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Abstract 
 

Introduction – Cancer continues to have a significant impact on society. While there has been much 

success in characterising tumours and identifying targetable markers, two major problems are still 

faced today, namely therapeutic failure and advanced progression of the disease. The human 

AHNAK protein is a giant scaffold protein involved in multiple cellular processes and has now also 

been suggested to be associated with cancer, particularly with regards to tumour metastasis and 

chemoresponse. However, limited information and several contradicting findings have contributed to 

a poor understanding of the role of AHNAK in cancer. Thus, we aimed to characterise the AHNAK 

protein in cancer by determining the role of the protein in the chemotherapeutic response of breast 

cancer to doxorubicin (DXR) and also in cellular migration.  

Methods – For the in vitro model the non-metastatic DXR-sensitive epithelial-like MCF-7 and 

metastatic DXR-resistant mesenchymal-like MDA-MB-231 cell lines were used. We performed DXR 

treatments and assessed AHNAK’s protein expression and intracellular localisation. We also 

assessed these properties in a tumour-bearing mouse model. AHNAK knockdown and 

overexpression was achieved by means of transient plasmid transfections in both cell lines and 

following DXR treatments we assessed apoptotic marker expression, cell cycle modulation, 

epithelial-mesenchymal transition (EMT) marker expression and cellular migration.  

Results – DXR induced dose-independent and dose-dependent changes in AHNAK protein 

expression in MCF-7 and MDA-MB-231 cells, respectively, but it did not affect its intracellular 

localisation in these cells. In the tumour-bearing mouse model DXR also induced dose-dependent 

changes in AHNAK expression without affecting its localisation, similar to the MDA-MB-231 cells. In 

the MDA-MB-231 cells, DXR promoted apoptosis inhibition by decreasing cPARP and cCasp7 

expression. Knockdown of AHNAK prevented this inhibition while overexpression induced a similar 

inhibitory effect. With cell cycle analyses we observed that DXR also resulted in S phase arrest in 

these cells. AHNAK knockdown completely prevented the DXR-induced cell cycle arrest while 

overexpression was sufficient to cause such an arrest on its own. No significant effects were 

observed with these experiments in the MCF-7 cells. DXR induced EMT in the MCF-7 cells but 

AHNAK knockdown or overexpression did not affect this. In MDA-MB-231 cells DXR treatment 

showed a trend of decreased EMT and while AHNAK knockdown had no effect on this, its 

overexpression showed clearer evidence of EMT reduction. AHNAK knockdown also had no major 

effects on cell migration in both cell lines, although its overexpression generally decreased cellular 

migration. 

Conclusions – We show that AHNAK plays a novel role in the DXR-response of breast cancer cells 

and this involved AHNAK’s expression, apoptosis inhibition and cell cycle modulation. Possible 
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molecular mechanisms are proposed but require further investigation. Our results regarding the role 

of AHNAK in tumour cell migration is less clear and contradicting when compared to other studies. 

These results may have potential therapeutic implications with regards to the modulation of DXR 

response to improve treatment efficacy. 
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Opsomming 
 

Inleiding - Kanker het steeds 'n beduidende impak op die samelewing. Terwyl daar groot sukses in 

die karakterisering van gewasse en die identifisering van teikenbare merkers gemaak is, word twee 

groot probleme steeds vandag ervaar, naamlik terapeutiese mislukking en gevorderde progressie 

van die siekte. Die menslike AHNAK proteïen is 'n reuse steier proteïen betrokke by verskeie 

sellulêre prosesse en dit word ook voorgestel dat die proteïen verband hou met kanker, veral ten 

opsigte van kanker metastase en chemo-reaksie. Beperkte inligting en verskeie weersprekende 

bevindinge het egter bygedra tot 'n swak begrip van die rol van AHNAK in kanker. ‘n Oogmerk van 

hierdie studie is dus om AHNAK in kanker beter te karakteriseer deur die rol van die proteïen in 

chemoterapeutiese reaksie van borskanker teenoor doxorubicin (DXR) en ook in sellulêre migrasie 

te bepaal. 

Metodes - Vir die in vitro model is die nie-metastatiese DXR-sensitiewe epiteel-agtige MCF-7 en 

metastatiese DXR-weerstandige mesenkiemale MDA-MB-231 sellyne gebruik. Ons het DXR 

behandelings uitgevoer en AHNAK proteïen uitdrukking en intrasellulêre lokalisering bepaal. Ons 

het hierdie eienskappe ook in 'n kanker muis model bepaal. AHNAK uitklopping en ooruitdrukking is 

bereik deur middel van tydelike plasmied transfeksies in beide sellyne. DXR behandelinge is 

uitgevoer en daarna is apoptotiese merker uitdrukking, selsiklus modulasie, epiteel-mesenkiemale 

oorgang (EMO) merker uitdrukking en sellulêre migrasie bepaal. 

Resultate - DXR het dosis-onafhanklike en dosis-afhanklike veranderinge in AHNAK proteïen 

uitdrukking in MCF-7 en MDA-MB-231 selle, onderskeidelik, veroorsaak maar het geen invloed op 

intrasellulêre lokalisering gehad nie. Met die kanker muis model het DXR ook dosis-afhanklike 

veranderinge in AHNAK uitdrukking veroorsaak sonder ‘n verandering in lokalisering, soortgelyk aan 

dié in MDA-MB-231 selle. In die MDA-MB-231 selle het DXR apoptose inhibering bevorder deur 

cPARP en cCasp7 uitdrukking te verminder. AHNAK uitklopping het hierdie inhibisie verhinder terwyl 

ooruitdrukking tot ‘n soortgelyke inhiberende effek gelei het. Selsiklus analise het getoon dat DXR 

ook tot S-fase blokkering gelei het in hierdie selle. AHNAK uitklopping het die selsiklus blokkering 

heeltemal verhoed terwyl ooruitdrukking voldoende was om ‘n soortgelyke blokkering op sy eie 

teweeg te bring. Geen beduidende effekte was waargeneem met hierdie eksperimente in die MCF-

7 selle nie. DXR het EMO bevorder in die MCF-7 selle maar AHNAK uitklopping of ooruitdrukking 

het geen invloed op dit gehad nie. In MDA-MB-231 selle het DXR behandeling 'n tendens van 

verminderde EMO getoon en terwyl AHNAK uitklopping geen effek op hierdie gehad het nie, het 

ooruitdrukking duideliker bewyse van EMO vermindering getoon. AHNAK uitklopping het ook nie 'n 

groot uitwerking op sel migrasie in beide sellyne gehad nie, alhoewel ooruitdruking sellulêre migrasie 

oor die algemeen verminder het. 

Gevolgtrekkings - Ons bewys dat AHNAK 'n nuwe rol speel in die DXR-reaksie van borskanker en 

dit betrek AHNAK uitdrukking, apoptose inhibering en selsiklus modulasie. Moontlike molekulêre 
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meganismes word voorgestel, maar verdere ondersoek word vereis. Die resultate met betrekking tot 

die rol van AHNAK in kankersel migrasie is minder duidelik en weerspreek sekere studies. Hierdie 

resultate het moontlike potensiële terapeutiese implikasies met betrekking tot die modulasie van 

DXR-reaksie om behandeling doeltreffendheid te verbeter. 
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Units and symbols 
 

A  - amps 

aa  - amino acids 

bp  - basepairs 

hrs  - hours 

kb  - kilobases 

kDa  - kilodalton 

l  -  litre 

min  - minute 

mg  - milligram 

ml  - millilitre 

mm3  - cubic millimetre  

mM  - millimolar  

ng  - nanogram 

nm  - nanometre 

rpm  - rotations per minute 

U  - unit 

V  - volt 

°C  - degrees Celsius  

®  - registered 

TM  - trademark 

µg  - microgram 

µM  - micromolar 

µl  - microliter 
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Chapter 1 : Literature Review 

 

1.1 Cancer 
 

Cancer is arguably the most well-known, and perhaps feared, disease known to mankind. The first 

descriptions originate in ancient Egypt where mummies displayed fossilised bone tumours 

(American Cancer Soceity, 2014). The Edwin Smith Papyrus, part of an ancient Egyptian textbook 

dating back to 3000 BC, describes cases of breast cancer and notes that “there is no treatment”. 

Only 2000 years later, in 370-460 BC, the disease is named: first as carcinos and carcinoma by 

Hippocrates and then in 28-50 BC as cancer by the Roman physician Celsus. The first surgeries 

aimed at treating cancer were performed in the 16th-18th centuries while the field of cancer 

epidemiology started in the 18th century (American Cancer Society, 2014). 

Today, cancer represents a significant burden on society. In 2012, 14.1 million new cases were 

diagnosed while 8.2 million people succumbed to the disease (Ferlay et al., 2013). These numbers 

represent an 11% and 7.9% increase, respectively, when compared to 2008. Furthermore, cancer 

also accounts for the second highest number of noncommunicable disease-related deaths world-

wide in 2012 (World Health Organization, 2014). Statistics for under-developed countries are even 

less favourable, representing 57% of all new cases and 65% of all deaths in 2012 (Ferlay et al., 

2013). Statistics for South Africa are however limited since recorded cancer data is only available 

up to 2009. The Globocan initiative reports projected rates of 77 400 new cases and 47 400 deaths 

for South Africa in 2012. Perhaps more alarming is that when age-standardised rates of incidence 

and mortality are compared between countries, South Africa falls below first-world countries such as 

the United States of America and the United Kingdom in terms of incidence, but ranks above these 

countries in terms of mortality. Globally, the most frequently diagnosed cancer among men are lung 

cancer, with prostate in a close second. However, cancer mortality among men is most commonly 

as a result of lung cancer, followed by liver, stomach, colorectum and prostate cancers. In women, 

breast cancer is most frequently diagnosed, followed by colorectum, lung and cervix uteri cancers, 

while mortality is due to breast followed by lung, colorectum, cervix uteri and stomach cancers 

(Ferlay et al., 2013). A different picture can be seen in South Africa. South African men are most 

frequently diagnosed with prostate cancer followed by lung, colorectum and oesophageal cancers 

while mortality is mostly due to lung, followed by prostate, oesophageal, and colorectum cancers. 

South African women are most frequently diagnosed with breast followed by cervix uteri, lung and 

colorectum cancers and mortality is mostly due to cervix uteri followed by breast, lung and 

colorectum cancers (Ferlay et al., 2013).  
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1.2 Treatment 
 

Cancer treatment started, historically, with radical surgeries, even before the age of anaesthesia or 

specialised surgical techniques (American Cancer Society, 2014). Significant progress was made 

throughout the 18th-20th centuries that refined surgical techniques and lead to improved outcomes 

while pioneering research aimed at understanding the disease paved the way to the possibility of 

novel treatment options. Soon after the discovery of X-rays in 1895, the advantages of radiation 

therapy in the treatment of cancer was realised and the first report of a positive outcome came only 

one year later (Connell and Hellman, 2009). The idea of treating cancer with drugs started in the late 

1930’s and early 1940’s when the positive effect of hormonal therapy and nitrogen mustard, 

respectively, on cancer was observed (Huggins and Hodges, 1941; Gilman, 1963; Chabner and 

Roberts, 2005; DeVita and Chu, 2008). The revolution of chemotherapy and the success that came 

with it lead the way in cancer treatment for many decades, and in some ways, still are. With increased 

understanding of cellular biology in the late 20th century, and the changes present in cancer, came 

the era of targeted therapy which focusses on specific molecules altered in cancer, or even in a 

specific type of cancer (Chabner & Roberts, 2005).  

Treatment today draws benefit from all the different kinds of therapy. It has long been known that a 

combination of drugs and therapies yield improved response rates and increased survival while 

limiting the possibility of toxic side-effects or acquired resistance (Al-Lazikani et al., 2012; Devita et 

al., 1975). Radiation is often administered before or after surgery while drugs, chemotherapeutic or 

targeted, can be administered in a neoadjuvant (beforehand) or adjuvant (together with) setting with 

the radiation-surgery regime. The choice of treatment regime made by the physician is influenced 

by three main aspects: (1) the type of cancer, (2) the extent or stage of cancer and (3) the age and 

presence of comorbidities of the patient.  

(1) Location and subtype of cancer 

Different types of anti-cancer drugs have shown superior efficacy against certain cancer 

types. This is especially true for targeted therapies where specific targets have shown 

prevalence in certain cancers. For instance, platinum-based chemotherapeutic drugs, such 

as cisplatin and carboplatin, are routinely used to treat lung cancers, while those that harbour 

mutations in the epidermal growth factor receptor gene (EGFR) are also treated with tyrosine 

kinase inhibitors such as erlotinib (Lemjabbar-Alaoui et al., 2015). In breast cancer, patients 

with tumours positive for the overexpression/amplification of the human EGFR 2 (HER2) 

gene are treated with HER2-targeting agents such as trastuzumab while patients with 

hormone responsive tumours are treated with endocrine therapy. Those lacking any specific 

target receive chemotherapy, often in the form of anthracyclines or taxanes (Goldhirsch et 

al., 2013). 
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(2) Extent or stage of cancer 

With diagnosis of early stage cancer surgical excision is often preferred as a first-line 

treatment, provided the tumour is considered resectable. This is normally coupled with either 

radiation or drug therapy to improve the outcome, as is the case in both lung and breast 

cancer (Lemjabbar-Alaoui et al., 2015; Senkus et al., 2013). Treatment of advanced cancer 

is more complicated and consists normally of some form of systemic therapy. Often, 

treatment is aimed only at controlling the disease; such as in lung cancer where prophylactic 

brain radiation is given due to the high frequency of metastatic spread to this area, or as in 

metastatic breast cancer, which is largely considered as incurable (Cardoso et al., 2012; 

Lemjabbar-Alaoui et al., 2015).  

 

(3) Age and comorbidities 

The range of available treatment options can be limited by the presence of comorbidities and 

the general health of a patient, of which both are major complicating factors in elderly 

patients. The key factor is a good performance status: a scale ranging from zero (good health 

and active) to five (dead) that was designed by the Eastern Cooperative Oncology Group to 

describe the progression of the disease and its impact on the patient’s general health (Oken 

et al., 1982). Another complicating factor is that elderly patients are normally excluded from 

clinical trials resulting in very limited information regarding safe and optimal treatment of the 

disease. Chemotherapy in elderly patients may be avoided or limited to single-agent therapy 

due to increased presence of toxic side-effects, although it has been suggested that elderly 

breast cancer patients can receive the same treatments as their younger counterparts 

provided they have a good performance status (Gridelli et al., 2003; Rosenkranz et al., 2006).  

 

1.3 Doxorubicin    
 

Doxorubicin (DXR, tradename Adriamycin) is one of the most valuable chemotherapeutic drugs 

developed to date. Together with daunorubicin and epirubicin, it belongs to the family of 

anthracycline antibiotics isolated from the actinobacterium Streptomyces peucetius 46 years ago 

(Arcamone et al., 2000; Cortés-Funes and Coronado, 2007). DXR has a complex structure which 

consists of an aromatic ring system containing a quinone bound to an aminoglycoside (fig. 1.1) 

(Cortés-Funes and Coronado, 2007; Cutts et al., 2005). Only minor differences are observed in the 

structure of DXR versus daunorubicin (presence of a C-14 hydroxyl group) and epirubicin (orientation 

of the sugar C-4 hydroxyl group) and yet DXR is more effective and has a broader spectrum of 

activity that the latter versions (Cortés-Funes and Coronado, 2007). DXR is used to treat many solid 

tumours, including lung, breast, ovarian, gastric, liver, Hodgkin’s and non-Hodgkin’s lymphoma, 

sarcoma’s, multiple myeloma’s and pediatric cancers, while daunorubicin is primarily used to treat 
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acute myeloid leukemia and epirubicin to treat gastric and breast cancer (Cortés-Funes and 

Coronado, 2007; Gewirtz, 1999; Thorn et al., 2011).   

 

 

Figure 1.1: Chemical structure of the anthracyclines daunorubicin, epirubicin and DXR, and DXR 
main mechanisms of action. TOP2 – topoisomerase II. 

 

Unfortunately, the full potential of DXR can not be exploited in a clinical setting due to the presence 

of serious side-effects. This can include gastrointestinal problems, acute vomiting, alopecia, 

hematopoietic suppression, liver damage, nephropathy and even, indirectly, cognitive impairment 

(Octavia et al., 2012; Tacar et al., 2013). Of most concern however is the development of 

cardiotoxicity, which develops in a cumulative dose-dependent manner and presents as dilated 

cardiomyopathy, cardiac dysfunction and even subsequent heart failure and death (Zhang et al., 

2009).   

1.3.1 Molecular mechanisms of action 
Several mechanisms of action have been proposed for the cytotoxicity imposed by DXR and are 

mostly closely associated with its structure. Once DXR enters a cell through passive diffusion, it 

accumulates significantly within the cytoplasm, but even more so in the nucleus where it has high 

affinity for DNA (Tacar et al., 2013). Here DXR has the ability to bind and inhibit the DNA-repair 

enzyme topoisomerase II (TOP2) (Cortés-Funes and Coronado, 2007; Gewirtz, 1999; Tacar et al., 

2013). This represents one of the primary mechanisms for DXR-induced cell death. TOP2 is 

responsible for the unwinding and separation of the DNA strands and is thus essential for processes 

such as DNA replication and transcription (Palchaudhuri and Hergenrother, 2007; Tacar et al., 2013). 

By binding the enzyme DXR stabilises the TOP2-DNA complex after the enzyme has made a double-

strand cleavage, effectively preventing the enzyme from completing its function and increasing the 
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presence of DNA strand breaks leading to cell death via apoptosis (fig 1.1) (Gewirtz, 1999; Nitiss, 

2009). DXR can also intercalate DNA on its own by forming non-covalent bonds with base pairs 

which results in the inhibition of DNA and RNA polymerases and subsequently DNA replication and 

transcription (Cummings et al., 1991; Gewirtz, 1999; Tacar et al., 2013). In addition, a cytotoxic 

response can also be elicited by the formation of DXR-DNA adducts (Cutts et al., 2005; Swift et al., 

2006).   

Another major mechanism of cytotoxicity for DXR is the generation of reactive oxygen species 

(ROS). The quinone ring structure of DXR can undergo redox cycling with the formation of a 

semiquinone free radical through NADPH dependent reduction (fig. 1.1) (Cummings et al., 1991). 

The free radical can either be rapidly transferred to oxygen molecules, forming superoxide radicals 

and restoring DXR to its original state, or the semiquinone radical can continue to damage DNA by 

itself (Cummings et al., 1991; Gewirtz, 1999). Alternatively, through a series of events the superoxide 

radical can generate hydrogen peroxide and hydroxyl radicals which also have the potential to cause 

DNA damage and lipid peroxidation (Cummings et al., 1991).  In addition, the formation of oxygen 

radicals are also possible through the association of DXR with iron (Gewirtz, 1999).  

Generation of ROS is suggested to be the major cause of cardiotoxicity associated with DXR 

treatment (Berthiaume and Wallace, 2007; Kalyanaraman et al., 2002). It is expected that ROS 

would have the most significant effect at or near the site of its generation, which is most likely the 

mitochondria in cardiomyocytes (Berthiaume and Wallace, 2007). It has been reported that DXR 

accumulates in both the nucleus and mitochondria in the heart, and, compared to other tissues, the 

heart also has a significantly higher load of mitochondria due to its high-energy demand. 

Furthermore, the inner mitochondrial membrane also contains a significant amount of cardiolipins 

for which DXR has a high affinity (Berthiaume and Wallace, 2007). Cardiomyocytes may also be 

more susceptible to damage induced by DXR due to inherently lower levels of superoxide dismutase, 

catalase, and glutathione peroxidase, leaving the cells vulnerable to the effects of superoxide and 

hydrogen peroxide (Kalyanaraman et al., 2002; Liu and Tan, 2003; Marklund et al., 1982). These 

findings support the notion that mitochondria represent the major site of damage in the heart. In 

addition to the reactions leading to the generation of ROS described above, ROS can also potentially 

be generated through reduction of DXR by complex one of the electron transport chain, which is also 

located in the inner mitochondrial membrane (Berthiaume and Wallace, 2007).   

The mechanisms underlying DXR’s cytotoxicity have been studied extensively, both in vitro and in 

vivo, and the apoptosis-inducing mechanisms described above are well supported and accepted. 

Whether the trigger for a tumour cell to die is protein-associated DNA damage or ROS-associated 

DNA damage remains unclear though.  

Findings from early studies suggested that lower concentrations of DXR mainly trigger apoptosis 

through protein-associated DNA damage, while higher concentrations lead to oxidative stress (Di et 
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al., 2009; Gewirtz, 1999). It was found in one study that apoptosis was maximally induced in 

lymphoblastic leukaemia cells at a concentration of 1 µM while only a high concentration treatment 

of 100 µM DXR for 12 hrs showed oxidative damage (Müller et al., 1997). Another study reported 

significant hydroxyl radical formation in both intact and fractionated MCF-7 breast cancer cells after 

exposure to 200 µM DXR where resistance was conferred by increased expression of glutathione 

peroxidase (Sinha et al., 1989).  

Even though insight into the mechanism of DXR within a cell is provided by studies where high 

concentrations were used, it remains uncertain whether it has any relevance with regards to a clinical 

setting. There are however also several studies that report on the generation of ROS with low 

concentrations of DXR. One study reported increased ROS production in colon adenocarcinoma 

cells after treatment with 0.18 µM for 14-48 hrs while another detected significant ROS levels in 

osteosarcoma cells after a 24 hr treatment with 0.4 µM DXR (Tsang et al., 2003; Ubezio and Civoli, 

1994). Friesen et al. found that antioxidants such as reduced glutathione, N-acetylcysteine and 

superoxide dismutase protected leukaemia cells from apoptosis induced by 0.18-1.84 µM DXR after 

30 hrs (Friesen et al., 1999).    

The concentration of DXR used for treatment may very well be an important factor that determines 

the specific molecular trigger for apoptosis induction and/or cell death, however it is also likely that 

other aspects, such as exposure time and cell type/genetic background, are also involved. Rogalska 

et al. detected a significant rise in ROS levels in ovarian cancer cells after DXR treatment with 0.27 

µM for 2-24 hrs but not after 48 hrs (Rogalska et al., 2011).  In another study, significant and rapid 

ROS production after 20-30 min exposure to 18.4 µM DXR was reported while DXR-induced cell 

death, observed after 48 hrs, was associated rather with reduced mitochondrial respiratory activity 

and cytosolic ATP levels; however, it is unclear whether the initial short term events had any effect 

or perhaps lead to the long term effects (Kuznetsov et al., 2011). In a study by Di et al. the 

antioxidants glutathione and N-acetylcysteine protected wild-type MCF-7 breast cancer cells from 

death induced by 1 µM DXR treatment for 2 hrs, however it failed to have any statistically significant 

effect on p53-null MCF-7 cells (Di et al., 2009).  

With regards to non-cancerous cells, specifically cell types implicated in DXR-induced cardiotoxicity, 

there is overwhelming evidence that death is oxidant induced and it was also suggested that the 

mechanisms involved in cell death between these cells and cancer cells are indeed different 

(Mukhopadhyay et al., 2009; Octavia et al., 2012). Using a fairly low concentration of DXR (0.5 µM), 

Wang et al. showed that the apoptotic death of bovine aortic endothelial cells and adult rat 

cardiomyocytes, where associated with an early production of ROS, could be prevented by 

antioxidants and were independent of p53. In contrast, human ovarian teratocarcinoma (PA-1) and 

human breast cancer (MCF-7) cells failed to show any ROS (after 4 hrs) although a dependency on 

p53 was detected (Wang et al., 2004). In another study, the production of ROS in normal cells (rat 

cardiomyocytes, H9C2) were also reported, although it was only detected after a 16 hr treatment 
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with 0.9 µM DXR but in conjunction with other apoptotic markers (Kluza et al., 2004). In this study 

however, an early increase in ROS was detected in rat mammary adenocarcinoma cells (MTLn3) 

even before apoptotic markers were observed. The authors also made a surprising discovery of 

increased mitochondrial mass upon DXR treatment that was restricted to the cancer cells, although 

the reason behind this remains unclear (Kluza et al., 2004).  

Evidence strongly supports ROS as the major mechanism of cell death in cardiotoxicity while the 

mechanism(s) in tumour cells remains controversial. The possibility of distinct mechanisms between 

these cell types harbour a crucial advantage – therapeutic strategies can be developed that could 

alleviate the associated cardiotoxicity without affecting the effectiveness of DXR. In addition, this 

could possibly relieve dose limitations, allowing the use of higher concentrations that would ensure 

killing of all tumour cells which would prevent recurring tumours, especially DXR-resistant tumours. 

However, this would require a more complete understanding of the mechanisms involved in DXR-

induced death of tumour cells.  

1.3.2 DXR delivery innovations  
DXR is administered through arterial injection or infusion and like many other chemotherapeutic 

drugs its primary target is rapidly-dividing tumour cells. However, unwanted targeting of normal cells 

also occurs, as evident by the associated toxic side-effects. Since its introduction into clinical use, 

various modifications pertaining to the drug delivery system have been investigated that could help 

improve its effectiveness and decrease its impact on normal cells. By coupling DXR to nanoparticles 

or cell-penetrating peptides, increased cytotoxic effects have been shown in various tumour cells 

and in vivo, often at lower concentrations compared to unconjugated DXR (Aroui et al., 2009a, 2010; 

Barraud et al., 2005). An advantage of conjugating DXR to some form of a carrier system is that it 

can aid in avoiding recognition by drug-export proteins commonly found in resistant cells, resulting 

in increased drug retention. Furthermore, in an in vivo setting, increased accumulation in the tumour 

tissue is also readily achieved since the carrier system can easily enter the tissue through the 

defective and leaky vasculature of the tumour (Aroui et al., 2010; Tacar et al., 2013).  

By taking tumour-specific properties into account, such as environmental pH, additional 

modifications can be made to carrier systems that can also contribute to improved outcomes. Lee et 

al. reported that increased cellular toxicity in DXR-resistant MCF-7 cells and tumour growth 

suppression in mouse xenografts were aided by pH-triggered release of DXR from polymeric 

micelles, while Du et al. produced a dual pH-sensitive DXR-coupled nanoparticle that facilitated both 

enhanced cellular uptake and triggered intracellular drug release, thus increasing the effectiveness 

of the drug in a breast cancer stem cell line (Du et al., 2011; Lee et al., 2005).  

Other modifications involve coupling additional molecules that are commonly overexpressed in 

tumours to facilitate targeting of DXR specifically to the tumour, avoiding accumulation in unwanted 

organs and thus the associated dangerous side-effects. Studies reporting on the coupling of DXR to 
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anti-CD19-labelled liposomes, transferrin-labelled liposomes or HER2-targeting nanoparticles all 

reported improved effectiveness in vivo when comparing tumour growth suppression and survival 

times with those of non-targeting controls (Agadjanian et al., 2012; Cheng and Allen, 2008; Li et al., 

2009b). Most importantly though, the studies also reported significantly higher accumulation of DXR 

in tumour tissue compared to other tissues, with particularly low levels in the heart. These results 

emphasise the usefulness of targeting DXR carrier systems in limiting or even preventing DXR-

induced cardiotoxicity.  

Since individual tumours can display significant heterogeneity, Lowery et al. chose a different 

strategy to achieve tumour-specific targeting of DXR (Lowery et al., 2011). A peptide capable of 

recognising only irradiated tumour cells was produced and used to label a DXR-coupled liposome. 

Not only did the carrier system display enhanced effectiveness at killing irradiated tumour cells in 

vitro and suppressing tumour growth in vivo, it facilitated significant accumulation only in irradiated 

tumours and not in other organs or even irradiated normal tissues. This technique shows great 

promise as it can be applied across multiple cancer types and can facilitate DXR targeting to the 

entire tumour volume, circumventing any potential problems associated with molecular 

heterogeneity of tumours where residual cells can remain post-treatment and ultimately result in 

tumour recurrence. 

Many studies describing the use of various carrier systems to enhance drug effectiveness while 

limiting off-target toxicity took advantage of one of DXR’s inherent properties in order to determine 

these responses, namely autofluorescence. In particular, Hwang et al. (following up with HER2-DXR 

nanoparticle study mentioned above) made use of this ability and in conjunction with some of the 

latest imaging techniques was able to quantitatively determine nanoparticle efficacy and monitor 

targeting capacity at macro and micro scales as well as the therapeutic efficacy trajectory (Hwang 

et al., 2012). As new frontiers are reached in imaging techniques the ability to monitor drug action, 

distribution and pharmacokinetics will greatly improve, and this will hold significant benefits for the 

continued development of therapeutics, particularly for DXR.  

1.3.3 Pro-tumour effects 
DXR has become widely known for its superiority in anti-tumour actions. However, no drug is perfect 

and often certain conditions are required to ensure proper functioning. Apart from its toxic side-

effects, several studies have found that DXR can even have pro-tumour activities under sub-optimal 

conditions (Han et al., 2013). Treatment of various types of cancer cells with low concentrations of 

DXR and/or transient exposure have shown that DXR is capable of promoting tumour progression 

and malignancy and in some occasions, resistance too. This is mainly achieved through the induction 

of epithelial-mesenchymal transition (EMT), albeit through different mechanisms. EMT is an 

important regulatory process transforming epithelial cells to a more mesenchymal-like phenotype 

that is commonly associated with acquiring of metastatic abilities and will be discussed in the 

following section. A transient exposure of SiHa cervical cancer cells to a low dose of 0.1 µM DXR 
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was shown to induce temporary resistance to both DXR and cisplatin, another DNA damaging drug 

(Yeh et al., 2003). The resistance was found to be associated with increased nuclear transcription 

factor-κB (NF-κB) activity. Further evidence for a role in DXR-induced activation of NF-κB was 

reported in another study where DXR was shown to provoke a series of events that led to EMT 

induction (Li et al. 2011). NF-κB was found to play a central role in a positive feedback loop for this 

pathway, further amplifying the effects of the DXR. However, in this study the concentration of DXR 

used was quite high (46 µM), and whether this can be reached in an in vivo or clinical setting seems 

highly unlikely. DXR was also shown to induce EMT in BGC-823 gastric cancer cells following a 

dose of 0.74 µM for 24 hrs (Han et al., 2013). Here, it was shown that the EMT was mediated by β-

catenin, a protein that regulates the expression of EMT transcription factors. In several liver cancer 

cell lines, with an epithelial phenotype, DXR was shown to induce EMT by activating signal 

transducer and activator of transcription 3 (STAT3) (Hu et al., 2012). Knockdown of STAT3 reversed 

the DXR-induced changes, but was unable to reverse the EMT in a mesenchymal-like liver cancer 

cell line, suggesting that the STAT3-mediated EMT might be restricted to DXR-induction. Another 

signalling molecule implicated in DXR-induced EMT is transforming growth factor-β (TGF-β). It was 

reported in two separate studies that a low dose of DXR, 0.05 µM and 0.025 µM in HCT116 colon 

cancer cells and 4T1 murine breast cancer cells respectively, induced EMT by activating the TGF-

β/Smad pathway (Bandyopadhyay et al., 2010; Li et al., 2015). An increase in DXR resistance was 

also reported in both studies. A third study reported similar findings in BT-20 breast cancer cells 

following treatment with 0.31 µM DXR (Chen et al., 2013). DXR increased TGF-β expression and 

activity resulting in the activation of EMT. Here, an increase in β-catenin was also reported. DXR 

can thus have multiple influences driving tumour progression and malignancy, yet the molecular 

crosstalk remains unclear. These studies highlight not only the importance of ensuring optimal 

conditions for DXR treatment but also of a complete understanding of its effects as both has 

significant implications for cancer treatment.  

1.3.4 DXR resistance 
Resistance to chemotherapeutic drugs are often a limiting factor in the treatment of cancer and can 

have severe consequences in terms of patient prognosis and survival. Resistance to DXR has been 

observed frequently and can be acquired or intrinsic of nature. The molecular mechanisms 

implicated in acquired resistance are typically investigated in vitro by exposing sensitive cancer cells 

to increasing concentrations of DXR over an extended period of culture where after comparisons are 

drawn between the newly resistant cell line and the parental cell line. Intrinsic mechanisms of 

resistance are often investigated by comparing cell lines that are naturally sensitive and resistant to 

the drug.  

A variety of mechanisms can transform a sensitive cancer cell into a resistant cell (Gottesman, 2002). 

Increased drug efflux via the energy-dependent ATP-binding cassette (ABC) transporters are not 

only the best characterised mechanism but often represents the main cause of resistance in several 
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cancers, such as leukaemias, breast and lung cancers and sarcomas (Gottesman et al., 2002; 

Szakács et al., 2006). P-glycoprotein (P-gp), a member of the ABC family, recognises hydrophobic 

drugs and can provide significant resistance to several drugs such as vinblastine, etoposide, 

imatinib, methotrexate and DXR (Szakács et al., 2006).  

Strong correlations between increased P-gp expression and DXR resistance have been shown in 

vitro and in clinical tumour samples where even moderate increases in P-gp expression can 

effectively induce resistance (Mechetner et al., 1998; Pajic et al., 2009). Acquired DXR resistance 

mediated by increased P-gp expression has been suggested to be the result of hypomethylation of 

the promoter area of the P-gp gene (Chekhun et al., 2006). While a methylated promoter area is 

more constricted in chromatin and deacetylated histones, a low level of, or absent, methylation of 

the promoter allows for a more open conformation, facilitating increased expression of the gene.  

Another mechanism commonly observed in DXR resistance involves a defective phosphatase and 

tensin homologue deleted on chromosome 10 (PTEN) protein and the subsequent activation of the 

phosphatidylinositol 3-kinase (PI3K)/Akt (also known as protein kinase B, PKB) pathway. PTEN 

functions as a negative regulator of PI3K, preventing the phosphorylation and activation of Akt and 

its anti-apoptotic and cell growth and survival functions (Tanaka and Grossman, 2003). Introduction 

of a functional PTEN into prostate cancer cells with defective PTEN resulted in decreased levels of 

pAkt and increased sensitivity to DXR, while in vivo it resulted in significant growth suppression of 

established tumours from DXR-resistant bladder cancer cells (Grünwald et al., 2002; Tanaka and 

Grossman, 2003).  Defective PTEN regulation is often a result of inactivating mutations; mutations 

preventing its lipid and protein phosphatase abilities are capable of inducing DXR resistance, and 

can thus represent an important mechanism of intrinsic resistance (Steelman et al., 2008).   

 

1.4 Metastasis  
 

With approximately 90% of all cancer-related deaths resulting from the metastatic spread of primary 

tumours, metastasis is arguably the most clinically relevant field of cancer research (Christofori, 

2006; Monteiro and Fodde, 2010; Spano et al., 2012). With this in mind, research has experienced 

a horizontal expansion; without neglecting the importance of understanding tumourigenesis and its 

prevention, massive effort has been placed on understanding tumour progression and 

dissemination.  

Metastasis is defined as the spread of a primary tumour to distant sites in the body and involves a 

series of sequential steps (fig. 1.2). This involves the loss of adhesion and dissociation from the 

primary tumour, invasion of the local environment, intravasation into either, or both, the lymphatic 

and vasculature system, survival in these systems, extravasation at a distant secondary site and the 
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colonisation and growth of a secondary tumour at this site (Coghlin and Murray, 2010; Duffy et al., 

2008; Steeg, 2006; Valastyan and Weinberg, 2011).  

 

 

Figure 1.2: The metastatic process showing both early and late dissemination models and the role 
of EMT in these processes. CSC – cancer stem cell; EMT – epithelial-mesenchymal transition; MET 
– mesenchymal-epithelial transition; SC – stem cell. (De Craene and Berx, 2013).   

 

Traditionally, the metastatic phenotype was seen as the end-product of a series of culminating 

genetic aberrations and mutations during tumour progression (Coghlin and Murray, 2010; Duffy et 

al., 2008; Klein, 2008). This follows a model of somatic evolution where a small population of cells 

described as the “fittest of the fit” would only disseminate late, after the formation of a large primary 

tumour. However, increasing evidence are supporting a second model, originally hypothesised more 

than 10 years ago (Bernards and Weinberg, 2002). In this model, the mutant alleles predisposing a 

cell to metastasise are acquired early in tumourigenesis, along with the other mutations driving 

tumourigenesis in the first place. The tumour cells can disseminate early from the primary tumour 

and would diverge genetically and obtain full malignancy at a distant site (fig 1.2) (Coghlin and 

Murray, 2010; Duffy et al., 2008; Klein, 2008, 2009). The actual contributions of these models to 

metastatic cancer in a clinical setting is however still uncertain as there are both supporting evidence 

and unanswered questions for each of the models. 

Through whichever model, it is clear that the acquisition of the metastatic phenotype involves a 

complex and intricate collection of molecular signalling pathways that facilitate the changes 

necessary for cell migration and invasion (Spano et al., 2012). One process that has been associated 

with these changes is EMT (fig. 1.2).  
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1.5 EMT 
 

EMT represents a biological reprogramming process where apical-basal polarised, stationary 

epithelial cells undergo significant transcriptomic changes to facilitate transition into a front-rear 

polarised, motile mesenchymal-like cell (Kalluri and Weinberg, 2009; Zeisberg and Neilson, 2009). 

The process provides a certain extent of phenotypic plasticity since the reverse, mesenchymal-

epithelial transition (MET), is also possible. EMT is employed in both physiological and 

pathophysiological settings in order to achieve distinct functional outcomes and has been classified 

into three types (Kalluri and Weinberg, 2009; Micalizzi et al., 2010; Zeisberg and Neilson, 2009). 

Type I EMT takes place during developmental processes such as implantation, embryogenesis and 

organ development. This type of EMT is transient and physiological and facilitates the spatial and 

temporal remodelling and diversification of tissue to ensure proper morphogenesis. Type II EMT 

takes place during repair-associated activities such as tissue regeneration, wound healing and organ 

fibrosis. It is driven and dependent on injury and inflammation and can be both physiological and 

pathophysiological. Lastly, type III EMT takes place in tumour cells and is associated with the 

invasive and metastatic properties of a malignant tumour. Partial EMT is also often observed in 

tumours, where epithelial and mesenchymal markers can be shed and gained, respectively, to 

different extents (Christofori, 2006; Kalluri and Weinberg, 2009; Lamouille et al., 2014; Micalizzi et 

al., 2010; Zeisberg and Neilson, 2009).  

Multiple changes and adaptations take place during EMT that ultimately enable the transition and 

are often grouped into three major events, namely genetic reprogramming, dissolution of cellular 

adhesions and junctions and reorganisation of the cytoskeleton. The EMT process starts with the 

genetic reprogramming which entails significant changes on the transcriptomic level that mediate 

the phenotypic changes. Basically, the expression of genes regulating epithelial characteristics are 

downregulated while those that regulate mesenchymal characteristics are upregulated (table 1.1) 

(Lamouille et al., 2014). Several transcription factors have been shown to facilitate these changes, 

including Snail, TWIST and zinc-finger E-box-binding (ZEB) transcription factors (De Craene and 

Berx, 2013; Lamouille et al., 2014). These transcription factors can mediate both the suppression 

and activation of genes and may even converge on the same genes or drive each other’s expression 

(Peinado et al., 2007).  

Snail1 (also known to as Snail or SNAI1) and Snail2 (also known to as Slug or SNAI2) belong to the 

Snail family of zinc-finger transcription factors (Lamouille et al., 2014; Peinado et al., 2007). These 

transcription factors suppress gene activity through binding of E-box sequences within the promoter 

regions. Multiple signalling pathways can activate Snail and Slug, including TGF-β/Smad-3, 

PI3K/Akt, NF-κB, WNT/β-catenin and growth factors that function through receptor tyrosine kinases 
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(RTKs) such as epidermal growth factor (EGF) and fibroblast growth factor (FGF). Increased 

expression of these transcription factors have been found in various cancers, such as breast, lung, 

colon, ovarian and melanoma, and have been correlated with metastasis, invasion and poor survival. 

TWIST1 (or TWIST) forms part of the large basic helix-loop-helix family. Several other members of 

the family, such as TWIST2, E12 and E47, have also been implicated in EMT although TWIST is the 

best characterised with the most support for a role in cancer. TWIST also recognises E-box 

sequences in promoter regions and subsequently recruits additional proteins to facilitate gene 

suppression or activation. TWIST can be activated by the mitogen-activated protein kinase (MAPK), 

TGF-β, WNT and vascular endothelial growth factor (VEGF) pathways. Increased expression has 

been found in breast, gastric, liver and prostate cancers and has also shown to correlate with 

metastasis, invasion and poor survival. The ZEB transcription factor family are also zinc-finger 

transcription factors and comprises of ZEB1 (also known as δEF1) and ZEB2 (also known as SIP1). 

Like Snail and TWIST, ZEB transcription factors also binds E-box promoter sequences, resulting in 

either gene suppression or activation, although Snail and TWIST can also facilitate the activation of 

ZEB transcription factors. In addition, the TGF-β, NF-κB, WNT/β-catenin and MAPK pathways can 

also activate the ZEB transcription factors. Increased expression of these transcription factors has 

been found in ovarian, gastric, pancreatic and colon cancers and has been shown to correlate with 

histological type and poor survival (Lamouille et al., 2014; Peinado et al., 2007).   

The dissolution of cellular adhesions and junctions are primarily achieved through the 

downregulation of epithelial characteristics. The most important epithelial marker that is suppressed 

is arguably E-cadherin. E-cadherin, a member of the cadherin family, is a single-span 

transmembrane glycoprotein that binds and interacts with other E-cadherin proteins in neighbouring 

cells (Beavon, 2000; Yilmaz and Christofori, 2009). Through this homophyllic interaction E-cadherin 

physically connects neighbouring cells and mediates intercellular adhesion, forming what is referred 

to as adherens junctions. On the inside of the cell, the cadherin-catenin complex is formed which 

further stabilises the external bonds. E-cadherin binds β-catenin or γ-catenin, followed by the 

recruitment of α-catenin and the p120 protein. This complex also links E-cadherin, and the junction, 

to the cytoskeleton through interaction with actin (Beavon, 2000; Yilmaz and Christofori, 2009). 

During EMT activation, E-cadherin expression can be suppressed by Snail, Slug, ZEB1, ZEB2 and 

TWIST, highlighting its central role in the loss of epithelial characteristics (Bolós et al., 2003; Cano 

et al., 2000; Comijn et al., 2001; Eger et al., 2005; Yang et al., 2004). Loss of E-cadherin results in 

the physical disruption of adherens junctions and detachment from the epithelial layer. In addition, 

the cadherin-catenin complex is also disrupted and β-catenin, under the influence of the WNT 

signalling pathway, is then free to accumulate in the nucleus where it functions as a transcription 

factor controlling the expression of other pro-migratory and pro-invasive genes (Beavon, 2000; 

Christofori, 2006; Yilmaz and Christofori, 2009). Similar to the increased expression of the various 

transcription factors that can suppress E-cadherin, a loss of E-cadherin has been shown to correlate 

with metastasis, invasion and poor prognosis (Chen et al., 2003; Hunt et al., 1997; Tamura et al., 
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1996). Also associated with the loss of E-cadherin expression is the gain of N-cadherin expression 

(Gravdal et al., 2007; Micalizzi et al., 2010; Yilmaz and Christofori, 2009). N-cadherin, also a classical 

member of the cadherin protein family, provides weaker and more transient adhesive properties and 

serves as a marker for mesenchymal-like cells. Its increased expression has been shown to be 

facilitated by TGF-β, ZEB2 and TWIST (Alexander et al., 2006; Araki et al., 2011; Vandewalle et al., 

2005). This swop in cadherin expression is often referred to as the “cadherin-switch” and has been 

shown to be associated with tumour progression, metastasis and clinical recurrence (Bussemakers 

and Schalken, 2000; Gravdal et al., 2007; Yilmaz and Christofori, 2009). Several other proteins are 

also downregulated during the loss of epithelial characteristics, including claudin and occludin, which 

facilitates the disruption of tight junctions, and connexin, which facilitates the disruption of gap 

junctions (Ikenouchi et al., 2003; Lamouille et al., 2014; Vandewalle et al., 2005). Integrins are 

transmembrane proteins that link the extracellular matrix with the intracellular cytoskeleton and thus 

also functions in cell adhesion (Christofori, 2006; Yilmaz and Christofori, 2009). Significant changes 

in the repertoire of integrins present at the cell membrane have been observed during EMT that 

ultimately favours pro-migratory and pro-invasive activities.   

In order for a cell to be motile, as with the end-product of EMT, it has to undergo significant changes 

in its shape in order to form a front or leading edge and a rear edge (Guarino, 2007). These changes 

are mediated by the reorganisation of its cytoskeleton. Cellular protrusions, such as filopodia and 

lamellipodia, that drive motility are formed by the polarisation of cortical actin and assembly into 

filaments (Guarino, 2007; Savagner, 2001). Several proteins regulate these events including the 

RhoGTPase family members Rac1, RhoA and Cdc42. The large and complex RhoGTPase family is 

made up of signalling proteins that transmit signals from the extracellular surface, such as growth 

factor receptors and adhesion receptors, to intracellular effector proteins that modulate the actin 

cytoskeleton (Yilmaz and Christofori, 2009). RhoA, and its effector protein p160ROCK, was shown to 

be required for the actin cytoskeletal remodelling observed during TGF-β-induced EMT (Bhowmick 

et al., 2001). It was showed in another study that in colorectal cancer cells inhibition of EMT resulted 

in decreased activities of RhoA and Rac1, as well as epithelial cellular morphology and decreased 

migration (Gulhati et al., 2011).  

The composition of intermediary filaments within a cell also undergo dramatic changes during EMT. 

Cytokeratin intermediary filaments are predominantly found in epithelial states and are subsequently 

suppressed during EMT. This is accompanied by the increased expression of Vimentin intermediary 

filaments and is also associated with tumour aggressiveness (Boyer et al., 1989; Kokkinos et al., 

2007; Willipinski-Stapelfeldt et al., 2005). It has been suggested that Vimentin is central in the 

acquisition of the mesenchymal state and is often used as a marker for this state (Mendez et al., 

2010). Expression of Vimentin can induce a mesenchymal state in epithelial cells which is reversed 

upon its silencing. Furthermore, it also leads to decreased adhesion and increases cell motility 

(Mendez et al., 2010). Vimentin expression has been shown to be induced by both Snail and ZEB2 
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and it has also been shown to be upregulated during TGF-β and WNT/β-catenin induced EMT 

(Bindels et al., 2006; Gilles et al., 2003; Olmeda et al., 2007; Yook et al., 2006; Zhao et al., 2008). 

In the clinical setting, increased Vimentin has been shown to positively correlate with both metastasis 

and invasion (Gilles et al., 1996; Lang et al., 2002).  

The EMT process is known to be complex, with the involvement of numerous signalling pathways 

and a vast number of effectors. Several of these proteins are well characterised and are frequently 

used as markers for the identification of active EMT or MET (Zeisberg and Neilson, 2009). Even 

though increased research efforts into metastasis and specifically the identification of the important 

role of EMT in metastasis, have significantly improved our understanding on metastasis, new 

signalling pathways and effectors are still being discovered, emphasising the need for continued 

research and a more complete understanding.  

 

Table 1.1: Biomarkers for EMT 

Epithelial state (lost during EMT) Mesenchymal-state (gained during EMT) 

Marker Functional area Marker Functional area 

E-cadherin Cell adhesion N-cadherin Cell adhesion 

β-catenin (plasma 

membrane-associated) 
Cell adhesion 

β-catenin 

(nuclear) 
Transcription factor 

ZO-1 Tight junctions Syndecan-1 
Transmembrane heparin 

sulphate proteoglycan 

Cytokeratins 
Intermediary 

filament 
Vimentin Intermediary filament 

Claudins Tight junctions 
α-Smooth 

muscle actin 
Microfilaments 

Desmoplakin Desmosomes Fibronectin ECM 

Laminin-1 ECM Laminin-5 ECM 

 

Snail Transcription factor 

ZEB Transcription factor 

TWIST Transcription factor 

ECM – extracellular matrix; EMT – epithelial-mesenchymal transition; ZO-1 – zonula occludens 1. 

(Thiery and Sleeman, 2006; Zeisberg and Neilson, 2009).   

 

1.6 AHNAK: The giant jack of all trades 
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A major event in the history of science was the decoding of the human genome. However, 

deciphering the proteome remains an elusive task. A molecular and functional characterisation is yet 

to be determined for a vast number of proteins, including nucleoprotein AHNAK.  

Twelve years ago it was pointed out that the mystery of AHNAK still continues (Amagai, 2004). Up 

till then, studies only revealed subtle hints regarding the biological role of AHNAK. However, 

research in the last 12 years has provided more foundation for these hints as well as new directions 

for investigation. The implicated cellular processes or pathways seem distinct, ranging from a role in 

the formation of the blood brain barrier, in cell architecture and migration, to the regulation of cardiac 

calcium channels and muscle membrane repair (Benaud et al., 2004; Gentil et al., 2005; Haase et 

al., 2005; Huang et al., 2007; Shankar et al., 2010).  

 

1.6.1 The giant protein 
AHNAK, or nucleoprotein AHNAK, is adequately referred to as a giant protein based on its estimated 

size of approximately 700 kDa (629.1 kDa according to sequence data in UniProtKB, Q09666) 

(Shtivelman et al., 1992). It is also known as desmoyokin; the desmoyokin protein was identified a 

few years ahead of AHNAK but it was soon discovered that the two proteins share significant 

homology and are in fact the same protein (Hashimoto et al., 1993). Originally, it was said to be 

transcribed from an intron-less gene located on chromosome 11q12, however recent data suggests 

that alternative splicing takes place from a multi-exon gene, which is consistent with sequence data 

in the genomic database Ensembl (ENSG00000124942) (Kudoh et al., 1995; de Morrée et al., 2012; 

Shtivelman et al., 1992). The protein structure of AHNAK is of a tripartite nature, where the bulk of 

the protein, approximately 4 300 amino acids, is comprised of 128-residue repetitive elements 

(Hohaus et al., 2002; Shtivelman et al., 1992). These in turn contain an internal repetitive feature 

consisting of seven amino acid residues. Flanking the central domain are the N- and C-terminal 

domains with sizes of 251 and 1 002 amino acids, respectively (Hohaus et al., 2002; Shtivelman et 

al., 1992). Structural predictions of the central domain modelled a structure resembling a β-strand 

with alternating hydrophilic and hydrophobic residues generating a thin polyionic rod flanked by the 

terminal domains (Shtivelman et al., 1992). Sites for various protein interactions are scattered across 

the protein, although the majority is in the C-terminal. A PDZ domain is located within the N-terminal 

(fig. 1.3) (Komuro et al., 2004). Also known as GLGF or DHR domains, PDZ (PSD-95/Discs-

large/ZO-1) domains consist of an 80-90 residue motif that is fairly common not only in human 

proteins but also in other metazoans, and have undeniably been associated with protein-protein 

interactions (Nourry et al., 2003).  

A second AHNAK protein, AHNAK2, has also been identified (Komuro et al., 2004). Significant 

homology is shared with the gene, located on chromosome 14q32, and since the two proteins also 

share several features, the AHNAK family of proteins was established. AHNAK2 is also a giant 
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protein, with an estimated size of approximately 600 kDa, and has the same tripartite protein 

structure as that of AHNAK. It is also suggested that they share some intracellular localisations, and 

hence possibly some functions; however, there has been only one report describing a function for 

AHNAK2 and thus far, AHNAK has not been implicated in this field. AHNAK2 was recently found to 

interact with FGF1 under stress conditions (Kirov et al., 2015). This interaction takes place in the C-

terminal of AHNAK2 and was shown to be required for stress-induced secretion of FGF1. Co-

translocation and co-localisation of both proteins at the plasma membrane and with F-actin was also 

observed. It was thus suggested that AHNAK2 functions as a scaffold by localising FGF1 at the 

plasma membrane and possibly providing a link to the actin cytoskeleton (Kirov et al., 2015). The 

AHNAK proteins have also been reported to have some similarity to periaxin (Han and Kursula, 

2014). Although the sequence homology is quite low, the proteins do share some characteristics 

with regards to their genomic splicing events and protein structure. Periaxin also contains a PDZ 

domain and is said to be important in the myelination of the peripheral nervous system (Han and 

Kursula, 2014).  

Several intracellular locations have been reported for AHNAK including the nucleus, cytoplasm and 

plasma membrane (Benaud et al., 2004; Masunaga et al., 1995; Shtivelman et al., 1992; Sussman 

et al., 2001). Although the presence of both a nuclear localisation signal and a nuclear export signal 

have been suggested for AHNAK, its intracellular trafficking also seems to be dependent on cell 

type, the formation of cell-cell contacts, extracellular calcium concentrations and phosphorylation 

status (Benaud et al., 2004; Hashimoto et al., 1995; Sussman et al., 2001).  

 

 

Figure 1.3: AHNAK protein structure depicting its tripartite nature and various binding sites. a – 
Refers to AHNAK2. (Davis et al., 2014) 
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1.6.2 Deciphering the function of AHNAK 
Numerous studies have contributed to deciphering the function of AHNAK and the diversity between 

the various fields of research are quite remarkable. A common feature in the majority of these studies 

is the fact that AHNAK forms part of multi-protein complexes, most likely acting as a structural 

scaffold. In addition to the more prominent roles that have been described to date, a few other studies 

have also been reported that include potential roles for AHNAK that are less known.  

Initial mouse models showed that AHNAK-null mice are viable, fertile and show no obvious 

phenotypic defect, leading to the speculation that AHNAK2 might fulfil a compensatory role in some 

areas of functioning (Komuro et al., 2004; Kouno et al., 2004). However, recent studies suggest 

otherwise. It was reported that AHNAK-null mice displayed stunted growth and reduced adipose 

tissue, although the authors did not elaborate on this finding (Lee et al., 2014). A second study 

reported that AHNAK-null mice exhibited lower body and fat weight than their wild type counterparts; 

this effect was even more drastic when mice were fed a high fat diet, indicating that the ability to 

discern this phenotype might be linked to the diet of the mice (Kim et al., 2010). The group suggested 

that the observed resistance to diet-induced obesity was associated with changes in the levels of 

certain amino acids, which were appropriately related to fat metabolism. Two follow-up studies by 

the same groups have since characterised the effect of AHNAK knockout more fully (Shin et al., 

2015a, 2016). Again, AHNAK-null mice displayed decreased body weight on both normal and high-

fat diets; these changes were minor at six weeks but significant at 18 weeks, indicating that an 

adequate growth period is also required for this phenotype. Control mice gained considerable weight 

on the high-fat diet over the 18 weeks while AHNAK-null mice showed complete resistance. The 

decrease in body weight was shown to be a result of smaller fat pads and decreased total fat. 

AHNAK-null mice on the high-fat diet also had decreased triglycerides and total and low-density 

lipoprotein cholesterol, and increased glucose tolerance and insulin sensitivity. The groups 

investigated these effects further with an in vitro model of adipogenesis and found that AHNAK 

functions as an important regulator of adipocyte differentiation induced by the bone morphogenetic 

protein (BMP)/Smad-1/Smad-5 signalling pathway (fig. 1.4). AHNAK was shown to interact with and 

is required for the nuclear translocation of Smad-1 and Smad-5. During BMP-induced differentiation, 

knockdown of AHNAK prevented Smad-mediated transcription of peroxisome proliferator-activated 

receptor-γ (PPARγ), a central regulator of adipocyte differentiation. Overexpression of the AHNAK 

CRU units increased PPARγ expression. Additionally, increased levels of phospho-insulin receptor-

β (pIRβ), pAkt, and Glut4 were also detected in AHNAK-null mice fed high-fat diets, which also 

explains the observed phenotypic effects. It was thus suggested that AHNAK is required for 

differentiation of pre-adipocytes by functioning in the BMP/Smad-1/Smad-5 pathway, and that loss 

of AHNAK would limit the generation of adipocytes and ultimately fat (Shin et al., 2015a, 2016).   

In another study, a possible role for AHNAK in DNA repair via non-homologous end-joining was 

suggested after the group showed that AHNAK interacts with the DNA ligase IV-XRCC4 complex 
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and assisted in the binding of the complex to DNA (Stiff et al., 2004). These results could explain a 

nuclear localisation for AHNAK, which has previously been reported, as well as the presence of a 

nuclear localisation signal in its sequence (Shtivelman et al., 1992; Sussman et al., 2001). 

Unfortunately though, no studies have been performed to follow-up on these results.  

Lastly, AHNAK was identified as a novel antigen in systemic lupus erythematosus (SLE) (Sköldberg 

et al., 2002). The cleavage of autoantigens by granzyme B and caspase 3 is commonly observed in 

systemic autoimmune diseases, and it was shown that the AHNAK protein can be cleaved by both 

proteases. Although the authors did not elaborate on the significance of AHNAK as an autoantigen 

in SLE, it was suggested that AHNAK’s internal repetitive domain might prime the protein as a target 

for autoimmune reactions. In addition, the presence of antinuclear antigens is characteristic of SLE, 

with a prevalence of 95% in patients, which could contribute to the susceptibility of AHNAK as a 

target in SLE (Mok and Lau, 2003; Sköldberg et al., 2002).  

Throughout the years several groups have published on multiple studies aimed at characterising 

AHNAK and together they provide strong support for a role for AHNAK in particular research areas, 

including cell signalling and contacts, calcium channel regulation and membrane repair. These areas 

have become the focus points for AHNAK-based research and will be discussed in more detail in 

the following sections.  

 

1.6.3 Cell signalling and cell contacts 
One of the first reports investigating AHNAK’s function implicated the protein in the signalling 

pathways downstream of protein kinase C-alpha (PKCα) and phospholipase C-gamma (PLCγ) owing 

to its ability to interact with and activate both of these proteins (Lee et al., 2008; Sekiya et al., 1999). 

AHNAK was suggested to serve as a scaffold protein linking the above-mentioned proteins; by 

activating PKCα, arachidonic acid is released near PLCγ which is then activated by the concerted 

action of the available arachidonic acid and AHNAK (Lee et al., 2004). It was shown that the 

activation of PKCα also resulted in the activation of a downstream c-Raf/mitogen activated protein 

kinase kinase (MAPKK)/extracellular signal regulated kinase (ERK) cascade and that the 

interactions between AHNAK, PKCα and PLCγ involved the central repeated units of AHNAK (Lee 

et al., 2008; Sekiya et al., 1999). The sequence of these events does however seem to be reversed; 

PLC is typically positioned upstream from PKC since its enzymatic action produces diacylglycerol, 

an essential co-factor for conventional PKC isozymes such as PKCα (Newton, 2010). Scaffold 

proteins are however also known to be critical regulators of PKC activity by localising the enzymes 

at specific subcellular sites and in close proximity to co-factors, other regulatory proteins or 

substrates. In particular, a group of proteins known as receptors for activated C kinase (RACKs) 

have been identified to bind specific PKC isozymes (Mochly-Rosen et al., 1991; Newton, 2010). In 

addition to performing the customary scaffold protein function of localising its interacting protein 
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partners, these RACKs have also been reported to have the ability to relieve the binding PKC 

isozyme from an autoinhibitory state and producing an active PKC isozyme in the absence of PKC 

co-factors (Newton, 2010; Ron and Mochly-Rosen, 1995). Furthermore, RACKs can also provide 

support for PLCγ; binding of PLCγ to RACKs inhibits subsequent PKC binding, however a PKC-

RACK complex does not prevent the binding of PLCγ to RACKs (Disatnik et al., 1994). The protein-

scaffold interactions and outcomes illustrated by RACKs seem similar to what was observed for 

AHNAK, PKCα and PLCγ, however whether AHNAK and the RACK proteins themselves share any 

similarities is currently unknown.  

Specific expression patterns of AHNAK in tissues from the nervous system have provided potential 

roles for the protein, although they seem to differ between the central- (CNS) and peripheral nervous 

systems (PNS). In the PNS AHNAK was suggested to play a role in myelination, a process performed 

by Schwann cells (fig. 1.4). The process is strictly dependent on adhesion to laminin-containing 

basement membranes which is facilitated by the transmembrane dystroglycan-dystrophin complex 

(von Boxberg et al., 2014; Salim et al., 2009). In Schwann cells, AHNAK knockdown was shown to 

result in altered morphology, increased detachment from laminin substrate and decreased levels of 

β-dystroglycan (β-DG) which also showed altered intracellular localisation (Salim et al., 2009). 

During development, AHNAK was shown to be highly expressed during the period of laminin 

deposition and myelination, concomitantly with increased β-DG expression. These results were 

further explored in a recently published follow-up study (von Boxberg et al., 2014). Co-

immunoprecipitation experiments revealed that AHNAK and β-DG indeed co-localises and interacts, 

and that AHNAK knockout mice displayed altered distribution and decreased levels of β-DG. The 

expression levels of dystrophin-116 were also decreased and mice showed instances of abnormal 

myelinated fibres. In addition, Schwann cells isolated from the mice displayed decreased migrational 

velocity and increased rigidity, and it was determined that the organisation of the actin cytoskeleton 

was negatively affected (von Boxberg et al., 2014). These results led the authors to hypothesise that 

AHNAK interacts with the dystroglycan-dystrophin complex and that a lack of AHNAK impairs the 

integrity of the complex and subsequent binding to the basement membrane via laminin, ultimately 

resulting in abnormal myelination events. The dystroglycan-dystrophin complex also binds F-actin, 

linking it to the plasma membrane; again, weakening of the complex might have resulted in the 

altered morphology, migration and stiffness shown by these cells. AHNAK could thus potentially also 

serve as a molecular and/or structural link between the actin cytoskeleton and the basement 

membrane receptor complex (von Boxberg et al., 2014). Interestingly, periaxin, the only protein 

outside the AHNAK family that shows some homology, is also important in the myelination of the 

PNS. Whether these proteins are somehow connected in this process is unclear; both proteins can 

bind β-DG complexes but they do not seem to co-localise in myelinating Schwann cells (von Boxberg 

et al., 2014; Salim et al., 2009). 
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In the CNS AHNAK was suggested to play a role in the formation of the blood-brain barrier (BBB) 

(fig. 1.4) (von Boxberg et al., 2006; Gentil et al., 2005). Specific expression was detected in 

endothelial cells (EC) forming the BBB, while EC lacking BBB properties, including tumour 

angiogenic EC, showed decreased AHNAK levels (Gentil et al., 2005). AHNAK was localised to the 

plasma membrane, specifically at the tight junctions, where a co-localisation with zonula occludens 

1 (ZO-1), a known tight junction protein, was also observed. An in vitro model representing a 

functional BBB showed the translocation of AHNAK from the cytoplasm to the plasma membrane 

following the establishment of the BBB (Gentil et al., 2005). A similar model was also employed to 

investigate the effects of a bacterial toxin on the BBB (Boveri et al., 2006). In addition to causing a 

significant increase in the permeability of the BBB, AHNAK was shown to redistribute from the EC 

tight junctions to the cytoplasm, supporting the findings for the intracellular distribution of AHNAK 

(Boveri et al., 2006; Gentil et al., 2005). Furthermore, AHNAK was found to be significantly up-

regulated upon spinal cord injury (von Boxberg et al., 2006). The increased expression was detected 

in cells possessing barrier properties and the distribution specifically delineated the cavity formed at 

the lesion site, suggestive of forming a barrier around the site of damage (von Boxberg et al., 2006).  

The results obtained in the above-mentioned studies describe different roles for AHNAK in the CNS 

and PNS, although β-DG might represent a common link between these roles. AHNAK has the ability 

to bind β-DG in Schwann cells and this associates AHNAK with an indirect role in myelination of 

PNS axons (von Boxberg et al., 2014). In the CNS, β-DG is expressed in a number of cells, including 

oligodendrocytes (Colognato et al., 2007; Zaccaria et al., 2001). Here, β-DG is also reported to 

function as a laminin receptor, and is said to be important for oligodendrocyte differentiation and 

myelination (Colognato et al., 2007). However, an interaction and role for AHNAK in myelination of 

the CNS seems unlikely, since it has been reported that AHNAK is not expressed in these cells (von 

Boxberg et al., 2014). β-DG is however also expressed in EC of the BBB and might also assist in 

maintaining the integrity of BBB (Zaccaria et al., 2001; del Zoppo et al., 2006). Here, an interaction 

between β-DG and AHNAK is possible but is yet to be determined.  

Recently another function for AHNK in the CNS was reported (Shin et al., 2015b). This study also 

made use of AHNAK-null mice and showed that a loss of AHNAK lead to increased neurogenesis. 

Increased cell proliferation was observed in the hippocampal dentate gyrus of AHNAK-null mice as 

well as increased neuronal differentiation and migration of mature neurons from the subgranular 

zone to the granular cell layer of the dentate gyrus (Shin et al., 2015b). The molecular mechanism 

behind this function is however unknown. Neurogenesis and differentiation are complex processes 

modulated by numerous signalling pathways. A possible avenue to explore could involve potential 

interactions with Smad proteins, as with adipocyte differentiation described above, since the 

induction of hippocampal neuronal differentiation by brain-derived neurotrophic factor or TGF-β2 has 

previously been shown to be mediated by Smad-2/Smad-4 transcriptional control (Lu et al., 2005).  

Stellenbosch University  https://scholar.sun.ac.za



22 
 

AHNAK has also been associated with the formation of cell-cell contacts, as reported by the group 

of Sussman et al. (fig. 1.4) (Sussman et al., 2001). In epithelial cells, the intracellular location of 

AHNAK was shown to be dependent on the level of confluency of the in vitro culture; AHNAK 

displayed a nuclear localisation in subconfluent cells compared to either a cytoplasmic or plasma 

membrane-associated localisation in confluent cells. The presence of a nuclear localisation signal 

and a nuclear export signal identified within AHNAK’s protein sequence was involved in its 

translocation, as well as its phosphorylation by Akt. Low levels of active Akt were observed in 

subconfluent cultures, which significantly increased upon the formation of cell-cell contacts when 

confluency was reached, while treatment with a PI3K (upstream of Akt) inhibitor resulted in 

decreased levels of phosphorylated AHNAK located in the nucleus (Sussman et al., 2001).  

A subsequent study investigating the role of AHNAK at the plasma membrane revealed similar 

results. The group of Benaud et al. showed that, upon reaching confluency, AHNAK redistributed 

from the cytoplasm to the plasma membrane in epithelial cells (Benaud et al., 2004). Furthermore, 

AHNAK was shown to form part of a multimeric protein complex at the plasma membrane which 

included actin and the heterotetrameric complex of annexin 2/S100A10. Exposure of confluent cells 

to low calcium conditions, a condition which destabilises cell-cell contacts, resulted in a cytoplasmic 

localisation for both AHNAK and annexin 2/S100A10. In addition, the AHNAK/annexin 2/S100A10 

complex was also shown to co-localise and interact with membrane lipid rafts. Knockdown of annexin 

2 resulted in a secondary reduction in AHNAK that was now cytoplasmic while knockdown of AHNAK 

resulted in a flattened cellular morphology, similar to that seen when cells were exposed to low 

calcium conditions, as well as disorganisation of the actin cytoskeleton. Treating confluent cells with 

cytochalasin D, which disrupts the actin cytoskeleton, also resulted in altered AHNAK localisation 

(Benaud et al., 2004).  

Based on the results obtained in these studies, it can be suggested that calcium-dependent 

formation of cell-cell contacts initiates a signalling pathway which, most likely via Akt-mediated 

phosphorylation, results in the translocation of AHNAK to the plasma membrane where a protein 

complex is formed with annexin 2/S100A10 and the actin cytoskeleton (Benaud et al., 2004; 

Sussman et al., 2001). A role for the calcium-sensitive, phospholipid-binding protein annexin 2 in 

membrane dynamics has been well described; by binding actin filaments its function includes 

regulating actin filament turnover and membrane ruffles as well as endocytic events such as 

intracellular trafficking of macropinosomes and endosomal transport (Grieve et al., 2012; Hayes et 

al., 2006; Merrifield et al., 2001; Morel et al., 2009). Furthermore, annexin 2 is involved in establishing 

cell-cell contacts by recruiting proteins important for cell-cell adhesion and the formation of adherens 

junctions (Grieve et al., 2012; Hansen, 2002; Yamada et al., 2005). The calcium-insensitive S100A10 

protein is mostly tightly bound to annexin 2 and while this interaction provides protection from 

degradation, S100A10 is also reported to be required for several membrane-related functions along 

with annexin 2 (Rescher and Gerke, 2008; Sayeed et al., 2013). Indeed, a recent three-dimensional 
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structure determination revealed that both the annexin 2 and S100A10 moieties were required for 

recruitment and complex formation with AHNAK (Dempsey et al., 2012). The studies described 

above correspond with annexin 2’s role in establishing cell-cell contacts, implicating AHNAK in these 

events, while a recent study linked AHNAK to membrane ruffling and endocytic events. AHNAK, 

annexin 2 and S100A10 were required for invasion of epithelial cells by Salmonella bacteria (Jolly et 

al., 2013). This type of infection requires extensive actin remodelling and membrane ruffling to engulf 

the bacteria, and the three implicated proteins were shown to be significantly enriched at the sites of 

infection, while a decrease in either of the proteins resulted in decreased number of infections (Jolly 

et al., 2013). Taken together, AHNAK’s interaction with annexin 2/S100A10 implicates the protein in 

some of the heterotetrameric complex’s roles in membrane dynamics. The precise function of 

AHNAK within this multi-protein complex remains unclear though; it might function purely as a 

scaffold providing structural support to the complex and perhaps additional components or it might 

have a more active role by taking part in signal transduction.  

1.6.4 Regulation of calcium channels 
The majority of research investigating the molecular function of AHNAK has, however, focused on 

the protein’s interaction with the L-type voltage-gated calcium (Cav) channels in cardiomyocytes (fig. 

1.4). Cav channels are heteromultimers consisting of pore-forming α1- and regulatory β-subunits, as 

well as other auxiliary subunits. In cardiac cells they represent a major calcium-influx controlling 

channel that is activated following an action potential and transduces the signal to the inside of the 

cell, effectively performing excitation-contraction coupling (Bers, 2000; Catterall et al., 2005).  

After determining that AHNAK can bind to and interact with the β2-subunit of the Cav1.2 channel, 

which contains the α1C isoform as the pore-forming subunit, subsequent studies reported that 

AHNAK localises to the sarcolemma, specifically the T-tubules where Cav channels are 

predominantly found, and that AHNAK was most likely phosphorylated by protein kinase A (PKA), 

suggesting a possible role in β-adrenergic regulation of Cav channels (Haase et al., 1999; Hohaus 

et al., 2002).  

Regulation of the Cav channels through this pathway has been well described; following stimulation 

by the sympathetic nervous system, β-adrenergic receptors are activated resulting in the production 

of cyclic adenosine monophosphate by adenylyl cyclase. These second messengers activate PKA 

which translocates to the plasma membrane where it can phosphorylate both the α1- and β2-

subunits of the channel (Kamp and Hell, 2000). In addition, AHNAK was also shown to interact with 

both G- and F-actin, indicating that AHNAK might form part of a regulatory network transducing 

signals from the cytoskeleton to the channels (Hohaus et al., 2002). The integrity of the actin 

cytoskeleton has indeed been previously shown to be important in regulating the calcium current 

through Cav channels, not only in cardiac cells but also in vascular smooth muscle cells and 

osteoblasts (Galli and DeFelice, 1994; Lader et al., 1999; Li et al., 2011; Nakamura et al., 2000). 

However, further studies elucidated a more direct role for AHNAK. By investigating the effect of a 
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mutated AHNAK fragment, the group of Haase et al. found that wild type endogenous AHNAK 

functions as an inhibitor of the Cav1.2 channel, regulating the current of the channel (Haase et al., 

2005). Binding of the Ile5236Thr-fragment resulted in increased calcium current compared to the 

wild type AHNAK, an effect that was unaltered by the addition of isoprenaline, a known stimulator of 

the β-adrenergic receptor. The authors concluded that, under basal conditions, AHNAK binds the 

β2-subunit of the channel, thereby limiting calcium influx; while upon β-adrenergic stimulation and 

subsequent phosphorylation by PKA, AHNAK releases the subunit, allowing proper functioning and 

increased calcium influx (Haase et al., 2005). The results obtained also supported those of a 

previous study where fragments of the AHNAK C-terminal competing with endogenous whole protein 

relieved the β2-subunit from the enforced negative regulation (Alvarez et al., 2004). Interestingly, the 

Ile5236Thr mutant AHNAK was identified by screening a cohort of patients diagnosed with 

hypertrophic cardiomyopathy and although it represents a rare genetic variant with no apparent 

association with the disease, it remains a functional gain-of-function mutation which could affect 

individual contractile functioning of the heart (Haase et al., 2005).  

A role for AHNAK in regulating calcium flux through Cav channels was also identified in other cell 

types, albeit with contradicting findings. AHNAK was shown to be important for calcium influx in 

CD4+ T cells as well as cytotoxic CD8+ effector T cells (CTLs) (fig. 1.4) (Matza and Flavell, 2009; 

Matza et al., 2008, 2009). In these cells, AHNAK was suggested to be required for the membrane 

expression of the calcium channel possibly through its interaction with the β2-subunit; however, the 

specific Cav channel isoform involved was Cav1.1, which contains the α1S pore-forming subunit. 

AHNAK deficiency, whether in AHNAK-null mice or by means of siRNA knockdown, resulted in 

decreased calcium influx leading to defective CD4+ T cell activation and proliferation and reduced 

CTL cytolytic activity (Matza et al., 2008, 2009). Furthermore, AHNAK was also shown to be required 

for calcium influx in osteoblasts (Shao et al., 2009). One of the main functions of regulatory β-

subunits is to assist in the membrane targeting of the α1-subunit, therefore, in conjunction with the 

results obtained in these studies, one could suggest that AHNAK assists the β2-subunit in steering 

the pore-forming subunit to the plasma membrane as well as stabilising the completed channel, thus 

allowing a fully functioning channel to form (Chien et al., 1995). Possible explanations for the 

contrasting roles in Cav channel regulation between these studies and those described above could 

be attributed to the specific cell type involved (excitable vs. non-excitable), the purpose of calcium 

inside the cell (excitation coupling vs. signalling molecule) or perhaps the Cav channel isoform itself 

(Cav1.2 vs. Cav1.1).  

Recently, another association has been made between AHNAK and Cav channels (fig. 1.4). In pre-

synaptic neurons, Cav channels (Cav2.1 and Cav2.2 with pore-forming subunits α1A and α1B, 

respectively) interact with synaptic laminin and assist in the formation and stabilisation of so-called 

active zones, areas of neurotransmitter release (Nishimune et al., 2004). In an attempt to identify 

how these Cav channels are connected to the active zone, Carlson et al. identified the cytoskeletal 
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components of the Cav channel protein complex, which was shown to include AHNAK (Carlson et 

al., 2010). Localisation of AHNAK at the pre-synaptic nerve terminals was also observed and it was 

suggested that AHNAK might function to link the Cav channel to the actin cytoskeleton through the 

regulatory β2 subunit, as with the Cav1.2 channels in cardiac cells. These results were supported in 

another recent study that identified AHNAK as part of the “components of active zone” (CAZ) 

complex (Yao et al., 2014). Interestingly, this study aimed at identifying proteins interacting with the 

huntingtin protein, the causative mutational protein in the neurodegenerative Huntington’s disease. 

AHNAK was identified along with other proteins known to be important in the CAZ complex, which 

was also identified as the active zone component connected with the Cav channel in the 

abovementioned study. Indeed, the Cav2.1 channel was used in this study as a marker for the 

synaptosome fraction. It is clear that AHNAK forms part of the active zone through protein 

interactions, although whether AHNAK is actively part of the functions of the active zone (and can 

be classified as a CAZ protein as suggested in the latter study), or merely functions as a cytoskeleton 

link (as suggested in the former study) is currently unknown.  

 

1.6.5 Membrane repair 
A significant amount of research has also focused on AHNAK’s potential involvement in the repair 

of the plasma membrane in skeletal muscle after injury. This commenced with a report identifying 

the protein as a marker for enlargeosomes; distinct non-secretory vesicles that undergo rapid 

exocytosis following calcium influx (fig. 1.4) (Borgonovo et al., 2002; Chieregatti and Meldolesi, 

2005). In general, the regulated exocytosis of non-secretory vesicles is considered to have two 

purposes, firstly to facilitate the translocation of membrane proteins such as receptors to the cell 

surface, and secondly, to translocate membrane patches to the plasma membrane (Chieregatti and 

Meldolesi, 2005). Enlargeosomes are thought to fall under the latter category, with the specific 

function of decreasing cell surface tension allowing membrane repair to take place. In addition, 

exocytosis of enlargeosomes might also be required for cell surface enlargement during 

differentiation (Borgonovo et al., 2002; Chieregatti and Meldolesi, 2005). In resting PC12-27 cells, a 

neurosecretion-defective clone rich in enlargeosomes, AHNAK staining labelled the inner 

cytoplasmic rim just below the plasma membrane (Borgonovo et al., 2002). However, upon 

stimulation with the calcium ionophore ionomycin, significant AHNAK labelling was observed at the 

plasma membrane. This labelling showed increased levels, was long-lasting and punctate, as would 

be expected from membrane fusion events (Borgonovo et al., 2002).  

The specific function of AHNAK within enlargeosomes is however unknown, even though several 

studies commonly use the protein as a marker for these vesicles, including studies focussed on 

understanding and characterising the vesicles (Cocucci et al., 2008; Prada et al., 2007; Racchetti et 

al., 2010, 2012). The process of membrane resealing through intracellular vesicles has been 

extensively studied and several have reported on the participation of the cell cytoskeleton. This can 
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occur on multiple levels and differs amongst the phases of repair. Following the calcium-influx 

stimulus that accompanies membrane disruption, vesicles are rapidly recruited to the site of damage; 

since these vesicles are not docked at the plasma membrane they require a trafficking machinery 

and the kinesin and myosin motor proteins, as well as microtubules, have been shown to be 

important here (Abreu-Blanco et al., 2012; Bi et al., 1997; McDade and Michele, 2014). 

Depolarisation of the cortical actin cytoskeleton is also required since this allows the vesicles to 

rapidly move to the site of damage and fuse with the membrane without obstruction (Abreu-Blanco 

et al., 2012; Miyake et al., 2001). Following successful patching of the membrane, both the 

membrane and the cortical cytoskeleton needs to be restored in order to allow complete healing 

(Abreu-Blanco et al., 2012). Since AHNAK has previously been shown to be able to bind actin and 

to be involved in remodelling the actin cytoskeleton, it could be that the function of AHNAK present 

within enlargeosomes might be within one of the phases of membrane resealing. A role in the second 

phase might be more likely though, since AHNAK is localised within enlargeosomes during 

recruitment to the damaged membrane, while after fusion it is localised at the membrane. 

Interestingly, annexin 2 has also been localised to enlargeosomes, although instead of co-localising 

with AHNAK as shown in previous studies, it is present on the cytosolic-face of the vesicle 

membrane, suggesting it might take part in vesicle response to the calcium stimulus (Lorusso et al., 

2006).  

Perhaps the best evidence supporting a role for AHNAK in membrane repair stems from an 

interaction with dysferlin (fig. 1.4). Dysferlin is highly expressed in skeletal muscle and mutations in 

the associated gene leading to decreased and/or abnormal dysferlin protein are known to cause limb 

girdle muscular dystrophy 2B (LGMD2B), distal anterior compartment myopathy and miyoshi 

myopathy, collectively referred to as dysferlinopathies (Huang et al., 2007). At present, it is clear that 

dysferlin functions in membrane repair processes; dysferlin-deficient mice display impaired 

membrane repair, which is also the pathological mechanism implicated in human patients suffering 

from the diseases (Bansal et al., 2003; Huang et al., 2007; Wallace and McNally, 2009). The 

molecular mechanism of this role is however not completely understood, although dysferlin is 

presumed to mediate vesicle fusion events (Cenacchi et al., 2005). Recent studies have proposed 

three different possibilities; firstly, that dysferlin-containing vesicles transported by microtubules and 

kinesin fuses with lysosomes at the site of damage in order to form a large membrane ‘plug’ while 

the second, in contrast, suggested that dysferlin tethers individual exocytic lysosomes to the 

damaged site resulting in the secretion of acid sphingomyelinase which then facilitates membrane 

repair (Defour et al., 2014; McDade and Michele, 2014). In a third study it was found that, in addition 

to proposed roles in membrane repair, dysferlin is required for maintaining and stabilising calcium 

homeostasis and T-tubule function during membrane stress (Kerr et al., 2013).  

The group of Huang et al. reported a calcium-independent interaction between the far-carboxyl end 

of AHNAK and the C2A domain of dysferlin, as well as with its homolog, myoferlin (Huang et al., 
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2007). Since calcium-induced signalling is associated with membrane repair, this type of interaction 

indicates that AHNAK can also bind to dysferlin under normal conditions. AHNAK was also shown 

to co-localise with dysferlin at the sarcolemma of muscle fibres, while redistribution to the cytoplasm 

along with dysferlin during muscle regeneration was observed. Importantly, a secondary reduction 

in AHNAK was observed in muscle tissue sections from dysferlinopathy patients, which suggests 

that dysferlin might function to localise and stabilise AHNAK at the plasma membrane through its 

transmembrane domain. This is also reminiscent of the situation described by Benaud et al. where 

knockdown of annexin 2 resulted in a secondary reduction of AHNAK protein levels (Benaud et al., 

2004). Furthermore, dysferlin interacts with the annexin 2/S100A10 heterotetramer in a calcium and 

membrane injury-dependent manner, suggesting that AHNAK might form part of a similar 

multiprotein complex (Lennon et al., 2003). Indeed, these proteins have all been identified to be 

contained in dysferlin-complexes in skeletal muscle cells and tissues (de Morrée et al., 2010). It is 

known that the influx of calcium following membrane rupture serves as the signal for membrane 

repair processes and, as previously shown, a calcium signal was also involved in the translocation 

of AHNAK from the cytoplasm to the plasma membrane (Benaud et al., 2004). The protein sequence 

of AHNAK is not reported to contain any calcium-binding sites, however annexin 2 most likely serves 

as the intermediate; binding of calcium to annexin 2 activates the protein resulting in subsequent 

recruitment of S100A10 and AHNAK, followed by translocation to the plasma membrane 

(Rezvanpour et al., 2011). This sequence of events is similar to previously reported findings (Benaud 

et al., 2004). Structure analyses have determined that the region of the AHNAK protein reserved for 

the heterotetramer complex of annexin 2/S100A10 is small enough to allow adequate space for the 

docking of additional complex proteins at the membrane, such as dysferlin (Dempsey et al., 2012; 

Rezvanpour et al., 2011). Support for the requirement of a fully functional dysferlin-protein complex 

was recently reported. In bovine coronary arterial endothelial cells, silencing of AHNAK expression 

produced the same effect as silencing of dysferlin, i.e. decreased lysosomal fusion and acid 

sphingomyelinase activation upon induction of Fas ligand (Han et al., 2012). Possibly regulating this 

multiprotein complex is calpain 3; a muscle-specific member of the non-lysosomal cysteine protease 

calpain family and which is also the characteristic mutational target in LGMD2A (Huang et al., 2008). 

Huang et al. were able to show that calpain 3 interacted with and cleaved AHNAK, causing it to lose 

its ability to bind dysferlin (Huang et al., 2008). Tissue sections from LGMD2A patients revealed 

increased levels of AHNAK at the sarcolemma. These results suggest that in the dysferlin protein 

complex, calpain 3 regulates AHNAK turnover and thus the AHNAK-dysferlin interaction as well 

(Huang et al., 2008).  

A recent study investigating the localisation of AHNAK in muscular dystrophies, specifically LGMD2B 

and LGMD2A, reported some intriguing findings which might shed light on the dysregulation of 

AHNAK and possibly enlargeosomes inthese diseases (Zacharias et al., 2011). Skeletal muscle 

tissue sections of patients with LGMD2B and LGMD2A were compared to normal tissue sections. 

Tissue sections from the diseased patients showed changes typical of muscular dystrophy (MD), 
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including increased endomysial fibrosis. While normal tissue sections displayed a sarcolemma-

associated labelling for AHNAK, tissue sections from LGMD2B showed significantly reduced 

labelling at the membrane and very strong labelling outside the muscle fibre in the endomysium. In 

LGMD2A tissue sections, AHNAK labelling at the sarcolemma either remained constant or was 

slightly reduced; however, a significant amount of AHNAK staining was also observed in the 

endomysium. Through co-staining with the respective markers it was determined that neither 

infiltrating immune cells, the basal lamina nor MD-associated fibrosis were the likely sources for the 

AHNAK present in the endomysium, thus suggesting the muscle fibre itself as a possible source. By 

utilising an in vitro model, the authors determined that myotubes are capable of secreting small 

vesicles which tested positive for AHNAK. Although these vesicles seem to resemble 

enlargeosomes, which in the case of MD might be dysregulated in such a manner that they are 

actually secreted out of the muscle fibre instead of repairing the sarcolemma (perhaps because 

components necessary for a functional complex tethered to the damaged membrane are missing), 

the specific origin of the proteins and identification of the vesicles requires further investigation 

(Zacharias et al., 2011). In this study, the loss of AHNAK at the sarcolemma was restricted to 

LGMD2B tissue sections, which is in agreement with the finding of Huang et al. in LGMD2B patients, 

as described above, therefore reinforcing the suggestion that dysferlin might function to stabilise 

AHNAK at the sarcolemma. However, this contradicts with the findings of Huang et al. in LGMD2A 

patients also described above, emphasising the need for further investigation.  

 

1.6.6 Tumour progression 
Research into the molecular function of AHNAK over the last couple of years has experienced yet 

another change in direction, with the focus predominantly on tumour metastasis. Numerous studies 

have implicated the protein in several events related to tumour metastasis, such as PI3K/Akt 

signalling pathway, actin cytoskeleton reorganisation, formation of pseudopodial protrusions and 

EMT.  

It all started with several large-scale, mostly proteomic-based studies. A proteome analysis of 

purified pseudopodial protrusions from an invasive variant of transformed MDCK cells revealed the 

presence of AHNAK and active Akt, while differential protein expression analysis of the A549 lung 

cancer cell line undergoing TGF-β-induced EMT showed increased expression of AHNAK and 

annexin 2 (Jia, 2005; Keshamouni et al., 2006). Furthermore, treatment of the invasive breast cancer 

cell line SUM-52PE with PD173074, an inhibitor of receptor tyrosine kinases including the PI3K 

pathway, resulted in decreased levels of phosphorylated AHNAK (Pal et al., 2006). Taken together, 

these findings correspond to the studies of Sussman et al. (2001) and Benaud et al. (2004) which 

suggested a signalling pathway that includes Akt, AHNAK and the annexin 2/S100A10 complex. 

These findings would suggest that increased expression of AHNAK, phosphorylated by Akt and in 

complex with annexin 2, are associated with tumour progression, metastasis and invasion. Two other 
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studies showed AHNAK to be highly abundant in lipid rafts isolated from melanoma and breast 

cancer cell lines; while the first found no association with the degree of malignancy, the second found 

AHNAK to be inversely correlated with the degree of malignancy (Baruthio et al., 2008; Caruso and 

Stemmer, 2011). Additional studies reported differential expression in metastatic and non-metastatic 

cell lines, enrichment in purified pseudopods and decreased gene expression in tumours following 

knockdown of SCUBE3 (an activator of signalling pathways leading to angiogenesis, degradation of 

the extracellular matrix and EMT) (see table 1.2) (Chen et al., 2006; Chou et al., 2013; Parisis et al., 

2013).  

 

Table 1.2: Large-scale studies implicating AHNAK in cancer and metastasis 

Type of study Experimental environment Findings / remarks Reference 

Proteome analysis Purified pseudopodia AHNAK detected (Jia, 2005) 

Differential protein 

expression 

Lung cancer cell line (A549) 

undergoing EMT (induced) 
Increased expression 

(Keshamouni 

et al., 2006) 

Differential 

phosphoprotein 

Breast cancer cell line (SUM-

52PE) treated with RTK-

inhibitor 

Decreased pAHNAK 
(Pal et al., 

2006) 

Proteome analysis 
Lipid rafts of four melanoma 

cell lines 
Highly abundant 

(Baruthio et 

al., 2008) 

Proteome analysis 
Lipid rafts of four breast cancer 

cell lines 
Highly abundant 

(Caruso and 

Stemmer, 

2011) 

Differential gene & 

protein expression 

Metastatic (TMC-1) vs non-

metastatic (SC-M1) gastric 

cancer cell lines 

Decreased gene & 

protein expression 

(Chen et al., 

2006) 

Differential gene 

expression 

HER-2 overexpressing primary 

cell line 

Decreased gene 

expression 

(Chen et al., 

2010) 

Differential gene 

expression 

Angiotropic vs non-angiotropic 

melanoma tumours 

Decreased gene 

expression 

(Lugassy et 

al., 2011) 

Quantitative 

phosphoproteome 

analysis 

Metastatic (MDA-MB-231) vs 

non-metastatic (MCF-7) breast 

cancer cell line 

Increased pAHNAK 
(Kabir et al., 

2012) 

Differential protein 

expression 

Laryngeal carcinoma tissues 

from 83 patients compared to 

surrounding normal tissues 

Increased expression, 

correlated with patient 

survival 

(Dumitru et 

al., 2013) 

Mutational 

screening 

ccRCC tissues from 99 

patients 

Presence of recurrent 

mutations 

(Guo et al., 

2011; Xu et 

al., 2012) 

Proteome analysis 

Purified pseudopodia from 

migrating MCF-7 cells 

(induced) 

Enriched 
(Parisis et al., 

2013) 

Differential gene 

expression 

SCUBE3-/- lung 

adenocarcinoma tumours 

Decreased gene 

expression 

(Chou et al., 

2013) 
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Quantitative whole-

proteome analysis 

ccRCC tumour samples 

compared to normal kidney 

samples 

Increased protein 

expression, capable of 

distinguishing between 

sample types 

(White et al., 

2014) 

Transcriptome and 

proteome analysis 

Various cell lines representing 

different states of EMT 
Attenuated expression 

(Thomson et 

al., 2011) 

Phosphoproteome 

analysis 

Tumourigenic (SCC-9) vs non-

tumourigenic (HaCaT) 

Decreased serine 

phosphosites 

(Winck et al., 

2014) 

Differential gene 

expression 

Non-tumourigenic (208F) vs 

Ras-transformed (FE-8) 
Decreased expression 

(Zuber et al., 

2000) 

Differential gene 

expression 

Acute lymphocytic leukaemia 

patients 

Increased expression, 

correlated with relapse 

(Chiaretti et 

al., 2004) 

Differential gene 

expressiona 

Pancreatic cancer vs normal 

tissues (meta-analysis) 
Increased expression 

(Goonesekere 

et al., 2014) 

Whole-exome 

sequencing 

Matched metastatic melanoma 

tumour vs normal (eight patient 

samples) 

Mutated epitope 

presentation detected 

(Cohen et al., 

2015) 

Differential gene 

expression 

Complete vs incomplete 

response, patient tumour 

biopsies (pre-treatment)  

Increased expression 

(Lopes-

Ramos et al., 

2015) 

Differential gene 

expression 

Isogenic cisplatin-resistant vs 

cisplatin-sensitive ovarian 

cancer cell lines 

Increased expression 
(Cheng et al., 

2006) 

Differential protein 

expression 

Cisplatin-resistant vs parental 

neuroblastoma cell lines 
Increased expression 

(Piskareva et 

al., 2015) 

Quantitative whole 

proteome analysis 
Irradiated breast cancer cells Increased expression 

(Kim et al., 

2015) 

Quantitative 

proteome analysis 

Melanoma vs melanocyte cell 

lines, membrane enriched 

samples 

Decreased expression 
(Sheppard et 

al., 2015) 

a – Refers to AHNAK2. 

 

Even though these large-scale studies identifying AHNAK among a multitude of other proteins are 

limited in describing the details of AHNAK’s involvement within these processes on a molecular level, 

they do have the potential to point to other processes within tumourigenesis that might be worthwhile 

investigating. As an example, investigating possible associations or correlations between the 

individual proteins themselves might yield some attractive results. In the study by Dumitru et al. 

AHNAK in combination with macrophage migration inhibitory factor (MIF) were strong predictors of 
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poor survival in laryngeal carcinoma (Dumitru et al., 2013). In addition, in the study by White et al., 

MIF was identified along with AHNAK as being significantly dysregulated in clear cell renal cell 

carcinoma (ccRCC) samples compared to normal kidney samples (White et al., 2014). Here, it is 

noteworthy to mention that MIF has recently been shown to be a novel regulator of autophagy, a 

highly regulated process of self-degradation with known ties to tumourigenesis (El Bounkari and 

Bernhagen, 2012; Yang and Klionsky, 2010). Results obtained from these large-scale studies can 

also strengthen or add value to follow-up studies. A group led by Dumitru recently reported on the 

use of FoxP3, a forkhead transcription factor implicated in cancer, as a prognostic marker for 

different types of head and neck cancer. When combining the marker, and the inflammation marker 

cyclooxygenase-2, with expression data for AHNAK, significantly stronger prognostic values were 

obtained for survival of patients with laryngeal carcinoma (Weller et al., 2014).  

Studies specifically investigating the role of AHNAK in cancer are especially limited. Recently, 

Shankar et al. turned their focus to AHNAK after discovering that it was significantly enriched in 

purified pseudopodia of six different metastatic cancer cell lines (Shankar et al., 2010). Further 

investigation revealed that the knockdown of AHNAK resulted in pseudopodial retraction, impaired 

tumour cell migration and invasion as well as EMT reversal. The actin cytoskeleton network was also 

affected and administration of an actin-stabilising drug, jasplakinolide, reversed the effects brought 

about by the knockdown, such as cell shrinkage and rounding (Shankar et al., 2010). In addition, 

AHNAK has been included in an EMT profiler array (EMT-RT2 Profiler PCR Array, SAAB Bioscience, 

Qiagen) and its expression (both gene and protein) decreased along with other mesenchymal 

markers during MET (Finetti et al., 2015).  

Another recent study reported similar findings with regards to tumour cell migration and invasion. 

AHNAK gene expression was shown to be significantly higher in seven different mesothelioma cell 

lines compared to the control mesothelial cell line (Sudo et al., 2014). Furthermore, knockdown of 

AHNAK resulted in decreased migration and invasion of the cancer cells. Mice xenograft models 

were also established with four of the mesothelioma cell lines and AHNAK expression was detected, 

where the immunohistochemistry staining revealed an interesting localisation pattern. AHNAK was 

found to be localised in both the cytoplasm and at the plasma membrane in the single sarcomatoid 

xenograft tumour, while in the remaining three epithelioid tumours AHNAK was restricted to the 

plasma membrane. These results were confirmed in tumour specimens from patients; however the 

reason for this localisation pattern is unknown (Sudo et al., 2014). AHNAK also seems to play a role 

in the migration of non-cancerous cells. Aortic smooth muscle cells isolated from AHNAK knockout 

mice displayed decreased migration compared to wild type cells upon stimulation with platelet 

derived growth factor (Lim et al., 2013). In this model, the loss of AHNAK was associated with 

decreased phosphorylation of ERK and inhibition of Rac proteins, important components regulating 

cytoskeleton dynamics in migrating cells (Lim et al., 2013). The role for AHNAK in cell migration in 

both metastatic tumour cells and normal cells suggests that AHNAK is dysregulated in the cancer 

Stellenbosch University  https://scholar.sun.ac.za



32 
 

setting; this most likely occurs either on an expression level, as suggested by the various large-scale 

studies, or via post-translational modification such as phosphorylation by Akt.  

Lastly, an interesting link between AHNAK-containing vesicles and cancer was suggested in a recent 

study and even though AHNAK could be indirectly linked with cellular migration, the findings rather 

support an association between AHNAK and tumour progression (fig. 1.4) (Silva et al. 2016). Silva 

et al. reported on the directional transfer of microvesicles from aggressive breast cancer cells to non-

transformed fibroblasts when in co-culture. The group found that AHNAK was the most abundant 

component of these vesicles and that the protein was also required for the formation of the vesicles. 

The outcome of vesicle transfer between the two cell lines was increased fibroblast migration and 

the authors cautiously suggested that this could assist tumour cells in establishing a beneficial 

tumour microenvironment that would favour growth, invasion and metastasis. The microvesicles 

identified in this study could be similar to enlargeosomes in neuronal cells described earlier. Indeed, 

the group did report similarities following ultrastructural analysis and also identified annexin 2 as part 

of the vesicle components. Since the general function of these vesicles and that of enlargeosomes 

differ greatly, it suggests that AHNAK is not directly involved in the individual functions of these 

vesicles but rather that AHNAK is only involved in the formation of these vesicles, which is also 

supported by the findings of the recent study (Silva et al. 2016).  

In contrast to the above-mentioned studies where AHNAK was described as a protein that promotes 

the progression of cancer, it has also been suggested to function as a tumour suppressor. Through 

a series of experiments the group of Lee et al. elegantly described AHNAK as an important 

component of the TGF-β/Smad signalling pathway (fig. 1.4) (Lee et al., 2014). AHNAK was shown 

to be capable of binding the regulatory Smad 1-3 proteins while knockdown of AHNAK under 

stimulation by TGF-β resulted in decreased phosphorylation and activation of Smad-3. AHNAK 

assisted in the translocation of Smad-3 to the nucleus where it was shown to be important in the 

binding of phospho-Smad-3 to the c-Myc promoter, also under TGF-β stimulation, resulting in 

decreased c-Myc expression. In addition, AHNAK was also shown to block the inhibitory activities of 

Smad-7, thus further promoting the action of Smad-3. The outcome of the AHNAK-mediated 

activities was revealed by cell cycle analysis; overexpression of AHNAK resulted in significant 

accumulation of cells in the G0/G1 phase, and thus in cell cycle arrest. These results were confirmed 

by showing that the expression of cyclin D1/D2 was decreased, while the expression of p21Waf/Cip 

and p27Kip1 were increased in AHNAK-overexpressing cells. When the authors expanded their 

findings to a tumour model, they showed that cervical cancer cells overexpressing AHNAK had 

decreased tumourigenic capabilities and that transformed AHNAK knockout mice displayed 

increased hyperplasia and reduced regulatory Smad activities. Taken together the authors 

suggested that, upon stimulation by TGF-β, AHNAK supports the transcription-related functions of 

regulatory Smads which results in the attenuation of cell cycle progression, ultimately preventing cell 

proliferation, by regulating c-Myc activity as well as other related factors (Lee et al., 2014). TGF-β 
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has also been shown to initiate the EMT process and, indeed, a large-scale study has shown before 

that AHNAK expression is increased in cells undergoing EMT induced by TGF-β (Bhowmick et al., 

2001; Keshamouni et al., 2006; Miettinen et al., 1994). The authors of this study did state that AHNAK 

deficient cells displayed a reduced EMT phenotype and markers in response to TGF-β; however, 

these experiments were performed in non-tumourigenic HaCaT cells and the authors failed to 

elaborate on this in light of their other findings. In a recent follow-up study, the group confirmed the 

suppressive effect of AHNAK on c-Myc expression when they showed that knockdown of AHNAK 

sufficiently upregulated c-Myc to allow for the generation of induced pluripotent stem cells when co-

transfected with other required markers (Lim et al., 2015).  

Further supporting the role of AHNAK as a tumour suppressor is a recent study by Sheppard et al. 

(Sheppard et al., 2015). Decreased protein expression was observed in three melanoma cell lines 

compared with normal melanocytes. This decrease was suggested to be the result of both 

transcriptional and post-translational control, as only two of the cell lines showed decreased mRNA 

expression. These findings were further supported by an analysis of data sets from the Gene 

Expression Omnibus database, which revealed decreased expression in metastatic melanoma. 

Interestingly, annexin 2 also showed decreased gene and protein expression in the melanoma cell 

lines and decreased E-cadherin expression followed after AHNAK knockdown. This led the authors 

to suggest that these proteins form a complex at the cell membrane that is collectively downregulated 

during the acquisition of a metastatic phenotype, resulting in decreased cellular adhesion (Sheppard 

et al., 2015).  

The findings implicating AHNAK in cancer are intriguing; several studies, both large-scale and 

specific, support a role in tumour progression and several in tumour suppression. It can however be 

suggested that AHNAK may indeed function as both and that its functioning is under tight control, 

most likely by the specific signalling pathways activated in the cell. This seems especially likely if 

one considers the significant diversity of AHNAK’s functions across cell types. As an example, 

AHNAK has been shown to interact with the Smad proteins on two different occasions, although the 

upstream signalling molecule differs; BMP in adipocyte differentiation and TGF-β in tumour 

suppression. In addition, TGF-β itself is known to mediate both pro- (particularly in EMT) and anti-

tumour effects and so the signalling molecules controlling TGF-β can indirectly control AHNAK 

(Heldin et al., 2009).   

Recent studies have also suggested that there may be a correlation between AHNAK expression 

and a tumour cell’s response to chemotherapy. One study employed a strategic genome-wide 

analysis to identify genes whose expression correlates with tumour cell invasion as well as with 

chemotherapeutic response (Hsu et al., 2013). AHNAK was identified as part of an eight-gene 

signature capable of predicting a cell line’s invasiveness and its response to tubulin-binding and 

targeted therapies. Specifically, AHNAK showed a positive correlation with invasiveness as well as 

with targeted therapy response but a negative correlation with tubulin-binding therapy response (Hsu 
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et al., 2013). AHNAK was also included in a gene signature capable of predicting complete response 

to neoadjuvant chemoradiotherapy in rectal cancer, although this signature could not be validated 

against independent data sets (Lopes-Ramos et al., 2015).  

A positive correlation between AHNAK and cisplatin resistance has also been reported on two 

separate occasions. Chen et al. reported increased gene expression in four pairs of isogenic 

cisplatin-resistant and cisplatin-sensitive ovarian cancer cell lines, while Piskareva et al. reported 

increased protein expression in cisplatin-resistant versus parental neuroblastoma cell lines (Cheng 

et al., 2006; Piskareva et al., 2015). By comparing the mitochondrial and endoplasmic reticulum 

fractions of two metastatic breast cancer cell lines, Leong et al. showed that AHNAK protein 

expression significantly decreased following induction of apoptosis by a DXR-TRAIL treatment 

regime (Leong et al., 2012). These results are surprising, since AHNAK is not reported to be present 

at these intracellular locations. Furthermore, it is evident that further studies are necessary to 

delineate the expression levels of AHNAK in response to DXR and TRAIL separately, especially 

since the lethal effect of these two agents are transduced by two different apoptotic pathways (Leong 

et al., 2012). In contrast, AHNAK protein expression was increased following radiation of breast 

cancer cells, indicating the AHNAK responds differently based on the therapeutic method (Kim et 

al., 2015).  
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Figure 1.4: Biological processes where AHNAK have been suggested to function. (Davis et al., 2014)  

   

1.6.7 Fitting all the AHNAK-pieces together 
 

Based on the literature reviewed here it is clear that the giant protein AHNAK is involved in a variety 

of cellular processes and pathways (see fig. 1.4). These processes or pathways are quite distinct 
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and seem to be related to or dependent on the nature of the cell/tissue type. This would suggest 

some kind of cell- or tissue-specific regulation. Whether regulation on the transcriptional level takes 

place is still largely uncertain, however it does seem likely given that specific expression patterns in 

the CNS and PNS most likely define AHNAK’s function in the formation of the BBB and myelination. 

In terms of post-translational regulation, phosphorylation by two kinases, PKA and Akt, has been 

reported and further possibilities governed by TGF-β most likely exist. AHNAK’s functionality is 

probably also affected by the reported cleavage by calpain 3. It can, however, be suggested that 

either cellular calcium levels or calcium-mediated signalling represent a likely regulatory mechanism, 

especially since the majority of AHNAK’s proposed functions involve calcium in some way or another 

(table 1.3). Translocation of AHNAK has been shown in several studies and it seems likely that its 

function might also be regulated by its intracellular trafficking. Based on the majority of the studies 

discussed, it can be suggested that AHNAK probably exerts its function(s) at the plasma membrane 

since, in most cases, this represents its final destination with redistribution to the cytoplasm observed 

in abnormal or inactive circumstances. However functional activity at other intracellular locations 

cannot be ruled out, especially since AHNAK was reported to function in the nucleus on three 

occasions (Lee et al., 2014; Shin et al., 2015a; Stiff et al., 2004). Understanding the rationale behind 

AHNAK’s intracellular trafficking could assist in explaining its role in disease pathology as changes 

in localisation have already been observed in dysferlinopathies and mesothelioma.  
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Table 1.3: Possible correlations between AHNAK and calcium signalling processes 

Biological role 

of AHNAK 
Cell/ tissue type 

State of cell/process when AHNAK’s location 

is: 
Role of Ca2+ in implicated 

cellular process associated 

with AHNAK 

Reference 

Cytoplasmic 
Plasma membrane-

associated 

Blood-brain 

barrier 
Endothelial Absent/damaged Active/formation 

Required for assembly and 

integrity of adherens and tight 

junctions, which determines 

BBB permeability 

(Ballabh et al., 2004; 

Boveri et al., 2006; 

Gentil et al., 2005) 

Cell-cell contacts Epithelial Subconfluent Confluent 

Required for formation of E-

cadherin-mediated cell-cell 

contacts 

(Benaud et al., 2004; 

Sussman et al., 

2001) 

Cav channel 

regulation 
Cardiomyocytes NK Normal 

Influx initiates signalling 

cascade resulting in 

contraction 

(Bers, 2000; Haase 

et al., 2005) 

Cav channel 

regulation 

CD4+ T cells & 

CD8+ CTL 
NK Activea 

Influx initiates signalling 

cascade necessary for proper 

functioning of cells during 

immune response 

(Matza et al., 2008, 

2009) 

Enlargeosomes 
PC12-27 

(Neuronal) 
Rest Active Signals exocytosis of vesicles 

(Chieregatti and 

Meldolesi, 2005) 

Membrane repair 
Skeletal muscle 

tissue 

(Regeneration – no 

proposed function for 

AHNAK yet) 

Normal / 

physiological 

sarcolemma injuryb 

Influx initiates repair system 

(Huang et al., 2007; 

Wallace and McNally, 

2009) 
a - AHNAK plasma membrane-associated localisation implied but not shown (see text). b - Under normal conditions contraction-induced sarcolemmal 

injury represents a common physiological event, however in the absence of functioning repair systems it can lead to progressive myonecrosis, 

representing a pathological event (Wallace and McNally, 2009). NK – not known  

Stellenbosch University  https://scholar.sun.ac.za

Stellenbosch University  https://scholar.sun.ac.za



38 
 

Even though the last 12 years have provided valuable clues, AHNAK’s exact function remains 

uncertain. The role suggested for AHNAK in regulating calcium current in cardiomyocytes specifically 

seems quite promising; however, future research needs to focus on establishing how this translates 

to other Cav channels such as those in T cells where the net effect on the calcium current seems to 

be the opposite of that in cardiomyocytes. Furthermore, Cav1.2 channels present in cardiomyocytes 

can also be found in smooth muscle cells, endocrine cells and neuronal cell bodies, therefore it 

needs to be investigated whether AHNAK fulfils the same role in these cell types (Catterall et al., 

2005). In addition, since AHNAK has now been shown to interact with four different Cav channels it 

also needs to be investigated whether it can bind to other members of the family, which could 

implicate a role for AHNAK in several other functions.  

Also, it is becoming clear that AHNAK often binds and interacts with several different proteins, 

forming multiprotein complexes. It has been suggested before – and now it seems even more likely 

– that AHNAK functions as a scaffold protein facilitating the assembly of a different set of proteins 

required for each of the different cellular processes or pathways described above. For instance, in 

terms of membrane repair in skeletal muscle, this could include dysferlin, calpain 3 and possibly 

caveolin 3 and annexin 2/S100A10, while in cell cytoarchitecture, and perhaps also in tumour 

metastasis, this can include annexin 2/S100A10 and the actin cytoskeleton network. This 

characteristic is at the heart of AHNAK’s proposed roles, serving as a molecular bridge between the 

diversity of the associated biological processes. Indeed, the only proposed roles where protein 

interactions for AHNAK are not known are in the formation of the BBB and in enlargeosomes, 

although it is most likely that their identification is just a matter of time. Both the size and protein 

structure of AHNAK lends it the unique abilities of facilitating the binding of multiple proteins and 

providing the necessary support and stability for the assembled complexes (Dempsey et al., 2012; 

Han and Kursula, 2014). Furthermore, the functional classification of AHNAK as a scaffold protein is 

supported by the presence of a PDZ domain within its protein structure. PDZ domains are known to 

facilitate proteins’ interactions with carboxyl-terminals of other proteins, other PDZ domains and even 

lipids; therefore proteins containing these domains are often localised at specific cellular sites where 

they assist in the assembly of functional units that mediate signalling events or receptor localisation 

(Nourry et al., 2003).  

So far, relatively large clouds of uncertainty still cover the biological role of AHNAK in membrane 

repair and tumour metastasis, which suggests that a shift in focus towards these areas is needed. 

Especially in the case of the latter, where the majority of studies so far are gene/protein-expression 

based, more work is urgently needed in order to determine how and where AHNAK fits into the 

complex process of tumour metastasis. Regulatory mechanisms are evidently of great importance 

and identifying the upstream signalling pathways controlling AHNAK will help to clarify its role in 

tumour progression and metastasis.  
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Future research should continue to strive to identify novel interacting partners for AHNAK in different 

models as well as any possible associated regulatory mechanisms. To date, methods such as co-

immunoprecipitation and immunocytochemistry and –histochemistry have greatly assisted in 

describing the molecular environment of AHNAK. Protein, domain and 3D structural analyses 

coupled with computational bioinformatics can further aid in identifying additional interacting proteins 

and imaging techniques such as fluorescence resonance energy transfer, correlative light and 

electron microscopy and the design of fluorochrome-tagged fusion proteins can aid in describing 

protein interactions under different experimental conditions. Making use of animal models in 

contextually different but related disease states can also aid in expanding the molecular 

environment. Targeted mutations and making use of inhibitors acting on specific signalling molecules 

can help in understanding the role of any associated signalling pathways. In addition, characterising 

AHNAK2, and perhaps periaxin, can also be of great value.  

To assume that the functional roles of AHNAK described here are the only functions would be naïve, 

although its inherent diversity in terms of biological roles makes identifying new areas worth 

investigating challenging. However, it is always of utmost importance never to allow a narrow-minded 

view in research; indeed, taking the diversity of AHNAK into account might prove to be of value when 

identifying novel areas of investigation. As an example, the fact that AHNAK is phosphorylated by 

Akt opens up a whole plethora of possibilities since Akt itself is known to be an important mediator 

of numerous cellular processes. One such process is autophagy and together with the association 

between AHNAK, MIF, autophagy and cancer mentioned earlier, it might support an endeavour into 

this area of investigation. Furthermore, with the aim of describing AHNAK’s function on a molecular 

level, one field of research might benefit from the other. For instance, it is has been shown that 

AHNAK is capable of regulating calcium influx through an interaction with the channel itself and, 

recently, a new field of research into tumour metastasis has emerged which focuses on impaired 

calcium signalling and its effect on tumour cell migration and invasion (Prevarskaya et al., 2011). 

Also, in the study of Benaud et al. AHNAK was reported to be involved in the organisation of the 

actin cytoskeleton while the latter is also important for other cellular processes such as cell migration 

and mitochondrial transport in neuronal axons (Hollenbeck, 2005; Yamazaki et al., 2005). Lastly, 

AHNAK is known to interact with the annexin 2/S100A10 complex and, through its ability to bind 

negatively charged membrane components, annexin 2 has previously been shown to be involved in 

the organisation of membrane domains as well as in certain endo- and exocytosis events (Gerke et 

al., 2005). Thus, by keeping an open mind, protein-interaction or co-localisation studies in other fields 

of research might broaden the scope of AHNAK’s involvement even further.  

Taken together, even though its exact function remains unclear, the studies published in the last 12 

years have contributed significantly to making AHNAK less of a mystery, and hopefully with the aid 

of further research into the various biological areas, the mystery of AHNAK will be solved in the next 

decade. 
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1.7 Problem statement 
 

Cancer is a devastating disease that knowns no prejudice and most importantly, no limits. It is 

projected that 8.8 million people worldwide died from this disease in 2015, including approximately 

54 600 South Africans (Ferlay et al., 2013). Two major problems that are contributing to these 

alarming statistics is the failure of anti-cancer therapies and the advanced progression of the 

disease. These two problems stem from two separate cellular processes, namely therapeutic 

response and cellular invasion and migration respectively, but they are connected in a positive 

feedback loop.  

Even though significant progress has been made in characterising tumours and identifying targetable 

markers, oncologists are still faced with the burden of trying to overcome the high occurrence of 

therapeutic failure and resistance. It has become clear that tumour resistance is a multifactorial 

process and that the scope of each individual resistance mechanism needs to be characterised. This 

is clear from clinical studies; even though drug efflux via membrane transporters were thought to be 

a major mechanism of tumour resistance, inhibitors of these transporters, such as verapamil, have 

not lead to the expected reduction in tumour resistance (Gottesman, 2002). Furthermore, limited 

treatment options are available for metastatic cancers and oncologists are often forced to prescribe 

intense treatment regimens consisting of multiple chemotherapeutic drugs. However, resistance is 

common in these advanced cancers which contributes significantly to the high mortality rates 

observed with metastatic disease (Chen, 2012; Christofori, 2006).  

To be able to effectively modulate the therapeutic response of cancer cells to improve the outcome, 

the molecular components of the response needs to be identified and understood. This is particularly 

important in the age of personalised medicine. AHNAK represents a potential novel component in 

the cellular therapeutic response. Even though several studies have successfully characterised the 

protein in some of its other functions, information regarding the role of AHNAK in cancer is very 

limited. Basal AHNAK expression has been compared to the chemotherapeutic sensitivity of certain 

drugs to identify correlations while a change in AHNAK expression has been reported in only a few 

studies under different conditions (Hsu et al., 2013; Leong et al., 2012; Silva et al., 2016). Thus, in 

order to determine whether AHNAK is indeed involved in therapeutic response, a more complete 

investigation is needed, which serves as the rationale for this study.  

This comprehensive research study has a strong basic molecular component, incorporating several 

clinically relevant aspects. DXR was used as chemotherapeutic treatment since it is a common 

chemotherapeutic drug used to treat many different cancers, including the chosen model of breast 

cancer. We also selected treatment doses that would represent both an inefficient treatment 

outcome, which may potentially promote tumour progression, as well as an effective treatment dose 
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in order to determine whether AHNAK is associated with a specific type of response. We also chose 

breast cancer cell lines that show different responses to DXR as well as different capacities for 

cellular migration. 

 

1.7.1 Hypothesis 
We hypothesised that AHNAK is involved in the DXR-response of breast cancer cells, and that 

AHNAK may thus play a role in the development of DXR resistance.  

 

1.7.2 Aims 
We aimed to identify a possible association between AHNAK and DXR-response by: 

1. Determining the effect of DXR on AHNAK in breast cancer cells 

2. Determining the effect of AHNAK on the DXR-specific response in breast cancer cells 

We also aimed to characterise the role of AHNAK in tumour metastasis by: 

3. Determining the role of AHNAK in EMT and cellular migration 

4. Determining whether a possible link exists between AHNAK, DXR and cellular migration 

 

1.7.3 Objectives 
To achieve our aims, we established the following objectives: 

1. Investigate the effect of DXR on AHNAK’s protein expression and localisation, through 

Western blot and immunofluorescence experiments respectively, in an in vitro model 

consisting of the MCF-7 and MDA-MB-231 cell lines and in an in vivo tumour-bearing mouse 

model  

2. Obtain and generate mammalian expression plasmids containing regions of the human 

AHNAK protein to facilitate AHNAK overexpression as well as plasmids containing shRNA 

specifically targeting AHNAK to facilitate AHNAK knockdown 

3. Investigate the effect of AHNAK on DXR cytotoxicity and apoptosis induction in MCF-7 and 

MDA-MB-231 cells following AHNAK knockdown and overexpression 

4. Investigate the effect of AHNAK on DXR-induced modulation of the cell cycle in MCF-7 and 

MDA-MB-231 cells following AHNAK knockdown and overexpression 

5. Investigate the effect of AHNAK on cellular migration by assessing EMT marker expression 

and cellular migration with Western blot and scratch assays respectively, in MCF-7 and MDA-

MB-231 cells following AHNAK knockdown and overexpression and DXR treatment 
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Chapter 2 : Materials and Methods 

 

2.1 Molecular cloning 
 

2.1.1 DNA plasmids and bacterial strain 
A GIPZ™ Lentiviral shRNA set (Dharmacon, GE Healthcare) was purchased to facilitate knockdown 

of AHNAK. The set contains four plasmids that express short hairpin RNA’s (shRNA) targeting four 

different regions of the AHNAK transcript and one plasmid containing a scrambled sequence shRNA 

(non-targeting, serves as negative control). These plasmids were designated pGIPZ-AHNAK1-4 and 

pGIPZ-sc. The plasmid set was purchased as glycerol stocks (four frozen stocks of Escherichia coli 

(E. coli) cells, each expressing one of the plasmids). Inoculums were prepared by stabbing each 

glycerol stock with a sterile 200 µl pipette tip and then ejecting the tip into a glass vial containing 5 

ml growth media. Incubation of inoculums took place overnight at 37°C with shaking at approximately 

200 rpm. Growth media for these cells consisted of low salt lysogeny broth (LB) medium (10 g/l 

tryptone, 5 g/l yeast extract, 5 g/l NaCl, pH 7) and 100 µg/ml carbenicillin antibiotic (Sigma-Aldrich).  

The pM-DY and pC-DY plasmids containing inserts of four repeated units from the CRU domain and 

the C-terminal domain of AHNAK, respectively, in a pcDNAI/Amp backbone (Invitrogen, Life 

Technologies) was a kind gift from Prof Silvère van der Maarel (Leiden University Medical Center, 

Leiden, The Netherlands). The pcDNA3.1 (+) plasmid was a kind gift from Prof Sharon Prince 

(University of Cape Town, Cape Town, South Africa). Both plasmids contain the ampicillin resistance 

marker and transformed bacterial cultures were grown in normal LB medium (10 g/l tryptone, 5 g/l 

yeast extract, 10 g/l NaCl, pH 7) and 100 µg/ml ampicillin. 

The E. coli strain DH5α, kindly provided by Prof Sharon Prince (University of Cape Town, Cape 

Town, South Africa), was used in all molecular cloning experiments.  

 

2.1.2 Preparation of competent cells 
Competent cells of the DH5α strain were prepared with the CaCl2 method (Seidman et al., 1997). A 

5 ml inoculate was grown overnight with shaking at 37°C in LB medium without antibiotics. On the 

following day, 1 ml of the culture was used to inoculate 100 ml of LB medium, without antibiotics, 

and the culture was grown for 2-3 hrs until an optical density (OD) of 0.5-0.8 was reached at 595 

nm. The culture was then centrifuged at 3000 rpm for 10 min at 4°C. The pellet was gently 

resuspended in 1 ml of ice-cold 100 mM CaCl2. Another 30 ml of ice-cold 100 mM CaCl2 was added, 

gently inverted to mix and incubated on ice for 1 hr. After incubation the culture was centrifuged at 

3000 rpm for 10 min at 4°C and the pellet was resuspended again in 1 ml ice-cold 100 mM CaCl2. 
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Aliquots were prepared as glycerol stocks (final concentration 15% glycerol) and were prepared for 

storage at -80°C through flash freezing in liquid nitrogen. 

 

2.1.3 Bacterial transformation 
For transformation of E. coli cells with plasmid DNA (pDNA), an aliquot of competent cells were 

allowed to thaw on ice. Approximately 70-100 ng of pDNA was added to the cells and incubated on 

ice for 10 min. The cells were heat-shocked at 42°C for 2 min and then transferred immediately onto 

ice to incubate for another 5 min. A volume of 300 µl LB medium, without antibiotic, was added to 

the cells and incubated while shaking for 60-90 min at 37°C. After incubation, 50 µl of cells were 

spread onto LB-agar plates (with the appropriate antibiotics) and allowed to absorb for 10 min at 

room temperature (RT) before being incubated upside-down overnight at 37°C. The following day, 

colonies was picked by gently stabbing the colony with a sterile 200 µl pipette tip. The tip was ejected 

into 5 ml LB medium (with the appropriate antibiotics) and the inoculum was incubated overnight at 

37°C with shaking.  

 

2.1.4 Plasmid extraction – miniprep 
To identify positive clones, pDNA extractions were performed with the QIAprep® Spin Miniprep Kit 

(Qiagen®). The kit was used according to the manufacturer’s instructions and all steps, including 

centrifugation steps, were performed at RT. Briefly, 2 ml of an overnight culture was pelleted by 

centrifugation at 8000 rpm for 3 min and then resuspended in 250 µl of buffer P1 (resuspension 

buffer). An equal volume of buffer P2 (cell lysis buffer) was added and the culture was gently mixed 

by inversion 4-6 times. Next, 350 µl of buffer N3 (neutralisation buffer) was added and immediately 

mixed by inversion 4-6 times. The lysate was centrifuged at 13000 rpm for 10 min. The supernatant 

was added to the QIAprep® spin column and centrifuged at 13000 rpm for 1 min. The flow-through 

was discarded and the spin column was washed with 750 µl buffer PE (wash buffer) through 

centrifugation at 13000 rpm for 1 min. The flow-through was again discarded and the spin column 

was placed in a centrifuge eppie. Another centrifugation step at 13000 rpm for 1 min was performed 

to remove any residual wash buffer. Finally, to elute the pDNA, the spin column was placed in a 

clean centrifuge eppie and 50 µl of nuclease-free water was added to the spin column, allowed to 

incubate for 1 min and then centrifuged at 13000 rpm for 1 min. The amount of extracted pDNA was 

quantified with a NanoDrop 2000c (Thermo Scientific) instrument.  

 

2.1.5 Plasmid extraction – maxiprep 
For large scale pDNA extractions the PureYield™ Plasmid Maxiprep System (Promega) was used. 

The kit was used according to the manufacturer’s instructions and all steps, including centrifugation 
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steps, were performed at RT. An overnight culture of 250 ml was pelleted by centrifugation at 5320 

rpm for 10 min. The pellet was resuspended in 12 ml Cell Resuspension Solution. An equal volume 

of the Cell Lysis Solution was added and the culture was mixed by inversion 3-5 times. The culture 

was allowed to incubate for 3 min before 12 ml Neutralisation Solution was added and mixed by 

inversion 10-15 times. The lysate was then centrifuged at 6300 rpm for 30 min.  For purification and 

elution, the PureYield™ Clearing Column was placed securely on top of the PureYield™ Maxi 

Binding Column and then connected to a vacuum pump. One half of the lysate was poured into the 

PureYield™ Clearing Column and allowed to pass through both columns before the remaining lysate 

was poured in and allowed to pass through the columns. The vacuum pump was stopped and the 

PureYield™ Clearing Column discarded, leaving only the PureYield™ Maxi Binding Column 

connected to the vacuum pump. The column was washed with 5 ml Endotoxin Removal Wash and 

then with 20 ml Column Wash. The column was then dried for 5 min with the vacuum pump switched 

on. The column was removed and placed in a clean 50 ml centrifuge tube. Three elution steps was 

performed. First, a volume of 1 ml nuclease-free water was added to the column, allowed to incubate 

for 5 min and then centrifuged at 3370 rpm for 5 min. The elute was transferred to a clean centrifuge 

eppie and the elution step was repeated with 500 µl nuclease-free water and then with 250 µl 

nuclease-free water. The amount of extracted pDNA was quantified with a NanoDrop 2000c (Thermo 

Scientific) instrument. 

 

2.1.6 Restriction enzyme digests and ligation reactions 
For restriction enzyme digest reactions approximately 1 µg of pDNA was cut with the restriction 

enzymes EcoRI (10 U) and BamHI (20 U) in a double digest reaction (cut with both enzymes at the 

same time) in 2X Tango buffer, as recommended by the manufacturer (Thermo Scientific). Digests 

were incubated for 1-3 hrs at 37°C. Digest products were separated on a 0.8% agarose gel at 80 V 

for between 1.5 and 2.5 hrs.  

Ligation reactions with linearised pDNA and inserts was based on the following equation:  

100 𝑛𝑔 𝑝𝑙𝑎𝑠𝑚𝑖𝑑 × 𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡

𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑝𝑙𝑎𝑠𝑚𝑖𝑑
 ×  

3

1
 = 𝑛𝑔 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

If necessary, the calculated amount of insert required was adjusted to avoid exceeding the maximum 

volume of the ligation reaction (20 µl) while still maintaining an insert-vector ratio of 3:1. Ligations 

were performed in 1X ligation buffer with 1 U of T4 DNA ligase (Promega) and incubated overnight 

at 4°C.  
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2.1.7 DNA purification from agarose gels 
Purification of pDNA following restriction enzyme digestion and agarose gel electrophoresis was 

performed with the Wizard® SV Gel and PCR Clean-up System (Promega). The pDNA was obtained 

from the gel by cutting out the correctly sized band with a clean scalpel and placing it in a centrifuge 

eppie. The weight of the gel piece was determined by weighing the eppie before and after adding 

the gel piece. A volume of 10 µl Membrane Binding Solution was added per 10 mg gel piece. The 

gel mixture was briefly vortexed and incubated at 50-65°C for 10 min or until the gel was completely 

dissolved. The SV Minicolumn was assembled by placing the column into the Collection Tube. The 

dissolved gel mixture was then added to the column and incubated for 1 min at RT. The column was 

centrifuged at 14000 rpm for 1 min and the flow-through was discarded. A volume of 700 µl 

Membrane Wash Solution was added to the column and centrifuged again at 14000 rpm for 1 min. 

This step was repeated with 500 µl Membrane Wash Solution and centrifugation for 5 min. The 

assembly was centrifuged again with the lid open to allow any remaining ethanol from the wash 

solution to evaporate. The column was transferred to a clean centrifuge eppie and 50 µl nuclease-

free water was added to the centre of the column. The column was allowed to incubate for 1 min 

before centrifuging at 14000 rpm for 1 min. The pDNA elute was saved and the amount of purified 

pDNA was quantified with a NanoDrop 2000c (Thermo Scientific) instrument.  

 

2.2 Cell lines 
 

Human breast adenocarcinoma cells lines, MCF-7 (non-metastatic, DXR-sensitive) and MDA-MB-

231 (metastatic, DXR-resistant), as well as the Cos-7 (monkey kidney fibroblast) cell line, were kindly 

provided by Prof Sharon Prince (University of Cape Town). The cell lines were cultured in growth 

medium consisting of Dulbecco’s Modified Eagle Medium (DMEM) (Gibco®, ThermoFisher 

Scientific) supplemented with 10% fetal bovine serum (FBS) (Capricon Scientific) and maintained in 

humidified incubators set to 37°C and 5% CO2. Cells were regularly passaged through trypsinisation 

with 0.25% Trypsin-EDTA (Gibco®, ThermoFisher Scientific). For all experiments, cells were seeded 

in the appropriate dishes and allowed to settle for either one day (MDA-MB-231) or two days (MCF-

7) before beginning the experiment.  

 

2.3 DXR treatments 
 

DXR stock solutions were prepared by resuspending 10 mg doxorubicin hydrochloride (Sigma-

Aldrich) in 5.071 ml pure DMEM. Stock solutions were filtered before further use and stored at -20°C. 

Working solutions were prepared immediately before treatment under sterile conditions with further 

dilutions made in growth medium. For DXR treatments, the cell monolayer (approximately 80% 
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confluent) was refreshed with growth media containing the appropriate concentration of DXR for 

either 24 or 48 hrs.  

 

2.4 MTT assay 
 

MTT assays quantify mitochondrial reductive capacity and were performed as a measure of cell 

viability. Briefly, the yellow tetrazolium MTT dye is reduced by mitochondrial reductase enzymes to 

form insoluble purple formazan crystals. These crystals are then dissolved in an acidified alcohol to 

form a coloured solution. The amount of formazan formed is directly proportional to the amount of 

metabolically healthy cells. MTT (thiazolyl blue tetrazolium bromide, Sigma-Aldrich) solution was 

prepared to a concentration of 0.01 g/ml in phosphate-buffered saline (PBS). All MTT assays were 

performed in 24-well cell culture plates. For each well, media was aspirated and cells were treated 

with 125 µl MTT solution and 375 µl PBS. After 90 min incubation at 37°C, the MTT was removed 

and 500 µl of Isopropanol/Triton-X solution (50:1, 1% HCl-Isopropanol to 0.1% Triton-X) was added. 

The plates were gently shaken for approximately 5 min to allow the crystals to dissolve. Colorimetric 

readings were measured at a wavelength of 595 nm with an EL800 universal microplate reader (Bio-

Tek Instruments Inc.) and the KC Junior software (Bio-Tek Instruments Inc.).  

 

2.5 Transfections 
 

The XtremeGene HP transfection reagent (Roche) was used to transfect pDNA into both the MCF-

7 and MDA-MB-231 cell lines. Recommended protocols for each cell line from the manufacturer was 

used as starting point for optimising a transfection protocol. The pGIPZ-sc plasmid was used during 

the optimisation process as the pGIPZ plasmids also express turbo-Green Fluorescent Protein 

(tGFP). Various conditions such as cell confluency, amount of pDNA and the ratio of 

pDNA:transfection reagent were tested in a 24-well cell culture plate format. Transfection efficiency 

was determined by visualising tGFP expression with live cell imaging with the 10X objective on the 

Olympus® Cell^R system and Olympus® IX81 inverted fluorescence microscope (Olympus® 

Biosystems, GMBH Japan) with a Xenon-Arc burner (Olympus® Biosystems, GMBH Japan) as light 

source and a UBG triple-bandpass emission filter cube (Chroma).  

Once optimised, the following protocols were used in all transfections. For MCF-7 cells, cells were 

transfected at a confluency of 80-85%. A total of 2 µg pDNA was transfected per well (6-well plate) 

or 0.5 µg pDNA per well (24-well plate) in a ratio of 1:3 with the transfection reagent, prepared in 

200 µl pure DMEM per well (6-well plate) or 50 µl pure DMEM (24-well plate). pDNA-transfection 

reagent complexes were allowed to incubate for 40 min at RT before adding to wells in a drop-wise 
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manner. Transfection took place over 48 hours. For MDA-MB-231 cells, cells were transfected at a 

confluency of 75-80%. A total of 2 µg (6-well plate) or 0.5 µg (24-well plate) pDNA was transfected 

per well in a ratio of 1:2 with the transfection reagent, prepared in 200 µl or 50 µl pure DMEM, 

respectively. Complexes were allowed to incubate for 20 min at RT before adding to wells in a drop-

wise manner. Transfection took place over 48 hours.  

For transfections in 96-well cell culture plates, master-mix complexes of 1 µg per 100 µl pure DMEM 

were prepared. Each cell line’s respective ratio for pDNA-transfection reagent was maintained and 

were allowed to incubate for their respective incubation times, as described above. The complexes 

were then aliquoted (10 µl) into the appropriate wells.  

Transfection in Cos-7 cells were performed according to the manufacturer’s recommended protocol 

(2 µg pDNA in a ratio of 1:2 with transfection reagent, 30 min incubation for complex formation and 

48 hr transfection).  

For experiments where DXR treatments followed pDNA transfection, cells were transfected as 

described above. Following the 48 hr transfection period, media was removed from the wells and 

replaced with fresh media supplemented with the appropriate concentration of DXR.  

 

2.6 Caspase-Glo® assay 
 

The Caspase-Glo® Assay (Promega) is a luminescent assay that measures the activities of caspase 

3 and caspase 7 (markers of apoptosis). The assay employs a luminogenic substrate that is cleaved 

only by active caspase 3/7 to produce a luminescent signal that is directly proportional to the amount 

of caspase activity present within the sample. The assay was performed according to manufacturer’s 

instructions and all experiments were performed in 96-well cell culture plates. All steps were 

performed in reduced light environments as the reagent is light sensitive. The Caspase-Glo® reagent 

was prepared immediately before use by allowing the components to equilibrate to RT and then 

mixing the Caspase-Glo® buffer solution with the Caspase-Glo® substrate. Following transfection 

and treatment of cells, as described in above sections, an equal volume of Caspase-Glo® reagent 

was added to the media in each well (100 µl). The plates were allowed to incubate for 2 hrs at RT 

where after the entire contents of the wells were transferred to white-walled 96-well plates. These 

plates were used for taking the luminescence readings as it prevents cross-over signal from 

neighbouring wells. Luminescence was measured with a GloMax® 96 Microplate Luminometer 

(Promega) and the GloMax® software (Promega) using pre-installed settings for the Caspase-Glo® 

Assay. 
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2.7 Flow cytometry 
 

Flow cytometry was used to assess cell cycle distribution of a whole cell population. Propidium iodide 

(PI) was chosen to label cellular DNA. PI intercalates into the major groove of double-stranded DNA 

and is capable of producing a strong fluorescent signal (excitation at 488 nm, emission at 600 nm). 

The intensity of the fluorescent signal is directly proportional to the amount of DNA present; thus, 

cells in G2/M phase will have double the intensity of cells in G1 phase while cells in S phase will have 

intensities between G1 and G2/M. Since PI is also capable of binding double-stranded RNA, RNase 

A was used to degrade cellular RNA and to ensure that only cellular DNA is measured. PI and RNase 

A was purchased from Sigma. PI stock solutions were prepared to a concentration of 1 mg/ml in 

PBS and stored at 4°C covered in foil. Working solutions were prepared by further dilution with PBS 

to a final concentration of 50 µg/ml. Purchased RNase A had a concentration of 29 mg/ml and was 

stored at -20°C. Working solutions were prepared in PBS to a concentration of 100 µg/ml.  

For flow cytometry, experiments were conducted in 6-well cell culture plates. Media was removed 

from the wells and washed once with warmed PBS. Cells were trypsinised in 500 µl trypsin and 

triplicate wells of each experimental group were pooled to form one sample. To obtain any remaining 

cells left in the wells, the wells were rinsed with PBS that was then added to the corresponding 

sample. The samples were centrifuged at 1750 rpm for 4 min and washed once with PBS. Cells were 

fixed by resuspending the pellet in ice-cold 70% ethanol while vortexing (to avoid the formation of 

clumps) and incubated on ice for 1 hr. The cells were then centrifuged at 3000 rpm for 5 min and 

washed twice with PBS. The pellet was resuspended in 50 µl RNase A and 400 µl PI and the cells 

were allowed to stain for 30 min at RT. The cells were acquired and processed with the BD 

FACSDiVa v6.1.3 software on the BD FACSAria™ cell sorter (Benton Dickinson, USA) with a 

minimum of 10000 events. Results were analysed on ModFit LT software (Verity software house, 

Inc., ME, USA) to determine the percentage of cells in each phase of the cell cycle (apoptosis peaks 

were excluded during the analysis). 

 

2.8 Wound healing assay 
 

Wound healing assays, also known as scratch assays, were performed to assess cellular migration. 

The assay is based on the ability of cells, from a confluent monolayer, to move into and refill a gap 

over time. In order to exclude the effects of cellular proliferation, cells are treated with a cytostatic 

agent such as Mitomycin C (MMC). MMC is a powerful DNA crosslinker and inhibits the synthesis of 

DNA. MMC was purchased from Sigma and prepared to a concentration of 0.4 mg/ml in sterile PBS. 

Aliquots were covered in foil as MMC is light sensitive and stored at 4°C. The optimal concentration 

required for inhibition of cellular proliferation was determined in dose response experiments. MCF-7 
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and MDA-MB-231 cells were seeded onto sterile glass microscope coverslips in 6-well cell culture 

plates. Cells were treated with a concentration range derived from literature, namely 1 µg/ml, 2 µg/ml, 

5 µg/ml and 10 µg/ml (Connolly et al., 2010; Goel and Gude, 2011; Li et al., 2012). After 24 hrs cells 

were prepared for staining with the nuclear dye Hoechst. The coverslips were removed from the 

wells and gently washed with PBS. Cells were fixed with 100% ice-cold methanol for 5 min and 

washed three times with PBS. A volume of 200 µl 10 µg/ml Hoechst 33342 (prepared in PBS, Sigma-

Aldrich) were added onto each coverslip and incubated for 10 min to allow for staining of DNA. After 

staining, the coverslips were washed three times with PBS before being mounted onto a glass 

microscope slide with Dako Fluorescent Mounting Medium (Dako). Slides were allowed to dry at RT 

for 1 hr, sealed with clear nail polish and left to dry another hour. Slides were stored at -20°C. For 

fluorescent imaging, a total of nine images, at random fields of view, per slide were acquired on a 

Nikon Eclipse E400 microscope equipped with a DS-Fi2 colour digital camera (Nikon, Japan) with a 

DAPI barrier filter (excitation 340-380 nm, emission 435-483 nm). Nuclear counts were performed 

as an indication of cellular proliferation and compared to control groups at 0 and 24 hrs. 

For wound healing assays experiments were conducted in 6-well cell culture plates. Following 48 hr 

transfection, three wounds, or scratches, were made in each well with a sterile 200 µl pipette tip. The 

wells were washed once with warmed PBS to remove debri and refreshed with growth media. Control 

images at the 0 hr time-point were then taken. Brightfield images were acquired with the 4x objective 

on an Olympus® Cell^R system and Olympus® IX81 inverted fluorescence microscope (Olympus®, 

GMBH Japan). The microscope is equipped with a temperature-controlled incubator system that was 

set to 37°C and a motorized stage control that allows exact positions to be saved and accessed at 

a later point in time. For each well, the X, Y and Z coordinates of three positions across the three 

wounds were saved and applied in subsequent time-points. After the first images were acquired, the 

wells were refreshed with growth media supplemented with the appropriate concentration of DXR 

and MMC and incubated covered in foil. Since both DXR and MMC are light sensitive, it was decided 

to start with the treatment immediately after the first images were taken at 0 hr in order to avoid any 

prolonged exposure to light during the saving of the positions and image acquisition. Subsequent 

images were taken at 6 hr, 12 hr, 18 hr, and 24 hr time-points.  

Analyses of the images acquired during the wound healing assay were performed with ImageJ 

software. The area of wounds were calculated, in µm, by the software by demarcating the wounded 

area along the migration front on scaled images.  

The following formula was used to calculate the percentage of wound closure: 

𝑤𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎 𝑎𝑡 (0 ℎ𝑟) − 𝑤𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎 (𝑥 ℎ𝑟)

𝑤𝑜𝑢𝑛𝑑 𝑎𝑟𝑒𝑎 (0 ℎ𝑟)
 × 100 = % 𝑤𝑜𝑢𝑛𝑑 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑎𝑡 𝑥 ℎ𝑟 

The rate of wound closure was determined with the following equation: 

Stellenbosch University  https://scholar.sun.ac.za



50 
 

% 𝑤𝑜𝑢𝑛𝑑 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 (𝑥 ℎ𝑟)

𝑥
 = 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑤𝑜𝑢𝑛𝑑 𝑐𝑙𝑜𝑠𝑢𝑟𝑒 𝑎𝑡 𝑥 ℎ𝑟 (%. ℎ𝑟−1) 

 

2.9 Western blots 
 

2.9.1 Protein harvest from cells 
For protein harvest cells were seeded in 6-well cell culture plates. The radioimmunoprecipitation 

assay (RIPA) buffer (65 mM Tris, 154 mM NaCl, 1% NP-40, 1% Na-deoxycholate, 5 mM EDTA, 5 

mM EGTA, 0.1% SDS, pH 7.4) was used for cell lysis. Protease and phosphatase inhibitors (1 µg/ml 

Aprotinin, 1 µg/ml Leupeptin, 1 mM PMSF, 1 mM Na3VO4, 1 mM NaF and 1 µg/ml Benzamidine) 

were added to the RIPA buffer immediately before use.  

Following treatments, media was removed from the wells and the cells were trypsinised with 500 µl 

trypsin. The trypsinised cells from triplicate wells were pooled into one sample per experimental 

group. Samples were centrifuged at 2500 rpm for 5 min (MCF-7) or 1500 rpm for 3 min (MDA-MB-

231). Pellets were washed twice with PBS before resuspension in 200 µl RIPA buffer and were 

incubated on ice for 1 hr. Samples were then sonicated at 5 Amps for 10 sec while on ice and stored 

at -80°C before further processing. This freeze-thaw step was included to further promote the 

disruption of cellular membranes. When thawed, the foam (produced during sonication) was allowed 

to settle before centrifuging the samples at 13300 rpm for 2 min to pellet debri. The supernatant was 

removed and transferred to a clean centrifuge eppie. Extracted protein samples were stored at -

80°C. 

 

2.9.2 Protein harvest from tissues 
Tumour tissues were allowed to thaw on ice. A volume of 300-700 µl RIPA buffer (with protease and 

phosphatase inhibitors) was added to the tissue depending on its size. Surgical scissors, cleaned 

with 100% ethanol, was used to cut tissues into smaller pieces while on ice. The tissue was then 

homogenised with a KineMatica Polytron™ PT2100 homogeniser (Fisher Scientific) while on ice. 

The homogeniser was thoroughly cleaned with both distilled water and RIPA buffer between each 

tissue sample. The homogenised tissues was allowed to incubate on ice for 2 hrs before centrifuging 

at 12000 rpm for 20 min at 4°C. The supernatant, containing the extracted protein, was carefully 

removed while avoiding debri and fat and transferred to a clean centrifuged eppie and stored at -

80°C.  
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2.9.3. Bradford assay and sample preparation 
The Bradford assay was performed to quantify the amount of extracted protein in a sample. A 5X 

Bradford stock solution was prepared with 500 mg Coomassie Brilliant Blue G-250 dissolved in 250 

ml 95% ethanol and 500 ml phosphoric acid (filled to 1 l with distilled water) and filtered until brown. 

Working solutions were prepared at 1X concentration and filtered until brown. For each assay, a 

standard curve was prepared with bovine serum albumin (BSA, Roche) consisting of the following 

points: 0 µg (blank), 2 µg, 4 µg, 8 µg, 12 µg, 16 µg and 20 µg, in a final volume 100 µl and added to 

900 µl Bradford reagent. For each sample, 5 µl was diluted in 95 µl distilled water and 900 µl Bradford 

reagent. Absorbancies were measured on a Cecil CE 2021 spectrophotometer (Cecil Instruments) 

set to a wavelength of 595 nm and zeroed with a blank containing 100 µl distilled water and 900 µl 

Bradford reagent. Dilutions of samples were made in RIPA buffer if readings fell outside the standard 

curve. 

Results from the Bradford assay were used to calculate the volume of sample required to load either 

20 µg or 50 µg of total protein. A 3X Laemli’s sample buffer was used to prepare protein lysates for 

Western blots in a ratio of 2:1 (protein:buffer) with final concentrations (1X) of 62.5 mM Tris (pH 6.8), 

4% SDS, 10% glycerol, 0.03% bromophenol blue and 5% beta-mercaptoethanol.  

 

2.9.4 Western blots 
For Western blot experiments, one general protocol was followed for the majority of proteins while a 

separate protocol was followed for AHNAK.  

 

2.9.4.1 General Western blot protocol 

Western blot samples were prepared with the sample buffer either beforehand (stored at -80°C) or 

fresh. Before use, samples were mixed by vortex, heated at 95°C for 5 min and pulsed in a benchtop 

centrifuge. Samples were separated on 12% acrylamide gels prepared with the TGX™ Stain-Free™ 

FastCast™ Acrylamide Kit (Bio-Rad). These gels contain trihalo compounds that bind tryptophan 

residues within proteins without causing any changes in protein mobility. Upon exposure to UV light, 

a reaction takes place that produces a fluorescent signal that can be easily detected on both the 

acrylamide gel and transferred membrane. This technology allows one to obtain the total protein 

data for a Western blot which can be used for normalisation. The BLUeye Prestained Protein ladder 

(Genedirex®) was used as a molecular weight marker and the Tris/Glycine/SDS running buffer (Bio-

Rad) was used for gel electrophoresis. Gels were run at 100 V for 10 min and then at 150 V until the 

dye front reached the bottom of the gel (approximately 90 min). Gels were exposed to UV light for 

2.5 min on the ChemiDoc™ MP System (Bio-Rad) to activate the Stain-Free™ properties of the gel. 

For protein transfer, the Trans-Blot® Turbo™ RTA Mini PVDF Transfer kit (Bio-Rad) was used 

according the manufacturer’s instructions. Briefly, a polyvinylidene fluoride (PVDF) membrane was 
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activated in 100% methanol for 10 sec before soaking in the supplied transfer buffer for 

approximately 2 min, along with the blotting papers. Transfer stacks were assembled and the transfer 

was performed in the Trans-Blot® Turbo Transfer System under the following conditions: 2.5 A, 25 

V 10 min. Following protein transfer, membranes were rinsed in 100% methanol and allowed to air-

dry to promote fixation of proteins onto membranes. When dry, membranes were re-wetted in 100% 

methanol and then washed in tris-buffered saline-tween (TBS-T, 20 mM Tris, 137 mM NaCl, pH 7.6, 

0.1% Tween-20). Total protein images of membranes were obtained under UV light on the 

ChemiDoc™ MP System. Membranes were blocked in 5% milk (prepared in TBS-T) for 1 hour. After 

blocking membranes were washed three times for 5 min each in TBS-T. For primary antibody 

incubation, membranes were placed inside 50 ml centrifuge tubes containing the primary antibody 

(prepared in TBS-T, according to table 2.1) and placed on a rotator overnight at 4°C. On the following 

day, membranes were removed from the primary antibody and washed three times for 5 min each 

with TBST-T. Membranes were then incubated on secondary antibody (also in 50 ml centrifuge 

tubes, prepared in TBST-t , table 2.1) for 1 hr on a roller at RT. Membranes were washed three times 

for 5 min each before being developed on the ChemiDoc™ MP system with the Clarity™ ECL 

Substrate (Bio-Rad).  

 

Table 2.1: Details of antibodies used in Western blot experiments 

Primary 

Antibody 

Molecular 

Weight 
Concentration 

Secondary 

Antibody 
Concentration 

KIS (AHNAK) 

 

~700 kDa 

 

WB: 1:10 000 Anti-rabbit-HRP 1:10 000 

ICC: 1:100 Anti-rabbit-FITC 1:200 

IHC: 1:500 Anti-rabbit-FITC 1:200 

V16 (AHNAK) ~700 kDa WB: 1:200 Anti-goat-HRP 1:10 000 

cPARP 89 kDa WB: 1:1000 Anti-rabbit-HRP 1:10 000 

cCasp 7 18 kDa WB: 1:1000 Anti-rabbit-HRP 1:10 000 

E-cadherin 135 kDa WB: 1:1000 Anti-rabbit-HRP 

1:5000 (MDA-MB-

231) 

1:10 000 (MCF-7) 

Vimentin 57 kDa WB: 1:1000 Anti-rabbit-HRP 1:10 000 

Snail 29 kDa WB: 1:1000 Anti-rabbit-HRP 1:10 000 

All primary antibodies, with the exception of KIS, were obtained from Cell Signalling. Secondary anti-

rabbit-HRP is also from Cell Signalling, and anti-rabbit-FITC is from Jackson ImmunoResearch. 

Abbreviations: WB – Western blot; ICC – immunocytochemistry; IHC – immunohistochemistry; HRP 

– horseradish peroxidase; FITC – fluorescein isothiocyanate.  
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2.9.4.2. AHNAK Western blot protocol 

Western blot samples were prepared fresh for each experiment. Samples were mixed by vortex, 

heated at 95°C for 5 min and pulsed in a benchtop centrifuge. Samples were separated on 7.5% 

acrylamide gels prepared with the TGX™ Stain-Free™ FastCast™ Acrylamide Kit (Bio-Rad). The 

HiMark™ Pre-stained Protein ladder (Thermo Scientific) was used as a molecular weight marker 

and the Tris/Glycine/SDS running buffer (Bio-Rad) was used for gel electrophoresis.  Gels were run 

at 100 V for 10 min and then at 200 V for 1.5-2 hrs. Gels were exposed to UV light for 2.5 min on the 

ChemiDoc™ MP System (Bio-Rad) to activate the Stain-Free™ properties of the gel. Proteins were 

transferred onto Immobilon-FL 0.45 µm PVDF membranes (Merck Millipore) in a wet-transfer system 

with cold Towbin transfer buffer (25 mM Tris, 192 mM Glycine, 10% methanol, 0.05% SDS). 

Membranes were activated in 100% methanol for 15 sec before being soaked in transfer buffer for 

5 min, along with extra thick blotting paper (Bio-Rad). Transfer stacks were assembled and placed 

into a tank along with an ice-pack. Proteins were transferred under constant ampere of 200 mAmps 

for 2 hr. Following protein transfer, membranes were rinsed in 100% methanol and allowed to air-

dry to promote fixation of proteins onto membranes. When dry, membranes were re-wetted in 100% 

methanol and then washed in TBS-T. Total protein images of membranes were obtained under UV 

light on the ChemiDoc™ MP System. Membranes were blocked in 5% milk (prepared in TBS-T) for 

1 hour. After blocking membranes were washed three times for 5 min each in TBS-T. For primary 

antibody incubation, membranes were placed inside 50 ml centrifuge tubes containing the primary 

antibody (prepared in TBS-T, according to table 2.1) and placed on a rotator overnight at 4°C. On 

the following day, membranes were removed from the primary antibody and washed three times for 

5 min each with TBST-T. Membranes were then incubated on secondary antibody (also in 50 ml 

centrifuge tubes, prepared in TBST-t , table 2.1) for 1 hr on a roller at RT. Membranes were washed 

three times for 5 min each before being developed on the ChemiDoc™ MP system with the Clarity™ 

ECL Substrate (Bio-Rad). The KIS antibody, designed to recognise the internal CRU region of the 

AHNAK protein, was a kind gift from Dr Jacques Baudier (French Institute of Health and Medical 

Research, Paris, France). The V16 antibody, designed to recognise the C-terminal domain of 

AHNAK, was purchased from Santa Cruz Biotechnology Inc. 

 

2.9.4.3. Analysis of Western blots 

The Bio-Rad Image Lab™ software (version 5.1) was used for analyses of Western blot results. The 

intensities of protein-specific bands were determined and exported to Microsoft Excel. Total protein 

intensities were also obtained and exported and were used for normalisation of protein-specific 

results.  
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2.10 Immunofluorescence 
 

2.10.1 Immunocytochemistry 
For immunocytochemistry cells were seeded onto sterile glass microscope coverslips in 6-well cell 

culture plates. Following treatments the coverslips were removed from the wells and gently washed 

twice with PBS. Cells were fixed with 100% ice-cold methanol for 5 min and then washed three times 

with PBS. The coverslips were covered with 200 µl blocking solution (1% BSA, prepared in PBS) 

and incubated for 1 hr at RT. The blocking solution was then removed and the primary antibody 

solution was added directly onto the coverslips without washing. All primary antibodies were 

prepared in blocking solution according to the concentrations listed in table 2.1. Secondary antibody 

controls (groups not stained with primary antibodies) were covered with PBS. The coverslips were 

then incubated in a humidified chamber overnight at 4°C. On the following day, the coverslips were 

washed three times with PBS and then covered with secondary antibody (prepared in blocking 

solution, table 2.1) and allowed to incubate for 1 hr at RT. The coverslips were washed three times 

with PBS before being stained with 10 µg/ml Hoechst 33342 for 10 min.  Finally, the coverslips were 

washed three times with PBS and then mounted onto glass microscope slides with Dako Fluorescent 

Mounting Medium (Dako). The slides were dried for 1 hr at RT, sealed with clear nail polish and then 

dried for another hour. Slides were stored protected from light at -20°C. Images were acquired with 

the Zen Imaging software on the Carl Zeiss LSM780 Confocal microscope (Carl Zeiss, Germany) 

using the 60x oil immersion objective and the 405 nm and 488 nm excitation lasers for Hoechst and 

FITC, respectively, detected in the emission ranges of 450-490 nm and 520-540 nm, respectively.  

2.10.2 Immunohistochemistry 
Tumour tissues were sectioned into 10 µm sections with a Leica CM1100 cryostat (Leica 

Biosystems) and allowed to attach onto glass microscope slides. Three sections of three different 

internal regions of the tissue were obtained per animal, with a total of three animals per group. 

Sections were encircled with a water repelling delimiting pen (Dako) to ensure optimal coverage with 

solutions. Sections were washed once with PBS before being fixed in 100% ice-cold methanol for 5 

min. Sections were then washed three times with PBS and blocked in blocking solution (1% BSA, 

prepared in PBS) for 45 min. After blocking, the solution was removed and sections were covered in 

primary antibody without washing (prepared in blocking solution, table 2.1). Secondary antibody 

controls were covered in PBS. Incubation took place overnight in a humidified chamber at 4°C. On 

the following day, the sections were washed three times with PBS. Secondary antibody (prepared in 

blocking solution, table 2.1) were added to the sections and incubated for 1 hr at RT. Sections were 

washed three times in PBS and then stained with 10 µg/ml Hoechst 33342 for 15 min at RT.  Lastly, 

sections were washed again three times with PBS before coverslips were mounted onto the slides 

with Dako Fluorescent Mounting Medium (Dako). The slides were dried for 1 hr at RT, sealed with 

clear nail polish and then dried for another hour. Slides were stored protected from light at -20°C. 
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Images were acquired with the Zen Imaging software on the Carl Zeiss LSM780 Confocal 

microscope (Carl Zeiss, Germany) using the 60x oil immersion objective and the 405 nm and 488 

nm excitation lasers for Hoechst and FITC, respectively, detected in the emission ranges of 450-490 

nm and 520-540 nm, respectively. 

 

2.11 In vivo study – Tumour-bearing animal model 
 

2.11.1 Mouse strain and tumour cell line 
Ethical clearance for the in vivo animal study was obtained from the Stellenbosch University Ethical 

Committee (no. SU-ACUM13-00027). Six-week old female C57BL/6 mice were obtained from the 

University of Cape Town animal breeding facility. Mice were kept at the Stellenbosch University 

animal facility under temperature controlled conditions and a reverse dark-light cycle. Standard 

mouse pellets and tap-water were available ad lib. A total of 48 mice were used in the study and 

were divided into three groups of 16. The groups were designated as tumour control (TC), low dose 

DXR (LD-DXR) and high dose DXR (HD-DXR). Mice were routinely monitored and weighed twice a 

week until experiments were initiated, where after the mice were weighed every second day. 

Experiments were initiated when mice were 10 weeks old. The murine E0771 breast cancer cell line 

was used for the establishment of tumours in mice. This particular cell line is syngeneic to the 

C57BL/6 mice, allowing for a more physiological model. 

 

2.11.2 Tumour establishment 
E0771 cells were maintained and cultured under the same conditions described in section 2.2. To 

prepare the cells for injection, cells were trypsinised, counted and resuspended in Hank’s Balanced 

Salt Solution (HBSS, Sigma-Aldrich). An appropriate amount of cells were added, in a 1:1 ratio, to 

Corning® Matrigel® Basement Membrane Matrix (9.2 mg/ml protein, BD Biosciences) and kept on 

ice until injection to prevent the Matrigel® from solidifying. Matrigel® is a basement membrane 

extract obtained from Engelbreth-Holm-Swarm mouse tumour and consists of a mixture of 

extracellular matrix proteins such as laminin, collagen IV and heparin sulphate proteoglycans and 

growth factors such as TGF-β, EGF and FGF. The use of Matrigel® enhances the establishment of 

tumours and provides an optimal and more physiological environment for tumour growth. A total of 

250000 cells in 100 µl was injected subcutaneously with a 23 gauge needle at the fourth mammary 

fat pad of each mouse. Mice were monitored every second day for tumour growth. Tumour 

dimensions were obtained with digital callipers where the length was taken as the longest dimension 

and width as the dimension perpendicular to length. These values were used to calculate tumour 

volume with the following equation:  
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𝑙𝑒𝑛𝑔𝑡ℎ × 𝑤𝑖𝑑𝑡ℎ2

2
= 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑚𝑚3) 

 

2.11.3 DXR treatments 
Stock DXR solutions for mice treatments were prepared to a concentration of 2 mg/ml in HBSS. Mice 

in the LD-DXR group received three doses of 2 mg/kg DXR (cumulative dose of 6 mg/kg) while mice 

in the HD-DXR group received three doses of 5 mg/kg DXR (cumulative dose of 15 mg/kg). Control 

mice received injections of HBSS. DXR treatments were initiated once tumours were palpable and 

were administered every third day by means of intraperitoneal injection with a 25 gauge needle. The 

weight of the animal was determined before the treatment was prepared. Further dilutions of DXR 

were performed in HBSS and the finale volume for injection was 100 µl.  

 

2.11.4 Animal sacrifice and tissue harvesting 
The endpoint of the study was reached when tumours reached a volume of 400 mm3. Humane 

endpoints were established upon the occurrence of bleeding ulcers at the tumour sites or in the event 

of weight loss larger than 10% of the previous weight measurement.  Mice were anaesthetised with 

isofluorane (Isofor, Safeline Pharmaceuticals) before being sacrificed by means of exsanguination 

by drawing blood straight from the heart (as part of another study). Tumours were carefully excised 

and cut into two parts. One part, to be used for Western blot experiments, was snap-frozen in liquid 

nitrogen and subsequently stored at -80°C. The second part, to be used for immunohistochemistry, 

was mounted onto a piece of cardboard with tissue freezing medium (Leica Biosystems) and frozen 

in ice-cold isopentane, and also stored at -80°C. 

 

2.12 Statistical analyses 
All statistical analyses were performed in Statistica 13 (Dell Inc.). Data were assessed for normality 

and the appropriate tests were performed, including paired t-tests, Kaplan-Meier survival analysis, 

one-and two-way ANOVA’s with Fisher’s least significance difference test as post hoc test and 

ANCOVA. Mean values ± standard error of the mean (SEM) are reported and letters were used to 

indicate significance (i.e. differences in groups with a matching letter are not statistically significant). 

A value of p < 0.05 was taken as the minimum level of significance.  
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Chapter 3 : Results 

 

3.1 Molecular cloning 
 

3.1.1 Preparation of pGIPZ plasmids 
The GIPZ™ Lentiviral shRNA set was selected to contain four plasmids expressing AHNAK-targeting 

shRNA’s and one non-silencing negative control shRNA-expressing plasmid. All four specific 

shRNA’s were confirmed to target both human and mouse AHNAK transcripts by means of sequence 

alignment. Inoculums of the five pGIPZ plasmids were successfully prepared in competent cells 

where after maxiprep plasmid extractions were performed to isolate the plasmids. Three elutes, in 

nuclease-free water, were obtained per plasmid (table 3.1). In all subsequent experiments, pGIPZ-

sc were used as the corresponding control.  

 

Table 3.1: pGIPZ plasmid details and Nanodrop results 

Plasmid 

name 
Clone ID Mature antisense sequence Elute 

[Plasmid] 

(ng/µl) 

A260/280 

value 

A260/230 

value 

pGIPZ-

AHNAK1 

V2LMM_

103568 
TAAGTCAATATCAGGCATG 

1 578.99 1.82 2.00 

2 326.76 1.87 1.92 

3 140.45 1.90 2.10 

pGIPZ-

AHNAK2 

V2LMM_

103569 
TTAATGTCCACTTTGGGTC 

1 819.91 1.85 1.97 

2 410.62 1.87 2.10 

3 229.91 1.88 2.05 

pGIPZ-

AHNAK3 

V2LMM_

103572 
TTCTAAATCAACTTTAGGC 

1 454.17 1.85 2.11 

2 299.12 1.86 2.11 

3 237.88 1.86 2.02 

pGIPZ-

AHNAK4 

V2LMM_

103574 
TAATGTCCAAGTCGGATCC 

1 557.63 1.83 2.06 

2 336.33 1.89 2.10 

3 130.64 1.90 1.97 

pGIPZ-

sc 

Non-

silencing 
Not supplied 

1 435.83 1.86 2.08 

2 291.31 1.88 2.09 

3 127.54 1.87 1.87 
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3.1.2 Subcloning of AHNAK constructs 
The large size of the AHNAK protein does not allow for cloning or transfection of the entire sequence 

to facilitate overexpression and therefore, constructs coding different regions of the protein were 

sourced. The pM-DY and pC-DY plasmids (pcDNAI/Amp backbone) expressing regions of the CRU 

and C-terminal domains of AHNAK (hereafter referred to as the CRU and Cterm constructs, 

respectively) were generously provided by Prof Silvère van der Maarel (Leiden University Medical 

Center, Leiden, The Netherlands). The CRU construct covers 510 aa of four complete units of the 

CRU domain (residue 820-1330) while the Cterm construct corresponds to the entire C-terminal 

domain (1002 aa) (Huang et al., 2007; Nie et al., 2000). Even though the CRU construct comprises 

of only four repeated units, the successful use of this particular construct and other similar constructs 

have been demonstrated in literature (Huang et al., 2007, 2008; Lee et al., 2004).  

The plasmids were transformed into competent cells and a diagnostic restriction enzyme digest was 

performed to verify the presence of a construct with the expected size (fig. 3.1). An empty 

pcDNAI/Amp plasmid has a size of 4.8 kb while the CRU and Cterm constructs has sizes of 1530 

bp and 3006 bp, respectively. The identity of the constructs were also confirmed with sequencing 

(performed by Inqaba Biotec).  

 

 

Figure 3.1: Agarose gel showing results from diagnostic restriction enzyme digest. Plasmids 
contained inserts of the expected size and could be successfully digested with the BamHI and EcoRI 
restriction enzymes 
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Following positive identification, the CRU and Cterm constructs were subcloned into the pcDNA3.1 

(+) plasmid (fig. 3.2). Plasmids pM-DY and pC-DY were digested with BamHI and EcoRI restriction 

enzymes and the products were separated on an agarose gel. Digested CRU and Cterm constructs 

were then purified from the gel and ligated into linearised pcDNA3.1 (also with BamHI and EcoRI). 

Ligations were transformed into competent cells and colonies were picked to prepare inoculums. 

The pDNA was extracted with a miniprep extraction and diagnostic restriction enzyme digests with 

BamHI and EcoRI enzymes were performed to screen for positive clones. A digest reaction with a 

positive clone showed the expected sizes of a linearised pcDNA3.1 plasmid (5.4 kb) and the CRU 

and Cterm constructs (1530 bp and 3006 bp, respectively). Once identified, a maxiprep plasmid 

extraction was performed to obtain sufficient pDNA for further experiments (fig. 3.2, table 3.2). 

 

Figure 3.2: Schematic representation of generation of pcDNA3-CRU and pcDNA3-Cterm plasmids. 
Plasmid map generated with SnapGene™. 
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Figure 3.3: Agarose gel showing results of diagnostic restriction enzyme digest. Positive clones with 
successful ligation of the CRU and Cterm constructs into pcDNA3.1 were identified 

 

Table 3.2: Results for maxiprepped plasmid DNA of subcloned constructs 

Plasmid name Elute [Plasmid] (ng/µl) A260/280 value A260/230 value 

pcDNA3-CRU 

1 784.48 1.90 2.29 

2 263.45 1.91 2.24 

3 532.80 1.83 2.13 

pcDNA3-Cterm 

1 820.30 1.90 2.27 

2 357.42 1.90 2.20 

3 165.83 1.90 2.17 

 

 

To determine whether the subcloned CRU and Cterm constructs could be successfully expressed 

from the generated plasmids, transfections in an easily transfectable cell line, Cos-7, were 

performed. Protein extractions were prepared followed by Western blot experiments where the 

expression of the CRU and Cterm proteins were assessed. Based on literature, the CRU construct 

produces a protein of 98 kDa while the Cterm construct generates a 170 kDa protein (Nie et al., 

2000). Only the KIS AHNAK antibody (recognising CRU) could be sourced from another research 

group while a commercial antibody designed to recognise the C-terminal domain (AHNAK V16) was 

purchased. Western blot experiments revealed bands of an appropriate size for CRU in both pM-DY 

and pcDNA3-CRU transfected samples (fig. 3.4). No bands were however observed for the Cterm 
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constructs (pC-DY or pcDNA3-Cterm transfected samples), possibly indicating that the purchased 

antibody was not capable of recognising the Cterm protein. At this point it was decided to continue 

with only the CRU construct. In all subsequent experiments, an empty pcDNA3.1 plasmid was used 

as the corresponding control.  

 

Figure 3.4: Upper section of Western blot for CRU and Cterm constructs in transfected Cos-7 cells. 
The membrane was probed with the AHNAK KIS antibody to detect the CRU construct (a), stripped 
and then re-probed with the AHNAK V-16 antibody to detect the Cterm construct (b).  

 

3.2 The effects of DXR on AHNAK 
 

3.2.1 Comparing the MCF-7 and MDA-MB-231 breast cancer cell lines 
Dose response curves for the MCF-7 and MDA-MB-231 cells lines were established following 

treatment with DXR for 24 hrs in order to identify concentrations suitable for further experiments. 

Mean values of treatments were compared to control values and the results were analysed with a 

one-way ANOVA. Compared to the control group (100% ± 1.42%) no significant loss of viability was 

observed in the MCF-7 cells at a dose of 0.1 µM, while further increasing concentrations resulted in 

significant cell death with viabilities of only 45.09% ± 1.27% (p < 0.0001) and 35.51% ± 1.61% (p < 

0.0001) at higher doses of 5 µM and 10 µM respectively (fig. 3.5). In the MDA-MB-231 cells a 

significant loss of viability was observed only at the highest dose of 10 µM (80.75% ± 2.08%, p < 

0.0001) when compared to the control group (100% ± 1.53%) (fig. 3.6). The viability of the 0.1 µM 

group (106.22% ± 5.10%) was however significantly different from the viability of the 2.5 µM (97.04% 

± 1.91%, p < 0.05), 5 µM (96.53 ± 2.05%, p < 0.05) and 10 µM (80.75% ± 2.08%, p < 0.0001) groups. 

For further experiments, a low dose of 0.1 µM and a high dose of 5 µM was selected. These results 

also confirm the sensitivity of MCF-7 cells and the resistance of MDA-MB-231 cells to DXR.  
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MCF-7 viability following DXR treatment for 24 hrs

N=3, vertical bars denote +/- standard errors
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Figure 3.5: Mitochondrial reductive capacity, as a measure of cell viability, of MCF-7 cells following 
DXR dose response experiments. 

 

MDA-MB-231 viability following DXR treatment for 24 hrs
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Figure 3.6: Mitochondrial reductive capacity, as a measure of cell viability, for MDA-MB-231 cells 
following DXR dose response experiments. 
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To further describe the cytotoxic effect of DXR on these cells protein extractions were performed 

following treatment with a range of DXR concentrations for 24 hrs. Western blot experiments were 

performed to assess the protein expression of two markers of apoptosis, namely cleaved caspase 7 

(cCasp7) and cleaved PARP (cPARP). Casp7 is an executioner caspase that is active in its cleaved 

form in the final commitment stage of apoptosis while PARP is a DNA repair protein that is inactivated 

through cleavage by, amongst others, cCasp7 (Germain et al., 1999). cCasp7 was used as a marker 

instead of cCasp3, another commonly used caspase marker, as MCF-7 cells are known to not 

express cCasp3 (Jänicke et al., 1998; Yang et al., 2007). An increase in the cleaved form of both 

these markers indicate increased levels of apoptosis. After processing data from multiple Western 

blots, the arbitrary values were analysed with an one-way ANOVA. As expected, DXR treatment 

induced significant increases in both apoptotic markers in MCF-7 cells at concentrations that resulted 

in significant cell death (fig. 3.7). Compared to control (0.31 ± 0.05), cPARP showed a significant 

increase in expression at the 2.5 µM (0.97 ± 0.16, p < 0.01) and 5 µM (1.14 ± 0.29, p < 0.01) groups 

(fig. 3.8). Similarly, cCasp7 showed a significant increase in expression at 5 µM when compared to 

the control group (2.43 ± 0.27 vs. 3.70 ± 0.45, p < 0.001) (fig. 3.9). In contrast, significant decreases 

in protein expression of the apoptotic markers were observed in the MDA-MB-231 cells (fig. 3.7). 

Compared to the control group cPARP showed a significant decrease at 5 µM DXR (1.29 ± 0.24 vs. 

1.01 ± 0.19, p < 0.05) (fig. 3.10). Significant decreases in cCasp7 expression was observed even at 

the lower doses of 0.1 µM (0.35 ± 0.03, p < 0.0001), 1 µM (0.31 ± 0.03, p < 0.0001) and 2.5 µM (0.34 

± 0.03, p < 0.0001) DXR when compared to the control (0.55 ± 0.08) (fig. 3.11). At the high dose of 

5 µM cCasp7 did show an increase in expression (0.45 ± 0.05, p < 0.05 when compared to lower 

doses) although it remained significantly lower than the control (p < 0.05).  

 

 

Figure 3.7: Representative images of Western blot experiments for cPARP and cCasp7 in MCF-7 
and MDA-MB-231 cells following 24 hrs treatment with increasing concentrations of DXR. 
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cPARP protein expression in MCF-7 cells following DXR treatment for 24 hrs
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Figure 3.8: Increased cPARP protein expression in MCF-7 cells following 24 hr DXR treatment. 
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Figure 3.9: Increased cCasp7 protein expression in MCF-7 cells following 24 hr DXR treatment. 
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cPARP protein expression in MDA-MB-231 cells following DXR treatment for 24 hrs
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Figure 3.10: Decreased cPARP protein expression in MDA-MB-231 cells following 24 hr DXR 
treatment. 
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cCasp7 protein expression in MDA-MB-231 cells following DXR treatment for 24 hrs
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Figure 3.11: Decreased cCasp7 protein expression in MDA-MB-231 cells following 24 hr DXR 
treatment. 

Basal levels of AHNAK protein expression were also compared between the MCF-7 and MDA-MB-

231 cell lines. Western blot experiments revealed that AHNAK is expressed at much higher levels in 

MDA-MB-231 cells than in MCF-7 cells (fig 3.12). 

 

 

Figure 3.12: Representative image of Western blot experiments for basal AHNAK protein expression 
in MCF-7 and MDA-MB-231 cells. 
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3.2.2 DXR affects AHNAK protein expression in vitro 
Western blot experiments were performed to asses AHNAK protein expression following treatment 

with DXR for 24 hrs. MCF-7 cells displayed a drastic decrease in AHNAK protein expression across 

all concentrations of DXR when compared to the control (1.81 ± 0.39 vs. 0.35 ± 0.14 at 0.1 µM, vs. 

0.24 ± 0.11 at 1 µM, vs. 0.19 ± 0.09 at 2.5 µM, vs. 0.35 ± 0.13 at 5 µM, all p < 0.0001) (fig. 3.13, 

3.14). In contrast, MDA-MB-231 cells displayed dose-dependent changes in protein expression (fig. 

3.13). Increased protein expression was observed at the low dose of 0.1 µM when compared to the 

control (2.45 ± 0.31 vs. 2.97 ± 0.40, p < 0.05), followed by a decreasing trend in expression with 

increasing DXR concentrations which reached significance at the high dose of 5 µM (1.56 ± 0.29, p 

< 0.01) (fig. 3.15). AHNAK protein expression was also assessed after 48 hrs of treatment with low 

and high doses of DXR. MCF-7 cells again exhibited decreased levels of AHNAK protein expression 

at the low dose of 0.1 µM DXR (1.25 ± 0.26 vs. 0.62 ± 0.10, p < 0.05, analysed with t-test) (fig. 3.13, 

3.16), however protein expression in these cells could not be assessed following a high dose 

treatment of 5 µM DXR as the treatment results in almost complete loss of cell viability. In MDA-MB-

231 cells, AHNAK protein expression again increased at 0.1 µM (1.65 ± 0.27 vs. 2.42 ± 0.42, p < 

0.01) and decreased at 5 µM, although this decrease was no longer statistically significant when 

compared to the control group (fig. 3.13, 3.17).  

 

Figure 3.13: Representative images of Western blot experiments for AHNAK following 24 hr (a) 
and 48 hr (b) DXR treatment in MCF-7 and MDA-MB-231 cells. 
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AHNAK protein expression in MCF-7 cells following DXR treatment for 24 hrs
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Figure 3.14: Drastic decrease in AHNAK protein expression in MCF-7 cells following 24 hr DXR 
treatment.  
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AHNAK protein expression in MDA-MB-231 cells following DXR treatment for 24 hrs
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Figure 3.15: Dose-dependent changes in AHNAK protein expression in MDA-MB-231 cells 
following 24 hr DXR treatment. 
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Figure 3.16: Decrease in AHNAK protein expression in MCF-7 cells following 48 hr DXR treatment. 
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AHNAK protein expression in MDA-MB-231 cells following DXR treatment for 48 hrs
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Figure 3.17: Dose-dependent changes in AHNAK protein expression in MDA-MB-231 cells 
following 48 hr DXR treatment.  

 

3.2.3 DXR does not affect the intracellular localisation of AHNAK 
Immunocytochemistry experiments were performed to determine whether DXR treatment can affect 

the intracellular localisation of AHNAK. Cells were seeded on microscope coverslips and treated with 

a low and high dose of DXR for 24 and 48 hrs. Following treatment the cells were processed for 

immunostaining where AHNAK was labelled with FITC (green) and nuclear DNA was stained with 

Hoechst (blue). All images were assessed qualitatively for changes in localisation only. AHNAK 

displayed a diffuse cytoplasmic localisation in subconfluent or single MCF-7 cells whereas confluent 

or cells that have formed cell-cell contacts also displayed an intense plasma membrane-associated 

pattern (fig. 3.18). No changes in localisation was however observed when cells were treated with 

DXR for 24 or 48 hrs (a high dose treatment was again not performed for 48 hrs due to almost 

complete cell death). In MDA-MB-231 cells AHNAK displayed a cytoplasmic localisation with a 

network-like appearance (fig. 3.19). Localised areas of intense signal were also observed at the 

plasma membrane as well as what appears to be vesicle-like structures. These structures were 

mostly located in close proximity to the nucleus. Again, no changes in localisation was observed 

when cells were treated with DXR for 24 or 48 hrs.  
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Figure 3.18: Representative immunofluorescent images of AHNAK intracellular localisation in MCF-
7 cells following 24 hr DXR treatment. FITC – AHNAK; Hoechst 33342 – nuclear DNA; yellow arrows 
– cytoplasmic staining of single cell; white arrows – intense plasma membrane-associated staining 
of cells with cell-cell contacts. Scale = 10 µm, 60x objective.  
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Figure 3.19: Representative immunofluorescent images of AHNAK intracellular localisation in MDA-
MB-231 cells following 24 hr DXR treatment. FITC – AHNAK; Hoechst 33342 – nuclear DNA; yellow 
arrows – localised areas of intense signal at plasma membrane; white arrows – localised areas of 
intense signal in vesicle structures. Scale = 10 µm, 60x objective. 
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Figure 3.20: Representative immunofluorescent images of AHNAK intracellular localisation in 
MCF-7 cells following 48 hr DXR treatment. FITC – AHNAK; Hoechst 33342 – nuclear DNA; white 
arrows – localised areas of intense signal in cells with cell-cell contacts. Scale = 10 µm, 60x 
objective.  
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Figure 3.21: Representative immunofluorescent images of AHNAK intracellular localisation in 
MDA-MB-231 cells following 48 hr DXR treatment. FITC – AHNAK; Hoechst 33342 – nuclear DNA; 
white arrows – localised intense signal in vesicle-like structures. Scale = 10 µm, 60x objective.  

 

3.2.4 DXR affects AHNAK protein expression in vivo 
A tumour-bearing mouse model was established to determine the effects of DXR treatment on 

AHNAK in vivo. A total of 48 female C57BL/6 mice was injected with the syngeneic E0771 breast 

cancer cell line in a 1:1 suspension of HBSS and Matrigel®. Upon the appearance of palpable 

tumours, the mice received either a low dose (6 mg/kg cumulative, LD-DXR group, N=16) or a high 

dose (15 mg/kg cumulative, HD-DXR group, N=16) while injections with the treatment vehicle was 

administered to the control animals (TC group, N=15). Mice were sacrificed once tumours reached 

a volume of 400 mm3.  
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Tumour formation in the mice were successful as 47 out of the 48 mice (97.92%) formed tumours. 

In addition, palpable tumours were observed from as early as day six after tumour cell injection and 

by day nine all 47 mice had formed palpable tumours. Measurements of animal weight and tumour 

volume were taken every second day. Individual animal weights remained mostly steady throughout 

the study and even though the average weight of the HD-DXR group revealed a decreasing trend, 

no mice had suffered a weight loss of more than 10% (fig. 3.22). Tumours grew rapidly in size over 

a period of 30 days with the first group of mice sacrificed 18 days after injection and the last group 

on day 30 (fig. 3.23). Humane endpoints were enforced for four mice that had developed bleeding 

ulcers and were thus sacrificed before the required tumour volume was achieved.  

 

 

Figure 3.22: Average weight of mice throughout study. Values next to data points indicate number 
of mice in group on day of measurement. Results presented as mean ± SEM with linear trendlines. 
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Figure 3.23: Average tumour volume throughout study. Values next to data points indicate number 
of mice in group on day of measurement. Results presented as mean ± SEM with linear trendlines. 

 

Tumour volumes in all three groups continued to increase throughout the study with trends of 

increased volumes in the LD-DXR and HD-DXR groups towards the end of the study when compared 

to the TC group (fig. 3.23). A qualified statistician was employed to perform the appropriate statistical 

analysis on this data, namely analysis of covariance (ANCOVA). An ANCOVA analysis employs both 

ANOVA and regression and in this case, determined whether the tumour growth rates between the 

three groups showed statistically significant differences. Indeed, both the LD-DXR and HD-DXR 

groups were shown to have significantly increased tumour growth rates when compared to the TC 

group (p < 0.05), as can be seen by the slope of each group’s regression line in figure 3.24.  

A Kaplan-Meier survival analysis was also performed to determine whether there were any 

differences between the groups in the time required to reach the desired tumour volume. Even 

though the curves for each group started to separate towards the end of the study, no statistically 

significant differences were found between the groups (p = 0.57) (fig. 3.25).  
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Figure 3.24: Scatterplot fitted with regression lines showing the tumour growth rate for each group.  
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Figure 3.25: Kaplan-Meier survival analysis showing the cumulative proportion of surviving mice 
throughout the study. Complete – sacrificed due to tumour volume requirement reached; censored 
– sacrificed due to humane endpoint reached.  
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Upon sacrifice tumours were harvested from the mice and protein extractions were performed. 

Western blot experiments were performed to assess protein expression of the apoptotic markers 

cPARP and cCasp7 and also AHNAK in the tumours. No significant changes were observed in the 

protein expression of cPARP although cCasp7 showed decreased expression in the LD-DXR group 

compared to the TC group (1.25 ± 0.26 vs. 0.75 ± 0.11, p < 0.05) (fig. 3.26-28). AHNAK showed 

increased protein expression in the LD-DXR group (1.28 ± 0.34 vs. 1.98 ± 0.32, p < 0.05) which 

decreased back to basal levels in the HD-DXR group (fig. 3.26, 3.29). 

 

 

Figure 3.26: Representative images of Western blot experiments for cPARP, cCasp7 and AHNAK 
protein expression in tumour samples. 
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Figure 3.27: cPARP protein expression in mouse tumours. 
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Figure 3.28: Decreased cCasp7 protein expression in mouse tumours. 
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AHNAK protein expression in mouse tumours following DXR treatment

N=9, vertical bars denote +/- standard errors
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Figure 3.29: Dose-dependent changes in AHNAK protein expression in mouse tumours. 

 

The intracellular localisation of AHNAK in mouse tumours was also determined by means of 

immunohistochemical staining (fig. 3.30). Nuclear staining (Hoechst) revealed tumours to be highly 

compact and dense. AHNAK (FITC) displayed a cytoplasmic localisation with localised areas of 

intense signal that was either perinuclear or plasma membrane-associated, although these areas 

could not be positively identified due to the compact nature of the tumours. No changes in localisation 

was however observed with DXR treatment.  
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Figure 3.30: Representative immunofluorescent images of AHNAK intracellular localisation in mouse 
tumours following DXR treatment. FITC – AHNAK; Hoechst 33342 – nuclear DNA; yellow arrows – 
localised areas of intense signal; white arrows – cytoplasmic staining. Scale = 10 µm, 60x objective.  

 

3.3 The effects of AHNAK on DXR 
 

3.3.1 Optimisation of transfection protocol 
Transfection protocols were optimised for the MCF-7 and MDA-MB-231 cell lines. The pGIPZ-sc 

plasmid was used for this and visualisation of tGFP expression was used to assess transfection 

efficiency. Representative images of the optimised protocol for each cell line can be seen in figure 
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3.31. These protocols delivered the highest efficiency together with the least amount of observed 

cell stress/death (assessed qualitatively). 

 

 

Figure 3.31: Representative images of optimised transfection protocols for MCF-7 and MDA-MB-231 
cells. (a) tGFP expression in transfected MCF-7 cells and (b) corresponding brightfield image. (c) 
tGFP expression in MDA-MB-231 and (d) corresponding brightfield image. Scale = 200 µm, 10x 
objective. 

 

Next, in order to identify the most suitable pGIPZ plasmid to use for AHNAK knockdown, 

transfections with all four pGIPZ-AHNAK plasmids, along with pGIPZ-sc as control, were performed. 

Cellular proteins were extracted and Western blot experiments were performed to assess AHNAK 

protein expression. In MCF-7 cells, pGIPZ-AHNAK3 resulted in the largest and most consistent 

decrease in AHNAK expression when compared to pGIPZ-sc (100 ± 12.82 vs. 31.64 ± 5.44, p < 

0.01) (fig. 3.32, 3.33). In MDA-MB-231 cells pGIPZ-AHNAK2 seemed to be the most suitable plasmid 

(100 ± 13.08 vs. 60.93 ± 6.68) however statistical significance could not be obtained (fig. 3.32, 3.34). 

This is attributed to the large amount of variance observed in pGIPZ-AHNAK1 (an ANOVA takes into 

account the total variance across all groups) and if the analysis was repeated with pGIPZ-AHNAK1 
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excluded then a statistically significant difference was obtained between pGIPZ-AHNAK2 and 

pGIPZ-sc (p < 0.001).  

 

 

Figure 3.32: Representative images of Western blots for AHNAK protein expression following 48 hr 
transfection with pGIPZ plasmids in MCF-7 and MDA-MB-231 cells.  
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Figure 3.33: Decreased AHNAK protein expression following 48 hr transfection with pGIPZ plasmids. 
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AHNAK protein expression in MDA-MB-231 cells following transfection 
with pGIPZ plasmids

N=4, vertical bars denote +/- standard errors
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Figure 3.34: Decreased AHNAK protein expression in MDA-MB-231 cells following 48 hr transfection 
with pGIPZ plasmids. 

 

3.3.2 AHNAK does not influence the cytotoxicity of DXR 
In order to determine whether AHNAK has the ability to influence the cytotoxicity of DXR, MTT 

assays were performed in MCF-7 and MDA-MB-231 cells following knockdown and overexpression 

of AHNAK. Mean values were compared to the corresponding control (pGIPZ-sc 0 µM and pcDNA3.1 

0 µM) and results were analysed with two-way ANOVAs. Knockdown of AHNAK in MCF-7 cells did 

not affect the cytotoxicity of DXR (fig. 3.35), although it did prevent the DXR-induced increase in 

viability observed at the low dose of 0.1 µM DXR (100% ± 2.35% at pGIPZ-sc 0 µM vs. 110.92% ± 

2.84% at pGIPZ-sc 0.1 µM, p < 0.05, no significant change between pGIPZ-AHNAK3 0 µM and 

pGIPZ-AHNAK3 0.1 µM). In MDA-MB-231 cells knockdown of AHNAK resulted in increased viability 

across all concentrations of DXR (100% ± 1.03% at pGIPZ-sc 0 µM vs. 125.06% ± 3.96% at pGIPZ-

AHNAK2 0 µM, p < 0.0001; 107.76% ± 3.45% at pGIPZ-sc 0.1 µM vs. 132.89% ± 5.69% at pGIPZ-

AHNAK2 0.1 µM, p < 0.0001; 90.94% ± 3.20% at pGIPZ-sc 5 µM vs. 102.46% ± 4.85% at pGIPZ-

AHNAK2 5 µM, p < 0.05), however the viability of the pGIPZ-AHNAK2 groups followed the same 

trend with DXR treatment as the pGIPZ-sc groups, indicating that AHNAK knockdown did not have 

an effect on DXR cytotoxicity (fig. 3.36).  

As with AHNAK knockdown, overexpression of the protein also did not affect the cytotoxicity of DXR. 

In MCF-7 cells AHNAK overexpression slightly decreased viability across all concentrations, with 
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significant differences at 0.1 µM (105.18% ± 3.12% vs. 92.13% ± 3.37%, p < 0.01) and 5 µM (52.70% 

± 3.09% vs. 38.10% ± 1.37%, p < 0.01) when compared to the respective pcDNA3.1 groups (fig. 

3.37). The same viability pattern in response to DXR treatment was however observed between the 

pcDNA3.1 and pcDNA3-CRU groups. Similarly, overexpression of AHNAK in MDA-MB-231 cells 

failed to affect DXR cytotoxicity in these cells (fig. 3.38). Instead, as with AHNAK knockdown, 

overexpression resulted in a general increase in viability across all groups (100% ± 2.14% at 

pcDNA3.1 0 µM vs. 117.04% ± 4.01% at pcDNA3-CRU 0 µM, p < 0.01; 106.96% ± 2.96% at 

pcDNA3.1 0.1 µM vs. 121.52% ± 3.74% at pcDNA3-CRU 0.1 µM, p < 0.05; 87.62% ± 4.07% at 

pcDNA3.1 5 µM vs. 106.55% ± 5.42% at pcDNA3-CRU 5 µM, p < 0.01). Although, where pGIPZ-

AHNAK2 5 µM showed a significant decrease in viability when compared to pGIPZ-AHNAK2 0 µM 

(125.06% ± 3.96% vs. 102.46% ± 4.85%, p < 0.001) (fig. 3.36), pcDNA3-CRU 5 µM was not 

significantly different from pcDNA3-CRU 0 µM.  
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Figure 3.35: Mitochondrial reductive capacity, as a measure of cell viability, of MCF-7 cells following 
AHNAK knockdown with pGIPZ-AHNAK3 transfection and DXR treatment for 24 hrs.  
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MDA-MB-231 viability following AHNAK knockdown and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 3.36: Mitochondrial reductive capacity, as a measure of cell viability, of MDA-MB-231 cells 
following AHNAK knockdown with pGIPZ-AHNAK2 transfection and DXR treatment for 24 hrs. 
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Figure 3.37: Mitochondrial reductive capacity, as a measure of cell viability, of MCF-7 cells following 
AHNAK overexpression with pcDNA3-CRU transfection and DXR treatment for 24 hrs. 
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MDA-MB-231 viability following AHNAK overexpression and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 3.38: Mitochondrial reductive capacity, as a measure of cell viability, of MDA-MB-231 cells 
following AHNAK overexpression with pcDNA3-CRU transfection and DXR treatment for 24 hrs. 

 

3.3.3 AHNAK partly modulates the activity and expression of apoptotic markers 
To determine the effect of AHNAK on apoptotic caspase 3 and 7 activity a Caspase-Glo® 3/7 assay 

was performed on MCF-7 and MDA-MB-231 cells following AHNAK knockdown and overexpression 

and DXR treatment. This assay measures the activity of active (or cleaved) caspase 3 and caspase 

7 proteins which serves as an indication of the level of apoptosis taking place, i.e. increased activity 

indicates increased apoptosis. Caspase activity in groups were compared to the corresponding 

control groups and results were analysed with two-way ANOVAs. Knockdown of AHNAK in MCF-7 

cells resulted in increased caspase 3/7 activity (100% ± 2.61% vs. 120.61% ± 4.51%, p < 0.0001) 

but no differences were observed in the presence of DXR (fig. 3.39). Similarly, AHNAK knockdown 

also resulted in a slight but significant increase in activity in MDA-MB-231 cells at DXR control 

conditions (100% ± 3.30% vs. 107.16% ± 0.41%, p < 0.05) with no further significant differences 

between the pGIPZ-sc and pGIPZ-AHNAK2 groups (fig. 3.40). Overexpression of AHNAK in MCF-

7 cells resulted in increased activity (100% ± 2.73% vs. 115.68% ± 3.76%, p < 0.01) and the low 

dose group (100.92% ± 3.42% vs. 115.12% ± 2.39%, p < 0.01) (fig. 3.41). In MDA-MB-231 cells, 

AHNAK overexpression maintained caspase 3/7 activity at fairly constant levels across all DXR 

concentrations (fig. 3.42), preventing the increased activity induced by 5 µM DXR in the pcDNA3.1 
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group (100% ± 1.19% at pcDNA3.1 0 µM vs. 120.34% ± 4.21% at pcDNA3.1 5 µM, p < 0.0001). 

Indeed, where 5 µM DXR induced caspase 3/7 activity in pGIPZ-AHNAK2 (107.16% ± 0.41% vs. 

117.96% ± 2.22%, p < 0.01), and with pGIPZ-sc 5 µM (100% ± 3.30% vs. 121.25% ± 2.40%, p < 

0.0001), the same dose failed to do so in pcDNA3-CRU transfected cells.  

 

Caspase 3/7 activity in MCF-7 cells following AHNAK knockdown and DXR treatment

N=4,  vertical bars denote +/- standard errors
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Figure 3.39: Caspase 3/7 activity, as a measure of cell death via apoptosis, in MCF-7 cells 
following AHNAK knockdown with pGIPZ-AHNAK3 and DXR treatment for 24 hrs.  
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Caspase 3/7 activity in MDA-MB-231 cells following AHNAK knockdown 

and DXR treatment

N=4, vertical bars denote +/- standard errors
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Figure 3.40: Caspase 3/7 activity, as a measure of cell death via apoptosis, in MDA-MB-231 cells 
following AHNAK knockdown with pGIPZ-AHNAK2 and DXR treatment for 24 hrs. 
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Figure 3.41: Caspase 3/7 activity, as a measure of cell death via apoptosis, in MCF-7 cells following 
AHNAK overexpression with pcDNA3-CRU and DXR treatment for 24 hrs. 
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Caspase 3/7 activity in MDA-MB-231 cells following AHNAK overexpression 

and DXR treatment

N=4, vertical bars denote +/- standard errors
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Figure 3.42: Caspase 3/7 activity, as a measure of cell death via apoptosis, in MDA-MB-231 cells 
following AHNAK overexpression with pcDNA3-CRU and DXR treatment for 24 hrs. 

 

Western blot experiments were also performed to assess the protein expression of apoptotic markers 

cPARP and cCasp7, as well as to confirm knockdown and overexpression of AHNAK. Decreased 

AHNAK protein expression following transfection with the pGIPZ-AHNAK3 and pGIPZ-AHNAK2 

plasmids were confirmed in knockdown experiments with MCF-7 (1.91 ± 0.35 at pGIPZ-sc 0 µM vs. 

0.82 ± 0.19 at pGIPZ-AHNAK3 0 µM, p < 0.0001) and MDA-MB-231 (5.72 ± 0.71 at pGIPZ-sc 0 µM 

vs. 3.54 ± 0.60 at pGIPZ-AHNAK2 0 µM, p < 0.01) cells, respectively (fig. 3.43, 3.45, 3.46). The 

expression of the CRU protein was also confirmed in both cell lines (fig. 3.44).  

As expected, 5 µM DXR induced significant increases in cPARP (0.78 ± 0.24 at pGIPZ-sc 0 µM vs. 

3.84 ± 1.07 at pGIPZ-sc 5 µM, p < 0.001) and cCasp7 (1.99 ± 0.51 at pGIPZ-sc 0 µM vs. 2.75 ± 0.62 

at pGIPZ-sc 5 µM, p < 0.05) expression in MCF-7 cells (fig. 3.43, 3.47, 3.48). The same response 

was observed with AHNAK knockdown, where cPARP (0.71 ± 0.28 at pGIPZ-AHNAK3 0 µM vs. 4.29 

± 1.41 at pGIPZ-AHNAK3 5 µM, p < 0.001) and cCasp7 (2.02 ± 0.53 at pGIPZ-AHNAK3 0 µM vs. 

3.45 ± 1.03 at pGIPZ-AHNAK3 5 µM, p < 0.001) was significantly increased when compared to the 

DXR control group. The high dose DXR treatment resulted in decreased cPARP protein expression 

in MDA-MB-231 cells (0.19 ± 0.04 at pGIPZ-sc 0 µM vs. 0.11 ± 0.01 at pGIPZ-sc 5 µM, p < 0.05) 

while a similar response was observed with AHNAK knockdown (0.16 ± 0.02 at pGIPZ-AHNAK2 0 
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µM vs. 0.08 ± 0.02 at pGIPZ-AHNAK2 5 µM, p < 0.05) (fig. 3.43, 3.49). A similar decrease in 

expression with a high dose DXR was observed for cCasp7 (0.34 ± 0.03 at pGIPZ-sc 0 µM vs. 0.25 

± 0.03 at pGIPZ-sc 5 µM, p < 0.01) however, here, AHNAK knockdown prevented the DXR-induced 

decrease and maintained cCasp7 levels at a fairly constant level so that it differed significantly from 

pGIPZ-sc 5 µM (0.34 ± 0.06 vs. 0.25 ± 0.03, p < 0.01) (fig. 3.43, 3.50).  

As with the knockdown experiments, a high dose of DXR induced significant increases in cPARP 

(0.46 ± 0.08 at pcDNA3.1 0 µM vs. 1.70 ± 0.42 at pcDNA3.1 5 µM, p < 0.0001) and cCasp7 (1.06 ± 

0.15 at pcDNA3.1 0 µM vs. 1.62 ± 0.13 at pcDNA3.1 5 µM, p < 0.01) protein expression in control 

transfected MCF-7 cells while the same response for both cPARP (0.45 ± 0.09 at pcDNA3-CRU 0 

µM vs. 1.98 ± 0.36 pcDNA3-CRU 5 µM, p < 0.0001) and cCasp7 (1.12 ± 0.04 at pcDNA3-CRU 0 µM 

vs. 1.83 ± 0.26 at pcDNA3-CRU 5 µM, p < 0.001) was observed with overexpression of AHNAK (fig. 

3.44, 3.51, 3.52). In MDA-MB-231 cells high dose DXR again resulted in decreased cPARP 

expression (2.59 ± 0.12 at pcDNA3.1 0 µM vs. 1.41 ± 0.10 at pcDNA3.1 5 µM, p < 0.0001), however 

overexpression of AHNAK also resulted in decreased cPARP expression (2.59 ± 0.12 at pcDNA3.1 

0 µM vs.1.78 ± 0.1 at pcDNA3-CRU 0 µM, p < 0.0001) which decreased further with 5 µM DXR 

treatment (1.78 ± 0.1 at pcDNA3-CRU 0 µM vs. 1.49 ± 0.03 at pcDNA3-CRU 5 µM, p < 0.05) (3.44, 

3.53). While DXR decreased cCasp7 protein expression at both the low and high dose DXR 

treatments (0.66 ± 0.08 at pcDNA3.1 0 µM vs. 0.30 ± 0.03 at pcDNA3.1 0.1 µM, p < 0.0001; vs. 0.28 

± 0.02 at pcDNA3.1 5 µM, p < 0.0001), AHNAK overexpression in these cells also decreased cCasp7 

expression (0.66 ± 0.08 at pcDNA3.1 0 µM vs. 0.25 ± 0.03 at pcDNA3-CRU 0 µM, p < 0.0001) to 

levels similar to those induced by DXR (fig. 3.44, 3.54).  

 

 

Figure 3.43: Representative images of Western blots for AHNAK, cPARP and cCasp7 protein 
expression in MCF-7 and MDA-MB-231 cells following AHNAK knockdown and DXR treatment for 
24 hrs. 
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Figure 3.44: Representative images of Western blots for CRU, cPARP and cCasp7 protein 
expression in MCF-7 and MDA-MB-231 cells following AHNAK overexpression and DXR treatment 
for 24 hrs. 
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Figure 3.45: Decreased AHNAK protein expression in MCF-cells following knockdown with pGIPZ-
AHNAK3 transfection and DXR treatment for 24 hrs.  
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AHNAK protein expression in MDA-MB-231 cells following knockdown 
and DXR treatment
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Figure 3.46: Decreased AHNAK protein expression in MDA-MB-231 cells following knockdown with 
pGIPZ-AHNAK2 transfection and DXR treatment for 24 hrs. 
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Figure 3.47: cPARP protein expression in MCF-7 cells in response to AHNAK knockdown with 
pGIPZ-AHNAK3 transfection and DXR treatment for 24 hrs. 
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cCasp7 expression in MCF-7 cells following AHNAK knockdown 

and DXR treatment

N=6, vertical bars denote +/- standard errors
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Figure 3.48: cCasp7 protein expression in MCF-7 cells in response to AHNAK knockdown with 
pGIPZ-AHNAK3 transfection and DXR treatment for 24 hrs. 
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Figure 3.49: cPARP protein expression in MDA-MB-231 cells in response to AHNAK knockdown 
with pGIPZ-AHNAK2 and DXR treatment for 24 hrs. 
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cCasp7 protein expression in MDA-MB-231 cells following AHNAK knockdown 

and DXR treatment
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Figure 3.50: cCasp7 protein expression in MDA-MB-231 cells in response to AHNAK knockdown 
with pGIPZ-AHNAK2 transfection and DXR treatment for 24 hrs. 
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Figure 3.51: cPARP protein expression in MCF-7 cells in response to AHNAK overexpression with 
pcDNA3-CRU transfection and DXR treatment for 24 hrs. 
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cCasp7 protein expression in MCF-7 cells following AHNAK overexpression 

and DXR treatment

N=6, vertical bars denote +/- standard errors
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Figure 3.52: cCasp7 protein expression in MCF-7 cells in response to AHNAK overexpression with 
pcDNA3-CRU transfection and DXR treatment for 24 hrs. 
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Figure 3.53: cPARP protein expression in MDA-MB-231 cells in response to AHNAK overexpression 
with pcDNA3-CRU transfection and DXR treatment for 24 hrs. 
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cCasp7 protein expression in MDA-MB-231 cells following AHNAK overexpression 

and DXR treatment

N=6, vertical bars denote +/- standard errors
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Figure 3.54: cCasp7 protein expression in MDA-MB-231 cells in response to AHNAK overexpression 
with pcDNA3-CRU transfection and DXR treatment for 24 hrs. 

 

3.3.4 AHNAK is required for DXR-induced cell cycle modulation 
In order to determine whether AHNAK can affect the cell cycle, flow cytometry experiments were 

performed to assess the distribution of the cell cycle phases in a cell population. MCF-7 and MDA-

MB-231 cells were transfected and treated with DXR for 24 hrs, where after cells were prepared for 

flow cytometry. PI was used to measure the DNA content and to identify cells as either in G0/G1 (at 

rest), S (DNA replication) or G2/M (growth, preparation for mitosis) phase. Statistical analyses (two-

way ANOVAs) were performed for each phase separately and phase-specific graphs can be found 

in the addendum (fig. 7.1-12). Collective graphs for all three phases showing statistical results for 

each phase are included below.  

In MCF-7 cells both the low and high dose DXR treatments significantly decreased the percentage 

of cells in the G0/G1 phase (74.81% ± 0.78% at pGIPZ-sc 0 µM vs. 64.15% ± 1.82% at pGIPZ-sc 0.1 

µM, p < 0.01; vs. 66.45% ± 1.40% at pGIPZ-sc 5 µM, p < 0.05) while increasing the percentage of 

cells in the S phase (25.19% ± 0.78% at pGIPZ-sc 0 µM vs. 32.06% ± 1.44% at pGIPZ-sc 0.1 µM, p 

< 0.05; vs. 33.13% ± 1.81% at pGIPZ-sc 5 µM, p < 0.05) (fig. 3.55, 3.59). Low dose DXR treatment 

also significantly increased the percentage of cells in the G2/M phase (0% vs. 3.79% ± 0.45%, p < 

0.0001). Knockdown of AHNAK had no effect on this and a similar significant decrease and increase 

in percentage of cells in the G1/G0 (70.81% ± 1.75% vs. 64.38% ± 2.38%, p < 0.05) and S (29.19% 
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± 1.75% vs. 35.40% ± 2.38%, p < 0.05) phases, respectively, were observed when treated with a 5 

µM DXR. In MDA-MB-231 cells 5 µM DXR significantly increased the percentage of cells in the S 

phase (2.07% ± 1.05% vs. 62.07% ± 6.25%, p < 0.0001) with a concomitant slight decrease in G0/G1 

(40.75% ± 0.36% vs. 31.92% ± 2.33%, p < 0.01) and major decrease in G2/M (57.18% ± 1.25% vs. 

6.01% ± 3.95%, p < 0.0001) (fig. 3.56, 3.60). Here, knockdown of AHNAK completely prevented the 

DXR-induced changes in the cell cycle, restoring the percentage of cells in each phase to their 

respective basal levels and resulting in significant differences between pGIPZ-sc 5 µM and pGIPZ-

AHNAK2 5 µM groups in the G0/G1 (31.92% ± 2.33% vs. 38.15% ± 3.35%, p < 0.05), S (62.07% ± 

6.25% vs. 2.98% ± 2.00%, p < 0.0001) and G2/M (6.01% ± 3.95% vs. 58.87% ± 1.37%, p < 0.0001) 

phases.  

In pcDNA3.1 transfected MCF-7 cells an increase in the percentage of cells in the G2/M phase was 

observed upon treatment with 0.1 µM DXR (0% vs. 6.43% ± 0.78%, p < 0.01), similar to that observed 

in pGIPZ-sc transfected cells, although no further changes with DXR treatment were observed (fig. 

3.57, 3.61). However, with overexpression of AHNAK, a significant decrease in the percentage of 

cells in G0/G1 (77.52% ± 0.81% vs. 59.31% ± 0.78%, p < 0.001) and a concomitant increase in the 

S phase (22.45% ± 0.81% vs. 40.44% ± 0.94%, p < 0.001) were observed when cells were treated 

with 5 µM DXR. A similar increase in the G2/M phase upon 0.1 µM DXR treatment was observed 

again (0.04% ± 0.03% vs. 5.53% ± 2.19%, p < 0.01). Overexpression of AHNAK in MDA-MB-231 

cells had a response opposite to that observed with AHNAK knockdown. As with pGIPZ-sc 

transfected cells, 5 µM DXR treatment of pcDNA3.1 transfected cells resulted in a significant 

decrease in the percentage of cells in the G2/M (49.55% ± 2.20% vs. 1.05% ± 0.78%, p < 0.0001) 

phase and a significant increase in the S phase (1.57% ± 0.36% vs. 58.00% ± 3.20%, p < 0.0001) 

(fig. 3.58, 3.62). The overexpression of AHNAK, on its own, induced changes similar to those 

observed by the high dose treatment of DXR with significant decreases in G0/G1 (48.89% ± 2.55% 

vs. 39.52% ± 1.13%, p < 0.05) and G2/M (49.55% ± 2.20% vs. 2.72% ± 0.39%, p < 0.0001) phases 

along with a significant increase in S phase (1.57% ± 0.36% vs. 57.75% ± 0.96%, p < 0.0001) when 

compared to pcDNA3.1 transfected cells. No significant differences were observed between 

pcDNA3.1 5 µM, pcDNA3-CRU 0 µM and pcDNA3-CRU 5 µM in any of the three cell cycle phases.  
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Figure 3.55: Representative images of cell cycle phase peaks in MCF-7 cells following AHNAK 
knockdown with pGIPZ-AHNAK3 and DXR treatment for 24 hrs.  

 

 

Figure 3.56: Representative images of cell cycle phase peaks in MDA-MB-231 cells following 
AHNAK knockdown with pGIPZ-AHNAK2 and DXR treatment for 24 hrs. 
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Figure 3.57: Representative images of cell cycle phase peaks in MCF-7 cells following AHNAK 
overexpression with pcDNA3-CRU and DXR treatment for 24 hrs.  

 

 

Figure 3.58: Representative images of cell cycle phase peaks in MDA-MB-231 cells following 
AHNAK overexpression with pcDNA3-CRU and DXR treatment for 24 hrs. 
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Figure 3.59: Distribution of cell cycle phases in MCF-7 cells following AHNAK knockdown with 
pGIPZ-AHNAK3 and DXR treatment for 24 hrs.  
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Figure 3.60: Distribution of cell cycle phases in MDA-MB-231 cells following AHNAK knockdown 
with pGIPZ-AHNAK2 and DXR treatment for 24 hrs.  
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Cell cycle distribution in MCF-7 cells following AHNAK overexpression 

and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 3.61: Distribution of cell cycle phases in MCF-7 cells following AHNAK overexpression with 
pcDNA3-CRU and DXR treatment for 24 hrs.  
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Figure 3.62: Distribution of cell cycle phases in MDA-MB-231 cells following AHNAK 
overexpression with pcDNA3-CRU and DXR treatment for 24 hrs.  
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3.4 The effects of AHNAK on cellular migration 
 

3.4.1 AHNAK influences the expression of EMT markers in mesenchymal-like cells 
To determine whether AHNAK has a role in the EMT process Western blot experiments were 

performed for the markers E-cadherin (epithelial state), Snail and Vimentin (mesenchymal state) in 

MCF-7 (epithelial-like) and MDA-MB-231 (mesenchymal-like) cells following AHNAK 

knockdown/overexpression and DXR treatment. The expression of these markers were also 

compared (qualitatively) between the two cell lines to confirm their characteristics (fig. 3.63). A 

decrease in E-cadherin expression coupled with increased expression of Snail and Vimentin would 

suggest activation of EMT while the opposite indicates the reverse of EMT, namely MET.  

Arbitrary values obtained from processed Western blots were analysed with two-way ANOVAs. A 5 

µM DXR treatment in MCF-7 cells induced a significant decrease in E-cadherin protein expression 

(4.51 ± 1.16 vs. 2.40 ± 0.57, p < 0.0001) with a concomitant increase in Snail protein expression 

(1.08 ± 0.28 vs. 5.43 ± 0.96, p < 0.0001), indicative of activation of EMT (fig. 3.64, 3.66, 3.67). 

Knockdown of AHNAK had no effect on this as pGIPZ-AHNAK3 transfected cells followed the same 

response with no significant differences when compared to the pGIPZ-sc groups. Expression of the 

mesenchymal marker Vimentin could not be detected in MCF-7 cells and could not be induced by 

either DXR treatment or knockdown of AHNAK. In contrast to the MCF-7 cells, no changes was 

observed in E-cadherin expression in pGIPZ-sc transfected MDA-MB-231 cells upon DXR treatment 

while 5 µM DXR resulted in a significant decrease in Snail protein expression (1.11 ± 0.13 vs. 0.61 

± 0.11, p < 0.001) (fig. 3.64, 3.68, 3.69). Here, knockdown of AHNAK combined with a high dose of 

DXR resulted in increased E-cadherin expression (0.55 ± 0.12 vs. 0.87 ± 0.26, p < 0.05) while the 

level of Snail protein expression remained fairly similar irrespective of DXR treatment. Knockdown 

of AHNAK seemed to induce a general trend to increase Vimentin protein expression with significant 

differences at both the low (0.98 ± 0.11 vs. 1.29 ± 0.12, p < 0.05) and high (1.01 ± 0.07 vs. 1.26 ± 

0.09, p < 0.05) doses of DXR (fig. 3.64, 3.70).  

Similar responses were observed in pcDNA3.1 and pcDNA3-CRU transfected MCF-7 cells. A 

treatment of 5 µM DXR induced a significant decrease in E-cadherin expression (2.78 ± 0.31 at 

pcDNA3.1 0 µM vs. 1.10 ± 0.10 at pcDNA3.1 5 µM, p < 0.0001; 2.47 ± 0.36 at pcDNA3-CRU 0 µM 

vs. 1.42 ± 0.22 at pcDNA3-CRU 5 µM, p < 0.0001) along with a significant increase in Snail 

expression (0.29 ± 0.08 at pcDNA3.1 0 µM vs. 3.12 ± 0.38 at pcDNA3.1 5 µM, p < 0.0001; 0.22 ± 

0.06 at pcDNA3-CRU 0 µM vs. 3.15 ± 0.53 at pcDNA3-CRU 5 µM, p < 0.0001) in both the pcDNA3.1 

and pcDNA3-CRU transfected groups (fig. 3.65, 3.71, 3.72). Again, Vimentin protein expression 

could not be detected in these cells. In MDA-MB-231 cells E-cadherin expression was again 

unaffected by DXR while the high dose induced a significant decrease in Snail protein expression 

(1.74 ± 0.33 vs. 0.62 ± 0.13, p < 0.0001) (fig. 3.65, 3.73, 3.74). Overexpression of AHNAK also 
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induced increased E-cadherin expression when combined with a high dose of DXR (1.22 ± 0.20 vs. 

1.67 ± 0.27, p < 0.0001) while a decrease in the basal level of Snail expression was observed (1.74 

± 0.33 vs. 1.05 ± 0.19, p < 0.001) which decreased further with 5 µM DXR treatment (1.05 ± 0.19 vs. 

0.53 ± 0.09, p < 0.01). A high dose DXR treatment induced a significant decreased in Vimentin 

expression (2.55 ± 0.26 vs. 2.20 ± 0.38, p < 0.05), while overexpression of AHNAK reduced the 

basal expression of this protein to levels similar of those induced by DXR (2.55 ± 0.26 vs. 1.94 ± 

0.29, p < 0.01) (fig. 3.65, 3.75).   

 

 

Figure 3.63: Representative of Western blots for E-cadherin, Snail and Vimentin in MCF-7 and MDA-
MB-231 cell lines confirming their epithelial-like and mesenchymal-like characteristics. 

 

 

Figure 3.64: Representative images of Western blot experiments for EMT markers E-cadherin, Snail 
and Vimentin in MCF-7 and MDA-MB-231 cells following AHNAK knockdown with pGIPZ-AHNAK3 
and pGIPZ-AHNAK2, respectively, and DXR treatment for 24 hrs. 
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Figure 3.65: Representative images of Western blot experiments for EMT markers E-cadherin, Snail 
and Vimentin in MCF-7 and MDA-MB-231 cells following AHNAK overexpression with pcDNA3-CRU 
and DXR treatment for 24 hrs. 

 

E-cadherin protein expression in MCF-7 cells following AHNAK knockdown 
and DXR treatment

N=6, vertical bars denote +/- standard errors

 Group
pGIPZ-sc

 Group
pGIPZ-AHNAK3

0 µM 0,1 µM 5 µM

DXR concentration

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

6,5

P
ro

te
in

 e
x
p
re

s
s
io

n
 (

A
rb

it
ra

ry
 u

n
it
s
)

a
a

a

a

b
b

 

Figure 3.66: E-cadherin protein expression in MCF-7 cells following AHNAK knockdown with pGIPZ-
AHNAK3 and DXR treatment for 24 hrs. 
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Snail protein expression in MCF-7 cells following AHNAK knockdown 
and DXR treatment

N=6, vertical bars denote +/- standard errors
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Figure 3.67: Snail protein expression in MCF-7 cells following AHNAK knockdown with pGIPZ-
AHNAK3 and DXR treatment for 24 hrs. 
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Figure 3.68: E-cadherin protein expression in MDA-MB-231 cells following AHNAK knockdown with 
pGIPZ-AHNAK2 and DXR treatment for 24 hrs. 
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Snail protein expression in MDA-MB-231 cells following AHNAK knockdown 
and DXR treatment

N=4, vertical bars denote +/- standard errors
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Figure 3.69: Snail protein expression in MDA-MB-231 cells following AHNAK knockdown with 
pGIPZ-AHNAK2 and DXR treatment for 24 hrs. 

 

Vimentin protein expression in MDA-MB-231 cells following AHNAK knockdown 
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Figure 3.70: Vimentin protein expression in MDA-MB-231 cells following AHNAK knockdown with 
pGIPZ-AHNAK2 and DXR treatment for 24 hrs. 
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E-cadherin protein expression in MCF-7 cells following AHNAK overexpression

and DXR treatment

N=6, vertical bars denote +/- standard errors
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Figure 3.71: E-cadherin protein expression in MCF-7 cells following AHNAK overexpression with 
pcDNA3-CRU and DXR treatment for 24 hrs. 
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Figure 3.72: Snail protein expression in MCF-7 cells following AHNAK overexpression with pcDNA3-
CRU and DXR treatment for 24 hrs. 
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E-cadherin protein expression in MDA-MB-231 cells following AHNAK overexpression
and DXR treatment

N=6, vertical bars denote +/- standard errors
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Figure 3.73: E-cadherin protein expression in MDA-MB-231 cells following AHNAK overexpression 
with pcDNA3-CRU and DXR treatment for 24 hrs. 

 

Snail protein expression in MDA-MB-231 cells following AHNAK overexpression 
and DXR treatment
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Figure 3.74: Snail protein expression in MDA-MB-231 cells following AHNAK overexpression with 
pcDNA3-CRU and DXR treatment for 24 hrs. 
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Vimentin protein expression in MDA-MB-231 cells following AHNAK overexpression 
and DXR treatment

N=6, vertical bars denote +/- standard errors
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Figure 3.75: Vimentin protein expression in MDA-MB-231 cells following AHNAK overexpression 
with pcDNA3-CRU and DXR treatment for 24 hrs. 

 

3.4.2 Overexpression of AHNAK affects cellular migration 
Wound healing assays were performed following AHNAK knockdown/overexpression to determine 

whether the protein can influence cellular migration. To exclude the effects of cellular proliferation 

cells were treated with MMC.  

Initial treatments with MMC were performed to determine the optimal concentration required for 

inhibition of cellular proliferation. MCF-7 and MDA-MB-213 cells were treated with a range of 

concentrations for 24 hrs where after cells were fixed and stained with the nuclear dye Hoechst. 

Nuclear counts revealed treatments of 1 µg/ml and 5 µg/ml to be most suitable for the MCF-7 and 

MDA-MB-231 cell lines, respectively, since in each case, lower doses showed signs of cellular 

proliferation and higher doses showed signs of cell death (table 3.3).  
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Table 3.3: Nuclear counts during MMC optimisation 

MCF-7 

Group 

(time point) 

Control 

(0 hrs) 

Control 

(24 hrs) 

1 µg/ml 

(24 hrs) 

2 µg/ml 

(24 hrs) 

5 µg/ml 

(24 hrs) 

10 µg/ml 

(24 hrs) 

Average 

count (N=9) 
280.22 426.56 278.44 277.11 47.44 11.00 

Total count 2522 3839 2506 2494 427 99 

MDA-MB-231 

Group 

(time point) 

Control 

(0 hrs) 

Control 

(24 hrs) 

1 µg/ml 

(24 hrs) 

2 µg/ml 

(24 hrs) 

5 µg/ml 

(24 hrs) 

10 µg/ml 

(24 hrs) 

Average 

count (N=9) 
119.22 247.22 168.44 183.67 109.89 52 

Total count 1073 2225 1516 1653 989 468 

MMC – mitomycin C 

 

Wound healing assays were performed with both the MCF-7 and MDA-MB-231 cell lines and with 

DXR treatment for 24 hrs, although MCF-7 cells were not treated with the high dose DXR since the 

amount of cell death observed in this group does not allow for accurate determination of the wound 

area. Images of the wound areas were acquired during the 24 hr DXR treatment at time points 6, 12, 

18 and 24 hrs and were used to assess the ability of cells to close/re-fill the wound over time. 

Statistical analyses (two-way ANOVAs) were performed for each time point separately. Collective 

graphs for all time points showing statistical results for each separate time point are included below. 

Representative images of wound closure in the MCF-7 and MDA-MB-231 cells across the time-

points can be found in the addendum (fig. 7.13-36). As expected, the MMC control groups (not 

treated with MMC) in each experiment showed significantly higher percentages of wound closure 

when compared to the other groups, which is most likely due to the fact that wound closure in these 

groups can be attributed to both cell migration and cell proliferation. A clear difference in the 

migratory abilities of MCF-7 and MDA-MB-231 cells were also observed; where the percentage of 

wound closure ranged between 0.04% and 13.42% for MCF-7 cells, a range between 1.25% and 

56.56% was observed for the MDA-MB-231 cells. The migration of MCF-7 cells in all groups 

remained fairly similar and only the pGIPZ-sc 0.1 µM group showed significantly decreased 

percentage of wound closure after 24 hrs (11.02% ± 1.46% vs. 8.04% ± 1.14%, p < 0.05) (fig. 3.77, 

3.81). In MDA-MB-231 cells AHNAK knockdown resulted in increased percentage of wound closure 

but only at the 6 hr time point (7.17% ± 1.19% vs. 10.64% ± 1.10%, p < 0.05) (fig. 3.78, 3.82). All 

groups exhibited fairly similar migration at 12-24 hr time points. Overexpression of AHNAK in MCF-

7 cells revealed a general trend of decreased migration (fig. 3.79, 3.83). At both the 12 and 18 hr 
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time points, pcDNA3-CRU cells displayed decreased percentage wound closure when compared to 

pcDNA3-CRU cells treated with a low dose DXR (3.98% ± 0.82% vs. 2.00% ± 0.45%, p < 0.05 at 12 

hrs; 5.79% ± 0.88% vs. 2.86% ± 0.51%, p < 0.05 at 18 hrs). At the 18 and 24 hr time points, pcDNA3-

CRU cells also displayed decreased percentage wound closure when compared to pcDNA3.1 cells 

(6.73% ± 1.25% vs. 2.86% ± 0.51%, p < 0.01 at 18 hrs; 8.99% ± 1.62% vs. 4.49% vs. 0.73%, p < 

0.05). Similar results were obtained with the MDA-MB-231 cells (fig. 3.80, 3.84). At the 6 and 12 hr 

time points, pcDNA3-CRU cells treated with 0.1 µM DXR showed decreased percentage wound 

closure when compared to pcDNA3.1 0.1 µM DXR group (8.72% ± 1.14% vs. 4.73% ± 0.91%, p < 

0.05 at 6 hrs; 13.37% ± 0.93% vs. 9.14% ± 1.78%, p < 0.05 at 12 hrs). At the 12, 18 and 24 hr time 

points, pcDNA3-CRU cells treated with 5 µM DXR showed a decreased percentage wound closure 

compared to the pcDNA3.1 5 µM group (12.15% ± 1.47% vs. 7.29% ± 1.34%, p < 0.05 at 12 hrs; 

16.20% ± 2.05% vs. 9.39% ± 1.82%, p < 0.05 at 18 hrs; 21.51% ± 1.66 vs. 10.40% ± 1.96%, p < 

0.05). Treatment with a high dose of DXR further slowed down the migration of pcDNA3-CRU 

transfected cells, since the pcDNA3-CRU 5 µM group showed a significantly decreased percentage 

wound closure when compared to the pcDNA3-CRU 0 µM group after 24 hrs (18.74% ± 2.25% vs. 

10.40% ± 1.96%, p < 0.05).  

In each experiment the rate of wound closure was also calculated. In both cell lines, and with both 

AHNAK knockdown and overexpression, these rates stayed fairly constant across time. Significant 

differences were observed between individual groups at different time points and these mirrored the 

significant differences obtained when the percentage of wound closure was calculated. Figures 7.37-

40 in the addendum shows the collective results for each group across time.  
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Figure 3.76: Representative brightfield microscopy images of MMC control groups at 0 and 24 hrs 
for MCF-7 and MDA-MB-231 cell lines in AHNAK knockdown and overexpression experiments. Lines 
serve as indication of wound area and where drawn to fit the general migration front across the 
imaged area. Scale = 500 µm, 4x objective. 
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Figure 3.77: Representative brightfield microscopy images of wound closure at 0 and 24 hrs in MCF-
7 cells following AHNAK knockdown and DXR treatment. Lines serve as indication of wound area 
and where drawn to fit the general migration front across the imaged area. Scale = 500 µm, 4x 
objective. 
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Figure 3.78: Representative brightfield microscopy images of wound closure at 0 and 24 hrs in MDA-
MB-231 cells following AHNAK knockdown and DXR treatment. Lines serve as indication of wound 
area and where drawn to fit the general migration front across the imaged area. Scale = 500 µm, 4x 
objective. 
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Figure 3.79: Representative brightfield microscopy images of wound closure at 0 and 24 hrs in MCF-
7 cells following AHNAK overexpression and DXR treatment. Lines serve as indication of wound 
area and where drawn to fit the general migration front across the imaged area. Scale = 500 µm, 4x 
objective. 
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Figure 3.80: Representative brightfield microscopy images of wound closure at 0 and 24 hrs in MDA-
MB-231 cells following AHNAK overexpression and DXR treatment. Lines serve as indication of 
wound area and where drawn to fit the general migration front across the imaged area. Scale = 500 
µm, 4x objective. 
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Wound closure by MCF-7 cells following AHNAK knockdown

and DXR treatment

N=9, vertical bars denote +/- standard errors
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Figure 3.81: Percentage wound closure by MCF-7 cells following AHNAK knockdown and DXR 
treatment. Statistical significance between groups per time point is indicated by symbols. $ - MMC 
control vs. pGIPZ-AHNAK3 0 µM, p < 0.05; # - MMC control group vs. all other groups, p < 0.0001; 
* - pGIPZ-sc 0 µM vs. pGIPZ-sc 0.1 µM, p < 0.05.  
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Figure 3.82: Percentage wound closure by MDA-MB-231 cells following AHNAK knockdown and 
DXR treatment. Statistical significance between groups per time point is indicated by symbols. $ - 
MMC control vs. all other groups, p < 0.05 at 6 hrs, p < 0.0001 at 12-24 hrs; # - pGIPZ-sc 0 µM vs. 
pGIPZ-AHNAK2 0 µM, p < 0.05. 
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Wound closure by MCF-7 cells following AHNAK overexpression

and DXR treatment

N=9, vertical bars denote +/- standard errors
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Figure 3.83: Percentage wound closure by MCF-7 cells following AHNAK overexpression and DXR 
treatment. Statistical significance between groups per time point is indicated by symbols. $ - MMC 
control vs. all other groups, p < 0.05 at 6 hrs, p < 0.0001 at 12-18 hrs; # - pcDNA3-CRU 0 µM vs. 
pcDNA3-CRU 0.1 µM, p < 0.05; * - pcDNA3.1 0 µM vs. pcDNA3-CRU 0 µM, p < 0.05. 
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Figure 3.84: Percentage wound closure by MDA-MB-231 cells following AHNAK overexpression and 
DXR treatment. Statistical significance between groups per time point is indicated by symbols. $ - 
MMC control vs. all other groups except pcDNA3.1 0.1 µM, p < 0.05; # - pcDNA3.1 0.1 µM vs. 
pcDNA3-CRU 0.1 µM, p < 0.05; * - MMC control vs. all other groups, p < 0.0001; £ - pcDNA3.1 5 
µM vs. pcDNA3-CRU 5 µM, p < 0.05; ¥ - pcDNA3-CRU 0 µM vs. pcDNA3-CRU 5 µM, p < 0.05.  

Stellenbosch University  https://scholar.sun.ac.za



120 
 

Chapter 4 : Discussion 

 

4.1 The effects of DXR on AHNAK in vitro 
The cellular response elicited by a cancer cell following exposure to an anti-cancer agent is crucial 

for determining its fate. There are two main types of responses; surrender and die, or fight back and 

become resistant. A clear relationship exists between a cancer cell’s genetic background and the 

outcome of its response, and this is well reflected in cases of intrinsic resistance. Mutational loss of 

PTEN can promote Akt-mediated pro-survival signalling and has been associated with resistance to 

Erlotinib (Sos et al., 2009). Mutant p53, the most frequently mutated tumour-suppressor protein, has 

also been associated with resistance to certain therapies such as 5-fluorouracil and cisplatin, but not 

paclitaxel (Bunz et al., 1999; Keshelava et al., 2001; Rantanen et al., 2002). Acquired resistance 

also represents a “fight back” situation although it involves adaptations such as changes in 

transcriptomic and proteomic profiles, and is almost reminiscent of evolution. Increased expression 

of the MDR1 gene and encoded protein, P-gp, has been shown to mediate chemotherapeutic 

resistance in vitro and in vivo following exposure to drugs, including mitoxantrone, docetaxel, 

cisplatin and DXR (Abolhoda et al., 1999; Sánchez et al., 2009). Compensatory upregulation of 

alternative RTKs following exposure to receptor-targeting therapies has also been reported. Human 

breast cancer cells, overexpressing the HER2 receptor, induced expression of EGFR as well as 

heterodimerisation with HER2, which facilitated resistance to trastuzumab treatment (Ritter et al., 

2007). Understanding how a cancer cell responds to an anti-cancer drug is crucial when designing 

a therapeutic strategy. It can determine whether certain modifications are needed, such as dosage 

or the use of adjuvant therapies, or even if certain drugs should be avoided completely.  

We observed differential responses to DXR in MCF-7 and MDA-MB-231 cells, with MCF-7 cells 

being sensitive to DXR treatment compared to MDA-MB-231 cells which were resistant. This was 

evident in both the cell viability data (fig. 3.5 and 3.6) and expression of apoptotic markers (fig. 3.7-

3.11) following DXR treatment. The sensitivity of these cell lines to DXR is well-known in literature 

(Aroui et al., 2009b; Kim et al., 2014; Mussi et al., 2014). The DXR response in these cell lines may 

be linked to their characteristics; MDA-MB-231 cells are known to express P-gp and mutant p53, 

while MCF-7 cells express wild-type p53 (Gartel et al., 2003; Kim et al., 2014; Neve et al., 2006). 

Increased sensitivity to DXR has been observed in p53 wild-type, compared to p53 mutant, acute 

lymphoblastic leukaemia cell lines and tumour xenografts, while a poor response to DXR correlated 

with a mutant p53 status in advanced breast cancer patients (Dart et al., 2004; Geisler et al., 2001; 

Lam et al., 1999). In addition, anthracyclines, including DXR, are known to be exported by the P-gp 

transporters (Szakács et al., 2006). Furthermore, decreased expression of apoptotic markers 

following DXR treatment in MDA-MB-231 cells may also represent an apoptosis-resistant phenotype. 

It has been reported that DXR can induce different types of cell death in tumour cells, which are 
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dose-dependent and possibly also cell line-dependent (Di et al., 2009; Rebbaa et al., 2003; Roninson 

et al., 2001). Where a medium dose of DXR induced apoptotic cell death, characterised by increased 

cleaved caspase 3 expression, a high dose of DXR induced a type of necrosis characterised by a 

lack of cleaved caspase 3 but increased phosphorylated Akt (Rebbaa et al., 2003). In another study 

it was shown that, while P-gp expression facilitated apoptosis resistance, radiation-induced cell 

death was facilitated by mitotic catastrophe and senescence (Ruth and Roninson, 2000). Cell death 

programs are known to be compensatory, and inhibition of apoptosis can also upregulate autophagic 

cell death (Di et al., 2009). The decreased expression of apoptotic markers at the highest dose of 

DXR in MDA-MB-231 cells observed in our study coincided with a minor decrease in viability 

(approximately 19%) which suggests that an alternative cell death mechanism was involved. It is 

however clear that therapeutic resistance is a multifactorial process (Broxterman et al., 2009). MCF-

7 and MDA-MB-231 cells differ significantly in their transcriptomes, which includes differences in 

active signalling pathways, and it is very likely that several of these differences contribute to their 

respective DXR-responses (Kenny et al., 2007; Nagaraja et al., 2005).  

We also observed that MCF-7 and MDA-MB-231 cells differ with regards to AHNAK protein 

expression under control conditions as well as when exposed to DXR. Compared to MCF-7 cells, 

MDA-MB-231 cells expressed substantially higher levels of AHNAK protein under control conditions 

(fig. 3.12). This was also observed in a recent study (Silva et al., 2016). In addition, increased 

expression of phosphorylated AHNAK has also been detected, by means of spectrometry, in MDA-

MB-231 cells when compared to MCF-7 cells (Kabir et al., 2012). Unfortunately we were unable to 

assess the expression of phosphorylated AHNAK since a commercially available antibody specific 

for the phosphorylated form was not available.  

Furthermore, AHNAK protein expression decreased in both cell lines in response to DXR, but to 

different extents. Changes independent of the DXR dose was observed in MCF-7 cells compared to 

dose-dependent changes in MDA-MB-231 cells (fig. 3.13-3.15). The effect of DXR on AHNAK protein 

expression in MCF-7 cells has not been investigated before. Decreased AHNAK expression has 

previously been reported in MDA-MB-231 cells following a treatment regime of DXR (10 µM, 4 hrs) 

and TRAIL, however it was unclear whether the changes were induced by DXR or TRAIL (Leong et 

al., 2012). Our results suggest that DXR was responsible for the observed changes. We have shown 

that DXR-induced changes in AHNAK protein expression can differ between breast cancer cell lines 

but the cell-specific response is not universal since the effect is also therapy-dependent. Where DXR 

induced only minor reductions in AHNAK protein expression in MDA-MB-231 cells in our study, 

treatment with 1 µM staurosporine for 24 hrs almost completely inhibited AHNAK protein expression 

(Silva et al., 2016). In addition, radiation therapy has been shown to increase AHNAK protein 

expression in MDA-MB-231 cells (Kim et al., 2015).  

It has been noted during some of its other functions that AHNAK can localise to different intracellular 

regions and also translocate between them (Huang et al., 2007; Lee et al., 2014; Sussman et al., 
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2001). Through qualitative assessment of AHNAK’s localisation patterns, we investigated whether 

DXR can affect its intracellular distribution. In both MCF-7 and MDA-MB-231 cells, no changes in 

AHNAK localisation were observed following 24 or 48 hrs treatments with either low or high DXR 

doses (fig. 3.18-3.21). AHNAK displayed a diffuse cytoplasmic localisation in single/sub-confluent 

MCF-7 cells while confluent cells also displayed intense signal at the plasma membrane (fig. 3.18 

and 3.20). This localisation pattern has been shown before in MCF-7 cells, as well as in the epithelial 

cell lines HeLa and MDCK, and is associated with AHNAK’s function in the formation of cell-cell 

contacts (Benaud et al., 2004; Silva et al., 2016; Sussman et al., 2001). In MDA-MB-231 cells, 

AHNAK displayed a network-like cytoplasmic localisation with areas of intense signal at the plasma 

membrane and in what appears to be vesicle-like structures (fig. 3.19 and 3.21). Similar patterns of 

localisation have been observed before in these cells (Leong et al., 2012; Shankar et al., 2010; Silva 

et al., 2016).  

Localised areas of intense signal at the plasma membrane, especially at pseudopodial protrusions, 

were suggested to be associated with AHNAK’s function in the migration of metastatic cancer cells 

(Shankar et al., 2010). We also observed vesicle-like structures in the MDA-MB-231 cells which were 

mostly localised in close proximity to the nucleus. Based on their location, these vesicles could 

potentially originate from the endoplasmic reticulum since AHNAK has been reported to be present 

in this organelle (Leong et al., 2012). However, a recent study also provides a plausible explanation. 

AHNAK was identified as the major component in microvesicles released from MDA-MB-231 cells 

in a co-culture with non-transformed mammary fibroblasts (Silva et al., 2016). Direction of 

microvesicle transfer was confirmed to predominantly originate from the cancer cells and thus the 

authors suggested that the cancer cells release the vesicles to modulate fibroblast activity. However, 

whether the presence of fibroblasts are required for the production of these vesicles is unclear, 

therefore the precise identification of the vesicles observed in our study would require further 

investigation. This could be achieved by performing vesicle size analyses coupled with co-

localisation experiments with AHNAK and markers for the endoplasmic reticulum and microvesicles, 

such as GRP94 and flotillin-1, respectively.  

Based on the results obtained, we propose that AHNAK is indeed involved in the response of breast 

cancer cells to DXR with regards to its expression but not localisation. It is clear that MCF-7 and 

MDA-MB-231 cells respond differently to DXR and we also observed differences in AHNAK’s basal 

expression and the DXR-induced changes in its expression in these cells. These findings provide, 

for the first time, a link between AHNAK protein expression and DXR-response in breast cancer 

cells.  

 

4.2 The effects of DXR on AHNAK in vivo  
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The mouse model established in the study was designed to represent a more physiological model 

of breast cancer treated with either a suboptimal or optimal dose of DXR. Syngeneic E0771 breast 

cancer cells, suspended in HBSS and Corning® Matrigel®, were injected subcutaneously into 

female C57BL/6 mice at the mammary fat pad. Matrigel® was used to promote the formation of 

tumours and provide a physiological tumour microenvironment. Dosage for the HD-DXR group was 

based on a previously performed study where a reduction in tumour volume was observed following 

DXR treatment, although this study did not make use of Matrigel® for tumour cell injection (Sishi et 

al., 2013). It was decided that dosage for the LD-DXR group should be at least half of that for the 

HD-DXR group. A reduction in tumour volume for this group was not expected but it was 

hypothesised that the suboptimal DXR dose might promote tumour growth. From the tumour volume 

data (fig. 3.23), it is clear that there was no reductions in volume following treatment with either the 

low or high dose of DXR. Indeed, a Kaplan-Meier analysis revealed no significant differences in 

survival between the groups (fig. 3.25). In addition, an ANCOVA analysis of the tumour volumes 

showed that the DXR-treated groups had significantly higher tumour growth rates when compared 

to the control group (fig. 3.24). These results support our hypothesis for the LD-DXR group, but is 

unexpected for the HD-DXR group. Since no differences were observed between the two DXR 

doses, it suggests that the presence of DXR alone had an effect on tumour growth rate. Also, since 

the high dose of DXR was based on a previous study where Matrigel® was not used, it is likely that 

the use of this extracellular matrix for tumour cell injection contributed to these unexpected findings.  

Matrigel® is widely used in in vivo tumour models to ensure tumour formation and is known to 

promote tumour growth (Bao et al., 1994; Kleinman and Martin, 2005; Noël et al., 1993). In vitro 

experiments have also shown that tumour cells cultured in basement membrane extracts displayed 

altered three-dimensional organisation when compared to normal cells (Wang et al., 2002; Weaver 

et al., 2002). This was also accompanied by increased growth and therapeutic resistance. Cellular 

interactions with the ECM, such as interactions between α6β4 integrin and laminin, and the activation 

of signalling pathways, such as the PI3K and MAPK pathways, were shown to mediate these 

changes and that inhibition of these interactions and signalling pathways were sufficient to revert the 

altered tumour organisation to that of normal cells. Findings from a recent study further support the 

role of signalling pathways in the cellular response to the microenvironment when the PI3K and Rac 

pathways were shown to mediate mechanotransduction and a malignant phenotype based on the 

ECM composition and stiffness (Chaudhuri et al., 2014). Indeed, the ECM is well-known to play a 

crucial role in regulating and maintaining normal tissue homeostasis however, increasing research 

in this field have recognised that the tumour-associated ECM also plays a crucial role in tumour 

progression and therapeutic response (Pickup et al., 2014). Furthermore, DXR on its own is also 

capable of acting on signalling pathways. Activation of signalling pathways capable of promoting 

cellular growth and therapeutic resistance, such as the PI3K, MAPK and JNK pathways, have been 

reported to occur following exposure to DXR in both non-transformed and tumour cells (Lee et al., 

2006; Li et al., 2005; Shukla et al., 2010). In particular, DXR was shown to increase the expression 
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and phosphorylation of the ERK1/2 proteins and knockdown of these proteins in combination with 

DXR treatment resulted in increased tumour cell death in vitro and decreased tumour growth rates 

in vivo (Shukla et al., 2010).   

Based on the data available in literature, we propose that Matrigel® advanced tumour progression 

to a more aggressive and resistant phenotype, most likely involving growth-associated signalling 

pathways and that DXR further acted on these pathways to promote tumour growth. Although a 

complete investigation of the underlying molecular mechanisms associated with these findings were 

outside the scope of the current study, a separate study is currently being performed to identify the 

mechanisms of DXR-induced tumour growth in this model. Our results also emphasise the 

significance of the tumour microenvironment in therapeutic efficacy. Careful considerations should 

be made when assessing the anti-cancer properties of a drug. The role of the tumour 

microenvironment is often neglected in in vitro studies where a reconstituted basement membrane 

extract is only utilised when anti-invasive, anti-angiogenic or anti-metastatic properties are 

investigated. Furthermore, the use of these extracts may also be limited to in vivo studies involving 

xenograft models with known difficulties in tumour establishment. Our results, and the increasing 

evidence in literature, suggests that the role of the tumour microenvironment should be considered 

more regularly in drug efficacy studies, especially since it could help explain the disparity between 

results obtained in in vitro and in vivo experiments, as well as between in vivo experiments and 

clinical trials.   

Expression of apoptotic markers in the tumours also supported the observations that there were no 

decreases in tumour volume since apoptosis induction following DXR treatment did not take place. 

Instead, cPARP showed a non-significant trend of decreased expression, while cCasp7 showed 

decreased expression in the LD-DXR group which increased slightly in the HD-DXR group (fig. 3.26-

3.28). These changes in expression are similar to those observed in the MDA-MB-231 cells following 

DXR exposure; cPARP expression also decreased reaching significance only at the highest dose of 

DXR while cCasp7 expression decreased and increased again towards the highest dose (fig. 3.10 

and 3.11). These results also confirm the resistance of the tumour cells to apoptosis.  

AHNAK’s protein expression was assessed in the tumours to determine whether DXR could 

influence its expression in vivo. Indeed, we observed increased expression in the LD-DXR group 

which returned back to basal levels in the HD-DXR group (fig. 3.29). These changes in protein 

expression were dose-dependent and again, similar to those observed in the MDA-MB-231 cells 

after both 24 (comparing the low dose of 0.1 µM and the higher dose of 2.5 µM) and 48 hrs DXR 

treatment. We also assessed the intracellular localisation of AHNAK in the tumours and while co-

localisation studies would have to be performed to confirm the identity of the localised areas of 

intense signal (for instance with a cell membrane marker such as the sodium potassium ATPase 

pump), we observed no changes in localisation following DXR treatment.  
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Studies investigating the role of AHNAK in vivo are limited. Lee et al. made use of AHNAK-/- mice 

displaying spontaneous breast cancer formation to show that AHNAK possesses tumour-

suppressive capabilities, whereas Sudo et al. showed that AHNAK is expressed at different 

intracellular locations in sarcomatoid and epitheliod mesothelioma mouse xenograft tumours (Lee et 

al., 2014; Sudo et al., 2014). We present the first data reporting the tumour-associated protein 

expression of AHNAK in a murine breast cancer model following chemotherapeutic treatment. Our 

in vivo results support the results obtained in the in vitro experiments, both with regards to the 

changes in AHNAK’s protein expression and localisation, and thus further supports our hypothesis 

that AHNAK is involved in the cellular response to DXR.  

Based on both the in vitro and in vivo results obtained in this study we propose a correlation between 

AHNAK, DXR response and DXR resistance. MDA-MB-231 cells, a DXR-resistant cell line, 

expressed high levels of AHNAK and maintained its expression fairly well following exposure to DXR 

while MCF-7 cells, a DXR-sensitive cell line, expressed much less AHNAK that was significantly 

susceptible to further downregulation following DXR treatment. Previous correlations between 

AHNAK expression and drug resistance have been suggested. Increased AHNAK expression was 

reported in cisplatin-resistant versus cisplatin-sensitive ovarian and neuroblastoma cell lines (Cheng 

et al., 2006; Piskareva et al., 2015). Furthermore, positive correlations between AHNAK expression 

and resistance to tubulin-binding drugs such as paclitaxel, docetaxel, vinblastine and vincristine were 

also reported (Hsu et al., 2013). Increased AHNAK expression is however not universally correlated 

with drug resistance since negative correlations were also reported with resistance to targeted 

therapies such as everolimus, dasatinib and erlotinib. In addition, based on the findings from Lee et 

al. (2014) that suggests that AHNAK functions as a tumour suppressor, one can speculate that any 

correlations between its expression and drug response may also be cancer-type dependent. These 

earlier studies only reveal correlations between AHNAK’s basal expression and drug resistance; our 

results now provide an additional level of information, that is, the changes in AHNAK expression 

elicited by the drug. With the aim of further characterising the relationship between AHNAK 

expression and the therapeutic drug response, it will be worthwhile to investigate whether similar 

changes in its expression exist in sensitive and resistant cancer cells treated with cisplatin (which 

functions similarly to DXR) and tubulin-binding therapies as those observed here in MCF-7 and MDA-

MB-231 cells treated with DXR.  

 

4.3 The effects of AHNAK on DXR-induced cellular responses 
 

Through several excellent studies AHNAK has been shown to function as a scaffold protein active 

in several cellular processes in different cell types (Davis et al., 2014). The protein’s role in cancer 

remains however undefined as its potential roles in tumour metastasis, chemoresponse and, in 
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contrast, as a tumour suppressor, have been reported in only a few separate studies (Lee et al., 

2014; Leong et al., 2012; Shankar et al., 2010). To further investigate the role of AHNAK in breast 

cancer cell response to DXR and to determine the specific effect of AHNAK on DXR, we generated 

in vitro models of AHNAK knockdown and overexpression by means of plasmid transfection.  

We first investigated whether AHNAK could influence DXR cytotoxicity. Knockdown and 

overexpression of AHNAK did not have any significant effects on MCF-7 viability under basal 

conditions (fig. 3.35 and 3.37). Furthermore, MCF-7 cells also displayed a similar sensitivity to DXR 

following both knockdown and overexpression of AHNAK, although overexpression of the protein 

did result in a slight increase in cell death after treatment with 5 µM DXR. Significant differences in 

viability were observed in the 0.1 µM DXR group in both the knockdown and overexpression 

experiments, with the control transfected group displaying higher viability in both instances.  In MDA-

MB-231 cells, both AHNAK knockdown and overexpression resulted in a general increase in viability 

(fig. 3.36 and 3.38). This is unexpected and the reason why opposing conditions would have the 

same effect is unclear. The same trends in cell viability were however observed following treatment 

with DXR. When comparing the results obtained from the knockdown and overexpression 

experiments, we observed that the knockdown 5 µM DXR group showed significantly decreased 

viability when compared to the control transfected group treated with the same dose, but this 

significant difference was not observed in the overexpression experiments. However, the 

representative control transfected groups in the knockdown and overexpression experiments do not 

replicate each other, making it challenging to indicate whether AHNAK knockdown or overexpression 

results in more or less cell death, respectively, when treated with a high dose of DXR. Overall, our 

results suggest that AHNAK does not influence the extent of cytotoxicity brought about by DXR.  

The effect of AHNAK on the cytotoxicity of DXR, or any other chemotherapeutic drug, have not been 

investigated before and only a few studies have reported on the effect of AHNAK on cell proliferation 

in general. In two studies it was found that knockdown of AHNAK had no effect on breast cancer cell 

proliferation or viability (Shankar et al., 2010; Silva et al., 2016). In contrast, results from another two 

studies reveal opposing effects on cell proliferation; whereas knockdown of AHNAK resulted in 

increased hippocampal cell proliferation, it resulted in decreased cell proliferation in PDGF-

stimulated aortic smooth muscle cells (Lim et al., 2013; Shin et al., 2015b).  In a more extensive 

investigation, AHNAK was suggested to function as a tumour suppressor based on the findings that 

a loss of AHNAK increased the proliferation of MEF cells while overexpression of the protein in SiHa 

cells (cervical cancer) reduced colony forming activity and tumour growth (Lee et al., 2014). Our 

results obtained following AHNAK knockdown in MDA-MB-231 cells support the role of AHNAK as 

a tumour suppressor, however, since the same effect was observed following overexpression of the 

protein, we can not fully support this role. Contrasting findings surrounding the role of AHNAK in 

cellular proliferation suggests a possible dependency on cell type and the specific function of AHNAK 

within the particular cell type. AHNAK is known to exhibit different functions in different cell types 
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and thus in each case a loss of its expression may or may not have a direct or even indirect impact 

on cellular proliferation. This is supported by our findings where knockdown and overexpression of 

AHNAK had an effect on MDA-MB-231 cells but not on MCF-7 cells.   

Next we investigated whether AHNAK could influence apoptosis induced by DXR by performing 

Caspase-Glo® 3/7 assays (which measures caspase 3 and 7 activity) and Western blots for markers 

of apoptosis (measuring cPARP and cCasp7 expression). In MCF-7 cells, knockdown of AHNAK 

increased basal levels of caspase activity and prevented any further increase following DXR 

treatment (fig. 3.39). Overexpression of AHNAK also resulted in increased basal levels, which 

decreased following treatment with DXR (fig. 3.41). However, in these experiments, no increase in 

caspase activity was observed in the control transfected group treated with 5 µM DXR which is not 

consistent with the expected results. In MDA-MB-231 cells, knockdown of AHNAK resulted in a basal 

increase in caspase activity but followed the same trend of increasing activity as the control 

transfected groups during DXR treatment (fig. 3.40). In contrast, overexpression of AHNAK 

maintained caspase activity at a constant level and prevented any further increase in activity at 5 µM 

DXR (fig. 3.42). These results support the lack of significant differences obtained in the MTT assay 

between the control transfected and overexpressed 5 µM DXR groups.  

Western blot experiments revealed significant increases in both cPARP and cCasp7 protein 

expression when MCF-7 cells were treated with 5 µM DXR which is indicative of a significant 

increase in apoptosis (fig. 3.43, 3.44, 3.47, 3.48, 3.51 and 3.52). These findings support the 

significant decrease in MCF-7 viability at the same DXR concentration and suggests that cell death 

occurred mainly through apoptosis. Knockdown or overexpression of AHNAK however had no effect 

on the expression of these proteins at basal conditions or with DXR treatment. In contrast, AHNAK 

knockdown and overexpression did influence the expression of apoptotic markers in MDA-MB-231 

cells (fig. 3.43, 3.44, 3.49, 3.50, 3.53 and 3.54). While no differences were observed in cPARP 

expression between control transfected and AHNAK knockdown groups, AHNAK knockdown 

prevented the DXR-induced decrease in cCasp7 expression. Overexpression of AHNAK had the 

opposite effect; decreased cPARP expression was observed under basal conditions which 

decreased further with 5 µM DXR treatment while AHNAK overexpression maintained cCasp7 

expression at reduced levels comparable to that induced by 5 µM DXR. These results would suggest 

that, in MDA-MB-231 cells, overexpression of AHNAK is capable of promoting a similar apoptosis-

resistant phenotype that is observed in these cells when treated with DXR. This effect is prevented 

when AHNAK is knocked down, as seen with the opposite response in cCasp7 results. This effect is 

more clearly observed in cCasp7 expression data than with cPARP, which is intriguing since the 

cleavage of PARP normally occurs after cleavage of Casp7. These findings would also support the 

correlations observed in the previous sections, where increased expression of AHNAK was 

associated with DXR resistance (fig. 3.5-6, 3.12 and Cheng et al., 2006, Piskareva et al., 2015 and 

Hsu et al., 2013). These effects are however not observed in MCF-7 cells and even overexpression 
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of AHNAK in these cells was not capable of conferring resistance to DXR, although this is not 

completely unexpected. In several of AHNAK’s other described functions, the protein forms 

interactions with other proteins (such annexin 2 and S100A10) and often takes part in the formation 

of a multiprotein complex that is required for a certain function (establishing cell-cell contacts). In this 

scenario it could be reasonable to assume that other protein components, which may also be lacking 

in MCF-7 cells, are required for AHNAK to fulfil its role in apoptosis/DXR resistance.  

Even though changes in apoptotic marker expression, in the presence or absence of DXR treatment, 

was observed in the MDA-MB-231 cells following knockdown and overexpression of AHNAK, no 

changes were observed in cell viability data. This supports our earlier hypothesis that the decrease 

in cell viability observed in these cells was most likely brought about by an alternative cell death 

mechanism. In addition, although knockdown of AHNAK prevented the decrease in cCasp7 

expression, it wasn’t sufficient to increase it above the basal level, which further supports no 

increased cytotoxicity. AHNAK knockdown prevented the DXR-induced apoptosis-resistant 

phenotype (as seen in the apoptotic marker expression data) without an increase in sensitivity (as 

seen in the MTT assay data) and this could be explained in one of two ways, or perhaps a 

combination of both; 1) more than one mechanism of DXR resistance exists and is it possible that 

an alternative mechanism prevented cell death in these conditions, such as export of DXR through 

P-gp, and 2) that a threshold is required in the loss of AHNAK expression in order to achieve 

increased sensitivity, especially since we only achieved a reduction of approximately 50% in AHNAK 

protein expression in our knockdown experiments.  

Several contradicting findings were identified when comparing the results obtained from the 

Caspase-Glo® assays with those from the Western blots. Apart from the control transfected groups 

in the MCF-7 overexpression experiments, all other control transfected groups showed increased 

caspase activity, and thus apoptosis, when treated with 5 µM DXR. However, the level of increased 

activity is similar between the MCF-7 and MDA-MB-231 cells. This does not correlate with the cell 

viability results obtained with the MTT assays, where a lot more death was observed in the MCF-7 

than in the MDA-MB-231 cells, and also in the Western blot results where it is clear that cPARP and 

cCasp7 expression in MCF-7 cells increased by much more than a mere ±20%. In general, results 

obtained with the Caspase-Glo® assay for the MDA-MB-231 cells do not correlate with the Western 

blot data which showed a decrease in the expression of the apoptotic markers and correlated with 

the cPARP and cCasp7 Western blot data obtained with the DXR dose response curve. Furthermore, 

caspase activity in the MCF-7 cells following AHNAK overexpression was increased when compared 

to the control transfected group and decreased when treated with 5 µM DXR, which also does not 

correlate with the other caspase activity data. Based on these inconsistencies we are inclined to 

disregard the results obtained with the Caspase-Glo® assays.  

Apoptosis is a highly controlled cell death process mediated by multiple pro-apoptotic proteins (Ola 

et al., 2011). Members of the main protein family responsible for the phenotypic outcome of 
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apoptosis, the caspases, are classified as either initiator or executioner caspases. As the names 

suggests, initiator caspases receive the signals to induce apoptosis and initiates the process while 

the executioner caspases are responsible for the final outcome that is cell death. Apoptosis inhibition 

is not only common during therapeutic resistance, but is also a hallmark of cancer in general 

(Hanahan and Weinberg, 2011). Inhibition of the apoptotic pathway is achieved by multiple anti-

apoptotic proteins that act in on different levels between the initiator and executioner caspases and 

are commonly regulated by pro-survival signalling pathways, such as the PI3K pathway. For 

example, phosphorylated Akt can negatively regulate pro-apoptotic Bad and caspase 9, as well as 

upregulate inhibitor of apoptosis proteins (IAPs) to suppress apoptosis through caspase inhibition 

(Seol, 2008). In particular, Akt was shown to facilitate caspase inhibition through XIAP (a member of 

the IAP family) following DXR treatment in DXR-resistant but not DXR-sensitive uterine cancer cells 

(Gagnon et al., 2008). To our knowledge, we present here the first evidence that implicate AHNAK 

in the modulation of apoptosis-related proteins. Based on our results, we speculate that AHNAK 

might function downstream of Akt in the inhibition of caspases during DXR treatment in DXR-

resistant breast cancer cell lines. AHNAK has indeed previously been shown to be phosphorylated 

by Akt (Sussman et al., 2001). In this scenario, knockdown of AHNAK would then interrupt the DXR-

induced signal to decrease the expression of caspase proteins, which was observed in our results. 

Overexpression of AHNAK is sufficient to promote this phenotype, possibly by promoting the 

activation of Akt in a manner similar to XIAP which is also capable of feedback promotion of Akt 

phosphorylation (Gagnon et al., 2008). The associations between AHNAK expression and 

chemoresponse may be drug-dependent but it would be interesting to determine whether AHNAK 

can have the same effect with other DNA-damaging chemotherapeutic drugs. In particular, a similar 

scenario has been reported in ovarian cancer cells where treatment with cisplatin induced Akt 

phosphorylation and apoptosis inhibition in cisplatin-resistant but not cisplatin-sensitive cells 

(Stronach et al., 2011).  

AHNAK has previously been shown to modulate the cell cycle (Lee et al., 2014). Since DXR has 

also been shown to affect the cell cycle (Reinhardt et al., 2007), we investigated whether AHNAK 

knockdown or overexpression could influence the cell cycle during DXR treatment. DXR treatment 

induced a slight decrease in the G0/G1 phase with a concomitant increase in the S phase in MCF-7 

cells (fig. 3.55, 3.57, 3.59 and 3.61). In contrast, DXR induced a significant increase in the S phase 

with a concomitant decrease in the G2/M phase in MDA-MB-231 cells (fig. 3.56, 3.58, 3.60 and 3.62). 

Knockdown of AHNAK in MCF-7 cells did not influence the DXR-induced changes in the cell cycle, 

although the overexpression of AHNAK together with 5 µM DXR treatment induced a significant 

increase in the S phase which coincided with a decrease in the G0/G1 phase. Here, the effects of 

AHNAK on DXR-induced changes were again more pronounced in the MDA-MB-231 cells. 

Knockdown of AHNAK completely prevented the DXR-induced increase and decrease in S- and 

G2/M phase, respectively, in MDA-MB-231 cells. Overexpression of AHNAK had the opposite effect 

and was, on its own, sufficient to induce changes similar to those induced by 5 µM DXR, that is, 
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AHNAK overexpression induced a significant increase in the S phase along with a significant 

decrease in the G2/M phase. There were no significant differences between the control transfected 

5 µM DXR group and overexpression 5 µM DXR group.  

As part of the physiological response following DNA damage, cells activate complex signalling 

pathways to ensure genomic integrity and that only undamaged DNA is passed on to daughter cells 

during mitosis (Reinhardt and Yaffe, 2009). Depending on the extent of damage, the cell undergoes 

either cell cycle arrest, providing sufficient time for DNA repair mechanisms, or cell death via 

apoptosis. This important decision is predominantly made by the p53 tumour suppressor protein 

(Reinhardt et al., 2007; Xiao et al., 2003). To control progression through the cell cycle, certain 

checkpoints are enforced after the G0/G1 phase, within the S-phase and in the G2/M phase 

(Reinhardt and Yaffe, 2009; Xiao et al., 2003). In the event of minor DNA damage in non-cancerous 

cells, p53 is activated to induce p21-mediated inhibition of the cell cycle, resulting in the arrest of 

damaged cells at the G1/S checkpoint (Reinhardt and Yaffe, 2009; Reinhardt et al., 2007; Xiao et al., 

2003). Tumour cells may also induce cell cycle arrest to allow for DNA repair in an attempt to 

maintain viability following genotoxic stress induced by DNA-damaging drugs, such as DXR, 

camptothecin and cisplatin. However, tumour cells often contain disrupting mutations within the TP53 

gene and are thus deficient in p21-mediated G1/S arrest. Instead, these cells rely on alternative 

pathways to facilitate arrest at either the S or G2/M checkpoints (fig. 4.1) (Reinhardt and Yaffe, 2009; 

Reinhardt et al., 2007; Xiao et al., 2003).  

 

 

Figure 4.1: Pathways activated in p53-deficient cancer cells leading to cell cycle arrest following 
genotoxic stress. 
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DXR induces DNA damage by binding and inhibiting TOP2, an enzyme responsible for DNA 

unwinding during replication and transcription (Palchaudhuri and Hergenrother, 2007; Tacar et al., 

2013). Through binding, DXR stabilises the TOP2-DNA complex, preventing the DNA from re-

annealing and resulting in double-strand DNA breaks. We observed a significant increase in the 

percentage of cells in S phase upon treatment with 5 µM DXR, suggesting that DXR arrested the 

cells in S phase during DNA replication (fig. 3.60). Knockdown of AHNAK prevented the DXR-

induced cell cycle arrest, suggesting that AHNAK is required in the signalling pathway that facilitates 

arrest in the S phase following DXR-induced DNA damage. In contrast, overexpression of AHNAK 

was sufficient to induce cell cycle arrest on its own. Cell cycle arrest following AHNAK 

overexpression has previously been reported in a recent study, although in contrast, arrest occurred 

at the G1/S checkpoint in normal p53-wildtype NIH3T3 cells (Lee et al., 2014). Here, AHNAK was 

shown to be required for TGF-β-induced cell cycle arrest by promoting Smad-mediated 

transcriptional activities. The different outcomes of AHNAK overexpression in our study compared 

with the previous study could be explained by the difference in p53 status, as MDA-MB-231 cells are 

p53 mutant, as well as the specific requirement of TGF-β stimulation for the proposed role of AHNAK 

in the previous study, suggesting that the particular pathway may not have contributed to the results 

obtained in our study. In addition, the TGF-β-induced role of AHNAK involved translocation of the 

protein to the nucleus and we did not observe any nuclear expression of AHNAK with or without DXR 

treatment. Since overexpression of AHNAK in the MDA-MB-231 cells exhibited the same response 

as when the cells were treated with a high dose of DXR, we searched for mechanisms of DXR-

induced cell cycle arrest to identify possible additional roles for AHNAK in cell cycle arrest.  

DXR is capable of inducing DNA-damage-induced cell cycle arrest through a pathway involving the 

p38 and MK2 (MAP kinase-activated protein kinase 2) proteins in p53-deficient cells (Reinhardt et 

al., 2007; Xiao et al., 2003). DXR was shown to induce specific phosphorylation and activation of 

p38 and MK2 which resulted in the cytoplasmic sequestration and inactivation of Cdc25B. Cdc25B 

regulates the cell cycle by dephosphorylating and activating Cdk1/Cyclin B which in turn drives cell 

cycle progression. The outcome of the DXR-induced pathway was G2/M arrest. Similarly, treatment 

of p53-deficient cells with cisplatin also activated the p38 and MK2 proteins, which facilitated Cdc25A 

degradation and cell cycle arrest in the S phase. Depletion of MK2 prevented cell cycle arrest leading 

to mitotic catastrophe through apoptotic cell death. The pathway was shown to require the upstream 

cell cycle regulators ataxia-telangiectasia mutated (ATM) and ATM and Rad-3-related (ATR) when 

treated with DXR, and ATR when treated with cisplatin, although the specific link between these 

proteins and p38 and MK2 is unclear. Overexpression of the MK2 homologue in 

Schizosaccharomyces pombe, Srk1, has been shown to induce cell cycle arrest at G2/M through 

Cdc25 inhibition (López-Avilés et al., 2005). The DXR-induced p38/MK2 pathway is also 

independently paralleled by the ATR/Chk1 pathway which mediates Cdc25A degradation and cell 
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cycle arrest at the S phase (when p53 deficient cells are treated with cisplatin and camptothecin) as 

well as G2/M arrest (when treated with DXR) (Xiao et al., 2003). Furthermore, an additional 

ATM/Chk2 pathway also converges onto the Cdc25A protein to promote S-phase arrest following 

radiation-induced DNA damage (Falck et al., 2002). Overexpression of Chk1 on its own is also 

sufficient to induce cell cycle arrest while knockdown induces mitotic catastrophe and apoptosis 

(Syljuasen et al., 2006; Xiao et al., 2003). Similarly, overexpression of Chk2 can result in auto-

activation in the absence of DNA damage, which could result in cell cycle arrest (Reinhardt and 

Yaffe, 2009; Schwarz et al., 2003).   

In our in vitro model it is possible that the p38/MK2 pathway (and possibly the ATM/Chk2 or 

ATR/Chk1 pathways) was activated in the p53-deficient MDA-MB-231 cells following DXR treatment. 

Since knockdown of AHNAK showed that the protein is required for one (or more) of these pathways, 

we propose that AHNAK participates in the ATM- and ATR-mediated cell cycle arrest pathways 

induced in p53-mutant cancer cells following DNA damage. Similar to MK2 and Chk1, and possibly 

Chk2, overexpression of AHNAK promoted cell cycle arrest on its own. Since we did not observe a 

nuclear localisation for AHNAK during DXR treatment, it is unlikely that the protein functions 

downstream of p38/MK2, or Chk1 and Chk2. These pathways do however rely on the upstream 

activation of ATM and ATR. ATM has a nuclearplasmic localisation but upon DNA damage relocates 

to intense nuclear foci characterised by a build-up of DNA-repair proteins at the sites of damage 

(Lavin and Kozlov, 2007). The relocalisation of ATM to damaged DNA as well as its activation 

requires an interaction with the MRN complex, which consists of the Mre11, Rad50 and Nibrin 

proteins (Cerosaletti et al., 2006; Lavin and Kozlov, 2007). This complex is formed in the cytoplasm 

and upon binding of Nibrin to Mre11-Rad50 is translocated to the nucleus. The interaction between 

ATM and MRN is crucial for the downstream pathways following DNA damage since MRN-deficient 

colorectal cancer cells were defective in Chk2 phosphorylation and S phase arrest following 

treatment with camptothecin (Takemura et al., 2006). Furthermore, ATM can promote the activation 

of ATR which may also require the MRN complex (Reinhardt and Yaffe, 2009; Yoo et al., 2009). In 

accordance with AHNAK’s other functions, we propose that AHNAK may function as a scaffold 

protein that facilitates the formation of the MRN complex within the cytoplasm before being 

translocated to the nucleus (fig. 4.2).  Further studies are however required to assess the ability of 

AHNAK to interact with components of the MRN complex, possibly with co-immunoprecipitation 

experients.  

In the studies described above, DXR induced G2/M arrest, while cisplatin and camptothecin induced 

arrest at the S phase (Reinhardt et al., 2007; Xiao et al., 2003). In contrast, we observed S phase 

arrest with DXR treatment. Is it possible that in our model DXR primarily induced either the 

ATM/Chk2 or ATR/Chk1 pathways which converge on Cdc25A, since inhibition of this regulator plays 

a major role in intra-S phase arrest (Reinhardt & Yaffe, 2009). However, cisplatin-induced S phase 

arrest has been shown to be a transient event before arrest in G2/M (Lundholm et al., 2013; Shapiro 
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and Harper, 1999; Tanida et al., 2012). In addition, G2/M arrest induced by DXR was achieved with 

a treatment of 10 µM DXR for 30 hrs (compared to our treatment with 5 µM DXR for 24 hrs) 

(Reinhardt et al., 2007). It is thus also possible that the S phase arrest we observed in our study with 

the treatment of a high dose DXR or with overexpression of AHNAK was a transient event and may 

have led to a final G2/M arrest under different conditions. Furthermore, we also observed an increase 

in the expression of the apoptotic markers during AHNAK knockdown but the expression levels 

increased only to match control levels without any additional loss of cell viability. Thus, with a longer 

treatment (or with a higher dose) we may have obtained the same mitotic catastrophe and apoptotic 

cell death as observed in the studies where MK2 and Chk1 were knocked down.   

As an alternative to the proposed role described above, AHNAK may also function in a separate 

pathway activated by DXR and involving Akt. Akt is a well-established regulator of the cell cycle 

capable of either directly or indirectly regulating multiple proteins involved in the cell cycle (Liang and 

Slingerland, 2003). In particular, Maddika et al. reported on the cyclic activation of Akt during cell 

cycle progression; Akt activity increased during G1-, decreased during S- and increased again during 

the G2 phase (Maddika et al., 2008). In addition, activated Akt also translocated between the 

cytoplasm (G0 and G1) and nucleus (G2), while showing a dispersed localisation among both 

locations during S phase. Searching for novel Akt substrates, the group reported that Cdk2 

phosphorylation and translocation were dependent on Akt. During G1 phase, Cdk2 was mainly 

nuclear while a cytoplasmic localisation was observed during the G2 phase. Similarly to Akt, Cdk2 

was present in both the cytoplasm and nucleus during the S phase. The group suggested that active 

Akt translocates to the nucleus, phosphorylates Cdk2, and together the proteins shuffle back to 

cytoplasm. The pathway was required for the progression of cells from S- to G2 phase while Akt or 

Cdk2 mutants lead to S phase arrest. These experiments were however performed in non-cancerous 

cells. Interestingly, when cancer cells were treated with either methotrexate, docetaxel or DXR, Akt 

showed constitutive activation and nuclear localisation. This coincided with constitutive Cdk2 

phosphorylation and cytoplasmic relocalisation. In a separate study, Chen et al. reported similar 

findings following treatment with pemetrexed in non-small-cell lung carcinoma cells (Chen et al., 

2014). Pemetrexed, like DXR, causes DNA damage through inhibition of DNA replication and 

induction of double-stranded DNA breaks. Similarly to Maddika et al., Chen et al. reported that 

treatment of cancer cells with pemetrexed resulted in constitutive Akt activation and nuclear 

accumulation. Increased Cyclin A/Cdk2 activity and S phase arrest was also reported while inhibition 

of the pathway blocked all effects. The ability of Akt to translocate to the nucleus is however unclear, 

and as Maddika et al. pointed out, Akt does not have a nuclear localisation signal which suggests 

that Akt requires an interaction with a nuclear targeting protein. Since it was reported in an earlier 

study that AHNAK contains a nuclear localisation signal as well as being phosphorylated by Akt 

(Sussman et al., 2001), we speculate that under constitutive activation by DXR in cancer cells, active 

Akt phosphorylated and associated with AHNAK in the cytoplasm and that AHNAK assisted Akt with 

translocation to the nucleus where Cdk2 is phosphorylated, resulting in S phase arrest (fig. 4.2). 
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Since we did not observe a nuclear localisation for AHNAK it suggests that the Akt/AHNAK 

association was lifted upon reaching the nuclear membrane. One caveat to this proposed role is 

however that with chemotherapeutic treatment in both studies, the constitutive activation of the 

Akt/Cdk2 pathway was also associated with increased apoptotic death, which we did not observe in 

our study.  

 

 

Figure 4.2: Proposed possible roles for AHNAK in cell cycle arrest 

 

In contrast to the results obtained in the MDA-MB-231 cells, we did not observe such a role for 

AHNAK in the MCF-7 cells, and it is likely that the p53 status of these cells is involved. Depending 

on the degree of DNA damage, a functional p53 can induce either cell cycle arrest or apoptosis. 

Since we observed significant apoptosis induction during DXR treatment in MCF-7 cells, it is likely 

that the induction of apoptosis was favoured upon severe DNA damage rather than cell cycle arrest 

to attempt DNA repair. The combination of AHNAK overexpression and DXR treatment did however 

result in an increase in the S phase, indicating that the decreased levels of AHNAK protein 

expression in MCF-7 cells may have contributed to the lack of DXR-induced DNA-damage response 

in these cells. In comparison to the MDA-MB-231 cells, the extent of S phase arrest in MCF-7 was 

to a lesser degree, indicating that other required factors may also be lacking in these cells.  

 

4.4 Linking AHNAK and DXR 
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Considering the results obtained while determining the effect of DXR on AHNAK and vice versa, we 

propose that AHNAK plays a role in mediating the intracellular response to DXR in DXR-resistant 

p53-mutant breast cancer cells. This is achieved through a role in modulating the expression of 

apoptotic markers as well as a role in cell cycle arrest. The expression of AHNAK has been shown 

to correlate with the cellular response to chemotherapeutic drugs before and our results now suggest 

that, at least in breast cancer cells, its expression also correlates with DXR resistance. However, 

whether the correlation exists because AHNAK causes DXR resistance or because its expression 

merely coincides with resistance remains to be confirmed.  

Resistance to chemotherapeutic drugs is achieved through multiple mechanisms. In our study we 

observed two mechanisms, namely the downregulation of apoptosis-related proteins and cell cycle 

arrest. The purpose of cell cycle arrest is to repair damaged DNA following a therapeutic insult, thus 

promoting cell survival and is a common response observed in cancer cells (Xiao et al., 2003). Our 

intra-S phase arrest coincided well with DXR’s mechanism of action as most damage would occur 

in this phase. In addition, we also observed decreased cPARP expression. Not only does this 

represent decreased apoptotic conversion of PARP to cPARP, thus reduced apoptotic cell death, 

but it may also contribute to the repair of damaged DNA during arrest. In particular, PARP has been 

shown to be important for the detection of stalled DNA replication forks, the recruitment of the MRN 

complex and replication restart following DNA repair (Bryant et al., 2009). In the MDA-MB-231 cells 

we observed that cell viability and AHNAK expression was maintained fairly well during DXR 

treatment with only a minor decrease in viability at higher DXR doses which coincided with 

decreased AHNAK protein expression. We also observed that, during DXR treatment, AHNAK 

decreased the expression of apoptotic markers (which started to increase again at the higher doses) 

and that AHNAK was required for DXR-induced cell cycle arrest during the S phase. Considering 

these results it is possible that AHNAK facilitated the DXR response while its protein expression was 

maintained. After a 24 hr treatment with a high dose of DXR, the treatment may have started to 

overcome the resistance exhibited by the cells, indicated by the minor degree of cell death, 

decreased AHNAK expression and comparative increase in cCasp7 expression. Cell cycle arrest 

was yet to be effected and may represent the last aspect to be lost especially since the proposed 

roles of AHNAK are of an indirect nature. It would be interesting to compare AHNAK expression, 

apoptosis induction and cell cycle arrest between our high DXR dose and an even higher dose 

capable of promoting more significant cell death in MDA-MB-231 cells.  

The dual role of AHNAK in DXR response may however be mediated by a central pro-survival 

signalling protein, namely Akt. As we described previously, Akt is known to suppress apoptosis and 

to regulate the cell cycle. Given our proposed mechanisms for AHNAK’s involvement in cell cycle 

arrest described above, it is possible that Akt phosphorylates AHNAK as part of its pro-survival 

functions.  
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It also clear that AHNAK has different functions in MCF-7 and MDA-MB-231 cells. The protein is 

significantly differentially expressed and the majority of the results obtained differ between the two 

cell lines, where mostly none of the effects observed in MDA-MB-231 cells were seen in MCF-7 cells. 

We propose that AHNAK is differentially regulated in the two breast cancer cell lines, leading to 

different expression levels, localisation and function. When considering the other functions of 

AHNAK, the role of possible protein-protein interactions in its function in these two cell lines should 

not be overlooked. The MCF-7 and MDA-MB-231 cell lines differ not only with regards to their p53 

status, DXR sensitivity, and breast cancer-related molecular characteristics, but have widely different 

transcriptomic and proteomic profiles. Since AHNAK forms protein interactions in almost every other 

function it would be reasonable to propose that protein interactions form part of the function(s) of 

AHNAK in these cells too. Furthermore, since the partners required for AHNAK function in MDA-MB-

231 cells may not be available to the same extent in MCF-7 cells it is possible that the protein can 

have different functions.  

 

4.4 The effects of AHNAK on EMT and breast cancer cell migration 
 

Epithelial-mesenchymal transition (EMT) is a physiological process that allows for phenotypical 

adjustments of cells to acquire certain characteristics, such as migration, that would enable them to 

fulfil a certain function. Just as cancer cells have “hijacked” other physiological processes to promote 

their own survival and growth, EMT represents another “stolen” process that is now associated with 

advanced tumour progression, metastasis and invasion (Spano et al., 2012). Tumour resistance and 

metastasis often goes hand in hand and it is estimated that approximately 90% of cancer deaths are 

due to metastases (Chen, 2012; Christofori, 2006). The physical adaptations that a cell goes through 

in order to have migratory properties are immense, and many of these are regulated by or acquired 

through the EMT process (Polyak and Weinberg, 2009). Changes in genomic profiles drive these 

adaptations which is mediated by countless signalling and effector proteins. Therapeutics have been 

designed to target many of these proteins in the hope of preventing the spread of tumour cells 

throughout the body. This includes matrix metalloproteinase inhibitors to limit tumour invasion and 

antibodies that target the vascular endothelial growth factor to prevent tumour angiogenesis (Gialeli 

et al., 2011; Van der Veldt et al., 2012). However, similar to cytotoxic agents, these agents are also 

plagued by problems such as therapeutic failure, resistance and adverse effects. Thus patients 

diagnosed with metastatic cancer are often given a poor and terminal prognosis (Sleeman and 

Steeg, 2010).   

It is suggested in previous studies that AHNAK is required for the EMT process which thus implicated 

the protein in tumour metastasis (Shankar et al., 2010; Sudo et al., 2014). We investigated the role 

of AHNAK in cellular migration by assessing the protein expression of three markers for EMT with 
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Western blots and determining the rate of cellular migration by means of scratch assays following 

AHNAK knockdown and overexpression. With EMT activation loss of the epithelial marker E-

cadherin is expected, while the mesenchymal markers Snail and Vimentin are expected to increase. 

The opposite is expected for EMT reversion, or MET (mesenchymal-epithelial transition). Since DXR 

has also been previously shown to be capable of inducing EMT (Li et al., 2009a), we included DXR 

treatments in these experiments to determine whether a possible link between AHNAK, DXR and 

EMT exists.  

In MCF-7 cells, a treatment of 5 µM DXR induced a significant decrease in E-cadherin expression 

which coincided with a significant increase in Snail expression. MCF-7 cells are known to be 

epithelial-like and we also confirmed this (fig. 3.63). These changes in protein expression however 

suggest the activation of EMT and thus a shift toward a mesenchymal-like state. MCF-7 cells are 

also known to express very little Vimentin during basal conditions (Mendez et al., 2010), but 

interestingly we did not observe an induction of Vimentin with the activation of EMT. Two possible 

scenarios could explain this; firstly, it may have been too early to detect Vimentin. Snail is an 

important transcription factor during the activation of EMT and one of its primary functions is to 

negatively regulate the expression of E-cadherin (Guarino, 2007). Vimentin expression can be 

induced by multiple transcription factors (Sánchez-Tilló et al., 2012) and it could have been that in 

our scenario, other transcription factors, which may not have been activated yet, were required for 

the induction of Vimentin expression. As another possibility, it has been shown before that not all 

EMT markers are present during the activation of EMT and in several studies the activation of EMT 

was reported with only a subset of known markers (Kalluri and Weinberg, 2009; Micalizzi et al., 

2010).  

Regarding the activation of EMT in MCF-7 cells, we expected these findings for the low dose DXR 

but not for the high dose, although it seems that in our experiments the low dose may not have been 

sufficient for the induction of EMT. DXR has previously been shown to induce EMT at low 

concentrations, even as low as 0.025 µM DXR (Bandyopadhyay et al., 2010; Han et al., 2013). It is 

also possible that EMT could have been induced by a dose between 0.1 µM and 5 µM. In our 

experiments, 5 µM DXR induced apoptosis in the majority of MCF-7 cells (most likely approximately 

54%, the percentage representing the decrease in cell viability measured by the MTT assay) while 

the remaining (approximately 46%) underwent activation of EMT. Li et al. reported similar results, 

where DXR induced either apoptosis or EMT in MCF-7 cells (Li et al., 2009a). The knockdown and 

overexpression of AHNAK however had no effect on these DXR-induced changes and thus AHNAK 

is most likely not involved in DXR-induced EMT activation in MCF-7 cells.  

DXR treatment in MDA-MB-231 cells resulted in a significant decrease in Snail protein expression 

(fig. 3.69 and 3.74). Whether this decrease signals EMT reversion is however unclear since E-

cadherin protein expression remained mostly constant during DXR treatment and the only change 

observed was a decrease in expression in the 0.1 µM DXR control transfected group during AHNAK 
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overexpression experiments (fig. 3.73). A decrease in Vimentin expression was however observed 

in the 5 µM DXR control transfected group during AHNAK overexpression experiments, which would 

support MET. Knockdown of AHNAK did not seem to induce any major changes in the expression 

of EMT markers. Together with both a low and high dose of DXR, AHNAK knockdown increased 

Vimentin expression, which could be an indication of EMT. However, no changes in Snail expression 

were observed and at the high DXR dose an increase E-cadherin was also detected, which would 

be inconsistent with EMT activation. Overexpression of AHNAK appeared to induce MET under 

basal conditions which is indicated by a decrease in both Snail and Vimentin protein expression (fig. 

3.74-75). No increase in E-cadherin expression was however observed. These changes are similar 

to those induced by a treatment of 5 µM DXR and interestingly, overexpression of AHNAK together 

with a treatment of 5 µM DXR lead to an increase in E-cadherin expression, which is consistent with 

MET (fig. 3.73).  

Our results suggest that AHNAK is capable of promoting EMT reversion, or MET. The lack of 

opposite findings in the knockdown of AHNAK could be due to the fact that MDA-MB-231 cells are 

already mesenchymal and thus a further activation of EMT may not have occurred. We did observe 

an increase in Vimentin expression and since we only achieved approximately 50% knockdown, with 

higher levels of knockdown we may have observed an increase in Snail expression too. 

Assessing the protein expression of EMT markers represents a molecular but indirect assessment 

of cellular migratory capacity. As a more direct measurement we performed scratch assays to assess 

the ability of cells to migrate into and re-fill a wound following AHNAK knockdown and 

overexpression and during DXR treatment.  

Knockdown of AHNAK did not seem to have a major effect on the migratory capacity of MCF-7 and 

MDA-MB-231 cells. Significant changes were only detected between the 0.1 µM control transfected 

and 0.1 µM knockdown groups (24 hrs) in MCF-7 cells, and between the control transfected and 

knockdown groups (6 hrs) in MDA-MB-231 cells. In both instances, knockdown of AHNAK resulted 

in increased percentage of wound closure, and is thus indicative of increased migratory capacity. 

However, since these significant changes are limited and only briefly encountered at certain time 

points, a further investigation is needed to confirm the effect of AHNAK knockdown in cellular 

migration. In contrast, the overexpression of AHNAK revealed more significant changes. In MCF-7 

cells, AHNAK overexpression decreased the percentage wound closure when compared to control 

transfected groups, both without (at 12 and 18 hrs) and with a low dose DXR treatment (at 18 and 

24 hrs). In the MDA-MB-231 cells, overexpression of AHNAK also decreased the percentage wound 

closure when compared to the control transfected groups during both the low (6 and 12 hrs) and 

high (12-24 hrs) DXR treatments, while the high dose DXR treatment cooperated with AHNAK 

overexpression to decrease the percentage wound closure even further. These results, obtained 

from both MCF-7 and MDA-MB-231 cells, suggests that AHNAK overexpression decreased the 

migratory capacity of cells.  
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A limited number of studies have investigated the role of AHNAK in cellular migration and metastasis, 

however, for the most part, our results contradict those studies. Shankar et al. also investigated the 

effect of AHNAK knockdown on the expression of EMT markers but found that this resulted in 

increased E-cadherin and decreased Vimentin (as well as decreased N-cadherin, an additional 

mesenchymal marker, in various cancer cells), indicating that AHNAK was required for EMT 

(Shankar et al., 2010). However, similar to our results, Sheppard et al. also reported contrasting 

results and found that not only did AHNAK negatively correlate with metastasis but it was also 

required for E-cadherin expression in melanoma cancer cells (Sheppard et al., 2015). Even though 

we did not observe increased E-cadherin expression with AHNAK overexpression, we did observe 

decreased Snail expression, which could indicate that E-cadherin levels were still to increase, or the 

suppression was maintained by another transcription factors, such as Slug. Sudo et al. also reported 

results that contradict our scratch assay results. They assessed cellular migration and invasion by 

means of transwell inserts and found that AHNAK knockdown decreased the number of migrating 

and invasive mesothelioma cells (Sudo et al., 2014).  

When considering the results obtained from both the Western blot experiments and the scratch 

assays, there seems to be a consensus that AHNAK overexpression negatively affects cellular 

migration. Since the knockdown of AHNAK did not induce the opposite effect, it would indicate that 

AHNAK may not function as a negative regulator directly involved in the migration process but rather 

that the protein has a different function that indirectly affects migration. That is, overexpression of 

AHNAK stimulates a separate process, which in turn would oppose migration. When taking into 

account the cell cycle results obtained during AHNAK overexpression, this may indeed be the case.  

It is suggested that proliferative and migratory states in cells are mutually exclusive and that 

processes such as EMT serve to uncouple the cell from one state before transitioning into the other. 

Evdokimova et al. reported on the ability of the YB-1 protein to induce both EMT and inhibition of 

cellular proliferation (Evdokimova et al., 2009). This was achieved through activation of EMT-

inducing transcription factors and suppression of cyclin B and D1/D2, both positive regulators of the 

cell cycle. Svensson et al. elegantly showed that tumour-infiltrating regions located at the edges of 

tumours showed decreased proliferative markers and increased expression of the cell cycle inhibitor 

p16INK4a, while the centre areas showed the opposite (Svensson et al., 2003). Hoek et al. 

distinguished between a proliferative and invasive signature in melanoma cells through DNA 

microarray experiments and showed in in vitro and in vivo studies that these signatures resulted in 

significant differences in terms of proliferation and motility (Hoek et al., 2008). Furthermore, Vega et 

al. reported that while Snail overexpression induced EMT in MDCK cells, it also decreased cellular 

proliferation by increasing the expression of p21, resulting in arrest at the G1/S checkpoint (Vega et 

al., 2004).  

The separation of proliferative and migratory states also supports the most recent ideas regarding 

the origins of secondary tumours during metastasis, which suggests that cancer cells acquire the 
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mutational requirements for invasion and disseminate early to establish micrometastases at 

secondary sites (Bernards and Weinberg, 2002; Coghlin and Murray, 2010). The disseminated cells 

would be inefficient at proliferation and thus, it is reasonable that these micrometastases would take 

longer to form noticeable secondary tumours than the primary tumour where mutated cells providing 

proliferative advantages would have been selected for. The rationale behind this separation may be 

simple and logical; through this restriction, the cell is allowed to focus on only one state at a time, 

thus ensuring resource availability and proper control. 

We speculate that a similar phenomenon may have occurred in our study. The overexpression of 

AHNAK activated signalling pathways that promoted cell cycle arrest. Even though this is not 

necessarily associated with a proliferative state, it still represents an important process and may still 

have directed some of the focus of the cell to that response rather than migration. Indeed, we only 

observed decreased migration and EMT and not a complete inhibition, which indicates that the focus 

of the cell was shifted only slightly. In keeping with this theory, since DXR treatment induced the 

same response in terms of cell cycle arrest, it is expected that a similar effect would be observed in 

migration. Indeed, we observed decreased Snail and Vimentin expression (fig. 3.69, 3.74 and 3.75) 

and also decreased migration (fig. 3.84) following DXR treatment.  

We did not observe any changes in EMT marker expression when overexpressing AHNAK in MCF-

7 cells, which further supports our theory since we did not observe the same response in cell cycle 

modulation in these cells. We did however observe two instances in the scratch assays where 

AHNAK overexpression decreased cellular migration compared to the control transfected group (at 

12 and 18 hrs) and compared to the overexpression group treated with low dose DXR (at 18 and 24 

hrs). These effects may have stemmed from AHNAK’s role in the formation of cell-cell contacts, 

especially since MCF-7 cells were one of the cell lines used during the identification of this role 

(Sussman et al., 2001; Benaud et al., 2004). In addition, we also observed the same localisation 

patterns reported in these studies. Increased AHNAK expression would then promote the 

establishment of adherens junctions, which, interestingly, was suggested as a function of AHNAK 

by Sheppard et al. (2015). Nonetheless, the contrasting results presented here and by previous 

studies in literature regarding the role of AHNAK in cellular migration emphasises the need for further 

investigation.   
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Chapter 5 : Conclusions 

 

The cancer cell response to chemotherapeutic drugs represents a complex but vital process in 

determining the therapeutic efficacy of anti-cancer therapies. The significant amount of cancer-

associated deaths continues to have a devastating impact on society and emphasises the urgent 

need to fully understand the response elicited by cancer cells during treatment. The human AHNAK 

protein is a diverse scaffold protein involved in multiple cellular processes. In recent years new roles 

for AHNAK in cancer have been suggested, including tumour metastasis and chemoresponse. 

However, due to limited information and several contradicting reports, the precise role of AHNAK in 

cancer remains unclear. To clarify the role of AHNAK in cancer, especially with regards to 

chemotherapeutic treatment, we have utilised a well-designed in vitro model as well as a 

physiological in vivo breast cancer model. The cell lines used for the in vitro experiments had 

opposing characteristics, such DXR sensitivity, p53 status and capacity for migration, which 

contributed meaningfully towards identifying a role for AHNAK in the DXR-response.  

We observed several differences between the MCF-7 and MDA-MB-231 cell lines with regards to 

AHNAK, primarily associated with changes in protein expression and its role in apoptosis inhibition 

and cell cycle arrest. This is likely associated with the differential DXR-responses, possibly 

influenced by their respective p53 statuses exhibited by these cells, although their differential 

metastatic abilities can not be ignored. Confirming our results with a cell line pair that differs in only 

one phenotype will clarify this, however one should keep in mind that these two characteristics often 

go hand-in-hand. Rather, it may be more appropriate to propose that AHNAK is associated with a 

more malignant and aggressive phenotype than just one specific functional characteristic. Results 

obtained with the tumour-bearing mouse model also reflected an aggressive and resistant phenotype 

and supported our in vitro results. Notably, it is cancers exhibiting this particular phenotype that 

contribute the most to the current mortality rate and thus our results have the potential to be of real 

consequence.  

We present here convincing evidence that AHNAK plays an important role in DXR-response in breast 

cancer cells. We have shown that AHNAK’s protein expression is affected by DXR, but not its 

localisation. Furthermore, we also show that AHNAK can affect DXR-induced changes in apoptosis 

inhibition and cell cycle modulation in breast cancer cells. Based on these findings we propose an 

interesting and novel association between AHNAK, DXR and DXR response/resistance. Identifying 

the exact molecular mechanisms involved requires further investigation, although we provide a 

suitable starting point with regards to the possible involvement of Akt. With regards to the role of 

AHNAK in cellular migration and EMT, our results do not support a direct involvement of the protein 
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in these processes. However, one can not ignore the results obtained from the earlier studies, and 

thus further investigation into this potential role is needed.  

We experienced some limitations during the study. Firstly, increased knockdown efficiency may have 

revealed more information regarding the effect of AHNAK knockdown in mitigating DXR-induced 

apoptosis inhibition and also cellular migration. Even though we selected key proteins involved in 

EMT, the use of different, or perhaps additional, EMT markers may have provided clearer results 

with regards to AHNAK’s role in EMT. A phospho-specific antibody for AHNAK was not commercially 

available, although generating such an antibody would have been of great value in determining the 

role of AHNAK in cancer.  

It is recommended that further studies be performed to clarify the molecular mechanisms of AHNAK’s 

role in DXR-induced apoptosis inhibition and cell cycle modulation. Furthermore, on several 

occasions we noted the possibility of cell-type or drug-dependent effects. It would be advisable to 

confirm the role of AHNAK identified here in other cell lines, especially in pairs of cell lines resistant 

and sensitive to DXR. In addition, it would also be useful to explore the role of AHNAK with other 

chemotherapeutic drugs, those with a similar mechanism of action than DXR but also those that 

have previously been shown to be positively correlated with AHNAK and, importantly, negatively 

correlated as well. A central aspect that warrants further investigation is the regulation of AHNAK 

and this would surely also be of benefit to future studies aimed at identifying the molecular 

mechanisms of AHNAK’s function. Here, the use of a phospho-specific AHNAK antibody would be 

especially useful. Also, AHNAK is known to form multiple protein interactions therefore co-

immunoprecipitation and co-localisation studies to identify interacting protein partners are also 

needed.   

To conclude, we have shown for the first time that AHNAK plays an important part in the DXR-

response of breast cancer cells. Our study has contributed considerably to obtaining a better 

understanding of AHNAK in cancer, especially with regards to its involvement in therapeutic 

responses where there was previously a gap in the available literature. Our results have potential 

therapeutic implications, especially with regards to the modulation of DXR response to ensure 

improved treatment efficacy. However, much research is needed before any clinical benefits can be 

achieved.  
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Chapter 7 : Addendum 

 

7.1 Additional cell cycle results 
 

Distribution of G0/G1 phase in MCF-7 cells following AHNAK knockdown

and DXR treatment

N=3, vertical bars denote +/- standard errors

 Group

pGIPZ-sc

 Group

pGIPZ-AHNAK3

0 µM 0,1 µM 5 µM

DXR concentration

60

62

64

66

68

70

72

74

76

78

80

P
e

rc
e

n
ta

g
e

a

ab

cb
cb

c

c

 

Figure 7.1: Distribution of MCF-7 cells in G0/G1 phase following AHNAK knockdown with pGIPZ-
AHNAK3 and DXR treatment for 24 hrs.  
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Distribution of S phase in MCF-7 cells following AHNAK knockdown 
and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.2: Distribution of MCF-7 cells in S phase following AHNAK knockdown with pGIPZ-AHNAK3 
and DXR treatment for 24 hrs. 

 

Distribution of G2/M phase in MCF-7 cells following AHNAK knockdown 
and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.3: Distribution of MCF-7 cells in G2/M phase following AHNAK knockdown with pGIPZ-
AHNAK3 and DXR treatment for 24 hrs. 
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Distribution of G0/G1 phase in MDA-MB-231 cells following AHNAK knockdown 
and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.4: Distribution of MDA-MB-231 cells in G0/G1 phase following AHNAK knockdown with 
pGIPZ-AHNAK2 and DXR treatment for 24 hrs. 

 

Distribution of S phase in MDA-MB-231 cells following AHNAK knockdown
and DXR treatment

N=3, vertical bars denote +/- standard errors

 Group
pGIPZ-sc

 Group
pGIPZ-AHNAK2

0 µM 0,1 µM 5 µM

DXR concentration

-10

0

10

20

30

40

50

60

70

80

P
e

rc
e
n
ta

g
e

a

b
b

b
bb

 

Figure 7.5: Distribution of MDA-MB-231 cells in S phase following AHNAK knockdown with pGIPZ-
AHNAK2 and DXR treatment for 24 hrs. 
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Distribution of G2/M phase in MDA-MB-231 cells following AHNAK knockdown 

and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.6: Distribution of MDA-MB-231 cells in G2/M phase following AHNAK knockdown with 
pGIPZ-AHNAK2 and DXR treatment for 24 hrs. 

 

Distribution of G0/G1 phase in MCF-7 cells following AHNAK overexpression
and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.7: Distribution of MCF-7 cells in G0/G1 phase following AHNAK overexpression with 
pcDNA3-CRU and DXR treatment for 24 hrs. 
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Distribution of S phase in MCF-7 cells following AHNAK overexpression 

and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.8: Distribution of MCF-7 cells in S phase following AHNAK overexpression with pcDNA3-
CRU and DXR treatment for 24 hrs. 

 

Distribution of G2/M phase in MCF-7 cells following AHNAK overexpression
and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.9: Distribution of MCF-7 cells in G2/M phase following AHNAK overexpression with pcDNA3-
CRU and DXR treatment for 24 hrs. 
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Distribution of G0/G1 phase in MDA-MB-231 cells following AHNAK overexpression

and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.10: Distribution of MDA-MB-231 cells in G0/G1 phase following AHNAK overexpression with 
pcDNA3-CRU and DXR treatment for 24 hrs. 

 

Distribution of S phase in MDA-MB-231 cells following AHNAK overexpression 
and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.11: Distribution of MDA-MB-231 cells in S phase following AHNAK overexpression with 
pcDNA3-CRU and DXR treatment for 24 hrs. 
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Distribution of G2/M phase in MDA-MB-231 cells following AHNAK overexpression
 and DXR treatment

N=3, vertical bars denote +/- standard errors
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Figure 7.12: Distribution of MDA-MB-231 cells in G2/M phase following AHNAK overexpression with 
pcDNA3-CRU and DXR treatment for 24 hrs. 
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7.2 Additional scratch assay results 
 

 

Figure 7.13: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
sc transfected MCF-7 cells without DXR treatment. Lines serve as an indication of wound area and 
where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: (c) 12 hrs; 
(d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective. 

 

 

Figure 7.14: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
sc transfected MCF-7 cells treated with 0.1 µM DXR. Lines serve as an indication of wound area 
and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: (c) 12 
hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective. 
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Figure 7.15: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
AHNAK3 transfected MCF-7 cells without DXR treatment. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  

 

 

Figure 7.16: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
AHNAK3 transfected MCF-7 cells treated with 0.1 µM DXR. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  
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Figure 7.17: Representative brightfield microscopy images of wound closure over 24 hrs in MMC 
control MCF-7 cells. Lines serve as an indication of wound area and where drawn to fit the general 
migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 
500 µm, 4x objective.  

 

 

Figure 7.18: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
sc transfected MDA-MB-231 cells without DXR treatment. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  
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Figure 7.19: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
sc transfected MDA-MB-231 cells treated with 0.1 µM DXR. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  

 

 

Figure 7.20: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
sc transfected MDA-MB-231 cells treated with 5 µM DXR. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  
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Figure 7.21: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
AHNAK2 transfected MDA-MB-231 cells without DXR treatment. Lines serve as an indication of 
wound area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 
6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  

 

 

Figure 7.22: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
AHNAK2 transfected MDA-MB-231 cells treated with 0.1 µM DXR. Lines serve as an indication of 
wound area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 
6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  
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Figure 7.23: Representative brightfield microscopy images of wound closure over 24 hrs in pGIPZ-
AHNAK2 transfected MDA-MB-231 cells treated with 5 µM DXR. Lines serve as an indication of 
wound area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 
6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  

 

 

Figure 7.24: Representative brightfield microscopy images of wound closure over 24 hrs in MMC 
control MDA-MB-231 cells. Lines serve as an indication of wound area and where drawn to fit the 
general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. 
Scale = 500 µm, 4x objective.  

 

Stellenbosch University  https://scholar.sun.ac.za



186 
 

 

Figure 7.25: Representative brightfield microscopy images of wound closure over 24 hrs in 
pcDNA3.1 transfected MCF-7 cells without DXR treatment. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  

 

 

Figure 7.26: Representative brightfield microscopy images of wound closure over 24 hrs in 
pcDNA3.1 transfected MCF-7 cells treated with 0.1 µM DXR. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  
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Figure 7.27: Representative brightfield microscopy images of wound closure over 24 hrs in pcDNA3-
CRU transfected MCF-7 cells without DXR treatment. Lines serve as an indication of wound area 
and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: (c) 12 
hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective. 

 

 

Figure 7.28: Representative brightfield microscopy images of wound closure over 24 hrs in pcDNA3-
CRU transfected MCF-7 cells treated with 0.1 µM DXR. Lines serve as an indication of wound area 
and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: (c) 12 
hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.   
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Figure 7.29: Representative brightfield microscopy images of wound closure over 24 hrs in MMC 
control MCF-7 cells. Lines serve as an indication of wound area and where drawn to fit the general 
migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 
500 µm, 4x objective.  

 

 

Figure 7.30: Representative brightfield microscopy images of wound closure over 24 hrs in 
pcDNA3.1 transfected MDA-MB-231 cells without DXR treatment. Lines serve as an indication of 
wound area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 
6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  
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Figure 7.31: Representative brightfield microscopy images of wound closure over 24 hrs in 
pcDNA3.1 transfected MDA-MB-231 cells treated with 0.1 µM DXR. Lines serve as an indication of 
wound area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 
6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  

 

 

Figure 7.32: Representative brightfield microscopy images of wound closure over 24 hrs in 
pcDNA3.1 transfected MDA-MB-231 cells treated with 5 µM DXR. Lines serve as an indication of 
wound area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 
6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  
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Figure 7.33: Representative brightfield microscopy images of wound closure over 24 hrs in pcDNA3-
CRU transfected MDA-MB-231 cells without DXR treatment. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  

 

 

Figure 7.34: Representative brightfield microscopy images of wound closure over 24 hrs in pcDNA3-
CRU transfected MDA-MB-231 cells treated with 0.1 µM DXR. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  
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Figure 7.35: Representative brightfield microscopy images of wound closure over 24 hrs in pcDNA3-
CRU transfected MDA-MB-231 cells treated with 5 µM DXR. Lines serve as an indication of wound 
area and where drawn to fit the general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: 
(c) 12 hrs; (d) 18 hrs; (e) 24 hrs. Scale = 500 µm, 4x objective.  

 

 

Figure 7.36: Representative brightfield microscopy images of wound closure over 24 hrs in MMC 
control MDA-MB-231 cells. Lines serve as an indication of wound area and where drawn to fit the 
general migration front across the imaged area. (a) 0 hrs; (b) 6 hrs: (c) 12 hrs; (d) 18 hrs; (e) 24 hrs. 
Scale = 500 µm, 4x objective.  
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Rate of wound closure in MCF-7 cells following AHNAK knockdown

and DXR treatment

N=9, vertical bars denote +/- standard errors
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Figure 7.37: Rate of wound closure in MCF-7 cells following AHNAK knockdown and DXR treatment. 
Statistical significance between groups per time point is indicated by symbols. $ - MMC control vs. 
pGIPZ-AHNAK3 0 µM, p < 0.05; # - MMC control group vs. all other groups, p < 0.0001; * - pGIPZ-
sc 0 µM vs. pGIPZ-sc 0.1 µM, p < 0.05. 

Rate of wound closure in MDA-MB-231 cells following AHNAK knockdown
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Figure 7.38: Rate of wound closure in MDA-MB-231 cells following AHNAK knockdown and DXR 
treatment. Statistical significance between groups per time point is indicated by symbols. $ - MMC 
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control vs. all other groups, p < 0.05 at 6hrs, p < 0.0001 at 12-24 hrs; # - pGIPZ-sc 0 µM vs. pGIPZ-
AHNAK2 0 µM, p < 0.05. 

Rate of wound closure in MCF-7 cells following AHNAK overexpression

and DXR treatment

N=9, vertical bars denote +/- standard errors
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Figure 7.39: Rate of wound closure in MCF-7 cells following AHNAK overexpression and DXR 
treatment. Statistical significance between groups per time point is indicated by symbols. $ - MMC 
control vs. all other groups, p < 0.05 at 6 hrs, p < 0.0001 at 12-24 hrs; # - pcDNA3-CRU 0 µM vs. 
pcDNA3-CRU 0.1 µM, p < 0.05; * - pcDNA3.1 0 µM vs. pcDNA3-CRU 0 µM, p < 0.05. 
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Rate of wound closure in MDA-MB-231 cells following AHNAK overexpression 
and DXR treatment

N=9, vertical bars denote +/- standard errors
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Figure 7.40: Rate of wound closure in MDA-MB-231 cells following AHNAK overexpression and DXR 
treatment. Statistical significance between groups per time point is indicated by symbols. $ - MMC 
control vs. all other groups except pcDNA3.1 0.1 µM, p < 0.05; # - pcDNA3.1 0.1 µM vs. pcDNA3-
CRU 0.1 µM, p < 0.05; * - MMC control vs. all other groups, p < 0.0001; £ - pcDNA3.1 5 µM vs. 
pcDNA3-CRU 5 µM, p < 0.05; ¥ - pcDNA3-CRU 0 µM vs. pcDNA3-CRU 5 µM, p < 0.05. 
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