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Summary 
 

There is a global demand for technologies to reduce ethanol levels in wine without 

compromising wine quality. While several chemical and physical methods have been developed 

to reduce ethanol in finished wine, the target of an industrially applicable biological solution has 

thus far not been met. Most attempted biological strategies have focused on developing new 

strains of the main fermentative organism, the yeast Saccharomyces cerevisiae. Gene 

modification approaches have primarily focused on partially redirecting yeast carbon 

metabolism away from ethanol production towards glycerol production. These techniques have 

met with some moderate success, thus the focus of the current study was to re-direct carbon 

flux towards trehalose production by moderate over-expression of the TPS1 gene. This gene 

encodes trehalose-6-phosphate synthase, which converts glucose 6-phosphate and UDP-

glucose to α,α-trehalose 6-phosphate. Previous data have shown that the overproduction of 

trehalose restricts hexokinase activity reducing the amount of glucose that enters glycolysis. 

Nevertheless, preliminary TPS1 over-expression studies using multiple copy plasmids have 

shown some promise, but also indicated significant negative impact on the general fermentation 

behaviour of strains. In order to reduce such negative impacts of excessive trehalose 

production, a new strategy consisting in increasing the expression of TPS1 only during specific 

growth phases and by a relatively minor degree was investigated. Our study employed a low-

copy number episomal vector to drive moderate over-expression of the TPS1 gene in the widely 

used industrial strain VIN13 at different stages during fermentation. The fermentations were 

performed in synthetic must with sugar levels representative of those found in real grape must. 

This, as well as the use of an industrial yeast strain, makes it easier to relate our results to real 

winemaking conditions. A reduction in fermentation capacity was observed for all transformed 

strains and controls. Expression profiles suggest that the DUT1 promoter certainly results in 

increased TPS1 expression (up to 40%) during early exponential growth phase compared to the 

wild type strain (VIN13). TPS1 expression under the control of the GIP2 promoter region 

showed increased expression levels during early stationary phase (up to 60%). Chemical 

analysis of the yeast and the must at the end after fermentation showed an increase in 

trehalose production =in line with the expression data of TPS1. Importantly, glycerol production 

was also slightly increased, but without affecting acetic acid levels for the transformed strains. 

Although ethanol yield is not significantly lower in the DUT1-TPDS1 strain, s statistically 

significantly lower ethanol yield is observed for over-expression under the GIP2 promotor. 

Increasing trehalose production during stationary phase appears therefore to be a more 

promising approach at lowering ethanol yield and redirecting flux away from ethanol production. 

This controlled, growth phase specific over expression suggests a unique approach of lowering 

ethanol yield while not impacting  on the  redox balance. 
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Opsomming 
 

Wêreldwyd is daar ‘n aanvraag na tegnologie wat die etanol vlakke in wyn kan verminder 

sonder om wyngehalte te benadeel. Terwyl verskeie chemiese en fisiese metodes ontwikkel is 

om etanol in die finale wynproduk te verminder, is die soeke na 'n industrieel gebaseerde 

biologiese oplossing tot dusver nie gevind nie. Meeste biologiese strategieë fokus op die 

ontwikkeling van nuwe rasse van die primêre fermentatiewe organisme, naamlik 

Saccharomyces cerevisiae. Geen modifikasie benaderings het hoofsaaklik gefokus op die 

gedeeltelike kanalisering van koolstof metabolisme weg van etanol produksie na gliserol 

produksie. Hierdie benadering is net matiglik suksesvol, dus is ons huidige fokus om koolstof te 

kanaliseer na trehalose produksie deur gematigde oor-uitdrukking van die TPS1 geen. Hierdie 

geen kodeer vir trehalose-6-fosfaat sintase, wat glukose-6-fosfaat en UDP-glukose omskakel na 

α, α-trehalose-6-fosfaat. Vorige data het getoon dat die oorproduksie van trehalose hexokinase 

aktiwiteit beperk en die hoeveelheid glukose wat glikolise binne gaan. Voorlopige TPS1 oor-

uitdrukking studies met behulp van multi-kopie plasmiede toon matige sukses, maar het ook ‘n 

negatiewe impak op die algemene fermentasie kapasiteit van die gis. Ten einde so 'n negatiewe 

impak van oormatige trehalose produksie te oorkom, is 'n nuwe strategie gevolg wat bestaan uit 

die verhoogde uitdrukking van die TPS1 geen slegs gedurende spesifieke groei fases met baie 

lae vlakke van oor-uitdrukking. Ons studie gebruik 'n lae-kopie episomale vektor met matige 

oor-uitdrukking van die TPS1 geen in die industriële ras VIN13 op verskillende stadiums tydens 

fermentasie. Die fermentasie is uitgevoer in sintetiese mos met suiker vlakke 

verteenwoordigend van dié van werklike wyn mos. Hierdie, sowel as die gebruik van 'n 

industriële gisras, maak dit makliker om ons resultate te vergelyk met regte wyn fermentasie 

kondisies. Verlaagde fermentasie kapasiteit is waargeneem vir alle getransformeerde stamme 

en hul kontroles. Geen uitdrukkings profiele dui op verhoogde TPS1 uitdrukking (tot 40%) onder 

beheer van die DUT1 promotor gedurende die vroeë eksponensiële groeifase wanneer vergelyk 

word met die wilde tiepe (VIN13). TPS1 uitdrukking onder die beheer van die GIP2 promotor het 

verhoogde uitdrukking van tot 60% gedurende die vroeë stasionêre fase. Chemiese analise van 

die gis aan die einde van fermentasie dui op ‘n toename in trehalose produksie wat korreleer 

met die uitdrukking profiele van TPS1. Gliserol produksie is ook effens verhoog, maar sonder ‘n 

toename in asynsuur vlakke vir die getransformeerde rasse. Alhoewel etanol opbrengs nie 

aansienlik laer vir die DUT1-TPS1 ras is nie, is etanol opbrengs vir die oor-uitdrukking onder 

beheer van die GIP2 promotor wel laer. Toenemende trehalose produksie gedurende 

stasionêre fase blyk dus 'n meer belowende benadering op die verlaging van etanol opbrengs 

en her-kanaliseering weg van etanol produksie. Hierdie benadering met die fokus op groeifase 

spesifieke oor-uitdrukking dui op 'n unieke strategie vir die verlaging van etanol opbrengs 

sonder om die redoks balans te beinvloed. 
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Preface 
 
This thesis is presented as a compilation of four chapters.  Each chapter is introduced 
separately and is written according to the style of the journal Applied Microbiology and 
Biotechnology. 
 
 
Chapter 1  General Introduction and project aims 
   
Chapter 2  Literature review 
  Approaches to lowering ethanol in wine 
   
Chapter 3  Research results 
  Construction of a recombinant industrial Saccharomyces cerevisiae strain 

for low ethanol fermentation 
   
Chapter 4  General discussion and conclusions 
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1.1. INTRODUCTION 

Over the past few decades, winemaking has changed dramatically and has had to keep up 

with the competitive nature of the global economy. There is a constant need for improving 

viticultural and oenological practices. Vine growing and wine making are biological 

processes, and the main contributors are grape vine and microbial organisms, in particular 

yeast. Many studies have focused on the improvement of wine making process and of wine 

quality by studying these biological systems (Pretorius, 2000). The traditional approach to 

wine making, and which continues to be used by some smaller and boutique wineries, was 

for the wine fermentation process to be carried out by the naturally occurring microbes in the 

vineyard and in the winery (Henschke, 1997). Today’s competitive industry demands a more 

controlled, reliable and predictable production of wines on a larger industrial scale. This is 

the reason for the addition of pure yeast inocula that was introduced by Müller Thurgau in 

1890 . In most instances Saccharomyces cerevisiae strains are inoculated into the grape 

must at the start of fermentation (Henschke, 1997; Pretorius, et al., 2003). S. cerevisiae not 

only converts fermentable sugars into ethanol but also plays a role in producing many 

flavour and aroma compounds in wine. These flavour compounds formed by yeast 

metabolism include esters, fatty acids and higher alcohols (Scudamore-Smith and Moran 

1997; Pickering et al. 1998) 

One of the more recent consumer and industry demands has been to lower the ethanol 

content of wines. One of the reasons for this is that high ethanol content can compromise 

the quality of wine, by creating a perception of increased hotness and viscosity and by 

masking other aromatic compounds (Gawel et al., 2007). Other reasons include the health 

risks involved in excessive alcohol consumption, and the cost to consumer as taxes are 

levied according to the alcohol content of beverages (de Barros, 2000; Kutyna et al., 2010). 

Comparative studies have shown that averarge ethanol concentrations of commercial wines 

have risen over the past two decades. This rise in ethanol content may be due to a number 

of factors including rising temperatures due to global warming (Catarino et al., 2011), as well 

as changes to viticultural practices aiming at increased ripeness of berries to improve flavour 

characteristics (Godden, 2000).  

The different approaches for dealing with excessive ethanol can be divided into three 

groups, namely viticultural, mechanical or biological. Viticultural methods could include berry 

picking times and vine canopy control measures which influence the exposure of grapes to 

light and temperature. Physical methods may include removal of alcohol at the end of 

fermentation by reverse osmosis, dilution or distillation (Bui et al. 1986; Pickering et al. 
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1999a; Mermelstein 2000). Fermentation management methods rely on regulation of 

fermentation conditions by temperature control, nutrient regulation or osmotic stress 

management (Attfield, 1997; d’Amore et al., 1987; Hinchcliffe et al., 1985). 

Biological approaches focusing on the genetic modification of yeast also have the potential 

to address the ethanol problem, and have met with relative success in recent years (Kutyna 

et al., 2010). 

These biological approaches target various genes that impact on central carbon metabolism, 

with the aim to redirect carbon flux. Most focus on genes involved in redirecting flux toward 

glycerol production. These include GPD1 and GPD2 encoding isozymes of glycerol 3-

phosphate dehydrogenase (de Barros Lopes et al., 2000; Cambon et al., 2006; Eglington et 

al., 2002; Michnick et al., 1997; Nevoight et al., 1996; Remize et al., 2001; Remize et al., 

1999), alcohol dehydrogenase (ADH) mutants (Drewke et al., in 1990), PDC2 Pyruvate 

decarboxylase mutants (Nevoigt & Stahl, 1996; Schmitt & Zimmermann, 1982). Other 

approaches focused on the heterologous expression of genes that remove glucose from the 

system in order to lower ethanol, such as expression of the GOX gene from Aspergillus 

niger, encoding an enzyme converting glucose to gluconic acid (Pickering et al., 1999a). .   

Finally attempts have been made to modify the hexose transporters that facilitate the 

transport of glucose.  

The approach described in this work is based on redirecting metabolic carbon flux towards 

the stress and reserve carbohydrates trehalose.The TPS1 gene encodes trehalose-6-

phosphate synthase, a key enzyme in the trehalose biosynthesis pathway (Francois et al., 

2001). Trehalose is synthesized in two steps: First glucose 6-phosphate and UDP-glucose is 

converted to α,α-trehalose 6-phosphate by trehalose-6-phosphate synthase encoded by the 

TPS1 gene. In the second step α,α-trehalose 6-phosphate and water are converted to 

trehalose and phosphate by trehalose-6-phosphate phosphatase (encoded by TPS2 gene; 

Francois et al., 2001)(Fig1). 
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Figure 1: Trehalose synthesis from glucose 6-phophate and UDP-glucose 

Trehalose-6-phosphate inhibits hexokinase activity. The overproduction of trehalose may 

therefore restrict the amount of glucose that enters glycolysis, in turn lowering the ethanol 

output, but also fermentative efficiency (Hohmann et al., 1996). Preliminary studies on TPS1 

deletion and overexpression mutants in our laboratory (unpublished data) have shown that 

both over expression and deletion of the TPS1 gene in the lab strain S288C leads to a 

decrease in ethanol yield, but also an overall reduction in fermentation rate (unpublished 

data). Both deletion and overexpression mutants produced less ethanol but had higher 

residual sugars at the end of fermentation (unpublished data). Glycolytic flux was impaired in 

the over expression strain thus accounting for the reduced fermentation efficiency and higher 

residual sugars. However, studies thus far have tended to use strong overexpression 

systems such as multiple copy plasmids and strong promoters combined to the TPS1 ORF. 

These excessively high expression levels may have been responsible for generating an 

excessive metabolic burden to the yeast, leading to the secondary effects that negatively 

impact on fermentation kinetics and a broad redirection of metabolic flux. Furthermore, in 

these studies, laboratory strains were employed for overexpression, and the fermentation 

conditions (low sugar levels) were not representative of real winemaking conditions. 

Our study therefore focuses on improving the widely used industrial Saccharomyces 

cerevisiae strain - VIN13 to produce less ethanol in a controlled over expression study. The 

aim was to increase expression of the TPS1 gene only during specific phases of growth and 

by a minor degree using two different promoters: The promoters of the DUT1 gene to 

express the gene during the exponential growth phase and of the GIP2 gene to activate 

gene expression during stationary phase. The aim therefore is to increase TPS1 gene 

expression and hopefully enzyme activity without imposing additional stress on the yeast cell 

and without impacting on the redox balance. Maintaining redox balance is very problematic 
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in most over-expression mutants as the production of ethanol regenerates reducing 

equivalents needed for the continuation of glycolysis.  

1.2. PROJECT AIMS 

The following aims were set for this project: 

The first aim was to construct two TPS1 over-expression strains under control of different 

promoters. These constructs and their controls (containing only promoter sequences) were 

transformed into the industrial VIN13 strain of Saccharomyces cerevisiae. 

The second aim was to evaluate these two strains and their controls in synthetic wine, to 

establish the variations in ethanol yield, sugar consumption and trehalose production. 
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2.1. INTRODUCTION 

Over past ten years there has been an increased demand for lower alcohol wines and de-

alcoholised wines (Scudamore-Smith et al., 1997; Pickering et al., 1998; Schobinger et al., 

1983; Anon et al., 1988; Heess et al., 1990; Hoffmann et al., 1990; Simpson et al., 1990; 

Howley et al., 1992). The demand for these wines mostly stems from health issues 

associated with excessive alcohol consumption and restrictions placed on the ethanol 

content in wines, such as taxes levied according to ethanol content in certain countries such 

asthe United States (Table 1) (de Barros et al., 2003; Scudamore-Smith et al., 1997; 

Pickering et al., 1998; Gladstones et al., 1999; Gladstones et al., 2000). In South Africa, the 

tax on unfortified wines is of R2.35/L, and R4.50 on fortified wines, as stated in the 2012 

budget (http://www.treasury.gov.za/documents). 

Table 1:  Taxes levied on wine as per the Alcohol and tobacco tax and trade bureau US 
department of Treasury (http://www.ttb.gov/tax_audit/atftaxes.shtml) last reviewed 
09/04/2012 

PRODUCT TAX TAX PER PACKAGE (usually to nearest cent) 

Wine Wine Gallon 750ml bottle 

14% Alcohol or Less $1.071 $0.21 

Over 14 to 21% $1.571 $0.31 

Over 21 to 24% $3.151 $0.62 

Another concern is that higher alcohol concentrations also compromise wine quality and can 

mask the sensorial characteristics of wines. High alcohol levels can also lead to sluggish or 

stuck fermentations (Guth & Sies, 2002). 

However, in the same period, average alcohol content of wine has increased in many 

regions. There are a number of possible reasons for increased ethanol in modern day wines. 

One of the reasons can be linked to changes in viticulture such as vine canopy management 

techniques and/or berries that are left to mature for a longer period. A warmer climate may 

affect berry ripeness and sugar content. While many of these influences produce full, rich, 

complex and fruity properties, they also lead to  higher sugar levels that in turn will lead to 

higher ethanol production, with many wines today reaching 15% ethanol (v/v) and above 

(Godden et al., 2000).  

Several approaches have been used to reduce the ethanol content of wine. These include 

viticultural, physical and biological strategies. 
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2.2. VITICULTURAL AND PHYSICAL APPROACHES 

There are a few methods that can be used to lower ethanol in wine and these include 

viticultural methods like picking berries earlier to prevent over-ripening. However,  this will 

have an influence on the sensory properties and complexity of the wines (Pickering et al., 

2000). Other methods are used post fermentation and range from very basic procedures 

such as dilution and evaporation, to vacuum distillation and membrane filtration to more 

costly and complex techniques such as spinning cone technology and reverse osmosis 

(Schobinger et al., 1986).  

2.2.1 REVERSE OSMOSIS 

The most widely used method for reducing or removing ethanol from wine is reverse 

osmosis (Pickering et al., 2000). During reverse osmosis the larger molecules such as the 

flavour compounds of wine (organic acids and phenolics) are separated from the smaller 

water and alcohol molecules by a selective membrane (Fig I). This process involves wine 

being pumped through a membrane at a pressure greater than the osmotic pressure so as 

not to allow natural flow of the solvent (to equalise the concentrations of solutions at 

opposite sides of the membrane). This causes ethanol and water with smaller molecular 

weights to diffuse selectively through the membrane, leaving the concentrated organic acids 

and phenolic compounds behind. This is followed by perstraction (when a solution is 

permeated through a membrane and subsequently extracted with solvent)  technology that 

separates the water and the alcohol, and the water is then added back into the wine. The 

removal of alcohol thus reduces the volume of the final product. Reverse osmosis relies on 

two types of a membranes, an ethanol-permeable and a selective ethanol-retention 

membrane. The permeate-exchange unit controls the water and ethanol balance of the 

system. The end product is still classified as wine based on its composition (Bui et al., 1986). 

This method is more advantageous than some other techniques, since there is no heating 

involved and the wine therefore retains its natural flavour. Besides the high cost of this 

process, an additional disadvantage of this method is wine volume loss due to the removal 

of the alcohol.  
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Figure 1. Reverse osmosis process of wine (adapted from Mermelstein, 2000) 

2.2.2 SPINNING CONE COLUMN (SCC) 

The technique was first developed in the USA in the 1930s and has since been modernised 

to a multi-stage strip column in Australia. This technology is currently marketed world-wide 

by the Californian Company ConeTech Inc. (Theron et al., 2006). With the SCC technique it 

is possible to reduce the level of alcohol to below that achieved by reverse osmosis. Both 

methods inevitably reduce the volume of the wine by the removal of the alcohol (Hay, 

2001).The SCC is a gas-liquid contact device comprising a vertical counter-current flow 

system that includes a series of alternate rotating and stationary metal cones. The upper 

surfaces are moistened by a thin film of wine (Pickering et al., 2000) (see Fig II). A gravity 

and vacuum pump pulls the wine that is fed into the top of the column down through the first 

stationary cone and into the first rotating cone. The wine is spun into a fine liquid film, 

moving it up and over the lip of the cone into the next stationary cone, thus starting the 

process all over. About half of the wine volume is converted into an inert stripping gas called 

‘cold steam’, which is just above room temperature (Hay, 2001). The vaporised cold steam 

feeds back into the bottom of the column and moves upward over the thin film of wine 

running downwards. Underneath each rotating cone is a fin that mobilises the rising stream 

into a turbulent state. The fins mobilising of the vapour combined with the spinning motion of 

the wine travelling downward removes the volatile flavour and aroma compounds and 

captures them in a liquid form.  
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There are three stages to this process: Firstly, when the wine passes through the cone it is 

stripped of its flavour and aroma compounds. In the second stage the wine runs back down 

the column where the cold steam vaporises the alcohol from the wine. During the third stage 

the flavour and aroma compounds are added back into solution (see Fig II). 

The cost of this treatment is high but varies according to the volume of wine being treated 

(Theron et al., 2006).The main disadvantage is that the process requires heating of the wine 

(Pickering et al., 2000).This technique has its advantages as it preserves essential flavours 

and aromas. Other advantages include high efficiency, minimal thermal damage and the 

ability to handle highly viscous juice (Sykes et al., 1992; Gray et al., 1993; Pyle et al., 1994).  

 

Figure 2:  Spinning cone column (SCC) technique for lowering alcohol in wine (adapted from 
http://www.winebussiness.com) 

The problem with these physical techniques is that they tend to change wine character and 

are very costly. The heating process that some of these post fermentation physical removal 

techniques include will have a direct effect on the aroma composition of wines. The problem 

of cost may not only arise from the process in itself, but also from the additional cost of 

equipment transport and hire since not all wineries can afford the equipment to perform 

these techniques (Bui et al., 1986; Pickering et al., 1999a; Mermelstein et al., 2000).  
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2.3. NON-GMO BASED BIOLOGICAL APPROACHES 

The public perception of genetically modified organisms is largely negative and in most 

countries the sale of wine either containing GMOs or having been manufactured with GMOs 

is problematic (Pretorius et al., 2000; Pretorius et al., 2005). Although GM studies improve 

our knowledge of how carbon flux is affected during alcoholic fermentation, they are not yet 

widely accepted and classical methods to improve wine yeast are therefore employed. 

Redirecting carbon flux in S. cerevisiae  has proven difficult as the selection pressure for this 

species has maximised ethanol production capacity under aerobic and anaerobic conditions 

as the production of ethanol balances cellular redox and allows glycolysis to continue 

producing the energy needed for yeast cell growth and replication (Field et al., 2009; Piskur 

et al., 2006). 

Several strategies have been attempted to generate lower ethanol-yielding wine yeast 

strains. A major target in many of these cases has been to redirect carbon flux towards 

glycerol instead of ethanol. The production of glycerol is considered favorable as glycerol 

can make positive contributions to the mouth feel and viscosity of wine, creating a perception 

of smoothness and sweetness (Gawel et al., 2007). Some attempts to enhance glycerol 

production by non-GM methodolgies such as breeding and directed evolution have been 

proposed in the past. Some other approaches include classical strain-selection and -

modification methods, such as variant selection, mutagenesis, hybridization and spheroplast 

fusion (Pretorius et al., 2000). Yeast hybrids can be created from S. cerevisiae crossed with 

some of the senso stricto yeasts (including Saccharomyces kudriavzevii, Saccharomyces 

cariocanus, Saccharomyces mikatae, Saccharomyces bayanus and Saccharomyces 

paradoxus). A natural hybrid of S. cerevisiae and Saccharomyces kudriavzevii does show an 

increased production of glycerol but this seems to have no effect on ethanol yield (Combina 

et al., 2012).  Directed evolution is the application of controlled selection pressures to 

growing cells to encourage adaptation and acquisition of a desired trait. To enhance glycerol 

production, conditions with high levels of sulphite at an alkaline pH were used. In these 

conditions, sulphite binds to acetaldehyde, reducing its availability for ethanol production and 

oxidation of NADH, and therefore channelling carbon flux towards glycerol biosynthesis. The 

adapted strain produced 41% more glycerol than the wild type and had enhanced tolerance 

to sulphite. The increase in glycerol production also led to a decrease in ethanol 

concentration in anaerobic conditions, decreasing from 47.6±0.1g/L to 46.5±0.4g/L with an 

increase in acetic acid (Chambers et al., 2012).  

Another focus of such research has been based on observations that spontaneously 

fermented wine sometimes shows high levels of glycerol and a decrease in ethanol 
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production. This glycerol increase indicates a possible contribution of non-Saccharomyces 

yeast (Romano et al., 1997; Henick-Kling et al., 1998). Candida stellata has been known to 

produce increased glycerol concentrations of between 10 and 14 g/L (Ciani et al., 1995; 

Ciani et al., 1998), whereas S. cerevisiae usually produces only between 4 and 10 g/L 

(Radler et al., 1982; Ciani et al., 1998; Prior et al., 2000). As for S. cerevisiae, the increased 

acetic acid production that is coupled to increases in glycerol yield is problematic as it affects 

wine quality (Prior et al., 2000). 

Other apiculate yeasts such as Kloeckera apiculata and Hanseniaspora guilliermondii also 

produce higher levels glycerol although acetic acid levels are also increased on these 

species (Ciani et al., 1995). However, there have been reports that not all strains of 

Kloeckera spp. form high levels of acetic acid (Romano et al., 1992). K. apiculata produces 

high-glycerol and low-ethanol ratios during fermentation. These results still need to be 

verified in real wine must (Romano et al., 1997). Although these approaches have not 

resulted in an effective lowering of ethanol yield without compromising wine quality, it 

indicates that adaptive evolution could possibly result in a lower ethanol producing yeast 

strain without the use of genetic modifications. 

However, all the approaches described above are based on random processes in which 

genomic regions or entire genomes are recombined or reorganised. These methods are not 

controlled enough for modifying wine yeast in a specific manner. While any of the 

approaches may result in strains able to improve some desired aspects, they may 

simultaneously compromise other desired traits. These methods do have their advantages, 

as they do not involve GM. However up to date there seems to be no yeast strain that would 

have been generated through such approaches and produce significantly less ethanol. A 

particular challenge in this regard is the absence of selection conditions that would support 

the preferential survival of yeast strains with reduced ethanol production. If such conditions 

could be established, an approach based on directed evolution might prove successful.  

2.4. GMO-BASED APPROACHES 

As post fermentation processes to lowering alcohol are costly and influence wine quality and  

classical breeding strategies are unspecific and unreliable (Pretorius et al., 2000; Schobinger 

et al., 1986), perhaps the most straightforward and cost effective strategy is to look at 

genetically modified wine yeast strains. Most of the studies that are addressing ethanol 

reduction have focused on redirecting glycolytic flux away from ethanol, in particular towards 

increased glycerol production. Such strategies include modifying the expression of genes 

involved in central carbon and glycerol  metabolism or transport such as GPD1, GPD2, 
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FPS1 and TPI1 (as indicated by circles in Fig III below). Other studies have incorporated 

genes from bacterial or fungal species into S. cerevisiae. Examples of approaches based on 

heterologoes gene expression are the use of the glucose oxidase gene GOX1 from 

Apergillus niger. The transformants reduce ethanol production by breaking down glucose 

into gluconic acid, making it unavailable for glycolysis (Malherbe et al., 2003). In a second 

example, the bacterial gene noxE (NADH oxidase) derived from Lactococcus lactis was 

incorporated into S. cerevisiae to reduce the intracellular NADH and reduce ethanol yield. 

Oxygen is required for the enzyme to be effective (Heux et al., 2006). 
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Figure 3: Central carbon metabolism and genes encoding the relevant enzymes. Genes 
circled in red indicate those that have been targeted to generate low ethanol strains 
(adapted from Kuepfer, 2005, Genome Res; 15:1421-1430). 
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2.4.1 DELETION OF ALCOHOL DEHYDROGENASE (ADH) ENCODING GENES 

In S. cerevisiae five isozymes of alcohol dehydrogenase (ADH) have been described. ADH1 

encodes one of the most important enzymes in alcoholic fermentation as it reduces 

acetaldehyde by converting it to ethanol (Leskovac et al., 2002; de Smidt et al., 2011; 

Lutstorf et al., 1968). This reaction regenerates NAD+ from NADH and is essential for 

maintaining redox balance in the cytoplasm during fermentation as the oxidised co-factor is 

vital for glyceraldehydes-3-phosphate oxidation during glycolysis. The second isozyme is 

encoded by ADH2, which oxidises ethanol to form acetaldehyde (Cirlacy et al., 1975; Cirlacy 

et al., 1979; Denis et al., 1981). ADH2 is involved in converting acetaldehyde into ethanol. 

This is observed during prolonged fermentation where the yeast cell is stressed (Millan et al., 

1990). ADH1 and ADH2 are cytosolic isozymes whereas ADH3 is a mitochondrial isozyme 

that under anaerobic conditions transports NADH to the cytosol for the production of NAD+ 

by reduction of acetaldehyde (Bakker et al., 2000). The other two known isozymes are ADH4 

and ADH5 but the function of these are yet unknown. Other than the classic isozymes 

ADH1-5 other enzymes that relate to ADH activity are SFA1, ADH6 and ADH7. SFA1 has 

both glutathione- dependent formaldehyde and alcohol dehydrogenase activity, and is 

involved in formaldehyde detoxification (Wehner et al., 2003). ADH6 and ADH7 gene 

products show a stringent specificity for NADPH and are described as cinnamyl ADHs 

(Gonzalez et al., 2000; Larroy et al., 2002). Although many studies have since been done on 

ADH, one of the first was that of Drewke et al. (1990). An adh0 strain of S. cerevisiae was 

created by deleting ADH1, ADH3, and ADH4 and a point mutation was introduced in the 

gene ADH2 coding for the glucose-repressible isozyme ADH2, thus completely removing our 

alcohol dehydrogenase (ADH) isozymes of the five that where at that time identified (ADH1-

5).This point mutation inactivates ADH2 completely.. During glucose metabolism this strain 

(adh0) produced more glycerol and less ethanol but also high levels of acetaldehyde and 

acetate. Ethanol production in adh0 cells seemed to be dependent on mitochondrial electron 

transport. Fermentations using these deletion strains could not run to completion and were 

left with high residual sugars (Ciriacy, 1975; Johansson et al., 1984; Drewke et al., 1990). 

Although carbon flux is re-directed towards glycerol production lowering the ethanol yield, 

there are high levels of acetaldehyde and acetate produced formed that would compromise 

wine quality. Acetaldehyde can give wine a sour or metallic taste when concentrations are 

too high, where as acetic acid affects the volatile acidity, leading to a vinegary taste is 

present in too high amounts. A more recent study by de Smidt et al. (2011) aimed at 

establishing the role of alcohol dehydrogenase isozymes ADH1 to ADH5 in S. cerevisiae 

and to determine whether the enzymes are able to substitute functions in vivo. Quadruple 

deletion mutants were created, each mutant containing only one genomic ADH gene. During 
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this study  the Q1 mutant (quadruple deletion mutant containing only ADH1 in genome) 

showed that ADH1 is the only enzyme that efficiently performs the task of reducing 

acetaldehyde to ethanol and regenerating the NAD+ from NADH that is necessary for 

carbohydrate metabolism. This Q1 mutant was also able to utilize ethanol as sole carbon 

source or during diauxic growth on glucose (de Smidt et al., 2011; Lutstorf and Megnet, 

1968). The deletion of ADH1 lead to an increase in glycerol production and in turn increased 

acetaldehyde levels. Strains expressing only ADH2 (Q2) or ADH3 (Q3) respectively yielded 

less ethanol than the Q1 strain, and were able to oxidise the additional ethanol added. The 

strains expressing only ADH4 (Q4) and ADH5 (Q5) were unable to utilise produced ethanol, 

and were unable to grow on media containing ethanol as carbon source. The study suggests 

that it is unlikely that ADH4 and ADH5 are involved in ethanol production. 

2.4.2 ALTERATIONS OF GLYCEROL METABOLISM 

Genes involved in glycerol production and transport, namely GPD1, GPD2 and FPS1 have 

been major targets to achieve lower ethanol yields. Glycerol is produced by converting 

dihydroxyacetone to glycerol 3-phosphate by glycerol 3-phosphate dehydrogenase (GPDH) 

and then dephosphorylated by the glycerol 3-phosphatase enzyme (Gancedo et al., 1968). 

Studies have been conducted on enhancing glycerol production by over-expressing GPD1 or 

GPD2 genes. By over-expression of the GPD1 gene glycerol production is increased. The 

overproduction of glycerol through this pathway leads to an excess in NAD+ production. The 

system tries to maintain redox balance and rectifies the NAD+ over production by converting 

NAD+ to NADH increasing acetaldehyde and acetic acid levels in the process. This is the 

reason why an increase in glycerol is usually associated with an increase in acetic acid (de 

Barros Lopes et al., 2000; Cambon et al., 2006; Eglington et al., 2002; Michnick et al., 1997; 

Nevoight et al., 1996; Remize et al., 2001; Remize et al., 1999). 

 Another approach to increase flux towards glycerol production is to target genes that 

regulate channeling proteins. The FPS1 gene encodes Fps1p which is a member of the 

Major Intrinsic Protein (MIP) family of channeling proteins with the main function of 

regulating intracellular glycerol by glycerol export rather than uptake. It has been shown that 

the overexpression of FPS1 increases glycerol production and suppresses the growth defect 

of the TPS1 mutant on carbon sources such as glucose and fructose. TPS1 over expression 

plays a role in the regulation of glycolysis, as its gene product restricts the influx of glucose 

into the pathway. The proposed reason for this is that trehalose 6-phophate inhibits 

hexokinase in vitro.(Blázquez et al., 1993 Teusink et al.,1998; Thevelein et al.,1995)  
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A mutated form of the FPS1 gene leads to a constantly open form of the channelling protein, 

resulting in glycerol leakage from the cell which is compensated for by the production of 

more glycerol. Unfortunately, this mutant also affects biomass production and yeast growth 

on glucose (Luyten et al., 1995; Tamás et al., 1999; Van Aelst et al., 1991). 

Cordier et al. (2007) attempted to combine some approaches in a single strain in the hope of 

decreasing ethanol and increasing glycerol production. The genes that they selected for this 

study can be placed into groups: GPD1 and FPS1 (involved in glycerol transport and 

production), TPI1 (involved in the glycolytic branch point conversion of DHAP to GAP), and 

ADH1 and ALD3 (involved in the production of ethanol and acetic acid from acetaldehyde). 

Firstly GPD1 encoding glycerol phosphate dehydrogenase was introduced into a tpi1∆ 

mutant defective in triose phosphate isomerase. This reduced the dihydroxyacetone 

phosphate and glycerol-3-phospate which in turn inhibit myo-inositol synthase that catalyzes 

the formation of inositol-6-phosphate from glucose-6-phosphate. The ADH1 gene that 

encodes major NAD+ alcoholic dehydrogenase enzyme was then deleted. ALD3 which 

encodes cytosolic NAD+ dependent aldehyde dehydrogenase was over-expressed to 

ascertain whether the increase in acetaldehyde formation could be reduced in favour of 

NADH for glycerol production. This newly combined mutant was able to produce 0.46 g 

glycerol/g glucose) at a production rate of 3.1mmol /(g biomass h).The flux control coefficient  

was shifted to glycerol efflux due to intracellular accumulation of glycerol that can be 

overcome by the overproduction of glycerol exporter encoded by the FPS1 gene. 

The overexpression of glyceraldehyde-3-phosphate dehydrogenase gene, GPD1 under 

control of the ADH1 promoter, is currently seen as most effective method of lowering ethanol 

yield by up to 35% and increasing glycerol production, but the problem is that the decrease 

in ethanol yield does not restore redox balance and results in higher acetate yields. These 

expression strains also produced elevated concentrations of acetaldehyde, acetoin and 2,3-

butanediol and succinate.  

Excessive acetic acid production can be prevented by deletion of ALD genes in GPD 

overexpression strains. The ALD6 gene encodes a cytosolic aldehyde dehydrogenase, and 

converts acetaldehyde to acetate, it is activated by Mg2+ and utilizes NADP+ as the 

preferred coenzyme (Saint-Prix et al., 2004; Navarro-Avino et al.,1999) In yeasts cells 

lacking glucose-6-phosphate dehydrogenase activity the aldehyde dehydrogenase ALD6 

gene is essential in providing NADPH (Grabowska et al., 2003). Deletion of the ALD6 gene 

results in lowered acetate yield (Remize et al., 2000). This deletion was applied to wine-

derived laboratory GPD1 overexpression strains but these strains cannot be compared to 
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industrial strains as lab strains usually don’t perform well under industrial wine making 

conditions, and is thus not representative of industrial strains (Dequin, 2001; Eglington et al., 

2002; Remize et al., 1999). 

A study by Cabon et al (2006) reported on GPD1 over-expression combined with deletion of 

ALD6 in a wine yeast strains. These strains had lowered acetate production and glycerol 

production was increased with the ethanol production being 15 to 20% lower compared to 

the control. The wine quality is still influenced because inefficient reduction of 2, 3-butanediol 

leads to acetoin accumulation. The acetaldehyde branch point needs to be investigated to 

optimally adjust metabolite formation (Cambon et al., 2006; Eglington et al., 2002) 

In order to rectify the problem of increased acetoin overproduction in mutants over-

expressing GPD1 with ALD6 deletions BDH1 was over-expressed. BDH1 encodes 2, 3-

butanediol dehydrogenase that converts acetoin to innocuous 2, 3- butanediol. Over-

expression of the BDH1 gene enables 85-90% of the overproduced acetoin to be converted 

into 2, 3-butanediol, a compound that does not affect the sensory attributes of the wine  

(Ehsani et al., 2009).A study by Varela et al., 2012 showed a decrease in acetoin levels by 

converting it to 2, 3-butanediol and also showed a decrease in acetaldehyde levels. With all 

strains the acetoin levels were below the sensory threshold although the acetaldehyde levels 

were still above the acceptable sensory threshold. 

2.4.3 INTRODUCTION OF GLUCOSE OXIDASE (GOX) INTO S. CEREVISIAE TO 

REDUCE GLUCOSE AVAILABILITY  

The GOX gene encodes the glucose oxidase enzyme (GOx) that catalysis the breakdown of 

glucose into D-glucono-δ-lactone and hydrogen peroxide.  A transgenic strain of S. 

cerevisiae was generated by incorporating the GOX gene from Aspergillus niger under 

transcriptional control of the yeast PGK1 promoter into the yeast genome.  The secretion of 

Gox by the transgenic strain into the must lowers the glucose content of the must by 

converting it to D-glucono-δ-lactone and gluconic acid (Fig IV) thus reducing the ethanol 

content. The problem is that large amounts of gluconic acid are produced leaving the wine 

with a high titratable acidity (Pickering et al., 1999a). The transgenic strains reduced the 

ethanol content by up to 1.8 %(v/v).This method may be unsuitable for industrial wine 

fermentations as the Gox enzyme activity requires high levels of oxygenation (Malherbe et 

al., 2003). 
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Figure 4: Glucose oxidase (GOX) pathway (Simpson et al., 2007) 

 

2.4.4 NADH OXIDASES (NOX) OVER-EXPRESSION TO REDUCE INTRACELLULAR 

NADH 

Another approach based on co-factor engineering was used by Heux et al. (2006) by over-

expressing the Lactococcus lactis gene noxE (which codes an H2O-forming NADH 

oxidase).The focus was to develop a yeast strain producing NADH oxidase to reduce 

ethanol yield. This enzyme specifically utilises NADH in the presence of oxygen (Heux et al., 

2006)., thus anaerobic conditions are necessary. The approach was to direct carbon flux 

towards multiple metabolites rather than something specific which could lead to the 

accumulation of a compounds which negatively affect wine quality. This led to a reduction in 

ethanol of up to 15% but the mutants showed impaired growth and fermentation 

performance reducing sugar consumption by 50% and increasing acetaldehyde, acetate and 

acetoin production.  

2.4.5  DIMINISHED PYRUVATE DECARBOXYLASE (PDC) ACTIVITY TO INCREASE 

GLYCEROL PRODUCTION 

Pyruvate decarboxylase is the enzyme that catalyses the decarboxylation of pyruvic acid to 

acetaldehyde and carbon dioxide during fermentation. Previous deletion studies have been 

done on the pyruvate decarboxylase (PDC) mutants, but the deletion of all three genes 

PDC1, PDC5 and PDC6 rendered S. cerevisiae incapable of growing in medium containing 

only glucose as carbon source with excess NADH inhibiting glycolytic flux. However, deletion 

of only the regulatory PDC2 gene led to diminished transcription of the PDC1 structural gene 

that in turn resulted in diminished PDC activity. Diminished transcription of PDC1 yielded 4.7 
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times more glycerol than that of the wild type in a strain producing only 19% of its normal 

PDC activity. Overexpression of GPD1 resulted in a 20-fold increase in GPD activity with a 

5.6 times increase in glycerol production. When both the deletion of PDC2 and the 

overexpression of GPD1 were combined in one mutant strain, the glycerol increase was 8.1 

times that of the wild type. All these mutants resulted in decreased ethanol production and 

increased glycerol production although there is an increase in acetate yield (Nevoigt & Stahl, 

1996; Schmitt and Zimmermann, 1982). 

2.4.6 DELETION OF TRIOSE PHOSPHATE ISOMERASE (TPI) TO INCREASE 

GLYCEROL PRODUCTION 

During glycolysis triose phosphate isomerase (TPI) plays an important role in efficient 

energy production and is of interest as it is an important branch point in the glycolytic 

pathway(Fig III), as it catalysis the conversion between dihydroxyacetone phosphate (DHAP) 

and glyceraldehyde 3-phosphate (GAP).  The TPI gene deletion causes an accumulation of 

dihydroxyacetone phosphate which can no longer be channelled into the glycolytic pathway, 

leading to an increased glycerol of as high as 80-90% with an yield of 1 mol of glycerol per 

mol of glucoseand a decrease in ethanol production (Compagno et al., 1996; Ciriacy et al., 

1979; Cordier et al., 2007). These deletion strains are not able to grow on media with 

glucose as sole carbon source due to lack of NADH supply (Compagno et al., 2001; 

Overkamp et al., 2002). Although the total elimination of the TPI1 gene is therefore 

unsuitable for biotechnological purposes, a partial or controlled regulation of the expression 

of this gene might yield desirable results. Deletions in REB1, RAP1 or GCR1 binding sites of 

the TPI1 promoter region reduce Tpi1p activity. However, the deletion of RAP1- and GCR1-

binding sites has been shown to have no impact on glycerol and ethanol production (Scott et 

al., 1993; Clifton et al., 1981; Uemura., 1990; Uemura., 1999). 

2.4.7 DELETION AND OVER EXPRESSION OF TREHALOSE-6-PHOSPHATE 

SYNTHASE (TPS) TO SHIFT CARBON FLUX TOWARD TREHALOSE PRODUCTION 

TPS1 encodes the synthase subunit of trehalose-6-phosphate synthase/phosphatase 

complex, which synthesizes the storage carbohydrate trehalose. TPS expression is induced 

by a stress response and repressed by the Ras-cAMP pathway (Winderickx et al., 1996; Bell 

et al., 1992; Bell et al., 1998). Trehalose is synthesized in two steps: First glucose 6-

phosphate plus UDP-glucose is converted to α,α-trehalose 6-phosphate by trehalose-6-

phosphate synthase encoded by the TPS1 gene. In the second step α,α-trehalose 6-

phosphate and water are converted to trehalose and phosphate by trehalose-6-phosphate 

phosphatase encoded for by the TPS2 gene (Francois et al., 2001). Trehalose-6-phosphate 
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inhibits hexokinase activity (Hohmann et al., 1996), which can affect glycolysis by restricting 

the amount of glucose that enters glycolysis during the switch to fermentative metabolism 

(Hohmann et al., 1996).  

In a study done by Bosch et al. (unpublished data) deletion mutants were screened for 

altered ethanol yields. The strain with a deletion of the TPS1 gene in a laboratory strain 

(selected from the EUROSCARF deletion library) showed an accelerated fermentation rate, 

lower ethanol yield and significantly higher glycerol yield (3.6±0.4) than the wild type 

(2.3±0.2)).  During the same study the TPS1 gene was over-expressed in a laboratory strain 

under control of the PGK1 promoter. Fermentations for over-expression strains showed 

lower ethanol and glycerol yield and a reduced fermentation capacity with higher residual 

sugars (unpublished data).The reduced fermentation capacity of this over-expression strain 

can be due to partial inhibition of glycolytic flux. Although trehalose was not measured during 

this study it is hypothesised that trehalose levels might be increased, not only inhibiting 

hexokinase mediated glucose flux trough glycolysis but also the distribution of 

carbohydrates. This hypothesis was supported by the reduced levels of glycerol and ethanol 

produced. 

2.4.8  COMBINED APPROACHES 

The most recent study of these combined approaches was reported by Varela et al in 2012. 

This study used previously studied gene modifications that influenced ethanol production 

and combined them in one study using the same genetic background. The Strain that was 

used for all gene modification was AWRI1631, a stable haploid with a deletion of the HO 

locus (Borneman et al., 2008). As indicated in Table 2 (significant changes in ethanol 

highlighted in red) some of the gene modifications led to significantly lower ethanol levels, 

the most significant being those involving over-expression of GPD1 with a reduction of up to 

35% when compared to the parental strain. Additional modifications had to be implemented 

to avoid production of unwanted metabolites such as acetate, which could be improved by 

the deletion of ALD6 in GPD1 over-expression strains (Remize et al., 2000) 

Table 2: Genetic modification of constructed strains and ethanol production compared to 
parental strain AWRI1631 strain 
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2.5. CONCLUSION 

The examination of all strategies to achieve lower alcohol wines, including viticultural 

approaches, post fermentative removal of alcohol and GM and non GM approaches clearly 

shows that all current solutions are either inapplicable in industry or have significant cost and 

/or quality implications. A biological approach appears the most suitable strategy for ethanol 

reduction, as a yeast strain producing less ethanol may be more cost effective and have less 

of an influence on wine quality (Pretorius, 2000; Schobinger et al., 1986). The majority of 

biological approaches focus on shifting flux away from ethanol towards metabolites such as 

glycerol. The over expression of the glyceraldehyde-3-phosphate dehydrogenase gene, 

GPD1 was the most efficient strategy to lower ethanol concentrations by increasing glycerol 

production, although additional modifications were necessary to remove unwanted 

metabolites. Very little research has been done on diverting carbon to the formation of 

reserve carbohydrates such as trehalose.  The shift towards trehalose production could 

reduce the amount of glucose entering glycolysis as formation of trehalose is believed to 

inhibit hexokinase mediated glucose flux trough glycolysis (Hohmann et al., 1996). Although 

previous studies on gene modifications have given us a good understanding of which genes 
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to target for lowering ethanol yield, how these modifications and their regulation by different 

promotors influence the regulatory networks is still unclear.   
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3.1 INTRODUCTION 

The demand for lower alcohol wines has increased over the last decade (Howley et al., 1992). 

Problems relating to the sensorial quality of wine, as well as economic and health issues are 

associated with this increased demand. The quality of wine is indeed compromised as high 

alcohol levels change the mouthfeel (viscosity) of  the wine and may create the perception of 

‘hotness’ on the palate (Guth et al., 2002). Economic interest in low alcohol wines is driven by 

the tax penalties that are levied according to alcohol content of wines in some countries (de 

Barros, 2000; Kutyna et al., 2010). High alcohol consumption is also associated with numerous 

health risks. Stricter drink and drive policies also contribute to a consumer demand for lower 

alcohol beverages. 

Several reasons have been proposed to explain the observed increase in average ethanol 

content of wines in recent times. A global increase in temperatures due to global warming might 

be a contributing factor (Catarino et al., 2011). However, it is more likely that the demand for 

more full bodied and fruity wines has led to delayed harvesting to ensure fully matured (and 

sometimes overripe) berries. Due to the higher sugar levels of these berries, the alcohol content 

of the fermented wine is inevitably higher (Godden, 2000). 

Existing procedures for removal or lowering of ethanol post-fermentation include spinning cone 

columns and reverse osmosis, both of which are costly (due to loss of volume, transport costs 

and expensive equipment) and may have a negative impact on wine quality. Another approach 

is to pick berries earlier to reduce the sugar levels of the must, but this frequently runs counter 

the desired flavour and aroma profile of the wine (Bui et al., 1986; Pickering et al., 1999a; 

Mermelstein, 2000). An appropriate biological alternative would be to develop yeast strains 

producing lower levels of ethanol during fermentation. 

The genetic modification of yeast has the potential to address the high ethanol problem, and 

has met with relative success in recent years (Kutyna et al., 2010). Even though GM yeasts are 

not yet widely accepted and therefore not used in the wine industry, GM studies have 

significantly improved our knowledge of carbon flux and its regulation during alcoholic 

fermentation. Most gene modification strategies have been focusing on shifting carbon flux 

towards glycerol production rather than ethanol. The deletion of the genes encoding alcohol 

dehydrogenase (ADH) isozymes, ADH1, ADH3, and ADH4 combined with a point mutation in 

the gene ADH2 serves as a good example of this approach (Drewke et al., in 1990). 

Fermentation with this mutant strain lowers ethanol yield and leads to higher production of 
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glycerol. However, this mutant strain struggles to complete fermentation and results in high 

levels of acetaldehyde and acetate (Drewke et al., 1990). 

The most successful strategy to date involved the over expression of the GPD1 gene (Michnick 

et al., 1997). GPD1 encodes the glycerol 3-phosphate dehydrogenase which converts 

dihydroxyacetone to glycerol 3-phosphate. As with the previous approach, the strain also 

produces higher levels of acetaldehyde and acetic acid, a consequence of the excessive 

regeneration of NAD+. This shortcoming has since been relatively successfully mitigated 

through additional deletion and over-expression of genes that block the synthesis of these 

unwanted by-products (Grabowska et al., 2003; Remize et al., 2000). 

Very few alternatives to redirecting carbon flux towards other carbon sinks have been explored. 

Redirecting carbon flux towards reserve carbohydrates for example might have the potential for 

lowering ethanol by directing glucose towards the production of metabolites such as trehalose.  

The key enzyme in the trehalose biosynthesis pathway is trehalose-6-phosphate synthase, 

encoded by the TPS1 gene (Francois et al., 2001). This enzyme converts glucose-6-phosphate 

and UDP-glucose to α,α-trehalose-6-phosphate. In the second step α,α-trehalose 6-phosphate 

and water are converted to trehalose and phosphate by trehalose-6-phosphate phosphatase 

encoded by the TPS2 gene (Francois et al., 2001). The overproduction of trehalose through 

TPS1 overexpression however also restricts hexokinase activity, reducing the amount of 

glucose entering glycolysis and slowing glycolytic flux (Hohmann et al., 1996). In our laboratory, 

preliminary studies with strains over-expressing or carrying a deletion of the TPS1 gene  in the 

laboratory strain S288C showed a decrease in ethanol yield for both scenarios, which was 

accompanied by an overall reduction in fermentation rate (unpublished data).  

As the TPS mutants used in this initial study were generated in laboratory strains which perform 

poorly in industrial fermentation conditions, the results may not be fully indicative of the effect of 

such modifications in a real wine yeast strain. Furthermore, these studies employed strategies 

such as expression from multiple copy plasmids or the use of strong promoters leading to a very 

high level of TPS1 expression, possibly resulting in an excessively high metabolic burden on the 

yeast, with the lowering of the fermentation rate as an indirect side-effect.  

The chromosomal TPS1 gene is expressed during late exponential and early stationary growth 

phase, resulting in trehalose levels peaking during early stationary phase. (Rautio et al., 2007, 

Rossouw et al., 2009). This specific increase in trehalose at early stationary phase is also linked 

to the response of S. cerevisiae to the increase in ethanol, as trehalose is produced as a stress 
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protectant by stabilising the cell membrane (Alexandre et al., 2001; Gasch et al., 2000; 

Thevelein., 1984; Van Laere, 1989; Wiemken,. 1990).The consequent lowering in trehalose 

towards the end of fermentation can be linked to the increase in expression of trehalose 

degrading enzymes (Thevelein et al.,1982). To further assess whether carbon flux can be 

redirected to trehalose without impacting general fermentative behaviour, we assessed the 

impact of changing the expression of the TPS1 gene during alcoholic fermentation by using two 

different promoters derived from the DUT1 and GIP2 genes. These promoters were chosen due 

to their intermediate strength and their growth phase specific expression pattern during 

fermentative growth in industrial wine yeast strains (Rossouw at al. 2008). The promoter of the 

DUT1 gene is mainly active during exponential growth, while the promoter of the GIP2 gene is 

linked to gene expression during stationary phase. These stage specific promotors were chosen 

to ascertain whether over-expression of the TPS1 gene is more effective during exponential 

growth phase or stationary phase. The controlled over-expression study was carried out in the 

genetic background of an industrial Saccharomyces cerevisiae strain, VIN13. The resulting 

strains therefore continue to express native TPS1, but will in addition express the gene in either 

exponential phase (when the native gene is repressed), or show moderately increased 

expression during stationary phase. The final goal is to increase trehalose accumulation at the 

expense of ethanol, without affecting general fermentation parameters. The data indicate that 

both test strains produce higher levels of trehalose and lower levels of ethanol, with expression 

under control of the GIP2 promotor being more effective The accumulation of trehalose 

coincides with the stage specific expression of the TPS1 gene, with trehalose levels being 

higher for the DUT-TPS strain during exponential phase and higher for the GIP-TPS strain 

during early and mid stationary phase.  

 

3.2 MATERIALS AND METHODS 

3.2.1 STRAINS AND CULTURE CONDITIONS  

The strains generated during this study are shown in Table 1 and have all been derived from 

VIN13, a yeast strain commonly used in industrial wine fermentation.  
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Table 1: Strains described in this chapter   

 Strain Description 

Vin13   Industrial wine yeast strain (Anchor yeast) 
DUT-TPS VIN 13 with inserted plasmid containing Ycplac22 centromeric fragment, 

DUT1 promoter sequence  and TPS1 Gene 

GIP-TPS VIN 13 with inserted plasmid containing Ycplac22 centromeric fragment, 
GIP2 promoter sequence  and TPS1 Gene 

DUT 
CONTROL 

VIN 13 with inserted plasmid containing Ycplac22 centromeric fragment, 
DUT1 promoter sequence without the TPS1 gene 

GIP CONTROL VIN 13 with inserted plasmid containing Ycplac22 centromeric fragment, 
GIP2 promoter sequence without the TPS1 gene 

To verify the presence of the correct episomal plasmid in the yeast cell, plasmid isolation was 

performed using the ZymoprepTM Yeast Plasmid Miniprep II kit (Inqaba Biotech, Johannesburg, 

South Africa). The isolated plasmid from the various transformed strains were used in a back 

transformation and plated on zeocin selective media. Restriction digests of isolated plasmids 

were also performed to confirm the identity of plasmids isolated from the yeast. 

All strains were maintained on YPD plates containing 1 g/L zeocin for industrial strains and 0.6 

g/L zeocin for the lab strains. Small scale fermentations were carried out in 250 ml Erlenmeyer 

flask containing the 200 ml synthetic wine must MS300 (Bely et al., 1990) and sealed with 

rubber bung and S-bend airlocks. Glucose and fructose was added in equal amounts at 100 g/L 

each for the lab strains and 125 g/L for the industrial strains. Pre-inoculated cultures were 

grown overnight at 30°C in YPD broth containing 1 g/L and 0.6 g/L zeocin for the genetically 

modified strains. These cultures were then used to inoculate small scale fermentations to a cell 

density (OD600) of 0.1. All fermentations were carried out in triplicate. Fermentations were 

carried out at 30°C and the progress monitored by weight loss which is indicative of CO2 

production and sugar consumption. Cell growth and biomass production was determined by 

OD600 readings (Shimadzu UV-1601PC UV-Visible, Scanning Spectrophotometer, Japan). 

 

3.2.2. DNA MANIPULATION AND PLASMID CONSTRUCTION 

General DNA manipulation protocols were as described in Ausubel et al. (1994). The 

centromeric plasmids were constructed by inserting the centromere from the Ycplac22 plasmid 

into the pTEF/Zeo expression vector (Invitrogen). The pTEF/zeoYcplac22 plasmid was digested 

with BglII and SpeI and the pTEF/Zeo vector was digested with BglII and NheI. The Ycplac22 

centromeric fragment was then cloned into the pTEF/Zeo vector, resulting in the construct 

pTEF-CEN.  
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Following this, the two promoter regions (upstream of the DUT1 and GIP2 genes) and the TPS1 

ORFwere cloned from the genomic DNA of the industrial S. cerevisiae strain, VIN13. The DNA 

fragments were amplified using the primers listed in Table 2. The two promotor regions were 

identified based on the expression of the corresponding genes (DUT1 and GIP2) at different 

time points during fermentation in transcriptional studies conducted using five different wine 

yeast strains (Rossouw et al., 2008). A subset of genes were initially selected (genes showing 

expression during either the exponential growth phase or stationary phase) and subsequently 

narrowed down to only those genes showing overall moderate expression levels since  high 

expression levels were undesirable in light of the goal of this study. From this final set of genes 

DUT1 and GIP2 were selected as fulfilling all criteria. The corresponding upstream promoter 

sequences of these two genes were identified (www.yeastgenome.org) and primers designed 

for amplification.  The promoters are flanked by SphI and PvuII restriction sites, and the genes 

are flanked by PvuII and NarI digestion sites. Fragments were cloned into the pGEM-T Easy 

vector (Promega, Charbonniѐres, France) and transformed into the E.coli strain DH5α. 

Transformed cells were plated out on LB; Ampicillin; X-gal; IPTG blue/white selection plates 

(Ampicillin final concentration of 100 ug/ml; 5-bromo-4-chloro-indolyl-β-D-galactopyranoside (X-

gal) final concentration of 40 ug/ml (2 ul of Xgal stock solution per ml of media); Isopropyl β-D-1-

thiogalactopyranoside (IPTG) final concentration of 0.1 mM (1 ul IPTG stock solution per ml of 

media)). White colonies were picked and screened by colony PCR. Gene and promoter 

sequences of positive transformants were confirmed by sequencing. The promoter fragments 

and TPS1 ORF were excised and cloned into the pTEF-CEN plasmid, resulting in the two final 

constructs pTEF-CEN-DUT1-TPS1 and pTEF-CEN-GIP2-TPS1 (Fig 1)  

Table 2:  PCR primers used to amplify the gene, TPS1 and the two promoter regions of the  
DUT1 and GIP2 genes 

Name Sequence (5’-3’) 

TPS1 Forward 5’-GATCCAGCTGATGACTACGGATAACGCTAAGG-3’ 

TPS1 Reverse 5’-GATCGGCGCCTAACAGCGCTACAGACAGGC -3’ 

DUT1 Forward 5’- GATCGCATGCACTATGTACATACACACGCACC- 3’ 

DUT1 Reverse 5’- GATCCAGCTGTTGGTTATTTTTTGGCTCGCTGTA- 3 

GIP2 Forward 5’- GATCGCATGCGCTGTCTAGAATGCATTTTTCCA - 3’ 

GIP2 Reverse 5’- GATCCAGCTGTGTTGCGTTGATGAAATCCTAA- 3’ 
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Figure 1:  Complete constructs of pTEF plasmid with inserted Ycplac22 centromeric region and 
inserted DUT1 (A) and GIP2 (B) promoters in tandem with the TPS1 gene. 

3.2.3. YEAST TRANSFORMATION 

An electroporation transformation technique was used to transform the constructs and empty 

vector controls into VIN13. The transformation was done by inoculating 10 ml overnight cultures 

of VIN13 colonies. The overnight cultures were added to 100 ml YPD, and incubated with 

shaking at 30 °C until an OD600 of between 0.8 and 1.5 was reached. Cells were harvested at 

5000 rpm at 4 °C and re-suspended in 40 ml ddH2O. Following the addition of 5 ml TE Buffer 

and 5 ml LiOAc, the cells in suspension were incubated for 45 minutes at 30 °C with gentle 

agitation. After addition of 1.25 ml 1M DTT another 15 minute incubation step was carried out at 

30 °C. Eighty micro litres of ice cold ddH2O was added and cells were centrifuged at 5000 rpm 

for 4 minutes. Cells were washed with 120 ml ddH2O and harvested by centrifugation. The last 

wash step was performed with 1M Sorbitol and cells were harvested by centrifugation. The cells 

were re-suspended in 200 µl Sorbitol (1M). Eighty micro litres of the cell suspension was added 

to an eppendorf tube containing 10 µl of plasmid DNA (total of 40ug). The mixture of plasmid 

DNA and competent cells were transferred to a 0.2 cm gap electroporation cuvette and pulsed 

at 1.5 kV, 25 mF and 200 ohms for 5-5.7 milliseconds. Immediately after the pulse 1ml of ice 

cold YPD was added, the sample was transferred to sterile 1.5 ml eppendorf tubes and 

incubated at 30 °C overnight. Positive transformants were selected by plating on selective 

media containing 1 g/L zeocin (for the industrial strains) and 0.6 g/L zeocin (for the laboratory 

strains) (Wenzel et al., 1992; Lilly et al., 2006).  

3.2.4. VERIFICATION OF GENE EXPRESSION BY QUANTITATIVE REAL-TIME PCR 

ANALYSIS (QRT-PCR) 

RNA isolations were performed on samples taken at time points T2, T5, T 11 and T18 to cover 

the range of different growth phases of the yeast during fermentation. RNA was extracted using 

the hot phenol extraction protocol (Schmitt et al., 1990). RNA was quantified using the 
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Nanodrop® (ND-1000 Spectrophotometer, Thermo Fisher Scientific, Delaware, USA) and 

integrity assessed on denaturing and non-denaturing gels. The Improm-IITM Reverse 

Transcription System was used to synthesise cDNA using a random primer set. 

Primers for target genes and primers for normalisation were designed using the Primer 

Express software v. 3 (Applied Biosystems) and a KAPATM SYBR® FAST qPCR Kit was used 

to perform   QRT-PCR analysis. Spectral data were captured by the 7500 cycler (Applied 

Biosystems by Life technologies, California, USA). Data analyses were conducted using 

Signal Detection Software (SDS) v. 1.3.1. (Applied Biosystems) to determine the 

corresponding Ct values and PCR efficiencies respectively for the samples analysed 

(Ramakers et al., 2003). The primer sequences used for QRT-PCR are described in Table 3 

below.  

Table 3:  QRT-PCR primers used to amplify the TPS1 gene and the ACT1 gene 

Name Sequence (5’-3’) 

TPS1 5’- TTGCACGCCATGGAAGTG-3’ 

TPS1 5’- AACAACCTTGCCCCTCCATT - 3’ 

ACT1 5’- GCCGAAAGAATGCAAAAGGA - 3’ 

ACT2 5’- TCTGGAGGAGCAATGATCTTGAC - 3’ 

 

3.2.5 METABOLITE ANALYSIS 

Samples were taken throughout fermentation to quantify key metabolites. Samples and 

standards were prepared in accordance with the method described by Eyéghé-Bikong et al. 

(2012). The media was analyzed by high performance liquid chromatography (HPLC) on an 

AMINEX HPX-87H ion exchange column (Bio-Rad, California, USA) using 5 mM H2SO4 as the 

mobile phase. Peak detection and quantification was performed by Agilent RID and UV 

detectors in tandem. Analysis was carried out using the HPChemstation software package.  

Trehalose extraction (Yoshikawa et al., 1994) and quantification was performed as follows: 

Trehalose sampling was performed at selected time points during fermentation by harvesting 

5mls of fermentation culture. The cells were dried and weighed. For the extraction 500µl of 

0.25M NA2CO3 was added for every 25mg of cells followed by addition of acid washed glass 

beads. The buffer/cell mixture was vortexed and incubated at 95°C for twenty minutes, followed 
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by centrifugation at to pellet cell resides.  Supernatants were analysed for trehalose using the 

Megazyme Trehalose assay kit (Megazyme International, Ireland) according to specifications.  

3.2.6  PROTEIN EXTRACTION AND QUANTIFICATION 

Protein extraction and quantification was performed as follows: Protein sampling was performed 

at selected time points during fermentation by harvesting 5mls of fermentation culture. The cells 

were dried and weighed. A protein extraction buffer (pH 6.8) was prepared as follows: 120mM 

Tris-HCl, 20mM EDTA, 4% SDS, 6M urea. For the extraction 500µl extraction buffer was added 

for every 25mg of cells. Acid washed glass beads were added and vortexed vigorously followed 

by an incubation step at 65°C for twenty minutes. Samples were then centrifuged and 

supernatants transferred to clean tubes. 

Quantification was done using the BCA Protein Assay Reagent Kit (Pierce, Rockford, USA). OD 

readings were taken at 562nm for quantification relative to the standard curve. 

3.3. RESULTS 

3.3.1  MONITORING FERMENTATION PERFORMANCE AND BIOMASS FORMATION 

Untransformed wild type VIN13 and all transformed strains were inoculated into synthetic must, 

and fermentation performance was evaluated. The fermentation performance was monitored by 

measuring weight-loss through CO2 release and OD600 reading indicative of sugar consumption 

and biomass formation, respectively. The fermentation performance of the strains containing 

plasmid constructs when compared to wild type VIN13 was slightly reduced with regard to both 

biomass formation and weight loss. However, all transformed strains with the exception of the 

DUT control strain showed similar fermentation performance, suggesting that the slightly 

reduced performance was due to the presence of the plasmid, and not linked to the increased 

expression of the TPS1 gene. Importantly, all strains completed fermentation within a broadly 

similar time frame (Fig 2 and 3).  
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Figure 2:  Fermentation performance by monitoring the accumulated CO2 loss for all test strains 
and their controls. Values are the average of three biological repeats ± standard deviation. 

 

Figure 3:  Fermentation performance by monitoring the OD600 readings for all test strains and 
their controls. Values are the average of three biological repeats ± standard deviation. 
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3.3.2 EXPRESSION OF THE TPS1 GENE  

To determine the expression levels of the TPS1 gene under the control of the DUT1 and the 

GIP2 promoter, RNA extraction was performed at time points T2, T5, T11 and T14 for all 

industrial strains. The expression data for the qRT-PCR was normalized relative to the 

expression of the housekeeping ACT1 gene (Fig 4). The first time point T2 is representative of 

exponential growth phase. There is a significant (> 2-fold) over-expression of the TPS1 gene 

under the control of the DUT1 promoter during the exponential growth phase compared to the 

wild type (VIN13) and DUT control (plasmid containing promoter only). T-tests were performed 

to confirm the significant change in TPS1 expression during early exponential growth phase. 

The second time point T5 is representative of early stationary phase and a slight but statistically 

significant over-expression of the TPS1 gene under the control of the GIP2 promoter is 

observed (Fig 4). There also appears to be an additional increase in TPS1 expression at days 

11 and 14 for the DUT-TPS1 strain (representative of late stationary phase).  

 

Figure 4: Relative gene expression levels at different stages of fermentation. Values are 
the average of three biological repeats ± standard deviation.(* denotes p<0.05 (95% 
confidence)**denotes p<0.1 (90% confidence)) 

 3.3.3  CHEMICAL ANALYSIS 

The main products and by-products of alcoholic fermentation, ethanol, glycerol and aetic acid, 

were measured by HPLC analysis at the relevant time points and ethanol yields (g of ethanol 

produced / g of sugar consumed were calculated (Fig 5C, 5D, 6, 7 (A-D)). Fig 5,6 and 7A show 

that total ethanol production was lower in all the transformants when compared to the wild type 
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VIN13 strain. However, when comparing ethanol yields (Fig 7B), only the two strains expressing 

TPS1 show a statistically significant reduction. The glucose consumption rates of all strains 

appear similar (Fig 5A). However, the DUT-TPS strain and the promoter controls display 

residual fructose levels that are significantly higher than the wild type and the GIP-TPS strain 

(Fig 5B). The strain carrying the GIP-TPS construct showed similar total sugar consumption to 

that of the wild type, and was clearly the most efficient in terms of reducing ethanol yields.  The 

DUT control strain showed significant standard deviations, and as the fermentation kinetics 

already suggested, appears to have experienced fermentation problems which are not directly 

related to the presence of the plasmid. This is also reflected in the significantly higher amount of 

acetic acid produced by this strain, suggesting that this strain experienced some redox- balance 

related fermentation stress.  Surprisingly, all transformed strains produced higher levels of 

glycerol than the wild type. This increased level of glycerol however did not translate in higher 

levels of acetic acid but for the strain DUT Control as discussed above (Fig 7C and 7D).  

 

Figure 5: Metabolite distribution for all test strains and their controls throughout fermentation. 
Values are the average of three biological repeats ± standard deviation. 
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Figure 6: Ethanol production for all strains and controls throughout fermentation. Values 
are the average of three biological repeats ± standard deviation. (* denotes p<0.05(95% 
confidence)**denotes p<0.1 (90% confidence)) 

 

Figure 7:  Ethanol (frame A) ,acetic acid (frame D) and glycerol levels (frame C) at the end of 
fermentation (T22). Ethanol yield as determined at the end of fermentation are depicted in 
frames B. Values are the average of three biological repeats ± standard deviation. * denotes 
p<0.05 (95% confidence) **denotes p<0.1 (90% confidence) 
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The sugar utilisation is less for the test strains and their controls indicating that the reduced 

fermentation capacity is not due to the over expression of the TPS1 gene. Replica plating was 

performed for strains and controls at day eleven to assess the plasmid retention during 

fermentation (since no selection pressure was maintained during fermentation). The plasmid is 

retained in approximately 97% of the yeast cells. 

 

Figure 8:  Trehalose production for all strains and controls throughout fermentation. Values are 
the average of three biological repeats ± standard deviation. * denotes p<0.05 (95% confidence) 
**denotes p<0.1 (90% confidence) 

Trehalose extractions were performed for quantification of trehalose at different stages of 

fermentation. The trehalose levels for the DUT-TPS strain is significantly higher than its controls 

during early and late exponential growth phase, (Fig 8), while the trehalose levels for the GIP-

TPS strain are significantly higher than the control during early and mid stationary phase . 

Trehalose levels therefore closely follow the TPS1 expression data slight over-expression of the 

TPS1 gene under control of the GIP2 promotor (Fig 8). In line with the ethanol yield data, the 

GIP-TPS strain was the only strain that retained significantly higher levels of trehalose at the 

end of fermentation, in line with the ethanol yield data, and highlighting the importance of 

trehalose degradation during stationary phase. Indeed, the significant amount of trehalose 

produced by the DUT-TPS strain during exponential growth is almost entirely degraded to close 

to Wild Type levels at the end of fermentation (Fig 8). 
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3.4  DISCUSSION 

The CO2 release curves for the strains that contain the episomal plasmid seem to suggest that 

these strains have a slower fermentation rate, which is also indicated by the slightly higher 

residual sugars in some of the strains. This may be due to pre-inoculation conditions, as the 

strains containing the plasmid were cultured under selection pressure in media containing the 

antibiotic zeocin. Another explanation could be that the episomal plasmid itself is causing the 

cell stress. An episomal plasmid requires energy from the host cell for maintenance and 

reproduction. This energy is taken from the host’s cellular resources, and may represent a 

metabolic burden to the cell (Stouthamer and van Verseveld, 1987). 

The expression profiles of the two TPS over-expressing strains compared to their plasmid-only 

controls and the wild type, suggests that the DUT1 promoter drives increased TPS1 expression 

during early exponential growth phase. The expression of TPS1 under the control of the GIP2 

promoter region showed increased expression levels during early stationary phase. Expression 

of TPS1 under control of the DUT1 promoter was up to 40% higher than the wild type strain 

(VIN13) during early exponential growth, whereas the expression of TPS1 under control of the 

GIP2 promoter was up to 60% higher than the wild type during early stationary phase. The 

levels of expression indicate that the aim of achieving a growth-phase specific and moderate 

increase in TPS1 expression has been achieved.  Preliminary studies where the TPS1 gene 

was over-expressed at high levels indeed indicated strongly reduced fermentative activity as 

already described in the literature, The expression of TPS1 both under control of the DUT1 

promoter during the early exponential growth phase as well as the GIP2 promoter in early 

stationary phase have some metabolic impact in terms of decreasing the total ethanol yield, and 

in the case of GIP-TPS without impacting significantly on fermentative performance of the strain. 

Indeed, expression under control of the GIP2 promoter seems not to reduce the fermentation 

capacity and the sugar utilization in a statistically significant manner (even though its expression 

levels are slightly higher than that of TPS1 under control of DUT1). This might suggests that the 

expression of the TPS1 gene during early stationary growth (regulated by the GIP2 promoter) is 

more effective and causes less stress to the cell than expression during early exponential 

growth (DUT1). The main aim of this study was to redirect flux towards trehalose production, 

and the trehalose data indicates that there has indeed been a shift in flux towards trehalose 

production by the over-expression of the TPS1 (trehalose 6 –phosphate synthase) gene. 

Trehalose production is increased substantially for both test strains. The DUT-TPS strain 

produces higher levels of trehalose during early exponential growth phase compared to its 

control strain, whereas the trehalose production of the GIP-TPS strain increased during early 

stationary phase, increasing to levels above those of the DUT-TPS strain.  
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The ethanol yield for the DUT-TPS and the GIP-TPS test strains do seem to be lower than the 

wild type. Although when compared to their relevant controls it is not clear that there is a 

significant reduction for the DUT-TPS strain. The GIP-TPS shows a significant reduction in 

ethanol yield and appears to be the more effective strain. 

Although there is no obvious link to the over-expression of the TPS1 gene, there is a slight 

increase in glycerol production observed for all transformed strains. In S. cerevisiae glycerol 

production plays an important role in stress tolerance, maintaining intracellular phosphate levels 

and redox balance (NAD+/NADH levels) (Blomberg & Adler., 1992; Hohmann., 2002). In studies 

where glycerol production has been up regulated, such as the over-expression of 

GPD1(Michnick et al., 1997) it was found that acetic acid levels increase with an increase in 

glycerol production. An increase in acetic acid has been linked to excessive NAD regeneration 

(Michnick et al., 1997). In this study, although glycerol production has increased there is no 

increase in acetic acid levels for either of the test strains, which is a positive outcome but also 

expected as the trehalose production pathway should not influence the NADH/NAD+ balance as 

would a modification in gene expression linked to glycerol over-expression This suggests that 

the slight over-expression of the TPS1 gene by these specific promoters has successfully 

shifted carbon flux toward trehalose production with minimal affect on redox balance.  

As all test strains and their controls show an increase in glycerol production this cannot be 

linked to TPS1 over-expression, although minimal plasmid loss at day eleven suggests that the 

plasmid is stable. This is indicative that the plasmid is not causing the cell intolerable strain. It 

may also be hypothesized that with less glucose entering glycolysis and downstream pathways 

(as some glucose is re-directed toward trehalose production), the increase in glycerol 

production is due to the cell’s need to maintain redox balance. This is because less ethanol may 

be produced (due to less glucose flux through glycolysis), while the cells’ metabolic needs for 

biomass production from the pyruvate branch point remain unchanged. Re-oxidation of NADH 

via glycerol production may then provide an alternative pathway to maintain redox balance.  

Overall the GIP-TPS strain seems to outperform the DUT-TPS strain, with lower ethanol levels 

and more favourable residual sugar content at the end of fermentation as well as a lower 

ethanol yield suggesting that over-expression during stationary phase is a more effective 

approach. The flux towards trehalose away from ethanol production seems to be more effective 

than that of the DUT-TPS strain. 

During this study the expression under phase specific promoters and the level at which genes 

are over expressed have been of more significance than perhaps the over-expression of the 
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TPS1 gene in itself. The novel idea of slight overexpression using phase-specific promoters for 

expression of target genes may be a good approach for future research using other genes 

involved in reserve carbohydrate production as well as previously studied genes involved in 

glycerol over-expression such as GPD1.  

With each biological approach aimed at re-directing carbon flux, we gain more insight into how 

different pathways affect each other and where compensation occurs to maintain redox 

balance. Putting all this information together might in future bring us closer to finding an 

effective way of reducing ethanol yield as well as improving other aspects of wine quality. 
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4.1. GENERAL DISCUSSION AND CONCLUSION 

Worldwide there is a need to produce wines with reduced alcohol levels without affecting the 

quality and aroma composition of the wine (Scudamore-Smith et al., 1997; Pickering et al., 

1998). There are different approaches to this problem, most of whi ch are applied post  

fermentation to reduce or remove th e ethanol. These procedures are costly and could affect 

wine quality. To address the consumer and industry demand to find avenues for reducing the 

ethanol content in wine, we have ad opted a genetic modification approach. Such a strategy 

would eliminate the cost involved i n post fermentation ethanol removal without adversel y 

affecting the quality of  the wine. Our study f ocused on directing ca rbon flux to wards the 

production of the storage carbohydrate treh alose. This approach differs from previous 

studies where the focus has mainly been on re directing carbon flux towards glycerol. Our 

aim of flux redirection w as achieved by slightly over-expressing the TPS1 gene, encoding 

the trehalose-6-phosphate synthase enzyme, under the control of two growth phase specific 

promoters of the DUT1 and GIP2 genes. The novelty o f our particular over-expression 

strategy lies in the sele ction and use of these two promoter regions. These promoters were 

identified as follows: Large scale gene expression datasets from several wine yea st strains 

during time-course fermentation experiments were interrogated to identify promoters th at 

drive growth-stage specific gene expression in these conditions. These genes where then  

split into two groups, those showing expression during exponential gr owth phase and those 

showing expression du ring stationary phase. These were then further narrowed down to 

those only showing mod erate levels of expression. Of those genes, the upstream promote r 

regions where identified. Those that were selected for this study are the promoter regions of 

DUT1 for the exponential growth p hase  expression and  of GIP2 for the stationa ry phase 

specific expression.  

A single copy episomal  plasmid was then used to incorporate the promoter sequences and  

TPS ORF and subsequently transformed into a widely u sed industrial yeast strain. Th e 

growth stage –specific expression patterns of the DUT1 and GIP2 promoters were confirmed 

by the expression profiling performed in this study.   

TPS1 expression was slightly higher under the control of the GIP2 promoter than the DUT1 

promoter. Over-expression under control of the stationary phase promoter GIP2 seems to be 

more effective in terms  of lowering ethanol yield as well as showin g improved sugar 

utilisation than expression under  the contro l of the ex ponential growth stage specif ic 

promoter DUT1. This strategy shows promise for targeting other genes of interest with phase 

specific promoters. The over-expression strains as well as their controls seem to have  
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slightly reduced fermentation performance which show that  it is not the over-e xpression of 

the TPS1 gene alone t hat is re sponsible for the slightly reduced fermentative cap acity of 

transformed strains. The increase in trehalose production has an effect on lowering ethanol 

yield, indicating an alte red flux away from et hanol towards trehalose productio n. The 

increase in glycerol for all test strains and cont rols again indicates t hat it is not th e over-

expression of the TPS1 gene causing the stress. The other positive outcome  of our 

approach is that the increase in glycerol production was not accompanied by an increase in 

acetic acid production, as was the case for several other genetic modification  studies (de 

Barros Lopes et al., 2000; Cambon et al., 2006; Eglington et al., 2002). The trehalose data 

indicate that the over-expression of  the TPS1 gene has be en successful in shifting carbon 

flux towards trehalose production. T he over-expression of the TPS1 gene under control of  

the DUT1 promotor causes a  significant increase in treha lose production in ear ly and late  

exponential growth phase which is e xpected as the TPS1 expression is increased by about 

40% during this phase.  The 60% over-expres sion of the TPS1 gene under control of the 

GIP2 promoter causes an increase in trehal ose production during early, mid and late 

stationary phase that is linked to the phase specificity of the GIP2 promotor. 

When comparing the two test strains it seems that the GIP-TPS strain is defin itely the more 

efficient of t he two, wit h slightly less ethanol yield, better sugar consumption and slightly 

higher production of trehalose when compared to DUT-TPS.  

The novel approach used in this study has given us the insight over-expression of t rehalose 

biosynthesis under the TPS1 gene during early to late statio nary phase yields better results 

than over-expression during exponential growth phase. Although this may not be exactly the 

same for other genes, growth phase specif ic promoters could positiv ely impact on the 

effectiveness of over-expression.  Another import ant factor is the level of over-expression. 

During this study we ha ve proven that by only slightly over-expressing the target gene we  

are able to minimize unwanted stress and undesirable impacts on cellular redox balance. 

There are some aspects that need further investigation and that might have been helpful to 

have included in this study. Other genes involved in trehalose biosynt hesis can be targeted 

together with different phase specific primers identified in the preliminary studies. Different  

plasmid vectors can a lso be investigated as to ascertain the impact of the specific plasmid 

vector. The effectiveness of this approach can also be che cked in different real wine must,  

as it may differ from results found in synthetic must. As we o bserve a decrease of trehalose 

towards the end of fermentation, targeting genes involve d in trehalose degradation could 

also reduce the amount of sugar that re-enters glycolysis. An approach similar to the current 
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study with phase specific promoters with only moderate over-expression would be preferable 

as not to impact on the redox balance. 

For commercial purposes even a 0.5% reduction in  ethanol yield w ould be considered 

significant as this can mean the difference between tax penalties and wine being suitable for 

export. During this stud y we get very close to  that 0.5%  which could perhaps b e further 

optimised by looking at  other promoters as to  find the p erfect balance between alcohol 

reduction and fermentation performance. For the approach to be  commercially viable the 

episomal plasmid will have to be replaced by either an insertion cassette into the yeast 

genome itself or the endogenous trehalose promoter need to be repla ced, as the episomal 

plasmid is not stable e nough for commercial use. These approaches are still considered 

genetically modified strategies that are current ly not acceptable in South Africa as well as 

most other countries. 

The knowledge gained during this study in terms of phase specific promoters as well as the 

choice of promotor with regards to the level of expression can aid futu re work. Expressing 

previously studied gen es such as GPD1 that has in  the past bee n one of t he most 

successful targets can be re investigated with the use of phase specif ic promotors that also  

lessen the amount of over-expression. Although during our study an increase in acetic acid 

was not expected as NAD+/NADH ratios should not be disturbed by overproduction of 

trehalose, the choice o f these low-strength phase-specific promoters might address redox  

balance challenges such as acetic acid over-production that has been a problematic feature 

of GPD1 over-expression (de Barros Lopes et al., 2000; Cambon et al., 2006; Eglington et 

al., 2002).Adding a deletion such as ALD6 might then not be necessary. The same approach 

using different target genes for channelling carbon to other reserve carbohydrates could be a 

possible alternative for lowering ethanol yield. 

With each gene modification study we gain more knowledge as to how carbon flux and redox 

balance is regulated, enabling us to develop more effective strategies to lower ethanol yield  

during fermentation. This study has given us the novel insight that gene regulatory systems 

such as promoters are just as impo rtant as the genes themselves with regards to selecting 

an effective gene modification approach. 
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SEQUENCE DATA FOR GENES AND PROMOTORS 

TPS1 GENE SEQUENCE 

The TPS1 gene sequence is the full coding sequence from 10bp upstream (allowed for 

cloning (enzyme digests as described in cloning strategy in chapter 3)) from start codon 

ATG to 181bps downstream from the stop codon as to include terminator sequence of 

the TPS1 gene. The VIN13 TPS1 gene had 3 base pair changes, changing the position 

210 amino acid from a cysteine to arginine, the 329 amino acid from an alinine to a 

threonine and the position 531 from a histidine to a leucine.. The GIP2 promoter 

sequence derived from the 314bp fragment upstream of the GIP2 gene and the DUT1 

promoter sequence 444bp upstream from the DUT2 gene. 

TPS1 GENE SEQUENCE 

5’-

GATCCAGCTGATGACTACGGATAACGCTAAGGCGCAACTGACCTCGTCTTCAGGGG

GTAACATTATTGTGGTGTCCAACAGGCTTCCCGTGACAATCACTAAAAACAGCAGTA

CGGGACAGTACGAGTACGCAATGTCGTCCGGAGGGCTGGTCACGGCGTTGGAAGG

GTTGAAGAAGACGTACACTTTCAAGTGGTTCGGATGGCCTGGGCTAGAGATTCCTG

ACGATGAGAAGGATCAGGTGAGGAAGGACTTGCTGGAAAAGTTTAATGCCGTACCC

ATCTTCCTGAGCGATGAAATCGCAGACTTACACTACAACGGGTTCAGTAATTCTATT

CTATGGCCGTTATTCCATTACCATCCTGGTGAGATCAATTTCGACGAGAATGCGTGG

TTGGCATACAACGAGGCAAACCAGACGTTCACCAACGAGATTGCTAAGACTATGAA

CCATAACGATTTAATCTGGGTGCATGATTACCATTTGATGTTGGTTCCGGAAATGTT

GAGAGTCAAGATTCACGAGAAGCAACTGCAAAACGTTAAGGTCGGGTGGTTCCTGC

ACACACCATTCCCTTCGAGTGAAATTTACAGAATCTTACCTGTCAGACAAGAGATTTT

GAAGGGTGTTTTGAGTTGTGATTTAGTCGGGTTCCACACATACGATTATGCAAGACA

TTTCTTGTCTTCCGTGCAAAGAGTGCTTAACGTGAACACATTGCCTAATGGGGTGGA

ATACCAGGGCAGATTCGTTAACGTAGGGGCCTTCCCTATCGGTATCGACGTGGACA

AGTTCACCGATGGGTTGAAAAAGGAATCCGTACAAAAGAGAATCCAACAATTGAAG

GAAACTTTCAAGGGCTGCAAGATCATAGTTGGTGTCGACAGGCTGGATTACATCAA

AGGTGTGCCTCAGAAGTTGCACGCCATGGAAGTGTTTCTGAACGAGCATCCAGAAT

GGAGGGGCAAGGTTGTTCTGGTACAGGTTGCAGTGCCAAGTCGTGGAGATGTGGA

AGAGTACCAATATTTAAGATCTGTGGTCAATGAGTTGGTCGGTAGAATCAACGGTCA

GTTCGGTACTGTGGAATTCGTCCCCATCCATTTCATGCACAAGTCTATACCATTTGA

AGAGCTGATTTCGTTATATGCTGTGAGCGATGTTTGTTTGGTCTCGTCCACCCGTGA

TGGTATGAACTTGGTTTCCTACGAATATATTGCTTGCCAAGAAGAAAAGAAAGGTTC
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CTTAATCCTGAGTGAGTTCACAGGTGCCGCACAATCCTTGAATGGTGCTATTATTGT

AAATCCTTGGAACACCGATGATCTTTCTGATGCCATCAACGAGGCCTTGACTTTGCC

CGATGTAAAGAAAGAAGTTAACTGGGAAAAACTTTACAAATACATCTCTAAATACACT

TCTGCCTTCTGGGGTGAAAATTTCGTCCATGAATTATACAGTACATCATCAAGCTCA

ACAAGCTCCTCTGCCACCAAAAACTGATGAACCCGATGCAAATGAGACGATCGTCT

ATTCCTGGTCCGGTTTTCTCTGCCCTCTCTTCTATTCACTTTTTTTATACTTTATATAA

AATTATATAAATGACATAACTGAAACGCCACACGTCCTCTCCTATTCGTTAACGCCT

GTCTGTAGCGCTGTTAGGCGCCGATC-3’ 

DUT1 PROMOTER SEQUENCE 

5’-

GATCGCATGCGCTGTCTAGAATGCATTTTTCCATGCTACGTCGATTTTTTGCCCGGA

AGAGGCTGACGTAGCGCTGGAAGGTACCGACAACTATGCCTATTGTGGAGATGGG

CGGCAAACTCCTGTCGCAGAGTGGGGGCGGGGAAAGGTTCTTTTTGCCGTGGAAT

GAAGCGCATAAAAGAAAAACAGTATGCCATATTAAGTCTTTTTAAGGGGAAAGGGG

CTGCTACCATGAGGTCTTTTACCAAAAATGTGTATCAGCTACGCTTCTCAATGAAGG

GGCCAAGAAGTTCGTTCTATCCAACAGGAAATATTTCGATATTGCAACGGTCTTTCT

ATATCTTGCATATTCTTCTTCAGGTTGAGTTCCTTTATATATACTGCATTGCGTAATAA

GCAACACAGGGCCCATCCGTTCAACAGAAGAAAACTAAAGCTTTTCAAACATAGCCT

TTCCAGTTCAGTGCATATTTATAGAAGGTAAACCTGCATACAATACGGTTAAAACAAT

AGGAACGAAAAGAAAGCTAGACGGGAAAGCAGTTACTAAAGGCAGGGTTGACGGG

ACGTTTAAAGAGAGAAGTCTGGTTTATAAAACCTTTTAGTAGTAAAAAAGGAAAAGA

AACAAGGAAGGTTGGCATTCTGTTTGATTGAGGAGAAAGGAACCACATTGGACTTTT

TTTTTTCTTTCTGTAAGGTATAGTTTTTAGTAGGCTGAACATCAAAAAGATCTCCGTT

GTACTCAGAAACAAGTTTAATAGGAACGGGTACAGATATCTTGTCAAAATTTTATTCT

TACAGCCCAAGTTTATTAGGATTTCATCAACGCAACACAGCTGGATC-3’ 

GIP2 PROMOTER SEQUENCE 

5’-

GATCGCATGCACTATGTACATACACACGCACCATTATCTCTCGTTTTACATAAGTAAA

TACAGCAATAATAATACCTGTAAATATCTCAACATACTCAATCAAATGAGCTGATAAG

CATATTCAATTTTTCTTCATAGCAATATTTTTTTCTGTCCAAGTTTTATTTTTTTTCCAT

AATTTCTGATTTACTACCATTGAAAATTATAAAAGGAAAAATATTACGCGCTACCATT

TAATAAGTAGAAACAACTAAGTTCTCGAATGAGATGTTTGCACTGATACAGCGAGCC

AAAAAATAACCAACAGCTGGATC-3’ 
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VERIFICATION OF SINGLE GENE AMPLIFACATION PRODUCT (RT-PCR PRIMERS 

–ACT1) FROM cDNA 

 

 

 

 

Fig 1 Single PCR product using ACT 1 housekeeping gene. lane 1 100bp ladder; 

lane 2: positive control; lane3:negative control;lane 4: 5x cDNA dilution T2; lane 5: 

10x cDNA dilution T2; lane 6: 5x cDNA dilution T5; lane  7: 10x cDNA dilution T5; 

lane 8: 5x cDNA dilution T11; lane 9: 10x cDNA dilition T11; lane 10: 5x cDNA 

dilution; lane 11: 10x cDNA dilution. 

REALTIME PCR SPECTRAL DATA SETS 

Fig 2 Amplification plots for RT-PCR Data. Graphical representation of real-time PCR 
data. A: Time point T2; B: Time point T5; C: Time point T11; D: Time point T14. Rn is 
the fluorescence of the reporter dye divided by the fluorescence of a passive 
reference dye. Rn is plotted against PCR cycle number. ∆Rn is Rn minus the baseline; 
∆Rn is plotted against PCR cycle number. The amplification plot shows the variation 
of log (∆Rn) with PCR cycle number. 
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