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Summary
In this thesis, we introdue bivariate re�nable funtions whih are funtions that areexpressible as linear ombinations of the shifts of their own dilation by a fator of adilation matrix. For the orresponding re�nement masks, we de�ne the mask symbols asthe Laurent polynomials whose oe�ients are the elements of the re�nement masks. Ofpartiular interest are interpolatory re�nable funtions, that is, re�nable funtions whihvanish at all integers exept the origin at whih they take the value 1. We present simpleharaterization of the orresponding interpolatory masks in terms of both the deltasequene and the determinant of the dilation matrix. The orresponding interpolatorymask symbols are haraterized by some polynomial identities.An important tool for our work is the Eulidean algorithm, whih, in assoiation withthe Bezout theorem, helps us to provide an expliit omputational algorithm to �nd thegeneral solution for some polynomial identities. Using the algorithm thus presented, weintrodue the general form of an interpolatory mask symbol assoiated with the dilationmatrix 2I, and the result thus obtained is applied to the mask symbols orresponding tothe box splines.The onepts of interpolatory subdivision shemes and asade algorithms are alsoinvestigated. Subdivision shemes, as usually used to generate urves and surfaes, areinterpolatory when the initial data points are preserved at all the steps of the subdivisionproess. We show that interpolatory subdivision shemes and the asade algorithm areii



SUMMARY iiistrongly linked to eah other. For a well-hosen dilation matrix and interpolatory re�ne-ment mask, we �nd that the assoiated asade algorithm preserves ertain propertiesof the initial funtions, allowing us to prove that asade algorithm onvergene impliesthe existene of a orresponding interpolatory re�nable funtion, whih in turn impliessubdivision sheme onvergene.Speializing only to the ase where the dilation matrix is M = 2I, we present someworkable methods applied for both non-negative interpolatory masks and interpolatorymasks obtained by tensor produts in order to investigate the existene of orrespondinginterpolatory re�nable funtions. For interpolatory masks onstruted to satisfy the sumrules, we provide numerial proofs towards investigating the existene of orrespondinginterpolatory re�nable funtions by using the asade algorithmwith an appropriate initialfuntion. Numerial illustrations by means of subdivision graphs are also provided.



Opsomming
In hierdie tesis beskou ons tweeveranderlike verfynbare funksies, oftewel funksies watuitdrukbaar is as lineêre kombinasies van die skuiwe van hulle eie dilasie deur die fak-tor van die dilasiematriks. Vir die ooreenkomstige verfyningsmaskers de�nieer ons diemaskersimbole as Laurent polinome waarvan die koë�siënte die elemente van die verfyn-ingsmaskers is. Van besondere belang is interpolerende verfynbare funksies, dit wil sêverfynbare funksies wat gelyk aan nul is by alle heelgetalle behalwe die oorsprong waarhulle die waarde 1 aanneem. Ons gee 'n eenvoudige karakterisering van die ooreenstem-mende interpolerende maskers, beide in terme van die delta ry en die determinant van diedilasiematriks. Die ooreenstemmende interpolerende maskersimbole word gekarakteriseerdeur sekere polinoom identiteite.'n Belangrike stuk gereedskap vir ons werk is die Euklidiese algoritme, wat, tesamemet die Bezout stelling, ons help om 'n eksplisiete algoritme te bepaal vir die algemeneoplossing van sekere polinoom identiteite. Met behulp van hierdie algoritme stel ons danbekend die algemene vorm van 'n interpolerende maskersimbool wat ooreenstem met diedilasiematriks 2I, en die resultaat wat sodanig verkry is word dan toegepas op die masker-simbole wat ooreenstem met 'n sekere klas tweeveranderlike latfunksies (�box splines�).Die konsepte van interpolerende subdivisie skemas en kaskade algoritmes word ookondersoek. Subdivisieskemas, soos gewoonlik gebruik om krommes en oppervlakke tegenereer, is interpolerend indien die begin-datapunte gepreserveer word by elke stap vaniv



OPSOMMING vdie subdivisie proses. Ons toon aan dat interpolerende skemas en die kaskade algoritmesterk aanmekaar verbind is. Vir 'n goedgekose dilasiematriks en interpolerende verfyn-ingsmasker vind ons dat die ooreenstemmende kaskade algoritme sekere eienskappe vandie beginfunksie preserveer, met behulp waarvan ons dan kan bewys dat kaskade algo-ritme konvergensie die bestaan van 'n ooreenstemmende interpolerende verfynbare funksieimpliseer, en wat op die beurt dan die konvergensie van die subdivisieskema impliseer.Deur te spesialiseer na die geval waar die dilasiematriksM = 2I, verskaf ons werkbaremetodes vir toepassing op beide nie-negatiewe interpolerende maskers en interpolerendemaskers soos verkry met behulp van tensor produkte met die doel om die bestaan vanooreenstemmende interpolerende verfynbare funksies te ondersoek. Vir interpolerendemaskers wat die somreëls bevredig, gee ons numeriese bewyse ten opsigte van die onder-soek na die bestaan van ooreenstemmende verfynbare funksies, deur die kaskade algoritmemet 'n gepaste beginfunksie te gebruik. Numeriese illustrasies deur middel van subdivisiegra�eke word ook verskaf.
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{f : R → R}
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M0(R
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LIST OF SYMBOLS xsupp(c) the support of the sequene c ∈M0(Z
2), i.e. the set {j ∈ Z2 : cj 6= 0}supp(f) the support of the funtion f ∈M0(R
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Cα
0 (R) the subset of �nitely supported funtions in C0(R)
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0 (R2) the subset of �nitely supported funtions in C0(R
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∑

j

and ∑j the summations∑
j∈Z

and ∑j∈Z2
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i,j

the summation ∑

(i,j)∈Z2

supj and supx the suprema over all j ∈ Z2 and over all x ∈ R2

I the 2 × 2 identity matrix
M dilation matrix, i.e. a 2 × 2 invertible matrix with integer entries
a re�nement mask in M0(Z

2)

Π the spae of all polynomials with omplex variables
Πk the subspae of Π onsisting of polynomials of degree at most k ∈ Z+

A mask symbol assoiated with the re�nement mask a ∈M0(Z
2), i.e. theLaurent polynomial∑

i,j

ai,jz
i
1z

j
2

φ re�nable funtion, i.e. a funtion satisfying the re�nement equation
φ =

∑j ajφ(M · −j)
δ the delta sequene de�ned by δ0 = 1 and δj = 0 for j 6= 0jT the transpose of j ∈ Z2, i.e. jT =

(

i

j

) for j = (i, j)



LIST OF SYMBOLS xi
Sa the subdivision operator mapping c ∈M(Z2) to Sac ∈M(Z2), with

(Sac)j =
∑k aj−MkT ck, j ∈ Z2

Sr
a the subdivision operator Sa applied r-times, with the onvention that

S0
a is the identity operator

c(r) the sequene Sr
ac, where c ∈M(Z2)

‖ · ‖∞ the uniform norm in M(Z2) and in M(R2), i.e. ‖c‖∞ = supj |cj| for
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a c the limit funtion of a onvergent subdivision sheme Sa with initialsequene c ∈M(Z2)

Ta the asade operator mapping f ∈M(R2) to Taf ∈M(R2), with
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a the asade operator Ta applied r-times, with the onvention that
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a is the identity operator
g an initial funtion in M(R2) for the asade algorithm
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a g the limit funtion of a onvergent asade algorithm Ta with initialfuntion g ∈ C0(R

2)

D the dyadi set {M−rjT : j ∈ Z2, r ∈ Z+
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φ̃ · ψ̃ the tensor produt of the univariate funtions φ̃ and ψ̃, i.e. thebivariate funtion (x, y) 7→ φ̃(x)ψ̃(y), (x, y) ∈ R2



Introdution
A re�nable funtion, or a funtion expressible as a linear ombination of the shifts of itsown dilations by a fator of a dilation matrix, i.e. an invertible matrix with integer entries,is always linked to a ertain sequene alled the re�nement mask. The re�nement maskorresponds to a Laurent polynomial alled the mask symbol, the oe�ients of whihare the elements of the re�nement mask. The ardinal B-spline funtions presented in[dV07℄ are among the �rst examples of univariate re�nable funtions whih have enormousappliations in wavelet analysis and approximation theory.In general, it is hard to investigate whether a given funtion is re�nable, sine boththe assoiated re�nement mask, as well as the orresponding the dilation matrix have tobe found. It is thus better to start with a given dilation matrix and a �nitely supportedsequene, and investigate the existene of a orresponding re�nable funtion.Based on a given dilation matrix and a �nitely supported sequene, the assoiatedsubdivision sheme is de�ned as an operator whih reursively produes denser and denserdata points by means of linear ombinations of the previous ones. The orrespondingasade algorithm is also de�ned as a funtional operator whih iteratively produes asequene of funtions by means of linear ombinations of the previous ones.Subdivision methods, as initialy introdued by de Rham (1956) and later by Chaikin(1974), play important roles in omputer aided geometri design (CAGD) by generatingurves and surfaes in omputer graphis (see e.g. [Dyn92℄). Casade algorithms, on1



INTRODUCTION 2the other hand, are useful in the sense that asade algorithm onvergene implies there�nability of the limit funtion.Speializing only to the ase where the dilation matrix is M = 2I, our goal in thisthesis is to give a purely algebrai method for the study of both bivariate re�nable fun-tions and their assoiated subdivision shemes, in ontrast to methods based on Fouriertransforms as mostly enountered in the literature. A fundamental theme in this the-sis is that of interpolatory bivariate re�nable funtions, that is, re�nable funtions thattake the value 1 at the origin and 0 at all other integers. We proeed to introdue inChapter 1 a brief overview of interpolatory re�nable funtions. The orresponding re�ne-ment masks, alled interpolatory masks, and the assoiated interpolatory mask symbolsare respetively haraterized by (1.8) and (1.10). We refer to the Dubu-Deslauriersinterpolatory re�nable funtion, as investigated in [VGH03℄ (see also [Hun05, Goo00℄) forthe univariate setting, and to the interpolatory re�nable funtions onstruted in [RS97℄(see also [Jia00℄) for the multivariate ase.Several studies of re�nement masks have been developed by using the assoiated masksymbols, whih often help to prove the onvergene of the subdivision shemes to whihthey are assoiated (e.g. [DL02, pages 37-70℄, [CDM91℄). Motivated by this perspetive,we take a speial interest in interpolatory mask symbols for the speial ase where thedilation matrix is 2I. In Chapter 2, an alternative riterion to interpolatory mask symbolswhih is easier to use than (1.10) is given. In Theorem 2.2.3, we dedue the general formof an interpolatory mask symbol by using some polynomial identities and the Eulideanalgorithm. The results thus obtained are then applied to the mask symbols orrespondingto the well-known box splines.An interpolatory re�nement mask generates an interpolatory subdivision sheme, thatis, a subdivision sheme for whih the initial data points are preserved at all the stepsof the reursive proess (see [Dyn92℄). This is extremely relevant in ertain appliation



INTRODUCTION 3areas in CAGD, where the initial data are required to be preserved while applying thesubdivision proess. In Chapter 3, we disuss the onvergene of interpolatory subdivisionshemes, and we investigate in Setion 3.3 the issue of property preservation with respetto the asade algorithm.Though remarkable progress by mathematiians in the area have been made, omputa-tionally ine�ient onditions are still often applied to re�nement masks in order to ensurethe onvergene of the assoiated subdivision shemes. For instane, the haraterizationby using the joint spetral radius for subdivision shemes investigated in [HJ98a℄ an takeimpratially long to test omputationally, whereas the alternative method based on on-trativity onditions, as introdued in [DL02℄ (see also [Dyn02℄), an also be a formidableomputational task to perform. Under ertain restritions, we therefore develop in Chap-ter 4 three feasible methods to examine the existene of interpolatory re�nable funtionsfrom a pratial point of view. The presented methods are applied on interpolatory masksymbols, and are based on the results of Mihelli in [Mi96℄ and on tensor produts.Unfortunately, for the general setting, the existing methods investigating the existeneof interpolatory re�nable funtions are not always feasible to implement. By using theabove-mentioned general form of an interpolatory mask symbol, an interesting ontinua-tion of this thesis thus inlude �nding easily hekable su�ient onditions on interpola-tory mask symbols for them to omply with the onditions of the existing methods.



Chapter 1
Interpolatory bivariate re�nablefuntions
We �rst give in this hapter a brief introdution to interpolatory bivariate re�nable fun-tions and the orresponding interpolatory masks. Then, we elaborate a simple riterion in(1.8) and in (1.10) to reognize simultaneously an interpolatory mask and the assoiatedinterpolatory mask symbol. We end the hapter by presenting the box splines as examplesof interpolatory bivariate re�nable funtions.
1.1 Notation and general oneptsWe shall denote the set of natural numbers by N, the set of integers and non-negativeintegers respetively by Z and Z+, the set of real numbers by R and the set of omplexnumbers by C. Similarly, the symbols Z2, R2 and C2 denote the set of ordered pairs withrespetively integer, real number and omplex number entries.For the linear spae M(Z2) of all real-valued sequenes c = {cj ∈ R : j ∈ Z2} whihsupport is denoted by supp(c) := {j ∈ Z2 : cj 6= 0}, the subspae of �nitely supported4



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 5sequenes, i.e. whose supports are �nite, onstitute a linear subspae denoted by M0(Z
2).In the same way, for the linear spae M(R2) of all real-valued bivariate funtions f on R2whih support supp(f) is the smallest losed set ontaining {x ∈ R2 : f(x) 6= 0}, the setof �nitely supported funtions onstitute a linear subspae denoted byM0(R

2). Moreover,the subspaes of ontinuous funtions respetively in M(R2) and in M0(R
2) are denotedby C(R2) and C0(R

2).For a given 2 × 2 invertible matrix M with integer entries, a funtion φ ∈ M0(R
2) istermed M-re�nable if there exists a sequene a = {aj : j ∈ Z2} ∈M0(Z

2) suh that
φ =

∑j ajφ(M · −j). (1.1)We shall refer toM as the dilation matrix, whereas the sequene a is alled the re�nementmask (or simply the mask), and the equation (1.1) is referred to as the re�nement equation.Note that an M-re�nable funtion is therefore expressible as a linear ombinations ofthe shifts of its own dilations with the fator of the dilation matrixM , as spei�ed by there�nement mask a. For onveniene, we shall often simplify �M-re�nable� to �re�nable�.The problem of existene of re�nable funtions by using re�nement masks is funda-mental, but most importantly in this thesis, is that our study is foussed on interpolatoryre�nable funtions, that is, re�nable funtions that satisfy
φ(j) = δj, j ∈ Z2, (1.2)where the delta funtion δ (also alled the delta sequene) is de�ned by

δj =















1, j = 0,
0, j 6= 0, , j ∈ Z2. (1.3)



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 6In other words, a re�nable funtion is interpolatory if it vanishes at all integers exeptat the origin 0 ∈ Z2 where it takes the value 1. We proeed to haraterize the so-alledinterpolatory re�nement masks assoiated with interpolatory re�nable funtions.
1.2 Interpolatory re�nement masksWe present in this setion a haraterization theory for re�nement masks assoiated withinterpolatory re�nable funtions. Thereafter we introdue the onept of re�nement masksymbols and then speialize to the ase M = 2I, with some examples of bivariate inter-polatory re�nable funtions.By using the symbol jT for the transpose of the integer pair j ∈ Z2, we ome �rst tothe following result.Proposition 1.2.1. For a given dilation matrix M and a mask a ∈M0(Z

2), suppose there�nement equation (1.1) holds for a re�nable funtion φ. If φ is interpolatory, then asatis�es
aMjT = δj, j ∈ Z2. (1.4)Proof. From (1.2) and (1.1), we have that, for j ∈ Z2,

δj = φ(j) =
∑k akφ(MjT − k) =

∑k akδMjT−k = aMjT .
Our next result was proved for the ase M = 2I in [CDM91℄. Our general proof isbased on a suggestion in [HJ98a℄.Proposition 1.2.2. For a given dilation matrix M and a mask a ∈M0(Z

2), suppose there�nement equation (1.1) holds for a re�nable funtion φ. If φ is �nitely supported and



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 7integrable with non-zero integral over R2, then a satis�es
∑j aj = |det(M)|. (1.5)Proof. Suppose that the dilation matrix has the form
M =







c d

e f






.Writing ai,j = aj, we an now integrate the re�nement equation (1.1) to obtain

∫ ∫

R2

φ(x, y)dxdy =
∑

i,j

ai,j

∫ ∫

R2

φ(M(x, y)T − (i, j))dxdy. (1.6)Sine the variable transformation (X, Y )T = M(x, y)T has Jaobian
J(x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
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∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

∣

c d

e f

∣

∣

∣

∣

∣

∣

∣

= det(M),it follows from standard multivariate integration theorems in analysis that
∫ ∫

R2

φ(M(x, y)T − (i, j))|det(M)|dxdy =

∫ ∫

R2

φ((X, Y ) − (i, j))dXdY
=

∫ ∫

R2

φ(X, Y )dXdY . (1.7)We then dedue from (1.6) and (1.7) that
∫ ∫

R2

φ(x, y)dxdy =
∑

i,j

ai,j
1

|det(M)|

∫ ∫

R2

φ(x, y)dxdy.



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 8Moreover, sine we assume the integral of φ to be non-zero over R2, we obtain
∑

i,j

ai,j
1

|det(M)|
= 1,from whih the result (1.5) follows.Therefore, given a dilation matrixM , the existene of a ompatly supported interpo-latory re�nable funtion φ with non-zero integral over R2 requires for a given re�nementmask a to satisfy the onditions



















aMjT = δj, j ∈ Z2,

∑j aj = |det(M)|.
(1.8)

Now, onsidering a re�nement mask a = {aj} = {ai,j}, we de�ne the orrespondingre�nement mask symbol, or simply the mask symbol, as the bivariate Laurent polynomial
A given by

A(z1, z2) =
∑

i,j

ai,jz
i
1z

j
2, z1, z2 ∈ C \ {0}. (1.9)Also, we say that a re�nement mask a is interpolatory if it satis�es (1.8). In that ase, forbrevity, we all a an interpolatory mask. Moreover, its symbol A is alled an interpolatorymask symbol.Sine, aording to (1.9), re�nement masks and their symbols are bijetively linked,the restritions (1.8) on a mask a an equivalently be expressed in terms of the masksymbol A as follows:































The onstant term in A(z1, z2) is 1, and A has no term in zα1
1 zα2

2suh that (α1, α2) = M(i, j)T 6= (0, 0) for some (i, j) ∈ Z2; also,
A(1, 1) =

∑

i,j

ai,j = |det(M)|.

(1.10)



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 9It is often onvenient to use re�nement mask symbols instead of their orrespondingre�nement masks. Indeed, as presented in [CDM91, Mi96, Der99℄, some properties ofmasks symbols lead to the existene of ompatly supported re�nable funtions.The following setion presents some examples of interpolatory re�nable funtions withdilation matrix M = 2I.
1.3 Box splinesIn this setion, we �x the dilation matrix M = 2I. The onditions (1.8) on an interpola-tory mask a an then be re-written as



















a2i,2j = δ(i,j), (i, j) ∈ Z2,

∑

i,j

ai,j = 4,
(1.11)

whereas the onditions (1.10) on an interpolatory mask symbol A beome






























The onstant term in A(z1, z2) is 1, and A hasno term in z2α1
1 z2α2

2 , for any (α1, α2) ∈ Z2 \ {(0, 0)}; also,
A(1, 1) =

∑

i,j

ai,j = 4.

(1.12)
The box spline N1The box spline funtion N1 is de�ned by

N1(x, y) =















1, (x, y) ∈ [0, 1)2,

0, (x, y) /∈ [0, 1)2.
(1.13)The graph of N1 is shown in Figure 1.1 (b), from whih we see that N1 is �nitely



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 10

(a) Support of a(1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

 0

 1

 0

 0

 0.5

 1

(b) Graph of N1Figure 1.1: The box spline N1supported, and though it is not ontinuous, we laim that N1 is an interpolatory re�nablefuntion with respet to the interpolatory mask a(1) whih support is delimitated by thedotted lines in Figure 1.1 (a), as given by
a

(1)
0,0 = a

(1)
0,1 = a

(1)
1,0 = a

(1)
1,1 = 1; a

(1)
i,j = 0 otherwise. (1.14)To prove this, observe �rst that, for x, y ∈ R,

N1(2x, 2y) =















1, (x, y) ∈ [0, 1
2
)2,

0, (x, y) /∈ [0, 1)2;

N1(2x− 1, 2y) =















1, (x, y) ∈ [1
2
, 1) × [0, 1

2
),

0, (x, y) /∈ [0, 1)2;

N1(2x, 2y − 1) =















1, (x, y) ∈ [0, 1
2
) × [1

2
, 1),

0, (x, y) /∈ [0, 1)2;
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N1(2x− 1, 2y − 1) =















1, (x, y) ∈ [1
2
, 1)2,

0, (x, y) /∈ [0, 1)2.Then, sine the squares [0, 1
2
)2, [1

2
, 1) × [0, 1

2
), [0, 1

2
) × [1

2
, 1) and [1

2
, 1)2 form a partition ofthe unit square [0, 1)2, we obtain, for (x, y) ∈ R2,

N1(x, y) = N1(2x, 2y) +N1(2x− 1, 2y) +N1(2x, 2y − 1) +N1(2x− 1, 2y − 1), (1.15)thereby proving that N1 is re�nable with orresponding mask a(1) given in (1.14). Hene,aording to (1.14) and (1.9), the orresponding mask symbol A1 is given by
A1(z1, z2) = 1 + z1 + z2 + z1z2 = (1 + z1)(1 + z2), z1, z2 ∈ C. (1.16)Note that the onditions (1.11) and (1.12) are respetively ful�lled by the re�nement mask

a(1) and its symbol A1. Moreover, (1.13) shows that N1(j) = δj, j ∈ Z2, whih means that
N1 is an interpolatory re�nable funtion.The box spline N2Using the box spline N1 given in (1.13), the box spline funtion N2 is de�ned by

N2(x, y) =

∫ 1

0

N1(x− t, y − t)dt, x, y ∈ R. (1.17)Let us �rst prove that N2 is a ontinuous funtion by �nding its expliit formula. To thisend, observe that, for t ∈ (0, 1) and x, y ∈ R,
N1(x− t, y − t) 6= 0 ⇐⇒ x− t ∈ [0, 1) and y − t ∈ [0, 1)

=⇒ 0 < x < 2 and 0 < y < 2. (1.18)



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 12Hene, from (1.18) and (1.17), we dedue that N2(x) = 0, x /∈ [0, 2]2.Moreover, for x, y ∈ [0, 2), we have
0 ≤ x− t < 1 ⇐⇒ x− 1 < t ≤ x and 0 ≤ y − t < 1 ⇐⇒ y − 1 < t ≤ y,whih, together with (1.17), yields

N1(x− t, y − t) 6= 0 ⇐⇒ t ∈ (0, 1) ∩ (x− 1, x] ∩ (y − 1, y], x, y ∈ [0, 2). (1.19)We then have the following result.Proposition 1.3.1. The box spline N2, as de�ned in (1.17), is expliitly given by
N2(x, y) =















































min{x, y}, if (x, y) ∈ [0, 1)2,

2 − max{x, y}, if (x, y) ∈ [1, 2)2,

1 + min{x, y} − max{x, y}, if (x, y) ∈ ∆,

0 otherwise, (1.20)
where ∆ is the set de�ned by

∆ = {(x, y) : min{x, y} ∈ [0, 1); max{x, y} ∈ [1, 2); 1 + min{x, y} ≥ max{x, y}}, (1.21)i.e.,
∆ = B ∪ E,with B and E as in Figure 1.2. Consequently, the support of N2 is the polygon A ∪ B ∪

C ∪D ∪ E ∪ F = [0, 1]2 ∪ ∆ ∪ [1, 2]2 in Figure 1.2.Proof. Observe from Figure 1.2 that [0, 1)2 = A ∪ F , [1, 2)2 = C ∪ D and ∆ = B ∪ E.
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Figure 1.2: Support of the box spline N2.Therefore, from (1.19), we have that, for x ∈ [0, 1):
• If y ∈ [0, 1) is suh that y ≤ x (resp. y ≥ x), then t ∈ [0, y] (resp. t ∈ [0, x]), sothat N2(x, y) =

∫ y

0

dt = y

(resp. N2(x, y) =

∫ x

0

dt = x

).
• If y ∈ [1, 2), two ases our:

◦ If y − 1 > x, then t ∈ ∅ and N2(x, y) = 0;
◦ If y − 1 ≤ x, then t ∈ (y − 1, x] and therefore N2(x, y) =

∫ x

y−1

dt = 1 + x− y.Similarly, from (1.19), we have that, for x ∈ [1, 2):
• If y ∈ [0, 1), two ases our:

◦ If y > x− 1, then t ∈ (x− 1, y] and therefore N2(x, y) =

∫ y

x−1

dt = 1 + y − x;
◦ If y ≤ x− 1, then t ∈ ∅ and N2(x, y) = 0.

• If y ∈ [1, 2) is suh that y ≤ x (resp. y ≥ x), then t ∈ (x−1, 1] (resp. t ∈ (y−1, 1]),so that N2(x, y) =

∫ 1

x−1

dt = 2 − x

(resp. N2(x, y) =

∫ 1

y−1

dt = 2 − y

).By taking the appropriate ombination of the four ases above, we obtain the desiredresult (1.20).



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 14Next, by using Proposition 1.3.1 and Figure 1.2, we dedue that the restritions of N2to the respetive regions A,B,C,D,E and F are given as follows:
⋄ In the region A: x, y ∈ [0, 1), with y ≥ x, we have N2|A(x, y) = x;
⋄ In the region F : x, y ∈ [0, 1), with y ≤ x, we have N2|F (x, y) = y;
⋄ In the region B: x ∈ [0, 1) and y ∈ [1, 2), with x ≥ y − 1, we have N2|B(x, y) =

1 + x− y;
⋄ In the region E: x ∈ [1, 2) and y ∈ [0, 1), with y ≥ x − 1, we have N2|E(x, y) =

1 + y − x;
⋄ In the region C: x, y ∈ [1, 2), with y ≥ x, we have N2|C(x, y) = 2 − y;
⋄ In the region D: x, y ∈ [1, 2), with x ≥ y, we have N2|D(x, y) = 2 − x.Hene, N2 de�nes a di�erent plane in eah of the respetive regions A,B,C,D,E and

F . It will therefore su�e to prove the ontinuity of N2 at the edges of these regions, i.ealong the lines x = 0, x = 1, x = 2, the lines y = 0, y = 1, y = 2, as well as the lines
y = x, y = x+ 1 and y = x− 1.To this end, observe �rst that, for the region A (resp. F ), when x → 0 (resp. y → 0),we have that N2(x, y) → 0. Similarly, for the region D (resp. C), when x → 2 (resp.
y → 2), we also have that N2(x, y) → 0.Next, observe that, when x → 1 (resp. y → 1), we have N2|F (x, y) → y and
N2|E(x, y) → y (resp. N2|A(x, y) → x and N2|B(x, y) → x), so that N2 is ontinu-ous in the region F ∪ E (resp. A ∪ B). Similarly, when x → 1 (resp. y → 1), wehave that N2|B(x, y) → 2 − y and N2|C(x, y) → 2 − y (resp. N2|E(x, y) → 2 − x and
N2|D(x, y) → 2 − x), so that N2 is also ontinuous in the region B ∪ C (resp. E ∪D).



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 15Finally, along the line y = x, we have that N2|A(x, y) = N2|F (x, y) and N2|C(x, y) =

N2|D(x, y), so that N2 is ontinuous in the regions A ∪ F and C ∪ D. Along the line
y = x + 1 (resp. y = x − 1), we have that N2|B(x, y) = 0 (resp. N2|E(x, y) = 0). Thus,we onlude that N2 is ontinuous on R2.We proeed now to prove that N2 is re�nable. From the re�nement equation (1.15),we have that, for x, y ∈ R,

N2(x, y) =

∫ 1

0

N1(x− t, y − t)dt
=

∫ 1

0

[N1(2x− 2t, 2y − 2t) +N1(2x− 2t− 1, 2y − 2t)

+ N1(2x− 2t, 2y − 2t− 1) +N1(2x− 2t− 1, 2y − 2t− 1)] dt. (1.22)Using the transformations t̃ = 2t for t ∈ [0, 1
2
] and t̃ = 2t−1 for t ∈ [1

2
, 1], the �rst integralin (1.22) an be re-written, for x, y ∈ R, as

∫ 1

0

N1(2x− 2t, 2y − 2t)dt =

∫ 1
2

0

N1(2x− 2t, 2y − 2t)dt+

∫ 1

1
2

N1(2x− 2t, 2y − 2t)dt
=

1

2

∫ 1

0

N1(2x− t, 2y − t)dt+
1

2

∫ 1

0

N1(2x− t− 1, 2y − t− 1)dt
=

1

2
N2(2x, 2y) +

1

2
N2(2x− 1, 2y − 1), (1.23)by virtue of the de�nition of N2 in (1.17). Similarly, we get, for x, y ∈ R,

∫ 1

0

N1(2x− 2t− 1, 2y − 2t)dt =
1

2
N2(2x− 1, 2y) +

1

2
N2(2x− 2, 2y − 1), (1.24)

∫ 1

0

N1(2x− 2t, 2y − 2t− 1)dt =
1

2
N2(2x, 2y − 1) +

1

2
N2(2x− 1, 2y − 2), (1.25)

∫ 1

0

N1(2x− 2t− 1, 2y − 2t− 1)dt =
1

2
N2(2x− 1, 2y − 1) +

1

2
N2(2x− 2, 2y − 2). (1.26)



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 16Consequently, from (1.22), (1.23), (1.24), (1.25) and (1.26), we obtain
N2(x, y) =

1

2
{N2(2x, 2y) +N2(2x− 1, 2y) +N2(2x, 2y − 1) + 2N2(2x− 1, 2y − 1)

+ N2(2x− 1, 2y − 2) +N2(2x− 2, 2y − 1) +N2(2x− 2, 2y − 2)} , (1.27)whih shows that N2 is re�nable with orresponding mask a(2) given by














a
(2)
1,1 = 1, a

(2)
0,0 = a

(2)
0,1 = a

(2)
1,0 = a

(2)
2,1 = a

(2)
1,2 = a

(2)
2,2 = 1

2
,

a
(2)
i,j = 0, (i, j) /∈ {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)},

(1.28)aording to whih the orresponding mask symbol A2 is given by
A2(z1, z2) = (1 + z1)(1 + z2)

(

1 + z1z2
2

)

, z1, z2 ∈ C. (1.29)However, observe from (1.28) that a(2)
0,0 6= 1 and a(2)

2,2 6= 0 (or, equivalently, the onstantterm in A2(z1, z2) is not 1 and it has a term in z2
1z

2
2), that is, N2 is not interpolatory.The shifted box spline Ñ2Using the box spline N2 de�ned in (1.17), we de�ne the shifted box spline funtion Ñ2 by

Ñ2(x, y) = N2(x+ 1, y + 1), x, y ∈ R. (1.30)We laim that the funtion Ñ2, as drawn in Figure 1.3 (b), is an interpolatory re�nablefuntion assoiated with the interpolatory mask ã(2) whih support is delimitated by the
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(a) Support of ã(2)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1
 0

-1

 1

 0

-1

 0

 0.5

 1

(b) Graph of Ñ2Figure 1.3: The shifted box spline Ñ2dotted lines in Figure 1.3 (a), as given by














ã
(2)
0,0 = 1, ã

(2)
1,1 = ã

(2)
0,1 = ã

(2)
1,0 = ã

(2)
−1,0 = ã

(2)
0,−1 = ã

(2)
−1,−1 = 1

2
,

ã
(2)
i,j = 0, (i, j) /∈ {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1), (1, 1), (−1,−1)},

(1.31)with orresponding mask symbol Ã2 given by
Ã2(z1, z2) = (1 + z1)(1 + z2)

(

1 + z1z2
2

)

z−1
1 z−1

2 , z1, z2 ∈ C \ {0}. (1.32)To prove this, we use (1.30) and (1.27) to dedue that, for x, y ∈ R,
Ñ2(x, y) =N2(x+ 1, y + 1)

=
1

2
{N2(2x+ 2, 2y + 2) +N2(2x+ 1, 2y + 2) +N2(2x+ 2, 2y + 1)

+ 2N2(2x+ 1, 2y + 1) +N2(2x+ 1, 2y) +N2(2x, 2y + 1) +N2(2x, 2y)}
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=

1

2

{

Ñ2(2x+ 1, 2y + 1) + Ñ2(2x, 2y + 1) + Ñ2(2x+ 1, 2y)

+ 2Ñ2(2x, 2y) + Ñ2(2x, 2y − 1) + Ñ2(2x− 1, 2y) + Ñ2(2x− 1, 2y − 1)
}

, (1.33)whih implies that Ñ2 is a re�nable funtion with re�nement mask ã(2) given by (1.31).Moreover, by using (1.31) and (1.9), we �nd that the orresponding mask symbol Ã2 isgiven by (1.32). It an now be veri�ed from (1.31) and (1.32) that ã(2) and Ã2 satisfyrespetively the interpolatory onditions (1.11) and (1.12).To prove that Ñ2 is interpolatory, we use (1.30) and (1.17) to obtain, for x, y ∈ R,
Ñ2(x, y) = N2(x+ 1, y + 1) =

∫ 1

0

N1(x+ 1 − t, y + 1 − t)dt. (1.34)Taking into aount the de�nition of the box spline N1 in (1.13), we dedue that
Ñ2(0, 0) =

∫ 1

0

N1(1 − t, 1 − t)dt =

∫ 1

0

1dt = 1, (1.35)whereas, for (i, j) 6= (0, 0), we have that
Ñ2(i, j) =

∫ 1

0

N1(i+ 1 − t, j + 1 − t)dt = 0, (1.36)for if i 6= 0 (resp. j 6= 0) then i+1−t /∈ [0, 1) (resp. j+1−t /∈ [0, 1)), for any t ∈ (0, 1). Itfollows from (1.35) and (1.36) that the interpolatory ondition (1.2) is satis�ed, therebyshowing that the shifted box spline Ñ2 is an interpolatory re�nable funtion.Note in partiular from Figure 1.3 (b) that Ñ2 belongs to C0(R
2) \ C1

0(R
2).



Chapter 2
The interpolatory mask symbols for
M = 2I

We �x the dilation matrix M = 2I in this hapter. In Setion 2.1 below, we produe thealternative riterion (2.9) for interpolatory mask symbols. In Setion 2.2, after solvingsome polynomial identities by means of the well-known Bezout identity and the Eulideanalgorithm, we provide in Theorem 2.2.3 a useful haraterization result for interpolatorymask symbols. In Setion 2.3, we speialise to the ase of box splines interpolatory masksymbols.
2.1 Simple haraterizationWe proeed to establish an alternative haraterization to interpolatory mask symbolswhih is simpler to use than (1.12), and whih will be used in Setion 2.2. Reall fromChapter 1 that the lass of interpolatory mask symbols onsists of all Laurent polynomials

19
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A satisfying the onditions (1.12), i.e.



























The onstant term in A(z1, z2) is 1, and A hasno term in z2α1
1 z2α2

2 , for any (α1, α2) ∈ Z2 \ (0, 0); also,
A(1, 1) = 4,

(2.1)
where a is the orresponding interpolatory mask, as de�ned by (1.9), and satisfying theonditions (1.11), i.e.



















a2i,2j = δ(i,j), (i, j) ∈ Z2,

∑

i,j

ai,j = 4.
(2.2)

Let us denote by F ⊔ G the union of two sets F and G for whih the intersetion
F ∩ G is empty, whereas EE, EO, OE and OO stand for the sets of integer pairs withrespetively even-even, even-odd, odd-even and odd-odd entries. Observe that the set ofintegers Z2 onsists of the union of the four disjoint subsets EE, EO, OE and OO, i.e.

Z2 = EE ⊔ EO ⊔ OE ⊔ OO. (2.3)Given a mask symbol A with orresponding mask a ∈ M0(Z
2), we obtain from (2.3)and (1.9) that, for z1, z2 ∈ C \ {0},

A(z1, z2) =
∑

i,j

a2i,2jz
2i
1 z

2j
2 +

∑

i,j

a2i,2j+1z
2i
1 z

2j+1
2 +

∑

i,j

a2i+1,2jz
2i+1
1 z2j

2

+
∑

i,j

a2i+1,2j+1z
2i+1
1 z2j+1

2 , (2.4)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 21whereas also, by replaing z1 by −z1 in (2.4), we have, for z1, z2 ∈ C \ {0},
A(−z1, z2) =

∑

i,j

a2i,2jz
2i
1 z

2j
2 +

∑

i,j

a2i,2j+1z
2j
1 z

2j+1
2 −

∑

i,j

a2i+1,2jz
2i+1
1 z2j

2

−
∑

i,j

a2i+1,2j+1z
2i+1
1 z2j+1

2 . (2.5)Combining (2.4) and (2.5), we obtain, for z1, z2 ∈ C \ {0},
A(z1, z2) + A(−z1, z2) = 2

∑

i,j

a2i,2jz
2i
1 z

2j
2 + 2

∑

i,j

a2i,2j+1z
2i
1 z

2j+1
2 . (2.6)Now replae z1 by −z1 and z2 by −z2 in (2.6) to dedue that, for z1, z2 ∈ C \ {0},

A(−z1,−z2) + A(z1,−z2) = 2
∑

i,j

a2i,2jz
2i
1 z

2j
2 − 2

∑

i,j

a2i,2j+1z
2i
1 z

2j+1
2 . (2.7)By adding (2.6) and (2.7), we obtain the identity

A(z1, z2) + A(−z1, z2) + A(z1,−z2) + A(−z1,−z2) = 4
∑

i,j

a2i,2jz
2i
1 z

2j
2 , z1, z2 ∈ C \ {0},(2.8)whih we an now use to prove the following haraterization result.Theorem 2.1.1. Suppose that a is a re�nement mask suh that ∑j aj = 4. Then a isinterpolatory if and only if the orresponding mask symbol A, as de�ned by (1.9), satis�esthe identity

A(z1, z2) + A(−z1, z2) + A(z1,−z2) + A(−z1,−z2) = 4, z1, z2 ∈ C \ {0}. (2.9)Proof. Suppose �rst that a is interpolatory. From (2.2), sine a2i,2j = δi,j , we have that
∑

i,j

a2i,2jz
2i
1 z

2j
2 = 1,



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 22whih, together with (2.8), implies that (2.9) holds.Conversely, if (2.9) holds, we obtain from (2.8) that
∑

i,j

a2i,2jz
2i
1 z

2j
2 = 1,whih proves that a2i,2j = δi,j . Therefore, (2.2) holds and a is interpolatory.Note that, for a given re�nement mask a, the ondition in the seond line of (2.2) isahieved if the orresponding mask symbol A satis�es the identity (2.9), and if there existpositive integers k1, k2 and a Laurent polynomial B suh that

A(z1, z2) = (1 + z1)
k1(1 + z2)

k2B(z1, z2), z1, z2 ∈ C \ {0}, (2.10)sine then A(−1, z2) = A(z1,−1) = 0 for any z1, z2 ∈ C \ {0}, so that (2.9) yields
A(1, 1) = 4 and thus the mask symbol A is interpolatory. Hene the following result.Corollary 2.1.2. For a Laurent polynomial A satisfying the identity (2.9), if there existsa Laurent polynomial B suh that (2.10) holds, then A is an interpolatory mask symbol.Note that the onverse of Corollary 2.1.2 is not neessarily true, for if A is an inter-polatory mask symbol that sati�es the identity (2.9), then sine A(1, 1) = 4, we only getthat A(−1, 1) +A(1,−1) +A(−1,−1) = 0, whih does not neessarily imply that A is ofthe fatorized form (2.10).Motivated by the result of Corollary 2.1.2, we proeed to haraterize in Setion 2.2below the interpolatory mask symbols whih are in the fatorized form (2.10).



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 232.2 General formWe proeed to give the general form of interpolatory mask symbols that are fatorizablein the sense of (2.10). More preisely, we start by solving for the Laurent polynomial Ain the identity (2.9) with the help of the Bezout theorem, to �nally establish a generalformulation of interpolatory mask symbols.To failitate our investigation, we heneforth assume that the mask symbol A has thefatorized form
A(z1, z2) = 22−k1−k2(1 + z1)

k1(1 + z2)
k2B(z1, z2), z1, z2 ∈ C \ {0}, (2.11)for some integers k1, k2 ∈ N and some Laurent polynomial B suh that B(1, 1) = 1,

B(−1, z2) 6= 0 and B(z1,−1) 6= 0 for all z1, z2 ∈ C \ {0}, so that, from (2.11), it holdsthat A(1, 1) = 4. Also, we shall assume that A satis�es the identity (2.9), in whih ase,aording to Corollary 2.1.2, A is an interpolatory mask symbol.Polynomial identitiesTo haraterize the mask symbol A, we �rst prove the following result.Lemma 2.2.1. Let k1, k2 ∈ N and suppose α1, α2 are two odd integers in N. Then:(a) if α1 < 2k1, there exists a polynomial S1 whih is odd in z2, with degree α2 in z2,and degree less than k1 in z1, suh that the general Laurent polynomial solution K1of the identity
(1 + z1)

k1K1(z1, z2) − (1 − z1)
k1K1(−z1, z2) = zα1

1 zα2
2 , z1, z2 ∈ C \ {0}, (2.12)
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K1(z1, z2) = S1(z1, z2) + T1(z1, z2)(1 − z1)

k1 , z1, z2 ∈ C \ {0}, (2.13)with T1 denoting an arbitrary even Laurent polynomial in z1; also, K1 is odd in z2if and only if T1 is odd in z2.(b) if α2 < 2k2, there exists a polynomial S2 whih is odd in z1, with degree α1 in z1,and degree less than k2 in z2, suh that the general Laurent polynomial solution K2of the identity
(1 + z2)

k2K2(z1, z2) − (1 − z2)
k2K2(z1,−z2) = zα1

1 zα2
2 , z1, z2 ∈ C \ {0}, (2.14)is the Laurent polynomial given by

K2(z1, z2) = S2(z1, z2) + T2(z1, z2)(1 − z2)
k2 , z1, z2 ∈ C \ {0}, (2.15)with T2 denoting an arbitrary even Laurent polynomial in z2; also, K2 is odd in z1if and only if T2 is odd in z1.Proof. (a) Sine the two univariate polynomials (1+ z1)
k1 and (1−z1)

k1 have no ommonfator, there exist by the Bezout theorem two univariate polynomials U1 and V1 suh that
(1 + z1)

k1U1(z1) + (1 − z1)
k1V1(z1) = 1, z1 ∈ C. (2.16)Multiplying both sides of (2.16) by zα1

1 zα2
2 yields, for z1, z2 ∈ C,

(1 + z1)
k1 [zα1

1 zα2
2 U1(z1)] + (1 − z1)

k1 [zα1
1 zα2

2 V1(z1)] = zα1
1 zα2

2 , z1, z2 ∈ C. (2.17)
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zα1
1 V1(z1) = Q1(z1)(1 + z1)

k1 +R1(z1), z1 ∈ C, (2.18)suh that the degree of R1 is less than k1, and where Q1 and R1 are uniquely determinedby α1 and V1. It then follows from (2.17) that
(1 + z1)

k1S1(z1, z2) + (1 − z1)
k1R̃1(z1, z2) = zα1

1 zα2
2 , z1, z2 ∈ C, (2.19)where S1 is the polynomial de�ned by S1(z1, z2) = zα1

1 zα2
2 U1(z1)+(1−z1)

k1zα2
2 Q1(z1), and

R̃1 is the polynomial given by R̃1(z1, z2) = zα2
2 R1(z1), for all z1, z2 ∈ C. We laim thatthe degree in z1 of S1 is less than k1. To prove this, we �rst note from (2.19) that

(1 + z1)
k1S1(z1, z2) = zα1

1 zα2
2 − (1 − z1)

k1R̃1(z1, z2), z1, z2 ∈ C,aording to whih, sine the degree of R̃1 in z1 is less than k1, and sine α1 < 2k1, weneessarily have that the degree in z1 of S1 is less than k1.Replaing z1 by −z1 in (2.19), and using the fat that α1 is odd, we dedue that
(1 − z1)

k1 [−S1(−z1, z2)] + (1 + z1)
k1

[

−R̃1(−z1, z2)
]

= zα1
1 zα2

2 , z1, z2 ∈ C. (2.20)Substrating the identities (2.19) and (2.20) now yields
(1 + z1)

k1 [S1(z1, z2) + R̃1(−z1, z2)] = −(1 − z1)
k1[S1(−z1, z2) + R̃1(z1, z2)], z1, z2 ∈ C,and thus

S1(z1, z2) + R̃1(−z1, z2) = M1(z1, z2)(1 − z1)
k1 , z1, z2 ∈ C, (2.21)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 26for some polynomialM1. Sine the degree in z1 of the polynomial in the left-hand-side of(2.21) is less than k1, we neessarily have M1 = 0 in (2.21), or, equivalently,
S1(z1, z2) = −R̃1(−z1, z2), z1, z2 ∈ C, (2.22)
R̃1(z1, z2) = −S1(−z1, z2), z1, z2 ∈ C. (2.23)Using (2.19), (2.22) and (2.23), we �nd that the polynomial S1 satis�es

(1 + z1)
k1S1(z1, z2) − (1 − z1)

k1S1(−z1, z2) = zα1
1 zα2

2 , z1, z2 ∈ C, (2.24)whih means that S1 is a partiular polynomial solution of the identity (2.12) with adegree in z1 less than k1. Moreover, from (2.22), we see that S1(z1, z2) = −zα2
2 R1(−z1).Sine α2 is odd, we onlude that S1 is odd in z2, and that its degree in z2 is α2.Now, let K1 denote the general Laurent polynomial solution of (2.12). Substrating(2.12) from (2.24), we obtain, for z1, z2 ∈ C \ {0},

(1 + z1)
k1 [K1(z1, z2) − S1(z1, z2)] = (1 − z1)

k1 [K1(−z1, z2) − S1(−z1, z2)] . (2.25)Sine (1 + z1)
k1 and (1 − z1)

k1 have no ommon fator, it follows from (2.25) that thereexists a Laurent polynomial T1 satisfying
K1(z1, z2) − S1(z1, z2) = T1(z1, z2)(1 − z1)

k1 , z1, z2 ∈ C \ {0}. (2.26)Substituting (2.26) into (2.25) yields that T1(z1, z2) = T1(−z1, z2) for z1, z2 ∈ C \ {0}, i.e
T1 is even in z1. Thus, we dedue from (2.26) that K1 is given by

K1(z1, z2) = S1(z1, z2) + T1(z1, z2)(1 − z1)
k1 , z1, z2 ∈ C \ {0}, (2.27)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 27where T1 is an arbitrary even Laurent polynomial in z1.Also, sine S1 is odd in z2, we get from (2.27) that, for z1, z2 ∈ C \ {0},
K1(z1,−z2) = S1(z1,−z2) + T1(z1,−z2)(1 − z1)

k1

= −S1(z1, z2) + T1(z1,−z2)(1 − z1)
k1, (2.28)whereas also, for z1, z2 ∈ C \ {0},

−K1(z1, z2) = −S1(z1, z2) − T1(z1, z2)(1 − z1)
k1. (2.29)Substrating the identities (2.28) and (2.29) gives, for z1, z2 ∈ C \ {0},

K1(z1,−z2) +K1(z1, z2) = (1 − z1)
k1 [T1(z1,−z2) + T1(z1, z2)],from whih it then immediately follows that K1 is odd in z2 if and only if T1 is odd in z2.(b) The proof is similar to (a).The Eulidean algorithmWe present here a detailed method to ompute the polynomials S1 and S2 in Lemma 2.2.1by using the Eulidean algorithm.Under the onditions of Lemma 2.2.1, with k1, k2 ∈ N, and where α1, α2 ∈ N are oddintegers suh that also α1 < 2k1, we �rst proeed to �nd the univariate polynomials U1and V1 suh that (2.16) holds.From the polynomial division theorem, there exist univariate polynomials q0, q1 and
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r1, r2 suh that, for z1 ∈ C,

(1 + z1)
k1 =q0(z1)(1 − z1)

k1 + r1(z1), deg(r1) < k1, (2.30)
(1 − z1)

k1 =q1(z1)r1(z1) + r2(z1), deg(r2) < deg(r1). (2.31)Repeated appliations of polynomial division then yield the existene of n ∈ N andunivariate polynomials qj , j = 2, . . . , n+ 1 and rj, j = 3, . . . , n+ 2, suh that, for z1 ∈ C,
r1(z1) = q2(z1)r2(z1) + r3(z1), deg(r3) < deg(r2),...

rn−1(z1) = qn(z1)rn(z1) + rn+1(z1), deg(rn+1) ≥ 1,

rn(z1) = qn+1(z1)rn+1(z1) + rn+2(z1), rn+2(z1) = c, a onstant,














































(2.32)
so that, by bak substitution, it holds that, for z1 ∈ C,

rj+1(z1) = rj−1(z1) − qj(z1)rj(z1), j = 0, . . . , n+ 1, (2.33)with r−1(z1) = (1 + z1)
k1 and r0(z1) = (1 − z1)

k1 , z1 ∈ C. Observe that c 6= 0, otherwise,by bak substitution and by using (2.33), (1 + z1)
k1 and (1− z1)

k1 would have rn+1(z1) asa ommon fator, whih is impossible sine deg(rn+1)≥ 1.Now de�ne the polynomial sequene {Ti,j(z1) : i = 0, 1, 2, 3; j = −1, 0, . . . , n+ 2} by
Ti,j+1(z1) = Ti,j−1(z1) − qj(z1)Ti,j(z1), for i = 0, 1, 2 and j = 1, . . . , n+ 1,

T3,j(z1) = qj(z1), for j = 0, . . . , n+ 1

T3,−1(z1) = T3,n+2(z1) = 0,































(2.34)
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T0,−1(z1) = (1 + z1)

k1 ,

T1,−1(z1) = 0,

T2,−1(z1) = 1,































(2.35)
T0,0(z1) = (1 − z1)

k1 ,

T1,0(z1) = 1,

T2,0(z1) = 0.































(2.36)
Observe from (2.34), (2.33) and the �rst lines of (2.35) and (2.36) that then

T0,j(z1) = rj(z1), j = 1, 2, . . . , n+ 2. (2.37)It follows that the matrix T onsisting of the polynomials [ Ti,j(z1) ], for 0 ≤ i ≤ 3 and
−1 ≤ j ≤ n+ 2, is given by
T =























(1 + z1)
k1 (1 − z1)

k1 r1(z1) r2(z1) . . . rn+1(z1) rn+2(z1)

0 1 −q0(z1) 1 + q1(z1)q0(z1) . . . T1,n+1(z1) T1,n+2(z1)

1 0 1 −q1(z1) . . . T2,n+1(z1) T2,n+2(z1)

0 q0(z1) q1(z1) q2(z1) . . . qn+1(z1) 0























.

We laim that, for j = 1, . . . , n+ 2,
(1 + z1)

k1T2,j(z1) + (1 − z1)
k1T1,j(z1) = rj(z1), z1 ∈ C. (2.38)We prove this by indution on j. Observe �rst from (2.34) (2.30) that (2.38) holds for



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 30
j = 1. Also, from (2.31), (2.30) and (2.34), we obtain, for z1 ∈ C,

r2(z1) =(1 − z1)
k1 − q1(z1)r1(z1)

=(1 − z1)
k1 − q1(z1)[(1 + z1)

k1 − q0(z1)(1 − z1)
k1 ]

=[−q1(z1)](1 + z1)
k1 + [1 + q1(z1)q0(z1)](1 − z1)

k1

=T2,2(z1)(1 + z1)
k1 + T1,2(z1)(1 − z1)

k1,thereby proving that (2.38) holds for j = 2.Suppose now that (2.38) is true for j − 1 and j with j ∈ {2, . . . , n+ 1}. Multiplyingboth sides of (2.38) by −qj(z1) yields
(1 + z1)

k1[−qj(z1)T2,j(z1)] + (1 − z1)
k1 [−qj(z1)T1,j(z1)] = −qj(z1)rj(z1), z1 ∈ C. (2.39)From the indutive assumption, reall that

(1 + z1)
k1T2,j−1(z1) + (1 − z1)

k1T1,j−1(z1) = rj−1(z1), z1 ∈ C. (2.40)Addition of equations (2.39) and (2.40), and using also (2.34) and (2.33), then yield
(1 + z1)

k1T2,j+1(z1) + (1 − z1)
k1T1,j+1(z1) = rj+1(z1), z1 ∈ C,thereby ompleting our indutive proof of (2.38).In partiular, by hoosing j = n + 2 in (2.38), and sine rn+2(z1) = c 6= 0, we deduethat

(1 + z1)
k1U1(z1) + (1 − z1)

k1V1(z1) = 1, z1 ∈ C, (2.41)
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U1(z1) =

T2,n+2(z1)

c
and V1(z1) =

T1,n+2(z1)

c
, z1 ∈ C. (2.42)Next, from the polynomial division theorem, there exist univariate polynomials Q1 and

R1 suh that (2.18) holds, that is, for z1 ∈ C,
zα1
1 V1(z1) = Q1(z1)(1 + z1)

k1 +R1(z1), with deg(R1)<k1, (2.43)so that, from the proof of Lemma 2.2.1 (a), by hoosing the polynomial S1 as
S1(z1, z2) = −zα2

2 R1(−z1), z1, z2 ∈ C, (2.44)it follows that (2.24) holds. In other words, we have the identity
(1 + z1)

k1S1(z1, z2) − (1 − z1)
k1S1(−z1, z2) = zα1

1 zα2
2 , z1, z2 ∈ C. (2.45)Moreover, we know from Lemma 2.2.1 (a) that S1 is odd in z2, that its degree in z2 is α2,and that its degree in z1 is less than k1.We have now proved the following algorithm for the expliit omputation of the poly-nomial S1 of Lemma 2.2.1 (a)Algorithm for the omputation of S1:1. Use polynomial division to obtain the polynomials {qj(z1) : j = 0, . . . , n + 1} and

{rj(z1) : j = 1, . . . , n+ 2}, with rn+2(z1) = c 6= 0 as in (2.32).2. De�ne the polynomial sequene {Ti,j(z1) : i = 0, 1, 2; j = −1, . . . , n+ 2} reursivelyby means of (2.34), (2.35) and (2.36).



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 323. De�ne the polynomials U1 and V1 by (2.42);4. Use the polynomial division theorem to �nd Q1 and R1 suh that (2.43) holds;5. The polynomial S1 is then given by (2.44).The onstrution of the polynomial S2, under the onstraint α2 < 2k2, is analogous tothat of S1.We proeed to give an example by �nding the polynomial S1 for k1 = 2. The ase
k1 = 1 will be presented in Setion 2.3, and will be used to haraterize the mask symbolsof the box spline funtions from Chapter 1. Under the onditions of Lemma 2.2.1 andthe above algorithm, let k1 = 2, α1 ∈ {1, 3}, and let α2 ∈ N be any odd integer. Observethat, for z1 ∈ C,

(1 + z1)
2 =q0(z1)(1 − z1)

2 + r1(z1), with q0(z1) = 1 and r1(z1) = 4z1,

(1 − z1)
2 =q1(z1)r1(z1) + r2(z1), with q1(z1) =

1

4
z1 −

1

2
and r2(z1) = 1.It follows that the matrix T is given by

T =

























(1 + z1)
2 (1 − z1)

2 4z1 1

0 1 −1 1
4
z1 + 1

2

1 0 1 −1
4
z1 + 1

2

0 1 1
4
z1 −

1
2

0

























,

whih, together with (2.42), yields that the polynomials U1 and V1 are given by
U1(z1) = −

1

4
z1, V1(z1) =

1

4
z1 +

1

2
, z1 ∈ C. (2.46)
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• if α1 = 1: we dedue from (2.43) that, for z1 ∈ C,

z1V1(z1) =
1

4
z2
1 +

1

2
z1 = Q1(z1)(1 + z1)

2 +R1(z1),with Q1(z1) =
1

4
and R1(z1) = −

1

4
, and it follows from (2.44) that the polynomial

S1 is given by
S1(z1, z2) =

1

4
zα2
2 , z1, z2 ∈ C. (2.47)

• if α1 = 3: we dedue from (2.43) that, for z1 ∈ C,
z3
1V1(z1) =

1

4
z4
1 +

1

2
z3
1 = Q1(z1)(1 + z1)

2 +R1(z1),with Q1(z1) =
1

4
z2
1 −

1

4
and R1(z1) =

1

2
z1 +

1

4
, and it follows from (2.44) that thepolynomial S1 is given by

S1(z1, z2) =
1

4
(2z1 − 1)zα2

2 , z1, z2 ∈ C. (2.48)Observe in partiular from (2.47) and (2.48) that the degree of S1 in z1 is less than k1 = 2,and that S1 is odd in z2 with degree α2 in z2.First fatorization of mask symbolsWith the help of Lemma 2.2.1, we an prove the following formula.Lemma 2.2.2. For an interpolatory mask symbol A, suppose there exist integers k1, k2 ∈

N and a Laurent polynomial B suh that (2.11) holds, and let α1 and α2 be any pair ofodd integers suh that α1 < 2k1 and α2 < 2k2. Then both the following results hold:



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 34(a) There exist Laurent polynomials K1, K2 and T3 suh that the Laurent polynomial
B has, for z1, z2 ∈ C \ {0}, the form

B(z1, z2) = 2k1+k2z−2α1
1 z−2α2

2 [K1(z1, z2)K2(z1, z2) + T3(z1, z2)(1 − z2)
k2], (2.49)where the Laurent polynomial T3 is odd in z2, and with K1, K2 satisfying the respetiveidentities















(1 + z1)
k1K1(z1, z2) − (1 − z1)

k1K1(−z1, z2) = zα1
1 zα2

2 ,

(1 + z2)
k2K2(z1, z2) − (1 − z2)

k2K2(z1,−z2) = zα1
1 zα2

2 ,
, z1, z2 ∈ C \ {0}. (2.50)Moreover, K1 and K2 are formulated expliitly by the expressions (2.13), (2.15), with S1,

T1, S2 and T2 as desribed in Lemma 2.2.1, and where both K1 and T1 are odd in z2.(b) There exist Laurent polynomials L1, L2 and T̃3 suh that the Laurent polynomial
B has, for z1, z2 ∈ C \ {0}, the form

B(z1, z2) = 2k1+k2z−2α1
1 z−2α2

2 [L1(z1, z2)L2(z1, z2) + T̃3(z1, z2)(1 − z1)
k1], (2.51)where the Laurent polynomial T̃3 is odd in z1, and with L1, L2 satisfying respetive iden-tities















(1 + z1)
k1L1(z1, z2) − (1 − z1)

k1L1(−z1, z2) = zα1
1 zα2

2 ,

(1 + z2)
k2L2(z1, z2) − (1 − z2)

k2L2(z1,−z2) = zα1
1 zα2

2 ,
, z1, z2 ∈ C \ {0}. (2.52)Moreover, L1 and L2 are formulated expliitly by the expressions (2.13), (2.15), with S1,

T1, S2 and T2 as desribed in Lemma 2.2.1, and where both L2 and T2 are odd in z1.
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H(z1, z2) = A(z1, z2) + A(z1,−z2), z1, z2 ∈ C \ {0}, (2.53)we observe that the identity (2.9) is equivalent to

H(z1, z2) +H(−z1, z2) = 4, z1, z2 ∈ C \ {0}. (2.54)Also, by using (2.11) and (2.53), we have that
H(z1, z2) = 22−k1−k2(1 + z1)

k1G(z1, z2), z1, z2 ∈ C \ {0}, (2.55)where the Laurent polynomial G is de�ned by
G(z1, z2) = (1 + z2)

k2B(z1, z2) + (1 − z2)
k2B(z1,−z2), z1, z2 ∈ C \ {0}, (2.56)with B denoting the Laurent polynomial for whih (2.11) is satis�ed.It then follows from (2.54) and (2.55) that G satis�es the identity

2−k1−k2(1 + z1)
k1G(z1, z2) + 2−k1−k2(1 − z1)

k1G(−z1, z2) = 1, z1, z2 ∈ C \ {0}. (2.57)Now, hoose any pair of odd integers α1, α2 ∈ N suh that α1 < 2k1 and α2 < 2k2. Then,for the Laurent polynomial G given by (2.56), we de�ne the Laurent polynomial K1 by
G(z1, z2) = 2k1+k2z−α1

1 z−α2
2 K1(z1, z2), z1, z2 ∈ C \ {0}. (2.58)It follows from (2.58) and (2.57) that K1 satis�es the identity

(1 + z1)
k1z−α1

1 z−α2
2 K1(z1, z2) − (1 − z1)

k1z−α1
1 z−α2

2 K1(−z1, z2) = 1, z1, z2 ∈ C \ {0},
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(1 + z1)

k1K1(z1, z2) − (1 − z1)
k1K1(−z1, z2) = zα1

1 zα2
2 , z1, z2 ∈ C \ {0}. (2.59)Hene, aording to Lemma 2.2.1 (a), there exist a polynomial S1 and a Laurent polyno-mial T1 suh that

K1(z1, z2) = S1(z1, z2) + (1 − z1)
k1T1(z1, z2), z1, z2 ∈ C \ {0},with the polynomial S1 and the Laurent polynomial T1 satisfying the properties as statedin Lemma 2.2.1 (a).Besides, (2.55) and (2.58) yield

H(z1, z2) = 4(1 + z1)
k1z−α1

1 z−α2
2 K1(z1, z2), z1, z2 ∈ C \ {0},aording to whih, sine the Laurent polynomial H de�ned by (2.53) is even in z2, wededue that K1 is odd in z2, and hene also, from Lemma 2.2.1 (a), T1 is also odd in z2.Next, we de�ne the Laurent polynomial B̃ by

B(z1, z2) = 2k1+k2z−2α1
1 z−2α2

2 B̃(z1, z2), z1, z2 ∈ C \ {0}. (2.60)From (2.58) and (2.56) we then obtain
(1 + z2)

k2B(z1, z2) + (1 − z2)
k2B(z1,−z2) = 2k1+k2z−α1

1 z−α2
2 K1(z1, z2), z1, z2 ∈ C \ {0},(2.61)whih, together with (2.60), shows that B̃ satis�es the identity

(1 + z2)
k2B̃(z1, z2) + (1 − z2)

k2B̃(z1,−z2) = zα1
1 zα2

2 K1(z1, z2), z1, z2 ∈ C \ {0}. (2.62)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 37It now remains to �nd B̃. To this end, we �rst obtain a partiular solution of (2.62) byonsidering the Laurent polynomial B1 de�ned by
B1(z1, z2) = K1(z1, z2)K2(z1, z2), z1, z2 ∈ C \ {0}, (2.63)for some arbitrary appropriate Laurent polynomial K2 suh that B1 satis�es (2.62), i.e.

(1 + z2)
k2B1(z1, z2) + (1 − z2)

k2B1(z1,−z2) = zα1
1 zα2

2 K1(z1, z2), z1, z2 ∈ C \ {0}. (2.64)Sine K1 is odd in z2, we have from (2.63) that, for z1, z2 ∈ C \ {0},
B1(z1,−z2) = K1(z1,−z2)K2(z1,−z2) = −K1(z1, z2)K2(z1,−z2),so that, from (2.64) and (2.63), and after dividing by K1(z1, z2), we dedue that, if theLaurent polynomial K2 is hosen to satisfy the identity

(1 + z2)
k2K2(z1, z2) − (1 − z2)

k2K2(z1,−z2) = zα1
1 zα2

2 , z1, z2 ∈ C \ {0}, (2.65)then the Laurent polynomial B1 de�ned by (2.63) satis�es the identity (2.64). But a-ording to Lemma 2.2.1 (b), the general Laurent polynomial solution K2 of the identity(2.65) is given by
K2(z1, z2) = S2(z1, z2) + (1 − z2)

k2T2(z1, z2), z1, z2 ∈ C \ {0},with the polynomial S2 and the Laurent polynomial T2 satisfying the properties as statedin Lemma 2.2.1 (b).Substrating the equations (2.62) and (2.64) now yields, for z1, z2 ∈ C \ {0},
(1 + z2)

k2 [B̃(z1, z2) − B1(z1, z2)] = −(1 − z2)
k2[B̃(z1,−z2) − B1(z1,−z2)], (2.66)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 38and, sine the univariate polynomials (1 + z2)
k2 and (1 − z2)

k2 have no ommon fator,there exists a Laurent polynomial T3 suh that, for z1, z2 ∈ C \ {0},
B̃(z1, z2) − B1(z1, z2) = (1 − z2)

k2T3(z1, z2). (2.67)Substituting the expressions in (2.67) into (2.66), we obtain, for z1, z2 ∈ C \ {0},
(1 + z2)

k2(1 − z2)
k2T3(z1, z2) = −(1 − z2)

k2(1 + z2)
k2T3(z1,−z2),from whih we dedue that T3 is odd in z2.Also, we dedue from (2.67) that

B̃(z1, z2) = B1(z1, z2) + T3(z1, z2)(1 − z2)
k2, z1, z2 ∈ C \ {0},whih, together with (2.60) and (2.63), shows that B is indeed given by (2.49).(b) By de�ning the Laurent polynomial J as

J(z1, z2) = A(z1, z2) + A(−z1, z2), z1, z2 ∈ C \ {0}, (2.68)observe that the identity (2.9) is equivalent to J(z1, z2) + J(z1,−z2) = 4, z1, z2 ∈ C \ {0}.The rest of proof then uses a similar argument as in (a).The haraterization resultNote that (2.49) and (2.51) yield two di�erent formulae for the Laurent polynomial Bin Lemma 2.2.2. We proeed here to give an alternative expression for B whih veri�essimultaneously (2.49) and (2.51).



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 39Using Lemmas 2.2.1 and 2.2.2, we prove the following result whih yields an importantharaterization for interpolatory mask symbols.Theorem 2.2.3. For a Laurent polynomial A, suppose that there exist integers k1, k2 ∈ Nand a Laurent polynomial B suh that (2.11) holds. Then A de�nes an interpolatorymask symbol if and only if for any pair of odd integers α1 and α2 suh that α1 < 2k1 and
α2 < 2k2, the Laurent polynomial B has, for z1, z2 ∈ C \ {0}, the form
B(z1, z2) =2k1+k2z−2α1

1 z−2α2
2

[

T (z1, z2)(1 − z1)
k1(1 − z2)

k2 (2.69)
+
{

S1(z1, z2) + T1(z1, z2)(1 − z1)
k1
}{

S2(z1, z2) + T2(z1, z2)(1 − z2)
k2
}]

,where the polynomials S1 and S2 are as in Lemma 2.2.1, i.e. S1 and S2 are respetivelyodd in z2 and odd in z1, they satisfy the respetive identities














(1 + z1)
k1S1(z1, z2) − (1 − z1)

k1S1(−z1, z2) = zα1
1 zα2

2 ,

(1 + z2)
k2S2(z1, z2) − (1 − z2)

k2S2(z1,−z2) = zα1
1 zα2

2 ,
, z1, z2 ∈ C, (2.70)where also S1 has a degree less than k1 in z1, and S2 has a degree less than k2 in z2.Besides, the Laurent polynomials T1, T2 and T are respetively even in z1 but odd in z2,even in z2 but odd in z1, and odd in both z1 and z2.Proof. We show that the proof in the neessary diretion an be obtained either by startingwith the formula given by (2.49) with an appropriate hoie for the polynomial L1, or bystarting with the formula given by (2.51) with an appropriate hoie for the polynomial

K2. We then prove the theorem in the su�ient diretion by using Theorem 2.1.1.To prove the theorem in the neessary diretion, we suppose that A de�nes an interpo-latory mask symbol and onsider any pair of odd integers α1, α2 ∈ N suh that α1 < 2k1and α2 < 2k2.



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 40Aording to Lemma 2.2.2, the Laurent polynomial B for whih (2.11) is satis�ed, hasthe forms given by (2.49) and (2.51), where the Laurent polynomials K2 in (2.49) and L1in (2.51) are to be hosen as spei�ed in Lemma 2.2.2.We see from Lemma 2.2.1 and 2.2.2 that we may hoose L1 = K1, aording to whihit then holds that both K1 and L1 are even in z1 and odd in z2. It follows that, from(2.11) and (2.51), it holds that
A(z1,−z2) =4(1 + z1)

k1(1 − z2)
k2z−2α1

1 z−2α2
2

[−L1(z1, z2)L2(z1,−z2) + T̃3(z1,−z2)(1 − z1)
k1 ], z1, z2 ∈ C \ {0},whih, together with (2.11), (2.51) and the seond line of (2.52), shows that, for z1, z2 ∈

C \ {0},
A(z1, z2) + A(z1,−z2) =4(1 + z1)

k1z−2α1
1 z−2α2

2 [zα1
1 zα2

2 L1(z1, z2)

+(1 − z1)
k1{(1 + z2)

k2T̃3(z1, z2) + (1 − z2)
k2T̃3(z1,−z2)}]. (2.71)Next, we note that, sine the Laurent polynomials T3 and K1 in (2.49) are, aording toLemma 2.2.2, odd in z2, we have from (2.11) and (2.49) that

A(z1,−z2) =4(1 + z1)
k1(1 − z2)

k2z−2α1
1 z−2α2

2

[−K1(z1, z2)K2(z1,−z2) − T3(z1, z2)(1 + z2)
k2 ], z1, z2 ∈ C \ {0},whih, together with (2.11), (2.49) and the �rst line of (2.50), shows that, for z1, z2 ∈

C \ {0},
A(z1, z2) + A(z1,−z2) = 4(1 + z1)

k1z−2α1
1 z−2α2

2 [zα1
1 zα2

2 K1(z1, z2)]. (2.72)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 41It then follows from (2.71) and (2.72) that, sine also we have hosen L1 = K1, the Laurentpolynomial T̃3 satis�es
(1 + z2)

k2T̃3(z1, z2) + (1 − z2)
k2T̃3(z1,−z2) = 0, z1, z2 ∈ C \ {0},or, equivalently,

(1 + z2)
k2T̃3(z1, z2) = −(1 − z2)

k2T̃3(z1,−z2), z1, z2 ∈ C \ {0}. (2.73)Sine the univariate polynomials (1 + z2)
k2 and (1 − z2)

k2 have no ommon fator, wededue from (2.73) the existene of a Laurent polynomial T̃4 satisfying
T̃3(z1, z2) = T̃4(z1, z2)(1 − z2)

k2, z1, z2 ∈ C \ {0}, (2.74)so that, sine T̃3 is odd in z1, we �nd that T̃4 is odd in z1. Also, by substituting theexpression in (2.74) of T̃3 into (2.73), we obtain
(1 + z2)

k2(1 − z2)
k2T̃4(z1, z2) = −(1 − z2)

k2(1 + z2)
k2T̃4(z1,−z2), z1, z2 ∈ C \ {0},showing that T̃4 is also odd in z2. Combining (2.51) with (2.74), we dedue that, for

z1, z2 ∈ C \ {0}, the Laurent polynomial B is of the form
B(z1, z2) = 2k1+k2z−2α1

1 z−2α2
2 [L1(z1, z2)L2(z1, z2) + T (z1, z2)(1 − z1)

k1(1 − z2)
k2 ], (2.75)where T = T̃4 is a Laurent polynomial whih is odd in both z1 and z2.Our proof in the neessary diretion is now ompleted by appealing to Lemma 2.2.1and 2.2.2, and using (2.75), with spei�ally the Laurent polynomial T2 in Lemma 2.2.1 (b)hosen to also be odd in z1.



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 42Note from Lemmas 2.2.1 and 2.2.2 that the result (2.69) an similarly be ahieved bymeans of the hoie K2 = L2 in (2.49).Next, we prove the theorem in the su�ient diretion. To this end, suppose that,for any pair of odd integers α1 and α2 suh that α1 < 2k1 and α2 < 2k2, the Laurentpolynomial B has the form given by (2.69). To show that the Laurent polynomial A isan interpolatory mask symbol, it will su�e to prove that A satis�es the identity (2.9) inTheorem 2.1.1.To this end, sine by assumption S2, T2 and T are odd in z1, observe from (2.11) and(2.69) that, for z1, z2 ∈ C \ {0},
A(z1, z2)+A(−z1, z2)

=4z−2α1
1 z−2α2

2 (1 + z1)
k1(1 + z2)

k2
[

T (z1, z2)(1 − z1)
k1(1 − z2)

k2

+
{

S1(z1, z2) + T1(z1, z2)(1 − z1)
k1
}{

S2(z1, z2) + T2(z1, z2)(1 − z2)
k2
}]

+4z−2α1
1 z−2α2

2 (1 − z1)
k1(1 + z2)

k2
[

−T (z1, z2)(1 + z1)
k1(1 − z2)

k2

+
{

S1(−z1, z2) + T1(z1, z2)(1 + z1)
k1
}{

−S2(z1, z2) − T2(z1, z2)(1 − z2)
k2
}]

,whih, together with (2.70), yields, for z1, z2 ∈ C \ {0},
A(z1, z2)+A(−z1, z2)

=4z−2α1
1 z−2α2

2 (1 + z2)
k2
[

zα1
1 zα2

2

{

S2(z1, z2) + T2(z1, z2)(1 − z2)
k2
}]

. (2.76)Replaing z2 by −z2 in (2.76), and using the fat that T2 is even in z2, we obtain, for
z1, z2 ∈ C \ {0},
A(z1,−z2)+A(−z1,−z2)

=4z−2α1
1 z−2α2

2 (1 − z2)
k2
[

−zα1
1 zα2

2

(

S2(z1,−z2) + T2(z1, z2)(1 + z2)
k2
)]

. (2.77)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 43Sine S2 satis�es (2.70), adding (2.76) with (2.77) yields, for z1, z2 ∈ C \ {0},
A(z1, z2) + A(−z1, z2) + A(z1,−z2) + A(−z1,−z2) = 4z−2α1

1 z−2α2
2 [zα1

1 zα2
2 (zα1

1 zα2
2 )] = 4,thereby showing that the Laurent polynomial A satis�es the identity (2.9), whih on-ludes our proof.

2.3 Appliation to box splines interpolatory masksymbolsConsider the mask symbols A1 and Ã2 orresponding respetively to the box spline N1given by (1.16) and to the shifted box spline Ñ2 given by (1.32). Then, we have
A1(z1, z2) =(1 + z1)(1 + z2)B1(z1, z2), z1, z2 ∈ C, (2.78)
Ã2(z1, z2) =(1 + z1)(1 + z2)B̃2(z1, z2), z1, z2 ∈ C \ {0}, (2.79)where the polynomial B1 and the Laurent polynomial B̃2 are given by
B1(z1, z2) =1, z1, z2 ∈ C, (2.80)
B̃2(z1, z2) =

(

1 + z1z2
2

)

z−1
1 z−1

2 , z1, z2 ∈ C \ {0}. (2.81)Reall from Chapter 1 that both A1 and Ã2 are interpolatory, so that, aording toTheorem 2.2.3, with k1 = k2 = 1 and α1 = α2 = 1, B1 and B̃2 are of the form (2.69) forsome Laurent polynomials T1, T2 and T respetively even in z1 but odd in z2, even in z2



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 44but odd in z1, and odd in both z1 and z2, and for polynomials S1 and S2 satisfying














(1 + z1)S1(z1, z2) − (1 − z1)S1(−z1, z2) = z1z2,

(1 + z2)S2(z1, z2) − (1 − z2)S2(z1,−z2) = z1z2,
, z1, z2 ∈ C, (2.82)suh that S1 and S2 are, respetively, odd in z2 with degree less than k1 in z1 and odd in

z1 with degree less than k2 in z2.We now proeed to �nd the polynomials S1 and S2 satisfying (2.82). By using theEulidean algorithm presented in Setion 2.2, we �nd that the univariate polynomials U1and V1 satisfying
(1 + z1)U1(z1) + (1 − z1)V1(z1) = 1, z1 ∈ C,are given by U1(z1) = V1(z1) =

1

2
, z1 ∈ C. Also, by using the polynomial division theorem,we obtain z1V (z1) = z1

1

2
=

1

2
(1 + z1) −

1

2
, z1 ∈ C, from whih it follows that R1 is givenby R1(z1) = −

1

2
, and onsequently, S1 is given by

S1(z1, z2) = −z2R1(−z1) =
1

2
z2, z1, z2 ∈ C. (2.83)Using a similar argument, we show that S2 is given by

S2(z1, z2) =
1

2
z1, z1, z2 ∈ C. (2.84)Observe in partiular that S1 and S2 are, respetively, odd in z2 and odd in z1.The box spline mask symbol A1Consider the polynomials T1, T2 and T de�ned respetively by

T1(z1, z2) = −
1

2
z2, T2(z1, z2) = −

1

2
z1, T (z1, z2) = 0, z1, z2 ∈ C, (2.85)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 45aording to whih T1 is even in z1 but odd in z2, T2 is even in z2 but odd in z1, and T isodd both in z1 and in z2. Using (2.83), (2.84) and (2.85), we obtain, for z1, z2 ∈ C,
4z−2

1 z−2
2 [T (z1, z2)(1 − z1)(1 − z2)

+(S1(z1, z2) + T1(z1, z2)(1 − z1))(S2(z1, z2) + T2(z1, z2)(1 − z2))]

=4z−2
1 z−2

2

[(

1

2
z2 −

1

2
z2(1 − z1)

)(

1

2
z1 −

1

2
z1(1 − z2)

)]

=4z−2
1 z−2

2

[(

1

2
z2z1

)(

1

2
z1z2

)]

=1

=B1(z1, z2),by virtue of (2.78) and (2.80). Hene B = B1 is of the form (2.69), where the polynomials
S1, S2 are given by (2.83) and (2.84), and the polynomials T1, T2 and T given by (2.85).The shifted box spline mask symbol Ã2Similarly, onsider the polynomials T1, T2 and T de�ned respetively by

T1(z1, z2) = −
1

4
z2, T2(z1, z2) = −

1

4
z1, T (z1, z2) =

1

16
z1z2, z1, z2 ∈ C, (2.86)so that T1 is even in z1 but odd in z2, T2 is even in z2 but odd in z1, and T is odd bothin z1 and in z2. Using (2.83), (2.84) and (2.86), we obtain, for z1, z2 ∈ C,

S1(z1, z2) + T1(z1, z2)(1 − z1) =
1

2
z2 −

1

4
z2(1 − z1) =

1

4
z2 +

1

4
z1z2,

S2(z1, z2) + T2(z1, z2)(1 − z2) =
1

2
z1 −

1

4
z1(1 − z2) =

1

4
z1 +

1

4
z1z2,

T (z1, z2)(1 − z1)(1 − z2) =
1

16
(z1z2 − z2

1z2 − z1z
2
2 + z2

1z
2
2),
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T (z1, z2)(1 − z1)(1 − z2) + (S1(z1, z2) + T1(z1, z2)(1 − z1))(S2(z1, z2) + T2(z1, z2)(1 − z2))

=
1

16
(z1z2 + z2

1z2 + z1z
2
2 + z2

1z
2
2) +

1

16
(z1z2 − z2

1z2 − z1z
2
2 + z2

1z
2
2)

=
1

8
z1z2(1 + z1z2). (2.87)Multiplying both sides of (2.87) by 4z−2

1 z−2
2 yields, for z1, z2 ∈ C \ {0},

4z−2
1 z−2

2

1

8
z1z2(1 + z1z2) = z−1

1 z−1
2

1

2
(1 + z1z2) = B̃2(z1, z2),by virtue of (2.79) and (2.81). Hene B = B̃2 is of the form (2.69), where the polynomials

S1, S2 are given by (2.83) and (2.84), and the polynomials T1, T2 and T given by (2.86).



Chapter 3
Interpolatory subdivision shemes
The main theme in this hapter are the onepts of interpolatory bivariate subdivisionshemes and the asade algorithm. In Setion 3.2, we disuss the onvergene of inter-polatory subdivision shemes, whereas, in Setion 3.3, we prove that ertain properties ofthe initial funtion are preserved by the iterates of the asade algorithm if the interpola-tory mask and the dilation matrix are hosen to satisfy the onditions (3.18) and (3.19)below.
3.1 PreliminariesFor a given sequene a ∈ M0(Z

2) and a dilation matrix M , the subdivision operator
Sa : M(Z2) →M(Z2) is de�ned for any sequene c ∈M(Z2) by

(Sac)j =
∑k aj−MkT ck, j ∈ Z2. (3.1)

47



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 48The resulting subdivision sheme Sa then generates, for a given sequene c ∈M(Z2), thesequene {c(r) : r ∈ Z+} ⊂ M(Z2) by means of the reursive formulation
c(0) = c, c(r+1) = Sa(c

(r)), r ∈ Z+, (3.2)or, equivalently, c(r) = Sr
ac, r ∈ Z+, where

S0
ac = c, Sr+1

a c = Sa(S
r
ac), r ∈ Z+. (3.3)The sequene a is alled the subdivision mask, also referred to as the mask, and if asatis�es the interpolatory onditions in the sense of (1.8), then in (3.1) we have

(Sac)MjT = cj, j ∈ Z2. (3.4)In that ase, by indution on r ∈ Z+, we also have in (3.2) that
c
(r+1)

MjT = c
(r)j , j ∈ Z2, (3.5)whih means that, at eah level of iteration, the subdivision sheme proess preserves allthe points obtained in the previous subdivision steps. Suh a subdivision sheme is thenalled interpolatory.For a set M ⊂M(Z2), we say that the subdivision sheme Sa is onvergent on M if,for any sequene c ∈ M, there exists a funtion f ∈ C(R2) depending on c, suh that

lim
r→∞

‖Sr
ac− f(M−r·)‖∞ = 0, (3.6)where, for r ∈ Z+, f(M−r·) denotes the sequene {f(M−rjT ) : j ∈ Z2}. The limit funtion

f will often be denoted by S∞
a c.



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 49Similarly, for a given dilation matrix M and a sequene a ∈ M0(Z
2), we de�ne theasade operator Ta : M(R2) →M(R2) by

Taf =
∑j ajf(M · −j), f ∈M(R2). (3.7)The resulting asade algorithm Ta then generates, for a given initial funtion g ∈M(R2),the sequene {fr : r ∈ Z+} by means of the reursive formula

f0 = g, fr+1 = Tafr, r ∈ Z+, (3.8)or, equivalently, fr = T r
a g, r ∈ Z+, where

T 0
a f = f, T r+1

a f = Ta(T
r
a f), r ∈ Z+. (3.9)The asade algorithm Ta is said to be onvergent on a set M ⊂ C0(R

2) if, for any initialfuntion g ∈ M, there exists a funtion f ∈ C(R2) suh that
lim
r→∞

‖T r
ag − f‖∞ = 0. (3.10)The limit funtion f will often be denoted by T∞

a g.For onveniene, we shall simply say, for a subdivision shemes, � onvergent � for� onvergent on M(Z2) �, and, for the asade algorithm, � onvergent � for � onvergenton C0(R
2) �.Our following result presents an important relationship between subdivision shemesand asade algorithms. Our proof uses a similar argument as in [Dyn92℄ where only thease M = 2I is disussed.Proposition 3.1.1. Suppose that M is a dilation matrix and a an interpolatory mask.



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 50Then, for any sequene c ∈M(Z2) and for any funtion f ∈ M(R2),
∑j (Sr

ac)jf(M r · −j) =
∑j cj(T r

a f)(· − j), r ∈ Z+. (3.11)In partiular, hoosing the sequene c in (3.11) as the delta sequene δ de�ned in (1.3),yields, for any funtion f ∈M(R2),
T r

a f =
∑j (Sr

aδ)jf(M r · −j), r ∈ Z+. (3.12)Proof. Let f ∈ M(R2) and c ∈ M(Z2). First, note from (3.3) and (3.9) that (3.11)trivially holds for r = 0. Next, we use (3.3), together with (3.1) and (3.7), to obtain
∑j (Sr

ac)jf(M r · −j) =
∑j ∑k aj−MkT (Sr−1

a c)kf(M r · −j)
=
∑k (Sr−1

a c)k∑j aj−MkT f(M r · −j)
=
∑k (Sr−1

a c)k∑j ajf(M r · −MkT − j)
=
∑k (Sr−1

a c)k∑j ajf(M(M r−1 · −k) − j)
=
∑k (Sr−1

a c)k(Taf)(M r−1 · −k)...
=
∑k (S0

ac)k(T r
af)(· − k)

=
∑k ck(T r

a f)(· − k),by virtue of (3.3), thereby showing that (3.11) holds.



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 51In partiular, hoosing c = δ in (3.11) yields
∑j (Sr

aδ)jf(M r · −j) =
∑i δi(T r

af)(· − i) = T r
af, r ∈ Z+, f ∈M(R2).

3.2 Subdivision shemes onvergeneAssuming that the interpolatory re�nable funtion exists, we proeed to analyse the on-vergene of the assoiated interpolatory subdivision sheme.Observe �rst that a dilation matrix M de�nes a bijetive linear appliation from theset of rational pairs Q2 into itself, so that the dyadi set D given by
D =

{

M−rjT : j ∈ Z2, r ∈ Z+

}

, (3.13)is dense in R2. We prove the following result.Theorem 3.2.1. Suppose that φ is an interpolatory re�nable funtion assoiated with theinterpolatory mask a ∈ M0(Z
2) and with the dilation matrix M . Then, for any initialsequene c ∈M(Z2), the funtion Φ de�ned by

Φ =
∑j cjφ(· − j), (3.14)satis�es(i) Φ(m) = cm, m ∈ Z2;(ii) Φ(M−rm) = (Sr

ac)m, r ∈ Z+, m ∈ Z2.



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 52Consequently, for a sequene c ∈ M(Z2), the subdivision sheme Sa, as de�ned by (3.1),onverges to the funtion Φ given by (3.14), so that
S∞

a c = Φ and S∞

a δ = φ, (3.15)where δ denotes the delta sequene de�ned by (1.3).Proof. Consider a sequene c ∈M(Z2). Then:
(i) Sine φ is interpolatory, it follows from (3.14) that

Φ(m) =
∑j cjφ(m− j) = cm, m ∈ Z2.

(ii) Sine φ is re�nable, it follows from (3.14), (3.1) and (3.3) that, for r ∈ Z+,m ∈ Z2,
Φ
(

M−rmT
)

=
∑j cjφ (M−rmT − j)

=
∑j cj∑k akφ (M−r+1mT −MjT − k)

=
∑j cj∑k ak−MjTφ (M−r+1mT − k)

=
∑k [

∑j ak−MjT cj]φ(M−r+1mT − k)

=
∑k (Sac)kφ (M−r+1mT − k)...

=
∑k (Sr

ac)kφ(m− k)

=(Sr
ac)m, (3.16)by virtue of the interpolatory property of φ.
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(a) Initial sequene c (b) Graph of Φ and cFigure 3.1: Subdivision Sã(2) applied to cGiven the fat that the set D de�ned by (3.13) is dense in R2, we dedue from (3.16)that ‖Sr
ac− Φ(M−r·)‖∞ = 0, r ∈ Z+, and therefore (3.6) holds. Hene, for any sequene

c ∈ M(Z2), the subdivision sheme Sa onverges to the funtion Φ given by (3.14), i.e.
S∞

a c = Φ. In partiular, hoosing c = δ in (3.14) yields S∞
a δ = φ.As an example, onsider the shifted box spline Ñ2 from Chapter 1, and the assoiatedinterpolatory mask ã(2) given by (1.31), i.e.















ã
(2)
0,0 = 1, ã

(2)
1,1 = ã

(2)
0,1 = ã

(2)
1,0 = ã

(2)
−1,0 = ã

(2)
0,−1 = ã

(2)
−1,−1 = 1

2
,

ã
(2)
i,j = 0, (i, j) /∈ {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1), (1, 1), (−1,−1)}.

(3.17)Aording to Theorem 3.2.1, the subdivision sheme Sã(2) is onvergent. Therefore, forany initial sequene c ∈M(Z2), the limit funtion Φ = S∞

ã(2)c is guaranteed to exist.Choosing the initial sequene c as the red points in Figure 3.1 (a), the graph of the limitfuntion Φ is illustrated in Figure 3.1 (b), showing that the initial points are preservedby means of the subdivision proess. Observe, however, that Φ ∈ C(R2) \ C1(R2), i.e. Φde�nes a non-smooth surfae.



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 543.3 Property preservation in the asade algorithmIn this setion, we show that ertain properties of the initial funtions are preserved bythe iterates {fr : r ∈ Z+} of the asade algorithm. More preisely, for an appropriatesequene a ∈M0(Z
2), we show that the initial funtion g and its image Tag share ertainproperties. By indution on r ∈ Z+, we then show that g and T r

a g have ommon prop-erties, so that, in the ase where the asade algorithm is onvergent, by onsidering thelimit r → ∞, we shall show that the limit funtion T∞
a g also preserves these propertiesof the initial funtion g.For this purpose, we �rst state (without proof) the following result [HJ98a℄ (see also[KLY07℄), whih presents a neessary ondition on the interpolatory mask a for the on-vergene of the orresponding subdivision sheme.Proposition 3.3.1. Suppose that the subdivision sheme Sa assoiated with an interpo-latory mask a ∈ M0(Z

2) and a dilation matrix M is onvergent. Then a satis�es theondition
∑j ak−MjT = 1, k ∈ Z2. (3.18)It should be pointed here that the onverse of Proposition 3.3.1 does not hold, thatis, the ondition (3.18) is not su�ient for the subdivision sheme Sa to onverge.Next we prove the following result on the preservation of properties with respet tothe asade operator.Theorem 3.3.2. Suppose that M is a dilation matrix and a ∈ M0(Z

2) an interpolatorymask supported on some �nite square [N1, N2]
2, and suh that the sequene a satis�es the



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 55ondition (3.18). Suppose, in addition, that M satis�es the ondition
[2α, 2β]2 ⊆M [α, β]2, α, β ∈ Z. (3.19)Then, given an initial funtion g ∈ M(R2), the funtions {φr = T r

a g : r ∈ Z+} asgenerated reursively by means of (3.8), satisfy the following:(i) If supp(g) ⊆ [N1, N2]
2, then supp(φr) ⊆ [N1, N2]

2;(ii) If g ∈ C(R2), then φr ∈ C(R2);(iii) If g satis�es the ondition
g(j) = δj, j ∈ Z2, (3.20)then φr satis�es the ondition
φr(j) = δj, j ∈ Z2; (3.21)(iv) If g satis�es the partition of unity property, i.e.

∑j g(x− j) = 1, x ∈ R2, (3.22)then φr satis�es the partition of unity, i.e.
∑j φr(x− j) = 1, x ∈ R2. (3.23)Proof. We proeed by indution on r. Reall �rst from the reursive formula (3.8), to-gether with (3.7), that

φr+1 = Taφr =
∑j ajφr(M · −j), r ∈ Z+. (3.24)



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 56Next, for r = 0, suppose that, in (i), (ii), (iii) and (iv) respetively, φ0 = g is supportedon [N1, N2]
2, ontinuous, interpolatory as in (3.20) and satisfying the partition of unityproperty (3.22).Let us now �x r ∈ Z+. The following holds:

(i) If supp(φr) ⊆ [N1, N2]
2, it holds that, for x ∈ R2 and j ∈ [N1, N2]

2,
MxT − j ∈ [N1, N2]

2 =⇒ MxT ∈ j+ [N1, N2]
2 ⊆ [2N1, 2N2]

2

=⇒ x ∈M−1
(j + [N1, N2]

2
)

⊆ M−1 [2N1, 2N2]
2 . (3.25)Sine a is supported on [N1, N2]

2, and sine there is only a �nite number of integers j in
[N1, N2]

2, we dedue from (3.25), (3.24) and (3.19) that the support of φr+1 satis�essupp(φr+1) ⊆
⋃j∈[N1,N2]2

M−1
(j + [N1, N2]

2
)

⊆
⋃j∈[N1,N2]2

M−1 [2N1, 2N2]
2 ⊆ [N1, N2]

2,by virtue of (3.19).
(ii) If φr is ontinuous, then the shifts with respets to Z2 of its dilations are ontin-uous, so that, from (3.24), we dedue that φr+1 is also ontinuous.
(iii) If φr is interpolatory as in (3.21), we obtain from (3.24) and (1.8) that, for j ∈ Z2,

φr+1(j) =
∑k akφr(MjT − k) = aMjT = δj.

(iv) If φr satis�es the partition of unity property, then we have for x ∈ R2 that
∑k φr(Mx− k) = 1, (3.26)



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 57whih, together with (3.24) and (3.18), yields, for x ∈ R2,
∑j φr+1(x− j) =

∑j ∑k akφr(Mx−MjT − k)

=
∑j ∑k ak−MjTφr(Mx− k)

=
∑k [

∑j ak−MjT]φr(Mx− k)

=
∑k φr(Mx− k)

=1,whih then ompletes our indutive proof.In the ase where the asade algorithm is onvergent, we show in the result belowthat the limit funtion preserves ertain properties of the initial funtion.Theorem 3.3.3. Under the onditions of Theorem 3.3.2, with spei�ally g satisfying theonditions in (i) to (iv) of that theorem, if also g ∈ C0(R
2) and the sequene a is suh thatthe asade algorithm (3.8) is onvergent with limit funtion φ, then the following holds:(i) φ ∈ C0(R

2);(ii) If supp(g) ⊆ [N1, N2]
2, then supp(φ) ⊆ [N1, N2]

2;(iii) φ is an interpolatory re�nable funtion with respet to the re�nement sequene aand the dilation matrix M , satisfying also the partition of unity property
∑j φ(x− j) = 1, x ∈ R2. (3.27)Proof. (i) Sine g ∈ C0(R

2), it follows from Theorem 3.3.3 (i) and (ii) that φr = T r
a g ∈

C0(R
2), r ∈ Z+, so that the uniform onvergene result ‖φ− φr‖∞ → 0, r → ∞, thenyields φ ∈ C0(R

2).
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(ii) Suppose that supp(g) ⊆ [N1, N2]

2, and let x /∈ [N1, N2]
2, so that Theorem 3.3.3 (i)yields φr(x) = 0, r ∈ Z+. Hene,

|φ(x)| = |φ(x) − φr(x)| ≤ ‖φ− φr‖∞ → 0, r → ∞,and it follows that φ(x) = 0, i.e. supp(φ) ⊆ [N1, N2]
2.

(iii) Aording to Theorem 3.3.2 (iii), φr is interpolatory for every r ∈ Z+, so that,for j ∈ Z2,
|φ(j) − δj| = |φ(j) − φr(j)| ≤ ‖φ− φr‖∞ → 0, r → ∞,and it follows that φ is interpolatory as in (1.2).To prove that φ satis�es the re�nement equation (1.1), we use (3.8) and (3.7) to obtain

‖φ− Taφ‖∞ ≤‖φ− φr+1‖∞ + ‖Ta(φr − φ)‖∞

≤‖φ− φr+1‖∞ +

[

∑j |aj|] ‖φr − φ‖∞ → 0, r → ∞,i.e. φ = Taφ, whih is equivalent to (1.1).Finally, sine φ is interpolatory and re�nable, we dedue from (3.18) that, for i ∈ Z2and r ∈ Z+,
∑j φ (M−riT − j) =

∑j ∑k akφ (M−r+1iT −MjT − k)
=
∑j ∑k ak−MjTφ (M−r+1iT − k)

=
∑k [

∑j ak−MjT]φ (M−r+1iT − k)
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=
∑k φ

(

M−r+1iT − k)...
=
∑k φ (i− k)

=
∑k φ(k)

=1,from whih we onlude, by realling also the fat that the dyadi set D in (3.13) is densein R2, that φ satis�es the partition of unity ondition (3.27).In onlusion, the important results of this setion are that asade algorithm onver-gene implies interpolatory re�nable funtion existene, whih in turn implies subdivisiononvergene. Graphial illustrations are provided in Chapter 4.



Chapter 4
Existene of interpolatory re�nablefuntions
For the dilation matrix M = 2I, we present in this hapter three methods to prove, for agiven re�nement mask, the existene of a orresponding interpolatory re�nable funtion.The �rst method is based on a result by Mihelli [Mi96℄ for interpolatory mask symbolswhih are fatorizable and whih are non-negative on the torus T . The seond method, asdesribed in Setion 4.2, onsists of using tensor produts in order to generate bivariatere�nable funtions from univariate ones. Finally, the third method presented in Setion 4.3is based on dedutions from numerial results, as generally applied to interpolatory maskssatisfying higher order sum rules.An important onept is this setion is that of symmetry whih we proeed to de�neas follows. For a re�nement mask in a ∈M0(Z

2), onsider the following properties:
a(−i, j) =a(i,−j) = a(i, j), (i, j) ∈ Z2, (4.1)

a(−i,−j) =a(i, j), (i, j) ∈ Z2, (4.2)
a(j, i) =a(i, j), (i, j) ∈ Z2. (4.3)60



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 61We say that a is symmetri about the two axes if a satis�es the property (4.1), symmetriabout the origin if a satis�es the property (4.2), and symmetri about the line y = x if asatis�es the property (4.3).
4.1 For non-negative masksConsider the torus T and its subset T̃ de�ned respetively by
T = {(eix1 , eix2) : x1, x2 ∈ R} and T̃ = {(eix1, eix2) : x1, x2 ∈ R, |x1|, |x2| ≤ π/2}.A mask a ∈ M0(Z

2) is termed non-negative if the orresponding mask symbol A, asde�ned by (1.9), is non-negative on the torus T , i.e.
A(eix1 , eix2) ≥ 0, x1, x2 ∈ R. (4.4)The result below presents a su�ient ondition on the interpolatory mask for theexistene of the orresponding interpolatory re�nable funtion. We refer to [Mi96℄ forthe proof.Theorem 4.1.1. Consider the dilation matrix M = 2I, and suppose that a ∈M0(Z

2) is anon-negative interpolatory mask. Suppose, in addition, that there exist integers k1, k2 ∈ Nand a Laurent polynomial B, suh that the orresponding mask symbol A is of the form
A(z1, z2) = 22−k1−k2(1 + z1)

k1(1 + z2)
k2B(z1, z2), z1, z2 ∈ C \ {0}, (4.5)with B(1, 1) = 1 and B(z1, z2) 6= 0 for (z1, z2) ∈ T̃ .Then the orresponding interpolatory re�nable funtion φa ∈ C0(R

2) exists.
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G1(z1, z2) =

1

4
(1 + z1)

2(1 + z2)
2z−1

1 z−1
2 , z1, z2 ∈ C \ {0}. (4.6)We verify that G1 satis�es (2.1), i.e. G1 is interpolatory. Moreover, G1 is of the form(4.5), with k1 = k2 = 2 and B(z1, z2) = z−1

1 z−1
2 , z1, z2 ∈ C \ {0}.Using the expression of G1 in (4.6), we obtain, for x1, x2 ∈ R,

G1(eix1 , eix2) =1 +
1

2

(eix1 + e−ix1 + eix2 + e−ix2
)

+
1

4

(ei(x1+x2) + e−i(x1+x2) + ei(x1−x2) + e−i(x1−x2)
)

=1 + cosx1 + cosx2 +
1

2
[cos(x1 + x2) + cos(x1 − x2)]

=1 + cosx1 + cosx2 + cosx1 cosx2

=(1 + cosx1)(1 + cos x2) ≥ 0,that is, G1 is non-negative on the torus T . Moreover, sine B(z1, z2) = z−1
1 z−1

2 , z1, z2 ∈

C \ {0}, we learly have B(1, 1) = 1 and B(z1, z2) 6= 0, z1, z2 ∈ T̃ . Hene, aording toTheorem 4.1.1, the orresponding interpolatory re�nable funtion φ ∈ C0(R
2) exists.Example 2Consider next the mask symbol Ã2, as given by (1.32), i.e.

Ã2(z1, z2) = (1 + z1)(1 + z2)

(

1 + z1z2
2

)

z−1
1 z−1

2 , z1, z2 ∈ C \ {0}, (4.7)



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 63aording to whih, Ã2 is of the form (4.5), with k1 = k2 = 1 and
B(z1, z2) =

(

1 + z1z2
2

)

z−1
1 z−1

2 , z1, z2 ∈ C \ {0}.Reall from Chapter 1 that Ã2 is interpolatory, and that the orresponding interpola-tory re�nable funtion is the box spline Ñ2 ∈ C0(R
2) given by (1.30).However, the mask symbol Ã2 is not non-negative on the torus T . As a matter of fat,by using the expression of Ã2 in (4.7), we obtain, for x1, x2 ∈ R,

Ã2(eix1, eix2) = 1 +
1

2

(eix1 + e−ix1 + eix2 + e−ix2 + ei(x1+x2) + e−i(x1+x2)
)

= 1 + cosx1 + cosx2 + cos(x1 + x2).Sine Ã2(ei2π/3, ei2π/3) = −
1

2
< 0, we dedue that Ã2 is not non-negative on the torus T .Therefore, observe that there are mask symbols whih are not non-negative on theomplex unit irle, but for whih orresponding interpolatory re�nable funtions exist.Hene, the onditions for interpolatory re�nable funtion existene in Theorem 4.1.1 aresu�ient but not neessary.

4.2 Tensor produtsTensor produts, as brie�y disussed in [DL02℄ (see also [Dyn92℄), yield the simplestmethod to generate bivariate re�nable funtions. More preisely, given two univariatefuntions φ̃ and ψ̃, the bivariate funtion φ, obtained by the tensor produt of φ̃ and ψ̃,inherits some of the properties of the two onstituent funtions φ̃ and ψ̃. In partiular, if
φ̃ and ψ̃ are interpolatory and re�nable, then φ is interpolatory and re�nable.Given two funtions φ̃ ∈ Cα1(R) and ψ̃ ∈ Cα2(R), α1, α2 ∈ Z+, we de�ne the tensor
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φ(x, y) = φ̃(x)ψ̃(y), (x, y) ∈ R2, (4.8)so that φ ∈ Cα(R2), where α = min{α1, α2}.Let ϕ ∈ M0(R). We say that ϕ is interpolatory if ϕ(j) = δj , j ∈ Z, that ϕ satis�esthe partition of unity ondition if∑

j

ϕ(x− j) = 1, x ∈ R, and that ϕ is re�nable if thereexists a sequene a ∈M0(Z), alled the re�nement mask, suh that ϕ =
∑

j

ajϕ(2 · −j).We are now able to present the following result.Theorem 4.2.1. Suppose that φ̃ ∈ Cα1
0 (R) and ψ̃ ∈ Cα2

0 (R), α1, α2 ∈ Z+, are re�nablefuntions with orresponding masks ã and b̃ respetively. Then, the tensor produt φde�ned by (4.8) is a re�nable funtion assoiated with the dilation matrix M = 2I andthe re�nement mask a given by
aj,k = ãj b̃k, (j, k) ∈ Z2. (4.9)Moreover, if φ̃ and ψ̃ are both interpolatory re�nable funtions, then φ is an interpolatoryre�nable funtion. Also, if φ̃ and ψ̃ both satisfy the partition of unity ondition, then φsatis�es the partition of unity ondition (3.27).Proof. Sine φ̃ and ψ̃ are re�nable, we dedue from (4.8) that, for (x, y) ∈ R2,

φ(x, y) = φ̃(x)ψ̃(y) =
∑

j

ãjφ̃(2x− j)
∑

k

b̃kψ̃(2y − k)

=
∑

j

∑

k

ãj b̃kφ̃(2x− j)ψ̃(2y − k)

=
∑

j,k

aj,kφ(2x− j, 2y − k),



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 65aording to whih, φ is re�nable with assoiated dilation matrix M = 2I and mask agiven by (4.9).If φ̃ and ψ̃ are both interpolatory, then, for j = (i, j) ∈ Z2,
φ(j) = φ(i, j) = φ̃(i)ψ̃(j) = δiδj = δj,proving that φ is interpolatory as in (1.2).If φ̃ and ψ̃ both satisfy the partition of unity, then we have, for x = (x, y) ∈ R2,

∑j φ(x− j) =
∑

i,j

φ(x− i, y − j) =

[

∑

i

φ̃(x− i)

][

∑

j

ψ̃(y − j)

]

= 1,whih shows that φ satis�es the partition of unity ondition (3.27).Denoting respetively by Ã, B̃ and A the mask symbols orresponding to the masks
ã, b̃ and a in Theorem 4.2.1, it follows from (4.9) that, for z1, z2 ∈ C \ {0},

A(z1, z2) =
∑

j,k

aj,kz
j
1z

k
2 =

(

∑

j

ãjz
j
1

)(

∑

k

b̃kz
k
2

)

= Ã(z1)B̃(z2). (4.10)The result below is then a diret onsequene of Theorem 4.2.1.Corollary 4.2.2. Given a mask symbol A, suppose that there exist mask symbols Ã and
B̃ suh that (4.10) holds. If there exist interpolatory re�nable funtions φ̃ ∈ Cα1

0 (R) and
ψ̃ ∈ Cα2

0 (R), α1, α2 ∈ Z+, orresponding to Ã and B̃, then the tensor produt φ = φ̃ · ψ̃ ∈

Cα
0 (R2), where α = min{α1, α2}, is an interpolatory re�nable funtion with assoiateddilation matrix 2I and re�nement mask symbol A.
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(a) Support of the mask assoiated with
φ = h̃ · h̃
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(b) Graph of φ = h̃ · h̃Figure 4.1: The tensor produt of the hat funtion h̃As an example, onsider the shifted hat funtion h̃ ∈ C0(R), as de�ned by
h̃(x) =































x+ 1, x ∈ [−1, 0),

1 − x, x ∈ [0, 1),

0, x ∈ R \ [−1, 1),

(4.11)
whih is interpolatory, re�nable and supported on the interval [−1, 1], and whih assoi-ated mask symbol Ãh̃ is given by

Ãh̃(z) =
1

2
(1 + z)2z−1 = 1 +

1

2
(z + z−1), z ∈ C \ {0}. (4.12)It follows from Theorem 4.2.1 that φ = h̃ · h̃ ∈ C0(R

2) is an interpolatory re�nablefuntion supported on the square [−1, 1]2. The graph of φ is given in Figure 4.1 (b), andthe support of the orresponding interpolatory mask is delimitated by the dotted lines inFigure 4.1 (a).
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(a) Support of AD
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(b) Graph of φD
= φ̃D · φ̃DFigure 4.2: The tensor produt of the Dubu-Deslauriers φ̃DMoreover, we dedue from (4.12) and (4.10) that the assoiated interpolatory masksymbol Ã is given by

Ã(z1, z2) = Ãh̃(z1) · Ãh̃(z2) =
1

4
(1 + z1)

2(1 + z2)
2z−1

1 z−1
2 , z1, z2 ∈ C \ {0}. (4.13)Observe that the mask symbol Ã given by (4.13) and the mask symbol G1 given by (4.6)are the same, whih means that they orrespond to the same re�nable funtion φ whihexistene is guaranteed by both Theorem 4.2.1 and Theorem 4.1.1.Next, onsider the Dubu-Delauriers funtion φ̃D [Hun05℄ (see also [VGH03℄) whih isinterpolatory, re�nable and supported on the interval [−3, 3], and whih assoiated masksymbol ÃD is given by

ÃD(z) =1 +
9

16
(z + z−1) −

1

16
(z3 + z−3)

=
1

16
z−2(1 + z)4(4 − z − z−1), z ∈ C \ {0}. (4.14)
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(a) Graph of Φ
Ã

and c (b) Graph of ΦAD and cFigure 4.3: Subdivisions S
Ã
and SAD applied to cSine also φ̃D ∈ C1

0(R), it follows from Theorem 4.2.1 that φD = φ̃D · φ̃D ∈ C1
0(R

2) isan interpolatory re�nable funtion supported on the square [−3, 3]2. Besides, we deduefrom (4.14) and (4.10) that the assoiated mask symbol AD is given by
AD(z1, z2) =

1

256
(1+z1)

4(1+z2)
4z−2

1 z−2
2 (4−z1−z

−1
1 )(4−z2−z

−1
2 ), z1, z2 ∈ C\{0}. (4.15)Observe that the graph of φD, as shown in Figure 4.2 (b), is indeed a smooth surfae asimplied by Theorem 4.2.1. The support of the orresponding interpolatory mask symbol

AD is delimitated by the dotted lines in Figure 4.2 (a).Let us now use the ontrol point c illustrated in Figure 3.1 (a), and denote by S
Ã
and

SAD the subdivision shemes orresponding to the interpolatory mask symbols Ã and AD,as respetively given by (4.13) and by (4.15). We show in Figures 4.3 (a) and (b) thegraphs of the limit funtions Φ
Ã
and ΦAD orresponding respetively to the subdivisionshemes S

Ã
and SAD , with respet to the initial sequene c.Observe that ΦAD ∈ C1(R2), i.e. ΦAD de�nes a smooth surfae, whereas both Φ

Ã
inFigure 4.3 (a) and Φ in Figure 3.1 (b) de�ne non-smooth surfaes. In general, smoother



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 69re�nable funtions an be obtained by tensor produts, yet they present the disadvantageof having large supports.
4.3 Mask onstrution based on sum rulesIn this setion, we dedue from numerial results the existene of re�nable funtionsassoiated with interpolatory masks onstruted from sum rules.Borrowing the de�nition in [HJ00℄, given a dilation matrixM , we say that a sequene
a ∈M(Z2) satis�es the sum rules of order k ∈ N if

∑

β∈MZ2

aε+βp(ε+ β) =
∑

β∈MZ2

aβp(β), ε ∈ Z2, p ∈ Πk−1, (4.16)where Πk−1 denotes the set of bivariate polynomials of total degree (at most) k−1. Sine
Πk−1 is generated by the monomial ideal 〈zµ1

1 z
µ2

2 : (µ1, µ2) ∈ Z2
+, µ1 + µ2 ≤ k − 1〉, weobserve from (1.8) that, for an interpolatory mask a ∈ M0(Z
2), the property (4.16) isequivalent to

∑

(β1,β2)∈MZ2

aε1+β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2 = δ(µ1,µ2), µ1 + µ2 ≤ k − 1, (4.17)for (µ1, µ2) ∈ Z2
+ and (ε1, ε2) ∈ Z2, where δ denotes the delta sequene de�ned by (1.3).Using then a similar argument as in [HJ98b℄, we laim that, for an interpolatory mask

a ∈ M0(Z
2) symmetri about the two oordinates, the sum rules (4.17) holds whenever

µ1 or µ2 is an odd number.To prove this, onsider an interpolatory mask a ∈ M0(Z
2) and suppose that a is



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 70symmetri about the two oordinates. If µ1 is odd, we have, for µ2 ∈ Z+ and (ε1, ε2) ∈ Z2,
∑

(β1,β2)∈MZ2

aε1+β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2

=
∑

(β1,β2)∈MZ2

a−ε1−β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2

= −
∑

(β1,β2)∈MZ2

aε1+β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2 ,and thus
∑

(β1,β2)∈MZ2

aε1+β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2 = 0 = δ(µ1,µ2).We apply a similar argument for the ase where µ2 is odd.Aording to [HJ98b℄ (see also [HJ00℄), given a dilation matrixM and an interpolatoryre�nable funtion φ ∈ C0(R
2), the shift invariant spae S(φ) generated by φ, as de�nedby

S(φ) =

{

∑j cjφ(· − j), c ∈M(Z2)

}

, (4.18)ontains Πk−1 if and only if the interpolatory mask a ∈M0(Z
2) assoiated with φ satis�esthe sum rules of order k ∈ N.From this perspetive, it seems sensible to have an interpolatory mask that satis�esthe sum rules of as high an order as possible. In [HJ98b℄, some �nitely supported interpo-latory masks are onstruted by solving for the sequene a from the non-linear equations(4.17). However, the existene of the assoiated interpolatory re�nable funtions are notinvestigated.This motivates us to investigate numerially whether for some of the interpolatorymasks onstruted in [HJ98b℄, the orresponding interpolatory re�nable funtions seemto exist.



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 71Given a dilation matrix M and an interpolatory mask a ∈ M0(Z
2), we use the deltasequene δ de�ned in (1.3), as well as the dyadi set D de�ned in (3.13), to dedue from(3.12) that, for f ∈M(R2),

T r
af(M−rkT ) =

∑j (Sr
aδ)jf(k− j), k ∈ Z2, r ∈ Z+,aording to whih, if the funtion f satis�es f(j) = δj, j ∈ Z2, then it holds that

T r
af(M−rkT ) =(Sr

aδ)k, k ∈ Z2, r ∈ Z+. (4.19)Considering then an initial funtion g ∈ C0(R
2) hosen to be interpolatory and re�nable,we shall use the asade algorithm Ta, as de�ned in (3.7), to draw the graphs of φ0 = g,

φ1 = Tag and φ2 = T 2
a g by means of the formula (3.9). Sine evaluating φr = T r

ag isomputationally intense for large values of r ∈ Z+, we shall rather use (4.19) in orderto represent the graph of φr. More preisely, for r ≥ 3, we plot the sequene of points
(M−rjT , (Sr

aδ)j), j ∈ Z2, as generated reursively by means of the subdivision sheme Sr
ade�ned in (3.3).The interpolatory masks g2 and h2Let the dilation matrix M = 2I be �xed, and let a ∈ M0(Z

2) be an interpolatory mask.From now on, we shall use the shifted box spline Ñ2 ∈ C0(R
2) de�ned by (1.30) as theinitial interpolatory re�nable funtion for the asade algorithm T r

a , r ∈ Z+, as given by(3.9).Aording to (4.17), the mask a ∈M0(Z
2) satis�es the sum rules of order k ∈ Z+ if

∑

β1,β2

a(ε1 + 2β1, ε2 + 2β2)(ε1 + 2β1)
µ1(ε2 + 2β2)

µ2 = δ(µ1,µ2), µ1 + µ2 ≤ k − 1, (4.20)
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+ and (ε1, ε2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.The interpolatory mask a = g2 [HJ98b℄ is ontruted in suh a way to satisfy the sumrules of order 4, and to be supported on the set {(α1, α2) : |α1|+ |α2| ≤ 4}. It is obtainedby solving the linear system (4.20) for k = 4, after setting also a(i, j) = 0, |i| + |j| ≥ 5,yielding the values a(i, j) = g2(i, j) given by
g2(0, 0) =1,

g2(3, 0) =g2(−3, 0) = g2(0, 3) = g2(0,−3) =
−1

16
,

g2(1, 0) =g2(−1, 0) = g2(0, 1) = g2(0,−1) =
9

16
,

g2(1, 1) =g2(−1, 1) = g2(1,−1) = g2(−1,−1) =
5

16
,

g2(3, 1) =g2(−3, 1) = g2(3,−1) = g2(−3,−1) =
−1

32
,

g2(1, 3) =g2(−1, 3) = g2(1,−3) = g2(−1,−3) =
−1

32
.The mask symbol G2 assoiated with g2 is given by

G2(z1, z2) = 1 −
1

16
(z−3

1 + z3
1 + z−3

2 + z3
2) +

9

16
(z−1

1 + z1 + z−1
2 + z2)

+
5

16
(z1z2 + z−1

1 z2 + z1z
−1
2 + z−1

1 z−1
2 ) −

1

32
b(z1, z2), z1, z2 ∈ C \ {0}, (4.21)where b(z1, z2) = z3

1z2 + z−3
1 z−1

2 + z1z
3
2 + z−1

1 z−3
2 + z1z

−3
2 + z−1

1 z3
2 + z−3

1 z2 + z3
1z

−1
2 , for

z1, z2 ∈ C \ {0}. Note that G2 an be re-written as
G2(z1, z2) =

1

16
(1 + z1)

2(1 + z2)
2z−2

1 z−2
2

[

z1z
2
2 + z2

1z2 −
1

2
(z1z

3
2 + z3

1z2)

−
1

2
(z1z

−1
2 + z−1

1 z2) + z1 + z2 + 2z1z2

]

, z1, z2 ∈ C \ {0}.
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(a) Graph of Tg2
Ñ2
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(b) Graph of T 2
g2

Ñ2Figure 4.4: Casade algorithm for the mask g2Observe now from (4.21) that, for x1, x2 ∈ R,
G2(eix1, eix2) =1 −

1

8
[cos(3x1) + cos(3x2)] +

9

8
[cos x1 + cosx2] +

5

8
cos(x1 + x2)

+
5

8
cos(x1 − x2) −

1

16
[cos(3x1 + x2) + cos(x1 + 3x2)]

−
1

16
[cos(x1 − 3x2) + cos(3x1 − x2)],

=1 −
1

8
[cos(3x1) + cos(3x2)] +

9

8
[cosx1 + cos x2]

+
5

4
cos x1 cosx2 −

1

8
[cos(3x1) cosx2 + cosx1 cos(3x2).Noting that G2(ei7π/6, ei7π/6) = −1.044×10−3 < 0, we dedue that g2 is not non-negative,so that we an not appeal to Theorem 4.1.1 for the existene of a orresponding re�nablefuntion φg2.Nevertheless, we observe from Figures 4.4 (a) and (b) that the asade algorithm Tg2seems to be onvergent. Hene, we numerially dedue that the orresponding interpola-tory re�nable funtion φg2 exists, as illustrated in Figure 4.5 (b) whih also shows that

φg2 seems to be of lass C1, i.e. φg2 ∈ C1
0(R

2). The support of g2 is delimitated by thedotted lines in Figure 4.5 (a) aording to whih g2 is symmetri about the two axes and
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(a) Support of g2
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(b) Graph of φg2Figure 4.5: Re�nable funtion orresponding to g2about the line y = x.Similarly, the interpolatory mask a = h2 [HJ98b℄ is onstruted in suh a way tosatisfy the sum rules of order 4, and to be supported on the set {(α1, α2) : |α1 + α2| ≤

4, |α1−α2| ≤ 3}. It is obtained by solving the linear system (4.20) for k = 4, after settingalso a(i, j) = 0, |i+ j| ≥ 5 or |i− j| ≥ 4, yielding the values a(i, j) = h2(i, j) given by
h2(0, 0) =1,

h2(3, 0) =h2(−3, 0) = h2(0, 3) = h2(0,−3) =
−1

16
,

h2(1, 0) =h2(−1, 0) = h2(0, 1) = h2(0,−1) =
9

16
,

h2(1, 1) =h2(−1,−1) =
1

2
,

h2(1,−1) =h2(−1, 1) =
1

8
,

h2(3, 1) =h2(−3,−1) = h2(1, 3) = h2(−1,−3) =
−1

16
.Note that h2 has a smaller support than g2, and that the assoiated mask symbol H2
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(a) Graph of Th2
Ñ2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3 -3

-2

-1

 0

 1

 2

 3

-0.5

 0

 0.5

 1

(b) Graph of T 2
h2

Ñ2Figure 4.6: Casade algorithm for the mask h2is given by
H2(z1, z2) = 1 −

1

16
(z−3

1 + z3
1 + z−3

2 + z3
2) +

9

16
(z−1

1 + z1 + z−1
2 + z2)

+
1

2
(z1z2 + z−1

1 z−1
2 ) +

1

8
(z−1

1 z2 + z1z
−1
2 )

−
1

16
(z3

1z2 + z−3
1 z−1

2 + z1z
3
2 + z−1

1 z−3
2 ), z1, z2 ∈ C \ {0}, (4.22)whih an be re-written as

H2(z1, z2) =
1

16
(1 + z1)(1 + z2)

[

6 + z1 + z2 + 2(z−1
1 + z−1

2 ) − z2
1 − z2

2

+ z−2
1 z−1

2 + z−1
1 z−2

2 − z−3
1 z−1

2 − z−1
1 z−3

2 + 6z−1
1 z−1

2

]

, z1, z2 ∈ C \ {0}.Next, we dedue from (4.22) that, for x1, x2 ∈ R,
H2(eix1 , eix2) = 1 −

1

8
[cos(3x1) + cos(3x2)] +

9

8
[cos x1 + cosx2]

−
1

8
[cos(3x1 + x2) + cos(x1 + 3x2)] + cos(x1 + x2) +

1

4
cos(x1 − x2).Noting that H2(ei2π/3, ei2π/3) = −

1

2
< 0, we dedue that h2 is not non-negative, whih
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(a) Support of h2
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(b) Graph of φh2Figure 4.7: Re�nable funtion orresponding to h2means that we an not appeal to Theorem 4.1.1 for the existene of a orrespondingre�nable funtion φh2.However, we observe from Figures 4.6 (a) and (b) that the asade algorithm Th2seems to be onvergent. We then numerially dedue that the orresponding interpolatoryre�nable funtion φh2 exists, as illustrated in Figure 4.7 (b) whih also shows that φh2seems to be of lass C1, i.e. φh2 ∈ C1
0(R

2). The support of h2 is delimitated by the dottedlines in Figure 4.7 (a) aording to whih h2 is symmetri about both the origin and theline y = x.Note that, given an interpolatory mask a, if the orresponding interpolatory re�nablefuntion φ exists, then, from (1.1),
φ(j/2) =

∑k akφ(j− k) = aj, j ∈ Z2, (4.23)by virtue of the re�nement equation (1.1). It follows from (4.23) that the surfae de�nedby φ passes through the points (j, aj) for all j ∈ Z2.
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(a) Graph of Φg2
and c (b) Graph of Φh2 and cFigure 4.8: Subdivisions Sg2 and Sh2 applied to cFor the interpolatory masks g2 and h2, observe from Figure 4.5 (b) and Figure 4.7 (b)that the graphs of φg2 and φh2 are onsistent with the property (4.23).Moreover, using the ontrol point c illustrated in Figure 3.1 (a), we observe fromFigures 4.8 (a) and (b) that the orresponding subdivision shemes Sg2 and Sh2, withrespet to the initial sequene c, yield the limit funtions Φg2 and Φh2 whih both de�nesmooth surfaes, whih is onsistent with the result in [HJ98b℄ stating that g2 and h2indue C1 interpolatory subdivision shemes, i.e. for any sequene c ∈ M(Z2), the limitfuntion S∞

g2
c and Sh2 belong to C1(R2).The butter�y interpolatory maskLet the dilation matrix M = 2I be �xed. We now introdue the well-known butter�ymask developed in [DLG90℄ and [DL02℄ (see also [Dyn92℄).For w ∈ R, the butter�y mask symbol Bw is the Laurent polynomial de�ned by

Bw(z1, z2) =
1

2
(1 + z1)(1 + z2)(1 + z−1

1 z−1
2 )(1 − wC(z1, z2)), z1, z2 ∈ C \ {0}, (4.24)
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(a) Graph of TBw
Ñ2, w = 1/16
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(b) Graph of T 2
Bw

Ñ2, w = 1/16Figure 4.9: Casade algorithm for the butter�y mask Bw, w = 1/16where the Laurent polynomial C is given by
C(z1, z2) = 2z−2

1 z−1
2 + 2z−1

1 z−2
2 − 4z−1

1 z−1
2 − 4z−1

1 − 4z−1
2

+ 2z−1
1 z2 + 2z1z

−1
2 + 12 − 4z1 − 4z2 − 4z1z2 + 2z2

1z2 + 2z1z
2
2 , z1, z2 ∈ C \ {0}.Note from (4.24) that, for w ∈ R, the butter�y mask Bw is an interpolatory mask symbolsupported on the square [−3, 3]2. In partiular, we have B0 = Ã2, where Ã2 denotes theinterpolatory mask symbol given by (1.32).With the hoie w = 1/16, we observe from Figures 4.9 (a) and (b) that the as-ade algorithm TBw

seems to be onvergent. Therefore, we numerially dedue that theorresponding interpolatory re�nable funtion φBw
exists, as illustrated in Figure 4.7 (b)whih also shows that φBw

seems to be of lass C1, i.e. φBw
∈ C1

0(R
2). The support of Bwis delimitated by the dotted lines in Figure 4.7 (a) aording to whih Bw is symmetriabout both the origin and the line y = x.Using the ontrol point c illustrated in Figure 3.1 (a) and with w = 1/16, we show inFigure 4.11 that the limit funtion ΦBw

resulting from the Butter�y subdivision de�nes a
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(a) Support of Bw
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(b) Graph of φBw
, with w = 1/16Figure 4.10: Re�nable funtion orresponding to Bw

Figure 4.11: Graph of ΦBw
, w = 1/16, showing the Butter�y subdivision applied to csmooth surfae, whih is onsistent with the result in [DLG90℄ and in [DL02℄ stating that,for a su�iently small w > 0, the butter�y sheme SBw

is a C1 interpolatory subdivisionsheme, that is, for any sequene c ∈ M(Z2), the limit funtion S∞
Bw
c belongs to C1(R2).
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