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SUMMARY 

 

Inorganic Phosphate (Pi) is one of the key nutrients required by all living organisms on earth. 

This nutrient is of vital importance to higher plants but it is not readily available for uptake 

from the soil, implying constant stress on plants. During photosynthetic dark and light 

reactions, phosphate is a prerequisite for all reactions to occur and to ensure plant survival. 

This statement implies that a careful homeostatic control of this nutrient is necessary in 

order to maintain a balanced carbon flow in all sub-cellular plant compartments.  

 

Phosphate limitation is a threat to plant survival and one way of addressing this nutritional 

hurdle is by feeding plants with fertilizer. This method of crop development and general 

plant maintenance by humans has a devastating effect on the environment, as phosphate 

causes eutrophication and various other consequences which are detrimental to animal life. 

Plants, however, are naturally equipped with Pi transporters which are activated 

conditionally depending on the external Pi availability. These transporters are present in 

most sub-cellular compartments and some of them have been identified and characterised, 

while others remain to be a prediction. If these transporters are characterised accordingly it 

might eventually mean that the use of fertilizers may no longer be necessary. In order to 

contribute to successful Pi-efficient crop development, a clearer understanding of P-

dynamics in the soil and its recycling ability inside the plant itself is necessary. 

 

During this study it was attempted to characterise a putative high affinity Pi transporter, 

PHT1;5, from Arabidopsis thaliana via a Escherichia coli and yeast heterologous expression 

system and its Km value predicted in order to verify/hypothesise whether it is a high or low 

affinity transporter. This transporter is expressed in leaves and could be a promising tool for 

future carbon partitioning studies during phosphate limitation. 
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OPSOMMING 

 

Anorganiese fosfaat (Pi) word beskou as een van die belangrikste nutriente benodig vir alle 

lewe op aarde. Dit vervul ‘n hoof rol in talle noodsaaklike prosesse in hoër plante en is veral 

‘n voorvereiste vir fotosintetiese reaksies om plaas te vind. In ‘n plant se natuurlike 

omgewing is anorganiese fosfaat nie geredelik bekskikbaar in grond nie en dus word daar 

vermoed dat plante onder konstante fosfaat stres gevind word. Omdat fosfaat so ‘n 

belangrike rol speel tydens fotosintese is dit noodsaaklik dat daar ‘n balans op sellulêre vlak 

gehandhaaf word, veral wat die verspreiding van koolhidrate tussen die verskillende 

kompartemente van die sel betref. 

 

Plante se oorlewing word bedreig deur ‘n tekort aan fosfaat in die omgewing en die enigste 

onmiddelike oplossing daarvoor is deur die toediening van bemestingstowwe. Hierdie 

metode van landery ontwikkeling en algemene instandhouding van plante deur die 

mensdom het ’n baie negatiewe effek op die omgewing. ‘n Oormaat fosfaat lei tot 

eutrifikasie en het verkeie ander negatiewe nagevolge wat dodelik is vir die dierelewe. 

Plante beskik ook oor natuurlike interne fosfaat transporters om hierdie tekort te oorkom. 

Hierdie transporters word op grond van eksterne fosfaat beskikbaarheid ge-aktiveer of ge-

deaktifeer. Die transporters is teenwoordig in meeste sub-sellulêre kompartemente en 

sommige is al ge-identifiseer en gekarakteriseer, terwyl ander slegs ‘n voorspelling bly. 

 

Gedurende hierdie studie was ‘n poging aangewend om ‘n anorganiese fosfaat transporter 

van Arabidopsis thaliana, PHT1;5, te karakteriseer met behulp van mikro-organismes soos 

Escherichia coli en gis. Die poging het ingesluit om ‘n Km waarde vir hierdie transporter te 

voorspel en sodoende  ‘n hipotese daar te stel van of dit hoë of lae affiniteit het vir fosfaat. 

Die transporter word groot en deels aangetref in blare en kan dus dien as ‘n belowende 

apparaat vir toekomstige koolhidraat uitruiling studies gedurende fosfaat tekort.    
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“Never measure the height of a mountain, until you have reached the top. Then you will see 

how low it was.” 

                                                                                                                       Dag Hammarskjld          
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CHAPTER 1 

General Introduction 

Inorganic Phosphate (Pi) plays a central role in most of the vital processes of higher plants 

prerequisite for photosynthesis to occur. It has been suggested to be the most important 

nutrient, next to nitrogen, but it is not readily available for uptake from the soil, implying 

constant stress on plants. Being the key factor during photosynthetic reactions, a careful 

homeostatic control of this nutrient is necessary in order to maintain a balanced carbon flow 

in all sub-cellular plant compartments.  

 

Plant phosphate transporters are of extreme importance in the regulation of phosphate 

homeostasis on a whole plant level and are present in most sub-cellular compartments. The 

function of several phosphate transporters have been characterised, while others remain as 

in silico predictions. There are to date five families of transporters identified in Arabidopsis 

thaliana which are all localized to various compartments in the plant cell and present in 

different areas of the plant itself. Phosphate transporters can be categorised as high or low 

affinity based on their binding and transport capacity for phosphate at different 

concentrations. High-affinity transporters are activated during conditions of phosphate 

limitation and usually display a Km value of between 1-40 µM. Although many high-affinity 

phosphate transporters in plants have been putatively predicted, very little of them have 

been successfully characterised. Some of these plant phosphate transporters that show 

sequence similarities to high affinity transporters from Saccharomyces cerevisiae (Bun-Ya et 

al., 1991), Neurospora crassa (Versaw, 1995) and Glomus versiforme (Harrison and Van 

Buuren, 1995) have been characterised. These include LePT1 from Lycopersicon esculentum 

(Daram et al., 1998) with a Km value of 31 µM,   StPT1 and StPT2 from Solanum tuberosum 

(Leggewie et al., 1997) displaying respective Km values of 280 µM and 130 µM (still in 

question about whether they are high or low affinity), PHT1;1 from Hordeum vulgare L. (Rae 

et al., 2003) with Km value of 9.06 µM. These transporters have proven to be very difficult to 

characterise because contradicting Km values are often found when these proteins are 

analysed in yeast or cultivated plant cells. 
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The molecular mechanisms that monitor phosphate availability and integrate the nutritional 

signal in plants are unknown but this machinery has been extensively studied in other 

organisms. In many instances the characteristics of these transporters have been explored 

through the use of well defined heterologous expression systems utilising yeast, bacteria, 

oocytes or insect cells (Daram et al., 1998; Guo, 2010). The phosphate uptake mechanisms 

for each of these systems have been studied to great extend and therefore created a 

platform on which to characterise similar high or low affinity phosphate transporters present 

in plants. Most of the plant transporters have been successfully characterised by means of 

heterologous expression systems and their biochemical properties exploited subsequently. 

 

Phosphate limitation is a well known threat to plant survival and this nutritional hurdle is 

generally addressed by feeding plants with fertilizer, but plants are naturally equipped with 

high affinity Pi transporters which are activated during low Pi conditions. In the event of 

uncovering the biochemical properties of these transporters and understanding the 

mechanism behind phosphate sensing in plants, facilitates the development of genetically 

modified crops that constitutively express high-affinity Pi-transporters. This could serve as a 

possible approach to enhance plant survival in Pi-deprived soil, implying that the use of 

fertilizers may no longer be necessary.  

 

During this study a putative high affinity Pi transporter from Arabidopsis thaliana, PHT1;5, 

was investigated by means of utilizing heterologous expression systems including the use of  

E.coli and yeast mutant strains. This transporter has been proposed to be expressed mainly 

in leaves and to be localized to the chloroplast, although evidence for the latter statement 

does exist, the strength of evidence is not particularly convincing. Exploiting the 

characteristics of this transporter could lead to a promising tool for future carbon 

partitioning studies during phosphate limitation. In the long-term, developing crops that are 

able to sustain growth during Pi limiting surrounds, this study might contribute greatly to the 

success of the agricultural industry.  
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CHAPTER 2 

Literature Review 

 

2.1 Importance of Phosphate to plants 

 

Plants are dependent on a range of nutrients which are all important for survival and 

development. Phosphorus, classified as one of the most essential macronutrients, is 

available in two forms namely phosphate, the fully oxidised form, and orthophosphate (Pi) 

which is the assimilated form (Rausch and Bucher, 2002). Orthophosphate is utilised by 

plants to carry out various functions involved and required in many of the vital structural and 

regulatory processes in higher plants. These processes include growth, metabolism, energy 

transfer, enzyme activity regulation, photosynthesis and carbon partitioning (Walker and 

Sivak, 1986). This assimilated form of phosphorus is not readily available in soil for plant 

uptake due to it forming insoluble complexes with other minerals such as iron (Fe), 

aluminium (Al) and calcium (Ca) (Welp et al., 1983; Holford, 1997).   It also adsorbs to the 

surfaces of clay minerals, soil particles and calcium and magnesium (Mg) carbonates (Rausch 

and Bucher, 2002). Not only is the solubility a limiting factor but it is present at very low 

micromolar concentrations (1-10 µM) in soil (Marschner, 1995), suggesting that there is a 

constant demand for Pi in plants. This implies that, unless Pi is supplied by fertilisers, plants 

are under phosphorus limitation in their natural ecosystem. In the schematic representation, 

Figure 1, it is shown how the phosphorus cycle is involved in the ecosystem between plant, 

microbes and soil interactions. It has no atmospheric connection like nitrogen (N), which 

means that phosphorus is not necessarily subject to undergo biological transformation. 
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Figure 1: A simple schematic representation of how phosphorus is utilised and recycled in nature. Phosphate occurs in 

various forms, mainly organic (Po) (Form 1) and inorganic (Pi) (Form 2). Plants utilise the soluble inorganic phosphate (Form 

3) present in soil in very low concentrations. Pi forms insoluble complexes with various minerals, often rendering it 

unavailable for plant uptake. Microbial activity is also a key process whereby Po is converted to Pi for plant use. Soluble Pi 

enters the plant through uptake by the root system. Once plants die off their remains can contribute to the recycling 

process of phosphate (http://sandhillsh3.com/sites-phosphorus-fertilizer-cannabis/) 

 

 

Furthermore, phosphorus is structurally extremely important as it links together the genetic 

building blocks, DNA and RNA, enabling plants and all other living things to produce proteins 

and other compounds.  These compounds are necessary for structural development, cell 

division and the development and repair of new tissue. Pi is also an important component of 

ATP which is the energy carrier in all living things. ATP is a three component structure which 

includes a phosphate chain, an adenine and a ribose sub-unit. The key element for ATP 

activity is the phosphate chain which then magnifies the important role that Pi plays as part 

of natures’ energy source (Walker and Sivak, 1986). 
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2.2 Extracellular Phosphate transport 

 

Although phosphate is abundant in soil, it is evident that the assimilated form (Pi) is not 

readily available for plant uptake. Due to this limiting nature of orthophosphate, plants often 

face endangerment in their natural ecosystems and had to develop various adaptation 

strategies to overcome this nutritional hurdle. The first adaptation that plants undergo is 

usually aimed at root architecture and an alteration in root-to-shoot development. The root 

system becomes shallow, primary root growth is inhibited, lateral roots elongate and root 

hairs are prone to become more dense (Peret et al., 2011). These changes in root structure 

and growth are proposed to be associated with plant hormones (Nacry et al., 2005), which 

suggest that phosphate limitation causes a systemic response rather than a localized 

response (Smith, 2002). 

 

Phosphate is imported into plant cells, from the external soil surrounds, via the root system 

from where it is distributed accordingly to the aerial system (Smith, 2002). This import action 

from soil to root is driven by a rather lengthy diffusion mechanism which results into a 

phosphate depletion zone around the root system during phosphate limiting conditions 

(Smith, 2002). This zone, also known as the rhizosphere, is the main area for interaction 

between roots, nutrients and microbes (Shen et al., 2011). The morphological changes in the 

root architecture, as mentionad by Peret et al. (2011), are crucial steps in which plants are 

able to increase phosphate uptake and overcome a phosphate limitation in their soil 

surrounds.  For example, topsoil foraging (Lynch and Brown, 2001), whereby lateral root 

growth prevails and primary root growth is temporarily halted (Ticconi and Abel, 2004), 

enable the plant  to expand the immediate surface on which to search for favourable 

nutrient conditions, as phosphate becomes more limiting with greater depths (Vance et al., 

2003). It is evidently also necessary for the root to increase its own surface area in order to 

maximise sufficient phosphate uptake. Root hairs account for up to 80% of the roots surface 

and are an important tool for plants to combat phosphate limitation by increasing its length 

and density (Lynch and Brown, 2001; Williamson et al., 2001; Ma et al., 2001; Ticconi and 

Abel, 2004). These actions are taken by plants which are unable to form association with 

microbes to assist in increasing surface area for phosphate uptake (Jungk, 2001). 
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Biochemical changes are also part of the external Pi-sensing mechanism which include the 

activation and secretion of certain enzymes such as phosphohydrolases.  These enzymes are 

able to discharge Pi from organic matter which is the main component of phosphorus in soil.  

They also regulate the release of malate and citrate (organic acids) to chelate cations, such 

as Fe3+, Ca2+ and Al3+, which form insoluble salt and soil complexes, in order to facilitate the 

recruitment of inorganic phosphate (Lopez-Bucio et al., 2000; Raghothama, 2000; Abel et al., 

2002; Vance et al., 2003). 

 

Shen et al. illustrated an expanded view of how phosphate is recycled and distributed in the 

natural environment of the plant (Figure 2). Phosphate is present in soil in various forms, 

mainly organic and inorganic. Pi uptake by the plant seems to be a complex procedure and 

requires various individual processes. At first the plant is challenged with the reality of Pi 

absorbing to various minerals in the soil forming insoluble complexes (Figure 2: Soil 

processes). Furthermore, phosphate in soil is usually present in the organic (Po) form which 

is not useful to plants as they are only ably to use the assimilated form, inorganic phosphate 

(Pi). Po can be transformed to Pi by means of mineralization processes mediated by various 

microorganisms making it available for plant uptake. The rhizosphere is an essential area for 

the plant where Pi is made available to the plant through various processes (Figure 2: 

Rhizosphere processes). This is the zone where plant roots are able to interact with 

microorganisms that can assist in the uptake of Pi. Spatial and bioavailability of Pi greatly 

influence root growth and architecture and various soil properties. These impacts of Pi 

control the dynamics of phosphate in the rhizosphere area. The utilization, translocation and 

recycling processes of Pi inside the plant itself require even more complex and interlinked 

mechanisms (Figure 2: Plant processes). Phosphate is linked to all the key cross-talk 

processes in plants, suggesting that Pi dynamics inside the plant is systemic and not only 

based upon localised responses. In conclusion, plants have evolved their biochemical, 

morphological and physiological response mechanisms in order to transport Pi optimally and 

to effectively overcome limiting nutrient conditions. 
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Figure 2: A schematic representation from Shen et al. (2011) indicating the recycling process of phosphorus - from soil to 

plant and vice versa 
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2.3 Intracellular Phosphate transport 

 

Internally plants have developed and evolved in such a way to cope with the low availability 

of external Pi. These responses are aimed at the recycling of phosphate and include the use 

of high affinity transporter proteins activated under low Pi conditions (Smith et al., 2003). 

However, many of these transporters still remain only a prediction based on sequence 

similarity.  Only a few of these transporters, as a result of bioinformatics and genetic or 

biochemical studies, have been identified in plants so far. Sequence similarity, based upon 

organisms such as yeast and Neurospora crassa, has made it possible to predict five families 

of transporters in Arabidopsis thaliana localized to different compartments of the plant cell 

(BunYa et al., 1991; Versaw and Metzenberg, 1995).  These include: PHT1 (plasma 

membrane), PHT2 (plastid inner envelope), PHT3 (mitochondrial inner membrane), PHT4 

(golgi membrane and plastid thylakoid membrane) and pPT (plastid inner envelope) (Rausch 

and Bucher, 2002; Knappe et al., 2003; Guo et al., 2008; Zwiegelaar, 2010).  To date a 

number of transporters have been identified in A. thaliana (Table 1).  These transporters, 

localised throughout the plant, might fulfil various functions such as phosphate transport. 

  

During Pi limiting conditions cells are forced to remobilise and recycle their internal Pi which 

is stored in multiple compartments in the plant, including the vacuole. This recycling process 

includes the degradation of various macromolecules, co-factors and other intermediates 

which are distributed throughout the plant (Morcuende et al., 2007; Zwiegelaar, 2010). The 

main problem with this type of remobilisation is that the Pi stored in the vacuole is aimed at 

a long term solution and released at a very slow rate, too slow for the plant to gain sufficient 

amounts of Pi to undergo necessary photosynthetic reactions. This problem is addressed by 

activation of the high affinity Pi transporters.  These transporters are mainly included in the 

Pht1 family which are not only subject to Pi uptake from the soil, but also proposed to be 

involved in the translocation of Pi from older and senescent leaves to the rest of the plant 

(Jeschke et al., 1997; Zwiegelaar, 2010). These high affinity transporters enable plants to 

overcome a phosphate limiting environment and are key elements required for the 

functional uptake mechanism for nutritionally challenged plants. 
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Goldstein et al., (1989) proposed an interesting concept for the recycling of phosphate in 

plants during limiting conditions. This hypothesis is based upon the well characterised yeast 

pho-regulon which encodes for Pi-acquisition enzymes and regulatory proteins. Coherently 

plants should also have the ability to control Pi-responsive genes on a physiological and 

genetic level, thus a ‘pho-regulon’ was suggested in analogy to microorganisms. This system 

includes the up-regulation of several enzymes and proteins which include a Pi-starvation 

inducible high-affinity Pi transporter, phosphatases with varying substrate specificities, 

ribonucleases, phosphoenolpyruvate carboxylases, pyrophosphate-dependent 

phosphofruktokinase and also several short open reading frames encoding for RNAs or 

polypeptides. The phosphatases and ribonucleases are believed to be involved in the 

degradation of extracellular nucleic acids and other organic compounds.  They release 

phosphate for immediate use and supply phosphate on short term demand. Carboxylases 

and phosphofruktokinases are proposed to be involved in the Pi-recycling systems that 

bypass the Pi and adenylate requiring steps in glycolysis, thus permitting carbon metabolism 

to proceed in Pi-starved cells. 

 

All of the phosphate transporters mediate an adequate supply of inorganic phosphate to the 

relevant subcellular compartments depending on the phosphate availability in the soil. Low 

Pi concentrations will activate a high affinity transporter which will compensate for the other 

systems unable to supply the chloroplast with Pi.  This is supported by the fact that the 

function of the different transporter homologs seems to be conserved throughout the plant, 

microbial and animal kingdoms (Guo, 2008). These transporter proteins are essential to 

plants in order to maintain Pi levels in all subcellular compartments.  This elucidates the fact 

that Pi is the key nutrient involved in the regulation of metabolic processes and that a 

careful homeostatic control is necessary to maintain the storage and redistribution of Pi in 

plant cells. However, there are more unexplained issues to this ability of plants to overcome 

Pi limiting conditions.  The fact holds true that there are still remaining transporters that 

need to be identified and characterised before Pi homeostasis and transport can be 

completely grasped. 
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Table 1: Transporters included in the Arabidopsis thaliana families of transporters, their localisation and possible function 

Gene name Gene ID Accession number Tissue of expression Assigned/Posiible function 

PHT1;1 At5g43350 D86608 Root, Cotyledon, 

Shoot, Bud, Seed 

H+/Pi symporter 

PHT1;2 At5g43370 AB000094 Root H+/Pi symporter 

PHT1;3 At5g43360 AB000094 Root, Cotyledon, Leaf H+/Pi symporter 

PHT1;4 At2g38940 AB016166 Root, Leaf, Flower, 

cultured cells 

H+/Pi symporter 

PHT1;5 At2g32830 AL00397 Leaf, Flower, Bud H
+
/Pi symporter 

PHT1;6 At5g43340 AB005747 Cotyledon, Phloem H+/Pi symporter 

PHT1;7 At3g54700 ATT5N23 Root, Flower H
+
/Pi symporter 

PHT1;8 At1g20860 - Root H
+
/Pi symporter 

PHT1;9 At1g76430 AAF20242 Root H+/Pi symporter 

PHT2;1 At3g26570 AJ302645 Aerial organs Chloroplast Pi symporter 

PHT3;1 At5g14040 BAB08283 - Mitochondrial Pi transporter 

PHT3;2 At3g48850 - - Mitochondrial Pi transporter 

PHT3;3 At2g17270 - - Mitochondrial Pi transporter 

PHT4;1 At2g29650 NM_128519 Photosynthetic tissues Plastid thylakoid membrane 

transporter 

PHT4;2 At2g38060 NM_129362 Root Plastid Pi transporter 

PHT4;3 At3g46980 NM_114565 Leaf phloem Plastid Pi transporter 

PHT4;4 At4g00370 NM_116261 Photosynthetic tissues Plastid Pi transporter 

PHT4;5 At5g20380 NM_122045 Leaf phloem Plastid Pi transporter 

PHT4;6 At5g44370 NM_123804 Ubiguitous Pi transporter in Golgi membrane 

AtTPT At5g46110 AAC83815 - Triose-phosphate/Pi translocator 

AtPPT At5g33320 AAB40646 - Phosphoenolpyruvate/Pi 

translocator 

AtGPT1 At5g54800 AAL15310 - Glucose-6-phosphate/Pi 

translocator 

AtGPT2 At1g61800 - - Glucose-6-phosphate/Pi 

translocator 

AtXPT At5g17640 AF209211 Flower, Leaf, Shoot, 

Root 

Pentose phosphate/Pi translocator 
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2.4 Transporters included in the Pht1 family 

 

Several putative Pi transporters have been identified and categorised to the Pht1 family 

according to the Arabidopsis EST database cDNA sequence similarities. The sequence 

similarties were based upon genes from species with characterised Pi transporters such as 

PHO84 from Saccharomyces cerevisiae (Bun-Ya et al., 1991), PHO5 from Neurospora crassa 

(Versaw, 1995) and GvPT from Glomus versiforme (Harrison and Van Buuren, 1995). The first 

genes to be cloned and putatively identified as Pi transporters were isolated from Solanum 

tubersum and Arabidopsis cDNA libraries (Muchhal et al., 1996; Leggewie et al., 1997; 

Mitsukawa et al., 1997) or by RT-PCR (Smith et al., 1997) and were subsequently assigned to  

this family. Since then the number of genes from several other plant species have been 

identified as Pi transporters including genes from Lycopersicon esculentum (Daram et al., 

1998; Liu et al., 1998a) and Medicago truncatula (Liu et al., 1998b) which have been 

successfully characterised. These transporters showed an increase in transcript levels during 

Pi limiting conditions and were for this reason assigned to the Pht1 family of high affinity 

transporters.  

 

The Pht1 family of transporters are all H+-coupled transporters that facilitate the movement 

of phosphate across the plasma membrane against an electrochemical gradient (Marschner, 

1995). The fully sequenced genome of A. thaliana has made it possible to identify 9 

members of transporters included in the Pht1 family.  These can be accessed by a gene 

search on the Arabidopsis Information Resource website:  

http://arabidopsis.org/info/genefamily/genefamily.html.  All of these genes exhibit a high 

similarity in sequence and encode for high affinity inorganic phosphate transporters. Some 

of the properties of these transporters have been characterised (Muchhal et al., 1996; Smith 

et al., 1997; Okumura et al., 1998; Mudge et al., 2001) and Km values seems to be generally 

in the micro molar range. 

 

Eight out of the nine members in Arabidopsis were shown to be expressed predominantly in 

roots.  In the roots these transporters mediate the movement of Pi against a steep 

concentration gradient due to an internal plant Pi concentration which is approximately 

1000 to 100 000 times higher than that of the soil (Shin et al., 2004). Although the 
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expression patterns of these transporters have been identified, their function regarding Pi 

movement inside the plant has yet to be determined (Karthikeyan et al., 2002; Mudge et al., 

2002). This family of transporter proteins indicate 75%-85% similarities and were assigned to 

the Major Facilitator Superfamily (MFS) class of transporters (Pao et al., 1998). 

 

The MFS contains membrane transporters and is one of the largest families of transporter 

classes next to the ATP-binding cassette superfamily (ABC). Both these families are found to 

be universal and present within most, if not all, living things (Pao et al., 1998). Transporters 

included in the MFS exhibit similar protein characteristics and generally display 12 to 14 

putative or assigned transmembrane domains which are targeted to the plasma membrane 

(Pao et al., 1998).  The MFS functions as a secondary carrier of small soluble molecules as a 

response against chemiosmotic ion gradients.  It consists of seventeen sub-families including 

the Phosphate: H+ superfamily (PHS) which is of importance to this study. The PHS family of 

transporters are conserved throughout the fungi, yeast and plant kingdoms but does not 

occur in bacteria, animals or other eukaryotes (Pao et al., 1998). Members of this family 

exhibit very similar sequence identity and proteins are generally in the range of 518 to 587 

amino acid residues in length with 11 residues being conserved throughout. 

 

 

2.5 PHT1;5 

 

During this study a member, PHT1;5, of one of the families was investigated. This high 

affinity Pi transporter, expressed during Pi limiting conditions, is predicted to be localized to 

the chloroplast plasma membrane and is proposed to transport Pi as result of an 

electrochemical gradient brought about by H+-ATPase (BunYa et al., 1991; Versaw and 

Metzenberg, 1995). This gradient permits transport to occur through a counter exchange 

H+/Pi symport mechanism, similar to the model seen in Figure 3. 
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Figure 3: Movement of Pi across the plasma membrane (Illustration by Poirier and Bucher, 2002) 

 

 

The H+/Pi class of Pi transporters have been shown to be expressed predominantly in roots, 

although PHT1;5 and few other were proposed to be expressed in shoots (Okumura et al., 

1998). Limited knowledge is available about the transport of Pi in the shoots where 

transport occurs between subcellular compartments such as chloroplasts/plastids, vacuoles 

and mitochondria. Various questions still remain about a large proportion of these 

transporters, such as the biochemical parameters (Km values, pH optimum, ion specificity), 

the biological role of these Pi transporters and the regulation of the genes during plant 

developmental stages and environmental responses.  

 

A previous study by Mudge et al. (2002) indicated with reporter gene fusions that PHT1;5 is 

expressed in young plant tissue, cotyledons, and in older senescing leaves. This study 

suggested that PHT1;5 functions as a transporter which remobilize Pi from older to younger 

tissue, however their experiments were conducted during conditions of sufficient Pi 

availability. Zwiegelaar (2010) investigated expression patterns of PHT1;5 during conditions 

of Pi limitation which indicated that it is strongly expressed in leaves under these 

circumstances. Subcellular localization of PHT1;5 was subsequently determined to be 

targeted to the plastid. Zwiegelaar (2010) also demonstrated that double the amount of Pi 

was present in Arabidopsis WT chloroplast fractions as opposed to PHT1;5 T-DNA insertion 

mutants. These results suggested that this transporter acts as an importer of Pi into the 

chloroplasts during limiting conditions in order for photosynthesis to continue as normal. 
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A recent study by Nagarajan et al. (2011) utilised reverse genetics to determine the role of 

PHT1;5 in Pi mobilization, acquisition and its relation to ethylene signalling. They 

demonstrated that PHT1;5 is expressed in seedling cotyledons and hypocotyls, senescent 

leaves, floral buds and Pi-starved roots. It was suggested that PHT1;5  performs a similar role 

as the PHT1 transporters found in rice (OsPht1;2 and OsPht1;6) and barley (HvPht1;6) which 

are known for their function of Pi mobilization (Rae et al., 2003; Ai et al., 2009). In their 

study they indicated that PHT1;5 regulates the amount of Pi in shoot tissues by remobilizing 

Pi between root and shoot. It was indicated that PHT1;5 is localised in phloem of older 

leaves, sustaining the suggestion of its role in Pi remobilization. This highlights the important 

role of PHT1;5 during Pi homeostasis. Nagarajan et al. also investigated the interaction 

between ethylene signalling pathways and the activation of PHT1;5.  They were able to 

demonstrate that over expression of this gene in Arabidopsis leads to premature 

senescence. It was revealed that Pi limiting conditions and senescence require similar 

intracellular actions which involve the recycling of Pi by releasing it from organic forms of 

phosphate (Zwiegelaar,2010). This evidence supports the hypothesis that there is a link 

between senescence, ethylene signalling and the activation of Pi transporters, but requires 

further investigation. 

 

 

2.6 Phosphate, photosynthesis and PHT1;5 – the theory 

 

The chloroplast harbours the photosynthetic network which is the main process that enables 

all plants to produce the necessary components for life, namely, starch and sucrose. Carbon 

assimilation during photosynthetic reactions requires orthophosphate (Pi) which is derived 

from ATP. This process is carried out in the chloroplast stroma and can be represented by 

the following equation, indicating Pi as key factor (Sivak and Walker, 1985): 

 

This simple equation indicates the plastidial import and export of metabolites through the 

phosphate translocater (Heldt and Rapley, 1970). It emphasizes the fact that the chloroplast 
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imports Pi and exports triose phosphate (Heldt and Rapley, 1970; Walker, 1976; Edwards 

and Walker, 1983) in a one-to-one ratio, thus the total phosphate inside the chloroplast is 

regulated to maintain a constant concentration. This illuminates the statement that Pi 

homeostasis plays a pivotal role in photosynthesis. 

 

Carbon partitioning during the light and dark photosynthetic reactions occur mainly as result 

of Pi which regulate metabolic pools in the plant cell. The fluxes of Pi and carbon are highly 

coupled and regulated processes. The distribution of carbon between metabolites and 

different compartments of the cell remains to be the topic of on-going research. Increasing 

current knowledge of carbon flow can be achieved by investigation of two important areas.  

Firstly, the transport proteins on the plastid envelope membrane should be identified and 

characterised. Secondly, the rate of transport and its regulating mechanisms should be 

exploited. The first Pi transporter to be cloned and characterised was TPT which mediates a 

controlled passive counter exchange between Pi and triose-P photosynthetic end products 

during adequate Pi supply (Flugge et al., 1989). TPT is a low affinity transporter and 

therefore has restricted activity during Pi limiting conditions.  This would lead to the 

inhibition of photosynthesis due to a lack of Pi in the chloroplast stroma. This statement is 

supported by the fact that TPT is the only low affinty transporter which directs the influx of 

Pi into the chloroplast (Guo, 2008). 

 

It is thus predicted that the activation of the high affinity transporter, PHT1;5, is an 

alternative route of Pi supply during phosphate depletion. As a result of the poor 

functionality of TPT during phosphate limitation, alternative routes for carbon export should 

also exist in order to feed non-photosynthetic tissues and to maintain metabolic pools. It has 

been proposed that starch is broken down to maltose and glucose which are exported to the 

cytosol (Figure 4,), via GT (Weber et al., 2000) and MT (Niittyla et al., 2004) where it is 

converted into sucrose. This statement is supported by the fact that mutants of these 

transporters are coupled to impaired starch degradation (Weber et al., 2000). 
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The vacuole is the main storage pool of Pi and comprises of 85-95% of the total Pi content of 

the plant (Rausch and Bucher, 2002). The effect that Pi has on photosynthesis and carbon 

partitioning are greatly influenced by the vacuole, cytoplasm and chloroplast Pi 

concentration (Rausch and Bucher, 2002; Zwiegelaar, 2010). During times of sufficient Pi 

supply, the concentration of Pi in the cytoplasm is around 60-80 µM (Pratt et al., 2009) and 

ensures for optimal photosynthetic conditions. However, during times of Pi limitation this 

concentration can decrease to levels below 15 µM (Pratt et al., 2009), affecting the rate of 

photosynthesis and carbon turnover. The immediate train of thought is that the vacuole 

would compensate for this lack of Pi by releasing its stored contents, but this holds untrue as 

the efflux rate of Pi from the vacuole is extremely slow (Martinoia et al., 1986). The vacuole 

would therefore not attend to an immediate solution for metabolic availability of Pi but 

rather serve as a long-term solution. These statements were investigated during various 

studies where vacuoles were isolated to investigate their Pi uptake and release mechanisms. 

This statement was proven in a study done by Loughman et al., (1989). They indicated that, 

when plants are fed sequestering agents like mannose, the Pi concentration inside the 

cytosol rapidly decreased while the concentration in the vacuole remains largely unchanged. 

The mechanisms by which the vacuole transports Pi is still fairly uncharacterised and further 

studies need to be conducted (Rausch and Bucher, 2002). 

 

In order to ensure survival, plants had to develop other mechanisms by which to supply the 

chloroplast with Pi during limiting conditions. The short term solutions mainly involve the 

activation of high affinity transporters and transport of Pi across the chloroplast membrane 

(Zwiegelaar, 2010). Figure 4 illustrates the proposed alternative route of Pi supply to the 

chloroplast during Pi deprivation which is transported via the high affinity PHT1;5 for ATP 

production and photosynthesis to continue as normal. Photosynthesis generates an H+ 

gradient (Figure 4: 1) to ensure ATP synthesis. This process requires a generous amount of Pi 

in order to prevent the H+ gradient from increasing to such a level where photosynthesis is 

aborted. The low affinity transporter, TPT, ensures that the chloroplast is supplied with Pi 

(Figure 4: 2) by exchanging it for triose-P during phosphate-rich periods. During times of Pi 

limitation, when TPT is unable to function, it is proposed that the high affinity transporter, 

PHT1;5, is utilised to supply the chloroplast with Pi (Figure 4: 3). PHT1;5 is  thought to be 

localized on the chloroplast membrane and has been shown to be up-regulated during times 
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of Pi limiting conditions. It is therefore hypothesised that PHT1;5 compensates for the lack of 

activity in the TPT transporter during these periods. Plants need to regulate cell metabolism 

(Figure 4: 4) which is achieved through starch turnover. This process contributes to Pi 

recycling through ATP hydrolysis, ensuring that photosynthetic reactions are maintained. 

During starch turnover, intermediates like glucose and maltose are exported to the cytosol 

(Figure 4: 5) to sustain cell metabolism (Weber et al., 2000; Niittyla et al., 2004). The enzyme 

β-amylase (Figure 4: 6) has increased activity during Pi limitation, suggesting its involvement 

in carbon flow by increasing the rate at which glycans are converted to hexose phosphate. 

This function contributes to the alternative route of carbon flow and Pi supply to chloroplast 

during limiting conditions but this pathway of degradation is still to a great extend 

unknown(Zwiegelaar 2010).  

 

 

 

Figure 4: Illustration of an alternative route for carbon export during Pi limiting conditions (Illustration adapted from 

Zwiegelaar, 2010) 
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2.7 Heterologous expression systems 

 

Heterologous expression systems are simplified platforms on which to characterise plant 

genes and to produce proteins on large scale outside their natural environment. These 

platforms usually include the use of bacteria, yeast, oocytes or insect cells which are all well 

defined systems (Wanner and Latterell, 1980; Rao and Torriani, 1990; Martinez and Persson, 

1998). This enables researchers to perform uptake studies using heterologous expression 

systems, hence providing a platform on which to analyse and characterise similar 

transporters present in plants and/or animals. 

  

Heterologous expression systems have made it possible to exploit the properties of similar 

transporters present in plants. Saccharomyces cerevisiae and Pichia pistoris have been 

utilised on previous occasions with great success (Leggewie et al., 1997; Smith et al., 1997; 

Daram et al., 1998; Guo, 2008). Escherichia coli systems have also been successfully utilised 

(Haferkamp et al., 2002; Pavon et al., 2008) where various NA+/Pi transporters have been 

exploited. The main heterologous expression systems used to characterise plant membrane 

transporters are therefore yeast and E.coli. 

 

E.coli has been a favourite amongst the choice of well established heterologous expression 

systems (Frommer and Ninnemann, 1995). It displays several advantages above other 

systems such as simplicity to work with, rapid growth rate, high yield of protein production 

and relative low expense. Generally, genetic and biochemical information about this 

prokaryote is readily and extensively available, various strains and mutants are easy to come 

by and all commercially available vectors are compatible for E.coli transformation. The main 

disadvantage for this choice of heterologous expression system is the fact that E.coli is not 

able to execute post-translational modification, often a crucial step required in the folding of 

some recombinant proteins (Frommer and Ninnemann, 1995). Apart from the incorrect 

folding, another disadvantage is that the protein might be toxic to the bacterial cell. In some 

cases however, membrane proteins have been expressed successfully utilising this system 

for example the light-harvesting chlorophyll binding protein from pea (Kuhlbrandt and 
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Wang, 1991). Occasionally plant membrane transporters are characterised with this simple 

expression system and it has been proven to successfully conduct complementation assays 

and direct flux measurements (Kim et al., 1998; Uozomi et al., 1998).  During a study 

conducted in 2008 by Pavon and colleagues, the Arabidopsis anion transporter ANTR1 was 

functionally characterised utilising E.coli as choice of expression system (Pavon et al., 2008).  

They demonstrated via radioactive analysis that this transporter functions as a Na+-

dependant Pi transporter and that it is localised on the thylakoid membrane of the 

chloroplast. 

 

The eukaryotic system of heterologous expression, yeast, is frequently utilised to 

functionally express proteins from higher organisms such as plants. This ability displayed by 

yeast is further enhanced because eukaryotes share biochemical, genetic and molecular 

characteristics. Probably the main advantage of using yeast as a heterologous expression 

system is its ability to perform post-translational modification, thus producing functional 

recombinant proteins at a relatively rapid growth rate (Bassham et al., 2000). The 

shortcomings of this system are the extremely low yield of proteins produced and the 

possibility that the secreted proteins might be hyperglycosylated due to the stress level of 

yeast cells when expressing a foreign protein (Yesilirmak and Sayers, 2009).  Frommer and 

Ninnemann (1995) investigated the ability of S. cerevisiae null mutants to be complemented 

by similar plant genes. They screened cDNA libraries from Arabidopsis and it was established 

that this heterologous expression system is suitable for studying the functional and kinetic 

properties of plant transporters (Dreyer et al., 1999). Previous investigations successfully 

exploited the electrophysiological characteristics of membrane transporters through 

complementation of mutant S. cerevisiae strains. For example KAT1 (Bertl et al., 1995), 

AtPT1 and AtPT2 from Arabidopsis (Muchhal et al., 1996), LePT1 and LePT2 from tomato 

(Daram et al,. 1998) and various transporters from plant species such as barley and 

grapevine (Santa-Maria et al., 1997; Hayes et al., 2007). On the downside, many of these 

transporters were only able to complement the mutant yeast strains but this expression 

system could not be utilised to investigate functional and kinetic properties. 
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Heterologous expression is a valuable system for investigation of biochemical and functional 

properties of genes from different organisms, especially where the genome sequence is not 

available. The disadvantages of each system must also be taken into consideration when 

protein structure and function need to be determined, due to the fact that when foreign 

genes are expressed, the recombinant protein might not fold correctly and might be mis-

localised. Strategies to overcome misfolding have been developed.  These include the use of 

other host organisms, expression of genes in the periplasm and the use of tags. Mis-

localization is still an unresolved issue due to the possibility of the recombinant protein 

compensating for the absent protein of the host strain by replacing its function (Bassham et 

al., 2000). This increases the possibility for biased and unreliable results. 

 

 

2.8 Aims and objectives 

 

The aim of this study was to characterise the PHT1;5 Pi transporter from Arabidopsis 

thaliana and to exploit its characteristics for further investigations regarding alternative 

downstream carbon partitioning pathways under Pi limiting conditions. 

There were three objectives set out for this study. The first objective was to investigate E.coli 

and yeast as heterelogous protein expression system. The second objective was to 

determine whether PHT1;5 is a high affinity transporter and characterise it by utilising a 

heterologous expression systems to approximate the Km value. This E.coli platform included 

the use of four mutant E.coli strains which all individually contained a gene deletion in the 

pst operon (pstA, pstB, pstC or pstS). A fifth strain mutated in all Pi uptake systems was also 

utilised.  The yeast strain PAM2, mutated in both high and low affinity phosphate uptake 

systems, was also used. These strains were to be complemented by the addition of the 

PHT1;5 gene by functional expression when phosphate starvation conditions were initiated. 

The third objective was to characterise the protein in silico and with protein induction and 

expression in vivo. 
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CHAPTER 3 

In Silico analysis of PHT1;5 

 

3.1 Introduction 

 

The high affinity transporter, PHT1;5, is part of the Pht1 family of transporters which are 

involved in the acquisition and transport of inorganic phosphate (Pi). They all display a 

protein size of approximately 58 kDa and a length of about 520 – 550 amino acids. Being part 

of the multi facilitator superfamily (MFS) it is suggested, but should not be assumed, that 

similar characteristics apply to all of the family members (Pao et al., 1998). These 

characteristics include 12 membrane spanning domains (MSD) which are arranged in a 6+6 

configuration with a long hydrophilic loop extended between transmembranes six and 

seven. The transmembranes usually display an intracellular orientation for the hydrophilic 

loop as well as the N and C terminals. In silico analysis was done on PHT1;5 in order to 

determine whether it forms part of the predicted family of transporters and to indicate its 

expression pattern within the plant. 

 

 

3.2 Materials en methods 

 

TargetP (Emanuelsson et al., 2000), ChloroP (Emanuelsson et al., 1999) and PCLR (Schein et 

al., 2001) was utilised to predict the location of PHT1;5 on a subcellular level. The programs 

on the ARAMEMNON Web site (http://aramemnon.uni-koeln.de/) PRODIV-THMM, SOSUI, 

OCTOPUS and Mobyl were used to analyse membrane topology (Schwacke et al., 2003; 

Viklund et al., 2004; Gomi et al., 2004) and the expression profile of the protein. ClustalW 

was used to perform alignments of various sequences (Altschul et al., 1997). 
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3.3 Results and discussion 

 

3.3.1 Analysis of the Arabidopsis PHT1;5 protein structure and membrane topology 

 

The 542-amino acid sequence of PHT1;5 protein (UniProtKB Q8GYF4) from Arabidopsis 

thaliana was investigated  on the ChloroP 1.1 (Emanuelsson et al., 1999) server for possible 

evidence that it could be localised to the chloroplast. The output obtained during prediction 

indicated very weak evidence for this transporter to be localised to the chloroplast. It 

displayed a weak probability score of 0.438 which is indicative of how certain the network is 

of an existing transit peptide (0 being least and 1 being most certain) and it was therefore 

predicted not to contain a signal peptide. Although the network suggested the absence of a 

transit peptide, it still determines the possible length of a putative chloroplast transit 

peptide, should one exist. This putative transit peptide was predicted to be 69 amino acids in 

length. The results concerning the transit peptide was further analysed on the TargetP 1.1 

server (Emanuelsson et al., 1999) which predicts sub-cellular locations of proteins. TargetP 

displayed similar concerns with regards to PHT1;5 being localised to the chloroplast, with a 

cTP (chloroplast transit peptide) score of 0.015. TargetP predicted that this protein has 

another location (0.784) in the plant cell, excluding the mitochondria (score of 0.075) or the 

possibility of it being a secretion protein (score of 0.435). A final attempt to decide whether 

the protein is localised to the chloroplast was done on the PCLR server which indicated that 

PHT1;5 is non-chloroplast targeting. These results are contradictory to literature evidence.  

Although not conclusive, it should be taken into consideration that these programs merely 

predict the results and are not really probabilities, but only predicted as being most likely 

according to the software algorithms. The full length protein has 542 amino acid residues 

(Table 2), starting with a methionine, and the molecular mass for the full-length protein is 59 

kDa. 
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Table 2: Amino acid composition of the PHT1;5 protein. 

Number of amino acids contained within PHT1;5 Amino Acid Residue 

20 Argenine 

18 Asparagine 

19 Aspartic acid 

20 Glutamic acid 

50 Glycine 

23 Lysine 

20 Proline 

36 Serine 

 

 

A hydrophobicity plot was analysed for the PHT1;5 protein to determine whether it has 

more polar or non-polar amino acid residues. A more positive value is indicative of 

hydrophobic amino acid residues at a specific position of the protein. Evidently the more 

negative the value, the more hydrophilic the residues. These plots are generally useful for 

predicting transmembrane alpha-helices that are included in membrane proteins because 

the amino acid residues are screened from start to end, values are plotted onto the scale as 

such, and each value indicates the association of the amino acid with the phospholipid 

membrane. The positive and negative values change accordingly and respectively denote 

whether or not the residue is attracted to or repelled by phospholipid membrane. Analysis 

of PHT1;5 with the Mobyl (von Heijne, 1992; Claros and von Heijne, 1994) software indicated 

that the protein is mostly hydrophobic (Figure 5) with a general positive score of 0.33, 

indicating that the protein is highly associated with the phospholipid membrane. It can 

therefore be assumed that PHT1;5 is a membrane bound protein. 
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Figure 5: Hydrophobicity plot of PHT1;5 as predicted by Mobyl. Above hydrophobic regions are predicted transmembrane 

helices. Higher values indicate hydrophobicity, thus more positive values denotes the likeliness of the transmembrane to be 

hydrophobic and predicted to be associated with a membrane. In the plot it is clearly demonstrated that each 

transmembrane has a positive value and it can therefore be said that PHT1;5 is a membrane bound protein 

 

 

The membrane topology of the PHT1;5 protein was determined with various software 

including TMHMM (Moller et al., 2001), SOSUI (Gomi et al., 2004), OCTOPUS(Marques et al., 

2003) and Mobyl (von Heijne, 1992; Claros and von Heijne, 1994). These programs allow for 

the prediction of possible transmembrane alpha helices and also the location of the 

membrane loops. TMHMM predicted that approximately 247 amino acid residues are 

included in 10 putative transmembrane helices in the protein (Figure 6). The N- and C-

terminals are predicted to have an “in” (for example, “in” the stroma) orientation which is 

an indication of it being a membrane bound protein. It was also found that there is a 

possibility that the N-terminal signal sequence may exist which contradicts previously 

generated data, but opens the possibility that it may be assigned to a specific organelle such 

as the chloroplast. The results obtained from this prediction are based on a hidden Markov 
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model, a statistics based program developed to make probabilistic models for linear 

sequences. 

   

In addition, SOSUI software also predicted that there are 10 transmembrane helices but that 

the protein contains no signal peptide. Other sets of topology programs were utilised to 

analyse the protein but there is large variability in the outcomes between them. Some 

programs such as OCTOPUS and Mobyle predict the protein to have 12 membrane spanning 

domains (Figure 7) and that one of these proteins is only putative. Results gathered the 

various software are contradictory and might be due to fact that the protein contains a large 

number of proline and glycine residues as well as numerous charged residues which might 

interfere with the program algorithms. Similar problems were detected with the analysis of 

the ANTR1 (Pavon et al., 2008) and ATP/ADP carrier (Thuswaldner et al., 2007). In this study 

it is proposed, based upon assumption, that the protein contains 12 transmembrane helices 

simply because PHT1;5 belongs to the major facilitator superfamily (Lemieux, 2007) of H+-

transporters.  

 

 

 

Figure 6: TMHMM software prediction of 10 putative transmembrane helices of the PHT1;5 protein 
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Figure 7: OCTOPUS prediction of 12 transmembrane helices in PHT1;5 

 

 

3.3.2 Expression profile of PHT1;5 

 

Previous studies (Zwiegelaar, 2010; Nagarajan et al., 2011) had proposed that the PHT1;5 is 

being expressed in the aerial parts of the plant. In order to observe this phenomenon in 

silico, analysis was performed with GeneCAT (Mutwil et al., 2008) software (Figure 8) which 

revealed that these findings hold true. GeneCAT indicated that the gene is highly expressed 

in senescing leaves, flowers, pollen and seed. These results have been confirmed in the 

Arabidopsis eFP browser and a similar expression profile was observed (Figure 9; Figure 10). 

The results obtained via the software indicate that the expression of PHT1;5 is highest in 

senescent leaves, implicating its possible role during phosphate remobilization from older to 

younger tissue during phosphate limitation. These findings lead to the speculation that 

PHT1;5 not only functions as an importer of Pi but it also implicates the possibility that it 

may function as an exporter during times of phosphate depletion, hence playing an 

important role in maintaining Pi homeostasis in sub-cellular compartments. 
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Figure 8: Expression profile of PHT1;5 as predicted by GeneCAT,indicating that the gene is highly expressed in senescent 

leaves 

 

 

 

Figure 9:  Expression profile of PHT1;5 as predicted by the Arabidopsis eFP browser 
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Figure 10: Development map of PHT1;5 as predicted by Arabidopsis eFP browser, confirming results obtained from the 

GeneCAT investigation. This expression profile indicates that PHT1;5 is highly expressed in senescent leaves. The map 

indicates different stages of plant development and predicts where the expression of the gene is highest; Yellow = no 

expression, Orange = moderate expression, Red = high level of expression 

 

 

3.3.3 Sequence analysis of PHT1;5 

 

Sequence alignments were done between proteins included in the Pht1 family of 

transporters and also between PHT1;5 and some known high-affinity transporter proteins 

from other species, such as PHO84 from yeast, LePT1 from tomato, PHO5 from Neurospora 

crassa and GvPT from Glomus versiforme (Figure 12). It was found that that sequences in the 

Pht1 family are highly similar and that is conserved region between amino acid positions 

142-156: GIGGDYPLSATIMSE.  When the sequence was further analysed it became evident 

that the transporter is part of the Major Facilitator superfamily (MFS) with conserved amino 
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acid residues, present amongst Pi/H+-transporters from various species (Figure 12). No 

sequence homology was found to transporters in E.coli or other known plant chloroplast 

transporters. 

PHO84           MSSVNKDTIHVAERSLHKEHLTEGGNMAFHNHLNDFAHIEDPLERRRLALESIDDEGFGW 

PHO5            ---------------MSTPQKTAGGNNAYHNFYNDFLHIKDPNERRRLALAEVDRAPFGW 

PHT1_5          -----------------------------------------MAKKGKEVLNALDAAKTQM 

LePT1           ------------------------------------------MANDLQVLNALDVAKTQL 

                                                            .   .*  :* 

  

PHO84           QQVKTISIAGVGFLTDSYDIFAINLGITMMSYVYWHGSMPGPSQTLLKVSTSVG------ 

PHO5            YHVRAVAVAGVGFFTDSYDIFTVSLLTLMLGIVYFQAKARCLQPPTQPSSSQHR------ 

PHT1_5          YHFTAIVIAGMGFFTDAYDLFSISLVTKLLGRIYYHVDSSKKPGTLPPNVAAAVNGVAFC 

LePT1           YHFTAIVIAGMGFFTDAYDLFCISMVTKLLGRLYYHHDGALKPGSLPPNVSAAVNGVAFC 

                 :. :: :**:**:**:**:* :.:   ::. :*:: .      .     : 

 

PHO84           -TVIGQFGFGTLADIVGRKRIYGMELIIMIVCTILQTTVAHSPAINFVAHSPAINFVAVL 

PHO5            -PARSLG--------RSASAPLLMSLVVRACTDWNCCSSSLPLSLRPWLRVTFHQHHRYH 

PHT1_5          GTLAGQLFFGWLGDKLGRKKVYGITLMLMVLCSLGSGLSFG---------HSANGVMATL 

LePT1           GTLAGQLFFGWLGDKMGRKKVYGMTLMIMVICSIASGLSFG---------HTPKGVMTTL 

                 .  .           . .    : *::                       . 

 

PHO84           TFYRIVMGIGIGGDYPLSSIITSEFATTKWRGAIMGAVFANQAWGQISGGIIALILVAAY 

PHO5            YLLACSYGGRYRWRLSSFQYITSEFATTKWRGAMMGAVFAMQGLGQLAAAFVMLFVTLGF 

PHT1_5          CFFRFWLGFGIGGDYPLSATIMSEYANKKTRGAFIAAVFAMQGFGILAGGIVSLIVSSTF 

LePT1           CFFRFWLGFGIGGDYPLSATIMSEYANKKTRGAFIAAVFAMQGFGILAGGMVAIIVSAAF 

                 :     *       .    * **:*..* ***::.**** *. * ::..:: :::   : 

 

PHO84           KGELEYANSGAECDARCQKACDQMWRILIGLGTVLGLACLYFRLTIPESPRYQLDVNAKL 

PHO5            KKSLEAAPTLASCTGDCAVAVDKMWRTVIGVGAVPGCIALYYRLTIPETPRYTFDVKRDV 

PHT1_5          DHAFKAPTYEVDPVGSTVPQADYVWRIVLMFGAIPALLTYYWRMKMPETARYTALVARNT 

LePT1           KGAFPAPAYEVDAIGSTVPQADFVWRIILMFGAIPAGLTYYWRMKMPETARYTALVAKNL 

                .  :  .   ..  .      * :** :: .*:: .    *:*:.:**:.**   *  . 

 

PHO84           ELAAAAQEQDGEKKIHDTSDEDMAINGLERASTAVESLDNHPPKASFKDFCRHFGQWKYG 

PHO5            EQASDDIEAFKTGKPKGQPDE-----ATRIVAKQEAEKEMEIPKASWGDFFRHYSKRKNA 

PHT1_5          KQAASDMSKVLQVDLIAEEEA-------------QSNSNSSNPNFTFGLFTREFAR-RHG 

LePT1           KQAANDMSKVLQVEIEAEPEK-------------VTAISEAKGANDFGLFTKEFLR-RHG 

                : *:   .     .     :                  .       :  * :.: : : . 

 

PHO84           KILLGTAGYWFTLDVAFYGLSLNSAVILQTIGYAGS---KNVYKKLYDTAVGNLILICAG 

PHO5            MLLAGTALSWCFLDIAYYGVSLNNATILNVIGYSTTGA-KNTYEILYNTAVGNLIIVLAG 

PHT1_5          LHLLGTTTTWFLLDIAYYSSNLFQKDIYTAIGWIPAAETMNAIHEVFTVSKAQTLIALCG 

LePT1           LHLLGTASTWFLLDIAFYSQNLFQKDIFSAIGWIPPAQTMNALEEVYKIARAQTLIALCS 

                   * **:  *  **:*:*. .* .  *  .**:  .    *. . ::  : .: ::  .. 

 

PHO84           SLPGYWVSVFTVDIIGRKPIQLAGFIILTALFCVIGFAYHKLGD----HGLLALYVICQF 

PHO5            AVPGYWVTVFTVDTVGRKPIQFMGFGILTILFVVMGFAYKHLSP----HALLAIFVLAQF 

PHT1_5          TVPGYWFTVAFIDILGRFFIQLMGFIFMTIFMFALAIPYDHWRHRENRIGFLIMYSLTMF 

LePT1           TVPGYWFTVAFIDKIGRFAIQLMGFFFMTVFMFALAIPYHHWTLKDHRIGFVVMYSFTFF 

                ::****.:*  :* :**  **: ** ::* :: .:.:.*.:        .:: :: :  * 

 

PHO84           FQNFGPNTTTFIVPGECFPTRYRSTAHGISAASGKVGAIIAQT---ALGTLIDHNCARDG 

PHO5            FFNFGPNATTFIVPGEVFPTRYRSTSHGLSAAMGKIGSIIGQG---AIAPLRTRGAVKGG 

PHT1_5          FANFGPNATTFVVPAEIFPARLRSTCHGISAASGKAGAIVGAFGFLYAAQSSDSEKTDAG 

LePT1           FANFGPNATTFVVPAEIFPARLRSTCHGISAAAGKAGAMVGAFGFLYAAQPTDPTKTDAG 

                * *****:***:**.* **:* ***.**:*** ** *:::.       .       .  * 

 

PHO84           KPTNCWLPHVMEIFALFMLLGIFTTLLIPETKRKTLEEINELYHDEIDPATLNFRNKNND 

PHO5            NPN-PWMNHVLEIYALFMLLGVGTTFLIPETKRKTLEELSGEFDMSGEEEAQRDTTLTEH 

PHT1_5          YPPGIGVRNSLLMLACVNFLGIVFTLLVPESKGKSLEEISREDEEQSGGDTVVEMTVANS 

LePT1           YPPGIGVRNSLIVLGCVNFLGMLFTFLVPESNGKSLEDLSRENE---GEEETVAEIRATS 

                 *    : : : : . . :**:  *:*:**:: *:**::.   . 

 

PHO84           IESSSPSQLQHEA 

PHO5            KTEAPTSSAAVNA 

PHT1_5          GRKVPV------- 

LePT1           GRTVPV------- 

                    . 

 

Figure 11: Sequence alignment between PHT1;5 and high-affinity transporters from other species. Fully conserved residues 

are indicated with “*”, highly conserved areas with “:” and weakly conserved areas with “.” 
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3.3.4 Gene IDs 

 

GenBank accession number for PHT1;5 is NP_180842.1 and may be accessed on the NCBI 

database (http://www.ncbi.nlm.nih.gov/) for reference. TAIR gene ID is At2g32830 and may 

be accessed on the Arabidopsis website www.arabidopsis.org/. MIPS gene ID for access on 

the Arabiopsis genome database http://mips.helmholtz-muenchen.de/plant/athal/ is 

At2g32830. To access the protein sequence on the Universal Protein Resource (UniProt) 

website www.uniprot.org/, the the protein ID Q8GYF4 should be used. 

 

 

3.4 Concluding remarks 

 

In silico analysis of the PHT1;5 protein sequence revealed ambiguous results and it should be 

kept in mind that the various software programs have different algorithms to which they 

calculate their values. ChloroP and TargetP indicated that PHT1;5 is not strongly predicted to 

be localized to the chloroplast, although there is an indication of a possible putative transit 

peptide 69 amino acids in length. It can be speculated that the PHT1;5 protein is targeted to 

the inner membrane of the chloroplast as is the case for transporters containing transit 

peptides. 

 

The hydrophathy plot suggests that PHT1;5 is an integral membrane protein. 

Transmembrane helices (TMHs) were predicted with a number of programs indicating that 

there are either 10 (TMHMM and SOSUI software) or 12 (OCTOPUS and Mobyle software) 

membrane spanning domains. Although TMHMM is by far the most trusted program to 

predict these membrane helices, it can be assumed that transporters from the same 

superfamily display similar characteristics in their structure and it is therefore proposed that 

PHT1;5 should have 12 TMHs. 

Stellenbosch University  http://scholar.sun.ac.za

http://www.ncbi.nlm.nih.gov/
http://www.arabidopsis.org/
http://mips.helmholtz-muenchen.de/plant/athal/


44 
 

Expression analysis revealed that the gene is expressed strongest in senescent leaves. This 

observation corresponds to the hypothesis that PHT1;5 is involved in the remobilization of 

phosphate from older to younger leaves, especially during conditions of Pi-depletion. 

Himelblau and Amasino demonstrated in 2001 that approximately 78% of stored Pi is 

transported from older leaves, regulating the Pi homeostasis in the plant during conditions 

of limitation. 

 

Multiple alignments of protein sequences were conducted in ClustalW and it was discovered 

that a large proportion of the sequences of high-affinity transporters between different 

species are conserved. This indicates that structural and functional properties of the Pi/H+ 

transporters have been conserved, emphasising its evolutionary importance through the 

different species. 
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CHAPTER 4 

Expression and functional analyses of PHT1;5 in Escherichia coli mutant strains  

 

4.1 Introduction 

 

Since as early as the 1940’s scientists like Monod have been researching the phosphate 

transport systems that E. coli harbours. Over the years these uptake systems have been 

investigated and fairly well defined. Basically, inorganic phosphate is transported through 

either a low or high affinity system, depending on the external conditions, which have been 

designated respectively as the Pit or Pst transport systems. The properties of these systems 

have been studied by Rosenberg et al. (1977) in mutant E. coli strains where only one system 

was active at a time. Since then these systems have been characterised in more depth and 

successfully used as heterologous expression systems where similar plant genes have been 

characterised (Kuhlbrandt and Wang, 1991; Kim et al., 1998; Uozomi et al., 1998; Pavon et 

al., 2008). 

 

E.coli utilises the low affinity system, Pit, to transport inorganic phosphate (Pi). This system is 

constitutively active and only functional when sufficient Pi, more than 20 µM, is available in 

the surrounding area (Rao and Torriani, 1990). This low affinity system permits the 

movement of Pi by means of proton-motive force and is therefore proposed to be a single-

membrane-component transport system. The fact that this system is energized by a proton-

motive force disables phosphate transport in the presence of respiration inhibitors and 

uncouplers.  

 

During times of Pi limitation an enzyme, alkaline phosphatase, hydrolyses organic 

phosphates to Pi and another system is activated for Pi uptake. The high affinity system, Pst 

(SCAB), is a phosphate specific transport system which is activated when external phosphate 

conditions are lower than 20 µM (Rao and Torriani, 1990). This system acts as an operon and 

involves the activation of several genes, pstS, pstC, pstA and pstB, which are all necessary for 
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the successful transport of phosphate inside the E.coli cell (Figure 7). The Pst system is 

dependent upon the availability of a Pi binding protein, PiBP, in order for it to be functionally 

active. This PiBP, coded for by the pstS gene (Figure 12: A), is extremely specific for Pi with a 

Km of approximately 1 µM. The two hydrophobic genes from this system, pstA and pstC, are 

integral membrane proteins and is believed to structure a membrane pore through which Pi 

is channelled (Figure 12: B). The final gene involved in this cascade is the pstB gene which is 

bound to pstA. This gene is believed to function as an energy coupler (Cox et al., 1988). ATP 

activates pstB causing the Pi to be released from the PiBP (Figure 12: B) and bound by the 

membrane pore. The energy that is discharged from this process enables the transported Pi 

to become unbound (Figure 12: C) and made available for use by the bacterium. Evidently 

the Pst system transports Pi at the detriment of ATP (Hoffer et al., 2001). 

 

 

 

Figure 12: Illustration for Pi transport via the Pst system in E.coli. Model drawn by Rao and Torriani, 1990 

 

4.2 Methodology 
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4.2.1 Materials and Escherichia coli strains 

 

All chemicals used during this study were obtained from either MERCK® (Wadeville, 

Gauteng) or from SIGMA® (Steinheim, Germany), unless otherwise specified. All primers 

were from Whitehead Scientific (Pty) Ltd. Restriction enzymes used during this study were 

from Fermentas® (Inqaba, South Africa). All glassware was washed with concentrated HCL to 

remove traces of phosphate contamination. Media was made sterile in an autoclave for 20 

minutes at a temperature of 121: and pressure of 103 kPa. 

 

Commonly used Escherichia coli strain, DH5α, was used for all cloning purposes and initial 

phosphate uptake experiments. E.coli mutants (pstA, pstB, pstC, pstS), containing deleted 

genes on the high affinity phosphate uptake pst operon, were obtained from the E.coli 

Genetic Stock Centre (http://cgsc.biology.yale.edu/). The E.coli mutant strain, CE1491, was a 

kind gift from Dr J Tommassen at the Department of Molecular Biology and Institute for 

biomembranes, Utrecht University, The Netherlands. The BL21 Codon Plus RIPL 

(Stratagene®) E.coli strain was used for protein expression. 

 

 

4.2.2 Isolation of PHT1;5 

 

Wild type, Col-0 ecotype, Arabidopsis thaliana plants were phosphate stressed in order to 

express the gene of interest. These experiments were previously conducted and described 

by Zwiegelaar (2010) where he grew plants on palm peat, watering it with MS salts that 

contained either 0 mg L-1 or 400 mg L-1 KH2PO4. These phosphate stress treatments were 

conducted for a period of two weeks until plants started to flower. 

RNA Isolation  
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RNA extractions of phosphate stressed plant material were done according to the method 

described by White et al. (2008). In short, 200 mg of leaf tissue was homogenized in liquid 

nitrogen with the use of a mortar and pestle. The grounded tissue was supplied with 1.2 ml 

preheated (65:C) CTAB RNA extraction buffer (2% CTAB, 2% PVP, 100 mM Tris-HCL [pH 8.0], 

25 mM EDTA, 2 M NaCl and 0.5 g L-1 spermidine) with additionally added 3% β-

mercaptoethanol. The mixture was vortexed in order to ensure equal distribution and placed 

at 65:C for 30 minutes followed by centrifugation (Biofuge, Heraues) for 10 minutes at 

13000 x g. The supernatant was recovered and an equal volume of chloroform/isopropanol 

(24:1) was added to the tube. The suspension was vortexed and centrifuged for 15 minutes 

at 13000 x g at 4:C in a desktop microfuge (Biofuge, Heraues).  This extraction step was 

repeated twice.  LiCl (final concentration 2M) was added to the supernatant and incubated 

at 4:C overnight to precipitate the RNA.  This sample was then centrifuged for 60 minutes at 

13000 x g, at 4:C. The pellet was washed with 70% ethanol and resuspended in 30 µl sterile 

water. A gDNA removal was conducted on the RNA with DNaseI (Promega®) treatment 

according to the manufacturer’s instructions. All RNA samples were stored at -80:C. 

 

Gene amplification 

First strand cDNA was synthesised from RNA with the RevertAidTM H Minus First Strand 

cDNA Synthesis Kit (Fermentas®) utilising the Oligo (dT)18 primers according to 

manufacturer’s instructions. RT-PCR was carried out with KAPA HiFiTM DNA Polymerase using 

the following set of primers, fw: 5’-CAAGATTTTCTCTAGAGTGACTGAACAAC-3’ and rev: 5’-

GAGTAACACAAAATAATTCTAGAGGGACTTTTCTACCGG-3’ designed to amplify the PHT1;5 

gene. These primers had an added XbaI restriction sites for simplified ligation procedures 

(Zwiegelaar, 2010). All PCR reaction mixtures contained 10 µM of each primer, 10 mM 

dNTPs, 25 mM MgCl2, 0.5 units of polymerase and approximately 100ng DNA. The PCR setup 

were as follow, an initial denaturation step at 95°C for 2 minutes followed by 35 

amplification cycles (denaturation at 98°C for 20 seconds, annealing at 55°C for 15 seconds 

and an extension at 72°C for 1 minute), a final extension at 72°C for 2 minutes.  

All RNA procedures were done in conjunction with the housekeeping gene, actin, as positive 

control. This entailed the use of actin specific primers: fw: 5’– TCACACTTTCTACAATGAGCT -
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3’ and rev: 5’- GATATCCACATCACACTTCAT -3’. PCR setup was similar to the setup described 

above. 

 

Separation of DNA fragments by gel electrophoresis 

All DNA/RNA isolations throughout the study have been inspected on a 1% agarose gel, 

stained with 10 mg ml-1 ethidium bromide and visualized under UV light. Agarose gel 

experiments were conducted in 0.5X TBE buffer at a voltage of between 100 – 120V for at 

least an hour or until bands have separated sufficiently. TBE buffer (5X) contains 54 g L-1 Tris-

base, 27.5 g L-1 boric acid and 20 ml L-1 0.5 M EDTA (pH 8.0). Band sizes were determined 

with the help of a lambda pst ladder. DNA concentrations were determined on a NanoDrop 

1000 (Thermo Fisher Scientific Inc, USA).    
 

Gene cloning  

The amplified PCR fragment of PHT1;5 was purified with the use of a PCR purification kit 

(Fermentas®) and ligated into the XbaI site of the expression vector pBlueScript SK- (Figure 

13). 
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Figure 13: A vector map of pBlueScript (https://www.lablife.org/ct) 

 

 

The ligation procedure was carried out with T4 DNA Ligase (Fermentas®), according to 

manufacturer’s instruction, for a period of 12 hours at 4°C. The ligation was subsequently 

followed by transformation of the competent E.coli strains. 

 

 

4.2.3 Competent cells 

  

Heat shock competent cells were made according to a standard CaCl2 protocol (Li et al., 

2010). In short, a single colony was grown in liquid Luria-Bertani (LB) medium (10 g L-1 

tryptone, 5 g L-1 yeast, 10g L-1 NaCl) (Bertani, 1951), supplemented with the necessary 

antibiotics.  Overnight cultures were grown at 37:C, shaking at 200 rpm till an OD600 of 0.6.  

The culture was incubated on ice for 15 minutes and centrifuged at 4000 x g for 10 minutes. 
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The pellets were resuspended in 15 ml cold 0.1 M CaCl2, incubated on ice for 15 minutes and 

centrifuged as before. The final pellet was resuspended in 4 ml cold 0.1 M CaCl2 and 

incubated on ice for a further four hours before aliquots of 100 µl was frozen at -80:C. 

Electro-competent cells were made according to the manufacturer of the Bio-Rad 

GenePulser Xcell™ electroporator. This method is similar to that of the heat shock, except 

that 10% (v/v) glycerol is used in consecutive steps which include the addition of 500 ml, 250 

ml, 20 ml and 2 ml glycerol respectively. In between each step the cultures were centrifuged 

at 4000 x g for 15 minutes at 4:C. 

 

 

4.2.4 Transformation of E.coli strains 

 

Electrocompetent DH5α E.coli cells were transformed with both empty pBlueScript vector 

and vector construct, containing the gene of interest, via electroporation with a Bio-Rad 

GenePulser XcellTM electroporator according to manufacturer’s instructions. Pre-

programmed parameters were used for the transformation of 20 µl cells with 1µl plasmid 

DNA in an electroporation cuvette with an aperture of 0.1 cm. Following the electroporation 

procedure, cells were incubated for an hour at 37°C in 1 ml SOB (20 g L-1 tryptone, 5 g L-1 

yeast extract, 0.6 g L-1 NaCl, 0.5 g L-1 KCl, 10 mM MgCl2, 10 mM MgSO4) with catabolite 

repression (SOC) medium, shaking continuously at 200 rpm. SOC medium contains filter-

sterilized glucose at a final concentration of 20 mM, but is otherwise similar to SOB media as 

described by Hanahan (1983). 

 

Following the incubation step, 80 µl of cells was spread onto LB medium. The LB medium 

were solidified with bacteriological agar (Biolab®, Wadeville, Gauteng) and contained 50 µg 

ml-1 ampicillin (Roche, Mannheim, Germany) for selection of positive transformants. Plates 

were incubated at 37°C for approximately 16 hours and followed by a colony PCR to verify 

positives clones. The PCR was carried out with T3, 5’-ATTAACCCTCACTAAAGGGA-3’, and T7, 

5’-TAATACGACTCACTATAGGG-3’, primers for pBlueScript, using BIOTAQTM DNA Polymerase 
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(Bioline®). Amplification cycles were set according to manufacturer’s instructions with a 

specific annealing temperature of 55°C. Prior to plasmid isolation, 250 ml of LB liquid 

medium, supplemented with necessary antibiotics, were inoculated with a positive clone 

and shaken overnight at 200 rpm at 37°C. 

 

E.coli mutants and strain CE 1491 were transformed via a heat shock method. 50 µl of 

competent cells were thawed on ice followed by the addition of 50ng DNA (empty vector 

and transformed vector) and incubated for 20 minutes on ice. Subsequently the cells were 

shocked at a temperature of 42:C for 45 seconds and placed on ice for a further 2 minutes. 

The cells were rescued with 1ml of SOC and followed by similar incubation and analysis 

procedures as described for the electroporation transformation. 

 

 

4.2.5 Plasmid isolation and construct verification 

 

An alkaline lysis method was used to isolated pBluescript-PHT1;5 vector DNA according to 

the method of Untergasser (2006) with minor changes. The volume of the overnight culture 

was 250 ml LB, and 1 µl of RNaseA (10 mg ml -1)(Fermentas®) solution was added after the 

pellet was resuspended in TE buffer to remove any RNA contamination. This protocol can be 

viewed for details on the following website: 

http://untergasser.com/lab/protocols/maxiprep_alkaline_lysis_v1_0.htm. 

 

The pBluescript-PHT1;5 construct and the control, pBlueScript empty vector,  was digested 

with BamHI to verify the presence of the PHT1;5 gene. The digests were set up, according to 

Fermentas™ suggestions, as follow: 1U enzyme, 500 ng DNA, 5 µl buffer and sterile water to 

a final volume of 50 µl. Digests were conducted for two hours at 37°C. Authenticity of the 

construct was verified by sequencing (Central Analytical Facility, Stellenbosch University). 

NCBI BLAST analysis was performed to against the Arabidopsis genome to verify the 

sequence of the cloned gene. 
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4.2.6 Inorganic phosphate uptake assay 

 

WT E.coli, transformed with either the empty vector or gene-containing vector, was grown in 

20 ml LB supplemented with 50 µg ml-1 ampicillin to an OD600 of 0.6. The cultures were 

centrifuged, as 1 ml aliquots, for 30 seconds at 13000 x g. The pellets were washed twice 

with sterile water and finally resuspended in a K2HPO4-KH2PO4 buffer (1 M each) to desired 

concentrations (100 µM, 50µM, 1µM, 500nM and 100 nM), respectively. Aliquots, 100 µl, of 

these culture suspensions were collected at different short time intervals (2 minutes, 

4minutes, 6minutes and 8minutes) and combined with 100µl of a staining solution (1% (w/v) 

ammonium molybdate and 5% (w/v) FeSO4.7H2O, solubilised in 0.5 M H2SO4). Analysis was 

done in a microtiter plate using the mQuant spectrophotometer (Biotek Instruments Inc, 

USA) by measuring the absorbance value at A595.  

 

 

4.2.7 E.coli growth optimization and starvation kill curves 

 

In order to determine the activation point of the high affinity system, starvation kill curves 

were conducted.  E.coli cultures were grown overnight in liquid LB media supplemented with 

necessary antibiotics to an OD600 of 0.6. These cultures were centrifuged in a Sorvall® RC5C 

PLUS centrifuge at 5000 x g for 3 minutes in order to pellet the cells. The pellet was 

resuspended to an OD of 0.1 in modified M9 minimal media (Table 3) containing no 

phosphate, supplemented with 50 µg ml-1 ampicillin, IPTG (Invitrogen®) to a final 

concentration of 100 µM and Tris-HCl buffer at pH of 7.5. These cultures were then 

incubated at 37°C with continuous shaking at 200 rpm. A 5 µl aliquot was taken at four 

different time intervals, 0 hours, 6 hours, 24 hours and 30 hours, which were subsequently 

spotted onto M9 media plates that contained potassium phosphate buffer at various 

concentrations which included 0.5, 1, 10, 20 and 50 µM, respectively. These experiments 

were also utilised to determine the optimal phosphate concentration where expression of 

the gene is achieved. All subsequent experiments were conducted in a Tris-HCl buffer at pH 

7.5 to keep the external conditions constant. 
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Table 3: Components of M9 salts. These salts are dissolved in distilled water, sterilised and 200 ml added to the M9 media 

containing 2 ml L
-1

 MgSO4 (1M), 20 ml L
-1

 glucose (20%), 100 µl L
-1

 CaCl2 (1M) and solidified with 15g L
-1

 agarose when 

necessary 

M9 salts Amount of M9 salts in gram per litre 

Regular Modified 

Na2HPO4-7H2O 64 / 

KH2PO4 15 / 

NaCl 2.5 10 

NH4Cl 5 5 

KCl / 10 

 

 

4.2.8 E.coli growth curves 

 

In order to determine growth rates of E.coli cultures containing either the empty or 

transformed vector, growth curves were done on all strains. In order to avoid biased results, 

the experiments included three biological (three different cultures) and three technical 

(three independent OD readings of each culture) replications. Starter cultures were grown 

overnight, as previously described, in 2 ml LB medium supplemented with the necessary 

antibiotics. These cultures were centrifuged in a Sorvall® RC5C PLUS centrifuge at 5000 x g 

for 5 minutes and the pellet resuspended 10 ml M9 media, without the addition of 

phosphate, for starvation. Following starvation, the cultures were diluted to an OD600 0.1 in 

50 ml M9 media containing the appropriate phosphate concentration and supplemented 

with IPTG. The OD was measured on a µQuant spectrophotometer (Biotek Instruments, Inc) 

every 2 hours. 

 

 

4.2.9 Protein analysis 

 

Gene cloning 

The pProEX™ HT prokaryotic expression system (Life Technologies™) was used for analysis of 

the PHT1;5 protein in vivo. The expression vector of choice was pProEX HTc and the PHT1;5 
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gene was cloned into the NotI site. Cloning of the gene entailed amplification with gene 

specific primers (see section 3.2.3 for details of gene amplification) and ligation into the 

pGemT®-Easy vector (Promega™) according to manufacturer’s protocol. PHT1;5 was 

digested out of pGemT®-Easy as a NotI fragment and sub-cloned in-frame into the NotI site 

of pProEX HTc. The vector construct was transformed into the BL21 CodonPlus® RIPL E.coli 

strain (Stratagene™) (E. coli B F– ompT hsdS(rB– mB–) dcm+ Tetr gal λ(DE3) endA Hte [argU 

proL Camr] [argU ileY leuW Strep/Specr]) via heat shock, as previously described, and 

selected for on LB media supplemented with 50 µg ml-1 ampicillin, 34 µg ml-1 

chloramphenicol and 10 µg ml-1 streptomycin. The presence of PHT1;5 in pProEx Htc was 

verified with colony PCR using the following primers, fw: 5’-AGCGGATAACAATTTCACACA-3’, 

rev: 5’-GAGTAACACAAAATAAT TCTAGAGGGACTTTTCTACCGG-3’. PCR reaction mixtures 

contained 10 µM of each primer, 10 mM dNTPs, 25 mM MgCl2, 0.5 units of polymerase and 

approximately 100ng DNA. The PCR setup were as follow, an initial denaturation step at 95°C 

for 2 minutes followed by 35 amplification cycles (denaturation at 98°C for 20 seconds, 

annealing at 55°C for 15 seconds and an extension at 72°C for 1 minute), and a final 

extension at 72°C for 2 minutes. DNA sequencing was conducted at the Central Analytical 

Facility, Stellenbosch University, to verify construct authenticity. 

 

Protein extraction from E.coli cultures 

A single colony of the BL21 strain, harbouring either the empty vector or a vector containing 

PHT1:5, was grown overnight in 5 ml LB medium supplemented with the necessary 

antibiotics. These cultures were subsequently inoculated into 250 ml LB media and 

incubated at 37:C with shaking at 200 rpm, until it reached an OD590 0.6. Once the required 

OD590 was reached, IPTG was added to final concentration of 1 mM to start the induction 

process. Subsequently, 1 ml aliquots of the cultures were taken at 6 different time points: (0) 

- just after the addition of IPTG, (1) – one hour, (2) – two hours, (3) – three hours, (4) – four 

hours and (5) – 18 hours. The aliquots were frozen at -80:C. During each interval the OD590 

was determined. All absorbance readings were done in a Pharmacia LKB Utrospec III® 

spectrophotometer.  

 

Protein extractions entailed the thawing of the cell aliquots for 15 minutes on ice. The 

aliquots were subsequently centrifuged in desktop microfuge for 2 minutes, 13 000 x g at 

4:C. The pellets were resuspended in 200 µl of a 2x SDS loading buffer (0.09 M Tris-HCL [pH 
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6.8], 20% [v/v] glycerol, 2% [w/v] SDS, 0.02% [w/v] bromophenol blue and 0.25 M DTT). Lysis 

was achieved by boiling the resuspended pellets at 95:C for 5 minutes, followed by a 

centrifugation step of 10 minutes, 13 000 x g at room temperature. The supernatant of the 

samples were analysed with SDS-polyacrylamide gel electrophoresis (PAGE). 

 

SDS-PAGE 

The SDS-PAGE gel consisted of two layers. First, the 8% resolving gel containing 2.3 ml water, 

1.3 ml acrylamide (30%), 1.3 ml Tris (1.5 M, pH8.8), 0.05 ml SDS (10%), 0.05 ammonium 

persulfate (10%) and 0.003 ml TEMED. Secondly, the stacking gel contained 1.4 ml water, 

0.33 ml acrylamide (30%), 0.25 Tris (1 M, pH 6.8), 0.02 ml SDS (10%), 0.02 ml ammonium 

persulfate (10%) and 0.002 ml TEMED. Electrophoresis was conducted in a 1X SDS buffer 

made from a 5X stock solution (72 g L-1 glycine, 15g L-1 Tris and 5 g L-1 SDS) for approximately 

two hours at a current of 140V. 

 

Following electrophoresis, the gel was washed three times with milliQ water for intervals of 

10 minutes each. The SDS gel was then incubated in fixing solution (25% isopropanol and 

10% acetic acid) for 15 minutes and washed three times as before. Staining of the gel was 

done with a PageBlue™ Protein Staining Solution (Fermentas®) for at least 12 hours where 

after it was washed with water until protein bands were visible. All incubation steps were 

performed on a Heidolph UNIMAX 1010 shaker, shaking at 200 rpm. The marker used to 

determine protein band sizes was the PageRuler™ prestained protein ladder (Fermentas®). 

 

 

4.3 Results and Discussion 

4.3.1 Expression conditions and isolation of the PHT1;5 gene 

 

A recent study done in 2010 by Zwiegelaar aimed at investigating the expression pattern of 

the PHT1;5 gene during phosphate rich and depleted conditions. Zwiegelaar utilised 

Arabidopsis thaliana WT and PHT1;5 T-DNA insertion mutant lines (obtained from NASC 

European Arabidopsis stock centre) and indicated through Northern blot analysis that the 

gene was highly expressed in leaf tissue when the external phosphate concentration was 

lower than 50 mg L-1. Zwiegelaar harvested leaf material from the WT phosphate-stressed 

plants and kindly donated it to this study for further analysis. RNA was successfully extracted 
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from this tissue (Figure 14: A) and RT-PCR was subsequently performed with gene specific 

primers designed to amplify out the 1.7 kb cDNA corresponding to the full coding region of 

the PHT1;5 gene (Figure 14: B). These primers were designed to contain internal XbaI sites 

for simplified down-stream cloning procedures and evidently PHT1;5 cDNA was cloned in 

frame into the XbaI site of the bacterial expression vector pBlueScript SK- (Invitrogen®) and 

the gene was successfully propagated in an Escherichia coli based system.  

 

In order to confirm the presence of PHT1;5 a restriction digest was performed with the 

enzyme BamHI on either the empty vector or the vector construct that contained the gene 

of interest. This enzyme digests only pBlueScript once and resulted in approximate fragment 

sizes of 2985 bp and 4685 bp respectively for the vector and the gene-containing vector 

construct. The results obtained from the digest were analysed on an agarose gel (Figure 14: 

C) and is concurrent with the given band sizes that should have been obtained. Sequence 

analysis confirmed the correct frame and orientation of PHT1;5 inside the vector construct. 

The authenticity of the gene sequence was confirmed by a BLAST analysis against the 

Arabidopsis genome and no mutations were detected. Effective gene propagation was 

achieved and transformation of electrocompetent E. coli cells with the construct 

(pBlueScript-PHT1;5) and empty vector (pBlueScript) was successfully conducted. 
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Figure 14: M = molecular marker Lambda pstI (A) Lanes, 1-4 – Isolated RNA from phosphate stressed WT Arabidopsis 
thaliana, (B) Lanes, 1 and 2 – RT-PCR amplification of PHT1;5, (C) Lanes, 1 – PHT1;5 fragment, 2 – pBlueScript-PHT1;5 
construct 

 

 

4.3.2 Inorganic phosphate uptake assay in transformed WT E. Coli 

  

Phosphate uptake assays were performed in an attempt to investigate the ability of the 

PHT1;5 gene to increase phosphate transport in a bacterial system. This inorganic P uptake 

assay was only utilised during the first trial of E.coli experiments and was only conducted 

with the wild type strain, DH5α. The reason for the decision was the hypothesis that the 

gene, being constitutively expressed in the pBlueScript vector, would increase the rate of 

phosphate uptake regardless of the strain or medium used.  

 

The assays were conducted in LB medium which was supplemented with a range of 

phosphate concentrations in order to determine whether there was a concentration 

preference displayed by the PHT1;5 gene. This range included concentrations from 100 µM, 

50µM, 1µM, 500nM to as low as 100 nM and covers phosphate the range in which high-

affinity transporters are usually activated. The total phosphate content per milligram of 

protein was determined for cultures in order to avoid conflicting measurements. 
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Inconsistent results (data not shown) were continuously obtained but mostly indicated one 

of two scenarios, either that there was no change between the control and transformed 

phosphate contents or that the phosphate contents in the transformed culture decreased 

over time. This latter observation resulted in a new hypothesis which suggested that the 

PHT1;5 gene might encode for a transporter involved in the export of phosphate rather than 

import or that it might function as a uniporter, but this assumption was just speculation and 

would need further analysis. 

 

Standard assays were conducted with only the LB medium in order to determine what the 

degree of phosphate contamination might be. The assay indicated that LB medium is already 

saturated with phosphate, containing approximately 3mM, interfering with the results and 

saturating the bacteria with internal phosphate concentrations, possibly the cause of cells 

exporting phosphate rather than import.  

 

The subsequent assays were conducted in a similar way with the exception that the cultures 

were subject to a period of 30 minutes incubation in only water in order to ensure that they 

utilise all their internal phosphate. When the stressed cultures were introduced to the 

various phosphate concentrations, similar inconsistent results were obtained and it was 

decided that the assay was not sensitive enough to detect minor changes in the bacterial 

phosphate uptake mechanisms. The phosphate uptake assay failed to yield consistent results 

and it was decided to abort the experiment all together and continue with complementation 

studies. The complementation studies included the use of E.coli mutant strains which would 

possibly clarify biased conclusions obtained during the phosphate uptake assay. 

 

 

4.3.3 Growth optimisation and starvation kill curves of E.coli cultures  

 

The various mutant strains used during the complementation studies were from the Keio 

collection of single-gene knockouts and all displayed a mutation in one of the genes 

necessary for the Pst high affinity phosphate uptake system, respectively. E. coli cultures 

were grown normally in LB media containing approximately 3mM phosphate as determined 

by means of the phosphate uptake assay previously described. This suggested that the 
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bacteria is already saturated with phosphate internally and would therefore not express any 

high affinity uptake mechanisms until phosphate was severely limited. A second challenge 

that appeared was the fact that the bacteria started to die off in a short period of time. This 

phenomenon was investigated by examining the external pH conditions which could be 

decreased as a cause of H+ ions being exported. This would hold true due to the fact that it is 

proposed that the PHT1;5 transporter mediates the movement of phosphate in exchange for 

H+-ions. The pH of the media was severely affected as soon as growth of the cultures was 

initiated (Figure 15: A). External pH conditions were therefore kept constant by 

supplementing the media with Tris-buffer at a pH of 7.5 (Figure 15: B). 

 

 

 

Figure 15: pH determined by use of Macherey-Nagel 100 colour-fixed indicator sticks (pH4.5-10). (A) pH values before Tris 

buffer; Lanes, 1 – M9 media, 2 – WT untransformed, 3 – WT pBlueScript, 4 – WT PHT1;5, 5 – pstA pBlueScript, 6 – pstA 

PHT1;5, 7 – pstB pBlueScript, 8 – pstB PHT1;5, 9 – pstC pBlueScript, 10 – pstC PHT1;5, 11– pstS pBlueScript, 12 – pstS 

PHT1;5  (B) pH values after tris buffer; Lanes, 1 – M9 media, 2 – WT untransformed, 3 – WT pBlueScript, 4 – WT PHT1;5, 5 – 

pstA pBlueScript, 6 – pstA PHT1;5, 7 – pstB pBlueScript, 8 – pstB PHT1;5, 9 – pstC pBlueScript, 10 – pstC PHT1;5, 11– pstS 

pBlueScript, 12 – pstS PHT1;5 

 

 

Positive E. coli transformants for the mutants pstA, pstB, pstC and pstS (PHT1;5-pBlueScript 

construct and control, empty pBlueScript) were confirmed by means of colony PCR. Results 

from the PCR were analysed on a 1% agarose gel and band sizes of 1.7 kb were observed, 

indicative of successful transformation events.  

 

The transformed (PHT1;5) and control (empty pBlueScript) cultures were subject to 

starvation kill curves on M9 minimal media plates. This experiment was conducted because 
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cultures were grown in LB media which saturates the internal phosphate conditions of the 

bacteria. Thus, the cultures were stressed in liquid minimal M9 media, without 

supplementation of phosphate, for periods of 0, 12, 24 and 36 hours, respectively in order to 

determine what period of time should pass before the internal phosphate would become 

depleted and compensated for by the transporter. The solid minimal media, onto which 

these cultures were spotted after the respective time points, was supplemented with 

various phosphate concentrations ranging from 0 µM, 0.5 µM, 1 µM, 20 µM, 40 µM and 100 

mM to establish an approximate value at which the transporter is optimally activated. It was 

also necessary to determine the depletion point on minimal phosphate concentrations to be 

able to prove that a complementation event could occur.  

 

The starvation kill curve plate research was performed for three reasons; firstly to establish 

if there is a time point at which internal phosphate would deplete, secondly to approximate 

at what concentration the transporter would optimally be activated and thirdly to determine 

which of the mutant E.coli strains could possibly be used for complementation experiments. 

It was observed (Figure 16: B) that the optimal time of depletion was achieved for one of the 

E.coli mutant strains, pstS, and that after 24 hours of growth without phosphate was enough 

for the strain to possibly start utilising the high-affinity PHT1;5 transporter at a 

concentration of 20 µM. The same cultures were spotted onto minimal media which was 

supplied with sufficient amounts of phosphate in order to indicate that cell death was a rare 

possibility (Figure 16: A). 
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Figure 16: Images of a starvation kill curve plates on M9 minimal media. BS = cultures harbouring an empty pBlueScript 

control, PHT1;5 =  cultures harbouring the pBlueScript-PHT1;5 construct, WT = wild type E. coli, mutant strains = pstA, pstB 

and pstS (strain pstC failed to grow) (A) Cultures grown on media containing 100 mM phosphate to indicate that cell death 

did not occur during incubation periods of 24 and 30 hours, (B) Cultures grown on media containing 20 µM phosphate, 

indicating that after 24 hours the pstS E. coli mutant strain is a possible candidate for complementation studies. 

 

 

The initial train of thought before the study started was that the pstS mutant was the most 

likely strain to be complemented with the PHT1;5 transporter. The pstS gene encodes for a 

phosphate binding protein and we hypothesised that the bacteria would not be able to 

transport phosphate without this binding ability, unless it is supplied with another system 

which would be able to compensate for its disability. The other system evidently included 

the PHT1;5 transporter and according to the results observed stated the possibility of 

complementation.  The fact that growth of the transformed (PHT1;5) pstS strain was visible 

in the micro-molar concentration range of supplied phosphate initiated the argument that 

PHT1;5 might function as a high affinity transporter and the transformed pstS strain was 

subject to further growth experiments to test the theory. 

 

 

4.3.4 Complementation studies on E. coli  

 

In the event of establishing the phosphate depletion time for bacterial cultures, mutant 

strains were tested for complementation by the PHT1;5 gene on minimal  media. The most 

promising strain, pstS, was chosen and tested for complementation on a variety of 

phosphate concentrations, although the previous kill curve experiments indicated a 
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concentration of approximately 20 µM, it was necessary to determine whether a 

concentration range existed in which this transporter were to be active. 

 

Complementation experiments were conducted on M9 minimal media and indicated the 

possibility of the PHT1;5 transporter to complement the pstS mutant strain on a range of 

concentrations. As expected, the 20 µM phosphate concentration displayed the most 

promising results of complementation (Figure 17) which was in conjunction with the Km 

values for other high affinity transporters (Leggewie et al., 1995; Daram et al., 1999).  

 

 

 

Figure 17: Putative complementation results for E. coli. M9 minimal media plate containing 20 µM phosphate, indicating 

the possible complementation for pstS mutant strain. pBlueScript = cultures harbouring an empty pBlueScript vector as 

control, PHT1;5 = cultures harbouring the pBlueScript-PHT1;5 construct, WT = wild type E. coli,mutant stains =pstA, pstB, 

pstS   

 

 

Once the desired phosphate concentration of 20 µM was established, growth curves were 

conducted for the transformed and control pstS mutant strain. The curves were to indicate 

that the transformed (PHT1;5) display an increased growth rate as opposed to the control, 

but this was not the case. On the contrary, the growth curves indicated that there was no 

significant difference in growth rate between the transformed and control cultures (Figure 
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18) which evoked the question of whether there was another internal system in the bacteria 

that could compensate for this lack of the pstS phosphate binding protein. Indeed when 

literature was approached again, it became evident that the inability of the pstS mutant 

strain to transport phosphate can be substituted for by the internal low affinity systems, PitA 

and PitB, of the bacteria. Hoffer and colleagues demonstrated in 2001 that the activity of 

wild type PitA or PitB were able to restore Pi regulation in a PstS mutant strain. These results 

indicated that Pi-regulation mediated by the Pst system could still take place in the absence 

of the PstS binding protein. This rendered all previous results as unreliable. 

 

 

 

Figure 18: Graph indicating the growth rates of transformed (PHT) and control (pBlueScrip) pstS cultures. Data presented in 

this graph are means derived from three independent experiments with three replicates. Errors of the standard deviation of 

the means are indicated as bars.  

 

 

After establishing that the single-gene knockout strains failed to yield consistent and reliable 

results, it was decided to investigate complementation of a different strain, CE1491, which is 

absolutely unable to transport inorganic phosphate. This strain harbours no high or low 

affinity phosphate uptake system and a new complementation journey was attempted. In 
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order to allow the strain to grow under normal conditions, it was necessary to supplement 

all media with glycerol-3-phosphate (Hoffer and Tommassen, 2001). Transformed (PHT1;5) 

and control (empty vector) bacterial cultures were successfully propagated and verified via 

colony PCR as before. The PCR was analysed on a 1% agarose gel and colonies that were 

transformed with the PHT1;5 vector construct indicated band sizes of 1.7 kb which was in 

concordance with the size of the gene (Figure 19). The PCR analysis of the control colonies, 

harbouring the empty pBlueScript vector, indicated band sizes of approximately 200 bp 

which was indicative of successful transformation events (Figure 19).  

 

 

 

Figure 19: PCR analysis of CE1491 colonies containing either the pBluescript-PHT1;5 construct or the empty vector. Lanes, 

M - Lambda pstI molecular marker, 1- Negative water control, 2- Positive control for PHT1;5, 3-7 PHT1;5 amplified 1700 bp 

PCR fragments (positive colonies indicated with asterix), 10 - Positive control for empty vector, 11-16 - pBlueScript 200 bp 

PCR fragments (empty vector) 

  

 

The experimental design for the CE1491 strain was similar as for the other strains and after 

starvation periods, cultures were spotted onto minimal media plates with the same 

phosphate concentrations as described previously. The PHT1;5 gene was unable to 

complement the CE1491 strain on minimal plates, even after the addition of several amino 

acids and vitamins. It could be a possibility that this strain is unable to function properly in 

the absence of glycerol-3-phosphate, which must be excluded from the media when 

complementation studies were to be done. This statement was tested and cells were grown 

on minimal media supplied with this phosphate and still growth was arrested on minimal 
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media. It is suggested that growth of this strain on minimal media needs further 

optimisation with regards to supplements and concentrations. Another argument that had 

been raised was whether the expression of the foreign gene, PHT1;5, might be toxic to this 

sensitive strain of bacteria. In order to prove the statement, protein expression was done in 

a different strain, BL21 CodonPlus-RIPL, which was also executed to determine whether 

functional protein expression of PHT1;5 can be achieved in a bacterial system. 

 

 

4.3.5 Functional analyses of the PHT1;5 protein in E. coli cells 

 

During the investigation of heterologous PHT1;5 protein expression in E.coli, it was required 

that a special strain should be utilised. This BL21 CodonPlus-RIPL strain enables the 

production of heterologous proteins in the bacterial system which is often challenged by the 

shortage of certain tRNAs. These tRNAs are required for the high-level expression of proteins 

in plants and can often impede the translation process when expressed in bacteria. The 

BL21- RIPL strain is equipped with extra tRNAs that include argU, ileY, and leuW as well as 

the proL and is therefore often able to liberate the production of heterologous proteins from 

species that have GC- or AT-rich genomes. 

 

The vector of choice for foreign protein expression was pProEx-HTc which has been designed 

for this purpose of expression analysis in E. coli. The PHT1;5 gene was cloned into the NotI 

site of the multiple cloning site of the vector and successfully transformed into the BL21 

strain. Transformants were verified via colony PCR and subsequently the fragments were 

analysed on a 1% agarose gel (Figure 20: A). PCR fragments of approximately 1.7 kb were 

obtained for positive transformants and the DNA was further analysed via restriction digests 

with HindIII to confirm whether the correct vector was present. Digests were also analysed 

on a 1% agarose gel (Figure 20: B). HindIII only digests the vector once and does not cut 

inside the gene, therefore fragment sizes of 4.75 kb and 6.45 kb for pProHtc and pProHtc-

PHT1;5 were expected, respectively. These fragments were observed on the agarose gel 

(Figure 20: B) and DNA was subject to further sequencing analysis which confirmed the 

correct frame of the construct. 
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Figure 20: (A) PCR analysis of pProHTc transformed (PHT1;5) and control (empty vector) constructs; Lanes, M - Lambda pstI 

molecular marker, 1- Negative water control, 3-7 - 1.7 kb positive PCR fragments for PHT1;5, 9-13 - pProHtc empty vectors 

amplified with same primers (B) Restriction analysis of pProHtc vectors; Lanes, M - Lambda pstI molecular marker, 1 and 2 - 

pProHtc linearised with HindIII displaying fragment sizes of 4.75 kb, 3 and 4 - pProHtc-PHT1;5 construct linearized with 

HindIII displaying fragment sizes of 6.45 kb 

 

 

Upon establishing successful transformation of the BL21 strain with the constructs, protein 

analysis in vivo followed. Transformed (pProHtc-PHT1;5) and control (empty pProHtc) 

cultures were grown in LB medium until the desired OD590 of 0.6 was reached. Cultures were 

induced with IPTG and aliquots were subsequently used for protein extraction and analysis. 

Following protein extractions of the induced culture aliquots, analysis was done on 8% SDS-

PAGE gels. The results visible on the gels (Figure 21) were not as expected for the 

transformed construct. Protein analysis of the control (Figure 21: A) indicated a gradual 

increase during the incubation period which was expected, thus no technical mistakes were 

made during the experimental procedures. Upon analysis of proteins from the transformed 

cultures (Figure 21: B), SDS-PAGE gels indicated no increase of general bacterial proteins, 

neither was the expected PHT1;5 protein of 59kDa observed. Various reasons exist as to why 

the expected protein was not observed and these include the possibility of the protein being 

degraded by the bacteria even before the extraction procedure was carried out. Another 

reason might be that the foreign protein does not fold correctly in bacterial cultures and 

would therefore not be functional, leading to possible toxic effects. 
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Figure 21: (A) SDS-PAGE gel analysis of proteins in the control (empty pBlueScript vector), an increase in proteins over time 

is visible. Lanes, M- PageRuler™ Pre-stained protein ladder, 1 - Time 0, 2 – one hour, 3 – two hours, 4 – three hours, 5 – four 

hours, 6 – eighteen hours. (B) SDS-PAGE gel analysis of proteins from PHT1;5-containing cultures, no increase in any protein 

visible. Lanes, M- PageRuler™ Pre-stained protein ladder (indicating sizes in kDa), 1 - Time 0, 2 – one hour, 3 – two hours, 4 

– three hours, 5 – four hours, 6 – eighteen hours 

 

  

Probably the main reason for this is that PHT1;5 is a membrane-bound protein which often 

display toxic characteristics when induced in bacterial cultures. This statement was proven 

by analysis of growth curve experiments before and after IPTG induction. Growth curves 

were conducted with three independent cultures to avoid any biological or technical 

mistakes and the absorbance values were measured from an OD590 of 0.1 hourly. During 

these experiments it clearly demonstrates that growth before IPTG addition is at the same 

rate for both the transformed and control cultures. As expected by our hypothesis, upon 

addition of IPTG, transformed cultures display a decrease in growth as opposed to the 

control (Figure 22), leading to the general impression that the induced PHT1;5 protein 

display cyto-toxic effects in a bacterial system. To further confirm these statements, cyto-

toxicity vs cell death testing could be considered in the future by conducting a colorimetric 

assay (MTT) which would indicate the survival rate of the bacterial cultures.  
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Figure 22: Growth curve of control (empty pProHtc) and transformed (PHT1;5-pProHtc construct) BL21 cultures before and 

after addition of IPTG to test for possible protein toxicity. IPTG was added at time point 4 on the graph (yellow square). 

Data presented in this graph are means derived from three independent experiments with three replicates. Errors of the 

standard deviation of the means are indicated as bars. 

 

 

4.4 Concluding remarks and future prospects 

 

Although E.coli is the most extensive system used for heterologous expression due to its 

rapid growth rate and being a fairly simple system to work with, it is not always successful 

when analysing some membrane bound proteins (Yin et al.2007). Data obtained during this 

study demonstrates that the bacterial system was unsuccessful and inconclusive regarding 

the expression and functional studies of the PHT1;5 transporter. These results emphasises 

the fact that , although E.coli is a rapid, simple and high yielding protein expression system, 

heterologous expression of membrane bound proteins are often challenging for these 

microorganisms and evoke cytotoxic effects. Another problem that should be considered is 

that one of the disadvantages displayed by the BL21CodonPlus-RIPL strain is the leaky 

expression of the T7 polymerase. Although this strain is often used successfully for high-level 

heterologous protein expression, the leaky T7 often initiates low-level expression of un-

induced proteins which might potentially be toxic to the bacterial cultures. During this study 
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our results are indicative of potentially toxic effects of PHT1;5 to bacterial cultures. It might 

be useful in future experiments to verify this effect via colorimetric assay (MTT) which would 

indicate the survival rate of the bacterial cultures. 

 

Because the bacterial expression systems are so easy to work with and cost effective, it 

would also be useful in future studies to optimize the use of different strains which might be 

able to overcome toxic effects of membrane-bound proteins. We suspect that PHT1;5 might 

have toxic properties in bacterial systems and would therefore recommend that  future 

experiments be carried out in BL21-CodonPlus-RIL or BL21-CodonPlus-RP cells. These strains 

are often recommended to be used during studies of genes that encode for proteins which 

might potentially be toxic to bacteria. Induction is done by infecting the cells with Lambda 

CE6 and this method of heterologous protein expression strictly regulates the expression of 

genes under control of T7 promoter. 

 

Although we failed to yield consistent and confirmative results through the bacterial 

expression system, we still propose that the PHT1;5 transporter function as a H+/Pi 

symporter and can be assumed according to the almost immediate drop in pH conditions 

after cell growth was initiated. 
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CHAPTER 5 

Expression and functional analyses of PHT1;5 in a mutant yeast strain, PAM2 

 

5.1 Introduction 

 

The yeast Saccharomyces cerevisiae has been a eukaryotic model system throughout the 

decades and has developed, like other micro-organisms, numerous strategies to adapt to the 

nutritional limitations in their environments. Some of these strategies involve the 

coordinated activation and derepression of various transporter proteins. S. cerevisiae have 

three independent systems involved in the transport and uptake of inorganic phosphate (Pi) 

(Nieuwenhuis and Borst-Pauwels, 1983). These include one low-affinity and two high–

affinity phosphate uptake systems which have been relatively well studied and 

characterised. The low-affinity system is constitutively active with a high Km value, 770 µM, 

and is proposed to be optimally active at a pH of 4.5 (Goodman and Rothstein, 1957; Legget, 

1961). The derepressible high-affinity systems are encoded for by the PHO84 and PHO89 

genes, respectively, and are only activated during conditions of phosphate depletion.  

PHO84 is an H+co-transporter with a Km value of 10µM and PHO89 is a Na+co-transporter 

displaying a Km value around 1µM, respectively optimal at pH ranges of 4.5 and 7.2 

(Roomans et al., 1977).  These plasma membrane permeases regulate the movement of Pi in 

and out the cell (Bun-Ya et al., 1991; Martinez and Persson, 1998).  

 

The mutant yeast strain, PAM2, is devoid of both these high affinity permeases. However, it 

harbours a single low affinity transport system in order for it to actively grow during optimal 

conditions. Being extensively studied, both of these uptake systems in yeast lead to a mostly 

successful platform for heterologous expression of similar transporters in plants (Leggewie 

et al., 1997; Daram et al., 1998; Daram et al., 1999; Guo, 2008). The PAM2 strain has gained 

increasing popularity during studies where plant membrane transporters had to be 

characterised and was therefore the obvious choice for a eukaryotic expression system 

during this study.  
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5.2 Methodology 

 

5.2.1 Materials and yeast strain 

 

All chemicals used during this study were obtained from either MERCK® (Wadeville, 

Gauteng) or from SIGMA® (Steinheim, Germany), unless otherwise specified. All primers 

were from Whitehead Scientific (Pty) Ltd. Restriction enzymes used during this study were 

from Fermentas® (Inqaba, South Africa). Amino acids were from Sigma-Alderich® (Steinheim, 

Germany) unless otherwise specified. All glassware was washed with concentrated HCL to 

remove traces of phosphate contamination. Media was made sterile in an autoclave for 20 

minutes at a temperature of 121: and pressure of 103 kPa. 

 

The yeast strain utilised for complementation experiments during the study was PAM2 

(∆pho89::TRP1; ∆pho89::HIS3 ade2 leu2 his3 trp1 ura3) and was a kind gift from Prof. P 

Daram, Federal Institute of Technology, Zurich, Institute of Plant Sciences. This strain is 

devoid of its internal high affinity Pi uptake systems, but harbours a low affinity uptake 

system in order to be operative under normal growth conditions. 

 

The yeast expression vector, pHVX2, was a kind gift from Dr. J Franken from the Institute for 

Wine Biotechnology, Stellenbosch University, South Africa. 

 

 

5.2.2 Gene propagation 

 

Amplification of PHT1;5 

The gene was amplified with KAPA HiFiTM DNA Polymerase using the following set of primers, 

fw: 5’-CAAGATTTTCTCTAGAGTGACTGAACAAC-3’ and rev: 5’-GAGTAACACAAAATAATTCTAGA 

GGGACTTTTCTACCGG-3’. The PCR reaction mixture contained 10 µM of each primer, 10 mM 

dNTPs, 25 mM MgCl2, 0.5 units of polymerase and approximately 100ng DNA. The PCR setup 

were as follow, an initial denaturation step at 95°C for 2 minutes followed by 35 

Stellenbosch University  http://scholar.sun.ac.za



73 
 

amplification cycles (denaturation at 98°C for 20 seconds, annealing at 55°C for 15 seconds 

and an extension at 72°C for 1 minute), a final extension at 72°C for 2 minutes.  

 

Gene cloning 

The amplified PHT1;5 gene fragment was phosphorylated with T4 Kinase (Fermentas®) 

according to manufacturer’s instructions. During this procedure approximately 150 ng of 

DNA was utilised, 2 µl buffer, 1 µl kinase, 2 µl ATP (10 mM) and water to a final volume of 20 

µl. Phosphorylation was carried out at 37:C for 20 minutes and the enzyme inactivated at 

75:C for 10 minutes. The 2 micron multi copy plasmid (Figure 23), pHVX2, was used as yeast 

expression vector. The vector (700 ng) was digested with XhoI at 37:C for 90 minutes and 

inactivated at 80:C for 20 minutes. The vector was made blunt-ended with T4 Polymerase 

(Fermentas®) with the addition of 1 µl dNTP (2 mM) and 0.2 µl T4 polymerase to the 

inactivated plasmid digest mixture. Blunting was done at room temperature for 5 minutes 

and the reaction inactivated at 70:C for 10 minutes. The blunted plasmid reaction was 

cleaned with a PCR clean-up kit from Fermentas® according to manufacturer’s instructions. 

The vector was subsequently dephosphorylated with FastAP alkaline phosphatase 

(Fermentas®). The dephosphorylation reaction contained 500 ng of plasmid DNA, 2 µl of 

buffer, 1µl alkaline phosphatase and brought to volume with sterile water. The reaction was 

incubated at 37:C for 10 minutes and inactivated at 75: for 5 minutes. 

 

The phosphorylated gene fragment and the dephosphorylated plasmid digest were purified 

with a PCR clean-up kit from Fermentas® and a blunt-end ligation procedure was carried out 

with T4 ligase (Fermentas®) in a final volume of 20 µl. The ligation reaction contained 300 ng 

of insert DNA, 100 ng plasmid DNA, 2 µl ligase buffer, 2 µl PEG 4000 (50%) and 1 µl DNA 

ligase (5U). The ligation reaction was carried out at 22:C for an hour and inactivated at 65:C 

for 10 minutes. 

 

Electrocompetent DH5α E.coli cells were transformed with both empty pHVX2 vector and 

vector construct, containing the gene of interest, via electroporation with a Bio-Rad 

GenePulser XcellTM electroporator according to manufacturer’s instructions. Pre-

programmed parameters were used for the transformation of 20 µl cells with 1µl plasmid 

DNA in an electroporation cuvette with an aperture of 0.1 cm. Following the electroporation 
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procedure, cells were incubated for an hour at 37°C in 1 ml SOB (20 g L-1 tryptone, 5 g L-1 

yeast extract, 0.6 g L-1 NaCl, 0.5 g L-1 KCl, 10 mM MgCl2, 10 mM MgSO4)with catabolite 

repression (SOC) medium, shaking continuously at 200 rpm. SOC medium contains filter-

sterilized glucose at a final concentration of 20 mM, but is otherwise similar to SOB media as 

described by Hanahan (1983). 

 

Following the incubation step, 80 µl of cells was spread onto LB medium. The LB medium 

were solidified with bacteriological agar (Biolab®, Wadeville, Gauteng) and contained 50 µg 

ml-1 ampicillin (Roche, Mannheim, Germany) for selection of positive transformants. Plates 

were incubated at 37°C for approximately 16 hours and followed by a colony PCR to verify 

positives clones. PCR was carried out with gene specific primers as previously described in 

this section. 

 

 

 

Figure 23: The 2 micron high copy plasmid, pHVX2, for yeast expression. 
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Plasmid isolation and construct verification 

Positive clones, as determined via colony PCR, were selected and subject to various 

restriction digest analysis. The pHVX2-PHT1;5 construct and the control, pHVX2 empty 

vector,  was digested with  various enzymes; BamHI, BglII, SacI, KpnI, XhoI, SmaI and EcoRI 

respectively or in combination to verify the presence and orientation of the PHT1;5 gene. 

The digests were set up, according to Fermentas™ suggestions, as follow: 1U enzyme, 500 ng 

DNA, 5 µl buffer and sterile water to a final volume of 50 µl. Digests were conducted for two 

hours at 37°C. 

 

An alkaline lysis method was used to isolate the positive pHVX2-PHT1;5 vector DNA 

according to the method of Untergasser (2006) with minor changes. The volume of the 

overnight culture was 250 ml LB, and 1 µl of RNaseA (10 mg ml -1) (Fermentas®) was added 

after the pellet was resuspended in TE buffer to remove any RNA contamination. This 

protocol can be viewed for details on the following website: 

http://untergasser.com/lab/protocols/maxiprep_alkaline_lysis_v1_0.htm. 

 

Authenticity of the construct was verified by sequencing (Central Analytical Facility, 

Stellenbosch University). NCBI BLAST analysis was performed against the Arabidopsis 

genome to verify the sequence of the cloned gene. 

 

Separation of DNA fragments by gel electrophoresis 

All DNA isolations have been inspected on a 1% agarose gel, stained with 10 mg ml-1 

ethidium bromide and visualized under UV light. Agarose gel experiments were conducted in 

0.5X TBE buffer at a voltage of between 100 – 120V for at least an hour or until bands have 

separated sufficiently. TBE buffer (5X) contains 54 g L-1 Tris-base, 27.5 g L-1 boric acid and 20 

ml L-1 0.5 M EDTA (pH 8.0). Band sizes were determined with the help of a lambda pst 

ladder. DNA concentrations were determined on a NanoDrop 1000 (Thermo Scientific).   
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5.2.3 Competent yeast cells 

 

Electro-competent yeast cells were made according to Becker and Guarente, 1991. The 

method entailed growing an overnight starter culture by inoculating a single yeast colony 

into 5 ml YPD media (10 g L-1 yeast extract, 20 g L-1 Peptone and 20 g L-1 dextrose) and 

shaking it at 240 rpm in a 28:C incubator. The starter culture was transferred to a 500 ml 

Erlenmeyer flask containing 200 ml YPD and was grown, as previously done, for 4 hours or 

until an OD600 0.8 was reached. The culture was harvested at 4:C in a Sorvall® RC5C PLUS 

centrifuge at 5000 x g for 5 minutes. The pellet was gently resuspended in 10 ml of 10 x TE 

buffer (1 M Tris-HCl [pH 7.5] and 0.5 M EDTA [pH8.0]), followed by the addition of 10 ml 

lithium acetate (1 M) and shaken at 240 rpm for 45 minutes at a temperature of 28:C. 

Subsequently 2.5 ml dithiothreitol (1 M) (Sigma Alderich™) was added to the culture and 

shaken for another 15 minutes. The yeast cells were then washed three times in 50 ml ice 

cold water by centrifuging at 6000 x g. The pellet was resuspended in 25 ml ice cold sorbitol 

(1 M) and centrifuged at 6000 x g. The final pellet was resuspended in 500 µl sorbitol (1 M) 

and divided accordingly into 100 µl aliquots for the use in transformation. 

 

 

5.2.4 Yeast transformation 

 

Yeast cells were transformed using the Bio-Rad GenePulser XcellTM electroporator according 

to manufacturer’s instructions. The transformation mixture consisted of 100 µl 

electrocompetent yeast cells and 100 ng of DNA which was transferred to an ice cold 

electroporation cuvette with an aperture of 0.2 cm. Electroporation was carried out at pre-

set protocols which included a pulse at 2.5 kV. The cells were recovered with ice cold 

sorbitol (1 M), incubated at 28:C for 30 minutes and 150 µl plated out onto selection media 

(see section 4.2.5). 

 

 

5.2.5 Yeast growth and selection 

 

Throughout the study, growth experiments of the yeast were conducted in YPD, YNB or M63 

(Cohen and Rickenberg, 1956) media depending on the purpose of the experiment. The 
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yeast was grown at a temperature of 28:C and shaken at 240 rpm when in liquid. Growth of 

transformed yeast cells in the YNB and M63 media was carried out by supplementing the 

media with necessary amino acids which included 100 mM histidine-HCl, 100 mM leucine, 40 

mM tryptophan, 10 mM adenine and 20 mM uracil. YPD media consisted of 10 g L-1 yeast 

extract, 20 g L-1 peptone and 20 g L-1 dextrose. Components of the YNB media included 6.6 g 

L-1 YNB (yeast nitrogen base), 20 g L-1 glucose (filter sterilised through a 0.2 µm filter), amino 

acids to desired concentrations and brought to a pH of 5.6 with the addition of concentrated 

HCl. YPD and YNB media were solidified with 20 g L-1 agar when necessary. M63 was utilised 

as minimal media (Clifton et al., 1978) due to the ease of supplying phosphate to media in 

various concentrations as required. The M63 media consisted of 13.6 g L-1 KH2PO4, 2 g L-1 

(NH4)2SO4, 0.5 mg L-1 FeSO4-7H2O, adjusted to pH 5.6 and autoclaved. After sterilisation the 

M63 media was supplied with filter sterile 1 ml L-1 MgSO4-7H2O (1 M) and 0.2 % v/v glucose. 

In the event of conducting complementation studies the M63 media was adjusted slightly. 

KH2PO4 was replaced with KCL and the media was supplied with various phosphate 

concentrations ranging from 0 to 600 µM. Selection depended on the plasmid pHVX2, which 

carries a Leu2 gene, enabling transformants to grow successfully without supplementation 

of leucine which is a prerequisite amino acid for the PAM 2 yeast strain. 

 

Putative yeast transformants were verified with the yeast plasmid extraction protocol using 

zymolase and a manifold miniprep method. The procedure included the growth of yeast in 1 

ml selection media (YNB without leucine) until the culture reached saturation. The culture 

was harvested at 13 000 x g for one minute at room temperature in a desktop microfuge 

(Biofuge, Heraues).  The pellet was resupended in 100 µl of 67 mM KH2PO4 (pH 7.5), 

followed by the addition of 10 µl driselase (25 µg µl-1 dissolved in 10 mM Tris buffer, pH 7.5) 

(Sigma®) and incubated for one hour at 37:C. The incubation step was followed by the 

addition of 200 µl lysis solution (1 ml SDS [10% w/v], 200 µl NaOH [10N in 10 ml water]) and 

200 µl neutralizing solution (4M KoAc, pH 5.5). The suspension was centrifuged for 10 

minutes at 13000 x g, passed through a miniprep column (Fermentas®) and eluted in 25 µl of 

sterile water. The DNA was subsequently transformed back into E.coli, as described in 

section 4.2.4, and transformants were verified via colony PCR with the following primers, fw: 

5’-CAAGATTTTCTCTAGAGTGACTGAACAAC-3’ and rev: 5’-GAGTAACACAAAATAATTCTAGAGGG 
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ACTTTTCTACCGG-3’. The PCR reaction mixture contained 10 µM of each primer, 10 mM 

dNTPs, 25 mM MgCl2, 0.5 units of polymerase and approximately 100ng DNA. The PCR setup 

were as follow, an initial denaturation step at 95°C for 2 minutes followed by 35 

amplification cycles (denaturation at 98°C for 20 seconds, annealing at 55°C for 15 seconds 

and an extension at 72°C for 1 minute), a final extension at 72°C for 2 minutes. 

 

 

5.3 Results and Discussion 

 

5.3.1 Gene propagation and analysis of transgene presence 

 

The PHT1;5 gene was  cloned into the 2micron multi-copy plasmid, pHVXII, which contain a 

yeast promoter and terminator for effective foreign gene transcription. This is an E.coli-yeast 

shuttle vector which enables gene propagation in a bacterial system as well as a yeast 

system. The presence of the transgene was verified by means of colony PCR and restriction 

enzyme digest. PCR fragments were analysed on a 1% agarose gel (Figure 24: A) and 

expected sizes of 1.7 kb was observed. To further confirm the presence and orientation of 

the transgene in the correct vector, restriction digests were performed (Table 4). The 

presence of the gene was tested for by digesting the DNA on four respective occasions with 

different enzymes (Table 4, shaded rows) and the orientation was analysed by means of 

digesting the DNA with SmaI and EcoRI. 
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Table 4: Expected fragment sizes for pHVXII and pHVXII-PHT1;5 after restriction digests with specific enzymes 

 Fragment sizes expected from digests (bp) 

Enzymes pHVXII pHVXII-PHT1;5 

BamHI 7500 9200 

BglI+ScaI 7500 4300, 4900 

KpnI 7500 7400, 1800 

XhoI 7500 8100, 1100 

SmaI 7500 9200 

EcoRI 7500 7700, 900, 600 

 

 

All digests were analysed on 1% agarose gels and confirmed the presence (Figure 24: B) and 

correct orientation (Figure 24: C) of PHT1;5 in the plasmid. Successful gene propagation was 

carried out for the yeast constructs and authenticity and correct frame of the gene was 

further verified by sequencing and BLAST analysis against the Arabidopsis genome. Sequence 

data confirmed the correctness of the gene and indicated that no mutations were present in 

the sequence. 
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Figure 24: (A) Colony PCR with gene-specific primers of PHT1;5 in pHVXII. Lanes, M – Molecular marker Lambda pstI, 1 - 

Negative water control, 2 - Positive gene control, 3 – positive colony one, 4 – positive colony two. (B) Seven colonies tested 

for containing pHVXII-PHT1;5 construct and analysed with restriction digestion (correct colony indicated with asterix). (B: 

Top) Lanes, M – Molecular marker Lamda pst, 1 - empty pHVX2 (BamHI), 2- 8 digest with BamHI (colonies 1 to 7), 9 – 14 

digest with BglII+ScaI (colonies 1 to 6) (B: Bottom) Lanes, M – Molecular marker lamda pst, 1 – Colony 7 digest with 

BglII+ScaI, 2 – 8 digest with KpnI (colonies 1 to 7), 9 – 15 digest with XhoI (colonies 1 to 7). (C): Orientation check of correct 

colony. Lanes: M – molecular marker Lamda pst, 1 - empty pHVX2 (SmaI digest), 3-pHVX2-PHT1;5 construct (SmaI digest), 4-

Empty pHVX2 (EcoRI digest), 5-pHVX2-PHT1;5 construct (EcoRI digest) 

 

 

Yeast transformations were successfully conducted via an electroporation method and 

putative transformants were selected for by supplying the growth media with necessary 

amino acids. Once putative transformants were obtained the plasmid DNA had to be isolated 

from the yeast and transformed back into E.coli for verification. This back-transformation 

step was necessary because yeast display a low copy number multiplication of plasmids. This 

low plasmid copy number in yeast is often not readily detected when yeast colonies are 

analysed, resulting in false conclusions. During this experiment it was demonstrated that 

yeast was successfully transformed with the pHVXII-PHT1;5 construct as well as a control 

(empty pHVXII). Positives clones were subject to further complementation studies. 
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5.3.2 Yeast Complementation 

 

In the event of starting the complementation trials, it was found that the PHT1;5 did at first 

not seem to complement any growth defect of the PAM2 strain. In fact, the strain seemed to 

grow without restraint on selective minimal yeast synthetic dropout (SD) media when 

supplied with either minimal amount of phosphate or without phosphate (Figure 25). 

According to literature, this was the standard media that had been utilised during 

complementation studies of other plant phosphate transporters in yeast (Guo,2008; Versaw 

and Harrison, 2002; Daram et al., 1999). Most of these characterised transporters however, 

are low-affinity transporters with a relative high Km value for phosphate usually in the milli 

molar range.  

 

 

 

Figure 25: Serial dilutions of yeast transformants growing on synthetic dropout media supplied with (A) 20 µM phosphate 

or (B) no phosphate. Cultures were spotted onto media in equal volumes 

 

 

It was speculated that the media used for studying the complementation with the PHT1;5 

transporter contain traces of phosphate contamination which would therefore lead to false 

results. A different media was thus formulated for this study and it was based on the M63 

minimal media, with minor modifications. The modified media contained equivalent 

concentrations of KCl rather than KH2PO4 and yeast was selected for by supplementing the 

media with necessary amino acids. 
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The ability of PHT1;5 to complement the defective yeast strain was tested for on the 

modified M63 media by investigating growth rescue when different phosphate 

concentrations was supplied. During this study it was demonstrated that the PHT1;5 

transporter is able to rescue the growth of the PAM2 yeast strain on phosphate 

concentrations as low as 25 µM (Figure 26: A). This experiment was also conducted 

successfully with phosphate concentrations of 50 µM (Figure 26: B), 100 µM (Figure 26: C) 

and also on M63 media that was supplied with the full phosphate concentration of 100 mM 

(Figure 26: D). These results clearly indicate that the PHT1;5 transporter was able to mediate 

the transport of inorganic phosphate into yeast cells at very low concentrations. 

 

  

 

Figure 26: Serial dilution of yeast transformants spotted onto M63 minimal media in equal volumes. On each plate is 

cultures harbouring either the control (empty pHVXII) which can be observed in the left lane or the transformed (pHVXII-

PHT1;5 construct) on the right (A) Minimal media supplied with 25 µM phosphate, (B) Minimal media supplied with 50 µM 

phosphate, (C) Minimal media supplied with 100 µM phosphate, (D) Minimal media supplied with 100 mM phosphate 

 

 

This evidence, in combination with the fact that growth occurred in the control at higher 

phosphate concentrations, confirms, at least in part, the speculation that PHT1;5 is a high-

affinity phosphate transporter. It cannot be ignored that the possibility exists for this 

transporter to directly or indirectly work alongside, or up-regulate, an endogenous transport 

mechanism of yeast. Although this complementation on M63 minimal media was consistent, 

we can only speculate that the Km range for this transporter is approximated to be in the 

range of 20 µM as this was where strongest complementation was displayed on numerous 
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occasions. It would be necessary in future studies to investigate transport kinetics by 

determining the true Km value for this transporter. This would provide conclusive evidence 

that the Pi transport ability is associated with the PHT1;5 protein exclusively and that there 

is no interference from endogenous yeast transport mechanisms. 

 

 

5.3.3 Concluding remarks and future prospects 

 

Yeast has been skilfully utilised over the years for studying membrane transporters from 

plants due to its relative rapid growth rate and the fact that is able to perform post-

translational modification. Not only does it display advantages of expressing eukaryotic 

proteins, but some mutant strains of yeast have been developed that display deficiencies in 

transport pathways (Riesmeier et al., 1992). These mutant strains enable researchers to 

successfully conduct complementation studies and is useful for assigning possible functions 

to uncharacterised plant transporters. 

 

In order to investigate the hypothesis that PHT1;5 is a high affinity transporter, we tested its 

ability to complement the growth defect of the mutant yeast strain PAM2. This strain does 

not harbour either of its natural high-affinity phosphate transport systems, PHO84 and 

PHO89, and therefore result in reduced growth during conditions of phosphate limitation. 

The strain does, however, still harbour the low-affinity transport systems enabling ample 

activity during non-selective growth conditions for efficient propagation.  

 

Results obtained during this study provides evidence of the biochemical function of the 

PHT1;5 transporter to mediate phosphate transport. It has been revealed via 

complementation of the yeast mutant strain, PAM2, that PHT1;5 is able to functionally 

transport inorganic phosphate when grown on minimal media supplemented with extremely 

low concentrations of phosphate. It is evident that this eukaryotic expression system can be 

successfully used for the characterisation of PHT1;5 in future studies. During these 

experiments we were able to demonstrate the ability of PHT1;5 to function as a high-affinity 
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phosphate transporter, because the growth defect of the PAM2 strain was restored  during 

growth conditions of extreme low Pi concentrations. This was clearly demonstrated when 

PAM2 harbouring the empty vector (pHVXII) grew only at concentrations higher than 100 

µM, while cells expressing PHT1;5 was able to grow at Pi concentrations as low as 25 µM. 

The growth rate of the mutant strain containing the empty vector (pHVXII) correlated 

positively with increasing phosphate concentrations, its growth was limited at micro-molar 

concentrations. All strains, empty PAM2, PAM2-pHVXII and PAM2-pHVXII-PHT1;5, grew well 

at milli-molar phosphate concentrations due to the internal low-affinity Pi-uptake system of 

yeast being active (Tamai et al.,1985).  
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CHAPTER 6 

General discussion 

 

There were three main objectives set out for this study. Firstly, to analyse the protein 

topology and gene expression profile in silico. Secondly, to utilise mutant E.coli and yeast 

strains as tools for heterologous expression and to complement the growth defects of these 

strains with the PHT1;5 transporter. Thirdly, to determine whether PHT1;5 is a high- or low- 

affinity phosphate transporter. All together the aim of the study was to participate in the 

characterisation process of PHT1;5.  

 

In silico analysis of PHT1;5 revealed that this protein is composed of 542 amino acid residues 

and that it is generally hydrophobic, indicating its membrane bound association. It is 

hypothesised that PHT1;5 is targeted to the chloroplast inner membrane, although weak 

evidence supports this statement. Programs such as ChloroP and TargetP predicted that 

there is no strong evidence for PHT1;5 being targeted to the chloroplast, although it did 

reveal the presence of a putative chloroplast transit peptide. Some previous studies done to 

investigate this provides no definite insight as to where the protein is targeted to, but 

merely states that it is highly expressed during conditions of Pi depletion (Zwiegelaar, 2010; 

Nagarajan et al., 2011). Zwiegelaar (2010) conducted PHT1;5-GFP fusion studies and  

demonstrated that the protein is being targeted to the chloroplast but these results would 

need further confirmation by performing studies on isolated chloroplasts rather than on 

whole plant level. 

 

The expression profile for PHT1;5 revealed consistent results. It was predicted to be 

expressed mainly in the aerial parts of the plant which can lead to the assumption that it is 

less likely to play a role in the transport of phosphate from soil. It should, however, be noted 

that these expression profiles are predicted for growth during conditions of optimal 

nutrition and not for phosphate depleted conditions. A recent study done by Nagarajan and 

colleagues (2011) revealed that PHT1;5 is also expressed in the roots during phosphate 

limitation, even though these findings were not confirmed when Zwiegelaar (2010) 

investigated the expression profile of the gene during phosphate limiting conditions. It is 
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therefore suggested that further expression analysis need to be conducted to fully 

understand the transport and nutritional condition profile for PHT1;5. The statement by 

Himelblau and Amasino, 2001, declared that approximately 78% of Pi stored by the older 

parts of a plant is transported to younger tissues in order to mediate an adequate Pi 

homeostasis. This might emphasize the involvement of PHT1;5 in nutrient mobilisation and 

implies the possibility of this transporter to display characteristics of both Pi import and 

export. 

  

During the in silico analysis it was found that PHT1;5 is part of the major facilitator 

superfamily (MFS) of Pi/H+ transporters with a large proportion of the protein being 

conserved throughout similar transporters from different organisms. The sequence was 

aligned to known high affinity transporters such as PHO84 from Saccharomyces cerevisiae 

(Bun-Ya et al., 1991), PHO5 from Neurospora crassa (Versaw, 1995) and GvPT from Glomus 

versiforme (Harrison and Van Buuren, 1995) and it was revealed that there was some 

sequence similarity, especially one conserved region that included a phosphate permease. 

The sequence analysis indicated, based upon similarity, that PHT1;5 is indeed a inorganic 

phosphate transporter. In the event of investigating the amount of transmembrane helices 

(TMs), ambiguous predictions were found and it was decided to assume that PHT1;5 has 12 

TMs based on the characteristics revealed in MFS. Sequence analysis of the Pht1 family of 

transporters in Arabidopsis indicated high similarity between all nine members, including 

PHT1;5.    

 

Escherichia coli is a well-established heterologous expression systems (Frommer and 

Ninnemann, 1995) and displays several advantages above other systems. These advantages 

include simplicity to work with, rapid growth rate, high yield of protein production and 

relative low expense. Genetic and biochemical information about this prokaryote is readily 

and extensively available, various strains and mutants are easy to come by and all 

commercially available vectors are compatible for E.coli transformation. For these reasons, 

E. coli was investigated during this study for its ability to serve as a heterologous expression 

system for the plant transporter PHT1;5. Previous research have identified E.coli as being a 

successful heterologous expression tool (Kuhlbrandt and Wang, 1991; Kim et al., 1998; 

Uozomi et al.,1998), but these studies seem to be negligible. 
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During our investigation, E.coli experiments seem to be mostly inconclusive or unreliable and 

it is therefore not suggested as choice heterologous expression system for membrane bound 

transporters. Membrane bound proteins often induce growth arrest and to have toxic 

effects on bacterial cultures (Yin et al., 2007) and we suspect that induction of the PHT1;5 

protein display these toxicity effects. These toxic effects might also be interpreted as being a 

result of the possible Pi exporting nature displayed by PHT1;5 which would then lead to a 

constitutive export of Pi from the bacterial cells, leading to an extensive Pi starvation period 

after induction. This statement is based upon the assumption that low protein levels might 

be present in the bacterial system but was not visible in total protein extracts. Future studies 

might include the optimization of growth conditions and the use of different E.coli strains 

when membrane bound proteins are to be investigated. Strains such as BL21-CodonPlus-RIL 

or BL21-CodonPlus-RP cells are recommended by Stratagene® to be used during studies 

where proteins are potentially toxic to bacterial cultures.  

 

Inconsistent and inconclusive data was obtained from the E.coli complementation studies. 

Although E.coli could not be effectively utilised as heterologous expression system during 

this study, it is still proposed that the PHT1;5 transporter function as a H+/Pi symporter due 

to the immediate change observed when pH was measured. A plausible reason for this might 

be that the PHT1;5 transporter, regardless of it being toxic when induced, might have a rapid 

functionality in phosphate stressed bacterial cultures where it imports Pi ions in exchange 

for H+ ions. 

 

During this study yeast has proven to be a successful heterologous expression system in that 

the growth defect of the PAM2 strain was complemented for by the PHT1;5 transporter 

during conditions of low Pi availability. Here we provide some insight as to whether PHT1;5 

is a high- or low-affinity Pi transporter. It was found that, during extremely low Pi 

concentrations, PHT1;5 was able to function as a high affinity transporter and functionally 

transport Pi across the yeast plasma membrane. Evidence gained during these experiments 

provides only a relative range of phosphate concentrations where PHT1;5 is active, but does 

not present the Km value of this transporter. Complementation of yeast cells were achieved 

at Pi concentrations as low as 25 µM and it can therefore be speculated that the Km value 
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for PHT1;5 is in concordance with other high affinity transporters, displaying values of 

between 1-40 µM (Leggewie et al., 1995; Daram et al., 1999). However, it should be taken 

into consideration that previous studies have indicated that yeast heterologous expression 

does not always lead to accurate estimations of Km values for plant transporters (Leggewie 

et al., 1995). Leggewie et al. (1995) investigated the LePT1 phosphate transporter from 

tomato and was able to complement the PAM2 yeast strain. They indicated via radio-active 

analysis that the transporter displayed a Km value of 31 µM which was, according to 

Raghothama (1999), an improvement of previous results but still too high for physiological 

high-affinity transport on a whole plant level. When the Arabidopsis homolog of LePT1 was 

characterised in cultured tobacco cells its Km value was 3.1 µM (Mitsukawa et al., 1997).  

These statements indicate that yeast has some limitations when kinetic properties of plant 

transporters need to be accurately estimated and should therefore be used only as putative 

values. 

 

Future analysis of PHT1;5 and its transport activity should include the determination of the 

Km value through either radio-active labelling or by utilising the newly developed 

nanosensor technology. Radio-active labelling has been successfully used in previous studies 

to determine Km values of plant transporters (Leggewie et al., 1997; Daram et al., 1998; 

Daram et al., 1999; Guo, 2008). The nanosensor technology makes use of fluorescence 

resonance energy transfer (FRET) and the nanosensors are based on conformational changes 

of a fluorescent indicator protein (FLIP) in response to changes in metabolite concentrations. 

This technology has some advantages over radio-active labelling, such as the ability to 

analyse metabolite presence within subcellular compartments and at very low 

concentrations and would enable researchers to investigate this transporter in more depth 

in planta. Several FRET Pi sensors (FLIPPi), varying in sensitivity, have been developed and 

characterised (Gu et al., 2006). Furthermore, PHT1;5 should be characterised by determining 

its optimum pH range and also by exploiting the effect that various other chemical 

compounds might display on its Pi transport functionality. 

 

Based upon the prediction, despite the fact that weak evidence supports this, that PHT1;5 is 

localised to the chloroplast inner membrane, we believe that this transporter is a 

participating candidate in the complex Pi regulation and transport machinery in higher 
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plants, although these activities are poorly understood in the plant cell (Neuhaus and Maass, 

1996; Neckelmann and Orellana, 1998). For future endeavours, it would be of significant 

value to investigate the underlying Pi acquisition properties of plant cells by modifying the 

biochemical properties of Pi transporters/transport systems. Studies based upon this might 

lead to insightful information with regards to how plants develop under Pi limiting 

conditions, how photosynthesis and carbon partitioning is affected and how stress signalling 

pathways interact with Pi transport pathways (Marschner, 1995; Hurry et al., 2000). Future 

concepts regarding the development of PHT1;5 over expression on plants should, however, 

take into consideration that Pi in too high concentrations might become toxic to the plant. 

This might highlight the possible reason for why Pi uptake and transport is regulated in such 

a complex manner. A clearer understanding of how plants perceive and control intracellular 

signalling networks in response to wavering Pi conditions is thus a critical step toward 

understanding how plants regulate and maintain Pi homeostasis and metabolism during Pi 

depletion.    

 

The eventual goal for characterising these plant Pi transporters would be to generate high 

yielding plants that are able to effectively grow on Pi-poor soil without the supplementation 

of fertilizers. Therefore it can be believed that a comprehensive understanding of Pi 

acquisition and distribution by plants will have a significant impact on environmental and 

agricultural concerns, especially with regards to crop development. 
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