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SUMMARY 

 

Listeria monocytogenes is a foodborne pathogen that has the ability to survive within a wide range 

of conditions found within food processing environments. It is the cause of a potentially life-

threatening infection, listeriosis.  Its presence is of major concern within ready-to-eat food processing 

environments and food products. Since no further processing or heat treatment is required by the 

consumer, post production cross contamination thereof should be minimised. Considering the lack 

of information about L. monocytogenes in ready-to-eat (RTE) foods in the South African context, the 

aim of this study was to study the survival and proliferation thereof in a RTE food factory, situated in 

the Western Cape, South Africa. Presumptive positive samples in the form of inoculated 

Rapid’L.mono plates (n=434) were collected from the factory’s Listeria management plan. Visual 

inspection for characteristic black colonies, provided 64 presumptive positive L. monocytogenes 

species. Polymerase chain reaction protocol was optimised for amplification of target genes iap 

(Listeria spp.) and lmo2334 (L. monocytogenes), to differentiate positive species. The Rapid’L.mono 

method was also evaluated for enrichment bias that cause false negatives for L. monocytogenes in 

the presence of L. innocua. The method was found to be sufficient for detection of L. monocytogenes, 

if the CFU.g-1 of both species were the same prior to enrichment. Isolates were subtyped through 

automated EcoRI ribotyping which was conducted using DuPont RiboPrinter® and identified as, 

DuPont ID 1038, DuPont ID 1041, DuPont ID 1042, and DuPont ID 18596. These strains were 

previously implicated in human listeriosis cases and international product recalls. DuPont ID 20243, 

that was isolated from the RTE factory, has not yet been logged on the global Food Microbe Tracker 

database.  From the 29 ribotypes obtained, nine different DuPont ID’s were assigned, which was 

indicative of the variety of contamination sources within the RTE factory, on par with similar studies 

conducted. Lineage assignments of L. monocytogenes could be made using the DuPont ID’s and 

the RTE factory studied was found to host both lineage I and II strains. The cluster analysis revealed 

contaminated work boots, trolleys and crates to be possible contamination mechanisms. The 

response of L. monocytogenes biofilms, cultivated under flow conditions, to sanitisers used in the 

factory environment was evaluated. A protocol was developed using the CO2 evolution measurement 

system (CEMS) to evaluate the effect of four sanitisers used by the RTE food factory on  

L. monocytogenes biofilms. In a novel approach, it was found, that even though no bactericidal effect 

occurred by either sanitiser, the QAC free sanitiser resulted in the best eradication of the biofilm. 

Peracetic acid and QAC based chemicals had no effect on the biofilm, as recovery of  

L. monocytogenes was observed after multiple treatments. The RTE factory was advised to use 

QAC free chemical sanitisers currently available to manage biofilms, specifically in drains. This study 

not only created more awareness regarding the complexities of L. monocytogenes in the RTE food 

factory, but also laid the groundwork for further study into the survival and proliferation of  

L. monocytogenes in the RTE environment. 

Stellenbosch University  https://scholar.sun.ac.za



iv 
 

OPSOMMING 

 

Listeria monocytogenes is ‘n voedselverwante patogeen wat die vermoë besit om in ‘n wye reeks 

toestande gevind in voedselverwerkingsomgewings, te oorleef. Dit is die oorsaak van ‘n potensieël 

lewensgevaarlike infeksie, listeriose. Die teenwoordigheid daarvan is van groot kommer binne 

gereed-om-te-eet (RTE) verwerkingsomgewings en voedselprodukte. Aangesien geen verdere 

verwerking of hittebehandeling benodig word deur die verbruiker nie, moet na-produksie 

kruiskontaminasie daarvan geminimiseer word. Aangesien daar ‘n tekort aan inligting rakende  

L. monocytogenes in RTE voedselprodukte in die Suid-Afrikaanse konteks is, is die doel van hierdie 

studie om die oorlewing en verspreiding daarvan in ‘n RTE voedselfabriek in die Wes-Kaap van 

Suid-Afrika, te ondersoek. Vermoedelike positiewe monsters in die vorm van geϊnokuleerde 

Rapid’L.mono plate (n=434) is ingesamel deur middel van die fabriek se Listeria bestuursplan. 

Visuele inspeksie van die kenmerkende swart kolonies het 64 vermoedelike L. monocytogenes 

spesies verskaf. ‘n Polimerase kettingreaksie is geoptimiseer vir die amplifikasie van teikengene iap 

(Listeria spp.) en lmo2334 (L. monocytogenes), om positiewe monsters te onderskei. Die 

Rapid’L.mono metode is ook geëvalueer vir verrykingspartydigheid wat vals negatiewes vir  

L. monocytogenes in die teenwoordighied van L. innocua veroorsaak. Daar is gevind dat die metode 

voldoende is vir die opsporing van L. monocytogenes mits die KVE.g-1 van beide spesies dieselfde 

was voor verryking. Isolate was gesubtipeer deur EcoRI ribotipering wat gedoen is deur die gebruik 

van die DuPont RiboPrinter. Die isolate is geïdentifiseer as DuPont ID 1038, DuPont ID 1041, 

DuPont ID 1042, en DuPont ID 18596. Hierdie stamme was voorheen geϊmpliseer in menslike 

listeriose gevalle asook internasionale voedselherroepings. DuPont ID 20243 wat geïsoleer is in OF 

uit die RTE fabriek is nog nie van tevore aangemeld op die globale “Food Microbe Tracker” databasis 

nie. Van die 29 ribotipes verkry, was nege verskillende DuPont ID’s aangewys. Hierdie is aanduidend 

van die verskeidenheid van kontaminasiebronne binne-in die RTE fabriek en dit is in lyn met 

soortgelyke studies. Linie toekennings van L. monocytogenes kon gemaak word deur gebruik te 

maak van DuPont ID’s. Daar is gevind dat die fabriek wat bestudeer is, beide linie I en II stamme 

huisves. Die groepsanalise het gewys dat gekontamineerde werksskoene, trollies en kratte 

moontlike kontaminasiemeganismes was. Die reaksie van L. monocytogenes biofilms, gekweek 

onder vloeikondisies, teenoor saniteermiddels wat in dίe fabrieksomgewing gebruik word, is 

geëvalueer. ‘n Protokol is ontwikkel, deur gebruik te maak van die CO2 Evolusie Metingsisteem 

(CEMS), om die effek van vier saniteermiddels, gebruik in die RTE voedselfabriek, te evalueer. As 

eerste van sy soort, is gevind dat al was daar geen bakterieëdodende effek deur enige 

saniteermiddel nie, het die chemiese saniteermiddels wat geen kwaternêre ammonium samestelling 

(QAC) bevat het nie, die beste uitwissing van die biofilm veroorsaak. Perasynsuur en QAC-

gebaseerde chemikalieë het geen effek op die biofilms gehad nie omdat herstel van  

L. monocytogenes gesien is na verskeie behandelings. Daar is aanbeveel dat die RTE fabriek 
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gebruik maak van die QAC-vrye chemiese saniteermiddels tans beskikbaar vir die bestuur van 

biofilms, spesifiek in die dreine. Hierdie studie het nie net meer bewusmaking aangaande die 

kompleksiteit van L. monocytogenes in die RTE voedselfabriek tot gevolg gehad nie, maar het ook 

die fondasie gelê vir verdere studies aangaande die oorlewing en verspreiding van  

L. monocytogenes in die RTE omgewing.  
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And miles to go before I sleep, 

And miles to go before I sleep” 

- Robert Frost 

 

 

 

 

 

This thesis is dedicated to: 

My parents,  

Herman & Brenda Ackermann 

“I stand tall, because I stand on the shoulders of giants” 

Stellenbosch University  https://scholar.sun.ac.za



viii 
 

CONTENTS 
 

Declaration...................................................................................................................................... ii 

Summary ........................................................................................................................................ iii 

Opsomming ................................................................................................................................... iv 

Acknowledgements ........................................................................................................................ vi 

Abbreviations ................................................................................................................................. xii 

List of tables .................................................................................................................................. xiv 

List of figures ................................................................................................................................ xv 

Chapter 1 ........................................................................................................................................ 1 

INTRODUCTION ............................................................................................................................ 1 

References .................................................................................................................................. 2 

CHAPTER 2 .................................................................................................................................... 4 

Literature review ............................................................................................................................. 4 

2.1  Introduction ........................................................................................................................... 4 

2.2  Food Safety ...................................................................................................................... 4 

2.3  Listeria monocytogenes .................................................................................................... 6 

2.3.1  The evolution of the genus ......................................................................................... 6 

2.3.2 Characterisation of Listeria monocytogenes .............................................................. 6 

2.3.3 Lineages .................................................................................................................... 7 

2.3.4 Strain fitness .............................................................................................................. 9 

2.4 Virulence: from saprotroph to pathogen ............................................................................ 9 

2.5 Listeriosis ........................................................................................................................ 10 

2.6 Detection methods .......................................................................................................... 12 

2.6.1 Traditional culturing and detection methods ............................................................. 12 

2.6.2 ISO 11290-1:2017 ................................................................................................... 12 

2.6.3 Rapid’L.mono® chromogenic agar ........................................................................... 13 

2.6.4 Overcoming enrichment bias ................................................................................... 13 

2.6.5 Enumeration ............................................................................................................ 14 

2.7 Molecular typing and subtyping methods ........................................................................ 14 

Stellenbosch University  https://scholar.sun.ac.za



ix 
 

2.7.1 Polymerase Chain Reaction..................................................................................... 15 

2.7.2 Ribotyping ................................................................................................................ 15 

2.8  Automated ribotyping ..................................................................................................... 16 

2.8.1  DuPont Riboprinter® ............................................................................................... 16 

2.8.2  Food Microbe Tracker ............................................................................................. 17 

2.9  Comparison of competing methods: Riboprinter vs PFGE ............................................. 18 

2.10 Whole Genome Sequencing: A new approach to outbreak investigation......................... 18 

2.11  Similar studies ............................................................................................................... 19 

2.12  The study of Biofilms: Response to bactericidal factors ................................................. 19 

2.12.1  Biofilms and persistence ......................................................................................... 19 

2.12.2  Biofilm formation and structure ............................................................................... 21 

2.12.3 The genetics of biofilms ........................................................................................... 22 

2.12.4 Biofilms, persistence and resistance ........................................................................ 22 

2.13  The study of biofilms ...................................................................................................... 24 

2.13.1  Comparison of fluid and static biofilm measurement systems/methods ................... 24 

2.13.2  CO2 Evolution Measurement System (CEMS) ......................................................... 25 

2.14 Sanitation ........................................................................................................................ 26 

2.14.1 Sanitation in food processing environments ................................................................ 26 

2.14.2 Quaternary Ammonium compounds ......................................................................... 27 

2.14.3 Peracetic acid .......................................................................................................... 28 

2.14.4 Alternative methods .................................................................................................... 28 

2.15 Conclusion ......................................................................................................................... 29 

2.16 References ..................................................................................................................... 30 

Chapter 3 ...................................................................................................................................... 46 

Isolation and identification of Listeria monocytogenes in a South African Ready-to-eat food factory

 ..................................................................................................................................................... 46 

3.1  Abstract .......................................................................................................................... 46 

3.2  Introduction ..................................................................................................................... 46 

3.3  Materials and methods .................................................................................................... 48 

3.3.1  Sampling method ..................................................................................................... 48 

Stellenbosch University  https://scholar.sun.ac.za



x 
 

3.3.2  Sample processing and glycerol stocks ................................................................... 49 

3.3.3  PCR ......................................................................................................................... 49 

3.3.4  Enrichment bias ....................................................................................................... 52 

3.4   Results and discussion ................................................................................................... 54 

3.4.1  Multiplex PCR .......................................................................................................... 54 

3.4.2  Enrichment bias ....................................................................................................... 56 

3.5  Conclusion ...................................................................................................................... 59 

3.7  References ..................................................................................................................... 60 

Chapter 4 ...................................................................................................................................... 63 

Automated ribotyping and cluster analysis of Listeria monocytogenes isolates from a South African 

Ready-to-eat food factory .............................................................................................................. 63 

4.1 Abstract .......................................................................................................................... 63 

4.2 Introduction ..................................................................................................................... 63 

4.3 Materials and methods .................................................................................................... 65 

4.3.1 Selection of samples for Ribotyping .............................................................................. 65 

4.3.2 Sample preparation for automated ribotyping .......................................................... 65 

4.3.3  Automated ribotyping .............................................................................................. 65 

4.3.4 Dendrogram construction for data analysis .............................................................. 66 

4.4  Results and discussion ................................................................................................... 66 

4.5 Conclusion ...................................................................................................................... 72 

4.6 Acknowledgements ......................................................................................................... 72 

4.7 References ..................................................................................................................... 72 

Chapter 5 ...................................................................................................................................... 76 

Response of Listeria monocytogenes biofilms to sanitisers used in Ready-to-eat processing 

environment .................................................................................................................................. 76 

5.1 Abstract .......................................................................................................................... 76 

5.2 Introduction ..................................................................................................................... 76 

5.3  Materials and methods .................................................................................................... 78 

5.3.1 Flow system set-up and preparation ........................................................................ 78 

5.3.2 Monoculture inoculum preparation ........................................................................... 79 

5.3.3 System inoculation ................................................................................................... 79 

Stellenbosch University  https://scholar.sun.ac.za



xi 
 

5.3.4 Enumeration of free cells in CEMS outflow .............................................................. 79 

5.3.5 Testing the effect of various industry based sanitisers ............................................. 80 

5.4 Results and discussion ................................................................................................... 82 

5.4.1 Protocol development for biofilm cultivation in CEMS .................................................... 82 

5.4.2 Test 1: Protocol development for sanitiser treatment of L. monocytogenes biofilms in 

CEMS 84 

5.4.3 Test 2: Response of L. monocytogenes biofilms to QAC based and Peracetic acid 

based sanitisers ..................................................................................................................... 85 

5.4.4 Test 3: Observing the response of L. monocytogenes monoculture biofilms to 

treatment with QAC-sanitiser (Byotrol) and QFC-sanitiser (Byotrol QFC). .............................. 87 

5.5 Conclusion ...................................................................................................................... 89 

5.6 Acknowledgments ........................................................................................................... 90 

5.7 References ..................................................................................................................... 90 

Chapter 6 ...................................................................................................................................... 93 

General discussion and conclusions ............................................................................................. 93 

References ................................................................................................................................ 95 

 

 

This thesis is presented in the format prescribed by the Department of Food Science at Stellenbosch 

University. The structure is in the form of three research chapters (papers prepared for publication) 

and is prefaced by an introduction chapter with the study objectives, followed by a literature review 

chapter and culminating with a chapter for elaborating a general discussion, recommendations and 

conclusions. Language, style and referencing format used are in accordance with the requirements 

of the International Journal of Food Science and Technology. This thesis represents a compilation 

of manuscripts where each chapter is an individual entity and some repetition between chapters has, 

therefore, been unavoidable. 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



xii 
 

ABBREVIATIONS 

BEC  Biofilm eradication concentration 

CAC  Codex Alimentarius Commission 

CEMS   CO2 evolution measurement system  

CFU  colony forming units 

EC  Epidemic clone 

eDNA  Extracellular DNA 

EFSA  European Food Safety Association 

EPS  Extracellular polymeric substance  

MPF  Minimally processed food 

FBO  Food business operator 

FCS  Food contact surfaces 

FSIS  Food safety and inspection service 

HR  High risk area 

LOD  Level of detection 

LR  Low risk area 

MIC  Minimum inhibitory concentration 

MPF  Minimally processed foods 

NA  Nutrient Agar 

NFCS  Non-food contact surfaces 

OD  Optical density 

PAA  Peracetic acid 

PCR   Polymerase chain reaction  

PFGE  Pulsed field gel electrophoresis 

POD  Probability of detection 

RFLP  Restriction fragment length polymorphisms 

rpm  revolutions per minute 

Stellenbosch University  https://scholar.sun.ac.za



xiii 
 

rRNA  Ribosomal RNA 

RTE  Ready to Eat 

spp.  Species 

QA  Quality assurance 

QAC  Quaternary Ammonium compound 

QFC  QAC Free chemical 

USDA  United State Department of Agriculture 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



xiv 
 

LIST OF TABLES 

 

Table 2.1 Lineage related stress response adaptations in RTE processing environment…………….7 

Table 2.2 Description of lineage groups…………………………………………………………………...8 

Table 2.3 Comparison of similar studies as they relate to the current study………………………...20 

Table 3.1 Primer sequences for multiplex PCR………………………………………………………….49 

Table 3.2 Combinations of conditions for PCR optimisation trials……………………………………...52 

Table 3.3 Isolates used for enrichment bias study………………………………………………………52 

Table 4.1 Distribution of 9 L. monocytogenes ribotypes in RTE food processing environment…….70 

Table 4.2 DuPont ID isolates logged on Food Microbe Tracker (as of 14/09/2017)…………………70 

Table 5.1 Description and industry recommended application of sanitisers used to study biofilm 

response…………………………………………………………………………………………….81 

Table 5.2 Sanitisers and contact parameters for treatment of L. monocytogenes biofilms cultured in 

CEMS…………………………………………………………………………………………….....81 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



xv 
 

LIST OF FIGURES 

 

 Figure 2.1 The transition of L. monocytogenes from saprotroph to intracellular pathogen (Freitag et 

al., (2010))…………………………………………………………………………………………..11 

Figure 2.2 DuPont RiboPrinter® used for automated ribotyping of isolates from RTE food factory..17 

Figure 2.3 Methods available for cultivation and characterisation of biofilms (adapted from Azeredo 

et al. (2017))…………...……………………………………………………………………………24 

Figure 2.4 CEMS system set-up (a) CO2 analysers, (b) outflow and waste container, (c) four CEMS 

(to be inserted in (d) during study), (d) water bath, (e) peristaltic pump, (f) nutrient reservoir, 

(g) CO2-free gas regulators (CO2-free gas bottles not on figure)……………………………..25 

Figure 2.5 Cross section of CEMS to indicate transfer of CO2 from bulk liquid phase (biofilm and 

nutrients) to gas phase (CO2 free air) (adapted from Kroukamp and Wolfaardt (2009))……26 

Figure 3.1 Outline of protocol used for confirmation of equal CFU's present in a standardised 0.1 

OD L. monocytogenes and L. innocua culture broth…………………………………………….53 

Figure 3.2 Outline of protocol to study growth behaviour of co-inoculated half Fraser enrichment of 

L. monocytogenes and L. innocua………………………………………………………………..53 

Figure 3.3 Gel image demonstrating selective amplification of iap (lane 4,5 and 9) and lmo2234 

(lane 3,5,8 and 10-12), negative control (lane 2) and positive control (lane 

3)……………………...……………………………………………………………………………..55 

Figure 3.4 Gel image demonstrating successful amplification of lmo2234, negative control (lane 2) 

and positive control (lane 3)…………………………………………..…………………………..55 

Figure 3.5 Multi-specie Listeria on Rapid'L.mono plates obtained RTE food factory’s Listeria 

management program……………………………………………………………………………..56 

Figure 3.6 Rapid'L.mono plates of simultaneous half Fraser enrichment of L. monocytogenes and 

L. innocua.  a-d) had 100 µl of 0.1 OD as initial inoculation, e-f) 1 ml of O.1 OD of initial 

inoculation. i) L. innocua control, j) L. monocytogenes control………………………………..57 

Figure 3.7 Comparison of Rapid’L.mono manufacturer recommended streaking method (AFNOR 

Certified (EN ISO 16140)) (c,d,g,h) and single loop streaking method (a,b,e,f)……………..58 

Figure 4.1 Riboprinter images obtained (lane 1,4,7,10,15 are internal marker DNA) (a) sufficient 

number of cells inserted into RiboPrinter® (b) insufficient number of cells inserted into 

RiboPrinter®………………………………………………………………………………..………66 

Figure 4.2 Dendrogram of 37 ribotyped isolates obtained from RTE food processing environment 

from 2016 to 2017…………………………………………………………………………………67 

Stellenbosch University  https://scholar.sun.ac.za



xvi 
 

Figure 4.3 Growth of Staphylococcus sciuri observed on Rapid’L.mono chromogenic, selective 

agar………………………………………………………………………………………………….71 

Figure 5.1 CEMS system set-up (adapted from Loots (2016))………………………………………...79 

Figure 5.2 Effluent collection from CEMS………………………………………………………...……..80 

Figure 5.3 Treatment set up for CEMS (a) Nutrient broth (TSB) reservoir disconnected during 

treatment; (b) sanitiser reservoir directly fed into CEMS system aided by peristaltic pump..82 

Figure 5.4 Comparison of CO2 production (µmol.h-1) for selection of strain to be used for subsequent 

tests (a) sample 51, (b) sample 135……………………………………………………………..83 

Figure 5.5 Establishing trends for subsequent tests of CO2 production (µmol.hr-1) of biofilm in 

response to sanitisers (a) Byotrol, (b) Byotrol QFC……………………………………………..85 

Figure 5.6 Response of L. monocytogenes monoculture biofilm to QAC based sanitiser (Divosan 

QC)…………………………………………………………………………………………………..86 

Figure 5.7 Response of L. monocytogenes monoculture biofilm to peracetic acid based sanitiser 

(Perasan)………………………………………..………………………………………………….87 

Figure 5.8 Response of L. monocytogenes monoculture biofilm to QAC based sanitiser (Byotrol)...88 

Figure 5.9 Response of L. monocytogenes monoculture biofilm to QAC-free sanitiser (Byotrol 

QFC)……………………………………………………………………………………………..….89 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



1 
 

CHAPTER 1 

INTRODUCTION 

In 2016, 80% of food recall cases in the United States of America were due to Listeria 

monocytogenes contamination (Anonymous, 2017). The total food recalls due to similar reasons in 

South Africa, were unknown. As a saprotrophic pathogen, L. monocytogenes has the ability to 

survive and proliferate in various conditions associated with food processing environments (Dhama 

et al., 2015; Lokerse et al., 2016). L. monocytogenes causes a potentially fatal infection, listeriosis. 

In healthy individuals, it can manifest as self-limiting febrile gastroenteritis. However, vulnerable 

groups such as pregnant woman, young children, the elderly and immunocompromised individuals 

are at risk of potentially fatal invasive listeriosis that can cause spontaneous abortions, neo-and  

peri-natal infections, meningitis and septicaemia (Meloni et al., 2009; Dhama et al., 2015).  

The main vehicle of infection is through the consumption of contaminated food and ready to 

eat (RTE) products and it is therefore the responsibility of Food Business Operators to ensure that 

food products are microbiologically safe. However, information regarding product recalls and illness 

incidences due to contaminated food products are not available to the public in South Africa, with 

the exception of occasional and fleeting news reports (Scholtz. 2017).  

When considering the socio-economic context of South Africa, food safety and the regulation 

thereof should gain more attention. In 2012, the national estimate for HIV prevalence among the 

citizens of South Africa was 12%, which showed a statistically significant increase from the 10.6% 

in 2008 (Shisan et al., 2014). Therefore, in 2012 approximately 6 422 179 people lived with 

compromised immune systems, which inherently means a large part of the population was 

susceptible to a fatal listeriosis infection.  

Due to pre-and post-production handling conditions, RTE foods are known for their risk of L. 

monocytogenes contamination (Vongkamjan et al., 2013; Nyarko & Donnelly, 2015). RTE foods are 

defined as “…any food (including beverages) which is normally consumed in its raw state or any 

food handled, processes, mixed, cooked, or otherwise prepared into a form in which it is normally 

consumed without further processing” (Foodstuffs, Cosmetics and Disinfectants Act and 

Regulations, 2010). The microbiological risks associated with RTE foods are due to the fact that no 

heating or further processing by the consumer is required prior to consumption. Information 

regarding the South African RTE food sector is extremely limited. The lack of public access to 

existing documents are reflected in a single market entry report “Ready to eat food industry in South 

Africa: Analysis of Growth, Trends and Progress (2017-2022)” (Anonymous, 2016), that can only be 

purchased at a high cost.  

The Listeria genus contains genetically heterogenous species (Nyarko & Donnelly, 2015), 

with only a small fraction of the specie subtypes being associated with food related listeriosis. Yet, a 
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large amount of resources in the food industry are directed towards the eradication and control of 

Listeria in its processing environments. Testing and detection of foodborne pathogens is a crucial 

element in risk management and long term control in the food chain (Dalmasso et al., 2014).  

The focus of this study was on a RTE food factory situated in the Western Cape, South Africa 

which was faced with a very familiar challenge: managing the presence and subsequent cross 

contamination of L. monocytogenes in the processing environment. However, without a thorough 

understanding of the sources, sub-types, contamination mechanisms and effect of sanitation 

practices, no pro-active management steps could be taken. It was therefore the aim of this study to 

examine the survival and proliferation of L. monocytogenes microflora of this RTE food factory.  

Contamination of RTE food products with L. monocytogenes will lead to food recalls and 

possible fatal infection for the South African consumer. Contamination can only be prohibited if the 

factors driving the contamination as well as the source thereof is identified, as stated in the objectives 

of this study.  

The first objective was to isolate and positively identify L. monocytogenes isolates from the 

factory environment and food products, using conventional and multiplex PCR. Also, to evaluate the 

reliability of Rapid’L.mono chromogenic agar for the routine detection of L. monocytogenes in the 

presence of L. innocua.  

The second objective was to subtype the isolates from the RTE food factory, through 

automated ribotyping to examine potential contamination sources and establish contamination 

mechanism and trends. Furthermore, to compare ribotype data with other similar studies as well as 

an international database, in order to gain a global perspective of L. monocytogenes in food and 

human clinical isolates. 

 The final objective was to study the response of L. monocytogenes biofilms, cultivated under 

flow conditions, to sanitisers currently used within the RTE food factory. By achieving this objective, 

recommendations could be made to adapt the use of current sanitsers for a greater antimicrobial 

effect. 

References 

Anonymous. (2016). Market Entry- Ready to eat food industry in South Africa: Analysis of Growth, 

Trends and progress (2017-2022). [Internet source] 

https://www.mordorintelligence.com/industry-reports/market-entry-ready-to-eat-food-

industry-in-south-africa. Accessed 08/09/2017. 

 

 

Stellenbosch University  https://scholar.sun.ac.za

https://www.mordorintelligence.com/industry-reports/market-entry-ready-to-eat-food-industry-in-south-africa.%20Accessed%2008/09/2017
https://www.mordorintelligence.com/industry-reports/market-entry-ready-to-eat-food-industry-in-south-africa.%20Accessed%2008/09/2017


3 
 

Anonymous. (2017). More Recalls Caused by Fear of Listeria monocytogenes Contamination 

[Internet source] http://ask-bioexpert.com/all/recalls-caused-fear-listeria-

monocytogenes-contamination Accessed 08/09/2017.  

Dalmasso, M., Bolocan, A.S., Hernandez, M., Kapetanakou, A.E., Kuchta, T., Manios, S.G., 

Melero, B., Minarovičová, J., Muhterem, M., Nicolau, A.I., Rovira, J., Skandamis, P.N., Stessl, 

B., Wagner, M., Jordan, K. & Rodríguez-Lázaro, D. (2014). Comparison of polymerase chain 

reaction methods and plating for analysis of enriched cultures of Listeria monocytogenes 

when using the ISO11290-1 method. Journal of Microbiological Methods, 98, 8–14. 

Dhama, K., Karthik, K., Tiwari, R., Shabbir, M.Z., Barbuddhe, S., Malik, S.V.S. & Singh, R.K. 

(2015). Listeriosis in animals, its public health significance (food-borne zoonosis) and 

advances in diagnosis and control: a comprehensive review. The Veterinary quarterly, 2176, 

1–25. 

Foodstuffs, Cosmetics and Disinfectants Act and Regulations. (2010). Act no.54 of 1972, G.N.R. 

146/2010. Johannesburg, South Africa: Lex Patria Publishers. 

Lokerse, R.F.A., Maslowska-Corker, K.A., Van de Wardt, L.C. & Wijtzes, T. (2016). Growth 

capacity of Listeria monocytogenes in ingredients of ready-to-eat salads. Food Control, 60, 

338–345. 

Meloni, D., Galluzzo, P., Mureddu, A., Piras, F., Griffiths, M. & Mazzette, R. (2009). Listeria 

monocytogenes in RTE foods marketed in Italy: Prevalence and automated EcoRI ribotyping 

of the isolates. International Journal of Food Microbiology, 129, 166–173. 

Nyarko, E.B. & Donnelly, C.W. (2015). Listeria monocytogenes: Strain Heterogeneity, Methods, 

and Challenges of Subtyping. Journal of food science, 80, M2868–M2878. 

Scholtz, H (2017). Parmalat hides bacteria infections. [Internet document]. URL 

http://www.news24.com/SouthAfrica/News/parmalat-hides-bacteria-infections-20170325. 

Accessed 07/04/2017.  

Shisan, O., Rehle, T., Simbayi, L., Zuma, K., Jooste, S., Zangu, N., Labadarios, D. & Onoya, D. 

(2014). South African National HIV Prevalence, Incidence and Behaviour Survey, 2012. Cape 

Town: HSRC Press. 

 Vongkamjan, K., Fuangpaiboon, J., Turner, M.P. & Vuddhakul, V. (2016). Various Ready-to-Eat 

Products from Retail Stores Linked to Occurrence of Diverse Listeria monocytogenes and 

Listeria spp. Isolates. Journal of Food Protection, 79, 239–245. 

 

Stellenbosch University  https://scholar.sun.ac.za

http://ask-bioexpert.com/all/recalls-caused-fear-listeria-monocytogenes-contamination/
http://ask-bioexpert.com/all/recalls-caused-fear-listeria-monocytogenes-contamination
http://ask-bioexpert.com/all/recalls-caused-fear-listeria-monocytogenes-contamination
http://www.news24.com/SouthAfrica/News/parmalat-hides-bacteria-infections-20170325.%20Accessed%2007/04/2017
http://www.news24.com/SouthAfrica/News/parmalat-hides-bacteria-infections-20170325.%20Accessed%2007/04/2017


4 
 

CHAPTER 2 

LITERATURE REVIEW 

2.1  Introduction 

The presence of Listeria monocytogenes in the food processing environment has been the subject 

of various research efforts in the last 20 years. Not only as a model gram-positive micro-organism 

but also as an intelligent pathogen that survives despite numerous control and management efforts. 

With the increased emergence of antimicrobial resistance in food related pathogens,  

L. monocytogenes has gained increased attention in ready-to-eat (RTE) food products. This review 

aims to reflect the recent global surge of research into L. monocytogenes and the factors related to 

its presence in the food chain and also the lack of information and research regarding this pathogen 

within the South African RTE food industry. 

The detection of Listeria spp. in the food chain and processing environment is not only crucial 

to ensure that safe foods are provided to the consumer, but it is also a tool that assists in identifying 

conditions that support the growth and persistence of Listeria monocytogenes (Dalmasso & Jordan, 

2012; Orsi & Wiedmann, 2016). With the rapid increase in discovery of new Listeria spp. (Orsi & 

Wiedmann, 2016) the need to continually evaluate, improve and expand the current detection 

methods have become evident (Barre et al., 2016). This refers to, amongst others, the revision of 

the ISO 11290-1:1996 & 11290-2:1996, to include all Listeria spp. (Barre et al., 2016). In 2017, the 

updated ISO 11290-1:2017 and 11290-2:2017 were made available (Anonymous, 2017a; 2017b). It 

further refers to the acceleration of research into more rapid detection and identification methods for 

L. monocytogenes and the movement toward whole genome sequencing and metagenomic analysis 

(Bryant et al., 2014).  

2.2  Food Safety  

Concerns for food safety have increased in recent years with the growing trends of minimally 

processed food (MPF) (Law et al., 2015a; Wang & Salazar, 2015). Bansal et al. (2015) divided 

minimally processed foods into two groups: plant sourced MPF and animal based MPF. The authors 

described RTE foods as a combination of these two categories. RTE food requires minimal or no 

processing by the consumer after it has been produced by the Food Business Operator (FBO) 

(Foodstuffs, Cosmetics and Disinfectants Act and Regulations, 2010). Thus, there is a lack of a 

microbial control for post-production contamination, increasing the concern for consumer safety. 

These concerns were reflected in research as a study conducted by Vongkamjan et al. (2016) 

found that 7.5% of 200 RTE products were contaminated with L. monocytogenes, which is alarmingly 

high considering L. monocytogenes’ lowered Probability of Detection (POD) in the presence of 
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competing Listeria spp. (Zitz et al., 2011). Yu and Jiang, (2014) found 6.2% of 954 RTE food products 

in China to be positive for L. monocytogenes with 30.5% of isolates displaying resistance to the 

antibiotic cefotaxime. A similar study that aimed to detect the prevalence of various food related 

pathogens in 7 regions in China, found 1.43% of food products tested, positive for  

L. monocytogenes (Yang et al., 2016). Studies with similar scopes have not been conducted in South 

Africa, only broad based hygiene studies on RTE food street vendors (Mosupye & Von Holy, 2000), 

roadside cafeterias and retail outlets in the Eastern Cape (Nyenje et al., 2012) have been done. 

International regulatory bodies include United States Department of Agriculture (USDA); 

Food Safety and Inspection Service (FSIS); Food and Drug Association (FDA) (Zunabovic et al., 

2011), European Food Safety Authority (EFSA) and its institutions and agencies (Anonymous, 2016). 

In South Africa, the main stakeholder in food safety policing is the Department of Health, 

subsequently compelling the food industry to apply international standards and regulations and even 

in some cases private food safety standards.  

In the light of a rapidly growing global market and the food industry’s effort to regulate and 

control food safety, Fagotto (2014) explores the roles that private food safety standards have on 

these efforts. These private standards come as a response to the need for flexible and relevant 

frameworks that decrease food safety risks to the consumers, something that public and government 

regulations have, in some cases, failed to do. Nevertheless, when private standards attempt to 

supplement government regulations, the issue of transparency and accountability comes into 

question, since these standards are enforced by third parties (Fagotto, 2014). This trend and its 

effect is of importance since many major stakeholders within the South African food industry has and 

will turn to private standards to regulate their food products.  

For the global community of producers, consumers and food regulators nationally and 

internationally, the Codex Alimentarius Commission (CAC) has served as a reference point and 

guideline for acceptable food safety practices (Luber, 2011).  The CAC “Guidelines on the 

Application of General Principles of Food Hygiene to the Control of L. monocytogenes in Ready-To-

Eat Foods” and its three annexes aim to reduce the probability of L. monocytogenes contamination 

in RTE food products (Luber, 2011; Anonymous, 2012). This is done by outlining procedures based 

on risk assessment and subsequent control measures from primary production to consumption. In 

RTE foods where there is opportunity for growth of L. monocytogenes after production, the microbial 

limit is stated as “Absent in 25g” or “<0.04 CFU.g-1” (Anonymous, 2012).  

To illustrate the effect and burden that L. monocytogenes poses to the global community,  De 

Noordhout et al. (2014) established, through systematic and meta-analysis, that in 2010 alone 

23 150 illnesses and 5 463 deaths occurred because of listeriosis. It should be noted that these 

conclusions were made without sufficient data from developing countries since this type of data is 

still unavailable, as in the case for South Africa (De Noordhout et al., 2014).  

Stellenbosch University  https://scholar.sun.ac.za



6 
 

2.3  Listeria monocytogenes 

2.3.1  The evolution of the genus 

To date the Listeria genus comprises of 17 species. Orsi and Wiedmann (2016) divide the genus 

into two distinct groups as these groups relate to L. monocytogenes. Listeria sensu strictu  

(L. monocytogenes, L. seeligeri, L. ivanovii, L. marthii, L. welshimeri and L. innocua) contain all 

species described before 1985 with the exception of L. marthii (described in 2010). Listeria sensu 

lato (L. grayi, L. fleischmannii, L. cornellensis, L. floridensis, L. aquatica, L. weihenstephanensis,  

L. newyorkensis, L. rocourtiae, L. grandensis, L. riparia, and L. booriae) contain all species 

discovered after 2009, with the exception of L. grayi (described in 1966) (Orsi & Wiedmann, 2016).  

In addition a pattern has emerged where the Listeria genus has evolved from facultative 

pathogen to obligate saprotroph, with the evident disappearance of various virulence factors (Bryant 

et al., 2014). Whole genome sequencing has revealed that through limited gene acquisition and/or 

limited gene loss during speciation, this transition took place (Nyarko & Donnelly, 2015). This pattern 

is further confirmed by L. monocytogenes and L. ivanovii still being the only pathogenic species, 

even throughout the discovery and describing of new species. 

2.3.2 Characterisation of Listeria monocytogenes 

As a facultative pathogenic saprotroph, forming part of Firmicutes group (Den Bakker et al., 2012), 

L. monocytogenes is known as the main pathogenic species of the Listeria genus, accounting for 

human and ruminant illness (Orsi et al., 2011; FDA, 2012; Orsi & Wiedmann, 2016). It is 

characterised as gram-positive, catalase-positive, oxidase negative, facultative anaerobic, non-

spore forming bacillus (Goldfine and Shen, 2007) as well as a low G+C content bacteria (36-42%) 

(Bécavin et al., 2014). Similar and related low G+C genus include Clostridium, Bacillus, 

Enterococcus, Streptococcus and Staphylococcus (Khelef et al., 2006).   

The well adapted saprotrophic nature of L. monocytogenes makes it ubiquitous in the 

environment. It is found in soil, rivers, decaying plant matter and various food products such as meat, 

fresh produce and dairy (Dhama et al., 2015; Lokerse et al., 2016) as well as other RTE food 

products (Ferreira et al., 2014). Its ubiquitous nature can be accounted for by the extensive amount 

of genes in its genome, dedicated towards regulators and transport proteins (Vivant et al., 2013). 

This comprehensive regulatory capacity is reflected by 7% of the genome being dedicated to 

regulatory proteins (Buchrieser, Rusniok, Kunst, Cossart, & Glaser, sited by Zunabovic et al., 2011)  

Temperature is one of the environmental factors that favours the survival ability of  

L. monocytogenes the most, since this bacteria can grow at temperatures as low as 1°C (Morganti 

et al., 2015), with tumbling mobility at 25°C and optimal growth at 30 - 37°C (Goldfine & Shen, 2007). 

In addition to the wide temperature range, it also survives extreme pH of 4.7 - 9.2 (Ferreira et al., 

2014), even 9.6 (Zunabovic et al., 2011) and salinity levels of up to 11% (although this is dependent 
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on other external environmental factors (Caly et al., 2009; Bergholz et al., 2012). These flexible 

parameters for survival and growth are what allows L. monocytogenes to establish and survive in 

the dynamic RTE-food processing environment. 

2.3.3 Lineages 

The approach to sanitation and disinfection in the factory environment, is designed to target micro-

organisms in terms of species. Chemical selection will be based on its ability to instil either a 

bacteriostatic or bactericidal effect. Listeria spp. contamination is considered as one scenario and 

treatment is then directed only at Listeria spp. However, it is now known that the different lineages 

of Listeria monocytogenes, display different adaptation mechanisms and resistance factors in 

response to processing factors in the RTE environment (Table 2.1). 

Table 2.1 Lineage related stress response adaptations in RTE processing environment 

RTE processing environment factors Stress response adaptation 

Temperature fluctuations 
Reaction to processing temperatures (lineage 

specific) (Orsi et al., 2011). 

Compromise on optimal storage temperature 
Ability to survive at refrigeration and room 

temperature. 

Change in procedure 

b (stress factor) expression in lineage II and  

survival in wide range of conditions (-0.5-

9.3°C) refrigeration, pH 4.7-9.2 and salt 

concentration (10% wt/vol) (Ferreira et al., 

2014). 

Machine and equipment maintenance 

Biofilm formation and transfer coefficients 

(Hoelzer et al., 2012). 

Persistent Listeria strains are more likely to be 

isolated from the processing environment than 

from raw materials (Ferreira et al., 2014). 

 

In theory, by establishing the dominant lineage strain present in the factory environment, sanitation 

protocols can be targeted at the specific lineages present, resulting in a more effective approach. 

Through molecular typing, lineage assignments can be made and better insight into the dynamics of 

the L. monocytogenes contamination scenario can be established. It should be emphasised that this 

is only a theoretical approach, as a practical application in an already dynamic and complex food 

processing environment, would not be sustainable. 
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The L. monocytogenes species can be divided into lineage groups. Through extensive 

phylogenetic and subtyping studies, four distinct groups have been identified, with lineage I and II 

representing the majority of strains (Orsi et al., 2011; Da Silva & De Martinis, 2013). Lineage IV was 

previously classified as a subgroup of lineage III (IIIB), but through phylogenetic studies been 

characterised as a separate lineage (Ward et al., 2008; Den Bakker et al., 2012). In recent years 

Lineage IV has also been increasingly isolated, as in a study by Vongkamjan et al. (2016). However, 

due to lineage IV’s relatedness to lineage III (IIIB) and its irrelevance to this study, it will not be 

included in further discussions (Table 2.2). 

Table 2.2 Description of lineage groups 

 

 

 

 

(Orsi et al., 2011)1(Milillo & Wiedmann, 2009)2 (Liu et al., 2006)3 

Differentiation between lineage I and II is based on multiple single nucleotide polymorphisms as well 

as the absence and presence of genes within the genome (Nelson et al., 2004; Paul et al., 2014). A 

pan-genomic study has shown that there are 86 genes and 8 small regularity RNAs that are 

responsible for the differentiation between L. monocytogenes lineages, specifically in regard to 

stress resistance and usage of carbohydrates in both the environment and the host’s intestinal tract 

(Deng et al., 2010).  

Lineage I is mainly recovered in human listeriosis cases and lineage II is represented in food 

and environmental isolates (Milillo & Wiedmann, 2009). Serotypes mainly associated with lineage I 

(4b and 1/2a) have intact, full length virulence factor internalin A (inlA), whereas lineage II isolates 

feature premature stop codons in inlA (Orsi et al., 2011). InlA forms part of a group of internalins that 

encode for proteins that are responsible for the invasion of the bacteria into cells such as human 

intestinal epithelial cells (Den Bakker et al., 2010).  Invasion into human cells is the main vehicle of 

pathogenesis of L. monocytogenes and therefore its ability to effectively invade host cells is directly 

correlated to its virulence.  The overrepresentation of lineage I strains in human listeriosis cases can 

thus be attributed to their increased virulence (Orsi et al., 2011; Vongkamjan et al., 2016). 

Contrarily, the overrepresentation of lineage II strains isolated from food and environmental 

samples is mainly due to their enhanced ability and fitness to overcome environmental stress 

conditions (Orsi et al., 2011). Examples of such adaptations are a) increased biofilm forming ability 

under nutrient limited conditions; b) overexpression of stress factor, sigB; c) increased recombination 

rates under selective pressure; d) increased resistance to bactericidal agents (Orsi et al., 2011).  

 Lineage 

 I II III 

Serotype 1/2b, 3b, 3c, 4b1 1/2a, 1/2c, 3a1 4a, 4c3 

Subgroups ECI, ECII, ECIV1 ECIII1 IIIA, IIIB, IIIC3 

High prevalence 
Human 

listeriosis1 

Food and 

environment1 
Animal listeriosis2 
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Lineage III is not generally associated with human listeriosis although it is generally isolated 

from environmental samples (Wiedmann et al., 1997; Liu et al., 2006; Rosef et al., 2012). By 

comparing actA and sigB gene sequences through phylogenetic analysis, L. monocytogenes lineage 

III is further subdivided into subgroups IIIA,IIIB and IIIC (Roberts et al., 2006). Lineage III isolate’s 

confinement to animal listeriosis cases are due to the lack of surface proteins transcribed by inlAB 

as well as other genes of unknown function (Goldfine & Shen, 2007).  This lineage, together with 

lineage IV, is overrepresented in animal isolates (Roberts et al., 2006; Da Silva & De Martinis, 2013) 

and therefore, due to its current underrepresentation in human and food isolates and its non-

pathogenic nature (Camejo et al., 2011), further discussion thereof within this context is currently 

irrelevant.  

What lineage III, however, does contribute to this study is an indication that there are still 

unidentified genetic factors of lineage I and II that facilitate pathogenesis and environmental stress 

adaptations. This hypothesis is derived from the observation that although the main virulence factors, 

such as prfA, are conserved throughout the entire L. monocytogenes species, lineage III is still 

underrepresented in food and clinical isolates (Deng et al., 2010).  

2.3.4 Strain fitness 

Studies attempting to establish a correlation between strains and their increased ability to adapt, 

survive and outcompete in an environment i.e. strain fitness, have shown varied outcomes and 

conclusions.  Bruhn et al. (2005) demonstrated how lineage II strains outcompete lineage I strains 

during enrichment with University of Vermont selective enrichment. Therefore, proposing the 

possibility of increased strain fitness among Listeria lineages. In contradiction, Gorski et al. (2006) 

found variance in strain fitness, but could not correlate them to specific lineages.  

Considering that correlations between strain fitness and the general processing environment 

has not yet been established, strain fitness is potentially dependent on specific environmental 

factors.  In a critical review by Valderrama and Cutter (2013) it was hypothesised that there is a 

correlation between increased adaptation and survival abilities of certain serotypes in specific 

environmental conditions. This differential fitness is therefore likely to be present in food processing 

environments, possibly explaining the epidemiological variance of strains at food processing levels. 

2.4 Virulence: from saprotroph to pathogen 

Listeria monocytogenes has the ability to survive in the environment, through a saprophytic lifestyle, 

while still maintaining its pathogenic ability. This phenomenon is a crucial concept in regard to food 

and consumer safety (Xayarath & Freitag, 2012) considering that contaminated food products are 

the main vectors of infection (Freitag et al., 2010). This maintenance of pathogenicity is achieved by 

regulation of the positive regulatory factor A (prfA), where a combination of environmental factors 

signals the activation of L. monocytogenes’ virulence factors (De las Heras et al., 2011). Transition 
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between saprotroph and pathogen demands that the bacteria react to changes in environmental 

factors such as lowered pH, other stresses caused by bile of host gut and reduction of available 

carbon (Fuchs et al., 2012). Contrary to existing theories, temperature is not the main factor that 

switches on prfA. De las Heras et al. (2011) agreed that carbohydrate source is a key factor that 

induces transition to its pathogenic state. Sugar mediated repression is guided by the availability of 

sugars such as glucose, fructose and other -glucosides. These sugars are known as PTS 

(phosphotransferase system) sugars and are abundant in nature, hence being the signal to  

L. monocytogenes to repress any virulence gene expression (De las Heras et al., 2011). The 

availability of these PTS sugars’ intercellular phosphate derivatives serves as a signal for the 

activation of virulence genes as L. monocytogenes now finds itself in a warm-bodied host. Another 

effect of the changing availability of sugars is that the bacteria switches its biochemical pathway from 

glycolysis to an oxidative pentose phosphate pathway (Xayarath & Freitag, 2012).  

The regulation of prfA adds to the survival fitness of Listeria as it supresses the expression 

of genes and actions that aren’t crucial to the survival of the bacteria in its particular extracellular 

environment, therefore saving energy by limiting wasteful production of virulence factors (De las 

Heras et al., 2011; Xayarath & Freitag, 2012). In addition, up-regulation of genes for virulence must 

be accompanied by down-regulation of environmental survival factors such as mobility based factors. 

Listeria monocytogenes’ extracellular mobility at 22-25°C reflects this phenomenon by its repression 

at 37°C (De las Heras et al., 2011). 

Of the four sigma factors, sigB (B) is the only stress related factor that is linked to virulence. 

Its contribution to pathogenesis is believed to be limited to the gastrointestinal phase of invasion as 

it increases the bacteria’s tolerance of the unfavourable conditions of the intestinal tract (De las 

Heras et al., 2011). B regulates genes that transcribe for the known virulence factors of  

L. monocytogenes  and as the same study by Sue et al. (2004) concludes, Listeria related foodborne 

infections are enabled by this factor.   

2.5 Listeriosis 

The most likely means of infection is through ingestion of contaminated food products (Ooi & Lorber, 

2005). The severity of L. monocytogenes infection is dependent on the host and is classified as 

either non-invasive or invasive (Camejo et al., 2011). In immunocompetent individuals, non-invasive 

L. monocytogenes infection manifests simply as febrile gastroenteritis which is self-limiting and in 

most cases does not warrant any antibiotic therapy (Ooi & Lorber, 2005). In the vulnerable 

population, which Meloni et al. (2009) refers to as YOPI (Young, Old, Pregnant and Immuno-

compromised), invasive listeriosis can be fatal. In these cases it manifests as septicaemia, 

encephalitis, meningitis, stillbirth or perinatal infection (Dhama et al., 2015). The incubation time of 

L. monocytogenes before onslaught of invasive listeriosis infection has been reported to differ 

between vulnerable groups. Bacteraemia cases, invasive listeriosis, central nervous system 
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involvement cases and  pregnancy associated infections have median incubation times of 2 days, 8 

days, 9 days and 27.5 days, respectively (Goulet et al., 2013).  

The pathogenesis of L. monocytogenes is grounded in its ability to bridge the intestinal, 

placental, and blood-brain barriers of the body (Bécavin et al., 2014) and to avoid the effects of the 

host’s immune response. Intestinal, hepatocytic and macrophage-like cells are all involved in the 

invasion pathway of the bacteria (Pricope et al., 2013). Camejo et al. (2011) segments the invasion 

cycle into essentially five stages: adhesion and invasion of host cell, multiplication and motility inside 

host cells and intercellular spread within host body (Figure 2.1).  

 

Figure 2.1 The transition of L. monocytogenes from saprotroph to intracellular pathogen (Freitag et 
al., 2010). 

There are 50 known virulence factors involved in the infection cycle of L. monocytogenes 

(Camejo et al., 2011), however only the major virulence factors will be considered in this review as 

stated by the same authors. The major virulence factors (LLO, InlA, InlB, ActA and PrfA) contribute 

directly to the adhesion and invasion process of the bacteria where the other virulence associated 

proteins only play a secondary role in this process (Camejo et al., 2011). Upon consumption of 

contaminated food by the host, the bacteria enters non-phagocytic cells such as  the cells of the 

intestinal lining (epithelial cells) through utilisation of virulence factor internalins (InlA and InlB) (De 

las Heras et al., 2011; Fuchs et al., 2012).  Invasion of the host cell is advanced by interaction of the 

leucine-rich repeat (LRR) domains with its surface ligands. InlA interacts with E-cadherin and InlB 

interacts with hepatocyte growth factor receptor tyrosine kinase C-Met simultaneously.  

L. monocytogenes cells enter the cell vacuole through a process similar to clathrin-mediated 

phagocytosis (De las Heras et al., 2011). Escape from the phagocytic cell is mediated by the 

expression of virulence factors, listeriolysin (Hly) and phospholipase A (PlcA). This is a characteristic 

that is unique to L. monocytogenes, setting it apart from other facultative intracellular pathogens. 
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Once in the cytoplasm of the host cell, the bacteria are safe to grow and replicate, void of any attack 

from the host body’s immune response (Fuchs et al., 2012). From here the bacteria is free to manifest 

infection in the blood, central nervous system and placenta (in the case of pregnancy) (Goldfine & 

Shen, 2007).  

2.6 Detection methods 

2.6.1 Traditional culturing and detection methods 

Official methods available for the detection of L. monocytogenes are FDA, NGFIS, USDA-FSIS, Cold 

enrichment NKML method no. 136 and ISO 11290-1:1996 (Zunabovic et al., 2011). Due to the scope 

of this study and its relevance to the South African food industry, only ISO approved and equivalent 

methods will be discussed and evaluated. Conventional identification and differentiation of and 

between Listeria spp. include Gram staining, motility observation, and biochemical reactions 

(catalase test and acid production from D-glucose test) (Law et al., 2015a) 

2.6.2 ISO 11290-1:2017 

This method is the only ISO approved method for detection and enumeration of L. monocytogenes 

in environmental and food samples (Anonymous, 2017a).  It contains a primary and secondary 

enrichment step with Fraser broth after which the enriched medium is streaked onto Agar Listeria 

Ottovani & Agovti (ALOA) agar as well as a second selective medium. The plates are incubated and 

only then after 96 h can the confirmation test for differentiation between Listeria spp. and L. 

monocytogenes be conducted (Zunabovic et al., 2011). Although this method is deemed as accurate 

and reliable, it can become tedious, time consuming (Dalmasso et al., 2014) and expensive as the 

sample numbers increase, as in a food manufacturing environment. Considering the high demands 

of a food industry laboratory and the high turnover of samples, there is a need for an alternative, 

simpler method. In addition, but outside the scope of this study, culture independent methods that 

inherently exclude enrichment steps which minimise sample-to-result time is progressively being 

used in routine analysis for detection of foodborne pathogens (Wang & Salazar, 2015).  

Alternative methods, which are not ISO accredited can be allowed by the discretion of the 

governing body. Proprietary and alternative methods are validated and certified by third parties 

(AFNOR Certification, AOAC, NordVal) using the ISO 16140 method (Auvolat & Besse, 2016).  

Standardised and approved methods for detection of L. monocytogenes in food and 

environmental samples contain in most part an enrichment step. Although L. monocytogenes is an 

ubiquitous bacteria, it is found in low numbers in the food processing environment and contaminated 

food products (Bruhn et al., 2005), and for that reason an enrichment step is included in approved 

detection methods. 

Stellenbosch University  https://scholar.sun.ac.za



13 
 

Culturing of enriched samples can be done on various approved Listeria selective agars. 

However, the selection of the agar should be done with the aim of the study in mind, since selected 

agar only allows culturing and others allow differentiation between pathogenic Listeria spp. and non-

pathogenic Listeria spp. Chromogenic agar is the preferred method for L. monocytogenes detection 

due to its time efficiency, affordability, simplicity and high turnover capability (Gasanov et al., 2005). 

Thus, it is also the chosen method for the majority of Food Business Operators (FBO) and 

consequently the method used in this study.  

2.6.3 Rapid’L.mono® chromogenic agar 

Rapid’L.mono® agar is a proprietary, commercial product manufactured and distributed by Bio-Rad 

Laboratories (USA). Detection and enumeration of L. monocytogenes using this agar is regarded as 

an alternative method and is AOAC-RI approved (N° 030406), NordVal approved and carries an NF 

Validation according to ISO 16140 (Anonymous, 2014).  

Rapid’L.mono® is a chromogenic agar that relies on the phosphatidylinositol phospholipase 

C (PIPLC) activity of L. monocytogenes and L. ivanovii for detection and differentiation from other 

non-pathogenic Listeria spp. Further chromogenic differentiation is made between the two 

pathogenic species based on their ability to metabolise the added xylose. L. ivanovii has this ability 

and consequently forms black colonies with a yellow halo where L. monocytogenes will only form 

distinct black colonies (Lauer et al., 2005). Non-pathogenic species show no PIPLC activity and will 

therefore form white colonies with no halo, with the exception of L. welshimerii which is the only 

species with xylose metabolism and therefore a white colony and yellow halo (Lauer et al., 2005). 

In contrast, the results and recommendations of a challenge study by Stessl et al. (2009) 

warrants further investigating into the reliability of chromogenic agar methods, in the light of 

competing microflora and enrichment bias. 

2.6.4 Overcoming enrichment bias 

Due to the zero-tolerance approach that regulatory bodies and the food industry have regarding  

L. monocytogenes in food products, it is crucial that the methods used to detect and qualify the 

presence thereof be unbiased and reliable.  The ideal method would have a low Level of Detection 

(LOD) and a high Probability of Detection (POD).  

L. monocytogenes occurs in low counts in naturally contaminated food products and the food 

processing environment (Bruhn et al., 2005) and it is therefore crucial that the selected enrichment 

step and method ensure that a true representation of the Listeria spp. be detected.  

Due to the heterogeneous microflora found in the food processing environment and the low 

counts of L. monocytogenes, the growth and interference of background microflora thus needs to be 

eliminated to ensure the precise detection of low counts of L. monocytogenes (Zitz et al., 2011). Zitz 

et al. (2011), harnessed the ISO 11290-1:1996 method to evaluate enrichment bias toward  
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L. monocytogenes in the presence of L. innocua. A lowered detection ability was seen with low 

concentrations (≤1 to 5 CFU) of L. monocytogenes in the presence of L. innocua. Consequently, an 

increased POD with an increase in L. monocytogenes CFU.  

Reduction of growth kinetics in mixed culture broths (Tryptic Soy Broth-Yeast (TSB-Y)) have 

been reported by Zilelidou et al. (2015), demonstrating the effect of strain competition. Suppression 

of lineage I strains have been reported by Bruhn et al. (2005) when enrichment was conducted in 

University of Vermont selective enrichment media. However, this may be due to the selective 

compounds in the enrichment medium and bias was not specifically strain related.  

Overgrowth of other Listeria spp. was observed at the late exponential, early stationary phase 

largely due to the “Jameson effect” (Besse et al., 2010). In essence this effect causes the 

suppression of all microorganisms within a matrix once the maximum population density has been 

reached (Ross et al., 2000). For that reason, the species or strain that reaches its stationary phase 

first will halt the growth of any other species or strains present, consequently “masking” the presence 

of slower growing organisms.  

Nevertheless, in a review by Zunabovic et al. (2011) it was concluded that significant true 

positives have been reported using only the half Fraser enrichment step. This step included in the 

Rapid’L.mono method is thus currently deemed as reliable for the detection of L. monocytogenes in 

contaminated food matrices.  

2.6.5 Enumeration 

The enumeration of L. monocytogenes in food products is of great importance to not only research 

related to predictive microbiology and risk assessments, but it is needed to support routine safety 

analysis in the food industry (Auvolat & Besse, 2016). Current enumerations methods for  

L. monocytogenes is described by the ISO 11290-2:2017 (Anonymous, 2017b). However, Auvolat 

and Besse (2016) reported that there has currently been no development of enumeration methods 

adequate and sensitive enough for food matrices. In contrast a study by Chen et al. (2017) found 

Rapid’L.mono as a reliable method for enumerating low levels of L. monocytogenes in ice cream 

samples. 

2.7 Molecular typing and subtyping methods 

Typing methods are used for the identification of an organism, such as pathogen detection. The 

application of a molecular method for further study and differentiation of a target organism, after it 

has been defined or identified, is a subtyping method. Some methods are suitable for both typing 

and subtyping (for example PCR), where other methods are not sensitive enough for subtyping and 

others too sensitive for only typing. Therefore, understanding all available methods are crucial to 

optimising the application thereof.  
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Different rapid molecular detection methods are based on one of the following principles: 

nucleic acid, biosensor or immunological (Law et al., 2015a). Although biosensor and immunological 

based methods are suitable for detection of pathogens across a range of matrices, the application 

thereof in source tracking is limited. Nucleic acid based methods such as ribotyping, Pulsed Field 

Gel Electrophoresis (PFGE) and Polymerase Chain Reaction (PCR) are more suitable for typing and 

subtyping of pathogens. Further, nucleic acid sequence based amplification (NASBA), loop-

mediated isothermal amplification (LAMP), DNA microarray sequencing and next generation 

sequencing (NGS) (Law et al., 2015b) have emerged as rapid molecular detection methods. 

2.7.1 Polymerase Chain Reaction 

The current molecular methods that are at the disposal of researchers to type L. monocytogenes are 

PCR, multiplex PCR (mPCR), real-time/quantitative PCR (qPCR); where PCR as a method has been 

used to detect a variety of foodborne pathogens (Law et al., 2015a). Due to the application of this 

study to the food industry in South Africa only the most basic and simple forms of molecular typing, 

including PCR and multiplex PCR, will be explored. 

PCR methods are based on amplification of selected target genes for identification and typing 

of isolates. To amplify a selected target DNA sequence in conventional PCR, two primers (single 

stranded synthetic oligonucleotides) are used in a three-step process (denaturation, annealing and 

elongation) using a thermal cycler. The amplified DNA sequences are then separated and visualised 

using agarose gel electrophoresis (Law et al., 2015b) and the appropriate imaging software. 

Multiplex PCR, is a more rapid method that entails the simultaneous amplification of multiple selected 

target genes (Wang & Salazar, 2015). It has the ability to identify five or more pathogens at the same 

time (Law et al., 2015a). Chen and Knabel (2007) successfully utilised mPCR for differentiation of 

Listeria spp. and L. monocytogenes as well as epidemic clones thereof, simultaneously.  

2.7.2 Ribotyping 

Ribotyping has been used as a valuable tool in epidemiological studies but now that the process has 

been automated, ribotyping as a molecular detection method can be used in routine analysis, despite 

it still having less discriminatory power in comparison to other more conventional methods (Gasanov 

et al., 2005). Pavlic and Griffiths (2009) better state that the discriminatory ability of specifically 

automated ribotyping is very dependent on the pathogen being investigated. The attraction of 

automated ribotyping, apart from the efficiency, is its ability to ensure standardisation (Lorber, 2014)  

It is important to note that even though the method is called “ribotyping”, the assumption that 

the main source of the observed polymorphism is the ribosomal RNA is incorrect (Bouchet et al., 

2008). Since the main aim of ribotyping is to establish phylogenetic relationships between the 

organism being studied, the genes encoding for ribosomal RNA are investigated (Gasanov et al., 

2005). 
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Ribosomal RNA is highly conserved between species as they encode for the 5S, 16S and 

23S sequences and thus variation in these sequences are inadequate to distinguish between 

species, let alone strains. Therefore, the polymorphisms observed by ribotyping are due to the 

restriction fragment length polymorphisms (RFLPs) from what is known as the neutral housekeeping 

genes, found in the flanking regions of the rRNA sequences. rRNA sequences are found to be so 

highly conserved they are seen as anchoring genes to the RFLP’s observed during ribotyping. The 

gene sequences encoding for the neutral housekeeping genes evolve through point mutations 

caused by random genetic drift. They are thus not subject to diversifying Darwinian evolution 

(Bouchet et al., 2008).  

Ribotyping is a type of RFLP analysis because it is dependent on varying locations and 

number of ribosomal RNA (rRNA) gene sequences found in bacterial genomes. It is a rapid 

molecular detection technique that can identify and type bacteria to their strain level by analysis of 

band pattern or ribopattern differences. These bands originate when labelled rRNA is hybridised with 

DNA fragments obtained from the cleavage of total DNA by the selected endonuclease (Lorber, 

2014). The main cause of variations in the ribopatterns are the variations in flanking sequences 

among the different strains. These variations in flanking sequences originate from point mutations in 

the housekeeping genes due to random genetic drift.   

The process of ribotyping entails digesting and fragmenting genomic DNA with restriction 

enzymes like EcoRI, PvuII and Xhol. A Southern blot is then conducted to detect the genes that code 

for rRNA (Jadhav et al., 2012). Due to the use of the selected probes in combination with imaging 

techniques, distinct and unique ribopatterns are generated (Bouchet et al., 2008). 

Endonucleases used for ribotyping are EcoRI, PvuII and Xhol (Jadhav et al., 2012), with 

EcoRI being used more frequently (Pavlic & Griffiths, 2009). A study done by De Cesare et al. (2001) 

found that out of fifteen different restriction enzymes, these three restriction enzymes displayed the 

highest discriminatory power when typing L. monocytogenes. A dual enzyme strategy, using EcoRI 

and PvuII, has shown acceptable L. monocytogenes strain differentiation (Jadhav et al., 2012). 

However, considering that each endonuclease or combination thereof will produce a distinct set of 

bands (profile), comparisons between results from studies using different endonuclease 

combinations cannot be made (Pavlic & Griffiths, 2009). Since a fundamental aspect of this study is 

generating DuPont Identification Library Codes (DUP-IDs), EcoRI ribotyping has to be the method 

of choice (Jadhav et al., 2012).  

2.8  Automated ribotyping 

2.8.1  DuPont Riboprinter® 

The automated ribotyping, RiboPrinter® System by Qualicon Inc (Figure 2.2) conducts all processes 

associated with ribotyping automatically, with only 30 minutes of sample preparation taking place 
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manually (Anonymous, 2013a).  Each sample that is processed is then assigned a unique DuPoint 

Identification Library Code (DUP-ID), that is added to the internal and external (optional) database. 

The DuPont Riboprinter® system has been the instrument of choice in similar studies conducted, 

due to its reproducibility, reliability and interlaboratory comparison ability  (De Cesare et al., 2001; 

Kabuki et al., 2004; De Cesare et al., 2007). As to the authors knowledge, no South African studies 

have utilised the RiboPrinter® as a means to sub-type L. monocytogenes strains isolated from food 

processing environments. 

 

Figure 2.2 DuPont RiboPrinter® used for automated ribotyping of isolates from RTE food factory. 

2.8.2  Food Microbe Tracker 

Food Microbe Tracker (previously known as PathogenTracker) is an online database that was 

created as part of Cornell University’s “Food Safety Laboratory Bacterial Stains WWW Database 

Project” (Anonymous, 2013b). The aim of the database is to provide a public platform for researchers 

where bacterial strains and subtypes isolated during their research can be added and globally 

compared, to study the micro-organism strain biodiversity (Anonymous, 2013; Vangay et al., 2013). 

Other databases, such as MLST.net are limited in their scope and others, such as PulseNet, are not 

available to the public (Vangay et al., 2013).  

Klaeboe et al. (2006) used the online database to determine whether the strains isolated 

during their study have been implicated in any human listeriosis cases and found that they hadn’t. 

Additionally, Roberts et al. (2006) made the ribotyped fingerprints of the lineage III strains isolated 

during their study available on the database for comparison. Manuel et al. (2015) utilised Food 

Microbe Tracker to find available strains for the specific DuPont ID L. monocytogenes strain they 

used to study inlA alleles. Although these studies only reflect the use of Food Microbe Tracker for 

DuPont ID’s and L. monocytogenes it should be noted that the database hosts various food-borne 

micro-organisms with a variety of band pattern data for source tracking and cross-referencing 

(Vangay et al., 2013). 
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2.9  Comparison of competing methods: Riboprinter vs PFGE 

Ribotyping and pulsed field gel electrophoresis (PFGE) are both restriction fragment length 

polymorphism (RFLP) based methods. Therefore, no amplification of genes take place, but rather 

restriction enzymes are used to cleave DNA sequences at targeted nucleotides resulting in 

fragments. When comparing ribotyping and PFGE regarding their ability to indicate relations between 

separate bacterial isolates, ribotyping proves to be more reliable. The restriction enzymes used in 

PFGE analysis cut DNA sequences in larger units, much larger that the pieces produced by 

ribotyping (Wiedmann, 2002). With the PFGE RFLP recognition sites that are spread across the 

whole genome, genetic information regarding diversifying selection is seen. This information can be 

overwhelming, which can complicate the analysis and interpretation of the results regarding 

evolutionary relatedness. This obstacle is overcome by ribotyping due to its ability to readily interpret 

evolutionary relatedness (Bouchet et al., 2008).  

PFGE is still the method of choice, specifically in North America, due to its high discriminatory 

power, but only in regard to outbreak investigations (Pavlic & Griffiths, 2009). Numerous studies 

have shown PFGE to have higher discriminatory power in comparison to EcoRI ribotyping (Fugett et 

al., 2007), however it is important to note that these studies are case specific without the long-term 

intent of interlaboratory comparison or collaborations. Also, when considering PFGE’s sensitivity and 

dependence on laboratory specific environments and methods, interlaboratory comparison and 

reproducibility is difficult (Jadhav et al., 2012). This indicates its suitability of case specific outbreak 

investigations. Large scale studies as well as industrial application of a rapid molecular detection 

method demand a highly standardised and automated method that does not require a specialised 

set of skills, hence the applicability of ribotyping (Wiedmann, 2002). When considering the 

requirements and demands of outbreak investigation in comparison to mapping in house flora for 

source tracking, automated ribotyping is more suitable for source tracking. This is because PFGE 

requires expensive equipment and reagents and is also a scares skill and time consuming process 

(Jadhav et al., 2012). Pavlic and Griffiths (2009) support automated ribotyping as a suitable typing 

method for micro-organisms in a processing environment. That being said, both methods can 

complement each other by being utilised together as in a study by Vongkamjan et al. (2013). 

2.10 Whole Genome Sequencing: A new approach to outbreak investigation  

Subtyping methods have become fundamental in studying the genetic diversity and ecological 

distribution, specifically for L. monocytogenes (Orsi et al., 2011). Even though molecular methods 

are still considered to be better than traditional phenotypic analysis, sub-par discriminatory power 

between strains in certain subgroups have been reported (Nyarko & Donnelly, 2015). Whole 

Genome Sequencing (WGS) is the next generation technique that will transform how food safety 

issues are approached and investigated, since sequence data can unlock even more information 
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regarding virulence and contamination source (Nyarko & Donnelly, 2015). Due to the long and 

varying incubation time of L. monocytogenes (Goulet et al., 2013), it becomes increasingly difficult 

to determine the cause of sporadic outbreaks. In addition, serotyping for source tracking, is time 

consuming and has limited discriminatory ability. Thus, with incredible advances made in WGS, in 

addition to advances in computational ability, rapid and accurate outbreak investigations can be 

done (Datta & Burall, 2017). 

2.11  Similar studies 

Table 2.3 compares similar studies and their research areas as they relate to this study. It is aimed 

at providing a broad overview of research areas and combinations thereof that are still to be explored. 

It further aims to highlight the lack of research into L. monocytogenes contamination within the South 

African context, with ground breaking research mainly originating from more developed countries.  

2.12  The study of Biofilms: Response to bactericidal factors 

2.12.1  Biofilms and persistence 

Biofilms are defined as bacterial communities that are enclosed in a self-produced matrix, an 

extracellular polymeric substance (EPS) containing polysaccharides and proteins (Pilchová et al., 

2014) that adheres to each other and/or other inert surfaces. These communities contain a 

homeostatic environment, circulatory system and metabolic cooperation (Costerton et al., 1995). 

Lasa (2006) refers to biofilms as a microbial lifestyle and indeed it is an adapted mechanism of 

survival for pathogenic bacteria. The ability of Listeria to form mono/multi specie biofilms on food 

processing surfaces is not only relevant (Zunabovic et al., 2011), but is of a major concern to the 

food industry. The main source of Listeria spp. contamination in RTE foods is said to occur post-

production (Kerouanton et al., 2010; Vongkamjan et al., 2013; Nyarko & Donnelly, 2015). The most 

common post-production contamination mechanism in RTE foods is contaminated food contact 

surfaces, including machinery and other equipment (Hansen & Fonnesbech, 2011; Fouladynezhad 

et al., 2013). However, the formation of biofilms in food processing environments are yet to be fully 

understood as a review by Cappitelli et al. (2014) explains.  

The occurrence and formation of Listeria spp. biofilms in food processing environments has been a 

prominent research topic in recent years (Di Bonaventura et al., 2008; Da Silva & De Martinis, 2013; 

Fouladynezhad et al., 2013; Giaouris et al., 2014; Dzieciol et al., 2016; Puga et al., 2016) and yet a 

comprehensive understanding of the intricate mechanism involved has not yet been reached. 

Nevertheless, the major mechanisms are being established and continuously investigated and 

expanded. 

.
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Table 2.3 Comparison of similar studies as they relate to the current study 

Study 
South 

Africa 

RTE 

food 

EcoRI 

ribotyping 

Source 

tracking 

Lineage 

grouping 

In-house 

environmental 

samples 

Sanitary 

practices 

evaluation 

Van Nierop et al. (2005) x       

Klaeboe et al. (2005)   x    x 

Klaeboe et al. (2006)    x  x  

Fugett et al. (2007)     x   

Meloni et al. (2009)   x x    

Klaeboe et al. (2010)   x x x   

Odjadjare and Okoh (2010) x       

Rosef et al. (2012)   x     

Dalmasso and Jordan (2012)   x    x 

Almeida et al. (2013)      x  

Strydom et al. (2013) x       

Spanu et al. (2015)   x     

Ruckerl et al. (2014)       x 

Awofisayo-Okuyelu et al. (2016)    x    

Lokerse et al. (2016)  x      
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2.12.2  Biofilm formation and structure 

In the case of complex and sophisticated Listeria spp. biofilms, the initial biofilm structure is critical. 

Therefore, studying the initial stages and early attachment mechanism of biofilms are important. A holistic 

understanding thereof can assist in development and improvement of prevention and control methods 

(Pilchová et al., 2014). However, initial adhesion conditions and the state of early biofilms, have no significant 

influence on the biofilm’s resistance ability to sanitisers, but rather resistance is increased in mature biofilms 

(Ibusquiza et al., 2011)Consequently, it is important that the maturing of biofilms in a processing 

environment should be avoided. It can thus be said, that by preventing maturation of biofilms, 

increase in sanitation resistance can be avoided.  

The physicochemical characteristics of the environments (pH, temperature, surface 

hydrophobicity) and bacterial mobility is the main determining factor in the case of adhesion of 

planktonic cells (Bonsaglia et al., 2014). The characteristics of the surface is a large contributing 

factor to the attachment of biofilms. Biofilm attachment occurs on both hydrophilic surfaces (glass 

and stainless steel) and hydrophobic surfaces (polystyrene), although hydrophilic surfaces show 

increase formation rates (Bonsaglia et al., 2014). Several other studies have looked at the 

attachment of L. monocytogenes biofilms to surfaces found in the food processing environment. Di 

Bonaventura et al. (2008) found increased biofilm formation on stainless steel and glass. In contrast 

Poimenidou et al. (2016) found that polystyrene was more favourable for biofilm formation. These 

contradictory findings highlight the influence that fluctuating environmental factors have on the 

formation of biofilms and that a universal approach to L. monocytogenes biofilms is futile.  

The biofilm structure formation is highly dependent on the environmental conditions 

especially pertaining to static and flow conditions, since it influences the cell attachments phase of 

biofilm formation (Pilchová et al., 2014). It has been reported that under flow conditions  

L. monocytogenes tends to produce thicker biofilms of increased volume that takes the form of a 

network of “knitted”-chains (elongated cells) that surround ball shaped microcolonies. In contrast, 

biofilms grown under static conditions form a homogenous layer of either rod cells or microcolonies 

or a heterogeneous combination thereof (Rieu et al., 2008; Da Silva & De Martinis, 2013). 

The construction of a biofilm can be divided into four fundamental phases. Initial attachment 

(reversible adhesion) by cells takes place through electrostatic forces, hydrophobic interactions and 

van der Waals forces. Irreversible adhesion occurs as the bacteria multiplies and extracellular 

polymeric substance (EPS) excretion initiates. During biofilm maturation, the biofilm structure’s 

complexity increases and transport mechanisms for communication and nutrients are established. 

As a final phase, the biofilm disperses and attaches to other nearby surfaces and the cycles are 

repeated (Da Silva & De Martinis, 2013; Nguyen & Burrows, 2014; Pilchcová et al., 2014; Colagiorgi 

et al., 2017). 
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The EPS contains polysaccharides, extracellular DNA (eDNA) and proteins, where the 

polysaccharides and complex proteins function as a connection between the molecules on the 

bacterial membranes and the matrix (Azeredo et al., 2017). eDNA is excreted by the cells in response 

to quorum sensing signals (Puga et al., 2016). The intricacies and content of the L. monocytogenes 

biofilm EPS is still relatively unknown, with various studies attempting to define it.  Harmsen et al. 

(2010) was the first to explore eDNA as the only fundamental component of a Listeria spp. biofilm 

matrix. The authors hypothesised that the function of eDNA in the biofilm’s architecture is that of a 

structural nature as well as a source of energy and nutrition (Colagiorgi et al., 2017). The study also 

attempted to show the role of eDNA in the adhesion and development of L. monocytogenes biofilms. 

It was concluded that adhesion ability of the biofilms were increased with longer eDNA strands and 

larger amounts of macromolecular component of the biofilm matrix.  

Expression of selected genes and regulators further mediate adhesion. Agr, a peptide based 

quorum sensing accessory gene regulator (Nguyen & Burrows, 2014), has a significant function in 

early biofilm development, since deletion of this gene caused a major reduction in the biofilm 

formation, specifically adhesion, of L. monocytogenes (Rieu et al., 2007, 2008). In addition, a study 

by Chen et al. (2008) found that the expression of both InlA and InlB (surface proteins encoded by 

inlaA gene) has an influence on the attachment of L. monocytogenes cells to glass surface.  

2.12.3 The genetics of biofilms 

The use of transposon mutagenesis has become a popular technique in identifying adaption 

mechanisms under various conditions as well as genes that are responsible for biofilm formation. 

Alonso et al. (2014), using a Himar1 mariner transposon, identified two new genes that contribute to 

biofilm formation dltABCD and phoPR and confirmed the importance of the flagellar motility genes 

during initial biofilm formation. Similarly, Piercey et al. (2016a) investigated novel genes responsible 

for biofilm formation at 15°C, by creating 14 mutants using random insertional mutagenesis and 

observing the biofilm forming ability thereof. The study identified 9 genes, previously not linked to 

biofilm formation that contributed to biofilm formation at a lowered temperature. 

2.12.4 Biofilms, persistence and resistance 

The factors that contribute to persistence in food processing environments have not been 

successfully defined, but it is possible that the ability of Listeria spp. to form robust biofilms may be 

a significant contributing factor (Pan et al., 2006; Da Silva & De Martinis, 2013). It should be noted 

that in this context robust does not refer to the size of the biofilm but rather its ability to adhere and 

survive. This is because L. monocytogenes does not have the ability to construct thick biofilms. Gram 

et al. (2007) reported the surface adhering count of 104 to 107 CFU.cm-2, which is less than the 

expected 109 to 1012 CFU.cm-2 of other biofilm forming micro-organisms. This is with the exception 

of hyperbiofilm (HB) formation. This is displayed in a study where mutant bacteria with no flagellum 
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based mobility showed HB phenotypes, thus concluding that attempts to control L. monocytogenes 

by limiting flagellar motility, may in actual fact escalate biofilm infestation (Todhanakasem & Young, 

2008).  

The formation of biofilms provides the micro-organism’s with survival advantages that allows 

for adaptation to (sub)lethal and fluctuating environmental factors (Ferreira et al., 2014; Giaouris et 

al., 2014). Through the  structure of the biofilm, protection is provided from ultra-violet rays, 

antimicrobial agents, sanitation agents and acids (Da Silva & De Martinis, 2013; Giaouris et al., 

2015). Further advantages are given by improved nutrient availability and enhanced genetic variation 

through horizontal gene transfer (Ferreira et al., 2014). eDNA possibly serves as the source of genes 

for this transfer action within the matrix (Harmsen et al., 2010). 

Each individual bacterial species optimises its genetic, physiological and structural 

characteristics to survive in various niches (Todhanakasem & Young, 2008). Contrarily, Carpentier 

and Cerf (2011) suggested that the survival and persistence abilities of different L. monocytogenes 

strains do not differ, but persistence is rather dependant on the available harbourage sites. Orgaz et 

al. (2013) further supports this notion by highlighting the inconclusiveness of research regarding 

strain specific persistence abilities and proposes that persistence is rather related to biofilm recovery 

ability. Hard to clean areas easily facilitate the recovery of biofilms. The food processing environment 

subsequently provides a range of inert surfaces that serve as niches for biofilm formation (Da Silva 

& De Martinis, 2013). Biofilms are able to mature in areas that are deemed hard to clean, such as 

cracks and poorly designed machinery (Møretrø et al., 2017), since the effect of cleaning and 

sanitation is limited (Orgaz et al., 2011). Doijad et al. (2015) found cells aggregating around sutures 

on industrial surfaces.  

Occurrence of bacterial contamination within a food processing environment can either be 

transient or persistent. The first refers to occasional isolation of a specific bacteria and the latter 

refers to the repeated isolation of a specific bacteria over a longer period (months and years) at the 

same sampling site (Orgaz et al., 2013). Concrete and statistical parameters for determining 

persistence are ambiguous and further research using meta-analysis and risk assessment is 

required to universally define this concept (Ferreira et al., 2014). Thus, attributing persistence to a 

specific strain is currently to the discretion of the study that is done. Studying the persistence ability 

of biofilms are complex since a bacteria’s response to sanitation methods and recovery ability will 

differ in regard to its position and relationship to the heterogeneous matrix (Orgaz et al., 2013).  

Persistence can, therefore, not automatically be linked to resistance. Magalhaes et al. (2016) 

showed that even though persistent strains have better environmental stress adaptation traits, there 

was no correlation between persistence and resistance to commonly used sanitisers (benzalkonium 

chloride and hydrogen peroxide). In contradiction Poimenidou et al. (2016)  found that a persistent 
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strain, that produced the most biofilms, had higher resistance to quaternary ammonium compounds 

(QAC’s). The current contradictions within this field of study is indicative of the variability and 

complexity of L. monocytogenes biofilms within various processing environments.  

2.13  The study of biofilms 

The study of microorganisms in complex communities (sessile state) rather than single cells 

(planktonic state) was the controversial brainchild of Bill Costerton in 1987 (Costerton et al., 1987; 

Lappin-Scott et al., 2014). His ground-breaking research was based on the concept that most 

microorganisms are found in sessile or biofilm state since they attach to wetted surfaces and 

therefore they differ phenotypically from free floating planktonic cells. After the development of 

confocal microscopy to study biofilms, they were seen, for the first time, as more than just slime 

adhering to surfaces, but rather complex communities of microorganisms (Costerton et al., 1995; 

Lappin-Scott et al., 2014).  

2.13.1  Comparison of fluid and static biofilm measurement systems/methods 

Various techniques are available by which to study biofilms, but when considering the fluctuating 

dynamics of the food processing environment, methods to study these biofilms need to be reflective 

of the environment. Available methods have evolved to reflect just that, which is crucial in optimising 

research into biofilm control measures. A review by Azeredo et al. (2017) critically evaluated these 

current methods used to study biofilms. These include Microtiter plate, Calgary device, Biofilm ring 

test, Robbins device, Modified Robins device, Drip Flow Biofilm Reactor, Rotary Biofilm devices, 

Flow chamber and Microfluidics.  

 

Figure 2.3 Methods available for cultivation and characterisation of biofilms (adapted from Azeredo 

et al. (2017)). 
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These methods and instruments (Figure 2.3) are highly specialised and ideal to study specific factors 

regarding biofilm formation and behaviour. However, none of these are able to mimic factory 

environment conditions as accurately and efficiently as the CO2 evolution measurement system 

(CEMS) does when considering the abovementioned demands of the factory environment. A review 

by Colagiorgi et al. (2017) reiterated the need for experimental systems that simulate environmental 

conditions found in food processing environments. These systems are required to accurately study  

L. monocytogenes and other foodborne pathogen biofilms.   

In a demonstration of the effect of flow and static conditions, Todhanakasem and Young 

(2008) evaluated the formation of hyperbiofilm. They speculated that under flow conditions, rather 

than static conditions, more relevant information could be obtained.  Finally, Dzieciol et al., (2016) 

concluded that control and management programs, specifically for Listeria spp. and specifically L. 

monocytogenes, that only monitor drain water is not sufficient, as L. monocytogenes is also present 

in drain biofilms. Studying their response to sanitation when cultivated under flow conditions, 

becomes imperative.  

2.13.2  CO2 Evolution Measurement System (CEMS)  

Few studies have assessed the recovery of biofilms after sanitation procedures (Orgaz et al., 2013; 

Olszewska et al., 2016) and since persistence and resistance of micro-organisms in a biofilm can be 

attributed to resuscitation ability (Ferreira et al., 2014), valuable observations that can improve 

current control procedures, are lost.  

The theory, mathematical equations and system details of CEMS is outlined in great detail 

by Kroukamp and Wolfaardt (2009). The system set-up and preparation is described by Loots (2016) 

and demonstrated in Figure 2.4. 

 

Figure 2.4 CEMS system set-up (a) CO2 analysers, (b) outflow and waste container, (c) four CEMS 

(to be inserted in (d) during study), (d) water bath, (e) peristaltic pump, (f) nutrient reservoir, (g) CO2-

free gas regulators (CO2-free gas bottles not on figure). 
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CEMS is a silicone tube in which the nutrients and biofilm cultures flow (liquid phase), which is 

encased in a sealed Tygon® tube through which CO2 - free air flows (gas phase) (Figure 2.5).  

 

 

 

 

 

 

 

 

Figure 2.5 Cross section of CEMS tubing to indicate transfer of CO2 from bulk liquid phase (biofilm 

and nutrients) to gas phase (CO2 - free air) (adapted from Kroukamp and Wolfaardt (2009)). 

Biofilm metabolism as well as its response to environmental and chemical conditions is studied in 

real time by measuring gaseous CO2 released by the biofilm during aerobic respiration. The CO2 

produced by the biofilm as it matures, diffuses through the inner silicone tube and is carried to the 

CO2 analyser by a carrier gas (Kroukamp & Wolfaardt, 2009). This system has been used to evaluate 

biofilm responses to antimicrobial agents (Loots, 2016), shear force applied to Pseudomonas 

biofilms (Bester et al., 2010) and observing cellulose activity of Clostridium thermocellum biofilms 

(Dumitrache et al., 2013). No studies on L. monocytogenes in these systems have been conducted.  

2.14 Sanitation 

2.14.1 Sanitation in food processing environments 

Sanitation is a duel process that consists of cleaning protocols, followed by disinfection. During the 

cleaning process detergents are used to remove all physical matter and organic compounds, this 

ensures optimal, unhindered disinfection (Walton et al., 2008). ISO EN 13697 states that a 

disinfectant should provide a 4 log reduction of microbial count on both a clean and soiled surface 

(Gram et al., 2007). Disinfectants used in food processing environments include lactic acid, 

quaternary ammonium containing chemicals, acetic acid, sodium hypochlorite (Da Silva & De 

Martinis, 2013), peracetic acid, hydrogen peroxide (H2O2), as well as other alternative, proprietary 

methods.  Bacterial cells within a biofilm shows higher resistance to sanitation than cells in a 

planktonic state (Carpentier & Cerf, 2011; Piercey et al., 2016b), since surfaces with newly deposited 

cells are easily disinfected (Carpentier & Cerf, 2011) . Therefore, decontaminating surfaces where 

Tygon®  

Liquid phase  

Gas phase  
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biofilms are present, is more challenging since the biofilm structure provides protection to the 

microbial community inside the biofilm (Renier et al., 2011; Da Silva & De Martinis, 2013). In such 

cases, the biofilm eradication concentration (BEC) of a sanitiser should be implemented. The BEC, 

is the concentration of sanitation treatment where the biofilm is unable to resuscitate and grow. This 

is important since the survival of L. monocytogenes, despite sanitation effort, results in the 

construction of denser and more robust biofilms (Poimenidou et al., 2016).  

The importance of correct sanitation practices is not only imperative in preventing increase 

of resistant bacteria but to also avoid increasing the virulence and in vitro proliferation as reported 

by Pricope et al. (2013). Deficient cleaning protocols are characterised by inadequate cleaning 

practises before disinfection protocols, insufficient disinfection of wet surfaces and inadequate 

sanitiser dosage and/or concentration application (Pricope et al., 2013). The research field of 

antimicrobial resistance (AMR) in biofilms originated after studies on the effect of antimicrobial 

agents on biofilms and planktonic cells using the Robbins device. After it was seen that antimicrobial 

agents did not provide full growth inhibition or control, the concept of resistant biofilms emanated 

(Lappin-Scott et al., 2014).  

The misuse of quaternary ammonium compounds (QAC) in the food industry is one of the 

main factors that is leading to an increase in the incidence of antimicrobial resistance (Buffet-

Bataillon et al., 2017). There is an increasing amount of antimicrobially resistant L. monocytogenes 

strains that are being isolated from food processing environments. It can be attributed to sub-lethal 

sanitation practises that stimulate AMR stress responses and horizontal gene transfer and exchange 

of AMR genes in food processing environments (Allen et al., 2016). This is of great concern, since 

the main vehicle of human listeriosis is through contaminated food products (Xayarath & Freitag, 

2012).  

Kremer et al. (2017) evaluated the clinical outcome of listeriosis patients and the presence 

of a benzalkonium chloride tolerance gene, emrC, of the bacteria. It was found that the presence of 

the emrC gene increased the incidence of ST6 L. monocytogenes meningitis infection within the 

scope of the study. These types of studies show how crucial it is for the food industry to continuously 

evaluate (in regard to bacterial resistance) and correctly apply sanitation practises. The food industry 

should keep in mind not only the effect thereof on the processing environments microbial count, but 

the long-term safety of their consumers 

2.14.2 Quaternary Ammonium compounds  

Quaternary ammonium compounds are chemicals that comprise of a plain or substituted alkyl group, 

negative ion and nitrogen atoms where the structure can be shown as N+ R1 R2 R3 R4 X- (Buffet-

Bataillon et al., 2017). As a cationic chemical, the mode of action of QAC entails the disruption of 

the lipid bilayer of bacterial cells that holds the bacterial cytoplasmic membrane. Lower concentration 
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levels of QAC instigates the loss of osmoregulatory abilities of bacterial cells. Intermediary 

concentrations disturb membrane functions such as respiration and transport of solutes. High 

concentrations lead to complete solubilisation of cell membranes leading to imminent cell death 

(Gilbert & Moore, 2005) 

2.14.3 Peracetic acid 

The antimicrobial activity of peracetic acid (PAA) is mainly attributed to its oxidising ability (Srey et 

al., 2013), specifically oxidation of components of bacterial cells (Finnegan et al., 2010). It is an 

environmentally friendly chemical since it decomposes into acetic acid and hydrogen peroxide (Srey 

et al., 2013; Lee et al., 2015). Lee et al. (2015) found that PAA treatment of L. monocytogenes 

biofilms were insufficient and recommended further treatment optimisation studies. More specifically, 

Poimenidou et al. (2016) found the minimum inhibitory concentration of PAA (MICPAA) of certain  

L. monocytogenes strains to be higher than the recommended PAA concentrations outlined in their 

study. These studies are indications of the resistance of L. monocytogenes to the bactericidal effects 

PAA.  

2.14.4 Alternative methods 

2.14.4.1  Listeria phages  

The use of phage treatment as a bio-control method for L. monocytogenes in a processing 

environment should be approached with caution, since a study by Vongkamjan et al. (2013) found a 

rapid increase in mutations for phage resistance. The conclusions of this study, advocates for the 

further research to be done, before the widespread use of Listeria phages in sanitation practices. 

Similarly, in a South African context, Strydom and Witthuhn (2015) found in vitro tests of phages as 

biosanitiser to be successful, but recommended further investigation of it, in factory simulated 

environments. 

2.14.4.2  Enzymes 

Enzymatic treatment can be performed to obtain inhibition and dispersal of biofilms, as Nguyen and 

Burrows (2014) attempted to demonstrate. In essence, enzymes can be used to eradicate biofilms, 

since the major component of the EPS is proteins and polypeptides (Cappitelli et al., 2014). These 

enzymes include bromelain, papain, DNase I and Protease A. It was found that Protease A could 

completely eradicate a biofilm on good grade stainless steel where DNase I only managed to reduce 

attachment to polystyrene (Nguyen & Burrows, 2014). Industrial application of these enzymatic 

treatments are currently not feasible to be used as bio-control methods within a large processing 

environment. This is part in due to the high financial cost thereof.  However, as Nguyen and Burrows 

(2014) recommended, enzymatic treatment could be used as a complimentary asset to current 

sanitation practices.  
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2.14.4.3  Amysin 

Amysin is a non-nisin bacteriocin that is isolated from Thai shrimp paste. It is intended to be used as 

a broad spectrum biopreservative in conjunction with nisin to prevent the growth of pathogens in 

food products. It proved to have a listericidal effect in sliced bologna sausage stored at 4°C for seven 

days. Further development and exportation of this biopreservative has potential to aid the food 

industry with overcoming the emerging resistance to nisin and in turn with control of  

L.  monocytogenes in all its forms (Kaewklom et al., 2013). 

2.14.4.4  Chitosan 

The antimicrobial activity of chitosan is dependent on factors including molecular weight and degree 

of acetylation (Raafat et al., 2008; Goy et al., 2009).  Assainar and Nair (2014) even suggest factors 

such as pH, temperature, and other molecules (proteins, fats and other antimicrobial agents) that 

might interfere with chitosan’s antimicrobial action. Many studies have attempted to establish the 

bactericidal or bacteriostatic mode of action of chitosan, but are only able to yield theories; 

concluding that the mechanism of chitosan is more complex than is currently understood. Goy et al. 

(2009) proposes that the mode of action that is most acceptable is the interaction that takes place 

between the positively charged chitin/chitosan molecules and the negatively charged membranes of 

the target organisms. This electrostatic interaction between chitosan and the microorganism is 

believed to be the most reasonable conclusion and explanation for chitosan’s antimicrobial action. A 

review by Kong et al. (2010) concludes that in order for chitosan to be successfully used as an 

antimicrobial agent, its mechanism need to be established as well as the causes of resistance to 

these mechanisms. Due to an increase of antimicrobial resistance among pathogens, the need for 

safer and natural antimicrobial agents has increased. Among several natural antimicrobials, chitosan 

exhibits a higher rate and broader spectrum of antimicrobial activity.  

2.15 Conclusion 

The survival and proliferation of L. monocytogenes within the RTE food sector is of major concern 

to the safety of consumers. Control and management efforts are continuously developing as the 

complex and sophisticated adaptation mechanisms of L. monocytogenes are revealed through 

ground breaking research. This review found that together with increase in global research efforts to 

gain more in-depth understanding of L. monocytogenes, awareness of the long-term effect of 

incorrect sanitation practises and the power of next generation sequencing has increased. It was 

also found that although South Africa contributes to 33% of African research outputs pertaining to 

foodborne pathogens (Paudyal et al., 2017) there is still a severe lack of research and information 

regarding L. monocytogenes and human listeriosis cases within the South African context. 

Finally, L. monocytogenes is a well-adapted foodborne pathogen, that can cause fatal 

infection when contaminated food is consumed by vulnerable groups. Isolation and identification 
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methods and regulations are currently adequate in managing this pathogen. Rapid’L.mono is shown 

to be a reliable routine method that can be used by the food industry. Although these methods 

discussed are currently satisfactory, validation and improvement of these methods are required to 

ensure that they maintain their abilities to isolate and identify an adaptive and evolving pathogen 

such as L. monocytogenes. Current methods available for source tracking are competitive, however 

for source tracking and interlaboratory comparison, automated ribotyping is still regarded as the best 

method to use. Although many different methods are available to study biofilms and the effect of 

sanitation, in any form, studying them under conditions simulation factory environments is more 

beneficial. Currently, the CEMS system will serve as an excellent tool to accomplish this objective. 

By combining emerging discoveries of L. monocytogenes with current identification and subtyping 

techniques, studying its survival and proliferation in a RTE food factory will become possible.  

2.16 References 

Allen, K.J., Wałecka-Zacharska, E., Chen, J.C., Katarzyna, K.P., Devlieghere, F., Meervenne, E. 

Van, Osek, J., Wieczorek, K. & Bania, J. (2016). Listeria monocytogenes - An examination of 

food chain factors potentially contributing to antimicrobial resistance. Food Microbiology, 54, 

178–189. 

Almeida, G., Magalhaes, R., Carneiro, L., Santos, I., Silva, J., Ferreira, V., Hogg, T. & Teixeira, P. 

(2013). Foci of contamination of Listeria monocytogenes in different cheese processing 

plants. International Journal of Food Microbiology, 167, 303–309. 

Alonso, A.N., Perry, K.J., Regeimbal, J.M., Regan, P.M. & Higgins, D.E. (2014). Identification of 

Listeria monocytogenes determinants required for biofilm formation. PLoS ONE, 9, 1–16. 

Anonymous. (2012). Guidelines on the application of general principles of food hygiene to the 

control of viruses in food: CAC/GL 79-2012. [Internet document] URL 

www.fao.org/input/download/standards/10740/CXG_061e.pdf. Accessed 12/09/2017. 

Anonymous. (2013a). DuPont™ Riboprinter® system: Powerful microbial monitoring Name it. 

Trace it. Control it. [Internet document]. URL 

http://www.dupont.com/content/dam/dupont/products-and-services/food-protection/food-

protection-landing/documents/rp_brochure.pdf. Accessed 16/05/2017. 

Anonymous, (2013b). Food Microbe Tracker [Internet document]. URL 

http://www.foodmicrobetracker.com/login/login.aspx. Accessed 09/09/2017 

Anonymous. (2014). Food Safety and Quality Diagnostics: Bio-Rad Solutions. [Internet document]. 

URL  http://www.bio-rad.com/webroot/web/pdf/fsd/literature/FSD_17933.pdf.  Accessed 

23/05/2017 

Stellenbosch University  https://scholar.sun.ac.za

http://www.fao.org/input/download/standards/10740/CXG_061e.pdf.%20Accessed%2012/09/2017
http://www.dupont.com/content/dam/dupont/products-and-services/food-protection/food-protection-landing/documents/rp_brochure.pdf
http://www.dupont.com/content/dam/dupont/products-and-services/food-protection/food-protection-landing/documents/rp_brochure.pdf
http://www.foodmicrobetracker.com/login/login.aspx
http://www.bio-rad.com/webroot/web/pdf/fsd/literature/FSD_17933.pdf.%20%20Accessed%2023/05/2017
http://www.bio-rad.com/webroot/web/pdf/fsd/literature/FSD_17933.pdf.%20%20Accessed%2023/05/2017


31 
 
 

Anonymous. (2016). EU institutions and agencies. [Internet document]. URL 

https://www.efsa.europa.eu/en/partnersnetworks/euinstitutions. Accessed 07/07/2017. 

Anonymous. (2017a). ISO 11290-1:2017 Microbiology of the food chain- Horizontal method for the 

detection and enumeration of Listeria monocytogenes and of Listeria spp. – Part 1: 

Detection method. [Internet document] URL https://www.iso.org/standard/60313.html. 

Accessed 18/04/2017. 

Anonymous. (2017b). ISO 11290-2:2017 Microbiology of the food chain- Horizontal method for the 

detection and enumeration of Listeria monocytogenes and of Listeria spp. – Part 2: 

Enumeration method. [Internet document] URL https://www.iso.org/standard/60314.html. 

Accessed 18/09/2017. 

Assainar, S.K. & Nair, S. (2014). Action of Chitosan and its derivatives on clinical pathogens. 

International Journal of Current Microbiology and Applied Sciences, 3, 748–759. 

Auvolat, A. & Besse, N.G. (2016). The challenge of enumerating Listeria monocytogenes in food. 

Food Microbiology, 53, 135–149. 

Awofisayo-Okuyelu, A., Arunachalam, N., Dallman, T., Grant, K.A., Aird, H., McLauchlin, J., 

Painset, A. & Amar, C. (2016). An Outbreak of Human Listeriosis in England between 2010 

and 2012 Associated with the Consumption of Pork Pies. Journal of Food Protection, 79, 

732–740. 

Azeredo, J., Azevedo, N.F., Briandet, R., Cerca, N., Coenye, T., Costa, A.R., Desvaux, M., 

Bonaventura, G. Di, Hébraud, M., Jaglic, Z., Kačániová, M., Knøchel, S., Lourenço, A., 

Mergulhão, F., Meyer, R.L., Nychas, G., Simões, M., Tresse, O. & Sternberg, C. (2017). 

Critical review on biofilm methods. Critical Reviews in Microbiology, 7828, 1–39. 

Bansal, V., Siddiqui, M.W. & Rahman, M.S. (2015). Minimally Processed Foods: Overview. In: 

Minimally Processed Foods. Switzerland: Springer International Publishing. 

Barre, L., Angelidis, A.S., Boussaid, D., Brasseur, E.D., Manso, E. & Gnanou Besse, N. (2016). 

Applicability of the EN ISO 11290-1 standard method for Listeria monocytogenes detection in 

presence of new Listeria species. International Journal of Food Microbiology, 238, 281–287. 

Bécavin, C., Bouchier, C., Lechat, P., Archambaud, C., Creno, S. & Gouin, E. (2014). Comparison 

of Widely Used Listeria monocytogenes Strains EGD, 10403S, and EGD-e Highlights 

Genomic Differences Underlying Variations in Pathogenicity. mBio, 5, 1–12. 

 

 

Stellenbosch University  https://scholar.sun.ac.za

https://www.efsa.europa.eu/en/partnersnetworks/euinstitutions
https://www.iso.org/standard/60313.html
https://www.iso.org/standard/60314.html


32 
 
 

Bergholz, T.M., Bowen, B., Wiedmann, M. & Boor, K.J. (2012). Listeria monocytogenes shows 

temperature-dependent and -independent responses to salt stress, including responses that 

induce cross-protection against other stresses. Applied and Environmental Microbiology, 78, 

2602–2612. 

Besse, N.G., Barre, L., Buhariwalla, C., Vignaud, M.L., Khamissi, E., Decourseulles, E., Nirsimloo, 

M., Chelly, M. & Kalmokoff, M. (2010). The overgrowth of Listeria monocytogenes by other 

Listeria spp. in food samples undergoing enrichment cultivation has a nutritional basis. 

International Journal of Food Microbiology, 136, 345–351. 

Bester, E., Kroukamp, O., Wolfaardt, G.M., Boonzaaier, L. & Liss, S.N. (2010). Metabolic 

differentiation in biofilms as indicated by carbon dioxide production rates. Applied and 

Environmental Microbiology, 76, 1189–1197. 

Bonsaglia, E.C.R., Silva, N.C.C., Fernades Júnior, A., Araújo Júnior, J.P., Tsunemi, M.H. & Rall, 

V.L.M. (2014). Production of biofilm by Listeria monocytogenes in different materials and 

temperatures. Food Control, 35, 386–391. 

Bouchet, V., Huot, H. & Goldstein, R. (2008). Molecular genetic basis of ribotyping. Clinical 

Microbiology Reviews, 21, 262–273. 

Bruhn, J.B., Vogel, B.F. & Gram, L. (2005). Bias in the Listeria monocytogenes Enrichment 

Procedure: Lineage 2 Strains Outcompete Lineage 1 Strains in University of Vermont 

Selective Enrichments. Applied and Environmental Microbiology, 71, 961–967. 

Bryant, J., Chewapreecha, C. & Bentley, S.D. (2014). Developing insights into the mechanisms of 

evolution of bacterial pathogens from whole-genome sequences. Future microbiology, 7, 

1283–1296. 

Buffet-Bataillon, S., Tattevin, P., Bonnaure-Mallet, M. & Jolivet-Gougeon, A. (2017). Emergence of 

resistance to antibacterial agents : the role of quaternary ammonium compounds — a critical 

review. International Journal of Antimicrobial Agents, 39, 381–389. 

Caly, D., Takilt, D., Lebret, V. & Tresse, O. (2009). Sodium chloride affects Listeria monocytogenes 

adhesion to polystyrene and stainless steel by regulating flagella expression. Letters in 

Applied Microbiology, 49, 751–756. 

Camejo, A., Carvalho, F., Reis, O., Leitão, E., Sousa, S. & Cabanes, D. (2011). The arsenal of 

virulence factors deployed by Listeria monocytogenes to promote its cell infection cycle. 

Virulence, 2, 379–394. 

Cappitelli, F., Polo, A. & Villa, F. (2014). Biofilm Formation in Food Processing Environments is Still 

Poorly Understood and Controlled. Food Engineering Reviews, 6, 29–42. 

Stellenbosch University  https://scholar.sun.ac.za



33 
 
 

Carpentier, B. & Cerf, O. (2011). Review - Persistence of Listeria monocytogenes in food industry 

equipment and premises. International Journal of Food Microbiology, 145, 1–8. 

Chen, B.Y., Kim, T.J., Jung, Y.S. & Silva, J.L. (2008). Attachment Strength of Listeria 

monocytogenes and its Internalin-Negative Mutants. Food Biophysics, 3, 329–332. 

Chen, Y. & Knabel, S.J. (2007). Multiplex PCR for simultaneous detection of bacteria of the genus 

Listeria, Listeria monocytogenes, and major serotypes and epidemic clones of L. 

monocytogenes. Applied and Environmental Microbiology, 73, 6299–6304. 

Chen, Y., Pouillot, R., Burall, L.S., Strain, E.A., Doren, J.M. Van, Jesus, A.J. De, Laasri, A., Wang, 

H., Ali, L., Tatavarthy, A., Zhang, G., Hu, L., Day, J., Sheth, I., Kang, J., Sahu, S., Srinivasan, 

D., Brown, E.W., Parish, M., Zink, D.L., Datta, A.R., Hammack, T.S. & Macarisin, D. (2017). 

Comparative evaluation of direct plating and most probable number for enumeration of low 

levels of Listeria monocytogenes in naturally contaminated ice cream products. International 

Journal of Food Microbiology, 241, 15–22. 

Colagiorgi, A., Bruini, I., Aldo, P., Ciccio, D., Zanardi, E., Ghidini, S. & Ianieri, A. (2017). Listeria 

monocytogenes Biofilms in the Wonderland of Food Industry. Pathogens, 6, 1–9. 

Costerton, J.W., Cheng, K.J., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M. & Marrie, T.J. 

(1987). Bacterial Biofilms in Nature and Disease. Annual Review of Microbiology, 41, 435–

464. 

Costerton, J.W., Lewandowski, Z., Caldwell, D.E., Korber, D.R. & Lappin-scott, H.M. (1995). 

Microbial biofilms. Annual Reviews of Microbiology, 49, 711–745. 

Da Silva, E.P. & De Martinis, E.C.P. (2013). Current knowledge and perspectives on biofilm 

formation: The case of Listeria monocytogenes. Applied Microbiology and Biotechnology. 

Dalmasso, M., Bolocan, A.S., Hernandez, M., Kapetanakou, A.E., Kuchta, T., Manios, S.G., 

Melero, B., Minarovičová, J., Muhterem, M., Nicolau, A.I., Rovira, J., Skandamis, P.N., Stessl, 

B., Wagner, M., Jordan, K. & Rodríguez-Lázaro, D. (2014). Comparison of polymerase chain 

reaction methods and plating for analysis of enriched cultures of Listeria monocytogenes 

when using the ISO11290-1 method. Journal of Microbiological Methods, 98, 8–14. 

Dalmasso, M. & Jordan, K. (2012). Process environment sampling can help to reduce the 

occurrence of Listeria monocytogenes in food processing facilities. Irish Journal of Agricultural 

and Food Research, 52, 93–100. 

Datta, A.R. & Burall, L.S. (2017). Serotype to genotype : The changing landscape of listeriosis 

outbreak investigations. Food Microbiology, http://dx.doi.org/10.1016/j.fm.2017.06.013. 

Stellenbosch University  https://scholar.sun.ac.za



34 
 
 

De Cesare, A., Bruce, J.L., Dambaugh, T.R., Guerzoni, M.E. & Wiedmann, M. (2001). Automated 

ribotyping using different enzymes to improve discrimination of Listeria monocytogenes 

isolates, with a particular focus on serotyppe 4b strains. Journal of Clinical Microbiology, 39, 

3002–3005. 

De Cesare, A., Manfreda, G., Macrì, M. & Cantoni, C. (2007). Application of automated ribotyping 

to support the evaluation of Listeria monocytogenes sources in a Taleggio cheese producing 

plant. Journal of Food Protection, 70, 1116–1121. 

De las Heras, A., Cain, R.J., Bielecka, M.K. & Vázquez-Boland, J.A. (2011). Regulation of Listeria 

virulence: PrfA master and commander. Current Opinion in Microbiology, 14, 118–127. 

De Noordhout, C.M., Devleesschauwer, B., Angulo, F.J., Verbeke, G., Haagsma, J., Kirk, M., 

Havelaar, A. & Speybroeck, N. (2014). The global burden of listeriosis: A systematic review 

and meta-analysis. The Lancet Infectious Diseases, 14, 1073–1082. 

Den Bakker, H.C., Bowen, B.M., Rodriguez-rivera, L.D. & Wiedmann, M. (2012). FSL J1-208, a 

Virulent Uncommon Phylogenetic Lineage IV Listeria monocytogenes Strain with a Small 

Chromosome Size and a Putative Virulence Plasmid Carrying Internalin-Like Genes. Applied 

and Environmental Microbiology, 78, 1876–1889. 

Den Bakker, H.C., Cummings, C. a, Ferreira, V., Vatta, P., Orsi, R.H., Degoricija, L., Barker, M., 

Petrauskene, O., Furtado, M.R. & Wiedmann, M. (2010). Comparative genomics of the 

bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and 

limited gene loss. BMC genomics, 11, 688. 

Deng, X., Phillippy, A.M., Li, Z., Salzberg, S.L. & Zhang, W. (2010). Probing the pan-genome of 

Listeria monocytogenes: new insights into intraspecific niche expansion and genomic 

diversification. BMC genomics, 11, 500. 

Dhama, K., Karthik, K., Tiwari, R., Shabbir, M.Z., Barbuddhe, S., Malik, S.V.S. & Singh, R.K. 

(2015). Listeriosis in animals, its public health significance (food-borne zoonosis) and 

advances in diagnosis and control: a comprehensive review. The Veterinary quarterly, 2176, 

1–25. 

Di Bonaventura, G., Piccolomini, R., Paludi, D., D’Orio, V., Vergara, A., Conter, M. & Ianieri, A. 

(2008). Influence of temperature on biofilm formation by Listeria monocytogenes on various 

food-contact surfaces: Relationship with motility and cell surface hydrophobicity. Journal of 

Applied Microbiology, 104, 1552–1561. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



35 
 
 

Doijad, S.P., Barbuddhe, S.B., Garg, S., Poharkar, K. V., Kalorey, D.R., Kurkure, N. V., Rawool, 

D.B. & Chakraborty, T. (2015). Biofilm-forming abilities of Listeria monocytogenes serotypes 

isolated from different sources. PLoS ONE, 10, 1–14. 

Dumitrache, A., Wolfaardt, G.M., Allen, D.G., Liss, S.N. & Lynd, L.R. (2013). Tracking the 

cellulolytic activity of Clostridium thermocellum biofilms. Biotechnology for Biofuels, 6, 175. 

Dzieciol, M., Schornsteiner, E., Muhterem-Uyar, M., Stessl, B., Wagner, M. & Schmitz-Esser, S. 

(2016). Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes 

contaminated food processing environment. International Journal of Food Microbiology, 223, 

33–40. 

Fagotto, E. (2014). Private roles in food safety provision : the law and economics of private food 

safety. European Journal of Law and Economics, 37, 83–109. 

FDA. (2012). Bad bug book: Handbook of Foodborne Pathogenic Microorganisms and Natural 

Toxins. 2nd edn. USA: Center for Food Safety and Applied Nutrition. 

Ferreira, V., Wiedmann, M., Teixeira, P. & Stasiewicz, M.J. (2014). Listeria monocytogenes 

Persistence in Food-Associated Environments: Epidemiology, Strain Characteristics, and 

Implications for Public Health. Journal of Food Protection, 77, 150–170. 

Finnegan, M., Linley, E., Denyer, S.P., McDonnell, G., Simons, C. & Maillard, J.Y. (2010). Mode of 

action of hydrogen peroxide and other oxidizing agents: Differences between liquid and gas 

forms. Journal of Antimicrobial Chemotherapy, 65, 2108–2115. 

Foodstuffs, Cosmetics and Disinfectants Act and Regulations. (2010). Act no.54 of 1972, G.N.R. 

146/2010. Johannesburg, South Africa: Lex Patria Publishers.  

Fouladynezhad, N., Afsah-Hejri, L., Rukayadi, Y., Abdulkarim, S.., Marian, M.. & Son, R. (2013). 

Assessing biofilm formation by Listeria moocytogenes strains. International Food Research 

Journal, 20, 987–990. 

Freitag, N., Port, G.C. & Miner, M.D. (2010). Listeria monocytogenes — from saprophyte to 

intracellular pathogen. Nat Rev Microbiol, 7, 1–16. 

Fuchs, T.M., Eisenreich, W., Kern, T. & Dandekar, T. (2012). Toward a systemic understanding of 

Listeria monocytogenes metabolism during infection. Frontiers in Microbiology, 3, 1–12. 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



36 
 
 

Fugett, E.B., Schoonmaker-Bopp, D., Dumas, N.B., Corby, J. & Wiedmann, M. (2007). Pulsed-field 

gel electrophoresis (PFGE) analysis of temporally matched Listeria monocytogenes isolates 

from human clinical cases, foods, ruminant farms, and urban and natural environments 

reveals source-associated as well as widely distributed PFGE types. Journal of Clinical 

Microbiology, 45, 865–873. 

Gasanov, U., Hughes, D. & Hansbro, P.M. (2005). Methods for the isolation and identification of 

Listeria spp . and Listeria monocytogenes : a review. FEMS Microbiology Reviews, 29, 851–

875. 

Giaouris, E., Heir, E., Desvaux, M., Hébraud, M., Møretrø, T., Langsrud, S., Doulgeraki, A., 

Nychas, G.-J., Kačániová, M., Czaczyk, K., Ölmez, H. & Simões, M. (2015). Intra- and inter-

species interactions within biofilms of important foodborne bacterial pathogens. Frontiers in 

Microbiology, 6, 841. 

Giaouris, E., Heir, E., Hébraud, M., Chorianopoulos, N., Langsrud, S., Møretrø, T., Habimana, O., 

Desvaux, M., Renier, S. & Nychas, G.J. (2014). Attachment and biofilm formation by 

foodborne bacteria in meat processing environments: Causes, implications, role of bacterial 

interactions and control by alternative novel methods. Meat Science, 97, 289–309. 

Gilbert, P. & Moore, L.E. (2005). Cationic antiseptics : diversity of action under a common epithet. 

Journal of Applied Microbiology, 99, 703–715. 

Goldfine, H. & Shen, H. (2007). Listeria monocytogenes: Pathogenesis and Host response. In: 

Springer Science+Business Media. Pp. 1–5. 

Gorski, L., Flaherty, D. & Mandrell, R.E. (2006). Competitive Fitness of Listeria monocytogenes 

Serotype 1/2a and 4b Strains in Mixed Cultures with and without Food in the U.S. Food and 

Drug Administration Enrichment Protocol. Applied and Environmental Microbiology, 72, 776–

783. 

Goulet, V., King, L.A., Vaillant, V. & Valk, H. De. (2013). What is the incubation period for 

listeriosis? BMC infectious diseases, 13, 11. 

Goy, R.C., Britto, D. De & Assis, O.B.G. (2009). A Review of the Antimicrobial Activity of Chitosan. 
Polimeros: Ciencia e Tecnologia, 19, 241–247. 

Gram, L., Bagge-ravn, D., Ng, Y.Y., Gymoese, P. & Vogel, B.F. (2007). Influence of food soiling 

matrix on cleaning and disinfection effciency on surface attached Listeria monocytogenes. 

Food Control, 18, 1165–1171. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



37 
 
 

Hansen, L.T. & Fonnesbech, B. (2011). Desiccation of adhering and biofilm Listeria 

monocytogenes on stainless steel : Survival and transfer to salmon products. International 

Journal of Food Microbiology, 146, 88–93. 

Harmsen, M., Lappann, M., Knøchel, S. & Molin, S. (2010). Role of extracellular DNA during 

biofilm formation by Listeria monocytogenes. Applied and Environmental Microbiology, 76, 

2271–2279. 

Hoelzer, K., Pouillot, R., Gallagher, D., Silverman, M.B., Kause, J. & Dennis, S. (2012). Estimation 

of Listeria monocytogenes transfer coefficients and efficacy of bacterial removal through 

cleaning and sanitation. International Journal of Food Microbiology, 157, 267–277. 

Ibusquiza, P.S., Herrera, J.J.R. & Cabo, M.L. (2011). Resistance to benzalkonium chloride , 

peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food 

Microbiology, 28, 418–425. 

Jadhav, S., Bhave, M. & Palombo, E.A. (2012). Methods used for the detection and subtyping of 

Listeria monocytogenes. Journal of Microbiological Methods, 88, 327–341. 

Kabuki, D.Y., Kuaye, A.Y., Wiedmann, M. & Boor, K.J. (2004). Molecular Subtyping and Tracking 

of Listeria monocytogenese in Latin-Style Fresh-Cheese Processing Plants. Journal of Dairy 

Science, 87, 2803–2812. 

Kaewklom, S., Lumlert, S., Kraikul, W. & Aunpad, R. (2013). Control of Listeria monocytogenes on 

sliced bologna sausage using a novel bacteriocin, amysin, produced by Bacillus 

amyloliquefaciens isolated from Thai shrimp paste (Kapi). Food Control, 32, 552–557. 

Kerouanton, A., Roche, S.M., Marault, M., Velge, P., Pourcher, A., Brisabois, A. & Federighi, M. 

(2010). Characterization of isolates of Listeria monocytogenes from sludge using pulsed-field 

gel electrophoresis and virulence assays. Journal of Applied Microbiology, 108, 1380–1388. 

Khelef, N., Lecuit M., Buchrieser, C., Cabanes, D., Dussuroget, O., Cossart, P. (2006). L. 

monocytogenes and the Genus Listeria. In: The Procaryotes, 3rd edition (edited by M. 

Dwarkin, S. Falkow, E. Rosenberg, K.H. Schleifer, E. Stackenbrandt). Pp. 404-476, New 

York: Springer Science+Business Media, LLC. 

Klaeboe, H., Lunestad, B.T., Borlaug, K., Paulauskas, A. & Rosef, O. (2010). Persistence and 

Diversity of Listeria monocytogenes Isolates in Norwegian Processing Plants. Veterinarija Ir 

Zootechnika, 50, 42–47. 

Klaeboe, H., Rosef, O., Fortes, E. & Wiedmann, M. (2006). Ribotype diversity of Listeria 

monocytogenes isolates from two salmon processing plants in Norway. International journal of 

environmental health research, 16, 375–83. 

Stellenbosch University  https://scholar.sun.ac.za



38 
 
 

Klaeboe, H., Rosef, O. & Saebø, M. (2005). Longitudinal studies on Listeria monocytogenes and 

other Listeria species in two salmon processing plants. International Journal of Environmental 

Health Research, 15, 71–77. 

Kong, M., Chen, X.G., Xing, K. & Park, H.J. (2010). Antimicrobial properties of chitosan and mode 

of action: A state of the art review. International Journal of Food Microbiology, 144, 51–63. 

Kremer, P.H.C., Lees, J.A., Koopmans, M.M., Ferwerda, B., Arends, A.W.M., Feller, M.M., 

Schipper, K., Valls Seron, M., Ende, A. van der, Brouwer, M.C., Beek, D. van de & Bentley, 

S.D. (2017). Benzalkonium tolerance genes and outcome in Listeria monocytogenes 

meningitis. Clinical Microbiology and Infection, 23, 265.e1-265.e7. 

Kroukamp, O. & Wolfaardt, G.M. (2009). CO2 production as an indicator of biofilm metabolism. 

Applied and Environmental Microbiology, 75, 4391–4397. 

Lappin-Scott, H., Burton, S. & Stoodley, P. (2014). Revealing a world of biofilms - the pioneering 

research of Bill Costerton. Nature Reviews:Microbiology, 1–7. 

Lasa, I. (2006). Towards the identification of the common features of bacterial biofilm development. 

International microbiology : the official journal of the Spanish Society for Microbiology, 9, 21–

8. 

Lauer, W.F., Facon, J.-P. & Patel, A. (2005). Evaluation of a Chromogenic Medium for 

Identification and Differentiation of Listeria monocytogenes in Selected Foods. Journal of 

AOAC International, 88, 511–517. 

Law, J.W.-F., Ab Mutalib, N.-S., Chan, K.G. & Lee, L.H. (2015a). Rapid methods for the detection 

of foodborne bacterial pathogens: principles, applications, advantages and limitations. 

Frontiers in Microbiology, 5, 770. 

Law, J.W.-F., Ab Mutalib, N.S., Chan, K.G. & Lee, L.H. (2015b). An insight into the isolation, 

enumeration, and molecular detection of Listeria monocytogenes in food. Frontiers in 

Microbiology, 6, 1–15. 

Lee, S.H.I., Cappato, L.P., Corassin, C.H., Cruz, A.G. & Oliveira, C.A.F. (2015). Effect of peracetic 

acid on biofilms formed by Staphylococcus aureus and Listeria monocytogenes isolated from 

dairy plants. Journal of Dairy Science, 99, 1–7. 

Liu, D., Lawrence, M.L., Wiedmann, M., Gorski, L., Mandrell, R.E., Ainsworth, A.J. & Austin, F.W. 

(2006). Listeria monocytogenes subgroups IIIA, IIIB, and IIIC delineate genetically distinct 

populations with varied pathogenic potential. Journal of Clinical Microbiology, 44, 4229–4233. 

 

Stellenbosch University  https://scholar.sun.ac.za



39 
 
 

Lokerse, R.F.A., Maslowska-Corker, K.A., Wardt, L.C. van de & Wijtzes, T. (2016). Growth 

capacity of Listeria monocytogenes in ingredients of ready-to-eat salads. Food Control, 60, 

338–345. 

Loots, R. (2016). Biofilms as multifunctional surface coatings and adaptive systems : a biomimetic 

approach. Phd thesis, Stellenbosch University, South Africa. 

Lorber, B. (2014). Listeria monocytogenes. In: Methods in Molecular Biology (edited by M. Matloob 

& M. Griffiths). Pp. 85–93. New York: Springer Science and Business. 

Luber, P. (2011). The Codex Alimentarius guidelines on the application of general principles of 

food hygiene to the control of Listeria monocytogenes in ready-to-eat foods. Food Control, 22, 

1482–1483. 

Magalhaes, R., Ferreira, V., Brand~o, T.R.S., Palencia, R.C., Almeida, G. & Teixeira, P. (2016). 

Persistent and non-persistent strains of Listeria monocytogenes: A focus on growth kinetics 

under different temperature, salt, and pH conditions and their sensitivity to sanitisers. Food 

Microbiology, 57, 103–108. 

Manuel, C.S., Stelten, A. Van, Wiedmann, M., Nightingale, K.K. & Orsi, R.H. (2015). Prevalence 

and distribution of Listeria monocytogenes inlA alleles prone to phase variation and inlA 

alleles with premature stop codon mutations among human, food, animal, and environmental 

isolates. Applied and Environmental Microbiology, 81, 8339–8345. 

Meloni, D., Galluzzo, P., Mureddu, A., Piras, F., Griffiths, M. & Mazzette, R. (2009). Listeria 

monocytogenes in RTE foods marketed in Italy: Prevalence and automated EcoRI ribotyping 

of the isolates. International Journal of Food Microbiology, 129, 166–173. 

Milillo, S.R. & Wiedmann, M. (2009). Contributions of Six Lineage-Specific Internalin-Like Genes to 

Invasion Efficiency of Listera monocytogenes. Foodborne Pathogens and Disease, 6, 57–70. 

Møretrø, T., Schirmer, B.C.T., Heir, E., Fagerlund, A., Hjemli, P. & Langsrud, S. (2017). Tolerance 

to quaternary ammonium compound disinfectants may enhance growth of Listeria 

monocytogenes in the food industry. International Journal of Food Microbiology, 241, 215–

224. 

Morganti, M., Scaltriti, E., Cozzolino, P., Bolzoni, L., Casadei, G., Pierantoni, M., Foni, E. & 

Pongolini, S. (2015). Processing-dependent and clonal contamination patterns of Listeria 

monocytogenes in the cured ham food chain revealed by genetic analysis. Applied and 

Environmental Microbiology, 82, 822–831. 

 

Stellenbosch University  https://scholar.sun.ac.za



40 
 
 

Mosupye, F.M. & Holy, A. Von. (2000). Microbiological hazard identification and exposure 

assessment of street food vending in Johannesburg, South Africa. International Journal of 

Food Microbiology, 61, 137–145. 

Nelson, K.E., Fouts, D.E., Mongodin, E.F., Ravel, J., DeBoy, R.T., Kolonay, J.F., Rasko, D.A., 

Angiuoli, S. V., Gill, S.R., Paulsen, I.T., Peterson, J., White, O., Nelson, W.C., Nierman, W., 

Beanan, M.J., Brinkac, L.M., Daugherty, S.C., Dodson, R.J., Durkin, A.S., Madupu, R., Haft, 

D.H., Selengut, J., Aken, S. Van, Khouri, H., Fedorova, N., Forberger, H., Tran, B., Kathariou, 

S., Wonderling, L.D., Uhlich, G.A., Bayles, D.O., Luchansky, J.B. & Fraser, C.M. (2004). 

Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen 

Listeria monocytogenes reveal new insights into the core genome components of this 

species. Nucleic Acids Research, 32, 2386–2395. 

Nguyen, U.T. & Burrows, L.L. (2014). DNase I and proteinase K impair Listeria monocytogenes bio 

fi lm formation and induce dispersal of pre-existing biofilms. International Journal of Food 

Microbiology, 187, 26–32. 

Nyarko, E.B. & Donnelly, C.W. (2015). Listeria monocytogenes: Strain Heterogeneity, Methods, 

and Challenges of Subtyping. Journal of Food Science, 80, M2868–M2878. 

Nyenje, M.E., Odjadjare, C.E., Tanih, N.F., Green, E. & Ndip, R.N. (2012). Foodborne pathogens 

recovered from ready-to-eat foods from roadside cafeterias and retail outlets in Alice, Eastern 

Cape province, South Africa: Public health implications. International Journal of 

Environmental Research and Public Health, 9, 2608–2619. 

Odjadjare, E.E.O. & Okoh, A.I. (2010). Prevalence and distribution of Listeria pathogens in the final 

effluents of a rural wastewater treatment facility in the Eastern Cape Province of South Africa. 

World Journal of Microbiology and Biotechnology, 26, 297–307. 

Olszewska, M.A., Zhao, T. & Doyle, M.P. (2016). Inactivation and induction of sublethal injury of 

Listeria monocytogenes in biofilm treated with various sanitisers. Food Control, 70, 371–379. 

Ooi, S.T. & Lorber, B. (2005). Gastroenteritis due to Listeria monocytogenes. Clinical infectious 

diseases : an official publication of the Infectious Diseases Society of America, 40, 1327–32. 

Orgaz, B., Lobete, M.M., Puga, C.H. & Jose, C.S. (2011). Effectiveness of Chitosan against Mature 

Biofilms Formed by Food Related Bacteria. International Journal of Molecular Sciences, 12, 

817–828. 

Orgaz, B., Puga, C.H., Martínez-suárez, J. V & Sanjose, C. (2013). Biofilm recovery from chitosan 

action : A possible clue to understand Listeria monocytogenes persistence in food plants. 

Food Control, 32, 484–489. 

Stellenbosch University  https://scholar.sun.ac.za



41 
 
 

Orsi, R.H., Bakker, H.C.D. & Wiedmann, M. (2011). Listeria monocytogenes lineages: Genomics, 

evolution, ecology, and phenotypic characteristics. International Journal of Medical 

Microbiology, 301, 79–96. 

Orsi, R.H. & Wiedmann, M. (2016). Characteristics and distribution of Listeria spp., including 

Listeria species newly described since 2009. Applied Microbiology and Biotechnology, 100, 

5273–5287. 

Pan, Y., Breidt, F., Kathariou, S., Science, F., Carolina, N. & Carolina, N. (2006). Resistance of 

Listeria monocytogenes Biofilms to Sanitizing Agents in a Simulated Food Processing 

Environment. Applied and Environmental Microbiology, 72, 7711–7717. 

Paudyal, N., Anihouvi, V., Hounhouigan, J., Ignatius, M., Sekwati-monang, B., Amoa-awua, W., 

Atter, A., Bernice, N., Mbugua, S., Asagbra, A., Abdelgadir, W., Nakavuma, J., Jakobsen, M. 

& Fang, W. (2017). Prevalence of foodborne pathogens in food from selected African 

countries – A meta-analysis. International Journal of Food Microbiology, 249, 35–43. 

Paul, D., Steele, C., Donaldson, J.R., Banes, M.M., Kumar, R., Bridges, S.M., Arick, M. & 

Lawrence, M.L. (2014). Genomics Data Genome comparison of Listeria monocytogenes 

serotype 4a strain HCC23 with selected lineage I and lineage II L . monocytogenes strains 

and other Listeria strains. Genomics Data 2, 2, 219–225. 

Pavlic, M. & Griffiths, M.W. (2009). Principles, Applications, and Limitations of Automated 

Ribotyping as a Rapid Method in Food Safety. Foodborne Pathogens and Disease, 6, 1047–

1055. 

Piercey, M.J., Hingston, P.A. & Truelstrup Hansen, L. (2016a). Genes involved in Listeria 

monocytogenes biofilm formation at a simulated food processing plant temperature of 15°C. 

International Journal of Food Microbiology, 223, 63–74. 

Piercey, M.J., Hingston, P.A. & Truelstrup Hansen, L. (2016b). Genes involved in Listeria 

monocytogenes biofilm formation at a simulated food processing plant temperature of 15⁰C. 

International Journal of Food Microbiology, 223, 63–74. 

Pilchová, T., Hernould, M., Prévost, H., Demnerová, K., Pazlarová, J. & Tresse, O. (2014). 

Influence of food processing environments on structure initiation of static biofilm of Listeria 

monocytogenes. Food Control, 35, 366–372. 

Poimenidou, S. V., Chrysadakou, M., Tzakoniati, A., Bikouli, V.C., Nychas, G.J. & Skandamis, P.N. 

(2016). Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and 

polystyrene materials and resistance to peracetic acid and quaternary ammonium 

compounds. International Journal of Food Microbiology, 237, 164–171. 

Stellenbosch University  https://scholar.sun.ac.za



42 
 
 

Pricope, L., Nicolau, A., Wagner, M. & Rychli, K. (2013). The effect of sublethal concentrations of 

benzalkonium chloride on invasiveness and intracellular proliferation of Listeria 

monocytogenes. Food Control, 31, 230–235. 

Puga, C.H., Sanjose, C. & Orgaz, B. (2016). Biofilm development at low temperatures enhances 

Listeria monocytogenes resistance to chitosan. Food Control, 65, 143–151. 

Raafat, D., Bargen, K. Von, Haas, A. & Sahl, H.G. (2008). Insights into the mode of action of 

chitosan as an antibacterial compound. Applied and Environmental Microbiology, 74, 3764–

3773. 

Renier, S., Hébraud, M. & Desvaux, M. (2011). Molecular biology of surface colonization by 

Listeria monocytogenes : an additional facet of an opportunistic Gram-positive foodborne 

pathogen. Environmental Microbiology, 13, 835–850. 

Rieu, A., Briandet, R., Habimana, O., Garmyn, D., Guzzo, J. & Piveteau, P. (2008). Listeria 

monocytogenes EGD-e biofilms: No mushrooms but a network of knitted chains. Applied and 

Environmental Microbiology, 74, 4491–4497. 

Rieu, A., Weidmann, S., Garmyn, D., Piveteau, P. & Guzzo, J. (2007). agr System of Listeria 

monocytogenes EGD-e: Role in adherence and differential expression pattern. Applied and 

Environmental Microbiology, 73, 6125–6133. 

Roberts, A., Nightingale, K., Jeffers, G., Fortes, E., Kongo, J.M. & Wiedmann, M. (2006). Genetic 

and phenotypic characterization of Listeria monocytogenes lineage III. Microbiology, 152, 

685–693. 

Rosef, O., Klaeboe, H., Paulauskas, A. & Ambrasiene, D. (2012). Diversity of Listeria 

monocytogenes isolated from humans, food, and environmental sources in Norway. 

Veterinarija ir Zootechnika, 59, 71–79. 

Ross, T., Dalgaard, P. & Tienungoon, S. (2000). Predictive modelling of the growth and survival of 

Listeria in fishery products, 62, 231–245. 

Ruckerl, I., Muhterem-Uyar, M., Muri-Klinger, S., Wagner, K.H., Wagner, M. & Stessl, B. (2014). L. 

monocytogenes in a cheese processing facility: Learning from contamination scenarios over 

three years of sampling. International Journal of Food Microbiology, 189, 98–105. 

Spanu, C., Scarano, C., Ibba, M., Spanu, V. & Santis, E.P.L. De. (2015). Occurrence and 

traceability of Listeria monocytogenes strains isolated from sheep’s milk cheese-making 

plants environment. Food Control, 47, 318–325. 

 

Stellenbosch University  https://scholar.sun.ac.za



43 
 
 

Srey, S., Jahid, I.K. & Ha, S. Do. (2013). Biofilm formation in food industries: A food safety 

concern. Food Control, 31, 572–585. 

Stessl, B., Luf, W., Wagner, M. & Schoder, D. (2009). Performance testing of six chromogenic 

ALOA-type media for the detection of Listeria monocytogenes, 106, 651–659. 

Strydom, A., Bester, I.M., Cameron, M., Franz, C.M.A.P. & Witthuhn, R.C. (2013). Subtyping of 

Listeria monocytogenes isolated from a South African avocado processing facility using PCR-

RFLP and PFGE. Food Control, 31, 274–279. 

Strydom, A. & Witthuhn, C.R. (2015). Listeria monocytogenes: A Target for Bacteriophage 

Biocontrol. Comprehensive Reviews in Food Science and Food Safety, 14, 694–704. 

Sue, D., Fink, D., Wiedmann, M. & Boor, K.J. (2004). sB-dependent gene induction and expression 

in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal 

environment. Microbiology, 150, 3843–3855. 

Todhanakasem, T. & Young, G.M. (2008). Loss of flagellum-based motility by Listeria 

monocytogenes results in formation of hyperbiofilms. Journal of Bacteriology, 190, 6030–

6034. 

Valderrama, W.B. & Cutter, C.N. (2013). An Ecological Perspective of Listeria monocytogenes 

Biofilms in Food Processing Facilities. Critical Reviews in Food Science and Nutrition, 53, 

801–817. 

Van Nierop, W., Duse, A.G., Marais, E., Aithma, N., Thothobolo, N., Kassel, M., Stewart, R., 

Potgieter, A., Fernandes, B., Galpin, J.S. & Bloomfield, S.F. (2005). Contamination of chicken 

carcasses in Gauteng, South Africa, by Salmonella, Listeria monocytogenes and 

Campylobacter. International Journal of Food Microbiology, 99, 1–6. 

Vangay, P., Fugett, E.B., Sun, QI., Wiedmann, M. (2013). Food Microbe Tracker: A Web-Based Tool 

for Storage and Comparison of Food-Associated Microbes. Journal of Food Protection, 76(2), 

283 -294. 

Vivant, A.L., Garmyn, D. & Piveteau, P. (2013). Listeria monocytogenes, a down-to-earth 

pathogen. Frontiers in Cellular and Infection Microbiology, 3, 1–10. 

Vongkamjan, K., Fuangpaiboon, J., Turner, M.P. & Vuddhakul, V. (2016). Various Ready-to-Eat 

Products from Retail Stores Linked to Occurrence of Diverse Listeria monocytogenes and 

Listeria spp. Isolates. Journal of Food Protection, 79, 239–245. 

 

 

Stellenbosch University  https://scholar.sun.ac.za

http://www.jfoodprotection.org/doi/abs/10.4315/0362-028X.JFP-12-276
http://www.jfoodprotection.org/doi/abs/10.4315/0362-028X.JFP-12-276


44 
 
 

Vongkamjan, K., Roof, S., Stasiewicz, M.J. & Wiedmann, M. (2013). Persistent Listeria 

monocytogenes subtypes isolated from a smoked fish processing facility included both phage 

susceptible and resistant isolates. Food Microbiology, 35, 38–48. 

Walton, J.T., Hill, D.J., Protheroe, R.G., Nevill, A. & Gibson, H. (2008). Investigation into the effect 

of detergents on disinfectant susceptibility of attached Escherichia coli and Listeria 

monocytogenes. Journal of Applied Microbiology, 105, 309–315. 

Wang, Y. & Salazar, J.K. (2015). Culture-Independent Rapid Detection Methods for Bacterial 

Pathogens and Toxins in Food Matrices. Comprehensive Reviews in Food Science and Food 

Safety, 15, 183–205. 

Ward, T.J., Ducey, T.F., Usgaard, T., Dunn, K.A., Bielawski, J.P., Al, W.E.T. & Icrobiol, 

A.P.P.L.E.N.M. (2008). Multilocus Genotyping Assays for Single Nucleotide Polymorphism-

Based Subtyping of Listeria monocytogenes Isolates. Applied and Environmental 

Microbiology, 74, 7629–7642. 

Wiedmann, M. (2002). Molecular subtyping methods for Listeria monocytogenes. Journal of AOAC 

International, 85, 524–531. 

Wiedmann, M., Bruce, J.L., Keating, C., Johnson, A.E., McDonough, P.L. & Batt, C.A. (1997). 

Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes 

lineages with differences in pathogenic potential. Infection and immunity, 65, 2707–2716. 

Xayarath, B. & Freitag, N.E. (2012). Optimizing the balance between host and environmental 

survival skills: lessons learned from Listeria monocytogenes. Future Microbiology, 7, 839–

852. 

Yang, S., Pei, X., Wang, G., Yan, L., Hu, J., Li, Y., Li, N. & Yang, D. (2016). Prevalence of food-

borne pathogens in ready-to-eat meat products in seven different Chinese regions. Food 

Control, 65, 92–98. 

Yu, T. & Jiang, X. (2014). Prevalence and characterization of Listeria monocytogenes isolated from 

retail food in Henan, China. Food Control, 37, 228–231. 

Zilelidou, E.A., Rychli, K., Manthou, E., Ciolacu, L., Wagner, M. & Skandamis, P.N. (2015). Highly 

invasive Listeria monocytogenes strains have growth and invasion advantages in strain 

competition. PLoS ONE, 10, 1–17. 

Zitz, U., Zunabovic, M., Domig, K.J., Wilrich, P.-T. & Kneifel, W. (2011). Reduced Detectability of 

Listeria monocytogenes in the Presence of Listeria innocua. Journal of Food Protection, 74, 

1282–1287. 

Stellenbosch University  https://scholar.sun.ac.za



45 
 
 

Zunabovic, M., Domig, K.J. & Kneifel, W. (2011). Practical relevance of methodologies for 

detecting and tracing of Listeria monocytogenes in ready-to-eat foods and manufacture 

environments - A review. LWT - Food Science and Technology, 44, 351–362. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



46 
 
 

CHAPTER 3 

ISOLATION AND IDENTIFICATION OF LISTERIA 

MONOCYTOGENES IN A SOUTH AFRICAN READY-TO-EAT 

FOOD FACTORY 

3.1  Abstract 

As an ubiquitous, facultative pathogenic saprotroph, the presence of Listeria monocytogenes in 

ready-to-eat (RTE) food processing environments and products is of major concern to consumer 

safety. This study aimed to isolate and positively identify L. monocytogenes isolates as well as 

validate current isolation methods used in the RTE food factory. In collaboration with the factory, 432 

environmental and food samples, in the form of inoculated Rapid’L.mono plates were collected. 

Visual inspection for presumptive positive L. monocytogenes growth, identified 64 samples. A 

Multiplex PCR protocol for the amplification of genes, namely iap (Listeria spp.) and lmo2234  

(L. monocytogenes) using OneTaq endonuclease could not be optimised. A singleplex assay PCR 

as confirmation test was developed. The occurrence of enrichment bias in half Fraser broth due to  

L. innouca and method specific and conventional streaking methods were evaluated. The current 

Rapid’L.mono method was found suitable for detection of L. monocytogenes, in artificially inoculated 

enrichment broth. 

3.2  Introduction 

The occurrence of L. monocytogenes in ready-to-eat (RTE) foods has gained increased attention 

due to the health risks associated with this emerging pathogen. L. monocytogenes is ubiquitous in 

the environment, mostly due to it being a facultative pathogenic saprotroph. Forming part of the 

Listeria genus, L. monocytogenes is the species type associated with foodborne human and 

ruminant illness (Orsi et al., 2011). It is set apart from other foodborne pathogens by its ability to 

survive at temperatures ranging from 1⁰C (Morganti et al., 2015), with optimal growth at 30-37⁰C 

(Goldfine & Shen, 2007), wide pH range of 4.7-9.2 (Ferreira et al., 2014) and the presence of unique 

genes exclusive to L. monocytogenes used in host invasion and evasion namely hlyA, iap, ActA and 

lmaA (Law et al., 2015b). Listeria monocytogenes is readily isolated from ready-to-eat (RTE) food 

processing environments as well as RTE products  (Campdepadrós et al., 2012; Dalmasso & Jordan, 

2012; Jamali et al., 2013; Välimaa et al., 2015).  

RTE foods are defined as “…any food (including beverages) which is normally consumed in 

its raw state or any food handled, processes, mixed, cooked, or otherwise prepared into a form in 
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which it is normally consumed without further processing” (Foodstuffs, Cosmetics and Disinfectants 

Act and Regulations, 2010). The concern and danger of contamination of RTE food products with 

Listeria thus lies in the fact that no further heat treatment is required before consumption. In addition, 

the RTE food matrix readily supports the growth of L. monocytogenes (Spanu et al., 2014), due to 

storage conditions and individually processed components. 

Routine detection and analysis of L. monocytogenes in the food chain is of great importance 

(Välimaa et al., 2015). The Regulation (EC) No 2073/2005 on “Microbiological Criteria for Foodstuffs” 

specifically require RTE food operators to include sampling of the environment and processing 

equipment for L. monocytogenes as well as to conduct challenge testing for food products that 

support the growth of L. monocytogenes (Spanu et al., 2014). Contaminated food products are of 

great concern to public health since it is causes a fatal infection known as listeriosis, with vulnerable 

groups with impaired T-cell immunity (old, young, pregnant, and immunocompromised individual) 

being the most at risk (FDA, 2012; Goulet et al., 2013).  

Listeria management plans are implemented by Food business operators (FBO) in an 

attempt to control and evade the contamination of food products and to ensure that contaminated 

products do not enter the food chain. A lack in necessary control measures will result in costly food 

product recalls or possible fatalities (De Noordhout et al., 2014; Ferreira et al., 2014) 

The ISO 11290-1:2017 (Horizontal methods for detection and enumeration of  

L. monocytogenes and of Listeria spp. Part 1 Detection method) (Anonymous, 2017) method is 

widely used but is labour intensive with results only being obtained after 72 h. In a high turnover, 

result driven laboratory, a simple and rapid method is required to ensure punctual information 

regarding the microbial safety of food products. This would ensure that immediate precautions can 

be taken.  Rapid’L.mono is a chromogenic agar that can detect the presence of L. monocytogenes 

as well as differentiate it from other non-pathogenic Listeria spp. As an alternative proprietary 

method, it is NF Validated (according to ISO 16140), NordVal approved and an AOAC-RI approved 

(N⁰ 030406) method that delivers reliable results within 48 h (Anonymous, 2014).  

L. monocytogenes occurs in low numbers within the environment and food products (Bruhn 

et al., 2005) and can potentially grow within a community of other Listeria spp. In order to detect its 

presence, an enrichment step is included in both ISO 11290:1 and Rapid’L.mono protocols. 

However, when considering that L. monocytogenes is rarely isolated alone from the processing 

environment (Besse et al., 2010; Barre et al., 2016; Vongkamjan et al., 2016), enrichment bias can 

result in false negative detection of L. monocytogenes. This could compromise the reliability of 

Listeria management plans in RTE food environments. Subsequently, the overgrowth of L. innocua 

masking L. monocytogenes during enrichment has been the subject of many studies. Oravcova et 

al. (2008) found standard methods to be insufficient for the detection of 100 colony forming units 
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(CFU) L. monocytogenes in the presence of 100 CFU L. innocua. Besse et al. (2010)  assigned the 

overgrowth of L. innocua over L. monocytogenes to their interaction during the late exponential 

phase. In conjunction, Zitz et al. (2011a) found similar overgrowth with selective enrichment of low 

L. monocytogenes CFUs similar to that found in naturally contaminated food products. 

Polymerase Chain Reaction (PCR) is a molecular tool used routinely as a typing method 

(FDA, 2012). It entails the amplification of selected genes for the identification of microorganisms 

based on their genetic material. Multiplex PCR, is a more rapid method because it allows for the 

simultaneous amplification of more than one gene (Law et al., 2015a), subsequently decreasing time 

and labour to obtain the same amount of results. This would be an ideal method, especially within a 

high turnover laboratory. It would be able to readily confirm L. monocytogenes and differentiate it 

from other Listeria isolates, since a multiplex PCR assay simultaneously screen for the presence of 

multiple genes.  

A PCR protocol, using OneTaq endonuclease, for confirmation of presumptive positive  

L. monocytogenes samples from the RTE food factory was developed. All  

L. monocytogenes isolates identified were used in the other research chapters. In addition, a 

comparative evaluation was conducted on the enrichment step of the Rapid’L.mono method, 

together with different streaking methods to determine its ability to detect L. monocytogenes in the 

presence of L. innocua. The isolation and positive identification of L. monocytogenes strains in this 

chapter will be the strains selected for the other parts of this study as well as validate the current 

methods utilised in the RTE food factory.   

3.3  Materials and methods 

3.3.1  Sampling method 

Initially selected areas, identified as hotspots by technical staff, within the RTE factory environment 

were swabbed using sterile plain wooden applicator cotton tipped swabs (Copen Diagnostics Inc, 

USA). All samples were transported to the laboratory on ice and processed within 12 h of sampling. 

Enrichment and plating onto Rapid’L.mono chromogenic agar was done according to the protocol 

for alternative methods outlined by Anonymous (2014).  However, to increase sample intake as well 

as probability of positive L. monocytogenes isolates, a different approach was taken. This entailed 

collecting presumptive positive L. monocytogenes strains on Rapid’L.mono agar plates from the 

factory’s own quality control and Listeria management programmes.  

A total of 434 inoculated Rapid’L.mono plates were collected for the duration of the study. 

Presumptive positive L. monocytogenes plates were identified by distinct growth of single black 

colonies with no halo (Law et al., 2015a). After visual inspection, a total of 64 plates were selected 

as presumptive positive samples and submitted for further processing.  
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For the first months of 2016, all Listeria testing was conducted by an outsourced laboratory 

in Cape Town. Thus, during the year 2016, the majority of agar were collected from there. At the end 

of 2016 and for the duration of 2017, the factory implemented in house Listeria testing. The in-house 

sampling plan varied to a moderate degree during the duration of this study as Quality Assurance 

(QA) and laboratory managers changed.  

3.3.2  Sample processing and glycerol stocks 

Samples collected from the factory in-house food safety laboratory in the form of presumptive 

positive Listeria monocytogenes Rapid’L.mono agar plates were transported to the research 

laboratory and further processed. Presumptive positive colonies (black colony, no halo) were 

streaked out onto Nutrient Agar (NA) (Oxoid, USA) plates to ensure the isolation of a pure colony. 

The NA plates were incubated at 37⁰C for 15 - 18 h. A single colony of L. monocytogenes from the 

NA overnight plate was inoculated into 10 mL Tryptic Soy Broth (TSB) (Merck, USA). The TSB was 

then incubated at 37⁰C for 15 - 18h. Glycerol stocks of isolates were prepared by addition of 600 µL 

TSB overnight culture to 400 µL 50% glycerol. Stocks were stored at -20⁰C until further use.  

3.3.3  PCR 

3.3.3.1 Primer selection 

Table 3.1 contains the primers selected for Multiplex PCR of presumptive positive L. monocytogenes 

isolates. The iap gene was selected because it encodes for the P60 gene and the lmo2234 gene 

was selected since it was identified as a specific molecular marker in L. monocytogenes, in a 

previous study (Chen & Knabel, 2007).  

Table 3.1 Primer sequences for multiplex PCR 

 

3.3.3.2 DNA extraction 

DNA extraction 1 (DC1) 

Crude DNA extraction was conducted as described by Germishuys (2017). However, to optimise the 

DNA extraction method, L. monocytogenes colonies from Tryptic Soy Agar (TSA) (Merck, USA) 

plates were not added to the lysis buffer. This is due to the small size of L. monocytogenes colonies. 

Rather, 1 mL of overnight cultures in TSB was added to sterile 1.5 mL Eppendorf tubes and 

Primer set Sequence (‘5 – ‘3) 
Product size 

(bp) 
Source 

iap 
(F) ATGAATATGAAAAAAGCAAC 

(R) TTATACGCGACCGAAGCCAAC 
1450 -1600 

(Chen & Knabel, 

2007) 

lmo2234 
(F) TGTCCAGTTCCATTTTTAACT 

(R) TTGTTGTTCTGCTGTACGA 
420 

(Chen & Knabel, 

2007) 
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centrifuged for 1 min at 3 500 rpm (approximately 1 000 x g), the supernatant was removed and step 

was repeated in the same tube to obtain white culture pellet in tube.  

DNA extraction 2 (DC2) 

The method described for DC1 was adapted by extending the boiling time of culture pellet suspended 

in 300 μL lysis buffer, by 2 min.  

3.3.3.3 Reaction mixture composition 

Reaction mixture 1 (RM1) 

PCR reaction mixtures were prepared to a final volume of 25 µL. The reaction mixtures consisted of 

1 1X OneTaq standard reaction buffer (20 mM Tris-HCl, 1.8 mM MgCl2, 22 mM NH4Cl, 22 mM KCl, 

0.06% IGEPAL CA-630 and 0.05% Tween 20) (New England BioLabs Inc), 1 unit OneTaq DNA 

polymerase (New England BioLabs Inc), 1 µL template DNA, 0.3 µM of selected primers (iap and 

lmo2234) (Inqaba Biotec), 200 µM for each dNTP (dATP, dCTP, dGTP and dTTP) (New England 

BioLabs Inc). 

Reaction mixture 2 (RM2) 

PCR reaction mixtures were prepared to a final volume of 25 µL. The reaction mixtures consisted of 

1 1X OneTaq standard reaction buffer (20 mM Tris-HCl, 1.8 mM MgCl2, 22 mM NH4Cl, 22 mM KCl, 

0.06% IGEPAL CA-630 and 0.05% Tween 20) (New England BioLabs Inc), 1 unit OneTaq DNA 

polymerase (New England BioLabs Inc), 1 µL template DNA, 3 µM of selected primers (iap and 

lmo2234) (Inqaba Biotec), 200 µM for each dNTP (dATP, dCTP, dGTP and dTTP) (New England 

BioLabs Inc). 

Reaction mixture 3 (RM3) 

PCR reaction mixtures were prepared to a final volume of 25 µL. The reaction mixtures consisted of 

1 1X OneTaq standard reaction buffer (20 mM Tris-HCl, 1.8 mM MgCl2, 22 mM NH4Cl, 22 mM KCl, 

0.06% IGEPAL CA-630 and 0.05% Tween 20) (New England BioLabs Inc), 1 unit OneTaq DNA 

polymerase (New England BioLabs Inc), 1 µL template DNA, 30 µM lmo2234 primer and 35 µM iap 

primer (Inqaba Biotec), 300 µM for each dNTP (dATP, dCTP, dGTP and dTTP) (New England 

BioLabs Inc). 

Reaction mixture 4 (RM4)  

PCR reaction mixtures were prepared to a final volume of 25 µL. The reaction mixtures consisted of 

1 1X OneTaq standard reaction buffer (20 mM Tris-HCl, 1.8 mM MgCl2, 22 mM NH4Cl, 22 mM KCl, 

0.06% IGEPAL CA-630 and 0.05% Tween 20) (New England BioLabs Inc), 1 unit OneTaq DNA 

polymerase (New England BioLabs Inc), 1 µL template DNA, 0.3 µM primer, iap and lmo2234, 

respectively (Inqaba Biotec), 200 µM for each dNTP (dATP, dCTP, dGTP and dTTP) (New England 

BioLabs Inc). 
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3.3.3.4 PCR conditions 

PCR condition 1 (PC1)  

The PCR conditions followed a cycle of an initial denaturation at 95⁰C for 15 min, which was followed 

by 30 cycles of 94⁰C for 1 min, 50⁰C for 1 min, 72⁰C for 1 min. The PCR cycle was ended with a final 

extension step of 72⁰C for 8 min. PCR was completed using a Bio-Rad T100 Thermal Cycles (Bio-

Rad, South Africa)  

PCR condition 2 (PC2)  

The PCR conditions included a cycle of initial denaturation at 95⁰C for 15 min, which was followed 

by annealing of 15 cycles of 94⁰C for 1 min, 55⁰C for 30 sec, 51⁰C for 30 sec and 72⁰C for 1 min. 

Then a further 15 cycles of 94⁰C for 1 min, 50⁰C for 1 min and 72⁰C for 1 min. The PCR cycle was 

ended with a final extension step of 72⁰C for 8 min. PCR was completed using a Bio-Rad T100 

Thermal Cycles (Bio-Rad, South Africa)  

PCR condition 3 (PC3)  

The PCR conditions included a cycle of initial denaturation at 95⁰C for 15 min, which was followed 

by annealing of 15 cycles of 94⁰C for 1 min, touchdown from 55⁰C to 51⁰C (3 cycles per temperature 

and 72⁰C for 1 min. Then a further 15 cycles of 94⁰C for 1 min, 50⁰C for 1 min and 72⁰C for 1 min. 

The PCR cycle was ended with a final extension step of 72⁰C for 8 min (Chen and Knabel, 2007). 

PCR was completed using a Bio-Rad T100 Thermal Cycles (Bio-Rad, South Africa)  

PCR condition 4 (PC4)  

The PCR conditions included a cycle of initial denaturation at 94⁰C for 30 sec, which was followed 

by annealing of 30 cycles of 94⁰C for 30 sec, 50⁰C for 1 min, and  68⁰C for 1 min. The PCR cycle 

was ended with a final extension step of 68⁰C for 5 min. PCR was completed using a Bio-Rad T100 

Thermal Cycles (Bio-Rad, South Africa)  

3.3.3.5 Gel electrophoresis visualisation conditions 

Gel electrophoresis condition 1 (GC 1) 

Visualisation of PCR products was performed through gel electrophoresis, using 1.2% agarose gel, 

stained with GRGreen nucleic acid gel stain (Lab Supply Mall, InnoVita Inc). The gel underwent 

electrophoresis for 40 min at 80 V along with a 100 bp DNA Ladder (New England BioLabs Inc). Gel 

was visualised using the Bio-Rad Gel Doc XR+ System (Bio-Rad, South Africa) and its 

accompanying Image Lab Software (version 5.2.1). 

Gel electrophoresis condition 2 (GC 2) 

Visualisation of PCR products was performed through gel electrophoresis, using 1% agarose gel, 

stained with EZ Vision® IN-GEL solution (Amresco, LLC). The gel underwent electrophoresis for 60 

min at 70 V along with a 100 bp DNA Ladder (New England BioLabs Inc). Gel was visualised using 
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the Bio-Rad Gel Doc XR+ System (Bio-Rad, South Africa) and its accompanying Image Lab Software 

(version 5.2.1). 

Table 3.2 Combinations of conditions for PCR optimisation trials 

3.3.4  Enrichment bias 

3.3.4.1 Validation of method 

Glycerol stocks of Listeria inncoua sample 133 (DuPont ID: 1006) and L. monocytogenes sample 

135 (DuPont ID: 1042) were selected. Due to similar sources (Table 3.3), their growth fitness and 

behaviour is expected to be similar, resulting in a more reliable demonstration of growth behaviour. 

These samples were also selected as they would represent strains from this factory that were 

exposed to the factory’s sanitation practises and environmental changes. 

Table 3.3 Isolates used for enrichment bias study 

 

Cultures of L monocytogenes and L. innocua were made by inoculating 10 mL TSB with a loopful of 

glycerol stock which was incubated at 37°C for 15 – 18h. These Listeria cultures were standardised 

to 0.1 OD using the formula: c1v1=c2v2. Standardisation of overnight culture was repeated five times 

and optical density (OD) of each was measured. Three dilution series were made from each 

standardised overnight culture and plated out on NA plates in duplicate. The agar plates were 

incubated overnight at 37⁰C and counted.  

Analysis of variance (ANOVA) was performed to determine whether there were significant 

differences between the CFU produced from a known concentration, due to standardisation L. 

monocytogenes and L. inoccua, as well as p-values of replications demonstrated in Figure 3.1 using 

Statistica, (Dell Inc. 2016, version 13).  

 

 

 Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 

DNA extraction conditions (DC) 1 1 1 2 2 2 

Reaction mixture (RM) 1 1 2 3 2 4 

PCR condition (PC) 1 2 3 4 4 4 

Gel electrophoresis condition (GC) 1 2 2 2 2 2 

Specie Sample number Source DuPont ID 

Listeria innocua 133 Drain defrost chiller 1006 

Listeria monocytogenes 135 Drain pizza exit 1042 
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3.3.4.2 Demonstration of enrichment bias on Rapid’L.mono plates 

Overnight cultures of L. monocytogenes and L. innocua were made by inoculation 10 mL TSB with 

a loopful of glycerol stock and incubated at 37 ⁰C for 15 - 18h (Figure 3.2). 
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Figure 3.2 Outline of protocol to study growth behaviour of co-inoculated half Fraser 

enrichment of L. monocytogenes and L. innocua. 

Figure 3.1 Outline of protocol used for confirmation of equal CFU's present in a standardised 0.1 

OD L. monocytogenes and L. innocua culture broth. 
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Overnight cultures, as previously described were standardised to 0.1 OD. As outlined in Figure 3.2, 

100 µL and 1 mL of each species was added to half Fraser enrichment broth (prepared according to 

manufacturer’s instructions). The enrichment broth was incubated for 24 h at 37⁰C. The enrichment 

broth was streaked out onto Rapid’L.mono  agar in accordance with the experimental plan (Figure 

3.2). Plates were incubated at 37⁰C for 15 – 18h, after which it was inspected for growth behaviour 

of both L. monocytogenes and L. innocua.  

3.4   Results and discussion 

3.4.1  Multiplex PCR  

3.4.1.1 Extraction of DNA 

The crude extraction of DNA was optimised in 2 trials. DC1 produced only 79% viable DNA samples 

as in 21% of the samples no DNA was obtained. This could be attributed to the gram-positive nature 

of Listeria spp., which could reduce the release of DNA when compared to gram negative organism 

(Riffiani et al., 2015) for which the original protocol was optimised for in Germishuys (2017). It was 

therefore decided in DC2 to increase the boiling time in the lysis buffer by 2 min to allow better 

conditions for complete extraction of DNA. 

3.4.1.2 Reaction mixture composition 

A total of 4 different reaction mixtures were used in an attempt to obtain a multiplex PCR result. RM1 

confirmed the correct selection of primers as amplification was observed for iap and lmo2234 at the 

expected regions of 1450-1600 bp and 420 bp, respectively (Table 3.1). However, amplification  of 

two target gene sequences i.e lmo2234 and iap was not seen as expected of multiplex PCR, as 

amplification preference was given to lmo2234. RM2, first attempted in trial 3, entailed a 10x increase 

in primers in an attempt to eliminate amplification preference, however a similar outcome to RM1 

was obtained. Trial 4 included RM3 which saw a 5 µM increase in iap primer as well as 100 µM 

increase in dNTP’s in an attempt to increase the probability of simultaneous lmo2234 and iap 

amplification. RM3 only resulted in brighter amplicons, but still without the multiplex effect. RM4 was 

compiled for a single amplification and subsequently only contained one primer, lmo2234 and iap, 

respectively. It was selected in trial 5 as the final reaction mixture for all confirmation tests to follow.  

The positive control used was a L. monocytogenes strain previously isolated by Rip and 

Gouws (2009). As a confirmation step, it was ribotyped and confirmed as L. monocytogenes DuPont 

ID 19175.  

3.4.1.3 PCR conditions 

In order to have successful multiplex PCR amplification conditions, annealing temperatures that 

facilitate the amplification of all target genes present must be optimised. The initial PCR conditions 

(PC1-3) was adapted from Chen and Knabel (2007), which optimised a protocol for amplification of 
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multiple target genes, of which only two was the subject of this study. PC1 followed the Chen and 

Knabel (2007) protocol without application of touchdown annealing cycles. PC2 comprised of the 

lowest and highest annealing temperatures as described in section 3.3.3.4. PC3 incorporated the 

exact touchdown PCR conditions described by Chen and Knabel (2007). After these trails, the 

different PCR conditions still yielded a failed multiplex PCR (Figure 3.3). PC4 was subsequently 

developed specifically taking into account the reaction mixture that contained primers and OneTaq 

endonuclease, since OneTaq was not used by Chen and Knabel (2007) from which the protocols 

are based on. 

 

Figure 3.3 Gel image demonstrating selective amplification of iap (lane 4,5 and 9) and lmo2234 

(lane 3,5,8 and 10-12), negative control (lane 2) and positive control (lane 3). 

It was advised, that OneTaq would not facilitate multiplex amplification (A. Abera, 2017, Technical 

support manager, Inqaba Biotechnical Industries (Pty) Ltd, Hatfield, South Africa, personal 

communication, 30 January) and the results from the tailored PCR cycle (PC4), confirmed this. 

Multiplex amplification was not obtained, but excellent amplification of single target genes was 

obtained (Figure 3.4). Trial 6 thus included a single primer using PC4 to obtain a single PCR.  

  

Figure 3.4 Gel image demonstrating successful amplification of lmo2234, negative control (lane 2) 

and positive control (lane 3). 

Stellenbosch University  https://scholar.sun.ac.za



56 
 
 

3.4.1.4 Gel electrophoresis conditions 

Visualisation of PCR products was initially performed (GC1) through electrophoresis of 1.2% 

agarose gel for 40 min. This resulted in restricted movement of PCR amplicons and the 100 bp DNA 

ladder did not show sufficient separation. Thus, for the remainder of the trails GC2, electrophoresis 

of a 1% agarose gel for a 60 min run time, was utilised.  

3.4.1.5 Finalisation of methods  

Judging from the outcome of the tested reaction conditions, multiplex PCR amplification was 

unsuccessful. It was thus decided not to use multiplex PCR, but singleplex PCR. As mentioned in 

section 3.4.1.3, it was advised that OneTaq would not be able to facilitate multiplex PCR gene 

amplification and another polymerase should be considered. This resulted in a more labour intensive 

protocol, but resulted in developing a method for confirmation of presumptive positive L. 

monocytogenes from enrichment media.  In order for a multiplex PCR protocol to work, further 

optimisation should be done using different parameters and a more specific polymerase.   

3.4.2  Enrichment bias 

The basis for the development of a test to demonstrate possible enrichment bias was due to the 

growth behaviour of L.  monocytogenes and L. innocua observed on Rapid’L.mono plates obtained 

from samples from the factory environment.  

 

3.4.2.1 Growth behaviour observed from factory samples 

 

 

 

 

 

 

 

Growth behaviour between the species of Listeria is demonstrated in Figure 3.5. The purple colour 

of the plates are only due to long term storage at refrigerated temperatures and is therefore not a 

reflection of microbial activity. These sample plates were not representative of all mixed species 

plates, but are discussed here due to the interesting multi specie growth behaviour observed. The 

Rapid'L.mono plates demonstrates that L. monocytogenes (black colony) can be present with other 

species, in this case L. innocua (white colony). This demonstrates the importance of testing for all 

Figure 3.5 Multi-specie Listeria on Rapid'L.mono plates obtained RTE food factory’s Listeria 
management program. 
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Listeria spp., since non-pathogenic Listeria spp. can be an indicator of the presence of  

L. monocytogenes. At the initial streaking site (top right corner on plates in Figure 3.5) an overgrowth 

of L. innocua was observed. It was thought to be due to enrichment bias, whereby L. innocua is 

known to mask the presence of L. monocytogenes. This observation formed the basis for 

development of a test, described below to determine whether L. innocu does outcompete L. 

monocytogenes under the same conditions. It can be seen that L. monocytogenes (black colony) 

can survive in the processing environment together with other species (Figure 3.5).  

3.4.2.2 Inoculum standardisation  

The standardisation protocol (section 3.3.4.1), utilising optical density showed no significant 

difference between standardised CFU.mL-1 of both L. monocytogenes and L. innocua (Spe: 

p=0.678). In addition, there was no significant difference between the replications (Rep: p=0.292) 

and sub-replications (SubRep: p=0.856). This confirmed that if an enrichment broth was inoculated 

with standardised 0.1 OD culture of L. monocytogenes and L. innocua respectively, it would be 

inoculated with the same amount of CFU.mL-1.  

3.4.2.3 Plating of co-inoculated half Fraser enrichment broth 

This test was done in an attempt to replicate the observed bacterial growth behaviour of sample 

plates seen in Figure 3.5. 

 

Figure 3.6 Rapid'L.mono plates of simultaneous half Fraser enrichment of L. monocytogenes and 

L. innocua.  a-d) had 100 µL of 0.1 OD as initial inoculation, e-f) 1 mL of O.1 OD of initial inoculation. 

i) L. innocua control, j) L. monocytogenes control. 

The growth behaviour of the Listeria spp. (Figure 3.5) could not be replicated (Figure 3.6) using the 

experimental parameters. In this test no overgrowth of L. innocua was seen as expected. On the 

contrary, L. monocytogenes was the dominant species observed. This growth pattern occurred even 

though the enrichment broth was inoculated with the same amount (CFU) of both  

L. monocytogenes and L. innocua. This was a possible indication that enrichment bias in half Fraser 

a) 

b) 

c) 

d) 

e) i) 

f) h) 

g) 

j) 

Stellenbosch University  https://scholar.sun.ac.za



58 
 
 

broth does not occur due to different growth rates of L. monocytogenes and L. innocua. The growth 

behaviour observed in Figure 3.5 could possibly indicate that L. innocua naturally occurs in larger 

numbers, and thus stunts the enrichment of L. monocytogenes through the Jameson effect (Besse 

et al., 2010).  

Additionally, it was seen that even though Rapid'L.mono plates a-d (Figure 3.6) were 

inoculated with 10x less CFU’s, the amount of growth on the plates appear to be equal. This could 

be a further demonstration of the Jameson effect, where growth of a whole microbial community is 

halted once the dominant species reaches its stationary phase or where all the nutrient available 

has been depleted.  

3.4.2.4 Comparrison of different streaking methods for detection of L. monocytogenes  

The test aimed to evaluate the difference in detectability of L. monocytogenes (black colony) in the 

presence of L. innocua (white colony) using the of Rapid’L.mono manufacturer recommended 

streaking method (AFNOR Certified (EN ISO 16140)) (c,d,g,h) and single loop streaking method 

(a,b,e,f). L. monocytogenes was detectable using both methods, as evident by the black colonies 

present at each replication. The undetectability of white colonies at initially streaked region of plate 

c,d,g,h (Figure 3.7) could give the impression that no L. innocua was present. 

 

 

Figure 3.7 Comparison of Rapid’L.mono manufacturer recommended streaking method (AFNOR 

Certified (EN ISO 16140)) (c,d,g,h) and single loop streaking method (a,b,e,f). 

The results obtained from this test was contradictive from what was seen in the previous test (Figure 

3.6). Here the presence of both species can be seen, with L. innocua even being seen in larger 
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quantities. It can thus be concluded that the enrichment step, similar to other culturing conditions, 

favours the growth of L. innocua over L. monocytogenes, but not to the extent that it masks the 

presence of  

L. monocytogenes (Zitz et al., 2011b). This observation is limited to both species being present in 

the exact same quantities. If, as in the case of naturally contaminated samples, L. innocua is present 

in larger quantities, the overgrowth of L. monocytogenes might be observed more clearly as in Figure 

3.5. Finally, the results obtained here were further evidence that L. innocua and L. monocytogenes 

can grow and proliferate together within various environments, enrichment and food matrices.  

3.5  Conclusion 

During this study, it was found that the use of Rapid’L.mono agar as a detection method within a 

Listeria management programme of a RTE food processing environment was a suitable and effective 

method. From the samples collected, 15% of the plates could be identified as presumptive positive 

for L. monocytogenes. This provided a good influx of samples to be verified and processed in order 

to achieve the other objectives set out in other chapters of this study.  

Crude DNA extraction was investigated and optimised for PCR amplification of  

L. monocytogenes and Listeria spp. target genes. Optimum extraction was obtained after two trials, 

where it was found that additional boiling time enhanced the efficacy of DNA extraction method for 

the gram-positive bacterium. The aim of this study was set to develop and optimise a multiplex PCR 

protocol for differentiation between L. monocytogenes and Listeria spp genes. After three PCR trails, 

adapted from a previous study it was found that due to the use of a different endonuclease, a tailored 

PCR protocol was required. However, the results of trial 5 showed that OneTaq endonuclease would 

not facilitate multiplex PCR for the target genes. It was then decided to optimise individual 

amplification of iap (Listeria spp.) and lmo2234 (L. monocytogenes) genes. Trail 6 yielded the 

required PCR amplification results and subsequently, rapid differentiation and confirmation of  

L. monocytogenes and Listeria spp. 

After the observation of the growth behaviour of L. monocytogenes and L. innouca on 

samples obtained from the sampling plan, an experiment was designed to investigate whether 

enrichment bias was the cause thereof. Standardisation method of L. monocytogenes and L. innouca 

inoculums were optimised and the enrichment bias of half Fraser enrichment broth (Oxoid, USA) 

was evaluated. It was found that when the same quantity of L. monocytogenes and L. innouca are 

enriched together, there is no overgrowth of one organism over the other and thus no enrichment 

bias. Further studies can be conducted, using the optimised methods, to evaluate enrichment bias 

where levels of L. monocytogenes are less than L. innocua. This will be a better reflection of naturally 

contaminated food products.  
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In addition, a comparison was done between the manufacturer recommended streaking 

method and conventional streaking methods. The aim was to determine whether the streaking 

method could deliver false negative results when streaked on Rapid’L.mono. It was found to not 

have any effect on the results obtained and that both methods of streaking were sufficient for the 

detection of L. monocytogenes. The factors that contribute to the occurrence of enrichment bias 

found during the detection of L. monocytogenes in food products may thus be the food matrix and 

the dynamics of a naturally contaminated product. This warrants further investigation into these 

factors and how to overcome them.  

To conclude, the isolation and identification of L. monocytogenes was obtained, through 

collaboration with the RTE food factory’s Listeria management program and development of a PCR 

protocol. The Rapid’L.mono method, which includes half Fraser enrichment, was found to be reliable. 
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CHAPTER 4 

AUTOMATED RIBOTYPING AND CLUSTER ANALYSIS OF 

LISTERIA MONOCYTOGENES ISOLATES FROM A SOUTH 

AFRICAN READY-TO-EAT FOOD FACTORY 

 

4.1 Abstract 

In this study 64 isolates from a ready-to-eat food factory were ribotyped using DuPont RiboPrinter®. 

Cluster analysis was conducted to evaluate the relatedness of strains from different sources, aiming 

to establish possible contamination routes and mechanisms. The geographical distribution of similar 

strains indicated that work boots, trolleys and crates were vectors for L. monocytogenes 

contamination. The Pearson correlation dendrogram also indicated the harbourage of strains and 

possible drain biofilms in both low and high-risk areas. Assigned DuPont ID’s allowed for comparison 

of strains found with similar studies as well as comparison on an international database, Food 

Microbe Tracker. DuPont ID 1038, 1041, 1042 and 18596 found in the factory have been previously 

implicated in food recalls and clinal listeriosis cases. The L. monocytogenes contamination trends 

identified in this RTE factory, correlated with current global trends. 

4.2 Introduction 

Post production contamination of ready-to-eat (RTE) foods with Listeria monocytogenes is of major 

concern to the RTE food industry, as the products, per definition, require no further heating before 

consumption (Foodstuffs, Cosmetics and Disinfectants Act and Regulations, 2010). The main cause 

of post-production contamination is the contact of food products with contaminated food contact 

surfaces (FCS) (Fouladynezhad et al., 2013; Vongkamjan et al., 2013; Nyarko & Donnelly, 2015). 

The FCS are contaminated through cross contamination with the processing environment as well as 

other non-food contact surfaces. In order for a Food Business Operator (FBO) to manage  

L. monocytogenes, identifying sources that could harbour both planktonic cells and biofilms is 

essential. Source tracking should subsequently be implemented, for which ribotyping has been 

utilised successfully in various studies (Klaeboe et al., 2005, 2006; Meloni et al., 2009; Rosef et al., 

2012).  

Ribotyping is a type of restriction fragment length polymorphism (RFLP) analysis because it 

is dependent on varying locations and number of ribosomal RNA (rRNA) gene sequences found in 

bacterial genomes. It is a rapid molecular detection technique that can identify and type bacteria to 

their strain level by analysis of band pattern or ribopattern differences (Lin et al., 2014). These bands 
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originate when labelled rRNA is hybridised with DNA fragments obtained from the cleavage of total 

DNA by the selected endonuclease (Lorber, 2014). The main cause of variations in the ribopatterns 

are the variations in flanking sequences among the different strains. These variations in flanking 

sequences originate from point mutations in the housekeeping genes due to random genetic drift, 

not subject to Darwinian evolution (Bouchet et al., 2008).   

Automated ribotyping can be conducted by the DuPont RiboPrinter® Microbial 

Characterisation System by Qualicon Inc. (Welmington, DE).  This instrument conducts all processes 

associated with ribotyping automatically, ensuring reproducibility and standardisation (Wiedmann, 

2002; Pavlic & Griffiths, 2009). Each sample that was processed was then assigned a unique DuPont 

Identification Library Code related to the restriction enzyme used. The DuPont RiboPrinter® system 

has been the instrument of choice in similar studies conducted, due to its reproducibility, reliability 

and interlaboratory comparison ability. Kabuki et al. (2004) used automated ribotyping as a typing 

method to track L. monocytogenes in a fresh cheese processing area. Klaeboe et al. (2006)  studied 

the ribotype diversity of L. monocytogenes in Norwegian salmon processing plants and De Cesare 

et al. (2007) utilised automated ribotyping for L. monocytogenes source tracking in the Taleggio 

cheese production plant.  

The ability to compare ribotypes based on interlaboratory comparison is enhanced by 

assigned DuPont ID’s using online databases that include Food Microbe Tracker 

(www.foodmicrobetracker.com). Since DuPont ID’s are universal and standardised, more 

information about an isolate can be obtained from literature where further studies have been 

conducted, such as serotyping and lineage assignment (Meloni et al., 2009; Klaeboe et al., 2010; 

Rosef et al., 2012). This allows the gathering and comparison of information that could not be 

obtained within the limits of a study, in order to make more informed conclusions.  

Four distinct groups within L. monocytogenes species have been identified, based on 

phylogenetic and subtyping studies. These groups are known as lineage groups, with a majority of 

specie strains linked to lineage I (serotype 1/2b, 3b, 3c, 4b) and lineage II (1/2a, 1/2c, 3a) (Orsi et 

al., 2011; Da Silva & De Martinis, 2013). Lineage I and II represent the majority of human listeriosis 

isolates and food and environmental isolates, respectively (Milillo & Wiedmann, 2009). It is of 

importance to know when implementing source tracking and risk management as lineage 

assignment is an indication of pathogenicity and environmental survival ability. Due to the 

underrepresentation of lineage III and IV in food and clinical isolates (Orsi et al., 2011), these lineage 

types will be excluded from this study.  

The aim of this study was to ribotype L. monocytogenes isolates from the RTE food factory 

in the Western Cape, as well as the company’s Gauteng branch, using automated EcoRI ribotyping. 

The correlation and relatedness of the isolates and their sources using a Pearson correlated 
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dendrogram clustering the fingerprint data obtained from riboprinting, was created. Finally, the 

assigned DuPont ID was used to conduct an interlaboratory and interstudy comparison as a way to 

better understand the L. monocytogenes contamination mechanism.  

4.3 Materials and methods 

4.3.1 Selection of samples for Ribotyping 

The selection of isolates to be ribotyped was not done with statistically significant parameters, but 

samples were rather selected based on a set of prioritised criteria that would support the aim and 

objectives of this study.  In addition, due to the limited availability of positive L. monocytogenes 

samples and the high cost of automated ribotyping, samples were selected according to the following 

criteria, in descending priority: 

a) Food isolates were selected due to the limited amount available; 

b) Drain samples of cold storage and processing areas, since drain samples were a good 

indication of the current microflora present (Dzieciol et al., 2016); 

c) Other samples of non-food contact surfaces. 

4.3.2 Sample preparation for automated ribotyping 

Glycerol stock cultures were resuscitated by a loopful inoculation thereof in Tryptic Soy Broth (TSB) 

and incubation took place at 37°C for 15-18h. It was then streaked out onto Nutrient Agar (NA) and 

incubated for 15-18h at 37°C to obtain pure colonies. As instructed by the manufacturer’s protocol, 

sterile colony picks were used to transfer samples to sample holder. Two separate single colonies 

per plate were picked up to ensure good quality riboprints, since a single colony as suggested by 

the manufacturer (Anonymous, 2013). 

4.3.3  Automated ribotyping 

Automated ribotyping was conducted in accordance with DuPont RiboPrinter® manufacturer’s 

instructions for gram positive isolates. This entails suspending the pure colony picked picked from 

NA plate in 40 µL sample buffer using the handheld vortex provided. A 30 µL of cell suspension was 

transferred to sample carrier provided. The sample carrier was then placed in heating dock, for 

deactivation of cells. After heat treatment 5 µL Lysing Agent A and B were added to samples, 

respectively. System consumables and the sample carrier was manually loaded into the 

RiboPrinter® as guided by the system programme (Anonymous, 2013). The RiboPrinter® 

subsequently carries our cell lysis, DNA digestion, gel electrophoresis, DNA transfer to hybridisation 

membrane and finally Southern hybridisation with a chemiluminescent probe (Lin et al., 2014). 
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4.3.4 Dendrogram construction for data analysis 

A dendrogram was constructed using riboprint fingerprint data with a Pearson correlation using 

BioNumerics software package version 7.6.2 (Applied Maths, Sint-Martens-Latem, Belgium). 

4.4  Results and discussion 

Riboprint data obtained from automated ribotyping is processed by DuPont RiboPrinter® software. 

Figure 4.1 demonstrates the image output of two riboprint sample sets. Fingerprint and riboprint data 

that entail strain identification (genus and specie), correlation coefficients and DuPont ID could be 

obtained with set (a) and (b) yielded no results. 

 

Figure 4.1 Riboprinter images obtained (lane 1,4,7,10,13 are DuPont internal marker DNA) (a) 

sufficient number of cells inserted into RiboPrinter® (b) insufficient number of cells inserted into 

RiboPrinter®. 

The clustering of similar DuPont ID’s confirms their use as indicators of similar subtypes further 

supporting the use of automated ribotyping as a reliable method of molecular identification and 

source tracking (Figure 4.2). Additionally, a very definite distinction can be seen between clustering 

of Listeria spp. isolates and Staphylococcus sciuri isolates, which serves as confirmation of the 

reliability of the dendrogram. DuPont ID 1006 and 1017 were L. innocua isolates from 2016 and 

2017, respectively. These samples were subtyped to obtain a positive control (DuPont ID 1006) for 

other tests as well as to confirm the differentiation ability and reliability of both the Riboprinter® and 

the dendrogram. 
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Figure 4.2 Dendrogram of 37 ribotyped isolates obtained from RTE food processing environment 

from 2016 to 2017. 

Sample Source DuPont ID Lineage 
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Within the 29 sub-typed L. monocytogenes isolates, 52% of the strains were identified as lineage I 

(serotypes 1/2b, 3b, 3c and 4b), where 87% thereof belonged to DuPont ID 1038 and 1042 (Table 

2.1), a subtype related to various outbreaks of human listeriosis. Furthermore, 48% were identified 

as lineage II (serotypes 3a, 1/2a and 1/2c), with 71% thereof being represented by DuPont ID 1041 

and 18596, a subtype related to sporadic human listeriosis outbreaks and product recalls. Rosef et 

al. (2012) found DuPont ID 1042 isolated from both human, environmental and food sources when 

studying the diversity of L. monocytogenes isolates in Norway. The study found no association 

between lineages and isolation locations, which is a similar trend observed in this study. 

From the isolates, 5 of the 6 drain isolates were identified as lineage I (Figure 4.2). This could 

be due to this subtype being the dominant strain at the time of isolation.  A review by Orsi et al. 

(2011) demonstrated the urgency and importance of improvement and maintenance of an effective 

Listeria management plan within the factory. Failure to do so could result in product recalls with 

serious repercussions to consumer health, regardless of lineage.  

In order to establish and possibly improve current sanitation and control protocols, the 

contamination mechanisms driving the spread and cross contamination of L. monocytogenes within 

the factory needs to be identified. The large amount of similar subtypes found on the floor in the 

factory in various geographical locations was indicative of crates and/or trolleys being a 

contamination mechanism driving the spread of the Listeria throughout the factory.  DuPont ID 1041 

was found in various produce chillers (cold rooms) as well as in the office floor area within the high-

risk processing area. This was indicative of work boots of personnel being the contamination 

mechanism. Isolate 102 and 135 were both assigned DuPont ID 1042, with isolate 102 being found 

on the scullery floor and isolate 135 was found in a nearby drain. This was an indication of drains as 

good hygiene indicators of the microbial community within a factory, since an isolate contaminating 

the floor was likely to move or accumulate to the nearest drain (Dzieciol et al., 2016).   

Isolations of strains from both wet and dry areas as well as ambient and cold temperatures 

were indicative of the adaptability and high tolerance of L. monocytogenes to various environmental 

conditions (Figure 4.2). Clustering further provides a good snapshot of the L. monocytogenes flora 

at different time periods since isolates from each year showed a tendency to cluster together. It 

demonstrates how the environment and sanitation practises can influence the current microbial 

subtypes being detected. Moreover, a persistent strain could not be identified, since no isolates were 

repeatedly isolated between 2016 and 2017. This could be supportive of the hypothesis that the 

factory was housing various biofilms. Certain strains could be in a sessile state and thus not be 

isolated during the Listeria management protocols. A change in sanitiser or cleaning methods could 

dislodge the biofilm and increase the presence of previously “dormant” strains as seen by the 

difference in dominant DuPont ID isolates between 2016 and 2017.  
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The factory’s in-house laboratory positive L. monocytogenes control, was shown to be a true 

L. monocytogenes positive strain with an assigned DuPont ID 1042. This was a suitable positive 

control as it is this DuPont ID that was most frequently isolated within the RTE factory. It is evident 

that although they share similar DuPont ID’s, the isolates and positive control do not share an 

isolation location, since only an 84% correlation was seen between them on the dendrogram clusters 

in Figure 4.2.  

Correlation was seen between the results obtained regarding DuPont ID and isolation 

location type in a study by Kabuki et al. (2004) in a cheese processing plant. DuPont ID 1062 and 

1042 were also isolated from drains within the processing areas. However, Kabuki et al. (2004) 

reported that the majority of the strains isolated from the study were represented by DuPont ID 1044. 

This specific strain was not isolated once within this current study. Together with DuPont ID 1039 

being exclusively isolated from a different factory during the current study it is indicative of how the 

in-house flora within different factories can vary. It can be atribbuted to the difference in original and 

initial contamination sources. A contamination scenario described by Bolocan et al. (2016) describes 

how a specific strain of L. monocytogenes can establish itself within the processing environment by 

simply entering on contaminated raw products. The variety of subtypes found within this environment 

is indicative of the good possibility of the large number of raw products that enter the facility, as 

expected from a RTE food factory.  

Of the 29 isolates ribotyped, nine different DuPont ID’s were assigned (Table 4.1), thus for 

comparison purposes, one could say three samples per ribotype. This is in alignment with another 

RTE processing environment study, where 46 ribotyped isolated yielded 17 DuPont ID’s (Meloni et 

al., 2009), also approximately three samples per ribotype. In contradiction, a single product factory 

such as a smoked salmon plant, only 16 DuPont ID’s were assigned to 226 subtyped isolates 

(Klaeboe et al., 2010), thus 14 samples per ribotype. A small subset of samples representing a 

ribotype is indicative of the diversity of the strains found within a RTE food processing environment 

when compared to a factory that only produces a single product. This diversity can be attributed to 

the large variety of raw products entering the production area (Bolocan et al., 2016). 
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Table 4.1 Distribution of 9 L. monocytogenes ribotypes in RTE food processing environment 

DuPont ID Total isolates Drain Chiller FCS* Food 
Cleaning 

equipment 
Floor 

1027 2 1     1 

1038 4  3  1   

1041 6  5    4 

1042 9 4     4 

1045 1  1    1 

1062 1 1      

18596 4  1   2 1 

19186 1      1 

20243 1   1    

 29 6 10 1 1 2 12 

*Food contact surfaces 

Comparison of the isolation locations of ribotypes (DuPont ID) from RTE food factory with isolation 

locations of similar ribotypes logged on Food Microbe tracker database (Table 4.2), showed 

conformation of results with global trends. Correlation with these trends is make since the locations 

of isolates logged on the database were similar to what was found in this study.  

Table 4.2 DuPont ID isolates logged on Food Microbe Tracker (as of 14/09/2017) 

DuPont ID 
Number of 

isolates 
Sources 

1027 46 Sporadic human isolates, drains and raw fish 

1038 316 Sporadic human, environment (nfcs*), RTE products 

1041 25 Environmental (nfcs*) and RTE meat products 

1042 872 
Sporadic human isolates, RTE food products, animal 

(bovine and avian) 

1045 316 
Environmental (nfcs*), human and animal clinical 

sources 

1062 589 
In food but mainly from environmental sources like 

drains and display cases 

18596 (1062D) 2 Smoked Scottish salmon 

19186 (1062C) 12 Diary, drain cold storage floor 

20243 - - 

*non-food contact surfaces 
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Samples 184, 188, 189, 190 and 187 were isolated from the RTE food factory’s Johannesburg 

branch, however the isolate locations remain non-disclosed. They were received in the form of 

presumptive positive Brilliance Listeria agar, instead of Rapid’L.mono agar.  The samples were 

processed and confirmed as positive L. monocytogenes by PCR in a similar manner as samples 

from Western Cape samples. However, automated ribotyping identified the samples, with unknown 

locations, as Staphylococcus sciuri. The positive identification of the samples by PCR as L. 

monocytogenes is due to the crude DNA extraction methods that were used. It is well known that L. 

monocytogenes and S. sciuri can be found together in the environment, competing for the same 

nutrient sources (Leriche & Carpentier, 2000). This may be why S. sciuri can be seen growing on 

Rapid’L.mono agar (Figure 4.3), which is supposed to inhibit the growth of any micro-organisms not 

included in the Listeria genus. This is evidence of the observations made by Stessl et al. (2009), who 

after a challenge study of chromogenic agars, recommended further investigation into the reliability 

of chromogenic agar methods, due to competing micro flora and interspecies enrichment bias.  

 

 

Figure 4.3 Growth of Staphylococcus sciuri observed on Rapid’L.mono chromogenic, selective agar. 

These two species, from different genera are natural competitors, with reports of Staphylococcus 

sciuri inhibiting biofilm growth of L. monocytogenes (Leriche & Carpentier, 2000; Overney et al., 

2016). This occurrence is also a possible explanation of why both species were isolated from the 

presumptive positive L. monocytogenes Rapid’L.mono plates. The isolation thereof from a factory 

environment is not unprecedented, since Marino et al. (2011) readily isolated this specific 

Staphylococcus specie from a food processing environment. What was of concern however, was the 

fact that S. sciuri survived the enrichment process of the method as well as the inhibiting agents 

present in the agar (lithium chloride, polymyxin B and nalidixic acid and amphotericin) (Anonymous, 

2017).  
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4.5 Conclusion 

This study demonstrated the usefulness of automated ribotyping in efforts to establish possible 

contamination sources within a food processing environment. The standardisation ability of this 

method allowed for reliable inter-laboratory comparison, to increase the information regarding 

isolates as well as gain better understanding of how this RTE food factory compares to current global 

trends. Inter-laboratory comparison is done by comparing results from this study with results from 

previous studies in order to broaden the information pool regarding the strains. This includes lineage 

assignments, that would not have been possible due to the scope and limitations of this study.  

The variety of strains isolated within the duration of this study was indicative of a diverse 

microflora present within the processing environment. The movement of isolates, between different 

isolation locations, were indicative of definite mechanism that drive cross-contamination within the 

factory environment. Work boots, trolleys and crates were carriers of L. monocytogenes and the 

drains were distinct harbourage sites of both lineage I and II isolates. After establishing 

contamination sources, it was recommended that these mechanisms be targeted within the RTE 

food factory’s Listeria management program. By gaining perspective of the omnipresence of a 

diverse L. monocytogenes microflora within the facility, awareness of its adaptability as well as the 

importance to maintain control thereof was reiterated. Furthermore, the simultaneous isolation of  

L. monocytogenes and S. sciuri prompts the recommendation for further investigation into the 

interaction and proliferation of these two species within the food chain.  

After comparison of the results and subsequent trends from this study with similar studies 

and global trends, it was seen that the RTE food factory is not unique in regard to its diverse and 

ever-present L. monocytogenes microflora.  
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CHAPTER 5 

RESPONSE OF LISTERIA MONOCYTOGENES BIOFILMS TO 

SANITISERS USED IN READY-TO-EAT PROCESSING 

ENVIRONMENT 

5.1 Abstract 

Biofilms are widespread in the food processing environment and grow and proliferate under various 

conditions. Dissimilar growth conditions result in diverse biofilm structures and communities that 

respond differently to sanitation efforts. In this study, the response of L. monocytogenes monospecie 

biofilms, to sanitation chemicals was evaluated using a CO2 evolution measurement system (CEMS). 

The CEMS is an effective method with which to study biofilms under flow conditions, since it 

accurately simulates conditions in water drain environment. Protocol development was conducted 

since L. monocytogenes biofilms have not been studied using this system. Four sanitisers 

representing quaternary ammonium compounds, peracetic acid and alternative chemicals were 

evaluated using their manufacturer prescribed minimum concentration and contact time. Responses 

were classified as the biofilm displaying development of resistance over time or otherwise being 

eradicated. Peracetic acid sanitiser and the proprietary QAC chemical showed no bactericidal effect. 

A general use QAC and proprietary QAC-free chemical yielded satisfactory results.  

5.2 Introduction 

The food industry has become more aware of the presence and effect of biofilms in the processing 

environment. It is important when considering that the main mechanism of Listeria monocytogenes 

contamination is said to occur post production (Kerouanton et al., 2010; Vongkamjan et al., 2013; 

Nyarko & Donnelly, 2015). Post production contamination of RTE foods is of concern; critical control 

points (CCP) during production ensures successful microbial reduction in food products but these 

foods can be re-contaminated during handling and storage. These contamination mechanisms 

include contaminated food contact surfaces (FCS) as well as other non-food contact surfaces 

(NFCS) such as machinery and processing equipment (Hansen & Fonnesbech, 2011; 

Fouladynezhad et al., 2013). Sanitation and disinfection protocols form part of Listeria control plans, 

however L. monocytogenes in a sessile state shows more resistance to disinfection mechanisms 

than L monocytogenes in a planktonic state (Klaeboe et al., 2010). 

It is known that L. monocytogenes biofilms develop networks of cocci-like microcolonies 

surrounded by “knitted”-chains (elongated cells)  under flow conditions which is in contrast to the 
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heterogenous layers of microcolonies and rod cells that form under static conditions (Rieu et al., 

2008; Da Silva & De Martinis, 2013). Considering that the response and recovery ability of bacteria 

within a biofilm can fluctuate due to the dependence on its relationship and position in the microbial 

community (Orgaz et al., 2013), the response of a drain biofilm to sanitation efforts would differ from 

a biofilm found on machinery or FCS. In addition, quorum sensing is a major contributor to the 

construction the biofilm (Cappitelli et al., 2014).  Increased resistance to sanitation is found in 

matured biofilms (Ibusquiza et al., 2011), with a response that counteracts sanitation efforts.  

In this study resistance is defined as the ability of a biofilm to recover after a biocidal treatment 

and continue growing and proliferating as in its pre-treatment state. Biofilms mature when they are 

not subjected to either mechanical removal or chemical bactericidal treatment. Due to lower 

sanitation frequencies, drains are excellent harbourage sites for matured biofilms. A large part of 

successfully controlling L. monocytogenes within a RTE food processing environment is identifying 

and eradicating persistent strains. Many studies have attempted to define the factors that contribute 

to the persistence ability of L. monocytogenes and although definite parameters have not yet been 

identified, harbourage sites have been identified as a major driving force of persistence (Carpentier 

& Cerf, 2011; Orgaz et al., 2013). This adds to the need to study the response of biofilms that have 

matured under flow conditions mimicking harbourage sites that facilitate persistence. 

The CO2 Evolution measurement system (CEMS) is a non-destructive, non-invasive method 

of studying mature biofilm response under flow conditions. It is a once-through flow system that in 

essence, evaluates biofilm metabolism by measuring CO2 produced by the bacteria during 

respiration (Loots, 2016). The systems set-up and parameters were described in great detail by 

Kroukamp and Wolfaardt (2009). The response of a biofilm is measured as a decrease or increase 

in CO2 production (µmol.h-1) and resistance would be defined as an increase in CO2 production 

(µmol.h-1) after treatment. This would be indicative of a recovery effort and resuscitation of injured 

cells.  Sanitiser treatment and the subsequent response of the biofilm in CEMS system is an excellent 

demonstration of how a single biofilm builds up resistance against a sanitiser in a matter of hours.   

The biofilm eradication concentration (BEC) is the concentration of sanitation treatment 

where the biofilm is unable to resuscitate and microbial growth is stopped (Poimenidou et al., 2016) 

and is generally prescribed by the manufacturer of the specific sanitation chemicals. ISO EN 13697 

states that a disinfectant should provide a four log reduction (99.99%) of microbial count on a clean 

and soiled surface (Gram et al., 2007). It does not, however state the requirements for destruction 

of the cells themselves. 

Sanitation chemicals used by the food industry mainly entail acetic acid, lactic acid, 

quaternary ammonium containing chemicals (QAC), sodium hypochlorite (Da Silva & De Martinis, 

2013) and other proprietary, novel and alternative methods. Microbial resistance to a majority of 
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chemicals used have started to emerge (Klaeboe et al., 2010) and currently combination treatments 

of biofilms to avoid increase in biofilm resistance have been recommended (Pricope et al., 2013).  

Sanitation protocols are dual processes that entail cleaning and disinfection steps (Walton et 

al., 2008). The aim of cleaning is to remove, not kill, approximately 90% of bacteria adhering to 

surfaces and to disintegrate the extracellular polymeric substance (EPS) of biofilms (Srey et al., 

2013). Removal of organic material such as protein, fat and carbohydrates, increases the efficacy of 

disinfectants. Disinfectants are aimed at killing bacterial cells exposed, through cleaning and 

subsequently reducing the viable population of pathogens and spoilage organisms (Srey et al., 

2013). In this study, sanitisers refer to chemicals used for both cleaning and disinfection. 

The majority of L. monocytogenes isolates in the previous chapters were from drains in the 

high and low risk areas of the RTE factory. This was indicative of the predominant presence of  

L. monocytogenes strains within the drains. The aim of this study was therefore to examine the 

response of L. monocytogenes biofilms cultivated under conditions found in a drain, to prescribed 

sanitisers using the CEMS. These sanitisers include Byotrol, Byotrol QFC, Perasan and Divosan 

QC. This study was conducted to lay the ground work for future studies into treatments that could 

potentially contribute to the global food industry efforts of controlling L. monocytogenes in the RTE 

food processing environments.  

5.3  Materials and methods 

5.3.1 Flow system set-up and preparation 

The CEMS system was assembled as described by Kroukamp and Wolfaardt (2009) and system 

was  disinfected according to Loots (2016). System parameters and set-up was done as illustrated 

in Figure 5.1. On the inflow connection of each CEMS line, a tube connecting the growth medium 

and CO2-free gas is attached. On the outflow connection of the CEMS line, was a tube carrying the 

gas containing the CO2 from the growing biofilms to the CO2 analyser, as well tubes allowing the 

outflow growth medium to be collected in flask containing industrial bleach. The four CEMS lines are 

placed in the water bath as a means of controlling the temperature (Figure 5.1).    
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Figure 5.1 CEMS system set-up (adapted from Loots (2016)). 

5.3.2 Monoculture inoculum preparation 

For preliminary testing to determine the experimental parameters of growing L. monocytogenes in 

the CEMS system, two Du Pont ID strains/ribotypes were selected. Experimental parameters 

included: time (h) required for the maturation of the biofilm and growth trends of  

L. monocytogenes under these conditions.   

Sample 135 (Du Pont ID: 1042) was selected since it represents the most prominent ribotype 

isolated from the factory environment and it was also a strain isolated from a drain (Figure 4.2). 

Sample 51 (Du Pont ID: 1062) was selected based on it being reported as a persistent strain in a  

study by Klaeboe et al. (2010) which examined Norwegian salmon processing plants. Sample 51 

was also isolated from a drain (Figure 4.2). 

Stock cultures of selected samples were resuscitated by inoculation of Tryptic Soy Broth 

(TSB) with loopful of culture and incubation at 37⁰C for 15 - 18 h.  The broth cultures were then 

standardised to 0.1 OD at 600 nm (approximately 10-5 CFU.ml-1) using sterile saline solution (0.9% 

w.v-1 NaCl). This inoculum preparation procedure was applied to all test done within this study.  

5.3.3 System inoculation 

The flow of sterile TSB was paused as each of the four CEMS were aseptically inoculated with 1 mL 

standardised overnight cultures using a sterile needle and syringe. The cultures were allowed 1 h to 

adhere to the silicon tube before the peristaltic pump resumed the flow of TSB at 20 ml.h-1. 

5.3.4 Enumeration of free cells in CEMS outflow 

Outflow from each line was collected by disconnecting the tube attached to the outflow tubes and 

inserting a 1.5 mL Eppendorf tube at the end (Figure 5.2).  

Stellenbosch University  https://scholar.sun.ac.za



80 
 
 

 

Figure 5.2 Effluent collection from CEMS. 

From the outflow samples, a dilution series was plated onto Nutrient Agar (NA) plates and incubated 

at 37°C for 24 h, after which it was examined for any signs of contamination i.e. growth of other 

micro-organisms that do not have the characteristic cream, pin sized round Listeria spp. colony. A 

standard method for the enumeration of L. monocytogenes on Rapid’L.mono agar is available 

(Anonymous, 2017b). However, enumeration on Nutrient Agar was sufficient because the biofilm 

grew and consequently the outflow is a single strain and therefore no contamination or competition 

will be in effect. Nutrient agar is a non-selective media and is used to check for contamination as it 

will not inhibit the growth of another micro-organism as the chromogenic agar would.  

5.3.5 Testing the effect of various industry based sanitisers  

The four selected sanitisers, used by the RTE food factory (Table 5.1), were prepared to 

concentration and conditions as per the manufacturer specifications for food preparation surfaces 

and maintenance (Table 5.2). Stronger concentrations and extended contact times were excluded 

as such protocols were excluded from the scope of this study.  
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Table 5.1 Description and industry recommended application of sanitisers used to study biofilm 

response 

Sanitiser 
Additional 

description 

Approved 

standard 

Active ingredients 

Chemical name % 

P
e

ra
s
a

n
1
 Acidic 

disinfectant 

/descaler 

SABS 1853 

Hydrogen peroxide  5-15 

Acetic acid  15-30 

Peracetic acid 5-15 

D
iv

o
s
a
n

1
 Terminal 

disinfectant 

and cleaner  

SABS 1853 Dicecyldimethylammonium chloride (QAC) 1-10 

B
y
o

tr
o

l2
 Antimicrobial 

surface 

sanitiser  

SABS 1853 

Dicecyldimethylammonium chloride (QAC) 2.5-10 

Benzylkonium chloride  2.5-10 

Polyhexamethylenebiguanide  <2.5 

B
y
o

tr
o

l 
(Q

F
C

)2
 

Antimicrobial 

surface 

sanitiser  

SABS 1853 

Dodecyl dipropylenetriamine  5-10 

Lactic acid  5-10 

Polyhexamethylene biguanide hydrochloride  <1 

1(Jaftha, I. 2017, Customer Service agent, Sealedair, Cape Town, South Africa, personal communication, 12 

September) 2 (Anonymous, 2017a) 

Table 5.2 Sanitisers and contact parameters for treatment of L. monocytogenes biofilms cultured in 

CEMS 

Test Line Sanitiser 
Application 

(% v/v) 
Contact time (min) 

1 
B Byotrol 1.0 5 

Q Byotrol (QFC) 1.0 5 

2 
P Perasan 0.5 5 

D Divosan QC 3.0 10 

3 
B Byotrol 1.0 5 

Q Byotrol (QFC) 1.0 5 
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The first treatment was applied once it was evident that the biofilms had stabilised. Stabilisation was 

characterised by a non-fluctuating stationary phase of the log curve of the CO2 production graph. 

The peristaltic pump was stopped as the inflow tubes were connected aseptically to outflow tubes of 

sanitiser reservoirs. After the connection was completed and air bubbles were minimised the pump 

was restarted at 1.5 rpm to resume flow for the set treatment time. After treatment time was reached 

the peristaltic pump was stopped and inflow tubes were reconnected to the flow medium reservoir 

and the flow was resumed at pre-treatment parameters (Figure 5.3). 

 

Figure 5.3 Treatment set up for CEMS (a) Nutrient broth (TSB) reservoir disconnected during 

treatment; (b) sanitiser reservoir directly fed into CEMS system aided by peristaltic pump. 

5.4 Results and discussion 

It is very important to note that there are various methods and parameters in which the CEMS can 

be used to test and observe sanitation actions of various industry based sanitisers. The results seen 

should be used as a way to learn and understand how biofilms react to sanitisers. It is not the aim of 

this study to critique the company or the product itself, but rather to demonstrate the effect that 

inadequate contact times and misuse of these chemicals contribute to increased resistance of 

biofilms in food processing environments. Thus, remarks, conclusions and recommendations made 

in this study were based on observations made under the said parameters and conditions.   

5.4.1 Protocol development for biofilm cultivation in CEMS  

The aim of this test was to select a L. monocytogenes strain (previously isolated in this study) that 

could form a biofilm as well as represent isolates from the factory environment. This selection is due 
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to the strain’s previous exposures to chemicals used within the RTE food processing environment. 

The growth trends of both strains were examined in CEMS (Figure 5.4) to aid in the selection of a 

strain for sanitiser tests. 

 

Figure 5.4 Comparison of CO2 production (µmol.h-1) for selection of strain to be used for subsequent 

tests (a) sample 51, (b) sample 135. 

There are distinct differences in growth behaviour pertaining to the L. monocytogenes subtypes 

evaluated in this test. In regard to reaching the exponential phase of the curve (establishment of 

biofilm), sample 51 started 56 h prior to sample 135 and reached stationary phase at approximately 

4 days as opposed to 5 days for sample 135 (Figure 5.4). Nevertheless, Sample 135 displayed more 

stable behaviour, identified by less fluctuation of CO2 production (µmol.h-1) at stationary phase of 

curve (Figure 5.4). Due to this and its maturation period of 5 days, sample 135 was selected as the 

strain that would be used to the study the response of L. monocytogenes to sanitisers. The selection 
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of sample 135 was further confirmed by Henriques and Fraqueza (2017), who found their isolates to 

also be strong biofilm formers after a 5 day growth period.  

The sudden drop in CO2 production (µmol.h-1) by line 51A and 135A at 72.25 h is due to 

these CEMS lines being disconnected to ensure that enough nutrient flow would be available for the 

other lines to complete the growth curve and the biofilm to stabilize. Since this test was done as a 

protocol development step the growth time and behaviour of L. monocytogenes in this system, under 

these conditions, were unknown. Thus, the amount of Tryptic Soy Broth (TSB) for all lines could not 

be anticipated. A sufficient amount of TSB to support flow of four CEMS lines was not prepared, 

hence disconnection of replicate lines and consequently the sudden drop in CO2 production.  The 

test was discontinued at 170 h as the sample selection could be made with data obtained.  

5.4.2 Test 1: Protocol development for sanitiser treatment of L. monocytogenes biofilms in 

CEMS 

Due to the novelty of using CEMS to study L. monocytogenes biofilms, protocol development was 

undertaken by treatment of biofilms to establish what was to be expected upon treatment and how 

recovery trends would present themselves. The aim of this test was to establish parameters for 

testing biofilm response to industry based sanitisers using CEMS and also to ascertain trends that 

could be anticipated. Each set of treatments for both Byotrol and Byotrol QFC were done in duplicate 

(Figure 5.5), which confirmed the growth behaviour and biofilm response of each treatment. The 

response trends were used as a guideline for tests to follow.  

First treatment was done on day 5 (121 h) for both sanitisers (Table 5.2). Both B1 and B2 

showed recovery behaviour after merely 3 h, which is indicative of resistance by the biofilm (Figure 

5.5). Both Q1 and Q2 showed no recovery trends after one treatment, meaning the biofilm was 

completely eradicated from the silicon surface inside the CEMS.  

However, the free cells collected from all CEMS were still culturable which suggests that the 

drop in CO2 production (µmol.h-1) could be attributed to the loosening or sloughing of the biomass. 

Therefore, neither Byotrol nor Byotrol QFC caused a bactericidal effect. It should be noted that 

collection of effluent was also done as a means to monitor possible contamination, since only  

L. monocytogenes should be seen during culturing. Upon final effluent collection after 170 h, the 

presence of presumptive Pseudomonas spp. was detected. It was decided that the results obtained 

could still be used since the aim of this test was only to establish the protocol and parameters for 

sanitiser treatments as well as to anticipate trends for tests to follow. The test was discontinued after 

195 h since satisfactory conclusions could be made regarding responses and recovery trends.  
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Figure 5.5 Establishing trends for subsequent tests of CO2 production (µmol.hr-1) of biofilm in 

response to sanitisers (a) Byotrol, (b) Byotrol QFC 

5.4.3 Test 2: Response of L. monocytogenes biofilms to QAC based and Peracetic acid 

based sanitisers 

During the conduction of this test a momentary power failure occurred at approximately 97 h, clearly 

visible in Figure 5.6. This accounts for the irregular spikes seen on Figure 5.6 and Figure 5.7. This 

in no way effected the formation of the biofilm as the curve trend is still intact. The CO2 analysers 

were rebooted and allowed to stabilize as seen at 106 h. 

Divosan QC is a terminal disinfectant containing Dicecyldimethylammonium chloride (Table 

5.1), a known Quaternary Ammonium Chloride compound. It is referred to as terminal since it can 

be used to clean whole rooms (floor, walls and ceiling). It has a recommended contact time of 10 

min at a concentration of 0.5% (v.v-1) (Table 5.2). 
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First treatment was performed on day 5 (121 h) (Figure 5.6). A decrease of 29.08 µmol 

CO2.hr-1 was observed. The biofilm may seem to be eradicated in both D1 and D2, however, 

resuscitation can be seen after 50 h for line D1. Although D2 took approximately 53 h longer to 

resuscitate (at 245 h), it still reached the same CO2 production (µmol.h-1) as D1 at 275 h. The 

recovery trend observed within the CEMS after 56 h and 103 h in D1 and D2 respectively, is evidence 

that although the majority of the biomass was eradicated, Divosan QC did not have a sufficient 

bactericidal effect. In addition, outflowing free cells were still culturable, further evidence of the lack 

of bactericidal effect and subsequently a possible contamination mechanism.  

 

Figure 5.6 Response of L. monocytogenes monoculture biofilm to QAC based sanitiser (Divosan 

QC). 

Perasan is a peracetic acid based sanitiser, with a recommended contact time of 5 min at 

concentration of 0.5 % (v.v-1) (Table 5.2). The first treatment on day 5 (121 h) (Figure 5.7) resulted 

in a 24.97 µmol CO2.h-1 drop after which resuscitation occurred rapidly, reaching full recovery after 

only another 47 h. The biofilm stabilised at a CO2 production level of only 2.4 (µmol.h-1) lower than 

before the treatment. It is at this point that the biofilm can be said to start showing resistance to the 

treatment parameters, since it recovers to its original metabolic state in only two days.  

The treatment was repeated for both P1 and P2, at 168.25 h which saw an average 21.11 

CO2 production (µmol.h-1) drop, which is similar although slightly less than the previous treatment. 

The recovery of the biofilm took 11 h longer than the previous recovery episode, however upon 

stabilisation it once again showed the same CO2 production (µmol CO2.h-1) as before the second 

treatment (Figure 5.7) 
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Figure 5.7 Response of L. monocytogenes monoculture biofilm to peracetic acid based sanitiser 

(Perasan). 

This resistance patterns/trends shows that the recommended treatment parameters of Perasan are 

inadequate to completely eradicate the biofilm from CEMS. In addition, the free cells in the effluent 

were still culturable. It is thus suggested to increase the recommended minimum contact time and 

to ensure that this sanitation protocol is followed once it is adjusted, since deviation or lowering of 

contact time would be deemed inadequate 

5.4.4 Test 3: Observing the response of L. monocytogenes monoculture biofilms to 

treatment with QAC-sanitiser (Byotrol) and QFC-sanitiser (Byotrol QFC).  

Byotrol is a QAC sanitiser containing Dicecyldimethylammonium chloride, Benzylkonium chloride 

and Polyhexamethylenebiguanide. It delivers the chemicals to the environment using Amphicelles 

technology (Anonymous, 2017a). 

Considering the trends observed in both B1 and B2 in comparison with treatments in Test 2 

(Figure 5.6 and 5.7), the L. monocytogenes monoculture biofilms shows significantly more resistance 

to Byotrol. The first treatment was performed on day 5 (125 h) and saw resuscitation of both B1 and 

B2 commence almost immediately after the average 14 µmol CO2.h-1 reduction. The second 

treatment was performed on day 7 (174 h) and a similar trend was observed (Figure 5.8). An average 

12.8 µmol CO2.h-1 decrease was observed, which is similar to the first treatment. Also, comparable 

to the first treatment, is the almost immediate resuscitation of the biofilm with stabilisation occurring 

approximately 14 h later.  
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Figure 5.8 Response of L. monocytogenes monoculture biofilm to QAC based sanitiser (Byotrol). 

A third and final treatment was performed on day 9 (224 h) and saw an average reduction of  

7.4 µmol CO2.h-1, which is 5.4 µmol CO2.h-1 less than the previous treatment (Figure 5.8). This is 

indicative of the increase in resistance that the biofilm built up over the course of the three treatments. 

The biofilm continued to recover and increase in biomass until the test was terminated at 280 h.  

Byotrol QFC is claimed to be the exactly the same as the original Byotrol product, however it 

does not contain any QAC. It is comprised of Dodecyl dipropylenetriamine, Lactic acid, 

Polyhexamethylene biguanide hydrochloride (Anonymous, 2017a). 

In an overview of the biofilm response to the treatment, the biofilm shows less resistance to 

the QFC (Figure 5.9) than the original Byotrol product (Figure 5.8). This could be the first evidence 

that the L. monocytogenes strain, isolated from the processing environment, has developed a 

resistance to QAC. Further molecular testing will be required to confirm this observation.  

Similar to the Byotrol test (Figure 5.5), the first treatment was performed on day 5 (125 h), 

with an initial average 11.9 µmol CO2.h-1 reduction. However, the CO2 production (µmol.h-1) 

continued to reduce over the course of the following 25 h by a further 7.29 µmol CO2.h-1. Only 26 h 

after treatment, did the biofilm show any sign of recovery behavior, signified by an increase of CO2 

production (µmol.h-1). The second treatment was performed on day 9 (219 h) after which the biofilms 

showed no sign of recovery as CO2 production (µmol.h-1) plateaued off reaching the baseline CO2 

until the test was terminated at 280 h. The lack of resuscitation of the biofilm after two treatments, 

was indicative of the effectiveness of Byotrol QFC in removing the biomass from the system as it 

would in the drainage area of a factory environment.  
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Figure 5.9 Response of L. monocytogenes monoculture biofilm to QAC-free sanitiser (Byotrol 

QFC). 

5.5 Conclusion 

This study demonstrated the value of using CEMS as a tool to observe and evaluate the 

effectiveness of sanitisers in management and possible eradication of L. monocytogenes biofilms. 

Parameters and procedures to do these evaluations were optimised and resulted in a method in 

which to study biofilms in a novel, non-static way that more accurately reflected environmental 

conditions found in food processing environments. The reliability of the system was reflected in the 

excellent replication of response curves, despite the inherent variability of biofilms. 

Peracetic acid was confirmed to have no bactericidal effect on L. monocytogenes biofilms, 

with resuscitation occurring even after two treatments where applied. It is evidence of PAA’s inability 

to oxidise the biofilm structure. It is therefore not suitable as a sanitation product within this context, 

and further investigation into its disinfection capabilities and recommended treatments protocols are 

advised.   

Sanitisers tested were representative of the common chemicals used in food factories, but 

more specifically sanitisers used in the RTE food factory’s sanitation program. Of the QAC containing 

chemicals, Divosan QC was more effective than Byotrol, since immediate resuscitation of the biofilm 

did not occur after treatment. Resuscitation was only observed much later. This might be attributed 

to its recommended application that is more effective, however the inability of both the QAC 

chemicals to completely eradicate the L. monocytogenes biofilm, prompts the possibility of QAC 

resistance strains. Further investigation into QAC resistant genes among the RTE food factory’s 

isolates is recommended.  

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

C
O

2
p

ro
d

u
ct

io
n

 (
µ

m
o

l.h
-1

)

Time (h)

Byotrol QFC

Q1 Q2

Stellenbosch University  https://scholar.sun.ac.za



90 
 
 

The possibility of QAC resistance among the isolates is further supported by the response of 

L. monocytogenes biofilms to the QAC-free (QFS) version of Byotrol. No resuscitation of the biofilm 

was observed after only two treatments. This is evidence of its effectiveness in the eradication of  

L. monocytogenes biofilms found within the drains of the RTE food factory environment.  

The aim of this study was to observe the response of L. monocytogenes biofilms to sanitation 

chemicals used by the RTE factory in order to make recommendations to aid in improving current 

practises and management protocols. Byotrol QFC was thus recommended, based on the 

observations of the study, under the conditions of the disclaimer previously discussed.  

Finally, it was also the aim of this study to lay the ground work for future studies into 

foodborne pathogen biofilms and their response to environmental conditions and control protocols. 

Considering the outcome of this study and the conclusions that could be made. For future studies, it 

is recommended that combination treatments, alternative environmental conditions, multispecies 

biofilms, as well as the correlation between CO2 production and biofilm CFUs be explored.  Finally, 

it is recommended that a more in-depth data analysis (principle component analysis) be done taking 

into account all the data obtained from the CO2 analysers as well with other factors such as 

temperature and pH.  
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CHAPTER 6 

GENERAL DISCUSSION AND CONCLUSIONS 

 

The main aim of this study was to examine the survival and proliferation of L. monocytogenes within 

a specific RTE food factory situated in the Western Cape, South Africa.  The first objective was to 

isolate and positively identify L. monocytogenes isolates from the factory environment. Presumptive 

positive agar samples collected from the factory’s Listeria control and management plan were 

subjected to molecular identification using PCR.  

This study attempted to optimise a multiplex PCR protocol using the most cost effective and 

simple components to maintain its applicability to routine analysis within the food industry. These 

components include crude DNA extraction and OneTaq endonuclease.  A multiplex PCR protocol 

using OneTaq endonuclease designed for the amplification of iap (Listeria spp.) and lmo2234  

(L. monocytogenes) (Chen and Knabel, 2007), was unsuccessful. Singleplex PCR protocols for each 

target gene were then optimised using OneTaq. It is recommended that alternative endonuclease 

be used for a multiplex protocol that targets the specified genes simultaneously.  

The Rapid’L.mono method was also evaluated for its ability to detect L. monocytogenes in 

the presence of L. innocua. A protocol to evaluate enrichment bias in half Fraser broth was 

developed that entailed the simultaneous inoculation and incubation with the same CFU of both 

species. It was found that L. monocytogenes was still detectable in the presence of L. innocua when 

streaked onto Rapid’L.mono. This includes streaking as prescribed by the manufacturer 

(Anonymous, 2014) or by standard streaking methods. For a more in-depth evaluation of enrichment 

bias as it occurs in naturally contaminated food environments and products (Zitz et al., 2011), 

inoculation with a lower L. monocytogenes CFU count than L. innouca is recommended. This can 

be achieved by using a lower concentration of L. monocytogenes starting inoculum.  

L. monocytogenes isolates from the RTE factory were subjected to subtyping through 

automated ribotyping using the DuPont RiboPrinter®. A total of 29 samples underwent riboprinting 

and were assigned DuPont ID’s. The assigned ID’s included, amongst others, DuPont ID 1038, 1041, 

1042 and 18596. Through comparison of these IDs with similar studies as well as using the Food 

Microbe Tracker database (Anonymous, 2013), it was found that these isolates have been implicated 

in various human listeriosis cases and product recalls (Meloni et al., 2009; Rosef et al., 2012). 

Although previously isolated by Gambarin et al. (2012) in a salmon product, DuPont ID 20243, 

isolated from the produce area in this study, has not yet been logged on Food Microbe Tracker. 

Lineage assignments could also be made, using existing literature, to identify the virulence potential 

of strains found in the environment.  The ribotype data was also subjected to cluster analysis using 
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a Pearson correlation dendrogram. This aided in creating a better understanding of the geographical 

distribution of the isolates in terms of their strain similarity. It was found that the drains and floor 

harboured the majority of the isolated strains. The distribution of similar strains was indicative of 

cross contamination mechanisms that included work boots, trolleys and crates. It was recommended 

to the factory to increase sanitation and monitoring of drains, as the majority of the strains were 

classified as lineage I, meaning an increased virulence potential (Orsi et al., 2011; Vongkamjan et 

al., 2016). The distribution of clusters across 2016 and 2017 was also indicative of the presence of 

biofilms, were some DuPont IDs were more prevalent in 2016 than in 2017. 

A further aim was to observe the response of biofilms to the current sanitisers used within 

the RTE food factory’s environment. Isolates obtained from the factory environment was selected to 

cultivate the biofilms, since these strains have been previously exposed to the specific RTE factory 

environment and would best represent the in-house microflora. The biofilms were studied under flow 

conditions to best mimic conditions found in drains, and subsequently to gain a better understanding 

of the effect of sanitiser on biofilms found in drains.  

The CO2 evolution measurement system (CEMS) was used for this study. L. monocytogenes 

biofilms have not yet been studied under these conditions in this system, adding to the novelty of the 

study. CEMS is a once-through, non-destructive method to study the response of biofilms (Loots, 

2016) to sanitiser using CO2 as an indicator of biofilm metabolism. Four sanitisers used by the food 

factory were tested and the QAC-free chemical resulted in the best eradication of the biofilm. 

Peracetic acid based product had no effect on the biofilm as increased recovery was seen throughout 

the test period, which averaged nine days. The results obtained from the biofilm study showed that 

using these chemicals at their minimum contact time and concentration has no bactericidal affect, 

but only resulted in the sloughing and loosening of the biofilm. This occurrence was of concern, since 

this type of sanitation effect will only aid in the increased spread of the pathogen within the factory. 

Nevertheless, with the current sanitisers at the disposal to the RTE food factory, it was recommended 

that Byotrol QFC (QAC free) chemicals be used for the management of L. monocytogenes biofilms.  

The developed protocol and results from this study can now be used as a guideline to further 

study L. monocytogenes biofilms within food processing environments. It is recommended that the 

response of multispecies biofilms be compared to the findings of this study. Furthermore, the effect 

of different environmental conditions, such as temperature fluctuations, change in pH and fluctuating 

nutrient availability, be studied. It is also recommended to evaluate genetic stress responses of  

L. monocytogenes when treated with various sanitation chemicals.  

Apart from achieving the set objectives, this study created awareness within the RTE food 

factory and associated stakeholders regarding the complex nature of L. monocytogenes.  This 

pathogen should no longer be seen as a by-the-way organism, but should be considered a high 
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priority when it comes to ensuring food safety, especially in South Africa. This study hopes to set in 

motion discussion within the food industry, to increase efforts into understanding Listeria 

monocytogenes, in order to effectively manage it within the South African RTE food industry. 
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