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Summary

In this thesis, we introduce bivariate refinable functions which are functions that are
expressible as linear combinations of the shifts of their own dilation by a factor of a
dilation matrix. For the corresponding refinement masks, we define the mask symbols as
the Laurent polynomials whose coefficients are the elements of the refinement masks. Of
particular interest are interpolatory refinable functions, that is, refinable functions which
vanish at all integers except the origin at which they take the value 1. We present simple
characterization of the corresponding interpolatory masks in terms of both the delta
sequence and the determinant of the dilation matrix. The corresponding interpolatory

mask symbols are characterized by some polynomial identities.

An important tool for our work is the Euclidean algorithm, which, in association with
the Bezout theorem, helps us to provide an explicit computational algorithm to find the
general solution for some polynomial identities. Using the algorithm thus presented, we
introduce the general form of an interpolatory mask symbol associated with the dilation
matrix 2/, and the result thus obtained is applied to the mask symbols corresponding to

the box splines.

The concepts of interpolatory subdivision schemes and cascade algorithms are also
investigated. Subdivision schemes, as usually used to generate curves and surfaces, are
interpolatory when the initial data points are preserved at all the steps of the subdivision

process. We show that interpolatory subdivision schemes and the cascade algorithm are

ii
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strongly linked to each other. For a well-chosen dilation matrix and interpolatory refine-
ment mask, we find that the associated cascade algorithm preserves certain properties
of the initial functions, allowing us to prove that cascade algorithm convergence implies
the existence of a corresponding interpolatory refinable function, which in turn implies

subdivision scheme convergence.

Specializing only to the case where the dilation matrix is M = 21, we present some
workable methods applied for both non-negative interpolatory masks and interpolatory
masks obtained by tensor products in order to investigate the existence of corresponding
interpolatory refinable functions. For interpolatory masks constructed to satisfy the sum
rules, we provide numerical proofs towards investigating the existence of corresponding
interpolatory refinable functions by using the cascade algorithm with an appropriate initial

function. Numerical illustrations by means of subdivision graphs are also provided.



Opsomming

In hierdie tesis beskou ons tweeveranderlike verfynbare funksies, oftewel funksies wat
uitdrukbaar is as lineére kombinasies van die skuiwe van hulle eie dilasie deur die fak-
tor van die dilasiematriks. Vir die ooreenkomstige verfyningsmaskers definieer ons die
maskersimbole as Laurent polinome waarvan die koéffisiénte die elemente van die verfyn-
ingsmaskers is. Van besondere belang is interpolerende verfynbare funksies, dit wil sé
verfynbare funksies wat gelyk aan nul is by alle heelgetalle behalwe die oorsprong waar
hulle die waarde 1 aanneem. Ons gee 'n eenvoudige karakterisering van die ooreenstem-
mende interpolerende maskers, beide in terme van die delta ry en die determinant van die
dilasiematriks. Die ooreenstemmende interpolerende maskersimbole word gekarakteriseer

deur sekere polinoom identiteite.

'n Belangrike stuk gereedskap vir ons werk is die Euklidiese algoritme, wat, tesame
met die Bezout stelling, ons help om 'n eksplisiete algoritme te bepaal vir die algemene
oplossing van sekere polinoom identiteite. Met behulp van hierdie algoritme stel ons dan
bekend die algemene vorm van 'n interpolerende maskersimbool wat ooreenstem met die
dilasiematriks 27, en die resultaat wat sodanig verkry is word dan toegepas op die masker-

simbole wat ooreenstem met 'n sekere klas tweeveranderlike latfunksies (“box splines”).

Die konsepte van interpolerende subdivisie skemas en kaskade algoritmes word ook
ondersoek. Subdivisieskemas, soos gewoonlik gebruik om krommes en oppervlakke te

genereer, is interpolerend indien die begin-datapunte gepreserveer word by elke stap van

iv
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die subdivisie proses. Ons toon aan dat interpolerende skemas en die kaskade algoritme
sterk aanmekaar verbind is. Vir 'n goedgekose dilasiematriks en interpolerende verfyn-
ingsmasker vind ons dat die ooreenstemmende kaskade algoritme sekere eienskappe van
die beginfunksie preserveer, met behulp waarvan ons dan kan bewys dat kaskade algo-
ritme konvergensie die bestaan van 'n ooreenstemmende interpolerende verfynbare funksie

impliseer, en wat op die beurt dan die konvergensie van die subdivisieskema impliseer.

Deur te spesialiseer na die geval waar die dilasiematriks M = 21, verskaf ons werkbare
metodes vir toepassing op beide nie-negatiewe interpolerende maskers en interpolerende
maskers soos verkry met behulp van tensor produkte met die doel om die bestaan van
ooreenstemmende interpolerende verfynbare funksies te ondersoek. Vir interpolerende
maskers wat die somreéls bevredig, gee ons numeriese bewyse ten opsigte van die onder-
soek na die bestaan van ooreenstemmende verfynbare funksies, deur die kaskade algoritme
met 'n gepaste beginfunksie te gebruik. Numeriese illustrasies deur middel van subdivisie

grafieke word ook verskaf.
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Introduction

A refinable function, or a function expressible as a linear combination of the shifts of its
own dilations by a factor of a dilation matriz, i.e. an invertible matrix with integer entries,
is always linked to a certain sequence called the refinement mask. The refinement mask
corresponds to a Laurent polynomial called the mask symbol, the coefficients of which
are the elements of the refinement mask. The cardinal B-spline functions presented in
[dV07| are among the first examples of univariate refinable functions which have enormous

applications in wavelet analysis and approximation theory.

In general, it is hard to investigate whether a given function is refinable, since both
the associated refinement mask, as well as the corresponding the dilation matrix have to
be found. It is thus better to start with a given dilation matrix and a finitely supported

sequence, and investigate the existence of a corresponding refinable function.

Based on a given dilation matrix and a finitely supported sequence, the associated
subdivision scheme is defined as an operator which recursively produces denser and denser
data points by means of linear combinations of the previous ones. The corresponding
cascade algorithm is also defined as a functional operator which iteratively produces a

sequence of functions by means of linear combinations of the previous ones.

Subdivision methods, as initialy introduced by de Rham (1956) and later by Chaikin
(1974), play important roles in computer aided geometric design (CAGD) by generating

curves and surfaces in computer graphics (see e.g. [Dyn92]). Cascade algorithms, on
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the other hand, are useful in the sense that cascade algorithm convergence implies the

refinability of the limit function.

Specializing only to the case where the dilation matrix is M = 2I, our goal in this
thesis is to give a purely algebraic method for the study of both bivariate refinable func-
tions and their associated subdivision schemes, in contrast to methods based on Fourier
transforms as mostly encountered in the literature. A fundamental theme in this the-
sis is that of interpolatory bivariate refinable functions, that is, refinable functions that
take the value 1 at the origin and 0 at all other integers. We proceed to introduce in
Chapter 1 a brief overview of interpolatory refinable functions. The corresponding refine-
ment masks, called interpolatory masks, and the associated interpolatory mask symbols
are respectively characterized by (1.8) and (1.10). We refer to the Dubuc-Deslauriers
interpolatory refinable function, as investigated in [VGHO03]| (see also [Hun05, Goo00]) for
the univariate setting, and to the interpolatory refinable functions constructed in [RS97|

(see also [Jia00]) for the multivariate case.

Several studies of refinement masks have been developed by using the associated mask
symbols, which often help to prove the convergence of the subdivision schemes to which
they are associated (e.g. [DL02, pages 37-70]|, [CDM91|). Motivated by this perspective,
we take a special interest in interpolatory mask symbols for the special case where the
dilation matrix is 2/. In Chapter 2, an alternative criterion to interpolatory mask symbols
which is easier to use than (1.10) is given. In Theorem 2.2.3, we deduce the general form
of an interpolatory mask symbol by using some polynomial identities and the Euclidean
algorithm. The results thus obtained are then applied to the mask symbols corresponding

to the well-known box splines.

An interpolatory refinement mask generates an interpolatory subdivision scheme, that
is, a subdivision scheme for which the initial data points are preserved at all the steps

of the recursive process (see [Dyn92|). This is extremely relevant in certain application
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areas in CAGD, where the initial data are required to be preserved while applying the
subdivision process. In Chapter 3, we discuss the convergence of interpolatory subdivision
schemes, and we investigate in Section 3.3 the issue of property preservation with respect

to the cascade algorithm.

Though remarkable progress by mathematicians in the area have been made, computa-
tionally inefficient conditions are still often applied to refinement masks in order to ensure
the convergence of the associated subdivision schemes. For instance, the characterization
by using the joint spectral radius for subdivision schemes investigated in [HJ98a| can take
impractically long to test computationally, whereas the alternative method based on con-
tractivity conditions, as introduced in [DL02| (see also [Dyn02]), can also be a formidable
computational task to perform. Under certain restrictions, we therefore develop in Chap-
ter 4 three feasible methods to examine the existence of interpolatory refinable functions
from a practical point of view. The presented methods are applied on interpolatory mask

symbols, and are based on the results of Micchelli in [Mic96| and on tensor products.

Unfortunately, for the general setting, the existing methods investigating the existence
of interpolatory refinable functions are not always feasible to implement. By using the
above-mentioned general form of an interpolatory mask symbol, an interesting continua-
tion of this thesis thus include finding easily checkable sufficient conditions on interpola-

tory mask symbols for them to comply with the conditions of the existing methods.



Chapter 1

Interpolatory bivariate refinable

functions

We first give in this chapter a brief introduction to interpolatory bivariate refinable func-
tions and the corresponding interpolatory masks. Then, we elaborate a simple criterion in
(1.8) and in (1.10) to recognize simultaneously an interpolatory mask and the associated
interpolatory mask symbol. We end the chapter by presenting the box splines as examples

of interpolatory bivariate refinable functions.

1.1 Notation and general concepts

We shall denote the set of natural numbers by N, the set of integers and non-negative
integers respectively by Z and Z,, the set of real numbers by R and the set of complex
numbers by C. Similarly, the symbols Z2, R? and C? denote the set of ordered pairs with

respectively integer, real number and complex number entries.

For the linear space M (Z?) of all real-valued sequences ¢ = {¢; € R : j € Z*} which

support is denoted by supp(c) = {j € Z* : ¢; # 0}, the subspace of finitely supported
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sequences, i.e. whose supports are finite, constitute a linear subspace denoted by My(Z?).
In the same way, for the linear space M (R?) of all real-valued bivariate functions f on R?
which support supp(f) is the smallest closed set containing {x € R? : f(x) # 0}, the set
of finitely supported functions constitute a linear subspace denoted by My(R?). Moreover,
the subspaces of continuous functions respectively in M(R?) and in My(R?) are denoted

by C(R?) and Cy(R?).

For a given 2 X 2 invertible matrix M with integer entries, a function ¢ € My(R?) is

termed M-refinable if there exists a sequence a = {q; : j € Z*} € My(Z?) such that

¢ = Zajas(M-—j). (1.1)

We shall refer to M as the dilation matriz, whereas the sequence a is called the refinement

mask (or simply the mask), and the equation (1.1) is referred to as the refinement equation.

Note that an M-refinable function is therefore expressible as a linear combinations of
the shifts of its own dilations with the factor of the dilation matrix M, as specified by the

refinement mask a. For convenience, we shall often simplify ”M-refinable” to "refinable”.

The problem of existence of refinable functions by using refinement masks is funda-
mental, but most importantly in this thesis, is that our study is focussed on interpolatory

refinable functions, that is, refinable functions that satisfy

o) =0, jE€ 2%, (1.2)

where the delta function ¢ (also called the delta sequence) is defined by

5 = jerr (1.3)
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In other words, a refinable function is interpolatory if it vanishes at all integers except
at the origin 0 € Z? where it takes the value 1. We proceed to characterize the so-called

interpolatory refinement masks associated with interpolatory refinable functions.

1.2 Interpolatory refinement masks

We present in this section a characterization theory for refinement masks associated with
interpolatory refinable functions. Thereafter we introduce the concept of refinement mask
symbols and then specialize to the case M = 21, with some examples of bivariate inter-

polatory refinable functions.

By using the symbol j7 for the transpose of the integer pair j € Z2, we come first to

the following result.

Proposition 1.2.1. For a given dilation matriz M and a mask a € My(Z?*), suppose the
refinement equation (1.1) holds for a refinable function ¢. If ¢ is interpolatory, then a
satisfies

Proof. From (1.2) and (1.1), we have that, for j € Z2,

5 =00) =Y axd(Mj" —k) = axbpyr = ay;r.

k k

Our next result was proved for the case M = 2/ in [CDM91|. Our general proof is

based on a suggestion in [HJ98a|.

Proposition 1.2.2. For a given dilation matriz M and a mask a € My(Z?*), suppose the

refinement equation (1.1) holds for a refinable function ¢. If ¢ is finitely supported and
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integrable with non-zero integral over R?, then a satisfies

Z aj = (1.5)
Proof. Suppose that the dilation matrix has the form
M=
Writing a; ; = a;, we can now integrate the refinement equation (1.1) to obtain
[ [ otwsty = a, [ [ o) - (i) (1.6
R Iy R
Since the variable transformation (X,Y)? = M(z,y)" has Jacobian
X 9X
o ou c d
J(z,y) = ! = det(M)
oy 9y
o oy e f
it follows from standard multivariate integration theorems in analysis that
[ [ ot - Gpldetinideady = [ [ 600 = (i.)axdy
R R
- / é(X,Y)dXdY. (1.7)
R2

We then deduce from (1.6) and (1.7) that

1
/ o P(z,y)dody = %:ai,jm//IRE ¢(z,y)dxdy.
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Moreover, since we assume the integral of ¢ to be non-zero over R?, we obtain

1
i = 1,
Za”\det(Mﬂ

Z‘?j

from which the result (1.5) follows. O

Therefore, given a dilation matrix M, the existence of a compactly supported interpo-
latory refinable function ¢ with non-zero integral over R? requires for a given refinement

mask a to satisfy the conditions

ApiT = %, jer?,

Zaj = |det(M)].

(1.8)

Now, considering a refinement mask a = {a;} = {a;;}, we define the corresponding
refinement mask symbol, or simply the mask symbol, as the bivariate Laurent polynomial
A given by

A(z1, 20) = Z a;j7i2), 21,2 € C\ {0}. (1.9)

Z"j
Also, we say that a refinement mask a is interpolatory if it satisfies (1.8). In that case, for

brevity, we call a an interpolatory mask. Moreover, its symbol A is called an interpolatory

mask symbol.

Since, according to (1.9), refinement masks and their symbols are bijectively linked,
the restrictions (1.8) on a mask a can equivalently be expressed in terms of the mask

symbol A as follows:

(

The constant term in A(z1, 29) is 1, and A has no term in 2{" 25?

A\

such that (ay, an) = M(i,5)T # (0,0) for some (i, j) € Z*; also, (1.10)

A(1,1) = a;; = |det(M)].
2%

\
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It is often convenient to use refinement mask symbols instead of their corresponding
refinement masks. Indeed, as presented in [CDM91, Mic96, Der99|, some properties of

masks symbols lead to the existence of compactly supported refinable functions.

The following section presents some examples of interpolatory refinable functions with

dilation matrix M = 21.

1.3 Box splines

In this section, we fix the dilation matrix M = 2I. The conditions (1.8) on an interpola-

tory mask a can then be re-written as

225 = Oy, (i,5) € Z?,
(1.11)

whereas the conditions (1.10) on an interpolatory mask symbol A become

)
The constant term in A(z1,29) is 1, and A has

201 20

no term in 2{*'25%%, for any (ay, ) € Z%\ {(0,0)}; also, (1.12)

A(l, 1) = Z Qi 5 = 4.
0]

\

The box spline NV,

The box spline function Ny is defined by

1, (2,y) €[0,1)%
Ni(z,y) = (1.13)

0, (z,y) ¢[0,1)

The graph of Nj is shown in Figure 1.1 (b), from which we see that N; is finitely
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(a) Support of a(®) (b) Graph of N;

Figure 1.1: The box spline Ny

supported, and though it is not continuous, we claim that N is an interpolatory refinable
function with respect to the interpolatory mask a™) which support is delimitated by the

dotted lines in Figure 1.1 (a), as given by

_ a% —_ aﬁ =1 ) =0 otherwise. (1.14)

Ni(2x,2y) =
0, (z,y)¢[0,1)%

1, (z,y) € [3,1) x [0, 3),
Ni(2x —1,2y) =

0, (z,y) ¢[0,1)%

1, (z,y) €10,3) x [3,1),
Ni(2z,2y — 1) =

0, ([l? y) §é [07 1)2§
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Then, since the squares [0,3)2,[5,1) % [0,3),[0,3) % [5,1) and [5,1)? form a partition of

the unit square [0, 1)2, we obtain, for (z,y) € R?,
Ni(z,y) = Ni(22,2y) + N1 (2z — 1,2y) + N1(22,2y — 1) + Ny (22 — 1,2y — 1), (1.15)

thereby proving that N is refinable with corresponding mask a") given in (1.14). Hence,

according to (1.14) and (1.9), the corresponding mask symbol A; is given by
Ai(z1,20) =14+ 21+ 20+ 2120 = (1 4+ 21) (1 + 22), 21,20 € C. (1.16)

Note that the conditions (1.11) and (1.12) are respectively fulfilled by the refinement mask
aM and its symbol A;. Moreover, (1.13) shows that N;(j) = &;, j € Z?, which means that

Nj is an interpolatory refinable function.

The box spline Ny
Using the box spline N given in (1.13), the box spline function N, is defined by
1
No(x,y) = / Ni(x —t,y —t)dt, z,y e R. (1.17)
0

Let us first prove that Ny is a continuous function by finding its explicit formula. To this

end, observe that, for t € (0,1) and z,y € R,

Ni(x —t,y—t) #£0<=zx—te€[0,1)and y —t € [0, 1)

—0<zr<2and 0<y<2. (1.18)
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Hence, from (1.18) and (1.17), we deduce that No(x) = 0, x & [0, 2]*.

Moreover, for x,y € [0,2), we have

0<r—t<l<=zr—-1<t<zrzand0<y—t<l<=y—-1<t<y,

which, together with (1.17), yields

Nz —t,y—t) A0<=te€(0,1)Nn(x—1,z]N(y—1,y], z,y€0,2). (1.19)

We then have the following result.

Proposition 1.3.1. The boz spline No, as defined in (1.17), is explicitly given by

min{z, y}, if (z,y) €[0,1)%,
2 — max{z,y}, if (x,y) € [1,2)%,
1+ min{x,y} —max{z,y}, if (z,y) €A,

0 otherwise,

\

where A is the set defined by

A = {(z,y) : min{z,y} € [0,1); max{z,y} € [1,2); 1 + min{z,y} > max{z,y}}, (1.21)

1.€.,

A=BUE,

with B and E as in Figure 1.2. Consequently, the support of Ny is the polygon AU B U

CUDUEUF =[0,1?UAU|[1,2]? in Figure 1.2.

Proof. Observe from Figure 1.2 that [0,1)2 = AUF, [1,2)?=CUD and A = BUE.
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A

y

73 bR ELE LY

N|sss sssanunan

0 L - >

Figure 1.2: Support of the box spline Ns.

Therefore, from (1.19), we have that, for x € [0,1):

e If y € [0,1) is such that y < x (resp. y > z), then t € [0,y] (resp. ¢ € [0,x]), so

that No(x,y) = /ydt =y <resp. No(x,y) = /wdt = x)
0 0
o If y €[1,2), two cases occur:
o Ify—1>z, then ¢t € ) and Ny(x,y) = 0;
o Ify—1<uz, thent € (y — 1, 2] and therefore Ny(x,y) = /r dt=14+2—1y.
y—1

Similarly, from (1.19), we have that, for x € [1,2):

e If y € [0,1), two cases occur:

y
o Ify>a—1, then t € (x — 1,y] and therefore Ny(z,y) :/ dt=1+y—ux;
z—1
o If y<x—1, then t € ) and No(x,y) = 0.
e If y €[1,2) is such that y < x (resp. y > x), then t € (x—1,1] (resp. t € (y—1,1]),

1 1
so that No(x,y) = / dt=2—-2x (resp. No(z,y) = / dt =2 — y)
z—1 y—1

By taking the appropriate combination of the four cases above, we obtain the desired

result (1.20). O
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Next, by using Proposition 1.3.1 and Figure 1.2, we deduce that the restrictions of Ny

to the respective regions A, B,C, D, E and F' are given as follows:

<&

In the region A: z,y € [0,1), with y > 2, we have Ny|a(x,y) = z;

<&

In the region F: x,y € [0,1), with y < x, we have Ny|p(z,y) = y;

&

In the region B: = € [0,1) and y € [1,2), with x > y — 1, we have Ny|g(x,y) =

I+z—y;

&

In the region E: = € [1,2) and y € [0,1), with y > = — 1, we have Ny|g(z,y) =

1+y—a;

<&

In the region C: x,y € [1,2), with y > z, we have Ny|c(z,y) =2 —y;

<&

In the region D: x,y € [1,2), with z > y, we have Ns|p(z,y) =2 — x.

Hence, Ny defines a different plane in each of the respective regions A, B,C, D, E and
F. Tt will therefore suffice to prove the continuity of Ny at the edges of these regions, i.e
along the lines x = 0, = 1, x = 2, the lines y = 0, y = 1, y = 2, as well as the lines

y=z,y=xr+1land y=x— 1.

To this end, observe first that, for the region A (resp. F), when x — 0 (resp. y — 0),
we have that Ny(z,y) — 0. Similarly, for the region D (resp. C), when z — 2 (resp.

y — 2), we also have that Ny(z,y) — 0.

Next, observe that, when z — 1 (resp. y — 1), we have Ny|p(x,y) — y and
Nol|g(z,y) — y (resp. Nao|a(z,y) — x and Na|p(x,y) — x), so that Ny is continu-
ous in the region F'U FE (resp. A U B). Similarly, when z — 1 (resp. y — 1), we
have that Ns|p(z,y) — 2 —y and Na|c(z,y) — 2 —y (resp. Na|p(xz,y) — 2 — x and

No|p(z,y) — 2 — z), so that Ny is also continuous in the region BU C (resp. EU D).
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Finally, along the line y = x, we have that Ny|s(x,y) = Nao|p(z,y) and Nao|c(z,y) =
No|p(z,y), so that Ny is continuous in the regions AU F' and C'U D. Along the line
y=ux+1 (resp. y =x — 1), we have that Na|g(x,y) = 0 (resp. No|g(z,y) = 0). Thus,

we conclude that N, is continuous on R2.

We proceed now to prove that Ny is refinable. From the refinement equation (1.15),

we have that, for z,y € R,

1
N2(x7y) :/ Nl(‘r—tvy—t)dt
0
1
:/ [N1(2x — 2t,2y — 2t) + N (22 — 2t — 1,2y — 2t)
0

+ Ny (22 — 26,2y — 2t — 1)+ Ny(2z — 2t — 1,2y — 2t — 1)]dt.  (1.22)

Using the transformations ¢ = 2t for ¢ € [0, 5] and t=2t—1forte 3, 1], the first integral

in (1.22) can be re-written, for z,y € R, as

1 1 1
/ Ni(2x — 2t,2y — 2t)dt :/ Ni(2x — 2t,2y — 2t)dt + / Ni(2x — 2t,2y — 2t)dt
0 0 :

1! 1!
:é/ N1(2x—t,2y—t)dt+§/ Ni(2z —t— 1,2y —t—1)dt
0 0

1 1
:§N2(2x, 2y) + §N2(2x —1,2y — 1), (1.23)

by virtue of the definition of Ny in (1.17). Similarly, we get, for z,y € R,
! 1 1
Ni(22 = 2 — 1,2y = 26)dt =2 Np(2x — 1,2y) + 5 No(22 — 2,2y — 1), (1.24)
0

' 1 1
/ Ni(2x — 2t,2y — 2t — 1)dt :§N2(2x, 2y —1)+ §N2(2x — 1,2y — 2), (1.25)
0

! 1 1
/N1(2x—2t—1,2y—2t—1)dt :§N2(2x—1,2y—1)+§N2(2x—2,2y—2). (1.26)
0
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Consequently, from (1.22), (1.23), (1.24), (1.25) and (1.26), we obtain

1
Na(z,y) =5 {Na(22, 2y) + Na(22 — 1, 2y) + No(22,2y — 1) + 2N2(20 — 1,2y — 1)

+ No(2z — 1,2y — 2) + No(22 — 2,2y — 1) + No(22 — 2,2y — 2)}, (1.27)

which shows that N, is refinable with corresponding mask a® given by

2 2 2 2 2 2 2
=1, o= o=l = o = o = o=},
, (1.28)
ap) =0, (i) ¢ {(0.0).(0,1),(1,0), (1,1), (1,2), (2.1), (2,2)},
according to which the corresponding mask symbol A, is given by
1+ 22
Ay(z1,29) = (14 21)(1 + 29) ( ! 2) , 21,20 € C. (1.29)

However, observe from (1.28) that a((f()) # 1 and a% # 0 (or, equivalently, the constant

term in Ay(21, z3) is not 1 and it has a term in 2223), that is, N, is not interpolatory.

The shifted box spline N,

Using the box spline N, defined in (1.17), we define the shifted box spline function N, by

NQ(xvy):N2(x+1vy+1)7 z,y €R. (130)

We claim that the function NQ, as drawn in Figure 1.3 (b), is an interpolatory refinable

function associated with the interpolatory mask @® which support is delimitated by the
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(a) Support of a(® (b) Graph of N,

Figure 1.3: The shifted box spline Ny

dotted lines in Figure 1.3 (a), as given by

~(2 ~(2 ~(2 ~(2 ~(2 ~(2 ~(2
=1, =il = =% =, =, = )
o (1.31)
&z‘,j =0, (Z’]) §§ {(07 O)a (07 1)’ (17 0)? (_1’ O)’ (0’ _1)’ (1’ 1)’ (_1’ _1)}’
with corresponding mask symbol A, given by
- 1+ 22
AQ(Zl, 22) = (1 + Zl)(l + 22) (Tl2) 21_122_1, 21, %9 € C \ {0} (132)

To prove this, we use (1.30) and (1.27) to deduce that, for z,y € R,

N2(x7y) :N2(x + 17y + 1)

1
=3 {N2(22 4+ 2,2y +2) + No (22 + 1,2y + 2) + N2(20 4+ 2,2y + 1)

+ 2N 2z + 1,2y + 1) + No(2x + 1, 2y) + No(22,2y + 1) + No(22,2y)}
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1< - .
= {N2(2x 1,2y + 1) + No(22, 2y + 1) + No(22 + 1, 2y)

+ 2Ny (22, 2y) 4+ No(22,2y — 1) + No(2z — 1,2y) + No(22 — 1,2y — 1)} : (1.33)

which implies that N is a refinable function with refinement mask a® given by (1.31).
Moreover, by using (1.31) and (1.9), we find that the corresponding mask symbol A, is
given by (1.32). It can now be verified from (1.31) and (1.32) that a® and A, satisfy

respectively the interpolatory conditions (1.11) and (1.12).

To prove that N is interpolatory, we use (1.30) and (1.17) to obtain, for z,y € R,

1
No(z,y) = No(z + 1,y + 1) = / Ni(z+1—t,y+1—1t)dt (1.34)
0
Taking into account the definition of the box spline Ny in (1.13), we deduce that
. 1 1
Ny(0,0) = / No(1—£,1 — )t = / 1t =1, (1.35)
0 0
whereas, for (7, 7) # (0,0), we have that
B 1
Ng(i,j):/ NuGi41—t,j+1—t)dt =0, (1.36)
0

forifi # 0 (resp. j # 0) then i+1—¢ ¢ [0,1) (resp. j+1—t ¢ [0,1)), for any t € (0,1). It
follows from (1.35) and (1.36) that the interpolatory condition (1.2) is satisfied, thereby

showing that the shifted box spline N is an interpolatory refinable function.

Note in particular from Figure 1.3 (b) that N, belongs to Cy(R?) \ CZ(RR?).



Chapter 2

The interpolatory mask symbols for

M =21

We fix the dilation matrix M = 21 in this chapter. In Section 2.1 below, we produce the
alternative criterion (2.9) for interpolatory mask symbols. In Section 2.2, after solving
some polynomial identities by means of the well-known Bezout identity and the Euclidean
algorithm, we provide in Theorem 2.2.3 a useful characterization result for interpolatory
mask symbols. In Section 2.3, we specialise to the case of box splines interpolatory mask

symbols.

2.1 Simple characterization

We proceed to establish an alternative characterization to interpolatory mask symbols
which is simpler to use than (1.12), and which will be used in Section 2.2. Recall from

Chapter 1 that the class of interpolatory mask symbols consists of all Laurent polynomials

19
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A satisfying the conditions (1.12), i.e.

(
The constant term in A(z1,25) is 1, and A has

{ no term in 22* 232, for any (v, ay) € Z2\ (0,0); also, (2.1)

A1, 1) =4,

\

where a is the corresponding interpolatory mask, as defined by (1.9), and satisfying the

conditions (1.11), i.e.

a2 2j =0uj), (4,7) €72,

2.2
Sy =4 +
,J

Let us denote by F' LI G the union of two sets F' and G for which the intersection
F NG is empty, whereas EE, FO, OF and OO stand for the sets of integer pairs with
respectively even-even, even-odd, odd-even and odd-odd entries. Observe that the set of

integers Z?2 consists of the union of the four disjoint subsets FE, FO, OF and OO, i.e.

7Z* = EEUJEOUOEUOO. (2.3)

Given a mask symbol A with corresponding mask a € My(Z?), we obtain from (2.3)

and (1.9) that, for z1, 25 € C\ {0},

B % _2j % _2j+1 241 _2j
Az, 20) = E A2;,25%1 %5° + E 2i2j+1%1 %25+ 2i41,2j%1 | %9
i,J i,J .J

24+1 _2j+1
+E A2i+1,2j+1%1 23 (2.4)

1,J
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whereas also, by replacing z; by —z; in (2.4), we have, for 21, 20 € C\ {0},

12
A(—thz) = E a212]21 22 + E CL222;+1Z1 22 E A2i+1 2;21 Zg

i,J .J

2i+1_2j+1
—E A2it12j4121 2 . (2.5)

Combining (2.4) and (2.5), we obtain, for 21,2, € C\ {0},
A(z1,20) + A(—21, 29) = 2 Z gi0j27" 22 42 Z Agij4171 2 2]+1. (2.6)
irj ij
Now replace z; by —z; and 25 by —25 in (2.6) to deduce that, for z1, zo € C\ {0},
A(—z1,—20) + A(z1, —22) = 2 Z agmjz%izgj -2 Z a2i72j+1zfiz§j+l. (2.7)
i,7 2%
By adding (2.6) and (2.7), we obtain the identity
A(z1, 22) + A(—21, 22) + A(z1, —22) + A(—21,—20) = 4 Z agwjzf"zgj, 21,29 € C\ {0},

Z‘?j

(2.8)

which we can now use to prove the following characterization result.

Theorem 2.1.1. Suppose that a is a refinement mask such that Zaj =4. Then a 1s
J
interpolatory if and only if the corresponding mask symbol A, as defined by (1.9), satisfies

the identity
A(z1,20) + A(—21,20) + A(z1, —22) + A(—21,—22) =4, 21,29 € C\ {0}. (2.9)

Proof. Suppose first that a is interpolatory. From (2.2), since ag; 2; = ¢; ;, we have that

2 : 2 _2j
a/27:’2j21 29" = 1,
ihj
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which, together with (2.8), implies that (2.9) holds.

Conversely, if (2.9) holds, we obtain from (2.8) that

E : 2i.2]
a/27:’2j21 Z2 = 1,
'7]'

which proves that ag; o; = 0; ;. Therefore, (2.2) holds and a is interpolatory. U

Note that, for a given refinement mask a, the condition in the second line of (2.2) is
achieved if the corresponding mask symbol A satisfies the identity (2.9), and if there exist

positive integers ky, ko and a Laurent polynomial B such that
A(z1,22) = (14 zl)kl(l + )2 B(21, %), 21,2 € C\ {0}, (2.10)

since then A(—1,z2) = A(z1,—1) = 0 for any 2,29 € C\ {0}, so that (2.9) yields

A(1,1) =4 and thus the mask symbol A is interpolatory. Hence the following result.

Corollary 2.1.2. For a Laurent polynomial A satisfying the identity (2.9), if there exists

a Laurent polynomial B such that (2.10) holds, then A is an interpolatory mask symbol.

Note that the converse of Corollary 2.1.2 is not necessarily true, for if A is an inter-
polatory mask symbol that satifies the identity (2.9), then since A(1,1) = 4, we only get
that A(—1,1) + A(1,—1) + A(—1,—1) = 0, which does not necessarily imply that A is of

the factorized form (2.10).

Motivated by the result of Corollary 2.1.2, we proceed to characterize in Section 2.2

below the interpolatory mask symbols which are in the factorized form (2.10).



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 21 23

2.2 General form

We proceed to give the general form of interpolatory mask symbols that are factorizable
in the sense of (2.10). More precisely, we start by solving for the Laurent polynomial A
in the identity (2.9) with the help of the Bezout theorem, to finally establish a general

formulation of interpolatory mask symbols.

To facilitate our investigation, we henceforth assume that the mask symbol A has the

factorized form

Az, 29) = 227 (1 4 2))M (1 + ) B(21, 2), 21,20 € C\ {0}, (2.11)

for some integers ki, ks € N and some Laurent polynomial B such that B(1,1) = 1,
B(—1,2) # 0 and B(z1,—1) # 0 for all 21,2, € C\ {0}, so that, from (2.11), it holds
that A(1,1) = 4. Also, we shall assume that A satisfies the identity (2.9), in which case,

according to Corollary 2.1.2, A is an interpolatory mask symbol.

Polynomial identities

To characterize the mask symbol A, we first prove the following result.

Lemma 2.2.1. Let ki, ky € N and suppose oy, as are two odd integers in N. Then:

(a) if cy < 2k, there exists a polynomial Sy which is odd in zy, with degree ag in zo,
and degree less than ki in z1, such that the general Laurent polynomial solution K,

of the identity

(1420 K (21, 20) — (1 — 20) " Ky (=21, 2) = 207252, 21,20 € C\ {0}, (2.12)
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15 the Laurent polynomial given by

Ki(z1,20) = S1(21, 22) + T1 (21, 29) (1 — zl)kl, 21,22 € C\ {0}, (2.13)

with T1 denoting an arbitrary even Laurent polynomial in z1; also, Ky s odd in 29

if and only iof Ty is odd in 2.

(b) if ag < 2ks, there exists a polynomial Sy which is odd in zy, with degree oy in 2,
and degree less than ko in 2o, such that the general Laurent polynomial solution K,

of the identity

(14 2)R2 Ky (21, 20) — (1 — 20)2 Ky (21, —2) = 207252, 21,20 € C\ {0}, (2.14)

15 the Laurent polynomial given by

Kg(zl,z2) = 52(21,22) + TQ(Zl,ZQ)(l — ZQ)kQ, 21,72 € (C \ {O}, (215)

with Ty denoting an arbitrary even Laurent polynomial in z9; also, Ky is odd in z;

if and only iof Ty is odd in 2.

Proof. (a) Since the two univariate polynomials (1+ z;)¥ and (1 — 2;)* have no common

factor, there exist by the Bezout theorem two univariate polynomials U; and V; such that

(1+2)"U(z1) + (1 — 2)"Vi(21) =1, 2 €C. (2.16)

Multiplying both sides of (2.16) by 27! 252 yields, for z;, 25 € C,

(1+ Zl)kl (27125201 (1)) + (1 — zl)kl (201252 V1(21)] = 271252, 21,22 € C. (2.17)
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Using the polynomial division theorem, we deduce the existence of two polynomials Q)

and R, satisfying
2Vi(21) = Qi(21)(1 + 20)" + Ri(21), 21 €C, (2.18)

such that the degree of Ry is less than kq, and where )1 and R; are uniquely determined

by a; and Vj. It then follows from (2.17) that
(1 + Zl>k151(21, ZQ) + (1 - zl)klﬁl(zl, 22) = 2(111232, 21, %9 € C, (219)

where S is the polynomial defined by S (21, 20) = 271 252Uy (21) 4+ (1 — 21)" 282Q1 (1), and
R, is the polynomial given by Rl(zl, 29) = 252 Ry(z1), for all 21,2z, € C. We claim that

the degree in z; of Sj is less than ky. To prove this, we first note from (2.19) that
(1+ Z]_)kIS]_(Z]_,ZQ> =20"257 — (1 - zl)klél(zl,z’g), 21,29 € C,

according to which, since the degree of Ry in z; is less than ki, and since a; < 2k, we

neccessarily have that the degree in z; of Sy is less than k;.

Replacing z; by —z; in (2.19), and using the fact that a; is odd, we deduce that

(1= 20)" [= Sy (=21, 20)] + (1 + 2)0 [—Rl(—zl, 22)] — 20522 4 eC. (2.20)

Substracting the identities (2.19) and (2.20) now yields

(1+ Zl>k1 [S1(21,22) + Ri(—21,20)] = —(1 — Zl)kl [S1(—21,22) + Ri(21,22)], 21,22 € C,

and thus

Si(21,20) + Ri(—21,22) = Mi(21,2)(1 — 20)", 21,2 € C, (2.21)
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for some polynomial M;. Since the degree in z; of the polynomial in the left-hand-side of

(2.21) is less than ki, we neccessarily have M; = 0 in (2.21), or, equivalently,

51(21722) = —Rl(—zl,ZQ), 21, %9 € C, (222)

Ri(z1,22) = —=S1(—21,20), 21,20 € C. (2.23)

Using (2.19), (2.22) and (2.23), we find that the polynomial S; satisfies

(14 20)"81 (21, 20) — (1 — 20)1 81 (=21, 2) = 28257, 21,2 € C, (2.24)

which means that S; is a particular polynomial solution of the identity (2.12) with a
degree in z; less than k. Moreover, from (2.22), we see that Si(z1,22) = —252Ry(—21).

Since as is odd, we conclude that S is odd in 25, and that its degree in zy is ao.

Now, let K; denote the general Laurent polynomial solution of (2.12). Substracting

(2.12) from (2.24), we obtain, for 21, 2o € C\ {0},

(14 20)" [K1 (21, 20) — Si(21, )] = (1 — 20)" [K (=21, 20) — Si(—21, 2)] - (2.25)

Since (1 + 21)" and (1 — z;)* have no common factor, it follows from (2.25) that there

exists a Laurent polynomial T} satisfying

K1 (21, 22) — Si(21, 20) = Ti(21, 22)(1 — 20)", 21,25 € C\ {0}. (2.26)

Substituting (2.26) into (2.25) yields that T (z1, 22) = T1(—21, 22) for 21,20 € C\ {0}, i.e

Ty is even in z;. Thus, we deduce from (2.26) that K; is given by

Ki(z1,20) = S1(21, 22) + Th (21, 22) (1 — Zl)kl, 21,29 € C\ {0}, (2.27)
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where T} is an arbitrary even Laurent polynomial in z;.

Also, since S is odd in zy, we get from (2.27) that, for 2;, 2o € C\ {0},

Ki(z1,—2) = Si(z1,—22) + T1(21, —22)(1 — Zl)kl

== —51(21, 22) + Tl(Zl, —ZQ)(l — Zl)kl, (228)

whereas also, for z1, 2, € C\ {0},

—Ki(21,22) = —=Si1(21,22) — Ti (21, 22) (1 — 21)™. (2.29)

Substracting the identities (2.28) and (2.29) gives, for z1, 2, € C\ {0},

Kl(Zl, —Zg) + Kl(zl, Zg) = (1 — Zl)kl [Tl(Zl, —22) -+ Tl(Zl, 22)],

from which it then immediately follows that K7 is odd in 2, if and only if T} is odd in z5.

(b) The proof is similar to (a). O

The Euclidean algorithm
We present here a detailed method to compute the polynomials S; and S, in Lemma 2.2.1
by using the Euclidean algorithm.

Under the conditions of Lemma 2.2.1, with kq, ks € N, and where aq, as € N are odd

integers such that also a; < 2kq, we first proceed to find the univariate polynomials Uy

and Vj such that (2.16) holds.

From the polynomial division theorem, there exist univariate polynomials ¢q, ¢; and
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r1, 79 such that, for z; € C,

(1 + Zl)kl :qO(Zl)(l — Zl)kl + 7’1(21), deg(rl) < ]{51, (230)

(1 — 2" =q(21)r1(21) + 72(21), deg(ry) < deg(ry). (2.31)

Repeated applications of polynomial division then yield the existence of n € N and

univariate polynomials ¢;, j =2,...,n+1and r;, j = 3,...,n+ 2, such that, for z; € C,

ri(z1) = q(z1)r2(21) +13(21),  deg(rs) < deg(ra),

> (2.32)
Tm-1(21) = @u(21)mn(21) +10y1(21),  deg(rpa) > 1,
Tn(21) = Gni1(21)Tn41(21) + Tpga(21), Tne2(21) = ¢, a constant,
)
so that, by back substitution, it holds that, for z; € C,
’f’j+1(Zl) = 7“]'_1(21) — q]'(Zl)’f’j(Zl), ] = O, .o,n + 1, (233)

with 71 (21) = (14 21)" and ro(z;) = (1 — 21)", z; € C. Observe that ¢ # 0, otherwise,
by back substitution and by using (2.33), (1 +21)* and (1 — 2;)* would have 7,,1(z;) as

a common factor, which is impossible since deg(r,+1)> 1

Now define the polynomial sequence {T; ;(z;):i=0,1,2,3; j=—1,0,...,n+2} by

ﬂ,j+1(21) = TYZ'J'_l(Zl) — q]'(Zl)ﬂJ(Zl), for 1 = 0, 1, 2 and ] = 1, Lo, + ]_,

Ty (=) = ¢j(z1), forj=0,...,n+1 (2.34)

T3,—1(21) = T3,n+2(21) =0,
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with also

)
TO,—I(ZI) = (1 + Zl)kl,

Tl,—l(zl) = 0, ’ (235)

T27_1(Zl) = 1,

J
)

Too(z1) = (1 — z1)k,
Tio(z1) =1, ’ (2.36)

T270(Zl) = 0

Observe from (2.34), (2.33) and the first lines of (2.35) and (2.36) that then

Toj(z1) =rj(=1), j=1,2,...,n+2. (2.37)

It follows that the matrix 7" consisting of the polynomials [ T; (1) |, for 0 <i < 3 and

—1 <5< n+2, is given by

1+z20)R (1—z2)"  ri(z) ro(z1) o tas(21) Tage(z)
- 0 1 —qo(z1) 1+ a(z)e(z) -0 Tinra(z) Tinee(z)
1 0 | —a(n1) o Tomii(21) Tamiol(z)

|0 Qo(21)  @alz) G2(21) e Gupa(21) 0 |

We claim that, for j =1,... ,n+ 2,

(1 + Zl)leQ,j(zl) -+ (1 — Zl)lel,j(Zl) = ’l“j(Zl), Z21 € C. (238)

We prove this by induction on j. Observe first from (2.34) (2.30) that (2.38) holds for
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j = 1. Also, from (2.31), (2.30) and (2.34), we obtain, for z; € C,

ro(z1) =(1 — 20)" = q1(z1)r1(21)
=1 —20)" — @ (2)[(1+ 2)™ — qo(z1) (1 — 21)"]
=[—q1(21)](1 + 20)" + [1 + q1(21)g0(21)] (1 — 21)"

:T272(21)(1 -+ Zl)kl + TLQ(Zl)(l — Zl)kl,

thereby proving that (2.38) holds for j = 2.

Suppose now that (2.38) is true for j — 1 and j with j € {2,...,n+ 1}. Multiplying

both sides of (2.38) by —g;(21) yields

(1+ 20)"[=q;(21)Toj(21)] + (1 — 21)" [=q; (21) Ty j(21)] = —gj(z1)r5(21), 21 € C. (2.39)

From the inductive assumption, recall that

(1 + Zl)leQJ_l(Zl) + (1 - Zl)leI,j—l(zl) = T’j_l(Zl), 21 € C. (240)

Addition of equations (2.39) and (2.40), and using also (2.34) and (2.33), then yield

(1+ 20)M Ty 51 (21) + (1= 20)" T g (21) = rj41(21), 21 € C,

thereby completing our inductive proof of (2.38).

In particular, by choosing j = n + 2 in (2.38), and since r,,2(21) = ¢ # 0, we deduce
that

(1+2)"U(2) + (1 — 2)"Vi(z1) =1, 2 €C, (2.41)
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where the polynomials U; and Vj are given by

M and Vl(zl) = TLLz(Zl), 2 € C. (2'42)
15 C

Ul(Zl) =

Next, from the polynomial division theorem, there exist univariate polynomials ); and

Ry such that (2.18) holds, that is, for z; € C,
2Vi(21) = Qu(z1)(1 4+ 20)" + Ry(21), with deg(Ry)<ki, (2.43)
so that, from the proof of Lemma 2.2.1 (a), by choosing the polynomial S; as
S1(z1,22) = =252 Ri(—21), 21,22 € C, (2.44)
it follows that (2.24) holds. In other words, we have the identity
(14 20)* 81 (21, 20) — (1 — 20)¥1 81 (=21, 20) = 20252, 2,2 € C. (2.45)

Moreover, we know from Lemma 2.2.1 (a) that S is odd in zs, that its degree in 23 is s,

and that its degree in 2z is less than k.

We have now proved the following algorithm for the explicit computation of the poly-

nomial S; of Lemma 2.2.1 (a)

Algorithm for the computation of S;:

1. Use polynomial division to obtain the polynomials {g;(z1) : j = 0,...,n+ 1} and

{ri(z1) :j=1,....,n+ 2}, with r,12(21) = ¢# 0 as in (2.32).

2. Define the polynomial sequence {7} ;(z;) :i=0,1,2;j = —1,...,n+ 2} recursively

by means of (2.34), (2.35) and (2.36).
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3. Define the polynomials U; and Vi by (2.42);
4. Use the polynomial division theorem to find @); and R; such that (2.43) holds;
5. The polynomial S; is then given by (2.44).

The construction of the polynomial Sy, under the constraint ay < 2k,, is analogous to

that of Sj.

We proceed to give an example by finding the polynomial Sy for k&, = 2. The case
k1 = 1 will be presented in Section 2.3, and will be used to characterize the mask symbols
of the box spline functions from Chapter 1. Under the conditions of Lemma 2.2.1 and
the above algorithm, let ky = 2, oy € {1,3}, and let @ € N be any odd integer. Observe

that, for z; € C,

(14 21)? =qo(21)(1 — 21)* + r1(21), with go(z1) =1 and ri(z) = 42,

. 1 1
(1 —21)? =q1(z1)r1(21) +7ra(21), with ¢ () = 197 5 and 79(z1) = 1.
It follows that the matrix 7" is given by
(1+Zl)2 (1 —21)2 421 1
T = ,

1 1

1 0 1 —321t 3
1 1

which, together with (2.42), yields that the polynomials U; and V; are given by

1 1 1
Ul(Zl) = —121, ‘/1(21) = 121 + 5, 21 € C. (246)
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Two cases occur:

e if oy = 1: we deduce from (2.43) that, for z; € C,

1 1
z1Vi(z1) = ZZ% + 52’1 =Q1(z)(1+ z1)° + Ri(z1),

1 1
with Q1(z1) = 1 and Ry(z1) = T and it follows from (2.44) that the polynomial
Sy is given by

1
-z9%, 21,29 € C. (2.47)

51(21722) = 1

e if oy = 3: we deduce from (2.43) that, for z; € C,

1 1
Z%‘/l(Zﬁ = ZZ% + 52% = Ql(zl)(l + Zl>2 + R1(21>,
, 1, 1 11
with Q1(z1) = 7477 and Ry(z) = At and it follows from (2.44) that the
polynomial S is given by
1 (0%
Si(z1,29) = 1(221 —1)z5?%, 2,2 € C. (2.48)

Observe in particular from (2.47) and (2.48) that the degree of S} in z; is less than k; = 2,

and that Sy is odd in 2z, with degree as in zs.

First factorization of mask symbols

With the help of Lemma 2.2.1, we can prove the following formula.

Lemma 2.2.2. For an interpolatory mask symbol A, suppose there exist integers ki, ko €
N and a Laurent polynomial B such that (2.11) holds, and let oy and oy be any pair of

odd integers such that oy < 2k1 and ao < 2ky. Then both the following results hold:
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(a) There exist Laurent polynomials Ky, Ky and T3 such that the Laurent polynomial

B has, for z, 2z € C\ {0}, the form

B(Zl, ZQ) = 2k1+k221_2a122_2a2 [Kl(Zl, ZQ)KQ(Zl, 22) + Tg(zl, ZQ)(l - Zg)kQ], (249)

where the Laurent polynomial T3 is odd in zo, and with Ky, Ky satisfying the respective
identities
(1+ 20)M Ky (21, 20) — (1 — 2)M K (=21, 20) = 20292,
. 21,29 € C\ {0}. (2.50)
(14 20)R2 Ky(21, 20) — (1 — 20)P2 Ky(21, —20) = 277292,
Moreover, Ky and Ky are formulated explicitly by the expressions (2.13), (2.15), with Sy,

T1, Sy and Ty as described in Lemma 2.2.1, and where both Ki and T} are odd in z.

(b) There exist Laurent polynomials Ly, Ly and Ty such that the Laurent polynomial

B has, for 21,2, € C\ {0}, the form

B(z1,29) = ok1tha ym20n 20 [L1(21, 22) La(21, 22) + Tg(zl, 29)(1 — zl)kl], (2.51)

where the Laurent polynomial Ty is odd in =z, and with Ly, Ly satisfying respective iden-
tities
(1 + Zl)lel(Zl, ZQ) - (1 - Zl)lel(—Zl, 22) = 2?12;2,
. 21,22 € C\{0}. (2.52)
(14 20)*2 Lo (21, 20) — (1 — 20)*2 Lo (21, —20) = 271252,
Moreover, Ly and Ly are formulated explicitly by the expressions (2.13), (2.15), with Sy,

Ti, So and Ty as described in Lemma 2.2.1, and where both Ly and Ty are odd in zy.
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Proof. (a) By defining the Laurent polynomial H as

H(z1,22) = A(21, 22) + A(21, —22), 21,22 € C\ {0}, (2.53)

we observe that the identity (2.9) is equivalent to

H(z1,20) + H(—21,22) =4, 21,29 € C\ {0}. (2.54)

Also, by using (2.11) and (2.53), we have that

H(Zl, 22) = 22_k1_k2(1 + Zl)le(Zl, ZQ), 21, %9 € C \ {0}, (255)

where the Laurent polynomial G is defined by

G(z1,22) = (1 4+ 2)"2B(21, 2) + (1 — 22)?B(21, —2), 21,2 € C\ {0}, (2.56)

with B denoting the Laurent polynomial for which (2.11) is satisfied.

It then follows from (2.54) and (2.55) that G satisfies the identity

2_k1_k2(1 + Zl)le(Zl, ZQ) + 2_k1_k2(1 - Zl>le(—Zl, 22) = 1, ARR D) c (C \ {O} (257)

Now, choose any pair of odd integers ay, as € N such that ay < 2k; and ay < 2ky. Then,

for the Laurent polynomial G given by (2.56), we define the Laurent polynomial K by

G(z1,29) = 2P 202 [ (21, 29), 21,20 € C\ {0}, (2.58)

It follows from (2.58) and (2.57) that K satisfies the identity

(1+ zl)klzl_o‘lz;”Kl(zl, z9) — (1 — zl)klzl_o‘lz;"QKl(—zl,zz) =1, z,20€ C\ {0},
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or, equivalently,

(14 20)M K (21, 20) — (1 — 20)M K (=21, 2) = 207252, 21,2 € C\ {0}. (2.59)

Hence, according to Lemma 2.2.1 (a), there exist a polynomial S; and a Laurent polyno-

mial 77 such that

Ki(z1,22) = S1(21,22) + (1 — 21)" T4 (21, 20), 21,22 € C\ {0},

with the polynomial S; and the Laurent polynomial 7} satisfying the properties as stated
in Lemma 2.2.1 (a).

Besides, (2.55) and (2.58) yield

H(z,2) =41+ zl)klzfalz;"QKl(zl,zQ), 21,29 € C\ {0},

according to which, since the Laurent polynomial H defined by (2.53) is even in zy, we

deduce that K is odd in 2z, and hence also, from Lemma 2.2.1 (a), T} is also odd in z,.

Next, we define the Laurent polynomial B by

B(z1, 2y) = 2f1tke 200,202 By ), 21,20 € C\ {0} (2.60)

From (2.58) and (2.56) we then obtain

(14 2)"B(z1, 22) + (1 — 20) B(21, —25) = 28220 M 2,2 K (21, 22), 21,20 € C\ {0},
(2.61)

which, together with (2.60), shows that B satisfies the identity

(14 )2 B(21, 20) + (1 — )2 B(21, —2) = 2" 252 K1 (21, 23), 21,20 € C\ {0}. (2.62)
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It now remains to find B. To this end, we first obtain a particular solution of (2.62) by

considering the Laurent polynomial B; defined by

31(21722) = K1(21,Z2)K2(21,Z2), Z1,%2 € C \ {0}7 (2-63)

for some arbitrary appropriate Laurent polynomial K5 such that B satisfies (2.62), i.e.

(14 2)%2 B (21, 20) + (1 — )2 Bi (21, —22) = 2] 25 K1 (21, 22), 21,2 € C\ {0}. (2.64)

Since K is odd in 2y, we have from (2.63) that, for z;, 2o € C\ {0},

By (21, —29) = Ki(21, —22) Ka(21, —22) = — K1 (21, 20) Ko (21, —22),

so that, from (2.64) and (2.63), and after dividing by K;(z1, 22), we deduce that, if the

Laurent polynomial K5 is chosen to satisfy the identity

(14 20)2 Ky(21, 20) — (1 — 22)2 Ky (21, —22) = 287252, 21,20 € C\ {0}, (2.65)

then the Laurent polynomial B; defined by (2.63) satisfies the identity (2.64). But ac-
cording to Lemma 2.2.1 (b), the general Laurent polynomial solution K, of the identity

(2.65) is given by

Ky(z1,20) = Sa(21, 20) + (1 — 20)"2To(21, 22), 21,20 € C\ {0},

with the polynomial S5 and the Laurent polynomial T, satisfying the properties as stated
in Lemma 2.2.1 (b).

Substracting the equations (2.62) and (2.64) now yields, for z;, 2o € C\ {0},

(14 2)"2[B(z1, 22) — Bi(z1, )] = —(1 — 22)"2[B(21, —22) — Bi(21, — )], (2.66)
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and, since the univariate polynomials (1 + 23)** and (1 — 2,)*? have no common factor,

there exists a Laurent polynomial T3 such that, for 21,2, € C\ {0},

B(z1,2) — Bi(21, 22) = (1 — 20)™T5(21, 22). (2.67)

Substituting the expressions in (2.67) into (2.66), we obtain, for z;, zo € C\ {0},

(1 + 22)k2(1 — Zg)kQTg(Zl, 22) = —(1 — 22)7432(1 + Zg)kQTg(Zl, —Zg),

from which we deduce that T3 is odd in z5.

Also, we deduce from (2.67) that

B(z1,22) = Bi(z1, 22) + Ts(21, 22) (1 — 22)™, 21,29 € C\ {0},

which, together with (2.60) and (2.63), shows that B is indeed given by (2.49).

(b) By defining the Laurent polynomial J as

J(z1,22) = A(2z1, 22) + A(—21, 22), 21,22 € C\ {0}, (2.68)

observe that the identity (2.9) is equivalent to J(z1, 22) + J (21, —22) =4, 21,20 € C\ {0}.

The rest of proof then uses a similar argument as in (a). O

The characterization result

Note that (2.49) and (2.51) yield two different formulae for the Laurent polynomial B
in Lemma 2.2.2. We proceed here to give an alternative expression for B which verifies

simultaneously (2.49) and (2.51).
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Using Lemmas 2.2.1 and 2.2.2, we prove the following result which yields an important

characterization for interpolatory mask symbols.

Theorem 2.2.3. For a Laurent polynomial A, suppose that there exist integers ki, ko € N
and a Laurent polynomial B such that (2.11) holds. Then A defines an interpolatory
mask symbol if and only if for any pair of odd integers ay and oy such that oy < 2k; and

ay < 2ksy, the Laurent polynomial B has, for zy,zs € C\ {0}, the form

B(z1, z9) =2M1P 2720120202 TP (2, 29) (1 — 1) (1 — 29)™2 (2.69)

+ {51(21722) + 11 (21, 22)(1 — zl)kl} {Sg(zl,zQ) + (21, 22)(1 — ZQ)kQ}] ,

where the polynomials S and Sy are as in Lemma 2.2.1, i.e. Sy and Sy are respectively
odd in z9 and odd in z1, they satisfy the respective identities
(14 20)" 81 (21, 22) = (1 = 21)"1 81 (=21, 22) = 21" 252,

y 21,722 € C, (21“)
1+ zZ2 k252 21,R2) — 1— 22 k252 21, —R2) = 21 20
( ) ) ) 1 2

where also S has a degree less than ki in z, and Sy has a degree less than ko in zo.
Besides, the Laurent polynomials T, Ty and T are respectively even in zy but odd in 2o,

even in 2o but odd in z1, and odd in both z and z,.

Proof. We show that the proof in the necessary direction can be obtained either by starting
with the formula given by (2.49) with an appropriate choice for the polynomial Ly, or by
starting with the formula given by (2.51) with an appropriate choice for the polynomial

K5. We then prove the theorem in the sufficient direction by using Theorem 2.1.1.

To prove the theorem in the necessary direction, we suppose that A defines an interpo-
latory mask symbol and consider any pair of odd integers oy, as € N such that a; < 2k,

and oy < 2k,.
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According to Lemma 2.2.2, the Laurent polynomial B for which (2.11) is satisfied, has
the forms given by (2.49) and (2.51), where the Laurent polynomials K5 in (2.49) and L,

in (2.51) are to be chosen as specified in Lemma 2.2.2.

We see from Lemma 2.2.1 and 2.2.2 that we may choose L; = K7, according to which
it then holds that both K; and L, are even in z; and odd in z5. It follows that, from

(2.11) and (2.51), it holds that

Az, —2) =4(1 + zl)kl(l — 22)k221_2a122_2a2

[—L1(21, 22) Lo(21, —22) + T3(21, —22)(1 — zl)kl], 21,29 € C\ {0},

which, together with (2.11), (2.51) and the second line of (2.52), shows that, for 21,29 €

C\ {0},

Az1, 22) + A(z1, —20) =4(1 + 21)F1 272 25222 20 252 Ly (21, 22)

+(1— 2P {(1 + )2 Ty(21, 22) + (1 — 20)*2T5(21, —22) Y. (2.71)

Next, we note that, since the Laurent polynomials 73 and K; in (2.49) are, according to

Lemma 2.2.2, odd in zy, we have from (2.11) and (2.49) that

A(z1,—29) =4(1 + zl)kl(l — 22)k221_2a122_2a2

[—Kl(Zl, ZQ)KQ(Zl, —22) — Tg(zl, 22)(1 + 22)k2], 21, %9 € C \ {0},

which, together with (2.11), (2.49) and the first line of (2.50), shows that, for zy, 2z, €

C\ {0},

A(z1,29) + A(z1, —22) = 4(1 + zl)]"’lzl_%”zgm2 (211 252 K (21, 22)]. (2.72)
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It then follows from (2.71) and (2.72) that, since also we have chosen L; = K, the Laurent

polynomial Ty satisfies

(1+ 22)PT3(21, 22) + (1 — 22)PT3(21, —22) =0, 21,20 € C\ {0},

or, equivalently,

(1+ zz)k2T3(zl, 29) = —(1— ZQ)szg(zl, —z9), 21,22 € C\ {0}. (2.73)

Since the univariate polynomials (1 + 23)* and (1 — 2,)¥ have no common factor, we

deduce from (2.73) the existence of a Laurent polynomial T} satisfying

Tg(Zl, 22) = T4(Zl, ZQ)(l — ZQ)kQ, 21, %9 € C \ {0}, (274)

so that, since T3 is odd in 21, we find that T} is odd in 2. Also, by substituting the

expression in (2.74) of Ty into (2.73), we obtain

(1 + ZQ)k2(1 — 22>k2T4(21, 22) = —(1 — 22)k2(1 + 22>k2T4(21, —22>, 21522 & C \ {0},

showing that T} is also odd in z,. Combining (2.51) with (2.74), we deduce that, for

21,29 € C\ {0}, the Laurent polynomial B is of the form

B(z1,29) = 2k1+k221_2°‘122_2°‘2 [L1(21, 22) Lo(21, 29) + T(21, 22) (1 — zl)kl(l — 22)’“2], (2.75)

where T = T4 is a Laurent polynomial which is odd in both z; and z,.

Our proof in the necessary direction is now completed by appealing to Lemma 2.2.1
and 2.2.2, and using (2.75), with specifically the Laurent polynomial 75 in Lemma 2.2.1 (b)

chosen to also be odd in z;.



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 21 42

Note from Lemmas 2.2.1 and 2.2.2 that the result (2.69) can similarly be achieved by

means of the choice Ky = Ly in (2.49).

Next, we prove the theorem in the sufficient direction. To this end, suppose that,
for any pair of odd integers a; and «s such that a; < 2k; and ay < 2ks, the Laurent
polynomial B has the form given by (2.69). To show that the Laurent polynomial A is
an interpolatory mask symbol, it will suffice to prove that A satisfies the identity (2.9) in

Theorem 2.1.1.

To this end, since by assumption Sy, T5 and T are odd in z1, observe from (2.11) and

(2.69) that, for 21,2, € C'\ {0},

A(z1, 22)+A(—21, 22)
=427 2522 (14 20)M (1 + 20)% [T(21, 22) (1 — 20)" (1 — 20)*
+ {81 (21, 22) + Ti(z1, 22) (1 — 21)"1 } {821, 22) + To(21, 22) (1 — 20)%2}]
F4272 25702 (1 — 20)M (1 + 20)"2 [T (21, 22) (1 + 21)" (1 — 20)"

+ {S1(=21, 20) + T1 (21, 22) (L 4 20)M } {=Sa(z1, 20) — Ta(z1, 22) (1 — 20)*2 } ],

which, together with (2.70), yields, for z;, 2 € C\ {0},

A(z1, 29)+A(—21, 22)

=422 2570 (L4 29)7 [0 252 {9a(21, 22) + To(21, 22) (1 — )™ }] . (2.76)

Replacing z by —z; in (2.76), and using the fact that 75 is even in zy, we obtain, for

21,29 € C\ {0},

A(Zl, —22)+A(—21, —ZQ)

:421_2a122_2a2(1 — 22)k2 [—210‘12(212 (52(21, —22) + TQ(Zl, ZQ)(l + 22)k2>} . (277)
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Since Sy satisfies (2.70), adding (2.76) with (2.77) yields, for 21,2, € C\ {0},

A(z1,20) + A(—21, 20) + A(z1, —22) + A(—21, —22) = 421_20‘12/2_20‘2 (211257 (20 257)] = 4,

thereby showing that the Laurent polynomial A satisfies the identity (2.9), which con-

cludes our proof. ]

2.3 Application to box splines interpolatory mask

symbols

Consider the mask symbols A; and A, corresponding respectively to the box spline Ny

given by (1.16) and to the shifted box spline N given by (1.32). Then, we have

Al(zl, ZQ) :(1 + Zl)(l + ZQ)Bl(Zl, 22), 21,72 € (C, (278)

Ay(z1,29) =(1 4 21)(1 + 22) Ba(21, 22), 21,22 € C\ {0}, (2.79)

where the polynomial B; and the Laurent polynomial B, are given by

Bl(zl,ZQ> :1, 21, %9 € C, (280)

~ 1
Bs(z1,22) = ( +22122) zl_lzgl, 21,29 € C\ {0}. (2.81)

Recall from Chapter 1 that both A; and A, are interpolatory, so that, according to
Theorem 2.2.3, with k; = ks = 1 and a3 = as = 1, By and B, are of the form (2.69) for

some Laurent polynomials 7,7, and T respectively even in z; but odd in 2z, even in 2y
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but odd in z;, and odd in both z; and z5, and for polynomials S; and S, satisfying

(14 21)S1(21,29) — (1 — 21)S1(—21, 22) = 2129,
, 21,72 € C, (2.82)

(1 + ZQ)SQ(Zl, 22) — (1 — 22)52(21, —22) = 21%9,
such that S; and S, are, respectively, odd in 2z, with degree less than k; in z; and odd in
z1 with degree less than ks in 2.

We now proceed to find the polynomials S; and S, satisfying (2.82). By using the
Euclidean algorithm presented in Section 2.2, we find that the univariate polynomials Uy
and V] satisfying

(14 2)Ui(21) + (1 = 21)Vi(z1) =1, 2z €C,

1
are given by Uy (z1) = Vi(z1) = 30 41 € C. Also, by using the polynomial division theorem,

1 1 1
we obtain z;V (z1) = 215 = 5(1 +21) — 3 z1 € C, from which it follows that R; is given

1
by Ri(z1) = ~3 and consequently, Sy is given by
1
51(21722) = —ZgRl(—Zl> = 522, 21, %9 € C. (283)
Using a similar argument, we show that S, is given by
1
So(21, 22) = 521, 21,29 € C. (2.84)

Observe in particular that S; and Sy are, respectively, odd in 2z, and odd in z.
The box spline mask symbol A;

Consider the polynomials T, T, and T defined respectively by

1 1
T1(21722) = —5227 T2(217Z2) = —5217 T(thz) =0, 21,2 € (C7 (2-85)
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according to which 77 is even in z; but odd in zy, 75 is even in 25 but odd in 2y, and T' is

odd both in z; and in 2. Using (2.83), (2.84) and (2.85), we obtain, for z, 2o € C,

4272252 [T(21, 22) (1 — 20)(1 — 23)

+(Sl(21, 22) + Tl(Zl, ZQ)(l — Zl))(SQ(Zl, 22) + TQ(Zl, ZQ)(l — 22))]

it (S = a0) (e )]
=427 225" K%zm) (%zlzg)]

by virtue of (2.78) and (2.80). Hence B = Bj is of the form (2.69), where the polynomials

S1, Sy are given by (2.83) and (2.84), and the polynomials 77, 75 and T given by (2.85).
The shifted box spline mask symbol A,

Similarly, consider the polynomials 77, T, and T defined respectively by

1 1 1
Ti(21, 22) = 7% To(2z1, 22) = 7% T(z1,22) = 1—62122, 21,29 € C, (2.86)

so that T} is even in z; but odd in 2y, T5 is even in 29 but odd in z, and 7" is odd both

in z; and in z9. Using (2.83), (2.84) and (2.86), we obtain, for z1, 2z, € C,

1 1 1 1
51(21, 22) + Tl(Zl, 22)(1 — Zl) 2522 — 122(1 — Zl> = ZZQ + 12122,
1 1 1 1
Sg(Zl, 22) + Tg(Zl, 22)(1 — 2’2) 2521 — 121(1 — 22) = 12’1 + 12122,
T(z1,20)(1 — 21)(1 — 20) === (212 — 2329 — 2125 + 2723),

16
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so that, for z1, 2o € C,

T(Zl, 22)(1 — Zl)(l — 22) + (51(21, ZQ) + Tl(Zl, ZQ)(l - 21))(52(21, ZQ) + TQ(Zl, ZQ)(l — 22))

1 1
:1—6(2122 + 2220 + 225 + 2225 + 1—6(2122 — 22— mzs + 222)
1
252122(1 + 2122). (287)

Multiplying both sides of (2.87) by 42,2z, % yields, for z;, 2o € C\ {0},

o ol | -
4z 222 2§z122(1 + 2129) = 24 122 15(1 + z120) = Ba(21, 22),

by virtue of (2.79) and (2.81). Hence B = B, is of the form (2.69), where the polynomials

S1, Sy are given by (2.83) and (2.84), and the polynomials T}, T; and T given by (2.86).



Chapter 3

Interpolatory subdivision schemes

The main theme in this chapter are the concepts of interpolatory bivariate subdivision
schemes and the cascade algorithm. In Section 3.2, we discuss the convergence of inter-
polatory subdivision schemes, whereas, in Section 3.3, we prove that certain properties of
the initial function are preserved by the iterates of the cascade algorithm if the interpola-
tory mask and the dilation matrix are chosen to satisfy the conditions (3.18) and (3.19)

below.

3.1 Preliminaries

For a given sequence a € My(Z?) and a dilation matrix M, the subdivision operator

S, : M(Z*) — M(Z?) is defined for any sequence ¢ € M(Z?*) by

(S.0); = Zaj_Mchk, jez (3.1)
k

47
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The resulting subdivision scheme S, then generates, for a given sequence ¢ € M(Z?), the

sequence {c") :r € Z,} C M(Z?*) by means of the recursive formulation
=, D = 5., rez,, (3.2)
or, equivalently, ¢ = Sc, r € Z,, where

S =c, Srtle = 8,(S%c), r€Z,. (3.3)

The sequence a is called the subdivision mask, also referred to as the mask, and if a

satisfies the interpolatory conditions in the sense of (1.8), then in (3.1) we have
In that case, by induction on r € Z,, we also have in (3.2) that

r+1 r .
cgij) = cjg ), jez? (3.5)

which means that, at each level of iteration, the subdivision scheme process preserves all
the points obtained in the previous subdivision steps. Such a subdivision scheme is then

called interpolatory.

For a set M C M(Z?*), we say that the subdivision scheme S, is convergent on M if,

for any sequence ¢ € M, there exists a function f € C'(R?) depending on ¢, such that
lim [[Sze— f(M™")]loc =0, (3.6)

where, for r € Z,, f(M~"-) denotes the sequence {f(M~"j") : j € Z*}. The limit function

f will often be denoted by Sc.
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Similarly, for a given dilation matrix M and a sequence a € My(Z?), we define the

cascade operator T, : M(R?) — M(R?) by

nfzzywmm—ﬁ,feMwﬁ. (3.7)

The resulting cascade algorithm T, then generates, for a given initial function g € M (R?),

the sequence {f, : r € Z;} by means of the recursive formula

f0:g> fr-l-l:Tafra TGZ-H (38)

or, equivalently, f, =17 g, r € Z,, where
T(?f:fv T;+1f:Ta(T;f)7 r EZ-F' (39)

The cascade algorithm T, is said to be convergent on a set M C Cy(R?) if, for any initial

function g € M, there exists a function f € C(R?) such that
lim 779 — flloo = 0. (3.10)

The limit function f will often be denoted by 77>°g.

43

For convenience, we shall simply say, for a subdivision schemes, “ convergent ” for

43 ’ 4 ¢

convergent on M(Z?)”, and, for the cascade algorithm, “ convergent ” for “ convergent

on Cy(R?) 7.

Our following result presents an important relationship between subdivision schemes
and cascade algorithms. Our proof uses a similar argument as in [Dyn92| where only the

case M = 21 is discussed.

Proposition 3.1.1. Suppose that M s a dilation matriz and a an interpolatory mask.
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Then, for any sequence ¢ € M(Z?) and for any function f € M(R?),

> (She)if (M ZCJ (T"f)(-—9), reZ,. (3.11)

J

In particular, choosing the sequence ¢ in (3.11) as the delta sequence ¢ defined in (1.3),

yields, for any function f € M(R?),

Tif=> (Si)if(M™-—j), reZ,. (3.12)
J

Proof. Let f € M(R?) and ¢ € M(Z?). First, note from (3.3) and (3.9) that (3.11)

trivially holds for » = 0. Next, we use (3.3), together with (3.1) and (3.7), to obtain

Xj]SZ;c)jf(M - —j) =§j: Xk:aj_MkT<Sg—1c>k FOMT - —j)
ZXk:(SZ‘lc)k Z a;_yper f(MT - —j)

{kj(S:;—lc)k > af (M7 =M =)

{kj(S:;—lc)k >_af (MM —k) =)

—ZS’”l (Tuf) (M- —k)

_Z SO r k)
=S T~ k),

by virtue of (3.3), thereby showing that (3.11) holds.
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In particular, choosing ¢ = § in (3.11) yields

> (Spo)f (M Za (T"f) =T'f, reZ. feMR>.

J

3.2 Subdivision schemes convergence

Assuming that the interpolatory refinable function exists, we proceed to analyse the con-

vergence of the associated interpolatory subdivision scheme.

Observe first that a dilation matrix M defines a bijective linear application from the

set of rational pairs Q? into itself, so that the dyadic set D given by
D={M"j" :jer’reZ,}, (3.13)

is dense in R%2. We prove the following result.

Theorem 3.2.1. Suppose that ¢ is an interpolatory refinable function associated with the

interpolatory mask a € My(Z?) and with the dilation matriz M. Then, for any initial

O = cio(-— ), (3.14)
J
satisfies

(i) ®(m) = ¢y, m € Z?;

(ii) ®(M"m) = (S"C)m, T E€Zy, meZ>
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Consequently, for a sequence c € M(Z?*), the subdivision scheme S,, as defined by (3.1),

converges to the function ® given by (3.14), so that
SPe=® and S;°0 =09, (3.15)

where § denotes the delta sequence defined by (1.3).

Proof. Consider a sequence ¢ € M(Z?). Then:

(1) Since ¢ is interpolatory, it follows from (3.14) that

®(m) =Y ¢é(m—j) =cm, meZ

j

(ii) Since ¢ is refinable, it follows from (3.14), (3.1) and (3.3) that, for r € Z,, m € Z?,

:chzk:akgb( Hm? - MjT — k)

_chzak wyrd (M7 'm” — k)

=y [Z ak_Mchj] H(M'm” — k)
k J

_Z (Sac)id (M~ 'm” — k)

=3 (S7ehd(m — k)

—(57C)m,s (3.16)

by virtue of the interpolatory property of ¢.
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(a) Initial sequence ¢ (b) Graph of ® and ¢

Figure 3.1: Subdivision S applied to ¢

Given the fact that the set D defined by (3.13) is dense in R?, we deduce from (3.16)
that ||S'c — ®(M~"")||oo =0, r € Z,, and therefore (3.6) holds. Hence, for any sequence
c € M(Z?*), the subdivision scheme S, converges to the function ® given by (3.14), i.e.

Sc = &. In particular, choosing ¢ = § in (3.14) yields S°6 = ¢. O

As an example, consider the shifted box spline Ny from Chapter 1, and the associated

interpolatory mask a® given by (1.31), i.e.

(3.17)

According to Theorem 3.2.1, the subdivision scheme S;@ is convergent. Therefore, for

any initial sequence ¢ € M(Z?), the limit function ® = S2% ¢ is guaranteed to exist.

Choosing the initial sequence c as the red points in Figure 3.1 (a), the graph of the limit
function @ is illustrated in Figure 3.1 (b), showing that the initial points are preserved
by means of the subdivision process. Observe, however, that ® € C(R?) \ C*(R?), i.e. ®

defines a non-smooth surface.
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3.3 Property preservation in the cascade algorithm

In this section, we show that certain properties of the initial functions are preserved by
the iterates {f. : v € Z,} of the cascade algorithm. More precisely, for an appropriate
sequence a € My(Z?), we show that the initial function g and its image T,g share certain
properties. By induction on r € Z,, we then show that g and 7, ¢ have common prop-
erties, so that, in the case where the cascade algorithm is convergent, by considering the
limit » — oo, we shall show that the limit function 7;°g also preserves these properties

of the initial function g.

For this purpose, we first state (without proof) the following result [HJ98a| (see also
[KLYO07]), which presents a necessary condition on the interpolatory mask a for the con-

vergence of the corresponding subdivision scheme.

Proposition 3.3.1. Suppose that the subdivision scheme S, associated with an interpo-
latory mask a € My(Z?) and a dilation matriz M is convergent. Then a satisfies the

condition
=1, keZ’ (3.18)
J

It should be pointed here that the converse of Proposition 3.3.1 does not hold, that

is, the condition (3.18) is not sufficient for the subdivision scheme S, to converge.

Next we prove the following result on the preservation of properties with respect to

the cascade operator.

Theorem 3.3.2. Suppose that M is a dilation matriz and a € My(Z?) an interpolatory

mask supported on some finite square [Ny, No)?, and such that the sequence a satisfies the
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condition (3.18). Suppose, in addition, that M satisfies the condition

2a,208)> € Mla, B, «,fB € Z. (3.19)

Then, given an initial function g € M(R?), the functions {¢, = T'q : r € Z,} as

a

generated recursively by means of (3.8), satisfy the following:

(i) If supp(g) € [N1, NoJ?, then supp(¢p,) € [Ny, NoJ?;
(ii) If g € C(R?), then ¢, € C(R?);

(iii) If g satisfies the condition

9(i) =0; je (3.20)

then ¢, satisfies the condition

¢r(g) = 05, J€ L% (3.21)

(iv) If g satisfies the partition of unity property, i.e.

Y glw—j) =1, zeR? (3.22)
J
then ¢, satisfies the partition of unity, i.e.
Y d(z—j =1 zecR (3.23)
J

Proof. We proceed by induction on r. Recall first from the recursive formula (3.8), to-

gether with (3.7), that

Ori1 = To0, = Z%‘%(M -=j), r€Z,. (3.24)
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Next, for » = 0, suppose that, in (i), (i¢), (¢i7) and (iv) respectively, ¢y = g is supported
on [Ny, N»J?, continuous, interpolatory as in (3.20) and satisfying the partition of unity

property (3.22).
Let us now fix » € Z,. The following holds:

(i) If supp(¢,) C [N1, NoJ?, it holds that, for x € R? and j € [Ny, Ny?,

Mx" —j € [Ny, No)? = Mx" € j+ [Ny, NoJ> C 2Ny, 2No)?

= x € M7 (j+ [N, No]?) € M 2N, 2N,)°. (3.25)

Since a is supported on [Ny, No]?, and since there is only a finite number of integers j in

[Ny, Ny)?, we deduce from (3.25), (3.24) and (3.19) that the support of ¢, satisfies

supp(éri1) € () MTUGHINLNP) S MTTRNG2N C [N Vo,

JE[N1,N2]2 JE[N1,N2]?
by virtue of (3.19).

(ii) If ¢, is continuous, then the shifts with respects to Z? of its dilations are contin-

uous, so that, from (3.24), we deduce that ¢, is also continuous.

(ii1) If ¢, is interpolatory as in (3.21), we obtain from (3.24) and (1.8) that, for j € Z?,

Sr1() =D _ad (Mj" — k) = apr = 6.

k

(iv) If ¢, satisfies the partition of unity property, then we have for x € R? that

> on(Mx —k) =1, (3.26)
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which, together with (3.24) and (3.18), yields, for x € R?,

Z¢r+1 Z Zakfbr (Mx — MjT — k)
—Z Zak it 6 (Mx — k)
=§ [Zak_MjT] ¢r(Mx — k)
ZXk:cbr(Mx k)

=1,

which then completes our inductive proof. ]

In the case where the cascade algorithm is convergent, we show in the result below

that the limit function preserves certain properties of the initial function.
Theorem 3.3.3. Under the conditions of Theorem 3.5.2, with specifically g satisfying the
conditions in (i) to (iv) of that theorem, if also g € Cy(R?) and the sequence a is such that
the cascade algorithm (3.8) is convergent with limit function ¢, then the following holds:
(i) ¢ € Co(R?);
(it) If supp(g) C [N1, NoJ?, then supp(¢) C [Ny, NoJ?;

(iii) ¢ is an interpolatory refinable function with respect to the refinement sequence a

and the dilation matriz M, satisfying also the partition of unity property

Z¢(m—j) =1, zeR%. (3.27)

Proof. (i) Since g € Cy(R?), it follows from Theorem 3.3.3 (i) and (ii) that ¢, = T'g €
Co(R?), r € Z,, so that the uniform convergence result ||¢ — ¢,||oc — 0, r — oo, then

vields ¢ € Cp(R?).
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(i1) Suppose that supp(g) C [Ny, NoJ?, and let x ¢ [Ny, Ny)%, so that Theorem 3.3.3 (i)

yields ¢,(x) =0, r € Z,. Hence,

6(x)] = [6(x) = ¢ ()| < [[¢ = Prlloc = 0, 7 — 00,

and it follows that ¢(x) = 0, i.e. supp(¢) C [Ny, NoJ?.

(17i) According to Theorem 3.3.2 (iii), ¢, is interpolatory for every r € Z,, so that,

for j € 72,

6() = 05 = [¢(G) = - ()] < M@ = drlloc = 0, 7 — 00,

and it follows that ¢ is interpolatory as in (1.2).

To prove that ¢ satisfies the refinement equation (1.1), we use (3.8) and (3.7) to obtain

10 — Tadlloo <[|¢ = drs1lloo + [[Tal@r — &)l

<|l¢ — drr1llc +

> \aj\] |¢r = Glloc = 0, 7 — 00,
J

i.e. ¢ = T,¢, which is equivalent to (1.1).

Finally, since ¢ is interpolatory and refinable, we deduce from (3.18) that, for i € Z?

and r € Z,

Z¢ (M—rT ZZ“W —r+3T J k)
_Zzak MJT¢ MoTHT )
=Y [Zak_MjT] ¢ (M k)
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from which we conclude, by recalling also the fact that the dyadic set D in (3.13) is dense

in R? that ¢ satisfies the partition of unity condition (3.27). O

In conclusion, the important results of this section are that cascade algorithm conver-
gence implies interpolatory refinable function existence, which in turn implies subdivision

convergence. Graphical illustrations are provided in Chapter 4.



Chapter 4

Existence of interpolatory refinable

functions

For the dilation matrix M = 21, we present in this chapter three methods to prove, for a
given refinement mask, the existence of a corresponding interpolatory refinable function.
The first method is based on a result by Micchelli [Mic96] for interpolatory mask symbols
which are factorizable and which are non-negative on the torus 7. The second method, as
described in Section 4.2, consists of using tensor products in order to generate bivariate
refinable functions from univariate ones. Finally, the third method presented in Section 4.3
is based on deductions from numerical results, as generally applied to interpolatory masks

satisfying higher order sum rules.

An important concept is this section is that of symmetry which we proceed to define

as follows. For a refinement mask in a € My(Z?), consider the following properties:

a(_ivj) :CL(i, _.]> = a(ihj)? (7'7j> S Z27 (41)
a(_i> _]) :a(iaj)’ (Zvj} € Z2> (4'2)
a(j, i) =a(i,j), (i,j) € Z*. (4.3)

60
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We say that a is symmetric about the two azes if a satisfies the property (4.1), symmetric
about the origin if a satisfies the property (4.2), and symmetric about the line y = z if a

satisfies the property (4.3).

4.1 For non-negative masks

Consider the torus 7" and its subset 7' defined respectively by

T = {(em,em) 21,22 € R} and T = {(eixl,em) cxy, e € Ry x|, |zo| < /23

A mask a € My(Z?) is termed non-negative if the corresponding mask symbol A, as

defined by (1.9), is non-negative on the torus 7, i.e.

A(e™ e™2) >0, x1,79 € R. (4.4)

The result below presents a sufficient condition on the interpolatory mask for the
existence of the corresponding interpolatory refinable function. We refer to [Mic96| for

the proof.

Theorem 4.1.1. Consider the dilation matriz M = 21, and suppose that a € My(Z?) is a
non-negative interpolatory mask. Suppose, in addition, that there exist integers ki, ko € N

and a Laurent polynomial B, such that the corresponding mask symbol A is of the form

Az, 29) = 2272 (1 4 2 (1 + 20)"2 B(21, 2), 21,2 € C\ {0}, (4.5)

with B(1,1) =1 and B(z1, 22) # 0 for (21, 22) € T.

Then the corresponding interpolatory refinable function ¢, € Co(R?) exists.
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Example 1

Consider the mask symbol GGy defined by
1
Gi(z1, 22) = Z(l +21)2(1 + 29)%27 P25 Y, 21,20 € C\ {0}. (4.6)

We verify that G, satisfies (2.1), i.e. Gy is interpolatory. Moreover, GGy is of the form

(4.5), with ky = ky = 2 and B(z1, %) = 21 251, 21,22 € C\ {0}.

Using the expression of G in (4.6), we obtain, for x1, 25 € R,

) ) 1 , ) ) ,
Gl (ezw17 ezwg) :1 + 5 (ezml + e—zwl + ezwg + e—zmg)

(ei(r1+r2) +e—i(w1+w2) +ei(w1—w2) +e—i(r1—r2))

NS

+
1
=1+ cosxy + cos s + §[COS(£E1 + x5) + cos(z — x9)]
=14 cosx; + cos Ty + cOs x1 COS Ty

=(1+ coszy)(1+ coszy) > 0,

that is, G; is non-negative on the torus 7. Moreover, since B(z1,2) = 2; "2 ', 21,22 €
C\ {0}, we clearly have B(1,1) = 1 and B(z,2) # 0, 21,2 € T. Hence, according to
Theorem 4.1.1, the corresponding interpolatory refinable function ¢ € Cy(R?) exists.

Example 2

Consider next the mask symbol Ay, as given by (1.32), i.e.

» 1
a1, 29) = (L4 21)(1 + =) (*T) Sl mmeC\{0), (A7)
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according to which, A, is of the form (4.5), with ky = ko = 1 and

1
B(z1,22) = (%) 22yt 21,29 € €N {0}

Recall from Chapter 1 that A, is interpolatory, and that the corresponding interpola-

tory refinable function is the box spline Ny € Co(IR?) given by (1.30).

However, the mask symbol A, is not non-negative on the torus 7. As a matter of fact,

by using the expression of A, in (4.7), we obtain, for x1, s € R,

A2(ezm1’ ezw2> =14 5 (ezml + e~ T + eit2 + e~ iT2 + ez(wl—i-wg) + e—z(rl—l—rg))

= 1+ cosxy + coszy + cos(xy + z3).

. . 1 7
Since Ay(e?™/3 e27/3) = —= < 0, we deduce that A, is not non-negative on the torus 7.

Therefore, observe that there are mask symbols which are not non-negative on the
complex unit circle, but for which corresponding interpolatory refinable functions exist.
Hence, the conditions for interpolatory refinable function existence in Theorem 4.1.1 are

sufficient but not neccessary.

4.2 'Tensor products

Tensor products, as briefly discussed in [DL02| (see also |[Dyn92|), yield the simplest
method to generate bivariate refinable functions. More precisely, given two univariate
functions qg and zz, the bivariate function ¢, obtained by the tensor product 0fgz~5 and 15,
inherits some of the properties of the two constituent functions qg and 15 In particular, if

qg and QZ are interpolatory and refinable, then ¢ is interpolatory and refinable.

Given two functions ¢ € C*'(R) and ¢ € C*2(R), ay,ay € Z,, we define the tensor
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product ¢ = & . QZJ as the function given by

o(z,y) = d(x)d(y), (z,y) € R, (4.8)

so that ¢ € C*(R?), where o = min{ay, as}.

Let ¢ € My(R). We say that ¢ is interpolatory if p(j) = 6;, j € Z, that ¢ satisfies

the partition of unity condition if Z o(r —j) =1,z € R, and that ¢ is refinable if there
J
exists a sequence a € My(Z), called the refinement mask, such that ¢ = Z ajo(2-—j).
J

We are now able to present the following result.

Theorem 4.2.1. Suppose that ¢ € CS'(R) and i € CS*(R), oy, € Zoy, are refinable
functions with corresponding masks a and b respectively. Then, the tensor product ¢
defined by (4.8) is a refinable function associated with the dilation matric M = 21 and

the refinement mask a given by
Qj = dji)k, (j, ]C) c Z2. (49)

Moreover, 7f¢~5 and 15 are both interpolatory refinable functions, then ¢ is an interpolatory
refinable function. Also, ifgz; and 15 both satisfy the partition of unity condition, then ¢

satisfies the partition of unity condition (3.27).

Proof. Since ¢ and ¢ are refinable, we deduce from (4.8) that, for (z,y) € R?
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according to which, ¢ is refinable with associated dilation matrix M = 2[ and mask a

given by (4.9).

If ¢ and ¢ are both interpolatory, then, for j = (i,7) € 72,

6(3) = (i, j) = 6(i)(j) = 6:0; = 6,

proving that ¢ is interpolatory as in (1.2).

If ¢ and ¢ both satisfy the partition of unity, then we have, for x = (z,y) € R,

> ox—j)= Zcbx—zy—y [Z¢x—2] [Z&(y—j)lz
J J
which shows that ¢ satisfies the partition of unity condition (3.27). O

Denoting respectively by A, B and A the mask symbols corresponding to the masks

a, b and a in Theorem 4.2.1, it follows from (4.9) that, for z;, 2, € C \ {0},

Az, 29) = Za] w22k = <Za]zl> (Z bkz2> = A(2)B(z). (4.10)

Jk
The result below is then a direct consequence of Theorem 4.2.1.

Corollary 4.2.2. Given a mask symbol A, suppose that there exist mask symbols A and
B such that (4.10) holds. If there exist interpolatory refinable functions b€ CS*(R) and
Ve C*(R), ay,as € Z,, corresponding to A and B, then the tensor product ¢ = ¢ -1 €
Cs(R?), where a = min{ay, s}, is an interpolatory refinable function with associated

dilation matriz 21 and refinement mask symbol A.
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A
1/4 1/2 1/4
f12
v T >
1/2: 1
-5_/-4 .......... {/.2 -------------- A ./:
(a) Support of the mask associated with (b) Graph of ¢ =h - h

b=h-h

Figure 4.1: The tensor product of the hat function &
As an example, consider the shifted hat function he Co(R), as defined by
r+1, zel[-1,0),

hz)={ 1—=z, z€l0,1), (4.11)

0, z€R\[~1,1),

which is interpolatory, refinable and supported on the interval [—1, 1], and which associ-

ated mask symbol ./i,; is given by

Ai(2) = %(1 +2)%2 =1+ %(z +27Y), zeC\{0}. (4.12)

It follows from Theorem 4.2.1 that ¢ = h-h € Cy(R?) is an interpolatory refinable
function supported on the square [—1,1]%. The graph of ¢ is given in Figure 4.1 (b), and

the support of the corresponding interpolatory mask is delimitated by the dotted lines in

Figure 4.1 (a).
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Figure 4.2: The tensor product of the Dubuc-Deslauriers &D

Moreover, we deduce from (4.12) and (4.10) that the associated interpolatory mask

symbol A is given by

~ 1
A(z1, 22) = Aj (21) - Aj(22) = Z(l +20)2(1+ 20)%27 25, 21,20 € C\ {0} (4.13)
Observe that the mask symbol A given by (4.13) and the mask symbol G4 given by (4.6)

are the same, which means that they correspond to the same refinable function ¢ which

existence is guaranteed by both Theorem 4.2.1 and Theorem 4.1.1.

Next, consider the Dubuc-Delauriers function ¢P [Hun05] (see also [VGH03]) which is
interpolatory, refinable and supported on the interval [—3, 3], and which associated mask
symbol AP is given by

AP() =1+ 136(2« 4y - 1—16(23 L)

:1—162—2(1+z)4(4—z—z‘1), z € C\ {0}. (4.14)



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 68

a) Graph of ® ; and ¢ b) Graph of ® 4p and ¢
A

Figure 4.3: Subdivisions S ; and Syp applied to ¢

Since also ¢ € CI(R), it follows from Theorem 4.2.1 that ¢ = ¢P - ¢ € CL(R?) is
an interpolatory refinable function supported on the square [—3,3]%. Besides, we deduce
from (4.14) and (4.10) that the associated mask symbol A” is given by

1
AP (21, ) = %(H—zl)4(1+22)4zf2252(4—21—zfl)(4—zg—z51), 21,22 € C\{0}. (4.15)

Observe that the graph of ¢, as shown in Figure 4.2 (b), is indeed a smooth surface as
implied by Theorem 4.2.1. The support of the corresponding interpolatory mask symbol

AP is delimitated by the dotted lines in Figure 4.2 (a).

Let us now use the control point c illustrated in Figure 3.1 (a), and denote by S ; and
S 4p the subdivision schemes corresponding to the interpolatory mask symbols Aand AP,
as respectively given by (4.13) and by (4.15). We show in Figures 4.3 (a) and (b) the
graphs of the limit functions ® ; and ® 4o corresponding respectively to the subdivision

schemes S ; and Syp, with respect to the initial sequence c.

Observe that @40 € C*(R?), i.e. ®,p defines a smooth surface, whereas both ® ; in

Figure 4.3 (a) and ® in Figure 3.1 (b) define non-smooth surfaces. In general, smoother
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refinable functions can be obtained by tensor products, yet they present the disadvantage

of having large supports.

4.3 Mask construction based on sum rules

In this section, we deduce from numerical results the existence of refinable functions

associated with interpolatory masks constructed from sum rules.

Borrowing the definition in [HJ00], given a dilation matrix M, we say that a sequence

a € M(Z?) satisfies the sum rules of order k € N if

Z a5+gp(€ + ﬂ) = Z aﬁp(ﬂ), €c Z2, p e l;_q, (416)

BEMZ2 BeEMZ2

where II;_; denotes the set of bivariate polynomials of total degree (at most) k— 1. Since
ITj_ is generated by the monomial ideal (24" 25 : (p1, o) € Z2, p1 + po < k— 1), we
observe from (1.8) that, for an interpolatory mask a € My(Z?*), the property (4.16) is

equivalent to

Z Qe1+B1,e2+P2 (51 + ﬁl>m (52 + BQ)M = 6(#1#2)? po A+ < k=1, (4'17)
(B1,82)EMZ?

for (g1, p2) € Z% and (£1,e2) € Z*, where § denotes the delta sequence defined by (1.3).

Using then a similar argument as in [HJ98b|, we claim that, for an interpolatory mask
a € My(Z?) symmetric about the two coordinates, the sum rules (4.17) holds whenever

J41 or i is an odd number.

To prove this, consider an interpolatory mask a € My(Z?) and suppose that a is
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symmetric about the two coordinates. If u; is odd, we have, for ps € Z, and (g1, &;) € Z2,

Z Qe14B1,62+62 (51 + ﬁl)u1 (62 + ﬂ2>#2

(B1,B2)eMZ2

- Z O—e1—B1,e2+02 (51 + 51)#1 (52 + 52)%

(B1,B2)eMZ2

- Z Qey+51,e2+P2 (51 + 51)#1 (52 + 62)1&7

(B1,B2)eMZ2

and thus

Z ey 161 ,e2+65 (€1 + B1)" (€2 + B2)!* = 0 = 04y o)
(B1,82)EMZ?

We apply a similar argument for the case where s is odd.

According to [HJ98b| (see also [HJ00|), given a dilation matrix M and an interpolatory
refinable function ¢ € Cy(IR?), the shift invariant space S(¢) generated by ¢, as defined

by

5(¢) = {Z Go(-—J), ce M(ZQ)} : (4.18)

J
contains IT;_; if and only if the interpolatory mask a € My(Z?) associated with ¢ satisfies

the sum rules of order k£ € N.

From this perspective, it seems sensible to have an interpolatory mask that satisfies
the sum rules of as high an order as possible. In [HJ98b|, some finitely supported interpo-
latory masks are constructed by solving for the sequence a from the non-linear equations
(4.17). However, the existence of the associated interpolatory refinable functions are not

investigated.

This motivates us to investigate numerically whether for some of the interpolatory
masks constructed in [HJ98b|, the corresponding interpolatory refinable functions seem

to exist.
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Given a dilation matrix M and an interpolatory mask a € My(Z?*), we use the delta
sequence § defined in (1.3), as well as the dyadic set D defined in (3.13), to deduce from

(3.12) that, for f € M(R?),

Trf(MKT) =Y (S10)if(k —j), kE€Z, 1€y,

J

according to which, if the function f satisfies f(j) = d;, j € Z?, then it holds that
Trf(MK") =(S"6), k€ Z? relZ,. (4.19)

Considering then an initial function g € Cy(R?) chosen to be interpolatory and refinable,
we shall use the cascade algorithm T, as defined in (3.7), to draw the graphs of ¢g = ¢,
¢, = T,g and ¢y = T?g by means of the formula (3.9). Since evaluating ¢, = T/'g is
computationally intense for large values of r € Z,, we shall rather use (4.19) in order
to represent the graph of ¢,. More precisely, for » > 3, we plot the sequence of points
(M="i",(S76);), j € 72, as generated recursively by means of the subdivision scheme S7

defined in (3.3).

The interpolatory masks ¢, and hy

Let the dilation matrix M = 21 be fixed, and let a € My(Z?*) be an interpolatory mask.
From now on, we shall use the shifted box spline Ny € Cy(R?) defined by (1.30) as the

initial interpolatory refinable function for the cascade algorithm 7, r € Z,, as given by

(3.9).

According to (4.17), the mask a € My(Z?) satisfies the sum rules of order k € Z if

> aler + 281,62+ 262) (61 + 261" (€2 + 282)" = Gy, 1+ p2 <k —1,  (4.20)
B1,062
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where (u1, pt2) € Z3 and (e1,e2) € {(0,0),(1,0),(0,1), (1,1)}.

The interpolatory mask a = go [HJ98b| is contructed in such a way to satisfy the sum
rules of order 4, and to be supported on the set {(ay, as) : ||+ || < 4}. Tt is obtained
by solving the linear system (4.20) for k = 4, after setting also a(i,j) = 0, |i| + |j| > 5,

yielding the values a(i, j) = go(i,j) given by

92(0,0) =1,

2(3,0) =02(-3,0) = 62(0,3) = 0a(0,~3) = .
02(1,0) =2(~1,0) = 0s(0,1) = 20, 1) = ==
02(1,1) =ga(=1,1) = ga(1,-1) = gu(~1,~1) = =,
523,1) =02(=3,1) = (3, ~1) = ga(~3,~1) = 7.
22(1,3) =02(—1,3) = g2(1,~3) = ga(~1,—3) = =

The mask symbol G5 associated with g, is given by

1 9
Go(z,20) = 1= L’ + 20+ 27 +2) + 60 +a+27 +2)
5 1

+ 1—6(2122 + 2 syt ) — ﬁb(zl, 29), 21,20 € C\ {0}, (4.21)

-3_-1 ~1,-3 -3 -1 -3 -1
where b(21,20) = 2329 + 2725 ' + 2125 + 21 250 + 21250 4+ 27 28 + 21029 + 2325, for

21,29 € C\ {0}. Note that G5 can be re-written as

1 1
Go(z1,20) = E(l +20)2(1 + 29)% 27225 2 {zlzg + 22z — §(zlz§ + 2 2)

1
— §(z1z2_1 + 27 ) 4+ 2 2o 22122] , 21,20 € C\ {0}.
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(a) Graph of Tg2N2 (b) Graph of T;2N2

Figure 4.4: Cascade algorithm for the mask g¢o

Observe now from (4.21) that, for 21,29 € R,

. ‘ 1 9 5
Go(e™,e™?) =1 — g[cos(Bxl) + cos(3x2)] + g[cos 21 + Ccos Ta] + 3 cos(zy + x2)

5 1
+ 3 cos(ry — xg) — 1—6[COS(S:E1 + 9) + cos(zy + 3x2)]

1
- E[cos(a:l — 3x9) + cos(3z; — x2)],

1 9
=1 g[cos(Bxl) + cos(3x2)] + g[COS T1 + COS 1)

5 1
+ 1 COS T'1 COS Ty — g[cos(?)ccl) COS Ty + €08 1 cos(313).

73

Noting that Go(e”™™/0 e/™/6) = —1.044 x 10~ < 0, we deduce that g, is not non-negative,

so that we can not appeal to Theorem 4.1.1 for the existence of a corresponding refinable

function ¢, .

Nevertheless, we observe from Figures 4.4 (a) and (b) that the cascade algorithm T},

seems to be convergent. Hence, we numerically deduce that the corresponding interpola-

tory refinable function ¢, exists, as illustrated in Figure 4.5 (b) which also shows that

by, seems to be of class C*, i.e. ¢y, € CH(R?). The support of g is delimitated by the

dotted lines in Figure 4.5 (a) according to which gy is symmetric about the two axes and
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(a) Support of go (b) Graph of ¢,

Figure 4.5: Refinable function corresponding to go

about the line y = x.

Similarly, the interpolatory mask a = hy [HJ98b| is constructed in such a way to
satisfy the sum rules of order 4, and to be supported on the set {(a1,as) : |ag + as| <
4, |a; —as| < 3}. It is obtained by solving the linear system (4.20) for k = 4, after setting

also a(i,j) =0, |i + 7| > 5 or |[i — j| > 4, yielding the values a(i, j) = ha(i, j) given by

hg(0,0) =1,
ha(3,0) =ha(—3,0) = (0, 3) = hy(0, —3) = 1—61
ho(1,0) =ha(—1,0) = (0, 1) = hy(0, —1) = 1%
hg(l, 1) :hg(—l, —1) = %,

ho(1,—1) =ha(—1,1) = %
ho(3.1) =ha(—3, —1) = ha(1,3) = ha(—1, —3) — I—é

Note that hs has a smaller support than g, and that the associated mask symbol H,
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(a) Graph of T, N, (b) Graph of T}%2N2

Figure 4.6: Cascade algorithm for the mask ho

is given by

9
(7' + 21+ 25t + 2)

1
Hy(z, ) =1— — (27 4+ 22 + 258+ 23) + %

16

1
+ = (2120 + 21—122—1) + —(2’1—12’2 + zlzgl)

8

DN

1
6

(20 + 27325 + 225 + 27125 %), 21,20 € C\ {0}, (4.22)

—

which can be re-written as

1 _ _
Hy(z1,2) = 1—6(1 +21)(1 + 29) [6 otz 20t ) -2 -2

2% s = = A P+ 62 Y], 2, 2 € CN {0
Next, we deduce from (4.22) that, for z, 25 € R,

- - 1
Hy(e™1 e™?) =1 — g[cos(?)a:l) + cos(3x2)] + %[cos x1 + €S T3]

1 1
— g[cos(3x1 + z9) + cos(z1 + 3x2)] + cos(xy + x3) + 2 cos(xy — xa).

. . 1
Noting that Hy(e??™/3 e27/3) = -3 < 0, we deduce that hy is not non-negative, which
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Figure 4.7: Refinable function corresponding to ho

means that we can not appeal to Theorem 4.1.1 for the existence of a corresponding

refinable function ¢p,.

However, we observe from Figures 4.6 (a) and (b) that the cascade algorithm T,
seems to be convergent. We then numerically deduce that the corresponding interpolatory
refinable function ¢, exists, as illustrated in Figure 4.7 (b) which also shows that ¢,
seems to be of class C1, i.e. ¢y, € C}(R?). The support of hy is delimitated by the dotted
lines in Figure 4.7 (a) according to which hy is symmetric about both the origin and the

line y = z.

Note that, given an interpolatory mask a, if the corresponding interpolatory refinable

function ¢ exists, then, from (1.1),

$(3/2) =Y _wd(i—k) =a; j€Z7 (4.23)

by virtue of the refinement equation (1.1). It follows from (4.23) that the surface defined

by ¢ passes through the points (j, a;) for all j € Z%.
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a) Graph of ®¢,, and ¢ b) Graph of ®;5 and ¢
g2

Figure 4.8: Subdivisions Sy, and Sy, applied to ¢

For the interpolatory masks go and hy, observe from Figure 4.5 (b) and Figure 4.7 (b)

that the graphs of ¢4, and ¢, are consistent with the property (4.23).

Moreover, using the control point ¢ illustrated in Figure 3.1 (a), we observe from
Figures 4.8 (a) and (b) that the corresponding subdivision schemes Sy, and Sj,, with
respect to the initial sequence c, yield the limit functions ®,, and ®j, which both define
smooth surfaces, which is consistent with the result in [HJ98b| stating that go and hy
induce C! interpolatory subdivision schemes, i.e. for any sequence ¢ € M(Z?), the limit

function Sgfc and Sy, belong to C*(R?).

The butterfly interpolatory mask

Let the dilation matrix M = 2I be fixed. We now introduce the well-known butterfly

mask developed in [DLG90| and [DL02]| (see also [Dyn92]).

For w € R, the butterfly mask symbol B, is the Laurent polynomial defined by

By(z1, 22) = %(1 +20)(1 4+ 2) (1 + 27 25 (1 — wC (21, 22)), 21,22 € C\ {0}, (4.24)
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Figure 4.9: Cascade algorithm for the butterfly mask By, w = 1/16

where the Laurent polynomial C' is given by

Clz1,2) = 227225 + 227 252 — Aoyt oyt — Aoyt — 425!

+ 227 2y + 22125t + 12 — 4z — dag — 4220 + 22720 + 22125, 21,2 € C\ {0}.

Note from (4.24) that, for w € R, the butterfly mask B,, is an interpolatory mask symbol
supported on the square [—3,3]2. In particular, we have By = Ay, where A, denotes the

interpolatory mask symbol given by (1.32).

With the choice w = 1/16, we observe from Figures 4.9 (a) and (b) that the cas-
cade algorithm 7Tp, seems to be convergent. Therefore, we numerically deduce that the
corresponding interpolatory refinable function ¢, exists, as illustrated in Figure 4.7 (b)
which also shows that ¢, seems to be of class C!, i.e. ¢p, € Ca(R?). The support of B,
is delimitated by the dotted lines in Figure 4.7 (a) according to which B, is symmetric

about both the origin and the line y = x.

Using the control point ¢ illustrated in Figure 3.1 (a) and with w = 1/16, we show in

Figure 4.11 that the limit function ®g, resulting from the Butterfly subdivision defines a
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Figure 4.10: Refinable function corresponding to 5y,

Figure 4.11: Graph of &5, w = 1/16, showing the Butterfly subdivision applied to ¢

smooth surface, which is consistent with the result in [DLG90] and in [DL02] stating that,
for a sufficiently small w > 0, the butterfly scheme Sp,_ is a C! interpolatory subdivision

scheme, that is, for any sequence ¢ € M(Z?), the limit function SZ ¢ belongs to C''(R?).
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