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Summary 

 

The malaria parasite, Plasmodium falciparum, has become increasingly resistant to all commercially 

available drugs used in the treatment of malaria, and as such, the development of new antimalarial 

drugs with novel targets is of great importance. The coenzyme A (CoA) biosynthesis pathway is one 

such novel target since CoA and its precursor, pantothenate, have been shown to be essential for 

organism survival.  

 

N-phenethyl-α-methyl pantothenamide, a pantothenate analogue, has been shown in a previous 

study to inhibit growth in both bacteria and Plasmodium parasites, however the mode of action of 

this pantothenamide in Plasmodium is still unknown, and was thus investigated in this study. 

 

First, Plasmodiums’ requirement for pantothenate was investigated. We determined that parasites 

could survive without an extracellular source of pantothenate for up to eight days, however this 

contradicted what was found in literature, and was likely to be due to a Mycoplasma infection found 

late in the study. Secondly, it was investigated whether N-phenethyl-α-methyl pantothenamide can 

be metabolized to its CoA antimetabolites by the CoA biosynthetic enzymes present in P. falciparum. 

This was done by investigating the metabolism of the compound in both cell lysates and in in vivo P. 

falciparum cell cultures and it was found that PfPanK and PfDPCK is active in parasite lysates, while 

PfPPAT is inactive in parasite lysates. We could therefore not determine if the pantothenamide under 

investigation is being metabolized in the parasite by using lysates, but this is the first demonstration 

of the activity of PfDPCK in parasites lysate. Finally, we wanted to investigate the effect of tricyclic 

methylthiophenyl propanamide (TMP), a non-pantothenate analogue that inhibits the CoA 

biosynthesis pathway in other organisms, on P. falciparum proliferation. TMP was synthesized to 

use as a tool to investigate the mechanism of action of N-phenethyl-α-methyl pantothenamide to 

support that pantothenamides do not inhibit pantothenate kinase, as is known for TMP, but are rather 

metabolized downstream in the pathway. TMP was successfully synthesized and purified, however 

yields were too low to test TMP as an inhibitor of P. falciparum proliferation. 

 

Not only did the work done in this study shed more light on the mode of action of pantothenamides 

in P. falciparum, but also gave valuable insight into parasite biochemistry.  
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Opsomming 

 

Die malaria parasite, Plasmodium falciparum, het tot dus ver weerstand opgebou teen alle 

kommersiële beskikbare middele vir die behandeling van malaria. Die ontwikkelling van nuwe 

middele teen malaria wat ‘n uitwerking het op nuwe teikens in the parasite is van die uiterste belang. 

Die koënsiem A (KoA) biosintese padweg is een so 'n spesifieke teiken, aangesien KoA en sy 

voorloper, pantoteensuur, essensieël is vir die organisme se oorlewing. 

 

N-fenetiel-α-metiel-pantoteenamied, ‘n pantoteensuur-analoog wat reeds in vorige studies inhibisie 

van bakteriële- en Plasmodium parasiet-groei tot gevolg gehad het is in hierdie studie ondersoek. 

Meer spesifiek, die metode van werking van hierdie pantoteenamied, wat tans nog onbekend is, was 

die fokus gedurende die betrokke studie. 

 

Eerstens het ons P. falciparum se pantoteensuur vereistes ondersoek. Ons het bepaal dat die 

parasiete tot en met agt dae kan oorleef sonder 'n ekstrasellulêre bron van pantoteensuur, maar dit 

is teenstrydig met wat ons in die literatuur vind, en is waarskynlik as gevolg van ‘n Mikoplasma 

infeksie wat ons eers laat in die studie ontdek het. Tweendens het ons bepaal of N-fenetiel-α-metiel-

pantoteenamied omgesit word na die ooreenstemmende KoA-antimetaboliete deur die ensieme van 

die KoA biosintese padweg teenwoordig in P. falciparum. Die bepaling is gedoen deur die aktiwiteit 

van die ensieme te ondersoek in beide sellisaat en in in vivo P. falciparum selkulture. Daar is bevind 

dat PfPanK en PfDPCK in parasiet sellisaat aktief is, terwyl PfPPAT onaktief is. Ons kon dus nie 

bepaal of die pantoteenamied wat ons ondersoek deur die parasiet lisaat gemetaboliseer word nie, 

maar dit was die eerste bewyse van PfDPCK in parasiet sellisaat. Laastens, is die effek van trisikliese 

metieltiofeniel-propaanamied (TMP), 'n nie-pantoteensuur analoog wat die KoA biosintese padweg 

inhibeer in ander organismes, ondersoek as inhibitor van P. falciparum. TMP is gesintetiseer ter 

ondersteuning van die meganisme van aksie van N-fenetiel-α-metiel-pantoteenamied. Spesifiek wou 

ons toon dat the pantoteenamiede nie pantoteensuurkinase inhibeer soos TMP nie, maar eerder 

verder af in die padweg gemetaboliseer word. Die sintese en suiwering van TMP was suksesvol, 

maar die opbrengs was te laag om TMP te toets as ‘n inhibitor van P. Falciparum groei. 

 

Hierdie studie sal meer lig werp op die metode van werking wat van toepassing is op 

pantoteenamiede en meer inligting verskaf omtrent die biochemie van die parasite. 
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Chapter 1: Coenzyme A biosynthesis as an 

antiplasmodial drug target 

 

1.1 Cause and Effect of Malaria as a Disease 

Malaria is a disease that is caused by a parasitic, single celled organism from the genus Plasmodium. 

Of the approximately 250 known species of Plasmodium, five of these species are able to infect 

humans, namely P. falciparum, P. vivax, P. malariae, P. ovale, and the most recently discovered P. 

knowlesi [1].  

 

Globally, in 2015, it is estimated that 2.1 billion people were at risk of contracting malaria, with 

approximately 214 million new cases leading to around 438 000 deaths. Although these numbers 

have decreased drastically over the last 15 years, malaria remains a worldwide problem [1]. P. vivax 

and P. falciparum are two of human malaria parasites that are of high interest. While P. vivax is more 

widely spread than P. falciparum and is responsible for most infections and many deaths outside of 

the African continent, it often has a dormant liver stage that can last for months, or occasionally 

years, before its symptoms present. P. falciparum, however, is rampant in Africa and is the greatest 

contributor to deaths caused by malaria, with approximately 90% of malaria-related deaths occurring 

in Africa [1]. In Sub-Saharan Africa, the individuals most affected by malaria and contributing most 

to the malaria death toll are pregnant women and children under the age of 5, however in areas with 

major health burdens, attempts to decrease malaria-related mortalities are also a challenge [1]. 

 

Plasmodium parasites usually have three main life stages of which the first one occurs in mosquitoes 

and the last two stages (i.e. liver and blood-stages) occur in humans (Figure 1.1). The female 

Anopheles mosquito is the vector that causes the spread of this deadly disease and forms the first 

part of the parasite life cycle; during a blood meal, the mosquito takes up the blood of an infected 

individual, containing parasites known as gametocytes, and then becomes a carrier of the parasite. 

Parasites can be taken up as male (microgametocytes) and female (macrogametocytes) 

gametocytes inside the mosquito where they undergo sexual reproduction in the sporogonic cycle, 

to ultimately mature into sporozoites that are then injected into another individual during the 

mosquitos’ next blood meal [2]. Once a human is infected, the malaria parasite first goes through a 

liver stage, otherwise known as the hepatic stage, where they replicate inside the liver cells and 

further mature into millions of merozoites. These merozoites are then released into the blood stream 

where they invade the red blood cells – also known as the erythrocytic stage. It is during this stage 

that the symptoms, such as fever, diarrhea, headaches and nausea, are present [2, 3]. During the 

erythrocytic stage some parasites can differentiate into male and female gametocytes that are then 

again ingested by an Anopheles mosquito during a blood meal to complete the parasite life cycle [3]. 
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Figure 1.1: The life cycle of a malaria parasite, such as P. falciparum , going through 

mosquito stage, hepatic stage and erythrocytic stage. See text for details. (Reproduced 

with permission from [3], Copyright Massachusetts Medical Society.)  

 

1.2 Efforts to Control and Treat Malaria 

The World Health Organization (WHO) has set out strategies to combat malaria to decrease the 

number of annual malaria cases and to lower malaria-related mortality. The newest strategy set out 
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by the WHO for 2016-2030, called the Global Technical Strategy for Malaria, attempts to decrease 

malaria incidences and mortality by 90%, with the first milestone aimed at a 40% decrease by 2020. 

This is to be achieved by making sure that those at risk have access to preventative measures, 

diagnosis and treatment, and to increase funding available for the control and elimination of malaria 

[1].  

The attempts to combat malaria occur predominantly in two ways: the first is focused on minimizing 

contact between mosquitoes, the parasite carriers, and humans, while the second is focused on 

using drugs to prevent or cure malaria once infection has taken place. However, adding to the 

difficulty of controlling the spread of malaria is the issue of resistance; not only are mosquitoes 

becoming increasingly resistant to insecticides, but certain strains of the malaria parasite itself are 

resistant to all current forms of drug-based treatment [1, 4]. 

 

1.2.1 Insecticides 

The efforts made to minimize human contact with mosquitoes (vector control) include the widespread 

distribution of bed nets and clothing treated with insecticides, window screens and insect repellents, 

as well as spraying interior wall cavities of homes with insecticides. In addition to this, efforts are 

being made to control the breeding of the Anopheles mosquito in an attempt to limit the spread of 

the disease [1].  

Although insecticides, such as organochlorine, organophosphate, carbamate and pyrethroid have 

thus far aided in controlling the spread of malaria by controlling the mosquito population, the 

insecticides are becoming less effective as Anopheles mosquitoes are developing resistance 

towards them. Approximately 77% of monitored countries have reported noted resistance to at least 

one type of insecticide and 63% of the monitored countries noted resistance to more than one 

insecticide over the last 6 years. An example of this resistance is towards the insecticide pyrethroid 

which was reported in 2014 by 75% of the monitored countries to no longer be effective [1]. 

 

1.2.2 Drugs and Treatment 

Where prophylaxis and treatment of the disease are concerned, efforts are being made on various 

fronts to achieve malaria eradication world-wide. The development of a recombinant P. falciparum 

vaccine against malaria has recently been achieved; however, this vaccine is currently in stage III of 

clinical trials and not yet commercially available [1]. The vaccine, named RTS,S/AS0, was used in a 

4-year pilot study in Africa on children between the ages of 5-18 months during which it was 

administered in 4 doses over a period of 20 months. It was found to be 39% effective against clinical 

malaria, and 31.5% effective against severe cases of malaria. Further tests are however still being 

conducted [1]. 
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Although vaccines are an excellent strategy in the prevention of the disease, the limited success of 

RTS,S/AS0 clearly supports the ongoing desperate need for the development of new antimalarial 

drugs. Over the years, many effective drugs have been used to combat malaria, however malaria 

parasites are showing marked resistance against them, with certain strains of P. falciparum currently 

showing resistance to all known drugs [1, 4]. An example of this resistance is against the well-known 

antimalarial, chloroquine. Chloroquine was used mostly during the 1940s and 1950s, however 

resistance to chloroquine started to develop presenting in Africa around the 1970s causing an 

increased spread of malaria [1]. Chloroquine-resistance in P. vivax has been confirmed in multiple 

countries, including Brazil and Thailand [1]. 

After resistance to chloroquine became prevalent, treatment with drugs such as sulphadoxine-

pyrimethamine, mefloquine and quinine became common [4]. However, with resistance building up 

against all these drugs, artemisinin-based combination therapies were adopted as a first line of 

treatment, and were shown to be effective against P. falciparum and P. vivax. When used as a 

monotherapy, there is a high rate of treatment failure because of the short half-life of artemisinin and 

its derivatives, however, when used in combination therapies with mefloquine, lumefatrine, 

amodiaquinem, piperaquine or pyronaridine (compounds with longer half-lives), there was a 

prolonged antimalarial pressure, increasing the efficacy of artemisinins and reducing the risk of 

developing resistance [5, 6]. Recently, P. falciparum has been found to start showing resistance 

towards artemisinins in some countries such as Thailand and Cambodia [1], however treatment 

failure in Africa is still less than 10% for the artemisinin, artesunate-amodiaquine, which is used as 

a first or second-line treatment. 

 

With the two Plasmodium strains that are the greatest contributors to mortality caused by malaria 

showing increasing resistance to known forms of treatment, the development of novel drugs targeting 

new biochemical pathways or processes in the parasite is becoming a necessity.  

 

1.3 Essential Nutrients for Malaria Survival 

Several in vitro studies have been done to ascertain vitamin and amino acid requirement in different 

species of Plasmodium to determine which of these nutrients are essential for the survival and 

proliferation of these parasites. It was shown that the core nutrients needed for the survival of P. 

falciparum in vitro are the amino acids isoleucine, cysteine, glutamate, glutamine, proline, tyrosine 

and methionine, as well as nutrients pyridoxine, glutathione, potassium chloride, sodium chloride, 

disodium phosphate, calcium nitrate, magnesium sulfate, glucose, folic acid, riboflavin, 

hypoxanthine, p-aminobenzoic acid (PABA), biotin, human serum and pantothenate [7]. 
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Figure 1.2: The chemical structures of vitamins (biotin, thiamine and pantothenate) 
essential for parasite survival.  
 

Biotin (vitamin B7, Figure 1.2) is generally biosynthesized in bacteria and plants but cannot be 

biosynthesized in humans, thus the uptake of biotin in humans is solely through diet. Like humans, 

Plasmodium parasites are unable to biosynthesize this vitamin, yet possess the acetyl-coenzyme A 

carboxylase enzyme [8]. Acetyl-coenzyme A carboxylase is a biotin-dependent enzyme to which 

biotin is covalently attached by the enzyme biotin-protein ligase. Trager showed that when chickens 

infected with Plasmodium were fed a biotin-deficient diet, the parasitemia in the erythrocyte stage 

were almost half of that found in chickens that were fed a diet supplemented with biotin, highlighting 

the parasites’ requirement for biotin [9].  

The role of thiamine (vitamin B1, Figure 1.2) in parasite proliferation has been investigated recently 

[10]. This vitamin was originally not believed to be essential for parasite survival, however it was 

shown that complete depletion of thiamine from erythrocytes is detrimental to parasite growth. 

Plasmodium parasites are capable of thiamine synthesis, however it seems as if the demand in the 

parasite for thiamine is higher than production, therefore thiamine is also sourced from the host [10, 

11]. 

Pantothenate (vitamin B5 or pantothenic acid in its non-ionized form) cannot be biosynthesized by 

Plasmodium parasites (Figure 1.2) de novo. This was discovered in 1946 by Brackett et al., who 

studied avian malaria parasites, and found that when chickens infected with Plasmodium 

gallinaceum were fed a diet that lacked pantothenate, the blood pantothenate levels of the chickens 

decreased, leading to the inhibition of the blood-stage malaria parasites. This indicated that the 

parasites not only needed pantothenate to survive, but also that they could not produce it themselves 

[2].  It has since been shown that pantothenate is the only water-soluble vitamin that erythrocyte 

stage P. falciparum parasites are unable to survive without [2]. It has also been shown that 

pantothenate is readily taken up into Plasmodium-infected red blood cells, but that pantothenate is 

not taken up into uninfected red blood cells [12]. The uptake into the parasitized cells happens via 

the ‘new permeation pathway’ (NPP) that the parasite includes within the erythrocyte [12], whereby 

pantothenate is then taken into the cell (in humans) by a low affinity, H+-coupled pantothenate 

transporter [13]. 

Biotin Thiamine 

Pantothenate 

Stellenbosch University  https://scholar.sun.ac.za



6 
 

Even though it seems as if various vitamins play an important role in the proliferation of Plasmodium, 

Divo et al. established P. falciparum’s absolute requirement for extracellular pantothenate by 

[3H]hypoxanthine incorporation, in which an 80% decrease was seen in parasite proliferation when 

pantothenate was not present in growth media [7]. These results were confirmed by Saliba et al., 

who also showed that P. falciparum does not have an absolute requirement for any other water-

soluble vitamin [13], thereby highlighting the absolute necessity of pantothenate within the parasite. 

 

1.4 Coenzyme A and Malaria 

1.4.1 Coenzyme A biosynthesis in Plasmodium 

Pantothenate is metabolized in living organisms to produce coenzyme A (CoA), an essential cofactor 

in both prokaryotes and eukaryotes that is synthesized in bacteria, plants and mammals [14-16]. The 

biosynthesis of CoA from pantothenate takes place through a universal five-step enzymatic pathway 

(Figure 1.3). The five enzymes that catalyze this pathway are pantothenate kinase (PanK), 

phosphopantothenoylcysteine synthetase (PPCS), phosphopantothenoylcysteine decarboxylase 

(PPCDC), phosphopantetheine adenylyltransfrease (PPAT) and dephospho-coenzyme A kinase 

(DPCK).  

Figure 1.3: The universal, five-step enzyme mediated CoA biosynthesis pathway, from 

pantothenate to CoA. See text for details.  

In the first step, pantothenate is phosphorylated by PanK, yielding 4’-phosphopantothenate, which 

subsequently undergoes a condensation reaction (amide formation) with a cysteine molecule, 

mediated by PPCS, to form 4’-phosphopantothenoylcysteine. In most eukaryotes, PPCS has a 

preference for ATP for this conversion, where in bacteria, such as Staphylococcus aureus, it has a 

preference for CTP instead, however it is unknown which PfPPCS prefers. PPCDC decarboxylates 

the cysteine moiety of 4’-phosphopantothenoylcysteine to form 4’-phosphopantetheine, which, in the 

fourth step, undergoes the addition of an adenylyl group by PPAT forming dephospho-CoA. In the 
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final step, DPCK catalyzes the phosphorylation of dephospho-coenzyme A at the 3’ position on the 

ribose to form the final product, CoA [4]. 

 

Putative genes encoding all five enzymes required for CoA formation from pantothenate have been 

identified in the P. falciparum genome [2]. The first four enzymes are predicted to localize to the P. 

falciparum cytosol. The last enzyme in the pathway, DPCK, is predicted to localize to the apicoplast, 

the non-photosynthetic, plastid relic present in most apicomplexan parasites [2]. None of the 

enzymes encoded by these genes have thus far been characterized in any detail, since they are 

notoriously difficult to overexpress and purify from bacterial systems. Various attempts by different 

research groups have been made to produce pure PfPanK using cell-free protein expression 

systems, heterologous expression from codon-harmonized and -optimized genes and by removal of 

expression-hampering sequences [17]. Unfortunately, none of these have been effective to date. 

Nevertheless, some information has been gathered for the activity of PanK in P. falciparum lysates 

(to be discussed in detail in Chapter 3). 

 

Currently, all the information known regarding pantothenate utilization—and consequently CoA 

biosynthesis in Plasmodium—is based on knowledge obtained from the blood-stage of the parasites. 

No information regarding the liver and mosquito stages is currently available. 

 

1.4.2 Functions of CoA in Plasmodium 

Little is known about the specific functions of CoA in the erythrocytic stage of the parasites’ life cycle. 

In general, it is known that CoA acts as an acyl group carrier in all living organisms, since it contains 

a thiol group that can undergo esterification with carboxylic acids, thereby activating them for 

nucleophilic attack or for enolate formation. This is important in many cellular metabolic processes 

such as the all-important first step of the Krebs cycle, fatty acid biosynthesis and regulation, 

biosynthesis of sterols and amino acids, and the post-translational modifications of proteins, among 

others [17, 18]. It is estimated that up to 9% of enzymes in all living organisms make use of CoA or 

one of its thioesters [2].  

Although CoA is important in the Krebs cycle, it is known that blood-stage Plasmodia do not make 

use of the Krebs cycle as its primary source of energy. Instead, these parasites rely on glycolysis for 

energy production [19]. It was shown by Sharma et al. that glucose consumption in parasite-infected 

red blood cells are up to 100-fold higher than for the uninfected red blood cells, supporting the 

parasites’ dependence on glycolysis [19]. 

P. falciparum possesses its own fatty acid biosynthesis pathway, where it uses CoA and pyruvate 

as substrates. It was therefore proposed that in the erythrocytic stage, where fatty acids are important 

for protein post-translational modifications and membrane biosynthesis, the parasite’s absolute 

requirement for CoA in this stage is due to these functions [17]. It was however recently discovered 
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that fatty acid biosynthesis can also be blocked in malaria, by targeted deletion of a crucial enzyme 

involved in fatty acid biosynthesis (FabB/F), without any effect on the blood-stage replication. This 

renders fatty acid biosynthesis non-essential for the survival of the parasite, thus making it a poor 

drug target in malaria [20].  

In addition to the biosynthesis of fatty acids, CoA is also involved in fatty acid modification. This 

occurs when the cofactor is attached to fatty acids by acyl-CoA synthetase causing the activation of 

the fatty acids. The P. falciparum genes encoding for the acyl-CoA synthetases are expressed during 

the erythrocytic stage of the parasites’ lifecycle. Although red blood cells also contain active acyl-

CoA synthetase, the activity of this enzyme is up to 20-times higher in a parasite-infected 

erythrocytes, indicating its possible importance in fatty acid activation, rather than in its ability to 

biosynthesize fatty acids [17]. 

Recently, however, an analysis of P. yoelii’s (a rodent malaria parasite) proteome and transcriptome 

in liver stage found that type II fatty acid synthesis enzymes were present in the liver stage proteome. 

Type II fatty acid synthesis gene transcription has also been shown to be upregulated in liver stage 

compared to levels in the erythrocytic stage. In addition, it was found that an inhibitor of FabG, an 

important enzyme in fatty acid chain elongation, was able to inhibit in vitro parasite proliferation, thus 

suggesting that fatty acid biosynthesis might still be a possible target in liver stage of Plasmodium 

parasites [20]. 

Taken together, the universal occurrence of the CoA biosynthesis pathway and the importance of 

CoA in all living organisms, in addition to the needs of the Plasmodium for this cofactor in different 

life stages, make this biosynthetic pathway an attractive target for antimalarial drug development. 

 

1.5 Targeting CoA Biosynthesis in Plasmodium  

The aim to develop new antimalarials has led to a search for new possible drug targets. Different 

approaches have been used to illustrate that CoA biosynthesis is a novel drug target in P. falciparum. 

One such approach is based on the concept of chemical rescue where assays have been developed 

to screen for inhibitors (varying in their chemical structure) of vital metabolic pathways and then 

rescuing the antimalarial effect by the addition of CoA or metabolites of the pathway [21]. An 

alternative approach to validate the CoA biosynthesis pathway as a potential antiplasmodial drug 

target, has been to synthesize pantothenate analogues using the core structure of pantothenate, the 

native substrate of the CoA biosynthesis pathway and then testing these compounds for a 

antimalarial effect. The synthesis of pantothenate analogues should allow these compounds to 

interfere with Plasmodium’s ability to utilize the vitamin. The inhibition of parasite growth by 

pantothenate analogues is based on the essentiality of pantothenate for blood-stage parasite 

survival in vitro. The various compounds that have been tested in the past by various studies, some 
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of which have been developed to be vanin resistant in order to retain their potency in blood serum, 

are discussed in the following section. 

1.5.1 Pantothenate Analogues 

1.5.1.1 Pantothenol 

Pantothenol (Figure 1.4), or provitamin B5, is a pantothenate analogue in which the carboxylic acid 

group is reduced to a primary hydroxyl group. It is a compound commonly used in consumer products 

from multivitamins to cosmetic products. It has been shown that no significant adverse effects are 

noted, even after long term use, even when used or ingested in high concentrations by humans [21]. 

However, in vitro studies have shown that it prevents proliferation in a variety of different bacteria 

[22]. Consequently, pantothenol was tested by Saliba et al. on blood-stage P. falciparum parasites 

and shown to have antimalarial activity in vitro [23].  

 

Figure 1.4: The structure of pantothenol. This pantothenate analogue merely has a 

hydroxyl group in the position where pantothenate has a carboxyl group (indicated in 

orange).  

Since pantothenol can act as a provitamin in some organisms by being oxidized to pantothenate, 

Saliba et al. tested to see whether this was the case in Plasmodium as well; however, blood-stage 

parasites could not survive in pantothenate-free media that was supplemented with pantothenol. 

They found that instead of supporting the proliferation of the parasite, pantothenol actually inhibited 

parasite proliferation by competing with pantothenate in the conversion to its phosphorylated form, 

thus implicating the possible inhibition of PanK [13]. 

1.5.1.2 CJ-15,801 

The pantothenate analogue, CJ-15,801 (Firgure 1.5) is a compound isolated from the fungus 

Seimatosporium sp.,CL28611. The only difference in structure between CJ-15,801 and pantothenate 

is the inclusion of a double bond in the β-alanine moiety of the vitamin. 

 

Figure 1.5: The structure of CJ-15,801. This pantothenate analogue has a double bond 

between carbons 2 and 3 as indicated in orange, where pantothenate has a single bond.  

CJ-15,801 was previously shown to have antibacterial effects, even on multi-drug resistant S. aureus 

[24]. It was therefore investigated by Saliba et al. for its antiplasmodial properties against P. 

falciparum [23]. Blood-stage parasites were incubated with CJ-15,801 in the presence of 

physiological concentrations of pantothenate (1 µM), and it was found that CJ-15,801 inhibits 
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parasite proliferation at concentrations above 250 µM, without an effect on the host cell line [23]. 

However, the antiplasmodial effect of CJ-15,801 was reversed when pantothenate concentrations 

were increased, but it was only completely reversed at very high pantothenate concentrations 

(around 100-200 µM) [23]. This confirmed that this compound is targeting the biosynthesis pathway 

that utilizes pantothenate in order to form CoA. 

1.5.1.3 Pantoyltauramides 

One of the first pantothenate analogues to be tested against malaria was pantoyltauramide (Figure 

1.6 A), an analogue in which the carboxylic acid has been substituted for a sulphonamide group. 

When tested in vivo against different types of avian malaria parasites such as P. relictum, P. 

gallinaceum, and P. lophurae, this compound was found to be almost inactive when incorporated 

into the birds’ diet [25]. However, when administered intravenously at a dose of 400 mg/kg body 

weight, proliferation of P. gallinaceum was inhibited in chickens [26].  

 

        

 

 

Figure 1.6: (A) The structure of pantoyltauramide, one of the first pantothenate analogues 

to be tested for its antiplasmodial activity, (B) the most potent N-substituted 

pantoyltauramide in the study done by Trager in 1971 [27] and (C) the structure of N-

substituted pantoyltauramides (where R- groups are specified in the grey block).  

In an attempt to make the pantoyltauramides more active when orally administered, the 

pantoyltauramide structure was modified further by inclusion of additional groups to the sulfonamide 

functionality, thus producing a library of new compounds called the N-substituted pantoyltauramides 

(Figure 1.6 C) [27]. The most potent of the N-substituted pantoyltauramides in this library (Figure 1.6 

B) was found to be approximately four times more potent than quinine when tested against P. 

gallinaceum in chickens [28]. 

A B 

C 
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1.5.2 N-substituted Pantothenamides 

Another class of pantothenic acid analogues is the N-substituted pantothenamides (PanAms) (Figure 

1.7A).  

 

 

Figure 1.7: The structure of (A) a synthetic general N-substituted pantothenamide and 
(B) naturally occurring pantetheine. Pantetheine is essentially an N-substituted 
pantothenamide with an ethylthiol moiety as the R-group. 

 

Although these compounds are technically pantothenate analogues (they have an amide 

functionality instead of a carboxylic acid), they are structurally more closely related to the natural 

occurring pantothenamide, pantetheine (containing a cysteamine moiety, Figure 1.7 B). Pantetheine 

is present in certain bacteria and is believed to be a degradation product of CoA, however, it also 

has the ability to be phosphorylated by PanK to feed back into the biosynthesis of CoA in a salvage 

pathway to reproduce CoA (Figure 1.8) [29]. Currently it is still unknown if pantetheine is present in 

Plasmodium parasites. 

  

Figure 1.8: The CoA salvage pathway, starting with natural compound, pantetheine, 

which also undergoes phosphorylation by PanK after which PPAT and DPCK convert it 

to CoA.  

In the past a large number of N-substituted pantothenamides were tested on blood-stage parasites 

by Jackowski et. al [30], Park et. al [31], Strauss et. al [32], Saliba et. al [33-35] and others [36]. 

Fortunately, many of these analogues had an effect on Plasmodium’s proliferation and, because of 

               

 A B 
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their similar structure to pantothenate, some of them have been shown to interfere with the 

phosphorylation of pantothenate by PanK [33]. This in turn supports the theory that pantothenate 

analogues target the CoA biosynthesis pathway. In fact, a study by Spry et al. [33] found that 

PanAms (Figure 1.7 A) are the most potent pantothenate analogues against P. falciparum, with N-

phenethyl-PanAm (N-PE-PanAm) being the most potent in vitro, with an IC50 of 20 ± 3 nM. This IC50 

is comparable to chloroquine, an antimalarial used from 1947 until the late 1950s [37], with an IC50 

of 15 nM [33, 34, 38].  

 

1.5.3 Pantetheinase (Vanin) 

Unfortunately, the use of PanAms for clinical treatment of malaria is not possible since these 

compounds are prone to degradation by vanins (hydrolase enzymes that target non-peptide carbon-

nitrogen bonds), specifically pantetheinases, in the blood serum [39]. When looking at in vivo 

conditions, pantetheine gets degraded to form pantothenate and cysteamine by the hydrolysis of the 

scissile amide bond (Figure 1.9). Since the PanAms have the same core structure as pantetheine, 

containing an amide bond in the same position, these compounds are also susceptible to 

degradation, thus rendering them ineffective as antiplasmodials in the presence of blood serum [33].  

 

Figure 1.9: Both naturally occurring pantetheine and synthetically synthesized 

pantothenamides are degraded by vanins to form pantothenate and the corresponding 

amine. 

Various strategies have been employed to overcome this shortcoming. One specific strategy is 

combination therapies of PanAms with pantetheinase inhibitor compounds (Figure 1.10). These 

compounds, which are also PanAm analogues, but which have the scissile amide bond replaced by 

a ketone, act as selective, competitive vanin inhibitors that inhibit vanin activity in rat plasma as low 

as nanomolar concentrations [40]. The potential of these compounds to also inhibit P. falciparum 

parasite proliferation was also investigated and it was found that they do have antiplasmodial activity, 

however with less potency (low micromolar range) than existing PanAms [41]. 
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Figure 1.10: Structure of a pantothenate analogue, RR6, which acts as the most potent 
vanin inhibitor.  

 

1.5.4 PanAm Analogues Resistant to Pantetheinase-mediated Degradation 

A second strategy in circumventing the pantetheinase degradation effects on PanAms, is the design 

of compounds that are resistant to degradation by this blood serum enzyme. This has the added 

advantage that only one specific therapy needs to be used, i.e. without the added complication of 

having two compounds that could potentially be toxic towards humans. Various degradation-resistant 

modifications to the PanAm structure have been attempted by investigators, with the following 

modifications showing the most promise.  

1.5.4.1 Sterically hindered N-substituted PanAms 

It was found that modification of PanAms by substituting the β-alanine moiety for a glycine to produce 

α-PanAms (Figure 1.11 B), or substituting the β-alanine moiety for γ-aminobutyric acid to produce 

HoPanAms (Figure 1.11 C), makes these compounds less susceptible to pantetheinase-mediated 

degradation by shifting the position of the amide bond. This resistance to degradation however 

comes at the cost of a loss in potency [34]. This becomes evident when studying the antiplasmodial 

activity of N-PE-PanAm: when testing the antiplasmodial activity in vitro with no pantetheinase 

present, this compound has an IC50 of 20 ± 3 nM, however, when pantetheinase is present in the 

media, a shift in IC50 to 53 ± 11 μM is observed [33]. The α- and HoPanAms have been shown to 

have increased IC50s of 3.4 ± 0.8 μM and 2.1 ± 0.1 μM, respectively, in the absence of 

pantetheinases [34], which suggests the core pantothenate structure is necessary in order for the 

PanAm to be potent. This realization led to further modification of the N-PE-PanAm structure in order 

to produce PanAms that are stable in serum while retaining their antiplasmodial activity.  
 

Figure 1.11: The structures of synthesized pantothenamides (A) N-PE-PanAm, and its (B) 

α-PanAm and (C) HoPanAm counterparts. The β-alanine moiety is highlighted in orange, 

the glycine moiety highlighted in blue and the γ-aminobutyric acid highlighted in green. 

C 

A  B 
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To overcome the loss of potency, N-PE-PanAm was modified to include a methyl substituent 

adjacent next to the amide that is normally cleaved by the vanins, forming N-phenethyl-α-methyl-

PanAm (N-PE-α-Me-PanAm) (Figure 1.12). This methylated compound was then tested in the 

presence of pantetheinases and shown to be more resistant to degradation while still retaining its 

potency (0.06 ± 0.02 μM) [42]. Importantly, methylated-PE-PanAm was significantly more resistant 

to degradation by pantetheinase compared to N-PE-PanAm, and, crucially, still acted on-target, as 

demonstrated by the fact that addition of excess extracellular pantothenate antagonized its 

antiplasmodial activity [2]. Furthermore, it has limited cytotoxicity to mammalian cells [36]. However 

it must be noted that the compound tested was the mixture of the two epimers, (R)- and (S)-N-PE-

α-Me-PanAm. The specific activities of the two compounds have not been investigated to date. 

 

Figure 1.12: The structure of the synthetic PanAm, N-PE-α-Me-PanAm, that was shown to 

be more resistant to degradation by pantetheinases. The yellow highlighted group 

indicates the methyl group added to the compound to prevent cleavage of the amide bond 

adjacent to it.  

 

1.5.4.2 N-Substituted triazole bio-isosteres 

Recently, another strategy to increase the resistance of PanAms towards pantetheinase-mediated 

degradation has been illustrated by exchanging the scissile amide bond with a triazole bio-isostere 

[35]. In total 19 triazoles were synthesized and tested for antiplasmodial activity against P. falciparum 

with all compounds tested having sub-micromolar IC50 values, with 2 of them having IC50 values of 

~50 nM against blood-stage parasites (Figure 1.13), only slightly higher than that of chloroquine [35]. 

These compounds have been shown to be on target after the addition of extracellular pantothenate 

shifted their antiplasmodial activity and it has been speculated that they have an effect on PanK 

phosphorylation [35]. 

 

Figure 1.13: The structure of the N-substituted triazole bio-isosteres with IC50  values of 

~50 nM against blood-stage P. falciparum parasites. N5-triazole has an IC50 of 56 ± 5 nM 

and N6-triazole has an IC50 of 55 ± 5 nM. 
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1.5.4.3 N-Substituted PanAm bio-isosteres with an inverted amide group 

A recent patent application on PanAms as antimicrobials has employed an additional strategy to 

produce stabile PanAms in the presence of pantetheinase. In this simple, yet elegant modification, 

the scissile amide bond has been replaced by an amide bond in the inverse orientation when 

compared to that of normal PanAms. The resulting PanAm bio-isosteres are resistant to degradation 

by pantetheinases, and when compared to the parent compound, have no loss of potency. A small 

library of compounds has been tested, including the inverted amide variant of N-PE-PanAm (Figure 

1.14 B) which had an IC50 of 0.12 µM against P. falciparum. The ortho-fluoro derivatives of N-PE-α-

Me-PanAm were also tested as the individual R- and S-stereoisomers (Figure 1.14 C and D), with 

IC50 values of 0.004 µM and 0.21 µM against P. falciparum being reported. This makes the R-

stereoisomer derivative of N-PE-α-Me-PanAm the most potent of these compounds, when tested 

against P. falciparum, with compound CXP18.6-052 (Figure 1.14A), the second most potent with an 

IC50 of 0.008 µM [32]. 

  

Figure 1.14: (A) The structure of compound CXP18.6-052, the most potent of the reversed 

amides tested against P. falciparum , (B) the structure of the inverted amide for of PE-

PanAm, and (C &D) R-  and S-stereoisomers of the ortho-fluoro derivative of N-PE-α-Me-

PanAm. 

1.6 Mode of Action of the PanAms 

The mode of action of pantothenate analogues in P. falciparum is still currently unknown. It is also 

possible that different pantothenate analogues have different modes of action involving different 

targets in the biosynthesis and/or utilization of CoA. For this particular study our main focus is on the 

mode of action of PanAms, and therefore possible targets of these compounds will be discussed in 

this regard.  

 

Previous studies have shown that the addition of pantothenate to the parasites extracellular 

environment reverses the PanAms’ antiplasmodial activity [34, 36]. This suggests that the PanAms 

target the enzymes involved in CoA biosynthesis and/or the downstream processes that use CoA or 

A B 

C D 
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its thioesters [43]. Since no other information regarding the mode of action of PanAms is known for 

P. falciparum parasites, we considered what is known for these compounds when studied in bacteria. 

 

The antibacterial mode of action of the PanAms has mainly been studied in Escherichia coli and S. 

aureus. Also, although various PanAms inhibited bacterial growth, most of these studies focused on 

N-pentyl pantothenamide (N5-Pan) and N-heptyl pantothenamide (N7-Pan). Three possible modes 

of action have been proposed for the PanAms in bacteria, illustrated in Figure 1.15 for N5-Pan: (1) 

PanAms inhibit the PanK, the first enzyme in the CoA biosynthesis pathway, inhibiting the 

phosphorylation of pantothenate and therefore shutting down the CoA biosynthesis pathway; (2) 

when PanAms act as competing substrates, they can be phosphorylated by PanK and metabolized 

by PPAT and DPCK downstream in the pathway. This allows for the formation of CoA 

antimetabolites. These antimetabolites will either compete with the production of CoA and lower CoA 

intracellular concentrations to levels that are insufficient to sustain bacterial growth, or cause the 

inhibition of CoA-dependent processes and enzymes; (3) a specific CoA-dependent process, fatty 

acid biosynthesis is inhibited. This occurs by the formation of crypto-acyl carrier proteins (crypto-

ACPs) where the 4’-phosphopantothenamide moiety is transferred to an acyl carrier protein (ACP) 

instead of the 4’-phosphopantetheine moiety it usually needs from CoA. These crypto-ACPs are 

inactive due to the lack of a terminal thiol (which they usually obtain from CoA) necessary for fatty 

acid biosynthesis [33, 44, 45]. This last option was supported by a previous study that indicated that 

the PanAms do not inhibit bacterial PanK, since the PanAms are still phosphorylated once taken up 

into the bacterial cell, specifically in E. coli. In this organism it was therefore found that the main 

growth inhibition takes place via inhibition of fatty acid biosynthesis [30, 33]. However, recent findings 

have also indicated that PanK in S. aureus is partially inhibited by PanAms via trapping of the 

phosphorylated product [31, 34] and once the phosphorylated product is released (which takes place 

very slowly) they can be metabolized further to inhibit fatty acid biosynthesis [30]. The specific mode 

of action for this inhibition of fatty acid biosynthesis is not clearly defined yet. 
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Fig 1.15: The three main biological targets for PanAms in bacteria, illustrated with N5-

Pan: (1) PanK, the first enzyme in the CoA biosynthesis pathway; (2) the CoA-dependent 

enzymes and processes, once the antimetabolite is formed; and (3) fatty acid 

biosynthesis, when the antimetabolite formed acts as a substrate for the enzyme AcpS 

to form the inactive crypto-ACP instead of the catalytically active holo-ACP [46] 

(Reproduced with permission from [33], Copyright John Wiley & Sons, Inc.). 

When extrapolating this knowledge to P. falciparum, there are four proposed modes of action for 

PanAm inhibition (Figure 1.16). In Target 1 PanAms could interfere with the transport of pantothenate 

by inhibiting the essential primary pantothenate transporter in P. falciparum, leading to the 

deprivation of the essential vitamin. This is not considered a target in bacteria, since bacteria have 

the means to synthesize pantothenate de novo which is not the case for P. falciparum parasites. It 

has been recently discovered by Kehrer et al. that in P. berghei the pantothenate transporter, PAT, 

is essential for the secretion of vesicles needed for the transmission of the parasite between the 

human host and the mosquito [48]. This supports pantothenate transport as possible target. Target 

2 involves the inhibition of PanK, the first CoA biosynthetic enzyme, which would shut down CoA 

production. Alternatively, PanAms can be phosphorylated by PanK as substrates. This allows for 

these compounds to become metabolically activated as substrates for PPAT and DPCK, converting 

them into CoA antimetabolites. Such a transformation could result in growth inhibition in two ways: 

(Target 3) the decrease of CoA levels to concentrations below what is required to sustain parasite 

survival or (Target 4) the direct inhibition of one or more CoA-requiring processes by the CoA 

antimetabolites. It has been shown that fatty acid biosynthesis is not essential in blood-stage P. 

falciparum parasites [47, 48] and blood-stage parasites rely exclusively on glycolysis for their energy 

needs. Consequently, these parasites do not use the Krebs cycle (with its many acyl-CoA 
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intermediates) in this life-stage [19]. It is therefore unlikely that fatty acid biosynthesis and the Krebs 

cycle are targets for CoA antimetabolites. However, since there are various processes relying on 

CoA, other targets might come into play. In addition, fatty acid biosynthesis has been implied to be 

important in the liver stage of P. falciparum [20] and therefore these compounds might act on different 

targets in the different life stages of the parasite. 

 

Currently it is unknown which of the four targets is the main point of inhibition for PanAms. Various 

studies have shown the inhibition of pantothenate uptake and phosphorylation by pantothenate 

analogues [13, 23]. A recent study has shown that PanAms inhibit pantothenate uptake and 

phosphorylation by these compounds competing with pantothenate uptake and phosphorylation [49]. 

It has also been shown that pantothenamides are phosphorylated by PfPanK present in parasite 

lysate; therefore, it seems as if these compounds act as substrates for PanK [42, 49]. These findings 

eliminates target 1 and 2 as possible targets for PanAm inhibition and elude to target 3 and 4 as 

possibilities. Therefore further research is needed to investigate whether the antimetabolites are 

actually formed, and if so, what the effects of these compounds are on the biochemistry of the malaria 

parasite. 

 

Figure 1.16: The proposed mechanisms of action for the PanAms in P. falciparum: (1) 

Interference with the pantothenate transporters; (2) inhibition of PanK; (3) CoA 

antimetabolites could cause a decrease in CoA levels to concentrations lower than the 

parasite needs to survive or (4) the CoA antimetabolites inhibit one or more downstream 

CoA-requiring processes directly.  
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1.7 Aims of this Study 

The purpose of this project is to shed light on the mode of action of PanAms’ inhibition of P. 

falciparum parasite proliferation. Three main aims were set out for this study in order to lay ground-

work for future research in finding the exact point of action of PanAm inhibition. Not only will this 

allow CoA biosynthesis to be considered as a new drug target in P. falciparum, but importantly, it will 

also increase knowledge on unknown parasite biochemistry.  

Aim 1: Establish the minimum extracellular pantothenate concentration needed for parasite 

survival  

Ultimately we want to determine what the critical amount of CoA is for parasite survival. In doing so 

we can determine the threshold needed for PanAms to interfere with CoA biosynthesis. However, 

this is not an easy determination to make since parasites obtain CoA from pantothenate received 

from the host red blood cell that in turn obtains pantothenate from extracellular sources. We therefore 

set out to determine the minimum required pantothenate needed for the survival of blood-stage P. 

falciparum parasites.  

Objective 1: Determine parasite survival without pantothenate present  

In order to achieve this, custom RPMI media without pantothenate present must be obtained since 

all commercially available RPMI-1640 media contains ~1 µM pantothenate. P. falciparum 3D7 is 

then cultured in this media under otherwise normal culturing conditions to determine how long they 

can survive without any extracellular pantothenate available to them.  

Objective 2: Determine the minimum amount of extracellular pantothenate necessary for P. 

falciparum survival 

Once we know how long blood-stage parasites can survive without pantothenate, we can determine 

the minimum amount of pantothenate needed for parasite survival by again culturing P. falciparum 

3D7 strain in pantothenate-free media, supplemented with varying concentrations of pantothenate. 

Ultimately these two experiments will lay a foundation for future studies to determine the minimum 

amount of CoA required for parasite survival.  

 

Aim 2: Determine if N-PE-α-Me-PanAm is metabolized by CoA biosynthetic enzymes as 

substrate to form CoA antimetabolites  

Evidence that the PanAms can be converted to the corresponding CoA antimetabolites by the CoA 

biosynthetic enzymes present in P. falciparum parasites will support the mode of action of PanAms 

that is based on either the lowering CoA levels, or the inhibition of processes in the parasite that 

depend on CoA.  
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Objective 1: Validate an analytical technique for CoA antimetabolite detection 

Several analytical chromatography techniques are available in our laboratory for the detection of 

CoA and intermediates of the pathway. Our first objective was therefore to determine which 

technique would suite our application (using parasite lysate) the best. 

Objective 2: Analysis of PanAm conversion in P. falciparum lysate 

In this case we analysed the conversion of N-PE-α-Me-PanAm to the corresponding CoA 

antimetabolites in the presence of lysate from isolated P. falciparum parasites. 

Objective 3: Analysis of N-PE-α-Me-PanAm conversion in P. falciparum cultures in vitro. 

We also investigated the conversion of PanAms in P. falciparum cultures treated with a non-lethal 

dose of PanAm to determine if any conversion of the compound is taking place under culture 

conditions. 

 

Aim 3: Synthesis and evaluation of the effect of a PanK inhibitor that is not a pantothenate 

analogue.  

To support that PanAms do not inhibit PanK, but are rather metabolized downstream in the pathway 

we set out to prepare a PanK inhibitor that is not a pantothenate analogue. Recently studies have 

shown that human PanK can be inhibited by tricyclic methylthiophenyl propanamides (TMPs) that in 

structure are not related to pantothenate at all [50]. TMPs bind to the ATP-PanK complex to induce 

their inhibitory effect and were shown to impair CoA levels at increasing concentrations of TMPs 

[50]. We therefore want to prepare a TMP analogue and test it on P. falciparum to see if it has any 

inhibitory effect on PfPanK and parasite prolliferation. If so, it should inhibit by lowering CoA levels 

since it shuts down CoA biosynthesis at the first enzyme. This can then be used for future studies 

as a tool to compare to PanAm as inhibitors in order to determine if PanAms lower CoA levels in a 

different way—the difference being that the TMP analogue cannot act as alternative substrates and 

the pantothenamides can, since they are pantothenate analogues.  

Objective 1: Synthesis and purification of TMP  

In order to test TMPs as a P. falciparum inhibitor, one of these compounds had to be synthesized. 

This was attempted by using published protocols in literature [50].  

Objective 2: Test TMP as P. falciparum PanK inhibitor 

TMP was established in literature as human PanK inhibitors by using a discontinuous radioactive 

assay. These results should be confirmed by testing TMPs on human PanK 3, which is available in 

our laboratory. Once this has been established we can test the effect of this compound on P. 

falciparum in parasite lysate using the same discontinuous radioactive assay. 
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Objective 3: Test TMP as inhibitor of P. falciparum proliferation 

TMP will be tested as inhibitor of P. falciparum parasite growth in culture and if it is an inhibitor the 

IC50 will be determined. 

 

The aims and objectives set out in this study will form the pilot study in the quest to determine the 

specific mode of action of PanAms in order to develop these compounds further as inhibitors of P. 

falciparum in various stages of the parsites life cycle in future studies to come.  
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Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 General reagents  

All general reagents and chemicals, solvents, silica and thin-layer chromatography (TLC) plates used 

for synthesis were purchased from Sigma-Aldrich. SYBR Safe fluorescent DNA stain (10 000 × 

concentrate in DMSO) for P. falciparum growth assays were acquired from Invitrogen. Novagen’s 

KOD Hot start DNA Polymerase Kit was bought from Merck. Mycoplasma removal agent (MRA) was 

from Biorad. Mycoplasma DNA was a kind gift from Dr. Annelise Botes (Department of Biochemistry, 

Stellenbosch University). Nancy-520 gel dye was obtained from Sigma-Aldrich. 

2.1.2 Plastics and glassware 

For culturing, Kymex and Falcon 15 ml and 50 ml centrifuge tubes as well as Greiner Cellstar ® 75 

cm2 (250 ml) tissue culture flasks and NEST 25 cm2 (60 ml) tissue culture flasks were used for all in 

vitro P. falciparum culturing. For all the assays, cultures were incubated in sterile, clear, NEST 96-

well flat bottom cell culture plates and fluorescent assays analyzed in Grenier Bio One black 96-well 

flat bottom plates. For the malstat assays, clear Grenier Bio One 96-well flat bottom plates were 

used. 1 ml, 5 ml, 10 ml and 60 ml Surgi Plus syringes were purchased from Stellenbosch Medical 

Suppliers and 1.5 ml and 2.0 ml centrifuge tubes where obtained from Scientific Specialties, Inc.  

2.1.3 Culture medium and media components 

Standard RPMI-1640 culture media as well as HEPES, sodium bicarbonate, glucose and 

hypoxanthine used to supplement the media were purchased in powder form from Sigma-Aldrich 

and were all suitable for cell culture. The gentamycin was purchased from Sigma-Aldrich in liquid 

form, and Albumax II serum acquired from Professor Peter Smith, Division of Pharmacology at the 

University of Cape Town, who acquires it from Thermo Fisher Scientific Inc. The custom made, 

pantothenate free media was first made up using components bought from Sigma-Aldrich. Later it 

was custom made by an American based company, AthenaES and was acquired in liquid form 

(containing Glutamax instead of L-glutamine). Other components used in assays were purchased in 

powder form from Sigma-Aldrich and the low oxygen gas mixture used to gas cultures was obtained 

from Afrox. 

 

2.1.4 Human erythrocytes 

Human A+ blood was used for all malarial cell cultures and was obtained biweekly from the Western 

Cape Blood Bank at Vergelegen Medi-Clinic, Somerset West, South Africa. The work performed in 

this study was performed in the laboratory of the co-supervisor, Prof Erick Strauss. Prof. Strauss has 

ethical clearance from the The Health Research Ethics Committee of Stellenbosch for use of human 

blood in cell culture medium. 
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2.1.5 Plasmodium falciparum parasites 

The P. falciparum strain 3D7 parasites used in this study were available in the laboratory of Prof. 

Erick Strauss (co-promotor to this study) in the Department of Biochemistry at Stellenbosch 

University. 

2.1.6 N-substituted Pantothenamides and CoA biosynthesis metabolites 

N-PE-α-Me-PanAm used in this study was synthesized by Dr. Leanne Barnard (Department of 

Biochemistry, Stellenbosch University) as part of another study [1]. Its purity was confirmed by 1H, 

13C NMR and High Resolution Mass Spectrometry (HRMS) analysis prior to being stocked. These 

compounds are usually stored at -20 °C at a concentration of 200 mM in either DMSO or 50% 

acetonitrile/water.   

Pantothenate, pantetheine, dephospho-CoA, and CoA, were obtained from Sigma-Aldrich. 4’-

phosphopantetheine was synthesized from pantetheine using a S. aureus PanK enzyme. 

2.1.7 Bacterial Enzymes 

S. aureus PanK and E. coli PPAT and DPCK were already available in the laboratory of Prof. Erick 

Strauss and were expressed and purified from E. coli according to published procedures [2, 3]. 

2.1.8 Spectrophotometry and fluorimetry 

All spectrophotometric and fluorometric readings were done in 96-well plates with a Varioskan 

multimode reader (Thermo Fisher Scientific Inc.)  

2.1.9 High Performance Liquid Chromatography (HPLC) 

HPLC was performed using the Opti-guard® 1 mm C18 guard column from Sigma-Aldrich, in 

combination with the Phenomenex Luna 5u C18(2) 100A 250 x 4.60 mm column from Separation 

Sciences. These were used on an Agilent/Hewlett Packard Series 1100 HPLC system from Cohesive 

Technologies and Agilent Technologies with in line FLD-fluorescence and UV detectors. HPLC-

grade CHROMASOLV solvents (acetonitrile and methanol) used for HPLC were acquired from 

Sigma-Aldrich.  

2.1.10 Liquid chromatography Mass Spectrometry (LCMS) 

All LCMS and Electron Spray Ionisation Mass Spectrometry (ESI-MS) analyses were done at the 

Central Analytical Facility (CAF) at Stellenbosch University using a Waters 2690 Separations Module 

with a Waters 996 Photodiode Array Detector for the liquid chromatography separations, linked to a 

Waters Micromass Quattro mass spectrometer for mass analysis. The data were then analyzed 

using MassLynx software. 

2.1.11 Nuclear Magnetic Resonance (NMR) Spectroscopy 

All NMR analyses were done at CAF (Stellenbosch University) on a Varian VXR 300 MHz “R2-D2” 

NMR spectrometer and a Varian Inova 400 MHz NMR spectrometer. The data were then analyzed 

using MestReNova software. The analyses were run in deuterated solvents (chloroform-d, dimethyl 

sulfoxide-d6 and deuterium oxide) obtained from Sigma-Aldrich.  
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2.2 Methods 

2.2.1 Preparation of erythrocytes for P. falciparum cultures and experiments 

A fresh bag of A+ red blood cell concentrate (3-5 days old) was collected biweekly and stored at 4 

°C. Before use of the blood in experiments or cultures, it was washed to ensure that any leukocytes 

or proteins still present were removed. This was performed by mixing equal parts blood and RPMI-

1640 media, supplemented with 25 mM HEPES, 23.8 mM sodium bicarbonate, 11.1 mM glucose, 

200 µM hypoxanthine (dissolved in 0.5 M NaOH), 24 µg/ml gentamycin and 0.6% m/v Albumax II 

serum, at pH 7.4 (hereafter called RPMI complete media), in a sterile 50 ml Falcon tube and 

centrifuging it at 1200 x g for 3 min. Supernatant was then discarded and the washing step repeated 

one more time. Thereafter 5 ml media was added to the erythrocytes and they were stored at 4 °C 

and used for no longer than 14 days. 

2.2.2 Continuous P. falciparum cultures 

P. falciparum 3D7 strain was used for all in vitro experiments containing malaria parasites. These 

parasites were maintained in a continuous culture, using similar methods to those described by 

Trager in 1976 [4]. Briefly, the P. falciparum parasites were cultured in A+ human erythrocytes (4% 

hematocrit) in RPMI complete media. The cultures were incubated in ventilated culture flasks (small 

cultures had a volume of 5 ml culture in a 60 ml culture flask and standard cultures had a volume of 

50 ml culture in a 250 ml culture flask), in a low oxygen gas mixture environment (1% oxygen, 3% 

carbon dioxide, 96% nitrogen). Cultures were laid horizontally for maximum surface area exposure 

to the gas mixture, and incubated at 37 °C on a rotary shaker (50 rpm) to encourage synchronous 

cell culture growth. The media on the cultures was changed daily and cultures split on days when 

cultures were in trophozoite stage and parasitemia was high, to prevent cell death and stress caused 

by overpopulation. The cultures were maintained with parasitemia between 5-20%. To split, cultures 

were centrifuged at 750 x g for 3 min, the media removed, and of the pellet, 0.25 – 1 ml was 

transferred to a new falcon tube (dependent on parasitemia), followed by the addition of 1 – 1.75 ml 

washed blood, to maintain the 4% hematocrit in the culture. The rest of the volume was then made 

up to 50 ml by pre-incubated (37ºC) RPMI complete media. 

2.2.3 Synchronization of P. falciparum cultures 

P. falciparum in vitro cultures do not stay in a synchronous phase like they do in vivo, and thus 

cultures need to be synchronized ~4 days before using cultures for experiments. Methods adapted 

from a published protocol by Lambros and Vanderberg [5] were used for this purpose. Briefly, the 

culture media was removed and the erythrocyte and parasite pellet treated with 10 volumes of 5% 

(m/v) filtered, prewarmed D-sorbitol at 37 °C for 10 min, homogenizing the suspension every 2-3 min 

for best synchronization. This process would lyse all parasites in trophozoite stage, thus only leaving 

parasites in ring stage.  
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2.2.4 Determination of parasitemia 

Before cultures were split or experiments were started using P. falciparum, the percentage of 

parasite-infected erythrocytes (parasitemia) was determined. This was done manually by taking 

culture samples and making blood slides. Cells were fixed with methanol and the cells then stained 

with Giemsa working stain (10 ml 10x Giemsa stock in 90 ml 1x PBS buffer). The slides were then 

viewed under a light microscope with a 1000x magnification and the number of parasites (stained 

blue) divided by the number of red blood cells (not stained because they do not have DNA) calculated 

as percentage parasitemia. 

2.2.5 Testing and treatment of cultures for Mycoplasma infection 

Mycoplasma infections are common in cell cultures and thus P. falciparum cultures need to be tested 

regularly for Mycoplasma infections. 

2.2.5.1 Testing for Mycoplasma infection 

A few set of primers are needed to test for the presence of Mycoplasmas in P. falciparum cultures. 

These primers are 5’ primers Myc51 (seq: CGCCTGAGTAGTACGTTCGC), Myc52 (seq: 

CGCCTGAGTAGTACGTACGC), Myc53 (seq: TGCCTGAGTAGTACATTCGC), Myc54 (seq: 

TGCCTGGGTAGTACATTCGC), Myc55 (seq: CGCCTGGGTAGTACATTCGC, Myc56 seq: 

CGCCTGAGTAGTATGCTCGC, and 3’ primers Myc31 (seq: GCGGTGTGTACAAGACCCGA), 

Myc32 (seq: GCGGTGTGTACAAAACCCGA) and Myc33 (seq: GCGGTGTGTACAAACCCCGA). A 

primer mix containing 2 µM of each of the 9 primers was prepared. 

When changing media in cultures (section 2.2.2) an aliquot of the old media was dispensed into a 

centrifuge tube after centrifugation of the blood culture. This supernatant was then heated to 95 °C 

for 15 min and then placed on ice for 5 min to cool. Once cooled, it was centrifuged in a 

microcentrifuge at top speed (16 606 x g) for 3 min and at least 50 µL of this supernatant collected. 

PCR reaction mixtures containing 2.5 µl 10x PCR reaction buffer, 1.75 µl 25 mM MgSO4, 5 µl 2 mM 

dNTPs, 12.25 µl sterile MilliQ water from Novagen’s KOD Hot start DNA Polymerase Kit and 2.5 µl 

2 µM primer mix per sample was made up. 24 µl of this PCR mix was then aliquoted into PCR tubes 

and 1 µl sample supernatant added. In addition to the sample from the blood culture, 2 negative 

controls (one containing no KOD polymerase and one containing no DNA template) were set up, as 

well as one positive control containing 17.1 ρg Mycoplasma DNA. Once heated, 1 µl KOD 

polymerase also from Novagen’s KOD Hot start DNA Polymerase Kit was added to each sample.  

The PCR program ran a 2 min pre-cycle at 95 °C, followed by 40 cycles of 95 °C for 20 seconds, 52 

°C for 10 seconds, 74 °C for 32 seconds and then finally ended on 4 °C. Once the PCR was 

complete, the DNA was run on a 1% agarose gel with TAE buffer, containing 5 µl Nancy-520 gel 

dye. The entire PCR samples with 5 µl loading buffer each were loaded onto the gel, along with 10 

µl of the Universal Ladder (Kapa Biosystems) and the gel run for 65 min at 80 volts in TAE buffer 

and then imaged on a blue light trans-illuminator once completed. 
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2.2.5.2 Treatment of Mycoplasma infection in P. falciparum culture 

If the P. falciparum cultures tested positive for Mycoplasma infection, parasitemia of the culture 

should be determined (section 2.2.4) and a 5 ml culture split into a 60 ml cell culture flask, containing 

4% hematocrit and 2% parasitemia. This culture is then treated with 50 µl Mycoplasma removal 

agent (MRA). The media was changed daily (section 2.2.2) and 50 µl MRA added to the culture 

every time media is changed. The culture was treated for a week before it was tested again for the 

presence of Mycoplasma (section 2.2.5.1), and only if it tests negative is the culture increased to a 

50 ml culture again. Two weeks after the Mycoplasma removal was successful, the cultures were 

tested a second time for the presence of Mycoplasma (section 2.2.5.1) to confirm that all 

Mycoplasmas were removed from the culture during treatment.  

2.2.6 P. falciparum parasite isolation and lysate preparation 

For experiments that made use of P. falciparum cell lysates, cultures were grown to a high 

parasitemia (~10-20%) and parasites isolated on a day when they were in trophozoite stage. For 

isolation, the Plasmodium infected erythrocytes, still suspended in media, were subjected to 0.05% 

(m/v) saponin. Saponin is a plant-derived compound, attacking the cholesterol of cell membranes. 

Since the erythrocyte cells have cholesterol in their cellular membranes where the parasite cell 

membranes lack cholesterol, parasite cells remain intact, while pores form in the erythrocyte cell 

membranes, thus lysing them. The treated cultures are then immediately centrifuged at 2000 x g for 

8 min at 4 °C after which the supernatant was removed and discarded. The remaining cell pellet, 

consisting of predominantly parasite cells, was washed with malaria saline (125 mM sodium chloride, 

25 mM HEPES, 1 mM magnesium chloride, 5 mM potassium chloride, and 20 mM glucose) to 

remove any cell debris still in the pellet. The mixture was centrifuged for 30 seconds at 16 606 x g 

at 4 °C and the supernatant removed. This step was repeated a further 3-4 times until the 

supernatant was clear after the centrifugation step. 

Once isolated, the parasites in the pellet were resuspended in 500 µl malaria saline. Of this, 20 µl 

was transferred to another centrifuge tube and diluted 50x with malaria saline; this was used for the 

purpose of cell counts (Section 2.2.6). The remaining 480 µl of parasite suspension was centrifuged 

one last time for 30 seconds at 16 606 x g at 4 °C, the supernatant removed, and the pellet 

resuspended in cold lysis solution (10 mM Tris, pH 7.4). The parasite cells were then lysed by 

trituration (~20x) through a 25-guage needle. The lysed suspension was then centrifuged 3 times for 

30 min at 16 606 x g at 4 °C, each time transferring the supernatant to a new centrifuge tube and 

discarding the pellet. The lysate was stored at -20 °C until used for experiments. 

2.2.7 Cell Counts for lysate preparation 

The 50x dilution of the parasite cells before lysis was used to determine the number of trophozoites 

by manually counting them on a Neubauer hemocytometer at a 100x magnification under a light 

microscope to determine the cell counts in cells/ml.  
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2.2.8 Custom preparation of Pantothenate-free media 

Since standard commercially available media contains 1 µM pantothenate, and pantothenate free 

complete media was needed for experiments where pantothenate had to be excluded, two sources 

of pantothenate free media were used for experiments. First, pantothenate free complete media was 

prepared in house by using component information and concentrations of RPMI-1640 media 

available from the Sigma-Aldrich website [6]. A 50x RPMI-1640 amino acid mix was commercially 

available which was used, but further, stocks were made up of the other components: (1) a 20x 

inorganic salt stock containing calcium citrate (8.47 mM), magnesium sulfate (8.12 mM), potassium 

chloride (107.31 mM), sodium chloride (2.053 M), and sodium phosphate dibasic (112.71 mM), (2) 

a 2500x vitamin mix containing D-biotin (2.05 mM), choline chloride (53.72 mM), folic acid (5.66 mM), 

myo-inositol (485.68 mM), niacinamide (20.47 mM), p-aminobenzoic acid (18.23 mM), pyridoxine 

(12.16 mM), riboflavin (1.33 mM), thiamine (7.41 mM), and vitamin B12 (first made up as a 250 000x 

stock and then added to the mixture) (9.00 nM), and separate stocks of (3) D-glucose (22.2 mM), (4) 

glutathione (500x, 1.63 mM), (5) phenol red dissolved in ethanol (250x, 3.52 mM), and (6) L-

glutamine (250x, 513.21 mM). While most of the stocks could be stored at 4 °C and reused whenever 

fresh media was made, glutathione and L-glutamine stocks had to be made up on the day of the 

experiment. Once all the stocks were added together it was supplemented with 25 mM HEPES, 

23.81 mM sodium bicarbonate, 11.1 mM glucose, 200 µM hypoxanthine (dissolved in 0.5M NaOH), 

24 µg/ml gentamycin and 0.6% (m/v) Albumax II serum, and the pH adjusted to 7.4, after which the 

pan-free media was filtered with a 0.2µ syringe filter under sterile conditions and stored at 4 °C till 

needed. 

Later we sourced commercially available custom-made pantothenate free media (Custom RPMI 

medium 1640, without pantothenate, with Glutamax) from AthenaES (USA). This media did not 

require the additional addition of L-glutamine, since it contains Glutamax. 

2.2.9 P. falciparum survival without pantothenate present 

Parasites were cultured as described in section 2.2.2. Once parasites were in the synchronized ring 

stage, 5 ml cultures in 60 ml culture flasks with 2% hematocrit and 1% parasitemia were maintained 

in custom made pantothenate free RPMI-1640 media supplemented with 25 mM HEPES, 23.81 mM 

sodium bicarbonate, 11.1 mM glucose, 200 µM hypoxanthine (dissolved in 0.5M NaOH), 24 µg/ml 

gentamycin and 0.6% m/v Albumax II serum, with pH 7.4 (here on called Pan-free complete media). 

Infected erythrocytes (2% hematocrit, 1% parasitemia) in Pan-free complete media supplemented 

with 1 µM pantothenate were used as a control to estimate the growth pattern when the parasites 

were growing under normal conditions. These cultures were also gassed with a low oxygen gas 

mixture (1% oxygen, 3% carbon dioxide, 96% nitrogen) and incubated at 37 °C on a rotary shaker 

(50 rpm) to encourage synchronous cell culture growth. The media in these cultures were changed 

every day (Ssection 2.2.2) for 8 days, and each day a blood slide made and parasitemia determined 

(section 2.2.4). In addition, an aliquot was taken and frozen at -20 °C for a SYBR Safe and Malstat 
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assay analysis (sections 2.2.8 and 2.2.9). The experiment was performed twice as separate 

experiments each performed in triplicate.  

2.2.10 P. falciparum growth assays for minimum pantothenate requirement 

Parasites were cultured as described in section 2.2.2.  Once parasites were in the ring stage, the 

assay was set up in a sterile 96-well cell culture plate with a 2% hematocrit and 1% parasitemia in 

Pan-free complete media. A two-times serial dilution of the pantothenate-containing wells was done 

in triplicate, with the final pantothenate concentration ranging between 1 µM and 1.9 pM, with a final 

volume of 200 µl per well. Infected erythrocytes (2% hematocrit, 1% parasitemia) in Pan-free 

complete media supplemented with 1 µM pantothenate were used as a control to estimate of 100% 

parasite growth. Uninfected erythrocytes with a hematocrit of 2% in RPMI complete media, as well 

as Plasmodium infected erythrocytes with 1 µM chloroquine in RPMI complete media were both used 

as a negative control (to subtract background), with the uninfected erythrocytes control serving as a 

check that the parasites were not becoming chloroquine resistant. In addition to this, parasite 

infected erythrocytes with a hematocrit of 2% and 1% parasitemia in Pan-free complete media 

served as an extra control to confirm whether the parasites actually died within the incubation period 

with no pantothenate present. Wells not being used were filled with 200 µl media. These plates were 

then incubated at 37 °C for 2 parasite life-cycles (96 hours) inside an air-tight desiccator that had 

been flushed with a low oxygen gas mixture (1% oxygen, 3% carbon dioxide, 96% nitrogen). These 

assays were then analyzed by means of the SYBR Safe assay (see section 2.2.12) as well as the 

Malstat assay (See section 2.2.13). 

2.2.11 SYBR Safe assay  

For all SYBR Safe assay analyses used to determine parasite viability, 100 µl SYBR Safe solution, 

which consists of 2 µl SYBR Safe in 10 ml lysis buffer (20 mM Tris, 5 mM EDTA, 0.008% (m/v) 

saponin, 0.08% (v/v) TritonX-100, pH 7.5), was aliquoted into each well of a black 96-well plate. 

From the original assay 96-well plate, 100 µl of the homogenous sample of each well was transferred 

to the SYBR Safe solution and mixed gently. Fluorescence was measured on a Varioskan multimode 

reader (Thermo Fisher Scientific Inc.) with excitation and emission wavelengths at 490 nm and 520 

nm, respectively. 

2.2.12 Malstat assay analysis 

Before the Malstat analysis was done, culture samples were subjected to freeze-thaw cycles (3x) to 

lyse all the red blood cells. Thereafter, to a clear 96-well plate, 100 µl Malstat reagent (0.2% (v/v) 

Triton X-100, 220 mM lactic acid, 41.9 mM Tris, 0.17 mM 3-acetylpyridine adenine dinucleotide 

(APAD), pH 9.0), 25µl NBT/PES solution (1.96 mM nitro blue tetrazolium, 0.24 mM phenazine 

ethosulphate) and 15 µl homogenous blood culture sample were added. Once mixed, the plates 

were incubated in the dark (the reagents are light sensitive) for 30 min before they were 

spectrophotometrically analyzed at 620 nm with a Varioskan multimode reader (Thermo Fisher 

Scientific Inc.). 
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2.2.13 Data analysis for Malstat and SYBR Safe assays 

For SYBR Safe and Malstat assays data were collected in triplicate. The average of the blank was 

thus subtracted from all the data points and the average of each point plotted as a percentage of 

total growth (compared to the 100% control). Two repeats were done of each experiment, and error 

calculated (standard error of the mean) by the standard deviation of the average of the repeats, 

divided by the number of repeats (in this case 2). 

2.2.14 Absorption profile of N-PE-α-Me-PanAm 

The absorption profile of 500 µM N-PE-α-Me-PanAm (dissolved in water) was recorded between 

200 and 400 nm on a Varioskan spectrophotometer. 

2.2.15 Biosynthesis of CoA analogues with P. falciparum cell lysate 

Reaction mixtures (250 µl final volume) containing P. falciparum cell lysates (section 2.2.6) were 

used to carry out the conversion of the N-PE-α-Me-PanAm, the substrate, to its corresponding CoA 

antimetabolites. Cell lysate stored in 10 mM HEPES buffer (pH 7.6) had a concentration of ~1.975 x 

109 cells/ml and lysates stored in 10 mM Tris (pH 7.6) had a concentration of ~3.128 x 109 cells/ml. 

The reactions consisted of 16.5 mM ATP (pH 7), 10 mM MgCl2, 125 µl cell lysate in HEPES or Tris 

buffer, 50 mM HEPES or Tris (pH 7.6) and 5 mM α-Me-N-PE-PanAm. The reactions were incubated 

overnight at 37 °C before analyzing via HPLC (See section 2.2.21.2). 

2.2.16 N-PE-α-Me-PanAm metabolism in P. falciparum cultures 

P. falciparum cultures (8 x 50 ml) were cultured to a parasitemia of 10-15% (section 2.2.2) and 

treated in the ring stage with 52 nM of the racemic mixture of N-PE-α-Me-PanAm. Another set of P. 

falciparum cultures (8 x 50 ml) were cultured with the same parasitemia, however these cultures 

were not treated with N-PE-α-Me-PanAm, but served as a control. All cultures were incubated for 24 

hours, after which the parasites were isolated and lysed (section 2.2.6). The lysate was then heated 

to 95 °C for 15 min and kept on ice for 5 min before centrifugation at 16 606 x g to pellet the proteins 

and enzymes. The supernatant was then analyzed by LC-MS (see section 2.2.20 for conditions). 

2.2.17 Conversion of N-PE-α-Me-PanAm to antimetabolites by bacterial enzymes for 

LC-MS method validation 

An enzymatic reaction, using N-PE-α-Me-PanAm as a substrate, was set up using active isolated 

bacterial enzymes from S. aureus and E. coli. The reactions, with a volume of 250 µl each, were set 

up by adding 60 mM HEPES (pH 8.0), 16.5 mM ATP, 10 mM MgCl2, and 10 mM N-PE-α-Me-PanAm 

followed by the addition of 51 μg of each enzyme, SaPanK, EcPPAT and EcDPCK. The reaction 

mixtures were incubated for 24 hours at 37 °C after which they were diluted with 250 µl 10 mM 

ammonium acetate, pH 6.0. Proteins were then removed by heat precipitation at 95 °C for 5 min, 

followed by 2 x 30 min centrifugation at 16 606 x g to pellet the proteins and the supernatant 

transferred to a new centrifuge tube each time. The supernatant was then analyzed by LC-MS (see 

section 2.2.20 for conditions). 
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2.2.18 Biosynthesis of CoA and intermediates with P. falciparum cell lysate for LC-MS 

analysis 

To check whether the P. falciparum lysate enzymes were active, biosynthetic reactions were set up 

in lysates prepared in Tris and HEPES buffer respectively using CoA biosynthesis natural substrates, 

pantetheine and dephosphoCoA. Pantetheine was prepared by reducing, 25 mM pantethine 

(commercially available disulfide of pantetheine) in 37.5 mM TCEP for 10 min at room temperature. 

5 mM substrate (either pantetheine or dephosphoCoA) was then incubated in the presence of 16.5 

mM ATP, 10 mM MgCl2, 125 µl cell lysate in HEPES (10 mM, pH 7.6) and 2.5 mM HEPES buffer 

(pH 7.6) in a final volume of 250 µl. Another set of reactions were set up, replacing the cell lysates 

stored in HEPES with the lysate stored in 10 mM Tris (pH 7.6) and the HEPES buffer with 2.5 mM 

Tris (pH 7.6). All the reactions were incubated for 24 hours at 37 °C after which proteins were then 

removed by heat precipitation at 95 °C for 5 min, followed by 2 x 30 min centrifugation at 16 606 x g 

to pellet the proteins and the supernatant carried over to a new centrifuge tube each time. The 

supernatant was then analyzed by LC-MS (see section 2.2.19 for conditions). 

2.2.19 LC-MS conditions for analysis of biosynthesized CoA analogues 

LC-MS analysis was performed at CAF (Stellenbosch University) as described previously [7]. LC-

MS analysis was performed with 10 mM ammonium acetate, pH 6.5 (solution A) and 1% formic acid 

in acetonitrile (solution B) on a Waters Synapt G2 system on a Waters HSS C18 column (2.1 x 150 

mm) with a flow rate of 0.3 ml/min. The column was first equilibrated in 98% solution A and 2% 

solution B. This was followed by elution with 98% solution A (0-1 min, isocratic), a linear gradient 

increasing solution B to 20% (1-10 min), a linear gradient increasing solution B to 100% (10-15 min), 

an isocratic elution at 100% solution B (15-16 min) and a linear gradient returning to 98% solution A 

(16-20 min, isocratic). Electrospray Ionization (ESI) was applied in the positive mode and negative 

modes at a capillary voltage of 2.5 kV, cone voltage of 15 V, desolvation temperature of 275 °C and 

desolvation gas setting of 650 L/h, with the remaining settings optimized for optimal sensitivity. The 

instrument was calibrated with sodium formate, and leucine enkaphelin was used as lock mass for 

accurate mass determinations. The MS acquisition method consisted of a low energy function at a 

trap voltage of 6 V and a high energy function where the trap collision energy was ramped from 15 

to 60 V to generate fragmentation data (MSE).  

2.2.20 Derivatization of thiol containing substrates and products with CPM 

Cell lysate reactions prepared as in section 2.2.19 were derivatized with 7-Diethylamino-3-(4'-

maleimidylphenyl)-4-methylcoumarin (CPM) before HPLC analysis. The reactions were stopped 

after 24 hour incubation step by heat precipitation of the P. falciparum cell lysate proteins at 95 °C 

for 5 min, followed by centrifugation twice for 30 min at 16 606 x g. The supernatant was then filtered 

with 0.2 gauge syringe filter and the supernatant CPM derivatized. This was done by setting up 140 

µl derivatization reactions, containing 44.62 µl lysate reaction supernatant, 67.6 nM TCEP, 3.62 mM 

Tris (pH 7.6), 1.45 mM, MgCl2 and 1.45 mM KCl. Subsequently, reactions were allowed to incubate 
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for 10 min at room temperature before the addition of 4.5 nM CPM. This mixture was incubated 

overnight at room temperature before analysis via HPLC. 

2.2.21 HPLC analyses 

2.2.21.1 HPLC analysis of CPM derived CoA metabolites and intermediates 

Analysis of CPM derivatized CoA analogues and intermediates was done using a previously 

published method [2]. Briefly, once the metabolites were labelled with CPM (section 2.2.20), they 

were injected (5 µl injection) onto an Agilent Series 1200 HPLC system on a 5µM SUPELCOSIL™ 

LC-DP column (4.6 x 250 mm) with a flow rate of 1.0 ml/min. HPLC analyses were performed with 

50 mM potassium phosphate (pH 6.8) (solution A), 60% acetonitrile (solution B) and 100% 

acetonitrile (solution C). The column was first equilibrated in 50% solution A and 50% solution B. 

This was followed by elution with 50% solution A and 50% solution B  (0-5 min, isocratic), a linear 

gradient increasing solution B to 60% (5-25 min), a linear gradient increasing solution C to 60%, 

keeping solution A at 40% (25-26 min), an isocratic elution at 40% solution A/60% solution C (26-33 

min) and a linear elution increasing solution C to 90%, with solution A decreasing to 10% (33-36 

min). This was followed by an isocratic elution at 10% solution A/90% solution C (36-42 min), a linear 

gradient returning to 50% solution A/50% solution C (42-52 min), ending with an isocratic elution at 

50% solution A/50% solution C (52-57 min).   

2.2.21.2 HPLC analysis of the N-PE-α-Me-PanAm and its CoA antimetabolites 

Analysis of N-PE-α-Me-PanAm and its corresponding CoA antimetabolites was done using the 

following method: samples were injected (35 µl injection) onto an Agilent Series 1100 HPLC system 

on a Phenomenix Luna C18 100A 250 x 4.60 mm column with a flow rate of 1.0 ml/min. HPLC 

analysis was performed with 10 mM ammonium acetate buffer, pH 5.5 (solution A) and acetonitrile 

(solution B). The column was first equilibrated in 95% solution A and 5% solution B. This was 

followed by elution with 95% solution A (0-5 min, isocratic), a linear gradient increasing solution B to 

20% (5-6 min), a linear gradient increasing solution B to 40% (6-10min), an isocratic elution at 40% 

solution B and 60% solution A (10-15min) a linear gradient increasing solution B to 60% (15-16min), 

and an isocratic elution at solution B to 60% (16-20 min). UV detection of products was done at 220 

nm and 254 nm. 

2.2.22 Synthesis of tricyclic methylthiophenyl propanamide 

2.2.22.1 Compound 1 

2-Chloro-3-pyrimadinecarbonitrile (0.660 g, 4.76 mmol) was dissolved in 10 ml 

ethanol, followed by the addition of 5 equivalents of hydrazine hydrate (1.49 ml, 23.8 

mmol). This was refluxed overnight under nitrogen gas, resulting in a bright yellow 

reaction mixture which was concentrated in vacuo. Thereafter, 5 ml water was added 

and the resulting mixture was stirred at room temperature for 1 hour. The suspension 

was then filtered and the filtrate dried in vacuo to yield a yellow residue (0.890 g, 66% yield). The 

residue was used in the next step without further purification. 1H NMR (300 MHz, DMSO-d6) δ 11.91 

(1) 
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(s, 1H), 8.33 (dd, J = 4.6, 1.6 Hz, 1H), 8.11 (dd, J = 7.9, 4.6 Hz, 1H), 6.94 (dd, J = 7.9, 4.6 Hz, 1H), 

5.54 (s, 2H), 3.41-3.17 (m, 2H). 1H NMR is consistent with literature data [8]. 

2.2.21.2 Compound 2 

Compound 1 (0.948 g, 5.56 mmol) was dissolved in 8 ml ethanol and 

methyl 4-acetyl-5-oxohexanoate (1.85 ml, 10.6 mmol) was added. The 

mixture was refluxed overnight under nitrogen, resulting in a clear 

orange mixture. After cooling, the mixture was concentrated in vacuo, 

dissolved in ethyl acetate and dried in vacuo again. This was repeated 

three times. The resulting residue was resuspended in 10 ml diethyl ether and the final product 

filtered, and the precipitate washed (3 x 10 ml) with diethyl ether. The final product was obtained in 

49% yield (1.54 g). 1H NMR (300 MHz, chloroform-d) δ 8.91 (dd, J = 4.4, 1.8 Hz 1H), 8.61 (dd, J = 

8.1, 1.8 Hz, 1H), 7.20 (dd, J = 8.1, 4.4 Hz, 1H), 3.74 (s, 3H), 3.24 (dd, J = 9.2, 7.1 Hz, 2H), 3.05 (s, 

3H), 2.81 (s, 3H), 2.66 – 2.61 (m, 2H). 1H NMR is consistent with literature data [8]. 

2.2.22.3 Compound 3 

Compound 2 (0.050 g, 0.18 mmol) was mixed with 3 equivalents 1M 

aq. NaOH (1.48 ml) and 5 ml tetrahydrofuran (THF). This was left to stir 

overnight at room temperature. After the reaction was deemed 

complete by TLC (5:1 ethyl acetate:hexane), the THF was removed in 

vacuo and the remaining residue dissolved in 5 ml water. It was then washed three times in a 

separating funnel, with 5 ml ethyl acetate and the product freeze dried to yield a white powder (0.305 

g; >99% yield). 1H NMR (300 MHz, D2O) δ 8.57 (dd, J = 4.5, 0.9 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 

7.11 (dd, J = 8.1, 4.5 Hz, 1H), 2.92 (dd, J = 9.8, 6.9 Hz, 2H), 2.67 (s, 3H), 2.55 (s, 3H), 2.37 (dd, J = 

9.7, 6.9 Hz, 2H). 1H NMR is consistent with literature data [8]. 

2.2.22.4 Compound 5 

Method 1:  

Compound 3 (0.100 g, 0.370 mmol) was added to 2.1 equivalents of 

thionyl chloride (0.059 ml, 0.41 mmol) in 3 ml dimethylformamide (DMF). 

This mixture was stirred overnight while heating from room temperature 

to 70 °C under nitrogen. Product formation was determined by TLC 

(16:2:1:1 ethyl acetate:butanol:acetic acid:water, Rf value 0.45), however no visible change was 

seen on TLC. It was thus followed by the addition of 2 equivalents of triethylamine (0.061 ml, 0.40 

mmol) and stirred it at room temperature for 4 hours under nitrogen, after which the DMF and excess 

amines were removed in vacuo, resulting in a residue (0.152 g, <99% yield).  

Method 2: 

Compound 3 (0.150 g, 0.560 mmol) mixed with 12.5 equivalents of thionyl chloride (0.350 ml). This 

was cooled to 0 °C, after which 2.5 ml dry DMF was added drop-wise and the mixture stirred for 5 

min after which the reaction was refluxed overnight. Product formation was determined by TLC (5% 

methanol/DCM, Rf value 0.66). The reaction was deemed complete when no starting reagent was 

visible on TLC. The DMF and excess thionyl chloride were removed in vacuo, followed by co-

(2) 

(3) 

(5) 

(2) 
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evaporation with 10 ml toluene and 10 ml diethyl ether, respectively. This resulted in a brown residue 

(0.248 g, <99% yield). No further purification was done and the resulting residue was used as is in 

the next step. 

 

2.2.22.5 Compound 4 

Method 1: HBTU coupling  

Compound 4 (0.153 g, 0.106 mmol) was added to 1.3 ml dry 

DMF to form a suspension. Subsequently, 2 equivalents 

N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-yl)uronium 

hexafluorophosphate (HBTU) (0.074 g, 0.21 mmol) and 1.5 

equivalents (31 µl, 0.16 mmol) triethylamine were added and allowed to stir for 5 min. Thereafter, 

3.6 equivalents 3-(methylthio)aniline (65 µl, 0.38 mmol) were added to the reaction mixture and 

stirred for 4 hours at room temperature under nitrogen gas. The reaction was monitored by TLC (5% 

methanol/ dichloromethane) and subsequently the reaction mixture was concentrated in vacuo 

(0.980 g crude). The resulting residue was purified on a silica column (5 % 

methanol/dichloromethane, 20 % methanol/dichloromethane) and the fractions analyzed on TLCs (5 

% methanol/dichloromethane). The desired fractions (Rf value 0.41) were pooled and dried (<5 mg, 

therefore enough to do NMR analysis but not to pursue further). 1H NMR (300 MHz, DMSO-d6) δ 

9.99 (s, 1H), 8.81 (dd, J = 3.2 Hz 1H), 8.57 (ddd, J = 8.1, 1.8, 0.6 Hz, 1H), 7.53 (t, J = 1.8 Hz, 1H), 

7.31-7.28 (m, 1H), 7.24 – 7.19 (m, 2H), 6.91 (ddd, J = 7.7, 1.8, 1.1 Hz, 1H), 3.32 – 3.02 (m, 4H), 

2.92 (s, 3H), 2.73 (s, 3H), 2.68 – 2.57 (m, 2H), 2.42 (s, 1H). 1H NMR is consistent with literature data 

[8]. 

In an alternative work-up, after the reaction was complete, the resulting residue was dissolved in 10 

ml ethyl acetate and washed with 5 %(m/v) citric acid (2 x 5 ml), 1 M NaHCO3 (2 x 5 ml), and brine 

(1 x 5 ml). The organic layer was dried over NaSO4, filtered and concentrated in vacuo. The crude 

mixture was purified by flash column chromatography (10% ethyl acetate/dichloromethane followed 

by 5 % methanol/dichloromethane). The partially purified product was dried in vacuo to yield a white 

solid (<5 mg). However, NMR spectroscopy indicated this was not the desired product. Unfortunately 

the NMR spectra was inconclusive to identify peaks present. 

 

Method 2: EDC Coupling 

3-(Methylthio)aniline (21 µl, 0.17 mmol) was added to 2.5 ml dry DMF and this mixture cooled to 0 

°C. N,N-diisopropylethylamine (DIPEA) (30 µl, 0.17 mmol) was added dropwise to this cooled 

mixture as not to raise the temperature above 5 °C. Hydroxybenzotriazole (HOBt) (0.005 g, 3 nmol), 

compound 3 (0.050 g, 0.19 mmol) and N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide 

hydrochloride (EDC) (0.026 g, 0.68 mmol) were added. This mixture was then stirred overnight at 

room temperature. Product formation was determined by TLC (5% methanol/dichloromethane, Rf 

(4) 
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value 0.59) but this showed the coupling to be unsuccessful and thus the method was not pursued 

further. 

 

Method 3: B(OCH2CF3)3 amidation 

B2O3 (12.0 g, 172 mmol) and 2,2,2-trifluoroethanol (25 ml, 347 mmol) were refluxed overnight, after 

which the mixture was filtered to remove excess boric anhydride and the filtrate purified by distillation 

(80 °C under a vacuum). The resulting B(OCH2CF3)3 could then be stored at room temperature for 

up to 4 months. 

Next, the amidation reaction was performed by refluxing the compound 3 (0.104 g, 0.385 mmol) with 

2 equivalents of B(OCH2CF3)3 (0.048 g, 0.77 mmol), 1 equivalent  3-(methylthio)alinine (5 µl, 0.4 

mmol) and 2 ml acetonitrile overnight. After completion of the reaction, the product was diluted with 

ethyl acetate (3 ml) and water (0.5 ml). Amberlyst A-26(OH), Amberlyst 15 and Amberlite IRA743 

resins were added (50 ml dry volume of each). This resulting slurry was stirred for 30 min and 

magnesium sulphate added to remove excess water. The resulting solid was washed 3 times with 5 

ml ethyl acetate and filtered, then the filtrate concentrated in vacuo. TLCs were run in 5% 

methanol/dichloromethane and 1:9 hexane/ethylacetate but many impurities were present and 

suggested co-elution if purified on a silica column, thus the method was abandoned. 

 

Method 4: Amidation using acid chloride derivative 

Compound 4 (0.062 mg, 0.22 mmol) was dissolved in 2.5 ml dichloromethane (DCM) and divided 

into 4 round bottom flasks. To each flask, 4 equivalents of the amine (0.56 mmol) in 500 µl 4-picoline 

(5.14 mmol) were added separately to each flask. The amines coupled were 3-(methylthio)aniline, 

3-fluoroaniline, 3-(trifluoromethyl)aniline and 4’-aminoacetanilide. After stirring for 4 hours under 

nitrogen gas, the mixtures were concentrate in vacuo. The reactions were followed by TLC (5% 

methanol/dichloromethane) to determine which reaction was the most successful. The reaction of 3-

fluoroaniline was chosen for purification by silica plug using 5%-10% methanol/DCM to yield a 

partially purified product (0.630 g – not dry). 1H NMR (400 MHz, DMSO-d6) showed all peaks present 

that were present in the NMR spectrum of the HBTU coupling product, however many impurities 

resulted in additional peaks. 
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Chapter 3: Results and Discussion 

 

3.1 Introduction 

Most of the efforts to curb the malaria-caused death toll are aimed at prevention. However treatment 

of this disease is still critical, especially now that Plasmodium has exhibited resistance to all current 

drugs used for the treatment of malaria [1]. New antimalarial drugs with novel modes of action are 

therefore still desperately needed. In order to develop new drugs, alternative drug targets need to 

be identified. This is a challenge because limited knowledge is available about the metabolic 

processes of Plasmodium, and thus even an increased knowledge of such processes and parasite 

biology could aid in the discovery of novel drug targets. 

The CoA biosynthetic pathway is one of the pathways which is crucial to the survival of the parasite 

[2] and many attempts are currently being made to target this pathway [3-7]. Presently the most 

potent inhibitors of the CoA biosynthesis pathway are PanAms [4], however the specific mode of 

action of these compounds are still unknown. The purpose of this project was therefore to better 

understand parasite biology in terms of CoA biosynthesis and to pinpoint how biological processes 

are affected within the parasite. This will aid future studies to determine the exact mode of action for 

the PanAms.  

3.2 Results 

3.2.1 Establishing the minimum extracellular pantothenate needed for parasite 

survival  

PanAms target CoA biosynthesis and/or utilization in P. falciparum, however the critical amount of 

CoA needed for parasite survival is still unknown. By determining the critical amount of CoA the 

parasite needs for survival, we can determine the threshold needed for PanAms to interfere with 

CoA biosynthesis. However this is not an easy determination to make since parasites obtain CoA 

from pantothenate received from the host red blood cell that in turn obtains pantothenate from 

extracellular sources. Based on current data, the amount of pantothenate available to P. falciparum 

in the host blood stream is ~2.5 µM [8]. P. falciparum is cultured in the presence of 1 µM 

pantothenate, which correlates well with levels available in the human host. These culture conditions 

are similar to in vivo conditions, thus allowing us to perform experiments to determine the minimum 

required pantothenate needed for the survival of blood stage P. falciparum parasites.  

3.2.1.1 Parasite survival without pantothenate present 

In order to determine the minimum amount of pantothenate needed for survival, the first objective 

was to determine how long P. falciparum 3D7 parasites cultured in the laboratory could survive 

without pantothenate present in the culturing media, in order to determine the timeframe for the 

pantothenate requirement assay. For this purpose the parasites were cultured in pantothenate-free 
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media. Since all commercially available RPMI-1640 media contains pantothenate, we prepared 

RPMI-media without any pantothenate present in-house. To achieve this, the component information 

of RPMI-1640 media available from Sigma-Aldrich was used as reference [9]. See section 2.2.8 for 

details. 

 

After the successful preparation of custom-made pantothenate-free media (Pan-free complete 

media), P. falciparum parasites were cultured in this media for six days to observe their ability to 

grow without pantothenate present. Parasite survival was determined by using a Malstat assay which 

measures a colourimetric change caused by the production of pyruvate from lactate by lactate 

dehydrogenase enzymes, which leads to the reduction of NTB, which causes a colour change from 

yellow to blue.  Control experiments were also performed in parallel. The first control was P. 

falciparum parasites cultivated in Pan-free complete media supplemented with 1 M pantothenate 

(comparable to commercial complete RPMI-media) that was used to determine normal parasite 

growth. In addition a culture containing 1 M chloroquine was used as positive control for no parasite 

growth. 

 

Surprisingly, all cultures (including the negative control that contained sufficient pantothenate) 

showed a decline in parasite growth over six days (Figure 3.1A). We therefore concluded that the 

quality of some of the components sourced for media preparation was not suitable for P. falciparum 

in vitro culture. As an alternative, commercial Pan-free media was therefore sourced from an 

American-based company, AthenaES, which had the same components as the RPMI-1640 media, 

except for pantothenate. This media was used to repeat the above experiment of the controls to 

determine whether the media prepared in-house was the problem. Here, the controls were incubated 

for seven days after which the Malstat assay was used to determine parasite survival of each control 

(Figure 3.1B) 
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Figure 3.1:  (A) Parasite survival assay controls over 6 days in a 96-well microtiter plate, 

determined by use of a Malstat assay. The symbols in red indicate parasite -infected 

erythrocytes in complete media, the symbols in blue indicate the negative control where 

parasite-infected erythrocytes are cultured in media containing chloroquine, and the 

yellow symbols indicate parasite-infected erythrocytes cultures in Pan-free media. Data 

are the average of one experiment performed in duplicate with errors bars indicating SD. 

(B) Malstat Assay determination of parasite survival (assay controls) of parasites 

cultured in a 96-well microtiter plate, in commercially bought custom made Pan-free 

media (yellow bar) and complete media (red bar) after a period of seven days. Data are 

the average of one experiment performed in t riplicate with errors bars indicating SD.  

 

In this experiment the iRBCs in complete media showed the highest growth (assumed to be 100% 

growth) while the iRBCs with chloroquine in complete media had little to no growth and could be 

subtracted as a blank. This is an indication that under normal culture condition in the commercially 

sourced media, parasites proliferate normally. However, the iRBCs were still showing >90% growth 

even after 7 days in Pan-free complete media, which indicated that there were alternative factors 

that interfered with the assay. Confident that the commercially bought media was of good quality, we 

set out to determine how long our parasites could survive in Pan-free complete media. Consequently, 

5 ml P. falciparum cultures were cultivated over time, in both Pan-free and complete media to 

determine parasite survival in a pantothenate-free environment in comparison to when there was 1 

M pantothenate present.  Three methods were used to determine parasite survival in order to 

compare the results from different assays: 1) Giemsa-stained blood slides which allows manual 

counting of viable parasites, 2) a SYBR Safe assay which relies on SYBR safe dye to fluorescently 

A B 
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stain parasite DNA for fluorometric measurement, and 3) the Malstat assay that measures lactate 

dehydrogenase activity present in parasites.  
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Figure 3.2: Parasite survival determined over time in Pan-free media using three different 
methods, starting with a 2% hematocrit and 1% parasitemia. Culture samples analyzed 
by (A) manual counting of cells on a blood slide, (B) SYBR Safe assay measuring 
fluorescence of SYBR safe dyed parasite DNA, and (C) Malstat assay measuring the 
colourimetric change of NTB from yellow to blue. Red c ircles indicate parasite-infected 
erythrocytes cultures in RPMI complete media and yellow symbols indicate parasite -
infected erythrocytes cultures in Pan-free media. Data are the average of two 
independent experiments performed in triplicate with errors ba rs indicating range/2.  
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Although the different methods of data collection resulted in different curve shapes (Figure 3.2), there 

is still a general correlation for parasite survival between the different methods used to determine 

survival. All cultures were started with a 1% parasitemia for both cultures in Pan-free complete media 

and RPMI-complete media, however the parasites in the complete media proliferated at a much 

faster rate than those in the Pan-free media as expected. All three assays indicated maximum 

parasitemia in the RPMI-complete media between days 5 and 6, before rapidly decreasing again. 

For the parasites grown in Pan-free complete media, the parasitemia first increased slightly after ~3-

4 days, before decreasing again, reaching zero after eight days.  

 

Other groups have performed similar experiments in Pan-free complete media. Saliba et. al used a 

hypoxanthine assay in order to determine parasite survival in the absence of pantothenate [1]. This 

assay measures the level of radioactivity of the [3H]-hypoxanthine incorporated into nucleic acids of 

the parasites when they proliferate, therefore the higher the level of radioactivity, the more parasites 

are present. They performed the experiments over 96 hours in 96-well microtiter plates at 1% 

parasitemia and 1% hematocrit, in RPMI-1640 media that was devoid of vitamins, supplemented 

with 25 mM sodium bicarbonate, 25 mM HEPES, 2.4 µM hypoxanthine, 24 µg/mL gentamicin, 11 

mM glucose and 6 g/L Albumax serum. After the 96 hour incubation without pantothenate, the 

parasite proliferation was determined by measuring the [3H]hypoxanthine incorporation. In these 

experiments, the parasites only survived approximately 48 hours in the absence of pantothenate. 

Another study investigated the P. falciparum pantothenate transporter and its importance to parasite 

survival [10].  P. falciparum parasites were cultured in the absence of pantothenate, starting with a 

2% hematocrit and a 1% parasitemia and parasite survival was determined daily by manual counting 

of parasitemia. In this study, the parasites only survived for three days in the absence of 

pantothenate. It is evident in our results, even when using a variety of assay methods, that the 

apparent time period that parasites survive without pantothenate is much longer than found in these 

studies. 

 

 

3.2.1.2 The minimum amount of extracellular pantothenate necessary for P. 

falciparum survival 

In order to determine the minimum extracellular pantothenate needed by parasites to survive, assays 

were set up in a 96-well microtiter plate, where parasites were incubated in varying concentrations 

of pantothenate, between 1 µM (the concentration in standard RPMI-1640 culture media) and 1.907 

ρM by means of a two-fold serial dilution. These plates were then incubated for 96 hours before 

analyzing the parasite survival at each concentration by means of the SYBR Safe assay.  

The growth seemed to stay constant at 70% in media containing between 1 µM and 7.9 nM 

pantothenate compared to standard RPMI-complete media used for culturing, before the parasite 

survival started to be affected (Figure 3.3). From 7.9 nM, the parasite survival drops, however ~25% 
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of the parasites still survived at very low concentrations of pantothenate present. These results align 

with survival experiments in section 3.2.1 where parasites are able to survive on no or very low levels 

of pantothenate present after 96 hours.  
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Figure 3.3: Parasite survival in varying concentrations of pantothenate after 96 hours. A 
serial dilution was done of the pantothenate between a concentration of 1 µM and 
1.907ρM. Data were normalized to RPMI-complete media as which was considered 100% 
growth. Data are the average of one experiment performed in triplicate with errors bars 
indicating SD. 

 

 

3.2.1.3 The influence of Mycoplasma infections on parasite survival 

Since P. falciparum parasites cultured were found to survive for 8 days compared to the 3-4 days 

reported in previous studies [1, 10], we investigated possible causes for the prolonged survival 

without pantothenate. One option was to test cultures for Mycoplasma infection. Mycoplasma 

infections have become a common problem in P. falciparum culture procedures. It is also known that 

Mycoplasmas can lead to various unwanted effects in eukaryotic cell cultures like impaired growth 

and abnormalities in various biochemical processes [11]. Therefore we tested our cultures for the 

presence of Mycoplasmas by using a routine PCR method for this purpose. Briefly, a PCR is 

performed using media that was incubated with the parasites for 24 hours, along with 9 primers, 6 

forward and 3 reverse primers, specific for a broad range of Mycoplasma species.   
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Figure 3.4: Detection of Mycoplasma in P. falciparum  cultures before and after treatment 
with Mycoplasma Removal Agent. (A) PCR products run on a 1% agarose gel, showing a 
positive test for the presence of Mycoplasma from cultures. The lanes are as follows: (1) 
Universal Ladder (KAPA), (2) negative control (no enzyme), (3) negative control (no 
template), (4) positive control (50x dilution Mycoplasma MS02 DNA), (5) culture 
supernatant, (6) freezer stocks culture supernatant.  (B) PCR run on a 1% agarose gel, 
testing negative for the presence of Mycoplasma from cultures after treatment with the 
Mycoplasma Removal Agent. The lanes are as follows (1) Universal Ladder, (2) positive 
control (50x dilution Mycoplasma MS02 DNA, (3) negative control (no enzyme), (4) 
negative control (no template), (5) treated culture supernatant, (6) treated freezer stocks 
culture supernatant, (7) RPMI-1460 media used, (8) fresh bottle of RPMI-1640 media 
without Albumax II serum, (9) Fresh RPMI-1640 media containing Albumax II serum, (10) 
supernatant from washed blood stock.  

 

The PCR (Figure 3.4A) test was positive for the presence of Mycoplasmas in both the cultures (one 

of which was recently started from freezer stocks and the other which had already been cultured for 

a few weeks) with at band 700 bp comparing well with the positive control, MS02. This indicated that 

the Mycoplasma infection was present not only in the actively growing cultures but in the freezer 

stocks too. Consequently, a culture was treated with Mycoplasma Removal Agent (MRA) for a period 

of five days before the PCR was repeated and amplified DNA run on a 1% agar gel containing Nancy-

520 fluorescent DNA stain. From the results (Figure 3.4B), it can be concluded that the cultures were 

Mycoplasma free. In addition, all the components used to culture, such as the RPMI-1640 media, 

the Albumax-II serum, and the washed human erythrocytes, were also tested and confirmed to be 

Mycoplasma free. 

 

After the removal of Mycoplasma, the survival experiment for P. falciparum parasite in Pan-free 

complete media as well as the experiment to ascertain the minimum amount of pantothenate 

required for survival were repeated, however the results were inconclusive. Unfortunately, within the 

timeframe allowed for this project, we were unable to perform either of the experiments again to 

allow conclusions to be drawn and these experiments need to be repeated in future work.  

A B 

700 bp 

1   2   3   4   5   6 

700 bp 

1    2    3   4    5    6    7     8    9   10 
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3.2.2 Metabolism of PanAms by the CoA biosynthetic enzymes of P. 

falciparum  

Although we were unable to establish the minimum requirement for pantothenate in parasites, 

previous experiments have clearly shown that the PanAms have an influence on pantothenate 

metabolism. We wanted to determine whether PanAms could be converted to the corresponding 

CoA antimetabolites by the CoA biosynthetic enzymes present in P. falciparum parasites. Such 

evidence would lend support to the PanAms having a mode of action that is downstream in the 

pathway, and affecting the parasite by either lowering CoA levels (by competitive formation of CoA 

antimetabolites) or by forming CoA antimetabolites that can possibly inhibit downstream processes 

in the parasite. In this study we specifically chose N-PE-α-Me-PanAm which was the most potent 

vanin resistant inhibitor in our laboratory [12]. To determine the fate of this PanAm in the CoA 

biosynthesis pathway (Figure 3.5) we followed two approaches: 1) expose the PanAm to enzymes 

present in parasite lysate prepared from isolated P. falciparum parasites or 2) incubate P. falciparum 

parasites with a non-lethal dose of PanAm after which they can be isolated and lysed for analysis. 

In both these approaches HPLC analysis was used to detect antimetabolite formation. 

  

 

Figure 3.5: The biosynthesis of CoA antimetabolites from a PanAm. The conversion of N-
PE-α-Me-PanAm by the CoA pathway enzymes PanK, PPAT and DPCK is shown, forming 
the antimetabolite intermediates 4’-phospho-N-PE-α-Me-PanAm, dephospho-N-PE-α-Me-
CoA and N-PE-α-Me-CoA [13] .  
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3.2.2.1 Method development for CoA antimetabolite detection 

3.2.2.1.1 Detection of N-PE-α-Me-PanAm via UV absorbance 

We have various methods available in our laboratory for the detection of PanAms and their 

corresponding metabolites [13-16]. However, most of these methods were used to analyze samples 

that made use of purified CoA biosynthesis enzymes from bacteria and therefore allowed the 

preparation of antimetabolites at high concentrations. Since we do not have the ability to express 

and purify these proteins from P. falciparum, we had to identify which of the HPLC methods available 

would allow for detection of the presumed CoA antimetabolites in parasite in much lower 

concentrations than what is possible when working with purified protein. 

 

First, we wanted to determine at what concentration we would see adequate signal via UV detection 

of N-PE-α-Me-PanAm. The amide bonds present in PanAms usually allow detection at 214 nm [13], 

however the baseline of chromatograms obtained at this wavelength can contain a lot of background 

noise. Since N-PE-α-Me-PanAm has an aromatic group in the phenethylamide moiety of the 

molecule, we also investigated whether UV detection was possible at ~254 nm, the wavelength 

usually used for detection of aromatic compounds. The UV absorption profile of the molecule was 

determined spectrophotometrically to obtain the absorption maxima of the compound. N-PE-α-Me-

PanAm has an absorption maxima of 220 nm and 254 nm. 

 

Next, we analyzed N-PE-α-Me-PanAm by HPLC (see section 2.2.21.1 except these were not 

derivatized) using a Luna 5u C18(2) 100A 250 x 4.60 mm column with 50 mM phosphate buffer (pH 

6.8) and acetonitrile as eluents to determine whether this method would result in sufficient detection 

of N-PE-α-Me-PanAm at the absorption maxima determined. We injected 5 µM, 50 µM and 500 µM 

of N-PE-α-Me-PanAm to determine the differences in absorption at the various concentrations. At 

both wavelengths the peak for N-PE-α-Me-PanAm was visible at 50 min. As expected the baseline 

for the absorption at 254 nm was more stable than for the chromatogram at 220 nm (Figure 3.6 A 

and B), however the intensity of the absorbance at 254 nm was 2.5 times lower than at 220 nm. 

Since we were uncertain how much conversion to product we would be able to detect when using 

parasite lysate, we used 220 nm as wavelength for detection in further experiments. In addition, the 

differences in absorbance between 5 µM, 50 µM and 500 µM N-PE-α-Me-PanAm were also not very 

pronounced, therefore we also performed all future reactions using 5 µM of N-PE-α-Me-PanAm. 
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Figure 3.6: HPLC analysis of different concentrations of N-PE-α-Me-PanAm at a 
wavelength of (A) 220 nm and (B) 254 nm: 5 µM PanAm (in blue), 50 µM PanAm (in green), 
and 500 µM PanAm (in red). The N-PE-α-Me-PanAm peak eluted at ~50min. 
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3.2.2.1.2 Analysis of N-PE-α-Me-PanAm metabolism via UV absorbance 

N-PE-α-Me-PanAm was incubated with P. falciparum cell lysates (which should contain all the CoA 

biosynthetic enzymes) and three equivalents of ATP for 24 hours after which it was analyzed using 

HPLC while monitoring the separation at 220 nm (Figure 3.7). The same column was used as 

described above, however the eluents were changed to 10 mM ammonium acetate (pH 5.5) and 

methanol to improve separation and baseline stability, and the solvent gradient was adapted to allow 

for shorter analysis time (see section 2.2.21.2). Standards of N-PE-α-Me-PanAm and ATP were 

injected to allow for substrate identification. Although peaks were visible for both ATP and N-PE-α-

Me-PanAm, (Figure 3.7) neither compound eluted as one single peak. ATP eluted in three 

overlapping peaks between 2.1 and 2.65 min, while the N-PE-α-Me-PanAm standard contained four 

peaks between 10.5 and 16 min, with the major peak eluting at 13.6 min. Only two very small peaks 

not present in the standards were visible at 3.53 min and 9.86 min, suggesting that antimetabolites 

were not formed under these conditions. 

 

Since we do not know the specific concentration or activity of the CoA biosynthetic enzymes present 

in parasite lysate, the lack of product peaks could be due to very low turnover of substrate to product 

which might then fall under the detection limit of UV absorbance at 220 nm. We therefore explored 

the use of an alternative detection method. 
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Figure 3.7: UV chromatogram at 220 nm of N-PE-α-Me-PanAm incubated in the presence 
of parasite lysate and ATP for 24 hours. Peaks indicated in green were identified as ATP 
(between 2.15 min and 3.40 min) and in red represents PanAm (between 10.58 min and 
15.50 min) as compared to provided standards.  
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3.2.2.2 Analysis of N-PE-α-Me-PanAm metabolism via LCMS 

Since we needed to use a more sensitive method for the analysis of our reactions we reverted to 

detection with mass spectrometry (MS). To validate a liquid chromatography mass spectrometry 

(LCMS) method used in another study where other PanAm analogues were investigated in S. aureus 

[17], we determined if all the expected antimetabolites that can form are detected by this method. 

Standard reactions were set up with E. coli and S. aureus CoA biosynthetic enzymes that were 

obtained by recombinant expression in E. coli. Consequently, SaPanK, EcPPAT and EcDPCK were 

incubated with 5 mM N-PE-α-Me-PanAm and 10 mM ATP for 24 hours before the reaction was 

stopped by heat precipitation of the proteins and the samples submitted for LCMS analysis (ESI 

positive and negative mode) at CAF (Figure 3.8). 
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Figure 3.8: LCMS chromatogram (TOF-MS, ESI positive, BPI) N-PE-α-Me-PanAm 
incubated with SaPanK, EcPPAT and EcDPCK and ATP. The peaks were identified as (1) 
ATP and ADP at 1.68 minutes (mass found: 508.00 and 428.04, mass expected: 507.99 
and 428.03), (2) 4’-phospho-N-PE-α-Me-PanAm at 12.13 minutes (mass found: 417.18, 
mass expected: 417.17), (3) N-PE-α-Me-PanAm at 12.99 minutes (mass found: 337.21, 
mass expected: 337.21), (4) N-PE-α-Me-dephosphoCoA at 10.84 minutes (mass found: 
746.23, mass expected: 746.22), and (5) N-PE-α-Me-CoA at 8.96 minutes (mass found: 
826.20, mass expected: 826.19).  Peaks after 12.99 minutes were not identified and are 
unknown. 

 

All the antimetabolites were detected via LCMS (positive mode) with ATP and ADP co-eluting at 1.68 

min, N-PE-α-Me-CoA at 8.95 min, N-PE-α-Me-dephosphoCoA at 10.84 min, 4’-phospho-N-PE-α-

Me-PanAm eluting at 12.13 min and finally the substrate N-PE-α-Me-PanAm at 12.99 min. As a 

result, we were able to successfully validate the LCMS method for separation and detection of the 

PanAm antimetabolites in samples.  
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3.2.2.2.1 N-PE-α-Me-PanAm conversion in P. falciparum lysate 

Since we had a confirmed method that could detect the CoA antimetabolite intermediates formed by 

the CoA biosynthetic enzymes, and which separates the antimetabolite intermediates well, this 

method was used to determine whether the CoA biosynthetic enzymes in lysate isolated from P. 

falciparum are able to convert the PanAms to their relevant CoA antimetabolites like the bacterial (S. 

aureus and E. coli) enzymes were found to do. For this, parasite lysates were incubated with N-PE-

α-Me-PanAm for 24 hours and the resulting products submitted for analysis by LCMS (ESI positive 

and negative mode). 

 

Although in the previous section the antimetabolites were detected in ESI positive mode, no peaks 

were identified. However, after evaluation of chromatogram in ESI negative mode, co-elution of ATP 

and ADP was detected at 2.03 min with a peak corresponding to the substrate N-PE-α-Me-PanAm 

observed at 12.68 min (Figure 3.9). The only biotransformed metabolite observed was 4’-phospho-

N-PE-α-Me-PanAm, which eluted at 12.68 min although in a much smaller amount in comparison to 

N-PE-α-Me-PanAm. No PE-α-Me-dephosphoCoA (expected at ~9 min) or PE-α-Me-dephosphoCoA 

(expected at ~11 min) were detected.  This could mean that too little of these antimetabolites are 

formed to allow for detection by LCMS, or that these antimetabolites are not formed by the P. 

falciparum enzymes implying that PPAT is inactive. Alternatively PPAT does not accept 4’-phospho-

N-PE-α-Me-PanAm as substrate.  
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Figure 3.9: LCMS chromatogram (TOF-MS, ESI negative, TIC) of N-PE-α-Me-PanAm 
incubated with P. falciparum cell lysates for 24 hours. The peaks were identified as (1) 
ATP and ADP at 2.03 minutes (mass found: 506 and 426, mass expected: 505.99 and 
426.03), (2) 4’-phospho-N-PE-α-Me-PanAm at 12.68 minutes (mass found: 415, mass 
expected: 415.17), and (3) N-PE-α-Me-PanAm at 13.47 minutes (mass found: 335, mass 
expected: 335.21).  
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The finding that 4’-phospho-N-PE-α-Me-PanAm is biosynthesized by PfPanK is not surprising since 

several other studies have shown that PfPanK in parasite lysate is active [1, 7, 12]. However, no 

information is known about the activity of PPAT and DPCK, since no studies have ever investigated 

the activity of these two enzymes in lysates prepared from P. falciparum. In order to confirm that we 

have active PPAT and DPCK present in the prepared lysate, an alternative possible substrate of 

PanK (pantetheine) and the substrate of DPCK (dephospho-CoA) was incubated in the presence of 

ATP and P. falciparum lysate, and subjected to LCMS analysis (ESI positive and negative mode). 

These reactions would result in the formation of dephospho-CoA if PPAT is active, or CoA if DPCK 

is active. However, none of the CoA metabolites could be detected by this method, indicating that 

either the antimetabolites are present in such miniscule concentrations that the method of detection 

is not sensitive enough, or that the P. falciparum PPAT and/or DPCK are inactive in the lysates.  

 

An alternative analysis method in our laboratory allows for the utilization of the terminal thiol present 

in the natural metabolites occurring in the CoA salvage pathway (Figure 1.8) to derivatize these 

compounds with CPM, a thiol-reactive compound that has weak fluorescent properties until it reacts 

with thiols (Figure 3.10). This allows detection by fluorescence when HPLC analysis is performed 

[13]. We therefore reverted to this method to determine if the PPAT and DPCK present in parasite 

lysates are active, since fluorescent detection will increase sensitivity of detection and possible 

problems with ionization via MS could be excluded. P. falciparum parasite lysate was incubated with 

the natural substrates pantetheine (5 mM) and dephospho-CoA (5 mM) for 24 hours, after which the 

samples were derivatized with CPM and analyzed via HPLC with fluorescent detection at an 

excitation and emission of 387 nm and 465 nm, respectively. 

 

 

Figure 3.10: The chemistry of CPM labeling of thiolated compounds. CPM is a thiol-
reactive compound that has weak fluorescent properties until it reacts with  free thiols. 

Stellenbosch University  https://scholar.sun.ac.za



54 
 

From the HPLC analysis (Figure 3.11A), we see that 4’-phosphopantetheine (retention time of 4.27 

min) is produced by PfPanK from pantetheine, however no dephospho-CoA (retention time 4.92 min) 

or CoA (retention time of 4.15 min) is produced (expected product elution times were confirmed by 

spiking samples with known samples of 4’-phosphopantetheine, dephospho-CoA and CoA). This 

indicates that PPAT in P. falciparum lysate is inactive.  Interestingly, analysis of the reaction mixture 

with dephospho-CoA as substrate indeed showed the formation of CoA, illustrating that PfDPCK is 

active. We next investigated if the Tris buffer used in the reaction was the cause for the poor PPAT 

activity, and therefore repeated both reactions with pantetheine and dephopsho-CoA in HEPES 

buffer at pH 8. The same results were obtained as for the reactions performed in Tris buffer with 4’-

phosphopantetheine formation visible from pantetheine, and CoA from dephospo-CoA. However, no 

PPAT activity was observed (data not shown). 
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Figure 3.11 Fluorescence chromatogram (with excitation and emission wavelengths at 
387 nm and 465 nm respectively) of HPLC injected cell lysates incubated with (A) 
pantetheine and lysates stored in Tris buffer, and (B) Dephospho-CoA with lysates stored 
in Tris buffer, for 18-24 hours. Peaks are identified as (1) TCEP, (2) 4’ -
phosphopantetheine, (3) pantetheine, (4) Dephospho-CoA, (5) CoA and (6) cysteine. 
Although no peak is visible on the chromatogram, CoA was present but omitted from the 
chromatogram due to a system overload at 4.15 min (indicated by blue line) because of 
a high metabolite concentration.  
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3.2.2.2.2 Analysis of N-PE-α-Me-PanAm conversion in P. falciparum cultures in vitro. 

To further investigate whether P. falciparum metabolizes N-PE-α-Me-PanAm downstream from 

PfPanK we investigated the fate of this compound in parasite cultures in vitro. Cultures were treated 

with a non-lethal dose of N-PE-α-Me-PanAm (i.e. a concentration equivalent to the IC50  of 52 nM ± 

6 nM determined previously [6]) for 24 hours, after which the parasites were isolated, lysed, proteins 

precipitated and removed, and the cellular contents submitted for LCMS analysis. Although 

pantetheine, 4’-phosphopantetheine and a very small amount of CoA were detected as evidenced 

by the peaks at 15.85 minutes, 12.99 and 15.18 minutes respectively (Figure 3.12), dephospho-CoA 

was not detected. In addition, no N-PE-α-Me-PanAm or any of its corresponding antimetabolite 

intermediates were detected by LCMS in either ESI positive or negative modes. 
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Figure 3.12: LCMS chromatogram (TOF-MS, ESI positive, BPI) of N-PE-α-Me-PanAm 
incubated with P. falciparum whole cells in culture for 24 hours. The peaks were 
identified as (1) 4’-phospho-pantetheine at 12.99 minutes (mass found: 359, mass 
expected: 359.10), (2) CoA at 15.18 minutes (mass found: 767, mass expected: 767.12), 
and (3) Pantetheine at 15.85 minutes (mass found: 278, mass expected: 279.13). Non-
labelled peaks were not identified and are unknown.  

 

3.2.3 Synthesis and evaluation of the effect of a PanK inhibitor that is 

not a pantothenate analogue on P. falciparum CoA biosynthesis.  

To confirm that PanAms do not inhibit PfPanK, but are rather metabolized by this enzyme to affect 

targets downstream in the pathway, we wanted to prepare a PanK inhibitor that is not an analogue 

of the natural substrate of PanKs, pantothenate. Recently, studies by Sharma et. al have shown that 
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human PanK can be inhibited by tricyclic methylthiophenyl propanamides (TMPs), which are not 

structurally related to pantothenate [18]. TMPs have been found to bind to the ATP-PanK complex 

to assert their inhibitory effect, and it was shown that increasing concentrations of these TMPs cause 

a decrease in CoA levels [18].  

Our aim was therefore to synthesize a TMP analogue and test it on P. falciparum to see if it has any 

inhibitory effect on PfPanK and parasite proliferation. If so, it should inhibit by lowering CoA levels 

since it shuts down CoA biosynthesis at the first enzyme. This could then be used as a possible tool 

to compare to PanAms as inhibitors in order to determine if PanAms lower CoA levels in a different 

way—the difference being that the TMP analogue cannot act as alternative substrates and the 

PanAms can, since they are pantothenate analogues.  

3.2.3.1 Synthesis and purification of TMP  

Using the methods published by Sharma et. al [18], we set out to synthesize TMP in four steps 

starting from 2-chloro-3-pyrimadinecarbonitrile (Figure 3.13A). The syntheses of compounds 1 and 

2 were performed according to the published method, except that instead of using a microwave-

assisted procedure, the reaction mixtures were refluxed overnight. The reaction for compound 1 was 

successful and we obtained the product as a yellow precipitate in a yield of 40%. The structure of 

the product was confirmed by 1H NMR spectroscopy, showing a purity of >95%. Compound 2 was 

prepared from compound 1 by refluxing overnight under nitrogen in ethanol in the presence of methyl 

4-acetyl-5-oxohexanoate. This resulted in a clear orange mixture that was concentrated in vacuo to 

obtain a yellow product without further purification in a yield of 97%. The structure of the product was 

confirmed by 1H NMR spectroscopy, which showed a purity of >95%. To obtain compound 3, 

hydrolysis of the methyl ester was performed with 1 M NaOH in THF overnight. After work-up the 

product was obtained as a white powder in a yield of >99%. The structure of the product was 

confirmed with 1H NMR and its purity estimated at >95%.  

 

Although the first three synthetic transformations were performed successfully, significant problems 

were encountered in executing the last step. Since our attempts to reproduce published methods 

were not always successful, we also used alternative methods (Figure 3.13B) in the attempt to 

successfully synthesize the PanK inhibitor, TMP. Various attempts were made to couple the 

carboxylic acid (compound 3) with 3-(methylthio)alanine with limited success; the attempts are 

summarized in Table 3.1. The first attempt involved using HBTU as activating agent as per published 

method [19]. However, the procedure calls for the purification of the reaction mixture via preparative 

HPLC on a reversed phase column, and since we did not have access to such a system, we therefore 

had to investigate alternative means for purification. Flash column chromatography using silica and 

methanol/dichloromethane (5-10%) as eluent was used to attempt purification. Although purified 

product was recovered from the column and identified via 1H NMR (Figure 3.15A), too little (<2 mg) 
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was obtained for any further use. As an alternative the reaction was attempted a second time with 

an added work-up step before purification; however this attempt was unsuccessful.  

 

Alternative activation strategies were attempted to allow more product formation in order to simplify 

purification. One of these attempts involved the use of EDC in the presence of HOBt as activation 

reagent of the carboxylic acid, however without success.  Another route attempted was amidation 

by means of B(OCH2CF3)3, which was prepared from B2O3 and 2,2,2-trifluoroethanol. After 

completion of the reaction, the resulting reaction mixture was diluted with ethyl acetate and water 

and stirred with Amberlyst A-26(OH) (anion exchanger), Amberlyst 15 (cation exchanger) and 

Amberlite IRA743 resins (chelator). These resins should remove all impurities except the expected 

product, which is a neutral compound, in order to simplify purification. Unfortunately this procedure 

also failed to produce the final product. 

  

 

 

Figure 3.13: (A) Original synthesis of TMP as set out by Sharma et. al [18], and (B) a 
scheme of the alternative last step, whereby compound 3 is first converted to the acid 
chloride (compound 5) before the attachment of the amide to form TMP or compounds 6 -
8. 

A 

B 
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Finally, an alternative strategy was attempted by preparing the acid chloride in catalytic amounts of 

DMF, followed by the addition of 3-(methylthio)aniline dissolved in picoline (Figure 3.13B). We also 

investigate three other amines (3-fluoroaniline, 3-(trifluoromethyl)aniline and  4’-aminoacetanilide) to 

determine if the problem encountered in the coupling could be due to the structure of the amine; 

these alternative amines were used in the published method for the production of other TMP 

analogues that also gave good inhibition profiles. The reactions were followed by TLC in 10% 

methanol/dichloromethane. The reaction with 3-fluoroaniline seemed the most promising with a UV 

active spot at Rf ~0.21 as possible product. This reaction was purified by means of a silica plug with 

5%-10% methanol/dichloromethane, however the product could unfortunately not be isolated (Figure 

3.15B). 

 

 Table 3.1: Summary of the methods investigated for TMP synthesis.  

Activation group Amine Product formation Purification 

HBTU 3-(methylthio)alinine Yes Partially successful 

EDC 3-(methylthio)alinine Yes Partially successful 

B(OCH2CF3)3 3-(methylthio)alinine No Not purified 

-Cl 3-(methylthio)alinine No Not purified 

-Cl 3-(trifluoromethyl)aniline Yes No 

-Cl 3-fluoroaniline Yes Not purified 

-Cl 4’-aminoacetanilide No Not purified 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: TLCs at (A) 254 nm (UV) and (B) 336 nm (fluorescence) of all 4 compounds 
synthesized in amidation reaction with the acid chloride. TLCs were run in 10% 
methanol/DCM. The spots were as follows (S) compound 4, compound 4 and all added 
components before the reaction was stirred, with 3-(methylthio)aniline (S1),  3-
fluoroaniline (S2), 3-(trifluoromethyl)aniline (S3), and  4’-aminoacetanilide (S4) as the 
added amines, and the products after the reactions with 3-(methylthio)aniline (P1),  3-
fluoroaniline (P2), 3-(trifluoromethyl)aniline (P3), and  4’-aminoacetanilide (P4) as the 
added amines. The product we are aiming to synthesize is both UV active and 
fluorescent. The black box indicates the reaction that seemed to have best product 
formation and is the reaction that was chosen for further analysis.  

S    S1   P2   S2    P2   S3   P3    S4   P4 S    S1   P2   S2    P2   S3   P3    S4   P4 

A B 
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Figure 3.15: 1H NMR analysis of (A) TMP synthesized by HBTU coupling of the amine to 
the carboxylic acid purified on a silica column (5% methanol/DCM, 20% methanol/DCM), 
dissolved in DMSO (1H NMR is consistent with literature data [8]) , and (B) the partially 
purified product formed from the amidation reaction using acid chloride derivative and 
purification by silica plug using 5%-10% methanol/DCM, dissolved in deuterium oxide.  
Unassigned peaks were either impurities or unknowns.  

B 

A 
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3.2.3.2 TMP as inhibitor of PfPanK in parasite lysate and parasite growth   

The last two objectives of this study (to test TMP as inhibitor of PanK-mediated phosphorylation of 

pantothenate and as antiplasmodial against P. falciparum parasites in culture) were dependent on 

the successful synthesis of TMP. Since we were unable to purify enough material to perform these 

experiments these objectives will be addressed in future work.  

 

3.3 Discussion 

3.3.1 Minimum extracellular pantothenate needed for parasite survival 

A study of the nutrient requirements of malaria parasites can be complex and usually requires the 

preparation of custom-made culture media (for the purpose of this study, RPMI-1640 media without 

pantothenate present), and considering the complexity of the medium, there is high chance for error. 

Pan-free culture medium was prepared in-house, however parasites were not supported by this 

medium. This might be due to the medium either lacking an essential component for parasite growth 

or some of the components sourced where not of sufficient quality for cell culture. 

 

To eliminate error with media preparation, we sourced custom made Pan-free RPMI-1640 media 

commercially and repeated control experiments to determine if parasite growth can be sustained in 

this media with the addition of pantothenate compared to when pantothenate is not present. 

Surprisingly, the P. falciparum parasites were surviving in the Pan-free media up to ~92% after 4 

days in a microtiter plate (96-well). In a follow-up experiment, small-scale cultures were cultured in 

a Pan-free environment with culture media containing no pantothenate being replaced daily. In these 

experiments parasites were surviving for 7 days with pantothenate being absent in their otherwise 

nutrient-rich environment. This finding is in contrast to what was found by other groups that have 

shown that P. falciparum 3D7 parasites can only survive in a Pan-free environment for 3-4 days [1, 

10]. In these studies either manual counting of parasitemia by light microscopy was used [10] or a 

radiolabeled assay that measures the incorporation of [3H]hypoxanthine into viable parasites [1]. In 

this thesis we described three methods used to determine parasite survival of which one was also 

manual counting of parasitemia by microscopy in addition to a Malstat and SYBR Safe assay that 

has not been used previously for this purpose. 

 

The first method (manual counting) show an increase in parasitemia from 1% (similarly to what was 

used by Mamoun et al. and Saliba et. al to initiate the experiment [10]) to ~5% at days 2 and 3, after 

which parasite growth decreases to 1%. This is in line with what was found by Mamoun et al. who 

showed that parasitemia decreased after the first 3 days. However, no parasite growth was visible 

after 3 days in their study whereas we still observed residual parasite growth of ~0.5% up until day 

7. Manual counting of parasites is prone to human error due to parasites in ring phase, as well as 
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those deprived of pantothenate, being smaller and therefore more difficult to see under light 

microscopy. This method is also time consuming and impractical for high numbers of cultures. We 

therefore reverted to other assays, such as the SYBR Safe and Malstat assays, that are more 

sensitive. 

 

The second method used was the SYBR Safe assay, where SYBR Safe (a nucleic acid stain) binds 

to viable parasite DNA (erythrocytes have no DNA) and the resulting DNA-dye-complex allows for 

fluorescent determination of parasite survival [20]. Alternatively we also used the Malstat assay, also 

known as an LDH assay. Here Malstat reagent, NBT/PES solution and cultures initiate a lactate 

dehydrogenase reaction (measured colourmetrically) as NBT is reduced [21]. Viable parasites will 

still produce lactate that will allow this colour change to measure parasite growth. Both erythrocytes 

and P. falciparum produce lactate, therefore there will be a slight colourometric change even when 

studying uninfected erythrocytes, however the amount of lactate contributed by erythrocytes is 

minimal when compared to the amounts produced by the parasites. In both these assays parasite 

growth increased for 4 days after which a dramatic decrease in parasite growth was observed. 

However, residual amount of parasites still survived up until day 7 similarly to what was observed 

using manual counting.  

 

The majority of P. falciparum parasites do not survive more than 96 hours without pantothenate 

present, which correlates with findings by Saliba et. al who used a hypoxanthine assay to determine 

parasite survival in the absence of pantothenate [1] by measuring the level of radioactivity of the [3H]-

hypoxanthine incorporated into nucleic acids of the parasites when they proliferate. However in this 

study, similar to that of Mamoun et al., no residual growth was visible [1, 10]. The observed 

differences between parasite survival in this study compared to published data can be rationalized 

in various ways. First, it is possible that the Plasmodium strain has mutated, which has been seen 

to happen after many rounds of sorbitol synchronizations [22], however this is unlikely to change the 

capability of the parasites to survive without pantothenate since so many biological processes rely 

on CoA. Alternatively, there could be another source of pantothenate providing the parasites with 

the vitamin for survival. This seems like a more likely explanation since P. falciparum has no 

metabolic pathway to synthesize pantothenate de novo and thus has to gain the pantothenate from 

its environment. 

 

Possible alternative sources of pantothenate could be from culture contamination by other 

organisms. Since no contamination of cultures was visible under light microscopy, we tested cultures 

for possible Mycoplasma contamination. PCR detection of Mycoplasma confirmed that the cultures 

were indeed infected. Mycoplasma infection of cultures can have varying effects on cell cultures, 

and the effects varying in severity—all dependent on the Mycoplasma species, the type of culture 

that is infected, and the culturing conditions [23]. Mycoplasma infections can hinder most if not all 
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facets of cell cultures, including cellular metabolism [11], thus although Mycoplasmas do not kill or 

noticeably suppress the growth of the Plasmodium parasites, they can interfere with the parasites’ 

metabolism or in this case be a source of small amounts of pantothenate that can sustain parasites 

survival albeit in residual amounts. This therefore highlights the need to remove these organisms 

from cell cultures to accurately study the parasites’ metabolism of pantothenate and its survival in a 

Pan-free environment.  

 

Even though cultures were treated for the removal of Mycoplasma in order to confirm that this 

organism are indeed the source of residual pantothenate, these experiments were unfortunately not 

successful and due to time constraints were not repeated. As a results we could also not determine 

the minimum amount of pantothenate needed for parasite survival and therefore these experiments 

will be addressed in future work.  

 

3.3.2 Metabolism of PanAms by the CoA biosynthetic enzymes of P. 

falciparum  

It is known that in bacteria PanAms are converted to antimetabolites to exert their inhibitory effect 

[24]. To determine whether N-PE-α-Me-PanAm has a similar mode of action in P. falciparum we 

investigated whether this compound can be converted to the corresponding CoA antimetabolites by 

the CoA biosynthetic enzymes present in P. falciparum parasites. We first confirmed which analytical 

technique would allow sufficient sensitivity to allow the identification of substrate and antimetabolites. 

Two approaches were considered where either parasite lysates or cell cultures were used to 

determine the conversion of N-PE-α-Me-PanAm to its corresponding antimetabolites. However, 

since we are not able to perform this experiment using purified proteins or high cell numbers when 

using cell cultures (as is the case when working with bacteria), we needed to ascertain that our 

method of detection is reliable for metabolite identification. After various experiments looking at the 

UV absorbance of N-PE-α-Me-PanAm we determined that the sensitivity of this method will not be 

sufficient to detect product formation. As an alternative we validated a different method utilizing 

LCMS that was previously used for PanAm metabolism studies in S. aureus [17]. The LCMS method 

proved to have adequate sensitivity to locate the antimetabolites when incubating N-PE-α-Me-

PanAm with recombinant CoA biosynthesis proteins from E. coli and S. aureus. In fact, we 

successfully showed for the first time that N-PE-α-Me-PanAm can be converted by enzymes from 

the CoA biosynthesis pathway to the corresponding CoA antimetabolites, albeit from bacteria. This 

gave as the tools to explore if the same process can take place in P. falciparum.  

Consequently, the same LCMS method was used to analyse N-PE-α-Me-PanAm incubated with P. 

falciparum cell lysate containing CoA biosynthesis proteins. The formation of 4’-phospho-N-PE-α-

Me-PanAm indicated that PfPanK is active in parasite lysate, as is known from previous studies [1, 

25, 26, 27]. In addition we also demonstrated for the first time that this specific PanAm can act as 
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substrate for PfPanK which aligns with recent studies that found that PfPanK is the gateway for 

PanAm mediated inhibition of P. falciparum [26]. The PanAm therefore has to be metabolically 

activated by this enzyme to exert their inhibitory effect downstream in the pathway. However the fate 

of the molecule downstream in the pathway is still unknown since no corresponding dephospho-CoA 

and CoA antimetabolites were observed. This could be due to several reasons. First, it might be that 

the metabolites fall under the limit of detection of the method, especially since very low amounts of 

4’-phospho-N-PE-α-Me-PanAm are observed. Secondly, PPAT and DPCK might not be active in 

parasite lysate.  

 

To further investigate the activity of PPAT and DPCK we exposed these proteins to the natural 

substrate pantetheine and dephospho-CoA. Surprisingly, no activity was observed for any proteins 

from the CoA pathway (not even PfPanK that showed activity previously). CoA metabolites have 

very poor ionization capability and can have varying results when analyzing by LC-MS. We therefore 

reverted to a third method of detection since we were investigating the natural metabolites. This 

allowed the use of CPM derivatization of the terminal thiol to detect these compounds via 

fluorescence. No activity was found for PPAT (even performing the experiment in two different 

buffers); however, we found that DPCK is active in parasite lysate prepared in either Tris or HEPES 

buffer. This is the first experiment, to our knowledge, that successfully demonstrates DPCK activity 

in parasite lysate prepared from isolated parasites. This is especially important since DPCK is 

localized to the apicoplast of the parasite and no information regarding the status of the organelle is 

known in lysates. Whether the apicoplast is lysed or still intact after manual lysis is still unknown, 

however we have demonstrated that DPCK present in this organelle is functional once the parasite 

is isolated and lysed.  

 

The fact that PPAT was inactive supports no antimetabolite formation in the presence of 4’-phospho-

N-PE-α-Me-PanAm downstream from PfPanK. However, PPAT might require different reaction 

conditions than those used in this study. The formation of the antimetabolites can therefore not be 

excluded. Alternatively, N-PE-α-Me-PanAm was incubated in cell culture and analyzed after 24 

hours, however no antimetabolites (not even 4’-phospho-N-PE-α-Me-PanAm) could be detected. In 

this case the amount of antimetabolite formation is most likely under the limit of detection and 

probably requires a large amount of cell cultures to isolate enough parasites for analysis. This is a 

costly process and also consumes a lot of substrate that would need to be synthesized in-house. 

3.3.3 Synthesis and evaluation of the effect of a PanK inhibitor on P. 

falciparum CoA biosynthesis that is not a pantothenate analogue.  

To support the fact that N-PE-α-Me-PanAm exerts its effect downstream in the CoA biosynthesis 

pathway, we considered comparing the inhibitory effect of this pantothenate analogue to a compound 

that is a PanK inhibitors but is structurally not related to pantothenate. Recently it has been show 
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that TMP is an inhibitor of human PanK3 and exerts its inhibitory effect by lowering CoA levels. In 

order to use this compound for comparison to PanAms we first had to synthesize the TMP and 

determine if it has antiplasmodial properties.  

 

The synthesis of TMP was performed according to published work [18]. While compounds 1-3 were 

synthesized and purified in good to excellent yields (40%, 97% and >99% respectively), the final 

product proved to be difficult to obtain. This is mainly due to the chemical properties of the final 

product that makes purification of the final product cumbersome, regardless of which method was 

used to prepare it. This led to major loss of product where purification methods were not sufficient to 

purify compound 5, thus yielding only a partially purified product. The original synthesis of this 

compound described the use of preparative HPLC for the purification of TMP. Unfortunately we did 

not have preparative HPLC to our disposal and had to revert to alternative purification methods like 

silica purification or purification by cation and anion exchange. Silica purification was not successful 

and proved to decrease the stability of the product in non-polar solvents. Even though cation and 

anion exchange purification strategies where also employed we had no success. The reason for this 

is unclear. 

 

However we were successful in purifying trace amounts of TMP to confirm product formation. We 

were able to synthesize a small amounts of the partially purified compound (Figure 3.16B), however 

due to impurities we did not feel confident in testing this product further on P. falciparum. As a result 

we did not have sufficient amounts of product to test it as a PanK inhibitor on P. falciparum.  
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Chapter 4: Conclusion and Future Work 

 

4. 1 Conclusion 

4.1.1 Establishing the minimum extracellular pantothenate needed for parasite 

survival 

CoA plays an important role in central metabolism, and it is known that the CoA pathway is crucial 

for the survival of Plasmodium [1]. Since CoA cannot be taken up by the parasite and pantothenate 

is the substrate for the CoA biosynthesis pathway, previous research has focused much attention on 

pantothenate analogues as novel antimalarials. Analogues such as PanAms are known to inhibit P. 

falciparum parasite proliferation, however the PanAms’ mode of action is unknown [2]. However, the 

addition of extracellular pantothenate antagonizes the effect of PanAms on P. falciparum proliferation 

and thus PanAms are thought to interfere with pantothenate metabolism [1]. A key question to 

answer when setting out to establish what the effect of PanAms on pantothenate utilization is, is 

what the critical amount of CoA is needed for P. falciparum survival. This is because one of the 

possible modes of action would be the lowering of CoA levels; it is therefore important to know 

whether PanAm treatment causes CoA levels to fall to critical levels. Another way to address this is 

to establish how long the parasites can survive when transferred to medium without pantothenate, 

as this would give an indication of their ability to survive only on the pantothenate-derived metabolites 

that are present in the cells at the time of transfer. We first determined that the parasites can survive 

without pantothenate for 4 days, after which residual amounts of parasites survive for up to 8 days. 

The longer-than-expected survival times were not in line with the results of previous studies. 

Subsequent investigations found that the parasite cultures used in these tests were infected with 

Mycoplasma spp, and we therefore concluded that the presence of Mycoplasma in the cultures 

extended the survival of the parasites in Pan-free media. There are two possible ways in which we 

hypothesize this can occur: either by alteration of the parasites’ metabolism, leading to a lower 

demand for pantothenate, or by acting as a source of pantothenate for P. falciparum parasites. 

However these hypotheses will have to be tested in Mycoplasma-free cultures. The experiments that 

were executed to determine the minimum amount of pantothenate required for P. falciparum survival 

was consequently not conclusive due to the uncertainty about the effect of the Mycoplasma 

contamination on the cultures. 

 

4.1.2 Metabolism of PanAms by the CoA biosynthetic enzymes of P. falciparum 

While we know that PanAms show antiplasmodial activity and that their mode of action is connected 

to the CoA biosynthetic pathway, we wanted to determine whether PanAms target one of the 

enzymes in the CoA biosynthesis pathway directly, or whether they are converted by the CoA 

biosynthetic enzymes to CoA antimetabolites that affect processes dependent on CoA. After 
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validating HPLC and LCMS methods for the detection of the CoA metabolites and the PanAm-related 

CoA antimetabolites respectively, we determined that N-PE-α-Me-PanAm is converted to 4’-

phospho-N-PE-α-Me-PanAm by PfPanK in vitro. However, the results indicated that PfPPAT is 

inactive in cell lysates, as the subsequent biosynthetic intermediates were not detected. This 

inactivity could be due to the enzymes being unstable in the lysis buffer, or because we do not fully 

understand its requirements for activity.   

However, we have shown (for the first time) that DPCK is active in parasite lysate prepared from 

isolated P. falciparum parasites, which opens up new avenues for studies on this enzyme as a 

possible antiplasmodial target.  

 

4.1.3 Synthesis and evaluation of the effect of a PanK inhibitor that is not a 

pantothenate analogue on P. falciparum CoA biosynthesis.  

From a study done by Sharma et. al [3], TMP was shown to inhibit human PanK3 by binding to the 

ATP-PanK complex,  which leads to a decrease in CoA levels. It was thus hypothesized that if TMP 

inhibits PfPanK, it can be used as a tool to show that PanAms (which are pantothenate analogues) 

have a different mode of action than TMP (which is not a pantothenate analogue) and do not exert 

their inhibitory effect on PfPanK. While we were successful in synthesizing the immediate precursor 

to TMP, we encountered several stumbling blocks in the last step of the synthesis. A significant 

problem was purification of the compound, which, due to its polarity characteristics, was not 

amenable to purification by normal phase chromatography. As a result we were unable to test or 

compare the inhibitory effect of TMP to N-PE-α-Me-PanAm. 

 

4.2 Future Work 

4.2.1 Establishing the minimum extracellular pantothenate needed for parasite 

survival 

Due to the discovery of the Mycoplasma infection of the Plasmodium cultures at a late stage in this 

study, we were not able to repeat the appropriate experiments with cultures that were known to be 

Mycoplasma-free. I therefore propose that the following experiments are repeated for better and 

more accurate results: (1) the parasite survival in Pan-free media using Mycoplasma free cultures; 

this is to establish whether Mycoplasma indeed extends the parasites life-span without extracellular 

pantothenate added to culture media. (2) determining the minimum amount of extracellular 

pantothenate necessary for P. falciparum survival, since in this study we were unable to find what 

the lowest concentration of pantothenate is necessary to support parasite proliferation.  

 

Stellenbosch University  https://scholar.sun.ac.za



70 
 

4.2.2 The critical amount of CoA for P. falciparum survival 

Once the minimum concentration of extracellular pantothenate that sustains P. falciparum survival 

is determined, it will be important to establish how this correlates with the intracellular CoA 

concentration. Does the intracellular CoA concentration track the extracellular pantothenate 

concentration, or is the internal CoA concentration maintained at a certain level regardless of what 

it can obtain from outside sources? To determine this, cultures will be treated at the different levels 

of pantothenate and then analyzed by the already validated HPLC method (using CPM derivatization 

for fluorescence detection of CoA metabolites) to determine the CoA levels at different pantothenate 

concentrations. This will give an indication of the critical amount of CoA needed for parasite survival. 

We will also investigate whether PanAm-treated cultures display the same levels of CoA, therefore 

whether PanAm-treatment decreases the amount of CoA to levels that are insufficient for parasite 

survival.  

 

4.2.3 Investigate the inactivity of PfPPAT in vitro 

Due to the fact that PfPPAT was inactive in our in vitro experiments, the requirements of the enzyme 

in lysate should be revisited. Little information is known regarding this enzyme in P. falciparum even 

though a putative PPAT-encoding gene has been identified in the P. falciparum genome. However, 

this gene encodes a protein that does not show a high level of sequence homology to other 

eukaryotic PPAT enzymes, which could suggest that the parasite enzyme’s mechanism is different 

from that characterized for those enzymes. The enzyme’s need for specific cofactors and metal ions 

has to be investigated (Figure 4.1). Once it has been established what the requirements of the 

enzyme for activity is in lysate, parasites lysates in the presence of ATP and the required cofactors 

can be incubated with N-PE-α-Me-PanAm to establish if this PanAm is being metabolized 

downstream from PfPanK.  

 

Figure 4.1: Scheme representing PfPPATs possible need for alternative cofactors and metal ions. Not 

much is known about PPAT and thus it needs to be investigated.  
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4.2.4 TMP as potential antiplasmodial 

Since TMP could not be purified in this project, the last two objectives of the project could not be 

completed. If TMP could be successfully synthesized and purified (e.g. by preparative HPLC, which 

was not available in this study), TMP can be confirmed as a P. falciparum PanK inhibitor. As a 

positive control, TMP will be tested on human PanK3, after which it will be tested on PfPanK present 

in parasite lysates, using the same discontinuous radioactive assay that has been developed for 

tracking PanK activity in impure samples. This assay is a high-throughput method of monitoring the 

phosphorylation of small molecules, such as [14C]pantothenate to [14C]4’-phosphopantothenate by 

PanK [4]. TMP can then also be tested as inhibitor of P. falciparum parasite growth in culture to 

determine its IC50 value. TMP activity in P. falciparum can then be compared to that of N-PE-α-Me-

PanAm as an additional tool in our attempt to elucidate the PanAms mode of action in parasites. 

 

4.2.5 Attempt to elucidate the differences in N-PE-α-Me-PanAms enantiomer 

interactions 

Currently, the most potent PanAm in our library is N-PE-α-Me-PanAm, with an IC50 of 20 ± 3 nM. 

However this compound is currently synthesized as the diasteriomeric mixture (Figure 4.2). Other 

members in our laboratory have recently been successful in the synthesis of the (R)- and (S)-epimers 

of this compound, which would allow us to establish whether the epimers are equally resistant to 

vanin pantetheinase degradation, and/or show equal antiplasmodial activity. Both compounds 

should therefore be tested for their susceptibility to vanin degradation to determine if there are any 

differences in their sensitivity towards pantetheinase-mediated breakdown. In addition, they should 

be tested for their ability to inhibit P. falciparum proliferation to determine if there is a difference in 

their antiplasmodial activity. Not only may this point to an improved potency compared to the parent 

compound (since it is possible that in the diastereomeric mixture, one of the epimers is less active), 

but may also shed light on the characteristics of the molecular target of this particular PanAm. 

 

Figure 4.2: Chemical structures of the N-PE-α-Me-PanAm diastereomeric mixture as well as the (R)- 

and (S)-epimers. The portion in the grey blocks highlights the methyl group and its position and 

stereochemistry in the molecule. 

Stellenbosch University  https://scholar.sun.ac.za



72 
 

4.3 Final Remark 

Taken together, the scope of the work still to be done on this project illustrates the relevance of the 

groundwork described in this thesis. Ultimately the elucidation of the mode of action of the PanAms 

will not only bring us one step closer to developing these compounds as clinically relevant 

antimalarials but may also provide us new information on the biology of the parasite. 
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