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Summary
In this thesis, we introdu
e bivariate re�nable fun
tions whi
h are fun
tions that areexpressible as linear 
ombinations of the shifts of their own dilation by a fa
tor of adilation matrix. For the 
orresponding re�nement masks, we de�ne the mask symbols asthe Laurent polynomials whose 
oe�
ients are the elements of the re�nement masks. Ofparti
ular interest are interpolatory re�nable fun
tions, that is, re�nable fun
tions whi
hvanish at all integers ex
ept the origin at whi
h they take the value 1. We present simple
hara
terization of the 
orresponding interpolatory masks in terms of both the deltasequen
e and the determinant of the dilation matrix. The 
orresponding interpolatorymask symbols are 
hara
terized by some polynomial identities.An important tool for our work is the Eu
lidean algorithm, whi
h, in asso
iation withthe Bezout theorem, helps us to provide an expli
it 
omputational algorithm to �nd thegeneral solution for some polynomial identities. Using the algorithm thus presented, weintrodu
e the general form of an interpolatory mask symbol asso
iated with the dilationmatrix 2I, and the result thus obtained is applied to the mask symbols 
orresponding tothe box splines.The 
on
epts of interpolatory subdivision s
hemes and 
as
ade algorithms are alsoinvestigated. Subdivision s
hemes, as usually used to generate 
urves and surfa
es, areinterpolatory when the initial data points are preserved at all the steps of the subdivisionpro
ess. We show that interpolatory subdivision s
hemes and the 
as
ade algorithm areii



SUMMARY iiistrongly linked to ea
h other. For a well-
hosen dilation matrix and interpolatory re�ne-ment mask, we �nd that the asso
iated 
as
ade algorithm preserves 
ertain propertiesof the initial fun
tions, allowing us to prove that 
as
ade algorithm 
onvergen
e impliesthe existen
e of a 
orresponding interpolatory re�nable fun
tion, whi
h in turn impliessubdivision s
heme 
onvergen
e.Spe
ializing only to the 
ase where the dilation matrix is M = 2I, we present someworkable methods applied for both non-negative interpolatory masks and interpolatorymasks obtained by tensor produ
ts in order to investigate the existen
e of 
orrespondinginterpolatory re�nable fun
tions. For interpolatory masks 
onstru
ted to satisfy the sumrules, we provide numeri
al proofs towards investigating the existen
e of 
orrespondinginterpolatory re�nable fun
tions by using the 
as
ade algorithmwith an appropriate initialfun
tion. Numeri
al illustrations by means of subdivision graphs are also provided.



Opsomming
In hierdie tesis beskou ons tweeveranderlike verfynbare funksies, oftewel funksies watuitdrukbaar is as lineêre kombinasies van die skuiwe van hulle eie dilasie deur die fak-tor van die dilasiematriks. Vir die ooreenkomstige verfyningsmaskers de�nieer ons diemaskersimbole as Laurent polinome waarvan die koë�siënte die elemente van die verfyn-ingsmaskers is. Van besondere belang is interpolerende verfynbare funksies, dit wil sêverfynbare funksies wat gelyk aan nul is by alle heelgetalle behalwe die oorsprong waarhulle die waarde 1 aanneem. Ons gee 'n eenvoudige karakterisering van die ooreenstem-mende interpolerende maskers, beide in terme van die delta ry en die determinant van diedilasiematriks. Die ooreenstemmende interpolerende maskersimbole word gekarakteriseerdeur sekere polinoom identiteite.'n Belangrike stuk gereedskap vir ons werk is die Euklidiese algoritme, wat, tesamemet die Bezout stelling, ons help om 'n eksplisiete algoritme te bepaal vir die algemeneoplossing van sekere polinoom identiteite. Met behulp van hierdie algoritme stel ons danbekend die algemene vorm van 'n interpolerende maskersimbool wat ooreenstem met diedilasiematriks 2I, en die resultaat wat sodanig verkry is word dan toegepas op die masker-simbole wat ooreenstem met 'n sekere klas tweeveranderlike latfunksies (�box splines�).Die konsepte van interpolerende subdivisie skemas en kaskade algoritmes word ookondersoek. Subdivisieskemas, soos gewoonlik gebruik om krommes en oppervlakke tegenereer, is interpolerend indien die begin-datapunte gepreserveer word by elke stap vaniv



OPSOMMING vdie subdivisie proses. Ons toon aan dat interpolerende skemas en die kaskade algoritmesterk aanmekaar verbind is. Vir 'n goedgekose dilasiematriks en interpolerende verfyn-ingsmasker vind ons dat die ooreenstemmende kaskade algoritme sekere eienskappe vandie beginfunksie preserveer, met behulp waarvan ons dan kan bewys dat kaskade algo-ritme konvergensie die bestaan van 'n ooreenstemmende interpolerende verfynbare funksieimpliseer, en wat op die beurt dan die konvergensie van die subdivisieskema impliseer.Deur te spesialiseer na die geval waar die dilasiematriksM = 2I, verskaf ons werkbaremetodes vir toepassing op beide nie-negatiewe interpolerende maskers en interpolerendemaskers soos verkry met behulp van tensor produkte met die doel om die bestaan vanooreenstemmende interpolerende verfynbare funksies te ondersoek. Vir interpolerendemaskers wat die somreëls bevredig, gee ons numeriese bewyse ten opsigte van die onder-soek na die bestaan van ooreenstemmende verfynbare funksies, deur die kaskade algoritmemet 'n gepaste beginfunksie te gebruik. Numeriese illustrasies deur middel van subdivisiegra�eke word ook verskaf.



A
knowledgements
I thank God for everything He have done for me, strength, 
ourage and faith I havere
eived from Him in order to a

omplish this thesis. My deepest a
knowledgment goes tomy supervisor Prof Johan de Villiers, working with him was a pleasant and unforgettableexperien
e. I am ex
eptionally grateful to Gaelle Andriamaro for the heartful help andsupports she has given without any hesitation while I was working on this thesis. Mythanks also go to all of my friends, my o�
emates, with a spe
ial appre
iation to myparents and family for their thoughtful prayers. Finally, I am very grateful to AIMS, theAfri
an Institute for Mathemati
al S
ien
es, and to the University of Stellenbos
h for the�nan
ial supports permitting me to �nish this thesis. God bless and thank you all.

vi



Contents
De
laration iSummary iiOpsomming ivContents viiList of symbols ixIntrodu
tion 11 Interpolatory bivariate re�nable fun
tions 41.1 Notation and general 
on
epts . . . . . . . . . . . . . . . . . . . . . . . . . 41.2 Interpolatory re�nement masks . . . . . . . . . . . . . . . . . . . . . . . . 61.3 Box splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 The interpolatory mask symbols for M = 2I 192.1 Simple 
hara
terization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192.2 General form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.3 Appli
ation to box splines interpolatory mask symbols . . . . . . . . . . . 433 Interpolatory subdivision s
hemes 473.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.2 Subdivision s
hemes 
onvergen
e . . . . . . . . . . . . . . . . . . . . . . . 51vii



CONTENTS viii3.3 Property preservation in the 
as
ade algorithm . . . . . . . . . . . . . . . . 544 Existen
e of interpolatory re�nable fun
tions 604.1 For non-negative masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.2 Tensor produ
ts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634.3 Mask 
onstru
tion based on sum rules . . . . . . . . . . . . . . . . . . . . 69Bibliography 80



List of symbols
Symbol De�nition
N the set of natural numbers
Z, Z+ the sets of integers and non-negative integers
Z2, Z2

+ the sets of integer pairs and non-negative integer pairs
Q, Q2 the sets of rational numbers and rational pairs
R, R2 the sets of real numbers and real pairs
C, C2 the sets of 
omplex numbers and 
omplex pairs
M(Z) the linear spa
e of bi-in�nite real-valued sequen
es in Z, i.e.

c ∈M(Z) ⇐⇒ c = {cj : j ∈ Z} ⊂ R

M(Z2) the linear spa
e of bi-in�nite real-valued sequen
es in Z2, i.e.
c ∈M(Z2) ⇐⇒ c = {cj : j ∈ Z2} ⊂ R2

M(R) the linear spa
e of real-valued fun
tions in R, i.e. the set
{f : R → R}

M(R2) the linear spa
e of real-valued fun
tions in R2, i.e. the set
{f : R2 → R}

M0(Z) the subset of �nitely supported sequen
es in M(Z)

M0(Z
2) the subset of �nitely supported sequen
es in M(Z2)

M0(R) the subset of �nitely supported fun
tions in M(R)

M0(R
2) the subset of �nitely supported fun
tions in M(R2)ix



LIST OF SYMBOLS xsupp(c) the support of the sequen
e c ∈M0(Z
2), i.e. the set {j ∈ Z2 : cj 6= 0}supp(f) the support of the fun
tion f ∈M0(R
2), i.e. the smallest 
losed set
ontaining {x ∈ R2 : f(x) 6= 0}

C(R) the subset of 
ontinuous fun
tions in M(R)

C(R2) the subset of 
ontinuous fun
tions in M(R2)

C0(R) the subset of �nitely supported fun
tions in C(R)

C0(R
2) the subset of �nitely supported fun
tions in C(R2)

Cα(R) the subset of α-times 
ontinuously di�erentiable fun
tions in C(R)

Cα(R2) the subset of α-times 
ontinuously di�erentiable fun
tions in C(R2)

Cα
0 (R) the subset of �nitely supported fun
tions in C0(R)

Cα
0 (R2) the subset of �nitely supported fun
tions in C0(R

2)

∑

j

and ∑j the summations∑
j∈Z

and ∑j∈Z2

∑

i,j

the summation ∑

(i,j)∈Z2

supj and supx the suprema over all j ∈ Z2 and over all x ∈ R2

I the 2 × 2 identity matrix
M dilation matrix, i.e. a 2 × 2 invertible matrix with integer entries
a re�nement mask in M0(Z

2)

Π the spa
e of all polynomials with 
omplex variables
Πk the subspa
e of Π 
onsisting of polynomials of degree at most k ∈ Z+

A mask symbol asso
iated with the re�nement mask a ∈M0(Z
2), i.e. theLaurent polynomial∑

i,j

ai,jz
i
1z

j
2

φ re�nable fun
tion, i.e. a fun
tion satisfying the re�nement equation
φ =

∑j ajφ(M · −j)
δ the delta sequen
e de�ned by δ0 = 1 and δj = 0 for j 6= 0jT the transpose of j ∈ Z2, i.e. jT =

(

i

j

) for j = (i, j)



LIST OF SYMBOLS xi
Sa the subdivision operator mapping c ∈M(Z2) to Sac ∈M(Z2), with

(Sac)j =
∑k aj−MkT ck, j ∈ Z2

Sr
a the subdivision operator Sa applied r-times, with the 
onvention that

S0
a is the identity operator

c(r) the sequen
e Sr
ac, where c ∈M(Z2)

‖ · ‖∞ the uniform norm in M(Z2) and in M(R2), i.e. ‖c‖∞ = supj |cj| for
c ∈M(Z2), and ‖f‖∞ = supx |f(x)| for f ∈M(R2)

S∞
a c the limit fun
tion of a 
onvergent subdivision s
heme Sa with initialsequen
e c ∈M(Z2)

Ta the 
as
ade operator mapping f ∈M(R2) to Taf ∈M(R2), with
Taf =

∑j ajf(M · −j)
T r

a the 
as
ade operator Ta applied r-times, with the 
onvention that
T 0

a is the identity operator
g an initial fun
tion in M(R2) for the 
as
ade algorithm
fr the fun
tion T r

a g, r ∈ Z+

T∞
a g the limit fun
tion of a 
onvergent 
as
ade algorithm Ta with initialfun
tion g ∈ C0(R

2)

D the dyadi
 set {M−rjT : j ∈ Z2, r ∈ Z+

} whi
h is dense in R2

φ̃ · ψ̃ the tensor produ
t of the univariate fun
tions φ̃ and ψ̃, i.e. thebivariate fun
tion (x, y) 7→ φ̃(x)ψ̃(y), (x, y) ∈ R2



Introdu
tion
A re�nable fun
tion, or a fun
tion expressible as a linear 
ombination of the shifts of itsown dilations by a fa
tor of a dilation matrix, i.e. an invertible matrix with integer entries,is always linked to a 
ertain sequen
e 
alled the re�nement mask. The re�nement mask
orresponds to a Laurent polynomial 
alled the mask symbol, the 
oe�
ients of whi
hare the elements of the re�nement mask. The 
ardinal B-spline fun
tions presented in[dV07℄ are among the �rst examples of univariate re�nable fun
tions whi
h have enormousappli
ations in wavelet analysis and approximation theory.In general, it is hard to investigate whether a given fun
tion is re�nable, sin
e boththe asso
iated re�nement mask, as well as the 
orresponding the dilation matrix have tobe found. It is thus better to start with a given dilation matrix and a �nitely supportedsequen
e, and investigate the existen
e of a 
orresponding re�nable fun
tion.Based on a given dilation matrix and a �nitely supported sequen
e, the asso
iatedsubdivision s
heme is de�ned as an operator whi
h re
ursively produ
es denser and denserdata points by means of linear 
ombinations of the previous ones. The 
orresponding
as
ade algorithm is also de�ned as a fun
tional operator whi
h iteratively produ
es asequen
e of fun
tions by means of linear 
ombinations of the previous ones.Subdivision methods, as initialy introdu
ed by de Rham (1956) and later by Chaikin(1974), play important roles in 
omputer aided geometri
 design (CAGD) by generating
urves and surfa
es in 
omputer graphi
s (see e.g. [Dyn92℄). Cas
ade algorithms, on1



INTRODUCTION 2the other hand, are useful in the sense that 
as
ade algorithm 
onvergen
e implies there�nability of the limit fun
tion.Spe
ializing only to the 
ase where the dilation matrix is M = 2I, our goal in thisthesis is to give a purely algebrai
 method for the study of both bivariate re�nable fun
-tions and their asso
iated subdivision s
hemes, in 
ontrast to methods based on Fouriertransforms as mostly en
ountered in the literature. A fundamental theme in this the-sis is that of interpolatory bivariate re�nable fun
tions, that is, re�nable fun
tions thattake the value 1 at the origin and 0 at all other integers. We pro
eed to introdu
e inChapter 1 a brief overview of interpolatory re�nable fun
tions. The 
orresponding re�ne-ment masks, 
alled interpolatory masks, and the asso
iated interpolatory mask symbolsare respe
tively 
hara
terized by (1.8) and (1.10). We refer to the Dubu
-Deslauriersinterpolatory re�nable fun
tion, as investigated in [VGH03℄ (see also [Hun05, Goo00℄) forthe univariate setting, and to the interpolatory re�nable fun
tions 
onstru
ted in [RS97℄(see also [Jia00℄) for the multivariate 
ase.Several studies of re�nement masks have been developed by using the asso
iated masksymbols, whi
h often help to prove the 
onvergen
e of the subdivision s
hemes to whi
hthey are asso
iated (e.g. [DL02, pages 37-70℄, [CDM91℄). Motivated by this perspe
tive,we take a spe
ial interest in interpolatory mask symbols for the spe
ial 
ase where thedilation matrix is 2I. In Chapter 2, an alternative 
riterion to interpolatory mask symbolswhi
h is easier to use than (1.10) is given. In Theorem 2.2.3, we dedu
e the general formof an interpolatory mask symbol by using some polynomial identities and the Eu
lideanalgorithm. The results thus obtained are then applied to the mask symbols 
orrespondingto the well-known box splines.An interpolatory re�nement mask generates an interpolatory subdivision s
heme, thatis, a subdivision s
heme for whi
h the initial data points are preserved at all the stepsof the re
ursive pro
ess (see [Dyn92℄). This is extremely relevant in 
ertain appli
ation



INTRODUCTION 3areas in CAGD, where the initial data are required to be preserved while applying thesubdivision pro
ess. In Chapter 3, we dis
uss the 
onvergen
e of interpolatory subdivisions
hemes, and we investigate in Se
tion 3.3 the issue of property preservation with respe
tto the 
as
ade algorithm.Though remarkable progress by mathemati
ians in the area have been made, 
omputa-tionally ine�
ient 
onditions are still often applied to re�nement masks in order to ensurethe 
onvergen
e of the asso
iated subdivision s
hemes. For instan
e, the 
hara
terizationby using the joint spe
tral radius for subdivision s
hemes investigated in [HJ98a℄ 
an takeimpra
ti
ally long to test 
omputationally, whereas the alternative method based on 
on-tra
tivity 
onditions, as introdu
ed in [DL02℄ (see also [Dyn02℄), 
an also be a formidable
omputational task to perform. Under 
ertain restri
tions, we therefore develop in Chap-ter 4 three feasible methods to examine the existen
e of interpolatory re�nable fun
tionsfrom a pra
ti
al point of view. The presented methods are applied on interpolatory masksymbols, and are based on the results of Mi

helli in [Mi
96℄ and on tensor produ
ts.Unfortunately, for the general setting, the existing methods investigating the existen
eof interpolatory re�nable fun
tions are not always feasible to implement. By using theabove-mentioned general form of an interpolatory mask symbol, an interesting 
ontinua-tion of this thesis thus in
lude �nding easily 
he
kable su�
ient 
onditions on interpola-tory mask symbols for them to 
omply with the 
onditions of the existing methods.



Chapter 1
Interpolatory bivariate re�nablefun
tions
We �rst give in this 
hapter a brief introdu
tion to interpolatory bivariate re�nable fun
-tions and the 
orresponding interpolatory masks. Then, we elaborate a simple 
riterion in(1.8) and in (1.10) to re
ognize simultaneously an interpolatory mask and the asso
iatedinterpolatory mask symbol. We end the 
hapter by presenting the box splines as examplesof interpolatory bivariate re�nable fun
tions.
1.1 Notation and general 
on
eptsWe shall denote the set of natural numbers by N, the set of integers and non-negativeintegers respe
tively by Z and Z+, the set of real numbers by R and the set of 
omplexnumbers by C. Similarly, the symbols Z2, R2 and C2 denote the set of ordered pairs withrespe
tively integer, real number and 
omplex number entries.For the linear spa
e M(Z2) of all real-valued sequen
es c = {cj ∈ R : j ∈ Z2} whi
hsupport is denoted by supp(c) := {j ∈ Z2 : cj 6= 0}, the subspa
e of �nitely supported4



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 5sequen
es, i.e. whose supports are �nite, 
onstitute a linear subspa
e denoted by M0(Z
2).In the same way, for the linear spa
e M(R2) of all real-valued bivariate fun
tions f on R2whi
h support supp(f) is the smallest 
losed set 
ontaining {x ∈ R2 : f(x) 6= 0}, the setof �nitely supported fun
tions 
onstitute a linear subspa
e denoted byM0(R

2). Moreover,the subspa
es of 
ontinuous fun
tions respe
tively in M(R2) and in M0(R
2) are denotedby C(R2) and C0(R

2).For a given 2 × 2 invertible matrix M with integer entries, a fun
tion φ ∈ M0(R
2) istermed M-re�nable if there exists a sequen
e a = {aj : j ∈ Z2} ∈M0(Z

2) su
h that
φ =

∑j ajφ(M · −j). (1.1)We shall refer toM as the dilation matrix, whereas the sequen
e a is 
alled the re�nementmask (or simply the mask), and the equation (1.1) is referred to as the re�nement equation.Note that an M-re�nable fun
tion is therefore expressible as a linear 
ombinations ofthe shifts of its own dilations with the fa
tor of the dilation matrixM , as spe
i�ed by there�nement mask a. For 
onvenien
e, we shall often simplify �M-re�nable� to �re�nable�.The problem of existen
e of re�nable fun
tions by using re�nement masks is funda-mental, but most importantly in this thesis, is that our study is fo
ussed on interpolatoryre�nable fun
tions, that is, re�nable fun
tions that satisfy
φ(j) = δj, j ∈ Z2, (1.2)where the delta fun
tion δ (also 
alled the delta sequen
e) is de�ned by

δj =















1, j = 0,
0, j 6= 0, , j ∈ Z2. (1.3)



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 6In other words, a re�nable fun
tion is interpolatory if it vanishes at all integers ex
eptat the origin 0 ∈ Z2 where it takes the value 1. We pro
eed to 
hara
terize the so-
alledinterpolatory re�nement masks asso
iated with interpolatory re�nable fun
tions.
1.2 Interpolatory re�nement masksWe present in this se
tion a 
hara
terization theory for re�nement masks asso
iated withinterpolatory re�nable fun
tions. Thereafter we introdu
e the 
on
ept of re�nement masksymbols and then spe
ialize to the 
ase M = 2I, with some examples of bivariate inter-polatory re�nable fun
tions.By using the symbol jT for the transpose of the integer pair j ∈ Z2, we 
ome �rst tothe following result.Proposition 1.2.1. For a given dilation matrix M and a mask a ∈M0(Z

2), suppose there�nement equation (1.1) holds for a re�nable fun
tion φ. If φ is interpolatory, then asatis�es
aMjT = δj, j ∈ Z2. (1.4)Proof. From (1.2) and (1.1), we have that, for j ∈ Z2,

δj = φ(j) =
∑k akφ(MjT − k) =

∑k akδMjT−k = aMjT .
Our next result was proved for the 
ase M = 2I in [CDM91℄. Our general proof isbased on a suggestion in [HJ98a℄.Proposition 1.2.2. For a given dilation matrix M and a mask a ∈M0(Z

2), suppose there�nement equation (1.1) holds for a re�nable fun
tion φ. If φ is �nitely supported and



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 7integrable with non-zero integral over R2, then a satis�es
∑j aj = |det(M)|. (1.5)Proof. Suppose that the dilation matrix has the form
M =







c d

e f






.Writing ai,j = aj, we 
an now integrate the re�nement equation (1.1) to obtain

∫ ∫

R2

φ(x, y)dxdy =
∑

i,j

ai,j

∫ ∫

R2

φ(M(x, y)T − (i, j))dxdy. (1.6)Sin
e the variable transformation (X, Y )T = M(x, y)T has Ja
obian
J(x, y) =

∣

∣

∣

∣

∣

∣

∣

∣

∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
∂y

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

c d

e f

∣

∣

∣

∣

∣

∣

∣

= det(M),it follows from standard multivariate integration theorems in analysis that
∫ ∫

R2

φ(M(x, y)T − (i, j))|det(M)|dxdy =

∫ ∫

R2

φ((X, Y ) − (i, j))dXdY
=

∫ ∫

R2

φ(X, Y )dXdY . (1.7)We then dedu
e from (1.6) and (1.7) that
∫ ∫

R2

φ(x, y)dxdy =
∑

i,j

ai,j
1

|det(M)|

∫ ∫

R2

φ(x, y)dxdy.



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 8Moreover, sin
e we assume the integral of φ to be non-zero over R2, we obtain
∑

i,j

ai,j
1

|det(M)|
= 1,from whi
h the result (1.5) follows.Therefore, given a dilation matrixM , the existen
e of a 
ompa
tly supported interpo-latory re�nable fun
tion φ with non-zero integral over R2 requires for a given re�nementmask a to satisfy the 
onditions



















aMjT = δj, j ∈ Z2,

∑j aj = |det(M)|.
(1.8)

Now, 
onsidering a re�nement mask a = {aj} = {ai,j}, we de�ne the 
orrespondingre�nement mask symbol, or simply the mask symbol, as the bivariate Laurent polynomial
A given by

A(z1, z2) =
∑

i,j

ai,jz
i
1z

j
2, z1, z2 ∈ C \ {0}. (1.9)Also, we say that a re�nement mask a is interpolatory if it satis�es (1.8). In that 
ase, forbrevity, we 
all a an interpolatory mask. Moreover, its symbol A is 
alled an interpolatorymask symbol.Sin
e, a

ording to (1.9), re�nement masks and their symbols are bije
tively linked,the restri
tions (1.8) on a mask a 
an equivalently be expressed in terms of the masksymbol A as follows:































The 
onstant term in A(z1, z2) is 1, and A has no term in zα1
1 zα2

2su
h that (α1, α2) = M(i, j)T 6= (0, 0) for some (i, j) ∈ Z2; also,
A(1, 1) =

∑

i,j

ai,j = |det(M)|.

(1.10)



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 9It is often 
onvenient to use re�nement mask symbols instead of their 
orrespondingre�nement masks. Indeed, as presented in [CDM91, Mi
96, Der99℄, some properties ofmasks symbols lead to the existen
e of 
ompa
tly supported re�nable fun
tions.The following se
tion presents some examples of interpolatory re�nable fun
tions withdilation matrix M = 2I.
1.3 Box splinesIn this se
tion, we �x the dilation matrix M = 2I. The 
onditions (1.8) on an interpola-tory mask a 
an then be re-written as



















a2i,2j = δ(i,j), (i, j) ∈ Z2,

∑

i,j

ai,j = 4,
(1.11)

whereas the 
onditions (1.10) on an interpolatory mask symbol A be
ome






























The 
onstant term in A(z1, z2) is 1, and A hasno term in z2α1
1 z2α2

2 , for any (α1, α2) ∈ Z2 \ {(0, 0)}; also,
A(1, 1) =

∑

i,j

ai,j = 4.

(1.12)
The box spline N1The box spline fun
tion N1 is de�ned by

N1(x, y) =















1, (x, y) ∈ [0, 1)2,

0, (x, y) /∈ [0, 1)2.
(1.13)The graph of N1 is shown in Figure 1.1 (b), from whi
h we see that N1 is �nitely
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(a) Support of a(1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1

 0

 1

 0

 0

 0.5

 1

(b) Graph of N1Figure 1.1: The box spline N1supported, and though it is not 
ontinuous, we 
laim that N1 is an interpolatory re�nablefun
tion with respe
t to the interpolatory mask a(1) whi
h support is delimitated by thedotted lines in Figure 1.1 (a), as given by
a

(1)
0,0 = a

(1)
0,1 = a

(1)
1,0 = a

(1)
1,1 = 1; a

(1)
i,j = 0 otherwise. (1.14)To prove this, observe �rst that, for x, y ∈ R,

N1(2x, 2y) =















1, (x, y) ∈ [0, 1
2
)2,

0, (x, y) /∈ [0, 1)2;

N1(2x− 1, 2y) =















1, (x, y) ∈ [1
2
, 1) × [0, 1

2
),

0, (x, y) /∈ [0, 1)2;

N1(2x, 2y − 1) =















1, (x, y) ∈ [0, 1
2
) × [1

2
, 1),

0, (x, y) /∈ [0, 1)2;
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N1(2x− 1, 2y − 1) =















1, (x, y) ∈ [1
2
, 1)2,

0, (x, y) /∈ [0, 1)2.Then, sin
e the squares [0, 1
2
)2, [1

2
, 1) × [0, 1

2
), [0, 1

2
) × [1

2
, 1) and [1

2
, 1)2 form a partition ofthe unit square [0, 1)2, we obtain, for (x, y) ∈ R2,

N1(x, y) = N1(2x, 2y) +N1(2x− 1, 2y) +N1(2x, 2y − 1) +N1(2x− 1, 2y − 1), (1.15)thereby proving that N1 is re�nable with 
orresponding mask a(1) given in (1.14). Hen
e,a

ording to (1.14) and (1.9), the 
orresponding mask symbol A1 is given by
A1(z1, z2) = 1 + z1 + z2 + z1z2 = (1 + z1)(1 + z2), z1, z2 ∈ C. (1.16)Note that the 
onditions (1.11) and (1.12) are respe
tively ful�lled by the re�nement mask

a(1) and its symbol A1. Moreover, (1.13) shows that N1(j) = δj, j ∈ Z2, whi
h means that
N1 is an interpolatory re�nable fun
tion.The box spline N2Using the box spline N1 given in (1.13), the box spline fun
tion N2 is de�ned by

N2(x, y) =

∫ 1

0

N1(x− t, y − t)dt, x, y ∈ R. (1.17)Let us �rst prove that N2 is a 
ontinuous fun
tion by �nding its expli
it formula. To thisend, observe that, for t ∈ (0, 1) and x, y ∈ R,
N1(x− t, y − t) 6= 0 ⇐⇒ x− t ∈ [0, 1) and y − t ∈ [0, 1)

=⇒ 0 < x < 2 and 0 < y < 2. (1.18)
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e, from (1.18) and (1.17), we dedu
e that N2(x) = 0, x /∈ [0, 2]2.Moreover, for x, y ∈ [0, 2), we have
0 ≤ x− t < 1 ⇐⇒ x− 1 < t ≤ x and 0 ≤ y − t < 1 ⇐⇒ y − 1 < t ≤ y,whi
h, together with (1.17), yields

N1(x− t, y − t) 6= 0 ⇐⇒ t ∈ (0, 1) ∩ (x− 1, x] ∩ (y − 1, y], x, y ∈ [0, 2). (1.19)We then have the following result.Proposition 1.3.1. The box spline N2, as de�ned in (1.17), is expli
itly given by
N2(x, y) =















































min{x, y}, if (x, y) ∈ [0, 1)2,

2 − max{x, y}, if (x, y) ∈ [1, 2)2,

1 + min{x, y} − max{x, y}, if (x, y) ∈ ∆,

0 otherwise, (1.20)
where ∆ is the set de�ned by

∆ = {(x, y) : min{x, y} ∈ [0, 1); max{x, y} ∈ [1, 2); 1 + min{x, y} ≥ max{x, y}}, (1.21)i.e.,
∆ = B ∪ E,with B and E as in Figure 1.2. Consequently, the support of N2 is the polygon A ∪ B ∪

C ∪D ∪ E ∪ F = [0, 1]2 ∪ ∆ ∪ [1, 2]2 in Figure 1.2.Proof. Observe from Figure 1.2 that [0, 1)2 = A ∪ F , [1, 2)2 = C ∪ D and ∆ = B ∪ E.
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Figure 1.2: Support of the box spline N2.Therefore, from (1.19), we have that, for x ∈ [0, 1):
• If y ∈ [0, 1) is su
h that y ≤ x (resp. y ≥ x), then t ∈ [0, y] (resp. t ∈ [0, x]), sothat N2(x, y) =

∫ y

0

dt = y

(resp. N2(x, y) =

∫ x

0

dt = x

).
• If y ∈ [1, 2), two 
ases o

ur:

◦ If y − 1 > x, then t ∈ ∅ and N2(x, y) = 0;
◦ If y − 1 ≤ x, then t ∈ (y − 1, x] and therefore N2(x, y) =

∫ x

y−1

dt = 1 + x− y.Similarly, from (1.19), we have that, for x ∈ [1, 2):
• If y ∈ [0, 1), two 
ases o

ur:

◦ If y > x− 1, then t ∈ (x− 1, y] and therefore N2(x, y) =

∫ y

x−1

dt = 1 + y − x;
◦ If y ≤ x− 1, then t ∈ ∅ and N2(x, y) = 0.

• If y ∈ [1, 2) is su
h that y ≤ x (resp. y ≥ x), then t ∈ (x−1, 1] (resp. t ∈ (y−1, 1]),so that N2(x, y) =

∫ 1

x−1

dt = 2 − x

(resp. N2(x, y) =

∫ 1

y−1

dt = 2 − y

).By taking the appropriate 
ombination of the four 
ases above, we obtain the desiredresult (1.20).



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 14Next, by using Proposition 1.3.1 and Figure 1.2, we dedu
e that the restri
tions of N2to the respe
tive regions A,B,C,D,E and F are given as follows:
⋄ In the region A: x, y ∈ [0, 1), with y ≥ x, we have N2|A(x, y) = x;
⋄ In the region F : x, y ∈ [0, 1), with y ≤ x, we have N2|F (x, y) = y;
⋄ In the region B: x ∈ [0, 1) and y ∈ [1, 2), with x ≥ y − 1, we have N2|B(x, y) =

1 + x− y;
⋄ In the region E: x ∈ [1, 2) and y ∈ [0, 1), with y ≥ x − 1, we have N2|E(x, y) =

1 + y − x;
⋄ In the region C: x, y ∈ [1, 2), with y ≥ x, we have N2|C(x, y) = 2 − y;
⋄ In the region D: x, y ∈ [1, 2), with x ≥ y, we have N2|D(x, y) = 2 − x.Hen
e, N2 de�nes a di�erent plane in ea
h of the respe
tive regions A,B,C,D,E and

F . It will therefore su�
e to prove the 
ontinuity of N2 at the edges of these regions, i.ealong the lines x = 0, x = 1, x = 2, the lines y = 0, y = 1, y = 2, as well as the lines
y = x, y = x+ 1 and y = x− 1.To this end, observe �rst that, for the region A (resp. F ), when x → 0 (resp. y → 0),we have that N2(x, y) → 0. Similarly, for the region D (resp. C), when x → 2 (resp.
y → 2), we also have that N2(x, y) → 0.Next, observe that, when x → 1 (resp. y → 1), we have N2|F (x, y) → y and
N2|E(x, y) → y (resp. N2|A(x, y) → x and N2|B(x, y) → x), so that N2 is 
ontinu-ous in the region F ∪ E (resp. A ∪ B). Similarly, when x → 1 (resp. y → 1), wehave that N2|B(x, y) → 2 − y and N2|C(x, y) → 2 − y (resp. N2|E(x, y) → 2 − x and
N2|D(x, y) → 2 − x), so that N2 is also 
ontinuous in the region B ∪ C (resp. E ∪D).



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 15Finally, along the line y = x, we have that N2|A(x, y) = N2|F (x, y) and N2|C(x, y) =

N2|D(x, y), so that N2 is 
ontinuous in the regions A ∪ F and C ∪ D. Along the line
y = x + 1 (resp. y = x − 1), we have that N2|B(x, y) = 0 (resp. N2|E(x, y) = 0). Thus,we 
on
lude that N2 is 
ontinuous on R2.We pro
eed now to prove that N2 is re�nable. From the re�nement equation (1.15),we have that, for x, y ∈ R,

N2(x, y) =

∫ 1

0

N1(x− t, y − t)dt
=

∫ 1

0

[N1(2x− 2t, 2y − 2t) +N1(2x− 2t− 1, 2y − 2t)

+ N1(2x− 2t, 2y − 2t− 1) +N1(2x− 2t− 1, 2y − 2t− 1)] dt. (1.22)Using the transformations t̃ = 2t for t ∈ [0, 1
2
] and t̃ = 2t−1 for t ∈ [1

2
, 1], the �rst integralin (1.22) 
an be re-written, for x, y ∈ R, as

∫ 1

0

N1(2x− 2t, 2y − 2t)dt =

∫ 1
2

0

N1(2x− 2t, 2y − 2t)dt+

∫ 1

1
2

N1(2x− 2t, 2y − 2t)dt
=

1

2

∫ 1

0

N1(2x− t, 2y − t)dt+
1

2

∫ 1

0

N1(2x− t− 1, 2y − t− 1)dt
=

1

2
N2(2x, 2y) +

1

2
N2(2x− 1, 2y − 1), (1.23)by virtue of the de�nition of N2 in (1.17). Similarly, we get, for x, y ∈ R,

∫ 1

0

N1(2x− 2t− 1, 2y − 2t)dt =
1

2
N2(2x− 1, 2y) +

1

2
N2(2x− 2, 2y − 1), (1.24)

∫ 1

0

N1(2x− 2t, 2y − 2t− 1)dt =
1

2
N2(2x, 2y − 1) +

1

2
N2(2x− 1, 2y − 2), (1.25)

∫ 1

0

N1(2x− 2t− 1, 2y − 2t− 1)dt =
1

2
N2(2x− 1, 2y − 1) +

1

2
N2(2x− 2, 2y − 2). (1.26)



CHAPTER 1. INTERPOLATORY BIVARIATE REFINABLE FUNCTIONS 16Consequently, from (1.22), (1.23), (1.24), (1.25) and (1.26), we obtain
N2(x, y) =

1

2
{N2(2x, 2y) +N2(2x− 1, 2y) +N2(2x, 2y − 1) + 2N2(2x− 1, 2y − 1)

+ N2(2x− 1, 2y − 2) +N2(2x− 2, 2y − 1) +N2(2x− 2, 2y − 2)} , (1.27)whi
h shows that N2 is re�nable with 
orresponding mask a(2) given by














a
(2)
1,1 = 1, a

(2)
0,0 = a

(2)
0,1 = a

(2)
1,0 = a

(2)
2,1 = a

(2)
1,2 = a

(2)
2,2 = 1

2
,

a
(2)
i,j = 0, (i, j) /∈ {(0, 0), (0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2)},

(1.28)a

ording to whi
h the 
orresponding mask symbol A2 is given by
A2(z1, z2) = (1 + z1)(1 + z2)

(

1 + z1z2
2

)

, z1, z2 ∈ C. (1.29)However, observe from (1.28) that a(2)
0,0 6= 1 and a(2)

2,2 6= 0 (or, equivalently, the 
onstantterm in A2(z1, z2) is not 1 and it has a term in z2
1z

2
2), that is, N2 is not interpolatory.The shifted box spline Ñ2Using the box spline N2 de�ned in (1.17), we de�ne the shifted box spline fun
tion Ñ2 by

Ñ2(x, y) = N2(x+ 1, y + 1), x, y ∈ R. (1.30)We 
laim that the fun
tion Ñ2, as drawn in Figure 1.3 (b), is an interpolatory re�nablefun
tion asso
iated with the interpolatory mask ã(2) whi
h support is delimitated by the
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(a) Support of ã(2)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1
 0

-1

 1

 0

-1

 0

 0.5

 1

(b) Graph of Ñ2Figure 1.3: The shifted box spline Ñ2dotted lines in Figure 1.3 (a), as given by














ã
(2)
0,0 = 1, ã

(2)
1,1 = ã

(2)
0,1 = ã

(2)
1,0 = ã

(2)
−1,0 = ã

(2)
0,−1 = ã

(2)
−1,−1 = 1

2
,

ã
(2)
i,j = 0, (i, j) /∈ {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1), (1, 1), (−1,−1)},

(1.31)with 
orresponding mask symbol Ã2 given by
Ã2(z1, z2) = (1 + z1)(1 + z2)

(

1 + z1z2
2

)

z−1
1 z−1

2 , z1, z2 ∈ C \ {0}. (1.32)To prove this, we use (1.30) and (1.27) to dedu
e that, for x, y ∈ R,
Ñ2(x, y) =N2(x+ 1, y + 1)

=
1

2
{N2(2x+ 2, 2y + 2) +N2(2x+ 1, 2y + 2) +N2(2x+ 2, 2y + 1)

+ 2N2(2x+ 1, 2y + 1) +N2(2x+ 1, 2y) +N2(2x, 2y + 1) +N2(2x, 2y)}
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=

1

2

{

Ñ2(2x+ 1, 2y + 1) + Ñ2(2x, 2y + 1) + Ñ2(2x+ 1, 2y)

+ 2Ñ2(2x, 2y) + Ñ2(2x, 2y − 1) + Ñ2(2x− 1, 2y) + Ñ2(2x− 1, 2y − 1)
}

, (1.33)whi
h implies that Ñ2 is a re�nable fun
tion with re�nement mask ã(2) given by (1.31).Moreover, by using (1.31) and (1.9), we �nd that the 
orresponding mask symbol Ã2 isgiven by (1.32). It 
an now be veri�ed from (1.31) and (1.32) that ã(2) and Ã2 satisfyrespe
tively the interpolatory 
onditions (1.11) and (1.12).To prove that Ñ2 is interpolatory, we use (1.30) and (1.17) to obtain, for x, y ∈ R,
Ñ2(x, y) = N2(x+ 1, y + 1) =

∫ 1

0

N1(x+ 1 − t, y + 1 − t)dt. (1.34)Taking into a

ount the de�nition of the box spline N1 in (1.13), we dedu
e that
Ñ2(0, 0) =

∫ 1

0

N1(1 − t, 1 − t)dt =

∫ 1

0

1dt = 1, (1.35)whereas, for (i, j) 6= (0, 0), we have that
Ñ2(i, j) =

∫ 1

0

N1(i+ 1 − t, j + 1 − t)dt = 0, (1.36)for if i 6= 0 (resp. j 6= 0) then i+1−t /∈ [0, 1) (resp. j+1−t /∈ [0, 1)), for any t ∈ (0, 1). Itfollows from (1.35) and (1.36) that the interpolatory 
ondition (1.2) is satis�ed, therebyshowing that the shifted box spline Ñ2 is an interpolatory re�nable fun
tion.Note in parti
ular from Figure 1.3 (b) that Ñ2 belongs to C0(R
2) \ C1

0(R
2).



Chapter 2
The interpolatory mask symbols for
M = 2I

We �x the dilation matrix M = 2I in this 
hapter. In Se
tion 2.1 below, we produ
e thealternative 
riterion (2.9) for interpolatory mask symbols. In Se
tion 2.2, after solvingsome polynomial identities by means of the well-known Bezout identity and the Eu
lideanalgorithm, we provide in Theorem 2.2.3 a useful 
hara
terization result for interpolatorymask symbols. In Se
tion 2.3, we spe
ialise to the 
ase of box splines interpolatory masksymbols.
2.1 Simple 
hara
terizationWe pro
eed to establish an alternative 
hara
terization to interpolatory mask symbolswhi
h is simpler to use than (1.12), and whi
h will be used in Se
tion 2.2. Re
all fromChapter 1 that the 
lass of interpolatory mask symbols 
onsists of all Laurent polynomials

19
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A satisfying the 
onditions (1.12), i.e.



























The 
onstant term in A(z1, z2) is 1, and A hasno term in z2α1
1 z2α2

2 , for any (α1, α2) ∈ Z2 \ (0, 0); also,
A(1, 1) = 4,

(2.1)
where a is the 
orresponding interpolatory mask, as de�ned by (1.9), and satisfying the
onditions (1.11), i.e.



















a2i,2j = δ(i,j), (i, j) ∈ Z2,

∑

i,j

ai,j = 4.
(2.2)

Let us denote by F ⊔ G the union of two sets F and G for whi
h the interse
tion
F ∩ G is empty, whereas EE, EO, OE and OO stand for the sets of integer pairs withrespe
tively even-even, even-odd, odd-even and odd-odd entries. Observe that the set ofintegers Z2 
onsists of the union of the four disjoint subsets EE, EO, OE and OO, i.e.

Z2 = EE ⊔ EO ⊔ OE ⊔ OO. (2.3)Given a mask symbol A with 
orresponding mask a ∈ M0(Z
2), we obtain from (2.3)and (1.9) that, for z1, z2 ∈ C \ {0},

A(z1, z2) =
∑

i,j

a2i,2jz
2i
1 z

2j
2 +

∑

i,j

a2i,2j+1z
2i
1 z

2j+1
2 +

∑

i,j

a2i+1,2jz
2i+1
1 z2j

2

+
∑

i,j

a2i+1,2j+1z
2i+1
1 z2j+1

2 , (2.4)
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ing z1 by −z1 in (2.4), we have, for z1, z2 ∈ C \ {0},
A(−z1, z2) =

∑

i,j

a2i,2jz
2i
1 z

2j
2 +

∑

i,j

a2i,2j+1z
2j
1 z

2j+1
2 −

∑

i,j

a2i+1,2jz
2i+1
1 z2j

2

−
∑

i,j

a2i+1,2j+1z
2i+1
1 z2j+1

2 . (2.5)Combining (2.4) and (2.5), we obtain, for z1, z2 ∈ C \ {0},
A(z1, z2) + A(−z1, z2) = 2

∑

i,j

a2i,2jz
2i
1 z

2j
2 + 2

∑

i,j

a2i,2j+1z
2i
1 z

2j+1
2 . (2.6)Now repla
e z1 by −z1 and z2 by −z2 in (2.6) to dedu
e that, for z1, z2 ∈ C \ {0},

A(−z1,−z2) + A(z1,−z2) = 2
∑

i,j

a2i,2jz
2i
1 z

2j
2 − 2

∑

i,j

a2i,2j+1z
2i
1 z

2j+1
2 . (2.7)By adding (2.6) and (2.7), we obtain the identity

A(z1, z2) + A(−z1, z2) + A(z1,−z2) + A(−z1,−z2) = 4
∑

i,j

a2i,2jz
2i
1 z

2j
2 , z1, z2 ∈ C \ {0},(2.8)whi
h we 
an now use to prove the following 
hara
terization result.Theorem 2.1.1. Suppose that a is a re�nement mask su
h that ∑j aj = 4. Then a isinterpolatory if and only if the 
orresponding mask symbol A, as de�ned by (1.9), satis�esthe identity

A(z1, z2) + A(−z1, z2) + A(z1,−z2) + A(−z1,−z2) = 4, z1, z2 ∈ C \ {0}. (2.9)Proof. Suppose �rst that a is interpolatory. From (2.2), sin
e a2i,2j = δi,j , we have that
∑

i,j

a2i,2jz
2i
1 z

2j
2 = 1,
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h, together with (2.8), implies that (2.9) holds.Conversely, if (2.9) holds, we obtain from (2.8) that
∑

i,j

a2i,2jz
2i
1 z

2j
2 = 1,whi
h proves that a2i,2j = δi,j . Therefore, (2.2) holds and a is interpolatory.Note that, for a given re�nement mask a, the 
ondition in the se
ond line of (2.2) isa
hieved if the 
orresponding mask symbol A satis�es the identity (2.9), and if there existpositive integers k1, k2 and a Laurent polynomial B su
h that

A(z1, z2) = (1 + z1)
k1(1 + z2)

k2B(z1, z2), z1, z2 ∈ C \ {0}, (2.10)sin
e then A(−1, z2) = A(z1,−1) = 0 for any z1, z2 ∈ C \ {0}, so that (2.9) yields
A(1, 1) = 4 and thus the mask symbol A is interpolatory. Hen
e the following result.Corollary 2.1.2. For a Laurent polynomial A satisfying the identity (2.9), if there existsa Laurent polynomial B su
h that (2.10) holds, then A is an interpolatory mask symbol.Note that the 
onverse of Corollary 2.1.2 is not ne
essarily true, for if A is an inter-polatory mask symbol that sati�es the identity (2.9), then sin
e A(1, 1) = 4, we only getthat A(−1, 1) +A(1,−1) +A(−1,−1) = 0, whi
h does not ne
essarily imply that A is ofthe fa
torized form (2.10).Motivated by the result of Corollary 2.1.2, we pro
eed to 
hara
terize in Se
tion 2.2below the interpolatory mask symbols whi
h are in the fa
torized form (2.10).



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 232.2 General formWe pro
eed to give the general form of interpolatory mask symbols that are fa
torizablein the sense of (2.10). More pre
isely, we start by solving for the Laurent polynomial Ain the identity (2.9) with the help of the Bezout theorem, to �nally establish a generalformulation of interpolatory mask symbols.To fa
ilitate our investigation, we hen
eforth assume that the mask symbol A has thefa
torized form
A(z1, z2) = 22−k1−k2(1 + z1)

k1(1 + z2)
k2B(z1, z2), z1, z2 ∈ C \ {0}, (2.11)for some integers k1, k2 ∈ N and some Laurent polynomial B su
h that B(1, 1) = 1,

B(−1, z2) 6= 0 and B(z1,−1) 6= 0 for all z1, z2 ∈ C \ {0}, so that, from (2.11), it holdsthat A(1, 1) = 4. Also, we shall assume that A satis�es the identity (2.9), in whi
h 
ase,a

ording to Corollary 2.1.2, A is an interpolatory mask symbol.Polynomial identitiesTo 
hara
terize the mask symbol A, we �rst prove the following result.Lemma 2.2.1. Let k1, k2 ∈ N and suppose α1, α2 are two odd integers in N. Then:(a) if α1 < 2k1, there exists a polynomial S1 whi
h is odd in z2, with degree α2 in z2,and degree less than k1 in z1, su
h that the general Laurent polynomial solution K1of the identity
(1 + z1)

k1K1(z1, z2) − (1 − z1)
k1K1(−z1, z2) = zα1

1 zα2
2 , z1, z2 ∈ C \ {0}, (2.12)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 24is the Laurent polynomial given by
K1(z1, z2) = S1(z1, z2) + T1(z1, z2)(1 − z1)

k1 , z1, z2 ∈ C \ {0}, (2.13)with T1 denoting an arbitrary even Laurent polynomial in z1; also, K1 is odd in z2if and only if T1 is odd in z2.(b) if α2 < 2k2, there exists a polynomial S2 whi
h is odd in z1, with degree α1 in z1,and degree less than k2 in z2, su
h that the general Laurent polynomial solution K2of the identity
(1 + z2)

k2K2(z1, z2) − (1 − z2)
k2K2(z1,−z2) = zα1

1 zα2
2 , z1, z2 ∈ C \ {0}, (2.14)is the Laurent polynomial given by

K2(z1, z2) = S2(z1, z2) + T2(z1, z2)(1 − z2)
k2 , z1, z2 ∈ C \ {0}, (2.15)with T2 denoting an arbitrary even Laurent polynomial in z2; also, K2 is odd in z1if and only if T2 is odd in z1.Proof. (a) Sin
e the two univariate polynomials (1+ z1)
k1 and (1−z1)

k1 have no 
ommonfa
tor, there exist by the Bezout theorem two univariate polynomials U1 and V1 su
h that
(1 + z1)

k1U1(z1) + (1 − z1)
k1V1(z1) = 1, z1 ∈ C. (2.16)Multiplying both sides of (2.16) by zα1

1 zα2
2 yields, for z1, z2 ∈ C,

(1 + z1)
k1 [zα1

1 zα2
2 U1(z1)] + (1 − z1)

k1 [zα1
1 zα2

2 V1(z1)] = zα1
1 zα2

2 , z1, z2 ∈ C. (2.17)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 25Using the polynomial division theorem, we dedu
e the existen
e of two polynomials Q1and R1 satisfying
zα1
1 V1(z1) = Q1(z1)(1 + z1)

k1 +R1(z1), z1 ∈ C, (2.18)su
h that the degree of R1 is less than k1, and where Q1 and R1 are uniquely determinedby α1 and V1. It then follows from (2.17) that
(1 + z1)

k1S1(z1, z2) + (1 − z1)
k1R̃1(z1, z2) = zα1

1 zα2
2 , z1, z2 ∈ C, (2.19)where S1 is the polynomial de�ned by S1(z1, z2) = zα1

1 zα2
2 U1(z1)+(1−z1)

k1zα2
2 Q1(z1), and

R̃1 is the polynomial given by R̃1(z1, z2) = zα2
2 R1(z1), for all z1, z2 ∈ C. We 
laim thatthe degree in z1 of S1 is less than k1. To prove this, we �rst note from (2.19) that

(1 + z1)
k1S1(z1, z2) = zα1

1 zα2
2 − (1 − z1)

k1R̃1(z1, z2), z1, z2 ∈ C,a

ording to whi
h, sin
e the degree of R̃1 in z1 is less than k1, and sin
e α1 < 2k1, wene

essarily have that the degree in z1 of S1 is less than k1.Repla
ing z1 by −z1 in (2.19), and using the fa
t that α1 is odd, we dedu
e that
(1 − z1)

k1 [−S1(−z1, z2)] + (1 + z1)
k1

[

−R̃1(−z1, z2)
]

= zα1
1 zα2

2 , z1, z2 ∈ C. (2.20)Substra
ting the identities (2.19) and (2.20) now yields
(1 + z1)

k1 [S1(z1, z2) + R̃1(−z1, z2)] = −(1 − z1)
k1[S1(−z1, z2) + R̃1(z1, z2)], z1, z2 ∈ C,and thus

S1(z1, z2) + R̃1(−z1, z2) = M1(z1, z2)(1 − z1)
k1 , z1, z2 ∈ C, (2.21)
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e the degree in z1 of the polynomial in the left-hand-side of(2.21) is less than k1, we ne

essarily have M1 = 0 in (2.21), or, equivalently,
S1(z1, z2) = −R̃1(−z1, z2), z1, z2 ∈ C, (2.22)
R̃1(z1, z2) = −S1(−z1, z2), z1, z2 ∈ C. (2.23)Using (2.19), (2.22) and (2.23), we �nd that the polynomial S1 satis�es

(1 + z1)
k1S1(z1, z2) − (1 − z1)

k1S1(−z1, z2) = zα1
1 zα2

2 , z1, z2 ∈ C, (2.24)whi
h means that S1 is a parti
ular polynomial solution of the identity (2.12) with adegree in z1 less than k1. Moreover, from (2.22), we see that S1(z1, z2) = −zα2
2 R1(−z1).Sin
e α2 is odd, we 
on
lude that S1 is odd in z2, and that its degree in z2 is α2.Now, let K1 denote the general Laurent polynomial solution of (2.12). Substra
ting(2.12) from (2.24), we obtain, for z1, z2 ∈ C \ {0},

(1 + z1)
k1 [K1(z1, z2) − S1(z1, z2)] = (1 − z1)

k1 [K1(−z1, z2) − S1(−z1, z2)] . (2.25)Sin
e (1 + z1)
k1 and (1 − z1)

k1 have no 
ommon fa
tor, it follows from (2.25) that thereexists a Laurent polynomial T1 satisfying
K1(z1, z2) − S1(z1, z2) = T1(z1, z2)(1 − z1)

k1 , z1, z2 ∈ C \ {0}. (2.26)Substituting (2.26) into (2.25) yields that T1(z1, z2) = T1(−z1, z2) for z1, z2 ∈ C \ {0}, i.e
T1 is even in z1. Thus, we dedu
e from (2.26) that K1 is given by

K1(z1, z2) = S1(z1, z2) + T1(z1, z2)(1 − z1)
k1 , z1, z2 ∈ C \ {0}, (2.27)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 27where T1 is an arbitrary even Laurent polynomial in z1.Also, sin
e S1 is odd in z2, we get from (2.27) that, for z1, z2 ∈ C \ {0},
K1(z1,−z2) = S1(z1,−z2) + T1(z1,−z2)(1 − z1)

k1

= −S1(z1, z2) + T1(z1,−z2)(1 − z1)
k1, (2.28)whereas also, for z1, z2 ∈ C \ {0},

−K1(z1, z2) = −S1(z1, z2) − T1(z1, z2)(1 − z1)
k1. (2.29)Substra
ting the identities (2.28) and (2.29) gives, for z1, z2 ∈ C \ {0},

K1(z1,−z2) +K1(z1, z2) = (1 − z1)
k1 [T1(z1,−z2) + T1(z1, z2)],from whi
h it then immediately follows that K1 is odd in z2 if and only if T1 is odd in z2.(b) The proof is similar to (a).The Eu
lidean algorithmWe present here a detailed method to 
ompute the polynomials S1 and S2 in Lemma 2.2.1by using the Eu
lidean algorithm.Under the 
onditions of Lemma 2.2.1, with k1, k2 ∈ N, and where α1, α2 ∈ N are oddintegers su
h that also α1 < 2k1, we �rst pro
eed to �nd the univariate polynomials U1and V1 su
h that (2.16) holds.From the polynomial division theorem, there exist univariate polynomials q0, q1 and
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r1, r2 su
h that, for z1 ∈ C,

(1 + z1)
k1 =q0(z1)(1 − z1)

k1 + r1(z1), deg(r1) < k1, (2.30)
(1 − z1)

k1 =q1(z1)r1(z1) + r2(z1), deg(r2) < deg(r1). (2.31)Repeated appli
ations of polynomial division then yield the existen
e of n ∈ N andunivariate polynomials qj , j = 2, . . . , n+ 1 and rj, j = 3, . . . , n+ 2, su
h that, for z1 ∈ C,
r1(z1) = q2(z1)r2(z1) + r3(z1), deg(r3) < deg(r2),...

rn−1(z1) = qn(z1)rn(z1) + rn+1(z1), deg(rn+1) ≥ 1,

rn(z1) = qn+1(z1)rn+1(z1) + rn+2(z1), rn+2(z1) = c, a 
onstant,














































(2.32)
so that, by ba
k substitution, it holds that, for z1 ∈ C,

rj+1(z1) = rj−1(z1) − qj(z1)rj(z1), j = 0, . . . , n+ 1, (2.33)with r−1(z1) = (1 + z1)
k1 and r0(z1) = (1 − z1)

k1 , z1 ∈ C. Observe that c 6= 0, otherwise,by ba
k substitution and by using (2.33), (1 + z1)
k1 and (1− z1)

k1 would have rn+1(z1) asa 
ommon fa
tor, whi
h is impossible sin
e deg(rn+1)≥ 1.Now de�ne the polynomial sequen
e {Ti,j(z1) : i = 0, 1, 2, 3; j = −1, 0, . . . , n+ 2} by
Ti,j+1(z1) = Ti,j−1(z1) − qj(z1)Ti,j(z1), for i = 0, 1, 2 and j = 1, . . . , n+ 1,

T3,j(z1) = qj(z1), for j = 0, . . . , n+ 1

T3,−1(z1) = T3,n+2(z1) = 0,































(2.34)
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T0,−1(z1) = (1 + z1)

k1 ,

T1,−1(z1) = 0,

T2,−1(z1) = 1,































(2.35)
T0,0(z1) = (1 − z1)

k1 ,

T1,0(z1) = 1,

T2,0(z1) = 0.































(2.36)
Observe from (2.34), (2.33) and the �rst lines of (2.35) and (2.36) that then

T0,j(z1) = rj(z1), j = 1, 2, . . . , n+ 2. (2.37)It follows that the matrix T 
onsisting of the polynomials [ Ti,j(z1) ], for 0 ≤ i ≤ 3 and
−1 ≤ j ≤ n+ 2, is given by
T =























(1 + z1)
k1 (1 − z1)

k1 r1(z1) r2(z1) . . . rn+1(z1) rn+2(z1)

0 1 −q0(z1) 1 + q1(z1)q0(z1) . . . T1,n+1(z1) T1,n+2(z1)

1 0 1 −q1(z1) . . . T2,n+1(z1) T2,n+2(z1)

0 q0(z1) q1(z1) q2(z1) . . . qn+1(z1) 0























.

We 
laim that, for j = 1, . . . , n+ 2,
(1 + z1)

k1T2,j(z1) + (1 − z1)
k1T1,j(z1) = rj(z1), z1 ∈ C. (2.38)We prove this by indu
tion on j. Observe �rst from (2.34) (2.30) that (2.38) holds for
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j = 1. Also, from (2.31), (2.30) and (2.34), we obtain, for z1 ∈ C,

r2(z1) =(1 − z1)
k1 − q1(z1)r1(z1)

=(1 − z1)
k1 − q1(z1)[(1 + z1)

k1 − q0(z1)(1 − z1)
k1 ]

=[−q1(z1)](1 + z1)
k1 + [1 + q1(z1)q0(z1)](1 − z1)

k1

=T2,2(z1)(1 + z1)
k1 + T1,2(z1)(1 − z1)

k1,thereby proving that (2.38) holds for j = 2.Suppose now that (2.38) is true for j − 1 and j with j ∈ {2, . . . , n+ 1}. Multiplyingboth sides of (2.38) by −qj(z1) yields
(1 + z1)

k1[−qj(z1)T2,j(z1)] + (1 − z1)
k1 [−qj(z1)T1,j(z1)] = −qj(z1)rj(z1), z1 ∈ C. (2.39)From the indu
tive assumption, re
all that

(1 + z1)
k1T2,j−1(z1) + (1 − z1)

k1T1,j−1(z1) = rj−1(z1), z1 ∈ C. (2.40)Addition of equations (2.39) and (2.40), and using also (2.34) and (2.33), then yield
(1 + z1)

k1T2,j+1(z1) + (1 − z1)
k1T1,j+1(z1) = rj+1(z1), z1 ∈ C,thereby 
ompleting our indu
tive proof of (2.38).In parti
ular, by 
hoosing j = n + 2 in (2.38), and sin
e rn+2(z1) = c 6= 0, we dedu
ethat

(1 + z1)
k1U1(z1) + (1 − z1)

k1V1(z1) = 1, z1 ∈ C, (2.41)
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U1(z1) =

T2,n+2(z1)

c
and V1(z1) =

T1,n+2(z1)

c
, z1 ∈ C. (2.42)Next, from the polynomial division theorem, there exist univariate polynomials Q1 and

R1 su
h that (2.18) holds, that is, for z1 ∈ C,
zα1
1 V1(z1) = Q1(z1)(1 + z1)

k1 +R1(z1), with deg(R1)<k1, (2.43)so that, from the proof of Lemma 2.2.1 (a), by 
hoosing the polynomial S1 as
S1(z1, z2) = −zα2

2 R1(−z1), z1, z2 ∈ C, (2.44)it follows that (2.24) holds. In other words, we have the identity
(1 + z1)

k1S1(z1, z2) − (1 − z1)
k1S1(−z1, z2) = zα1

1 zα2
2 , z1, z2 ∈ C. (2.45)Moreover, we know from Lemma 2.2.1 (a) that S1 is odd in z2, that its degree in z2 is α2,and that its degree in z1 is less than k1.We have now proved the following algorithm for the expli
it 
omputation of the poly-nomial S1 of Lemma 2.2.1 (a)Algorithm for the 
omputation of S1:1. Use polynomial division to obtain the polynomials {qj(z1) : j = 0, . . . , n + 1} and

{rj(z1) : j = 1, . . . , n+ 2}, with rn+2(z1) = c 6= 0 as in (2.32).2. De�ne the polynomial sequen
e {Ti,j(z1) : i = 0, 1, 2; j = −1, . . . , n+ 2} re
ursivelyby means of (2.34), (2.35) and (2.36).



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 323. De�ne the polynomials U1 and V1 by (2.42);4. Use the polynomial division theorem to �nd Q1 and R1 su
h that (2.43) holds;5. The polynomial S1 is then given by (2.44).The 
onstru
tion of the polynomial S2, under the 
onstraint α2 < 2k2, is analogous tothat of S1.We pro
eed to give an example by �nding the polynomial S1 for k1 = 2. The 
ase
k1 = 1 will be presented in Se
tion 2.3, and will be used to 
hara
terize the mask symbolsof the box spline fun
tions from Chapter 1. Under the 
onditions of Lemma 2.2.1 andthe above algorithm, let k1 = 2, α1 ∈ {1, 3}, and let α2 ∈ N be any odd integer. Observethat, for z1 ∈ C,

(1 + z1)
2 =q0(z1)(1 − z1)

2 + r1(z1), with q0(z1) = 1 and r1(z1) = 4z1,

(1 − z1)
2 =q1(z1)r1(z1) + r2(z1), with q1(z1) =

1

4
z1 −

1

2
and r2(z1) = 1.It follows that the matrix T is given by

T =

























(1 + z1)
2 (1 − z1)

2 4z1 1

0 1 −1 1
4
z1 + 1

2

1 0 1 −1
4
z1 + 1

2

0 1 1
4
z1 −

1
2

0

























,

whi
h, together with (2.42), yields that the polynomials U1 and V1 are given by
U1(z1) = −

1

4
z1, V1(z1) =

1

4
z1 +

1

2
, z1 ∈ C. (2.46)
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ases o

ur:
• if α1 = 1: we dedu
e from (2.43) that, for z1 ∈ C,

z1V1(z1) =
1

4
z2
1 +

1

2
z1 = Q1(z1)(1 + z1)

2 +R1(z1),with Q1(z1) =
1

4
and R1(z1) = −

1

4
, and it follows from (2.44) that the polynomial

S1 is given by
S1(z1, z2) =

1

4
zα2
2 , z1, z2 ∈ C. (2.47)

• if α1 = 3: we dedu
e from (2.43) that, for z1 ∈ C,
z3
1V1(z1) =

1

4
z4
1 +

1

2
z3
1 = Q1(z1)(1 + z1)

2 +R1(z1),with Q1(z1) =
1

4
z2
1 −

1

4
and R1(z1) =

1

2
z1 +

1

4
, and it follows from (2.44) that thepolynomial S1 is given by

S1(z1, z2) =
1

4
(2z1 − 1)zα2

2 , z1, z2 ∈ C. (2.48)Observe in parti
ular from (2.47) and (2.48) that the degree of S1 in z1 is less than k1 = 2,and that S1 is odd in z2 with degree α2 in z2.First fa
torization of mask symbolsWith the help of Lemma 2.2.1, we 
an prove the following formula.Lemma 2.2.2. For an interpolatory mask symbol A, suppose there exist integers k1, k2 ∈

N and a Laurent polynomial B su
h that (2.11) holds, and let α1 and α2 be any pair ofodd integers su
h that α1 < 2k1 and α2 < 2k2. Then both the following results hold:
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h that the Laurent polynomial
B has, for z1, z2 ∈ C \ {0}, the form

B(z1, z2) = 2k1+k2z−2α1
1 z−2α2

2 [K1(z1, z2)K2(z1, z2) + T3(z1, z2)(1 − z2)
k2], (2.49)where the Laurent polynomial T3 is odd in z2, and with K1, K2 satisfying the respe
tiveidentities















(1 + z1)
k1K1(z1, z2) − (1 − z1)

k1K1(−z1, z2) = zα1
1 zα2

2 ,

(1 + z2)
k2K2(z1, z2) − (1 − z2)

k2K2(z1,−z2) = zα1
1 zα2

2 ,
, z1, z2 ∈ C \ {0}. (2.50)Moreover, K1 and K2 are formulated expli
itly by the expressions (2.13), (2.15), with S1,

T1, S2 and T2 as des
ribed in Lemma 2.2.1, and where both K1 and T1 are odd in z2.(b) There exist Laurent polynomials L1, L2 and T̃3 su
h that the Laurent polynomial
B has, for z1, z2 ∈ C \ {0}, the form

B(z1, z2) = 2k1+k2z−2α1
1 z−2α2

2 [L1(z1, z2)L2(z1, z2) + T̃3(z1, z2)(1 − z1)
k1], (2.51)where the Laurent polynomial T̃3 is odd in z1, and with L1, L2 satisfying respe
tive iden-tities















(1 + z1)
k1L1(z1, z2) − (1 − z1)

k1L1(−z1, z2) = zα1
1 zα2

2 ,

(1 + z2)
k2L2(z1, z2) − (1 − z2)

k2L2(z1,−z2) = zα1
1 zα2

2 ,
, z1, z2 ∈ C \ {0}. (2.52)Moreover, L1 and L2 are formulated expli
itly by the expressions (2.13), (2.15), with S1,

T1, S2 and T2 as des
ribed in Lemma 2.2.1, and where both L2 and T2 are odd in z1.



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 35Proof. (a) By de�ning the Laurent polynomial H as
H(z1, z2) = A(z1, z2) + A(z1,−z2), z1, z2 ∈ C \ {0}, (2.53)we observe that the identity (2.9) is equivalent to

H(z1, z2) +H(−z1, z2) = 4, z1, z2 ∈ C \ {0}. (2.54)Also, by using (2.11) and (2.53), we have that
H(z1, z2) = 22−k1−k2(1 + z1)

k1G(z1, z2), z1, z2 ∈ C \ {0}, (2.55)where the Laurent polynomial G is de�ned by
G(z1, z2) = (1 + z2)

k2B(z1, z2) + (1 − z2)
k2B(z1,−z2), z1, z2 ∈ C \ {0}, (2.56)with B denoting the Laurent polynomial for whi
h (2.11) is satis�ed.It then follows from (2.54) and (2.55) that G satis�es the identity

2−k1−k2(1 + z1)
k1G(z1, z2) + 2−k1−k2(1 − z1)

k1G(−z1, z2) = 1, z1, z2 ∈ C \ {0}. (2.57)Now, 
hoose any pair of odd integers α1, α2 ∈ N su
h that α1 < 2k1 and α2 < 2k2. Then,for the Laurent polynomial G given by (2.56), we de�ne the Laurent polynomial K1 by
G(z1, z2) = 2k1+k2z−α1

1 z−α2
2 K1(z1, z2), z1, z2 ∈ C \ {0}. (2.58)It follows from (2.58) and (2.57) that K1 satis�es the identity

(1 + z1)
k1z−α1

1 z−α2
2 K1(z1, z2) − (1 − z1)

k1z−α1
1 z−α2

2 K1(−z1, z2) = 1, z1, z2 ∈ C \ {0},
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(1 + z1)

k1K1(z1, z2) − (1 − z1)
k1K1(−z1, z2) = zα1

1 zα2
2 , z1, z2 ∈ C \ {0}. (2.59)Hen
e, a

ording to Lemma 2.2.1 (a), there exist a polynomial S1 and a Laurent polyno-mial T1 su
h that

K1(z1, z2) = S1(z1, z2) + (1 − z1)
k1T1(z1, z2), z1, z2 ∈ C \ {0},with the polynomial S1 and the Laurent polynomial T1 satisfying the properties as statedin Lemma 2.2.1 (a).Besides, (2.55) and (2.58) yield

H(z1, z2) = 4(1 + z1)
k1z−α1

1 z−α2
2 K1(z1, z2), z1, z2 ∈ C \ {0},a

ording to whi
h, sin
e the Laurent polynomial H de�ned by (2.53) is even in z2, wededu
e that K1 is odd in z2, and hen
e also, from Lemma 2.2.1 (a), T1 is also odd in z2.Next, we de�ne the Laurent polynomial B̃ by

B(z1, z2) = 2k1+k2z−2α1
1 z−2α2

2 B̃(z1, z2), z1, z2 ∈ C \ {0}. (2.60)From (2.58) and (2.56) we then obtain
(1 + z2)

k2B(z1, z2) + (1 − z2)
k2B(z1,−z2) = 2k1+k2z−α1

1 z−α2
2 K1(z1, z2), z1, z2 ∈ C \ {0},(2.61)whi
h, together with (2.60), shows that B̃ satis�es the identity

(1 + z2)
k2B̃(z1, z2) + (1 − z2)

k2B̃(z1,−z2) = zα1
1 zα2

2 K1(z1, z2), z1, z2 ∈ C \ {0}. (2.62)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 37It now remains to �nd B̃. To this end, we �rst obtain a parti
ular solution of (2.62) by
onsidering the Laurent polynomial B1 de�ned by
B1(z1, z2) = K1(z1, z2)K2(z1, z2), z1, z2 ∈ C \ {0}, (2.63)for some arbitrary appropriate Laurent polynomial K2 su
h that B1 satis�es (2.62), i.e.

(1 + z2)
k2B1(z1, z2) + (1 − z2)

k2B1(z1,−z2) = zα1
1 zα2

2 K1(z1, z2), z1, z2 ∈ C \ {0}. (2.64)Sin
e K1 is odd in z2, we have from (2.63) that, for z1, z2 ∈ C \ {0},
B1(z1,−z2) = K1(z1,−z2)K2(z1,−z2) = −K1(z1, z2)K2(z1,−z2),so that, from (2.64) and (2.63), and after dividing by K1(z1, z2), we dedu
e that, if theLaurent polynomial K2 is 
hosen to satisfy the identity

(1 + z2)
k2K2(z1, z2) − (1 − z2)

k2K2(z1,−z2) = zα1
1 zα2

2 , z1, z2 ∈ C \ {0}, (2.65)then the Laurent polynomial B1 de�ned by (2.63) satis�es the identity (2.64). But a
-
ording to Lemma 2.2.1 (b), the general Laurent polynomial solution K2 of the identity(2.65) is given by
K2(z1, z2) = S2(z1, z2) + (1 − z2)

k2T2(z1, z2), z1, z2 ∈ C \ {0},with the polynomial S2 and the Laurent polynomial T2 satisfying the properties as statedin Lemma 2.2.1 (b).Substra
ting the equations (2.62) and (2.64) now yields, for z1, z2 ∈ C \ {0},
(1 + z2)

k2 [B̃(z1, z2) − B1(z1, z2)] = −(1 − z2)
k2[B̃(z1,−z2) − B1(z1,−z2)], (2.66)
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e the univariate polynomials (1 + z2)
k2 and (1 − z2)

k2 have no 
ommon fa
tor,there exists a Laurent polynomial T3 su
h that, for z1, z2 ∈ C \ {0},
B̃(z1, z2) − B1(z1, z2) = (1 − z2)

k2T3(z1, z2). (2.67)Substituting the expressions in (2.67) into (2.66), we obtain, for z1, z2 ∈ C \ {0},
(1 + z2)

k2(1 − z2)
k2T3(z1, z2) = −(1 − z2)

k2(1 + z2)
k2T3(z1,−z2),from whi
h we dedu
e that T3 is odd in z2.Also, we dedu
e from (2.67) that

B̃(z1, z2) = B1(z1, z2) + T3(z1, z2)(1 − z2)
k2, z1, z2 ∈ C \ {0},whi
h, together with (2.60) and (2.63), shows that B is indeed given by (2.49).(b) By de�ning the Laurent polynomial J as

J(z1, z2) = A(z1, z2) + A(−z1, z2), z1, z2 ∈ C \ {0}, (2.68)observe that the identity (2.9) is equivalent to J(z1, z2) + J(z1,−z2) = 4, z1, z2 ∈ C \ {0}.The rest of proof then uses a similar argument as in (a).The 
hara
terization resultNote that (2.49) and (2.51) yield two di�erent formulae for the Laurent polynomial Bin Lemma 2.2.2. We pro
eed here to give an alternative expression for B whi
h veri�essimultaneously (2.49) and (2.51).



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 39Using Lemmas 2.2.1 and 2.2.2, we prove the following result whi
h yields an important
hara
terization for interpolatory mask symbols.Theorem 2.2.3. For a Laurent polynomial A, suppose that there exist integers k1, k2 ∈ Nand a Laurent polynomial B su
h that (2.11) holds. Then A de�nes an interpolatorymask symbol if and only if for any pair of odd integers α1 and α2 su
h that α1 < 2k1 and
α2 < 2k2, the Laurent polynomial B has, for z1, z2 ∈ C \ {0}, the form
B(z1, z2) =2k1+k2z−2α1

1 z−2α2
2

[

T (z1, z2)(1 − z1)
k1(1 − z2)

k2 (2.69)
+
{

S1(z1, z2) + T1(z1, z2)(1 − z1)
k1
}{

S2(z1, z2) + T2(z1, z2)(1 − z2)
k2
}]

,where the polynomials S1 and S2 are as in Lemma 2.2.1, i.e. S1 and S2 are respe
tivelyodd in z2 and odd in z1, they satisfy the respe
tive identities














(1 + z1)
k1S1(z1, z2) − (1 − z1)

k1S1(−z1, z2) = zα1
1 zα2

2 ,

(1 + z2)
k2S2(z1, z2) − (1 − z2)

k2S2(z1,−z2) = zα1
1 zα2

2 ,
, z1, z2 ∈ C, (2.70)where also S1 has a degree less than k1 in z1, and S2 has a degree less than k2 in z2.Besides, the Laurent polynomials T1, T2 and T are respe
tively even in z1 but odd in z2,even in z2 but odd in z1, and odd in both z1 and z2.Proof. We show that the proof in the ne
essary dire
tion 
an be obtained either by startingwith the formula given by (2.49) with an appropriate 
hoi
e for the polynomial L1, or bystarting with the formula given by (2.51) with an appropriate 
hoi
e for the polynomial

K2. We then prove the theorem in the su�
ient dire
tion by using Theorem 2.1.1.To prove the theorem in the ne
essary dire
tion, we suppose that A de�nes an interpo-latory mask symbol and 
onsider any pair of odd integers α1, α2 ∈ N su
h that α1 < 2k1and α2 < 2k2.
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ording to Lemma 2.2.2, the Laurent polynomial B for whi
h (2.11) is satis�ed, hasthe forms given by (2.49) and (2.51), where the Laurent polynomials K2 in (2.49) and L1in (2.51) are to be 
hosen as spe
i�ed in Lemma 2.2.2.We see from Lemma 2.2.1 and 2.2.2 that we may 
hoose L1 = K1, a

ording to whi
hit then holds that both K1 and L1 are even in z1 and odd in z2. It follows that, from(2.11) and (2.51), it holds that
A(z1,−z2) =4(1 + z1)

k1(1 − z2)
k2z−2α1

1 z−2α2
2

[−L1(z1, z2)L2(z1,−z2) + T̃3(z1,−z2)(1 − z1)
k1 ], z1, z2 ∈ C \ {0},whi
h, together with (2.11), (2.51) and the se
ond line of (2.52), shows that, for z1, z2 ∈

C \ {0},
A(z1, z2) + A(z1,−z2) =4(1 + z1)

k1z−2α1
1 z−2α2

2 [zα1
1 zα2

2 L1(z1, z2)

+(1 − z1)
k1{(1 + z2)

k2T̃3(z1, z2) + (1 − z2)
k2T̃3(z1,−z2)}]. (2.71)Next, we note that, sin
e the Laurent polynomials T3 and K1 in (2.49) are, a

ording toLemma 2.2.2, odd in z2, we have from (2.11) and (2.49) that

A(z1,−z2) =4(1 + z1)
k1(1 − z2)

k2z−2α1
1 z−2α2

2

[−K1(z1, z2)K2(z1,−z2) − T3(z1, z2)(1 + z2)
k2 ], z1, z2 ∈ C \ {0},whi
h, together with (2.11), (2.49) and the �rst line of (2.50), shows that, for z1, z2 ∈

C \ {0},
A(z1, z2) + A(z1,−z2) = 4(1 + z1)

k1z−2α1
1 z−2α2

2 [zα1
1 zα2

2 K1(z1, z2)]. (2.72)



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 41It then follows from (2.71) and (2.72) that, sin
e also we have 
hosen L1 = K1, the Laurentpolynomial T̃3 satis�es
(1 + z2)

k2T̃3(z1, z2) + (1 − z2)
k2T̃3(z1,−z2) = 0, z1, z2 ∈ C \ {0},or, equivalently,

(1 + z2)
k2T̃3(z1, z2) = −(1 − z2)

k2T̃3(z1,−z2), z1, z2 ∈ C \ {0}. (2.73)Sin
e the univariate polynomials (1 + z2)
k2 and (1 − z2)

k2 have no 
ommon fa
tor, wededu
e from (2.73) the existen
e of a Laurent polynomial T̃4 satisfying
T̃3(z1, z2) = T̃4(z1, z2)(1 − z2)

k2, z1, z2 ∈ C \ {0}, (2.74)so that, sin
e T̃3 is odd in z1, we �nd that T̃4 is odd in z1. Also, by substituting theexpression in (2.74) of T̃3 into (2.73), we obtain
(1 + z2)

k2(1 − z2)
k2T̃4(z1, z2) = −(1 − z2)

k2(1 + z2)
k2T̃4(z1,−z2), z1, z2 ∈ C \ {0},showing that T̃4 is also odd in z2. Combining (2.51) with (2.74), we dedu
e that, for

z1, z2 ∈ C \ {0}, the Laurent polynomial B is of the form
B(z1, z2) = 2k1+k2z−2α1

1 z−2α2
2 [L1(z1, z2)L2(z1, z2) + T (z1, z2)(1 − z1)

k1(1 − z2)
k2 ], (2.75)where T = T̃4 is a Laurent polynomial whi
h is odd in both z1 and z2.Our proof in the ne
essary dire
tion is now 
ompleted by appealing to Lemma 2.2.1and 2.2.2, and using (2.75), with spe
i�
ally the Laurent polynomial T2 in Lemma 2.2.1 (b)
hosen to also be odd in z1.



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 42Note from Lemmas 2.2.1 and 2.2.2 that the result (2.69) 
an similarly be a
hieved bymeans of the 
hoi
e K2 = L2 in (2.49).Next, we prove the theorem in the su�
ient dire
tion. To this end, suppose that,for any pair of odd integers α1 and α2 su
h that α1 < 2k1 and α2 < 2k2, the Laurentpolynomial B has the form given by (2.69). To show that the Laurent polynomial A isan interpolatory mask symbol, it will su�
e to prove that A satis�es the identity (2.9) inTheorem 2.1.1.To this end, sin
e by assumption S2, T2 and T are odd in z1, observe from (2.11) and(2.69) that, for z1, z2 ∈ C \ {0},
A(z1, z2)+A(−z1, z2)

=4z−2α1
1 z−2α2

2 (1 + z1)
k1(1 + z2)

k2
[

T (z1, z2)(1 − z1)
k1(1 − z2)

k2

+
{

S1(z1, z2) + T1(z1, z2)(1 − z1)
k1
}{

S2(z1, z2) + T2(z1, z2)(1 − z2)
k2
}]

+4z−2α1
1 z−2α2

2 (1 − z1)
k1(1 + z2)

k2
[

−T (z1, z2)(1 + z1)
k1(1 − z2)

k2

+
{

S1(−z1, z2) + T1(z1, z2)(1 + z1)
k1
}{

−S2(z1, z2) − T2(z1, z2)(1 − z2)
k2
}]

,whi
h, together with (2.70), yields, for z1, z2 ∈ C \ {0},
A(z1, z2)+A(−z1, z2)

=4z−2α1
1 z−2α2

2 (1 + z2)
k2
[

zα1
1 zα2

2

{

S2(z1, z2) + T2(z1, z2)(1 − z2)
k2
}]

. (2.76)Repla
ing z2 by −z2 in (2.76), and using the fa
t that T2 is even in z2, we obtain, for
z1, z2 ∈ C \ {0},
A(z1,−z2)+A(−z1,−z2)

=4z−2α1
1 z−2α2

2 (1 − z2)
k2
[

−zα1
1 zα2

2

(

S2(z1,−z2) + T2(z1, z2)(1 + z2)
k2
)]

. (2.77)
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e S2 satis�es (2.70), adding (2.76) with (2.77) yields, for z1, z2 ∈ C \ {0},
A(z1, z2) + A(−z1, z2) + A(z1,−z2) + A(−z1,−z2) = 4z−2α1

1 z−2α2
2 [zα1

1 zα2
2 (zα1

1 zα2
2 )] = 4,thereby showing that the Laurent polynomial A satis�es the identity (2.9), whi
h 
on-
ludes our proof.

2.3 Appli
ation to box splines interpolatory masksymbolsConsider the mask symbols A1 and Ã2 
orresponding respe
tively to the box spline N1given by (1.16) and to the shifted box spline Ñ2 given by (1.32). Then, we have
A1(z1, z2) =(1 + z1)(1 + z2)B1(z1, z2), z1, z2 ∈ C, (2.78)
Ã2(z1, z2) =(1 + z1)(1 + z2)B̃2(z1, z2), z1, z2 ∈ C \ {0}, (2.79)where the polynomial B1 and the Laurent polynomial B̃2 are given by
B1(z1, z2) =1, z1, z2 ∈ C, (2.80)
B̃2(z1, z2) =

(

1 + z1z2
2

)

z−1
1 z−1

2 , z1, z2 ∈ C \ {0}. (2.81)Re
all from Chapter 1 that both A1 and Ã2 are interpolatory, so that, a

ording toTheorem 2.2.3, with k1 = k2 = 1 and α1 = α2 = 1, B1 and B̃2 are of the form (2.69) forsome Laurent polynomials T1, T2 and T respe
tively even in z1 but odd in z2, even in z2



CHAPTER 2. THE INTERPOLATORY MASK SYMBOLS FOR M = 2I 44but odd in z1, and odd in both z1 and z2, and for polynomials S1 and S2 satisfying














(1 + z1)S1(z1, z2) − (1 − z1)S1(−z1, z2) = z1z2,

(1 + z2)S2(z1, z2) − (1 − z2)S2(z1,−z2) = z1z2,
, z1, z2 ∈ C, (2.82)su
h that S1 and S2 are, respe
tively, odd in z2 with degree less than k1 in z1 and odd in

z1 with degree less than k2 in z2.We now pro
eed to �nd the polynomials S1 and S2 satisfying (2.82). By using theEu
lidean algorithm presented in Se
tion 2.2, we �nd that the univariate polynomials U1and V1 satisfying
(1 + z1)U1(z1) + (1 − z1)V1(z1) = 1, z1 ∈ C,are given by U1(z1) = V1(z1) =

1

2
, z1 ∈ C. Also, by using the polynomial division theorem,we obtain z1V (z1) = z1

1

2
=

1

2
(1 + z1) −

1

2
, z1 ∈ C, from whi
h it follows that R1 is givenby R1(z1) = −

1

2
, and 
onsequently, S1 is given by

S1(z1, z2) = −z2R1(−z1) =
1

2
z2, z1, z2 ∈ C. (2.83)Using a similar argument, we show that S2 is given by

S2(z1, z2) =
1

2
z1, z1, z2 ∈ C. (2.84)Observe in parti
ular that S1 and S2 are, respe
tively, odd in z2 and odd in z1.The box spline mask symbol A1Consider the polynomials T1, T2 and T de�ned respe
tively by

T1(z1, z2) = −
1

2
z2, T2(z1, z2) = −

1

2
z1, T (z1, z2) = 0, z1, z2 ∈ C, (2.85)
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ording to whi
h T1 is even in z1 but odd in z2, T2 is even in z2 but odd in z1, and T isodd both in z1 and in z2. Using (2.83), (2.84) and (2.85), we obtain, for z1, z2 ∈ C,
4z−2

1 z−2
2 [T (z1, z2)(1 − z1)(1 − z2)

+(S1(z1, z2) + T1(z1, z2)(1 − z1))(S2(z1, z2) + T2(z1, z2)(1 − z2))]

=4z−2
1 z−2

2

[(

1

2
z2 −

1

2
z2(1 − z1)

)(

1

2
z1 −

1

2
z1(1 − z2)

)]

=4z−2
1 z−2

2

[(

1

2
z2z1

)(

1

2
z1z2

)]

=1

=B1(z1, z2),by virtue of (2.78) and (2.80). Hen
e B = B1 is of the form (2.69), where the polynomials
S1, S2 are given by (2.83) and (2.84), and the polynomials T1, T2 and T given by (2.85).The shifted box spline mask symbol Ã2Similarly, 
onsider the polynomials T1, T2 and T de�ned respe
tively by

T1(z1, z2) = −
1

4
z2, T2(z1, z2) = −

1

4
z1, T (z1, z2) =

1

16
z1z2, z1, z2 ∈ C, (2.86)so that T1 is even in z1 but odd in z2, T2 is even in z2 but odd in z1, and T is odd bothin z1 and in z2. Using (2.83), (2.84) and (2.86), we obtain, for z1, z2 ∈ C,

S1(z1, z2) + T1(z1, z2)(1 − z1) =
1

2
z2 −

1

4
z2(1 − z1) =

1

4
z2 +

1

4
z1z2,

S2(z1, z2) + T2(z1, z2)(1 − z2) =
1

2
z1 −

1

4
z1(1 − z2) =

1

4
z1 +

1

4
z1z2,

T (z1, z2)(1 − z1)(1 − z2) =
1

16
(z1z2 − z2

1z2 − z1z
2
2 + z2

1z
2
2),
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T (z1, z2)(1 − z1)(1 − z2) + (S1(z1, z2) + T1(z1, z2)(1 − z1))(S2(z1, z2) + T2(z1, z2)(1 − z2))

=
1

16
(z1z2 + z2

1z2 + z1z
2
2 + z2

1z
2
2) +

1

16
(z1z2 − z2

1z2 − z1z
2
2 + z2

1z
2
2)

=
1

8
z1z2(1 + z1z2). (2.87)Multiplying both sides of (2.87) by 4z−2

1 z−2
2 yields, for z1, z2 ∈ C \ {0},

4z−2
1 z−2

2

1

8
z1z2(1 + z1z2) = z−1

1 z−1
2

1

2
(1 + z1z2) = B̃2(z1, z2),by virtue of (2.79) and (2.81). Hen
e B = B̃2 is of the form (2.69), where the polynomials

S1, S2 are given by (2.83) and (2.84), and the polynomials T1, T2 and T given by (2.86).



Chapter 3
Interpolatory subdivision s
hemes
The main theme in this 
hapter are the 
on
epts of interpolatory bivariate subdivisions
hemes and the 
as
ade algorithm. In Se
tion 3.2, we dis
uss the 
onvergen
e of inter-polatory subdivision s
hemes, whereas, in Se
tion 3.3, we prove that 
ertain properties ofthe initial fun
tion are preserved by the iterates of the 
as
ade algorithm if the interpola-tory mask and the dilation matrix are 
hosen to satisfy the 
onditions (3.18) and (3.19)below.
3.1 PreliminariesFor a given sequen
e a ∈ M0(Z

2) and a dilation matrix M , the subdivision operator
Sa : M(Z2) →M(Z2) is de�ned for any sequen
e c ∈M(Z2) by

(Sac)j =
∑k aj−MkT ck, j ∈ Z2. (3.1)

47



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 48The resulting subdivision s
heme Sa then generates, for a given sequen
e c ∈M(Z2), thesequen
e {c(r) : r ∈ Z+} ⊂ M(Z2) by means of the re
ursive formulation
c(0) = c, c(r+1) = Sa(c

(r)), r ∈ Z+, (3.2)or, equivalently, c(r) = Sr
ac, r ∈ Z+, where

S0
ac = c, Sr+1

a c = Sa(S
r
ac), r ∈ Z+. (3.3)The sequen
e a is 
alled the subdivision mask, also referred to as the mask, and if asatis�es the interpolatory 
onditions in the sense of (1.8), then in (3.1) we have

(Sac)MjT = cj, j ∈ Z2. (3.4)In that 
ase, by indu
tion on r ∈ Z+, we also have in (3.2) that
c
(r+1)

MjT = c
(r)j , j ∈ Z2, (3.5)whi
h means that, at ea
h level of iteration, the subdivision s
heme pro
ess preserves allthe points obtained in the previous subdivision steps. Su
h a subdivision s
heme is then
alled interpolatory.For a set M ⊂M(Z2), we say that the subdivision s
heme Sa is 
onvergent on M if,for any sequen
e c ∈ M, there exists a fun
tion f ∈ C(R2) depending on c, su
h that

lim
r→∞

‖Sr
ac− f(M−r·)‖∞ = 0, (3.6)where, for r ∈ Z+, f(M−r·) denotes the sequen
e {f(M−rjT ) : j ∈ Z2}. The limit fun
tion

f will often be denoted by S∞
a c.



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 49Similarly, for a given dilation matrix M and a sequen
e a ∈ M0(Z
2), we de�ne the
as
ade operator Ta : M(R2) →M(R2) by

Taf =
∑j ajf(M · −j), f ∈M(R2). (3.7)The resulting 
as
ade algorithm Ta then generates, for a given initial fun
tion g ∈M(R2),the sequen
e {fr : r ∈ Z+} by means of the re
ursive formula

f0 = g, fr+1 = Tafr, r ∈ Z+, (3.8)or, equivalently, fr = T r
a g, r ∈ Z+, where

T 0
a f = f, T r+1

a f = Ta(T
r
a f), r ∈ Z+. (3.9)The 
as
ade algorithm Ta is said to be 
onvergent on a set M ⊂ C0(R

2) if, for any initialfun
tion g ∈ M, there exists a fun
tion f ∈ C(R2) su
h that
lim
r→∞

‖T r
ag − f‖∞ = 0. (3.10)The limit fun
tion f will often be denoted by T∞

a g.For 
onvenien
e, we shall simply say, for a subdivision s
hemes, � 
onvergent � for� 
onvergent on M(Z2) �, and, for the 
as
ade algorithm, � 
onvergent � for � 
onvergenton C0(R
2) �.Our following result presents an important relationship between subdivision s
hemesand 
as
ade algorithms. Our proof uses a similar argument as in [Dyn92℄ where only the
ase M = 2I is dis
ussed.Proposition 3.1.1. Suppose that M is a dilation matrix and a an interpolatory mask.
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e c ∈M(Z2) and for any fun
tion f ∈ M(R2),
∑j (Sr

ac)jf(M r · −j) =
∑j cj(T r

a f)(· − j), r ∈ Z+. (3.11)In parti
ular, 
hoosing the sequen
e c in (3.11) as the delta sequen
e δ de�ned in (1.3),yields, for any fun
tion f ∈M(R2),
T r

a f =
∑j (Sr

aδ)jf(M r · −j), r ∈ Z+. (3.12)Proof. Let f ∈ M(R2) and c ∈ M(Z2). First, note from (3.3) and (3.9) that (3.11)trivially holds for r = 0. Next, we use (3.3), together with (3.1) and (3.7), to obtain
∑j (Sr

ac)jf(M r · −j) =
∑j ∑k aj−MkT (Sr−1

a c)kf(M r · −j)
=
∑k (Sr−1

a c)k∑j aj−MkT f(M r · −j)
=
∑k (Sr−1

a c)k∑j ajf(M r · −MkT − j)
=
∑k (Sr−1

a c)k∑j ajf(M(M r−1 · −k) − j)
=
∑k (Sr−1

a c)k(Taf)(M r−1 · −k)...
=
∑k (S0

ac)k(T r
af)(· − k)

=
∑k ck(T r

a f)(· − k),by virtue of (3.3), thereby showing that (3.11) holds.
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ular, 
hoosing c = δ in (3.11) yields
∑j (Sr

aδ)jf(M r · −j) =
∑i δi(T r

af)(· − i) = T r
af, r ∈ Z+, f ∈M(R2).

3.2 Subdivision s
hemes 
onvergen
eAssuming that the interpolatory re�nable fun
tion exists, we pro
eed to analyse the 
on-vergen
e of the asso
iated interpolatory subdivision s
heme.Observe �rst that a dilation matrix M de�nes a bije
tive linear appli
ation from theset of rational pairs Q2 into itself, so that the dyadi
 set D given by
D =

{

M−rjT : j ∈ Z2, r ∈ Z+

}

, (3.13)is dense in R2. We prove the following result.Theorem 3.2.1. Suppose that φ is an interpolatory re�nable fun
tion asso
iated with theinterpolatory mask a ∈ M0(Z
2) and with the dilation matrix M . Then, for any initialsequen
e c ∈M(Z2), the fun
tion Φ de�ned by

Φ =
∑j cjφ(· − j), (3.14)satis�es(i) Φ(m) = cm, m ∈ Z2;(ii) Φ(M−rm) = (Sr

ac)m, r ∈ Z+, m ∈ Z2.
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e c ∈ M(Z2), the subdivision s
heme Sa, as de�ned by (3.1),
onverges to the fun
tion Φ given by (3.14), so that
S∞

a c = Φ and S∞

a δ = φ, (3.15)where δ denotes the delta sequen
e de�ned by (1.3).Proof. Consider a sequen
e c ∈M(Z2). Then:
(i) Sin
e φ is interpolatory, it follows from (3.14) that

Φ(m) =
∑j cjφ(m− j) = cm, m ∈ Z2.

(ii) Sin
e φ is re�nable, it follows from (3.14), (3.1) and (3.3) that, for r ∈ Z+,m ∈ Z2,
Φ
(

M−rmT
)

=
∑j cjφ (M−rmT − j)

=
∑j cj∑k akφ (M−r+1mT −MjT − k)

=
∑j cj∑k ak−MjTφ (M−r+1mT − k)

=
∑k [

∑j ak−MjT cj]φ(M−r+1mT − k)

=
∑k (Sac)kφ (M−r+1mT − k)...

=
∑k (Sr

ac)kφ(m− k)

=(Sr
ac)m, (3.16)by virtue of the interpolatory property of φ.
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(a) Initial sequen
e c (b) Graph of Φ and cFigure 3.1: Subdivision Sã(2) applied to cGiven the fa
t that the set D de�ned by (3.13) is dense in R2, we dedu
e from (3.16)that ‖Sr
ac− Φ(M−r·)‖∞ = 0, r ∈ Z+, and therefore (3.6) holds. Hen
e, for any sequen
e

c ∈ M(Z2), the subdivision s
heme Sa 
onverges to the fun
tion Φ given by (3.14), i.e.
S∞

a c = Φ. In parti
ular, 
hoosing c = δ in (3.14) yields S∞
a δ = φ.As an example, 
onsider the shifted box spline Ñ2 from Chapter 1, and the asso
iatedinterpolatory mask ã(2) given by (1.31), i.e.















ã
(2)
0,0 = 1, ã

(2)
1,1 = ã

(2)
0,1 = ã

(2)
1,0 = ã

(2)
−1,0 = ã

(2)
0,−1 = ã

(2)
−1,−1 = 1

2
,

ã
(2)
i,j = 0, (i, j) /∈ {(0, 0), (0, 1), (1, 0), (−1, 0), (0,−1), (1, 1), (−1,−1)}.

(3.17)A

ording to Theorem 3.2.1, the subdivision s
heme Sã(2) is 
onvergent. Therefore, forany initial sequen
e c ∈M(Z2), the limit fun
tion Φ = S∞

ã(2)c is guaranteed to exist.Choosing the initial sequen
e c as the red points in Figure 3.1 (a), the graph of the limitfun
tion Φ is illustrated in Figure 3.1 (b), showing that the initial points are preservedby means of the subdivision pro
ess. Observe, however, that Φ ∈ C(R2) \ C1(R2), i.e. Φde�nes a non-smooth surfa
e.
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as
ade algorithmIn this se
tion, we show that 
ertain properties of the initial fun
tions are preserved bythe iterates {fr : r ∈ Z+} of the 
as
ade algorithm. More pre
isely, for an appropriatesequen
e a ∈M0(Z
2), we show that the initial fun
tion g and its image Tag share 
ertainproperties. By indu
tion on r ∈ Z+, we then show that g and T r

a g have 
ommon prop-erties, so that, in the 
ase where the 
as
ade algorithm is 
onvergent, by 
onsidering thelimit r → ∞, we shall show that the limit fun
tion T∞
a g also preserves these propertiesof the initial fun
tion g.For this purpose, we �rst state (without proof) the following result [HJ98a℄ (see also[KLY07℄), whi
h presents a ne
essary 
ondition on the interpolatory mask a for the 
on-vergen
e of the 
orresponding subdivision s
heme.Proposition 3.3.1. Suppose that the subdivision s
heme Sa asso
iated with an interpo-latory mask a ∈ M0(Z

2) and a dilation matrix M is 
onvergent. Then a satis�es the
ondition
∑j ak−MjT = 1, k ∈ Z2. (3.18)It should be pointed here that the 
onverse of Proposition 3.3.1 does not hold, thatis, the 
ondition (3.18) is not su�
ient for the subdivision s
heme Sa to 
onverge.Next we prove the following result on the preservation of properties with respe
t tothe 
as
ade operator.Theorem 3.3.2. Suppose that M is a dilation matrix and a ∈ M0(Z

2) an interpolatorymask supported on some �nite square [N1, N2]
2, and su
h that the sequen
e a satis�es the
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ondition (3.18). Suppose, in addition, that M satis�es the 
ondition
[2α, 2β]2 ⊆M [α, β]2, α, β ∈ Z. (3.19)Then, given an initial fun
tion g ∈ M(R2), the fun
tions {φr = T r

a g : r ∈ Z+} asgenerated re
ursively by means of (3.8), satisfy the following:(i) If supp(g) ⊆ [N1, N2]
2, then supp(φr) ⊆ [N1, N2]

2;(ii) If g ∈ C(R2), then φr ∈ C(R2);(iii) If g satis�es the 
ondition
g(j) = δj, j ∈ Z2, (3.20)then φr satis�es the 
ondition
φr(j) = δj, j ∈ Z2; (3.21)(iv) If g satis�es the partition of unity property, i.e.

∑j g(x− j) = 1, x ∈ R2, (3.22)then φr satis�es the partition of unity, i.e.
∑j φr(x− j) = 1, x ∈ R2. (3.23)Proof. We pro
eed by indu
tion on r. Re
all �rst from the re
ursive formula (3.8), to-gether with (3.7), that

φr+1 = Taφr =
∑j ajφr(M · −j), r ∈ Z+. (3.24)



CHAPTER 3. INTERPOLATORY SUBDIVISION SCHEMES 56Next, for r = 0, suppose that, in (i), (ii), (iii) and (iv) respe
tively, φ0 = g is supportedon [N1, N2]
2, 
ontinuous, interpolatory as in (3.20) and satisfying the partition of unityproperty (3.22).Let us now �x r ∈ Z+. The following holds:

(i) If supp(φr) ⊆ [N1, N2]
2, it holds that, for x ∈ R2 and j ∈ [N1, N2]

2,
MxT − j ∈ [N1, N2]

2 =⇒ MxT ∈ j+ [N1, N2]
2 ⊆ [2N1, 2N2]

2

=⇒ x ∈M−1
(j + [N1, N2]

2
)

⊆ M−1 [2N1, 2N2]
2 . (3.25)Sin
e a is supported on [N1, N2]

2, and sin
e there is only a �nite number of integers j in
[N1, N2]

2, we dedu
e from (3.25), (3.24) and (3.19) that the support of φr+1 satis�essupp(φr+1) ⊆
⋃j∈[N1,N2]2

M−1
(j + [N1, N2]

2
)

⊆
⋃j∈[N1,N2]2

M−1 [2N1, 2N2]
2 ⊆ [N1, N2]

2,by virtue of (3.19).
(ii) If φr is 
ontinuous, then the shifts with respe
ts to Z2 of its dilations are 
ontin-uous, so that, from (3.24), we dedu
e that φr+1 is also 
ontinuous.
(iii) If φr is interpolatory as in (3.21), we obtain from (3.24) and (1.8) that, for j ∈ Z2,

φr+1(j) =
∑k akφr(MjT − k) = aMjT = δj.

(iv) If φr satis�es the partition of unity property, then we have for x ∈ R2 that
∑k φr(Mx− k) = 1, (3.26)
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h, together with (3.24) and (3.18), yields, for x ∈ R2,
∑j φr+1(x− j) =

∑j ∑k akφr(Mx−MjT − k)

=
∑j ∑k ak−MjTφr(Mx− k)

=
∑k [

∑j ak−MjT]φr(Mx− k)

=
∑k φr(Mx− k)

=1,whi
h then 
ompletes our indu
tive proof.In the 
ase where the 
as
ade algorithm is 
onvergent, we show in the result belowthat the limit fun
tion preserves 
ertain properties of the initial fun
tion.Theorem 3.3.3. Under the 
onditions of Theorem 3.3.2, with spe
i�
ally g satisfying the
onditions in (i) to (iv) of that theorem, if also g ∈ C0(R
2) and the sequen
e a is su
h thatthe 
as
ade algorithm (3.8) is 
onvergent with limit fun
tion φ, then the following holds:(i) φ ∈ C0(R

2);(ii) If supp(g) ⊆ [N1, N2]
2, then supp(φ) ⊆ [N1, N2]

2;(iii) φ is an interpolatory re�nable fun
tion with respe
t to the re�nement sequen
e aand the dilation matrix M , satisfying also the partition of unity property
∑j φ(x− j) = 1, x ∈ R2. (3.27)Proof. (i) Sin
e g ∈ C0(R

2), it follows from Theorem 3.3.3 (i) and (ii) that φr = T r
a g ∈

C0(R
2), r ∈ Z+, so that the uniform 
onvergen
e result ‖φ− φr‖∞ → 0, r → ∞, thenyields φ ∈ C0(R

2).
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(ii) Suppose that supp(g) ⊆ [N1, N2]

2, and let x /∈ [N1, N2]
2, so that Theorem 3.3.3 (i)yields φr(x) = 0, r ∈ Z+. Hen
e,

|φ(x)| = |φ(x) − φr(x)| ≤ ‖φ− φr‖∞ → 0, r → ∞,and it follows that φ(x) = 0, i.e. supp(φ) ⊆ [N1, N2]
2.

(iii) A

ording to Theorem 3.3.2 (iii), φr is interpolatory for every r ∈ Z+, so that,for j ∈ Z2,
|φ(j) − δj| = |φ(j) − φr(j)| ≤ ‖φ− φr‖∞ → 0, r → ∞,and it follows that φ is interpolatory as in (1.2).To prove that φ satis�es the re�nement equation (1.1), we use (3.8) and (3.7) to obtain

‖φ− Taφ‖∞ ≤‖φ− φr+1‖∞ + ‖Ta(φr − φ)‖∞

≤‖φ− φr+1‖∞ +

[

∑j |aj|] ‖φr − φ‖∞ → 0, r → ∞,i.e. φ = Taφ, whi
h is equivalent to (1.1).Finally, sin
e φ is interpolatory and re�nable, we dedu
e from (3.18) that, for i ∈ Z2and r ∈ Z+,
∑j φ (M−riT − j) =

∑j ∑k akφ (M−r+1iT −MjT − k)
=
∑j ∑k ak−MjTφ (M−r+1iT − k)

=
∑k [

∑j ak−MjT]φ (M−r+1iT − k)
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=
∑k φ

(

M−r+1iT − k)...
=
∑k φ (i− k)

=
∑k φ(k)

=1,from whi
h we 
on
lude, by re
alling also the fa
t that the dyadi
 set D in (3.13) is densein R2, that φ satis�es the partition of unity 
ondition (3.27).In 
on
lusion, the important results of this se
tion are that 
as
ade algorithm 
onver-gen
e implies interpolatory re�nable fun
tion existen
e, whi
h in turn implies subdivision
onvergen
e. Graphi
al illustrations are provided in Chapter 4.



Chapter 4
Existen
e of interpolatory re�nablefun
tions
For the dilation matrix M = 2I, we present in this 
hapter three methods to prove, for agiven re�nement mask, the existen
e of a 
orresponding interpolatory re�nable fun
tion.The �rst method is based on a result by Mi

helli [Mi
96℄ for interpolatory mask symbolswhi
h are fa
torizable and whi
h are non-negative on the torus T . The se
ond method, asdes
ribed in Se
tion 4.2, 
onsists of using tensor produ
ts in order to generate bivariatere�nable fun
tions from univariate ones. Finally, the third method presented in Se
tion 4.3is based on dedu
tions from numeri
al results, as generally applied to interpolatory maskssatisfying higher order sum rules.An important 
on
ept is this se
tion is that of symmetry whi
h we pro
eed to de�neas follows. For a re�nement mask in a ∈M0(Z

2), 
onsider the following properties:
a(−i, j) =a(i,−j) = a(i, j), (i, j) ∈ Z2, (4.1)

a(−i,−j) =a(i, j), (i, j) ∈ Z2, (4.2)
a(j, i) =a(i, j), (i, j) ∈ Z2. (4.3)60



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 61We say that a is symmetri
 about the two axes if a satis�es the property (4.1), symmetri
about the origin if a satis�es the property (4.2), and symmetri
 about the line y = x if asatis�es the property (4.3).
4.1 For non-negative masksConsider the torus T and its subset T̃ de�ned respe
tively by
T = {(eix1 , eix2) : x1, x2 ∈ R} and T̃ = {(eix1, eix2) : x1, x2 ∈ R, |x1|, |x2| ≤ π/2}.A mask a ∈ M0(Z

2) is termed non-negative if the 
orresponding mask symbol A, asde�ned by (1.9), is non-negative on the torus T , i.e.
A(eix1 , eix2) ≥ 0, x1, x2 ∈ R. (4.4)The result below presents a su�
ient 
ondition on the interpolatory mask for theexisten
e of the 
orresponding interpolatory re�nable fun
tion. We refer to [Mi
96℄ forthe proof.Theorem 4.1.1. Consider the dilation matrix M = 2I, and suppose that a ∈M0(Z

2) is anon-negative interpolatory mask. Suppose, in addition, that there exist integers k1, k2 ∈ Nand a Laurent polynomial B, su
h that the 
orresponding mask symbol A is of the form
A(z1, z2) = 22−k1−k2(1 + z1)

k1(1 + z2)
k2B(z1, z2), z1, z2 ∈ C \ {0}, (4.5)with B(1, 1) = 1 and B(z1, z2) 6= 0 for (z1, z2) ∈ T̃ .Then the 
orresponding interpolatory re�nable fun
tion φa ∈ C0(R

2) exists.



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 62Example 1Consider the mask symbol G1 de�ned by
G1(z1, z2) =

1

4
(1 + z1)

2(1 + z2)
2z−1

1 z−1
2 , z1, z2 ∈ C \ {0}. (4.6)We verify that G1 satis�es (2.1), i.e. G1 is interpolatory. Moreover, G1 is of the form(4.5), with k1 = k2 = 2 and B(z1, z2) = z−1

1 z−1
2 , z1, z2 ∈ C \ {0}.Using the expression of G1 in (4.6), we obtain, for x1, x2 ∈ R,

G1(eix1 , eix2) =1 +
1

2

(eix1 + e−ix1 + eix2 + e−ix2
)

+
1

4

(ei(x1+x2) + e−i(x1+x2) + ei(x1−x2) + e−i(x1−x2)
)

=1 + cosx1 + cosx2 +
1

2
[cos(x1 + x2) + cos(x1 − x2)]

=1 + cosx1 + cosx2 + cosx1 cosx2

=(1 + cosx1)(1 + cos x2) ≥ 0,that is, G1 is non-negative on the torus T . Moreover, sin
e B(z1, z2) = z−1
1 z−1

2 , z1, z2 ∈

C \ {0}, we 
learly have B(1, 1) = 1 and B(z1, z2) 6= 0, z1, z2 ∈ T̃ . Hen
e, a

ording toTheorem 4.1.1, the 
orresponding interpolatory re�nable fun
tion φ ∈ C0(R
2) exists.Example 2Consider next the mask symbol Ã2, as given by (1.32), i.e.

Ã2(z1, z2) = (1 + z1)(1 + z2)

(

1 + z1z2
2

)

z−1
1 z−1

2 , z1, z2 ∈ C \ {0}, (4.7)
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ording to whi
h, Ã2 is of the form (4.5), with k1 = k2 = 1 and
B(z1, z2) =

(

1 + z1z2
2

)

z−1
1 z−1

2 , z1, z2 ∈ C \ {0}.Re
all from Chapter 1 that Ã2 is interpolatory, and that the 
orresponding interpola-tory re�nable fun
tion is the box spline Ñ2 ∈ C0(R
2) given by (1.30).However, the mask symbol Ã2 is not non-negative on the torus T . As a matter of fa
t,by using the expression of Ã2 in (4.7), we obtain, for x1, x2 ∈ R,

Ã2(eix1, eix2) = 1 +
1

2

(eix1 + e−ix1 + eix2 + e−ix2 + ei(x1+x2) + e−i(x1+x2)
)

= 1 + cosx1 + cosx2 + cos(x1 + x2).Sin
e Ã2(ei2π/3, ei2π/3) = −
1

2
< 0, we dedu
e that Ã2 is not non-negative on the torus T .Therefore, observe that there are mask symbols whi
h are not non-negative on the
omplex unit 
ir
le, but for whi
h 
orresponding interpolatory re�nable fun
tions exist.Hen
e, the 
onditions for interpolatory re�nable fun
tion existen
e in Theorem 4.1.1 aresu�
ient but not ne

essary.

4.2 Tensor produ
tsTensor produ
ts, as brie�y dis
ussed in [DL02℄ (see also [Dyn92℄), yield the simplestmethod to generate bivariate re�nable fun
tions. More pre
isely, given two univariatefun
tions φ̃ and ψ̃, the bivariate fun
tion φ, obtained by the tensor produ
t of φ̃ and ψ̃,inherits some of the properties of the two 
onstituent fun
tions φ̃ and ψ̃. In parti
ular, if
φ̃ and ψ̃ are interpolatory and re�nable, then φ is interpolatory and re�nable.Given two fun
tions φ̃ ∈ Cα1(R) and ψ̃ ∈ Cα2(R), α1, α2 ∈ Z+, we de�ne the tensor
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t φ = φ̃ · ψ̃ as the fun
tion given by
φ(x, y) = φ̃(x)ψ̃(y), (x, y) ∈ R2, (4.8)so that φ ∈ Cα(R2), where α = min{α1, α2}.Let ϕ ∈ M0(R). We say that ϕ is interpolatory if ϕ(j) = δj , j ∈ Z, that ϕ satis�esthe partition of unity 
ondition if∑

j

ϕ(x− j) = 1, x ∈ R, and that ϕ is re�nable if thereexists a sequen
e a ∈M0(Z), 
alled the re�nement mask, su
h that ϕ =
∑

j

ajϕ(2 · −j).We are now able to present the following result.Theorem 4.2.1. Suppose that φ̃ ∈ Cα1
0 (R) and ψ̃ ∈ Cα2

0 (R), α1, α2 ∈ Z+, are re�nablefun
tions with 
orresponding masks ã and b̃ respe
tively. Then, the tensor produ
t φde�ned by (4.8) is a re�nable fun
tion asso
iated with the dilation matrix M = 2I andthe re�nement mask a given by
aj,k = ãj b̃k, (j, k) ∈ Z2. (4.9)Moreover, if φ̃ and ψ̃ are both interpolatory re�nable fun
tions, then φ is an interpolatoryre�nable fun
tion. Also, if φ̃ and ψ̃ both satisfy the partition of unity 
ondition, then φsatis�es the partition of unity 
ondition (3.27).Proof. Sin
e φ̃ and ψ̃ are re�nable, we dedu
e from (4.8) that, for (x, y) ∈ R2,

φ(x, y) = φ̃(x)ψ̃(y) =
∑

j

ãjφ̃(2x− j)
∑

k

b̃kψ̃(2y − k)

=
∑

j

∑

k

ãj b̃kφ̃(2x− j)ψ̃(2y − k)

=
∑

j,k

aj,kφ(2x− j, 2y − k),
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ording to whi
h, φ is re�nable with asso
iated dilation matrix M = 2I and mask agiven by (4.9).If φ̃ and ψ̃ are both interpolatory, then, for j = (i, j) ∈ Z2,
φ(j) = φ(i, j) = φ̃(i)ψ̃(j) = δiδj = δj,proving that φ is interpolatory as in (1.2).If φ̃ and ψ̃ both satisfy the partition of unity, then we have, for x = (x, y) ∈ R2,

∑j φ(x− j) =
∑

i,j

φ(x− i, y − j) =

[

∑

i

φ̃(x− i)

][

∑

j

ψ̃(y − j)

]

= 1,whi
h shows that φ satis�es the partition of unity 
ondition (3.27).Denoting respe
tively by Ã, B̃ and A the mask symbols 
orresponding to the masks
ã, b̃ and a in Theorem 4.2.1, it follows from (4.9) that, for z1, z2 ∈ C \ {0},

A(z1, z2) =
∑

j,k

aj,kz
j
1z

k
2 =

(

∑

j

ãjz
j
1

)(

∑

k

b̃kz
k
2

)

= Ã(z1)B̃(z2). (4.10)The result below is then a dire
t 
onsequen
e of Theorem 4.2.1.Corollary 4.2.2. Given a mask symbol A, suppose that there exist mask symbols Ã and
B̃ su
h that (4.10) holds. If there exist interpolatory re�nable fun
tions φ̃ ∈ Cα1

0 (R) and
ψ̃ ∈ Cα2

0 (R), α1, α2 ∈ Z+, 
orresponding to Ã and B̃, then the tensor produ
t φ = φ̃ · ψ̃ ∈

Cα
0 (R2), where α = min{α1, α2}, is an interpolatory re�nable fun
tion with asso
iateddilation matrix 2I and re�nement mask symbol A.
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(a) Support of the mask asso
iated with
φ = h̃ · h̃
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(b) Graph of φ = h̃ · h̃Figure 4.1: The tensor produ
t of the hat fun
tion h̃As an example, 
onsider the shifted hat fun
tion h̃ ∈ C0(R), as de�ned by
h̃(x) =































x+ 1, x ∈ [−1, 0),

1 − x, x ∈ [0, 1),

0, x ∈ R \ [−1, 1),

(4.11)
whi
h is interpolatory, re�nable and supported on the interval [−1, 1], and whi
h asso
i-ated mask symbol Ãh̃ is given by

Ãh̃(z) =
1

2
(1 + z)2z−1 = 1 +

1

2
(z + z−1), z ∈ C \ {0}. (4.12)It follows from Theorem 4.2.1 that φ = h̃ · h̃ ∈ C0(R

2) is an interpolatory re�nablefun
tion supported on the square [−1, 1]2. The graph of φ is given in Figure 4.1 (b), andthe support of the 
orresponding interpolatory mask is delimitated by the dotted lines inFigure 4.1 (a).
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(a) Support of AD
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(b) Graph of φD
= φ̃D · φ̃DFigure 4.2: The tensor produ
t of the Dubu
-Deslauriers φ̃DMoreover, we dedu
e from (4.12) and (4.10) that the asso
iated interpolatory masksymbol Ã is given by

Ã(z1, z2) = Ãh̃(z1) · Ãh̃(z2) =
1

4
(1 + z1)

2(1 + z2)
2z−1

1 z−1
2 , z1, z2 ∈ C \ {0}. (4.13)Observe that the mask symbol Ã given by (4.13) and the mask symbol G1 given by (4.6)are the same, whi
h means that they 
orrespond to the same re�nable fun
tion φ whi
hexisten
e is guaranteed by both Theorem 4.2.1 and Theorem 4.1.1.Next, 
onsider the Dubu
-Delauriers fun
tion φ̃D [Hun05℄ (see also [VGH03℄) whi
h isinterpolatory, re�nable and supported on the interval [−3, 3], and whi
h asso
iated masksymbol ÃD is given by

ÃD(z) =1 +
9

16
(z + z−1) −

1

16
(z3 + z−3)

=
1

16
z−2(1 + z)4(4 − z − z−1), z ∈ C \ {0}. (4.14)
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(a) Graph of Φ
Ã

and c (b) Graph of ΦAD and cFigure 4.3: Subdivisions S
Ã
and SAD applied to cSin
e also φ̃D ∈ C1

0(R), it follows from Theorem 4.2.1 that φD = φ̃D · φ̃D ∈ C1
0(R

2) isan interpolatory re�nable fun
tion supported on the square [−3, 3]2. Besides, we dedu
efrom (4.14) and (4.10) that the asso
iated mask symbol AD is given by
AD(z1, z2) =

1

256
(1+z1)

4(1+z2)
4z−2

1 z−2
2 (4−z1−z

−1
1 )(4−z2−z

−1
2 ), z1, z2 ∈ C\{0}. (4.15)Observe that the graph of φD, as shown in Figure 4.2 (b), is indeed a smooth surfa
e asimplied by Theorem 4.2.1. The support of the 
orresponding interpolatory mask symbol

AD is delimitated by the dotted lines in Figure 4.2 (a).Let us now use the 
ontrol point c illustrated in Figure 3.1 (a), and denote by S
Ã
and

SAD the subdivision s
hemes 
orresponding to the interpolatory mask symbols Ã and AD,as respe
tively given by (4.13) and by (4.15). We show in Figures 4.3 (a) and (b) thegraphs of the limit fun
tions Φ
Ã
and ΦAD 
orresponding respe
tively to the subdivisions
hemes S

Ã
and SAD , with respe
t to the initial sequen
e c.Observe that ΦAD ∈ C1(R2), i.e. ΦAD de�nes a smooth surfa
e, whereas both Φ

Ã
inFigure 4.3 (a) and Φ in Figure 3.1 (b) de�ne non-smooth surfa
es. In general, smoother
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tions 
an be obtained by tensor produ
ts, yet they present the disadvantageof having large supports.
4.3 Mask 
onstru
tion based on sum rulesIn this se
tion, we dedu
e from numeri
al results the existen
e of re�nable fun
tionsasso
iated with interpolatory masks 
onstru
ted from sum rules.Borrowing the de�nition in [HJ00℄, given a dilation matrixM , we say that a sequen
e
a ∈M(Z2) satis�es the sum rules of order k ∈ N if

∑

β∈MZ2

aε+βp(ε+ β) =
∑

β∈MZ2

aβp(β), ε ∈ Z2, p ∈ Πk−1, (4.16)where Πk−1 denotes the set of bivariate polynomials of total degree (at most) k−1. Sin
e
Πk−1 is generated by the monomial ideal 〈zµ1

1 z
µ2

2 : (µ1, µ2) ∈ Z2
+, µ1 + µ2 ≤ k − 1〉, weobserve from (1.8) that, for an interpolatory mask a ∈ M0(Z
2), the property (4.16) isequivalent to

∑

(β1,β2)∈MZ2

aε1+β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2 = δ(µ1,µ2), µ1 + µ2 ≤ k − 1, (4.17)for (µ1, µ2) ∈ Z2
+ and (ε1, ε2) ∈ Z2, where δ denotes the delta sequen
e de�ned by (1.3).Using then a similar argument as in [HJ98b℄, we 
laim that, for an interpolatory mask

a ∈ M0(Z
2) symmetri
 about the two 
oordinates, the sum rules (4.17) holds whenever

µ1 or µ2 is an odd number.To prove this, 
onsider an interpolatory mask a ∈ M0(Z
2) and suppose that a is
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 about the two 
oordinates. If µ1 is odd, we have, for µ2 ∈ Z+ and (ε1, ε2) ∈ Z2,
∑

(β1,β2)∈MZ2

aε1+β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2

=
∑

(β1,β2)∈MZ2

a−ε1−β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2

= −
∑

(β1,β2)∈MZ2

aε1+β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2 ,and thus
∑

(β1,β2)∈MZ2

aε1+β1,ε2+β2(ε1 + β1)
µ1(ε2 + β2)

µ2 = 0 = δ(µ1,µ2).We apply a similar argument for the 
ase where µ2 is odd.A

ording to [HJ98b℄ (see also [HJ00℄), given a dilation matrixM and an interpolatoryre�nable fun
tion φ ∈ C0(R
2), the shift invariant spa
e S(φ) generated by φ, as de�nedby

S(φ) =

{

∑j cjφ(· − j), c ∈M(Z2)

}

, (4.18)
ontains Πk−1 if and only if the interpolatory mask a ∈M0(Z
2) asso
iated with φ satis�esthe sum rules of order k ∈ N.From this perspe
tive, it seems sensible to have an interpolatory mask that satis�esthe sum rules of as high an order as possible. In [HJ98b℄, some �nitely supported interpo-latory masks are 
onstru
ted by solving for the sequen
e a from the non-linear equations(4.17). However, the existen
e of the asso
iated interpolatory re�nable fun
tions are notinvestigated.This motivates us to investigate numeri
ally whether for some of the interpolatorymasks 
onstru
ted in [HJ98b℄, the 
orresponding interpolatory re�nable fun
tions seemto exist.
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2), we use the deltasequen
e δ de�ned in (1.3), as well as the dyadi
 set D de�ned in (3.13), to dedu
e from(3.12) that, for f ∈M(R2),

T r
af(M−rkT ) =

∑j (Sr
aδ)jf(k− j), k ∈ Z2, r ∈ Z+,a

ording to whi
h, if the fun
tion f satis�es f(j) = δj, j ∈ Z2, then it holds that

T r
af(M−rkT ) =(Sr

aδ)k, k ∈ Z2, r ∈ Z+. (4.19)Considering then an initial fun
tion g ∈ C0(R
2) 
hosen to be interpolatory and re�nable,we shall use the 
as
ade algorithm Ta, as de�ned in (3.7), to draw the graphs of φ0 = g,

φ1 = Tag and φ2 = T 2
a g by means of the formula (3.9). Sin
e evaluating φr = T r

ag is
omputationally intense for large values of r ∈ Z+, we shall rather use (4.19) in orderto represent the graph of φr. More pre
isely, for r ≥ 3, we plot the sequen
e of points
(M−rjT , (Sr

aδ)j), j ∈ Z2, as generated re
ursively by means of the subdivision s
heme Sr
ade�ned in (3.3).The interpolatory masks g2 and h2Let the dilation matrix M = 2I be �xed, and let a ∈ M0(Z

2) be an interpolatory mask.From now on, we shall use the shifted box spline Ñ2 ∈ C0(R
2) de�ned by (1.30) as theinitial interpolatory re�nable fun
tion for the 
as
ade algorithm T r

a , r ∈ Z+, as given by(3.9).A

ording to (4.17), the mask a ∈M0(Z
2) satis�es the sum rules of order k ∈ Z+ if

∑

β1,β2

a(ε1 + 2β1, ε2 + 2β2)(ε1 + 2β1)
µ1(ε2 + 2β2)

µ2 = δ(µ1,µ2), µ1 + µ2 ≤ k − 1, (4.20)
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+ and (ε1, ε2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)}.The interpolatory mask a = g2 [HJ98b℄ is 
ontru
ted in su
h a way to satisfy the sumrules of order 4, and to be supported on the set {(α1, α2) : |α1|+ |α2| ≤ 4}. It is obtainedby solving the linear system (4.20) for k = 4, after setting also a(i, j) = 0, |i| + |j| ≥ 5,yielding the values a(i, j) = g2(i, j) given by
g2(0, 0) =1,

g2(3, 0) =g2(−3, 0) = g2(0, 3) = g2(0,−3) =
−1

16
,

g2(1, 0) =g2(−1, 0) = g2(0, 1) = g2(0,−1) =
9

16
,

g2(1, 1) =g2(−1, 1) = g2(1,−1) = g2(−1,−1) =
5

16
,

g2(3, 1) =g2(−3, 1) = g2(3,−1) = g2(−3,−1) =
−1

32
,

g2(1, 3) =g2(−1, 3) = g2(1,−3) = g2(−1,−3) =
−1

32
.The mask symbol G2 asso
iated with g2 is given by

G2(z1, z2) = 1 −
1

16
(z−3

1 + z3
1 + z−3

2 + z3
2) +

9

16
(z−1

1 + z1 + z−1
2 + z2)

+
5

16
(z1z2 + z−1

1 z2 + z1z
−1
2 + z−1

1 z−1
2 ) −

1

32
b(z1, z2), z1, z2 ∈ C \ {0}, (4.21)where b(z1, z2) = z3

1z2 + z−3
1 z−1

2 + z1z
3
2 + z−1

1 z−3
2 + z1z

−3
2 + z−1

1 z3
2 + z−3

1 z2 + z3
1z

−1
2 , for

z1, z2 ∈ C \ {0}. Note that G2 
an be re-written as
G2(z1, z2) =

1

16
(1 + z1)

2(1 + z2)
2z−2

1 z−2
2

[

z1z
2
2 + z2

1z2 −
1

2
(z1z

3
2 + z3

1z2)

−
1

2
(z1z

−1
2 + z−1

1 z2) + z1 + z2 + 2z1z2

]

, z1, z2 ∈ C \ {0}.
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(a) Graph of Tg2
Ñ2

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3 -3

-2

-1

 0

 1

 2

 3

-0.5

 0

 0.5

 1

(b) Graph of T 2
g2

Ñ2Figure 4.4: Cas
ade algorithm for the mask g2Observe now from (4.21) that, for x1, x2 ∈ R,
G2(eix1, eix2) =1 −

1

8
[cos(3x1) + cos(3x2)] +

9

8
[cos x1 + cosx2] +

5

8
cos(x1 + x2)

+
5

8
cos(x1 − x2) −

1

16
[cos(3x1 + x2) + cos(x1 + 3x2)]

−
1

16
[cos(x1 − 3x2) + cos(3x1 − x2)],

=1 −
1

8
[cos(3x1) + cos(3x2)] +

9

8
[cosx1 + cos x2]

+
5

4
cos x1 cosx2 −

1

8
[cos(3x1) cosx2 + cosx1 cos(3x2).Noting that G2(ei7π/6, ei7π/6) = −1.044×10−3 < 0, we dedu
e that g2 is not non-negative,so that we 
an not appeal to Theorem 4.1.1 for the existen
e of a 
orresponding re�nablefun
tion φg2.Nevertheless, we observe from Figures 4.4 (a) and (b) that the 
as
ade algorithm Tg2seems to be 
onvergent. Hen
e, we numeri
ally dedu
e that the 
orresponding interpola-tory re�nable fun
tion φg2 exists, as illustrated in Figure 4.5 (b) whi
h also shows that

φg2 seems to be of 
lass C1, i.e. φg2 ∈ C1
0(R

2). The support of g2 is delimitated by thedotted lines in Figure 4.5 (a) a

ording to whi
h g2 is symmetri
 about the two axes and
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(a) Support of g2
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(b) Graph of φg2Figure 4.5: Re�nable fun
tion 
orresponding to g2about the line y = x.Similarly, the interpolatory mask a = h2 [HJ98b℄ is 
onstru
ted in su
h a way tosatisfy the sum rules of order 4, and to be supported on the set {(α1, α2) : |α1 + α2| ≤

4, |α1−α2| ≤ 3}. It is obtained by solving the linear system (4.20) for k = 4, after settingalso a(i, j) = 0, |i+ j| ≥ 5 or |i− j| ≥ 4, yielding the values a(i, j) = h2(i, j) given by
h2(0, 0) =1,

h2(3, 0) =h2(−3, 0) = h2(0, 3) = h2(0,−3) =
−1

16
,

h2(1, 0) =h2(−1, 0) = h2(0, 1) = h2(0,−1) =
9

16
,

h2(1, 1) =h2(−1,−1) =
1

2
,

h2(1,−1) =h2(−1, 1) =
1

8
,

h2(3, 1) =h2(−3,−1) = h2(1, 3) = h2(−1,−3) =
−1

16
.Note that h2 has a smaller support than g2, and that the asso
iated mask symbol H2
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(a) Graph of Th2
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(b) Graph of T 2
h2

Ñ2Figure 4.6: Cas
ade algorithm for the mask h2is given by
H2(z1, z2) = 1 −

1

16
(z−3

1 + z3
1 + z−3

2 + z3
2) +

9

16
(z−1

1 + z1 + z−1
2 + z2)

+
1

2
(z1z2 + z−1

1 z−1
2 ) +

1

8
(z−1

1 z2 + z1z
−1
2 )

−
1

16
(z3

1z2 + z−3
1 z−1

2 + z1z
3
2 + z−1

1 z−3
2 ), z1, z2 ∈ C \ {0}, (4.22)whi
h 
an be re-written as

H2(z1, z2) =
1

16
(1 + z1)(1 + z2)

[

6 + z1 + z2 + 2(z−1
1 + z−1

2 ) − z2
1 − z2

2

+ z−2
1 z−1

2 + z−1
1 z−2

2 − z−3
1 z−1

2 − z−1
1 z−3

2 + 6z−1
1 z−1

2

]

, z1, z2 ∈ C \ {0}.Next, we dedu
e from (4.22) that, for x1, x2 ∈ R,
H2(eix1 , eix2) = 1 −

1

8
[cos(3x1) + cos(3x2)] +

9

8
[cos x1 + cosx2]

−
1

8
[cos(3x1 + x2) + cos(x1 + 3x2)] + cos(x1 + x2) +

1

4
cos(x1 − x2).Noting that H2(ei2π/3, ei2π/3) = −

1

2
< 0, we dedu
e that h2 is not non-negative, whi
h
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(a) Support of h2
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(b) Graph of φh2Figure 4.7: Re�nable fun
tion 
orresponding to h2means that we 
an not appeal to Theorem 4.1.1 for the existen
e of a 
orrespondingre�nable fun
tion φh2.However, we observe from Figures 4.6 (a) and (b) that the 
as
ade algorithm Th2seems to be 
onvergent. We then numeri
ally dedu
e that the 
orresponding interpolatoryre�nable fun
tion φh2 exists, as illustrated in Figure 4.7 (b) whi
h also shows that φh2seems to be of 
lass C1, i.e. φh2 ∈ C1
0(R

2). The support of h2 is delimitated by the dottedlines in Figure 4.7 (a) a

ording to whi
h h2 is symmetri
 about both the origin and theline y = x.Note that, given an interpolatory mask a, if the 
orresponding interpolatory re�nablefun
tion φ exists, then, from (1.1),
φ(j/2) =

∑k akφ(j− k) = aj, j ∈ Z2, (4.23)by virtue of the re�nement equation (1.1). It follows from (4.23) that the surfa
e de�nedby φ passes through the points (j, aj) for all j ∈ Z2.
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(a) Graph of Φg2
and c (b) Graph of Φh2 and cFigure 4.8: Subdivisions Sg2 and Sh2 applied to cFor the interpolatory masks g2 and h2, observe from Figure 4.5 (b) and Figure 4.7 (b)that the graphs of φg2 and φh2 are 
onsistent with the property (4.23).Moreover, using the 
ontrol point c illustrated in Figure 3.1 (a), we observe fromFigures 4.8 (a) and (b) that the 
orresponding subdivision s
hemes Sg2 and Sh2, withrespe
t to the initial sequen
e c, yield the limit fun
tions Φg2 and Φh2 whi
h both de�nesmooth surfa
es, whi
h is 
onsistent with the result in [HJ98b℄ stating that g2 and h2indu
e C1 interpolatory subdivision s
hemes, i.e. for any sequen
e c ∈ M(Z2), the limitfun
tion S∞

g2
c and Sh2 belong to C1(R2).The butter�y interpolatory maskLet the dilation matrix M = 2I be �xed. We now introdu
e the well-known butter�ymask developed in [DLG90℄ and [DL02℄ (see also [Dyn92℄).For w ∈ R, the butter�y mask symbol Bw is the Laurent polynomial de�ned by

Bw(z1, z2) =
1

2
(1 + z1)(1 + z2)(1 + z−1

1 z−1
2 )(1 − wC(z1, z2)), z1, z2 ∈ C \ {0}, (4.24)



CHAPTER 4. EXISTENCE OF INTERPOLATORY REFINABLE FUNCTIONS 78
-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1  0  1  2  3 -3

-2

-1

 0

 1

 2

 3

-0.5

 0

 0.5

 1

(a) Graph of TBw
Ñ2, w = 1/16
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(b) Graph of T 2
Bw

Ñ2, w = 1/16Figure 4.9: Cas
ade algorithm for the butter�y mask Bw, w = 1/16where the Laurent polynomial C is given by
C(z1, z2) = 2z−2

1 z−1
2 + 2z−1

1 z−2
2 − 4z−1

1 z−1
2 − 4z−1

1 − 4z−1
2

+ 2z−1
1 z2 + 2z1z

−1
2 + 12 − 4z1 − 4z2 − 4z1z2 + 2z2

1z2 + 2z1z
2
2 , z1, z2 ∈ C \ {0}.Note from (4.24) that, for w ∈ R, the butter�y mask Bw is an interpolatory mask symbolsupported on the square [−3, 3]2. In parti
ular, we have B0 = Ã2, where Ã2 denotes theinterpolatory mask symbol given by (1.32).With the 
hoi
e w = 1/16, we observe from Figures 4.9 (a) and (b) that the 
as-
ade algorithm TBw

seems to be 
onvergent. Therefore, we numeri
ally dedu
e that the
orresponding interpolatory re�nable fun
tion φBw
exists, as illustrated in Figure 4.7 (b)whi
h also shows that φBw

seems to be of 
lass C1, i.e. φBw
∈ C1

0(R
2). The support of Bwis delimitated by the dotted lines in Figure 4.7 (a) a

ording to whi
h Bw is symmetri
about both the origin and the line y = x.Using the 
ontrol point c illustrated in Figure 3.1 (a) and with w = 1/16, we show inFigure 4.11 that the limit fun
tion ΦBw

resulting from the Butter�y subdivision de�nes a
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(a) Support of Bw
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(b) Graph of φBw
, with w = 1/16Figure 4.10: Re�nable fun
tion 
orresponding to Bw

Figure 4.11: Graph of ΦBw
, w = 1/16, showing the Butter�y subdivision applied to csmooth surfa
e, whi
h is 
onsistent with the result in [DLG90℄ and in [DL02℄ stating that,for a su�
iently small w > 0, the butter�y s
heme SBw

is a C1 interpolatory subdivisions
heme, that is, for any sequen
e c ∈ M(Z2), the limit fun
tion S∞
Bw
c belongs to C1(R2).
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