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ABSTRACT 

INTRODUCTION: Altered immune mechanisms play a critical role in the 

pathogenesis of Non-Hodgkin lymphoma (NHL), as evidenced by increased rates of 

NHL among HIV+ patients [De Roos et al., 2012; Mellgren et al., 2012]. 

AIMS: To determine whether biomarkers of B-, T-cell activation, and inflammation 

are elevated in HIV+NHL patients; and whether cART influences their expression. 

METHODS: The expression of CD8+CD38 and FoxP3 were determined by flow 

cytometry; the serum concentrations of circulating sCD20, sCD23, sCD27, sCD30 

and sCD44 were determined by enzyme linked immunosorbent assay (ELISA); and 

the serum concentrations of circulating IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-

12p70, IL-13, and TNF-α were determined by meso-scale discovery (MSD) assay in 

141 participants consisting of HIV positive NHL (HIV+NHL), HIV negative NHL 

(NHL); combination antiretroviral treated HIV+ (HIV+ cART), treatment naive HIV+ 

(cART-naïve HIV+) patients; and healthy controls. 

RESULTS: HIV+NHL patients had higher serum concentrations of sCD20 (p<0.0001 

and p=0.0359), sCD23 (p=0.0192 and p<0.0001), sCD30 (p=0.0052 and p<0.0001), 

sCD44 (p=0.0014 and p<0.0001), and IL-4 (p=0.0234 and p=0.03360); and lower 

expression of FoxP3 (p<0.0001 and p=0.0171) as compared to NHL and HIV+ cART 

patients. As compared to NHL patients, the serum concentrations of IL-2 (p=0.0115), 

and TNF-α (p=0.0258) were higher in HIV+NHL patients, while those of IL-1β 

(p=0.0039) were significantly lower. HIV+NHL patients had higher expression of 

CD8+CD38 (p=0.0104), serum concentrations of IFN-γ (p=0.0085), and IL-6 

(p=0.0265); and lower serum concentrations of IL-12p70 (p=0.0012) than HIV+ cART 
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patients. As compared to controls, NHL had higher concentrationsof all biomarkers 

investigated except FoxP3 expression. As compared to HIV+ cART and controls, 

cART-naïve HIV+ patients had higher concentrations of all biomarkers investigated 

except sCD23 and FoxP3 expression.  

CONCLUSION: Biomarkers of chronic B- and T-cell activation and inflammation are 

up-regulated in HIV+NHL and the untreated HIV+ state. cART decreases immune 

activation and inflammation.  
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OPSOMMING 

 

INLEIDING: Versteurde immuun meganisme speel ‘n kritiese rol in die patogenese 

van Non-Hodgkin limfoom (NHL), soos aangedui deur verhoogde tempo van NHL 

onder MIV+ pasiënte [De Roos et al., 2012; Mellgren et al., 2012].  

DOELWITTE: Om te bepaal indien biomerkers van B-, T-sel aktivering en 

inflammasie verhoog is in MIV+NHL pasiënte; en indien kART hul uitdrukking 

beinvloed.  

METODE: Die uitdrukking van CD8+CD38 en FoxP3 was bepaal deur vloei 

sitometrie; die serum konsentrasies van sirkulerende sCD20, sCD27, sCD30 en 

sCD44 was bepaal deur ensiem gekoppelde immuno sorbant toets (ELISA); en die 

serum konsentrasies van sirkulerende IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-

12p70, IL-13 en TNF-α bepaal was deur meso-skaal ondekking (MSD) toets in 141 

deelnemers bestaande uit MIV positiewe NHL (MIV+NHL); MIV negatiewe NHL 

(NHL), kombinasie antiretrovirale behandeling MIV+ (MIV+ kART); onbehandelde 

naïewe MIV+ (kART-naïewe MIV+) pasiente; en gesonde kontroles. 

RESULTATE: MIV+NHL pasiente het hoë serum konsentrasies van sCD20 

(p<0.0001 en p=0.0359), sCD23 (p=0.0192 en p<0.0001), sCD30 (p=0.0052 en 

p<0.0001), sCD44 (p=0.0014 en p<0.0001), en IL-4 (p=0.0234 en p=0.03360); en 

verlaagde uitdrukking van FoxP3 (p<0.0001 en p=0.0171) in vergelyking met NHL en 

MIV+ kART patiente. Vergeleke met NHL pasiente, die serum konsentrasies van IL-2 

(p=0.0115), en TNF-α (p=0.0258) was hoër in MIV+NHL pasiente, terwyl die van IL-

1β (p=0.0039) beduidend laer was. MIV+NHL pasiente het hoër uitdrukking van 

CD8+CD38 (p=0.0104), serum konsentrasies van IFN-γ (p=0.0085), en IL-6 
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(p=0.0265); en laer serum konsentrasies van IL-12p70 (p=0.0012) as MIV+ kART 

pasiente. Vergeleke met die kontroles, NHL het hoër konsentrasies van al die 

biomerkers wat geondersoek was behalwe vir FoxP3 uitdrukking. Vergeleke met 

MIV+ kART en die kontroles, kART-naϊewe MIV+ pasiente het ‘n hoer konsentrasies 

van al die biomerkers wat ondersoek was behalwe sCD23 en FoxP3 die uitdrukking.  

GEVOLGTREKKING: Biomerkers van kroniese B- en T-sel aktivering en 

inflammasie is op-gereguleer in MIV+NHL en die onbehandelde MIV+ toestande. 

kART het immuun aktivering en inflammasie verminder. 
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CHAPTER ONE 

LITERATURE REVIEW 

1.1 Introduction 

Cancer has been linked with human immunodeficiency virus (HIV) disease from the 

earliest reports, with clusters of Kaposi sarcoma (KS) cases in young homosexual 

men [Cottrill et al., 1997]. Since then it has become increasingly recognised that the 

incidence of cancer among HIV positive (HIV+) individuals is elevated by 4-3500 fold 

as compared with the general population [Casper 2011]. Cancer is a significant 

cause of morbidity and mortality in HIV-1 infected patients [Barbaro and Barbarini 

2007; Yanik et al., 2013]. HIV disease progressively reduces the effectiveness of the 

immune system, thus leaving individuals susceptible to opportunistic infections and 

tumours [Weiss 1993; Sepkowitz 2001]. The increased cancer risk in HIV-1 infected 

individuals has been associated with a decline in immune function [Biggar et al., 

2007]. The mechanism through which lowered immunity increases the risk for cancer 

is unclear [Mbulaiteye et al., 2003].  

However, the proposed mechanisms for the development of cancer in HIV-1 infected 

patients include impaired immune surveillance resulting in impaired ability to control 

infections associated with cancer; poor function of the immune cells that normally 

play a role in destroying cancerous cells; chronic B-cell stimulation, genomic 

instability, role of oncogenic viruses and dysregulation of cytokine and growth factor 

production [Taiwo et al., 2010]. Kaposi's sarcoma (KS), non-Hodgkin lymphoma 

(NHL), and invasive cervical cancer (ICC) occur in excess among HIV+ individuals 

and are characterized as acquired immunodeficiency syndrome (AIDS) defining 

cancers (ADCs) [Tirelli et al., 2002; Riedel et al., 2013]. The three ADCs are known 
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to be associated with viral infections i.e. human herpesvirus 8 (HHV8) for KS, 

Epstein Barr virus (EBV) for most NHL cases in HIV infected patients, and human 

papillomavirus (HPV) for ICC [Schulz 2009; Hleyhel et al., 2013; Costagliola 2013]. 

In the pre-combination antiretroviral therapy (cART) era, the risk for KS development 

was 3640 fold higher in HIV-1 infected patients, 77 fold higher for NHL development, 

and 6 fold higher for ICC development as compared to the non-HIV infected 

population [Grulich et al., 2007]. With the advent of effective cART, the incidence of 

ADCs has declined [Long et al., 2008; Shiels et al., 2011a], however, the incidence 

rates remain many times higher in HIV-1 infected patients than those in the HIV 

negative population [Shiels et al., 2011b; Hleyhel et al., 2013].  

In a cohort study of 11 485 HIV-1 infected patients, Yanik and colleagues [2013], 

reported that the incidence rates for KS and NHL were highest in the first 6 months 

after cART initiation and plateaued thereafter [Yanik et al., 2013]. Hleyhel and 

colleagues [2013], in a study of 99 309 HIV-1 infected patients, reported that the 

incidence of ADCs fell significantly across the calendar period of 2005-2009, but the 

risk remained constantly higher in HIV-1 infected patients than in the general 

population. Most epidemiologic studies focused more on KS which is the most 

common malignancy in HIV setting followed by NHL. Thus the current study will 

specifically focus on biomarkers associated with the development of HIV associated 

NHL (HIV+NHL). The prevalence of HIV+NHL increases steadily and the 

mechanisms leading to its development in HIV-1 infected individuals is poorly 

understood.  
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HIV+NHL is a very complex and complicated disease associated with many 

challenges including drug-drug interactions, thus biomarkers are required to optimize 

the therapeutic strategies [Kondo 2012]. Biomarkers can offer a great potential for 

improving management of HIV+NHL by providing its molecular definition, providing 

information about the course of the disease and predicting response to therapies 

[Bhatt et al., 2008; Mishra and Verma 2010]. Biomarker studies need to be 

performed in the target population, e.g. sub-Saharan Africa for HIV+NHL because of 

the prevalence of HIV in this region. This information is also important in 

personalizing the treatment care, as different patients may respond differently to the 

same treatment and in selecting the right drug for the right patient [Vogenberg et al., 

2010; de Lecea and Rossbach 2012].  

Cancer is a very heterogeneous group of diseases whose pathogenesis, 

aggressiveness, metastatic potential, and response to treatment can be different 

among individual patients, making personalised medicine the best solution 

[Diamandis et al., 2010; Schilsky 2010; Nakagawa 2012]. Immune biomarkers and 

assays among other functions, also play a vital role in the development of cancer 

immunotherapy to select the patients expected to respond to immunotherapy before 

or early after immunotherapy to monitor immune induction following immunotherapy 

and to evaluate anti-tumor effects early after immunotherapy [Hoos et al., 2010; van 

der Burg 2011; Kawakami et al., 2012]. Immune biomarkers could also be useful in 

monitoring other types of NHL therapies.  
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1.2 HIV associated Non-Hodgkin Lymphoma (HIV+NHL) 

Non-Hodgkin Lymphoma (NHL) refers to a heterogeneous group of malignancies of 

lymphoid origin arising from B lymphocytes (85-90%), and T lymphocytes or natural 

killer (NK) lymphocytes (10%) [Hiddemann 1995; Hauke and Armitage 2000; 

Rummel 2010; Shankland et al., 2012]. The exact cause of NHL is not yet known, 

but it has been previously associated with the presence of EBV [Ometto et al., 1997; 

Tulpule and Levine 1999; Carbone 2003]. NHL develops from the lymph nodes, but 

can occur in almost any tissue. It comprises many types, each with distinct 

epidemiology, aetiology and features (i.e. morphology, immunophenotype and 

clinical) [Bio Oncology 2012]. These include systemic NHL, primary central nervous 

system lymphoma (PCNSL) and primary effusion lymphoma (PEL) [Franceschi et al., 

1999; Mbulaiteye et al., 2002]. Although all three develop from the lymphocytes, they 

differ in their presumed origin, mechanisms, pathogenesis, clinical presentation and 

treatment [Kaplan 1998].  

NHL is further classified into low, intermediate, and high grade lymphoma which are 

based on the treated natural history and survival patterns [Chan 2001]. NHL also 

develops in immunodeficiency states such as congenital immunodeficiency disorder 

(i.e. ataxia telangiestasia or Wiskott-Aldrich syndrome), state of pharmacologic 

immunosuppression (i.e. long term immunosuppressive therapy to prevent transplant 

rejection or for the management of autoimmune diseases), and the immunodeficient 

state associated with HIV disease [Hoppe 1987]. NHL has been associated with HIV-

1 infections since the beginning of the HIV epidemic [Vishnu and Aboulafia 2012]. 

This association was first suggested in 1982 after four young men with severe 
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immunodeficiency were diagnosed with a Burkitt like lymphoma in San Francisco 

[Ziegler et al., 1982; Ulrickson et al., 2012]. Since then, NHL has been designated as 

an AIDS defining malignancy. The development of HIV+NHL has been shown to be 

related to the more advanced age of the patient, low CD4 cell counts and no prior 

treatment with cART [Matthews et al., 2000]. It is also thought that immune 

stimulation by the HIV-1 virus and reactivation of previous EBV infection due to 

defective T-cell surveillance, leads to long term stimulation and proliferation of B 

lymphocytes resulting in the development of HIV+NHL [Powles et al., 2000].  

Furthermore, even in the absence of EBV infection, HIV induces the production of 

inflammatory cytokines such as interleukin (IL)-6 and IL-10 that are associated with 

B-cell hyper-stimulation, proliferation, and activation [Masood et al., 1995; Wool 

1998]. Systemic NHL is the most common variety of HIV+NHL and it occurs across a 

broad range of levels of immune function, with a median CD4 T-cell count of 

approximately 100/mm3 [Kaplan 1998; Kaplan 1997; Levine et al., 1991]. Systemic 

NHLs constitute about 80% of all HIV associated lymphomas [Goedert et al., 1998], 

and are generally aggressive and fast growing tumors in HIV-1 infected people 

[Kalter et al., 1985; Myskowski et al., 1990]. 
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Clinical presentation depends on the site of involvement, natural history of the 

lymphoma subtype, and presence or absence of B symptoms (weight loss>10% of 

body weight over 6 months, night sweats, and body temperature >38oC) [Shankland 

et al., 2012]. Aggressive lymphomas commonly present acutely or sub-acutely with a 

rapidly growing mass, systemic B symptoms, elevated levels of serum lactate 

dehydrogenase (LDH) and uric acid [Freedman et al., 2013a]. Indolent lymphomas 

are often insidious, presenting only with slow growing lymphadenopathy, 

hepatomegaly, splenomegaly, or cytopenia [Freedman et al., 2013a]. High grade B-

cell NHL is the second most common malignancy affecting HIV-1 infected individuals 

and although studies show a decline in incidence since the introduction of cART, HIV 

associated lymphomas have increased as a percentage of first AIDS defining 

illnesses [Lee et al., 2010; Bower et al., 2013].  

The most common NHL subtypes arising in HIV associated immunosuppression are 

diffuse large B-cell lymphoma (DLBCL) and Burkitt’s lymphoma (BL) [Gloghini et al., 

2013]. DLBCL is the most frequent histological subtype occurring in the HIV-1 

infected population and accounts for 80% of cases [Lim et al., 2005]. The remaining 

20% of HIV+NHL comprise of small non-cleaved cell lymphomas such as BL [Lee et 

al., 2010]. However, other entities such as plasmablastic lymphoma and B-cell 

lymphoma, unclassifiable with features intermediate between DLBCL and BL have 

also been reported in the setting of HIV+NHL [Cesarman 2013].  
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1.2.1 Diffuse large B-cell lymphoma (DLBCL) 

Diffuse large B-cell lymphoma (DLBCL) is defined as a neoplasm of large 

transformed B-cells (with nuclear diameter more than twice that of a normal 

lymphocyte) growing in a diffuse or non-follicular pattern [Lowry and Linch 2008], 

accounting for 30-40% of all adult NHL [de Leval and Hasserjian 2009]. DLBCL is 

characterized by diffuse nodal architectural effacement or extranodal infiltration by 

sheets of large cells of B-cell phenotype [Said 2013]. Immunophenotypically, 

DLBCLs express CD45, and pan-B-cell antigens, such as CD19, CD20, CD45RA, 

CD79a, and the nuclear transcription factor PAX5 [de Leval and Hasserjian 2009]. 

The tumour cells usually express a monotypic surface immunoglobulin (Ig), with or 

without cytoplasmic Ig, usually IgM [de Leval and Hasserjian 2009]. A distinct 

subtype of DLBCL more commonly seen in HIV-1 infected individuals is 

plasmablastic lymphoma [Cesarman 2013; Bibas and Castillo 2014; Castillo et al., 

2015]. Plasmablastic lymphoma is characterized by a diffuse proliferation of large 

neoplastic cells, most of which resemble B-cell immunoblasts [Bibas and Castillo 

2014].  
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1.2.2 Burkitt’s lymphoma (BL) 

Burkitt lymphoma (BL) is an aggressive form of NHL derived from germinal center B-

cells [Schmitz et al., 2012]. The tumour consists of high grade, diffuse, small non-

cleaved B-cell lymphocytes [Shapira and Peylan-Ramu 1998], and are 

CD19+/CD20+. BL is one of the most rapidly growing malignancies affecting children 

and young adults [Levine 2002]. BL is classified into 3 clinical variants i.e. endemic, 

sporadic, and immunodeficiency associated [Whitten et al., 2012; Said 2013]. 

Endemic BL occurs in children mostly as extranodal jaw or orbital masses in 

equatorial Africa and Papua New Guinea [Lowry and Linch 2008; Guech-Ongey et 

al., 2010]. Sporadic BL is mostly seen in immunocompetent patients, and accounts 

for high proportion of childhood lymphoma [Lowry and Linch 2008; Said 2013].  

Immunodeficiency associated BL is diagnosed in HIV+ individuals, among whom it is 

the first indication of AIDS onset. HIV associated BL occurs in patients with CD4 T-

cell counts >50cells/µl and usually presents with nodal disease and bone marrow 

involvement is commonly seen [Lowry and Linch 2008; Linch 2012; Said 2013]. The 

classic immunophenotypic profile is that of expression of monotypic IgM (with rare 

cases of IgG or IgA), CD19, CD20, CD22, CD10, BCL6, CD79a and near 100% 

expression of Ki-67 [Whitten et al., 2012]. 
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1.2.3 B-cell lymphoma, unclassifiable, with features intermediate between 

DLBCL and BL 

B-cell lymphoma, unclassifiable, with features intermediate between DLBCL and BL 

is a heterogenous category that is not considered a distinct entity by the World 

Health Organization (WHO), but is used as a working classification for cases that 

may have morphological and genetic features of both DLBCL and BL, but do not fulfil 

diagnostic criteria for either entity [Aukema et al., 2011; Said 2013; Cesarman 2013; 

Perry et al., 2013]. This is a temporary category for high grade B-cell lymphomas 

with a poor clinical outcome [Ota et al., 2014]. It is necessary until better 

discriminating criteria and more distinct categories of lymphomas are available 

[Aukema et al., 2011]. 

 

1.3 Prevalence of HIV associated Non-Hodgkin Lymphoma (HIV+NHL) 

1.3.1 Word-wide prevalence of HIV+NHL 

An estimated total of 558 340 individuals in the United State (US) population are 

living with or in remission from NHL [Leukemia and Lymphoma Society 2013]. In 

2008, an estimated 355 900 new NHL cases and 191 400 deaths from NHL have 

occurred [Jemal et al., 2011]. It is expected that approximately 70 800 new cases of 

NHL will be diagnosed in 2014 and an estimated 18 990 deaths from NHL will occur 

in US population [American Cancer Society 2014]. The incidence of NHL rises 

steadily with age, particularly after the age of 30 [Smith 1996]. The median age of 

patients at diagnosis is 55 years [Hoppe 1987]. However, it may occur even in young 

children, especially the small non-cleaved cell (Burkitts) and lymphoblastic 
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lymphomas [Silverberg and Lubera 1987]. From age 20 to 24 years the rate of NHL 

is about 2.5 cases per 100 000 population; from age 60 to 64 years the rate 

increases more than 17 times to 44.6 cases per 100 000 population; and from age 

80 to 84 years the rate increases more than 47 times to 119.7 cases per 100 000 

population [Leukemia and Lymphoma Society 2013]. The age adjusted incidence of 

NHL rose by 89.5 percent from 1975 to 2010, an average annual percentage 

increase of 2.6 percent. At ages 20-24 years old, the age specific incidence rates are 

3.1 per 100 000 males and 1.9 per 100 000 females; while in ages 60-64 years, the 

incidence rates are 52.1 per 100 000 males and 37.6 per 100 000 females 

[Leukemia and Lymphoma Society 2013]. Furthermore, the usual age of patients 

with HIV+NHL varies in a bimodal distribution pattern i.e. it peaks in adolescence 

(10-19 years of age) and peaks again at middle age (50-59) [Beral et al., 1991; 

Levine 2006]. Hingorjo and Syed in [2008], showed a bimodal distribution of NHL 

with the first peak occurring at 12-13 years and second peak between 52-62 years.  

HIV-1 infected individuals have a high risk of developing NHL [Dal Maso and 

Franceschi 2003]. The cancer data recorded from 11 regions of the United States of 

America in the Surveillance Epidemiology and End Results (SEER) program, 

showed that the incidence of NHL (per 100 000) increased gradually from 10.4 in 

1973 to 14.5 in 1983 before the onset of HIV epidemic, then more rapidly to peak at 

21.1 in 1995 [Eltom et al. 2002; Mbulaiteye et al. 2003]. NHL is regarded as the 

second most common malignancy associated with HIV-1 infection, with 3-5% of 

patients presenting with NHL as their first manifestation of AIDS [Wool 1998; 

Mbulaiteye et al. 2003]. HIV seropositivity increases the risk of developing NHL by 
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60-165 fold [Bohlius et al. 2009; Vishnu and Aboulafia 2012]. The incidence for high 

grade NHL is increased by nearly 100 fold in HIV-1 infected individuals [Lyter et al., 

1995; Sparano 2001]. It has been reported that NHL is 200-600 times more common 

in HIV-1 infected individuals as compared with the general population [Aid for AIDS 

2010]. Since the beginning of the HIV pandemic, over 25 000 Americans with HIV 

have been diagnosed with NHL [Ulrickson et al. 2012]. The incidence of NHL 

increased in most developed countries during the 1990s and has now levelled off or 

declined in recent years due to the success of cART [Jemal et al. 2011]. The 

spectrum of malignancies in HIV-1 infected patients has changed in areas where the 

use of cART is widespread [Deeken et al., 2014].  

In a large population of HIV-1 infected patients in the French Hospital Data base on 

HIV (FHDH), Besson and colleagues [2001], showed that the incidence of systemic 

NHL has decreased between 1993-1994 and 1997-1998 from 86.0 to 42.9 per 10 

000 person years. The incidence in the same cohort was 2.8/1000 person years in 

2006 [Bibas and Antinori 2009]. During the calendar period of 2005-2009, the 

incidence of HIV+NHL fell significantly from 15.4 to 9.1 per 100 000 person years, 

but the risk remained higher in HIV-1 infected patients than in the general population 

[Hleyhel et al., 2013]. Furthermore, despite the use of cART, the incidence of NHL 

still remains relatively high in HIV-1 infected patients and it encompasses a wide 

variety of disease subtypes for which incidence patterns vary [Engels et al. 2006; 

Bibas and Antinori 2009; Jemal et al. 2011].  
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Systemic NHL accounts for the great majority of HIV associated lymphomas and the 

most common subtypes in HIV+ individuals are DLBCL (approximately 75%) and BL 

(approximately 25%) [Kaplan et al., 2014]. Approximately 70-90 percent of HIV 

associated lymphomas are highly aggressive and are almost exclusively the 

immunoblastic variants of DLBCL and BL [Kaplan et al., 2014]. The relative risk for 

highly aggressive lymphomas is increased by more than 650 fold for DLBCL and 260 

fold for BL as compared with the general population.  

In a study by Achenbach and colleagues [2014], it was demonstrated that the 

incidence of NHL among HIV-1 infected patients receiving cART is higher (171 per 

100 000 person years) than that reported in HIV negative individuals (10-20 per 100 

00 person years). The availability of cART has enhanced the survival rate of HIV-1 

infected individuals; however, the risk of developing lymphoma steadily increases 

with the duration of HIV-1 infection and advancing immunosuppression [Otieno et al. 

2002]. In a study conducted by Mounier and colleagues [2006], it was shown that the 

overall survival of HIV+NHL patients was significantly higher in the post cART era as 

compared to the pre cART era (21% versus 37% at 3 years). 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



13 

 

 

1.3.2 Prevalence of HIV+NHL in Sub-Saharan Africa 

In most African populations, NHL is rare with the incidence rates well below those 

seen in Europe and North America although it is often perceived as a common 

cancer in Africa because it ranks fifth in relative frequency [Sitas et al., 2006; Parkin 

et al., 2008]. However, there are differences in the incidence of specific subtypes of 

NHL and their distribution differs by different geographical areas [Anderson et al., 

1998]. In addition, there are differences in the racial distribution, e.g. BL is most 

common in Africa and has seasonal variations [Parkin et al., 2008]. Most NHLs in 

Africa are of the B-cell type, and clinical series show an excess of high grade 

lymphomas and a deficit of nodular lymphomas [Sitas et al., 2006; Parkin et al., 

2008].  

Previous studies have shown that the incidence of NHL in Sub-Saharan Africa did 

not increase as markedly early in the HIV epidemic when compared to the increase 

seen in the US HIV+ population [Ulrickson et al., 2012]. However, it has been 

reported that HIV associated lymphomas are increasing in numerous places in Africa 

and that the patients are usually diagnosed with late stage disease [Brower 2011]. It 

has been estimated that approximately 30 000 NHL cases occur in the equatorial 

belt of Africa each year [De Falco et al., 2013]. Since the beginning of the HIV 

epidemic, the incidence of NHL has increased by 2-3 fold in some countries, and as 

much as 13 fold in others [De Falco et al., 2013]. The majority of people (~68%) with 

HIV live in sub-Saharan Africa, with South Africa having the highest number of cases 

recorded world-wide [Wiggill et al., 2013; Gopal et al., 2014]. It is estimated that the 

prevalence of HIV-1 infection in South African adults aged 15-49 is 18-20% and 
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approximately 170 000-220 000 deaths occurred due to HIV disease [UNAIDS 

2014]. Haematological manifestations of HIV including NHL are common and 

diverse, and can occur at all stages of infection [Opie 2012]. However, accurate 

epidemiologic, aetiologic and clinical data of HIV+NHL is limited in Sub-Saharan 

Africa [Wiggill et al., 2013]. Preliminary studies conducted in South Africa suggest 

that HIV associated lymphomas are increasing in number with increasing HIV 

prevalence [Wiggill et al., 2013]. Wiggill and colleagues [2011], in a study conducted 

in Gauteng province, reported that there were 2225 new diagnoses of 

lymphoproliferative disorders made during 2007-2009 as compared to 1897 cases 

diagnosed during 200-2006 and more than 90% of all patients diagnosed with high 

grade B-cell lymphoma were HIV+.  

In South African setting, DLBCL and BL represent the most common HIV+NHL 

[Pather et al., 2013]. In a single institute study conducted in Tygerberg Academic 

Hospital, Cape Town (Western Cape), over a period of 8 years, Abayomi and 

colleagues [2011], reported that lymphoma cases increased each year from 2002 to 

2005 and remained elevated in both HIV negative and positive patients through to 

2009. It was reported that HIV associated lymphomas increased from 5% in 2002 to 

37% in 2009 [Abayomi et al., 2011]. 
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1.4 Staging and Treatment of HIV associated NHL (HIV+NHL)  

1.4.1 Staging of HIV associated NHL (HIV+NHL) 

The Ann Arbor staging system is widely used for the staging of NHL [Hoppe 1987]. 

Knowledge of the Ann Arbor stage is helpful in determining the appropriate treatment 

program for patients [Hoppe 1987]. This system divides patients into four stages 

based on localized disease, multiple sites of disease on one or the other side of the 

diaphragm, lymphatic disease on both sides of the diaphragm and disseminated 

extranodal disease [Armitage 1993]. The purpose of a staging system for NHL, for 

which moderately effective treatments are available, is to identify patients who are 

more or less likely to respond to treatment [Armitage 1993].  

Stage I: refers to involvement of a single lymph node region (I) or of a single extra-

lymphatic organ or site (IE); Stage II: refers to the involvement of two or more lymph 

node regions on the same side of the diaphragm (II) or localized involvement of an 

extra-lymphatic organ or site and of one or more lymph node regions on the same 

side of the diaphragm (IIE); Stage III: refers to involvement of lymph node regions on 

both sides of the diaphragm (III), which may also be accompanied by involvement of 

the spleen (IIIS) or by localized involvement of an extra-lymphatic organ or site (IIIE) 

or both (IIISE); Stage IV: refers to diffuse or disseminated involvement of one or 

more extra-lymphatic organs or tissues, with or without associated lymph node 

involvement (Table 1.1) [Carbone et al., 1971; Hoppe 1987; Crowther and Lister 

1990].  
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The staging procedure for NHL requires a thorough review of the patient’s medical 

history and a physical assessment including blood work, biopsies, radiologic test, 

immunophenotyping, and occasionally chromosome testing [O’Brien 2002]. Two 

imaging modalities have been used in the staging of lymphoma patients i.e. 

computer tomography and positron emission tomography. Computer tomography 

(CT) is the principal imaging modality used for patients with lymphoma [Kwee et al., 

2008; Delbeke et al., 2009; Wu and Kellokumpu-Lehtinen 2012]. However, CT has 

several limitations since interpretation of nodal involvement is based only on 

anatomic criteria of size and shape [Friedberg and Chengazi 2003; Raanani et al., 

2006; Delbeke et al., 2009].  

2-[Fluorine-18] flouro-2-deoxy-D-glucose positron emission tomography (FDG-PET) 

which is based on the glycolysis of cancer cells [Delbeke et al., 2009], is a functional 

imaging modality used for staging and monitoring response to treatment of malignant 

diseases including lymphpma [Burton et al., 2004; Raanani et al., 2006; Wu and 

Kellokumpu-Lehtinen 2012]. FDG-PET has higher sensitivity and specificity than CT, 

however, it requires correlation with anatomical imaging modalities to localize the 

detected lesion more accurately [Friedberg and Chengazi 2003; Raanani et al., 

2006]. Recently, PET/CT systems which enable acquisition of both FDG-PET and 

CT data at the same setting have been introduced in clinical practice [Raanani et al., 

2006; Barrington et al., 2014]. PET/CT systems offer several advantages including 

shorter image acquisition time, improved lesion localisation and identification and 

more accurate tumor staging [Raanani et al., 2006]. Currently, the PET/CT system is 

the standard of care for staging and response assessment in lymphoma patients 
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[Delbeke et al., 2009; Barrington et al., 2014]. In addition to the staging of NHL, other 

characteristics such as age, performance status, serum LDH levels, and extra-nodal 

involvement that have prognostic and therapeutic implications are considered in the 

treatment and management of NHL [Hauke and Armitage 2000]. The patient’s 

performance score is of importance since a low performance score is associated 

with decreased tolerance to aggressive treatment and worse outcome [Hauke and 

Armitage 2000].  

Furthermore, pre-treatment evaluation includes CD4 T-cell counts, HIV viral load, 

hepatitis B and C testing, echocardiogram, creatinine, electrolytes, calcium, 

phosphate, uric acid, liver function testing and pregnancy test in women [Kaplan 

2012]. The absence of generalised symptoms such as fever over 38oC, night sweats, 

and weight loss of over 10% of body weight in the 6 months preceding diagnosis are 

denoted by the suffix A, presence of these symptoms is denoted by the suffix B 

(Table 1.1).  
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Table 1.1: Ann Arbor staging [Carbone et al., 1971], and Cotswold modification 

[Crowther and Lister 1990]. 
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1.4.2 Treatment of HIV associated NHL (HIV+NHL) 

1.4.2.1 Treatment background 

Since the beginning of the HIV epidemic, the treatment of HIV+NHL has been a 

challenge [Spina and Tirelli 2004]. Earlier in the HIV epidemic, the clinical course of 

HIV associated lymphoma was dominated by advanced stage disease, concomitant 

and life threatening opportunistic infections and poor response to treatment [Vishnu 

and Aboulafia 2012]. In addition, in the management of patients with HIV+NHL, the 

prognosis was very poor, there was increased haematological toxicity of treatment 

regimens and a high rate of opportunistic infections [Spina and Tirelli 2004]. As 

mentioned previously, the clinical course of NHL is much more aggressive in HIV-1 

infected patients than in those that are HIV negative [Otieno et al. 2002]. This led to 

the evaluation of more aggressive and dose dense combination chemotherapy 

regimens [Otieno et al. 2002].  

Efforts to treat patients with HIV associated lymphoma using aggressive and 

complex chemotherapy regimens led to unacceptable toxicity and early death while 

low dose chemotherapy regimens yielded modest benefit [Vishnu and Aboulafia 

2012]. In the United States, the treatment of HIV associated lymphoma using the 

CHOP (cyclophosphamide, hydroxydaunomycin (doxorubicin), vincristine (oncovin), 

and prednisone) regimen achieved complete response rates of 53%, however, these 

responses were tempered by a rate of relapse of 54% and infectious complications 

in 42% of the cohort [Ulrickson et al. 2012]. The introduction of cART in the late 

nineties resulted in great improvement of clinical outcomes and life expectancy for 

people living with HIV disease [Barbaro and Barbarini 2007; Taiwo et al., 2010]. The 
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control of HIV viral replication through cART has been accompanied by a reduction 

in the incidence and progression of HIV associated malignancies, especially KS and 

NHL [Taiwo et al., 2010]. The concomitant use of cART by patients with HIV 

associated lymphomas leads to improvement of overall performance status, better 

response to chemotherapy and survival as compared to the ones not concomitantly 

using cART [Evison et al., 1999; Besson et al., 2001]. In addition, by combining 

chemotherapy with cART, the immune function is better maintained in HIV+NHL 

patients [Powles et al. 2002]. Thus, the benefits of cART include decreased 

development of HIV associated malignancies, higher CD4 T-cell counts, improved 

tolerance of full dose of chemotherapy, improved response rates as well as an 

improved duration of response and survival during treatment of malignancy [Ntekim 

and Folasire 2010]. This led to the recommendation in the 2005 British HIV 

guidelines to concomitantly use cART in HIV associated lymphomas [Gazzard 2005].  

In addition, the South African HIV guidelines state that all HIV+NHL patients should 

have concomitant cART, irrespective of their CD4 T-cell counts [Meintjies et al., 

2012]. However, there might be more toxicity with the concomitant use of cART, 

especially in patients with very low CD4 T-cell counts (<100 cells/mm3). In addition, 

patients with low CD4 T-cell counts often receive antibiotic and antimicrobial 

prophylaxis to prevent opportunistic infections. The increased incidence and severity 

of infections in patients with haematological malignancies has led to the 

development of preventive strategies including prophylaxis with antifungal agents 

[O'Brien et al., 2003]. Prophylaxis has been associated with the development of 

adverse reactions and toxicity [Kovacs et al., 2000; O'Brien et al., 2003].  
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In a study by Little and colleagues [2003], it was shown that patients with CD4 T-cell 

counts lower than 100 cell/mm3 that were concomitantly administered DA-EPOCH 

(dose adjusted-etoposide, prednisone, vincristine, cyclophosphamide and 

doxorubicin) and cART had increased toxicity and decreased survival rate [Little et 

al., 2003]. However, dose adjustment with suspension of antiretroviral therapy 

allowed full delivery of the infused agents, while minimizing clinical and immune 

toxicity and the treatment was well tolerated [Little et al., 2003]. Treating cancer in 

HIV-1 infected patients remains a challenge because of drug interactions, 

compounded side effects, and the potential effect of chemotherapy on CD4 T-cell 

counts and HIV-1 viral load [Petrella et al., 2004].  

Chemotherapy is detrimental to the immune system (especially in the first few 

months), resulting in accelerated progression of the HIV disease, decline in CD4 T-

cell counts and a two-fold increase in opportunistic infections in HIV-1 infected 

patients diagnosed with cancer [Mackall et al., 1994; Zanussi et al., 1996]. Powles 

and colleagues [2002], showed a significant decline in CD4 T-cell counts, natural 

killer cells (CD16/CD56) and B lymphocyte count (CD19 cells) during the first three 

months of chemotherapy. The CD4 T-cell and natural killer cell counts recovered to 

pre-treatment levels within one month of finishing chemotherapy [Powles et al. 

2002]. It has been reported that many chemotherapeutic agents are cytochrome 3A4 

(CYP3A4) substrates, thus there is an increased potential for drug-drug interactions 

with HIV protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors 

(NNRTIs) [Pham and Flexner 2011]. As a result, clinicians are frequently faced with 

a clinical dilemma of switching to an alternative cART regimen or stopping cART 
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during chemotherapy [Pham and Flexner 2011]. Furthermore, cancer patients 

receive a considerable number of drugs during their treatment, including among 

others, several different cytotoxic agents in multi-drug chemotherapy regimens, 

hormonal agents, supportive care with anti-emetics, analgesics and anti-infective 

agents leading to potential drug-drug interactions [Blower et al., 2005]. In addition, in 

Sub-Saharan Africa many patients use traditional medicines, which also have a 

potential for drug-herb interactions [Fasinu et al., 2013] The acquisition of prognostic 

parameters such as biomarkers at initial diagnosis may contribute to implementation 

of risk based stratification of therapy and may facilitate identification of those who 

may benefit from early intensive therapy [Tedeschi et al. 2012]. 

 

1.4.2.2 Current treatment of HIV associated NHL (HIV+NHL) 

NHL responds to most standard of treatments, however, the treatment of HIV+NHL 

is complicated by the patient’s immunocompromised state that also requires specific 

treatment for HIV disease [Ansell and Armitage 2005; Kaplan et al., 2014]. In 

addition, the treatment protocols vary according to the type of NHL, however, 

chemotherapy and radiation therapy are the two principal forms of treatment of NHL 

[Leukemia and Lymphoma Society 2013]. To treat patients with NHL, the initial pre-

treatment evaluation must establish the precise histologic subtype, the extent and 

site of the disease, and performance status of the patient [Leukemia and Lymphoma 

Society 2013]. The preferred initial treatment for HIV associated lymphomas has not 

been defined yet.  
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Treatment in the immune-competent state involves a combination of modalities 

including radiation therapy, single agent or combination chemotherapy, 

immunotherapy, or radioimmuno-conjugate therapy [Leukemia and Lymphoma 

Society 2013]. Newly diagnosed intermediate or aggressive lymphomas are treated 

pharmacologically using multi-drug chemotherapy regimen [Flores 2002]. The 

current first line standard chemotherapy regimen is CHOP [Mehta 2009]. Other 

dose-adjusted variations such as BACOD (bleomycin, adriamycin, 

cyclophosphamide, oncovin, dexamethasone), EPOCH (etoposide, prednisone, 

vincristine, cyclophosphamide and doxorubicin) or some combinations have been 

attempted in small case series, however, the results were poor, with the median 

survival of 6 months [Mounier et al., 2009].  

In HIV+NHL patients, cART is usually started or modified to control the HIV-1 

infection and allow for the administration of chemotherapy and/or radiotherapy 

[Kaplan et al., 2014]. The choice of therapy is principally determined by the subtype 

of HIV+NHL and the stage of disease and modifications are made based upon the 

degree of immunosuppression from HIV disease. The introduction of cART has led 

to better control of HIV-1 viral replication and improved immune function resulting in 

better tolerance of chemotherapy, and the incorporation of haematopoietic growth 

factors such as granulocyte colony-stimulating factor (G-CSF) into treatment 

protocols has allowed for the introduction of increasingly myelotoxic regimens. This 

has allowed conventional chemotherapy regimens used in the HIV negative setting, 

such as CHOP, to be used as first line treatment in HIV+ patients and outcomes are 

now similar for those with and without HIV-1 infection [Navarro et al., 2005; Diamond 
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et al., 2006]. In addition, the concomitant versus sequential administration of cART 

when applying chemotherapy for HIV+NHL is still a matter of debate but appears to 

improve overall survival [Weiss et al., 2006; Mounier et al., 2006]. 

 

1.4.2.2.1 Treatment of Diffuse large B-cell lymphoma (DLBCL) 

Diffuse large B-cell lymphoma (DLBCL) is a very chemosensitive neoplasm and is 

curable [Cabanillas 2010]. The choice for the first line treatment of DLBCL patients 

depends upon the extent of disease and on the individual international prognostic 

index (IPI) score and age [Martelli et al., 2013]. Chemotherapy regimens that have 

been evaluated for the treatment of DLBCL include CHOP, and continuous infusional 

regimens such as 96 hours EPOCH and cyclophosphamide, doxorubicin, and 

etoposide (CDE) [Coiffier 2002]. The CHOP regimen induces complete remission of 

40-55 percent with cure rate of approximately 30-35 percent and a three year event 

free survival rate in DLBCL patients [Fisher et al., 1993; Coiffier 2002].  

In HIV negative patients, the standard of care for DLBCL is intravenous CHOP 

combined with the anti-CD20 monoclonal antibody rituximab (R-CHOP) [Ribera et 

al., 2008; Sparano et al., 2010; de Witt et al., 2013] The R-CHOP regimen confers 

two major benefits i.e. a decrease in the number of patients with disease progression 

during treatment (refractory patients) and a decrease in the number of relapsing 

patients [Coffier et al., 2010]. The addition of rituximab to CHOP regimen increases 

the complete response rate and prolongs event free and overall survival rate in 

DLBCL lymphoma patients [Coiffier 2002; Lowry and Linch 2008]. The rituximab 
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containing CHOP regimens result in an approximately 10-15 percent overall increase 

in survival beginning at one year from initiation of therapy with almost no toxicity 

increase [Sehn et al., 2005; Freedman et al., 2013b]. Furthermore, the study by 

Coiffier and colleagues [2010], showed a 10 year overall survival (OS) of 43.5% for 

patients treated with R-CHOP as compared to 27.6% for those treated with CHOP 

alone [Coiffier et al., 2010]. 

Although the combination of rituximab with CHOP is well established as first line 

treatment in HIV negative DLBCL, there remains equipoise regarding safety of 

rituximab in HIV-1 infected patients with CD4 T-cell counts less than 50 cells per 

microliter [Kaplan et al., 2005]. Furthermore, in a multicentre randomised study 

conducted by Kaplan and colleagues [2005], no statistical significant improvement in 

complete response rate, time to progression, event free, or overall survival in the 

group treated with rituximab (R-CHOP) when compared with the chemotherapy 

alone control group (CHOP) could be found. 

Current recommendations for first line treatment of DLBCL in HIV-1 infected 

individuals includes chemotherapy regimens used in HIV negative patients such as 

CHOP or infusional therapies such as EPOCH, and the gold standard remains to be 

defined [Bower et al., 2013]. Whether chemotherapy regimens should be 

concomitantly or sequentially combined with cART still remains a matter of debate. 

Furthermore, close surveillance may be required for patients with CD4 T-cell count 

less than 50 cells/mm3. 
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1.4.2.2.2 Treatment of Burkitt’s lymphoma (BL) 

Burkitt’s lymphoma (BL) is characterised by rapid progression, early haematogenous 

dissemination and a propensity to spread to the bone marrow and the central 

nervous system (CNS) [Blay et al., 1991; Shapira and Peylan-Ramu 1998]. In HIV 

negative patients, BL is a highly curable malignancy if chemotherapy regimens of 

short duration are combined with CNS penetrating therapy [Bower et al., 2013]. Until 

recently, patients with HIV associated BL have been treated similar to HIV+ DLBCL 

patients. However, patients with BL require intensive, frequent multi-agent therapy 

with adequate CNS prophylaxis [Bishop et al., 2000; Smeland et al., 2004; 

Freedman et al., 2013c]. The introduction of cART has increased treatment options 

and improved outcomes for patients with HIV associated BL [Levine 2002]. 

Approximately 50-80% of patients with BL can be potentially cured with intensive 

chemotherapy regimens [Levine 2002].  

Less intensive regimens such as CHOP used in other NHL subtypes are not 

adequate therapy as they result in frequent relapses. Lim and colleagues [2005], 

showed in a retrospective study of 363 patients that the survival of HIV associated 

BL patients was very poor when treated with CHOP or M-BACOD (methotrexate with 

leucovorin, bleomycin, doxorubicin, cyclophosphamide, vincristine, and 

dexamethasone), despite adjunctive cART. There are 3 main treatment approaches 

that have been used in patients with BL i.e. intensive, short duration combination 

chemotherapy such as CODOX-M/IVAC (cyclophosphamide, vincristine, 

doxorubicin, methotrexate/ifosfamide, etoposide, cytarabine) [Mead et al., 2008]; 

ALL-like therapy with a stepwise induction, consolidation, and maintenance therapy 
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lasting at least 2 years from diagnosis such as CALGB 8811 (Cancer and Leukemia 

Group B study 8811) regimen [Hoelzer et al., 1996; Thomas et al., 1999]; or 

combination chemotherapy followed by high dose therapy and autologous 

hematopoietic cell transplantation [Nademanee et al., 1997; van Imhoff et al., 2005; 

Freedman et al., 2013c]. Alternatively, infusional chemotherapy with dose adjusted 

EPOCH plus rituximab could be considered for HIV associated BL patients [Sparano 

et al., 2010; Petrich et al., 2012]. However, there are limited data evaluating the role 

of rituximab in the treatment of BL. It is now recommended that the first line 

treatment for BL in HIV+ individuals should include regimens such as CODOX-

M/IVAC, DA-EPOCH or similar chemotherapy regimens should be combined with 

cART [Bower et al., 2013].  

Stellenbosch University  https://scholar.sun.ac.za



28 

 

 

1.5 Biomarkers 

1.5.1 Definition 

Biomarkers are cellular indicators of the physiological and pathophysiological states 

[Srinivas et al., 2001]. They are objectively measured and evaluated to indicate 

normal biological processes, pathogenic processes, and pharmacological responses 

to a therapeutic intervention [Biomarkers Definitions Working Group 2001; Lesko and 

Atkinson 2001]. Biomarkers can be active genes that are normally inactive, their 

respective products, and other organic chemicals made by the cell [Srinivas et al., 

2001; Mishra and Verma 2010]. In cancer, biomarkers can be normal endogenous 

products that are produced at a greater rate in cancer cells or the products of newly 

switched on genes that remained inactive in normal cells [Malati 2007]. For example, 

the prostate specific antigen (PSA) is present in lower concentrations in the serum of 

healthy individuals, and is elevated in the presence of prostate cancer [Bhatt et al., 

2010; Kilpeläinen et al., 2014]. 

Biomarkers may include intracellular molecules or proteins that are accessible in 

body matrices such as tissue cells and body fluids i.e. saliva, serum/plasma, whole 

blood and urine [Malati 2007; Füzéry et al., 2013]. For example, beta-2 microglobulin 

(β2M) is used clinically as a first choice prognostic marker for B-cell leukemia, 

lymphomas and multiple myeloma [Malati 2007; Nakajima et al., 2014; Yoo et al., 

2014]. Wu and colleagues [2014], recently showed that NHL patients with elevated 

serum levels of β2M have poor overall survival and higher mortality risk. However, 

the usefulness of a cancer biomarker depends on its ability to provide early 
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indication of cancer or its progression and should be easy to detect, and be 

measurable across populations [Srinivas et al., 2001]. 

 

1.5.2 Cancer Biomarker Classification and Utility 

It has been well established that a variety of biomarkers are used in risk assessment, 

early detection, diagnosis, treatment and management of cancer [Verma and Manne 

2006; Miaskowski and Aouizerat 2012]. They enable the characterization of patient 

populations and quantitation of the extent to which drugs reach intended targets, 

alter proposed pathophysiological mechanisms and achieve clinical outcomes [Frank 

and Hargreaves 2003]. The most valuable biomarkers are highly sensitive, specific, 

reproducible and predictable, and the majority of US Food and Drug Administration 

(FDA) approved cancer biomarkers are serum derived single proteins [Etzioni et al., 

2003, Ludwig and Weinstein 2005]. Molecular analyses at the protein, DNA, RNA, or 

microRNA (miRNA) levels can contribute to the identification of novel tumour 

subclasses, each with a unique prognostic outcome or response to treatment 

[Overdevest et al., 2009].  

Biomarkers can be classified based on different parameters such as characteristics 

and function [Sahu et al., 2011; Heckman-Stoddard 2012]. Biomarkers are classified 

according to their functions i.e. Type 0 biomarkers measure the natural history of a 

disease and they should correlate over time with known clinical indicators; Type I 

biomarkers are associated with the effectiveness of pharmacologic agents; and Type 

II biomarkers also known as surrogate endpoint biomarkers are intended to 

substitute for clinical endpoints [Rastogi et al., 2008; Sahu et al., 2011; Heckman-
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Stoddard 2012]. Current tumour markers may be grouped into a variety of categories 

including proteins, glycoproteins, oncofetal antigens, hormones, receptors, genetic 

markers, and RNA molecules [Füzéry et al., 2013].  

Cancer biomarkers are also classified into prediction, detection, diagnostic, 

prognostic, and pharmacodynamics biomarkers [Madu and Lu 2010; Mishra and 

Verma 2010; Batta et al., 2012]. Prognostic biomarkers are based on the 

distinguishing features between benign and malignant tumours [Mishra and Verma 

2010; Batta et al., 2012]. Predictive biomarkers (also known as response markers) 

are used exclusively in assessing the effect of administering a specific drug, thus, 

allowing clinicians to select a set of chemotherapeutic agents which will work best for 

an individual patient [Mishra and Verma 2010; Batta et al., 2012]. Pharmacodynamic 

biomarkers are cancer markers utilized in selecting doses of chemotherapeutic 

agents in a given set of tumor-patient conditions and to assess the imminent 

treatment effects of a drug [Mishra and Verma 2010; Batta et al., 2012]. Diagnostic 

markers may be present at any stage during cancer development [Mishra and Verma 

2010]. 
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1.5.3 Biomarkers used in clinical diagnosis and prognosis of HIV+NHL 

1.5.3.1 Diagnosis 

An important step in the diagnosis of NHL is to obtain good quality and adequate 

samples of tissue by excisional biopsy of an affected lymph node or other mass 

lesion for assessment of cellular morphology and nodal architecture [Armitage 2007; 

Steinfort et al., 2010; Kaplan 2012]. After the initial tissue biopsy provides a 

diagnosis of NHL, the following laboratory tests are performed: complete blood 

count, white blood cell differential, platelet count, and examination of the peripheral 

smear for the presence of atypical cells, suggesting peripheral blood and bone 

marrow involvement; biochemical tests including blood urea nitrogen (BUN), 

creatinine, alkaline phosphatase, aspartate aminotransferase (AST), alanine 

aminotransferase (ALT), LDH, and albumin; serum calcium, electrolytes, and uric 

acid; serum protein electrophoresis; HIV, hepatitis B and C serology; and beta-2 

microglobulin levels (in patients with indolent lymphomas) [Freedman 2013d]. 

This is followed by pathological evaluations which include flow cytometry or 

immunohistochemical staining for immunophenotype [Armitage 2007]. For 

aggressive lymphomas, this includes evaluation of proliferative fraction using Ki67 or 

MIB-1 staining as a more aggressive regimen may be indicated for high growth 

fraction tumours [Assem et al., 2001; Kim et al., 2007; Rodig et al., 2008; Kaplan 

2012]. Immunophenotypic expression patterns of DLBCL include positivity for 

various pan B-cell markers such CD19, CD20, CD22, CD79a, PAX-5 and 

demonstration of immunoglobulin surface light chain restriction by flow cytometry in 

the majority of cases [Desouki et al., 2010; Sangle et al., 2011]. The presence of 
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positive PAX-5 immunostaining has been strongly associated with B-cell 

differentiation as PAX-5 is a B-cell restricted transcription factor [Desouki et al., 

2010; Sangle et al., 2011]. Staining for CD10, bcl-6 and MUM-1 are usually routinely 

performed in order to distinguish Germinal centre (GC) from non-GC DLBCL [Sangle 

et al., 2011]. In addition, fluorescence in situ hybridization (FISH) analysis for cMYC 

is performed as translocations involving the cMYC occurs in 10-15% of DLBCL 

lymphomas and is associated with a worse outcome [Ladanyi et al., 1991]. MYC 

translocations confer a worse prognosis in patients treated with CHOP and R-CHOP 

regimens [Horn et al., 2013].  

 

1.5.3.2 Prognosis 

It has long been postulated that immune system plays an important role in the 

etiology of cancer [Beral and Newton 1998]. Immune surveillance is a central 

mechanism by which cancer development is kept in check [Burnet 1965]. Altered 

immune mechanisms play a critical role in the pathogenesis of NHL, as evidenced by 

increased rates of NHL among HIV+ patients, transplant recipients, and autoimmune 

disease patients [De Roos et al., 2012; Mellgren et al., 2012]. A marked increase in 

B-cell activation is commonly seen in HIV-1 infection, which is driven by the 

overproduction of B-cell-stimulatory cytokines, such as IL-6 and IL-10, as well as by 

stimulation of B-cells by HIV-1 virus and other microbial antigens [Vendrame and 

Martinez-Maza 2011]. In addition, HIV itself induces the production of inflammatory 

cytokines that cause B-cell stimulation, proliferation, and activation and the cell lines 

derived from HIV+NHL have been found to express cytokines including interleukin 6, 
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10 and tumor necrosis factor β [Masood et al., 1995; Powles et al., 2000]. B-cell 

activation is characterized by lymphocyte proliferation, class switch recombination, 

and somatic hypermutation, all of which are prone to resultant errors in DNA that 

may lead to lymphomagenesis [Breen et al., 2011; De Roos et al., 2012]. Various 

factors associated with B-cell activation, including B-cell stimulatory cytokines, as 

well as soluble serum molecules that are associated with B-cell activation, including 

serum Ig and Ig components such as free light chains, have been seen to be 

elevated preceding the appearance of HIV+NHL [Landgren et al., 2010].  

In a nested case-control study by Breen and colleagues [2011], it was shown that 

serum concentrations of molecules associated with B-cell activation including IL-6, 

IL-10, C-reactive protein (CRP), sCD23, sCD27 and sCD30 are elevated for several 

years preceding the diagnosis of systemic HIV+NHL. In addition, De Roos and 

colleagues [2012], in a case-control study within the Womens Health Initiative study 

cohort of 491 cases and 491 controls, showed that women with high serum 

concentrations of soluble sCD23, sCD27, sCD30, sCD44, and CXCL13 biomarkers 

were at 2.8-5.5 fold increased risk of B-cell NHL. Furthermore, this was confirmed by 

Hussain and colleagues [2013], in a nested case-control study of 3768 women 

where it was shown that elevated concentrations of sCD27, sCD30, CD23, and 

CXCL13 were associated with subsequent diagnosis of HIV+NHL.  
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Factors associated with poor clinical outcome and shorter survival in patients with 

HIV+NHL include CD4 T-cell count <100/mm3, advanced stage disease (III or IV), 

age over 35 years, history of injection drug use, elevated LDH (above normal), 

Eastern Co-operative Oncology Group performance status (ECOG PS) of more than 

2 and the involvement of more than 2 extra-nodal sites [Ratner et al., 2001; Ansell 

and Armitage 2005; Levine 2006].  

Matthews and colleagues [2000], in a cohort of 7840 HIV+ patients showed that age, 

nadir CD4 T-cell count and no prior cART are significantly associated with the 

development of systemic NHL. In addition, Tedeschi and colleagues [2012], showed 

that low CD4 and CD8 T-cell count and detectable EBV viremia are three 

independent prognostic biomarkers that might help in the management of HIV+NHL 

patients. Furthermore, higher HIV viral load accompanied by lower CD4 count have 

been associated with the development of HIV+NHL [Guiguet et al., 2009; Engels et 

al., 2010]. It has been shown that the risk of HIV+NHL rises substantially in patients 

with HIV RNA levels greater than 100 000 copies/µl and those with CD4 lymphocyte 

counts of less than 50 mm3/µl [Zoufaly et al., 2009].  
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CHAPTER TWO 

MOTIVATION, HYPOTHESIS, AIMS AND OBJECTIVES 

2.1 Motivation 

The current study aimed to assess specific biomarkers associated with HIV+NHL. 

This is very important in South Africa, with its high incidence of HIV disease and 

HIV+NHL as discussed above. Biomarkers associated with HIV+NHL have not yet 

been investigated in the South African context. Due to the number of factors 

including genetic and environmental factors, the profile of these biomarkers could 

differ from those seen in other populations. The incidence of cancer differs by 

countries, i.e. one cancer tends to be more common in one country while its 

incidence is lower in another [Alberts et al., 2002].  

Several environmental and behavioural factors alter the risk of developing NHL 

[Hartge and Smith 2007]. In addition, sociodemographic factors, medical history of 

immunological disorders, as well as several occupational and environmental 

chemical exposures such as benzene, other organic solvents, and pesticides have 

been shown to be risk factors for NHL [Fabbro-Peray et al., 2001; Hartge and Smith 

2007; Bassig et al., 2012]. These environmental factors could alter the genomic 

lesions in B-cells that are not normally lethal, stimulate immune hyperactivation and 

inflammation leading to the development and progression of NHL [Skibola et al., 

2007]. The present study could provide important information on biomarkers of 

HIV+NHL, which might assist in better understanding of the pathogenesis of NHL in 
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HIV-1 infected individuals. The outcome of this study will add to the current 

knowledge available on HIV+NHL.  

2.2 Hypothesis 

 There is an association between specific biomarkers of B- and T-cell 

activation, and inflammatory markers and HIV+NHL. 

 There is an association between HIV-1 infection, use of cART and 

HIV+NHL. 

 cART decreases immune activation and inflammation in HIV+NHL 

patients. 

 

2.3 Aims  

 Primary aim:  

o To determine whether selected biomarkers of B-, T-cell activation 

and inflammatory markers are associated with the presence of NHL 

in HIV-1 infected patients. 

 Secondary aims: 

o  To determine whether biomarkers of B- and T-cell activation are 

elevated in HIV+NHL patients. 

o To determine whether inflammatory markers are elevated in 

HIV+NHL patients. 

o To determine whether cART use has an effect on the biomarker 

profiles. 
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Biomarkers for potential drug-drug interactions between cART and chemotherapeutic 

agents used for HIV+NHL have been included in the initial proposal, but at a later 

stage it was decided to study biomarkers of HIV+NHL in more detail. The reason 

was to focus more on a large number of immunological biomarkers in order to 

provide a better understanding of the potential changes in HIV associated NHL 

patients, instead of the initially planned broader scope that included biomarkers of 

drug-drug interactions.  

Although biomarkers of potential drug-drug interactions were not explored in the 

current study, a thorough literature review was conducted on drug-drug interactions 

in HIV associated malignancies and a review manuscript was written and published 

in an accredited peer reviewed journal [Flepisi et al., 2014a]. In addition, a thorough 

literature search on biomarkers of HIV associated malignancies was conducted and 

published in an accredited peer reviewed journal [Flepisi et al., 2014b].  

 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



38 

 

 

2.4 Objectives 

 Primary objective:  

o To determine the serum concentrations of biomarkers of B-cell 

activation, inflammation; and the levels of expression of biomarkers 

of T-cell activation and regulation in all study participants and to 

compare these to control populations. 

 Secondary objectives:  

o To determine the levels of expression of selected biomarkers of T-

cell activation and regulation in all study participants and to 

compare these to control populations. 

o To determine the concentrations of circulating biomarkers of B-cell 

activation in the serum in all study participants and to compare 

these to control populations.  

o To determine the concentrations of circulating inflammatory 

markers in the serum in all study participants and to compare these 

to control populations. 
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CHAPTER THREE 

STUDY DESIGN AND POPULATION GROUPS 

3.1 Study design 

 The study is an observational, cross-sectional hospital based clinical study  

3.2 Study population 

3.2.1 Inclusion criteria 

 Patients diagnosed with HIV disease with a nadir CD4 T-cell count of ≤350 

cells/mm3, patients with HIV+NHL and a healthy control group were 

included in this study.  

 HIV+ patients were screened prior to inclusion into the study.  

 The control group were participants with and without NHL but HIV sero-

negative.  

 HIV test and counselling were done on healthy control population prior to 

the enrolment into the study.  

 All NHL including HIV+NHL patients had DLBCL subtype and were on 

similar treatment.  

 The duration of cART treatment was from three months and above. 

 The duration of chemotherapy was from 2 cycles and above. 

 Participants were assigned to one of 5 population groups at the first visit.  

 The population groups are presented in figure 3.1, further details can be 

found in appendix I.  
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 The main group of the current study was HIV+ patients diagnosed with 

NHL receiving cART, CHOP and supportive drugs.  

 The HIV+ patients that are not on cART were mainly recruited on their first 

visit to the hospital. 

 Participants were 18 years old and above. 

 

 

Figure 3.1 Population groups: HIV-human immunodeficiency virus; NHL-non-

Hodgkin lymphoma; cART-combination antiretroviral therapy; CHOP- 

cyclophosphamide, doxorubicin, vincristine and prednisone. 
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3.2.2 Exclusion criteria 

 Participants who were not willing to provide information on their 

environmental background and their habits such as smoking or alcohol 

usage. 

 Participants who were not willing or able to sign the informed consent 

forms. 

 Participants whose medical condition was such as to make the drawing of 

blood inadvisable such as patients with anaemia i.e. haemoglobin levels of 

less than 10.0 g/dL (defined according to the division of acquired 

immunodeficiency syndrome (DAIDS) toxicity tables) [DAIDS 2013].  

 Participants who were taking immune suppressants or who were on 

medication for autoimmune diseases. 

 Participants with mental condition rendering them unable to understand 

the nature, scope, and consequences of the study. 

 Participants less than 18 years old. 
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3.2.3 Sample size 

The sample size estimation was performed based on the use of serum CD44 as the 

primary outcome measure resulting in a difference in means of 70ng/ml with an 

assumed standard deviation of 130ng/ml. In 194 NHL patients, Ristamaki and 

colleagues [1997] showed that a high sCD44 level at diagnosis is associated with a 

high tumour burden, poor response to treatment and unfavourable outcome. In 

addition, Vendrame and colleagues [2014], in 179 HIV+NHL patients, showed that 

long term chronic immune activation driven by macrophage produced cytokines 

precedes the development of NHL in HIV+ individuals. 

Using a one-way analysis of variance (ANOVA), a sample size of 28 participants per 

group achieves 81% power to detect an effect size of 0.2638 among the groups 

using an F-test with a 0.05 significance level. (Calculations performed by Justin 

Harvey, Centre for Statistical Consultation, Stellenbosch University) 

The recruitment of participants was conducted from October 2012 to February 2014. 

A total of 141 participants (61 males and 80 females) were recruited in the present 

study. Participants consisted of 31 HIV+NHL, 34 NHL, 32 HIV+ cART patients and 

16 controls (Table 3.1). Although there were only 16 controls, statistical significance 

between the groups was observed. The mean age of all participants was 40. There 

were 53 black, 61 coloured, and 27 white participants. 48 participants were active 

smokers, while 93 were non-smokers. The mean HIV viral load was  

4 905 copies/ml in HIV+NHL, 1 044 copies/ml in HIV+ cART, and 19 008 copies/ml 

in cART naïve HIV+ patients. The mean duration of cART treatment was 24 months, 

while the mean duration of chemotherapy was 3 cycles. 
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Table 3.1: Participant characteristics 

 

 

3.2.4 Sample collection 

In the current study, blood samples (1 X 4.5 ml clotted blood and 1 X 4.5 ml 

ethylenediaminetetraacetic acid (EDTA) anti-coagulated blood) from all participants 

were utilized. Blood was withdrawn using a 10 ml syringe and collected in evacuated 

tubes: the clotted samples were centrifuged and the serum was separated and 

stored at -80oC. 

The fresh anti-coagulated blood samples were processed as soon as possible (not 

longer than 24 hours in storage) by staining using monoclonal antibodies and 

analysed using flow cytometry (section 4.3.2.2).  
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3.3 Statistical analysis 

The data obtained was captured using Microsoft Excel and Graph pad prism version 

5 was used to analyse the data. The statistical analysis was conducted by the 

statistician. The data was transformed using natural logarithm (ln) prior to the 

analysis. The one-way analysis of variance (ANOVA) with Bartlett’s test for equal 

variances was conducted. The analysis of the primary objective was performed by 

using a Kruskal Wallis with Dunn’s post hoc test.  

The study populations were regarded as the independent variables and the specific 

marker value was regarded as the dependent variable. Relationships between two 

continuous variables was analysed with logistic regression analysis and the strength 

of the relationship measured with the Pearson correlation, or Spearman correlation. 

Multivariate analysis was conducted to assess biomarkers that were independently 

associated with HIV+NHL. A p-value of p<0.05 represented statistical significance in 

hypothesis testing and 95% confidence intervals was used to describe the estimation 

of unknown parameters. 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



45 

 

 

3.4 Ethical considerations 

This study was approved by the Health Research Ethics Committee at Stellenbosch 

University (N12/03/015) and University of Cape Town (076/2013). All participants 

completed and signed the informed consent forms, which were available in English, 

Afrikaans and Xhosa. There was a separate genetic consent form to be signed by 

participants. Participants did not receive feedback on their biomarker levels, because 

of the low predictive value of these biomarkers for the disease progression in 

individual patients. Patient details and contact information was kept confidential and 

data was presented anonymously. The study was carried out in accordance with the 

Helsinki Declaration [World Medical Association Declaration of Helsinki 2008]. 

Permission was obtained from the Tygerberg Hospital and Groote Schuur Hospital 

Board to gain access to patients’ folders. 
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CHAPTER FOUR 

T, B, NK AND NKT-CELLS 

4.1 Introduction 

Lymphocytes are white blood cells generated by the immune system to protect the 

body against cancerous cells, pathogens, and foreign matter [Bailey 2014; Veillette 

et al., 2014]. They are responsible for the determination of specific immune response 

against several foreign substances [Moore et al., 2001; Humphrey and Perdue 

2014]. Lymphocytes originate from stem cells in the bone marrow and they either 

travel to the thymus where they multiply and differentiate into T lymphocytes (T-cells) 

or remain in the bone marrow (B lymphocytes/cells) [Humphrey and Perdue 2014].  

T-cells make up approximately 22-30% of circulating lymphocytes, while B-cells 

represent 7-10% [Spaner and Bahlo 2011]. There are three main types of 

lymphocytes i.e. T-cells, B-cells, and natural killer cells and each type has distinctive 

biochemical and functional characteristics [Martini et al., 2014]. T-cells mediate 

cellular immunity, while B-cells mediate humoral immunity and they both provide 

adaptive immunity, which work in close collaboration with the innate immune system 

[Luckheeram et al., 2012].  
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4.1.1 T lymphocytes (T–cells) 

T lymphocytes (T–cells) arise from the bone marrow stem cells, then migrate to the 

thymus where in the course of maturation their specific character and subsequent 

role are determined [Israels and Israels 1999; Bailey 2014]. They are responsible for 

cell mediated immunity and they can eradicate malignant cells [Jin et al., 2011]. T-

cells recognize antigens through a unique antigen specific αβ-T-cell receptor (TCR), 

promote the elimination of the targeted antigen (effector function) and amplify the 

attack of the antigen by recruiting other components of the immune response (helper 

function) [Hoyos et al., 2012]. There are three major classes of T-cells i.e. cytotoxic 

T-cells, helper T-cells, and regulatory T-cells [Jin et al., 2011].  

 

4.1.1.1 Helper T-cells 

Helper T-cells are a special subpopulation of CD4+ T-cells that stimulate other cells 

of the immune system to mount immune responses by causing cell activation or the 

secretion of cytokines [Ibelgaufts 2012]. Helper T-cells are regarded as the most 

important cells in adaptive immunity, as they orchestrate all adaptive immune 

responses [Alberts et al., 2002; Zhu and Paul 2008]. They are critical in co-ordinating 

the activity of the immune response [Alberts et al., 2002; Zhu and Paul 2008]. CD4+ 

T-cells stimulate B-cells to produce antibodies, induce macrophages to develop 

enhanced microbicidal activity, recruit neutrophils, eosinophils, and basophils to sites 

of infection and inflammation, and through their production of cytokines and 

chemokines orchestrate the full immune responses [Alberts et al., 2002; Zhu and 

Paul 2008]. 
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Helper T-cells become activated when they are presented with peptide antigen by 

major histocompatibility class II (MHC II) molecules, which are expressed on the 

surface of antigen presenting cells (APC) [Israels and Israels 1999]. Following 

activation, naïve CD4 T-cells differentiate into functionally distinct T helper subsets 

(TH1, TH2 or TH17 effector cells), each regulated by key transcription factors and 

producing cytokines to perform specific biological functions [Alberts et al., 2002; 

Zhou et al., 2009; Califano et al., 2014]. The differentiation decision is governed 

predominantly by the cytokines in the microenvironment and, to some extent, by the 

strength of the interaction of the T-cell antigen receptor with antigen [Zhou et al., 

2009]. These effector cells can be distinguished by the cytokines they secrete i.e.TH1 

cells secrete among others IL-1, interferon-γ (IFN-γ) and tumor necrosis factor-α 

(TNF-α);  TH2 cells secrete interleukin 4, 10, and 13; and TH17 cells produce IL-17, 

and IL-22 [Alberts et al., 2002; Coussen and Werb 2002; Zhou et al., 2009; Califano 

et al., 2014]. TH1 are also known to activate cytotoxic T-cells, while TH2 stimulates B-

cells.  
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4.1.1.2 Cytotoxic T-cells 

Cytotoxic CD8+ T-cells are antigen specific effector cells of the immune system with 

the ability to lyse target cells such as virus infected cells, tumor cells, or even 

parasites in a contact dependent manner [Groscurth and Filgueira 1998; Israels and 

Israels 1999]. Cytotoxic T-lymphocytes destroy cells infected with intracellular 

pathogens via T-cell receptor (TCR) mediated recognition of class I human 

histocompatibility linked leukocyte antigens (HLA-1) [Parsons et al., 2010]. They are 

crucial for protection against primary infection with non or poorly cytopathic viruses 

and other intracellular pathogens [Maher and Davies 2004; Schurch et al., 2014].  

Upon activation by antigen presenting cells (MHC I), naïve CD8+ T-cells undergo 

clonal expansion, migrate to sites of infection, and kill infected target cells via 

secretion of perforin and granzymes or Fas ligand-Fas interaction [Andersen et al., 

2006; Schurch et al., 2014]. Cytotoxic T-cells are responsible for anti-tumor activity 

and the presence of T-cells in both numbers and functionality is a prerequisite for the 

immune system to attack cancer cells [Aerts and Hegmans 2013]. It is recognized 

that IFN-γ producing CD4+ TH1 cells and CD8+ T-cells play an important role in 

inhibiting and killing tumor cells and impeding tumor growth [Zamarron and Chen 

2011].  
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4.1.2 B-cells 

B lymphocytes (B-cells) are lymphocytes that have developed and matured in the 

bone marrow [Janeway et al., 2001; Silverthorn 2004; Tobon et al., 2013]. A mature 

B-cell is activated when it encounters antigen that expresses epitopes that are 

recognized by surface immunoglobulins with the aid of helper T-cells [Moore et al., 

2001; Alberts et al., 2002]. B-cells are antibody producing precursor cells which 

when activated, undergo clonal selection and differentiation to produce effector cells 

known as plasma cells and memory cells [Wahl and Rosenstreich 1976; Israels and 

Israels 1999; Humphrey and Perdue 2014; Schnurman 2014].  

Plasma cells generate large amount (approximately 2000 molecules per second) of 

soluble antibodies or immunoglobulins which are released into the circulation 

[Alberts et al., 2002; Humphrey and Perdue 2014; Schnurman 2014]. The antibodies 

produced by plasma cells are specific for a specific antigen [Yanaba et al., 2008]. 

Antibodies defend against infection by inactivating viruses and microbial toxins, and 

recruiting the complement system and various types of leukocytes to destroy the 

invading pathogens [Alberts et al., 2002]. In addition, they have been considered as 

positive regulators of immune responses and central contributors to the 

pathogenesis of immune related diseases such as autoimmune disease [Yanaba et 

al., 2008; Mauri and Bosma 2012].  

CD19 is a type I transmembrane glycoprotein belonging to the immunoglobulin 

superfamily, that plays a role in the antigen-independent development as well as the 

immunoglobulin induced activation of B-cells [Wang et al., 2012; Raufi et al., 2013]. 

CD19 is expressed in normal and neoplastic B-cells, as well as follicular dendritic 
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cells [Craig 2007; Wang et al., 2012]. The expression of CD19 is restricted to B-cells 

and is present throughout B-cell maturation [Craig 2007]. Its expression is 3-fold 

higher in mature B-cells than that found in immature B-cells [Carter et al., 2002; 

Diamant et al., 2005]. CD19 is a B-cell restricted signalling molecule that functions 

as a positive regulator of B-cell receptor [Diamant et al., 2005; Otero and Rickert 

2003]. CD19 is expressed by most B-cell malignancies and is regarded as one of the 

most reliable surface marker for B-cells [Craig 2007; Wang et al., 2012]. 

 

4.1.3 Natural killer (NK) cells 

Natural killer (NK) cells are cytolytic and cytokine producing effector cells of the 

innate immune system and they represent the first line of defence against virally 

infected and transformed malignant cells [Vivier et al., 2004; Wendel et al., 2008; 

Przewoznik et al., 2012]. NK-cells function similarly to cytotoxic T-cells [Bailey 2014]. 

However, unlike T-cells, their response to an antigen is non-specific and they do not 

have T-cell receptors [Jost and Artfeld 2013; Bailey 2014]. In addition, NK-cells do 

not directly attack invading micro-organisms but instead destroy the body’s own cells 

that have been infected with a virus or that have become cancerous [Humphrey and 

Perdue 2014]. Their effector functions include release of cytotoxic granules 

containing perforin and granzymes and induction of death receptor mediated 

apoptosis resulting in direct killing of target cells [Vivier et al., 2004; Wendel et al., 

2008; Przewoznik et al., 2012].  
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In addition, NK-cells produce the pleiotropic cytokine IFN-γ that is important for 

activation of APCs and the induction of TH1 responses [Wendel et al., 2008; Vivier et 

al., 2008; Przewoznik et al., 2012]. In humans, NK-cells express CD56, a surface 

antigen that has also been found on a subset of T-cells and CD16, an Fc receptor III 

(FcγRIII) involved in antibody dependent cellular cytotoxicity that is also expressed 

on a subset of CD3+/CD8+ T-cells [Cooper et al., 2001; Brunetta et al., 2010; 

Romee et al., 2013]. The majority (90%) of circulating NK-cells have low density 

expression of CD56 phenotype and express high levels of CD16 and they are CD3 

negative [Cooper et al., 2001; Brunetta et al., 2010; Bostik et al., 2010; Romee et al., 

2013].  

 

4.1.4 Natural killer T (NKT) cells 

Natural killer T (NKT) cells are a group of T-cells that express surface markers 

associated with cells of the NK-cell lineage [Biron and Brossay 2001; Bendelac et al., 

2007; Van Kaer et al., 2013]. NKT-cells are therefore a subset of T-cell lineage 

expressing NK lineage receptors in addition to semi-invariant CD1d restricted αβ T-

cell receptors [Bobryshev 2005; Tupin and Kronenberg 2006; Bendelac et al., 2007; 

Cianferoni 2014]. They are important regulators in both innate and adaptive immunity 

[Terabe and Berzofsky 2008; Fang et al., 2010]. NKT-cells play important and 

multifaceted roles in immune regulation, tumor rejection and resistance to a variety 

of viral, bacterial, and parasitic pathogens through their rapid secretion of 

immunoregulatory cytokines and potent cytotoxicity [Eger et al., 2006].  
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NKT-cells can be activated in both antigen-dependent and independent manners 

and respond with robust TH1 and TH2 cytokine production [Juno et al., 2012]. Upon 

activation, NKT-cells rapidly release cytokines such as IFN-γ, IL-4, IL-13, and IL-17 

[Konek et al., 2012]. In addition, NKT-cells have been shown to activate B-cells, 

resulting in increased Ig secretion and response to antibodies [Galli et al., 2003]. 

Furthermore, NKT-cells have been implicated in a wide range of disease conditions 

including tumors, auto-immune diseases, atherosclerosis, allergy and infections 

[Bendelac et al., 2007]. 

 

4.2 Specific Aims 

The aim of this study was to determine  

 The numbers of CD4+, CD8+, CD19+, NK and NKT-cells in HIV+NHL patients 

and control populations. 

 Whether cART has an influence on the numbers of these cells. 
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4.3 Materials and Methods 

4.3.1 Materials 

The following antibodies, materials and reagents were purchased from the Scientific 

Group Pty Ltd supplier of Becton Dickinson antibodies: Multitest 

CD3/CD8/CD45/CD4 (Catalogue number: BD/342417), Multitest 

CD3/CD16+CD56/CD45/CD19 (Catalogue number: BD/342446), fluorescence-

activated cell sorting (FACS) Lysing Solution (Catalogue number: BD/349202), 

Trucount Tubes (Catalogue number: BD/340334), Trucount Controls (Catalogue 

number: BD/340335), Ethylenediaminetetraacetic acid (EDTA) tube (Catalogue 

number: BD367864), and Becton-Dickinson (BD) falcon tubes (Catalogue number: 

BD/352054). Phosphate buffered saline (PBS) (Catalogue number: P5368-10PAK) 

was purchased from Sigma-Aldrich SA PTY LTD.  

 

4.3.2 Methods 

4.3.2.1 Sample preparation 

Blood samples were taken using EDTA anti-coagulated vaccutainer tubes. The blood 

vials were requested to be full draws and kept in a plastic bag at room temperature. 

Whole blood samples were stained and analysed immediately post-staining using 

flow cytometry. 
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4.3.2.2 Flow Cytometry 

Flow cytometry is a technology that simultaneously measures and then analyses the 

physical and chemical properties of cells or cellular components, as they flow in a 

fluid stream through a beam of light [Becton and Dickinson 2000]. Flow cytometry 

has been previously used in the diagnosis and evaluation of B-cell lymphoid 

malignancies including NHL [Craig 2007; de Tute 2011; Gunduz et al., 2013]. The 

properties measured include a particle’s relative size, relative granularity or internal 

complexity, and relative fluorescence intensity [Becton and Dickinson 2000]. These 

characteristics are determined using an optical to electronic coupling system that 

records how the cell or particle scatters incident laser light and emits fluorescence 

[Becton and Dickinson 2000]. A flow cytometer is made up of three main systems i.e.  

i) Fluidic system which transports particles in a stream to the laser beam 

for interrogation.  

ii) Optic system which consists of lasers to illuminate the particles in the 

sample stream and optical filters to direct the resulting light signals to 

appropriate detectors.  

iii) Electronic system which converts the detected light signals into 

electronic signals that can be processed by the computer.  

In the flow cytometer, particles are carried to the laser intercept in a fluid stream 

[Becton and Dickinson 2000]. Any suspended particle of cell from 0.2-150 

micrometers in size is suitable for analysis [Becton and Dickinson 2000]. When 

particles pass through the laser intercept, they scatter laser light and any fluorescent 

molecules present on the particle fluoresce [Becton and Dickinson 2000]. The 
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scattered and fluorescent light is collected by appropriately positioned lenses 

[Becton and Dickinson 2000]. A combination of beam splitters and filters steers the 

scattered and fluorescent light to the appropriate detectors and the detectors 

produce electronic signals proportional to the optical signals striking them [Becton 

and Dickinson 2000]. 

Immunophenotyping by flow cytometry is a well-established technique used in many 

research and clinical environments [Festin et al., 1994]. Flow cytometry allows 

researchers and clinicians to perform complex analysis quickly and efficiently by 

analysing several parameters simultaneously [Becton and Dickinson 2000]. The 

amount of information obtained from a single sample can be further expanded by 

using multiple fluorescent reagents [Becton and Dickinson 2000]. Multicolor flow 

cytometry enables more data to be gathered about a sample in a shorter amount of 

time, giving researchers not only enhanced efficiency and high quality data, but also 

more data from lower sample volume [Becton and Dickinson 2000].  
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4.3.2.3 Protocol 

To determine the expression of T, B, NK and NKT-cells, trucount tubes were used. 

Trucount tubes were labelled for T, B, NK, and NKT-cells for each sample in 

duplicate, and CD chex standards (Low and Normal). Twenty µl of the diluted (1:3) 

(Appendix II) multi-test CD3-FITC/CD8-PE/CD45-PerCP/CD4-APC and CD3-

FITC/CD16+56-PE/CD45-PerCP/CD19-APC antibodies were added into T, B, NK, 

and NKT-cell tubes. Fifty µl of the whole blood samples and CD chex controls were 

added into respective tubes. Tubes were vortexed gently and samples were 

incubated at room temperature (20-25oC) in the dark cupboard for 15 minutes. 

Following the incubation, 450µl FACS lysing solution was added into all tubes. Tubes 

were vortexed gently and samples were incubated at room temperature in the dark 

cupboard for 15 minutes. The samples were analysed using FACS Canto DIVA 

software. 
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4.4 Results 

4.4.1 T-cells 

4.4.1.1 CD4+ T-cells 

The numbers of CD4+ T-cells were significantly lower in HIV positive NHL 

(HIV+NHL) patients as compared to both HIV negative NHL (298 ± 218 vs 537 ± 

375; p=0.0035) patients and HIV positive patients on a cART regimen (HIV+ cART) 

(298 ± 218 vs 417 ± 260; p= 0.0401) (figure 4.1). However, NHL had significantly 

lower CD4+ T-cell counts than controls (537 ± 375 vs 1101 ± 284; p<0.0001). HIV+ 

cART individuals had increased numbers of CD4+ T-cells than cART-naïve HIV+ 

patients (417 ± 260 vs 238 ± 153; p=0.0060). In addition, cART-naïve HIV+ patients 

had lower CD4+ T-cell counts than healthy controls (238 ± 153 vs 1101 ± 284; 

p<0.0001).  
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Figure 4.1 CD3+CD4+ T-cells. HIV+NHL, HIV positive non-Hodgkin lymphoma 

patients (n=31); NHL, HIV negative non-Hodgkin lymphoma patients (n=34); HIV+ 

cART, combination antiretroviral therapy treated (cART) HIV positive individuals 

(n=32); cART-naïve HIV positive individuals (n=28); Controls, Healthy controls 

(n=16).  
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4.4.1.2 CD8+ T-cells 

The numbers of CD8+ T-cells were significantly increased in HIV positive NHL 

(HIV+NHL) patients as compared to HIV positive patients on a cART regimen (HIV+ 

cART) (701 ± 377 vs 544 ± 271; p=0.0368), while there was no significant difference 

between HIV+NHL and NHL patients (figure 4.2). However, NHL patients had 

significantly higher numbers of CD8+ T-cells than healthy controls (589 ± 503 vs 426 

± 124; p=0.0114). HIV+ cART patients had significantly lower numbers of CD8+ T-

cells as compared to cART-naïve HIV+ patients (544 ± 271 vs 811 ± 403; p=0.0077). 

In addition, cART-naïve HIV+ patients had increased numbers of CD8+ T-cells than 

healthy controls (811 ± 403 vs 426 ± 124; p=0.0002). 
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Figure 4.2 CD3+CD8+ T-cells. HIV+NHL, HIV positive non-Hodgkin lymphoma 

patients (n=31); NHL, HIV negative non-Hodgkin lymphoma patients (n=34); HIV+ 

cART, combination antiretroviral therapy treated (cART) HIV positive individuals 

(n=32); cART-naïve HIV positive individuals (n=28); Controls, Healthy controls 

(n=16). 
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4.4.2 CD19+ B-cells  

There was no significant difference in the numbers of CD19+ B-cells when HIV 

positive NHL (HIV+NHL) patients were compared to both HIV negative NHL patients 

and HIV positive patients on a cART regimen (HIV+ cART) (figure 4.3). The numbers 

of CD19+ B-cells were significantly lower in NHL patients as compared to the 

controls (277 ± 262 vs 358 ± 138; p=0.0021). The numbers of CD19+ B-cells were 

significantly increased in HIV+ cART patients as compared to cART-naïve HIV+ 

patients (262 ± 189 vs 108 ± 73; p<0.0001). In addition, cART-naïve HIV+ patients 

had significantly lower numbers of CD19+ B-cells than the controls (108 ± 73 vs 358 

± 138; p<0.0001). 
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Figure 4.3 CD19+ B-cells. HIV+NHL, HIV positive non-Hodgkin lymphoma patients 

(n=31); NHL, HIV negative non-Hodgkin lymphoma patients (n=34); HIV+ cART, 

combination antiretroviral therapy treated (cART) HIV positive individuals (n=32); 

cART-naïve HIV positive individuals (n=28); Controls, Healthy controls (n=16). 
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4.4.3 Natural killer (NK) cells 

The numbers of natural killer (NK) cells which are CD16+CD56+ were significantly 

increased in HIV positive NHL (HIV+NHL) patients as compared to both HIV 

negative NHL (NHL) patients (87 ± 47 vs 62 ± 55; p=0.0037) and HIV positive 

patients on a cART regimen (HIV+ cART) (87 ± 47 vs 51 ± 39; p=0.0010) (figure 

4.4). As compared to controls, NHL patients had significantly higher numbers of NK-

cells (62 ± 55 vs 37 ± 30; p=0.0214). HIV+ cART patients had significantly lower 

numbers of NK-cells than cART-naïve HIV+ patients (51 ± 39 vs 81 ± 37; p=0.0018). 

cART-naïve HIV+ patients had increased numbers of NK-cells than the controls (81 

± 37 vs 37 ± 30; p=0.0002). 
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Figure 4.4 Natural killer (NK) cells. HIV+NHL, HIV positive non-Hodgkin lymphoma 

patients (n=31); NHL, HIV negative non-Hodgkin lymphoma patients (n=34); HIV+ 

cART, combination antiretroviral therapy treated (cART) HIV positive individuals 

(n=32); cART-naïve HIV positive individuals (n=28); Controls, Healthy controls 

(n=16). 
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4.4.4 Natural killer T (NKT) cells  

The numbers of natural killer T (NKT) cells were significantly decreased in HIV 

positive NHL (HIV+NHL) patients as compared to both HIV negative NHL (NHL) 

patients (161 ± 102 vs 230 ± 177; p=0.0321) and HIV+ patients on a cART regimen 

(HIV+ cART) (161 ± 102 vs 238 ± 213; p=0.0361) (figure 4.5). As compared to the 

control population, NHL patients had significantly lower numbers of NKT-cells (230 ± 

177 vs 334 ± 153; p=0.0243). There was no significant difference in the numbers of 

NKT-cells when HIV+ cART patients were compared with cART-naïve HIV+ patients. 

cART-naïve HIV+ patients had significantly lower numbers of NKT-cells than the 

controls (217 ± 197 vs 334 ± 153; p=0.0019).  
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Figure 4.5 Natural killer T (NKT) cells. HIV+NHL, HIV positive non-Hodgkin 

lymphoma patients (n=31); NHL, HIV negative non-Hodgkin lymphoma patients 

(n=34); HIV+ cART, combination antiretroviral therapy treated (cART) HIV positive 

individuals (n=32); cART-naïve HIV positive individuals (n=28); Controls, Healthy 

controls (n=16). 
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4.5 Discussion 

4.5.1 CD4+ T-cells 

The primary targets of HIV-1 are CD4 T-cells and it is well established that HIV-1 

infection leads to the reduction in CD4 T-cell counts [Alimonti et al., 2003]. CD4 T-

cell depletion is one of the hallmarks of progression of HIV-I infection and a major 

indicator of the stage of the disease in HIV+ patients [Hogg et al., 2001; Fasakin et 

al., 2014]. In the current study, the numbers of CD4 T-cells were significantly 

decreased in HIV+NHL patients as compared to NHL (figure 4.1). HIV-1 virus may 

have decreased the numbers of CD4 T-cells in HIV+NHL patients. In addition, HIV+ 

cART patients had significantly higher numbers of CD4 T-cells than HIV+NHL 

patients (figure 4.1). These findings suggest that HIV+NHL patients that are on cART 

as well as on chemotherapy have lower numbers of CD4 T-cells than HIV+ patients 

without NHL that are on cART. This may be due to the effect of chemotherapy on 

CD4 T-cell counts.  

It has been previously reported that chemotherapy may be detrimental to the 

immune system and may lead to decreased CD4 T-cell counts especially in the first 

few months [Mackall et al., 1994; Proietti et al., 2012; Nars and Kaneno 2013]. 

Although the immune system improves after few months on chemotherapy, it may 

not improve to the same extent as it was before. A study conducted by Zanussi and 

colleagues [1996], showed that mean CD4 T-cell counts declined significantly after 

the third cycle of chemotherapy in HIV+NHL patients. In addition, NHL patients had 

significantly lower numbers of CD4 T-cells as compared to the control population in 

the current study (figure 4.1).  
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In a study by Bower and colleagues [2009], it has been shown that a lower latest 

CD4 T-cell count is strongly associated with systemic NHL in HIV+ patients who had 

not received cART. In the current study, it was observed that HIV+ cART patients 

had higher numbers of CD4 T-cells than cART-naïve HIV+ patients. Although the 

nadir CD4 T-cell counts were less than 350 cells/mm3 at the time of recruitment, the 

CD4 T-cell counts measured in the current study were slightly greater than 350 

cells/mm3. HIV+ cART patients were on cART; therefore, their CD4 T-cell counts 

may have increased as compared to the previous measurements. However, the 

nadir CD4 T-cell counts at the time of recruitment are not reported in the current 

study. These results confirm that cART increases the numbers of CD4 T-cells in 

HIV+ patients while it decreases HIV-1 virus. Wolbers and colleagues [2007], 

showed that CD4 T-cell count increased with suppressed viral load following cART 

initiation in HIV-1 infected patients.  

Furthermore, in a cohort of HIV+ patients, Smith and colleagues [2003], showed that 

the CD4 T-cell count increased from 175 cells/mm3 to a median of 319 cell/mm3 

following initiation of cART. It has been reported that in HIV+ cART patients who 

manage to maintain virological suppression, the number of CD4 T-cells continue to 

increase for at least 3 years after starting cART to the levels seen in HIV negative 

individuals [Smith et al., 2003]. cART-naïve HIV+ patients had lower numbers of CD4 

T-cells than the controls (figure 4.1) in the current study. This confirms that HIV-1 

virus reduces the number of CD4 T-cells in infected patients. One of the major 

mechanisms resulting in CD4 T-cell depletion in cART-naïve HIV+ patients is chronic 

immune activation that leads to increased T-cell turnover and apoptosis [Massanella 
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et al., 2013]. However, CD4 T-cell counts may have been lower in cART-naïve HIV+ 

patients partly due to the inclusion criterion of less than 350 cells/mm3. The reduced 

CD4 T-cell counts may make HIV+ patients more prone to infections including EBV 

infection. In a multivariate analysis, Tedeschi and colleagues [2012], showed that 

low CD4 T-cell count and detectable serum EBV viral load measured at lymphoma 

diagnoses are independently associated with poor survival among HIV+NHL 

patients. 

 

4.5.2 CD8 T-cells 

HIV-1 infection is characterized by decreasing CD4 T-cell counts and increasing 

CD8 T-cell counts [Grossman 2003; Catalfamo et al., 2010]. In the current study, 

there was no significant difference in the numbers of CD8 T-cells between HIV+NHL 

and NHL patients. Although not significant, there was a trend towards increased 

numbers in HIV+NHL patients as compared to NHL (figure 4.2). In addition, 

HIV+NHL patients had significantly higher numbers of CD8 T-cells than HIV+ cART 

patients (figure 4.2). CD8 T-cells are required for elimination of HIV-1 virus; however, 

the virus itself is suppressed by cART thus decreasing the number of CD8 T-cells 

required. The numbers of CD8 T-cells were significantly increased in NHL as 

compared to controls (figure 4.2). The increased numbers of CD8 T-cells are 

required to eliminate the HIV-1 virus, EBV and to destroy malignant lymphoma cells 

in HIV+NHL patients.  
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However, although the numbers of CD8 T-cells may be increased in NHL and HIV 

state, their functional activities may be lost. Kostense and colleagues [2002], 

reported that the activity of HIV specific CD8 T-cells is lost in HIV-1 infected patients, 

however, this was not due to physical depletion of CD8 T-cells, but is mainly due to 

impaired function. A study conducted by van Baarle and colleagues [2001], indicated 

that functional loss of EBV specific CD8 T-cells with concomitant increase in EBV 

load may play a role in the pathogenesis of HIV+NHL. In the current study, the 

numbers of CD8 T-cells were significantly reduced in HIV+ cART patients as 

compared to cART-naïve HIV+ patients (figure 4.2). It has been previously shown 

that CD8 T-cell expression is mainly driven by HIV-1 RNA levels [Catalfamo et al., 

2008].  

Due to a reduced HIV-1 viral load in response to cART, only a small number of CD8 

T-cells are required in treated HIV+ patients, however, in cART-naïve HIV+ patients, 

the viral load is high, leading to increased numbers of CD8 T-cells. It has been 

reported that, during cART mediated viral suppression, HIV+ patients experience 

increasing CD4 T-cell counts with a simultaneous decline in CD8 T-cell counts 

[Serrano-Villar et al., 2014]. This was also confirmed when CD8 T-cell counts were 

compared between cART-naïve HIV+ patients and controls. The numbers of CD8 T-

cells were significantly increased in cART-naïve HIV+ patients as compared to the 

controls (figure 4.2). A study conducted by Ray and colleagues [2006], showed that 

the numbers of CD8 T-cells were increased in both asymptomatic HIV+ patients and 

HIV disease patients as compared to HIV negative individuals.  
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4.5.3 CD19+ B-cells  

HIV-1 infection is associated with extensive B-cell abnormalities, manifested by 

phenotypic alterations and polyclonal B-cell activation, and increased frequencies of 

B-cell malignancies [Cagigi et al., 2008; Moir et al., 2008]. HIV-1 infection is 

characterized by depleted B-cell numbers, increased expression of activation and 

apoptosis markers [Cagigi et al., 2008]. Dysregulated CD19 expression has been 

associated with abnormalities of the immune system [Mei et al., 2012]. In the current 

study, no statistical significant difference in the numbers of CD19+ B-cells between 

HIV+NHL and NHL patients was found (figure 4.3). There was also no significant 

difference in the numbers of CD19+ B-cells between HIV+NHL and HIV+ cART 

patients (figure 4.3). However, NHL patients had lower numbers of CD19+ B-cells 

when compared to the controls (figure 4.3). 

HIV+ cART patients had higher numbers of CD19+ B-cells than cART-naïve HIV+ 

patients. In addition, cART-naïve HIV+ patients had lower numbers of CD19+ B-

cellsthan the controls (figure 4.3). These findings suggest that infection by HIV-1 

virus reduces the numbers of CD19+ B-cells and cART increases the number of 

CD19+ B-cells. In a study of chronically HIV-1 infected patients, Moir and colleagues 

[2008], reported a reduction in B-cell numbers and the presence of perturbed B-cell 

subpopulations before cART initiation, however, following one year of cART and 

reduction in viral load, B-cell numbers partially returned to normal.  
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4.5.4 Natural killer (NK) cells 

NK-cells are deregulated in HIV-1 infection, and its dysfunctions has been 

associated with the severity of HIV disease and impaired immune responses 

[Bayigga et al., 2014]. In the current study, the numbers of NK-cells were 

significantly increased in HIV+NHL as compared to NHL and HIV+ cART patients 

(figure 4.4). NK-cells are responsible for anticancer surveillance and protection 

against tumors [Nowicki et al., 2008], hence its expression is increased in HIV+NHL 

patients in the current study. This is also confirmed by increased numbers of NK-

cells in NHL patients as compared to controls (figure 4.4). The numbers of NK-cells 

were significantly increased in cART-naïve HIV+ patients as compared to HIV+ 

cART patients and controls (figure 4.4), this corresponds with increased viral load in 

cART-naïve HIV+ patients.  

It has been previously reported that NK-cells are increased in both percentage and 

absolute number during HIV-1 infection [Mitchai et al., 2014]. However, it has been 

shown that HIV-1 viremia induces several phenotypic and functional abnormalities in 

NK-cells [Mitchai et al., 2014]. Naranbhai and colleagues [2013], reported an 

increase in NK-cell activation but reduced NK-cell cytotoxicity during acute HIV-1 

infection. Thus, although the numbers of NK-cells may be increased in this patient 

population they may be dysfunctional. It has also been demonstrated that NK-cells 

are targets for HIV-1 infection in both in vitro and in vivo, and HIV-1 infection of NK-

cells is important for virus persistence [Valentin et al., 2002]. Furthermore, HIV-1 has 

been reported to affect the ability of NK-cells to secrete cytokines and chemokines, 

which are essential for an effective NK-cell response [Funke et al., 2011]. Decreased 
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function and number of NK-cells have been associated with rapid HIV disease 

progression [Nowicki et al., 2008]. 

 

4.5.5 Natural killer T (NKT) cells  

Previous studies indicate that NKT-cells can display cytotoxic activity against several 

tumor cell lines such as haemopoietic malignancies, but they show a killing pattern 

distinct from conventional T and NK-cells [Tarazona et al., 2003; Wu and Van Kaer 

2011]. However, a subset of NKT-cells express the CD4 T-cell receptor on their 

surface, therefore, they may be vulnerable to direct infection by HIV-1 [Unutmaz 

2003; Vasan and Tsuji 2010]. In the current study, the numbers of NKT-cells were 

significantly reduced in HIV+NHL as compared to both NHL and HIV+ cART patients 

(figure 4.5). The reduced numbers of NKT-cells observed in HIV+NHL in the current 

study may have been caused by HIV-1 infection.  

It has been reported that NKT-cells are rapidly depleted in HIV-1 infected patients 

and the depletion appears to be due to direct infection of CD4 expressing NKT-cells 

[Li and Xu 2008; Rout et al., 2012]. The numbers of NKT-cells were significantly 

reduced in NHL as compared to controls. No significant difference was observed 

between HIV+ cART and cART-naïve HIV+, however there was a trend towards 

decreased NKT-cells in cART-naïve HIV+. In addition, cART-naïve HIV+ patients 

had lower numbers of NKT-cells than the controls. These results are consistent with 

previous studies. In a cross-sectional study of chronically infected HIV+ patients, Van 

der Vliet and colleagues [2002], showed that circulating numbers of NKT-cells are 
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reduced in HIV+ state regardless of CD4+ T-cell counts, CD4:CD8 ratios, HIV 

plasma viral load and irrespective of cART treatment. Furthermore, Vasan and 

colleagues [2007], in a cohort of acute HIV-1 infected patients, showed that the 

patients that initiated cART did not experience a rise in percentage of circulating 

NKT-cells after 1 year of cART as compared to pre-treatment levels. However, they 

also did not experience any decline in NKT-cell levels, suggesting that cART may be 

playing a role in stabilizing the rate of NKT-cell depletion by HIV-1 [Vasan et al., 

2007]. 

 

4.6 Conclusion 

HIV+NHL patients have suppressed CD4 T-cell count, and NKT-cells and increased 

numbers of NK-cells, and CD8 T-cells. There was no significant difference in the 

numbers of CD19+ B-cells. These results imply that the immune system of HIV+NHL 

is impaired and this may be due to the effect of HIV-1 infection on these cells. cART 

increased the numbers of CD4 T-cells and NKT-cells while it reduced the numbers of 

CD8 T-cells and NK-cells in HIV+ patients.  
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CHAPTER FIVE 

T-CELL ACTIVATION AND REGULATORY MARKERS 

5.1.1 Introduction  

Chronic immune activation is hallmarked by an overtly activated immune system, 

which includes aberrant activation of the adaptive immune system comprising T and 

B-cells [Hass et al., 2011]. HIV-1 infection is characterized by CD4 T-cell depletion, 

CD8 T-cell expansion, and chronic immune activation that lead to immune 

dysfunction [Catalfamo et al., 2011]. In addition, increased immune activation in 

patients on long term suppressive cART has been associated with increased 

mortality and both AIDS and non-AIDS defining illnesses [Rajasuriar et al., 2013]. 

This suggests that chronic immune activation may have a potential role in driving 

increased morbidity and mortality.  

The mechanisms involved in systemic immune activation in chronic HIV-1 infection 

are multifactorial and include the translocation of microbial products from the 

gastrointestinal tract, low level HIV viremia, and co-infections with other persistent 

viral pathogens [Rajasuriar et al., 2013]. The excessive production of interferon 

alpha (IFN-α) and pro-inflammatory cytokines leading to up-regulation of pro-

apoptotic molecules, lymph node fibrosis, and dysfunction of regulatory T-cells may 

also likely contribute [Rajasuriar et al., 2013]. 
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5.1.2 T-cell activation  

Previous studies have shown that HIV-1 infected individuals have elevated levels of 

immune activation during untreated disease and that these levels do not normalize 

even with long term treatment with cART [Hatano 2013]. HIV-1 infection is 

associated with a state of excessive T-cell activation, which has been shown to be a 

strong prognostic indicator for disease progression at different stages of HIV-1 

infection [Cao et al., 2009]. T-cell activation during HIV-1 infection is closely linked to 

CD4+ T-cell depletion and viral replication [Haas et al., 2011]. This aberrant 

activation of T-cells is observed mainly for memory CD4+ and CD8+ T-cells and is 

documented by increased expression of surface activation markers CD38 and 

human leukocyte antigen-DR (HLA-DR) [Cohen Stuart et al., 2000; Haas et al., 

2011].  

It has been reported that the majority of these activated T-cells are neither HIV 

specific nor HIV-1 infected [Douek et al., 2002; Haas et al., 2011]. Lymphocyte 

hyper-activation and increased serum concentrations of inflammatory cytokines are 

observed in both treated and untreated HIV-1 infected patients [Ouedraogo et al., 

2013]. Chronic immune activation during HIV-1 infection leads to increased T-cell 

turnover/exhaustion and lymph node fibrosis [Ring 2011]. The increased 

concentrations of both soluble biomarkers of inflammation and markers of T-cell 

activation have been shown to be associated with and predictive of increased 

morbidity and mortality in treated HIV-1 infection [Hatano 2013]. 
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5.1.3 T-cell regulation  

The T-cell compartment of the immune system is composed of a large repertoire of 

T-cell clones, each equipped with a unique antigen receptor, and thus, they can 

react with an enormous variety of antigens including self-antigens [Romagnani 

2006]. The balance between immune activation required for optimal host defence 

against infection and immune suppression that maintains self-tolerance by 

preventing autoimmunity is stringently regulated [Rowe et al., 2012]. Regulatory T 

(T-reg) cells play a role in maintaining immune homeostasis, preventing 

autoimmunity, moderating inflammation, and minimizing collateral tissue damage 

[Feuerer et al., 2009; Bilate and Lafaille 2012]. They maintain tolerance to self and 

control autoimmune deviation to prevent uncontrolled responses to pathogens or 

allergens, help maintain a balance with obligate microbial flora, and facilitate tumor 

escape from immune monitoring [Feuerer et al., 2009].  

The primary function of T-reg cells is to inhibit the function of antigen presenting cells 

and effector cells. T-regs can be generated when developing T-cells encounter TCR 

agonist ligands in the thymus [Kretschmer et al., 2008]. Two main types of T-regs 

have been identified, i.e. natural and induced (or adaptive) and they both play a role 

in turning down effector immune responses [Bilate and Lafaille 2012]. Inducible 

subset of T-regs are type 1 regulatory (Tr1) cells and they exert their function by 

secreting high concentrations of IL-10 and the killing of myeloid cells through the 

release of granzyme B [Gregori et al., 2012]. Naturally occurring T-regs are 

CD4+CD25+ and they specifically express the transcription factor FoxP3 (Forkhead 

box protein 3) which is essential for their development and function [Thompson and 
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Powrie 2004; Romagnani 2006; Sakaguchi et al., 2008]. Reduced numbers or 

function of T-reg cells have been associated with the onset of autoimmunity, 

whereas increasing their numbers has had therapeutic success in models of 

autoimmunity and graft-versus-host disease [Bailey-Bucktrout et al., 2013]. In 

addition, the reduced numbers of T-reg cells may result in increased T-cell activation 

without monitoring. 

 

5.2 Specific Aims 

The aim of this study was to determine,  

 The expression of CD38 on CD8+ T-cells in HIV+NHL patients and control 

populations 

 The expression of FoxP3 in HIV+NHL patients and control populations 

 Whether cART increases FoxP3 expression and down-regulates T-cell 

activation 
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5.3 Materials and Methods 

5.3.1 Materials  

The following antibodies, materials and reagents were purchased from the Scientific 

Group Pty Ltd supplier of Becton Dickinson antibodies: HU CD38-PE MAB 

(Catalogue number: BD/560381), HU CD8-FITC MAB (Catalogue number: 

BD/560960), APC labeled anti-human CD4 (Catalogue number: BD/555349), CD45-

FITC MAB (Catalogue number: BD/345808), CD3-PerCP MAB (Catalogue number: 

BD/345766), FoxP3-PE MAB (Catalogue number: BD/560082), FoxP3 buffer set 

(Catalogue number: BD/560098), Phosphate buffered saline (PBS) (Catalogue 

number: P5368-10PAK), and FACS Lysing Solution (Catalogue number: 

BD/349202), Ethylenediaminetetraacetic acid (EDTA) tube (Catalogue number: 

BD367864) and BD falcon tubes (Catalogue number: BD/352054). Molecules of 

Equivalent Soluble Fluorochrome (MESF) beads (Catalogue number: 827B/10220) 

were purchased from Bangs laboratory.  

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



81 

 

 

5.3.2 Methods 

5.3.2.1 Sample preparation 

The samples were collected and prepared according to the methods described in 

section 4.3.2.1 and 4.3.2.2. 

 

5.3.2.2 Protocol 

5.3.2.2.1 CD8+CD38 Expression  

CD38 expression on CD8 T-cells (CD8+CD38) was determined as follows. BD 

Falcon tubes were labelled for each sample and beads. Twenty µl of the following 

monoclonal antibodies were added into all tubes, CD3 PerCP, CD8 FITC, and CD38 

PE. Fifty µl of each sample was added into tube containing antibodies. The tubes 

were vortexed gently and the samples were incubated for 15 minutes in the dark 

cupboard at room temperature. Four hundred and fifty µl of FACS lysing solution was 

added into all tubes and samples were incubated again for 15 minutes at room 

temperature in the dark cupboard. Beads were prepared as follows, 2 falcon tubes 

were labelled one for mixed beads and one for the blank. Four hundred and fifty µl of 

FACS lysing solution was added into both tubes. Blank beads were added into both 

tubes and the mixed beads were added into the second tube in addition to the blank. 

Following 15 minutes incubation, all samples were analysed immediately, starting 

with the prepared beads. 
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5.3.2.2.2 FoxP3 Expression  

FoxP3 expression was determined as follows. BD Falcon tubes were used during 

sample analysis. Twenty µl of CD45-FITC, CD3-PerCP, and CD4-APC were added 

to falcon tubes which were labelled according to each sample to be analysed and 

standards of lymphocyte subsets (lymphosures) low and normal [Synexa Life 

Sciences 2009]. Hundred µl of sample and lymphosures were added to the tubes 

containing antibodies. Tubes were vortexed and samples were incubated for 20 

minutes in the dark cupboard at room temperature (20-25oC). Following the 

incubation, 900µl of FACS lysing solution was added into all tubes, vortexed and 

samples were incubated for 15 minutes at room temperature in the dark cupboard. 

Following the incubation, samples were centrifuged for 5 minutes at 2000 rpm.  

The supernatant was decanted and the resultant pellet was re-suspended in the 

residual volume of FACS lyse by vortexing gently. Two ml of phosphate buffered 

saline (PBS) was added to all samples and samples were centrifuged at 2000rpm for 

5 minutes. The supernatant was decanted and the resultant pellet was re-suspended 

in the residual volume of PBS. Five hundred µl of Buffer C (Appendix III) was added 

to all samples, tubes vortexed and were incubated for 30 minutes at room 

temperature in the dark cupboard. Following 30 minutes of incubation, samples were 

then centrifuged, supernatant decanted and the resultant pellet was re-suspended in 

the residual volume of buffer C. Twenty µl of FoxP3 PE antibody was added into all 

samples, vortexed and the samples were incubated for 30 minutes at room 

temperature in the dark cupboard. Following the incubation period, 2ml of PBS was 

added into all samples, and were centrifuged at 2000rpm for 5 minutes.  
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The supernatant was decanted and the resultant pellet was re-suspended in the 

residual volume of PBS. Fifty µl of 5% fixative was then added into all samples and 

the samples were analysed within 24 hours. 
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5.4 Results 

5.4.1 CD8+CD38 Expression  

CD8+CD38 expression was significantly up-regulated in HIV positive NHL 

(HIV+NHL) patients as compared to HIV positive patients on a cART regimen (HIV+ 

cART) (10.8 ± 7.80 vs 7.36 ± 6.90; p=0.0104), however, there was no significant 

difference between HIV+NHL and NHL (figure 5.1). NHL patients had higher 

CD8+CD38 expression than controls (9.56 ± 5.53 vs 3.65 ± 1.48; p<0.0001). HIV+ 

cART patients had significantly lower CD8+CD38 expression than cART-naïve HIV+ 

patients (7.36 ± 6.90 vs 15.95 ± 8.81; p<0.0001). cART-naïve HIV+ patients had 

higher CD8+CD38 expression than controls (15.95 ± 8.81 vs 3.65 ± 1.48; p<0.0001). 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



85 

 

 

 

Figure 5.1 CD8+CD38 expression. HIV+NHL, HIV positive non-Hodgkin lymphoma 

patients (n=31); NHL, HIV negative non-Hodgkin lymphoma patients (n=34); HIV+ 

cART, combination antiretroviral therapy treated (cART) HIV positive individuals 

(n=32); cART-naïve HIV+, cART-naïve HIV positive individuals (n=28); Controls, 

Healthy controls (n=16). 
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5.4.1.1 CD8+CD38 Correlations 

The expression of CD8+CD38 was negatively associated with the numbers of CD4 

T-cells (r=-0.4345, p<0.0001); CD19+ B-cells (r=-0.4814, p<0.0001); NKT-cells (r=-

0.2132, p=0.0056); and FoxP3 expression (r=-0.2033, p=0.0078) (figure 5.2A-D). 

CD8+CD38 expression decreased significantly with increasing numbers of CD4 T-

cells, CD19+ B-cells, as well as increasing FoxP3 expression. Following adjustment 

for age, gender, smoking status, viral load and duration of treatment, no significant 

association was observed between CD8+CD38 and HIV+NHL. 
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Figure 5.2 CD8+CD38 Correlations. A) CD4 vs CD8+CD38 B) CD19 vs CD8+CD38 

C) NKT cells vs CD8+CD38 D) FoxP3 vs CD8+CD38. NKT, Natural killer T-cells; 

FoxP3, Forkhead box protein 3. 
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5.4.2 FoxP3 Expression  

The expression of FoxP3 was significantly down-regulated in HIV positive NHL (HIV+ 

NHL) patients as compared to both HIV negative NHL (NHL) patients (4.28 ± 1.87 vs 

6.37 ± 2.04; p<0.0001) and HIV positive patients on a cART regimen (HIV+ cART) 

(4.28 ± 1.87 vs 5.02 ± 0.91; p=0.0171) (figure 5.3). NHL patients had significantly 

lower FoxP3 expression than controls (6.37 ± 2.04 vs 7.59 ± 1.70; p=0.0251). As 

compared to cART-naïve HIV+ patients, HIV+ cART patients had significantly higher 

FoxP3 expression (5.02 ± 0.91 vs 4.02 ± 1.28; p=0.0059). In addition, cART-naïve 

HIV+ patients had significantly lower FoxP3 expression than controls (4.02 ± 1.28 vs 

7.59 ± 1.70; p<0.0001). 
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Figure 5.3 FoxP3 expression. HIV+NHL, HIV positive non-Hodgkin lymphoma 

patients (n=31); NHL, HIV negative non-Hodgkin lymphoma patients (n=34); HIV+ 

cART, combination antiretroviral therapy treated (cART) HIV positive individuals 

(n=32); cART-naïve HIV+, cART-naïve HIV positive individuals (n=28); Controls, 

Healthy controls (n=16). 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



90 

 

 

5.4.2.1 FoxP3 Correlations 

The expression of FoxP3 was positively correlated with the numbers of CD4 T-cells 

(r=0.2979, p=0.0002), and CD19+ B-cells (r=0.2465, p=0.0016) (figure 5.4A and C), 

while it was negatively associated with the numbers of CD8 T-cells (r=-0.2701, 

p=0.0006) and NK-cells (r=-0.2010, p=0.0084) (figure 5.4B and D). In addition, as 

mentioned previously FoxP3 was negatively associated with CD8+CD38 expression 

(section 5.4.1.1). Following adjustment for age, gender, smoking status, viral load 

and duration of treatment, the serum concentrations of FoxP3 were independently 

associated with HIV+NHL (OR = 0.68; 95% CI = 0.44–1.04). 
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Figure 5.4 FoxP3 Correlations. A) CD4 vs FoxP3; B) CD8 vs FoxP3; C) CD19 vs 

FoxP3 D) NK vs FoxP3. FoxP3, Fork head box protein 3; NK, Natural killer cells 
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5.5 Discussion 

5.5.1 CD8+CD38 Expression  

Chronic immune activation has been suggested to be one of the mechanisms 

leading to the development of NHL in HIV+ patients [Epeldegui et al., 2010]. 

Increased expression of CD38 on CD8 T-cells (CD8+CD38) has been previously 

associated with immune activation, progression of HIV disease, and death [Sherman 

et al., 2002]. In the current study, T-cell activation in HIV+NHL patients was 

investigated. There was no significant difference in the expression of CD8+CD38 

between HIV+NHL and NHL patients. However, although there was no significant 

difference, there was a trend towards increased CD8+CD38 expression in HIV+NHL 

patients. In addition, HIV+NHL had significantly elevated T-cell activation as 

compared to HIV+ cART patients (figure 5.1).  

 

CD8+CD38 has been previously shown to function as a signalling molecule in B-cell 

chronic lymphocytic leukemia (B-CLL) and has been linked with disease 

pathogenesis [Deaglio et al., 2006; Tinhofer et al., 2006]. CD8+CD38 expression has 

been shown to be an important prognostic marker in B-CLL that is stable over time 

and is not significantly influenced by chemotherapy [Dürig et al., 2002]. Furthermore, 

as compared to the controls, NHL patients had increased T-cell activation (figure 

5.1). The increased T-cell activation observed in NHL patients may have been 

caused by EBV infection or anti-tumor immune response. CD8 T-cell activation may 

be necessary for killing malignant lymphoma cells in NHL. To confirm if HIV-1 

infection leads to increased T-cell activation, the levels of T-cell activation between 
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cART-naïve HIV and control individuals were compared. T-cell activation was 

significantly elevated in cART-naïve HIV+ patients as compared to the controls. 

Benito and Colleagues [2004], showed that the levels of CD8+CD38 are increased in 

untreated HIV-1 infection, and are strongly associated with plasma viremia. 

Following cART initiation, CD8+CD38 levels declined steadily in HIV+ patients 

[Benito et al., 2004]. Furthermore, Resino and colleagues [2004], showed that HIV-1 

infected children with high CD8+CD38 levels had a higher incidence and relative risk 

of virological failure than those with lower CD8+CD38. In addition, the effect of cART 

in T-cell activation was studied. T-cell activation was significantly up-regulated in 

cART-naïve HIV+ patients as compared to HIV+ cART patients (figure 5.1). These 

results suggest that HIV-1 increases T-cell activation and the cART initiation 

decreases T-cell activation.  

 

Consistent with the current findings, Deeks and colleagues [2004], reported that the 

initiation of cART during early HIV-1 infection reduces the level of CD8 T-cell 

activation. In addition, Almeida and colleagues [2007], showed that prior to cART, 

CD38 expression was increased on peripheral blood CD8 T-cells, cART initiation 

decreased CD38 expression significantly, however, its level of expression remained 

abnormally high after one year of therapy. These findings confirm that CD8+CD38 T-

cell count is a good prognostic marker in HIV-1 infected patients and can predict 

treatment response [Resino et al., 2004; Coetzee et al., 2009; Rönsholt et al., 2012]. 

In the current study, the elevated T-cell activation was negatively associated with the 

numbers of CD4 T-cells, CD19+ B-cells, NKT-cells, and FoxP3 expression (figure 

5.2). These results suggest that as the T-cell activation increases, CD4 T-cell count 
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decreases in HIV+ patients. In addition, T-cell activation increased with decreasing 

FoxP3 expression (figure 5.2). These results suggest that the increased T-cell 

activation observed in HIV+ patients is associated with decreased T-cell regulation. 

The expression of FoxP3 which normally inhibit T-cell activation is reduced, thus T-

cell activation occurs continuously without regulation. This in turn may lead to 

chronic immune activation which may result in increased CD8 and CD4 T-cell 

turnover and rapid progression of HIV disease.  

 

5.5.2 FoxP3 Expression  

FoxP3 plays an important role in regulatory T-cell (T-reg) function, development and 

maintenance [Holmes 2008]. T-reg cells have been implicated in the suppression of 

T-cell activation, proliferation and cytokine production [Card et al., 2009; Presicce et 

al., 2011]. Dysregulated T-reg cell expression has been associated with a number of 

pathological conditions including cancer, infectious and autoimmune diseases 

[Holmes et al., 2008a]. In the current study, the expression of FoxP3 in HIV+NHL 

patients was investigated. The expression of FoxP3 was significantly down-regulated 

in HIV+NHL as compared to NHL as well as when compared to HIV+ cART patients 

(figure 5.3). The reduced FoxP3 expression observed in HIV+NHL may have been 

caused by HIV-1 infection, as the FoxP3 levels are higher in HIV negative NHL and 

cART treated HIV+ patients. This may have detrimental effects on T-cell regulation 

and activation.  
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FoxP3 expression was also down-regulated in NHL patients as compared to the 

controls (figure 5.3). This may have been caused by infection by EBV or the 

detrimental effect of CHOP in the immune system. In a study conducted by El-Sayed 

and colleagues [2013], it was shown that mRNA transcripts as well as percentages 

of FoxP3 were significantly increased in B-cell NHL patients before receiving CHOP, 

when compared to healthy controls, however, after 6 cycles of CHOP treatment 

FoxP3 expression decreased significantly. These results suggest that T-cell 

regulation is impaired in both NHL and HIV+ state.  

 

As mentioned previously, one of the hallmark features of NHL is chronic immune 

activation, which may be due to suppressed T-cell regulation. In addition, the 

reduced T-reg cell expression observed in HIV negative NHL patients may be 

beneficial as they may lead to increased immune activation and anti-tumoral 

responses, while the increased T-reg cell expression could limit the anti-tumor 

immune response, favouring tumor growth and development [El-Sayed et al., 2013; 

Simonetta and Bourgeois 2013]. To investigate the effect of cART on T-cell 

regulation, FoxP3 expression between HIV+ cART and cART-naïve HIV+ patients 

were compared. The expression of FoxP3 was significantly increased in HIV+ cART 

than cART-naïve HIV+ patients (figure 5.3). Thus cART may have increased the 

expression of FoxP3 in this population group. Consistent with the current findings, 

Andersson and colleagues [2005], reported suppressed FoxP3 expression in cART-

naïve HIV+ patients, however, upon initiation of cART, the levels of FoxP3 

expression normalized. cART-naïve HIV+ patients also had decreased FoxP3 

expression as compared to the controls (figure 5.3).  
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This confirms that HIV-1 infection decreases T-cell regulation leading to chronic T-

cell activation and turn-over. T-reg cells have been shown to be susceptible to HIV-1 

infection [Moreno-Fernandez et al., 2009]. These findings are consistent with 

previous studies. It has been previously shown that FoxP3 mRNA levels are 

decreased in peripheral blood CD4 T-cells from HIV+ patients as compared to 

uninfected individuals [Apoil et al., 2005; Simonetta et al., 2013]. In addition, the 

expression of FoxP3 was positively associated with the numbers of CD4 T-cells, and 

CD19+ B-cells (figure 5.4).  

 

The reduced FoxP3 expression observed in the current study, may reflect the impact 

of HIV-1 on CD4 T-cells [Simonetta et al., 2013]. As these patients recover, as a 

result of cART use, their T-cell regulation increases. FoxP3 expression was 

negatively associated with CD8+CD38, CD8, and NK-cells (figure 5.4), that are 

increased in HIV-1 infection. In addition, FoxP3 expression was independently 

associated with HIV+NHL. These findings suggest that FoxP3 expression decreases 

with decreasing CD4 T-cell count in HIV+ state, resulting in suppressed T-cell 

regulation. The depleted T-cell regulation that normally inhibit T-cell activation, may 

lead to uncontrolled persistent and chronic immune activation which in turn may 

result in rapid HIV disease progression.  
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5.6 Conclusion 

T-cell activation is increased in NHL, as evidenced by increased CD8+CD38 

expression in HIV+NHL compared to treated HIV+ patients as well as in NHL as 

compared to controls. The influence of HIV-1 infection on T-cell activation in 

HIV+NHL was not clearly defined in the current study, as there was no significant 

difference between HIV+NHL and HIV negative NHL. However, the current findings 

confirm that T-cell activation is greatly increased in untreated HIV-1 infection. The 

observed chronic T-cell activation in HIV-1 infected patients may have been caused 

by a decreased regulatory T-cell expression. This may lead to increased T-cell turn-

over and exhaustion resulting in immune dysfunction. cART decreases T-cell 

activation while increasing its regulation. This data provides additional support for the 

recommendation that early cART initiation could be beneficial.  
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CHAPTER SIX 

B-CELL ACTIVATION MARKERS 

6.1 Introduction  

It is well established that prolonged HIV-1 infection causes immune dysfunction 

including chronic immune suppression and B-cell hyperactivation [Hussain et al., 

2013]. Systemic chronic immune activation has been shown to be the primary driving 

force in HIV pathogenesis [Miedema et al., 2013; Paiardini and Muller-Trutwin 2013]. 

The causes of HIV associated immune activation are multifactorial and include the 

translocation of microbial products from the gastro-intestinal tract, low level HIV 

viremia and co-infection with other persistent viral pathogens [Taiwo et al., 2013; 

Rajasuriar et al., 2013].  

There are two major avenues for B-cell activation, i.e. the activation that occurs in 

the context of cognate interaction with activated T-cells, whose receptor recognizes 

antigen presented by the B-cells, or activation by T-cell independent antigens 

[Bishop et al., 2003]. The mechanisms underlying B-cell hyper-activation in HIV-1 

infected individuals is poorly understood, however, it has been characterized by 

elevated expression of activation/co-stimulatory markers, spontaneous cytokine 

expression, hyper-gammaglobulinemia, and B-cell malignancies [Siewe et al., 2013]. 

B-cell activation is also characterized by lymphocyte proliferation, class switch 

recombination, and somatic hypermutation, all of which are prone to resultant errors 

in DNA that may lead to lymphomagenesis [De Roos et al., 2012]. Several studies 

indicate that those patients with the most marked B-cell activation are at increased 
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risk of developing NHL [Grulich et al., 2000; Purdue et al., 2009; De Roos et al., 

2012]. The risk of developing NHL of the B-cell type is greatly increased in HIV+ 

patients, particularly DLBCL and BL [Breen et al., 2011; De Roos et al., 2012]. 

Chronic immune activation and B-cell hyper-stimulation may contribute to the risk of 

NHL development among HIV-1 infected individuals [Marks et al., 2013]. Chronic 

immune activation is characterized by aberrant cytokine production, perturbation in 

lymphocyte subsets, and increased lymphocyte turnover is a critical hallmark of HIV-

1 infection and disease progression [Siewe et al., 2013]. We hypothesize that 

biomarkers of immune activation including soluble CD23 (sCD23), sCD27, sCD30 

and sCD44 are elevated in HIV+NHL.  
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6.1.1 Soluble CD20 (sCD20) 

CD20 is a 33 kDa B-cell specific antigen that is expressed from the early pre-B-cell 

stage of development and is lost on differentiation into plasma cells [Roberts et al., 

2002]. CD20 antigen is a membrane bound protein that is thought to play a role in B-

cell activation, differentiation, and cell cycle progression [Johnson et al., 2009; Li et 

al., 2012]. It is an excellent pan B-cell immunophenotypic marker as CD20 is highly 

expressed on the surface of 90-95% of normal and neoplastic B lymphocytes [Li et 

al., 2012]. CD20 is not expressed on immature B precursors and plasma cells [Li et 

al., 2012]. It has a 44 amino acid extracellular domain that is a potential target for 

immunotherapy [Roberts et al., 2002].  

In addition, monoclonal antibodies to CD20 such as rituximab have proven to be an 

effective immunotherapy for B-cell lymphomas [Roberts et al., 2002; Cang et al., 

2012]. Therefore the study of CD20 expression in lymphoma cells is vital not only to 

establish an accurate diagnosis but also to prepare an appropriate plan of treatment 

with biological drugs [Prevodnik et al., 2011]. It has been confirmed that in the 

majority of B-cell lymphomas, the CD20 antigen is expressed on the surface of 

neoplastic cells, however, the intensity of CD20 expression varies by the type of 

lymphoma and by the differentiation of lymphoma B-cells [Prevodnik et al., 2011]. 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



101 

 

 

6.1.2 Soluble CD23 (sCD23) 

CD23 is a 45 kDa transmembrane protein identified as the low affinity receptor of IgE 

and is an adhesion molecule expressed in activated mature B-cells [Fournier et al., 

1992; Lopez-Matas et al., 2000]. The soluble form of CD23 (sCD23) is produced by 

the cleavage of cell surface CD23 and may be involved in the regulation of IgE 

production [Yawetz et al., 1995]. sCD23 products have a variety of functional 

activities such as survival extension of B-cells and the induction of cell growth and 

differentiation not only of B-cells but also of myeloid and T-cells [Lopez-Matas et al., 

2000]. It is a marker present in mediastinal B-cells [Salama et al., 2010].  

It has been shown that IL-4, and IL-2 are the strong inducers of CD23 expression on 

most cell types including normal B-cells and monocytes while it may be up or down-

regulated by interferon-γ (IFN-γ) depending upon the cell type [Fournier et al., 1992]. 

Elevated concentrations of sCD23 were found in the serum of patients with several 

disease states associated with elevated IgE or with enhanced B-cell activation and 

humoral immunity [Yawetz et al., 1995]. sCD23 concentrations are strongly 

associated with disease progression and shorter survival in patients with B-cell 

chronic lymphocytic leukemia [Lesesve et al., 2001]. 
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6.1.3 Soluble CD27 (sCD27) 

CD27 is a glycosylated, type I transmembrane protein of about 55 kDa and exists as 

a homodimer with a disulphide bridge linking the two monomers [Prasad et al., 

1997]. It is a member of the tumor necrosis factor receptor (TNF-R) superfamily and 

is expressed on the surface of T, B, and NK-cells [Prasad et al., 1997; Akiba et al., 

1998; Vitale et al., 2012; Song et al., 2012]. These receptors are known to play an 

important role in cell growth and differentiation, as well as apoptosis or programmed 

cell death [Prasad et al., 1997]. CD27 signalling activates NF-κB, promotes cell 

survival, enhances antigen receptor mediated proliferative signals, and increases 

effector function [Reither et al., 2012; Claus et al., 2012]. However, CD27 

contribution to the immune response is dependent upon CD70 expression, which is 

primarily controlled by antigen receptor and Toll like receptor stimulation [Borst et al., 

2005].  

The interaction of CD27 with CD70 plays an important role in the activation, 

proliferation, and survival of T-cells; in clonal B-cell expansion and germinal centre 

formation; and in NK-cell cytolytic activity [Vitale et al., 2012; Reither et al., 2012]. 

CD27 is widely used as a leukocyte differentiation marker for subset T, B and NK-

cells and is also recognised as a marker for memory B-cells and is held to be of 

diagnostic/predictive value in common variable immunodeficiency [van Montfrans et 

al., 2012]. It has been reported that CD27 deficiency in humans is a new molecularly 

defined primary immunodeficiency disease associated with persistent symptomatic 

EBV viremia, hypogammaglobulinemia and impairment in specific antibody function 

resulting from disturbed CD8+ T-cells and T-cell dependent B-cell responses [van 
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Montfrans et al., 2012]. In addition, it has been shown that CD4+ T-cell help and 

CD27 stimulation supports CD8+ T-cell memory by modulating the expression of 

cytokine receptors that influence the differentiation and survival of memory CD8+ T-

cells [Dong et al., 2012]. Soluble CD27 is a 32 kDa protein that is identical to the 

membrane bound CD27 [Huang et al., 2013].  

It can be released after lymphocyte activation by differential splicing of the receptor 

protein or shedding from the cell surface by metalloproteinases [Huang et al., 2013]. 

Unlike CD27, sCD27 has been detected in serum, plasma, and urine samples from 

healthy individuals, and increased concentrations have been documented in 

systemic lupus erythematosus, viral infections, and lymphoid malignancies [Huang et 

al., 2013]. The concentrations of sCD27 in plasma samples have been used as a 

marker of disease burden in Waldenstroms macroglobulinemia and to monitor 

immune activation during antiretroviral therapy in HIV-1 infected patients [De Milito et 

al., 2002; Huang et al., 2013]. 
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6.1.4 Soluble CD30 (sCD30) 

CD30 is a type I transmembrane glycosylated protein of 120/105 kDa derived from 

90 kDa non-glycosylated precursor [Horie and Watanabe 1998; Blazar et al., 2004; 

Albrecht et al., 2014]. It is a transmembrane glycoprotein and a member of the TNF-

R superfamily [Gardner et al., 2001; Sotomayor et al., 2014]. CD30 is expressed in a 

subset of activated B, T lymphocytes and NK-cells but not in resting mature B or T-

cells and is rarely expressed on non-neoplastic cells outside the immune system 

[Vega 2013]. The role of CD30 in lymphocyte biology is not completely understood, 

but it seems that CD30 signaling participates in the generation and maintenance of 

both memory B and T-cells, proliferation of B-cells and enhancement of 

immunoglobulin production [Vega 2013].  

CD30 activation can lead to a series of pleiotropic effects resulting in proliferation, 

differentiation, or survival, depending upon the cell type, activation state and 

transformation status, as well as the particular signalling pathway that is triggered 

[Sotomayor et al., 2014]. CD30 expression exhibits limited expression in health, 

being predominantly expressed on activated T and B-cells [Buchan and Al-

Shamkhani 2012]. In cancer CD30 is most consistently expressed by Reed-

Sternberg cells of Hodgkin lymphoma and a group of neoplasms known as 

anaplastic large cell lymphoma [Buchan and Al-Shamkhani 2012]. It is expressed on 

many lymphomas of B, T, and NK-cell origin [Podack et al., 2002]. Soluble CD30 

(sCD30) is about 85 kDa and is cleaved from the surface of CD30+ cells by the cell 

surface metalloproteinase TNF-α converting enzyme [Schlaf et al., 2007].  
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Increased serum concentrations of sCD30 are seen in patients with CD30 positive 

neoplasms, some viral infections, and TH2 type immune response [Horie and 

Watanabe 1998]. It has been shown that low serum concentrations of sCD30 are 

found in healthy individuals, whereas increased sCD30 serum concentrations are 

detected under pathophysiological situations [Schlaf et al., 2007].  

 

6.1.5 Soluble CD44 (sCD44) 

CD44 is a transmembrane glycoprotein expressed on the cell surface of lymphocytes 

and other haematopoietic and non-haematopoietic cells [Guan et al., 2009; Hertweck 

et al., 2011; Di Sante et al., 2013]. CD44 which is also known as phagocytic 

glycoprotein-1, Hermes antigen, and extracellular matrix receptor type III (ECM III) 

encompasses a heterogeneous family of receptors with isoforms ranging from 80 to 

200 kDa that are encoded by a single gene composed of 19 exons [Gee et al., 2004; 

Vechon et al., 2006; Iczkowski 2011; Hertweck et al. 2011]. It is a single pass 

transmembrane glycoprotein involved in cell-cell and cell-matrix adhesion and in cell 

signalling [Iczkowski 2011]. Diverse functions have been attributed to CD44, 

including involvement in cellular adhesion and migration, lymphocyte and monocyte 

homing activation and proliferation, cytocidal  activity of natural killer cells, and tumor 

metastasis [Vachon et al., 2006].  
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CD44 is known to be involved in binding, endocytosis, and metabolism of 

hyaluronan, and has additional functions in innate and adaptive immunity [Vachon et 

al., 2006]. CD44 is a major adhesion molecule for the extracellular matrix and has 

been implicated in a wide variety of physiological processes, including lymphocyte 

homing, activation and proliferation, wound healing, and cell migration, lytic activity 

of T-cells and NK-cells, as well as in tumor cell invasion and metastasis [Guan et al., 

2009; Ishimoto et al., 2011]. It is also implicated in several other cellular processes, 

such as regulation of growth, survival, differentiation and motility, both under 

physiologic and pathologic conditions [Di Sante et al., 2013]. In many types of 

cancers including breast, ovarian and NHL high concentrations of CD44 have been 

correlated to unfavourable prognosis [Ristamaki et al., 1997; Sillanpää et al., 2003; 

Louderbough and Schroeder 2011; Chekhun et al., 2013; Di Sante et al., 2013]. 

 

6.2 Specific Aims 

The aim of this study was to determine,  

 The serum concentrations of circulating B-cell activation markers (sCD20, 

sCD23, sCD27, sCD30, sCD44) in HIV+NHL patients and control populations 

 Whether cART has an impact on their serum concentrations 
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6.3 Materials and Methods 

6.3.1 Materials  

The following enzyme linked immunosorbent assay (ELISA) kits and reagents were 

purchased from the Biocom Biotech (Abcam) CC supplier: human sCD23 (Catalogue 

number: AB119512), sCD30 (Catalogue number: AB113332) and sCD44 (Catalogue 

number: AB459122). sCD20 (Catalogue number: E14007H) human B-lymphocyte 

antigen and sCD27 (Catalogue number: EL004910HU) human CD27 antigen ELISA 

kits were purchased from CUSABIO. Serum separator (SST) tubes (Catalogue 

number: BD367955) were purchased from the Scientific Group Pty Ltd supplier of 

Becton Dickinson tubes. 

 

6.3.2 Methods 

6.3.2.1 Sample preparation 

Blood samples were collected using serum separator tubes (SST) and put on ice 

immediately. Samples were allowed to clot for 2 hours, and were centrifuged for 15 

minutes at 1000xg. Resultant serum was collected and aliquoted into cryo-tubes and 

was stored at -20oC. Prior to use in the assay, samples were thawed at room 

temperature and mixed gently. Samples were then diluted according to each 

individual biomarker protocol provided by the supplier. 
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6.3.2.2 Enzyme linked immunosorbent assay (ELISA) 

Enzyme linked immunosorbent assay (ELISA) is a method used for detecting and 

quantifying a specific protein in a complex mixture [Thermo Scientific 2014]. It 

enables analysis of protein samples immobilized in micro-plate wells using specific 

antibodies. The basic principle of ELISA is as follows: i) Coating/Capture: direct or 

indirect immobilization of antigens to the surface of polystyrene micro-plate wells. ii) 

Plate Blocking: addition of irrelevant protein or other molecule to cover all 

unsaturated surface-binding sites of the micro-plate wells. iii) Probing/Detection: 

incubation with antigen-specific antibodies that affinity-bind to the antigens. iv) Signal 

measurement: detection of the signal generated via the direct or secondary tag on 

the specific antibody [Thermo Scientific 2014].  

For example, soluble CD23 (sCD23) human in vitro ELISA kit is designed for 

accurate quantitative measurement of human CD23 concentrations in cell culture 

supernatant and serum/pasma [Abcam 2013]. This assay employs an antibody 

specific for human CD23 pre-coated on a 96 well plate. Standards and test samples 

are added into the wells along with biotinylated CD23 detection antibody and 

incubated at room temperature. CD23 present in a sample is bound to the wells by 

the immobilized antibody. The wells are washed and streptavidin-horseradish 

peroxidase (HRP) conjugate is then added to each well, incubated at room 

temperature and washed. 3,3,5,5-Tetramethylbenzidine (TMB) is added and 

catalyzed by HRP to produce blue colour product that changes into yellow after 

addition of acidic stop solution. The intensity of the colour is measured at 450nm and 
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its density is directly proportional to the amount of CD23 sample captured in the 

plate. 

6.3.2.3 Protocol 

In the current study, assays for sCD20, sCD23, sCD27, sCD30, and sCD44 were 

carried out according to the manufacturer’s protocols. All followed the basic 

principles of ELISA. For example, assay for sCD23 was carried out as follows. 

 

6.3.2.3.1 Reagent preparation (sCD23) 

All reagents and stored serum samples were equilibrated to room temperature (18-

25oC) prior to use. 1x Wash buffer was used to wash the plates, which was prepared 

by diluting the 20x wash buffer stock concentration 5 fold with distilled water (dH2O) 

according to the suppliers’ protocol. To make 500ml 1x wash buffer, 50ml 20x wash 

buffer concentrate was combined with 450 ml dH2O, mixed thoroughly and gently to 

avoid foaming and was used immediately, and the remaining wash buffer was stored 

at 2-8oC for not more than 30 days. 1x Assay Buffer was prepared by diluting the 20x 

Assay buffer concentrate 5x with dH2O. 1x Biotin Conjugated antibody was prepared 

by diluting the anti-Human CD23 monoclonal antibody 100-fold with the prepared 1x-

assay buffer and was used within 30 minutes following dilution. 1x Streptavidin-HRP 

conjugate was prepared by diluting the anti-Streptavidin-HRP conjugate 100 fold with 

1x assay buffer. 
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6.3.2.3.2 Standard preparations (sCD23) 

Serial diluted standards were prepared immediately prior to use according to the 

suppliers protocol. Four hundred U/ml stock standard was prepared by reconstituting 

one vial of Human CD23 standard with 100µl of dH2O, and held at room temperature 

for 10-30 minutes. Seven standards were prepared by adding 225µl sample diluent 

to all tubes, followed by addition of 225µl of the prepared 400U/ml stock standard to 

test tube 1. Two hundred U/ml Standard 2 was prepared by transferring 225µl of the 

400Uml Stock standard to test tube 2, mixed thoroughly and gently. Hundred U/ml 

Standard 3 was prepared by transferring 225µl from standard 2 to tube 3, mix 

thoroughly and gently. Fifty U/ml Standard 4 was also prepared by transferring 225µl 

from standard 3 to tube 4. Twenty five U/ml Standard 5 was prepared by transferring 

225µl from standard 4 to tube 5 and mixed. 12.3U/ml Standard 6 was prepared by 

transferring 225µl from standard 5 to tube 6. Standard 7 contained sample diluents 

with no protein added and was the blank control. 
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6.3.2.3.3 Assay Procedure (sCD23) 

All standards, controls and samples were assayed in duplicates. The micro-plate 

was washed twice with approximately 400µl 1x wash buffer per well with thorough 

aspiration of micro-plate contents between washes. The 1x wash buffer was allowed 

to remain in the wells for about 10-15 seconds before aspiration. Following the last 

wash step, the wells were emptied and the micro-plate was tapped on paper towel to 

remove excess 1x wash buffer. Micro-plate strips were used immediately after 

washing. Hundred µl of prepared standards (including the standard blank control) 

and samples were added to the appropriate wells in duplicates. Fifty µl of sample 

diluent was added to all sample wells (not to standards), followed by the addition of 

50µl of sample diluent Biotin-Conjugate. The micro-plate was covered with adhesive 

film and incubated at room temperature (18-25oC) for 2 hours on a shaker set at 

100rpm.  

The adhesive film was removed, wells emptied and washed 3 times with 

approximately 400µl 1x Wash buffer per well with thorough aspiration of micro-plate 

contents between washes. Hundred µl of Streptavidin-HRP was added to all wells, 

plate covered with adhesive film and incubated at room temperature for 2 hours on 

shaker. The adhesive film was removed, wells emptied and washed 3 times as 

described previously. Hundred µl of TMB substrate solution was added to all wells 

and the micro-plate was incubated at room temperature for 10 minutes on a shaker 

set at 400rpm. Colour development was monitored and the substrate reaction was 

stopped by adding 100µl of stop solution into all wells before signal in the positive 

wells becomes saturated.  
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The absorbance of each micro-plate was read on a spectrophotometer using 450nm 

as the primary wave length. The plate reader was blanked using the blank wells and 

the absorbance was determined for both the samples and standards.  

 

6.3.2.3.4 Calculations 

The duplicate readings were averaged for each standard, sample and blank control. 

The blank control was subtracted from all mean readings and the mean standard 

readings were plotted against their concentrations to construct a standard curve. The 

protein concentrations for unknown and control samples were extrapolated from the 

standard curve plotted. 
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6.4 Results 

6.4.1 Serum concentrations of circulating soluble CD20 (sCD20) 

The serum concentrations of circulating sCD20 were significantly higher in HIV 

positive NHL (HIV+NHL) patients as compared to HIV negative NHL (NHL) patients 

(5.62 ± 1.69 vs 3.92 ± 0.63; p<0.0001) as well as when compared to HIV positive 

patients on a cART regimen (HIV+ cART) (5.62 ± 1.69 vs 4.75 ± 1.34; p=0.0359) 

(figure 6.1). NHL patients had significantly high serum concentrations of circulating 

sCD20 than controls (3.92 ± 0.63 vs 3.04 ± 0.84; p=0.0025). There was no 

significant difference in the serum concentrations of circulating sCD20 between HIV+ 

cART and cART-naïve HIV+ patients. However, cART-naïve HIV+ patients had 

higher serum concentrations of circulating sCD20 than controls (5.11 ± 1.49 vs 3.04 

± 0.84; p<0.0001).  
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Figure 6.1 Serum concentrations of circulating soluble CD20 (sCD20). HIV+NHL, 

HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-

Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy 

treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV 

positive individuals (n=28); Controls, Healthy controls (n=16). 
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6.4.1.1 Soluble CD20 (sCD20) correlations 

The serum concentrations of circulating sCD20 were negatively correlated with the 

numbers of CD4 T-cells (r=-0.3208, p<0.0001), NKT-cells (r=-0.1701, p=0.0219), 

and FoxP3 expression (r=-0.3604, p<0.0001) (figure 6.2A, C, and E), while these 

serum concentrations of circulating sCD20 were positively correlated with the 

numbers of NK-cells (r=0.2261, p=0.0035), and CD8+CD38 expression (r=0.172, 

p=0.0203) (figure 6.2B and D). Following adjustment for age, gender, smoking 

status, viral load and duration of treatment, the serum concentrations of sCD20 were 

independently associated with HIV+NHL (OR = 1.79; 95% CI = 0.69–4.63). 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



116 

 

 

 

Figure 6.2 Soluble CD20 (sCD20) Correlations. A) CD4 vs sCD20; B) NK vs sCD20; 

C) NKT cells vs sCD20 D) CD8+CD38 vs sCD20 E) FoxP3 vs sCD20. NK, Natural 

killer cells; NKT, Natural killer T-cells, FoxP3, Forkhead box protein 3. 
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6.4.2 Serum concentrations of circulating soluble CD23 (sCD23) 

The serum concentrations of circulating sCD23 were significantly higher in HIV 

positive NHL (HIV+NHL) patients as compared to both HIV negative NHL (NHL) 

patients (204.63 ± 92.12 vs 148.76 ± 94.28; p=0.0192) and HIV positive patients on 

a cART regimen (HIV+ cART) (204.63 ± 92.12 vs 139.20 ± 130.83; p<0.0001) (figure 

6.3). However, NHL patients had significantly high serum concentrations of 

circulating sCD23 than controls (148.76 ± 94.28 vs 94.32 ± 35.54; p=0.0178). The 

serum concentrations of circulating sCD23 were significantly higher in HIV+ cART 

patients as compared to cART-naïve HIV+ patients (139.20 ± 130.83 vs 69.28 ± 

48.90; p=0.0074). As compared to the controls, the serum concentrations of 

circulating sCD23 were significantly lower in cART-naïve HIV+ patients (69.28 ± 

48.90 vs 94.32 ± 35.54; p=0.0452).  
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Figure 6.3 Serum concentrations of circulating soluble CD23 (sCD23). HIV+NHL, 

HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-

Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy 

treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV 

positive individuals (n=28); Controls, Healthy controls (n=16). 
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6.4.2.1 Soluble CD23 (sCD23) correlations 

The serum concentrations of circulating sCD23 were positively correlated with the 

numbers of NK-cells (r=0.1976, p=0.0094) (figure 6.4). There was no correlation 

between the serum concentrations of circulating sCD23 and the expression of other 

cell types. Following adjustment for age, gender, smoking status, viral load and 

duration of treatment, the serum concentrations of sCD23 were independently 

associated with HIV+NHL (OR = 1.13; 95% CI = 0.99–1.3). 

 

Figure 6.4 Soluble CD23 (sCD23) Correlations. A) NK cells vs sCD23. NK, Natural 

killer.  
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6.4.3 Serum concentrations of circulating soluble CD27 (sCD27) 

There was no significant difference in the serum concentrations of circulating sCD27 

when HIV positive NHL (HIV+NHL) patients were compared to HIV negative NHL 

(NHL) patients. However, as compared to HIV positive patients on a cART regimen 

(HIV+ cART), the serum concentrations of circulating sCD27 were significantly 

higher in HIV+NHL patients (22.80 ± 11.20 vs 13.71 ± 4.09; p=0.0007) (figure 6.5). 

The serum concentrations of circulating sCD27 were significantly higher in NHL 

when compared to the controls (22.28 ± 12.87 vs 12.21 ± 1.87; p=0.0033). HIV+ 

cART patients had significantly lower serum concentrations of circulating sCD27 as 

compared to cART-naïve HIV+ (13.71 ± 4.09 vs 19.74 ± 9.48; p=0.0038) patients. 

cART-naïve HIV+ patients had higher serum concentrations of circulating sCD27 

than the controls (19.74 ± 9.48 vs 12.21 ± 1.87; p=0.0025). 
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Figure 6.5 Serum concentrations of circulating soluble CD27 (sCD27). HIV+NHL, 

HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-

Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy 

treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV 

positive individuals (n=28); Controls, Healthy controls (n=16). 
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6.4.3.1 Soluble CD27 (sCD27) correlations 

The serum concentrations of circulating sCD27 were negatively correlated with the 

numbers of CD4 T-cells (r=-0.3200, p<0.0001), and FoxP3 expression (r=-0.164, 

p=0.0260) (figure 6.6A and C). However, these serum concentrations of circulating 

sCD27 were positively associated with CD8+CD38 (r=0.201, p=0.0082) (figure 6.6B) 

expression. Following adjustment for age, gender, smoking status, viral load and 

duration of treatment, no significant association between sCD27 and HIV+NHL was 

observed. 

 

Figure 6.6 Soluble CD27 (sCD27) Correlations. A) CD4 vs sCD27 B) CD8+CD38 vs 

CD27 C) FoxP3 vs CD27. FoxP3, Forkhead box protein 3. 
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6.4.4 Serum concentrations of circulating soluble CD30 (sCD30) 

The serum concentrations of circulating sCD30 were significantly higher in HIV 

positive NHL (HIV+NHL) patients as compared to both HIV negative NHL (NHL) 

(577.41 ± 256.31 vs 384.50 ±176.07; p=0.0052) and HIV positive patients on a cART 

regimen (HIV+ cART) (577.41 ± 256.31 vs 274.11 ± 266.13; p<0.0001) (figure 6.7). 

As compared to the controls, NHL patients had significantly higher serum 

concentrations of circulating sCD30 (384.50 ±176.07 vs 239.98 ± 117.04; p=0.0078). 

There was no significant difference in the serum concentrations of circulating sCD30 

between HIV+ cART and cART-naïve HIV+ patients as well as between cART-naïve 

HIV+ patients and controls.  
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Figure 6.7 Serum concentrations of circulating soluble CD30 (sCD30). HIV+NHL, 

HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-

Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy 

treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV 

positive individuals (n=28); Controls, Healthy controls (n=16). 
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6.4.4.1 Soluble CD30 (sCD30) correlations 

The serum concentrations of circulating sCD30 were negatively correlated with the 

numbers of CD4 T-cells (r=-0.1582, p=0.0305) (figure 6.8). There was no significant 

correlation between sCD30 and other cell types. Following adjustment for age, 

gender, smoking status, viral load and duration of treatment, no significant 

association between sCD30 and HIV+NHL was observed. 

 

Figure 6.8 Soluble CD30 (sCD30) Correlations. CD3+CD4 vs sCD30 expression  
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6.4.5 Serum concentrations of circulating soluble CD44 (sCD44) 

The serum concentrations of circulating sCD44 were significantly higher in HIV 

positive NHL (HIV+NHL) patients as compared to both HIV negative NHL (NHL) 

patients (7.25 ± 1.23 vs 6.03 ± 1.41; p=0.0014) and HIV positive patients on a cART 

regimen (HIV+ cART) (7.25 ± 1.23 vs 4.84 ± 1.57; p<0.0001) (figure 6.9). As 

compared to the control population, NHL patients had significantly higher serum 

concentrations of circulating sCD44 (6.03 ± 1.41 vs 4.30 ± 1.37; p=0.0013). HIV+ 

cART patients had significantly lower serum concentrations of circulating sCD44 

than cART-naïve HIV+ patients (4.84 ± 1.57 vs 6.08 ± 2.61; p=0.0130). cART-naïve 

HIV+ patients had higher serum concentrations of circulating sCD44 than controls 

(6.08 ± 2.61 vs 4.30 ± 1.37; p=0.0030).  

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



127 

 

 

 

Figure 6.9 Serum concentrations of circulating soluble CD44 (sCD44). HIV+NHL, 

HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-

Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy 

treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV 

positive individuals (n=28); Controls, Healthy controls (n=16). 
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6.4.5.1 Soluble CD44 (sCD44) correlations 

The serum concentrations of circulating sCD44 were negatively correlated with the 

numbers of CD4 T-cells (r=-0.2848, p=0.0003) and NKT-cells (r=-0.1681, p=0.0232) 

(figure 6.10A and C). However, these serum concentrations of circulating sCD44 

were positively associated with the numbers of NK-cells (r=0.1554, p=0.0329) and 

CD8+CD38 (r=0.1676, p=0.0235) expression (figure 6.10B and D). Following 

adjustment for age, gender, smoking status, viral load and duration of treatment, the 

serum concentrations of sCD44 were independently associated with HIV+NHL (OR = 

5.97; 95% CI = 1.52–23.33). 
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Figure 6.10 Soluble CD44 (sCD44) Correlations. A) CD4 vs sCD44 B) NK cells vs 

sCD44 C) NKT cells vs sCD44 D) CD8+CD38 vs sCD44. NK, Natural killer cells; 

NKT, Natural killer T-cells.  
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6.5 Discussion 

As HIV-1 infection leads to chronic immune activation, the serum concentrations of 

circulating B-cell activation markers were investigated in the current study. B-cell 

activation has been previously suggested to play a role in the development of 

HIV+NHL as shown by the biomarkers of immune activation. However, this has not 

been investigated in our patient population. In the current study, the serum 

concentrations of circulating sCD20, sCD23, sCD27, sCD30 and sCD44 were 

studied. 

 

6.5.1 Soluble CD20 (sCD20) 

CD20 is expressed in more than 90% of B cell lymphoma cells and has become a 

molecular target for monoclonal antibody therapeutics [Tokunaga et al., 2014]. 

Previous studies have shown increased expression of sCD20 in HIV+NHL and 

chimeric antibody against sCD20 (rituximab) has been included as part of 

chemotherapy [Sparano et al., 2010]. In the current study, the serum concentrations 

of circulating sCD20 were significantly elevated in HIV+NHL as compared to NHL, as 

well as when compared to HIV+ cART patients (figure 6.1). These results confirm 

that the serum concentrations of circulating sCD20 are indeed up-regulated in 

HIV+NHL patients and may reflect the B-cell activation observed in this patient 

group. The serum concentrations of circulating sCD20 were increased in NHL 

patients as compared to the controls (figure 6.1). In addition, the effect of cART on 

the serum concentrations of circulating sCD20 was studied. No statistical significant 

difference in serum concentrations of circulating sCD20 between HIV+ cART and 

cART-naïve HIV+ patients was found. This suggests that cART may have no effect 
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on the serum concentrations of circulating sCD20. However, the serum 

concentrations of circulating sCD20 are increased in untreated HIV-1 infection.  

To investigate whether HIV influenced the serum concentrations of circulating 

sCD20, cART-naïve HIV+ patients were compared with the control populations. The 

serum concentrations of circulating sCD20 were significantly higher in cART-naïve 

HIV+ patients as compared to the controls. This suggests that HIV-1 infection 

increases the serum concentrations of circulating sCD20. It has been shown that 

sCD20 expression is higher in more advanced HIV diseases [Staal et al., 1992].  

 

The elevated serum concentrations of circulating sCD20 were negatively associated 

with the numbers of CD4 T-cells, NKT-cells and FoxP3 expression (figure 6.2A, C, 

and E), all of which are down-regulated by HIV-1 infection. Staal and colleagues 

[1992], reported that sCD20 expression tends to be highest in HIV-1 infected 

patients who have the fewest CD4 T-cell count. Furthermore, the serum 

concentrations of circulating sCD20 were positively correlated with the numbers of 

NK-cells and CD8+CD38 expression (figure 6.2B and D). In addition, the serum 

concentrations of sCD20 were independently associated with HIV+NHL. This data 

suggests that serum concentrations of circulating sCD20 are elevated in HIV+NHL 

and this may contribute to chronic B cell activation observed in HIV+NHL and 

untreated HIV+ patients. 
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6.5.2 Soluble CD23 (sCD23) 

As mentioned previously, sCD23 plays a role in survival extension of B-cells and the 

induction of cell growth and differentiation of B, myeloid and T-cells [Lopez-Matas et 

al., 2000]. Therefore sCD23 may play a role in the development of B-cell 

malignancies such as DLBCL. Serum sCD23 concentrations have been shown to be 

elevated prior to the diagnosis of HIV+NHL and they may serve as a predictive 

marker for the development of HIV+NHL in HIV-1 infected patients [Hennig et al., 

1998; Schroeder et al., 1999]. In the current study, the serum concentrations of 

circulating sCD23 were significantly higher in HIV+NHL as compared to NHL as well 

as when compared to HIV+ cART patients (figure 6.3). These results suggest that 

sCD23 is increased in HIV+NHL and are consistent with previous studies.  

 

The elevated serum concentrations of circulating sCD23 observed in the current 

study may have been caused by persistent infection by HIV-1 virus which causes 

immune activation. This has been confirmed by increased serum concentrations of 

circulating sCD23 in NHL when compared to a control population. However, in a 

multicentre HIV cohort study, Schroeder and colleagues [1999], showed elevated 

serum sCD23 concentrations in HIV+NHL, and these concentrations were not 

mediated by EBV in these patients. In a group of 134 patients, Bossolasco and 

colleagues [2001] reported higher concentrations of sCD23 in the cerebrospinal fluid 

from HIV+NHL patients with brain involvement. In contrast, Jarrin and colleagues 

[2011], reported that elevated serum concentrations of sCD23 did not predict the 

clinical appearance of HIV+NHL, but the expression of sCD23 at diagnosis was 

elevated as compared with controls.  
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In addition, the serum concentrations of circulating sCD23 were significantly 

increased in HIV+ cART than cART-naïve HIV+ patients in the current study (figure 

6.3). Thus, cART did not have an impact on the serum concentrations of circulating 

sCD23 in the current study. In contrast, Yawetz and colleagues [1995], showed that 

serum sCD23 concentrations were elevated in HIV-1 infected patients who 

developed HIV+NHL as compared to treated HIV+ patients and healthy controls. 

Thus, the observed increased serum concentrations of circulating sCD23 in cART-

naïve HIV+ patients may contribute to lymphomagenesis. Furthermore, the elevated 

serum concentrations of circulating sCD23 were positively associated with NK-cells 

which may play a role in eradication of lymphoma cells. In addition, the serum 

concentrations of sCD23 were independently associated with HIV+NHL. These 

findings confirm the association between HIV-1 infection with increased serum 

concentrations of circulating sCD23. 

 

6.5.3 Soluble CD27 (sCD27) 

sCD27 plays an important role in the activation, proliferation, and survival of T-cells, 

B-cell clonal expansion as well as in NK-cell cytolytic activity and has been used 

routinely as a marker of memory B-cells [Siedel 2012]. sCD27 is a biomarker 

associated with both T and B-cell activation [Najafi et al., 2013], thus increased 

serum concentrations of sCD27 in HIV+NHL may be expected as increased B-cell 

activation were previously reported in this patient population. In the current study, 

there was no significant difference in the serum concentrations of circulating sCD27 

between HIV+NHL and NHL. However, the serum concentrations of circulating 

sCD27 were significantly higher in HIV+NHL when compared to HIV+ cART patients 
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(figure 6.5). In addition, serum concentrations of circulating sCD27 were significantly 

increased in NHL as compared to controls. These findings suggest that the serum 

concentrations of circulating sCD27 are elevated in NHL regardless of the HIV 

status. However, the HIV-1 infection did not influence the serum concentrations of 

circulating sCD27 within the lymphoma groups. Widney and colleagues [1999], 

reported that serum sCD27 concentrations in HIV+NHL were twice as high as the 

concentrations seen in treated HIV-1 infected patients and controls. Furthermore, 

Goto and colleagues [2012], demonstrated that elevated serum sCD27 

concentrations are associated with poor outcome in DLBCL patients. In the current 

study, the serum concentrations of circulating sCD27 were significantly lower in HIV+ 

cART as compared to cART-naïve HIV+ patients (figure 6.5).  

 

The serum concentrations of circulating sCD27 were elevated in cART-naïve HIV+ 

patients as compared to the controls. The increased serum concentrations of 

circulating sCD27 may have been caused by chronic immune activation which is a 

hallmark feature of HIV-1 infection. These findings suggest that the serum 

concentrations of circulating sCD27 are elevated in HIV+ patients and cART may 

partially decrease them. In addition, the serum concentrations of circulating sCD7 

were negatively associated with CD4 T-cell counts and FoxP3 expression (figure 

6.6A and C), while they correlated positively with CD8+CD38 expression (figure 

6.6B). These findings confirm the association between HIV-1 infection and T-cell 

activation with increased serum sCD27 concentrations. The increased immune 

activation may have led to decreased CD4 T-cell counts and FoxP3 expression. T-
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cell activation which is the hallmark feature of HIV-1 infection, may have contributed 

to the observed elevated serum concentrations of circulating sCD27. 

 

6.5.4 Soluble CD30 (sCD30) 

sCD30 is expressed in activated B, T and NK-cells, thus its expression may be 

increased in HIV+NHL. In the current study, the serum concentrations of circulating 

sCD30 were significantly up-regulated in HIV+NHL as compared to both NHL and 

HIV+ cART patients (figure 6.7). In addition, the serum concentrations of circulating 

sCD30 were significantly increased in NHL patients as compared to the controls 

(figure 6.7). These results suggest that sCD30 is increased in HIV+NHL and HIV 

negative NHL. Thus, the serum concentrations of circulating sCD30 are increased in 

NHL patients regardless of the HIV status. It has been reported that the serum 

concentrations of sCD30 increases in some neoplastic diseases as the result of 

release by neoplastic and reactive cells expressing CD30 [Horie and Watanabe 

1998]. In a cross sectional study, Breen and colleagues [2006], reported elevated 

serum sCD30 concentrations in HIV+NHL as compared to HIV+ cART and healthy 

controls.  

 

In a prospective study, Purdue and colleagues [2009], showed that serum sCD30 

concentrations were 39% higher in NHL patients as compared to healthy controls. In 

the current study, there was no significant difference in the serum concentrations of 

circulating sCD30 between HIV+ cART and cART-naïve HIV+ patients (figure 6.7). 

HIV-1 infection was not associated with the serum concentrations of circulating 

sCD30 in the current study and this is in agreement with the lack of significant 
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difference between cART-naïve HIV+ patients and controls (figure 6.7). However, the 

serum concentrations of circulating sCD30 were negatively associated with CD4 T-

cell counts. It has been shown that sCD30 expression and stimulation may play an 

important role in both HIV-1 replication and the death of HIV-1 infected CD4 T-cells 

[Romagnani et al., 1996]. As mentioned previously, sCD30 is expressed in activated 

T and B-cells, thus the increased serum concentrations of circulating sCD30 that 

were observed in the current study reflect the increased T and B-cell activation which 

is also confirmed by the negative correlation with CD4 T-cell count. The increased 

serum concentrations of circulating sCD30 have been observed in HIV-1 infected 

patients and were associated with a more rapid disease progression and poor 

survival [Horie and Watanabe 1998].  

 

6.5.5 Soluble CD44 (sCD44) 

sCD44 has been previously implicated in tumor metastasis and progression [Jothy 

2003; Marhaba and Zoller 2004; Heyse et al., 2010]. In addition, sCD44 is involved 

in the development and progress of haematological neoplasia by enhancement of 

apoptotic resistance, invasiveness, as well as regulation of bone marrow homing, 

and mobilization of leukemia initiating cells in the peripheral blood [Hertweck et al., 

2011]. The altered sCD44 expression has been used as a marker of poor prognosis 

in most haematological malignancies [Hertweck et al., 2011]. The serum 

concentrations of circulating sCD44 were greatly increased in HIV+NHL as 

compared to both NHL and HIV+ cART patients in the current study (figure 6.9). 

These findings suggest that serum concentrations of circulating sCD44 are elevated 
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in HIV+NHL. Breen and colleagues [2005], showed that serum concentrations of 

sCD44 are significantly elevated in HIV+ patients who went on to develop HIV+NHL.  

It has been reported that elevated serum sCD44 concentrations at diagnosis is 

associated with a high IPI score, poor response to treatment, and unfavourable 

outcome in NHL [Ristamaki et al., 1997; Navarro et al., 2000]. In addition, serum 

concentrations of circulating sCD44 were elevated in NHL as compared to controls in 

the current study (figure 6.9). This confirms the increased serum sCD44 

concentrations in NHL regardless of the HIV status and this may result in an 

unfavourable outcome. However, HIV+ cART patients had significantly lower serum 

concentrations of circulating sCD44 than cART-naïve HIV+ patients (figure 6.9). In 

addition, the serum concentrations of circulating sCD44 were significantly increased 

in cART-naïve HIV+ patients as compared to the controls (figure 6.9).  

 

These results suggest that the serum concentrations of circulating sCD44 are greatly 

increased in HIV+ patients, and cART may reduce the expression of sCD44 in HIV+ 

patients. The observed high serum concentrations of circulating sCD44 in HIV+NHL 

may have been caused by HIV-1 infection. In addition, the serum concentrations of 

circulating sCD44 were negatively associated with the numbers of CD4 T-cells and 

NKT-cells (figure 6.10A and C) in the current study. However, the serum 

concentrations of circulating sCD44 were positively associated with the numbers of 

NK-cells and CD8 T-cell activation. In addition, the serum concentrations of sCD44 

were independently associated with HIV+NHL. The increased T-cell activation 

occurring in HIV+ patients may have led to increased serum concentrations of 

circulating sCD44. 
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6.6 Conclusion 

The serum concentrations of circulating B-cell activation markers are elevated in 

HIV+NHL patients and cART may decrease them. B-cell activation is increased in 

HIV+NHL as evidenced by increased B-cell activation markers investigated in this 

study, and is associated with decreased CD4 T-cell counts and increased T-cell 

activation. The serum concentrations of sCD20, sCD23 and sCD44 are 

independently associated with HIV+NHL. These findings confirm that B-cell 

activation is increased in untreated HIV+ patients and in NHL patients. The 

increased immune activation in this patient population group may have been caused 

by persistent HIV-1 infection, as well as suppressed immune regulation. 
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CHAPTER SEVEN 

PRO-INFLAMMATORY CYTOKINES 

 

7.1 Introduction  

Inflammation is a co-ordinated process induced by microbial infection or tissue injury 

[Barton 2008]. It is an adaptive response that is triggered by noxious stimuli and 

conditions whose main function is to resolve the infection or repair the damage and 

return to a state of homeostasis [Barton 2008; Medzhitov 2008]. Inflammation can 

occur in response to dietary or environmental factors, infection, and autoimmune 

diseases [Beyaert et al., 2013]. The inflammatory response to infection has 

traditionally been classified as 4 distinct phases i.e. recognition of infection, 

recruitment of cells to the site of infection, elimination of the microbe, and resolution 

of inflammation and return to homeostasis [Barton 2008].  

The inflammatory response triggered by infection precedes tumor development and 

is part of the normal host defence against pathogens [Grivennikov et al., 2010]. 

Tumor micro-environment contains innate immune cells (including macrophages, 

neutrophils, mast cells, myeloid derived suppressor cells, dendritic cells, and NK-

cells) and adaptive immune cells (T and B lymphocytes) in addition to the cancer 

cells and their surrounding stroma [Balkwill and Mantovani 2001; Grivennikov et al., 

2010]. Inflammation is recognized as a hallmark feature of cancer development and 

progression [Diakos et al., 2014]. The hallmarks of cancer related inflammation 

include the presence of inflammatory cells and inflammatory mediators (such as 

chemokines, cytokines and prostaglandins) in tumor tissues, tissue remodelling and 

Stellenbosch University  https://scholar.sun.ac.za



140 

 

 

angiogenesis similar to that seen in chronic inflammatory responses and tissue 

repair [Mantovani et al., 2008]. The connections between inflammation and cancer 

consist of two pathways i.e. i) Extrinsic pathway which is driven by inflammatory 

conditions that increase cancer risk (such as inflammatory bowel disease); ii) 

Intrinsic pathway which is driven by genetic alterations that cause inflammation and 

neoplasia (such as oncogenes) [Balkwill and Mantovani 2001; Mantovani et al., 

2008]. Chronic inflammation can initiate tumorigenesis by directly causing DNA 

alterations or making cells more susceptible to mutagens [Beyaert et al., 2013].  

Persistent infections within the host, induce chronic inflammation which can result in 

leukocytes and other phagocytic cells to induce DNA damage in proliferating cells, 

through their generation of reactive oxygen and nitrogen species that are normally 

produced by these cells to fight infections [Coussens and Werb 2002; Grivennikov 

and Karin 2010]. These species react to form peroxynitrite, a mutagenic agent that 

causes genomic alterations such as point mutations, deletions, or rearrangements 

[Coussens and Werb 2002]. Oncogene activation or cell senescence induced by 

DNA damage or oncogene activation can enhance the transcription of pro-

inflammatory genes, coding for cytokines and chemokines [Grivennikov and Karin 

2010]. There is evidence that local inflammatory processes and antigenic drive can 

promote lymphoma development at the site of inflammation/immune activation 

[Baecklund et al., 2014].  
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Inflammatory cytokines produced by tumor infiltrating immune cells, such as IL-6 and 

tumor necrosis factor-α (TNF-α) can serve as mitogens and survival factors for pre-

malignant and fully established cancer cells [Grivennikov and Karin 2010]. 

Inflammation also contributes to the induction of angiogenesis, which is critical for 

supplying the growing tumor with necessary nutrients and oxygen [Grivennikov and 

Karin 2010]. Much of the growth stimulating cross-talk between immune and 

malignant cells is mediated by cytokines that activate the oncogenic transcription 

factors NF-kB and STAT3 [Grivennikov and Karin 2010]. Cytokines released by the 

chronic inflammatory cells, such as IL-10 which inhibits T-cell proliferation, may 

contribute to the proliferation of EBV infected B-cells which subsequently accumulate 

genetic alterations, undergo clonal selections and eventually evolve into lymphoma 

[Baecklund et al., 2014]. 
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7.1.1 Cytokines  

Cytokines are a group of low molecular weight, soluble proteins that arise from one 

cell and which affect and regulate the activity of immune cells by transmitting 

intercellular signals [Leonard and Lin 2000]. Cytokines are produced by many cell 

populations, but they are predominantly produced by helper T-cells and 

macrophages [Zhang and An 2007]. They may act on the cells that secrete them 

(autocrine), on nearby cells (paracrine), or in some instances on distant cells 

(endocrine) [Zhang and An 2007]. Cytokines control a variety of important biological 

responses related to haematopoiesis and immune function [Imada and Leonard 

2000]. They control growth, differentiation, and other functions of immune and 

haematopoietic cells [Yasukawa et al., 2000; Imada and Leonard 2000].  

Cytokines play an essential role in the development, differentiation, and function of 

myeloid and lymphoid cells [Tamiya et al., 2011]. Over the years, the signalling 

pathways induced by these cytokines have been extensively studied, including 

Janus kinase (JAK)/signal transducers and activators of transcription (STAT) 

pathway (figure 7.1) [Imada and Leonard 2000; Shuai and Liu 2003]. JAK/STAT 

pathway plays an essential role in driving biological responses to cytokines [Imada 

and Leonard 2000]. In this pathway, cytokine binding results in receptor 

oligomerization, which initiates the activation of JAK tyrosine kinases (JAK1, JAK2, 

JAK3, and Tyk2) which in turn phosphorylate STATs, leading to a rapid signalling 

and translocation from the cell surface to the nucleus where they activate gene 

transcription [Imada and Leonard 2000; Shuai and Liu 2003; Tamiya et al., 2011].  
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Figure 7.1: Schematic representation of the Janus kinase (JAK) signal transducer 

and activator of transcription (STAT) pathway. The activation of JAKs after cytokine 

stimulation results in the phosphorylation of STATs, which then dimerize and 

translocate to the nucleus to activate gene transcription. [From: Shuai and Liu 2003]. 

 

Cytokines can be classified into two major groups based on their functional 

characteristics i.e. TH1 and TH2 cytokines [Leonard and Lin 2000; Coussens and 

Werb 2002]. TH1 cytokines include among others IL-1, IL-2, IFN-γ, TNF-α, and TH2 

cytokines include IL-4, IL-6, IL-10 and IL-13 (figure 7.2) [Leonard and Lin 2000; 

Coussens and Werb 2002]. The primary function of cytokines is the mediation and 

regulation of immunity, inflammation and haematopoiesis [Myers 2009]. Some 
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cytokines promote inflammation and are called pro-inflammatory cytokines, whereas 

others suppress the activity of pro-inflammatory cytokines and are known as anti-

inflammatory cytokines (figure 7.2) [Dinarello 2000; Zhang and An 2007]. The 

imbalance in the concentrations of these cytokines may result in tumour growth or 

regression [Coussens and Werb 2002]. Inflammatory cells are present in most solid 

tumors [Beyaert et al., 2013]. These cells promote tumor cell survival, proliferation, 

and dissemination, and high concentrations are associated with a poor prognosis 

[Beyaert et al., 2013].  

Pro-inflammatory cytokines are associated with tumor invasion and progressive 

disease and are released in response to many antineoplastic agents [Myers 2009]. 

Inflammatory mediators, including cytokines such as TNF-α, IL-1 and IL-6, growth 

factors, chemokines, and proteases produced by tumor associated lymphocytes and 

macrophages can enhance tumor cell growth and metastasis by promoting their 

survival, proliferation, migration to and invasion of other tissues [Beyaert et al., 

2013].  
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Figure 7.2: Cytokine and chemokine balances regulate neoplastic outcome. [From: 

Coussens and Werb 2002]. 
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7.1.1.1 Interferon gamma (IFN-γ)  

Interferons (IFNs) are proteins that share significant amino acid homology with each 

other and exhibit similar biological effects on target cells, including antiviral, anti-

proliferative, and immunomodulatory activities [Platanias and Fish 1999]. There are 

two major classes of human interferons: type I and type II [Platanias and Fish 1999; 

Schroder et al., 2004]. The family of type I IFNs incudes three different subtypes, 

IFN-α, IFN-β and IFN-ω; while there is only one type II IFN i.e. IFN-γ [Platanias and 

Fish 1999; Schroder et al., 2004]. The current study will focus on IFN-γ. IFN-γ is a 

homodimer glycoprotein consisting of 21-24 kDa subunits, produced by T-cells, 

natural killer (NK) cells, B-cells and professional antigen-presenting cells (APCs) 

[Kedzierska and Crowe 2001; Schroder et al., 2004].  

IFN-γ is structurally unrelated to type I IFNs, binds to a different receptor, and is 

encoded by a separate chromosomal locus [Schroder et al., 2004]. It plays a pivotal 

role in the regulation of the host immune response against viral and intracellular 

bacterial pathogens [Frucht et al., 2001; Roff et al., 2014]. High concentrations of 

IFN-γ are secreted by TH1 cells, CD8+ cytotoxic T lymphocytes, and NK-cells during 

active infection [Roff et al., 2014]. IFN-γ has a major effect on the regulation of 

antigen presentation by macrophages and dendritic cells, and in induction of class 

switching of B-cells [Roff et al., 2014]. IFN-γ production by professional APCs acting 

locally is important in cell self-activation and activation of nearby cells [Schroder et 

al., 2004]. In addition, IFN-γ is one of the most important endogenous mediators of 

immunity and inflammation [Hu and Ivashkiv 2009]. IFN-γ plays a key role in 

macrophage activation, inflammation, host defence against intracellular pathogens, 
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TH1 cell responses, and tumor surveillance and immune editing [Hu and Ivashkiv 

2009]. In addition, IFN-γ exerts regulatory functions to limit tissue damage 

associated with inflammation and to modulate T helper and regulatory T-cell 

differentiation [Hu and Ivashkiv 2009]. IFN-γ primarily signals through the JAK/STAT 

pathway (figure 7.1), a pathway used by over 50 cytokines, growth factors, and 

hormones to affect gene regulation [Schroder et al., 2004]. It has been shown that 

throughout the acute stage of HIV-1 infection, IFN-γ concentrations increase steadily 

with a peak approximately 20-24 days post infection [Roff et al., 2014].  

 

7.1.1.2 Interleukin-1 beta (IL-1β) 

Interleukin-1 is a large family of cytokines that mediate innate immune responses to 

defend the host against pathogens [Acuner Ozbabacan et al., 2014]. There are 11 

members of the IL-1 family of ligands including IL-1α, IL-1β, and IL-1 receptor 

antagonist [Dinarello 2009; Dinarello 2011]. The first discovered family members are 

IL-1α and IL-1β, and they are secreted by macrophages and epithelial cells in 

response to pathogens and they have strong pro-inflammatory properties leading to 

fever and activation of T-cells and macrophages [Acuner Ozbabacan et al., 2014]. 

IL-1β is a 17kDa protein encoded on the long arm of chromosome 2 and is produced 

mainly by monocytes, macrophages, and dendritic cells in response to a variety of 

bacterial products, principally via interactions with toll-like receptors [Connolly et al., 

2005]. In addition, IL-1β is a pro-inflammatory cytokine produced predominantly by 

cells of macrophage lineage, and to a lesser extent by B-cells, endothelial cells and 

fibroblasts in response to infections and inflammation [Kedzierska and Crowe 2001]. 
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IL-1β is synthesized as an inactive precursor requiring cleavage by IL-1β converting 

enzyme, also known as caspase-1 to the active cytokine [Connolly et al., 2005]. IL-

1β can mediate inflammatory responses by supporting T-cell survival, up-regulation 

of the IL-2 receptor on lymphocytes, enhancing antibody production of B-cells and by 

promoting B-cell proliferation and TH17 cell differentiation [Krause et al., 2012]. Apart 

from its role in host defence, IL-1β is known to be important in a number of severe 

inflammatory diseases including the rare cryopyrin-associated periodic syndromes 

and other hereditary and polygenic auto-inflammatory diseases [Krause et al., 2012]. 

In humans, blocking IL-1 activity, particularly IL-1β has entered clinical medicine 

[Dinarello 2009]. Clinically, elevated IL-1β concentrations have been associated with 

many human diseases, and blocking IL-1β activity is currently the standard therapy 

for auto-inflammatory diseases [Karimbux et al., 2012].  

It has been reported that HIV-1 replication is increased by the presence of IL-1β, but 

this effect is complex and appears to be related to both the presence of additional 

replication stimuli and the specific viral subspecies [Connolly et al., 2005]. In 

addition, there is conflicting data on the level of expression of IL-1β in HIV-1 infected 

individuals. Some studies show decreased concentrations, while others show 

increased IL-1β concentrations in progressive HIV disease [Connolly et al., 2005]. It 

has been shown that IL-1β contributes to increased in vitro susceptibility of both 

naïve and memory CD4 and CD8 T-cells to apoptosis in the setting of HIV-1 infection 

[Connolly et al., 2005]. 

 

Stellenbosch University  https://scholar.sun.ac.za



149 

 

 

7.1.1.3 Interleukin-2 (IL-2)  

Interleukin-2 (IL-2) a 14-17kDa monomeric glycoprotein, is a TH1 cytokine that is 

produced by T-cells and it regulates the proliferation and survival of lymphocytes, 

mainly CD4 cells [Kedzierska and Crowe 2001; Molina et al., 2009; de Lastours et 

al., 2014]. IL-2 mediates a number of biologic activities that may promote immune 

system functions [Mitsuyasu 2001]. The primary role of IL-2 is to stimulate the 

proliferation of activated T-cells, cytotoxic activity of CD8 T-cells and NK-cells, as 

well as inducing B-cells and monocytes [Kedzierska and Crowe 2001]. During 

steady-state conditions, IL-2 is mainly produced by CD4 T-cells in secondary 

lymphoid organs and, to a lesser extent by CD8 T-cells, NK-cells and NKT-cells 

[Boyman and Sprent 2012]. Under certain conditions, IL-2 can also be synthesized in 

small amounts by activated dendritic cells (DCs) and mast cells [Boyman and Sprent 

2012]. IL-2 production by CD4 and CD8 T-cells is strongly induced following 

activation by antigen [Boyman and Sprent 2012].  

IL-2 production is regulated by several mechanisms, including silencing of IL-2 gene 

by the transcription factor B lymphocyte-induced maturation protein 1 (BLIMP1) 

[Boyman and Sprent 2012]. IL-2 acts on cells expressing either the high-affinity IL-

2R or the low-affinity dimeric IL-2R [Boyman and Sprent 2012]. IL-2 signaling has 

been associated with T-reg cell development, homeostasis and function [Fontenot et 

al., 2005]. IL-2 is crucial for the maintenance of immune homeostasis, as it plays a 

central role in down-regulating immune responses and its absence results in severe 

autoimmunity due to a failure to eliminate activated T-cells [Gaffen and Liu 2004]. IL-

2 plays a complex immune-regulatory role by inducing activated cells to enter pre-
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apoptotic phase, increasing the levels of production of pro-inflammatory cytokines, 

and influencing T-cell differentiation [De Paoli 2001]. Several functions mediated by 

IL-2 suggest that it might be useful as an anticancer agent; as it supports the growth 

of cytotoxic cells, enhances the cytotoxicity of NK-cells, and is essential for the 

induction of lymphokine-activated killer cells [De Paoli 2001]. In addition, IL-2 therapy 

has been shown to lead to substantial increases in CD4 T-cell count and decreases 

the viral load in HIV-1 infected patients [Weissman et al., 2000; Josefson 2000; 

Sereti et al., 2004; de Lastours et al., 2014]. 

 

7.1.1.4 Interleukin-4 (IL-4)  

Interleukin-4 (IL-4) an 18kDa monomeric protein, is a TH2 cytokine produced 

predominantly by activated CD4 T-cells, NK-cells, mast cells and basophils 

[Kedzierska and Crowe 2001]. IL-4 is a multifunctional pleiotropic cytokine that 

participates in the regulation of the immune system at multiple levels [Zamorano et 

al., 2003; Goldstein et al., 2011; Luzina et al., 2012]. It is the mediator produced 

mainly by activated T-cells but also by mast cells, basophils, and eosinophils [Luzina 

et al., 2012]. IL-4 acts upon a broad range of targets, including haematopoietic cells, 

endothelial cells and tumor cells [Goldstein et al., 2011]. IL-4 is a growth and survival 

factor for lymphocytes [Zamorano et al., 2003]. It stimulates B-cell activation and 

differentiation, secretion of IgG1 and IgE, T-cell activation and MHC II expression on 

B-cells and macrophages [Kedzierska and Crowe 2001]. Although it was discovered 

as a B-cell differentiation and stimulatory factor, its role in regulating T-cell 

differentiation is critical during the immune response [Zamorano et al., 2003].  
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IL-4 plays an essential role by promoting TH2 cell differentiation while inhibiting TH1 

cell differentiation [Zamoramo et al., 2003]. IL-4 is also able to protect lymphoid cells 

from apoptosis, but it is unable to promote proliferation of small resting lymphocytes 

without a co-stimulatory signal such as that provided through antigen receptor 

engagement [Zamoramo et al., 2003]. IL-4 is a potent anti-apoptotic cytokine, 

therefore it is a survival factor for tumor cells, and it can protect tumor cells from 

apoptosis induced by multiple agents including those used in anti-tumor therapies 

[Zamorano et al., 2003]. Thus, it is possible that IL-4 participates in resistance to 

cancer treatments [Zamorano et al., 2003]. In addition, it has been shown that IL-4 is 

an important regulator of HIV-1, and plays a critical role in the control of viral 

evolution and accelerated disease progression has been suggested [Valentin et al., 

1998]. 

 

7.1.1.5 Interleukin-6 (IL-6)  

Interleukin-6 (IL-6) is a 26kDa pleiotropic cytokine produced by a variety of cell 

types, including fibroblasts, endothelial cells, monocytes, normal haematopoietic 

cells and lymphocytes in response to viral or bacterial infection [Emilie et al., 1992; 

Fayad et al., 2001; Kedzierska and Crowe 2001]. It has a wide spectrum of activities 

including B-cell stimulation, monocyte differentiation and induction of IL-4 producing 

cells [Kedzierska and Crowe 2001]. IL-6 mediates B-cell terminal differentiation and 

maturation as well as antibody synthesis by activated B-cells at the mRNA level 

[Connolly et al., 2005]. Acting synergistically with IL-1β and TNF-α, IL-6 is involved in 

T-cell activation, growth, and differentiation [Connolly et al., 2005].  
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Dysregulation of IL-6 type cytokine signalling contributes to the onset and 

maintenance of several diseases including cancer [Heinrich et al., 2003]. It has been 

shown that IL-6 functions as an autocrine factor in tumor cells and can also act as an 

attractant for the circulating tumor cells [Kamimura et al., 2014]. Many studies have 

demonstrated that IL-6 expression and secretion are abnormally high in HIV-1 

infected individuals [Connolly et al., 2005].  

The high levels of IL-6 expression increase both HIV-1 replication in latently infected 

macrophages and alter the function of infected macrophages, likely rendering them 

sub-optimally functional [Connolly et al., 2005]. In addition, earlier studies suggested 

a possible role for dysregulated production of IL-6 in malignant lymphomas [Fayad et 

al., 2001]. It has been shown that HIV associated B-cell lymphoma cell lines produce 

large amounts of IL-6 [Fayad et al., 2001]. Serum IL-6 concentrations have been 

correlated with an increased risk for the development of lymphoma in HIV+ patients 

and have been associated with adverse prognostic features, and predictive of a poor 

failure free and overall survival [Fayad et al., 2001].  
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7.1.1.6 Interleukin-8 (IL-8)  

Interleukin-8 (IL-8) is predominantly a 72 amino acid peptide expressed in many cell 

types and is released in response to pro-inflammatory stimuli [Xiong et al., 2003]. IL-

8 was originally identified as a neutrophil chemotactic factor in the supernatants of 

activated human monocytes [Xie 2001]. IL-8 alternatively known as CXCL8, is a pro-

inflammatory CXC α chemokine and its main function is chemotaxis of neutrophils 

and T-cells [Zeilhofer and Schorr 2000; Waugh and Wilson 2008; Cui et al., 2012]. 

Chemokines is a family of pro-inflammatory cytokines playing a role in immune 

system regulation, cell growth, cell development, and inflammation [Cui et al., 2012]. 

Chemokines play an important role in attracting granulocytes into sites of 

inflammation [Petering et al., 1999]. In addition, IL-8 is involved in a wide variety of 

physiologic and pathophysiologic processes ranging from host defence against 

bacterial infections and phagocytosis of necrotic tissue to numerous autoimmune 

disorders [Zeilhofer and Schorr 2000].  

Furthermore, it has been suggested that IL-8 is produced by various normal and 

tumorigenic human cells [Xie 2001]. IL-8 is the inflammatory and antimicrobial 

cytokine produced by macrophages, T-cells, neutrophils and endothelial cells in 

acute and chronic inflammatory states [Kedzierska and Crowe 2001]. It is a potent 

chemotactic factor for T-cells, NK-cells, neutrophils and basophils [Kedzierska and 

Crowe 2001]. IL-8 has also been implicated in many pathological processes involved 

in cancer progression [Campbell et al., 2013].  
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7.1.1.7 Interleukin-10 (IL-10)  

Interleukin-10 (IL-10) is an 18kDa pleiotropic cytokine produced by TH2, as well as 

monocytes, macrophages and normal and neoplastic B-cells [Fayad et al., 2001; 

Kedzierska and Crowe 2001]. IL-10 production has strong immunosuppressive 

effects via inhibition of TH1 type cytokines, including interferon-gamma and 

interleukin-2 [Fayad et al., 2001]. It inhibits T-cell proliferation, predominantly by 

suppressing synthesis of TH1 cytokines (including IL-2 and FN-gamma), and inhibits 

macrophage activation and secretion of pro-inflammatory cytokines (IL-1, IL-6, IL-8, 

IL-12, TNF-α) [Kedzierska and Crowe 2001]. In addition, IL-10 has multiple effects 

on B-cells, including stimulation of growth and differentiation, and thus may 

contribute to the development of B-cell lymphoma [Blay et al., 1993; Masood et al., 

1995]. Increased serum concentrations of IL-10 have been reported in both HIV 

positive and negative lymphoma patients and such increases have been associated 

with poor survival [Masood et al., 1995]. 

 

7.1.1.8 Interleukin-12p70 (IL-12 p70)  

Interleukin-12 (IL-12) is a heterodimer of 70kDa (p70) formed by two covalently 

linked glycosylated chains of approximately 35kDa (p35) and 40kDa (p40) [Trinchieri 

1994; Hauer et al., 2005; Hamza et al., 2010]. IL-12 is produced by various cell types 

such as monocytes, neutrophils, dendritic cells, and macrophages on activation of 

these cells by pathogens, by CD40 ligands expressing T-cells, or by extracellular 

matrix components, such as the glycosaminoglycan hyaluronan [Hauer et al., 2005]. 

IL-12 has multiple biological functions and importantly, it bridges the early non-
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specific innate resistance and the subsequent antigen-specific adaptive immunity 

[Hamza et al., 2010; Pan et al., 2012]. It is a key factor in the induction of T-cell 

dependent and independent activation of macrophages, generation of TH1 and 

cytotoxic T-cells, suppression of IgG1 and IgE production, induction of organ-specific 

autoimmunity, and resistance to bacterial and parasitic infections [Ma and Montaner 

2000]. IL-12 has been shown to possess potent anti-tumor activity in a wide variety 

of murine tumor models [Toubai et al., 2006; Pan et al., 2012]. IL-12 induces IFN-γ 

production by T and NK-cells and thereby contributing to antitumor immunity [Yang 

et al., 2012; Pan et al., 2012].  

Tumor growth depends mainly on the inability of the organism to elicit a potent 

immune response and on the formation of new blood vessels that enable tumor 

nutrition [Rodriguez-Galan et al., 2009]. IL-12 therapy can target both processes 

mainly to its ability to enhance type 1 immunity, to induce IFN-γ expression, and to 

inhibit tumor angiogenesis mainly through IFN-γ dependent production of the 

chemokine IP-10 [Rodriguez-Galan et al., 2009]. In addition to activating antitumor 

effectors, IL-12 and IFN-γ also inhibit the expansion of intra-tumoral T-regs and 

angiogenesis in the tumor microenvironment, thus enhancing tumor control [Ngiow et 

al., 2013]. Clinical responses to IL-12 treatment have been reported in many types of 

tumors, however, systemic administration of IL-12 has been limited by its severe 

toxic effects [Pan et al., 2012].  
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7.1.1.9 Interleukin-13 (IL-13)  

Interleukin-13 (IL-13) is a predominantly TH2 derived cytokine that has multiple 

effects on both haematopoietic and non-haematopoietic cells [Kedzierska and Crowe 

2001; Wynn 2003; Mandal 2010]. IL-13 is required for optimal IgE production by B 

cells, induces MHC II expression on APC and regulates inflammation by inhibiting 

pro-inflammatory cytokines and chemokine production [Kedzierska and Crowe 

2001]. IL-13 is closely related to IL-4 and they display overlapping functions, and the 

genes for the human protein are both found on chromosome 5q [Jensen 2000]. IL-13 

is produced by activated TH0, TH1 like cells, TH2 like cells and CD8 T-cells [Jensen 

2000].  

IL-13 has multiple effects on the differentiation and functions of 

monocytes/macrophages [Jensen 2000]. In addition, it has been reported that IL-13 

activates NK-cells and CD8+ T-cells and to induce macrophages to become cells 

with dendritic cell characteristics [Emilie et al., 1997]. IL-13 exerts its activity via its 

receptor complex, which consists of the heterodimeric proteins IL-13α1 and IL-4Rα 

[Konstantinidis et al., 2008]. It can suppress the cytotoxic functions of 

monocytes/macrophages, and production of pro-inflammatory cytokines [Jensen 

2000].  
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7.1.1.10 Tumor necrosis factor-alpha (TNF-α)  

Tumor necrosis factor-alpha (TNF-α) is a 17kDa protein that belongs to the TNF 

superfamily of cytokines that comprises of 27 ligands that all share the hallmark 

extracellular TNF homology domain [Bremer 2013]. These TNF ligands are typically 

expressed as type II transmembrane proteins and they play a role in diversified roles 

in the body [Bremer 2013; Aggarwal et al., 2012]. TNF ligands exert their biological 

function by binding to and activation of members of the TNF receptor superfamily 

[Bremer 2013]. TNF-α is a pro-inflammatory cytokine forming a homotrimer capable 

of cross-linking TNF receptors [Kedzierska and Crowe 2001]. TNF-α is produced by 

a wide variety of cells, including monocytes, macrophages, T-cells, B-cells, NK-cells, 

neutrophils and microglia cells [Kedzierska and Crowe 2001].  

TNF-α, depending on the target cell type, can mature and activate APC, induce IL-

1β, IL-8, GM-CSF, M-CSF, and IFN-γ from monocytes, and induce apoptosis of 

mature T-cells [Connolly et al., 2005]. TNF-α can also act as a potent inhibitor of IL-

12. Pathological overproduction of TNF-α has been implicated in a variety of disease 

states including autoimmune diseases and cancer [Connolly et al., 2005]. It has been 

suggested that TNF-α is essential for killing tumor cells and has been studied as 

therapy for certain types of cancer [Connolly et al., 2005]. It is well established that 

the expression of TNF-α is greatly increased in HIV-1 infection and that these levels 

increase with disease progression [Kedzierska and Crowe 2001; Connolly et al., 

2005]. HIV-1 induces TNF-α expression, and exogenous TNF-α enhances HIV-1 

replication and positive correlation between increased concentrations of TNF-α and 

increased plasma HIV-1 viral load has been demonstrated [Connolly et al., 2005].  
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However, the mechanisms by which TNF-α increases HIV-1 replication are 

incompletely understood. In addition, it has been shown that patients with malignant 

lymphomas have high circulating concentrations of both cytokines and that higher 

plasma concentrations of TNF-α are associated with poor disease outcome 

[Warzocha et al., 1998].  

 

7.2 Specific Aims 

The aim of this study was to determine,  

 The serum concentrations of circulating inflammatory cytokines (IFN-γ, IL-1β, 

IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF-α) in HIV+NHL patients 

and control populations 

 Whether cART has an impact on the serum concentrations of these 

inflammatory cytokines 
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7.3 Materials and Methods 

7.3.1 Materials  

V-PLEX pro-inflammatory panel 1 (human) kit pre-coated with IFN-γ, IL-1β, IL-2, IL-

4, IL-6, IL-8, IL-10, IL-12p70, IL-13, and TNF-α antibodies (Catalogue number: 

K15049D-1) were purchased from Meso-scale discovery (MSD) supplier. Serum 

separator (SST) tubes (Catalogue number: BD367955) were purchased from the 

Scientific group PTY LTD supplier. 

 

7.3 2 Methods 

7.3.2.1 Sample preparation 

Blood samples were collected using serum separator tubes (SST) and put on ice 

immediately. Samples were allowed to clot for 2 hours, and were centrifuged for 20 

minutes at 2000xg. Resultant serum was collected and aliquoted into cryo-tubes and 

was stored at -20oC. Prior to use in the assay, samples were thawed at room 

temperature and mixed gently. Samples were then diluted 2 fold with diluent 2 and 

analysed with meso-scale discovery (MSD) assay.  
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7.3.2.2 Meso-scale discovery (MSD) assay 

Meso-scale discovery (MSD) cytokine assays provide a rapid and convenient 

method for measuring the concentrations of protein targets within a single, small 

volume of sample [MSD 2014]. The assays in the Pro-inflammatory panel 1 (human) 

are sandwich immunoassays. MSD plates are coated with capture antibodies on 

independent and well defined spots in a specific layout. Multiplex assays are 

provided on 2 or more spots multi spot plates (figure 7.3). When samples are added, 

analytes in the sample bind to captured antibodies immobilized on the working 

electrode surface.  

A solution containing the detection antibodies conjugated with 

electrochemiluminescent labels is then added, and the detection antibodies are 

recruited by the bound analytes to complete the sandwich. MSD buffer that creates 

the appropriate chemical environment for electrochemiluniscence is then added and 

the plate is loaded into an MSD instrument where a voltage applied to the plate 

electrodes causes the captured labels to emit light. The instrument measures the 

intensity of emitted light to provide a quantitative measure of analytes in the sample.  
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Figure 7.3 Multiplex Assay Plate. A full plate consisting of multiple wells with 

different number of analyte spots (2 and above). Also shown is the magnified single 

well showing the arrangement spot in a well. [From: Quansys Bioscience 2013] 
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7.3.2.3 Protocol 

In the current study, MSD pro-inflammatory panel 1 (human) kit was used to 

determine the serum concentrations of IFN-γ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-

12p70, IL-13, and TNF-α as follows. Fifty µl of the diluted samples (section 7.3.2.1), 

calibrators and controls were added into each well respectively. The plate was 

sealed with an adhesive plate sealer and incubated at room temperature with 

shaking for 2 hours. Following the incubation, the plate was washed 3 times with 

150µl/well of wash buffer. Twenty five µl of the detection antibody solution was 

added into each well and the plate was sealed with adhesive plate sealer and 

incubated at room temperature with shaking for 2 hours. Following the incubation, 

the plate was washed 3 times with wash buffer. Hundred and fifty µl of 2x read buffer 

Twin was added into each well and the plate was read on the MSD instrument. 
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7.4 Results 

7.4.1 Serum concentrations of circulating interferon gamma (IFN-γ)  

There was no significant difference in the serum concentrations of circulating IFN-γ 

when HIV positive NHL (HIV+NHL) patients were compared to HIV negative NHL 

(NHL) patients (figure 7.4). The serum concentrations of circulating IFN-γ were 

significantly higher in HIV+NHL patients than HIV positive patients on a cART 

regimen (HIV+ cART) (26.719 ± 25.632 vs 10.458 ± 8.920; p=0.0085). NHL patients 

had significantly higher serum concentrations of circulating IFN-γ than controls 

(20.425 ± 29.907 vs 5.734 ± 2.328; p=0.0018). As compared to cART-naïve HIV+ 

patients, HIV+ cART patients had significantly lower serum concentrations of 

circulating IFN-γ (10.458 ± 8.920 vs 33.067 ± 9.340; p<0.0001). cART-naïve HIV+ 

patients had significantly higher serum concentrations of circulating IFN-γ than 

controls (33.067 ± 9.340 vs 5.734 ± 2.328; p<0.0001). 
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Figure 7.4 Serum concentrations of circulating interferon gamma (IFN-γ). HIV+NHL, 

HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-

Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy 

treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV 

positive individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.1.1 Interferon gamma (IFN-γ) correlations 

The serum concentrations of circulating IFN-γ were negatively correlated with the 

numbers of CD4 T-cells (r=-0.4369, p<0.0001), NKT-cells (r=-0.2460, p=0.0139), 

and FoxP3 expression (r=-0.2891, p=0.0047) (figure 7.5A, D, and F). However, 

these serum concentrations of circulating IFN-γ were positively associated with the 

number of CD8 T-cells (r=0.2200, p=0.0250), NK-cells (r=0.1903, p=0.0454), and 

CD8+CD38 expression (r=0.4919, p<0.0001) (figure 7.5B, C, and E). Following 

adjustment for age, gender, smoking status, viral load and duration of treatment, no 

significant association was observed between IFN-γ and HIV+NHL. 
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Figure 7.5 Interferon gamma (IFN-γ) correlations. A) CD3+CD4 vs IFN-γ B) CD8 vs 

IFN-γ C) NK-cells vs IFN-γ D) NKT vs IFN-γ E) CD8+CD38 vs IFN-γ F) FoxP3 vs 

IFN-γ. NK, Natural killer cells; NKT, Natural killer T-cells; FoxP3, Forkhead box 

protein 3. 
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7.4.2 Serum concentrations of circulating interleukin-1β (IL-1β) 

The serum concentrations of circulating interleukin-1β were significantly lower in HIV 

positive NHL (HIV+NHL) patients as compared to HIV negative NHL (NHL) patients 

(0.117 ± 0.083 vs 0.196 ± 0.096; p=0.0039) (figure 7.6). However, there was no 

significant difference in the serum concentrations of circulating IL-1β when HIV+NHL 

were compared with HIV positive patients on a cART regimen (HIV+ cART). The 

serum concentrations of circulating IL-1β were significantly higher in NHL patients 

than controls (0.196 ± 0.096 vs 0.102 ± 0.078; p=0.0003). As compared to cART-

naïve HIV+ patients, HIV+ cART patients had significantly lower serum 

concentrations of circulating IL-1β (0.113 ± 0.079 vs 0.201± 0.180; p=0.0116). In 

addition, cART-naïve HIV+ patients had higher serum concentrations of circulating 

IL-1β than controls (0.201± 0.180 vs 0.102 ± 0.078; p=0.0033). 
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Figure 7.6 Serum concentrations of circulating interleukin-1β (IL-1β). HIV+NHL, HIV 

positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-Hodgkin 

lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy treated 

(cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV positive 

individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.2.1 Interleukin-1β (IL-1β) correlations 

The serum concentrations of circulating IL-1β were positively associated with 

CD8+38 expression (r=0.3384, p=0.0011) (figure 7.7A), while they were negatively 

associated with CD19+ B-cells (r=-0.2778, p=0.0063) (figure 7.7B). Following 

adjustment for age, gender, smoking status, viral load and duration of treatment, no 

significant association between IL-1 β and HIV+NHL was observed. 

 

Figure 7.7 Interleukin-1β (IL-1β) correlations. A) CD8+CD38 vs IL-1β B) CD19 vs IL-

1β. IL, Interleukin. 
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7.4.3 Serum concentrations of circulating interleukin-2 (IL-2) 

The serum concentrations of circulating interleukin-2 (IL-2) were significantly higher 

in HIV positive NHL (HIV+NHL) patients when compared to HIV negative NHL (NHL) 

patients (0.356 ± 0.135 vs 0.249 ± 0.116; p=0.0115) (figure 7.8). However, there was 

no significant difference in the serum concentrations of circulating IL-2 between 

HIV+NHL and HIV positive patients on a cART regimen (HIV+ cART). NHL patients 

had significantly higher serum concentrations of circulating IL-2 than controls (0.249 

± 0.116 vs 0.077 ± 0.044; p=0.0013). The serum concentrations of circulating IL-2 

were significantly lower in HIV+ cART than cART-naïve HIV+ patients (0.328 ± 0.148 

vs 0.714 ± 0.338; p=0.0038). cART-naïve HIV+ patients had significantly higher 

serum concentrations of circulating IL-2 than controls (0.714 ± 0.338 vs 0.077 ± 

0.044; p<0.0001). 
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Figure 7.8 Serum concentrations of circulating interleukin-2 (IL-2). HIV+NHL, HIV 

positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-Hodgkin 

lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy treated 

(cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV positive 

individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.3.1 Interleukin-2 (IL-2) correlations 

The serum concentrations of circulating IL-2 were negatively associated with the 

numbers of CD4 T-cells (r=-0.4860, p<0.0001), CD19+ B-cells (r=-0.3892, 

p=0.0002), NKT-cells (r=-0.2315, p=0.0194), and FoxP3 expression (r=-0.4406 

p<0.0001) (figure 7.9A, C, D and F), while they were positively associated with the 

numbers of CD8 T-cells (r=0.3135, p=0.0023) and CD8+CD38 expression (r=0.4014, 

p=0.0001) (figure 7.9B and E). Following adjustment for age, gender, smoking 

status, viral load and duration of treatment, no significant association between IL-2 

and HIV+NHL was observed. 
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Figure 7.9 Interleukin-2 (IL-2) correlations. A) CD3+CD4 vs IL-2 B) CD3+CD8 vs IL-

2 C) CD19 vs IL-2 D) NKT vs IL-2 E) CD8+CD38 vs IL-2 E) FoxP3 vs IL-2. NKT, 

Natural killer T-cells; FoxP3, Forkhead box protein 3.  
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7.4.4 Serum concentrations of circulating interleukin-4 (IL-4)  

The serum concentrations of circulating interleukin-4 (IL-4) were significantly higher 

in HIV positive NHL (HIV+NHL) patients as compared to both HIV negative NHL 

(NHL) patients (0.102 ± 0.036 vs 0.081 ± 0.016; p=0.0234) and HIV positive patients 

on a cART regimen (HIV+ cART) (0.102 ± 0.036 vs 0.081 ± 0.026; p=0.03360) 

(figure 7.10). As compared to the controls, NHL patients had significantly higher 

serum concentrations of circulating IL-4 (0.081 ± 0.016 vs 0.056 ± 0.030; p=0.0024). 

HIV+ cART patients had significantly lower serum concentrations of circulating IL-4 

as compared to cART-naïve HIV+ patients (0.081 ± 0.026 vs 0.112 ± 0.042; 

p=0.0145). In addition, cART-naïve HIV+ patients had higher serum concentrations 

of circulating IL-4 than controls (0.112 ± 0.042 vs 0.056 ± 0.030; p<0.0001).  
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Figure 7.10 Serum concentrations of circulating interleukin-4 (IL-4). HIV+NHL, HIV 

positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-Hodgkin 

lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy treated 

(cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV positive 

individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.4.1 Interleukin-4 (IL-4) correlations 

The serum concentrations of circulating IL-4 were negatively associated with the 

numbers of CD4 T-cells (r=-0.4603, p<0.0001), CD19+ B-cells (r=-0.3070, 

p=0.0028), NKT-cells (r=-0.2249, p=0.0224) and FoxP3 expression (r=-0.3077, 

p=0.0028) (figure 7.11A, B, D and F), while they were positively associated with the 

numbers of NK-cells (r=0.2853, p=0.0052), and CD8+CD38 expression (r=0.3220, 

p=0.0018) (figure 7.11C and E). Following adjustment for age, gender, smoking 

status, viral load and duration of treatment, the serum concentrations of IL-4 were 

independently associated with HIV+NHL (OR = 1.26; 95% CI = 0.15–10.18). 
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Figure 7.11 Interleukin-4 (IL-4) correlations. A) CD3+CD4 vs IL-4 B) CD19 vs IL-4 C) 

NK vs IL-4 D) NKT vs IL-4 E) CD8+CD38 vs IL-4 F) FoxP3 vs IL-4 . NK, Natural 

killer; NKT, Natural killer T-cells; FoxP3, Forkhead box protein 3.  
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7.4.5 Serum concentrations of circulating interleukin-6 (IL-6)  

There was no significant difference in the serum concentrations of circulating 

interleukin-6 (IL-6) between HIV positive NHL (HIV+ NHL) patients and HIV negative 

NHL (NHL) patients (figure 7.12). The serum concentrations of circulating IL-6 were 

significantly higher in HIV+NHL patients when compared to HIV positive patients on 

a cART regimen (HIV+ cART) (1.473 ± 1.256 vs 0.779 ± 0.268; p=0.0265). NHL 

patients had higher serum concentrations of circulating IL-6 than controls (1.179 ± 

1.171 vs 0.415 ± 0.190; p=0.0013). The serum concentrations of circulating IL-6 

were significantly lower in HIV+ cART as compared to cART-naïve HIV+ patients 

(0.779 ± 0.268 vs 2.447 ± 1.350; p=0.0003). In addition, cART-naïve HIV+ patients 

had significantly higher serum concentrations of circulating IL-6 than controls (2.447 

± 1.350 vs 0.415 ± 0.190; p<0.0001). 
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Figure 7.12 Serum concentrations of circulating interleukin-6 (IL-6). HIV+NHL, HIV 

positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-Hodgkin 

lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy treated 

(cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV positive 

individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.5.1 Interleukin-6 (IL-6) correlations 

The serum concentrations of circulating IL-6 were negatively associated with the 

numbers of CD4 T-cells (r=-0.5432, p<0.0001), CD19+ B-cells (r=-0.4544, 

p<0.0001), NKT-cells (r=-0.2616, p=0.0095), and FoxP3 expression (r=-0.399, 

p=0.0001) (figure 7.13A, B, C and E), while they were positively associated with 

CD8+38 expression ((r=0.4139, p<0.0001) (figure 7.13D). Following adjustment for 

age, gender, smoking status, viral load and duration of treatment, no significant 

association was observed between IL-6 and HIV+NHL. 
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Figure 7.13 Interleukin-6 (IL-6) correlations. A) CD3+CD4 vs IL-6 B) CD19 vs IL-6 C) 

NKT vs IL-6 D) CD8+CD38 vs IL-6 E) FoxP3 vs IL-6. NKT, Natural killer T-cells; 

FoxP3, Forkhead box protein 3 
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7.4.6 Serum concentrations of circulating interleukin-8 (IL-8)  

There was no significant difference in the serum concentrations of circulating 

interleukin-8 (IL-8) when HIV positive NHL (HIV+NHL) and HIV negative NHL (NHL) 

patients were compared (figure 7.14). HIV+NHL patients had significantly higher 

serum concentrations of circulating IL-8 than HIV positive patients on a cART 

regimen (HIV+ cART) (13.027 ± 5.341 vs 9.615 ± 5.483; p=0.0219). The serum 

concentrations of circulating IL-8 were significantly up-regulated in NHL patients as 

compared to controls (13.942 ± 7.602 vs 9.110 ± 2.733; p=0.0186). HIV+ cART 

patients had significantly lower serum concentrations of circulating IL-8 as compared 

to cART-naïve HIV+ patients (9.615 ± 5.483 vs 14.002 ± 3.649; p=0.0015). CART-

naïve HIV+ patients had significantly higher serum concentrations of circulating IL-8 

than controls (14.002 ± 3.649 vs 9.110 ± 2.733; p=0.0012). 
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Figure 7.14 Serum concentrations of circulating interleukin-8 (IL-8). HIV+NHL, HIV 

positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-Hodgkin 

lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy treated 

(cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV positive 

individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.6.1 Interleukin-8 (IL-8) correlations 

The serum concentrations of circulating IL-8 were negatively associated with the 

numbers of CD4 T-cells (r=-0.3819, p=0.0002), CD19+ B-cells (r=-0.4411, p<0.0001) 

and NKT-cells (r=-0.3472, p=0.0008) (figure 7.15A, B, C), while they were positively 

associated with CD8+CD38 expression (r=0.4357, p<0.0001) (figure 7.15D). 

Following adjustment for age, gender, smoking status, viral load and duration of 

treatment, no significant association was observed between IL-8 and HIV+NHL. 

 

Figure 7.15 Interleukin-8 (IL-8) correlations. A) CD3+CD4 vs IL-8 B) CD19 vs IL-8 C) 

NKT vs IL-8 D) CD8+CD38 vs IL-8. NKT, Natural killer T-cells. 
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7.4.7 Serum concentrations of circulating interleukin-10 (IL-10) 

There was no significant difference in the serum concentrations of circulating 

interleukin-10 (IL-10) between HIV positive NHL (HIV+NHL) and HIV negative NHL 

(NHL) patients (figure 7.16). The serum concentrations of circulating IL-10 were 

significantly higher in HIV+NHL than HIV positive patients on a cART regimen (HIV+ 

cART) (1.119 ± 0.691 vs 0.482 ± 0.210; p=0.0044). NHL patients had significantly 

higher serum concentrations of circulating IL-10 than controls (1.344 ± 1.550 vs 

0.375 ± 0.338; p=0.0003). HIV+ cART patients had significantly lower serum 

concentrations of circulating IL-10 than cART-naïve HIV+ patients (0.482 ± 0.210 vs 

1.312 ± 0.569; p=0.0002). The serum concentrations of circulating IL-10 were 

significantly higher in cART-naïve HIV+ patients as compared to controls (1.312 ± 

0.569 vs 0.375 ± 0.338; p<0.0001). 
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Figure 7.16 Serum concentrations of circulating interleukin-10 (IL-10). HIV+NHL, 

HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-

Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy 

treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV 

positive individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.7.1 Interleukin-10 (IL-10) correlations 

The serum concentrations of circulating IL-10 were positively associated with the 

numbers of NK-cells (r=0.2086, p=0.0317) and CD8+38 expression (r=0.3521, 

p=0.0007) (figure 7.17A and B). Following adjustment for age, gender, smoking 

status, viral load and duration of treatment, no significant association was observed 

between IL-10 and HIV+NHL. 

 

Figure 7.17 Interleukin-10 (IL-10) correlations. A) NK-cells vs IL-10 B) CD8+CD38 

vs IL-10. IL, Interleukin; NK, Natural killer cells. 
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7.4.8 Serum concentrations of circulating interleukin-12p70 (IL-12p70)  

There was no significant difference in the serum concentrations of circulating 

interleukin-12p70 (IL-12p70) when HIV positive NHL (HIV+NHL) and HIV negative 

NHL (NHL) patients were compared (figure 7.18). HIV+NHL patients had significantly 

lower serum concentrations of circulating IL-12p70 than HIV positive patients on a 

cART regimen (HIV+ cART) (0.198 ± 0.115 vs 0.459 ± 0.226; p=0.0012). The serum 

concentrations of circulating IL-12p70 were significantly higher in NHL patients as 

compared to controls (0.250 ± 0.143 vs 0.101 ± 0.091; p=0.0037). There was no 

significant difference in the serum concentrations of circulating IL-12p70 between 

HIV+ cART and cART-naïve HIV+ patients. cART-naïve HIV+ patients had 

significantly higher serum concentrations of circulating IL-12p70 than controls (0.576 

± 0.245 vs 0.101 ± 0.091; p<0.0001). 
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Figure 7.18 Serum concentrations of circulating interleukin-12p70 (IL-12p70). 

HIV+NHL, HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative 

non-Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral 

therapy treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-

naïve HIV positive individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.8.1 Interleukin-12p70 (IL-12p70) correlations 

The serum concentrations of circulating IL-12p70 were negatively associated with 

the numbers of CD4 T-cells (r=-0.3439, p=0.0009), CD19+ B-cells (r=-0.4269, 

p<0.0001), and FoxP3 expression (r=-0.3615, p=0.0005) (figure 7.19A, C, and F), 

while they were positively associated with the numbers of CD8 T-cells (r=0.2449, 

p=0.0143), NK-cells (r=0.195, p=0.0415), and CD8+CD38 expression(r=0.2245, 

p=0.0227) (figure 7.19B, D, and E). Following adjustment for age, gender, smoking 

status, viral load and duration of treatment, no significant association was observed 

between the serum concentrations of IL-12p70 and HIV+NHL. 
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Figure 7.19 Interleukin-12p70 (IL-12p70) correlations. A) CD3+CD4 vs IL-12p70 B) 

CD3+CD8 vs IL-12p70 C) CD19 vs IL-12p70 D) NK vs IL-12p70 E) CD8+CD38 vs 

IL-12p70 F) FoxP3 vs IL-12p70. NK, Natural killer cells; FoxP3, Forkhead box 

protein 3.  
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7.4.9 Serum concentrations of circulating interleukin-13 (IL-13) 

There was no significant difference in the serum concentrations of circulating 

interleukin-13 (IL-13) when HIV positive NHL (HIV+NHL) and HIV negative NHL 

(NHL) patients were compared, as well as between HIV+NHL and HIV positive 

patients on a cART regimen (HIV+ cART) (figure 7.20). NHL patients had 

significantly higher serum concentrations of circulating IL-13 than controls (0.776 ± 

0.249 vs 0.563 ± 0.358; p=0.0317). There was no significant difference in the serum 

concentrations of circulating IL-13 between HIV+ cART and cART-naïve HIV+ 

patients. The serum concentrations of circulating IL-13 were significantly higher in 

cART-naïve HIV+ patients as compared to controls (0.955 ± 0.285 vs 0.563 ± 0.358; 

p=0.0013). 
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Figure 7.20 Serum concentrations of circulating interleukin-13 (IL-13). HIV+NHL, 

HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative non-

Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral therapy 

treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-naïve HIV 

positive individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.9.1 Interleukin-13 (IL-13) correlations 

The serum concentrations of circulating IL-13 were negatively associated with the 

numbers of CD4 T-cells (r=-0.2624, p=0.0094) (figure 7.21A), while they were 

positively associated with CD8+CD38 expression (r=0.3588, p=0.0005) (figure 

7.21B). Following adjustment for age, gender, smoking status, viral load and duration 

of treatment, no significant association was observed between IL-13 and HIV+NHL. 

 

 

Figure 7.21 Interleukin-13 (IL-13) correlations. A) CD4 vs IL-13 B) CD8+CD38 vs IL-

13.  
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7.4.10 Serum concentrations of circulating tumor necrosis factor-α (TNF-α)  

The serum concentrations of circulating tumor necrosis factor-α (TNF-α) were 

significantly higher in HIV positive NHL (HIV+NHL) patients as compared to HIV 

negative NHL (NHL) patients (2.012 ± 1.581 vs 1.144 ± 0.394; p=0.0258) (figure 

7.22). However, there was no significant difference in the serum concentrations of 

TNF-α between HIV+NHL patients and HIV positive patients on a cART regimen 

(HIV+ cART). As compared to the controls, NHL patients had significantly higher 

serum concentrations of circulating TNF-α (1.144 ± 0.394 vs 0.925 ± 0.268; 

p=0.0311). The serum concentrations of circulating TNF-α were significantly lower in 

HIV+ cART patients than cART-naïve HIV+ patients (1.342 ± 0.465 vs 3.198 ± 2.029; 

p=0.0006). In addition, cART-naïve HIV+ patients had significantly higher serum 

concentrations of circulating TNF-α than controls (3.198 ± 2.029 vs 0.925 ± 0.268; 

p<0.0001). 
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Figure 7.22 Serum concentrations of circulating tumor necrosis factor-α (TNF-α). 

HIV+NHL, HIV positive non-Hodgkin lymphoma patients (n=31); NHL, HIV negative 

non-Hodgkin lymphoma patients (n=34); HIV+ cART, combination antiretroviral 

therapy treated (cART) HIV positive individuals (n=32); cART-naïve HIV+, cART-

naïve HIV positive individuals (n=28); Controls, Healthy controls (n=16). 
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7.4.10.1 Tumor necrosis factor-α (TNF-α) correlations 

The serum concentrations of circulating tumor necrosis factor-α (TNF-α) were 

negatively associated with the number of CD4 T-cells (r=-0.4508, p<0.0001), CD19+ 

B-cells (r=-0.3782, p=0.0003), and FoxP3 expression (r=-0.4322, p<0.0001) (figure 

7.23A, D, and F), while they were positively correlated with the numbers of CD8 T-

cells (r=0.2243, p=0.0227), NK-cells (r=0.2101, p=0.0307) and CD8+CD38 

expression (r=0.2661, p=0.0085) (figure 7.23B, C and E). Following adjustment for 

age, gender, smoking status, viral load and duration of treatment, the serum 

concentrations of TNF-α were independently associated with HIV+NHL (OR = 7.9; 

95% CI = 1.17–53.34). 
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Figure 7.23 Tumor necrosis factor-α (TNF-α) correlations. A) CD3+CD4 vs TNF-α B) 

CD3+CD8 vs TNF-α C) NK vs TNF-α D) CD19 vs TNF-α E) CD8+CD38 vs TNF-α F) 

FoxP3 vs TNF-α. NK, Natural killer cells; FoxP3, Forkhead box protein 3. 
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7.5 Discussion 

7.5.1 Interferon gamma (IFN-γ) 

IFN-γ is known to have a major effect on the regulation of antigen presentation by 

macrophages, dendritic cells, and in induction of class switching of B-cells [Frucht et 

al., 2001; Hu and Ivashkiv 2009]. IFN-γ production is detected as early as the acute 

phase in HIV-1 infected patients, and is known to play various roles in the 

pathogenesis of HIV disease [Roff et al., 2014]. In the current study, the serum 

concentrations of circulating IFN-γ were significantly increased in HIV+NHL as 

compared to HIV+ cART patients. However, there was no significant difference in the 

serum concentrations of circulating IFN-γ when HIV+NHL patients were compared to 

NHL patients (figure 7.4). Although there was no significant difference in the serum 

concentrations of circulating IFN-γ between HIV+NHL and NHL, there was a trend 

towards increased serum concentrations in HIV+NHL. In addition, NHL had high 

serum concentrations of circulating IFN-γ when compared to the control population.  

IFN-γ plays an important role in tumor protection and rejection [Bax et al., 2013], 

thus the observed increased serum concentrations of circulating IFN-γ in NHL may 

have been due to the immune system trying to eradicate malignant lymphoma cells. 

Gergely and colleagues [2004], reported that IFN-γ production by peripheral T-cell 

subsets is increased in B-cell NHL patients and this may contribute to strong 

polarization towards TH1 type response necessary for lymphoma clearance and 

remission. The serum concentrations of circulating IFN-γ were significantly elevated 

in cART-naïve HIV+ patients as compared to HIV+ cART patients as well as when 

compared to the controls (figure 7.4). These findings suggest that HIV-1 infection 
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increases the serum concentrations of circulating IFN-γ, and cART reduces them. 

This may not be a direct effect of cART to the serum concentrations of circulating 

IFN-γ, but rather an indirect effect of decreasing the viral load. In addition, the serum 

concentrations of circulating IFN-γ were negatively associated with the numbers of 

CD4 T-cells, NKT-cells and FoxP3 expression (figure 7.5A, D and F), while they 

were positively associated with the numbers of CD8 T-cells, NK-cells and 

CD8+CD38 expression (figure 7.5B, C and E). These results suggest that the 

decreased immune regulation may lead to increased IFN-γ expression and immune 

activation.  

IFN-γ is initially produced to clear the primary HIV-1 infection, however, the 

increased serum concentrations observed in the current study may contribute in 

establishing a chronic immune activation that exacerbates HIV+NHL [Roff et al., 

2014]. This is reflected in the increased CD8+CD38 expression, reduced FoxP3 and 

CD4 T-cell counts in this patient population group. The increased immune activation 

is a hallmark feature of both HIV disease and NHL. However, the serum 

concentrations of circulating IFN-γ were positively associated with CD8 T-cells and 

NK-cells, thus it may enhance cytotoxic T-cell and NK-cell activities against HIV-1 

infected cells and malignant lymphoma cells [Roff et al., 2014]. In addition, NK-cells 

are known to produce IFN-γ, thus the increased serum concentrations of circulating 

IFN-γ may have been caused by increased NK-cell expression. 

 

 

Stellenbosch University  https://scholar.sun.ac.za



201 

 

 

7.5.2 Interleukin-1 beta (IL-1β) 

IL-1β enhances antibody production of B-cells and promotes B-cell proliferation 

[Krause et al., 2012]. Elevated IL-1β expression has been associated with several 

diseases including cancer [Krause et al., 2012; Karimbux et al., 2012]. In the current 

study, the serum concentrations of circulating IL-1β in HIV+NHL were investigated. 

The serum concentrations of circulating IL-1β were significantly reduced in HIV+NHL 

as compared to NHL and there was no significant difference when compared to HIV+ 

cART patients (figure 7.6). NHL patients had increased serum concentrations of 

circulating IL-1β when compared to the controls (figure 7.6). IL-1β is known to 

promote B-cell proliferation and differentiation hence its expression is increased in B-

cell NHL [Krause et al., 2012]. HIV-1 infection did not influence the serum 

concentrations of circulating IL-1β in NHL patients in the current study.  

CART-naïve HIV+ patients had increased serum concentrations of circulating IL-1β 

when compared to the controls (figure 7.6). In addition, cART-naïve HIV+ patients 

had elevated serum concentrations of circulating IL-1β than HIV+ cART patients 

(figure 7.6). The observed increased serum concentrations of circulating IL-1β may 

have been influenced by HIV-1 infection. It has been previously shown that the HIV-1 

induces IL-1β expression and this is associated with the progression of HIV disease 

[Guo et al., 2014]. It has been reported that HIV-1 interacts with chromosome 2 to 

inhibit IL-1 receptor antagonist, leading to increased IL-1β production [Corley 2000]. 

cART has reduced the serum concentrations of circulating IL-1β in HIV+ patients in 

the current study. High concentrations of IL-1β have been observed in HIV-1 

infection and cART reduces IL-1β as a result of increased availability of IL-1β 
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receptor antagonist [Connolly et al., 2005]. Sadeghi and colleagues [1995], 

demonstrated that cART suppresses the constitutive production of IL-1β in HIV-1 

infected patients. Increased serum concentrations of circulating IL-1β were positively 

associated with CD8+CD38 expression in the present study (figure 7.7A). Thus it 

increased with increasing T-cell activation in HIV+ patients. Using HIV-1 transfected 

cultured human astrocytes, Mamik and Colleagues [2011] reported an increase in 

CD8+CD38 expression in IL-1β activated astrocytes. Therefore, the increased serum 

concentrations of circulating IL-1β observed in the current study, may have also led 

to increased T-cell activation. This may be detrimental to the immune system and 

may pinpoint the origin of chronic immune activation.  

 

7.5.3 Interleukin-2 (IL-2) 

IL-2 plays a role in the stimulation of activated T-cell proliferation, cytotoxic activity of 

CD8 T-cells and NK-cells [De Paoli 2001; Kedzierska and Crowe 2001]. In addition, 

IL-2 induces B-cells, and monocytes [De Paoli 2001; Kedzierska and Crowe 2001]. 

In the current study, the serum concentrations of circulating IL-2 in HIV+NHL were 

investigated. The serum concentrations of circulating IL-2 were significantly 

increased in HIV+NHL as compared to NHL (figure 7.8). As mentioned previously, 

IL-2 induces sCD23 expression, thus, the increased serum concentrations of 

circulating sCD23 that were observed in HIV+NHL patients may have been induced 

by increased IL-2 concentrations, thus contributing to chronic B-cell activation. 

However, there was no significant difference in serum concentrations of circulating 
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IL-2 between HIV+NHL and HIV+ cART patients. In addition, NHL had increased 

serum concentrations of circulating IL-2 as compared to the controls (figure 7.8), 

while cART-naïve HIV+ patients had higher serum concentrations of circulating IL-2 

as compared to both HIV+ cART and the controls. These findings indicate that the 

serum concentrations of circulating IL-2 are greatly increased in NHL as well as in 

HIV+ state. In consistence, David and colleagues [1998], showed that IL-2 receptor 

expression in HIV+ patients with high viral load is greatly increased as compared to 

uninfected control individuals. In the same study, cART significantly reduced IL-2R 

expression in treated HIV+ patients [David et al., 1998]. IL-2 is involved in B-cell 

differentiation and proliferation, thus it may lead to expansion of EBV positive B-cells 

resulting in B-cell NHL development [de Lastours et al., 2014]. In a study conducted 

by Cozen and colleagues [2008], it was reported that IL-2 concentrations were 

significantly higher in lymphoma cases as compared to un-infected controls.  

The serum concentrations of circulating IL-2 were negatively associated with the 

number of CD4 T-cells, NKT-cells and FoxP3 expression in the current study (figure 

7.9A, C, and D), while they were positively correlated with increased numbers of 

CD8 T-cells and T-cell activation (figure 7.9B and E), confirming the increased 

immune activation that is stimulated by IL-2. It has been reported that IL-2 supports 

the growth of cytotoxic (CD8) T-cells and is essential for the induction of lymphokine 

activated killer cells [De Paoli 2001]. Thus the increased serum concentrations of 

circulating IL-2 may play a role in the anti-tumor activities. In addition, IL-2 stimulates 

the proliferation of activated T-cells, the observed increased serum concentrations 

may contribute to the chronic immune activation seen in both HIV-1 infection and 
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NHL. The increased IL-2 stimulates immune activation with CD8+CD38 and this is 

further promoted by reduced FoxP3 expression that normally regulates T-cell 

activation. cART may reduce the serum concentrations of circulating IL-2 in HIV+ 

patients which in turn decreases immune activation. In contrast to the current 

findings IL-2 therapy has been reported to increase CD4 T-cell counts in HIV-1 

infected patients [Vento et al., 2006; Molina et al., 2009]. In addition, it has been 

reported that IL-2 therapy in HIV+ lymphoma patients may have a role in the 

prevention and treatment of HIV-1 associated lymphomas [Shah et al., 2000] 

 

7.5.4 Interleukin-4 (IL-4) 

IL-4 is known to stimulate B-cell activation and differentiation [Zamorano et al., 

2003]. Its expression may explain the increased B-cell activation seen in HIV+NHL 

patients. In the current study, the serum concentrations of circulating IL-4 were 

significantly increased in HIV+NHL as compared to NHL as well as when compared 

to HIV+ cART patients (figure 7.10). In addition, the serum concentrations of 

circulating IL-4 were significantly increased in NHL as compared to the controls. 

These results suggest that the serum concentrations of circulating IL-4 are greatly 

increased in HIV+NHL as well as in the HIV negative NHL patients. Thus serum 

concentrations of circulating IL-4 are increased in NHL regardless of the HIV status 

and this is because IL-4 is needed for normal growth of B-cells [Lundin et al., 2001]. 

Gergely and colleagues [2004], reported that the frequency of CD4+ IL-4 expression 

is significantly higher in NHL patients as compared to controls and treatment with 
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CHOP reduces its expression. To determine the effect of HIV-1 infection as well as 

the effect of cART on the serum concentrations of circulating IL-4, cART-naïve HIV+ 

and HIV+ cART patients were compared. The serum concentrations of circulating IL-

4 were significantly higher in cART-naïve HIV+ patients as compared to HIV+ cART 

patients, as well as when compared to the controls (figure 7.10). These results 

suggest that HIV-1 infection increases serum concentrations of circulating IL-4 and 

cART use decreases them. Using peripheral blood mononuclear cells, Valentin and 

colleagues [1998], showed that IL-4 activates HIV-1 expression and controls viral 

evolution and phenotypic switch that leads to accelerated disease progression. 

Kazazi and colleagues [1992], showed that IL-4 stimulates HIV-1 replication in the 

early phases of infection and may also facilitate virus transmission by aggregate 

formation.  

The increased serum concentrations of circulating IL-4 may have led to chronic B-

cell activation observed in NHL and HIV+ patients. In addition, increased serum 

concentrations of circulating IL-4 were associated with decreased numbers of CD4 

T-cells, NKT-cells and FoxP3 expression (figure 7.11A, B and F), while they were 

also associated with increased numbers of NK-cells and CD8 T-cell activation (figure 

7.11C and E). In addition, the serum concentrations of IL-4 were independently 

associated with HIV+NHL. This confirms the role played by HIV-1 in promoting 

immune activation while reducing immune tolerance and regulation.  
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7.5.5 Interleukin-6 (IL-6) 

IL-6 has a wide variety of activities, including B-cell stimulation, monocyte 

differentiation and induction of IL-4 producing cells [Kedzierska and Crowe 2001; 

Connolly et al., 2005]. In addition, IL-6 is involved in tumor growth, malignant 

differentiation of cancer cells and immune-modulation of the micro-environment 

[Zarogoulidis et al., 2013]. In the current study, the serum concentrations of 

circulating IL-6 were significantly increased in HIV+NHL as compared to HIV+ cART 

patients, however, there was no significant difference when compared to NHL (figure 

7.12). Although there was no significant difference in the serum concentrations of 

circulating IL-6 between HIV+NHL and NHL, there was a trend towards increased 

concentrations in HIV+NHL.  

In addition, the serum concentrations of circulating IL-6 were significantly elevated in 

NHL when compared to the controls (figure 7.12). The increased serum IL-6 

concentrations have been associated with elevated cancer risk, and these 

concentrations were found to be a prognostic factor for several cancer types 

[Zarogoulidis et al., 2013]. In addition, the elevated serum IL-6 concentrations have 

been previously found to be associated with the subsequent development of B-cell 

lymphomas in HIV-1 infected patients [Pluda et al., 1993]. Furthermore, Denizot and 

Colleagues [1996], showed that serum IL-6 expression is significantly higher in NHL 

patients as compared to the healthy controls. The effect of HIV-1 infection and cART 

on the serum concentrations of circulating IL-6 were also investigated in the current 

study.  
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The serum concentrations of circulating IL-6 were significantly increased in cART-

naïve HIV+ patients as compared to HIV+ cART patients as well as when compared 

to the control individuals (figure 7.12). These results imply that HIV-1 infection 

increased the serum concentrations of circulating IL-6 and that cART use reduced 

them. This confirms that cART reduced HIV-1 viral load which decreased with serum 

concentrations of circulating IL-6. It has been shown that IL-6 can induce HIV-1 

expression by acting at the transcriptional or post-transcriptional concentrations in 

infected monocytic cells [Poli et al., 1990]. During the acute stage of an infection, 

relatively high concentrations of IL-6 are produced and this is important in the 

activation of T-cells and increasing the number of antibody producing plasma cells 

against HIV-1 [Hosein 2012]. However, increased concentrations of IL-6 which 

induce B-cell activation may contribute to chronic B-cell activation.  

The increased serum concentrations of circulating IL-6 were negatively associated 

with CD4 T-cell count, CD19, NKT and FoxP3 expression (figure 7.13A, B, C and E), 

while they were positively correlated with CD8+CD38 expression (figure 7.13D). 

These findings further confirm the increased B-cell activation in HIV+ patients. The 

negative associations with the numbers of CD4 T-cells, CD19+ B-cells, NKT-cells 

and FoxP3 expression observed in this study, suggest that IL-6 weakens the 

immune system of HIV+ patients. The increased T-cell activation with increasing IL-6 

concentrations observed may also contribute to the depletion of the immune 

function, as it leads to immune exhaustion and T-cell turnover. It has been reported 

that chronically high concentrations of IL-6 may weaken the immune system in HIV-1 

infected patients and these concentrations were also associated with 40% increased 
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risk for developing cancer [Hosein 2012]. Furthermore, high IL-6 expression has 

been associated with increased HIV-1 replication [Ullum et al., 1996], and the 

development of lymphoma in HIV-1 infected subjects [Poli et al., 1995]. 

 

7.5.6 Interleukin-8 (IL-8) 

IL-8 is produced by tumor cells, and has been implicated to play a role in cancer 

progression [Xie 2001; Campbell et al., 2013]. In the current study, no significant 

difference in the serum concentrations of circulating IL-8 between HIV+NHL and 

NHL was observed (figure 7.14). However, as compared to HIV+ cART patients, 

HIV+NHL had significantly high serum concentrations of circulating IL-8 (figure 7.14). 

In addition, NHL had high serum concentrations of circulating IL-8 as compared to 

the controls (figure 7.14). These findings suggest that the serum concentrations of 

circulating IL-8 are increased in NHL regardless of the HIV status. It has been 

reported that the expression of IL-8 correlates with the angiogenesis, tumorigenicity, 

and metastatic potential of many solid cancers [Waugh and Wilson 2008].  

It has also been suggested that targeting IL-8 signalling within the cancer cell micro-

environment may assist in sensitizing cancer cells to conventional chemotherapy 

and novel treatment strategies [Waugh and Wilson 2008]. In addition, Sharma and 

Zhang [2001], showed that IL-8 is expressed in HIV associated lymphoma B-cell 

lines. Engel and Colleagues [2012], reported that viral IL-8 promotes 

lymphomagenesis through targeted recruitment of B-cells. Consistent with the 

current findings, Denizot and Colleagues [1996] showed that serum IL-8 
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concentrations are significantly higher in NHL patients as compared with the healthy 

controls. In the current study, the serum concentrations of circulating IL-8 were 

significantly increased in cART-naïve HIV+ patients as compared to HIV+ cART as 

well as when compared to the controls (figure 7.14). This indicates that the serum 

concentrations of circulating IL-8 are increased in HIV+ state, and cART may reduce 

them.  

The serum concentrations of circulating IL-8 were negatively associated with the 

numbers of CD4 T-cells, CD19+ B-cells and NKT-cells in HIV+ patients (figure 

7.15A, B, and C). In addition, the serum concentrations of circulating IL-8 were 

positively associated with CD8 T-cell activation (figure 7.15D). It has been reported 

that the serum concentrations of IL-8 are elevated in the peripheral circulation of 

HIV-1 infected patients [Taylor 1998]. In a study by Lane and Colleagues [2001], it 

has been shown that IL-8 expression is increased in lymphatic micro-environment in 

HIV-1 infected patients and that inhibition of the activity of endogenous IL-8 markedly 

reduces HIV-1 replication. This suggests that IL-8 may play a role in HIV-1 

replication and disease progression. 
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7.5.7 Interleukin-10 (IL-10) 

IL-10 is known to have multiple effects on B-cells, including stimulation of growth and 

differentiation [Blay et al., 1993; Masood et al., 1995]. In the current study, the serum 

concentrations of circulating IL-10 were significantly higher in HIV+NHL as compared 

to HIV+ cART patients, however, there was no significant difference when HIV+NHL 

patients were compared to NHL patients (figure 7.16). In addition, NHL patients had 

increased serum concentrations of circulating IL-10 as compared to the controls 

(figure 7.16). These findings suggest that the serum concentrations of circulating IL-

10 are increased in HIV+NHL patients. Voorzanger and Blay [1996], previously 

reported that HIV+NHL may produce higher amounts of IL-10 than HIV negative NHL 

patients and HIV may be directly responsible for an increased IL-10 secretion.  

Consistent with the current findings, Gupta and colleagues [2012], demonstrated that 

serum IL-10 concentrations are significantly higher in a subset of DLBCL patients as 

compared to controls and were correlated with adverse clinical features and shorter 

event free survival. The observed increased serum concentrations of circulating IL-

10 may have contributed to the development of NHL. In a Multicenter AIDS Cohort 

Study, Breen and Colleagues [2003], showed that elevated serum IL-10 

concentrations are associated with the development of lymphoma in HIV-1 infected 

individuals. In the same study, detectable serum IL-10 was seen much more 

frequently in lymphoma cases as compared to both HIV-1 infected patients and 

healthy controls [Breen et al., 2003]. Furthermore, in a recent study conducted by 

Edlefsen and colleagues [2014], the increased risk of DLBCL development was 

observed in women with increased IL-10 expression.  
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In addition, it has been previously shown that IL-10 production contributes to the 

clinical course of DLBCL and this phenomenon involves a substantial genetic 

component [Masood et al., 1995; Lech-Maranda et al., 2004; Bogunia-Kubik et al., 

2008; Hosgood et al., 2013]. cART-naïve HIV+ patients had significantly higher 

serum concentrations of circulating IL-10 than both HIV+ cART patients and controls 

(figure 7.16) in the current study. Thus, HIV-1 infection may have been a driving 

force to increased serum concentrations of circulating IL-10.  

The serum concentrations of circulating IL-10 are greatly increased in cART-naïve 

HIV+ patients by nearly 4 fold. cART initiation decreased the serum concentrations 

of circulating IL-10 in HIV+ patients. The increased serum concentrations of 

circulating IL-10 were positively associated with the numbers of NK-cells and T-cell 

activation (figure 7.17A and B). In consistence with the current findings, Brockman 

and Colleagues [2009] showed that IL-10 mRNA expression and plasma IL-10 

concentrations were increased in the setting of chronic uncontrolled HIV-1 infection 

and were correlated with plasma viremia. In the same study, both IL-10 mRNA 

expression and plasma concentrations were reduced through successful cART 

treatment [Brockman et al., 2009].  
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7.5.8 Interleukin-12p70 (IL-12p70) 

IL-12p70 plays an important role in anti-tumor activities [Toubai et al., 2006; Pan et 

al., 2012].The serum concentrations of circulating IL-12p70 were investigated in the 

current study. No statistical significant difference in the serum concentrations of 

circulating IL-12p70 between HIV+NHL and NHL patients was found (figure 7.18). 

However, there was a trend towards increased serum concentrations of circulating 

IL-12p70 in NHL. In addition, HIV+NHL had significantly lower serum concentrations 

of circulating IL-12p70 as compared to HIV+ cART patients (figure 7.18). These 

findings suggest that the serum concentrations of circulating IL-12p70 are decreased 

in HIV+NHL, and this may result in decreased anti-tumor activity against malignant 

lymphoma cells leading to its pathogenesis and progression.  

As compared to the controls, NHL patients had increased serum concentrations of 

circulating IL-12p70 (figure 7.17). In HIV negative NHL, anti-tumor activities are 

required to destroy malignant lymphoma cells, thus the increased serum 

concentrations of circulating IL-12p70 indicate increased anti-tumor activities which 

is beneficial for these patients. There was no significant difference in the serum 

concentrations of circulating IL-12p70 between HIV+ cART and cART-naïve HIV+ 

(figure 7.18). cART-naïve HIV+ patients had increased serum concentrations of 

circulating IL-12p70 as compared to the controls (figure 7.18). These results suggest 

that the serum concentrations of circulating IL-12p70 are increased in untreated 

HIV+ patients. Consistent with the current findings, Roskstroh and Colleagues 

[1998], showed that serum IL-12p70 concentrations are significantly increased in 

HIV-1 infected patients as compared to healthy controls. IL-12p70 may be playing a 
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role in the eradication of HIV-1 virus. In a study by Roberts and Colleagues [2010], it 

was shown that higher concentrations of IL-12p70 observed in HIV-1 infected 

patients are associated with lower viral load. The serum concentrations of circulating 

IL-12p70 were negatively associated with the numbers of CD4 T-cells, CD19+ B-

cells, and FoxP3 expression (figure 7.19A, C, and F), while they were positively 

associated with the numbers of CD8 T-cells, NK-cells, and CD8+CD38 expression 

(figure 7.19B, D, and E) in the current study.  

IL-12p70 is known to play a critical role in the generation of cell mediated immune 

responses to infectious agents including HIV-1 [Guzzo et al., 2011], thus the 

association of IL-12p70 with the numbers of CD8 T-cells and NK-cells observed in 

the current study confirm this role. IL-12p70 may stimulate the activities of CD8 and 

NK-cells as confirmed by positive correlation of IL-12p70 with increased CD8+CD38 

expression. This may also explain the increased serum concentrations of circulating 

IL-12p70 in NHL patients observed in the present study which may increase cell 

mediated immunity against lymphoma cells. 
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7.5.9 Interleukin-13 (IL-13) 

IL-13 enhances antigen presentation in HIV-1 infected patients, and induces the 

differentiation and function of macrophages [Bailer et al., 1999; Jensen 2000]. IL-13 

stimulates B-cell growth and immunoglobulin class switching of B-cells [Skinnider et 

al., 2001]. In the current study, the serum concentrations of circulating IL-13 were 

investigated. No statistical significant difference was observed in the serum 

concentrations of circulating IL-13 between HIV+NHL and NHL as well as when 

HIV+NHL were compared to HIV+ cART patients (figure 7.20). However, NHL 

patients had increased serum concentrations of circulating IL-13 as compared to the 

controls (figure 7.20). It has been reported that IL-13 expression is increased in NHL 

patients and may provide growth and survival advantage to B-cell NHL [Billard et al., 

1997]. These findings suggest that the increased serum concentrations of circulating 

IL-13 may have increased the growth of B-cells in NHL patients. HIV-1 infection did 

not influence the serum concentrations of circulating IL-13 in NHL groups. 

Furthermore, no significant difference was found in the serum concentrations of 

circulating IL-13 between HIV+ cART and cART-naïve HIV+ patients (figure 7.20). 

However, cART-naïve HIV+ patients had increased serum concentrations of 

circulating IL-13 as compared to the controls (figure 7.20). These results indicate that 

the serum concentrations of circulating IL-13 are increased in untreated HIV+ 

patients. The serum concentrations of circulating IL-13 were negatively associated 

with the numbers of CD4 T-cells (figure 7.21A), while they correlated positively with 

CD8+CD38 expression (figure 7.21B). It has been shown that IL-13 activates CD8 T-

cells and NK-cells and increases HIV-1 specific cell mediated responses [Emille et 
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al., 1997; Papasavvas et al., 2005], therefore, the observed increased serum 

concentrations of circulating IL-13 in cART-naïve HIV+ patients may have been 

triggered by HIV-1 virus. By increasing HIV-1 specific cell mediated immune 

responses, IL-13 may reduce the viral load. Montaner and Colleagues [1993] 

reported that IL-13 suppresses HIV-1 infection within monocytes and macrophages 

in vivo. The increased serum concentrations of circulating IL-13 were positively 

correlated with increased CD8+CD38 in the current study, confirming that IL-13 

enhances CD8 T-cell activation. Thus, the serum concentrations of circulating IL-13 

may have increased with increasing T-cell activation which resulted in the reduction 

in CD4 T-cell counts.  

 

7.5.10 Tumor necrosis factor-α (TNF-α) 

TNF-α is involved in pathological processes such as chronic inflammation, 

autoimmunity and malignant diseases [Balkwill 2006]. In the current study, the serum 

concentrations of circulating TNF-α were investigated in HIV+NHL patients. The 

serum concentrations of circulating TNF-α were significantly increased in HIV+NHL 

patients as compared to NHL patients (figure 7.22). However, no significant 

difference in TNF-α was found between HIV+NHL and HIV+cART patients. In 

addition, NHL patients had increased serum concentrations of circulating TNF-α as 

compared to the controls (figure 7.22). It has been previously shown that genetic 

polymorphism leading to increased TNF-α production influences the clinical outcome 

of NHL and suggest a pathophysiological role for the genetic control of the immune 
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response in lymphomas [Warzocha et al., 1998; Ibrahim et al., 2012]. In addition, it 

has been shown that patients with malignant lymphomas have high circulating 

concentrations of TNF-α and that higher plasma concentrations of TNF-α are 

associated with poor disease outcome [Salles et al., 1996; Warzocha et al., 1998]. 

cART-naïve HIV+ patients had significantly high serum concentrations of circulating 

TNF-α as compared to the HIV+ cART patients as well as when compared to the 

controls (figure 7.22). These results confirm that TNF-α is increased in HIV+ 

patients, while cART decreased the serum concentrations of circulating TNF-α to 

almost the level of the control population. The serum concentrations of circulating 

TNF-α were increased in NHL without HIV-1 infection.  

The increased serum concentrations of circulating TNF-α were negatively associated 

with the numbers of CD4 T-cells, CD19+ B-cells, and FoxP3 expression (figure 

7.23A, D, and F), while they correlated positively with the numbers of CD8 T-cells, 

NK-cells and CD8+CD38 expression (figure 7.23B, C and E). In addition, TNF-α was 

independently associated with HIV+NHL. It has been previously shown that HIV-1 

infection induces TNF-α expression, and the increased TNF-α expression is 

associated with increased viral replication, depletion of CD4 T-cell counts and poor 

outcome in HIV-1 infected patients [Kumar et al., 2013]. It has also been reported 

that the expression of TNF-α is greatly increased in HIV-1 infection and that these 

levels increase with disease progression [Kedzierska and Crowe 2001; Connolly et 

al., 2005; Ownby et al., 2009]. HIV-1 induces TNF-α expression, and exogenous 

TNF-α enhances HIV-1 replication and positive correlation between increased serum 
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concentrations of TNF-α and increased plasma HIV-1 viral load have been 

demonstrated [Connolly et al., 2005]. 

 

7.6 Conclusion 

HIV-1 infection is associated with dysregulation of cytokine production and this is 

thought to contribute to HIV associated immune deficiency [Kedzierska and Crowe 

2001; Shebl et al., 2012]. It has been reported that decreased secretion of specific 

cytokines and increased production of others contributes to the progression of HIV-1 

associated immune deficiency [Kedzierska and Crowe 2001]. The dysregulation of 

cytokine production may be playing a role in the pathogenesis of HIV+NHL, as 

evidenced by increased prevalence of NHL in HIV-1 infection.  

In the current study, the concentrations of inflammatory cytokines were increased in 

HIV+NHL. This may have been a carry-over effect from increased concentrations 

observed in HIV+ patients and may have been caused by HIV-1 infection. However, 

high serum concentrations of circulating inflammatory cytokine were also observed in 

HIV negative NHL patients. This may have been caused by the presence of EBV 

virus in these NHL patients or immune surveillance against malignant lymphoma 

cells. cART partially decreased the serum concentrations of circulating inflammatory 

cytokines. Thus in the current study, cART reversed the abnormal cytokine profile 

and this may contribute to suppression of HIV-1 replication and restoration of CD4 T-

cell counts.  
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The decreased concentrations of inflammatory cytokines and B-cell activation that 

was observed following cART initiation, may have resulted primarily from the 

virological suppression of HIV-1 virus mediated by cART. It is evident that local 

inflammatory processes and antigenic drive by HIV-1 can promote lymphomagenesis 

at the site of inflammation and chronic immune activation [Baecklund et al., 2014]. 

Cytokines play an important role in the pathogenesis of lymphomas and may 

contribute to the clinical manifestations in HIV+NHL [Talaat et al., 2014].  
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CHAPTER EIGHT 

SUMMARY AND OVERALL CONCLUSION 

 

8.1 Summary Results 

In the current study, HIV+NHL patients had suppressed CD4 T-cells, CD19+ B-cells, 

NKT-cells and FoxP3 expression (Table 8.1). However, CD8, NK-cells, CD8+CD38 

(Table 8.1), markers of chronic B-cell activation (Table 8.2) and inflammatory 

cytokines (IFN-γ, IL-2, IL-4, IL-6, IL-13 and TNF-α) (Table 8.3) were greatly 

increased in HIV+NHL patients as compared to all other groups except cART-naïve 

HIV+ patients. Reduced numbers of CD4 T-cells, NKT-cells and FoxP3 expression 

were associated with increased B-, T-cell activation and inflammatory markers. No 

significant association was observed between the biomarkers of B-cell activation and 

inflammatory markers. 
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Table 8.1: Summary results of basic and T-cell activation biomarkers. Mean ± SD. 

 

 

Table 8.2: Summary results of B-cell activation markers. Mean ± SD. 
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Table 8.3: Summary results of inflammatory markers. Mean ± SD. 
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8.2 Overall conclusion 

HIV+NHL patients had suppressed numbers of CD4 T-cells and NKT cells, and 

increased numbers of NK-cells and CD8 T-cells in the current study. However no 

significant difference in the numbers of CD19+ B-cells was observed. The reduced 

numbers of CD4 T-cells and NKT-cells may have been caused by HIV-1 infection. 

The main target of HIV-1 infection is CD4 T-cells and it leads to the reduction in CD4 

T-cell counts [Hogg et al., 2001; Alimonti et al., 2003; Fasakin et al., 2014]. Chronic 

immune activation observed in HIV-1 infected patients may also lead to increased 

CD4 T-cell turnover and apoptosis [Haas et al., 2011; Massanella et al., 2013]. The 

reduction in CD4 T-cell counts can expose HIV+ patients to opportunistic infections 

including EBV. Low CD4 T-cell counts and detectable serum EBV load are 

independently associated with poor survival among HIV+NHL patients [Tedeschi et 

al., 2012]. However, chemotherapy may have also led to decreased CD4 T-cell 

counts especially in the first few months of treatment [Mackall et al., 1994; Proietti et 

al., 2012; Nars and Kaneno 2013].  

In addition, while the numbers of CD4 T-cells decreases, the numbers of CD8 T-cells 

and NK-cells increases in HIV+NHL patients. This may be due to the immune system 

trying to eradicate the HIV-1 virus, EBV and to destroy malignant lymphoma cells. In 

the current study, cART increased the numbers of CD4 T-cells while reducing the 

numbers of CD8 T-cells and NK-cells and this may be due to the depletion of viral 

load [Smith et al., 2003; Wolbers et al., 2007]. The numbers of CD8 T-cells and NK-

cells is mediated by HIV-1 RNA levels [Catalfamo et al., 2008]. The continued 

presence of the HIV-1 virus causes the sustained immune activation, as the immune 
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system is trying to fight the infection [Cao et al., 2009; Rajasuriar et al., 2013]. 

Unfortunately, chronic immune activation results in HIV-1 complications [Cao et al., 

2009; Catalfamo et al., 2011]. This includes increased T-cell turn-over rate and 

immune exhaustion which is the main cause of immune deficiency in this group of 

patients [Haas et al., 2011; Catalfamo et al., 2011; Massanella et al., 2013]. T-cell 

activation was greatly increased in HIV+NHL and cART-naïve HIV+ patients in the 

current study, as evidenced by increased CD8+CD38 expression. The increased T-

cell activation observed in the current study may have been caused by HIV-1 

infection, the presence of EBV, and anti-tumor immune response against malignant 

lymphoma cells. However, T-cell activation was negatively associated with CD4 T-

cell counts, thus it may have resulted in increased CD4 T-cell turnover and immune 

exhaustion.  

Also observed in the current study was decreased regulatory T-cells as evidenced by 

reduced FoxP3 expression in HIV+NHL. Depleted FoxP3 expression was associated 

with increased T-cell activation. The current findings indicate that chronic immune 

activation may have been a result of decreased immune regulation in HIV+NHL 

patients. Immune regulation is necessary in the control of immune activation and the 

prevention of auto immunity. T-reg cells are known to suppress T-cell activation, 

proliferation and cytokine production [Card et al., 2009; Presicce et al., 2011]. In the 

absence of immune regulation, sustained immune activation occurs without 

monitoring. In addition, cART use was associated with improved immunity, increased 

regulatory T-cells, and decreased T-cell activation. 
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Biomarkers of B-cell activation (sCD20, sCD23, sCD27, sCD30, and sCD44) were 

elevated in HIV+NHL and cART-naïve HIV+ patients in the present study. This is 

iconsistent with previous findings. Breen and Colleagues [2011], reported that serum 

sCD23, sCD27 and sCD30 concentrations were significantly elevated in HIV+NHL as 

compared to HIV+ controls. In the current study, it was shown that chronic B-cell 

activation also occurred in untreated HIV+ patients and cART may reduce B-cell 

activation. Increased B-cell activation has been observed in HIV-1 infected patients 

and was associated with a more rapid disease progression and poor survival [Horie 

and Watanabe 1998]. These results also suggest that B-cell activation is increased 

in HIV+NHL as evidenced by increased B-cell activation markers investigated in this 

study, and was associated with decreased CD4 T-cell counts and increased T-cell 

activation.  

 

The increased T-cell activation observed in HIV+NHL may have also caused chronic 

B-cell activation. It has been reported that chronic B-cell activation may be caused 

by related interaction with activated T-cells, whose receptor recognizes antigen 

presented by the B-cells, or activation by T-cell independent antigens [Bishop et al., 

2003]. In addition, there is growing evidence that HIV-1 virus can directly contribute 

to B-cell activation via direct interactions with B-cells [Epeldegui et al., 2010]. 

Chronic B-cell activation is known to increase the risk of HIV+NHL development 

[Grulich et al., 2000; Purdue et al., 2009; De Roos et al., 2012]. It has been 

previously shown that elevated serum concentrations of sC23, sCD27 and sCD30 

are associated with subsequent diagnosis of HIV+NHL [De Roos et al., 2012; 

Hussain et al., 2013]. The downstream effects of chronic B-cell activation with 
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ongoing engagement of the B-cell receptor complex on lymphomagenesis are 

numerous, and include the accumulation of oncogene mutations and translocations 

resulting from aberrant expression and gene targeting of the DNA mutating enzyme, 

activation induced cytidine deaminase (AICDA) [Hussain et al., 2013]. B-cell 

activation leads to the expression of AICDA, a DNA editing enzyme that mediates 

immunoglobulin gene class switch recombination and somatic hypermutation 

[Vendrame et al., 2014]. It has been shown that AICDA is over expressed before the 

development of HIV+NHL which is consistent with a direct role for this molecule in 

the pathogenesis of NHL [Vendrame et al., 2014].  

HIV-1 infection has long been associated with dysregulation of cytokine production 

and this may contribute to the immune deficiency observed in HIV-1 infected patients 

[Kedzierska and Crowe 2001; Shebl et al., 2012]. The serum concentrations of 

circulating inflammatory cytokines were greatly increased in HIV+NHL patients in the 

current study. The increased serum concentrations of circulating inflammatory 

cytokines observed in the current study may contribute to establishing chronic 

immune activation that exacerbates HIV+NHL [Roff et al., 2014]. Vendrame and 

Colleagues [2014] showed that elevated serum concentrations of cytokines and 

biomarkers of inflammation and immune activation precedes the development of 

HIV+NHL. The increased serum concentrations of circulating inflammatory cytokines 

were positively associated with the numbers of CD8 T-cells, NK-cells and T-cell 

activation. Persistent HIV-1 infection causes chronic immune activation (B and T-cell 

activation) which in turn results in increased pro-inflammatory cytokine production. 

The increased serum concentrations of circulating inflammatory cytokines may have 
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been caused by chronic T-cell activation as cytokines are secreted by activated T-

cells. These inflammatory cytokines may have enhanced cytotoxic T–cell and NK-

cell activities against HIV-1 infected cells and malignant lymphoma cells thus playing 

a role in antitumor activities [Roff et al., 2014]. Inflammatory cytokines such as IL-1β, 

IL-4, IL-6, and IL-10 are known to stimulate B-cell activation, proliferation and 

differentiation, thus may contribute to B-cell activation [Zamorano et al., 2003; 

Krause et al., 2012; Connolly et al., 2005; Masood et al., 1995]. In addition, the 

increased cytokine concentrations, together with the B-cell activation driven by 

antigen exposure and the direct stimulation of B-cells by HIV-1, can result in chronic 

B-cell hyperactivation [Rabkin et al., 2011]. The cytokine mediated hyperstimulation 

of B-cell proliferation may play a role in HIV associated lymphomagenesis [Rabkin et 

al., 2011]. It is well established that cytokines play a role in tumor growth, malignant 

differentiation of cancer cells and immune-modulation of micro-environment 

[Zarogoulidis et al., 2013].  

There are two major mechanisms that appear to be involved in lymphomagenesis in 

HIV-1 infected individuals: loss of immunoregulatory control of EBV and chronic B-

cell activation due to the immune dysfunction resulting from HIV-1 infection [Regidor 

et al., 2011]. However, whether these biomarkers lead to the development of 

HIV+NHL was not investigated in the current cross-sectional study. Previous studies 

showed that higher levels of T-cell activation, TH1 cytokine serum concentration and 

markers of EBV replication, preceded B-cell lymphoma diagnosis [Breen et al., 2003; 

Ouedraogo et al., 2013]. The HIV-1 infection which is well known for down-regulating 

CD4 T-cell counts causes immune deficiency and this appears to contribute to the 
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pathogenesis of HIV+NHL through the loss of T-cell mediated control over B-cell 

proliferation and the loss of immune-regulatory control over EBV infected B-cells 

[Hussain et al., 2013; Nolen et al., 2014]. It has been previously shown that 

dysregulated cytokine expression may be involved in the development of B-cell NHL 

[Gu et al., 2010; Saberi Hoenijeh et al., 2010]. Furthermore, the serum 

concentrations of circulating IL-12p70 that plays an important role in anti-tumor 

activities [Toubai et al., 2006; Pan et al., 2012], were decreased in HIV+NHL patients 

and this may result in decreased anti-tumor activities against HIV+NHL leading to its 

pathogenesis and progression.  

cART treatment was associated with a decrease in serum concentrations of 

circulating inflammatory cytokines in the current study. These findings confirm that 

the biomarkers of immune activation and inflammation are increased in the South 

African population as was seen in other regions. FoxP3, sCD20, sCD23, sCD44, IL-4 

and TNF-α were independently associated with HIV+NHL. The selected biomarkers 

of immune activation and inflammation investigated in the current study will enhance 

our ability to diagnose, monitor and treat HIV+NHL. 
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8.3 Limitations of the study 

The current study had limitations. The sample size was small; however, this was 

substantiated by formal statistical sample size calculation which was confirmed by 

the fact that significant differences and associations have been detected in the study. 

No follow-up assessment of these biomarkers was conducted. It would have been 

worthwhile to conduct a follow-up assessment, to investigate whether the expression 

of these biomarkers are time dependent or not. This is a cross-sectional study and 

therefore no conclusions about causality can be drawn. 

 

8.4 Future studies  

A follow-up assessment on these biomarkers needs to be conducted in a longitudinal 

study, to investigate whether their expression is time dependent. Based on the 

current findings, the following biomarkers should be taken forward for longitudinal 

analysis, i.e FoxP3, sCD20, sCD23, sCD44, IL-4 and TNF-α. Biomarkers that carry 

the best prognostic value in predicting the possibilities of the patients to develop 

HIV+NHL need be determined. 
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APPENDIX I 

INCLUSION CRITERIA 

 cART-naïve HIV+ 

o HIV positive patients with CD4 T-cell count of ≤350 cells/mm3 

o Not yet on cART  

o No medication such as immune suppressants and those for autoimmune 

diseases 

 HIV+ cART 

o HIV positive patients with CD4 T-cell count of ≤350 cells/mm3 that are on 

cART 

o First or second line combination antiretroviral therapy (ART) regimens 

according to SA clinical guidelines including efavirenz, nevirapine, 

tenofovir, lamuvidine, emtracitabine, stavudine, zidovudine and 

lopinavir/ritonovir.  

o Patients on other cART treatments may also be included in this study. 

o No medication for autoimmune diseases 

 NHL 

o HIV negative NHL patients diagnosed with DLBCL that are on:  

 Defined chemotherapy such as CHOP (cyclophosphamide, 

doxorubicin, vincristine and prednisone) and supportive drugs 

 No other medication especially that may alter biomarker 

concentrations 
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 HIV+NHL 

o HIV positive NHL patients diagnosed with DLBCL that are on: 

 First or second line combination antiretroviral therapy (cART) 

regimens according to SA clinical guidelines including efavirenz, 

nevirapine, tenofovir, lamuvidine, emtracitabine, stavudine, 

zidovudine and lopinavir/ritonovir. 

 Defined chemotherapy such as CHOP (cyclophosphamide, 

doxorubicin, vincristine and prednisone) and supportive drugs 

 Patients on other cART treatments may also be included in this 

study. 

 No other medication especially that may alter biomarker 

concentrations 

 Controls (Age/gender matched with the HIV+/NHL group) 

o HIV negative individuals with no NHL 

o No cART  

o No chemotherapy 

o No medication such as immune suppressants and those for autoimmune 

diseases 

o HIV test, counselling and referrals will be done on healthy control (Medical 

Students, laboratory and hospital staff) prior to the enrolment into the 

study. 
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Appendix II 

Multitest antibody preparation: 

 Multitest CD3 FITC/CD16+56 PE/CD45 PerCP/CD19 APC  

 Multitest CD3 FITC/CD8 PE/CD45 PerCP/CD4 APC 

Calculation of dilution factors: 1:3 (1µl reagent: in 3µl of ddH2O) 

Required volume: 20µl per sample and CD Chex (e.g. 4 samples and 2 CD 

Chex) 

20µl x6 = 120µl 

120µl + 20µl (compensation volume) = 140µl 

1/3 x 140µl = 47µl 

47µl reagent + 93µl ddH2O  
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Appendix III 

FoxP3 Buffer A preparation:  

 FoxP3 Buffer A (10x concentration)  

Calculation of dilution factors: 1:10 (1µl reagent: 10µl of ddH2O) 

Required volume: 500µl per sample and lymphosures (e.g. 4 samples and 2 

lymphosures) 

500µl x6 = 3000µl 

3000µl + 300µl (compensation volume) = 3300µl 

1/10 x 3300µl = 330µl 

Buffer A = 330µl Buffer A + 2970µl ddH2O 

 

 

 

 

 

 

Stellenbosch University  https://scholar.sun.ac.za



295 

 

 

FoxP3 Buffer C preparation:  

 FoxP3 Buffer B  

 Prepared FoxP3 Buffer A (1x) 

Calculation of dilution factors: 1:50 (1µl Buffer B: 50µl Buffer A) 

Required volume: 500µl per sample and lymphosures (e.g. 4 samples and 2 

lymphosures) 

500µl x6 = 3000µl 

3000µl + 300µl (compensation volume) = 3300µl 

1/50 x 3300µl = 66µl  

3300µl - 66µl = 3234µl  

Buffer C = 66µl Buffer B + 3234µl Buffer A 
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