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ABSTRACT 

Traffic management has become increasingly important with growth in vehicle numbers 
unmatched by investment in infrastructure. A large part of management is measuring 
traffic flow. Video footage of traffic flow is normally manually checked to determine key 
traffic metrics, consuming many human hours. Moreover, installation and maintenance 
cost of recording equipment and supporting infrastructure is substantial, especially in the 
Sub-Saharan context. This paper proposes a novel solution to automate traffic flow 
estimation, using computer vision. The paper also introduces the notion of making the 
recording equipment mobile by using drone-based equipment, negating the need for fixed 
recording installations. The results demonstrate measurement accuracies of 100% down 
to 81% from ideal to worst case conditions, and successful implementation of drone 
control algorithms. 

 

INTRODUCTION 

According to the National Traffic Information System, there are currently around 11 million 
registered vehicles on South African roads (National department of transport, 2014). This 
number is increasing at an alarming rate, which requires that roads be upgraded 
continually. The study of traffic flow estimation is used to evaluate how well a particular 
road segment is accommodating traffic, as well as to determine the priority of road 
upgrades.  
 
Current traffic monitoring techniques make use of intrusive static sensors in the form of 
inductive loop detectors, infrared (IR) detectors and radar guns (Thies et al., 2013). Visual 
monitoring is often done manually, with the operator watching hours of video footage while 
counting the cars as they pass through an area. Two of the significant problems 
associated with the above-mentioned techniques, is that they are both intrusive and time-
consuming. Traffic cameras are mounted around most urban areas and are used primarily 
for security reasons. In the City of Cape Town alone, there are around 300 traffic cameras 
streaming live video directly to the Transport Management Centre (TMC) database. The 
cameras cover the majority of the roads throughout Cape Town, and would therefore 
provide unparalleled access to essential video data.   
 
There are some areas throughout Cape Town that are not yet monitored by traffic 
cameras. The cameras and related infrastructure are expensive to install, and require 
many man hours to complete. A particularly attractive solution to this problem is to erect 
simple landing platforms that would allow an autonomous Unmanned Aerial Vehicle (UAV) 
to conduct fully autonomous traffic flow analyses.  
 
The work explained in this paper makes use of pure computer vision techniques to 
automatically compute traffic metrics along road segments. This paper will focus primarily 
on uninterrupted flow in the form of freeways and national highways. A key objective was 



to make the system as flexible as possible to maximise the capabilities of the estimation 
techniques.  One of the main reasons for optimising flexibility originates from the novel 
concept of using both pole-mounted traffic camera footage, as well as footage obtained 
from other sources such as, but not limited to, the UAV's on-board camera. 
 
The work discussed in this paper proposes a way of autonomously computing key traffic 
flow descriptors using pure computer vision techniques. The inclusion of an autonomous 
aircraft provides a novel means for obtaining essential video footage.  
 
RELATED WORK 
 
Various methods of intelligent traffic monitoring have been proposed throughout the years, 
most of which employ computer vision techniques to detect and track passing vehicles. 
This section will discuss similar works in literature and explain their contributions and 
shortfalls.  

A method proposed by (Koller et al., 1994) uses traffic scene information to optimise traffic 
flow during busy periods, to identify stalled vehicles and accidents, and to aid the decision-
making of an autonomous vehicle controller. The system employs a contour tracker and an 
affine motion model based on Kalman filters to extract vehicle trajectories over a sequence 
of traffic scene images (Koller et al., 1994). This system is slightly different to the one 
proposed in this paper as it does not focus on computing traffic flow metrics for 
performance analyses, but rather to aid in real-time decision-making for an autonomous 
vehicle controller. 

A method proposed by (Muthukumar & Chintalacheruvu, 2012) makes use of the Harris-
Stephen corner detector algorithm to efficiently detect vehicles in a video stream.  The 
system was designed to detect and compute vehicle counts and speeds at arterial 
roadways and free-ways. The goal was to develop a system that would eliminate the need 
for calibration and have robustness against contrast variations. Similar to the 
aforementioned system, the system proposed by Muthukumar and Chintalacheruvu was 
designed primarily as an advanced warning and traffic control system.  

One of the main inhibiting factors of using computer vision for traffic detection is the fact 
that these visual-based systems do not perform well under low-light conditions. A system 
proposed by (Kannegulla et al., 2013) makes use of thermal imaging cameras and pure 
computer vision techniques to detect and track vehicles under extreme illumination 
conditions. The combination of thermal imaging technology and highly optimised computer 
vision techniques, allowed for the development of a system that would measure traffic 
density extremely accurately. As was the case with the previous two systems, the system 
proposed by Kannegulle et al. is not focused on generating traffic flow descriptors for 
future road planning, but simply to optimise the immediate flow of traffic.  

Table 1 lists some of the features associated with the above-mentioned systems.  

Table 1: List of features for each of the aforementioned systems.  

 Koller et al. Chintalacheruvu et al. Kannegulle et al. 
• Identify stalled vehicles and 

accidents.  
• Compute vehicle count. 
• Compute vehicle speed. 

• Designed primarily for 
optimising traffic flow.  



• Used as an autonomous 
vehicle controller. 

• Contour tracking and affine 
motion model based on 
Kalman filters.  

• No calibration required. 
• Performs well under low-light 

conditions. 
• Highly optimised for real-time 

performance. 

• Makes use of thermal 
imaging cameras.  

• Performs extremely well 
under low-light conditions. 

• Highly accurate computation 
of traffic density.  

 

SYSTEM DESIGN 

The autonomous drone-based traffic flow estimation system can effectively be separated 
into two parts. The first part consists of the computer vision system used to detect and 
calculate vehicle velocities for calculation of key traffic metrics. The second part involves 
the design of an autonomous target tracking and landing system for the UAV.  
 
Figure 1 shows the hardware components and their corresponding methods of 
communication. The ground station communicates with a GSM modem via a USB-Serial 
connection. Commands are sent from the ground station to the modem as simple AT 
strings. The modem interprets these strings, and prepares the IP packets to be sent over 
the mobile network. Data is transmitted to a cloud-hosted database via mobile network, 
where it is interpreted by Trintel's SMART platform, and displayed graphically on an online 
dashboard. 
 
 
 

 

 

 

 

 

 

 
The ground station communicates with the Parrot AR drone via its Wi-Fi module as shown 
in figure 1. The SDK network library handles the network interfacing between the ground 
station and the drone. Reference angles and angular velocity references are sent to the 
drone as fractions of the maximum set-point values.  
 
The design phase is separated into two subsystem designs. The first detailed design is 
concerned with the traffic flow estimation process, and has a specific focus on the 
supporting computer vision techniques. The second subsystem design focuses on the 
control system and additional computer vision techniques used in the automation of the 
drone's flight control. 
 
Traffic flow estimation 
 
The main traffic flow algorithm is required to automatically detect the number of vehicles 
that pass through a given area, as well as to determine their relative velocities. Once the 

            Figure 1: Hardware integration 



vehicles are detected and their velocities estimated, they are then classified according to 
relative size (motorbikes, cars and trucks).  
 
A particularly challenging aspect was to design a system that relied entirely on visual 
references. The idea was to design and implement a non-intrusive system that makes use 
of existing traffic cameras placed around a city. It is important to note that traffic cameras 
need not be the only source of video feed. As mentioned earlier in this paper, the idea is to 
eventually incorporate an unmanned aircraft into the system that can autonomously fly to 
remote locations which might not currently have an established traffic camera network. 
The system is required to be extremely flexible in order to accommodate a variety of 
different video sources, and therefore relies heavily on highly adaptive computer vision 
techniques to compute all traffic metrics.   
 
Road profile creation 
 
Every road location is unique in the way in which the static traffic cameras are placed. This 
causes a potential problem, especially when computing relative vehicle velocities as well 
as classifications based on relative vehicle sizes. An elegant and particularly robust 
solution was developed to deal with this problem. The idea was to create and save road 
profiles that would store all location-specific information. Due to the static nature of the 
pole-mounted traffic cameras, road profiles would only need to be generated once for each 
location. If the drone is to be used for traffic analysis, a location profile would have to be 
generated each time it lands to accommodate for orientation-specific parameters.    
 
In an attempt to make the road profile creation process a more user-friendly experience, 
an interactive, self-learning method was designed. The method involved a three-stage 
creation process with the first stage being fully autonomous, and the last two requiring 
some basic user input. Once a user has input the necessary parameters, the system 
stores all location-specific data in a uniquely identifiable DAT file. 
 
Background modelling  

The key challenge to realising the system is successfully identify and track objects in a 
video stream. The Background Subtraction (BS) technique, for use in computer vision, is 
designed to successfully differentiate a moving object from its corresponding static 
background scene. The system discussed in this paper makes use of the BS technique for 
the detection and tracking of passing vehicles.  

In order to conduct background subtraction, it is necessary to obtain a model of the static 
background scene. Background modelling consists of two primary phases - phase one is 
responsible for background initialisation while phase two is aimed at updating the 
background model. A good approximation of the static background scene is obtained by 
making use of a running frame average technique. Figure 2 shows the result of the running 
average algorithm when approximating the background scene.  The approximated 
background is a good initialisation point for the background modelling process. 

Once the background scene has been approximated, each individual background pixel is 
then modelled using a Mixture of Gaussian distributions (MoG modelling technique). 

 



 

 

 

 

 

 

 A mixture of N Gaussian distributions is then generated to model each individual 
background pixel. Background pixels are characterised based on their persistence and 
variance. Equation 1 represents the Gaussian Mixture Model (GMM) equation: 

𝑝(𝑥) = ∑ 𝜋𝑘 𝜂(𝑥|𝜇𝑘, Σ𝑘)𝐾
𝑘=1          (1) 

Where the multivariate Gaussian distribution is given by 

𝜂(𝑥|𝜇𝑘, Σ𝑘) =  1
|2𝜋Σ𝑘|1/2 exp [1

2
 (𝑥 − 𝜇𝑘)𝑇Σ𝑘−1(𝑥 − 𝜇𝑘)]     (2) 

As the illumination environment changes throughout the operational life of the model, 
updates are required to ensure model accuracy. The background model is updated with 
each successive frame so as to accommodate for the various illumination effects. The 
learning rate parameter specifies the rate at which the model is updated - this parameter 
was optimised by means of empirical investigation. 

Shadow removal  

The use of the BS algorithm does not provide a complete solution with regards to object 
detection. A particular disadvantage of using the MoG technique, is that the object 
shadows tend to be classified as part of the foreground. The reason for this is that 
shadows share the same movement patterns as the objects that create them. Shadows 
also tend to exhibit similar pixel intensity characteristics as the corresponding foreground 
objects (Lovell et al., 2012). When two vehicles are in close proximity to one another, their 
corresponding shadows make them appear as a single object - leading to reduced tracking 
and counting accuracy.  

The shadow detection technique used in this system is based on the chromaticity 
characteristics of shadows. Chromaticity is a measure of colour that is independent of 
intensity (Lovell et al., 2012). The idea behind the method of chromaticity is to detect 
shadows based on their pixel characteristics. There are three primary characteristics that 
distinguish shadow pixels from their non-shadow counterparts. It is known that the 
intensity of a shadow pixel (V in HSV) is lower than that of the corresponding background 
pixel (Lovell et al., 2012). Furthermore, it known that a shadow cast on the background 
does not change the pixel hue (H in HSV), and that a shadow pixel often exhibits lower 
saturation (S in HSV) characteristics (Lovell et al., 2012). A pixel p is therefore considered 
a shadow pixel based on the above-mentioned criterion. Once the frame coordinates of 
the shadow pixels have been identified, the corresponding pixels are subsequently 

Figure 2: Running average technique. The left-most image shows the vehicles 
moving across the road segment, while the right-most image shows the result of 

   



removed from the foreground mask (result of the background subtraction) before being put 
through a bilateral filter to minimise noise.  
 
Vehicle speed detection 

Traffic flow estimation theory does not only depend on the number of vehicles passing 
through a specific road location, but on the relative velocities of the vehicles as well. 
Vehicle velocities are usually obtained using radar guns, inductive loops and IR counters 
(National Research Council, 2010). However, these methods are seen as intrusive, as 
additional hardware needs to be incorporated into the existing road structure. A particularly 
attractive alternative is to use the existing camera infrastructure to automatically compute 
relative vehicle velocities. 

Velocity is a measure of object displacement per unit time. In order to determine the 
velocity of passing vehicles, it is necessary to first obtain the displacement (distance) of 
the vehicles between consecutive frames. Once the displacement of the pixels 
corresponding to the individual vehicles is known, the frame rate of the video can be used 
to compute the relative vehicle velocities. Equation 3 represents the velocity equation:  

𝑣 =  𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑓𝑓𝑓𝑓𝑓𝑓
𝑡𝑡𝑡𝑡 𝑑𝑑𝑑𝑑𝑑 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓 (1/𝑓𝑓𝑓𝑓𝑓 𝑟𝑟𝑟𝑟)

       (3) 

Optical flow tracking provides a way of determining pixel displacement between 
consecutive frames. Optical flow operates under two primary assumptions. The first 
assumption is based on the fact that the pixel intensities of an object should remain 
constant between consecutive frames (OpenCV, 2011). The second assumption is that 
neighbouring pixels will have a similar motion to that of the pixel under observation 
(OpenCV, 2011).  

Any optical flow algorithm involves complex mathematical calculations conducted on a 
large number of individual pixels. Therefore, the implementation of a highly optimised 
algorithm is necessary to ensure real-time performance. The OpenCV platform includes an 
optical flow tracking method based specifically on the method proposed by (Lucas & 
Kanade, 1981). The method requires unique feature points on the objects in order to track 
pixels accurately. According to (Shi & Tomasi, 1994), corners of an object are good 
features to track and are therefore used in the optical flow tracking process. Figure 3 
shows the optical flow vectors superimposed onto the moving vehicle.  

  

  
 
 

 

 

Traffic flow metric computations 

Figure 3: Optical flow vectors 



Autonomous traffic flow estimation is recognised as the fundamental core of this system. 
Determining the total vehicle count and respective vehicle velocities in the previous 
sections was a necessary step in computing traffic flow metrics. It was decided that the 
following metrics would be useful in describing uninterrupted traffic flow data: Time Mean 
Speed (TMS), Volume, Flow Rate, Density, Peak Hour Factor (PHF) and Level of service 
(LOS).  

Once the system is able to identify the number of vehicles moving through a particular 
road segment (background subtraction) and their corresponding velocities (optical flow 
tracking), the above-mentioned traffic flow metrics are then autonomously generated 
based on predetermined equations described by the Highway Capacity Manual (National 
Research Council, 2010). 

Autonomous aircraft 
 
The autonomous aircraft was included to provide a novel form of autonomy for future traffic 
analyses. The idea is that the drone will eventually fly to pre-determined destinations using 
a GPS navigation system. Once the drone is within visual range of the landing platform, a 
unique identifier in the form of a checkerboard pattern will be used as a reference for the 
visual target tracking system. When the control system has stabilised the drone in front of 
the target, an autonomous landing system will land the drone on the platform below. The 
drone's front-facing camera (FFC) can then be used as a mobile substitute for the static 
pole-mounted traffic cameras.  
 
Target tracking  
 
In order to detect whether a checkerboard shape is currently in the frame, each frame is 
converted to a greyscale image to maximise the distinction between the black and white 
checker squares. The frame is then put through a binary threshold function before a 
pattern recognition algorithm is used to identify the location of the checkerboard. Figure 4 
shows the drone On Screen Display (OSD) once the target has been identified. An 
algorithm, running on the ground station, determines the translation and rotation of the 
checkerboard in 3D space. This information is then used by a feedback PID control system 
to automate the drone's flight and ultimately stabilise it at a set distance from the target 
position.  
 
 
 

 

 

 

 

Feedback PID control system  

The Ziegler-Nichols tuning method was selected as the primary PID tuning methodology. A 
particular advantage of using this technique, is that it does not require a mathematical 
model of the plant. Instead, the technique is carried out with Hardware In the Loop (HIL) 

Figure 4: On Screen Display (OSD) 



investigations. This allows for the parameters to be tuned according to the actual plant 
dynamics, thereby contributing to the design of a more effective practical controller. 

RESULTS 

The aim of this section is to discuss and reflect upon the results observed throughout the 
system testing procedure. As with the detailed design section, this section once again 
deals with the two distinct subsystems individually. The individual subsystems were tested 
independently before the final integration and testing was completed.  

Traffic flow estimation  

System testing and results analysis is an essential part of determining the efficacy of the 
methods used in the final system. The performance of the computer vision techniques 
were tested using four carefully selected video sources. The test videos were chosen to 
test the system under various degrees of tracking difficulty.  

Test videos 1 and 2 were chosen as the baseline comparison tests. Test video 3 was 
chosen due to the lower overall illumination caused by bad weather conditions. Test video 
4 was chosen due to the position of the illumination source during the analysis hour.  

In each case, the actual vehicle count is compared to that of the measured vehicle count; 
with and without shadow removal.  Table 2 shows the accuracy of the vehicle counting 
algorithm before and after the shadow removal technique is implemented.  

Table 2: Vehicle counting results 

 With shadows Shadows removed 
Test Actual count Count Accuracy Count Accuracy 
Video 1  36 48 67% 36 100% 
Video 2 81 53 65% 79 98% 
Video 3 29 20 69% 25 86% 
Video 4 42 25 60% 50 81% 

 

 

 

 

 

The results from table 2 conclude that shadow removal improves counting accuracy by at 
least 15 percentage points. The most obvious reason for this increase is attributed to the 
way the system interprets shadow characteristics. Without the shadow removal 
functionality, separate vehicles in close proximity to one another are sometimes counted 
as a single vehicle. In other cases, a shadow is seen as a completely separate moving 
entity, leading to a single vehicle being counted twice.  

Figure 5: Shadow removal result. Left-most image shows the foreground mask 
before shadow removal. Right-most image shows the result of the shadow removal 
algorithm. 



In order to test the accuracy of the velocity computations, the actual vehicle velocities were 
compared to that of the system measured velocities. Two test vehicles were driven past a 
pole-mounted camera at speeds of 10, 20, 30 and 40km/h (according to speedometer 
readings). Table 3 shows the vehicle speed estimation results.  

Table 3: Vehicle speed results: Test vehicle 1 

Run Direction Estimated 
Speed 
(km/h) 

Speedometer 
Reading 

(km/h) 

Difference 
(km/h) 

Accuracy 

1 Right to Left 11.4 10 -1.4 86% 
2 Left to Right 21.5 20 -1.5 93% 
3 Left to Right 28.6 30 +1.4 95% 
4 Right to Left 41.8 40 -1.8 96% 

Drone control 

The ability of the drone to track a target and minimise the error signal would give an 
indication of the tracking system performance. The most important indicator would be 
determined by the efficacy of the landing algorithm to successfully land the drone on an 
80x80 cm platform.     

In order to obtain a quantitative measure of the landing accuracy, 34 test landings were 
conducted. After each landing the relative distance from the centre of the platform to the 
hull of the drone was measured. This measurement would give an indication of the landing 
accuracy, and would facilitate the calculation of a successful landing probability. Figure 6 
shows a scatter plot of the aircraft position after each successive landing. 

 

 

 

 

 

 

 

Tests were conducted in semi-ideal conditions, where minimal external disturbances were 
experienced. Prop wash from the aircraft did, however, result in some air turbulence. It is 
apparent, however, that the control system was able to deal with these disturbances and 
ultimately stabilise the aircraft above the landing platform. The results depicted in figure 6 
show that out of the 34 test runs conducted, 100% were successful landings. 

It is impossible to guarantee that the drone will land on the centre of the platform each and 
every time. To deal with this limitation, the traffic tracking algorithm was designed to be as 
flexible and as adaptable as possible so that the position of the drone was not of concern. 
A background model is generated based on the current position of the camera feed, which 
inherently minimises the limitations placed on the position of the source. 

Figure 6: Landing coordinate scatter plot. 



CONCLUSION 

This paper addressed two key challenges in the field of traffic flow estimation – laborious 
manual vehicle counting and the need for multiple and fixed recording infrastructure. The 
former challenge was addressed by automating vehicle detection and automatic 
calculation of traffic flow metrics using computer vision techniques. The latter challenge 
was addressed by introducing drone-based recording equipment that uses pole-mounted 
landing platforms, making it especially useful in for use in remote and fiscally challenged 
areas. The results demonstrate that the solutions work with high accuracy, with detection 
ranging from 81% to 100%, and 100% landing accuracy for the drone.   
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