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Abstract 

Complementary Output Switching Logic, or COSL, is used to define building blocks for ultra­

high spetd (rv 20 GHz) logic circuits. The family consists of the standard logic functions 

ORINOR, ANDINAND and XOR. A review of the principles of the Josephson junction, one­

junction and two-junction SQUID and the operation of COSL is given as an introduction. The 

new building blocks include a new single gate inverter, alternatives to the existing NOR and 

NAND gates and a number of latching functions. Yield analysis and optimisation by a Monte 

Carlo method is discussed. Additionally, the physical layout of these circuits is considered. 

Changes in the layout of COSL gates to improve the uniformity of current distribution in the 

gates are briefly mentioned. 
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Opsomming 

Complementary Output Switching Logic, of COSL, word gebruik om boublokke te definieer 

vir ultra-hoespoed (rv 20 GHz) logikabane. Die familie bestaan uit die standaard OFINOF, 

ENINEN en eksklusiewe OF funksies. 'n Oorsig oor die beginsels van die Josephsonvlak, een­

vlak en tweevlak SQUID en die werking van COSL word ler inleiding gegee. Die nuwe bou­

blokke sluit 'n nuwe enkelhek omkeerder, alternatiewe vir die bestaande OF en NEN hekke en 

'n aantal grendelfunksies in. Opbrengsanalise en -optimering deur middel van 'n Monte Carlo 

metode word bespreek. Verder word die fisiese uitleg van hierdie bane beskou. Veranderinge in 

die uitleg van COSL hekke om die uniformiteit van stroomverspreiding in die hekke te verbeter 

word kortliks genoem. 
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Chapter 1 

Introduction 

The speed at which electronic circuits operate is limited by the physical properties of the mate-

\: rials from which these circuits are manufactured. Semiconductor materials are fast approaching 
;r-.. 

the limits of their operation. Superconducting materials can be considered a viable alternative 

for the manufacture of high speed circuits. 

The first superconducting digital element was proposed in 1956 [1]. The cryotron was too 

slow, however, to provide any significant competition for semiconductor technology. The dis­

covery of the Josephson effect in 1962 [2] and the subsequent development of the Josephson 

junction led to advent of high speed superconducting digital circuits. Many new logic families 

were developed, capable of operating at much higher speeds than their semiconductor counter­

parts. 

Complementary Output Switching Logic, or COSL [3],[4], is currently the fastest super­

conducting voltage-state logic family [5]. This high speed return-to-zero family consists of 

ORINOR, ANDINAND and XOR gates. COSL gates have been tested at frequencies as high as 

18 GHz [6]. 

This thesis presents a number of additions to the COSL family, introduced in Chapter 3. 

Alternatives to the existing NOR and NAND circuits are proposed, as well as a number of 

latches. As background, the basic operation of COSL is reviewed in Chapter 2. 

Process variations during manufacture have a detrimental effect on the correct operation 

of digital circuits [7]. In order to increase the reliability of the COSL family, the circuits are 

optimised by using a Monte Carlo yield prediction technique. Yield analysis and optimisation 

of the proposed circuits are discussed in Chapter 4. 

The physical layout of the circuits mentioned above is discussed in Chapter 5. Changes in 

the layout geometry are considered in an effort to limit the effects of field concentrations in the 

COSL circuits. 

1 

Stellenbosch University  https://scholar.sun.ac.za



Chapter 2 

Review of COSL 

2.1 Introduction 

Before the operation of COSL can be discussed, the basic superconducting digital element, 

the Josephson junction, has to be considered. This device forms the basis of the so-called 

Superconducting Quantum Interference Device, or SQUID. 

The SQUID is widely used as a very sensitive magnetometer capable of detecting magnetic 

fields in the order of 10-14 T [8, p. 1313]. It is formed by a superconducting ring containing 

one or two Josephson junctions. The heart of COSL is formed by a one-junction SQUID which 

is inductively coupled to a two-junction SQUID. 

In this chapter, the basic properties of the Josephson junction are presented, followed by a 

review of the operation of the one-junction and two-junction SQUID. Finally, the basic opera­

tion of a COSL gate will be discussed. 

2.2 J osepbson junction 

2.2.1 Basic Josephson junction 

The Josephson junction is formed by weak coupling between two superconductors [9], either 

by an insulator or a connection with a small cross-sectional area._The weak coupling causes the 

junction to switch to the normal state when the current through the junction exceeds a certain 

critical value. Figure 2.1 (a) and (b) show the structure of the so-called SIS, or superconductor­

insulator-superconductor, and weak link junction respectively. The weak link junction is also 

known as a microbridge [10, p. 507]. 

The behaviour of the Josephson junction is governed [10, pp. 405-406] by a current-phase 

relation 

i = Ie sin <!>(t) , (2.1) 

2 
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CHAPTER 2. REVIEW OF COSL 

I 1----

(a) (b) 

Figure 2.1 : Structure of the (a) SIS and (b) weak link Josephson junction. 

gauge-invariant phase relation 

and voltage-phase relation 
<Po d<l> 

v = 21t dt' 

3 

(2.2) 

(2.3) 

where Ie is the critical current of the junction, 8 is the phase of the quantum mechanical wave 

function [10, p. 236] and <Po is the magnetic flux quantum, which is equal to t. 
The vector potential A in (2.2) is the curl of the magnetic flux density. Because the number 

of possible vector potentials is infinite, it is desirable to make the phase relation gauge invariant 

[la, p. 237]. <I> is therefore known as the gauge-invariant phase difference across the junction. 

The path of integration is from 81 to 82, as indicated in Figure 2.1. 

With no applied voltage across the junction the phase difference is zero and a constant 

current is allowed to flow through the junction. This phenomenon is known as the DC Josephson 

effect. 

An applied (constant) voltage results in an oscillating current with a constant frequency, 

which has a voltage dependency of 483.598 MHz/ JiV. This effect is referred to as the AC 

Josephson effect. 

2.2.2 Generalised Josephson junction 

Practical Josephson junctions are influenced by resistive and capacitive effects. The so-called 

resistively shunted junction model takes these effects into account. An ideal junction is shunted 

[10, p. 459] by a resistance, R, and a capacitance, C, as shown in Figure 2.2. 

The current through this generalised junction is given by 

dv v 
i = Ie sin <I> + C dt + R' (2.4) 
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CHAPTER 2. REVIEW OF COSL 4 

+ 

C R 

Figure 2.2: Equivalent circuit of the generalised Josephson junction. 

<v> <v> <v> 

~~~k;--------- I ~~~;--------- I IL-__ -'-;;-------- I 

(a) (b) (c) 

Figure 2.3: Voltage-current relationship of the generalised Josephson junction for (a) ~c « 1, (b) ~c ~ 1 and (c) 
~c » 1. I is the DC current through the junction and < v > is the average voltage accross the junction. 

which, with substitution of the voltage-phase relation in (2.3), becomes 

(2.5) 

where t = ;" ~c = ~,c is the Stewart-McCumber parameter, 'tJ = 2:~Ic and 'tRC = RC [10, p. 

459]. 

The Stewart-McCumber parameter is an indication of the influence of the junction capac­

itance. The amount of hysteresis exhibited by the voltage-current relationship of the junction 

increases proportionally to its capacitance. This is illustrated in Figure 2.3, for a constant resis­

tance, in order of increasing capacitance. 

The superconducting and normal states of a Josephson junction are separated by a so-called 

energy gap [10, p. 450]. This gap can be expressed as a voltage, which, in the case of niobium, 

is approximately equal to 2.5mV. The quasi-static [11] current-voltage curve of a Josephson 

junction, which is shown as the dark curve in Figure 2.4 (a) clearly shows the gap voltage Vg• 

The slope of the curve is given by the so-called sub gap resistance, Rsg , and the resistance of 
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CHAPTER 2. REVIEW OF COSL 5 

I 

(a) (b) 

Figure 2.4: (a) Quasi-static current-voltage characteristic with loadline and (b) equivalent circuit of a resistively 
shunted Josephson junction. 

the junction in the normal state, Rn. By resistively shunting the Josephson junction as shown in 

Figure 2.4 (b) the junction can be forced to switch to a particular point on the current-voltage 

curve. This point is determined by the positioning of the loadline. 

2.3 One-junction SQUID 

As mentioned in Section 2.1, a one-junction SQUID is formed by a superconducting loop con­

taining a single Josephson junction. An equivalent circuit for the one-junction SQUID can be 

obtained by modelling the loop as an inductor, as shown in Figure 2.5. From the circuit, it can 

be seen that: 

(2.6) 

where the current through the Josephson junction is given by the current-phase relation, (2.1). 

Substitution of an expression for <I> from the voltage-phase relation, (2.3), allows the relationship 

between inductor current and input current to be written as 

Figure 2.5: Equivalent circuit of the one-junction SQUID. 
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CHAPTER 2. REVIEW OF COSL 6 

I ------,--------------
I 

Figure 2.6: Relationship between inductor current and input current of the one-junction SQUID. 

. . ( 21CLh) . lin =Ic sm ~ +lL· (2.7) 

This relationship is illustrated in Figure 2.6. 

The threshold current, Ith' is the input current at which the SQUID switches to the next 

quantum state. It is determined by letting 

(2.8) 

which gives an expression for the inductor current IA. Substitution of this expression into (2.7) 

leads to 

Ith = Ie sin [arccos ( - ;L) 1 + ~: arccos ( - ;L) , (2.9) 

where ~L = 2~lc. ~L is a basic parameter of the SQUID [12, p. 155]. 

In order to determine the input current, Irrrin, at which the SQUID switches back to the 

original quantum state, (2.6) is written as [13, p. 259] 

. I· (2 2 <Pint) . lin = e sm n1C - 1C <PO + lL, (2.10) 

where <Pint is the flux enclosed by the SQUID loop. The sinusoidal nature of this relationship 

facilitates the assumption that Ith and Irrrin lie equidistant above and below an enclosed flux of 

~o , which leads to 

(2.11) 
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CHAPTER 2. REVIEW OF COSL 7 

(2.11), with f3L substituted, results in 

(2.12) 

2.4 Two-junction SQUID 

The two-junction SQUID was introduced in Section 2.1 as a superconducting loop containing 

two Josephson junctions. An equivalent circuit for the general two-junction SQUID is shown 

in Figure 2.7. A damping resistor, Rd, can be added, as indicated by the dashed connection. 

Current can be directly injected, indicated by the gate current Ig , and/or inductively coupled, 

indicated by the control current Icon. [14, p. 50]. 

The behaviour of the two-junction SQUID can be described by relating the gate current to 

the control current. The relationship between Igmax , the maximum gate current the SQUID can 

carry before switching to the normal state, and the control-current is called a threshold curve 

[14, p. 49]. 

Igmax is determined from the current-phase relation of the Josephson junction, (2.1). Sum­

mation of It and h lead to 

(2.13) 

The relationship between the control current and the junction phases is determined from the 

magnetic flux threading the loop. The phase difference of the loop, in terms of the total magnetic 

flux, <1>, is given by [13, p. 262] 

21t<l> 
<P2 - <PI = 2n1t - <1>0 • 

<I> is divisible in two parts [15], namely externally generated flux, 

<l>ext = Mlcon , 

and flux caused by circulating currents in the loop, 

L L 
cf>s= 2h - 2It. 

(2.14) 

(2.15) 

(2.16) 

Substitution of (2.15) and (2.16) into (2.14) allows the normalised control current to be written 

as 
Mlcon <1>1 - <P2 f3L ( . .) 
~ = 21t + 41t Slll<Pl - Slll<P2 + n, (2.17) 

where n identifies the flux quantum state [16]. Finally, a relationship between the junction 

phases is needed to determine the threshold curve. An auxiliary equation [17], 

sec <PI + sec <1>2 + f3L = 0, (2.18) 
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CHAPTER 2. REVIEW OF COSL 8 

Figure 2.7: Equivalent circuit of a symmetrical two-junction SQUID. 

serves this purpose. Figure 2.8 shows a typical threshold curve for the two-junction SQUID, 

where the modulatory effect of the control-current is apparent. 

The curve is inversely symmetrical [15], and is only shown for positive gate currents. It is 

clear from the figure that the periodicity of the enclosed flux is one flux quantum. The red curve 

corresponds to the zero flux quantum state for - I < <1>2 < I and the green curve to the one flux 

quantum state for - I < <1>1 < I ' 

0.8 

0.6 

0.4 

0.2 

Zero 410 state -­
One 410 state -­

Series junction Ie --

OL-__ ~ __ ~L-______ ~L-______ ~~ ______ ~L-__ ~ __ ~ 

o 0.2 0.4 0.6 0.8 

Figure 2.8: Threshold curve of the two-junction SQUID. 
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CHAPTER 2. REVIEW OF COSL 9 

2.5 COSL 

The two-junction SQUID forms the principle element of a COSL gate. A one-junction SQUID 

is used to supply the control current. The basic COSL gate is shown in Figure 2.9. The one­

junction SQUID will hereafter be referred to as the input SQUID; and the two-junction SQUID 

as the output SQUID. 

COSL gates are clocked with a three-phase clocking scheme. Each phase is separated by 

1200 or one third of one clock period. The input and output SQUIDs are driven by separate 

clock phases. The input clock is in phase with the output clock of the previous gate, with the 

exception of the XOR gate. In this case, the input clock is delayed by one third of one clock 

period with respect to the output clock of the previous gate. The output clock usually lags one 

third of one clock period behind the input clock, to allow for pulse propagation from input to 

output. 

The clock shapers indicated in Figure 2.9 ensure a constant clock amplitude of 2.5 m V. The 

shunt resistance forces the shaping junctions to switch to the gap voltage as soon as the clock 

current exceeds the critical current of these junctions, as discussed in Section 2.2. A nominal 

external clock amplitude of 10m V is used. 

All COSL gates except XOR are driven by 100 j.iA inputs. These currents, together with the 

current from the input clock, determine the state of the Josephson junction of the input SQUID. 

The input clock current is limited by the bias resistor, which effectively determines the logic 

function of the gate. A bias resistance of 8.8 n provides enough clock current to cause the 

Clock (prev.) 

.~!~C:~ ..s~_aper 

, 
Input bias : 
resistor 

One-junction 
SQUID 

, 

, 

V'" Clock 

~!~C:~ ..s~_a:per , 
, 
, 

Series junction 

'--~------o Output 

Two-junction SQUID 

Figure 2.9: Basic COSL gate. 

• tI. s. '. 
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CHAPTER 2. REVIEW OF COSL 10 

input SQUID to be switched for one 100 J,lA input, which provides the OR/NOR function. The 

14.3 Q bias resistance of the ANDINAND gates necessitates two 100 J1A inputs to switch the 

input SQUID, which satisfies the required logic function. 

An additional series Josephson junction, which is not shown, is added to the input of the 

basic gate to form the XOR function. The critical current of this junction is chosen at 300 J1A so 

that it is not exceeded by one 200 J,lA input. This input will switch the input SQUID and cause 

a logical high output. Two 200 J1A inputs are required to switch the series junction, which cuts 

off the input current and causes a zero output. 

COSL gates are designed to deliver 1 m V into 5 Q, which gives a fanout of two for all cases 

except XOR. The current requirements of the XOR gate necessitate the use of OR buffers for 

each input. Fanout-of-one gates require an additional 10 Q resistor to ground to maintain the 

required 5 Q output resistance. The 5m V DC voltage applied to the output prevents the output 

SQUID from switching for negative currents. 

The complementary nature of the COSL family arises from the series junction located at the 

output of each gate. When the gate input is not suitable to switch the input SQUID, the threshold 

current of the output SQUID is higher than the critical current of the series junction. Hence, 

only the series junction switches, which corresponds to a zero output. Conversely, if the input 

SQUID is switched by the gate input, the control current of the output SQUID is raised. This 

higher control current modulates the threshold current to a value below the critical current of the 

series junction. As a result, the output SQUID switches before the series junction, producing a 

logical high output. The series junction critical current and the output SQUID threshold current 

are compared in Figure 2.8. Ideally, a noninverting gate (OR or AND) can be made to invert 

(NOR or NAND) by placing the series junction below the output SQUID and taking the output 

across this junction. 

The reliability of the family is increased by the addition of a so-called trim voltage, which 

is applied to the input of each gate through a 50 Q resistor. This is discussed in more detail in 

Section 4.2. 

2.6 Conclusions 

From the previous discussion it can be seen that the operation of COSL relies on a one-junction 

SQUID, which is inductively coupled to a two-junction SQUID. The one-junction and two­

junction SQUID are superconducting loops, containing one and two Josephson junctions re­

spectively. Attention is paid to the principles of the Josephson junction and one-junction and 

two-junction SQUID. The operation of COSL is described in some detail. 
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Chapter 3 

Design of the Building Blocks 

3.1 Introduction 

The COSL family comprises the basic logic functions ORINOR, ANDINAND and XOR. These 

gates can be used to produce other (more complex) logic circuits. However, because of the three­

phase clocking scheme used, increased complexity could mean increased latency. Additionally, 

complex circuits could exhaust valuable integrated circuit area. Solutions requiring a minimum 

number of gates are therefore preferable. 

Process variations limit the usefulness of superconducting circuits [7] by lowering the yield 

of these circuits. The yield of inverting COSL gates were found to be significantly lower than 

that of the non-inverting gates [3]. 

This chapter presents proposed building blocks which expand the versatility of COSL with­

out unnecessary circuit complexity. Furthermore, in an effort to increase the overall yield of the 

family, alternatives to the existing inverting gates are investigated. 

Circuits were simulated with WRspice [18]. A clock frequency of 10 GHz is used through-

out. 

3.2 Inverter 

Because of the relatively low yield of COSL inverting gates, the inverting function is usually 

performed by an XOR gate, of which one input is kept high. This permanent logical high is 

provided by a so-called dummy OR, which has a bias resistance of 6 .Q [19]. This resistance is 

low enough to allow the clock current alone to switch the gate. Thus, together with the buffer 

needed to drive the other XOR input, three gates are needed to implement an inverter. Moreover, 

this combination causes a delay of one clock period. 

In an attempt to implement a single gate inverter, the dummy OR was considered. The 

11 
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CHAPTER 3. DESIGN OF THE BUILDING BLOCKS 12 

continuous switching of this gate can be compared to the inversion of a logical low input. The 

addition of a Josephson junction with a critical current of 360 pA in the inductive branch of the 

input SQUID of the gate facilitates the inversion of a logical high input. This junction, as well 

as the modified bias resistance, is indicated by a dashed box in Figure 3.1 . 

Clock (prev.) Vdc Oock 

o 100 

Figure 3.1: COSL inverter. The additional Josephson junction and modified bias resistance are indicated by dashed 
boxes. 

600 
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-300 
0 0.1 0.2 0.3 

Time[ns] 

Input -­
Inductor current withoutjunctton -­

ductor current with junction --

0.4 0.5 0.6 

Figure 3.2: Simulated inductor current of the COSL inverter with and without the additional Josephson junction. 
Input pulses are shown for clarity. 
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Figure 3.3 : Simulated input/output behaviour of the COSL inverter. The delay between input and output is one 
third of one clock period. Table 3.1 gives the corresponding truth table. 

I Input II Output I 
0 (A) 1 (B) 
1 (C) 0 (D) 
0 (E) 1 (F) 
1 (G) 0 (H) 

0 (I) 1 (1) 
0 (K) 1 (L) 

Table 3.1: Truth table for the COSL inverter, corresponding to Figure 3.3. 

When no input is applied to the gate the current through the inductor branch is approximately 

250 pA, which is insufficient to switch the junction. This current is, however, enough to switch 

the output SQUID. With a logical high input the inductor current peaks at more than 500 pA, 

which forces the junction to switch to the normal state. The resulting increased resistance of the 

junction lowers the current in the inductor branch to such an extent that the output SQUID is 

not switched. Figure 3.2 clearly demonstrates the inductor current peaks caused by input pulses 

if the junction is omitted. For clarity, the input pulses are also given. When the junction is 

included the inductor current behaves as shown, where the current limiting effect of the junction 

is evident. 

Finally, the simulated input/output behaviour of the inverter is presented in Figure 3.3. The 

delay between input and output is one third of one clock period. The corresponding truth table 

is given in Table 3.1. 
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3.3 T latch 

The T, or toggle, latch is useful for the implementation of, for example, flags. The output of 

these latches is inverted with every input pulse. The three-phase clocking scheme makes the 

XOR logic function ideal for the realisation of this building block. The circuit diagram for 

the T latch is given in Figure 3.4. For simplicity, standard COSL gates have been replaced by 

their respective logic symbols. Clock phases and modifications are indicated. Input and output 

resistances are also included. 

The operation of the T latch relies on the delay between the input and output of a COSL 

gate. Consider, for instance, the case where the output of the latch is zero. A single input pulse 

is applied to the XOR gate. An output pulse arrives after a delay of two thirds of one clock 

period. This pulse is fed back to the input by the OR gate, with an additional delay of one third 

of one period. Thus, one period after the external input pulse, the XOR gate receives another 

pulse from the OR gate. This pulse triggers the XOR gate and the process is repeated. So the 

latch is set to the logic high state. If an external input pulse is applied while this is true, the 

XOR gate would give a zero output. Nothing is fed back by the OR gate and the latch is reset 

to the zero state. 

The feedback scheme causes a slight discrepancy to develop between the output phase of 

the OR gate and the input phase of the XOR gate. The output pulse of the OR gate shifts slightly 

with each feedback action. Eventually, the feedback pulse arrives too late to trigger the XOR 

.gate and the logical high state is destroyed. An increase in the amount of input clock current 

of the XOR gate remedies this problem. The bias resistance of the gate is decreased to 8.8 0, 

which is the same as that of the standard OR gate. 

The simulated response of the COSL T latch is shown in Figure 3.5, with the corresponding 

truth table in Table 3.2. The traces demonstrate how an input pulse propagates through the XOR 

gate and is fed back by the OR gate. The clocking scheme causes a delay of two thirds of one 

clock period between input and output. The comparatively large input pulse is caused by the 

switching of the XOR series junction. 

Q 

Figure 3.4: COSL T latch. Input and output resistances and clock phases are shown. The modified bias resistance 
of the XOR gate is also indicated. 
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Figure 3.5: Simulated input/output behaviour of the COSL T latch. The delay between input and output is two 
thirds of one clock period. Table 3.2 gives the corresponding truth table. 

I Input II Output I 
1 (A) 1 (B) 
0 (C) 1 (D) 
0 (E) 1 (F) 
1 (G) 0 (H) 
1 (I) 1 (1) 
0 (K) 1 (L) 

Table 3.2: Truth table for the COSL T latch, corresponding to Figure 3.5. 

3.4 NOR and NAND gates 

The symmetrical behaviour of the Josephson junction and one-junction SQUID is evident from 

Section 2.2 and 2.3. This property plays a fundamental role in the operation of the proposed 

alternative NOR and NAND gates. 

As is the case with the inverter discussed in Section 3.2, the inversion of a logical low is 

accomplished by lowering the bias resistance of a basic COSL gate. Again, this makes the input 

clock current sufficient to switch the gate. In the case of the NOR gate the bias resistance is set 

to 6.5 Q and in the case of the NAND gate to 5 Q. 

To implement the inversion of a nonzero input a different clocking scheme is needed. The 

input phase of these gates was chosen to lead the output phase of the previous gate by one third 

of one clock period. The output phase remains the same, as it would for a nonnal gate. The 
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consequence is that the negative inductor current corresponds to a positive output clock current, 

as shown in Figure 3.6. The symmetry of the output SQUID and the positive DC bias ensure a 

positi ve output pulse. 

300 
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" 0 

8 
-100 

-200 

-300 
0 0.1 0.2 0.3 

Time [os] 

Control current -­
Clock cur t - -

0.4 0.5 

Figure 3.6: Simulated control current and clock current of the NOR gate output SQUID. 

300 

200 

100 

~ 
~ 

0 

8 

-100 

-200 

-300 
0 0.1 0.2 0.3 

Time[ns] 

Input I 
Input 2 

NOR inductor current 
NOR output 

NAND induCLOr current 
NAND output 

0.4 

J 

0.5 

Figure 3.7 : Simulated response of the COSL NOR and NAND gate, including inductor currents. Table 3.3 gives 
the corresponding truth table. 
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Inputs Outputs 
1,2 NOR,NAND 

0,0 (A) 1,1 (B) 
1,0 (C) 0,1 (D) 
0,1 (E) 0,1 (F) 
1,1 (G) 0,0 (H) 
0,0 (I) 1,1 (1) 

Table 3.3: Truth table for the COSL NOR and NAND gate, corresponding to Figure 3.7. 

The input pulses to the gates are used to modify the inductor current. The positive current 

from these pulses serve to make the inductor current less negative. When the appropriate inputs 

are applied to the gates the inductor current is increased to such an extent that the output SQUID 

is not switched. In the case of the NOR gate this would mean that one input would increase the 

inductor current sufficiently to prevent the output SQUID from switching, while two inputs are 

needed for the NAND gate. This corresponds exactly to the NOR and NAND logic functions 

respectively. Figure 3.7 shows the input/output behaviour, as well as the inductor currents of 

the NOR and NAND gate. The corresponding truth table is given in Table 3.3. 

3.5 Negative gate 

As stated in Section 2.4, the threshold curve of the two-junction SQUID is inversely symmetri­

cal. This characteristic is exploited to implement a COSL gate which generates negative output 

pulses from positive input pulses. 

The direction of the bias current of the output is reversed and the clock phase chosen so 

that the control current peaks supplied by the input SQUID corresponds to a negative peak in 

the clock current, as shown in Figure 3.8. The output clock phase of the negative gate leads 

the input clock phase by one third of one period. The negative DC bias causes a negative 

output pulse to be generated, as illustrated by Figure 3.9. By using the normal clocking scheme, 

subsequent gates will propagate this negative pulse, provided that the DC bias of these gates is 

negative. The pulse can be reversed-again-by a standard gate, with the same clocking scheme as 

the negative gate. In other words, the output clock leads the input clock. 

Any of the standard noninverting COSL gates can be used as negative gates. 

Stellenbosch University  https://scholar.sun.ac.za

mseyf
Rectangle



CHAPTER 3. DESIGN OF THE BUILDING BLOCKS 18 

300 

250 

200 

150 

100 

~ 50 

B 
8 0 

-50 

-100 

-150 

-200 
Inductor current 

-250 
Output clock current --

0 0.1 0.2 0.3 0.4 0.5 

Time[ns] 

Figure 3.8: Simulated control and clock current of the negative gate output SQUID. 
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Figure 3.9: Simulated response of the COSL negative gate. 

3.6 S-R latch 

3.6.1 First attempt 

For the first attempt at implementing a set-reset or S-R latch the inductive coupling between the 

input and output SQUID of a COSL gate is considered. Like the T latch, the latching property 
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Figure 3.10: COSL S-R latch (first attempt). Input resistors have been omitted. 

of this building block is implemented by a feedback scheme, shown in Figure 3.10. The output 

is fed back to the S input by an additional OR input SQUID. This SQUID is inductively coupled 

to the output SQUID of the OR gate located at this input. This allows a logical high output to 

be maintained if the latch is set. 

The important factor when considering the reset action of the latch, is the direction of the 

induced current in the output SQUID of the XOR gate. An additional XOR input SQUID is used 

to couple the reset input to this output SQUID. The inductors are arranged in such a way, that 

the induced current from the reset input has the opposite direction to the induced current from 

the set input. Consequently, if the latch is set, the output is cancelled when a reset is received. 

Figure 3.11 shows the response of the S-R latch to various inputs. It is evident that undefined 

inputs have no effect. The corresponding truth table is shown in Table 3.4. 

The functionality of the S-R latch can be increased by adding an enable input. This is 

achieved by simply replacing the OR gates by AND gates. As a result, a further logical high 

input is needed for a set or reset to take effect. 
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Figure 3.11: Simulated response of the COSL S-R latch (first attempt) to various inputs. The delay is one clock 
period Table 3.4 gives the corresponding truth table. 

Inputs Output 
Set,Reset 

1,0 (A) 1 (B) 
0,0 (B) 1 (C) 
0,1 (C) 0 (D) 
0,1 (D) 0 (E) 
0,0 (E) 0 (F) 
1,1 (F) 0 (G) 

Table 3.4: Truth table for the COSL SR latch (first attempt), corresponding to Figure 3.11. 

3.6.2 Second attempt 

The physical realisation of the complicated layout of the inductive coupling used in the S-R 

latch in the previous section proved to be a problem. This led to a different approach for a 

subsequent implementation of the S-R latch. When the input SQUID of a COSL gate has the 

appropriate inputs, the Josephson junction switches to the normal state and the input current is 

forced through the inductor. When the sinusoidal clock current becomes less than the minimum 

current, Imin , mentioned in Section 2.3, the junction returns to the superconducting state and the 

inductor current returns to its minimum value. If, on the other hand, the clock current does not 

reach Imin , the junction remains normal and the current in the inductor is sustained. An output 

pulse will be generated in phase with the output clock as long as this current is present. 
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Figure 3.12: Simulated input clock current and inductor current of the COSL S-R latch (second attempt). 

21 

The COSL AND gate is used as the basis of the S-R latch presented in this section. A DC 

offset of 100 pA is added to the clock current by applying 5 m V to the 50 Q trim resistor. This 

raises the negative peak of the clock above Imin and prevents the input SQUID from switching 

back to the superconductive state once the latch has been set. Due to the DC offset and the logic 

function of the AND gate, only one additional 100 pA input is needed to set the latch. Such an 

input causes a sustained inductor current as described above and the latch is set. This inductor 

current is compared to the input clock current in Figure 3.12. 

The latch is reset by a negative input pulse. This pulse, added to the clock current, supplies 

enough negative current to exceed Imin, which switches the input SQUID back to the super­

conductive state and resets the latch. The behaviour of the inductor current in this case is also 

shown in Figure 3.12. 

The negative pulse needed to reset the latch is generated by a negative OR gate as described 

So---t.J\/V'--j 
S-R 

Q 

Ion 

Figure 3.13: Input circuit of the COSL S-R latch (second attempt). Clock phases, as well as input and connecting 
resistors are shown. 
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Q 

Figure 3.14: Input circuit of the COSL S-R latch (second attempt) with enable. Input and connecting resistors and 
clock phases are indicated. 
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Figure 3.15: Simulated behaviour of the COSL S-R latch. The delay through the latch is one third of one clock 
period. The input circuit adds an additional delay of two thirds of a clock period. Table 3.5 gives the 
corresponding truth table. 

Inputs Output 
Set,Reset 

0,0 (A) ° (B) 
1,0 (C) 1 (D) 
0,0 (E) 1 (F) 
0,1 (G) ° (H) 
0,1 (I) ° (1) 

Table 3.5: Truth table for the COSL SR latch (second attempt), corresponding to Figure 3.15. 
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in Section 3.5. Due to the phase sequence of this gate, the set pulse for the latch is delayed by 

two positive OR gates. The input circuit for the S-R latch is shown in Figure 3.13. Input and 

connecting resistors, as well as clock phases, are shown. 

Similarly to the S-R latch from Section 3.6.1, an enable function can be added by the re­

placement of the input OR gates with AND gates. This variation of the latch is depicted in 

Figure 3.14. Relevant clock phases and resistors are shown again. 

The same inputs used for the S-R latch in the previous section are used to obtain the simu­

lated response of this S-R latch. Figure 3.15 shows that the delay between the input and output 

is one third of one clock period. An additional delay of two thirds of one clock period is added 

by the input circuit. Table 3.5 gives the corresponding truth table. 

3.7 D latch 

The D, or data, latch is the most common latching component of clocked logic circuits. A clock 

input controls the latching of the device. The presence of a logical high clock signal makes the 

latch transparent. If the clock signal is removed, the current input value is latched. 

The D latch can simply be implemented with the S-R latch with enable described in the 

previous section [20, p. 359]. The set and reset inputs are generated by the single data input 

by buffering and inverting respectively, as illustrated by Figure 3.16. Clock phases are shown, 

but input and output resistors are omitted. The clock input, which drives the enable input of the 

S-R latch, is also buffered to ensure synchronisation between clock and data. 

The simulated response of the D latch is given in Figure 3.17. The total delay of the latch is 

one and one third of one clock period. The corresponding truth table is shown in Table 3.6. 

3.8 Conclusions 

Design considerations are presented for several new COSL building blocks. Slight modifications 

to the basic COSL gate, feedback and changes to the standard sequence of the three-phase 

clocking scheme facilitate the implementation of an inverter, NOR and NAND gate and T, 

S-R and D latch. Simulation results are provided, which verify the correct operation of these 

circuits. 
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Figure 3.16: COSL D latch . Clock phases are shown, but input and output resistors are omitted. 
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Figure 3.17: Simulated response of the COSL D latch. The delay between input and output is one and one third of 
a clock period. Table 3.6 gives the corresponding truth table. 

Inputs 
Clock,Data 

0,0 (A) 
1,0 (B) 
0,0 (D) 
1,1 (F) 1 
0,0 (H) 1 

1,0 (1) ° 
Table 3.6: Truth table for the COSL D latch, corresponding to Figure 3.17. 
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Chapter 4 

Monte Carlo Yield Analysis and 
Optimisation 

4.1 Introduction 

In order to increase the probability that the circuits proposed in the previous chapter function 

correctly, a Monte Carlo method is used to predict their theoretical yield. Process variations are 

simulated by random variation of circuit parameters. Differences in parameters between chips, 

as well as local variations between components on the same chip, are taken into account. The 

circuits are simulated with these parameters and the process repeated a number of times. The 

success rate determines the yield of the circuits. 

This chapter presents the Monte Carlo analysis results for the proposed circuits. 

4.2 Analysis procedure 

The parameters used in the Monte Carlo analysis are resistance, inductance and critical current. 

The effect of process variations are simulated by multiplying the nominal values of these pa­

rameters by Gaussian random variables. The global deviation is determined before each Monte 

Carlo cycle, while a different local deviation is generated for each component. The Monte Carlo 

analysis determines the observed yield y' of the circuit. The true statistical yield y is given by 

[3] 

y=y'±L, (4.1) 

where the confidence interval L is defined as 

vY'(1-y') 
L=kc N. (4.2) 

25 
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The constant kc depends on the required confidence level of prediction and N is the number of 

Monte Carlo cycles. The value of kc varies between 2 for a 95 % confidence level and 2.6 for a 

99 % confidence leveL 

The circuits are manufactured with the HYPRES all niobium process. The 1 kA/cm2 and 

2.5 kA/cm2 processes are used, but the circuits are optimised for the 2.5 kA/cm2 process. The 

global variations in critical current density and resistance are specified by the HYPRES design 

rules as ±15 % and ±20 % respectively [21]. The global variation in inductance values was 

estimated as ±8.5 %, but a worst case value of ±15 % is used [19]. Local variations of ±10 % 

are used throughout [3]. In all cases these variations are used as the 30' parameter spreads for 

the Gaussian random variables. 

At the beginning of each Monte Carlo cycle, the global variations in the relevant param­

eters are calculated. A separate Josephson junction model is used for the junctions that are 

varied during the analysis. The global tolerance in the critical current density is applied to the 

maximum critical current of this modeL 

The nominal input SQUID threshold current is determined from (2.9) with ~L = 21t [22], 

as well as the nominal bias current. The ratio between these currents reflects the optimal bias 

for switching the particular gate. The effects of the global variations are taken into account 

by recalculating the bias current and input SQUID threshold current. The latter depends on 

the value of ~L' which is determined with the effective inductance. The effective inductance is 

given by (A.7) in Appendix A. The trim voltage needed to maintain the ratio is calculated for the 

given global variation. The reason for the trim is to include the possibility that a non-functional 

circuit can be made to work by a slight adjustment of the input current. 

Different local variations are applied to each circuit element subject to the yield analysis. 

The local tolerance in critical current is reflected by variation of the area of the Josephson 

junction in question. 

The input to the circuit being analysed is supplied by nominal gates. The output is measured 

for all possible input combinations. A circuit fails if, for any input combination, the expected 

output is not generated. A Monte Carlo run is considered successful if the output of the circuit 

is able to switch a nominal OR gate. The yield is calculated with (4.1) and (4.2) for both the 

trimmed and untrimmed cases. Appendix A contains a sample of the WRspice code used for 

the Monte Carlo analysis. 

4.3 Results 

The yield is predicted for a 99 % confidence level, 399 Monte Carlo cycles and a 10 GHz 

clock frequency. In order to minimise the analysis time, only the circuit parameters of the 
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Circuit I
I Yield [%] I 

Untrimmed I Trimmed 

Inverter 66.9±6.1 70.7±5.9 
NOR 82.5±5.0 97.0±2.2 

NAND 65.4±6.2 82.5±5.0 
T latch 46.9±6.5 75.2±5.6 

Initial S-R latch 42.9±6.4 69.2±6.0 
S-R latch 92.2±3.5 80.2±5.2 
D latch 70.9±5.9 90.0±3.9 

Table 4.1: Theoretical yield of the proposed circuits. 

particular gates performing a function are varied. In the case of the D latch, therefore, the yield 

is determined by quite a complex circuit. Input and output circuit parameters remain at their 

nominal values. Circuit parameters are modified for optimal yield. The results of the yield 

prediction is presented in Table 4.1. 

4.4 Conclusions 

From the results presented above, it is evident that trimming significantly improves yield. An 

exception is the second S-R latch, which shows quite a high yield without trimming. The 

automatic calculation of the trim voltage lowered the yield of the circuit considerably. This 

means that this S-R latch is not sensitive to the ratio between the input current and the input 

SQUID threshold current. Manual trimming should increase the yield further. Most gratifying 

is the yield of the D latch, which, despite the complexity of the circuit, is quite high. The yield 

of the inverter is relatively low, because of its sensitivity to variation of the critical current of 

the additional Josephson junction. The complex inductive coupling used in the first S-R latch 

also proved to be sensitive to variations. 
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Chapter 5 

Physical Layout 

5.1 Introduction 

A very substantial part of the development process of a superconducting digital circuit is the 

Very Large Scale Integration, or VLSI, layout of the circuits. The accuracy of this process 

ultimately determines the success or failure of the circuit. 

The circuits are laid out with Xic [23], a companion package to the WRspice simulator. This 

chapter describes the layout process of COSL circuits. 

5.2 HYPRES process 

The basic layers of the HYPRES process are shown in Figure 5.1, together with the layers 

needed to define a Josephson junction. MO to M3 are superconducting niobium layers, separated 

by a silicon dioxide dielectric. MO is the ground plane. MO definitions in a layout indicate areas 

where the groundplane is to be etched away. Vias between the niobium layers are defined 

~ M3 

~ 12 

[III] M2 

~ IlB UIIl M2 

~ Ml ~ IlB 

liliiii 10 IIIIl IlA 

~ MO ~ Ml 

m Si~ mI ...... SiCh 

(a) (b) 

Figure 5.1: Cross sections of (a) the basic layers and (b) the Josephson junction definition of the HYFRES process. 
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I Layer II Bias [J.Lm] 

MO -0.5±0.25 
10 0.0±0.25 

Ml -0.9±0.25 
IlA 0.0±0.25t 

R2 0.0±0.5 
IlB 0.0±0.25 
M2 -0.5±0.25 
I2 0.0±0.25 

M3 -0.75±0.25 
tFor dimensions ~ 5.75JIOl. HYPRES specifies specific 

values for dimensions < 5.75JIOl [21]. 

Table 5.1: Wafer to mac;k bias specified by the HYPRES process. 
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with 10, IlB and 12. The area of IlA definitions determines the critical current of the Josephson 

junction. 

A resistive molybdenum layer, R2, which lies between Ml and M2, is used to form resistors. 

The sheet resistance of this layer is 1 0./0. This implies that the resistance is given by the ratio 

between the length and width of the R2 line. IlB vias are used to make contact from M2 to R2. 

All layers except IlA and IlB use a grid size of 0.5 J1ID. The grid size for these remaining 

layers is specified as 0.25 J1ID. The bias from mask to wafer is detailed in Table 5.1. Complete 

specifications can be found in the design rules supplied by HYPRES [21]. 

5.3 Current distribution 

The COSL gates are laid out to maximise the uniformity of current distribution in the transmis­

sion lines. Current concentrations could cause undesirable field concentrations in the gates, as 

well as heating effects. All right angles are replaced with curves and square entities like vias 

and Josephson junctions are made circular. Examples can be seen in Figure 5.3, 5.4 and 5.5. 

The current distribution in a section of a resistor was obtained by simulation with IE3D [24], 

an electromagnetic field simulation package. The results for the two geometries are compared 

in Figure 5.2. It is clear that the curved geometry provides a better current uniformity than the 

angular configuration. 

5.4 Resistors 

All resistors in the COSL circuits are realised with 6 J1ID wide R2 lines. Straight and semicir­

cular sections are used to approximate the desired resistance values as closely as possible. The 
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OdB 
-2 dB 
.... dB 
~dB 
-lIdB 
- lOdB 
-12dB 
-14 dB 
-16dB 
-10 dB 
-20 dB 
--22 dB 
-24 dB 
--26 dB 
-20 dB 
-JOdB 
-32 dB 
-J4dB 
-36 dB 
-JOdB 
.... 0 dB 

(a) (b) 

Figure 5.2: Current distribution in different resistor geometries. 

118 

Figure 5.3: 8.8 Q COSL OR gate bias resistor. 
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resistance of the semicircular line sections are approximated in terms of their length, measured 

on the center of the line. A semicircular section with a center radius of 6 /-lm has a length of 

61t Jlffi, which corresponds to a resistance of 1t Q. M2 transmission lines are used as inputs and 

outputs. 

The accuracy of a resistor value for a given geometry is checked with a parameter extraction 

tool included in the WRspice package. As an example of the resistor geometry, the 8.8 Q COSL 

OR gate bias resistor is, with M2 contacts, in Figure 5.3. Wrspice gives the value of this resistor 

as 8.729 Q. 

5.5 Inductance calculation 

The inductive coupling between the input and output SQUIDs of COSL gates is accomplished 

by the use of an M3 transmission line which is placed above an M2 transmission line. The 

physical layout of the inductor pair not only depends on the desired mutual inductance, but on 

the respective self-inductances of the transmission lines as well. 

The inductance per unit length of a superconducting strip transmission line is approximately 
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given by [2S] 
(S.l) 

where W is the width, h the height above the ground plane, t the thickness and A the London 

penetration depth of the transmission line. The London penetration depth of niobium is 900 A 
or 0.09 JlID. The transmission line and ground plane are denoted by the subscripts I and g 

respectively. K is the fringe field factor, which can be approximated by 

K 1 
ksh 

~ +-, 
w 

(S.2) 

where ks is a scaling factor. For most practical cases the value of ks can be taken as 4 [26], but 

better accuracy has been obtained by using different values of ks for each of the layers of the 

HYPRES process [27]. 

The second and third term in (S.l) can be considered as modified London penetration depths 

of the form 

A* = Acoth (~) . (S.3) 

With this substitution (S.l) reduces to 

L ~ J.lo (h + Ai + Ai) . 
wK 

(S.4) 

Substitution of (S.2) into (S.4) allows the mutual inductance per unit length between two 

transmission lines to be written as 

M = kJ.lO 
hI + Ail + A; h2 + Ai2 + A; 

WI + kslhl W2 + ks2h2 ' 
(S.S) 

where the subscripts 1 and 2 denote the respective transmission lines and k is the coupling 

coefficient. 

(S.4) and (S.S) are solved for the desired values of Ll, L2 and M, where Ll and L2 represent 

the self-inductance per unit length of the two transmission lines and M is the mutual inductance 

- -per unit length between them. The respective widths of the transmission lines are then written 

as 

(S.6) 

and 

(S.7) 

The lengths of the transmission lines are calculated with a numerical algorithm [28] imple­

mented in C++. This algorithm is already used in an existing inductance calculation program 
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Figure 5.4: COSL mutual inductor. 

[29] , written in C. This code was rewritten, mostly for the enlightenment of the author, to make 

use of a C++ matrix manipulation library [30]. Appendix B contains the complete C++ code. In 

addition to the standard matrix input, a more user friendly graphical input method was added. 

Examples of both methods of input are also given in Appendix B. The functionality of the 

program was also expanded to include (5.6) and (5.7). 

Comparison between the output of both programs for the same structure verified the cor­

rectness of the new code. Unfortunately, this also lead to an error in subsequent calculations. A 

penetration depth of 850 A is used as the default value in the original program and was also used 

in the new code, This incorrect value was accidentally left as the default in the new program. 

For COSL the inductance values LI and ~ are 4.4 pH and 10.3 pH respectively and the 

mutual inductance M between them 3.905 pH [3]. With these values, a nominal length of 

47.8 f..Ill1 and the incorrect penetration depth, (5.6) and (5.7) give WI = 6.113 !JIll and W2 = 

4.203 !JIll. With the grid size taken into account, these values become Wt = 6 !JIll and W2 = 

4.25 !JIll. 

With the correct penetration depth, a length of 53 ,urn and the snapped values the inductances 

values are calculated as 4.709 pH, 10.527 pH and 3.899 pH for L}, ~ and M respectively. The 

deviation from the nominal values resulting from the incorrect penetration depth, as well as the 

grid size, is 7.026 %, 2.205 % and 0.135 % for L}, ~ and M respectively. The final layout of 

the inductor pair used in the COSL gates is shown in Figure 5.4. As in Section 5.4, the radii used 

to calculate the lengths of the semicircular sections are measured to the center of the respective 

transmission lines. 

5.6 Flux trapping 

If stray magnetic flux is present when a superconducting circuit is cooled through the critical 

temperature this flux may become trapped in the groundplane of the circuit. When this trapped 
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M1 
11A 

o 11 B 
M2 
12 
M3 

Figure 5.5 : Moats surrounding a section of the input SQUID of a COSL OR gate. 
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flux is close to a Josephson junction, or it couples into a SQUID loop, it can significantly reduce 

circuit performance. So-called moats have been proposed to alleviate the problem [31]. These 

moats, which are narrow channels in the groundplane, are placed around sensitive areas in a 

circuit. They provide a low energy site where flux can be trapped, away from sensitive areas. 

It has been found that moats surrounding a small area provide more effective protection at 

higher magnetic fields [32]. In the layout of the proposed circuits, the moats are, therefore, 

placed as close as possible to the sensitive Josephson junctions and the enclosed area kept as 

small as possible. As an example, the moats surrounding the Josephson junction of a COSL OR 

gate input SQUID is shown in Figure 5.5. 

5.7 Clocking 

The three phase clocking scheme should be considered during layout. Unbalanced clock phases 

can cause non-zero currents flowing in the groundplane, which, in turn, can cause the ground 

reference to bounce. Balancing is done by ensuring that the input impedance of all the clock 

phases is equal. Transmission line impedance matching and parallel resistors to ground are used 

to equalize the respective input impedances. The line width needed for a specific impedance is 

calculated with SLINE [33]. An extra measure of protection against ground bounce is the use 

of an additional clock phase, which is connected to the groundplane through a resistor. This 

clock phase can be tuned to minimise bounce. 

The input impedance of the input and output clocks of each gate is calculated from the volt­

age at and current into the respective clock terminals. One such terminal is shown in Figure 5.6. 

The input impedance of the input clock is found to be 6~ n and that of the output clock 131 n. 
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<> : 
> : 

~~~: 

Figure 5.6: Clock terminal of a COSL gate. 
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The length of the lines supplying the clocks are made approximately the same to ensure that 

each clock phase arrives at the correct time, together with the input. Input lines are laid out to 

have the same approximate length. 

5.8 Input and output matching 

All the circuits are matched to 50 Q inputs and outputs. The minimum width constraint imposed 

by the HYPRES design rules prevent the use of "normal" transmission lines for 50 Q lines. 

Coplanar waveguide is therefore used [22]. Input matching is done by the resistive network in 

Figure 5.7. Realising that 

and 

and solving for Rl and R2 lead to 

and 

R2 = RoJ Ri ~iRo' 
Ri and Ro are 50 Q and 5 Q respectively. 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

An amplifier circuit [22], shown in Figure 5.8, is used to convert 1 mV into 5 Q output 

signals to 2.5 mV into 50 Q. Because of the 10 Q output resistance of the T latch, OR buffers 

were added in the layout to ensure 5 Q. The clock phase is the same as the output phase of the 

gate driving the amplifier. 

5.9 Final layout 

The final chip layout of a selection of the proposed circuits is shown in Figure 5.9. The T, S-R 
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R._ 
t 

Figure 5.7: Resistive network used to match 50 n to 5 n. 

Clock DC 

25.Q. 25.Q. 

ImV, 5.Q. - 6 0 
2.5mV,50.Q. 

7 J.iA-

Figure 5.8: Amplifier circuit to convert 1 mY into 5 n signals to 2.5 mY into 50 n. 

and D latch were laid out for the 1 kA/cm2 and 2.5 kA/cm2 HYPRES processes. Because of 

the large number of inputs needed for trimming, the extra clock phase mentioned in Section 5.7 

was omitted. Figure 5.10 shows an enlarged view of the D latch used in the chip layout. 

5.10 Conclusions 

A number of considerations are important where the VLSI layout of COSL is concerned. A set 

of design rules to be obeyed is specified by HYPRES. Current uniformity in the gates, calcu­

lation of the dimensions of the COSL inductor pair, protection against magnetic flux trapping, 

clock balancing and input and output impedance matching are considered during the layout of 

a selection of the new building blocks. 
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II 

II 

Figure 5.9: Final layout of the chip containing 1 kA/cm2 and 2.5 kA/cm2 versions of the T. S-R and D latch. 
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Figure 5.10: Enlarged view of the COSL D latch used in the chip layout. 
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Chapter 6 

Conclusions 

As an introduction, an overview of the principles of the Josephson junction, one-junction and 

two-junction SQUID and the basic operation of COSL gates were given. COSL was used to 

define new and alternative building blocks for use in ultra-high speed logic circuits. A new 

single gate inverter was proposed, as well as alternatives to the existing NOR and NAND gates. 

A number oflatching functions were also described, namely aT, S-R and D latch. Two attempts 

at the realisation of the S-R latch were discussed. Correct operation of the circuits was verified 

by simulation and results presented. Circuit yield was analysed and optimised by a Monte Carlo 

technique. The VLSI layout of COSL circuits were discussed. 

The untrimmed yield of the circuits were, in most cases, quite low. The S-R latch exhibited 

the highest untrimmed yield of 92.2 ± 3.5 %. This gate could prove useful for future applica­

tions. The highest trimmed yield, 97.0 ± 2.2 %, was obtained for the NOR gate. The D latch 

showed the most promising results, despite the complexity of the circuit. As mentioned in Sec­

tion 4.3, the input circuit of ths latch was included in the Monte Carlo analysis, which makes 

the trimmed yield of 90.0 ± 3.9 % quite satisfactory. 

The most noteworthy aspect of the NOR and NAND gate and S-R latch is that they were 

all realised by basic non-inverting COSL gates. By simply modifying the bias resistance and 

changing the clock sequence, a range of different functions could be obtained. 

A selection of the circuits were laid out for manufacture. The T, S-Rand D latch were laid 

out for the 1 kA/cm2 and 2.5 kA/cm2 HYPRES process. Testing of these circuits will take 

place at the University of California at Berkeley in the near future. 

This project provided much needed insight into the operation of the Josephson junction 

and one-junction and two-junction SQUID. This knowledge will prove very useful for future 

research. Valuable experience in VLSI layout was also gained. 
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Appendix A 

Detail of Monte Carlo Analysis 

A.I WRspice code 

COSL nor gate, Monte Carlo analysis 

. monte 

.exec 

checkSTP1=5 

checkSTP2=4 

let Jtol = gauss(0.15/3,1) 

let Rtol = gauss(0.1/3,1) 
let Ltol = gauss(0.1/3,1) 

let Ic = 250u 

let B = 2*pi 

let Arg = -l/B 

let Acos = -j(ln(Arg+j(sqrt(1-ArgA 2)))) 

let Ith_nom = -(Ic*sin(Acos)+Ic/B*Acos) 

let Rbias_nom = 6.5 

let lin_nom = -2.5m/Rbias_nom 

let Ratio = Ith_nom/lin_nom 

le~ Ll_nom = 10.3p-

let L2_nom = 4.4p 

let k = 0.58 

let PhiO = 2.0678346lf 

let Lone = Ll_nom*Ltol 

let Ltwo = L2_nom*Ltol 

let M = k*sqrt(Lone*Ltwo)*Ltol 
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APPENDIX A. DETAIL OF MONTE CARLO ANALYSIS 

let Lj = PhiO/2/pi/0.2/Jtol/lm 

let Leff = Lone - M*M/(Ltwo+2*Lj) 

let Ic = 0.25*Jtol*lm 

let B = 2*pi*Leff*Ic/PhiO 

let Arg = -l/B 

let Acos = -j(ln(Arg+j(sqrt(l-Arg-2»» 

let Ith = -(Ic*sin(Acos)+Ic/B*Acos) 

let Rbias = Rbias_nom*Rtol 

let lin = -2.5m/Rbias 

let Vtrim = 50*Rtol*(Ith/Ratio-lin) 

.endc 

. control 

if tl < 0.6m or t2 > 0.4m or t3 > O.4m or t4 > 0.4m or t5 < O.6m 

let checkFAIL=l 

end 

.endc 

.tran lp 600p uic 

.param Avar = gauss(O.1/3,1) 

. param Rvar = Rtol*gauss(O.1/3,1) 

.param Lvar = Ltol*gauss(O.1/3,1) 

. measure tran tl from=90p to=110p avg v(2) 

. measure tran t2 from=190p to=210p avg v(2) 

. measure tran t3 from=290p to=310p avg v(2) 

. measure tran t4 from=390p to=410p avg v(2) 

.measure tran t5 from=490p to=510p avg v(2) 

.measure tran tlor from=120p to=140p avg v(20) 

.measure tran t20r from=220p to=240p avg v(20) 

.measure tran t30r from=320p to=340p avg v(20) 

.measure tran t40r from=420p to=440p avg v(20) -

.measure tran t50r from=520p to=540p avg v(20) 

BO 8 2 27 jjvar area=$&(O.34*Avar) 

Bl 7 0 28 jjvar area=$&(O.35*Avar) 

B2 9 0 29 jjvar area=$&(O.36*Avar) 

B3 6 0 30 jjvar area=$&(O.25*Avar) 

B4 4 0 31 jjvar area=$&(O.2*Avar) 
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B5 3 0 32 jjvar area=$&(0.2*Avar) 

Kl LO L2 0.58 

K2 Ll L3 0.58 

LO 6 5 $&(5.15p*Lvar) 

Ll 5 0 $&(5.15p*Lvar) 

L2 3 2 $&(2.2p*Lvar) 

L3 2 4 $&(2.2p*Lvar) 

RO 7 0 $&(2.3*Rvar) 

Rl 8 2 $&(5*Rvar) 

Rl0 26 19 10 

R11 2 0 10 

R12 17 6 10 

R13 6 0 $&(1.5*Rvar) 

R14 1 6 10 

R15 17 0 10 

R16 3 4 $&(1.6*Rvar) 

R17 1 0 10 

R18 2 21 10 

R19 20 0 5 

R2 7 6 $&(Rbias_nom*Rvar) 

R3 23 6 $&(50*Rvar) 

R4 10 9 $&(10*Rvar) 

R5 11 7 $&(5*Rvar) 

R6 9 0 $&(6*Rvar) 

R7 9 8 $&(12*Rvar) 

R8 24 8 $&(33*Rvar) 

R9 25 16 10 

VO 24 0 5m 

Vt 23 0 $& (Vtrim) 

V2 25 0 pulse(O 1m 110p lOp 33p IIp 0 310p) 

V3 26 0 pulse(O 1m 210p lOp 33p IIp 0 310p) 

XO 15 clk2 

Xl 18 clk2 

Xl0 14 clkl 

X2 10 clk3 
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X3 22 clk3 

X4 12 15 16 17 or 

X5 13 18 19 1 or 

X6 22 14 21 20 or 

X7 12 clkl 

X8 13 clkl 

X9 11 clkl 

.subckt or 8 741 

BO 6 1 12 jj2 area=0.34 

Bl 5 0 13 jj2 area=0.35 

. B2 10 0 14 jj2 area=0.36 

B3 4 0 15 jj2 area=0.25 

B4 2 0 16 jj2 area=0.2 

B5 9 0 17 jj2 area=0.2 

Kl LO Ll 0.58 

K2 L2 L3 0.58 

LO 3 0 5.15p 

Ll 1 9 2.2p 

L2 4 3 5.15p 

L3 2 1 2.2p 

RO 5 0 2.3 

Rl 6 1 5 

R2 5 4 8.8 

R3 7 10 10 

R4 8 5 5 

R5 10 6 12 

R6 11 6 33 

R7 10 0 6 

R8 4 0 1.5 

R9 2 9 1.6 

VO 11 0 5m 

.ends or 

.subckt clkl 1 

VO 1 0 sin (0 10m 109) 

.ends clkl 
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.subckt clk2 1 

VO 1 0 sin (0 10m 109 -66.6666666667p) 

.ends clk2 

.subckt clk3 1 

VO 1 0 sin (0 10m 109 -33.3333333333p) 

.ends clk3 

.model jj2 jj(rtype=l, cct=l, icon=10m, vg=2.8m, delv=0.08m, 

+ icrit=lm, rO=30, rn=1.64706, cap=1.54894p) 

*Nb 2500 A/cm2 area = 40 square microns (generated by JJMODEL) 

.model jjvar jj(rtype=l, cct=l, icon=10m, vg=2.8m, delv=0.08m, 

+ icrit=$&(Jtol*lm), rO=30, m=1.64706, cap=1.54894p) 

. end 

A.2 Effective inductance 

46 

The equivalent circuit for the calculation of the effective inductance is shown in Figure A.1. 

The input and output voltages are given by 

and 

where 

L dit Mdi2 
Vl= 1-+ -

dt dt 

Mdil +~ di2 
dt dt 

_2LJ
di2 

- dt' 

(A.1) 

(A.2) 

(A.3) 

(AA) 

is known as the Josephson inductance [10, p. 470] and reflects the contribution of the Josephson 

i i ii 
+ + 

L J 

Vi v2 

L J 

Figure A.I: Equivalent circuit for the calculation of the effective inductance of a COSL input SQUID. 
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junctions in the two-junction SQUID. (A.2) and (A.3) lead to 

(A.5) 

which, upon substitution into (A. 1), give the effective inductance as 

L -L _ M2 
eff - 1 L2 + 2LJ (A.6) 

. The effective inductance is calculated at the beginning of a Monte Carlo cycle, before any of 

the dynamics of the circuit is known. Hence, the phase dependence of the Josephson inductance 

is indeterminable. As an approximation, the phase difference of the junction is considered small 

enough to make the cos</> term in (A.4) approximately 1. This leads to 

(A.7) 

j 
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c++ Inductance Calculation Program 

B.I c++ source code 

B.1.1 Induct.h 
1* This program implements an algorithm to calculate the inductance matrix of 

a multi -superconductor transmission line system. The algorithm was proposed 
by Chang (IEEE Trans. on Magnetics, vol. MAG-I7, no. I, p. 764). *1 

#include < fstream > 
#include <iomanip> 
#include < iostream >. 
#include <math. h> 
#include <stdlib .h> 
#include < string> 
#include <uLapack. h> 
#include < uMatrix . h> 

1***************************1 
1* Miscellaneous constants *1 
1***************************1 
1* Permeability of free space (scaled to get pHlum) *1 
#define Uo 1.2566370614 
1* Permittivity of free space (scaled to get pFlum) *1 
#define Eo 8.854187817e-6 
1* Relative permittivity of Si02 *1 
#define Er 3.9 
#define PI 3.14159265358979 
1* Half pi *1 
#define hPI 1.57079632679490 
#define Kp Uo/961 PI 
1* Inductances in pH *1 
#define L1 4.4 
#define L2 10.3 
1* Coupling constant between LI and L2 *1 
#define K 0.58 
1* Mutual inductance between LI and L2 *1 
#define Mind Kuqrt (LhL2) 1* pH *1 
1* Constant defined for use with atan () *1 
#define SMAIL 8.8817841971 e-16 
1* Hypres layer thicknesses in um *1 
#define MOMO 0.1 
#define MIMO 0.15 
#define MIMI 0.2 
#define M2M0 0.35 
#define M2M20.3 
#define M3MO 0.85 
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#define M3M30.6 
/* Penetration depth of niobium */ 
#define PD 0.09 
/* Number of x and y segments per (part of) conductor */ 
#define X 10 
#define Y 5 
/* Layer constants for width calculation */ 
#define kM1 4 
#define kM2 3.52 
#define kM33.13 
/* Return the minimum and maximum of X and Y */ 
#define min(X,Y) «X) < (Y)? (X) (Y» 
#define max(X,Y) «X) > (Y)? (X) : (Y» 

/*********************/ 
/* Type decla rati ons */ 

/*********************/ 
/* Scale factors for Magic and Xic dimensions *1 
enum ciffi1etype {none =1, magic =400, xic =IDOO}; 
/* Sort direction for Sort function */ 
enum sortdirtype {up, down}; 
h. Layers used in LayerWidth function */ 
enum inductortype {m2m3, m1m2, m1rn3}; 

/**************************/ 
/* Procedure declarations */ 

/**************************/ 
void AddRow( uMatrix <double> &, 

const double [1); 

uMatrix<double> LineWidth (const inductortype); 

uMatrix <double> Parse (const int, 
char *); 

double Pint (const double, 
const double, 
const double, 
const double); 

uMatrix <double> Pmn( const int, 
const uMatrix <double> &, 
const uMatrix <double> &, 
const uMatrix <double> &); 

uMatrix <double> Qmk( const int, 
const uMatrix <double> &, 
const uMatrix <double> &, 
const' uMatrix <double> &); 

uMatrix <double> Reduce ( int , 
uMatrix <int >, 
uMatrix <double >, 
uMatrix <int >, 
int ); 

void Sort (uMatrix <double> &, 
const int, 
const sortdirtype sortdir); 

void Subdivide (const uMatrix <double> &, 
int &, 
int &, 
uMatrix <int > &, 
uMatrix <double> &, 
uMatrix <double> &, 
uMatrix <int > &, 
uMatrix <double> &, 
uMatrix <double> &); 
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double Sum( const uMatrix <double> &); 

void Swope uMatrix <double> &, 
const int, 
const int); 

/* End of Induct. h */ 

B.1.2 Parse.cc 
#include "Induct .h" 

uMatrix <double> Parse (const int mainargc, 
char * mainargv []) 

{ 

/* Parses the commandline and prepares the input matrix to be used in 
calculation. */ 

uMatrix <double > pinput (0,0); 
switch (mainargc) 

{ 
case 3: 

if (string(mainargv [1]) == "-u") 
{ 

} 

ifstream infile (mainargv [2], ios:: in); 
if (! infile ) 

{ 

} 

cerr « "Cannot_open_file_" 
« mainargv [2] 
«"_for_input" «endl; 

exit (-1); 

pinput. readAscii (mainargv [2]); 
if (pinput. rows () < 2) 

{ 

} 
else 

{ 

} 

cerr < < "Cannot _calculate _inductance _matrix _for _only _one _conductor\n"; 
exit (-1); 

pinput. markAsTemporary (); 
return pin put ; 

else if (string (mainargv [1]) == "-c") 
{ 

ifstream infile (mainargv [2], ios:: in); 
if (! infile ) 

{ 

} 

cerr < < "Cannot _open _file_" 
« mainargv [2] 
«"_for_input" «endl; 

exit (-1); 

string buf; 
ciffiletype cifscale = none; 
int layer = 0, cifcn = 0; 
double cifcoor, cifheight; 
while (infile » buf) 

{ 
if ( strstr (buf. c_str (), "xic"» 

cifscale = xic; 
else if ( strstr (buf. c_str (), "Magic"» 

cifscale = magic; 
if (buf == "L") 

{ 
infile » bUf; 
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if ( buf -- "MOj") 
layer = 0; 

else if ( buf "M1j") 
layer = 1 ; 

else if ( buf "M2 j ") 
layer = 2; 

else if ( buf "M3 j") 
layer = 4; 

} 
if (buf == "B") 

{ 
cifcn ++; 
infile » cifheight; I. dummy read .1 
infile » cifheight ; 
cifheight 1= cifscale; 
infile » cifcoor; I. dummy read .1 
infile » cifcoor ; 
cifcoor 1= cifscale; 
if (pinput. rows 0 > 0) 

{ 
~Matrix <double> tempinput = pinput; 
pinput. resize (pinput. rows 0+2,3); 
pinput. insert (ulndex (0,1, tempinput .rowsO-l), ulndex (0,1,2), tempinput); 

} 
else 

pinput . resize (pinput . rows 0+2,3); 
pinput(pinput .rowsO-2,0) = double(cifcn); 
pinput(pinput .rowsO-2,I) = double(layer); 
pinput (pinput . rows 0-2,2) cifcoor - cifheight 12; 
pinput(pinput .rowsO-I,O) double(cifcn); 
pinput(pinput .rowsO-I,I) double (layer ); 
pinput (pinput . rows 0-1,2) cifcoor + cifheight 12; 

} 
} 

infile . close 0; 
if (pinput. rows 0 == 0) 

{ 
cerr «"Input_file_is_probably_not_a_CIF_file\n"; 
exit (-1); 

} 
Sort (pinput ,2, up); I. sort on coordinates .1 
bool MO = false, MI = false, M2 = false, M3 = false, multileft 
int MOcn = 0, MIcn = 0, M2cn = 0, M3cn = 0; 
double leftcoor = 0, rightcoor = pinput (0,2); 
uMatrix <double> modinput (0,8); 
for (int i=O; i<pinput.rowsO-I; i++) 

{ 
int s = I; 
while « rightcoor == pinput (i ,2» && (i+s < pinput. rows 0» 

{ 
rightcoor = pinput(i+s,2); 
s++; 

} 
if « pinput (i ,2) != leftcoor) II ( pinput (0,2) == 

{ 
leftcoor = pinput (i ,2); 

} 
if (s > 2) 

multileft = true; 
else if (pinput (i + I ,2) != leftcoor) 

multileft = false; 
if (leftcoor == rightcoor) 

multileft = true; 
double newblock [8]; 
switch (int(pinput(i,l») I. switch on layer.1 

{ 
case 0: 

0» 

false; 
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MOen = int(pinput(i ,0»; 
MO = ! MO; 
break; 

case 1: 
MIen = int(pinput(i ,0»; 
Ml = ! Ml; 
break; 

case 2: 
M2en = int (pinput (i ,0»; 
M2 = ! M2; 
break; 

case 4: 

} 

M3en = int(pinput(i ,0»; 
M3 = ! M3; 

if (! rnultileft && MO) 
{ 

newbloek [0] MOen; 
newbloek [l] lefteoor; 
newbloek [2] 0; 
ncwbloek [3] righteoor ; 
newbloek [4] MOMO; 
newbloek [5] PD; 
newbloek [6] X; 
newbloek [7] Y; 
AddRow( rnodinput , newbloek ); 

} 
if (! rnultileft && Ml) 

{ 

} 

newbloek [0] 
newbloek [1] 
newbloek [2] 
newbloek [3] 
newbloek [4] 
newbloek [5] 
newbloek [6] 
newbloek [7] 
if (MO) 

{ 

MIen; 
lefteoor; 
MIMO; 
righteoor ; 
MIMO + MIMI; 
PD; 
X; 
Y; 

newbloek [2] += MOMO; 
newbloek [4] += MOMO; 

} 
AddRow( rnodinput , newbloek ); 

if (! rnultileft && M2) 
{ 

} 

newbloek [0] 
newbloek [1] 
newbloek [2] 
newbloek [3] 
newbloek [4] 
newbloek [5] 
newbloek [6] 
newbloek [7] 
if (MO) 

{ 

M2en; 
lefteoor ; 

M2MO; 
righteoor ; 
M2M0 + M2M2; 
PD; 
X· 
Y; 

newbloek [2] += MOMO; 
newbloek [4] += MOMO; 

} 
if (Ml) 

{ 

} 

newbloek [2] += MIMI; 
newbloek [4] += MIMI; 

AddRow( rnodinput , newbloek ); 

if (! rnultileft && M3) 
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} 
else 

{ 

} 

{ 
newblock [0] M3cn; 
newblock [1] leftcoor ; 
newblock [2] M3MO; 
newblock [3] rightcoor ; 
newblock [4] M3MO + M3M3; 
newblock [5] PD; 
newblock [6] X; 
newblock [7] Y; 
if ( MO) 

{ 
newblock [2] += MOMO; 
newblock [4] += MOMO; 

} 
if (Ml) 

{ 
newblock [2] += MIMI; 
newblock [4] += MIMI; 

} 
if (M2) 

{ 
newblock [2] += M2M2; 
newblock [4] += M2M2; 

} 
AddRow( modinput , newblock ); 

} 
} 

Sort (modinput ,0, down); 1* sort on conductor number *1 
mod input . markAsTemporary 0; 
return modinput; 

cerr < < "Unknown_parameter: _" «mainargv [1] < < endl; 
exit (-1); 

break; 
case 2: 

if (( string (mainargv [1]) == "-U") II ( string (mainargv [1]) 
{ 

cerr «"No_input_file_specified\n"; 
exit (-1); 

} 
else if (string (mainargv [1]) == Im2m3") 

{ 

} 

pinput = LineWidth (rn2rn3); 
pinput . markAsTemporary 0; 
return pinput; 

else if (s tr i n g (mainargv [1]) 
{ 

pinput = LineWidth (mlrn2); 
pinput . markAsTemporary 0; 

··return pinput; 
} 

Imlm2") 

else if (string (mainargv [1]) == Imlm3") 
{ 

} 
else 

{ 

} 

pinput = LineWidth (mlrn3); 
pinput . markAsTemporary 0; 
return pinput; 

cerr «"Unknown_parameter:_" «mainargv[1]« endl; 
exit (-1); 

break; 

"-C" » 
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case 1: 
cout « "Syntax :_Induct_-u_matrix-filename\n"; 
cout « " ________ Induct _- c_CIF-filename\n"; 
cout « " ________ Induct_m1m2\n"; 
cou t < < " ________ Induct _m2m3 \n" ; 
cout « ,, ________ Induct_m1m3\n"; 

exit (-1); 
default : 

} 

cerr « "Invalid_number_of_arguments :_" «mainargc -1« end1; 
exit (-1); 

}; 1* Parse *1 

int main (int argc, char * argv []) 
{ 

uMatrix<double> input = Parse (argc, argv); 
cout « "Input_matrix\n" «input « endI; 
int ncond, M = 0; 
uMatrix <double> segcoor, seg1, area, 1ambda2; 
uMatrix <int > cnum, nsegpc; 
Subdivide (input, ncond, M, cnum, segcoor, segl, nsegpc, area, 1ambda2); 
uMatrix <double> Lmatrix = ulnv (Reduce (M, 

cnUffi, 
ulnv (Qmk(M, 

uMatrix <double> modL(2 ,2); 

nsegpc , 
ncond »; 

Pmn(M, 
segcoor, 
seg1, 
area ), 

area, 
lambda2 », 

modL(O,O) = U; modL(O,I) = Mind; modL(l,O) = Mind; modL(I,I) L2; 
cout «"Inductance_matrix_[pH/um]\n" «Lmatrix « end1; 
if (ncond == 3) 

{ 
cout « "Inductances\n" «modL« end1; 
cout « "Length_matrix _[um]\n" «modL. pointDiv (Lmatrix) « end1; 

} 
return 0; 

}; 1* main *1 

1* Induct. cc *1 

B.1.3 Evaluate.cc 
#include "Induct.h" 

uMatrix <double> Pmn( const int ts, 

{ 

const uMatrix <double> &sc , 
const uMatrix <double> &sl , 
const uMatrix <double> &a) 

1* Evaluates the equation for Pmn (Chang eqn (17». *1 

uMatrix <double> 
xll sc (ulndex (0,1, sc. rows 0-1 ),0), 
xur xll + sl(ulndex(O,I, s1.rowsO-I),O), 
yll sc(ulndex (0,1, sc.rowsO-I),I), 
yur yll + sl (ulndex (0,1, s1. rows O-l), 1), 
P(ts,ts); 

for (int m=O; m(ts ; m++) 
for (int n=O; n<=m.; n++) 

{ 
P(m,n)= Kp/a(m)/a(n)*\ 

( Pint (xur (m), yur (m), xur (n), yur (n»­
Pint ( xll (m), yur (m), xur (n), yur (n»-
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} 

(Pint (xur (m), yll (m), xur (n), yur (n»­
Pint ( xlI (m), yll (m), xur (n), yur (n»)-

( Pint (xur (m), yur (m), xll (n), yur (n»­
Pint ( xll (m), yur (m), xll (n), yur (n»­
(Pint (xur (m), yll (m), xll (n), yur (n»­

Pint (xll (m), yll (m), xll (n), yur (n»»­
( Pint (xur (m), yur (m), xur (n), yll (n»­

Pint (xll (m), yur (m), xur(n), yll (n»­
(Pint(xur(m), yll(m), xur(n), yll(n»­

Pint (xll (m), yll (m), xur(n), yll (n»)-
(Pint(xur(m), yur(m), xll(n), yll(n»-

Pint (xll (m), yur(m), xll (n), yll (n»­
(Pint (xur(m), yll (m), xll (n), yll (n»­

Pint (xll (m), yll (m), xll (n), yll (n»»»; 
P(n,m) = P(m, n); 

P. markAsTemporary (); 
return P; 

}; 1* Pmn *1 

doqble Pint (const double x, 
const double y, 
const double x_, 
const double y _) 

{ 

1* Evaluates the integral part of the equation for Pmn (Chang eqn (17)) at 
the specified coordinates. *1 

double 
E = x - x_, 
E2 = E*E, 
E4 = E2*E2, 
N=y-y_, 
N2 = N*N, 
N4 = N2*N2, 
f, 
a, 
b; 

if « fabs (E) <= SMAIL) && (fabs (N) <= SMALL» 
{ 

} 
else 

{ 

} 

f = 0; 
a hPI; 
b = hPI; 

f = log (E2 + N2); 
if (fabs (E) <= SMAIL) 

a = hPI; 
else 

a = atan (N/E); 
if (fabs (N) <= SMAIL) 

b = hPI; 
else 

b = .. atan (E/N); 

return (E4 - 6*E2*N2 + N4)*f - 8*E*N*(Eha + N2*b) + 2hE2*N2; 
}; 1* Pint *1 

uMatrix <double> Qmk( const int ts, 

{ 

const uMatrix <double> &P, 
const uMatrix <double> &a, 
const uMatrix <double> &12 ) 

1* Evaluates the equation for Qmk (Chang eqn (23». This equation could be 
somewhat simplified by taking the symmetry of P into account. *1 

uMatrix <double> Q( ts -I, ts -1); 
int Drnk; 
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for (int m=O; m(ts -1; m++) 
for (int k=O; k<=m; k++) 

{ 

} 

if (m == k) 
Dmk=I; 

else 
Dmk = 0; 

Q(m,k) = P(m,k) + P(ts-l,ts-l)- P(m,ts-l)- P(k,ts-l)+ 
Uo*(l2 (ts -1)/a( ts -1) + 12 (k)1 a(k)*Dmk:); 

Q(k,m) = Q(m, k); 

Q. markAsTemporary (); 
return Q; 

}; 1* Qmk *1 

uMatrix <double> Reduce (int ts, 

{ 

uMatrix <int > cn, 
uMatrix <double> R, 
uMatrix <int > nsp, 
int nc) 

1* Reduces R to S. Sij is formed by summing Rij over the columns in volving 
the ith conductor and the rows involving the jth conductor. *1 

int ref = cn(ts-l,O); 
while (cn(ts -1,0) == ref) 

{ 

} 

Int decnsp = nsp(nc-l); 
uMatrix <int > tempcn = cn; 
cn. resize (0,0); 
cn = tempcn(ulndex(O,I,ts-decnsp-l),O); 
uMatrix <double> tempR = R; 
R. resize (0,0); 
R = tempR(ulndex(O,I, ts-decnsp-l),ulndex(O,I, ts-decnsp-l»; 
uMatrix <int > tempnsp = nsp; 
nsp. resize (0,0); 
nsp = tempnsp(ulndex (0,1, nc-2),0); 
nc--; 
ts -= decnsp; 

uMatrix <double> S ( nc , nc ); 
int cumi = 0; 
for (int i=O; i<nc; i++) 

{ 

} 

int cumj = cumi; 
for (int j=i; j<nc; j++) 

{ 

} 

uMatrix <double> S ij = R( ulndex (cumi ,1, cumi +nsp ( i )-1), 
ulndex (cumj ,1, cumj +nsp (j ) -1»; 

cumj += nsp (j ); 
S(nc-i-l,nc-j -1) = Sum(Sij); 
S(nc-j -1,nc-i -1) = Sum( Sij); 

cumi += nsp (i ); 

S. rnarkAsTemporary (); 
return S; 

}; 1* Reduce *1 

B.1.4 Subdivide.cc 
#inciude "Induct .h" 

void Subdivide (const uMatrix <double> &ip , 
int &nc, 
int &ts, 
uMatrix <Int > &cn, 
uMatrix <double> &sc , 
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{ 

uMatrix <double> &sl , 
uMatrix <int > &nsp , 
uMatrix <double> &a, 
uMatrix <double> &12 ) 

1* Splits the input matrix into the required components (conductor number. 
area. number of segments, segment lengths and penetration depths) and 
builds the vector containing the coordinates of the subsegments of the 
conductors. *1 

ne = ip. rows 0; 
uMatrix <int > 

shorten = intCast (ip (ulndex (0,1, ne -1 ),0», 
ns = intCast (ip(ulndex(O,I, ne-l),ulndex(6,1,7»); 

uMatrix <double> 
11 ip (ulndex (0,1, ne-I), ulndex (1,1,2», 
ur = ip (ulndex (0,1, ne-l), ulndex (3,1,4», 
pd = ip(ulndex (0,1, ne-I),5), 
shortsl = ur. pointDiv (doubleCast (ns» - 11. pointDiv (doubleCast (ns »; 

nsp = ns (ulndex (0,1, nc -1),0). pointMul (ns (ulndex (0,1, nc -1),1 »; 
for (int c=O; c<nc; c++) 

ts +'" ns(c,O)*ns(c,l); 
en. resize (ts ,I); 
se. resize (ts ,2); 
sl. resize (ts ,2); 
12. resize (ts ,I); 
double cumcoor = 0; 
for (int c=O; c<nc; c++) 

{ 

} 

double shortnsp = ns(c,O)*ns(c,I); 
uMatrix <double> 

xcoor(ns(c,O),I), 
ycoor(ns(c,I),I); 

for (int i=O; i<ns(c,O); i++) 
xcoor(i ,0) = 11 (c,O) + iuhortsl (c,O); 

for (int j=O; j<ns(c,I); j++) 
ycoor(j ,0) = 11 (c,l) + juhortsl (c,I); 

for (int i=O; i<ns(c,I); i++) 
sc. insert (ulndex (cumcoor+i *ns (c, 0), I, cumcoor +( i +1)* ns (c ,0)-1 ),0, xcoor); 

for (int j=O; j<ns(c,O); j++) 
sc. insert (ulndex (cumcoor+j ,ns (c ,0), cumcoor+shortnsp -ns (c ,0)+ j ),1, ycoor); 

for (int k=O; k<shortnsp; k++) 
{ 

} 

cn (cumcoor +k) = shortcn (c); 
sl. insert (cumcoor+k,ulndex (0,1,1), shortsl (c,ulndex (0,1,1»); 
12 (cumcoor+k) = pd(c)*pd(c); 

cumcoor += shortnsp ; 

a sl ( ulndex (0,1, s 1 . rows () - 1),0). pointMul ( sl ( ulndex (0, I, s 1 . rows 0 - 1 ),1»; 
int c = 0; 
while (c < nc-I) 

{ 
if (shortcn (c) == shortcn (c+I» 

{ 
nsp(c+I) += nsp(c); 
uMatrix <int > 

tempnsp (nc -1,1), 
tempcn ( nc - I, 1); 

tempnsp. insert (ulndex (0,1, e),O, nsp(ulndex (0,1, c),O»; 
tempnsp. insert (ulndex(c,I, nc-2),O, nsp(ulndex(c+I,I, nc-l),O»; 
tempcn. insert (ulndex (0,1, c),O, shortcn (ulndex (0,1, c),O»; 
tempcn. in sert (ulndex (c ,I, ne -2),0, shortcn (ulndex (c + 1,1, nc -1 ),0»; 
nsp. resize (0,0); 
nsp = tempnsp; 
shortcn . resize (0,0); 
shortcn = tempcn; 
nc--; 

57 

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. C++ INDUCTANCE CALCULATION PROGRAM 

} 
else 

c++;. 
} 

}; 1* Subdivide *1 

B.l.S LineWidth.cc 
#include II Induct .h" 

uMatrix <double> LineWidth (const inductortype i) 

{ 

1* Calculate the transmission line widths needed to obtain a desired mutual 
inductance and generate an input matrix. *1 

double I = 0; 
cout « "Desired_inductor_length :_"; cin » 1; 
if (l <= 0) 

{ 

}; 

cout < < II Cannot _use_negative _or_zero _length \n"; 
exit (-1); 

double hI, h2, t 1, t2, ks 1, ks2; 
if (i == rn2rn3) 

{ 
hI M2MO; 11+ M1Ml; 
h2 M3MOrM2M2;II+M1Ml; 
tl M2M2; 
t2 M3M3; 
ksl kM2; 
ks2 = kM3; 

} 
else if (i == mIrn2) 

{ 

} 
else 

{ 

}; 

hI = MIMO; 
h2 = M2MOrMIMI; 
tl = MIMI; 
t2 = M2M2; 
ksl kMI; 
ks2 = kM2; 

hI MIMO; 
h2 M3MOrMIMI; 
tl MIMI; 
t2 M3M3; 
ksl kMI; 
ks2 = kM3; 

cout «"hl_" «hI 
«I_h2_" «h2 
«"_tl_" «t1 
«I_t2_" «t2 
«"_ksl_" «ksl 
«I_ks2_" «ks2 « endl; 

double 
Lpul = Lhle-61l, 
Lpu2 = LhIe-61l, 
Mpu = Mind*I e-61l , 
wI = Uo*Ie-6*K*K*Lpu2/Mpu/Mpu*(hl + PD/tanh(tI/PD) + PD/tanh(MOMO/PD» kshhI, 
w2 = Uo*Ie-6*K*K*LpuIlMpu/Mpu*(h2 + PD/tanh(t2/PD) + PD/tanh(MOMO/PD» ks2*h2; 

cout « "Widths II «endl 
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«"wl_(I«LI« ")_=_" «wI« "_" «lw2_(" «L2« ")_=_" «w2« endl« endl; 
double 

w = min(w1l2, w2l2), 
W = max(wI/2, w2/2); 

uMatrix<double> lwinput (0,0); 
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lwinput = ( double) 0; 
uMatrix<double> lwelement (0,0); 
int 

Ilstart = 4, 
llend = 8, 
12start = I; 

if (wi == w2) 
{ 

} 
else 

{ 

}; 

lwinput . resize (5,8); 
lwelement. resize (5,1); 
11 start = 2; 
llend = 4; 

Iwinput . resize (9,8); 
Iwelement . resize (9, I); 
if (wi < w2) 

12start = 3; 

lwelement = PD; 
Iwinput. insert (ulndex (0, I, llend ), ulndex (5), Iwelement ); 
Iwelement = X; 
Iwinput. insert (ulndex (0, I, llend ), ulndex (6), Iwelement ); 
lwelement = Y; 
Iwinput. insert (ulndex (0, I, llend ), ulndex (7), Iwelement ); 
lwelement. resize (llend-Ilstart +1,1); 
Iwelement = I; 
lwinput. insert (ulndex ( 11 start, I, llend ), ulndex (0), lwelement ); 
lwelement = MOMO; 
lwinput. insert (ulndex( 11start ,1, llend), ulndex (4), Iwelement); 
lwelement . resize (11 start -I2start ,1); 
lwelement = 2; 
lwinput. insert (ulndex( 12start ,I, llstart -1),ulndex (0), Iwelement); 
lwelement = hl+MOMO; 
lwinput. insert (ulndex( 12start ,1, 11start -I),ulndex (2), lwelement); 
lwelement = hl+tl +MOMO; 
lwinput. insert (ulndex( 12start ,1, 11start -I),ulndex (4), lwelement); 
lwelement. resize (12start ,I); 
lwelement = 3; 
lwinput. insert (ulndex (0,1, 12start -1), ulndex (0), lwelement ); 
lwelement = h2+MOMO; 
Iwinput. insert (ulndex (0, I, 12start -I), ulndex (2), lwelement ); 
lwelement = h2+t2 +MOMO; 
Iwinput. insert (ulndex (0,1, 12start -1),ulndex (4), Iwelement); 
lwinput (0,2) wi < w2 ? tl 0; 
lwinput (0,4) wi < w2 ? tl O· 
lwinput (2,2) wi < w2 ? tl 0; 
lwinput (2,4) wi < w2 ? tl 0; 
lwinput (llend ,1) = -10*W; 
lwinput (llend ,3) = - W; 
Iwinput (llend -1,1) = -W; 
if (w ! = W) 

{ 

} 

Iwinput (llend -1,3) = -w; 
Iwinput (Ilstart +2,1) = -w; 
Iwinput (11 start +2,3) w; 
Iwinput (Ilstart +1,1) = w; 

Iwinput (Ilstart +1,3) = W; 
Iwinput ( 11 start, I) = W; 
Iwinput(l1start ,3) = 10*W; 
lwinput (l1start -1,1) = -w1l2; 
if (wI> w2) 

{ 
Iwinput (11 start -1,3) = - w2/2; 
Iwinput (Ilstart -2,1) = -w2/2; 
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}; 

lwinput (12start +1,3) = w2l2; 
lwinput (l2start ,1) = w2/2; 

lwinput (12start ,3) = w1l2; 
lwinput (12start -1,1) = -w2/2; 
If (wI < w2) 

{ 

}; 

lwinput (12start -1,3) = - w1/2; 
lwinput (12start -2,1) = -wll2; 
lwinput (1,3) w1/2; 
lwinput (0,1) = w1/2; 

lwinput (0,3) = w2/2; 
lwinput . markAsTemporary 0; 
return lwinput; 

}; 1* LineWidth *1 

B.1.6 Misc.cc 
#include "Induct .h" 

void Sort ( uMatrix <double> & sorti n , 
const int sorteol, 

{ 

const sortdirtype sortdir) 
1* Sort the rows of the specified matrix in the specified direction, 

according to the specified column, using bubble sort. *1 

if (sortdir == down) 
{ 

} 
else 

{ 

for (int i=O; i<sortin.rows(); i++) 
for (int j=i+l; j<sortin.rows(); j++) 

if (sortin (i, sorteol ) <= sortin (j, sortcol » 
Swope sortin , i, j ); 

for (int i=O; i<sortin .rows(); i++) 
for (int j=i+l; j<sortin .rows(); j++) 

if (sortin (i, sortcol ) >= sortin (j, sortcol » 
Swope sortin , i, j ); 

void Swope uMatrix <double> &sm, 
const int i, 

{ 

const int j) 
1* Swop rows i and j of the specified matrix. *1 

uMatrix <double> tempsm = sm( i , ulndex (0,1, sm. columns 0-1 »; 
sm. insert (i, ulndex (0,1, sm. columns 0-1), sm(j ,ulndex (0,1, sm. columns 0-1»); 
sm. in se rt (j , ulndex (0, I, sm. columns 0-1), tempsm); 

}; 1* Swop *1 

void AddRow( uMatrix <double> &inmatrix , 
const double newrow [1) 

{ 
1* Append the specified row to the bottom of the specified matrix. *1 

uMatrix <double> tempinmatrix = inmatrix; 
inmatrix . resize (tempinmatrix. rows 0+ I, tempinmatrix . columns 0); 
if (tempinmatrix. rows 0 > 0) 

inmatrix . ins ert (ulndex (0, I, tempinmatrix . rows 0 -1), 
ulndex (0,1, tempinmatrix . columns 0-1), 
tempinmatrix ); 

for (int i =0; i<inmatrix. columns 0; i ++) 
i nmatrix ( inmatrix . rows 0-1, i ) = newrow [ i 1; 

}; 1* AddRow *1 
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double Surn( const uMatrix <double> &m) 

{ 
1* Calculat e s th e sum of the el e m e nts of th e specifi ed matrix. *1 

double total = 0 ; 
for (int i=O ; i<ln. row s O*m. columns() ; i++) 

total += m. address O[ i] ; 
return to tal ; 

} ; 1* Sum *1 

B.2 Input File Formats 

B.2.1 Matrix 

61 

The conductors of the system in question are numbered, starting at 1 from the conductor being 

used as the groundplane. The transmission lines are then divided into sections, as demonstrated 

by the dashed lines in Figure B.1. Each section of a conductor has the same number, as shown. 

The lower left and upper right coordinates are determined, in accordance with the x and y axes 

shown. The absolute coordinates are unimportant. 

Table B.1 lists an example of the matrix input. The first column contains the conductor 

number of each line section, while the coordinates occupy columns 2 through 5. The penetration 

depth of each section is listed in column 6. The algorithm used to calculate the inductance 

divides each line section into segments. Accuracy and calculation time are proportional to the 

number of segments. Column 7 and 8 contain the number of horizontal and vertical segments. 

y , 
3 : , 

Lx = , , , 
2 ' 2 ' 2 ' : : I , , , 

1 1 : 1 : 1 : 1 

Figure B.l: Cross section of an example transmission line system. 

Conductor Lower left Upper right A Segments 
number x y x y x Y 

3 -2.125 1.25 2.125 1.85 0.09 10 5 
2 2.125 0.45 2.75 0.75 0.09 10 5 
2 -2.125 0.45 2.125 0.75 0.09 10 5 
2 -3.25 0.45 -2.125 0.75 0.09 10 5 
1 2.75 0 20 0.1 0.09 10 5 
1 2.125 0 2.75 0.1 0.09 10 5 
1 -2.125 0 2.125 0.1 0 .09 10 5 
1 -3.25 0 -2.125 0.1 0.09 10 5 
1 -20 0 -3.25 0.1 0.09 10 5 

Table B.l: Matrix input format for the Induct program 
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B.2.2 elF 

A transmission line system can also be represented graphically, with, for example, the Xic 

layout package. Currently, only the Caltech Intermediate Form, or CIF, format is supported. 

Because the Induct program calculates the inductance per unit length, only a short section of 

the system is needed. Figure B.2 demonstrates such a layout. Induct takes the cross section of 

the layout and determines the input matrix. The cross section is taken vertically, but the layout 

in Figure B.2 is rotated by 90° for typesetting purposes. Transmission line sections have to be 

represented by boxes, because wires are ignored by the program. 

Currently only the HYPRES process is supported. MO definitions represent the dimensions 

of the ground plane. 

M3 

M2 
Figure B.2: Graphical representation of a section of the COSL inductor pair. 
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