

species harvested from the study area for energy feedstock included Acacia Cyclops, 

Leptospermum laevigatum (Myrtle) and Eucalyptus lehmanii (Spider Gum). Data from the 

harvesting operation was generated using activity sampling and time study techniques. The 

South African harvesting and transport costing model was applied to evaluate operational 

performance and costs.  

 

1.2 Objective 

 

The main objective of the study was to test the feasibility of using invasive woody vegetation 

for bioenergy generation, based on an example in the Agulhas Plain on the southern coast 

of South Africa.  Net energy gains, harvesting productivity, and operational cost will be used 

as the key indicators.  

 

Sub-objectives were to: 

 

 quantify recoverable biomass per hectare under prevailing conditions; 

 determine the productivity of the applied harvesting system; 

 determine the production costs of the applied system and 

 determine the potential net energy output and input. 
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1.3 Research Hypothesis 

  

Possible cost of harvesting wood from invasive vegetation as a source of raw material for 

biomass production is hypothesised. The validity of the following alternative hypotheses will 

be tested: 

 

HA1: It is possible to identify variables that significantly affect the productivity of biomass 

extraction for the three prevailing tree species. 

HA2: Productivity of biomass extraction with the three-wheeled loader differs between the 

three prevailing tree species. 

HA3: The total cycle time of biomass extraction with the three-wheeled loader differs 

between the three prevailing tree species. 

HA4: The chipper productivity differs between the three prevailing tree species. 

HA5: The total cycle time for chipping differs between the three prevailing tree species. 

HA6: The waiting time of the chipper differs between the three prevailing tree species. 

HA7: The chipper feeding time differs between the three prevailing tree species. 

1.4 Study limitations 

 
The study focused only on the biomass production in the field. It does not cover the 

quantification of the potentially available biomass in the area, but is restricted to the 

recoverable biomass from a given site. Harvesting technology was restricted to current 

systems (WfW teams), and available equipment and technology.This study does not 

consider marketing, trade of the bioenergy products or the conversion of biomass into actual 

energy (e.g. electricity or thermal energy) following the harvesting process. It also does not 

provide the life cycle analysis of the invasive biomass as a bioenergy system and the 

relationship between capital investments and the financing are not part of this investigation.  
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2. Literature review 
 

This review covers essential theory applicable to the harvesting of invasive woody 

vegetation as an energy feedstock. The key issue in evaluating the energy potential of 

exotic tree species is understanding its role as an alternative energy source. This research 

also considers existing harvesting system options, which have been investigated for wood 

fuel. Cost factors impacting on the harvesting of woody biomass and the feedstock 

properties are also discussed.  

2.1 Woody biomass as bioenergy feedstock 

 

Woody biomass refers to  merchantable and un-merchantable trees, small diameter trees, 

tops, needles, leaves, limbs, stump and logging slash produced from mechanical thinning 

and conventional saw-timber harvesting with the potential of producing energy (Norton et 

al., 2003; Han et al., 2004; Stampfer and Kanzian, 2006; Marinescu and Bush, 2009; 

Jackson et al., 2010). As stated by the International Energy Agency (2002a), forest biomass 

is a source of energy for industrial, commercial and domestic use.  

 

In the renewable energy context, woody biomass is regarded as one of the resources with 

important energy content which could be profitable as agricultural and industrial biomass 

sources such as untreated wood residues (IEA, 2002; Zafar, 2008). Beckert and Jakle 

(2008) reported that over 25 million British Thermal Units (Btu’s) could be produced per 

woody biomass tonne. According to IEA (2002), about 11% of the world’s primary energy 

was supplied by woody biomass. In developing countries, 55% of the 4 billion m3 of wood 

used annually, is used directly as fuel wood or charcoal in order to meet daily energy needs 

of cooking and heating.  
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2.2 Current potential woody biomass sources 

2.2.1 Short rotation wood crops (SRWC) 
 
One of the sources of the rand woody biomass for energy is energy crops (Zafar, 2008), 

also known as short-rotation wood crops (SRWC).These include fast-growing species such 

as hardwoods: Alnus, Platanus, Eucalyptus spp., hybrid poplars, willows, and specifically 

some perennial grasses used as energy feedstock (Ashton, 2010). Short-rotation energy 

plantations refer to a new type of agroforestry practice such as fast-growing trees with 

significant potential for providing woody biomass (Rauscher, 2008; Fege et al., 1979; Bain 

and Overend, 2002). Several clones have been identified through crop improvement 

processes, with species selected for their rapid growth, ease of establishment and 

regeneration, tolerance to major pests and diseases and matching to site as well as to soil 

conditions (IEA, 2002b; Zafar, 2008). Economically, SRWC show promise in producing a 

sustainable supply of woody biomass. Zafar (2008) stated that 10-15 t ha-1 of energy crops 

are harvested annually in the northern hemisphere while Ashton (2010) reported that 

establishment costs are low as compared to conventional processes. This shows a positive 

indicator for the short rotation trees.  

 

2.2.2 Logging residues 

 
This biomass category caters for non-commercial trees, for conventional products of pulp or 

lumber and paper and small understory trees, as well as tops, limbs, dead trees and cull 

material( i.e. inferior quality) left over from forest harvesting operations (Smith, 1982). 

Logging residues, also known as forest residues, result from cutting during silvicultural 

management, such as the thinning of live to dead material in the standing forest (Andersen, 

1999; Enters, 2001; Rauscher, 2008; Ashton, 2010). Logging residues represent an 

important share of the total biomass present in the forest (Zafar, 2008). After mill residues, 

logging residues are the most significant source of woody biomass and a readily available 

energy fibre (Spinelli et al., 2007). Adams (1995), cited by Koopmans and Koppejan (1997), 

reported that recovery rates vary considerably and depend on local conditions. The 

disadvantage of using logging residues is that the collection and transportation costs are 

often greater than the market value of the materials (Withycombe, 1982). 
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2.2.3 Mill residues 

 
Mill residues are the by-products of processing operations (USDA, 2005), which according 

to Rauscher (2008), are also one of the most readily available biomass sources as 

compared to other feedstock supplies. The potential of mill residues has been well 

demonstrated in the USA where about 97 percent of this resource has been utilized (USDA, 

2005). Categories of available mill residues are: waste of lumber production, veneer and 

plywood, pulp and paper, bark and others e.g. black liquor, bark and sawdust (Enters, 2001; 

Walsh, 2007). Residues from sawmills, veneer and plywood mills and furniture 

manufacturing, as well as a number of other forest product industries are in a usable form 

for pulp or board manufacture. So the structural use competes with the use as fuel to 

generate energy in the form of heat and power. The advantage of processing residue is that 

it tends to be clean, uniform, concentrated, of low moisture content and easily transportable. 

The cost of wood pellet manufacturing could be confined if the competition for mill residue 

does not exist (Bergman and Zerbe, 2008).  

 

2.2.4 Invasive vegetations 

 
Woody biomass of the invasive vegetation can be integrated into different biomass 

conversion routes as suggested by Frombo et al. (2008) (Figure 1).  

 

Figure 1: Biomass conversion routes (Adapted from Frombo et al.2008). 
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As any other woody biomass types, invasive vegetations can aid in meeting policy goals of 

rural development and environmental improvement (Leinonen, 2007). Recent studies 

conducted in Namibia have shown examples of the use of invasive plants to produce 

energy. It was found that wood from invasive vegetation has some potential for supplying 

power plants and charcoal-briquette production in that country. The Namibian examples 

have, shown conclusively that bush encroachment biomass offers many economic and 

energy benefits (Leinonen, 2007). Invasive vegetation has also been used as biofuel 

feedstock in the USA and Brazil. Prosopis juliflora species, a small tree from Central 

America, is considered as invasive vegetation in the USA which is nowadays used as 

feedstock for second generation biofuels production. Another case concerns the African oil 

palm, considered an invader in Brazil and therefore used for biofuel production (Howard and 

Ziller, 2008). The Prosopis species use as biofuel feedstock in Africa can only be feasible 

with strict adherence to the criteria and principles for sustainable biofuel production 

established by the Roundtable on Sustainable Biofuels (RSB, 2010). These criteria and 

principles are built on the optimisation of economic, social and environmental benefits. 

 

Many exotic tree species in South Africa have been identified to be invasive as they are 

responsible for the modification of the ecosystem composition, structure and processes 

where they occur (Noss, 1990).  The Prosopis species have, for example, radically changed 

bird habitats by replacing native Acacia-dominated communities (Dean et al., 2002). 

According to the Agulhas National Park, many invasive tree species currently occupy the 

region, where about 142 672 ha (66% of the total area) is invaded by exotic trees (Figure 2) 

on the Agulhas Plain (Krug et al., 2010).  
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Figure 2: Distribution of alien invasive vegetations in South Africa (DWAF, 2003). 
 

2.3 Feedstock supply chain 
 
The supply chain focuses on everything occurring from the harvest to end use. In general, 

two main steps characterise the production of wood and biomass from the forest:  the 

primary (biological) and the secondary (technical) production phases. Primary production 

refers to the growth of trees and secondary production to harvesting operations including 

felling, pre-processing and the transport of the resource. One of the main aspects of the 

technical production is the synchronization of all activities within the woody biomass supply 

chain. In this context, three major elements have to be considered when planning for woody 

biomass harvesting: 1) the harvesting methods; 2) the harvesting system and 3) the 

biomass processing stages (Allen et al., 1998).  

 

The harvesting method refers to the form in which wood is delivered to the logging access 

road and depends on the amount of processing (e.g. delimbing, bucking, barking, chipping) 

which occurs in the cut-over. Harvesting methods are: full tree method, tree-length method 

and cut-to-length method (Pulkki, 2001). The harvesting system includes the combination of 
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tools, equipment and machines used to harvest wood, and vary depending on the specific 

terrain, work object and labour availability (Hall, 2005). In certain cases individual 

components of the system can be changed without changing the entire harvesting system, 

while components can be used for different harvesting systems. The one-grip harvester, for 

example, fells, delimbs and cross-cuts in the stump area, and can be used in the typical 

mechanised cut-to-length logging system. A forwarder can carry the product to roadside. 

Motor-manual felling, delimbing and topping, tree-length skidding to roadside and roadside 

slashing can be included in the tree-length method. For a typical harvesting system used in 

whole-tree harvesting, the system can include a feller buncher, grapple skidder, stroke 

delimber and slasher (Tsoumis, 1992). Biomass processing considers all the phases 

involved in the transformation of the raw material into the final product (Allen et al., 1998). 

 

According to Hall (2005), four factors can influence a successful harvesting operation: 1) the 

amount of available and recoverable wood fuel; 2) management constraints and site or 

location; 3) the harvesting system and 4) the extraction equipment selection. These factors 

must be considered in order to ensure that the woody biomass is supplied to the plant in 

time, at the right quality and right quantity (Alakangas and Virkkunen, 2007). The most 

important point is to optimise the supply chain, depending on cost and environmental 

considerations (Schaberg et al., 2005). Figure 3 shows the example of the woody biomass 

feedstock supply chain. 
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Figure 3: Biomass feedstock supply chain (Alakangas and Virkkunen, 2007). 
 

2.3.1 Supply Chain Components 

 
A woody biomass supply chain must consider three main levels of planning (Richardson et 

al., 2002): the stump site, the harvesting process and the biomass plant. All actions required 

for cutting the forest biomass and bringing it to the consumption facilities to be 

manufactured in final wood products are included in the harvesting process. Figure 4 shows 

the supply chain components. 
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Consideration of key points 

 

 

 

  

 

 

 

 

 

 

 
 

Figure 4: Supply chain components (adapted from Richardson et al., 2002). 
 
In a supply chain felling, extraction, chipping and transport operations of wood fuel are 

arranged in series in order to allow processing from the stand to the end-use point in a 

logical and sequential manner. Mechanized operations rely on consistent cycle times for 

scheduled production and allocated labour (Richardson et al., 2002). 

 

 
 

Supply chain 
stage Forest

Harvesting and 
Transport 

 
 
 

Biomass plant 
 

Available biomass 
volume 
Biomass species 
Biomass types 
Ownership 

 

Distribution of biomass
Terrain: 

 Soils 
 Slope 
 Ground firmness 

Access and logistical: 
 Site access 
 In-wood access 
 Extraction distance 
 Felled yields/ hectare 
 Types of product 
 Product mix and 

numbers of product 

Location of power plant 
Capacity of power plant 
Technology 
Quality of wood chips: 

 Moisture content 
 Size 
 Bulk density 
 Dust and ash 

content 
 Fungal spores 
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2.3.2 Harvesting options in wood fuel 

 

Several harvesting options can be applied according to the extracted form of the product 

(Stampfer and Kanzian, 2006), the most significant consideration being the conversion of 

biomass into a form that can be transported cost-effectively to the end use. In this chain of 

events, the chipping of biomass seems to be dominant over other harvesting methods since 

the location of chipping operations within the production chain can play a major role in 

distinguishing various production options (Jackson et al., 2010). Some production options 

are presented in Figure 5. 

 
 
Figure 5: Woody biomass production systems based on sources, location of chipping, and 

type of biomass (Stampfer and Kanzian, 2006). 
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Harvesting systems can be either mechanical or semi-mechanical. When mechanical, all 

operations (felling, extraction, chipping and road transport) are executed by appropriate 

machines operated by trained operators. Semi-mechanized systems employ both manual 

labour and machines as is the case when felling is done motor-manually (Grobbelaar, 

2000). 

2.4 Cost factors affecting the harvesting of woody biomass 
 
For biomass harvesting to be cost-effective, cost factors must be clearly defined and 

understood (Richardson, 2002). In order to make a significant profit, the optimisation of the 

harvesting system is required (Talbot and Raae, 2007).  

 

2.4.1 Factors affecting harvesting and transport costs 

 
By definition, cost factors in forestry are variables associated with equipment investment, 

terrain circumstances, operators, organisations, products and silviculture affecting the costs 

of production (Richardson et al., 2002). Ashton and Cassidy (2007) reported that harvesting 

costs can also depend on the types of machines used as well as the season. The transport 

of woody biomass is furthermore influenced by factors such as fuel prices, the hauling 

distance, the moisture content and the truck capacity (McDonald, 2001). The hauling 

distance could become a limiting factor of profitability in affecting the transportation and 

delivery costs (Stokes et al.,1993). 

  

Three levels of assessment of harvesting costs are necessary: 1) strategic, 2) tactical and 

3) operational planning. At a strategic level a decision regarding the site of a biomass plant 

and the character of harvesting systems must be undertaken. For example, the system may 

set limits for the degree of integration of harvesting of industrial round wood and forest 

residues. On the tactical level, decisions must be made regarding how much wood can be 

harvested annually from every area and where it can be processed. At the operational level, 

the stands to be harvested must be identified beforehand, which calls for cost estimates of 

each system of fuel wood recovery (Richardson et al., 2002). 
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2.4.2 Cost structure example of typical harvesting woody biomass  

 

Cost components depend on the type of harvesting system involved. A typical Finnish 

supply chain is shown in Figure 6 for early thinning of small trees. 

 

 

Figure 6: Cost structure of typical harvesting supply chain (adapted from FFRI, Finnish 

Forest Research Institute, 2005). 
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Figure 7: Cost components of typical logging residues chipping (FFRI, 2005). 
 

 

Figure 8: Cost components of typical cut-to-length harvesting system followed by chipping 

(FFRI, 2005). 

 

2.5 Feedstock properties  

 

2.5.1 Basic chemical characteristics of wood 

 

The chemical composition of wood, including water, organic matter and mineral substances, 

influences the calorific value of woody biomass in various ways. As illustrated in Table 1, 

wood is normally constituted of three main chemical component groups: 1) cellulose (which 

is the principal chemical constituent of cell walls of plants), 2) hemicelluloses and lignin 

 (heat-producing elements) and 3) carbon and hydrogen (Alakangas, 2005; ITEBE, 2006; 

Jodin, 1994; Huhtinen, 2005). Additionally extractives such as resins, tannins, oils or gums 

and other volatile substances can be found in wood (Shebani et al., 2008; Tsoumis, 1991). 
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Some of those affect the heating value positively (Hakkila, 1989). About 99,8% of the dry 

matter of wood is composed of 49% carbon (C),  45,3% hydrogen (H), 5.5% oxygen (O) and  

0,2% nitrogen (N) (Moilanen et al.,1996, ITEBE, 2006). The rest is mainly ash, which is a 

residue in thermal biomass conversion and is rich in macronutrients. Water in wood can be 

found in capillary systems, e.g. in cell walls and pores of wood and substantially impact on 

transport weights and heating value.  

 
Table 1: Wood structure distribution (Curkeet, 2011). 
 

Common 

Name 
Cellulose Lignin Hemicelluloses Other (organic & 

mineral 
substances) 

Hardwoods 42.2 15-20 38 0-1 

Softwoods 42.2 24-35 28 0-1 

 

2.5.2 Moisture content  

 
Moisture content (MC) refers to how much free water a piece of wood contains relatively to 

its weight. It is calculated as the difference between fresh and oven-dry mass (ODM), 

expressed on either a dry or fresh mass basis (Curkeet, 2011). Moisture content (MC) has a 

significant influence on the net calorific value of the feedstock. If the MC is high, the heating 

output value will be low. The MC of wood can strongly vary according to the site, season, 

species, or interval after harvest, therefore oven-dry mass is used for comparison purposes 

(Curkeet, 2011; FAO, 1990; Huhtinen, 2005; Simpson and TenWolde, 1999). Figure 9 

illustrates the effect of the moisture content (MC) on the heating value. 
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Figure 9:  Effect of MC on the heating value of waste wood of Pinus radiata (Fordyce and 

Ensor, 1982). 

2.5.3 Heating value 

 
Approximate heating values of various wood components and wood in general (according to 

Corder 1976) are shown in Table 2.   

 

Table 2: Heating values of wood components and wood (Corder, 1976). 
 

Fuel Moisture content (%) Gross calorific values (MJ/kg) 

Needles 0 20.4 

Branches 0 20.1 

Bark 0 19.6 

Stemwood 0 19.1 

Dry wood (non-resinous) 0 18.0 - 20.0 

Dry bark (non-resinous) 0 17.0 – 23.0 

Dry wood (resinous) 0 22.0 - 23.0 

Dry bark (resinous) 0 20.0 - 25.0 

Dry wood (average) 0 19.8 

Wood pellets 10 16.75 

Dry sawdust 13 16.2 

Dry planer shavings 13 16.2 

Seasoned wood (air-dried) 20 15.5 

Green wood 50 9.5 

Green sawdust 50 9.5 
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The most important characteristic of fuels is the amount of energy gained from burning the 

substance. This also applies to woody fuels and depends on the chemical properties of the 

wood in question. Energy content of biomass is expressed in two ways: the higher heating 

value (HHV), which is the maximum potential energy in dry fuel and the lower heating value 

(LHV), which includes the water that has to be evaporated (Ciolkosz, 2010). In general, the 

range of the HHV of wood is 17.7 to 22.3 GJ/t (7,600 to 9,600 Btu/Ib) or 18.5 to 21.9 MJ/kg 

(Huhtinen, 2005). 

2.5.4 Ash content 

 
Ash content is defined as the incombustible minerals in wood fuel, mixed with any unburned 

carbon. According to Maker (2004), there is about 12 kg of ash in every tonne of fresh 

biomass burned. The ash content(AC) varies between the whole tree and specific parts of 

the tree, e.g. stem wood: 0,4 - 0,6%; stem bark: 2 - 5% and 1 - 2% in branches (Askungen, 

2011). In the case of wood chips, when the combustion is completed with bark and needles, 

the ash content percentage might be higher and range from 5 to 10% for wood 

contaminated with soil and sand (Kofman, 2006). 

 

2.6.5 Energy balance of the biomass system 

 
The energy balance of the biomass system is defined as the relationship of the total energy 

output to the total energy consumed by the system. Therefore, the net energy can be 

determined by the ratio of total energy output divided by the total energy input (Westbrook 

et al. 2006). To be recognised as a viable biomass system, the net energy ratio needs to be 

≥ 1. The larger this number, the less energy is needed in the energy supply process for a 

specific fuel (Morice, 2008). This respectively implies that input energy is less than the 

output energy (Ashton and Cassidy, 2007).  
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3. Materials and Methods 

3.1 Research area description  

 

The study area is located both within the Agulhas National Park and private land 

surrounding the national park in the vicinity of Bredasdorp and Elim on the Agulhas Plain 

in the Western Cape Province of South Africa (Figure 10). The region receives about 60 - 

70 % of its annual precipitation during winter, between May and October, with an annual 

average varying between 400 and 600 mm (Agulhas National Park, 2009). The topography 

of the region is generally a level plain and the climate is Mediterranean, characterized by 

warm dry summers and cool wet winters. The mean annual temperature is 15 ºC.  

 

 

 
Figure 10: Map of the study area. 
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3.1.1 Vegetation 

 
The focus of this study is on the invasive woody vegetation which threatens the indigenous 

biodiversity of the Cape Inland Salt Pans, Central Rûens Shale Renosterveld, Elim 

Ferricrete Fynbos, and Agulhas Sand Fynbos (Agulhas National Park, 2009). Several 

potentially invasive species have been identified in the Agulhas area (Table 2) of which 

three, which form trees and shrubs, were selected for a case study: Acacia Cyclops 

(Rooikrans), Leptospermum laevigatum (Myrtle) and Eucalyptus lehmanii (Spider Gum) 

(Fig.11 - 13). The reasons for selecting these species for the case study were: (1) that they 

were the most common species in the study area and (2) that they have relative uniform 

density and dimensions. Throughout the thesis, the common names or genus of the three 

species are used instead of the botanical names (Figures 11 to 13). 

 

  

Figure 11: Acacia Cyclops 
[Rooikrans] 

Figure 12: Leptospermum 
laevigatum [Myrtle] 

Figure 13: Eucalyptus 
lehmanii [Spider Gum] 
 

 

3.1.2 Study area characteristics  

 

Three sites of the selected vegetation types were randomly chosen within the greater study 

area (Figure 10). In this investigation consideration was given to plant density at each site 

and proximity to roads to aid transport of the biomass off the site.  In order to obtain 

representative data within the different species, the three sites were divided into two plots 

each: two in Gum, two in Acacia and two in Myrtle. Plot dimensions were 20m x 20m (400 

m2), laid out with a measuring tape. Each corner was marked with a stake to maintain 

orientation for both workers and enumerators. All subsequent operations occurred within 

these boundaries. 
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Table 3: List of potential exotic plant in Agulhas area (Agulhas National Park, 2009). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

To gain work-time and productivity data of manual and motor-manual harvesting methods, 

two different biomass preparation systems were applied. System 1 included manual felling 

with bow saws, stacking of all brush by hand, chipping at roadside and road transport of the 

chips off the site; while System 2 consisted of motor-manual felling, stacking of brush 

separately from solid wood by hand, chipping and road transport (Table 4). System 1 was 

only applied in Plot 1, in the Spider Gum site. The remainder of the plots were treated 

according to System 2 (Table 4). The reason why manual bow saw felling only occurred in 

No 
Scientific 

name 

Common 

name 
No Scientific name Common name 

1 
Acacia 

baileyana 
Bailey’s 16 Myoporum tenuifolium Manatoka 

2 Acacia dealbata Silver 17 
Paraserianthes  

Lophantha 
Stinkbean 

3 
Acacia 

mearmsii 
Black Wattle 18 Pinus canariensis Canary Pine 

4 
Acacia 

longifolia 

Long-leaf 

Wattle 
19 Pinus pinaster Cluster Pine 

5 
Acacia 

pyncnantha 
Golden Wattle 20 Pinus pinea Stone Pine 

6 Acacia saligna Port Jackson 21 Populus x canescens Grey Poplar 

7 
Cereus 

jamacaru 

Queen of the 

Night 
22 Ricinus communis Castor Oil 

8 Cirsium vulgare Scotch Thistle 23 Rubus spp. Bramble 

9 
Cortaderia 

selloana 
Pampas Grass 24 

Solanum 

sisymbriifolium 
Gifappel 

10 
Datura 

stramomium 
Thorn Apple 25 Spartium junceum Spanish broom 

11 
Eucalyptus 

grandis 
Saligna Gum 26 Opuntia monacantha 

Drooping Prickly 

Pear 

12 Hakea gibbosa Rock Hakea 27 Agave sisalana Sisal 

13 Hakea sericea Silky Hakea 28 Echium plantagineum 
Patterson’s 

Curse 

14 Acacia Cyclops Rooikrans 29 
Leptospermum 

laevigatum 
Myrtle 

15 
Lantana 

camara 
Lantana 30 Eucalyptus lehmanii Spider Gum 
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one plot was that there was only time to practice this system in one plot due to the non-

availability of the manual felling team. In this case the investigator deemed it suitable to 

extrapolate  the results of manual felling of the Spider Gum plot to the other two species, 

since the other species show a similar growth habitus and, like the Spider Gum, do not have 

thorns. 

 
Table 4 : Sites, plots, tree species and harvesting method. 
 

Site Plot 
Plot area 

(m2) 
Species System 

1 1 400 

Eucalyptus 

lehmanii 

(Spider Gum) 

Manual felling, stacking of 

brush only, chipping, road 

transport 

1 2 400 

Eucalyptus 

lehmanii 

(Spider Gum) 

 

Motor-manual felling, 

stacking of brush and solid 

wood, chipping, 

road transport 

2 1 400 
Acacia Cyclops 

(Rooikrans) 

Motor-manual felling , 

stacking brush and solid 

wood, chipping, road 

transport 

2 2 400 
Acacia Cyclops 

(Rooikrans) 

Motor-manual felling, 

stacking brush and solid 

wood, chipping, road 

transport 

3 1 400 

Leptospermum 

laevigatum 

(Australian Myrtle)

Motor-manual felling, 
stacking brush and solid 

wood, chipping, road 
transport 

3 2 400 

Leptospermum 

laevigatum 

(Australian Myrtle)

Motor-manual felling, 
stacking brush and solid 

wood, chipping, road 
transport 

 

3.3 Harvesting equipment applied to the study 

 
 
The following harvesting and processing equipment was used in the study: bow saws, 

chainsaws, disc chipper, three-wheeled loader, chip/solid wood transport truck and a pick-

up truck.  
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3.3.1 Chainsaws and bow saws 

 
A Stihl model MS 380 chainsaw (Table 5) was used for the motor-manual felling operation 

and a 530 mm Lasher GP bow saw was used for manual felling. Plots with trees of <5 cm 

DBH were felled manually and those with trees >5 cm motor-manually.  

 

Table 5: Chain saw specifications. 
 

Specifications Stihl model MS 380 

Cylinder displacement (cm3) or cc 72.2 cc. 

Engine power 3.60 kW 

Mass (kg) 6.60 kg 

Bar Length 50 cm 

 

3.3.2 Chipper  

 
The chipping unit used in the study was a mobile Bandit model 255XP, with a 38.1 x 63.5 

cm throat opening and a 38.1 cm diameter capacity disc. The feed system featured two 

horizontal feed wheels, each 24 1/2" wide, allowing for multiple stem feeding (Table 6 and 

Figure 14). The machine converted trees into woodchips. 
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Table 6: Specifications of the chipper. 
 

Model 255XP 
Height Adjustable 

Discharge 

Hand crank 

standard 

Capacity 15" (381mm) 
Discharge Chute 

Swivel 

Hand crank 

standard 

Engine Brand CAT Fuel Tank Capacity 152 litres 

Power of the diesel 

Engine 
140 HP (106kw) 

Hydraulic Tank 

Capacity 
50 litres 

Hydraulic Lift and 

Crush 
Standard Tyres 215/85R17.5 

No. Reversible 

Blades 
4 Chipper Weight 3,400 kg 

Feed Roller 

Description 

Two horizontal 

rollers 
Brakes Electric 

Chipper Type Disc 
Chipper Chassis 

Description 

150 x 50 mm RHS 

steel 

Productivity/Feed 

rate 

100 ft/min (31 

m/min) 
Axle Capacity 3,530 kg 

Auto Feed Plus feed 

control 
Standard Tail Lights LED standard 

Hydraulic Winch Optional Chipper Length 4.6 m 

Chipper Bearing 
2 7/16" (62mm) 

double row 

Available as self-

propelled track drive 
Yes 

Disc / Drum 

Diameter 
45" (115cm) Chipper Width 2.15 m 

In feed Throat 

Opening Size 

15.5" x 25" wide 

(394 x 635mm) 
Suspension Type Rubber torsion 

Tow hitch type pintle ring   

 
 

 

Figure 14: Bandit model 255XP chipper. 
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3.3.3 Three-wheeled loader 
 
A three-wheeled loader was used to extract biomass from the brush-lines in which the felled 

material is located, to the chipper located at a roadside landing. The three-wheeled loader’s 

technical specifications are shown in Table 7. 

 
Table 7: Specifications of the three-wheeled loader. 
 

Model 
Logger 225A 

Engine net power 49kW 

Operating mass 5 200 kg 

Grapple capacity 0.35 m2 

Hydraulic oil volume 102 l 

Fuel tank volume 76 l 

Tyres 

FRONT Tyre: Size 18.4 x 30 10 Ply 
Type: Forestry 

REAR Tyre: Size 4.00 x 15.5 10 Ply 
Type : High Flotation Forestry 

Transmission 
Hydrostatic 

Maximum travel speed:9 km/h 

 
 

 

Figure 15: Three-wheeled loader model logger 225A. 
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3.3.4 Tip Truck 

 

Two material transport modes, a 9.5 m3 volume tipper truck and a one-tonne pick-up truck, 

were used to deliver chips and/or solid wood from the various landings to the Bredasdorp 

weighbridge.  The load bodies of the trucks were covered with tarpaulins to prevent the loss 

of chips while travelling. Loaded and empty travel speeds (time study) of the vehicles were 

determined over these routes. 

 

 
Figure 16: Truck with carrier bin without raised load body sides. 
 

3.4 Harvesting team 
 

Working for Water (WfW) clearing teams, experienced in felling and processing of the 

vegetation in question, were employed to carry out prescribed harvesting operations in each 

site.  WfW felling team comprised of one supervisor, two chainsaw operators and seven 

workers. In addition, a chipper operator was assisted by two workers who fed material into 

the chipper chute manually when automatic feeding of material by the three-wheeled loader 

failed. The tip-truck, pick-up truck and the three-wheeled loader each had a dedicated 

driver/operator. 
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3.5 Methods 

3.5.1 Production assumptions and field work description 
 
Production assumptions used during the study observations were defined according to the 

variability found on sites and plots. The production assumptions from the observation period 

were based on a shift production interval of nine hours. During the shift, one hour was 

allowed for start-up, shut down, cleaning of both the site and machines at the end of the 

shift and for travelling to work. In total, the task was determined on a 480 min operational 

time per shift. The average rest allowance allocated to chainsaw operators was 23% (13.8 

min hour-1) and 20% for manual workers (12 min hour-1). These allowances have been 

included into the standard time of the operation. Therefore, a chainsaw operator was 

expected to work at standard performance, for a 370 min shift-1 and manual operations for a 

384 min shift-1. Other details on the production assumptions are provided in Appendix 1. 

Felling was done either manually or motor-manually with manual stacking of felled material. 

A three-wheeled loader was used for the extraction of biomass from stump to roadside and 

the actual feeding of the chipper at the roadside landing, while a tip truck and a pick-up 

truck travelled from the roadside landing to the weighbridge located some 51 km from the 

working site. Figure 17 shows a typical work sequence matrix and equipment used in 

harvesting operations.  

 

Figure 17: Biomass harvesting systems matrix. 
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3.5.2. Data collection  

 
Equipment for the time study included pre-compiled time study forms/sheets, a stopwatch, 

50 m tape measure, pencil and clipboard. During the layout of plots, the 50 m tape measure 

was used to fix plot sizes. Activity sampling and time studies techniques were used, proving 

useful to measure and evaluate the performance accuracy of the specific work carried out 

under particular conditions (Kanawaty, 1992). With these techniques, time spent on the 

individual work phases could be determined in order to enhance the accuracy of the 

productivity rate and cost of the entire biomass production system, while eliminating 

unnecessary time use (Richards et al., 1995).  

3.5.2.1 Activity sampling 
 
Activity sampling is the determination of the percentage occurrence of specific well defined 

work elements using statistical sampling and random observation (Kanawaty,1992). Each 

element is instantaneously recorded, and the percentage of time for each particular element 

is the number of observations for that element divided by the total number of observations, 

over the entire timing period which could be an entire work shift (Miyata et al., 1981). 

 

Activity sampling was the preferred method of observation for the manual and motor-manual 

felling operations because of: 

1) short element times in the observations which are not accurately measurable 

with a stop watch; 

2) variable working methods and multiple team members involved with the felling 

and 

3) peripheral integrated activities all of which need to be measured and monitored. 

 

Activity sampling in manual and motor-manual tasks was set in such way that at minute 

intervals a work element was recorded with regard to what each member of the harvesting 

team or chain saw operator was performing at that specific time and recorded in the 

prepared sampling data form. Study specific issues under the activity sampling method are 

described below. 
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3.5.2.2 Recording the manual harvesting activity 

 
The working elements (Table 8) of manual harvesting tasks were recorded according to the 

observation done at minute intervals (e.g. at minute interval one: worker 1 - cutting, worker 

2 - moving empty, worker 3 - spraying and worker 4 - standing idle, etc). 

 
Table 8: Elemental time functions for manual activity. 
 

Cut 
Felling tree by cutting it with hand saw or 

bow saw 

Moving empty 
Movement by worker when positioning 

before cutting 

Spraying Spraying chemicals on the cut stump 

Idle time No value adding activities 

 
 
After cutting and before chipping of the biomass, trees with DBH between (and including) 

3.0 to 10.0 cm was stacked in a single brush line 10 m apart. Then trees with DBH > 10.0 

cm were stacked in piles at the roadside as the firewood component of the biomass was 

harvested. This was done in order to facilitate the collection of the biomass by the three-

wheeled loader. The stacking work elements (activity sampling) were recorded (at one 

minute intervals) in the same manner as described above and shown in Table 8. At the end 

of the shift, the data from the activity sampling forms was captured in a Microsoft Excel 

spreadsheet to calculate the percentage of time taken for each single work element of the 

manual operation. 

 
Table 9: Elemental time functions for stacking activity. 
 

Stack Place biomass on stack row 

Pickup Worker caching the biomass 

Moving load Worker carrying the biomass to the stacking area 

Moving Empty 
Worker moving to biomass pick-up point (after stacking 
the biomass) 

Idle No value adding activity 
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3.5.2.3 Recording motor-manual harvesting activities 

 

Per definition, felling starts with the felling cut and ends when the biomass (tree) drops/falls 

on the ground (i.e. the tree is felled). Two chainsaw operators felled all the trees on the plot 

in varying directions, while a team of workers separated the solid wood (diameter wise) to 

either the brush line stacking area as described above.  

 

An initial chainsaw cut was made about 1 m above the ground to provide access to the 

stump, after which the second cut was made at ground level to bring the whole tree down to 

the ground. Trees larger than 10.0 cm DBH were physically separated for firewood. The 

activity sampling of motor-manual activities was based on work elements performed by the 

chainsaw operators (Table 10). At every minute a corresponding work element was 

recorded for each chainsaw operator. At the end of the shift, the sum of each single work 

element was calculated and its percentage contribution to the entire work phase 

determined. 

 

Table 10: Elemental time functions of the chain saw. 
 
Cutting Felling tree 

Cross cutting Tree splitting 

Refuel Fuelling of chain saw 

Filing Sharpening or replacing a damaged chain 

Observation 

 
Planning tree felling operation (felling direction) 

Moving Movement of the operator to the next tree 

Broken Operational delays (broken chain etc) 

Debranch Removal of branches from the main stem 

Idle time 

 
No value adding activities 

 

3.5.2.4 Time study 
 
Time study was used to obtain data regarding chipping and truck transport activities and to 

identify factors affecting the work process, in order to gain accurate productivity and process 

information. 
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3.5.2.5 Extraction process 

 

Biomass extraction was executed with the three-wheeled loader. The three-wheeled loader 

was also responsible for placing the biomass to be chipped into the chipper in-feed chute. 

Before the extraction, transport distances were measured by pre-marking all the extraction 

routes within a range of 5 to 45 m and measuring the matching distances with a tape 

measure. Work elements comprised of collecting the biomass, feeding the chipper and 

travelling between the collection point and the chipper and back to the collection point in the 

field (Table 11). Each work element was recorded on a time study form and then entered 

into a spreadsheet for analysis (Appendix 5).  

 

Table 11: Time elements for extraction process. 
 

Move loaded Machine starts moving after grabbing the biomass 

Move empty Starts moving after feeding the biomass into the chipper  

Feeding Starts when biomass touches the chipper mouth  

Grapple time Starts when the grapple touches the biomass  

Idle time Starts when the machine stops with no value adding activity 

 

3.5.2.6 Chipping process 

 

The chipping operation consisted of the actual chipping process and the subsequent 

blowing of the chipped biomass directly into the truck bin which was parked next to the 

chipper, and waiting time (Table 12). Chipping time ceased when the whole load carried by 

the three-wheeled loader had been fed into the chipper and been chipped (blown into the 

receiving bin/s). The times spent waiting for the biomasses from the three-wheeled loader 

were also recorded. The work elements were captured in the time study form. Variables of 

the chipper were evaluated by time study in order to examine their effect on the productivity. 
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Table 12: Elemental time functions of chipper. 
 

Feeding 
Starts when the biomass reaches the 

chipper mouth 

Waiting 
Starts when the chipper has no more 

material to chip 

 

3.5.2.7 Road transport 
 
Road transport of the biomass was defined to begin when the tip truck had been loaded and 

was ready to depart for the weighbridge. The truck was sent to the weighbridge to establish 

the fresh mass of harvested biomass. The volume of the load was known from the 

dimensions of the truck. Travel time started from the roadside landing and ended when the 

tip truck again reached the roadside landing after unloading at the weighbridge site in 

Bredasdorp. Travel loaded and travel empty times were recorded. 

3.5.3 Productivity calculation 

 
All biomass masses were converted to oven-dry tonnes (ODT) and formed the basis of all 

productivity and cost calculation for the purpose of a standardised measurement. The 

productivity of different activities was expressed in productive machine hour (PMH), which 

was determined by the ODT mass of biomass harvested or prepared over a unit period 

time. According to Grobbelaar (2000), the productivity outcome can be defined as the result 

of the quotient of the volume or mass of harvested material produced in a defined time 

period. 

 

Equipment productivity in this study is reported as productive machine hour excluding all 

delays (PMHo). This is done assuming that the delays which are normally presented as a 

percentage of scheduled machine hours (SMH) were considered equal to zero (Spinelli et 

al., 2009). Therefore all delay categories such as hours of mechanical delay, hours of 

operator delay, and hours of organisational and other delay were not included. The 

calculations were done for chainsaws, chipper and three-wheeled loader (Equation 3-1). 

The labour force productivity was also defined as the output per man day (Equation 3-2). 
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PMHo

ODT
P                                                                                                     Equation 3-1 

                

Where: 

 

(t/hr)typroductiviP   

(hr)delayswithouthourmachineproductivePMHo   

(t)tonnesdryOvenODT   

 

In the case of labour intensive operations, the productivity was calculated as: 

 

DAYMAN

ODT
P                                                                                        Equation 3-2 

 

Where: 

 

)daysman(OdttyproductiviP   

(t)tonnesdryOvenODT   

(hr)workmanonefortimeDAYMAN   

3.5.4 Biomass calculation 

 

The fresh biomass mass of each species was obtained by measuring the mass at the 

weighbridge in Bredasdorp and then converting this to ODT by a conversion factor 

determined in laboratory tests, based on samples that were weighed fresh and after oven-

drying to constant mass. The calculation of dry mass from fresh mass was then calculated 

according to Equation 3-3. The biomass constant value of the three species was referred to 

the ODT of the samples. The average and the standard deviation are shown (Table 13). 

 

 BIOMASSFRESHODT                                                                  Equation 3-3                

 Where: 

(t)tonnesdryOvenODT   
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%harvestingat(t)masswetBIOMASSFRESH   

factorconversionbiomassβ   

 

Table 13: Species specific conversion factors from fresh to dry biomass. 
 

Genus Mean SD 

 
Gum 

 
Acacia 

 
Myrtle 

 
0.81 

 
0.82 

 
0.69 

 
0.1 

 
0.15 

 
0.12 

 

3.5.5 Harvesting system cost 
 
The harvesting system cost comprised manual and motor-manual harvesting, extraction, 

chipping and transport costs. Overheads were not included. 

 

3.5.5.1 Basic equipment cost calculations, labour and other assumptions 

 
The South African Harvesting and Transport System Costing Model by Hogg et al. (2008) 

was used to calculate the labour, machine cost and system cost. The following was 

assumed: 

 

Labour costs: The wages use by the WfW program for a general worker employed was 

R125 shift-1. This cost was related to determined productivity as per analysis explained in 

the results section, for the felling and preparation of the three species within the six biomass 

groups (Gum 1, Gum 2, Acacia 1, Acacia 2, Myrtle 1 and Myrtle 2). The outcome was costs 

in R ODT-1 produced. Hours worked per day were assumed at 8 hrs. 

 

Assumptions for machine cost (Appendix 6): The cost of a chainsaw operator is 

calculated at a WfW program of R 250 shift-1 and the three-wheeled loader operator at R 

200 shift-1. Costs of the three-wheeled loader were quantified in R ODT-1 set at four 

extraction distances, i.e. 10 m, 20 m, 30 m and 40 m. The chipper operator cost R 200 shift-

1. All the costs were expressed in R ODT-1.   
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Transport of solid wood and chips 

 

Although the time studies for the research were done on the tip truck, this vehicle was not of 

optimum size (payload) and configuration to support a commercial transport operation of 

this type. For this reason the following was proposed: 

 

Transport of chips  

 

Since our transport setup did not meet real operational conditions, we used a virtual 

transport setup for calculations. The data for the transport costs and productivity were 

calculated according to the RFA (2010). Four distances (radii): 40 km, 30 km, 20km and 10 

km around a source were used to cost transport of chipped material. A 20 ft container with 

an internal volume of 34.5 m3 was used to carry the chipped material. The motivation here 

was to match the mass of chips to the legal payload of the envisaged vehicle. The 

container/body adaptation was mounted to a 6x4 tip truck (or accommodating a tipping 

mechanism) with an average payload of 15.0 t.  

 

The mass of chips to a full container was 11.5 t (34.5 m3 * 0.33 SVF ,solid volume factor) – ( 

standard conversion at 30% MC of chips). A standard day of 8 hours and a total of 240 

working days/yr, were used for calculation, seeing that night work and hence chip or chunk 

loading is mostly not possible without adequate lighting and extraordinary safety and 

security measures (RFA, 2010).  Time was allocated for travel both loaded and unloaded, at 

an average of 25km/h travel speed, i.e. study norm plus loading and unloading time.  A time 

of 2.7 h (chipping study average of 4.28 [~ 4.3 t]) was allocated to the chip loading as the 

chipper blows the chips directly into the bin.  A 0.5 hr delay is built into every load for 

contingencies.  In all cases an unloading time of 0.5 hrs was allowed. 

 

It was assumed that the truck was dedicated to chip transport and, as such, the distances 

travelled would be both for the loaded and unloaded leg of the cycle.  Fixed and variable 

costs of the 6x4 tip truck were based on the Road Freight Association’s (RFA, 2010) vehicle 

cost schedules. Estimated transport costs were calculated as R ODT-1 km-1. 

 

 

 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 36

Transport of solid wood for conversion to chunks to processing site 

 

The transport of solid wood, as above, was calculated over four distance radii: 40 km, 30 

km, 20 km and 10 km.  In order to complete the costing the following assumptions were 

made:  

1) A flatbed 6x4 tip truck with modified body carrying an average payload of 15.0 t was 

applied with the truck body possibly having to be adapted to accommodate the 

potential load (height of load, but remaining legal);  

2) A standard day of 8 hours and 240 working days/yr were used for calculation costs; 

3) Time for travel both loaded and unloaded was allocated at an average of 25km/h 

travel speed, i.e. study norm plus loading and unloading time; 

4) A time of 0.5 hrs was allocated to loading solid wood lengths of 1.2 m, which had 

been piled in the preparation phase of the operation by means of a three-wheeled 

loader directly onto the truck;   

5) A 0.5 hr delay is built into every load for contingencies.  In all cases an unloading 

time of 0.2 hr was allowed (this could change depending on the efficiencies at the 

centralised site). 

 

It was assumed that the truck was dedicated to solid wood transport and as such the 

distances travelled would be both for the loaded and unloaded legs of the cycle. As 

mentioned above, the fixed and variable costs of the 6x4 tip truck were based on current 

(2011) Road Freight Association (RFA) vehicle cost schedules. Unloading at the processing 

site was done manually or by three-wheeled loader (or tipped depending on the 

configuration). Estimated transport costs were also calculated as R ODT-1 km-1. 

3.5.6 Energy yield and calculations  

 

Before determining the wood energy content of the different species under investigation, it is 

important to have prior knowledge of the total mass of produced biomass and the related 

moisture content. Based on the method suggested by Serup et al. (2002), the moisture 

content of the three species was determined in two weeks interval after felling in the 

laboratory by taking random samples from each biomass load, and determining the 

average. In practice, this was done in the following way: 1) the mass of the samples was 
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determined; 2) the samples were dried in the oven set at 103 °C to constant weight for 

about 24 hours (Walker et al.,1993); and 3) moisture content calculated using Equation 3-4: 

 

           and                                                                      

                                                                                                                              Equation 3-4                 

  

Where: 

 

percentageinexpressedcontentMoisture%MC   

(g)samplewoodtheofmasswetFSM   

(g)samplewoodtheofmassdryOvenODM   

 

The TAPPI standard T 211 om-85 method was used to measure the ash content of samples 

according to Munalula and Meincken (2008). Before placing in the furnace at 575˚C for 

three hours, the oven-dried pieces of the woodchips were weighed. After combustion the 

samples were placed in desiccators to prevent moisture absorption while cooling. The ash 

content was determined according to Equation 3-5: 

 

ODM

MA
AC

100
%


                                                                                        Equation 3-5 

 

Where: 

 

contentAshAC%   

(g)massAshMA  

(g)massdryovenODM   

 

The dry matter calorific value, also called net calorific value of dry wood (Hn), of each 

species was expressed in GJ/t. The procedure required complete combustion of about 0.5 g 

oven-dried wood under a pressurized atmosphere of 3000 kPa oxygen. This resulted in a 

specific rise of the temperature of the cylinder which allows for calculating the net calorific 

%100% 



FSM

ODMFSM
MC %

ODM

ODMFSM
%MC 100



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value when the exact weight of the sample is known (Munalula and Meincken, 2008). The 

net calorific value of fresh biomass was determined by using the following Equations 3-6 

and 3-7 proposed by Serup et al. (2002):  

 

%)2144.0(, MCHH nvn                                               Equation 3-6                 

 

Where: 

 

weight)total(GJ/tonnewoodfreshofvaluecalorificnettheisH vn, 

(GJ/tonne)wooddryofvaluecalorificnettheisHn   

number)wholea(inpercentageinbiomasstheofcontentmoistureMC%   

onvaporizatiofenthalpytheoffactorcorrectiontheis0.2144   

 

The net calorific value of fresh wood (Hn, v) was used to achieve the exact net calorific value 

as received for each wood species in this investigation. Then the output energy was 

considered as the net energy content of the total mass of produced biomass. The output 

energy was obtained by using a simple calculation as following:  

 

vnbo HFE ,                                                                  Equation 3-7                  

 

Where: 

 

(GJ)output)(energycontentenergyWoodEo   

(t)tonnesbiomassFreshFb   

weight)total(GJ/tonnewoodfreshofvaluecalorificnettheisH vn, 

 

 

The energy input of harvesting (felling, extraction, chipping and transport) of biomass was 

defined as the direct energy consumed (Grobbelaar, 2000; Fei Pan et al., 2008). In the 

present investigation, this refers to the energy density of the amount of lubricant and fuel 

used by different machines. This was calculated for each single machine based on the 
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following assumptions: the lubricant and fuel consumption in litres of each machine are 

multiplied by the determined productive machine hours done (Table 14). 

 

Table 14: Direct fuel consumption for machines. 
 

Machines Fuel  

Lubricant use 

(% of fuel 

consumption) 

(l/PMH) 

Actual 

PMH & 

Km 

travelled 

Direct 

Lubricant 

use[l] 

Direct 

fuel 

used[l] 

Total fuel 

and 

lubricant 

use 

Chain saw 1.5 l/hr 0.3 (20%) 30 9.0 45.3 54.3 

Three-

wheeled 

loader 

6.0 l/hr 1.2 (20%) 7.96 9.55 48 57.55 

Chipper 7.8 l/hr 1.17 (15%) 8 9.36 72 81.36 

Truck 
4.5 

km/l 
0.09 (2%) 102 0.92 22.8 22.92 

Pick-up 

truck 

8.0 

km/l 
0.16 (2%) 102 0.16 12.8 12.96 

 

229.09 

 

Hence, the sum of fuel used by the chain saw, chipper, three-wheeled loader and the truck 

plus pick-up truck was calculated. The resulting volumes are then converted into MJ and 

KWh. Calculations were based on Equation 3-8. 

 

FtpFtwlFchFcEi                                                      Equation 3-8                  

 

Where: 

(GJ)systemtheofenergyInputEi   

sawchainofnconsumptiofueldirectFc   

chipperofnconsumptiofueldirectFch   

loaderwheeledthreetheofnconsumptiofueldicrectFtwl   
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truckuppickandtruckofnconsumptiofueldirectFtp   

 

The energy output and the input were used to determine the energy balance of the system 

which was based on Equations 3-10 given by Fei Pan et al., (2008) and Westbrook et al. 

(2006). 

                                                                                               

iob EEE                                                                                 Equation 3-10  

Where:    

balanceenergyEb   

(GJ)energyOutputEo   

 

 

3.5.7 Statistical data analysis  

 

The statistical packages, R, Statistica, Origin, and Microsoft Excel were used in data 

analysis. The procedure of data analysis entailed scatter plots, correlation, regression 

analysis, and the test for significant differences. The input variables are the activity sampling 

of manual and motor-manual harvesting and the time study elements of the three-wheeled 

loader and the chipper. 

 

The first step in the analysis consisted of measuring whether the underlying assumptions for 

the analysis of variance (ANOVA) test were met in the raw data. For that, the Shapiro-Wilk 

normality test was used in order to test the normality distribution of the data.  ANOVA is also 

based on an assumption of equal variances to produce credible results. This was tested by 

using Bartlett and Levene’s test in order to establish if variables have the same variance in 

all groups that should be tested (Dalgaard, 2008). When the original data violated those 

assumptions, the natural logarithm ln(x) transformation option was used. When the data still 

did not fulfil the assumptions, the Kruskal-Wallis test, which is the nonparametric 

counterpart of a one-way ANOVA, was applied as an option (Siegel and Castellan, 1988). 

This allowed progressing to the second step of the data analysis. The statistical output for 

the Kruskal-Wallis test was then presented into Kruskal-Wallis by ranks table, graphical 

representation and categorized histogram variable for each evaluated variable. The Kruskal-

(GJ)energyInputEi 
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Wallis by ranks table included: variables (independent and dependent), codes (i.e. helping 

to identify the group membership of each case), and sum of ranks (allows for the 

characterization of the dependent variable between samples, without paying attention to 

which group each value belongs).  

 

The regression analysis and correlation were used to determine the regression model that 

characterized the relationship between independent(explanatory) and dependent( response) 

variables of the extraction operation for the machinery. In the case of the simple linear 

regression, four principal assumptions should be fulfilled before deciding to use the linear 

regression. This includes linearity, independence of errors, homoscadasticity of the error 

and the normality of the error distribution (Clewer and Scarisbrick, 2001). The linear 

regression was fitted into the data when the scatter plots were presenting a linear pattern. 

 

)(21 xaay                                                                           Equations 3-11                  

 Where: 

variabledependenty   

variabletindependenx   

parametersregressiona,a 21   

 

When the scatter plots were indicated as a curve, a nonlinear power regression was more 

appropriate. This was based on the power function (Equations 3-12):  

 

bxay                                                                                        Equations 3-12                 

Where: 

variabledependenty   

variabletindependenx   

parametersregressionba,   

 

Before being analysed by linear regression, variables had to be logarithmically transformed 

(Payandeh, 1981). As the logarithmic transformations were used for fitting allometric 

equations to data, the logarithmic correction factor (CF) suggested by Sprugel (1983) was 

applied in order to remove a systematic bias as per Equation 3-13 
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e
SSE

CF
)

2
(

2

                                                                                 Equation 3-13              

Where: 

factorcorrectionCF   

regressiontheofestimateoferrorstandardSSE   

numberseuler'e   

 

The output analysis of the regression model is summarized in Table 15. 

Table 15: Output model of the regression. 
 

Parameter statistics Lower 95% Upper 95% 

A 
Confidence limits Confidence limits 

B 

R2 
Degree of 

determination 
SD 

standard 

deviation 
N 

sample 

number 

R 
Correlation 

parameter 
CF 

logarithmic 

correction 

factor 

P P-value 

 

Before accepting the outcome of a linear regression, the predictive ability and the goodness 

of fit of the regression models were examined by residual diagnostic analysis. This was 

done visually by examining the residual errors which were supposed to be random and 

normally distributed. Two residual plots type were used: the residual errors over their fitted 

values and then the Q-Q plot (Dalgaard, 2008). 
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4. Results 

4.1 Recoverable biomass per hectare under prevailing conditions  
 
 The average mass of fresh recoverable biomass was 150.04 t ha-1 (i.e. 115.5 ODT ha-1) 

(Table 16).  

 Table 16: Harvested biomass per plot and per hectare, given in fresh and oven dry 
biomass. 
 

Species 

Fresh 
Solid 
Wood  
t  plot-1 

ODT 
Solid 
Wood  
 plot-1 

Fresh 
Wood 
chips 

t  plot-1 

ODT 
Wood 
chips 
plot-1 

Total 
fresh 

biomass 
t plot-1 

Total 
ODT 

biomass  
plot-1 

Total 
fresh 

biomass 
t ha -1 

Total 
ODT 

biomass 
ha -1 

Gum 1 0.00 0.00 4.53 3.67 4.53 3.67 113.25 91 

Gum 2 1.38 1.12 3.96 3.21 5.34 4.33 133.5 108 

Acacia1 1.00 0.82 5.79 4.75 6.79 5.57 169.75 138.86 

Acacia2 1.00 0.82 5.59 4.58 6.59 5.40 164.75 134.77 

Myrtle 1 0.64 0.45 5.79 4.00 6.43 4.44 160.75 111.24 

Myrtle 2 0.64 0.45 5.69 3.93 6.33 4.37 158.25 109.51 

Mean 0.77 0.61 5.22 4.02 6.00 4.63 150.04 115.5 

 
 
Figure 18: Average biomass yield grouped by species with 95%-confidence intervals. 
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Figure 19: Average biomass yield grouped by species with 95%-confidence intervals. 
 

4.2 Activity sampling results 

4.2.1 Proportion of effective time of manual harvesting tasks and productivity 

between species 

Figure 19 and Table 17 show the difference between manual activities of the different 

species plots and harvesting methods. The results indicated that clearing time of manual 

activities (Pickup, Moving empty, Idle, Spraying, Move loaded, Cutting, Stacking) on the 

Spider Gum site consumed 47% of the total working time. This was followed by Myrtle at 

38% and Acacia at 15%. 
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Figure 20: Species comparison of the proportion of total time used by the different 

harvesting activities. 

 
As indicated in Fig.19, the cutting element appeared only in the Spider Gum species 

because in the two others species (Acacia and Myrtle), cutting was done motor-manually. 

The spraying element was absent in Acacia and Myrtle due to the difficulty of spraying each 

single stump after cutting. 

 
Table 16: Share of elemental times of the working cycle of manual harvesting. 
 

Work element Percentage (%) 

Idle time 26 

Stacking 23 

Cutting 15 

Move load 11 

Pickup 11 

Move empty 9 

Spraying 5 

 

The manual productivity results expressed in terms of ODT per man day revealed that the 

productivity ranged from 0.5 to 1.8 ODT man day-1 (Table 18).  
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Table 17:  Manual harvesting yields (ODT). 
 

Species 
Number of 

workers 

Labour 
clearing 

time(min) 

Total biomass 
(ODT plot-1) 

Productivity 
(ODT man day-1) 

Gum 1 6 248 3.66 0.61 

Gum 2 8 415 4.32 0.54 

Acacia 1 3 461 5.56 1.85 

Acacia 2 8 470 5.39 0.67 

Myrtle 1 3 433 4.45 1.48 

Myrtle 2 4 446 4.38 1.10 

Average 5 412 5 1.04 

 

4.2.2 Proportion of effective time of motor-manual harvesting tasks and productivity 

in a comparison of species 

Figure 20 shows the breakdown of the various elements recorded, and the proportional 

percentage of time used for the chainsaw operator to fell and prepare the biomass before 

the extraction phase.  In Myrtle for example, the actual cutting time was calculated at 47% 

of the total work time, which was greater than that of Spider gum (39%) and Acacia (14%). 

 

 
Figure 21: Proportion of time used by the different motor-manual activities. 
 
The cutting consumed the greatest amount of time during the chain-saw operation cycle 

(37%), while the inspection amounted to the smallest part of cycle time (2%) (Table19). 
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Table 18: Share of elemental times of working cycle of motor-manual harvesting. 
 

Work element Percentage (%) 

Cutting 37 

Refuel 13 

Broken 11 

Idle time 10 

Filling 8 

Moving 8 

Cross cutting 7 

Debranching 4 

Inspection 2 

 

An investigation of the motor-manual production rates reveals a range from 0.7 to 1.7 ODT 

PMHo-1 (Table 20). 

Table 19: Productivity of motor-manual activity harvesting (ODT). 
 

Species 
Chain saw 
operators 

Chain saw 
clearing 

time (min) 

Total biomass 
(ODT plot-1) 

Productivity 
(ODT PMH-1 ) 

Potential 
productivity 
(ODT PMH-1) 

Gum 1 - - - - 
- 

Gum 2 2 291 4.32 1.78 3.56 

Acacia 1 1 328 5.56 1.02 
2.03 

Acacia 2 2 456 5.39 1.42 2.84 

Myrtle 1 1 374 4.45 0.71 
1.43 

Myrtle 2 1 365 4.38 0.72 
1.44 

Average 1 302 4 1 
2.26 
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4.3 Time study results 

4.3.1 Testing Alternative Hypothesis 1: It is possible to identify variables that 

significantly affect the productivity of biomass extraction for the three 

prevailing tree species 

4.3.1.1 Relationship between distance and productivity of the three wheeled loader 

 
A regression analysis between distance and productivity of the original data was conducted 

in order to test Alternative Hypothesis 1. The cloud shape of data points in the scatter plot of 

this relationship shows a typical nonlinear correlation (Figure 22). A curved line was judged 

more suitable to fit the data than a straight line, thus the power regression (Equation 4-1) 

was applied to the data.  

 

 

Figure 22: Power regression model of Distance and Productivity for the three-wheeled 

loader extraction. 

 
The function used for the power regression analysis can be written as followed: 

 

bxay                                                                                           Equation 4-1                

 

Where: 

 

  variable dependent the as[t/hr]  mass dry of typroductivi y   
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variable tindependen the as[m]  distance extraction x   

parameters variable regression ba,   

 

Parameter statistics and degree of determination, standard deviation, sample number and 

p-value of the regression of the power regression model (Equation 4-1) for distance and 

productivity of the three-wheeled loader extraction are shown in Table 21. 

 

Table 20: Parameter statistics for distance and productivity of the three-wheeled loader 

extraction. 

Parameter Value Lower 95% Upper 95% 

a 78.6 62.08 95.22 

b -0.97 -1.07 -0.88 

R2 0.41 SD 2.48 N 352 

R -0.64   p-value <0.0001 

 

It can be seen from the plot illustrating residuals over the fitted values (Figure 23), that the 

residuals vary around the curved line in a non- constant way. This suggests that the 

assumption of equal variances is violated.  
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Figure 23: Residual plot of Productivity vs. Distance for the three-wheeled loader extraction. 
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The model shows outliers and the inequality of the error variances. In order to improve the 

current model, the regression analysis was carried out, based on transformed data of the 

two variables (Figure 23). 
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Figure 23: Linear regression model of natural logarithmic transformed Distance and 

Productivity for the three-wheeled loader extraction. 

 
The corresponding function for the linear regression analysis is seen in Equation 4-2.  

 

)xln(aa(y)ln 21                                                                                    Equation 4-2  

                             

Where: 

variable dependent the as[t/hr]  mass dry of 
typroductivi the of iontransfomat clogarithmi natural Ln(prod)y 

 

variable tindependen the as] distance[m 
extraction of iontransfomat clogarithmi natural Ln(dist)x 

 

parameters regressiona,a 21 
 

Parameter statistics and degree of determination, standard deviation, sample number and 

p-value of the regression of the linear regression model (Equation 4-2) for distance [Ln 

(dist)] and productivity transformed data of the three-wheeled loader extraction are shown in 

Table 22. 
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Table 21: Parameter statistics for natural logarithmic transformation of extraction distance 

and natural logarithmic transformation of productivity of the three-wheeled loader extraction. 

 
Parameter Value Lower 95% Upper 95% 

a1 3.62 3.54 3.83 

a2 -0.83 -0.90 -0.80 

R2 0.77 SD 0.23 N 342 

R -0.87 CF 1.04 p-value <0.0001 

 
 
The regression diagnostics for the model are presented through the residual errors plotted 

vs. the corresponded fitted values (Figure 25).  
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Figure 24: Residual plot of natural logarithmic transformed Production vs. Distance of the 

three-wheeled loader extraction. 

 
The distribution of residuals around the fitted line was definitely improved, compared to 

Function 4-1, as well as the R2. Figure 26 shows the standard Q-Q plot. 
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Figure 25: Standard residual Q-Q plot of Lnprod. vs. Lndist. of the three-wheeled loader 

extraction. 

 
In both original and transformed data, the regression was highly significant (p-value< 

0.0001) between distance and productivity during extraction by the three-wheeled loader.  

This indicated a noteworthy influence of distance on the productivity during extraction by the 

three-wheeled loader. Additionally, all parameters were also considerable (indicated by their 

95% confidence limits that did not encompass zero). This provided the necessary evidence 

to accept the Alternative Hypothesis (HA1). According to the results, short distance 

corresponded to higher productivity (t PMH-1). The regression functions (Equations 4-1 and 

4-2) implied that an increase in extraction distance was negatively affecting the productivity 

of the three-wheeled loader. The relationship between distance and productivity yielded a 

tight negative correlation (R=-0.87) for the linear model. The corresponding coefficient of 

determination (R2=0.41 and R2=0.77) in the two regression models is indicative of two 

things:  that 41% and 77% of differences in productivity could be explained by the variations 

in the distances and that the fitting of the point to the regression line was sufficient, 

particularly for transformed data as opposed to the untransformed data.  
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In Table 23 the three-wheeled loader productivity, based on four extraction distances (10m, 

20m, 30m and 40m), is presented and compared with the potential productivity rate, 

implying 100% machine utilisation.  

 

Table 22: Three-wheeled loader production rate set at 10m, 20m, 30m and 40m extraction 

distances. 

 

Extraction distances 
Current productivity 

rate(ODT PMH-1) at 50 % 
machine utilisation 

Potential productivity 
rate(ODT PMH-1) at 100 % 

machine utilization 

10m 5.34 
10.68 

20m 2.25 
4.5 

30m 1.99 
3.98 

40m 1.53 
3.06 

Average 3 6 

 

4.3.1.2 Relationship between other variables of the three-wheeled loader extraction 
 
In Figures 26, 30 and 33 below, the simple linear regression model of variables (cycle time 

vs. distance, travel loaded vs. distance and travel empty vs. distance) is illustrated.  
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Figure 26: Simple linear regression between Distance time and Cycle time for the three-

wheeled loader extraction. 
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The regression diagnostics for the model are presented through the analysis of residuals 

(Figures 28 & 29). 

 

 
 
Figure 27: Residual plot of Cycle time vs. Distance of simple linear regression. 
 

 
Figure 28: Standard residual Q-Q plot of cycle time vs. Distance 
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Figure 29: Simple linear regression between distance time and travel loaded. 
 
The regression diagnostics for the model are presented in the analysis of residuals where a 

typical heteroscedastic fanning is visible with increasing fitted values (Figure 31). 
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Figure 30: Residual plot of Travel loaded vs. Distance of simple linear regression. 
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Figure 31: Standard residual Q-Q plot of Travel loaded vs. Distance. 
 
In order to improve the situation, the transformed linear regression with an ln transformation 

was applied (Figure 33). 
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Figure 32: Residual plot of LnTravel load vs. Lndist of simple linear regression. 
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Figure 33: Simple linear regression between Distance time and Travel empty. 
 
The regression diagnostics for the model are presented through the analysis of residuals 

(Figure 35). A heteroscedastic fanning of the residuals with higher prediction values is also 

apparent here. This means the ln transformation was needed (Figure 36).  
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Figure 34: Residual plot of Travel empty vs. Distance of simple linear regression. 
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Figure 35: Standard residual Q-Q plot of Travel empty vs. Distance. 
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 Figure 36: Residual plot of Lntravel empty vs. Lndist of simple linear regression. 
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Table 23: Simple linear regressions of variables. 
 

Variables 

Linear 

regression 

model 

N R2 p-value 

Cycle time vs. 

Distance 

Y(Cycle time) = 

0.074 + 0.057 

·X(Distance) 

340 0.91 <0.0001 

Travel loaded 

vs. Distance 

Y(Trav.loaded) = 

0.034+0.015 · 

X(Distance) 

334 0.72 <0.0001 

Travel empty 

vs. Distance 

Y(Cycle time)= 

0.022+ 0.012 

·X(Distance) 

343 0.62 <0.0001 

 

All three independent variables showed a significant relationship with the distance 

(p<0.001), the dependant variable. Once again, the alternative hypothesis (HA1) was 

accepted for these three relationships, whereas the coefficient of determination (R2) for the 

regression model indicated a good to sufficient fit. The variation in the independent 

variables was thus explained by the distance. 

4.3.2 Testing Alternative Hypothesis 2: Productivity of biomass extraction with the 

three-wheeled loader differs between the three prevailing tree species 

 
As the productivity data does not satisfy the underlying assumption of normal distribution 

and equal variance for the one-way analysis of variance (ANOVA) (Appendix 6), a Kruskal–

Wallis test was conducted to determine the effect of the six species group. The statistical 

output for the Kruskal–Wallis test is illustrated in an error bar plot (Figure 38). 

 

The Alternative Hypothesis (HA2) of difference on machine productivity in ODT PMH-1 was 

accepted at a significance level of 0.05, indicating that the Kruskal-Wallis test was highly 

significant (p< 0.001). The same observation was confirmed with the Kruskal-Wallis median 

test (p<0.001) (Appendix 6). 
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Figure 37: Mean productivity and 95% confidence interval grouped by species. 
 
The Kruskal-Wallis test rank table clarified in detail the difference between species (Table 

25):  the highest rank sum was achieved by Gum 1 and the lowest rank sum by Gum 2. 

 

Table 24: Kruskal-Wallis ANOVA by rank. 
 

Independent variables: 
species 

 
Kruskal-Wallis test: H( 5, N= 352)= 34.72083 

p= 0.001 
 

Code 
Valid N 

Sum of 
Ranks 

Gum 1 
 

101 
61 12801.5 

Gum 2 
 

102 
49 7159.5 

Acacia 1 
 

103 
46 10972 

Acacia 2 
 

104 
63 10501 

Myrtle 1 
 

105 
64 10375 

Myrtle 2 
 

106 
69 10319 
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4.3.3 Testing Alternative Hypothesis 3: The total cycle time of biomass extraction 

with the three-wheeled loader differs between the three prevailing tree species 

 
Data of total cycle time was analysed using the Kruskal–Wallis test because the data did not 

satisfy the assumption for normality (p<0.001) that validates the use of the one-way ANOVA 

test. The results of the Kruskal–Wallis test are reported according to each species (Figure 

39). There were significant differences between species (p<0.001), indicating that the 

alternative hypothesis (HA3) is to be accepted. The same results were confirmed by the 

Kruskal-Wallis median test (Appendix 6). 
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Figure 38: Mean plot of total cycle time grouped by species. 
 
The difference in cycle time of the three-wheeled loader between species is provided in the 

Kruskal-Wallis Test rank table (Table 26), clearly showing which species was consuming 

more extraction time than others. 
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Table 25: Kruskal-Wallis ANOVA by rank. 
 

 
Independent variables: 

species 

 
Kruskal-Wallis test: H( 5, N= 352)= 

43.99169 p= 0.001
 

Code 
Valid N 

Sum of 
Ranks 

Gum 1 
 

101 
61 8328.50 

Gum 2 
 

102 
49 10465.50 

Acacia 1 
 

103 
46 5101.00 

Acacia 2 
 

104 
63 13325.00 

Myrtle 1 
 

105 
64 12013.00 

Myrtle 2 
 

106 
69 12895.00 

 

4.3.4 Testing Alternative Hypothesis 4: The chipper productivity differs between the 

three prevailing tree species 

 
An analysis of variance (one-way ANOVA) was conducted for comparing the productivity 

between species. The chipping productivity data was transformed to satisfy the ANOVA 

assumptions (i.e. Shapiro-Wilk normality test [p= 0.73] and Levene’s test for equal variance 

[p= 0.05], Appendix 6). The results show that species do differ significantly (p < 0.001) with 

respect to productivity in ODT hour-1 at α= 0.05. A graphical illustration of the chipper 

productivity results are shown in Figure 40. 

 

Current productivity rates were compared to the potential productivity rate, which refers to 

100% machine utilisation (Table 27).  
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Figure 39: Error bar plot of productivity with mean value and 95% confidence intervals, 

grouped by species for chipping productivity. 

 
 
Table 26: Chipping productivity rate between plots. 
 

Species 
Current productivity

Rate (ODT PMH-1) at 50 % 
machine utilisation 

Potential productivity rate 
(ODT PMH-1) at 100 % 
machine utilization 

Gum1 3.13 6.27 

Gum2 1.96 3.93 

Gum ave. 2.5 5.1 

Acacia1 4.72 9.44 

Acacia2 3.79 7.59 

Acacia ave. 4.20 8.5 

Myrtle 1 2.49 4.98 

Myrtle2 2.48 4.97 

Myrtle ave. 2.4 4.9 

Average 3 6.1 
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4.3.5 Testing Alternative Hypothesis 5: The total cycle time for chipping differs 

between the three prevailing tree species 

 

As the ANOVA assumptions were not met by the data (Appendix 6), the Kruskal-Wallis test 

was used for the analysis. Remarkable differences at a significance level of 0.05 in terms of 

cycle time between species were observed. There were noteworthy differences (p< 0.001), 

indicating that chipping time was not the same. Results of the chipping cycle time 

comparison are illustrated in Figure 41.  
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Figure 40: Results for the chipping cycle time between species. 
 

The above results were confirmed in the Kruskal-Wallis ANOVA by rank (Table 28) and in 

the Kruskal-Wallis median test (Appendix 6). 
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Table 27: Kruskal-Wallis ANOVA by rank. 
 

Independent variables: 
species 

 
Kruskal-Wallis test: H ( 5, N= 342)= 18.629212 

p< 0.001 
 

Code 
Valid N 

Sum of 
Ranks 

Gum 1 
 

102
64 8509.50 

Gum 2 
 

103 
50 10070.00 

Acacia 1 
 

104 
42 8213.50 

Acacia 2 
 

105 
55 8665.50 

Myrtle 1 
 

106 
62 11304.00 

Myrtle 2 
 

107 
69 11890.50 

 

4.3.6 Testing Alternative Hypothesis 6: The waiting time of the chipper differs 

between the three prevailing tree species 

 

The difference between species in waiting time of the chipper for the biomass was 

examined using the Kruskal-Wallis test because the data did not meet the required 

assumption of ANOVA test (Appendix 6). There were significant differences between 

species (p< 0.001). The results of the waiting time are presented graphically in Figure 42.  

 

Table 28: Kruskal-Wallis ANOVA by rank. 
 

Independent variables: 
species 

 
Kruskal-Wallis test: H( 5, N= 342)= 25.65087 

p< 0.001 
 

Code
Valid N 

Sum of 
Ranks 

Gum 1 
 

102 
64 10444.00 

Gum 2 
 

103 
50 9585.00 

Acacia 1 
 

104 
42 8777.50 

Acacia 2 
 

105 
55 10463.00 

Myrtle 1 
 

106 
62 7609.00 

Myrtle 2 
 

107 
69 11774.50 
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Figure 41: Results for the chipping waiting time between species. 
 
 
More details are given in the Kruskal-Wallis ANOVA by Rank (Table 29) and in the Kruskal-

Wallis median test (Appendix 6) which confirmed the results, so the Alternative Hypothesis 

could be accepted. 

4.3.7 Testing Alternative Hypothesis 7: The chipper feeding time differs between the 

three prevailing tree species 

 
Here again, the data did not satisfy the underlying assumption of ANOVA (Appendix 6; 

Shapiro-Wilks test for normality and Bartlett test for homogeneity of variances of feeding 

time). The analysis to determine the differences between the feeding times of biomass into 

the chipper between species was done using the Kruskal-Wallis test. The results show that 

the times were significantly different (p<0.001) between feeding times of species. In 

conclusion, the null hypothesis (Ho) was rejected and the alternative hypothesis accepted.  

Figure 43 below presents the Kruskal-Wallis test of feeding times. 
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Figure 42: Results for the chipping feeding time between species. 
 
Table 29: Kruskal-Wallis ANOVA by rank. 
 

Independent variables: 
species 

 
Kruskal-Wallis test: H( 5, N= 342)= 65.04607 

p< 0.0001 
 

Code 
Valid N 

Sum of 
Ranks 

Gum 1 
 

102 
64 7526.00 

Gum 2 
 

103 
50 10746.00 

Acacia 1 
 

104 
42 7468.50 

Acacia 2 
 

105 
55 6601.50 

Myrtle 1 
 

106 
62 14216.50 

Myrtle 2 
 

107 
69 12094.50 
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4.4 Energy yield of harvested biomass 

4.4.1 Fuel characteristics 
 
Results showed that the Acacia species contained more water than the other species. In 

terms of energy content, the three species were similar, while minimal variance was 

detected  in the ash content of the three species. The results on moisture content, energy 

content and ash content of biomass species used in the study are illustrated in Table 31. 

Based on Equation 3-6, the net calorific value of every species was estimated after 

subtraction of the energy content necessary to evaporate the water. 

 

Table 30:  Moisture content, energy content, ash content of species. 
 

Species 

Moisture 

content 

(%) 

Net calorific 

value of dry 

biomass(GJ/t)

Net calorific 

value of fresh 

biomass(GJ/t)

Ash 

content 

(%) 

Gum 

Acacia 

Myrtle 

25 

34 

30 

19.36 

19.18 

19.93 

14 

11.9 

13.5 

1.38 

1.77 

1.37 

 

4.4.2 Gross energy output 

 

Table 32 below shows the results of the calculated estimated energy derived from each plot 

and the extrapolation to a hectare level. An average energy of 76 GJ was calculated based 

on the fresh mass multiplied by the energy content per plot. When expressed in hectares, 

this represents about 3 364 GJ ha-1. Conversion calculations indicated that the total 

equivalent energy from the six plots (i.e. Gum 1, Gum 2, Acacia1, Acacia 2, Myrtle 1 and 

Myrtle 2) amounted to 13 0938 KWh, while the corresponding energy per hectare was 3 273 

450 kWh. It is clear from the results that the output energy was higher on Acacia 1 and 

lower for Gum 1. 
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Table 31: Estimated woody biomass energy content. 
 

Species 
Energy plot-1 

(GJ) 
Energy plot-1 

(kWh) 
Energy ha-1 

(GJ) 
Energy ha -1 

(kWh) 

Gum 1 63.42 17 630.76 1 585.50 440 769.00 

Gum 2 74.76 20 783.28 1 869.00 519 582.00 
Acacia 1 81.48 22 651.44 2 037.00 566 286.00 

Acacia 2 79.08 21 984.24 1 977.00 549 606.00 
Myrtle 1 86.81 24 131.79 2 170.13 603 294.75 

Myrtle 2 85.46 23 756.49 2 136.38 59 3912.25 
Total 471.00 13 0938 11 775.00 3 273 450.00 

Average 76.00 21 823 3 364.00 54 557.00 

 

4.4.3 Energy input and energy balance 

 
The results of the energy input indicated that the total direct lubricant and fuel consumption 

was about 229.09 litres for all systems, which corresponds to 8 338.87 MJ (8.33 GJ) of 

heating value, equivalent to 2 318.20 KWh. The chipper used the largest proportion (35.5%) 

of the total direct energy input of the system studied. The fuel used by the three-wheeled 

loader represented 25.12% of the total direct energy input, while the chain saw and the 

transport operation of both the truck and the pickup truck were responsible for 23.7% and 

16% respectively.  The direct energy input for the five machines is presented in Figure 44. 

 

 

Figure 43: Direct energy input of the system. 
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 Energy balance 

 

Based on formula 3-10, the net energy balance of the harvesting system was determined 

by: 

 

463338471  .Eb   

4.5 Operation costing 

 

4.5.1 Labour costing 

 
The labour cost results per ODT are presented in Table 33, and were calculated based on 

the number of workers/shift and the estimated productivity (i.e. ODT man day-1, ODT hr-1). 

 

Table 32: Labour cost between species. 
 
 

 

 

 

 

 

 

 

 

According to the results in Table 33, Gum 2 had higher labour costs than Acacia 2, Gum 1, 

Myrtle 2, Myrtle 1, and Acacia 1. The average labour cost in general was R 148.12 ODT-1. 

The Acacia plots differed strongly, with large variance between plots (i.e. 67.93 to R1 95.31 

ODT-1), while the labour costs on the Myrtle stand were similar at R 86.81 and 120.19 ODT-

1.  

4.5.2 Machines costing  

 
Based on the assumptions around the equipment used in this investigation (Appendix 7), 

the individual output calculations of the chainsaw, chipper and the three-wheeled loader are 

Cost 
components 

Species 

 Gum1 Gum2 Acacia1 Acacia2 Myrtle1 Myrtle2 
# of worker/ 

Shift 
6 8 3 8 3 4 

Estimated 
productivity  
ODT/man-

day 

0.61 0.54 1.85 0.67 1.48 1.10 

Estimated 
productivity  

ODT/hr 
0.08 0.07 0.23 0.08 0.18 0.13 

Total cost 
R ODT-1 

195.31 223.21 67.93 195.31 86.81 120.19 
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presented in Tables 34 to 36. The harvesting chain saw costs done on each plot were 

compared within species (Table 34). 

 

Table 33: Cost breakdown of the chain saw between species per ODT. 
 

Output 
calculations 

Gum 1 
 

Gum 2 Acacia 1 Acacia 2 Myrtle 1 Myrtle 2 
 

Depreciation 0 3.03 5.29 3.8 7.61 7.5 

Cost of 
Capital 

0 0.34 0.6 0.45 0.86 0.89 

Insurance 0 0 0 0 0 0 

Total Fixed 
Costs 

0 3.38 5.9 4.25 8.47 8.39 

Fuel 0 7.38 12.88 9.25 18.51 18.25 

Oil and 
Lubricants 

0 1.48 2.58 1.85 3.7 3.65 

Maintenance 
and repairs 

0 3.37 5.88 4.23 8.45 8.33 

Cutting bar 0 1.12 1.96 1.41 2.82 2.78 

Cutting chain 0 1.07 1.87 1.34 2.68 2.65 

Sprocket 0 0.18 0.31 0.23 0.45 0.44 

Flat File 0 0.09 0.16 0.11 0.23 0.22 

Round File 0 0.09 0.16 0.11 0.23 0.22 

Total 
Variable 

Costs 
0 14.78 25.8 18.53 37.06 36.55 

TOTAL 
COSTS R 

ODT-1 
0 18.16 31.69 22.78 45.53 44.94 

 

 
Chain saw cost per ODT between species ranged from R 18.16 /ODT to R 45.53 /ODT with 

an average cost of R 27.1 /ODT. On plot Gum 1, the chain saw costs were zero because 

felling had been done manually (Table 34).  

 

The cost of the chipping activity was broken down in order to show the variation which could 

be observed between plots (Table 35). 
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Table 34: Cost breakdown of the Bandit model 255XP chipper. 
 

Output 
calculations 

Gum1 Gum2 Acacia1 
 

Acacia2 Myrtle1 Myrtle2 

Depreciation 12.04 19.23 7.99 0.97 15.14 15.2 

Cost of Capital 8.29 13.24 5.5 0.68 10.42 14.28 

Insurance 0 0 0 0 0 0 
Relocation 

costs 
0 0 0 0 0 0 

Total Fixed 
Costs 

20.33 32.47 13.48 1.65 25.56 29.48 

Fuel 19.94 31.84 13.22 16.46 25.06 25.16 
Oil and 

Lubricants 
3.99 6.37 2.64 3.29 5.01 5.03 

Maintenance 
and repairs 

13.42 21.43 8.9 1.11 16.87 16.94 

Tyres 0.04 0.06 0.03 0.03 0.05 0.05 

Consumable/s 0 0 0 0 0 0 
Total Variable 

Costs 
37.38 59.69 24.79 20.9 46.99 47.18 

TOTAL COSTS 
R ODT-1 

57.71 92.16 38.27 22.55 72.55 76.65 

 
 
Chipping production costs are calculated at an utilisation rate of 50%. Gum 2 cost more at 

R92.16 ODT-1, followed by Myrtle 2 at R76.65 ODT-1, Myrtle 1 at R76.55 ODT-1, Gum 1 at 

R57.71/ODT, Acacia 1 at R38.27 ODT-1 and Acacia 2 at R 22.55 ODT-1. 

 

Extraction costs based on four different travelled distances in meters were important 

because this indicated how the distance parameter can influence the extracting cost (Table 

36).   
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Table 35: Cost breakdown of the three wheeled loaded at different extraction distances 

(10m, 20m, 30m and 40m). 

 

Output 
calculations 

Travelled distance 

At 10m At 20m  At 30m At 40m 

Depreciation 4.79 11.37 12.86 16.73 

Cost of 
Capital 

5.06 12.01 13.58 17.66 

Insurance 0 0 0 0 

Relocation 
costs 

0 0 0 0 

Total Fixed 
Costs 

9.85 23.38 26.44 34.38 

Fuel 8.99 21.33 24.12 31.37 

Oil and 
Lubricants 

1.8 4.27 4.82 6.27 

Maintenance 
and repairs 

5.62 13.33 15.08 19.61 

Tyres 1.28 3.04 3.44 4.48 

Total 
Variable 

Costs 
17.69 41.98 47.46 61.73 

TOTAL 
COSTS  
R ODT-1  

 

27.54 65.36 71.22 96.12 

 

4.5.3 Secondary transport cost 

 
The impact of the travelling distance of the truck from the harvesting site to the biomass 

plant was calculated at four road transports of 10km to 40km in order to provide a possible 

range of transport costs (Table 37). 
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Table 36:  Woodchips and solid wood transport cost at different road transport distances. 
 

Species
 

Cost 
components 

Gum Acacia Myrtle 

Road 
transport 
distances 

10km 20km 30km 40km 10km 20km 30km 40km 10km 20km 30km 40km

Woodchip 
transport 

cost 
R ODT-1 km-1 

26.9 30 114 120.4 26.6 29.8 112.8 119.2 31.5 35.2 134.4 142 

Solid wood 
transport 

cost 
R ODT-1 km-1 

5.7 11.2 25.2 27.6 5.6 11 24.9 27.2 6.6 13 29.4 32.4 

Total road 
transport 

cost 
R ODT-1 km-1 

32.6 41.2 139.2 148 32.2 40.8 137.7 146.4 38.1 48.2 163.8 174.4

 

4.5.4 Estimated total supply cost of both wood chips and solid wood 

 

Wood chip and solid wood production costs (R ODT-1), including manual harvesting, motor-

manual harvesting, extraction, chipping and road transport within the current harvesting 

system for each biomass species ranged from R 322.77 ODT-1 to R 689.76 ODT-1 over road 

transport distances of 10 to 40 km (Table 38,39 and 40). This estimated cost is based on 

the energy contained in the biomass feedstock. 
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Table 37: Detailed cost analysis of the supply chain system based on different extraction 

and road transport distances. 

 
Species Gum1 Gum2 

Extraction distances 10m 20m 30m 40m 10m 20m 30m 40m 

Cost components         

All fixed costs         

Chain saw 0 0 0 0 3.38 3.38 3.38 3.38 

Three-wheeled loader 9.85 23.38 26.44 34.38 9.85 23.38 26.44 34.38 

Chipper 20.33 20.33 20.33 20.33 32.47 32.47 32.47 32.47 

Total 30.18 43.71 46.77 54.72 45.7 59.23 62.28 70.23 

All variable costs         

Chain saw 0 0 0 0 14.78 14.78 14.78 14.78 

Three-wheeled loader 17.69 41.98 47.46 61.73 17.69 41.98 47.46 61.73 

Chipper 37.38 37.38 37.38 37.38 59.69 59.69 59.69 59.69 

Total 55.07 79.36 84.84 99.11 92.16 116.45 121.94 136.21

All operators         

Chain saw 0 0 0 0 51.57 51.57 51.57 51.57 

Three-wheeled loader 8.03 8.03 8.03 8.03 5.16 5.16 5.16 5.16 

Chipper 13.69 13.69 13.69 13.69 18.22 18.22 18.22 18.22 

Total 21.72 21.72 21.72 21.72 74.95 74.95 74.95 74.95 

All worker         

Stack 195.31 195.31 195.31 195.31 223.21 223.21 223.21 223.21

Total 195.31 195.31 195.31 195.31 223.21 223.21 223.21 223.21

All additional personnel         

Other 7.02 16.67 18.84 24.51 7.02 16.67 18.84 24.51 

Total 7.02 16.67 18.84 24.51 7.02 16.67 18.84 24.51 

All overheads         

Total overhead cost 0 0 0 0 0 0 0 0 

Total R ODT-1 309.3 356.77 367.48 395.37 443.04 490.51 501.22 529.11

All together  at different 
road transport distances 

 R ODT-1 
        

10 km 341.9 389.37 400.08 427.97 475.64 523.11 533.82 561.71

20km 350.5 397.97 408.68 436.57 484.24 531.71 542.42 570.31

30km 448.5 495.97 506.68 534.57 582.24 629.71 640.42 668.31

40km 457.3 504.77 515.48 543.37 591.04 638.51 649.22 677.11
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Table 38: Detailed cost analysis of the supply chain system based on different extraction 

and road transport distances (continued). 

 

 
 

Species Acacia1 Acacia2 
Extraction distances 10m 20m 30m 40m 10m 20m 30m 40m 

Cost components         
All fixed costs         

Chain saw 5.9 5.9 5.9 5.9 4.24 4.24 4.24 4.24 
Three-wheeled loader 9.85 23.38 26.44 34.38 10.14 24.06 45.49 27.2 

Chipper 13.48 13.48 13.48 13.48 1.65 1.65 1.65 1.65 
Total 29.23 42.76 45.81 53.76 16.02 29.95 51.38 33.09 

All variable costs         
Chain saw 25.8 25.8 25.8 25.8 18.53 18.53 18.53 18.53 

Three-wheeled loader 17.69 41.98 47.46 61.73 16.4 38.93 73.61 44.02 
Chipper 24.79 24.79 24.79 24.79 20.9 20.9 20.9 20.9 
Total 68.28 92.57 98.05 112.32 55.83 78.36 113.04 83.45 

All operators         
Chain saw 105.04 105.04 105.04 105.04 62.88 62.88 62.88 62.88 

Three-wheeled loader 8.03 8.03 8.03 8.03 12.44 12.44 12.44 12.44 

Chipper 5.04 5.04 5.04 5.04 8.08 8.08 8.08 8.08 

Total 118.11 118.11 118.11 118.11 83.4 83.4 83.4 83.4 

All worker         

Stack 67.93 67.93 67.93 67.93 195.31 195.31 195.31 195.31

Total 67.93 67.93 67.93 67.93 195.31 195.31 195.31 195.31

All additional personnel         

Other 7.02 16.67 18.84 24.51 11.7 27.78 52.52 31.41 

Total 7.02 16.67 18.84 24.51 11.7 27.78 52.52 31.41 

All overheads         

Total overhead cost 0 0 0 0 0 0 0 0 

Total R ODT-1 290.57 338.04 348.74 376.63 362.55 414.8 495.65 426.66

All together  at different 
road transport distances R 

ODT-1 
        

10 km 322.77 370.24 380.94 408.83 394.75 447 527.85 458.86

20km 331.37 378.84 389.54 417.43 403.35 455.6 536.45 467.46

30km 428.27 475.74 486.44 514.33 500.25 552.5 633.35 564.36

40km 436.97 484.44 495.14 523.03 508.95 561.2 642.05 573.06
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Table 39: Detailed cost analysis of the supply chain system based on different extraction 

and road transport distances (continued). 

 
Species Myrtle1 Myrtle 2 

Extraction distances 10m 20m 30m 40m 10m 20m 30m 40m 

Cost components         

All fixed costs         

Chainsaw 8.47 8.47 8.47 8.47 8.39 8.35 8.35 8.35 

Three-wheeled loader 9.85 23.38 26.44 34.38 9.85 23.38 26.44 34.16 

Chipper 25.56 25.56 25.56 25.56 29.48 25.66 25.66 25.66 

Total 43.88 57.41 60.46 68.41 47.72 57.39 60.45 68.17 

All variable costs         

Chainsaw 37.06 37.06 37.06 37.06 36.55 36.55 36.55 36.55 

Three-wheeled loader 17.69 41.98 47.46 61.73 17.69 41.98 47.46 61.33 

Chipper 46.99 46.99 46.99 46.99 47.18 47.18 47.18 47.18 

Total 101.74 126.03 131.51 145.78 101.41 125.7 131.19 145.05

All operators         

Chainsaw 144.59 144.59 144.59 144.59 62 62 62 62 

Three-wheeled loader 14.46 14.46 14.46 14.46 14.88 14.88 14.88 14.88 

Chipper 14.46 14.46 14.46 14.46 5.16 5.16 5.16 5.16 

Total 173.51 173.51 173.51 173.51 82.04 82.04 82.04 82.04 

All worker         

Stack 86.81 86.81 86.81 86.81 120.19 120.19 120.19 120.19

Total 86.81 86.81 86.81 86.81 120.19 120.19 120.19 120.19

All additional personnel         

Other 11.7 27.78 31.41 40.85 7.02 16.67 18.84 24.35 

Total 11.7 27.78 31.41 40.85 7.02 16.67 18.84 24.35 

All overheads         

Total overhead cost 0 0 0 0 0 0 0 0 

Total 417.64 471.54 483.7 515.36 358.38 401.99 412.71 439.8 

All together  at different 
road transport distances  

R ODT-1 
        

10km 455.74 509.64 521.8 553.46 396.48 440.09 450.81 477.9 

20km 465.84 519.74 531.9 601.66 406.58 450.19 460.91 488 

30km 581.44 635.34 647.5 679.16 522.18 565.79 576.51 603.6 

40km 592.04 645.94 658.1 689.76 532.78 576.39 587.11 614.2 
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4.6 Energy cost 

 
The energy cost results expressed in R GJ-1 for each plot are shown in Table 41. 
 
Table 40: Estimated energy cost. 
 

Species 

Average Cost 
Energy 
density 

Cost 
Energy 
density 

Average Cost 

Extraction 
(distance -25m) 

& Road transport 
(distance - 25km) 

R ODT-1 

GJ ODT-1 R GJ-1 GJ Fresh-1 

Extraction 
(distance -25m) & 

Road transport 
(distance - 25km) 

R fresh t-1 

  OD biomass   Fresh biomass 

Gum 1 447 19.36 23 14 323 

Gum 2 581 19.36 30 14 420 

Acacia 1 427 19.18 22 12 267 

Acacia 2 514 19.18 27 12 322 

Myrtle 1 578 19.93 29 14 406 

Myrtle 2 509 19.93 26 14 358 

 
Table 41 indicates that the Gum 2 site had the highest energy cost and the lowest was 

found on the Acacia 1 site, while the average energy cost across species was 26 R GJ-1. 
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5. Discussion 

 

This chapter investigates the biomass potential of the Agulhas region, followed by an outline 

of variables affecting cost and productivity of the harvesting system and the identification of 

feedstock characteristics. Hereafter, a cost sensitivity analysis to predict project 

performance is discussed. The chapter concludes with an examination of future research 

needs and potential limits in the use of biomass of invasive woody vegetation for energy 

generation. 

 

5.1 Biomass potential of invasive tree vegetation in the Agulhas plain 
 
The findings suggest that the physical recovery of invasive woody biomass has potential as 

bioenergy feedstock in South Africa. The biomass showed similar fuel characteristics as 

those of other forest biomass resources such as harvesting residues or short rotation tree 

crops, as reported by Röser et al. (2008). During this study, an average of 150 fresh 

biomass tonnes (115.6 ODT ha-1) (in the form of solid stems and woodchips) were 

harvested per hectare from the six different study sites (Figure 45).  

 

 

     
 
Figure 44: Harvested biomass (solid and woodchips) on the Acacia site on the Agulhas 
plain. 
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5.2 Evaluation of productivity of individual harvesting processes in the entire 

harvesting system 

5.2.1 Manual harvesting 

 

A comparison of the manual harvesting of different species (Figure 19) revealed that the 

Acacia harvesting was more economical than the other species due to wider spacing 

between larger trees (DBH 8.0 to 9.0 cm).  Access to Spider Gum sites was limited by a 

higher density of small diameter stems per unit area (65 stem m-2) of DBH’s ranging from 

1.0 to 7.0 cm, with almost 100% tree coverage and a dominant tree height estimated at 4 m 

(Figure 46). The highest productivity rate was achieved in the Acacia 1 and Myrtle 1 plots 

(Table 18), which can be attributed to the high vegetation density on these plots.  

 

 

Figure 45: Dense biomass stand at the Spider Gum site on the Agulhas plain. 
 
The results of activity sampling showed that worker productivity was however non-optimal 

during the study because of inordinately high portions of idle time (26%). This idle time 

could be attributed to the use of bow-saws and the associated fatigue element (bent posture 

and cutting action). With the introduction of ergonomically designed machines such as 

brush-cutters to allow a more upright posture and mechanically assisted cutting, it can be 

expected that productivity rates will be raised substantially. The introduction of brush-cutters 

could, for example, improve average productivity by 0.05 wet tonnes man day-1 (1.3 to 1.7 

wet tonnes man day-1), as found by Leinonen (2007). 

  

The fact that the gender of the workers was predominantly female could furthermore have 

decreased the productivity rate, as females usually have a weaker physique than males. 

This can be demonstrated by the dominance of male workers in several physically 

demanding job sectors, such as mining, forestry and construction. A study by Barbini et al. 
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(2005) revealed that men were more tolerant of adverse conditions, as indicated by the 

following tolerance rates: noise (54% for men vs. 34% for women), vibration (25% for men 

vs. 6% for women), extreme temperatures (41% for men vs. 12% for women), holding an 

uncomfortable posture (20% for men vs. 7% for women), and overtime (60% for men vs. 

50% for women). In order to improve productivity both in practice and in this case study, 

team composition could be revised by using more males than females, as pointed out by 

Heidi (2007). 

5.2.2 Motor-manual process 

 
Activity sampling of motor-manual harvesting operations revealed that chain saw activities 

across all sites were more efficient when compared to manual cutting with bow-saws. 

However, the high percentage of clearing time observed on the Myrtle site (i.e. 47% of the 

total time), can once again be attributed to site vegetation density, complicating chain saw 

operators’ movements on the stand. With regards to the working elements on the three 

sites, idle time once again seemed to be a problem (i.e.10% of the total time). If the idle time 

could be reduced, this will positively impact on productivity of motor-manual operations.  

The observed productivity of the chain saw varied between 0.71 and 1.78 ODT PMH-1 

across all plots. These variations can be attributed to operational factors such as the 

distance between stems and the large stem size variations. Studies by Behjou et al. (2009) 

on the influence of DBH and distances between trees support this finding.  

5.2.3 Comparison between manual and motor-manual harvesting productivity 
 

Iindications of higher motor-manual productivity when compared to manual harvesting are 

reflected in Table 42.  
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Table 41:  Motor-manual and manual harvesting yields (ODT). 
 

Species 
Motor-manual

Productivity (ODT pmh-1)) 
Manual harvesting 

Productivity (ODT man day-1) 

Gum 1 - 0.61 

Gum 2 1.78 0.54 

Acacia 1 1.02 1.85 

Acacia 2 1.42 0.67 

Myrtle 1 0.71 1.48 

Myrtle 2 0.72 1.10 

Average 1 1.04 

 

5.2.4 Evaluation of extraction and chipping operations 

 
Productivity results of the three-wheeled loader suggest that the extraction operation 

significantly differs between species (p>0.05). As such, the null hypothesis of equal 

productivity of biomass extraction with the three-wheeled loader with respect to the three 

prevailing tree species was not supported for this part of the study. The reason for the 

different results can be attributed to the work conditions for Spider Gum, Acacia and Myrtle. 

These conditions were based on the available amount of biomass, stem density and 

extraction distance. Cycle time of the three-wheeled loader was found to be significantly 

different for Spider Gum, Acacia and Myrtle (p<0.05). Once again, the difference in cycle 

time was attributed to work conditions of the three sites. 

 

The relationship between distance and productivity was found to be noteworthy in both the 

non-linear and the ln-transformed linear regression model fitted to the data. Distance was 

found to be inversely proportional to the production rate of the three-wheeled loader. The 

average production rate of the machine over the various sites under study was 5.3 fresh t 

PMH-1 (3.1 ODT PMH-1). Material collection (small piece sizes and a large number of stems) 

and average extraction distance had an impact on the machine productivity. To match the 

potentially sustained productivity of the chipper (4.0 – to 9.4 ODT PMH-1), extraction 

distances should be reduced.  Alternatively, additional three-wheeled loaders or alternative 

extraction and feeding systems could be used, and alternative chipper feeding methods 

employed in order to maintain chipper productivity. Spinelli et al. (2004) suggested the 
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employment of either a tractor-trailer system or a purpose-built forwarder to improve the 

utilisation of the chipper.  

Results obtained from chipper studies suggest that productivity significantly differs between 

group species (p<0.05). This is attributed to the difference in biomass volume fed into the 

chipper by the three-wheeled loader. Volume availability for Gum, Acacia and Myrtle sites 

contributed to this difference. A closer examination of chipping cycle times revealed that 

chipping time was highly variable between the Spider Gum, Acacia and Myrtle species 

(Figure 38). This difference was caused by the waiting and feeding time of biomass by the 

three-wheeled loader.  

 
It was concluded that a buffer in front of the chipper and/or the employment of additional 

extraction equipment are a necessity. A chipper equipped with a knuckle boom loader could 

be a solution in dealing with the self-loading of a buffer in front of the machine. This, 

however, would increase the cost of the chipping operation because a more expensive 

machine is used. The other problem observed during the chipping operation was related to 

the dependency of the chipper on the road transport as biomass had to be blown directly 

into the truck container. This caused an operational delay as it was time consuming for the 

truck to be emptied. It furthermore contributed to low machine utilisation rates and increased 

chipping costs. Similar problems were noted in studies conducted by FFRI (2005). The 

implementation of a hot harvesting system (i.e. machines are dependent on each other) 

would improve the conditions. Another possible solution would be to add an additional long 

distance truck trailer (Leinonen, 2004) of large capacity and also to utilise a chipper with self 

feeding to reduce the delay by increased machine utilisation rates. The other option would 

be to use two exchangeable containers: while the truck takes the full container to the 

biomass plant, the chipper can continue working by blowing the biomass into the second 

exchangeable container (Figure 47). 
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Figure 46: Exchangeable containers in terrain chipping (Leinonen, 2004). 

5.3 Energy of the feedstock 
 
From the results in this study it is clear that, despite variation in moisture content, the 

calorific value of the three species is similar. Compared to the average calorific value 

established in the literature (i.e. 17 and 20 MJ kg-1 for oven-dried wood) (Fengel and 

Wegener, 1983), the calorific values of the three species (19.18,19,36 and 19.93 MJ kg-1) 

are in the range recognized to any wood fuel.  

 

The ash content of the three species did not differ significantly. In all three species it was 

above 1%, which, according to the literature (Abbot et al. 1996, Fuwape and Akindele, 

1997), is the required content for energy production for most species.  The high ash content 

of the three species can be attributed to the fact that the whole tree was analysed. This is 

supported by Kofman (2007), who reported ash contents in the range of 1 - 2% on dry mass 

basis, which can be increased to 1.5 to 2.5% when the needles are included in the 

combustion across different wood species.  The impact of impurities such as soil and sand 

should also be taken in account. The higher levels of ash will in all likelihood negatively 

impact on the energy conversion process of the three species under consideration. In order 

to avoid this, it would be advantageous to separate bark from the other tree components, 

i.e. foliage, wood and seeds. This is however not feasible as it is costly to debark the 

biomass and may affect the eventual product. 

 

The net calorific value of fresh biomass found in the study varied from 11 to 14 GJ tonne-1, 

which was less than the range proposed by other authors. It is clear that the higher ash 

content of the three species had strongly influenced the net calorific value of fresh biomass. 
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The Acacia species had higher energy values compared to the other two species due to the 

higher oven-dry biomass recoverable on the given site (Figure 18). The energy balance,  

the difference between energy output and energy input, was found to be sufficient (463) for 

qualifying the current biomass system to be viable. This is because the difference was 

above 1 (Morice 2008 and Westbrook, 2006).  

5.4 Sensitivity analysis on harvesting production system and cost 

 
From the results of the study it was clear that manual labour operation costs are higher than 

motor-manual operation costs. This is due to the higher number of workers employed and 

the significantly lower productivity rate of manual harvesting (Figure 48). In order to optimize 

the harvesting work, it would be advisable to use the motor-manual method instead of full 

manual harvesting. 

 

Figure 47:  Harvesting cost comparison between manual and motor-manual methods on 

different plots [Gum 1, Gum 2, Acacia 1, Acacia 2, Myrtle 1 and Myrtle 2]. 

 
A sensitivity analysis of the data in this case study showed that for the three-wheeled loader 

extraction, an increase of 133% in extraction costs will occur with a 10 m increase in the 

extraction distance from 10 m to 20 m.  Similar increases in extraction costs were notable in 

an increase from 20 m to 30 m (13% increase) while an increase from 30 m to 40 m 

resulted in a 29% increase (Figure 49). By considering the optimal productivity of the three-

wheeled loader, extraction costs can be decreased from an average of R 65.05 ODT-1 to R 

30.31 ODT-1. 
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Figure 48: Interaction between cost and productivity based on various extraction distances 

of the three-wheeled loader (falling curve represents productivity, and rising curve the costs 

involved). 

A sensitivity analysis of the chipping operation shows that the chipping costs are very 

sensitive to the machine utilisation rate. The higher the machine utilisation rate, the lower 

the chipping costs. In the current study, an assumed machine utilisation rate of 50% 

resulted in over-proportionally higher chipping costs than for example an utilisation rate of 

100% (Figure 50 and 51). It is clear that chipper utilisation should be as high as possible to 

maintain costs within acceptable limits. However, direct feeding and truck transport rotation 

will impact on utilisation. With no truck available to load the chipper, high levels of utilisation 

will be improbable, unless the chips are stored on the ground. This once again poses a 

problem in chip recovery, causes contamination of the chips and reduces the energy 

quantity of the biomass.   
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Figure 49: Chipping cost vs. chipper machine utilisation rates. 
 

 

Figure 50: Chipper production cost vs. chipper machine utilisation rates at actual 

productivity of different species. 

 
If productivity and machine utilisation rates are high, costs could normally be maintained at 

lower levels (Figure 52). But in order to use the chipper at high machine utilisation levels, 

the option of accumulating a large quantity of biomass material in front of the chipper could 

be considered, as advocated by FFRI (2005). The alternative of moving the chipper from 

site to site further impacts on the utilisation of the machine (lower utilisation and additional 

movement costs). In order to maximise productivity, it may be profitable to adopt chipping at 
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the plant, characterised by a higher degree of machine utilisation and low chipping costs. 

The self-feeding of the chipper would increase chipping rates and reduce costs. 

 

 

Figure 51: Chipper production cost vs. chipper machine utilisation rates at optimal 

productivity. 

 
Results indicate that an increase in transport distances produced an increase in costs.  

Costs for 10 km, 20 km, 30 km and 40 km distances increased by 16%, 17%, 18% and 19% 

respectively across all species. This provided an understanding of how distance affected 

transport costs of either chips or solid material. Richardson et al. (2002) found that as long 

as the road transport could be contained to economically acceptable distances of less than 

100 km, it could be profitable for biomass harvesting. The harvesting site should thus be 

close to the biomass plant in order to avoid higher road transport costs (Figure 53). This 

clearly favours decentralised plant locations, which also contribute positively to the 

development of rural areas. 
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Figure 52: Road transport cost vs. distances for each biomass species. 
 

The effect of various road transport distances (10, 20, 30 and 40 km) on total production 

cost is illustrated in Figures 54, 55 and 56 below. 

 

 

Figure 53: Harvesting system cost comparisons as a function of road transport distances 

based on extraction distances of the three biomass species: (A). 
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Figure 54 Harvesting system cost comparisons as a function of road transport distances 

based on extraction distances of the three biomass species: (B). 

 
Figure 55:  Harvesting system cost comparisons as a function of road transport distances 

based on extraction distances of the three biomass species: (C). 

 
When combining the optimal production rates (i.e. 60% for the chain saw, 70% for the three-

wheeled loader and 85% for the chipper) with the higher level machine utilisation, the 

average harvesting system costs decreased sensibly from R 506.26 ODT-1 to R 376.44 
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ODT-1. This leads to a cost decrease and the availability of useful information for dealing 

with the three invasive vegetation species relevant to this study.  

 

5.5 The importance of future research on the use of woody biomass of invasive 

vegetation as bioenergy feedstock 

 
This study, which focuses on the evaluation of biomass recoverability from invasive 

vegetations, revealed important information. However, further investigation is necessary into 

the available biomass quantity, specifically on capturing a range of tree sizes, stem / ha 

counts, canopy densities and species mixes in alternative sites. Based on the results, it can 

be concluded  that it may be possible to improve mechanical felling methods with multi-stem 

handling and other small wood fuel harvesting machines. Other possible areas of 

investigation include the compression, binding and bundling of the biomass and optimal 

chipping locations both in forests (terrain chipping) and at biomass plants. 
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6. Conclusion and recommendations 

6.1. Conclusion 

 

This study focused on the feasibility of using Acacia Cyclops [Rooikrans], Leptospermum 

laevigatum [Myrtle] and Eucalyptus lehmanii [Spider Gum] as energy feedstock. The 

potential availability of 693.38 oven-dry tonnes (ODT) of biomass can be harvested from six 

hectares of invasive stands. This proves that biomass from invasive vegetation could be 

considered as a viable energy feedstock of substantial quantity. It is therefore clear that the 

recovery of woody biomass of these three invasive species has significant potential in 

sustaining a bioenergy project in the Agulhas area. These findings can aid decision-making 

in other areas in the country where similar conditions occur. 

 

When comparing manual and motor-manual felling in the harvesting system, the study 

revealed that the two methods did not reach the expected output for an effective harvesting 

system.  This was due to a low productivity rate which increased the harvesting costs. 

Manual felling costs were R 148.12 ODT-1, as compared to motor-manual felling costs of R 

27.1 ODT-1. Motor-manual felling should thus be given preference over full manual tree 

felling.  

 

The extraction operation by the three-wheeled loader was found to be ineffective because 

inappropriate equipment was used due to limited logistical resources. The relationships 

between independent and dependent variables of the three-wheeled loader did not provide 

a good and predictable model, which could possibly indicate the need for machine 

performance evaluation in the extraction work. The sensitivity analysis showed that the 

extraction distance was a crucial factor affecting yield productivity and resulting in higher 

extraction costs, ranging from R 27.54 to R 96.12 ODT-1. This  placed a limitation on the 

chipping operation. Therefore, the three-wheeled loader should be replaced by more 

suitable extraction machines in order to ensure higher productivity rates. 

 

Chipping appears to be suitable for small biomass volumes located at one site, but not 

suited for dispersed sites because this adds additional costs of relocation. The sensitivity 

analysis indicated that an increase in the chipper utilisation is advisable, resulting in a 

decrease of 104%  of chipping costs in all species. 
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The sensitivity analysis showed that an increase in road transport distance results in 

increased transport costs of the woody biomass in all species. This emphasised the fact that 

harvesting operations should be done close to the biomass plant in order to minimise road 

transport costs. An estimation of secondary transport costs across species, based on 

various transport distances, was as follows: 7% at 10 km, 9% at 20 km, 26% at 30 km and 

27% at 40 km. 

 

Finally, the results from this study clearly indicated that woody biomass from invasive trees 

have reasonably suitable fuel characteristics as far as net calorific value, moisture content 

and ash content are concerned.  The difference between energy input and output (463 GJ) 

was a good indicator for a feasable bioenegy system based on invasive vegetation. This 

leads to the conclusion that a harvesting biomass system like the one tested can be viable 

because substantially more energy than emissions is produced. The average estimated 

energy cost across the species was R 26 G-1J. 

 

6.2. Recommendations 

 
Results obtained from this study significantly contributed to the body of knowledge 

regarding the harvesting of woody biomass from invasive tree vegetation in South Africa, 

particularly in the Western Cape. The presented results may provide more information to 

forest harvesting and transportation contractors on how to efficiently manage wood fuel from 

invasive woody vegetation. It may also assist forest contractors and bio-energy companies 

in their decision-making on different aspects of machine combinations and costs to assist in 

sound business and resource management decisions.  

 

Despite the strong argument for the useful exploitation of invasive vegetation for the 

production of energy, this sector particularly can only be developed with firm political will 

and consistency. Research is necessary on resource use and the implementation of an 

information campaign in order to promote the benefits of wood energy extracted from 

invasive vegetation. This requires the establishment of financial incentives to contractors, 

ensuring the purchase of suitable tools and equipment for harvesting this biomass resource. 

Only in this manner would woody biomass from invasive vegetation species be an economic 

solution, similar to other biomass energy commonly produced today. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 94

7. References 
 
 

1. Abbot, P., Lowore, J., Khof, C., Werren, M. 1996. Defining firewood quality: a 

comparison of quantitative and rapid appraisal techniques to evaluate firewood 

species from a Southern African savannah. Biomass and Bioenergy, pp 429- 437. 

2. Agulhas National Park, 2009. Park Management Plan, Draft for Stakeholder 

Comment, pp 51. 

3.  Alakangas, E. 2005. Properties of wood fuels used in Finland, Technical Research 

Centre of Finland, VTT Processes, Project report PRO2/P2030/05, pp.30 [Online]: 

Availableat:http://p29596.typo3server.info/fileadmin/Files/Documents/06_Publications

/Biosouth_Wood_fuel_properties_Oct 2005.pdf. [October 26, 2010]. 

4. Alakangas, E., Virkkunen, M. 2007. Biomass fuel supply chains for solid biofuels. 

Finnish Ministry of Employment and the Economy. Jyväskylä. The publication 

produced in EUBIONET2 project (EIE/04/065/S07.38628), pp 32. 

5. Allen, J., Browne, M., Hunter, A. Boyd, J., Palmer, H. 1998.  Logistics management 

and costs of biomass fuel supply. International Journal of Physical Distribution & 

Logistics Management, Vol. 28 No. 6, pp. 463-477, © MCBUniversity Press, 0960-

0035. 

6. Andersen, L. 1999a. Extraction of forest residues. In K.K. Tai and M.R. Jaeger, eds. 

Study on extraction and processing of forest residues and small dimension logs. 

Kuala Lumpur, Forest Department Peninsular Malaysia. Technical Reports, V. 1, 40–

57. 

7. Askungen Vital AB. 2011.What´s ash? [Online]: Available: 

http://www.eng.askungenvital.se/index.htm. [August 5, 2011].  

8. Ashton, S., Cassidy, P. 2007. Energy Basics. In: Hubbard, W., Biles, L., Mayfield, C., 

Ashton, S. (Eds). Sustainable Forestry for Bioenergy and Bio-based Products: 

Trainers Curriculum Notebook, pp.189-192. 

9. Ashton, S. 2010. Timber Harvesting Residues. In: U.S. Department of Energy (DOE) 

and U.S. Department of Agriculture (USDA). Biomass as feedstock for a bioenergy 

and bioproducts industry: The technical feasibility of a billion- ton annual supply 

DOE/GO–102995–2135. Washington, DC. 

10.  Bain, R.L., Overend, R.P. 2002. Biomass for heat and power. Forest Products 

Journal52 (2): 12-19. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 95

11.  Bandit model 255XP chipper. Photo [Online]: Available at: http. C:\Documents and 

Settings\15563987\My Documents\Bandit Industries, Inc.htm [September 6, 2009]. 

12.  Barbini, N., Squadroni, R., Andreani, M. 2005. Gender differences regarding 

perceived difficulties at work with age. International congress series 1280: 49– 54. 

13.  Beckert, E., Jakle, A. 2008. Renewable energy data book. U.S. Department of 

Energy, Energy efficiency and renewable energy, pp 131. 

14.  Behjou, F. K., Majnounian, B., Dvořák, J., Namiranian, M., Saeed, A., Feghhi, J. 

2009. Productivity and cost of manual felling with a chainsaw in Caspian forests. 

Journal of forest science, 55. (2): 96–100. 

15. Bergman, R., Zerbe, J. 2008. Primer on wood biomass for energy. USDA Forest 

Service, State and Private Forest Products Laboratory, Madison, Wisconsin. [Online]: 

Available at 

http://www.fpl.fs.fed.us/people/bios/employee_level_bio.php?employee_id=44&bio_c

ategory_id=publications. [January 17, 2010]. 

16. Clewer, A.G., Scarisbrick, D.H. 2001. Pratical statistics and experimental design for 

plant and crop science.T.H.Huxley School of Environment, Earth Sciences and 

Engineering Imperial College at Wye, Ashford, Kent, UK, 213-218. 

17.  Ciolkosz, D., Miller, B., Wallace. 2010. Characteristics of biomass as a Heating Fuel. 

Pennsylvania State University. [Online]: Available at: 

http://pubs.cas.psu.edu/FreePubs/PDFs/ubo43.pdf [October 26, 2010]. 

18. Corder, S.E. 1976. Fuel characteristics of Wood and Bark and Factors Affecting Heat 

Recovery. Wood Residues as Energy Source. Madison, Wisconsin: USDA Forest 

Products Laboratory. In: Encyclopedia ID: pp 1256. Last Modified: 2008-11-14. 

19. Curkeet, R. 2011. Wood Combustion Basics. [Online]. Available at: 

http://www.epa.gov/burnwise/workshop.pdf. 

20. Dalgaard, P.2008. Introductory statistics with R, pp 383+ app. 

21. Dean, J., Anderson, D., Milton, J., Anderson, A. 2002. Avian Assemblages in native 

Acacia and alien Prosopis drainage line woodland in the Kalahari, South Africa. J. 

Arid Environm. 51: 1–19. 

22. DWAF, Department of Water and Forest 2003. Distribution of alien invasive 

vegetations in South Africa. The Working for Water Programme. [Online]. Available 

at: http://www.dwaf.gov.za/wfw. [May 17, 2008]. 

23. Department of Minerals and Energy. 2003. White Paper on Renewable Energy. 

Republics of South Africa: pp 45. [Online]. Available at: 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 96

http://unfccc.int/files/meetings/seminar/application/pdf/sem_sup1_south_africa.pdf.[M

ay 13, 2011]. 

24.  Enters, T. 2001. Logging and mill residues in Asia and the Pacific. Food and 

Agriculture Organization of the United Nations Regional Office for Asia and the 

Pacific, Bangkok © FAO. [Online]:  Available at: 

www.fao.org/docrep/003/X6966E/X6966E00. [May 7, 2010]. 

25. FAO, 1990. Energy conservation in the mechanical forest industries. [Online]. 

Available at: http://www.fao.org/docrep/T0269e/t0269e0e.htm#. Forestry Paper V.93 

Rome, Italy [July 15, 2011]. 

26.  Fege, A., Inman, R., Salo, D.1979. Energy forms for the future. Journal of Forestry 

77(6): 358-361. 

27.  Fei Pan, Han-Sup Han, Leonard R. Johnson, William J. Elliot. 2008. Net energy 

output from harvesting small-diameter trees using a mechanized system. Forest 

Products Journal.58(1/2): pp25-30 [Online]: Available: 

http://www.treesearch.fs.fed.us/pubs/30846 [April 6, 2010]. 

28. Fengel, D., Wegener, G.1983. Wood chemistry, Ultrastructre and Reactions. Berlin: 

Walter de Gruyter. Berlin, 133–181.  

29. Fuwape, J.A., Akindele, S.O. 1997. Biomass yield and energy value of some fast-

growing multipurpose trees in Nigeria. Biomass and Bioenergy 12: 101 –106. 

30. Fordyce and Ensor. 1982. Net calorific value of waste wood (Pinus radiata) as a 

function of moisture content. Series 9, Department of Trade and Industry 

Newzealand [Online]: 

Available:http://sres.anu.edu.au/associated/fpt/nwfp/woodres/woodres.html [July 18, 

2011]. 

31. Frombo, F., Minciardi, R., Robba, M., Rosso, F., Sacile, R. 2008. Planning woody 

biomass logistics for energy production:  A strategic decision model. [Online]:   

Available at: http://www.elsevier.com/locate/biombioe [November 25, 2010]. 

32. Grobbelaar, E. 2000. Systems approach to forest engineering costing. In the South 

African Forestry handbook. V.1, 293-296. 

33. Hakkila, 1989. Utilisation of residual Forest biomass. Springer-Verlag Berlin 

Heidelberg New York, London Paris Tokyo Hong. pp.202. 

34.  Hall, A. 2005. Small-scale systems for harvesting woodfuels products. Technical 

note. [Online]: Available at: www.forestry.gov.uk. [June17, 2010]. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 97

35. Han, H.-S., Lee, H.W., Johnson, L.R. 2004. Economic feasibility of an integrated 

harvesting system for small-diameter trees in southwest Idaho. Forest Prod. J. 54: 

21-27. 

36.  Heidi. 2007. Difference between male and female structures. i.e. mental and 

physical [Online]: Available at: http:// www.steadyhealth.com. [January 18, 2011]. 

37. Hogg, G., Laengin, D., Ackerman, P., Schonken, F., Du Preez, H., Johnson, D. 

2008.South African Harvesting &Transport System Costing Model. Version 1.01. 

38.  Howard, G., Ziller, S. 2008. Alien alert – plants for biofuel may be invasive. 

Bioenergy Business. [Online]: Available: http://cmsdata.iucn.org/downloads/pdf. 

[April7, 2010]. 

39. Huhtinen, M. 2005. Wood energy- Basic information pages. [Online].Available: 

file:///M|/5Eures/WoodEnergyEcology/Emissions.htm (2 of 4)19.1.2006 13:30:47. 

[May 7, 2010]. 

40. IEA, International Energy Agency.2002a.  Greenhouse gas balances of biomass and 

bioenergy systems.Autralia Bioenergy Task 38, pp. 3. 

41.  IEA. International Energy Agency.2002b. Sustainable Production of Woody biomass 

For Energy. [Online]:   Available at: www.ieabioenergy.com [January 19, 2011]. 

42.  ITEBE, Institut des bioenergies. 2006. Origin and composition of wood. [Online]: 

Available: http//www.itebe.org/portail/affiche.asp? [October 28, 2010]. 

43. Jackson, Schroeder, R., Ashton, S. 2010. Primary Processing of woody biomass. 

[Online].Available:www.extension.org/pages/primary_Processing_of_Woody_Biomas

. [October 22, 2010]. 

44.  Jodin, P. 1994. Le bois materiau d’ingenierie. [Online].Available: 

http://grenet.drimm.u-bordeaux1.fr/pdf/2003/gachet_christophe_2003.pdf arbolor, 

Nancy, pp 433. [October 28, 2010]. 

45.  Kanawaty, G.1992. Introduction to work study. Geneva, International labour Office. 

Fourth (revised) edition: 243-265. 

46.  Koopmans, A. Koppejan, J. 1997. Agricultural and Forest residues –Generation, 

Utilization and Availability. Paper presented at the Regional Consultation on Modern 

Applications of Biomass Energy, Kuala Lumpur, Malaysia (see FAO, 1998). 

47. Krug, R.M., Roura-Pascual, N., Richardson, D.M. 2010. Clearing of invasive alien 

plants under different budget scenarios: using a simulation model to test efficiency. 

Springer Science Business Media B.V. doi: 10.1007/s10530-010-9827-3. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 98

48. Kofman, P.D. 2007. Harvesting wood for energy from early first thinning.Harvesting / 

Transportation No. 3. [Online]: Available at: http: // 

http://www.hsg.ie/iopen24/product_info.php. [February 21, 2011]. 

49. Kofman, P.D. 2006. Quality wood chip fuel. Danish forestry Extension. 

[Online]:Available:http://www.coford.ie/media/coford/content/eventspresentations/Har

vesting%20and%20chipping%.pdf. [April 20, 2010]. 

50. Leinonen, A. 2004. Harvesting technology of forest residues for fuel on the USA and 

Filand. Espoo. VTT Tiedotteita-Research Notes 2229.132 pp +app. pp 10. 

51.  Leinonen, A. 2007. Wood chip production technology and costs for fuel in Namibia. 

Espoo. VTT Tiedotteita- Research Notes 2417, pp 66 + app. 

52.  Maker, T.M. 2004. Wood chip heating systems. A guide for institutional and 

commercial biomass installations, pp 25. 

53.  Marais, C., Eckert, J., Creen, C. 2001. Utilisation of invaders for secondary 

Industries: a preliminary assessment. Land Use and Water Resources Research 

1(6): 1–13. 

54.  Marinescu, M., Bush, T. 2009. Wood to Energy: Use of the forest Biomass for Wood 

Pellets. School of Forest Resources and Conservation Department, Florida 

Cooperative Extension Service, Institute of Food and Agricultural Sciences, 

University of Florida, pp 1-4. 

55.  McDonald, T.P., Taylor, S., Rummer, R., Valenzuela, J. 2001. Information needs for 

increasing log transport efficiency. First International precision Forestry Symposium. 

Seattle, WA: University of Washington, pp 12. 

56.  Moilanen, A., Nieminen, M., Sipila, K., Kurkela, E. 1996. Ash behavior in thermal 

fluidized-bed conversion processes of woody and herbaceous biomass. 9th European 

Bioenergy Conference & 1 st European Energy From Biomass Technology 

Exhibition, 24-27., Copenhagen, Denmark, pp 6. 

57. Miyata, E.S., Helmuth, M. S., Sharon, A.W. 1981. Using work sampling to analyze 

logging operations. USDA Forest Service, Research Paper NC-213, pp 8. 

58. Morice, T.J. 2008. Net energy study summary. “Is it feasible to use pellets both 

financially and for their green value?” University Wisconsin Green Bay as 

commissioned by PFI. [Online]: Available: www.pelletheat.org [June 9, 2010]. 

59. Munalula, F., Meincken, M. 2008. An evaluation of South Africa fuelwood with 

regards to calorific value and environmental impact. Biomass and Bioenergy 33: 415-

420. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 99

 

60.  Norton,G., Abraham, S., Veneman, A. 2003. Memorandum of Understanding on 

Policy Principles for Woody Biomass Utilisations for restoration and Fuel treatments 

on Forest, Woodlands, and Rangelands: U.S. Forest Service and Bureau of Land 

Management’s,Washington,D.C.[Online]:Available:http://www.forestguild.org/publicati

ons/research/2009/biomass_guidelines.pdf [Mars 2, 2011]. 

61.  Noss, R.F. 1990. Indicators for monitoring biodiversity: a hierarchical approach. 

Consero. Biol., 355-364. 

62.  Payandeh, B. 1981.Choosing regression models for biomass prediction equations. 

Forestry Chron. 57: 229-232. 

63. Pulkki, R.E. 2001. Forest harvesting on the procurement of wood with emphasis on 

Boreal and Great lakes St. Lawrence Forest Regions. Forestry 3211, pp 34-35. 

64. Rausher, H.M. 2008. Sources and quantity of supply. Forest Encyclopaedia, 

Network. [Online]: Available: http://www.forestencyclopedia.net [May 11, 2010]. 

65. Richardson, D., Van Wilgen. 2004. Invasive alien plants in South Africa: How well do 

we understand the ecological impact? Working for Water, South African Journal of 

Science 100, January/ February, pp 45-51. 

66. Richardson, J., Bjorheden, R., Hakkila, P., Smith, C.T, Lowe, A.T. 2002. Bioenergy 

from sustainable Forestry: Guiding principles and practice. Kluwer academic 

Publishers, the Netherlands, pp125-132. 

67. Richards, J., Skaar, R., Haberle, S., Thompson, M.J. 1995. Forest work study 

nomenclature. Swedish University of Agricultural Science, Grapenberg, pp16. 

68. Röser, D., Asikainen, A., Rasmussen, K.R., Stupak, I. 2008. Sustainable use of 

forest biomass for energy. A synthesis with focus on the Baltic and Nordic region, pp 

17. 

69. RFA (Road Freight Association).2010. Vehicle Cost Schedule. [Online]: Available at: 

http://www.rfa.co.za/rfa/index.php?option=com_content&view=article&id=92&Itemid=

65 

70.  RSB (Roundtable on Sustainable Biofuels). 2010. [Online]: Available: 

http://egse.epft.ch/page65660-en.html [October 15, 2010]. 

71. Schaberg, R.H., Aruna, P.B., Cubbage, F.W., Hess, G.R., Abt, R.C., Richter, D.D., 

Warren, S.T., Gregory, J.D., Snider, A.G., Sherling, S., Flournoy, W. 2005. Economic 

and ecological impacts of woodchip production in North Carolina: An integrated 

assessment and subsequent applications. Forest Policy and Economics, 7: 157-174. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 100

72. Shebani, A.N. , van Reenen, A.J.,  Meincken, M. 2008. The effect of wood extractives 

on the thermal stability of different wood-LLDPE composites. V. 481, Issues 1-2, 

pp.52-56. [Online]: Available: 

http://www.sciencedirect.com/science/article/pii/S0040603108000750 [August17, 

2011]. 

73. Serup, H., Zalster, H., Gamborg, C.,  Gundersen, P. ,Hansen, L., Heding, N., 

Jakobsen, Kofman, P., Nikolaisen, L., Thomsen, I.M. 2002. Wood for Energy 

Production. Technology-Environment-Economy. Second revised ed, pp 22-23. 

74. Simpson, W., Tenwolde, A. 1999. Physical properties and moisture relations of wood. 

In: Forest products Lab. Wood handbook-wood as an engineering material. Madison, 

WI: USDA forest service, pp. 463. 

75. Spinelli, R., Visser, R.J.M. 2009. Analyzing and estimating delays in wood chipping 

operations. ALSA, CNR, Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), 

Italy.Biomass and Bioenergy .v: 33, Issue: 3, Publisher: Elsevier Ltd, pp 429-433 

76.  Spinelli, R., Owende, P.M., Ward, S. M., Tornero, M. 2004. Comparison of short-

wood forwarding systems used in Iberia. Silva Fennica 38(1): 85–94. 

77. Spinelli, R., Nati, C., Magagnotti, N. 2007. Recovering logging residue: experiences 

from the Italian Eastern Alps, Croatian Journal of Forest Engineering 28, pp. 1–9. 

78. Stampfer, K., Kanzian, C. 2006. Current state and development possibilities of wood 

chip supply chains in Austria. Croatian Journal of Forest Engineering 27(2): 136. 

79.  Stokes, B.J., McDonald, T.P., Kelly, T. 1993. Transpirational drying and costs for 

transporting woody biomass- a prelimary review. In: IEA / BA task IX, Activity 6: 

Transport and handling. New Brunswick, CN: IEA: 76-91. 

80. Smith, W. 1982. Energy from forest biomass. University of Washington. 

81.  Sprugel, D.G.1983. Correction for bias in log-transformed algometric equations. 

Ecology, Vol.64, No.1: 209-210. 

82. Talbot, B.E., Raae, K., Sehested, F. 2007. Green harvest- Facing the demand for 

renewable energy and the role of plantation forestry. Fremlagt ved Plantation 

certification symposium, Paper presented at, Stellenbosch, South Africa 18-21 

September. 

83. Theron, J.M., Van laar, A., Kunneke, A., Bredenkamp, B.V. 2004. A preliminary 

assessment of utilisable biomass in invading Acacia stands on the Cape coastal 

plains. SA journal of Science 100, pp 123-125. 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 101

84. Three-wheeled loader model logger 225A. Photo [Online]: Available at:     

http://www.bellequipment.com. [September 6, 2009]. 

85. Truck with carrier bin. Photo [Online]: Available at: 

http://www.qgm.qld.gov.au/07_disposals/sold.htm. [September 6, 2009]. 

86. Tsoumis, G.1991. Science and Technology of wood. Structure, Properties, 

Utilisation, pp. 200. 

87. Tsoumis, G.1992. Harvesting Forest Products. Davies, Hertford, pp. 54. 

88. U.S. Department of Agriculture. 2002. Forest Service's Timber Product Output 

database. [Online]: Available at: http://srsfia2.fs.fed.us/states/north_carolina.shtml. 

[January 10, 2009]. 

89. U.S. Department of Agriculture. 2005. U.S. Department of Energy (DOE). 2005. 

Biomass as feedstock for a bioenergy and bioproducts industry: The technical 

feasibility of a billion-ton annual supply. [Online]: Available at:  

http://feedstockreview.ornl.gov/pdf/billion_ton_vision.pdf. [January 10, 2009]. 

90. Walker, J.C.F., Butterfield, B.G., Langrish, T.A.G., Harris, J.M. and Uprichard, J.M. 

1993. Primary Wood Processing. Chapman and Hall, London. pp. 595 

91. Walsh, M. E. 2007. Estimated U.S. Forest Residue Supply—Documentation of 

Methodology, Mille residues. [Online]: Available at: 

http://bioweb.sungrant.org/Technical/Biomass+Resources/Forest+Resources/Mill+Re

sidues/Default.htm. [May 7, 2010]. 

92.  Westbrook, M.D., Dale Greene., Izlar, R.L. 2006.Harvesting Forest Biomass by 

adding a Small Chipper to a Ground- based Tree- length Southern Pine Operation. 

Center for Forest Buisiness, University of Georgia. [Online]: Available at: 

www.gabioenergy.org/ppt/Andres%20villegas. [June 9, 2010]. 

93.  Withycombe, R., 1982. Estimating costs of collecting and transporting forest 

residues in the northern Rocky Mountain Region. USDA Forest Service, Inter-

Mountain Forest and Range Expt. Sta., Ogden, UT.Gen. Tech. Rept. INT-81, pp. 12. 

94.  Zafar, S. 2008. Woody biomass resources. [Online]: Available at: www.altenative-

energy-news.info/ woody biomass-resources. [October 13, 2010]. 

 

 

 
 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 102

8. Appendices 

 
Appendix 1: Production assumptions. 
 
Harvesting 
condition  

Gum1  Gum2 

High  density  young  small  trees  (10  –
65stem/m2, aver: 20stem/m2; tree diameter 
1  –  7cm,  aver:  2.5cm)  and  dominant  tree 
height  4  metres;  100%  tree  coverage  on 
site.    
 

Dense larger trees (5 – 20 stem/m2, aver: 8 
stem/m2; tree diameter 2 – 15cm, aver: 7.5cm) and 
dominant tree height 12 metres; 100% tree 
coverage on site 

Operational 
method 

The workers using loppers and bowsaws fell 
and stack trees to a single brushline formed 
every  10  m  in  the  area.  Maximum  carry 
distance for stacking 5 m.  
 

The two chainsaw operators  felled all trees on the 
site  and  crosscut  out  all  utilisable  solid  wood 
timber.  There  was  no  directional  control  on  the 
felling  of  trees.  A  team  of  six workers  separated 
and  stacked  brush  in  a  second  operation  for  the 
chipping operation  in a single brushline formed on 
the 10m spacing.  
 

Team 
structure  & 
size 
 

The  team  consisted  of  six  workers;  two 
workers  predominately  cut  trees  with  the 
remaining  four  stacking  and  preparing 
brushlines. 
 

The team consisted of two chainsaw operators and 
six  brush  stackers.  The  two  chainsaw  operators 
felled  and  crosscut  out  solid  wood  sections.  The 
brush  stackers  sorted  brush  and  solid  wood 
sections ready for extraction or chipping. 
 

Harvesting 
condition  

Acacia1  Acacia2 

Larger mature dense acacia site on level 
terrain 

Dense acacia site, 2 – 5cm stems, 4 m height, 100% 
coverage 

Operational 
method 

The  single  chainsaw  operators  felled  all 
trees  on  the  site  and  crosscut  out  all 
utilisable  solid  wood  timber.  A  team  of 
three  workers  separated  solid  wood  and 
stacked brush on a single brushline  formed 
on the 10m spacing.  
 

The  single  chainsaw  operators  felled  all  trees  on 
the  site  and  crosscut  out  all  utilisable  solid wood 
timber.  A  team  of  four  workers  separated  solid 
wood  and  stacked  brush  on  a  single  brushline 
formed on the 10m spacing.  
 

Team 
structure  & 
size 
 

The  team  consisted  of  one  chainsaw 
operators and three brush stackers. 
 

The team consisted of one chainsaw operators and 
three brush stackers. 
 

Harvesting 
condition  

Myrtle1 Myrtle2 

Dense myrtle site  Dense myrtle site

Operational 
method 

The  single  chainsaw  operators  felled  all 
trees  on  the  site  and  crosscut  out  all 
utilisable  solid  wood  timber.  A  team  of 
three  workers  separated  solid  wood  and 
stacked brush on a single brushline  formed 
on the 10m spacing.  
 

The  single  chainsaw  operators  felled  all  trees  on 
the  site  and  crosscut  out  all  utilisable  solid wood 
timber.  A  team  of  four  workers  separated  solid 
wood  and  stacked  brush  on  a  single  brushline 
formed on the 10m spacing.  
 

Team 
structure  & 
size 
 

The  team  consisted  of  one  chainsaw 
operators and three brush stackers. 
 

The team consisted of one chainsaw operators and 
three brush stackers. 
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Appendix 2: Method sampling: Observed work elements during manual data collection. 
 

Spp  Element  w1  w2 w3 w4 w5 w6 w7  w8

gum  stack  34  29 25 39 26 66 22  35

gum  cut  111  95 84 80 145 2   0

gum  moveload  45  47 39 36 31 48 15  22

gum  spray  0  0 0 0 0 27 0  0

gum  idle  50  67  80  55  19  44  32  37 

gum 
Moving 
Empty 

15  18  19  8  12  7  8  9 

gum  Inspecting  0  0 0 0 0 0 0  0

gum  Pickup  22  17 39 35 24 11 36 

  Average  46  45 48 42 43 29 23  26

  total  277  273 286 253 257 205 113  103

       

Spp  Element  w1  w2 w3 w4 w5 w6 w7  w8

jackson  stack  3  4 4 1 5 7 1  2

jackson  cut  23  16 16 23 25 17 22 

jackson  moveload  1  2 3 1 2 9 5  1

jackson  spray  0  0 0 0 0 0 0  0

jackson  idle  6  6 8 3 8 16 22  17

jackson 
Moving 
Empty 

1  12  10  11  6  1  4  30 

jackson  Inspecting  7  7  3  8  7  7  5  2 

jackson  Pickup  0  0 0 0 0 0 0  0

  Average  8  8 7 8 9 10 10  10

  total  41  47 44 47 53 57 59  52

Spp  Element  w1  w2 w3 w4 w5 w6 w7  w8

acacia  stack  56  2 38 18 15 30 34  34

acacia  cut  0  0 0 0 0 0 0  0

acacia  move load  6  7 8 18 0 3 7 

acacia  spray    0 0 0 0 0 0  0

acacia  idle  24  29  24  40  20  21  11  0 

acacia 
Moving 
Empty 

9  12  18  18  12  7  11  0 

acacia  Inspecting  0  0 0 0 0 0 0  0

acacia  Pickup  10  19 14 15 2 0 2 

  Average  21  14 20 22 10 12 13  34

  total  105  69 102 109 49 61 65  34

Spp  Element  w1  w2 w3 w4 w5 w6 w7  w8

myrtle  stack  52  80 100 29 0 0 0  0

myrtle  cut  0  0 0 0 0 0  0

myrtle  move load  23  20 20 22 0 0 0  0

myrtle  spray  0  0 0 0 0 0 0  0

myrtle  idle  110  83 32 66 0 0 0  0

myrtle 
Moving 
Empty 

37  29  30  15  0  0  0  0 

myrtle  Inspecting  0  0  0  0  0  0  0  0 

myrtle  Pickup  13  24 27 51 0 0 0  0

  Average  47  47 41 37 0 0 0  0

  total  235  236 209 183 0 0 0  0

W= worker 
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Appendix 3: Method sampling: Observed work element in motor-manual harvesting. 
 

Spp  Element  C‐saw1  C‐saw2  Avarage 

gum  Cut  59  47  53 

gum  Cross cutting  25  37  31 

gum  Refuel  15  7  11 

gum  Filling  8  14  11 

gum  Inspection  2  3  3 

gum  Moving  21  12  17 

gum  Broken  23  26  25 

gum  Debranch  7  7  7 

gum  Idle  17  14  16 

  Avarage  20  19   

  Sum  177  167   

Spp  Element  C‐saw1  C‐saw2  Avarage 

jackson  Cut  26  0  13 

jackson  Cross cutting  9  0  4.5 

jackson  Refuel  4  0  2 

jackson  Filling  2  0  1 

jackson  Inspection  0  0  0 

jackson  Moving  7  0  3.5 

jackson  Broken  14  0  7 

jackson  Debranch  2  0  1 

jackson  Idle  10  0  5 

  Avarage  8.2     

  Sum  74  0   

Spp  Element  C‐saw1  C‐saw2  Avarage 

acacia  Cut  45  0  22.5 

acacia  Cross cutting  0  4  2 

acacia  Refuel  22  2  12 

acacia  Filling  8  0  4 

acacia  Inspection  2  0  1 

acacia  Moving  3  3  3 

acacia  Broken  14  0  7 

acacia  Debranch  7  0  3.5 

acacia  Idle  11  2  6.5 

  Avarage  12  1   

  Sum  112  11   
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Appendix 3: Method sampling: Observed work element in motor-manual harvesting.  
                   (continued) 
 

Spp  Element  C‐saw1  C‐saw2  Avarage 

myrtle  Cut  91  89  90 

myrtle  Cross cutting  0  0  0 

myrtle  Refuel  28  38  33 

myrtle  Filling  19  20  19.5 

myrtle  Inspection  9  0  4.5 

myrtle  Moving  12  16  14 

myrtle  Broken  19  18  18.5 

myrtle  Debranch  18  1  9.5 

myrtle  Idle  41  3  22 

  Avarage  26  20.5   

  Sum  237  185   
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Appendix 4: Three-wheeled loader data summary: 
 
Shown are minimum, 1st quantile, median, arithmetic mean, 3rd quantile and maximum values 

 
Belldata<-read.table("clipboard",header=T,na.strings=".",sep="\t") 
> summary(Belldata) 
     Species    Grapple.min.    Move.loaded.min. Move.empty.min.  
 Acacia 1:46   Min.   :0.0100   Min.   :0.0100   Min.   :0.0100   
 Acacia 2:63   1st Qu.:0.1800   1st Qu.:0.2000   1st Qu.:0.1600   
 Gum 1   :61   Median :0.3000   Median :0.3200   Median :0.2300   
 Gum 2   :49   Mean   :0.3608   Mean   :0.3618   Mean   :0.2880   
 Myrtle 1:64   3rd Qu.:0.5000   3rd Qu.:0.4800   3rd Qu.:0.3700   
 Myrtle 2:69   Max.   :1.2400   Max.   :1.2000   Max.   :1.0800   
                                                                  
  Feeding.min.    Idle.time.min.     Cycle.time.min.  Cycle.time.hour   
 Min.   :0.0200   Min.   :  0.0000   Min.   :0.1200   Min.   :0.00200   
 1st Qu.:0.1200   1st Qu.:  0.4000   1st Qu.:0.7475   1st Qu.:0.01275   
 Median :0.2250   Median :  0.7800   Median :1.2000   Median :0.02000   
 Mean   :0.2891   Mean   :  0.7148   Mean   :1.2998   Mean   :0.02174   
 3rd Qu.:0.4100   3rd Qu.:  0.9500   3rd Qu.:1.7525   3rd Qu.:0.02900   
 Max.   :1.3000   Max.   :  1.9100   Max.   :2.9300   Max.   :0.04900   
                
  Distance.m.    Dry..biomass.kg. Dry.biomass.t.      Volume.m3.      
 Min.   : 5.00   Min.   :49.46    Min.   :0.05000   Min.   :0.05000   
 1st Qu.:12.00   1st Qu.:54.06    1st Qu.:0.05000   1st Qu.:0.06000   
 Median :20.00   Median :61.98    Median :0.06000   Median :0.09000   
 Mean   :21.25   Mean   :62.91    Mean   :0.06216   Mean   :0.08747   
 3rd Qu.:27.00   3rd Qu.:69.64    3rd Qu.:0.07000   3rd Qu.:0.10000   
 Max.   :45.00   Max.   :84.77    Max.   :0.08000   Max.   :0.15000   
                                                                      
 Wood.density.at.12.MC Productivity.m3.hr. Productivity.t.hr.     Lnprod       
 Min.   :690.0         Min.   : 1.100      Min.   : 1.090     Min.   :0.0900   
 1st Qu.:690.0         1st Qu.: 2.820      1st Qu.: 2.200     1st Qu.:0.7875   
 Median :800.7         Median : 4.510      Median : 3.230     Median :1.1750   
 Mean   :839.5         Mean   : 5.747      Mean   : 4.123     Mean   :1.2199   
 3rd Qu.:995.0         3rd Qu.: 7.150      3rd Qu.: 4.915     3rd Qu.:1.5925   
 Max.   :995.0         Max.   :53.430      Max.   :30.990     Max.   :3.4300   
                                                                               
     Lndist      Lncycletime.min.   Lncycletime.hr.  Lntravel.loaded   
 Min.   :1.610   Min.   :-2.12000   Min.   :-6.215   Min.   :-4.6052   
 1st Qu.:2.480   1st Qu.:-0.29250   1st Qu.:-4.385   1st Qu.:-1.6094   
 Median :3.000   Median : 0.18000   Median :-3.912   Median :-1.1394   
 Mean   :2.889   Mean   : 0.09824   Mean   :-3.996   Mean   :-1.2097   
 3rd Qu.:3.300   3rd Qu.: 0.56250   3rd Qu.:-3.533   3rd Qu.:-0.7340   
 Max.   :3.810   Max.   : 1.08000   Max.   :-3.019   Max.   : 0.1823   
                                                                       
 Lntravel.empty     
 Min.   :-4.60517   
 1st Qu.:-1.83258   
 Median :-1.46968   
 Mean   :-1.46703   
 3rd Qu.:-0.99425   
 Max.   : 0.07696   
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Appendix 4 (continued): Chipper data summary 

Shown are minimum, 1st quantile, median, arithmetic mean, 3rd quantile and maximum values 

 
 
Chipperdata<-read.table("clipboard",header=T,na.strings=".",sep="\t") 
> summary(Chipperdata) 
     Species     Loadcycle          Grab       Waiting.time..min. 
 Acacia 1:42   Min.   :1.000   Min.   : 1.00   Min.   :0.0000     
 Acacia 2:55   1st Qu.:1.000   1st Qu.: 6.00   1st Qu.:0.3600     
 Gum 1   :64   Median :2.000   Median :12.00   Median :0.5900     
 Gum 2   :50   Mean   :1.757   Mean   :12.58   Mean   :0.6484     
 Myrtle 1:62   3rd Qu.:2.000   3rd Qu.:18.00   3rd Qu.:0.8200     
 Myrtle 2:69   Max.   :3.000   Max.   :35.00   Max.   :3.5800     
 Cycle.time.min. Cycle.time.hr.    Fresh.biomass.kg..species Dry.Biomass..kg. 
 Min.   :0.180   Min.   :0.00000   Min.   : 66.00            Min.   : 49.46   
 1st Qu.:0.840   1st Qu.:0.01000   1st Qu.: 71.48            1st Qu.: 54.35   
 Median :1.240   Median :0.02000   Median : 80.41            Median : 62.67   
 Mean   :1.405   Mean   :0.02368   Mean   : 88.68            Mean   : 68.13   
 3rd Qu.:1.657   3rd Qu.:0.03000   3rd Qu.: 91.67            3rd Qu.: 69.64   
 Max.   :5.730   Max.   :0.10000   Max.   :173.00            Max.   :141.51   
 Dry.Biomass..t.   Productivity.t.hr.     Lnprod        Lncycle.time    
 Min.   :0.05000   Min.   : 0.609     Min.   :-0.500   Min.   :-5.809   
 1st Qu.:0.05000   1st Qu.: 2.262     1st Qu.: 0.810   1st Qu.:-4.269   
 Median :0.06000   Median : 3.345     Median : 1.205   Median :-3.879   
 Mean   :0.06675   Mean   : 3.972     Mean   : 1.185   Mean   :-3.914   
 3rd Qu.:0.07000   3rd Qu.: 4.910     3rd Qu.: 1.590   3rd Qu.:-3.589   
 Max.   :0.14000   Max.   :22.259     Max.   : 3.100   Max.   :-2.349   
  Feeding.min.      Lnfeeding       
 Min.   :0.1000   Min.   :-2.3026   
 1st Qu.:0.4250   1st Qu.:-0.8559   
 Median :0.6400   Median :-0.4463   
 Mean   :0.7626   Mean   :-0.4695   
 3rd Qu.:0.8875   3rd Qu.:-0.1194   
 Max.   :3.9200   Max.   : 1.3661   
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Appendix 5: Test of distributional assumptions of ANOVA of variables of the three-wheeled 

loader and chipper. 

 
In this appendix the necessary tests of the assumptions for conduction an ANOVA are presented, 
together with the code for the statistical package R (Dalgaard, 2008). 
 
The test was performed in order to determine if the productivity data was comply with the 

three distributional assumptions of ANOVA (Independence, normality and equality of 

variances).For the independence assumption, three points were taken in count; the 

experimental design, the correct identification of the experimental unit and the 

appropriate randomisation. The normality and equality of variances assumptions were tested 

by using the Shapiro-Wilk normality test and the Bartlett test of homogeneity of 

variances. This was also done by using the residual plots in order to study the deviation 

from group means. 

 

> shapiro.test(mistakes) 

        Shapiro-Wilk normality test 

data:  mistakes  

W = 0.9682, p-value = 7.298e-10 

The raw data was not normal distributed 

> bartlett.test(resid(Model1), g = Belldatadata$Species) 

Error in bartlett.test.default(resid(Model1), g = Belldatadata$Species) : object 

'Belldatadata' not found 

> bartlett.test(resid(Model1), g = Belldata$Species) 

 Bartlett test of homogeneity of variances 

data:  resid(Model1) and Belldata$Species  

Bartlett's K-squared = 69.248, df = 5, p-value = 1.469e-13 

The raw data contradicts the assumption of equal variances in the six groups 
Histogram of the residual plot of productivity raw data 

Variable: Productiv ity (t/hr), Distribution: Normal

Chi-Square test = 130.48233, df  = 4 (adjusted) , p = 2.2e-16 
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> shapiro.test(mistakes) 
Shapiro-Wilk normality test 
data:  mistakes  
W = 0.9682, p-value = 7.298e-10 
Transformed data of productivity was also not normal distributed 
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> bartlett.test(resid(Model1), g = Belldata$Species ) 
 Bartlett test of homogeneity of variances 
data:  resid(Model1) and Belldata$Species  
Bartlett's K-squared = 14.1408, df = 5, p-value = 0.01474 
P-value < 0.05, Ho is rejected; therefore transformed data contradicts the assumption of 
equal variances in the six groups. This lead to say that there is no homoscedasticity 
Histogram of the residual plot of productivity transformed data (Lnprod) 
 

Variable: Lnprod( t/hr), Distribution: Normal

Chi-Square test = 10.99096, df  = 4 (adjusted) , p = 0.02667
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Kruskal-Wallis median test for differences between the median productivity of different species 

> kruskal.test( Productivity.t.hr. ~Species,data=Belldata) 
Kruskal-Wallis rank sum test 
data:  Productivity.t.hr. by Species  
Kruskal-Wallis chi-squared = 34.7063, df = 5, p-value = 1.722e-06 (0.000001722) 

 
Median Test, Overall Median = 3.23017; Productivity(t/hr) (Spreadsheet1
Independent (grouping) variable: Species
Chi-Square = 27.49259 df = 5 p = .0000Dependent:

Productivity(t/hr) Gum 1 Gum 2 Acacia 1 Acacia 2 Myrtle 1 Myrtle 2 Total
<= Median:  observed

expected
obs.-exp.

>  Median:  observed
expected
obs.-exp.

Total:  observed

22.00000 31.00000 11.0000 33.00000 34.00000 45.0000 176.0000
30.50000 24.50000 23.0000 31.50000 32.00000 34.5000
-8.50000 6.50000 -12.0000 1.50000 2.00000 10.5000
39.00000 18.00000 35.0000 30.00000 30.00000 24.0000 176.0000
30.50000 24.50000 23.0000 31.50000 32.00000 34.5000
8.50000 -6.50000 12.0000 -1.50000 -2.00000 -10.5000

61.00000 49.00000 46.0000 63.00000 64.00000 352.0000 352.0000  
 

 
Test of normal distribution of Cycle time raw data and Lncycletime 
 
> shapiro.test(Belldata$Cycle.time.min. ) 
Shapiro-Wilk normality test 
data:  Belldata$Cycle.time.min.  
W = 0.9537, p-value < 0.001 
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Variable: Cy cle time(min), Distribution: Normal

Chi-Square test = 58.57977, df  = 13 (adjusted) , p = 0.00000
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> shapiro.test(Belldata$ Lncycletime  ) 
Shapiro-Wilk normality test 
data:  Belldata$Lncycletime  
W = 0.9666, p-value < 0.001 

Variable: Lncycletime, Distribution: Normal

Chi-Square test = 33.93833, df = 11 (adjusted) , p = 0.00037
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> kruskal.test( Cycle.time.min. ~Species,data=Belldata) 
 Kruskal-Wallis rank sum test 
data:  Cycle.time.min. by Species  
Kruskal-Wallis chi-squared = 44.046, df = 5, p-value <0.001 
Kruskal-Wallis median test 
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Median Test, Overall Median = 1.20000; 
Independent (grouping) variable: Species
Chi-Square = 34.11750 df = 5 p = .0000Dependent:

Cycle time(min) Gum 1 Gum 2 Acacia 1 Acacia 2
<= Median:  observed

expected
obs.-exp.

>  Median:  observed
expected
obs.-exp.

Total:  observed

41.0000 18.00000 36.0000 21.0000
30.6733 24.63920 23.1307 31.6790
10.3267 -6.63920 12.8693 -10.6790
20.0000 31.00000 10.0000 42.0000
30.3267 24.36080 22.8693 31.3210

-10.3267 6.63920 -12.8693 10.6790
61.0000 49.00000 46.0000 63.0000 

 
 

Categorized Histogram of the total cycle time variable of three -wheeled loader extraction  

 

Cycle time(min)

N
o 

of
 o

bs

Species: Gum 1

-0.5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Species: Gum 2

-0.5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5

Species: Acacia 1

-0.5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5

Species: Acacia 2

-0.5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5
0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

Species: Myrtle 1

-0.5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5

Species: Myrtle 2

-0.5
0.0

0.5
1.0

1.5
2.0

2.5
3.0

3.5

 
 
 

Test of normal distribution of productivity raw data and Lnprod data of the chipper. Prior a Shapiro-

Wilk normality test was run on the productivity raw data and the productivity trasformed Ln(prod) data.  

 

> shapiro.test(Chipdata$Productivity.t.hr.) 
 Shapiro-Wilk normality test 
data:  Chipdata$Productivity.t.hr.  
W = 0.8026, p-value < 0.001 
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Variable: Productivity(t/hr), Distribution: Normal

Chi-Square test = 76.73896, df = 3 (adjusted) , p = 0.00000
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> shapiro.test(Chipdata$ Lnprod ) 
 Shapiro-Wilk normality test 
data:  Chipdata$Lnprod  
W = 0.9968, p-value = 0.733 
 

Variable: Lnprod(t/hr), Distribution: Normal

Chi-Square test = 3.21299, df = 4 (adjusted) , p = 0.52284
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Levene's Test for Homogeneity of Lnprod Variance
ANOVA of Squared Deviations from Group Means 

Source  DF  Sum of Squares Mean Square F Value Pr > F 

Species  5  3.1327 0.6265 2.18 0.0558 

Error  336  96.4562 0.2871

 
 
The test was no significant 
> shapiro.test(Chipdata$ Cycle.time.min.) 
  Shapiro-Wilk normality test 
data:  Chipdata$Cycle.time.min.  
W = 0.8502, p-value < 0.001 
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Variable: Cycle time (min), Distribution: Normal
Chi-Square test = 91.55520, df = 5 (adjusted) , p = 0.00000
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> shapiro.test(Chipdata$ Feeding.min.) 
Shapiro-Wilk normality test 
data:  Chipdata$Feeding.min.  
W = 0.7708, p-value < 0.001 

Variable: Feeding(min), Distribution: Normal

Chi-Square test = 83.62515, df = 2 (adjusted) , p = 0.00000
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> shapiro.test(Chipdata$ Waiting.time..min. ) 
  Shapiro-Wilk normality test 
data:  Chipdata$Waiting.time..min.  
W = 0.8579, p-value < 0.001 
 

Variable: Waiting time, Distribution: Normal

Chi-Square test = 47.80322, df = 2 (adjusted) , p = 0.00000
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> kruskal.test ( Productivity.t.hr. ~Species,data=Chipdata) 

  Kruskal-Wallis rank sum test 

data:  Productivity.t.hr. by Species  

Kruskal-Wallis chi-squared = 24.9779, df = 5, p-value = 0.0001 

Kruskal-Wallis median test 
 

Median Test, Overall Median = 3.34477; Productivity(t/hr) (Spreadsheet1
Independent (grouping) variable: Species
Chi-Square = 14.06343 df = 5 p = .0152Dependent:

Productivity(t/hr) Gum 1 Gum 2 Acacia 1 Acacia 2 Myrtle 1 Myrtle 2 Total
<= Median:  observed

expected
obs.-exp.

>  Median:  observed
expected
obs.-exp.

Total:  observed

27.00000 31.00000 14.00000 23.00000 35.00000 41.00000 171.0000
32.00000 25.00000 21.00000 27.50000 31.00000 34.50000
-5.00000 6.00000 -7.00000 -4.50000 4.00000 6.50000
37.00000 19.00000 28.00000 32.00000 27.00000 28.00000 171.0000
32.00000 25.00000 21.00000 27.50000 31.00000 34.50000
5.00000 -6.00000 7.00000 4.50000 -4.00000 -6.50000

64.00000 50.00000 42.00000 55.00000 62.00000 69.00000 342.0000  
 
Cycle time of chipper 
 
> shapiro.test(Chipdata$Cycle.time.min.) 
  Shapiro-Wilk normality test 
data:  Chipdata$Cycle.time.min.  
W = 0.8502, p-value < 2.2e-16 
 
> bartlett.test(resid(Model1), g = Chipdata$Species) 
 Bartlett test of homogeneity of variances 
data:  resid(Model1) and Chipdata$Species  
Bartlett's K-squared = 99.8968, df = 5, p-value < 2.2e-16 
> kruskal.test ( Cycle.time.min.~Species,data=Chipdata) 
 Kruskal-Wallis rank sum test 
data:  Cycle.time.min. by Species  
Kruskal-Wallis chi-squared = 18.6721, df = 5, p-value = 0.002212 
 

Median Test, Overall Median = 1.24000; Cycle time (min) (Spreadsheet18.st
Independent (grouping) variable: Species
Chi-Square = 10.76676 df = 5 p = .0562Dependent:

Cycle time (min) Gum 1 Gum 2 Acacia 1 Acacia 2 Myrtle 1 Myrtle 2 Total
<= Median:  observed

expected
obs.-exp.

>  Median:  observed
expected
obs.-exp.

Total:  observed

43.0000 22.00000 16.00000 28.00000 31.00000 33.00000 173.0000
32.3743 25.29240 21.24561 27.82164 31.36257 34.90351
10.6257 -3.29240 -5.24561 0.17836 -0.36257 -1.90351
21.0000 28.00000 26.00000 27.00000 31.00000 36.00000 169.0000
31.6257 24.70760 20.75439 27.17836 30.63743 34.09649

-10.6257 3.29240 5.24561 -0.17836 0.36257 1.90351
64.0000 50.00000 42.00000 55.00000 62.00000 69.00000 342.0000  

 
 
Waiting time 
 
> shapiro.test(Chipdata$ Waiting.time..min.) 
Shapiro-Wilk normality test 
data:  Chipdata$Waiting.time..min.  
W = 0.8579, p-value < 2.2e-16 
 
>  bartlett.test(resid(Model1), g = Chipdata$Species) 
Bartlett test of homogeneity of variances 
data:  resid(Model1) and Chipdata$Species  
Bartlett's K-squared = 78.8328, df = 5, p-value = 1.472e-15 
> kruskal.test ( Waiting.time..min.~Species,data=Chipdata) 
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Kruskal-Wallis rank sum test 
data:  Waiting.time..min. by Species  
Kruskal-Wallis chi-squared = 25.6509, df = 5, p-value = 0.0001043 
 

 
Median Test, Overall Median = .590000; Waiting time(min) (Spreadsheet18.sta
Independent (grouping) variable: Species
Chi-Square = 10.15542 df = 5 p = .0710Dependent:

Waiting time(min) Gum 1 Gum 2 Acacia 1 Acacia 2 Myrtle 1 Myrtle 2 Total
<= Median:  observed

expected
obs.-exp.

>  Median:  observed
expected
obs.-exp.

Total:  observed

33.00000 24.00000 15.00000 26.00000 41.00000 34.00000 173.0000
32.37427 25.29240 21.24561 27.82164 31.36257 34.90351
0.62573 -1.29240 -6.24561 -1.82164 9.63743 -0.90351

31.00000 26.00000 27.00000 29.00000 21.00000 35.00000 169.0000
31.62573 24.70760 20.75439 27.17836 30.63743 34.09649
-0.62573 1.29240 6.24561 1.82164 -9.63743 0.90351
64.00000 50.00000 42.00000 55.00000 62.00000 69.00000 342.0000  

 
 
Feeding time 
 
> shapiro.test(Chipdata$  Feeding.min.) 
Shapiro-Wilk normality test 
data:  Chipdata$Feeding.min.  
W = 0.7708, p-value < 2.2e-16 
>  bartlett.test(resid(Model1), g = Chipdata$Species) 
Bartlett test of homogeneity of variances 
data:  resid(Model1) and Chipdata$Species  
Bartlett's K-squared = 159.2827, df = 5, p-value < 2.2e-16 

 
 
 

Median Test, Overall Median = .640000; Feeding(min) (Spreadsheet18.st
Independent (grouping) variable: Species
Chi-Square = 36.78027 df = 5 p = .0000Dependent:

Feeding(min) Gum 1 Gum 2 Acacia 1 Acacia 2 Myrtle 1 Myrtle 2 Total
<= Median:  observed

expected
obs.-exp.

>  Median:  observed
expected
obs.-exp.

Total:  observed

45.0000 18.00000 17.00000 40.0000 19.0000 33.00000 172.0000
32.1871 25.14620 21.12281 27.6608 31.1813 34.70175
12.8129 -7.14620 -4.12281 12.3392 -12.1813 -1.70175
19.0000 32.00000 25.00000 15.0000 43.0000 36.00000 170.0000
31.8129 24.85380 20.87719 27.3392 30.8187 34.29825

-12.8129 7.14620 4.12281 -12.3392 12.1813 1.70175
64.0000 50.00000 42.00000 55.0000 62.0000 69.00000 342.0000  

 
> shapiro.test(Chipdata$  Feeding.min.) 
 
        Shapiro-Wilk normality test 
 
data:  Chipdata$Feeding.min.  
W = 0.7708, p-value < 2.2e-16 
 
> bartlett.test (resid(Model1), g = Chipdata$Species) 
 
  Bartlett test of homogeneity of variances 
 
data:  resid(Model1) and Chipdata$Species  
Bartlett's K-squared = 159.2827, df = 5, p-value < 2.2e-16 
 
> kruskal.test ( Feeding.min.~Species,data=Chipdata) 
 
  Kruskal-Wallis rank sum test 
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data:  Feeding.min. by Species  
Kruskal-Wallis chi-squared = 65.0461, df = 5, p-value = 1.096e-12 
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Appendix 6: Assumptions for machine cost. 
 

General Inputs for the three‐wheeled loader General Inputs for the chipper 

Number of working days per year:       240 days Number of working days per year:              240 days 

Number of shifts per day:                          1shifts Number of shifts per day:                                1 shifts 

Work week:                                                  5 days Work week:                                                         5 days 

Scheduled hours per shift:                         8 SMH Scheduled hours per shift:                                8 SMH 

Machine utilization:                                         50% Machine utilisation:                                               50 % 

Estimated productivity:           3.3  tonnes/ PMH Estimated productivity:               3.1    tonnes/ PMH 

Expected economic life:                     15000 PMH Expected economic life:                            10000 PMH 

Fixed Cost Inputs  Fixed Cost Inputs 

Replacement value:                               450000 R Replacement value:                                       420000 R 

Salvage value ratio:                                         10% Salvage value ratio:                                                 10% 

Interest rate:                                                    10% Interest rate:                                                             10% 

Machine license and road user taxes:              0 
R/annum 

Machine license and road user taxes:                    0      
R/annum 

Insurance:                                              0R/annum     Insurance:                                                     0R/annum 

Annual relocation cost:                        0R/annum     Annual relocation cost:                               0R/annum 

Variable Cost Inputs  Variable Cost Inputs 

Fuel price:                                                  8 R/Litre Fuel price:                                                          8 R/Litre 

Fuel consumption:                            6 Litres/PMH Fuel consumption:                                7.8 Litres/PMH 

Oil and lubricant cost:                                     20% Oil and lubricant cost:                                            20% 

Maintenance and repair cost:                     100% Maintenance and repair cost:                             100% 

Cost per front tyre:                                   10000 R Number of front tyres on working machine: 2 tyres 

Estimated front tyre life:                      3000 PMH Single front tyre cost:                                          600 R 

Cost per rear tyre:                                        3500 R Estimated front tyre life:                             5000 PMH 

Estimated rear tyre life:                      2000 PMH Number of rear tyres on working machine:   0 tyres 

  Single rear tyre cost:                                           0 tyres 

  Estimated rear tyre life:                                     0 PMH 

 
 
 

General Inputs for chainsaw 

Number of working days per year:     240 days 

Number of shifts per day:                         1shifts 

Work week :                                                5 days 

Scheduled hours per shift:                       8 SMH 

Machine utilisation:                                     50 % 

Estimated productivity :       1.13 tonnes/ PMH 

Expected economic life:                     1000 PMH 

Fixed Cost Inputs 

Replacement value:                                  6000 R 

Salvage value ratio:                                         0 % 

Interest rate:                                                    0% 

Insurance:                                            0 R/annum 

Variable Cost Inputs 

Stellenbosch University  http://scholar.sun.ac.za



 
 

 118

Fuel price:                                            8.76/Litre 

Fuel consumption:                               1.5 Litres 

Oil and lubricant cost:                                  20% 

Maintenance and repair cost:                  100% 

Non‐depreciable Items 

Cutting bar life:                                       125PMH 

Cutting bar cost:                                          250 R 

Cutting chain life:                                           63R 

Cutting chain cost :                                      120 R 

Sprocket life:                                                 125 R 

Sprocket cost:                                                  40R 

Flat File life:                                            125 PMH 

Flat File cost:                                                   20R 

Round File life:                                      125 PMH 

Round File cost:                                              20R 

Other non‐depreciable item/s cost:              0R 
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