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Abstract

Evolutionary models that make use of site-specific parameters have recently been criticized on the grounds that parameter
estimates obtained under such models can be unreliable and lack theoretical guarantees of convergence. We present a
simulation study providing empirical evidence that a simple version of the models in question does exhibit sensible
convergence behavior and that additional taxa, despite not being independent of each other, lead to improved parameter
estimates. Although it would be desirable to have theoretical guarantees of this, we argue that such guarantees would not
be sufficient to justify the use of these models in practice. Instead, we emphasize the importance of taking the variance of
parameter estimates into account rather than blindly trusting point estimates – this is standardly done by using the models
to construct statistical hypothesis tests, which are then validated empirically via simulation studies.
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Introduction

Site-to-site variation of evolutionary rates has been modeled in

the phylogenetic framework using two distinct approaches, each of

which has its own advantages. The first, which can be

characterized as a random effects approach or hierarchical model,

is based on the assumption that knowledge of the evolutionary

rates at some sites can be informative for the purpose of inferring

the rates at other sites. This assumption has been incorporated into

models by treating site-specific rates not as free model parameters

but as independent draws from a shared gene-wide distribution,

which has the desirable property that data from all sites can be

pooled in order to estimate it [1,2,3,4,5]. As a result, relatively

complex gene-wide distributions can be estimated reliably

whenever the available sequences are sufficiently long and the

model is sufficiently flexible [5].

However, this strategy may be suboptimal or infeasible in some

contexts and a second type of model, using what can be

characterized as a fixed effects approach, has also become popular

[6,7,8,9]. In this approach, the rate at one site is estimated

separately from the rate at another, by introducing one or more

independent parameters at each site.

Empirically, fixed effects and random effects approaches yield

very similar results when used in a hypothesis testing framework

[6], and simulation studies [8,9] have demonstrated expected

statistical properties for hypothesis tests using models that have

several site-specific parameters. For instance, the alternative

models of MEDS [8] and MEME [9] for detecting sites

undergoing, respectively, episodic directional and episodic diver-

sifying selection, have four site-specific parameters each. Simula-

tions demonstrate that tests based on these models control Type I

error rates, and that their Type II error rates decrease as more

sequences are included in the analysis.

Because of the limited amount of information available at a

single site, it is not usually possible to obtain accurate point

estimates of site-specific parameters: their confidence intervals

tend to be large. This does not present a problem for statistical

hypothesis tests, regardless of whether they are implemented in a

Bayesian or frequentist framework, since a key feature of such tests

is that the uncertainty in the parameter estimates is automatically

taken into account. If the data are uninformative, the test will lack

power (in a frequentist framework) or yield uninformative

posteriors (in a Bayesian framework). It is therefore desirable to

have some reassurance that appropriately large data sets will

ensure that parameter values are estimable. Furthermore, it is

desirable that hypothesis tests should be useful even for data sets of

realistic size, rather than only becoming so in the limit of an

infeasibly large data set.

Unfortunately, theoretical guarantees are not easily forthcoming

in this context. Since the total number of site-specific parameters is

proportional to the number of sites, having a large number of sites

is clearly of no help when estimating the parameters of such a

model. This is true even for estimates of parameters that are not

site-specific: the mere presence of site-specific parameters in the

model can cause estimates of non-site-specific parameters to be

biased in the limit as the number of sites increases towards infinity

– the phylogenetic analogue of the incidental parameter problem

that was demonstrated in 1948 by Neyman and Scott [10].

Felsenstein [11] referred to this as the ‘‘infinitely-many-parame-

ters’’ problem and pointed out that the presence of site-specific

PLOS ONE | www.plosone.org 1 April 2014 | Volume 9 | Issue 4 | e94534

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0094534&domain=pdf


parameters can lead to unreliable inference of phylogenies. The

theoretical problems underlying phylogeny inference in this

context continues to receive attention [12]; here we restrict our

attention to the case where the phylogeny (i.e. the tree topology

and the relative branch lengths) is considered known or is inferred

under a simpler model, since in practice it is typically kept fixed

when site-to-site rate variation is introduced (e.g. [9]).

Intuitively, it seems reasonable that adding taxa to the data set

should improve parameter estimates. However, whereas the

addition of sites clearly increases the amount of information

available for inference (because, in the phylogenetic models under

discussion, different sites are assumed to be independent of each

other), adding taxa is more complicated because the characters

observed at different taxa are not independent. One can even

construct pathological schemes (e.g. growing the tree by adding

progressively shorter branches) by which the number of taxa can

be increased without bound while the site-specific parameter

estimates fail to converge. We currently have no mathematical

proof even of the existence of a scheme for increasing the number

of sites and taxa in such a way that site-specific parameters will

converge to their true values. In a recent critique of models using

site-specific parameters, Rodrigue [13] questioned the possibility

of obtaining an asymptotic convergence result guaranteeing

sensible behavior as data set sizes increase, claiming that one is

‘‘left without any asymptotic conditions to envisage’’.

Given these theoretical difficulties, it is reasonable to desire

empirical confirmation of the intuitive expectation that adding

sequences to a data set should result in improved estimates of site-

specific parameters. Here we present a simple simulation study

investigating how the accuracy of the parameters estimated using

these models changes as, respectively, the number of branches and

sites increases.

Methods

We simulated sequence alignments under a model with site-

specific rate multipliers (Model 1) and under a model with branch-

specific parameters (Model 2), investigating how the accuracy of

the parameters estimated using these models changes as,

respectively, the number of branches and sites increases from 64

to 128, 256, 512 and 1024. All alignments were simulated in sets of

100 replicates using balanced trees (with all branch lengths in

Model 1 equal to 0.1) under the K80 model [14], transition/

tranversion rate ratio = 4.0, with site-specific rate multipliers

drawn once per site (Model 1) or branch lengths drawn once per

branch (Model 2) from a gamma distribution (a=b= 1) and held

at the same values for all replicates. Maximum likelihood estimates

were used for branch lengths in Model 2, and the site-specific rate

multipliers in Model 1 were estimated using the standard

approximation (e.g. [9]) of fitting relative branch lengths using

all data and then holding these fixed while performing site-wise

estimation of the site-specific parameters. In both cases, the tree

topology was treated as known. To investigate the possibility that

inferring the tree topology becomes more challenging as the

number of branches increases, we also performed the Model 1

analysis using phylogenies inferred by a deliberately simplistic

algorithm (neighbor joining). In the case of Model 2, it is not

possible to compare true branch lengths to estimated branch

lengths when the tree topologies may differ.

Results

Figure 1 shows the estimated versus the true parameter values

for the smallest and largest data sets along with the sample

confidence intervals. Also shown are the confidence intervals that

are expected if the parameter estimates are normally distributed,

calculated from the sample variance of the parameter estimates.

Figure 1. Convergence of site-specific and branch-specific parameter estimates with increasing data set size. A–B and D–E: estimated
versus true parameter values for site-specific rate parameters estimated from small (A–B) and large (D–E) simulated data sets using the true tree
topologies (A,D) and tree topologies inferred by the neighbor-joining algorithm (B,E). C and F: estimated versus true parameter values for branch-
specific rate parameters estimated from small (C) and large (F) simulated data sets. See text for details.
doi:10.1371/journal.pone.0094534.g001
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The results in Figure 1 demonstrate empirically, for one

particular setting, that the estimates of site-specific parameters

improve as the number of sequences increases, that this

improvement occurs regardless of whether the tree topology is

known a priori or inferred by neighbor-joining, and that the

improvement is similar to the improvement obtained in estimated

branch length parameters as the number of sites increases. In both

cases, the estimates appear consistent, with variances that shrink as

data set size increases. As expected, the variances of the estimates

increase with the value of the rate being estimated [15]. Finally, for

the largest sample size (1024 sites/sequences), the 95% confidence

intervals predicted by the normal approximation to the MLE were

approximately equal to the sample quantiles, suggesting that the

sampling distribution of the MLE is approximately normal (as will

be the case when it is close to convergence) and hence that a x2

hypothesis test would be reliable.

When we explicitly test for normality of the MLEs using a

Kolmogorov-Smirnov (KS) test (Figure 2), we see an interesting

but not unexpected pattern: the ability of a normal distribution to

approximate the MLEs depends on the rate (at a site) or the length

(of a branch) being estimated. When the MLEs are normally

distributed, the p-values from the KS test will be uniformly

distributed. When MLE normality can be systematically rejected,

KS p-values will be biased towards 0, and departures from

uniformity are clearly visible for lower site-wise rates and for

shorter branch lengths. This is reasonable because the effective

sample size for estimating a rate parameter is small when

divergence is low. So even though MLEs obtain normality for

some site rate parameters and for some branch length parameters,

suggesting they occupy the asymptotic regime, they might depart

appreciably from normality for other parameters estimated on the

same alignment.

Discussion

In a recent critique of models using site-specific parameters,

Rodrigue [13] presented a simulation study focusing specifically on

the reliability of parameter estimates rather than on hypothesis

testing. The study found that a model with site-specific parameters

obtained less reliable point estimates of the parameter values than

a model that describes site-to-site rate variation using gene-wide

parameters, and that conclusions based on parameter point

estimates obtained using the former class of models can be

positively misleading. This is an important point worth empha-

sizing: site-specific parameters cannot be estimated reliably (at

least using currently typical data sets with no more than hundreds

of taxa) and models that contain such parameters are not (or

should not be) developed with the aim of obtaining and

interpreting point estimates of parameters. Thus, although caution

is always advisable especially in the absence of theoretical

guarantees, unreliable point estimates do not constitute ‘‘inappro-

priate statistical properties’’ as charged by Rodrigue, nor do they justify

the conclusion [13] that these models ‘‘should be approached with

particular caution when the site-specific variables are high dimensional’’.

Maximum likelihood point estimates have been reported as

unreliable even in cases where asymptotic guarantees are

available, for example in random effects branch site models

[16,17], and in neither class of models can the validity of

hypotheses be judged solely on the basis of parameter point

estimates. Instead, the models are intended for use in a statistical

hypothesis testing framework (not addressed in Rodrigue’s study),

which takes the uncertainty in the parameter estimates into

account. For instance, it is popular to use the likelihood ratio test

to determine whether the hypothesis of neutrality can be rejected.

In many cases one obtains an estimate of the traditional dN/dS

value that is highly uncertain in the sense of having a broad

confidence interval and no reliable point estimate, but for which

one can nevertheless be confident that the value is larger than 1,

implying positive selection. Thus unreliable point estimates cannot

be interpreted as grounds to distrust hypothesis tests. We cannot

blame the use of site-specific parameters when researchers choose,

inappropriately, to ignore the quantifiable uncertainty in param-

eter estimates.

Finally, we wish to emphasize that asymptotic convergence,

though desirable, is not sufficient for valid hypothesis testing in

models with site-specific parameters, nor is convergence to the

theoretical distribution of the test statistic necessary:

1. Asymptotic results are not sufficient: No asymptotic

convergence result can provide us with a guarantee that

inference based on a finite data set is valid. In practice, it is

unclear how to establish that a given alignment is sufficiently

large or informative for asymptotic results to apply or whether

or not all other conditions are satisfied. The results in Figure 2

demonstrate that, even for the branch-specific parameter

estimates where an asymptotic guarantee is available, the

estimates obtained in a realistic scenario can converge for some

branches while failing to converge for others. This is why it is

Figure 2. Degree of normality depends on rate and branch length. Each point on the scatter plot depicts the p-value of a Kolmogorov
Smirnov test for the normality of the maximum likelihood parameter estimates. The p-value distribution corresponding to any particular rate or
branch length value can be evaluated visually by considering a vertical slice through the plot. When MLEs are normally distributed, p-values will be
uniformly distributed. The red curve displays the (kernel weighted) local average of the p-values, which should be near 0.5 when normality is
achieved, and lower when it is rejected. For some range of true parameter values, normality is achieved for both sites (A, using the true tree
topologies, and B, using tree topologies inferred by the neighbor-joining algorithm) and branches (C). However, at lower rates and shorter branch
lengths, the KS test identifies systematic departures from normality, indicating that the effective sample size is likely too small for the asymptotic
distribution to be reached.
doi:10.1371/journal.pone.0094534.g002
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standard practice to validate methods using simulation studies

based on typical alignments, rather than appealing to

theoretical results.

2. Convergence is not necessary: Likelihood ratio tests make

use of the distribution of the test statistic under the null model,

and for the test to be valid this distribution must be

(approximately) correct. It is common to assume that

conditions are appropriate for the test statistic to follow a x2

distribution – if the relevant asymptotic results hold this will

indeed be the correct distribution for infinitely large data sets.

The success of existing methods in simulation studies also

indicates that the x2 distribution is a good approximation when

those methods are applied to alignments of typical size (i.e. sizes

similar to those used in the simulations). If, however, for a

model with site-specific parameters, the x2 distribution is found

to be a poor approximation, this would not invalidate the use of

such models but merely imply that a better approximation

(perhaps an estimate obtained via the parametric bootstrap [9])

is required.

In conclusion, in the absence of theoretical results, our

simulation results provide empirical reassurance that additional

taxa do provide additional information that is accessible to models

with site-specific parameters, and that such models can produce

useful parameter estimates for realistically sized data sets. We wish

to emphasize the importance of empirically validating hypothesis

tests based on these models, but see no reason to distrust them

once such validation has been performed.
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