
RESEARCH ARTICLE

Extinction probabilities as a function of

temperature for populations of tsetse

(Glossina spp.)

Elisha B. AreID*, John W. Hargrove

Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), University of Stellenbosch,

Stellenbosch, South Africa

* elishaare@sun.ac.za

Abstract

Significant reductions in populations of tsetse (Glossina spp) in parts of Zimbabwe have

been attributed to increases in temperature over recent decades. Sustained increases in

temperature might lead to local extinctions of tsetse populations. Extinction probabilities for

tsetse populations have not so far been estimated as a function of temperature. We develop

a time-homogeneous branching process model for situations where tsetse live at different

levels of fixed temperature. We derive a probability distribution pk(T) for the number of

female offspring an adult female tsetse is expected to produce in her lifetime, as a function

of the fixed temperature at which she is living. We show that pk(T) can be expressed as a

geometric series: its generating function is therefore a fractional linear type. We obtain

expressions for the extinction probability, reproduction number, time to extinction and

growth rates. The results are valid for all tsetse, but detailed effects of temperature will vary

between species. No G. m. morsitans population can escape extinction if subjected, for

extended periods, to temperatures outside the range 16˚C–32˚C. Extinction probability

increases more rapidly as temperatures approach and exceed the upper and lower limits. If

the number of females is large enough, the population can still survive even at high tempera-

tures (28˚C–31˚C). Small decreases or increases in constant temperature in the neighbour-

hoods of 16˚C and 31˚C, respectively, can drive tsetse populations to extinction. Further

study is needed to estimate extinction probabilities for tsetse populations in field situations

where temperatures vary continuously.

Author summary

Tsetse flies (Glossina spp) are the vectors of the African sleeping sickness. We derived

expressions for the extinction probability, and mean time to extinction, of closed popula-

tions of G. m. morsitans experiencing different levels of fixed temperature. Temperature

plays a key role in tsetse population dynamics: no population of G. m. morsitans can

escape extinction at constant temperatures < 16˚C or > 32˚C. The effect of temperature

is more severe if tsetse populations are already depleted. Increasingly high temperatures

due to climate change may alter the distribution of tsetse populations in Africa. The
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continent may witness local extinctions of tsetse populations in some places, and appear-

ances in places hitherto too cold for tsetse.

Introduction

A bite from a tsetse fly (Glossina spp.) infected with a parasite of the genus Trypanosomamay

cause Human African Trypanosomiasis (HAT), commonly called sleeping sickness in humans,

or Animal African Trypanosomiasis (AAT), commonly called nagana in livestock. These tropi-

cal diseases have ravaged the African continent for centuries. They pose serious public health

and socio-economic problems, especially to rural farmers, who rely on their livestock for daily

subsistence, draught power and general economic gain. Sleeping sickness is difficult to diag-

nose and the treatments are often difficult to administer [1]. Vector control plays an important

role in the fight against trypanosomiasis [2], and understanding the population dynamics of

the vector is thus crucial for the control or elimination of both sleeping sickness and nagana.

As with all insects, the body temperature of tsetse is largely determined by ambient temper-

ature and all of the flies’ physiological processes are determined by the temperatures that they

experience. Tsetse use various behavioural devices to mitigate the effects of extreme ambient

temperatures, such that the temperatures they actually experience are less extreme than indi-

cated by temperatures measured in, for instance, a Stevenson screen [3, 4]. Nonetheless, exces-

sively high, or low, temperatures are lethal for them [5, 6]. This is a serious concern for tsetse

because, unlike other insects, the genus Glossina is characterized by birth rates that do not

exceed about 4% per day. It follows that, for mortality rates > 4% per day, mortality exceeds

natality, resulting in negative growth rates for tsetse populations. If these negative rates are sus-

tained the tsetse population will be driven to extinction. In theory, therefore, tsetse populations

should be relatively easy to control, or even eradicate, using strategies that achieve quite mod-

est increased mortalities. Equally, extinction could result from increases in mortality conse-

quent on environmental changes, including increases in temperature.

As an example of this effect, a study published in 2018 concluded that, over the previous 40

years, there had been a significant increase in temperatures in the Zambezi Valley of Zimba-

bwe [7]. Specifically, peak temperatures at Rekomitjie Research Station increased by c. 0.9˚C

from 1975 to 2017, with an increase of c. 2˚C at the hottest time of the year (October-Novem-

ber). These increases in temperature were associated with a massive reduction in populations

G. morsitans morsitansWestwood and, particularly, G. pallidipes Austen in the vicinity of

Rekomitjie [8]. The research station is in a national park with no agricultural interference that

could negatively impact tsetse populations, and there has never been any attempt to control

tsetse in the area. That being the case it is reasonable to think that increasing temperature did,

indeed, play an important part in mediating declines in tsetse populations. Elsewhere in Zim-

babwe, however, other effects were of greater importance than temperature. Thus, there has

been, since 1980, rapid expansion of agricultural activity and, particularly in the 1980s and

1990s, vigorous prosecution of tsetse control measures that saw huge reductions in the range

of the fly and in the incidence of animal trypanosomiasis [9]. These, largely anthropogenic,

effects could be modified by changes in temperature. In areas, such as the Zambezi Valley,

where temperatures have historically been at the hot end of the spectrum for tsetse, further

increases could contribute to the kinds of population collapse seen at Rekomitjie. In parts of

the middle and highveld areas, however, where winter temperatures have historically been too

low to support tsetse populations, increased temperatures could tip the balance in favor of the

fly. Similarly, in other parts of Africa, it is important to consider the impact of increasing
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temperatures on the possibility of, at least, local extinction of tsetse in some parts of the conti-

nent and of increased potential for the growth of tsetse populations in other parts which were

previously too cold for the flies.

Two published works have estimated extinction probabilities and time to extinction for

tsetse populations, by assuming fixed environmental states throughout the life history of the

flies. The first [10], derived a branching process model for tsetse populations, with the assump-

tion that male and female offspring are produced with equal probability. This assumption is

not generally true [11], although the results obtained in [10] are consistent with published

results on tsetse biology. The second publication [12] provides a sound mathematical founda-

tion for the results obtained in [10], and assumes a situation where male to female sex ratio

can vary anywhere in the open interval (0, 1) and shows how extinction probability depends

on the male-female sex ratio in tsetse populations.

In both papers, in order to gauge the importance of various determinants of tsetse popula-

tion growth, extinction probabilities were calculated for numerous arbitrary combinations of

mortality and fertility rates. There was no explicit modelling of the effect of temperature on

vital rates, nor thus on its effect on extinction probabilities. In this paper, we develop a version

of the stochastic branching process model presented in [10] and [12] in which all of the biolog-

ical process in the tsetse lifecycle are explicitly dependent on temperature.

In a model developed to describe the tsetse population dynamics of G. m. morsitans on

Antelope Island, Lake Kariba, Zimbabwe, it was found that, when temperature was used as an

independent variable in the model, adding other climatic factors did not improve the fit of the

model to data [13]. This suggests that temperature is a key climatic driver of tsetse population

dynamics, though we do not discount the importance of other factors such as vegetation cover,

humidity and, particularly, access to suitable vertebrate host species. In this study we focus on

the impact of temperature on extinction probability, time to extinction, reproduction number

and growth rates for tsetse populations in situations where other factors are considered invari-

ant and favorable to the survival of tsetse populations. Even under such circumstances, we

show that positive population growth occurs only within quite a narrow band of mean temper-

ature. Sustained temperatures either above or below this band can drive tsetse populations to

extinction.

Various workers have obtained mathematical expressions for the temperature dependence

of such functions as daily survival probabilities for young, and mature, adult females, and

pupae, and the inter-larval period and pupal duration [6, 8, 14–17]. Using these functions

allows us to estimate extinction probabilities, time to extinction and mean of tsetse population

size at different levels of fixed temperatures.

It was also assumed in the earlier papers that mortality in adult flies was independent of the

age of the fly. Evidence suggests that mortality rates are actually markedly higher in recently

emerged adults than in mature flies [6, 18–20], and that this difference is particularly severe at

extremes of high temperatures [5, 6]. To capture this difference in mortality rates, we assume

higher mortalities for adult females that have not ovulated for the first time, compared with

the survival probability of all older flies.

We note at the outset that the temperature relations referred to above generally apply to

results from studies on G. m. morsitansWestwood. The mode of reproduction is identical in

all species of tsetse and it appears that, at temperatures in the region of 25˚C, there are only

minor variations in the rates at which females produce offspring, and at which the offspring

develop [11]. Given that all tsetse are poikilotherms, we may also be sure that all rates will be a

function of temperature. Nonetheless, the pioneering work of Phelps [5, 15, 21, 22], who mea-

sured the detailed effects of temperature on development, and survival, rates of G. m. morsitans
pupae, have not been carried out in such detail for any other species of tsetse. Similarly,
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whereas the effects of fly age and environmental temperature on adult mortality have been

carefully estimated for this species [18, 20] there is little information available on such detailed

relationships for most other species.

We may be confident that the mathematical functions presented here will be applicable, in

general, to all tsetse, whether savannah, forest or riverine species, and indicate the general

trends in extinction probabilities to be expected in these species with changing temperatures.

The functions will, however, only produce meaningful and accurate results if appropriate val-

ues can be made available for all of the input parameters for individual species. At the moment

this is approximately true only for G. m. morsitans.

Materials and methods

We follow the general approach described earlier [10, 12] but the extinction probability is now

obtained with fewer mathematical steps, and in a more compact form. We use the solution to

obtain numerical results for extinction probabilities, times to extinction and growth rates for

tsetse populations living at various fixed temperatures. We achieve this by using existing func-

tions in the literature relating tsetse fly lifecycle parameters to temperature. We modify pub-

lished versions of the model [10, 12] by separating the adult life stage of tsetse fly into

immature and mature classes, allowing us to assess differential impacts of temperature in the

two stages.

Tsetse life history

The following provides a brief description of the life cycle; fuller accounts are provided in [23].

Unlike most other insects, tsetse have a very low birth rate: they do not deposit eggs, instead

producing a single larva every 7–12 days [16, 20]. The larva buries itself in the ground and

immediately pupates, staying underground as a pupa for between 30–50 days [21], emerging

thereafter as an adult with the linear dimensions of a mature adult, but with poorly developed

flight musculature, and low levels of fat. Both sexes of tsetse feed only on blood, and the first 2-

3 blood-meals are used to build flight muscle and fat reserves, before the mature female can

embark on the production of larvae of her own. All of these processes are temperature depen-

dent. The pupal phase in G. m. morsitans increases from 20 days at 32˚C to 100 days at 16˚C

(28 days at 25˚C) [22], though few adults emerge at the extremes of temperature. Blood-meals

are taken every 2–5 days, again depending on temperature. The time between adult female

emergence and first ovulation is only weakly dependent on temperature and is assumed here

to take a constant value of 8 days in the field at Rekomitjie [23]. Thereafter, the period between

the production of successive pupae increases from about 7 days at 32˚C to 12 days at 20˚C (9

days at 25˚C) [24].

Model

The model development and assumptions are similar to those in [12], differing only in the way

that mortality and fertility rates are used in the models. In the earlier works, these rates were

simply set at constant values. In the present study we use the fact that the rates are almost all

known functions of the temperature experienced by the flies. Accordingly, instead of setting

these rates at arbitrary values, we instead allow the environmental temperature to take various

values, which then dictate the values of the rates of mortality and fertility to be used in the

model. In particular, the following rates are all temperature dependent; pupal duration and

inter-larval period, and the daily survival probabilities for female pupae, adult females that are

immature (defined as not having yet ovulated for the first time), and mature adult females. We
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do not explicitly model the growth of the male part of the population, instead we assume that

there are always sufficient numbers of males present to ensure that all females are inseminated.

Model assumptions

In what follows all parameters with subscript T are temperature dependent.

1. An immature adult female tsetse fly [6] survives the ν days until it ovulates for the first time

with probability OT ¼ e� noT , where ωT is the daily mortality rate for immature adult

females.

2. A mature female tsetse survives with probability lT ¼ e� cT per day, where ψT, is the daily

mortality rate for mature females.

3. Once a female has ovulated for the first time, she deposits a single larva every τT days.

4. A deposited larva is female with probability β.

5. The larva burrows rapidly into the soft substrate where it has been deposited and pupates

[8]. The pupa survives with probability �T ¼ e� wT per day, where χT is the daily mortality

rate for female pupae.

6. At the end of the pupal period of σT days, an immature adult fly emerges from the

puparium.

7. The immature female fly is inseminated by a fertile male tsetse after ν days, with probability

�.

The probability that a female tsetse produces k surviving female offspring is obtained as:

pkðTÞ ¼
�O

n

Tl
ktT
T ð1 � l

tT
T Þb

kφksTT

1 � bl
tT
T

1

b
� φsTT

� �� �kþ1
; k > 0: ð1Þ

The proof of Eq (1) can be easily adapted from the proof of Eq (7) in the supplementary

material of [12]. The difference here is simply that the probability is a function of temperature.

We assume that T is time invariant. Our interest is to estimate extinction probabilities for

tsetse living at fixed temperatures.

Eq (1) can be used to derive a function for the extinction using the procedures described in

earlier publications [10, 12]. A simpler derivation, using the work of Harris [25], is given here.

Suppose pk(T) follows a geometric series for all T, then:

pkðTÞ ¼ bTc
k� 1

T ; ð2Þ

where bT, cT> 0.

For Eq (1) we then have:

bT ¼
�O

n

Tl
tT
T ð1 � l

tT
T Þbφ

sT
T

1 � bl
tT
T

1

b
� φsTT

� �� �2

and

cT ¼
l
tT
T bφ

sT
T

1 � bl
tT
T

1

b
� φsTT

� �� �
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Inserting bT and cT into Eq (2), yields

pkðTÞ ¼
�O

n

Tl
tT
T ð1 � l

tT
T Þbφ

sT
T

1 � bl
tT
T

1

b
� φsTT

� �� �2

l
tT
T bφ

sT
T

1 � bl
tT
T

1

b
� φsTT

� �� �

0

@

1

A

k� 1

; k � 1 ð3Þ

It follows (from [25], page 9) that the generating function fT(s), for pk(T) is a fractional lin-

ear function, and can be expressed as:

fTðsÞ ¼ 1 �
bT

1 � cT
þ

bTs
1 � cTs

; 0 � s � 1: ð4Þ

Mean of female tsetse population at generation n

Substituting for bT and cT in Eq (4) and taking the first derivative w.r.t s, at s = 1.

mT ¼ f
0

Tð1Þ ¼
�O

n

Tl
tT
T bφ

sT
T

ð1 � l
tT
T Þ

ð5Þ

Eq (5) is the reproduction number for a female tsetse population. For a population of tsetse

living at temperature T˚C, the expected number of female tsetse in the population at genera-

tion n is denoted by

MðnÞ ¼ mnT:

Remark 1. When μT> 1, the branching process is said to be supercritical with extinction

probability qT< 1. If μT< 1, the branching process is subcritical, which implies, in practice,

that each female tsetse produces less than one surviving female offspring on average. Extinc-

tion is then certain: i.e., the probability qT = 1. The process is called critical if μT = 1, and

extinction probability is again certain, qT = 1 (see [26] page 36). In other words, for any tsetse

population to avoid inevitable extinction, each female fly must produce more than one surviv-

ing female offspring in her lifetime.

Extinction probability qT
The extinction probability is obtained by solving for the fixed points of Eq (4), that is, we find s
such that fT(s) = s. We therefore need to solve:

1 �
bT

1 � cT
þ

sbT
1 � scT

¼ s ð6Þ

Substituting for bT and cT in Eq (6) and solving for s, the extinction probability s = qT is the

smaller nonnegative root of Eq (6).

qT ¼
1 � l

tT
T ð1 � bφ

sT
T ð1 � �O

n

TÞÞ

bl
tT
T φ

sT
T

; ð7Þ

where bl
tT
T �

sT
T 6¼ 0.

Remark 2. Suppose bl
tT
T �

sT
T < 1 � l

tT
T ð1 � b�

sT
T ð1 � �O

n

TÞÞ, then �O
n

Tl
tT
T b�

sT
T þ l

tT
T < 1,

which implies that μT< 1 (5). Therefore, whenever the denominator of Eq (7) is less than the

numerator, extinction probability qT = 1. Hence, for all biologically meaningful parameter

ranges, qT is always in [0, 1]. See Remark 1. Furthermore, when the initial population consists
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of a single female fly, the extinction probability is given by Eq (7). If the initial population is

made up of N female flies, the extinction probability is given by (qT)N [12].

Expected time to extinction for a population of tsetse

An expression for the expected time for a population of female tsetse to become extinct is pre-

sented in [10], as:

EðKÞ ¼
X1

n¼0

ð1 � ðqnðTÞÞ
N
Þ; ð8Þ

where

fTðqn� 1ðTÞÞ ¼
X1

k¼0

pkðTÞðqn� 1ðTÞÞ
k
¼ qnðTÞ:

K is the time to extinction and N is the number of female tsetse flies in the initial population.

To estimate the mean time to extinction of a population consisting of N flies, it suffices to cal-

culate qn(T) iteratively, and raise each value to the power N, to obtain E(k) as given in Eq (8).

Note that, since females produce both male and female offspring, extinction of the female pop-

ulation obviously guarantees the extinction of the whole population.

Tsetse mortality rates as a function of temperature

The relationship between temperature and the instantaneous daily mortality rate of pupae is

modelled as a the sum of two exponentials (Fig 1) [14].

wT ¼ b1 þ b2e
� b3ðT� 16Þ þ b4e

b5ðT� 32Þ ð9Þ

Daily mortality rates of young and mature adult female G. m. morsitans increase exponen-

tially with temperature (Fig 2). The defining equations, (10) and (11), take the same form, dif-

fering only in the parameter values (Table 1), due to the higher mortality of young flies,

particularly at high temperatures.

oT ¼
e� b6þb7T

100
ð10Þ

cT ¼
e� b8þb9T

100
ð11Þ

Development rates as a function of temperature

Pupal duration is modelled as increasing exponentially with decreasing temperature [14, 22,

27, 28].

sT ¼ c1 þ c2e
c3ðT� 16Þ ð12Þ

The relationship between larviposition rate and temperature was modelled using the results

from a mark and release experiment conducted at Rekomitjie on G. m. morsitans and G.
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pallidipes [16].

tT ¼
1

d1 þ d2ðT � 24Þ
ð13Þ

In Eqs (9)–(13), b1, b2, b3, b4, b5, b6, b7, b8, b9, c1, c2, c3, d1 and d2 are all constants.

Numerical simulations were carried out using R studio (version 1.1.463) [29], by incorpo-

rating Eqs (9)–(13) into Eq (7) and taking parameter values from the literature as shown in

Table 1.

We note that it has been demonstrated that computing mean daily fertility in adult female

tsetse, using the reciprocal of the interlarval period, under-estimates the true fertility by about

10%: it was also demonstrated that the Antelope Island mark-recapture procedure [17] over-

estimated mortality among older tsetse [30, 31]. Our development uses the correct procedure

for estimating fertility, and we have adjusted the functions relating adult mortality to tempera-

ture as suggested in these studies.

Fig 1. Daily mortality rates for female G. m. morsitans pupae for temperatures in the range (15˚C–33˚C). Eq (9)

plotted for different values of temperature.

https://doi.org/10.1371/journal.pntd.0007769.g001
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Results

Given that all tsetse species are poikilotherms, which feed on vertebrate blood meals, and

which have identical modes of reproduction, it is reasonable to suppose—until demonstrated

otherwise—that the mathematical formulae derived above will be qualitatively the same for all

species. It is known, however, that the parameters values will vary between species. In the case

of G. m. morsitans we have some reasonably good estimates for these required parameter val-

ues (Table 1). The information is much less complete for all other tsetse species. Strictly speak-

ing, therefore, the results presented below (Figs 1 to 7) refer only to G. m. morsitans. Until

such time as parameter estimates are provided for other species we will not know how the

results differ in these other species.

Extinction probability as a function of fixed temperatures

Extinction probabilities for G. m. morsitans were calculated as a function of fixed temperatures

ranging from 15–35˚C, for different values of the number of females in the initial population.

As expected, sustained extreme temperatures can drive populations to extinction. When the

Fig 2. Daily mortality rates for young adult and mature adult female G. m. morsitans for temperatures ranging

from 15˚C–35˚C. Eqs (10) and (11) plotted for different temperatures.

https://doi.org/10.1371/journal.pntd.0007769.g002
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initial population consists of a single female fly, extinction probability did not drop below 0.45

even with optimal temperatures (Fig 3). However, when the starting population consists of

even 10 female flies, extinction probability drops rapidly to zero as temperatures increase

slightly above 17˚C.

With sufficient female tsetse, say 100, in the initial population, extinction probabilities went

rapidly to zero when temperatures exceeded 16˚C, and remained at 0 even at temperatures

slightly above 31˚C. No G. m. morsitans population, regardless of the number of females in the

starting population, can escape extinction outside the range of approximately 16˚C–32˚C (Fig 3).

Expected number of daughters per female G. m. morsitans for different

levels of fixed temperatures

The reproduction number for a population, i.e., the number of surviving daughters an adult fly is

expected to produce in her lifetime, is presented in Fig 4 for different levels of fixed temperatures.

The reproduction number peaks at 2.8, for temperatures in the neighbourhood of 19˚C. It gradu-

ally declines as temperatures increase above 21˚C, dropping below 1.0 when temperatures exceed

about 31˚C. However, as temperature decreases below 18˚C there is a sharp drop in the repro-

duction number, which goes below 1.0 at a temperature just below 16˚C.

Time for the population of female tsetse flies to go extinct at different fixed

temperatures

The expected number of generations to extinction varies with temperature and with the size of

the starting population. When the simulation for the expected number of generations is done

Table 1. Summary of model parameter values for G. m. morsitans and sources: Parameter values are generally

sourced from the literature.

Parameter Description Value & Source

Daily female pupal mortality (χT) [14]

b1 Eq (9) 0.00202

b2 0.00534

b3 1.552

b4 0.03

b5 1.271

Daily mortality rate for young flies (ωT) [17]

b6 Eq (10) -0.85

b7 0.083

Daily mortality rate for mature flies (ψT) [17]

b8 Eq (11) -1.60

b9 0.083

Pupal duration (σT) (days) [16]

c1 Eq (12) 17.94

c2 82.3

c3 -0.253

Inter-larval period (τT) (days) [17]

d1 0.1046

d2 Eq (13) 0.0052

β Probability deposited pupa is female β 0.5 [12]

ν Time (days) from adult emergence to first ovulation 8.0 [12]

� Probabilty of insemination by a fertile male 1.0 [12]

https://doi.org/10.1371/journal.pntd.0007769.t001
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for 20 generations, it takes 12 generations for a population starting with 2 female flies to go

extinct under optimal temperatures of 19–21˚C. As temperature increases above 21˚C, the

number of generations to extinction reduces gradually, but the decrease becomes much more

rapid as temperatures approach 31˚C When the number of flies in the initial population

increases to 10, extinction did not occur in the first 20 generations for temperatures between

16 and 31˚C (Fig 5).

Growth rates of G. m. morsitans populations at different fixed

temperatures

Populations of G. m. morsitans, which are small enough that we may ignore density dependent

effects, grow exponentially for temperature in the approximate range 16–31˚C (Fig 6). Notice

that, in this figure, growth is plotted as a function of the number of generations completed.

The expected number of female tsetse in the population, from the first generation up to the

sixth generation, at different levels of temperature, is shown in Fig 6. These results are obtained

Fig 3. Probability of extinction of a population of G. m. morsitans as a function of temperature varying between

15˚C and 35˚C. Eq (7) solved for different values of temperature and for different numbers of inseminated adult

females in the initial population.

https://doi.org/10.1371/journal.pntd.0007769.g003
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fromMðnÞ ¼ mnT , where n is the number of generations completed, and μT is the reproduction

number. In order to gauge the growth rate as a function of time it is necessary to adjust for the

fact that the generation time increases with decreasing temperature.

We define generation time (γ) as the expected length of time between the instant a female

larva is deposited, and the instant that the resulting adult female deposits the first of her own

larvae. That is to say, γ = g + ν + τ. The generation time is also temperature dependent—longer

during cold seasons and shorter during the hot dry seasons. For example, at 25˚C the pupal

duration is about 29 days, and the time between adult female emergence and the production of

the first larva is about 16 days, giving a generation time of about 45 days. At this constant tem-

perature there would thus be about 365/45� 8 generation in a year.

To control for generation time, we linearize M(n) by taking the natural logarithm. Further-

more, we divided ln(M(n)) by the generation time for different levels of temperature. We plot

M0(n) = ln(M(n))/γ for fixed temperatures from 20˚C to 30˚C, incrementing by 2˚C. The

Fig 4. Expected number of surviving female offspring per adult female G. m. morsitans for different temperatures

(15˚C–35˚C). Eq (5) solved for different values of temperature. The fine vertical dotted line at about 19˚C indicates the

temperature at which a female produces the greatest number of surviving daughters. The dashed vertical lines just

below 15˚C and just above 31˚C, respectively, indicate the temperatures below and above which a female produces

fewer than one surviving daughter.

https://doi.org/10.1371/journal.pntd.0007769.g004

PLOS NEGLECTED TROPICAL DISEASES Tsetse population extinction and temperature

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007769 May 7, 2020 12 / 19

https://doi.org/10.1371/journal.pntd.0007769.g004
https://doi.org/10.1371/journal.pntd.0007769


growth rate of tsetse population as a function of fixed temperatures is the slope ofM0(n). After

controlling for generation time, the growth rate of the population, as a function of calendar

time, is seen to take a maximum value of about 2.0% per day at 25˚C, falling away increasingly

rapidly towards zero as temperatures approach the upper and lower limits of 32˚C and 16˚C,

respectively (Fig 7).

Discussion

The aim of this study was to develop a branching process model for tsetse populations

experiencing fixed temperatures of different levels, analogous to laboratory situations where

tsetse flies are kept under regulated temperatures. We estimate extinction probabilities, times

to extinction, expected numbers of female offspring per individual female, and growth rates

for each scenario. This enables us to determine temperatures that are optimal for population

growth rates, and the lower and upper bound temperatures for the survival of G. m. morsitans
populations.

Fig 5. Expected number of generation to extinction of a G. m. morsitans population for different number of

females in the initial population at different temperatures (15˚C–35˚C). Eq (8) is solved iteratively up to n = 20.

https://doi.org/10.1371/journal.pntd.0007769.g005
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Our results confirm findings of earlier studies which suggest that temperature is a key

driver of tsetse population dynamics [8, 32, 33]. We show that constant temperatures outside

the approximate bounds of 16–31˚C are fatal for any population of G. m. morsitans. These

results are also consistent with observations on populations of G. pallidipes in the Zambezi

Valley of Zimbabwe, where significant reductions in numbers have been attributed to increas-

ing temperatures, particularly at the hottest times of the year [8].

As temperatures increase, mortality rates increase for adult female tsetse, and for pupae of

both sexes [28, 34], but larval production rates also increase and pupal durations decline [17].

In this trade-off, extinction probability initially declines as temperature increase above 15˚C

(Fig 2). In fact even for quite small pioneer populations the extinction probability falls rapidly

to zero for temperatures between 17 and 27˚C. Thereafter, however, increases in mortality

rates outweigh the increases in birth rates and the extinction probability increases ever more

rapidly as temperatures approach 32˚C.

When temperatures approach the lower limit of the 16˚C– 32˚C bracket, adult tempera-

ture-dependent mortalities decline to low levels, but female tsetse reproduction rates fall

Fig 6. Expected growth in the numbers of adult females in a G. m. morsitans population at different temperatures

(15˚C–35˚C). The projections are approximately valid for the early stages of growth, before density dependent

processes have noticeable effects.

https://doi.org/10.1371/journal.pntd.0007769.g006
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drastically as pupal durations increase. In the extreme, when temperatures drop below 16˚C,

pupal durations are so long that fat reserves are exhausted before the pupa can emerge [17].

The combination of these factors, if sustained, ensures extinction of G. m. morsitans popula-

tion at these low temperatures (Fig 2). Notice that extreme temperatures affect mature adults

less than they affect pupae and newly emerged adults. Thus, at a constant mean temperature of

32˚C, mature adults suffer a daily mortality of about 2.8%, which still allows positive popula-

tion growth as long as the mortality among immature stages is not too high. Mortality among

young adults is, however, more than double this level at about 6.1% per day: and, crucially,

very few flies survive the pupal stage at 32˚C. Similarly, mortality rates among pupae increase

exponentially as temperatures decline towards 16˚C, whereas loss rates among all adults are

smallest at these low temperatures.

Theoretically, for any population to be able to escape extinction, each female adult must

produce more than one female offspring, which must themselves survive to reproduce. In epi-

demiological terms, we then have that the reproduction number, Ro> 1. Fig 4 shows that for

temperatures below 16˚C, female tsetse will not be able to produce enough female flies to sus-

tain the population. If the cold temperature conditions are prolonged, Ro will drop below 1,

Fig 7. Daily growth rate (%) of a population of G. m. morsitans living at different constant temperatures (15˚C–

35˚C). The vertical dotted line at 25˚C indicates the temperature at which the growth rate is maximised.

https://doi.org/10.1371/journal.pntd.0007769.g007
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resulting ultimately in extinction. Thus, as temperatures approach either hot or cold limits, the

number of generations that a population can survive goes rapidly to zero even for large pioneer

populations (Fig 4).

The reproduction number reached its highest value of 2.8 at 19˚C (Fig 4). This may, ini-

tially, suggest that the growth rate is highest at that temperature. However, when we calculated

the actual growth rate after controlling for the length of generation for different temperature

values, we found that the population attains its maximum growth rate at 25˚C. This result

agrees with published values in the literature [17], where a different method was used to obtain

the same results. It also draws attention to the fact that the reproduction number should be

used with caution when comparing two populations with differing lengths of generation.

Our findings are in good agreement with experimental, field and modelling studies of the

impact of temperature on different tsetse species [8, 32, 35–37], For instance, in [37] an experi-

ment was conducted on three different strains of G. palpalis gambiensis, in a bid to determine

critical temperature limits for tsetse survival and their resilience to extreme temperatures. For

the three strains, a temperature of about 32˚C was reported as the upper limit of survival. Our

results showed, similarly, that, if the number of female flies in the population is high enough,

tsetse population may escape extinction at temperatures slightly above 31˚C but will go extinct

at higher temperatures. The experiment also reached the conclusion that temperatures of

about 24˚C are optimal for rearing this species, in good agreement with our modelling results.

As global average temperature continues to rise, Africa has also experienced increasingly

high temperatures over the past decades. For instance, in the Zambezi Valley of Zimbabwe the

monthly mean temperature has increased by 2˚C during the hot dry season [8]. Our results

indicate that if the average temperature continues to rise in the Zambezi Valley and other parts

of Africa, tsetse populations will go extinct in the hotter parts of the continent, especially in

places with similar climate and environmental profile to Zimbabwe. Consequently, future

plans for tsetse and trypanosomiasis control and elimination must consider the impact of cli-

mate change on tsetse population dynamics in different parts of Africa.

This is a purely theoretical paper. Much more detailed work, beyond the scope of this

study, would be required to produce predictions about how growth rates of particular popula-

tions would be affected by various projected changes in temperature profiles. Moreover, decid-

ing on the likelihood of various predicted climate change scenarios is again beyond the scope

of this study. We are currently working on such problems and, in particular, the question of

how to estimate growth rates of populations subjected to the real-life situations where temper-

atures cycle daily and annually.

Limitations of the study

Extinction probabilities for tsetse populations have not previously been estimated as a function

of temperature. Our modelling framework took into consideration the fact that, as poikilo-

therms, tsetse mortalities, and rates of larval deposition and pupal development are all temper-

ature dependent. However, the present study did not consider field situations where

temperatures vary continuously with time. A modelling framework which will consider this

more realistic situation is under construction.

In this study, we considered closed tsetse populations, where there was no in-or-out migra-

tion. Estimation of extinction probabilities for populations that are open to migration are

markedly more complex and were beyond the scope of the present study. We do note, how-

ever, that a preliminary study found that if tsetse populations are in patches, which can com-

pensate for each other, then extinction probabilities are lower than in closed population

models [38]. Further work in this area is called for.
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We caution that the modelling here is restricted to situations where population numbers lie

below the level at which density dependent effects play a significant role. When numbers are

larger, however, suppose pupal and/or adult mortality increases with density. Then the tem-

perature-dependent mortalities quoted here provide a lower limit of the true mortality at that

time, for any given temperature. Similarly, if density dependence results in a decrease in the

birth rate, then the birth rates quoted here provide an upper bound to the true birth rate. For

such a population, it then follows that the growth rate at any temperature will be lower than

calculated here. Moreover, as temperatures increase, or decrease, towards the upper or lower

bounds, respectively, for positive population growth, the population will decline rapidly

towards levels where the density-dependent effects fall away. At that point the further dynam-

ics of population growth would be subject to the vital rates used in this study.

Temperature is, of course, only one of many factors that decide whether or not tsetse will

occur at all in an area and, if they do, the rate at which their populations may be expected to

grow. Other climatic, and vegetation, factors, such as rainfall and normalized difference vege-

tation index (NDVI), have been shown to be good indicators of the presence or absence of

tsetse [39]. Tsetse will not occur, however, in areas where there are no hosts—regardless of the

climatic suitability for the flies [40]. Similarly, tsetse populations often disappear from areas

that are climatically suitable, through the effects of human activities [41]. Given these levels of

complexity, the detailed analysis required to judge the circumstances under which individual,

real, tsetse populations would go extinct, is beyond the scope of this paper. What we have done

is to provide the theoretical framework for workers, with access to the climatic, biological, and

other data, to be able to predict the effects of temperature changes, when viewed in the context

of these other variables.

In closing we repeat the caution that the quantitative results shown in Figs 1–7 apply to G.
m. morsitans. Further laboratory and field work would be required in order to generate many

of the input parameters required for other species.
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