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Abstract 

 

Limited dispersal, territoriality and the occupation of patchy habitats; characters that typify 

most African rock-dwelling (saxicolous or rupicolous) species, often result in structured 

genetic patterns with little or no gene-flow among populations (e.g., velvet worms, net-

winged midges, elephant shrews, red rock rabbits and a variety of lizards and agamas). In an 

attempt to deepen our understanding of taxa that inhabit these “terrestrial islands” the 

distribution of genetic variation was studied at several spatial scales in the rock hyrax, 

Procavia capensis. This species has a polygynous social system that is unusual among taxa 

with similar ecological requirements, and a morphology that would intuitively be associated 

with poor dispersal capabilities (short limbs and a squat, heavy body). Possibly as a 

consequence of these considerations, few studies have attempted to determine the distance of 

migration by rock hyraxes and the influence that their social system and the surrounding 

landscape has on dispersal success. This investigation therefore tests hypotheses of how the 

ecology, distribution, social structure and the connectivity of the surrounding landscape have 

contributed to shaping the structure of rock hyrax genetic variation across the Namaqualand 

and western Fynbos regions. To do so, mitochondrial and microsatellite markers were used to 

document gene-flow at a fine spatial scale (an isolated population comprising 5 koppies), an 

intermediate spatial scale (across known geographic barriers to saxicolous taxa - the Cape 

Flats and Knersvlakte), and a regional spatial scale (across the Namaqualand/western Fynbos 

regions of South Africa - regions exhibiting contrasting landscape connectivity). In addition 

the genetic diversity, spatial clustering, sex-biased dispersal and relatedness (fine-scale) of 

colonies is described and the major genetic breaks detected in the investigation dated using a 

relaxed molecular clock approach. Finally, these results were compared to other studies that 

identified the Cape Flats and Knersvlakte as phylogeographic disruptors.  

 

The genetic patterns at a fine spatial scale were complex: Gene-flow was restricted by the 

social structure of the rock hyrax rather than geographic distance, dispersal was female-

biased and there was significant genetic structure. Genetic structure was also evident at the 

intermediate and regional spatial scales. In the Hottentots Holland Mountains and Cape 

Peninsula gene-flow was restricted (in both data sets) in comparison to localities that 

traversed the Cape Flats. In contrast, gene-flow across the Knersvlakte was restricted in the 

mitochondrial DNA data set but not so with microsatellites. A similar pattern was observed at 

a regional scale pointing to male-biased dispersal within this species - a result of its 
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polygynous social structure. In addition to sex-biased dispersal, landscape connectivity also 

influenced gene-flow on a regional spatial scale as the Namaqualand region, which has 

greater intermediate suitable habitat compared to the western Fynbos region, displayed 

significantly higher levels of gene-flow between sampling localities. Consequently, colonies 

in Namaqualand were genetically more diverse compared to those of the western Fynbos 

region. Two major matrilineal clades were evident on both side of the Knersvlakte - one to 

the north of this biogeographic break (Namaqualand), and the other to the south (western 

Fynbos). This was not, however, evident from the microsatellite data (reflecting the influence 

of male dispersal) where seven nuclear clusters were found. In keeping with other studies on 

saxicolous vertebrate taxa straddling the same region, this area of low connectivity has acted 

(and probably still does) as a barrier to gene-flow. Importantly, unlike in many other 

(admittedly invertebrate) species, no evidence of a genetic break was detected among hyrax 

populations across the Cape Flats. Colonies across the Hottentots Holland Mountains and 

Cape Peninsula regions may have been subject to founder-events and breeding isolation. 

 

This investigation demonstrated the importance of using a well-structured sampling regime 

that included both mitochondrial and nuclear markers and it underscores the need to apply 

appropriate statistical programmes for inferring genetic patterns. It shows that landscape 

genetics may be useful in a conservation context and should be taken into account when 

planning conservation initiatives that include the implementation of corridors. In brief, the 

information contained in this study advances our knowledge of the dispersal capability and 

genetic diversity of contemporary rock hyrax populations. 
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Opsomming 

 

‘n Beperkte spreidingsvermoë, territorialiteit en die bewoning van yl-verspreide habitat is 

kenmerkend van die meeste klip-bewonende spesies in Afrika en dit veroorsaak gereeld 

gestruktureerde genetiese patrone met min of geen genevloei tussen populasies (bv., die 

velvetwurms, net-vlerk muggies, klipklaasneuse, klipkonyne en ‘n verskeidenheid akkedisse 

en koggelmanders). In ‘n poging om kennis oor taksa wat hierdie “terrestriële eilande” 

bewoon te verdiep, het ons die die verspreiding van genetiese variasie bestudeer oor verskeie 

ruimtelike skale in die klipdassie, Procavia capensis. Hierdie spesie het ‘n veelwywige 

sosiale sisteem, wat vreemd is onder taksa met soortgelyke ekologiese vereistes, en ‘n 

morfologie wat intuïtief verbind kan word met swak spreidingsvermoëns (kort bene en ‘n 

kort, dik liggaam). As ‘n moontlike resultaat van hierdie oorwegings het min studies tot 

dusver daarop gefokus om die migrasie-afstand van klipdassies en die invloede van hulle 

sosiale sisteem en die omliggende landskap op spreidings-sukses te bepaal. Hierdie studie 

toets daarom hipoteses oor hoe die ekologie, verspreiding, sosiale struktuur en die 

konnektiwiteit (verbindheid) van die omliggende landskap bydra om die struktuur van 

genetiese variasie in klipdassies oor die Namakwaland en westelike Fynbos streke te 

beïnvloed. Derhalwe is mitochondriale en mikrosatelliet merkers gebruik om genevloei te 

bepaal op ‘n fyn ruimtelike skaal (‘n geïsoleerde populasie bestaande uit 5 koppies), ‘n 

gemiddelde ruimtelike skaal (oor bekende geografiese grense vir klipbewonende taksa - die 

Kaapse Vlakte en die Knersvlakte), en op ‘n streeks (groot) ruimtelike skaal (oor die 

Namakwaland/westelike Fynbos streke van Suid-Afrika - streke met kontrasterende 

konnektiwiteit van die landskap). Bykomend is die genetiese diversiteit, ruimtelike 

groepering, seksuele eensydigheid in spreiding en genetiese verwantskappe (fyn skaal) van 

kolonies beskryf en die hoof genetiese skeiding gedateer deur gebruik te maak van ‘n 

ontspanne molekulêre klok. Laastens het is die resultate van hierdie studie vergelyk met dié 

van ander studies wat die Kaapse Vlakte en Knersvlakte as filogeografiese skeidings gevind 

het. 

 

Die genetiese patrone op ‘n fyn ruimtelike skaal was kompleks: Genevloei is beperk deur die 

sosiale struktuur van die klipdassie eerder as geografiese afstand, migrasie was wyfie-

spesifiek en daar was beduidende genetiese struktuur tussen kolonies. Genevloei was beperk 

in die Hottentots Holland berge en die Kaapse Skiereiland (in beide datastelle) in vergelyking 

met lokaliteite oor die Kaapse Vlakte. In kontras was genevloei oor die Knersvlakte beperk in 
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die mitochondriale DNA, maar nie in die mikrosatelliete nie. ‘n Soortgelyke patroon is 

waargeneem op ‘n streeks skaal wat dui op mannetjie-spesifieke spreiding in hiérdie spesie - 

‘n resultaat van die veelwywige sosiale struktuur. Bykomend, saam met geslag-spesifieke 

spreiding, het landskaps konnektiwiteit ook genevloei beïnvloed op ‘n streeks skaal omdat 

die Namakwaland streek, wat meer tussenleggende geskikte habitat bevat in vergelyking met 

die westelike Fynbos streek, beduidende hoër vlakke van genevloei tussen lokaliteite getoon 

het. Gevolglik was kolonies in Namakwaland geneties meer divers in vergelyking met dié 

van die westelike Fynbos streek. Twee hoof moederlike genetiese groepe is waargeneem op 

elke kant van die Knersvlakte - een aan die noorde van hierdie biogeografiese skeiding 

(Namakwaland) en een in die suide (westelike Fynbos). Dieselfde patroon was egter nie 

waarneembaar in die mikrosatelliet data nie (wat die invloed van mannetjie-spesifieke 

spreiding toon) waar sewe nukluêre groepe gevind is. In ag genome ander studies op 

klipbewonende gewerwelde taksa oor dieselfde verspreiding, het hierdie area van lae 

konnektiwiteit histories (en heelmoontlik ook huidiglik) as ‘n grens vir genevloei gedien. 

Belangrik, anders as in ander (hoewel ongewerwelde) spesies, kon ons geen bewyse verskaf 

van ‘n genetiese skeiding tussen klipdassie populasies oor die Kaapse Vlakte nie. Kolonies in 

die Hottentots Holland berge en Kaapse Skiereiland is dus onderhewig aan moontlike 

vestigings-effekte en telings-isolasie.  

 

Hiérdie studie demonstreer die belang van die gebruik van ‘n goed-gestruktureerde 

monsternemingskema, die insluiting van beide mitochondriale en nukluêre merkers en dit 

beklemtoon ook die noodsaaklikheid van die gebruik van toepaslike statistiese programme vir 

gevolgtrekkings oor genetiese patrone. Dit toon ook dat landskapsgenetika nuttig mag wees 

in ‘n bewaringskonteks en in ag geneem moet word in die beplanning van bewarings 

inisiatiewe wat die implementering van korridors insluit. Kortliks, die informasie in hierdie 

studie bevorder ons kennis oor die spreidingsvermoë en genetiese diversiteit van 

kontemporêre klipdassie populasies. 
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CHAPTER 1 

Background to the study and study animal 

 

1.1. Introduction 

 

Biodiversity science has as one of its aims the explanation of spatial and temporal patterns of 

biotic diversity across different spatial scales. Of particular importance is the extent of gene-

flow between isolates since this can directly affect species’ integrity by increasing or 

decreasing population distinctiveness (Whitlock and McCauley, 1999). This has become 

critical in the face of rapid environmental change and biodiversity loss where the 

identification of populations, or groups with independent evolutionary histories, provide 

conservation agencies with valuable information for establishing suitable management 

strategies that may reduce the chances of local depletion (Moritz et al. 2000). 

 

The life-history of a species contributes to the distribution of genetic variation across the 

landscape (Smit et al. 2011). Life-history attributes such as limited dispersal capability, 

territoriality and the occupation of patchy habitats characterize African rock-dwelling 

(saxicolous or rupicolous) mammals (see examples in Skinner and Chimimba, 2005). A 

structured genetic pattern with absence of (or limited) gene-flow has therefore been found in 

various southern African mountain-dwelling or rocky outcrop-specialist species (Prinsloo and 

Robinson, 1992; Prinsloo, 1993; Branch et al. 1995; Matthee and Robinson, 1996; Daniels et 

al. 2001; Lamb and Bauer, 2000; Wishart and Hughes, 2001, 2003; Matthee and Flemming, 

2002; Gouws et al. 2004; Smit et al. 2007; Swart et al. 2009; Daniels et al. 2010; Gouws et 

al. 2010; Portik et al. 2011; Smit et al. 2011; McDonald and Daniels, 2012). 

 

In this study the aim is to extend and build on existing knowledge of taxa that inhabit these 

ecologically important regions (Mares, 1997) within South Africa. Using both mitochondrial 

and nuclear markers, the distribution of genetic variation was determined at several spatial 

scales in the rock hyrax, Procavia capensis. These saxicolous, medium-sized afrotheres have 

a polygynous social system (which is not common among rock-dwelling mammals; Skinner 

and Chimimba, 2005) and their morphology should intuitively result in poor dispersal. In 

spite of this, few studies have attempted to determine the distance of migration by rock 

hyraxes (but see Hoeck, 1982, 1989; Gerlach and Hoeck, 2001) and how this is influenced by 
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their social system and the surrounding landscape (e.g., barriers to gene-flow which will 

invariably affect genetic structure). Hypotheses were therefore tested as to how the ecology, 

distribution, social structure and the connectivity of the surrounding landscape have shaped 

rock hyrax genetic variation across the Namaqualand and western Fynbos regions. 

Populations were selected (although not exclusively) in the Cape Peninsula/Hottentots 

Holland Mountains (across the Cape Flats), the Knersvlakte and across the 

Namaqualand/western Fynbos regions.     

 

1.1.1. Species background 

 

Fossil data from Egypt suggest that the Order Hyracoidea originated in Africa in the upper 

Eocene - lower Oligocene (Olds and Shoshani, 1982). The Hyracoidea are regarded as 

sharing a close phylogenetic affinity with Proboscidea (elephants) and Sirenia (dugongs and 

the manatee) to form the Paenangulata (Simpson, 1945; Novacek and Wyss, 1986; Shoshani, 

1991; Kuntner et al. 2011; Meredith et al. 2011). There are three extant genera within 

Hyracoidea: the strictly saxicolous Procavia, the rock dwelling and partially arboreal 

Heterohyrax, and the strictly arboreal Dendrohyrax (Prinsloo, 1993; Skinner and Chimimba, 

2005; Stuart and Stuart, 2007). The taxonomy of Procavia is somewhat uncertain with some 

authors regarding it as monotypic (Ellerman and Morrison-Scott, 1951; Olds and Shoshani, 

1982; Meester et al. 1986; Skinner and Chimimba, 2005), while others recognize four or five 

species distributed across its African and middle eastern distribution (Allen, 1939; Hahn, 

1934; Bothma, 1971; Roche, 1972; Corbet, 1978). Although the subdivisions within Procavia 

have more recently been regarded as reflecting sub-specific differences (Honacki et al. 1982; 

Meester et al. 1986), mitochondrial data suggests the presence of two distinct species within 

South Africa (Prinsloo and Robinson, 1992; Prinsloo, 1993) which correspond, respectively, 

to the south-western (Karoo) and north-eastern (Soutpansberg and Magaliesberg) regions of 

the country. 

 

The rock hyrax is gregarious with a colony usually comprising a dominant territorial male 

accompanied by a harem of females (Sale, 1965; Hoeck, 1975; Olds and Shoshani, 1982; 

Fourie, 1983; Rubsamen et al. 1982; Prinsloo, 1993; Gerlach and Hoeck, 2001; Skinner and 

Chimimba, 2005; Druce et al. 2006; Aroch et al. 2007). Peripheral males may also be 

resident in the vicinity of a colony (Fourie, 1983; Gerlach and Hoeck, 2001; Skinner and 

Chimimba, 2005). A hierarchy exists in the rock hyrax social system where aggressive 
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behaviour is exhibited between the territorial male and peripheral males, although no similar 

social rankings exist between females (Fourie, 1983). All males disperse as sub-adults before 

or during the breeding season, or as adults during breeding dispersal whereas the females are 

largely phylopatric (Hoeck, 1982; Fourie, 1983; Aroch et al. 2007) although they may 

voluntarily disperse at a later stage (Fourie, 1983; Skinner and Chimimba, 2005). Dispersal 

should therefore be male-biased, although Gerlach and Hoeck (2001) found no sex-biased in 

the dispersal of P. johnstoni. During times of high population numbers, or food shortages, 

rock hyrax may disperse to other suitable rocky areas, sometimes over considerable distances 

(~ 20 kilometres; Skinner and Chimimba, 2005). At this time they have been recorded as 

using shelters such as holes in walls, culverts under roads, and even aardvark burrows (Olds 

and Shoshani, 1982; Rubsamen et al. 1982). Dispersal during times of over-population or 

unfavourable conditions may, therefore, contribute to higher than anticipated connectivity 

among geographically distant colonies (Kolbe, 1967; Prinsloo, 1993). The occupancy of 

suitable habitat by hyrax is a dynamic process and depends on several abiotic (rainfall and 

suitable crevices) and biotic (competition, predation and pathogens) factors (Sale, 1965; 

Hoeck, 1975; Olds and Shoshani, 1982; Hoeck, 1989).   

 

Hyrax population sizes are known to fluctuate. These fluctuations occur in the face of 

predation, droughts, and infectious disease (Wagner and Bokkenheuser, 1961; Fairall et al. 

1986; Fairall and Hanekom, 1987; Kotler et al. 1999; Cavanagh et al. 2002; Skinner and 

Chimimba, 2005; Druce et al. 2006; Lutze-Wallace et al. 2006; Chiweshe, 2007; Parsons et 

al. 2008; Parsons, 2010) and can, selectively or in concert, have significant impact on genetic 

structure. Bottlenecks that result from these perturbations (and especially those that persist 

for several generations) can cause a loss of genetic diversity and may even homogenize 

genetic structure (Prinsloo and Robinson, 1992; Prinsloo, 1993; Gerlach and Hoeck, 2001). 

 

Major population crashes have been reported in South Africa for the rock hyrax (Bloomer, 

2009). The widely held but unsubstantiated view is that there is currently a general decline in 

the numbers of rock hyrax across most of the Western Cape including populations in the 

Table Mountain National Park, Piketberg Mountains and the South Coast mountains in the 

vicinity of Oudtshoorn (Guy Palmer, Western Cape Nature Conservation; Melodie McGeoch, 

SANParks); hyrax historically occurred in high numbers in these areas (Skead et al. 2011). 

Interestingly, a similar decline has not been observed in the Northern Cape where high 

densities prevail. 
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Rock hyrax may be seen as a keystone species (Chiweshe, 2007) as they are a source of food 

for many predators such as the Verreaux (black) eagle (the rock hyrax forms 98% of its diet), 

the martial eagle, crowned eagle, leopard, caracal, jackal, African wild and various snake 

species (Turner and Watson, 1965; Olds and Shoshani, 1982; Davies, 1989; Gargett, 1990; 

Davies, 1994; Barry and Barry, 1996; Klein and Cruze-Uribe, 1996; Davies, 1999; Kotler et 

al. 1999; Skinner and Chimimba, 2005; Druce et al. 2006; Chiweshe, 2007; Stuart and Stuart, 

2007; Kruger, 2010). 

 

1.1.2. Genetic and adaptive differences  

 

Since rock hyrax are restricted to rocky areas it is expected that dispersal between isolated 

rocky outcrops may be problematic. Previous work by Prinsloo and Robinson (1992) using 

mitochondrial DNA restriction-fragment-length polymorphisms (RFLPs) revealed significant 

genetic structure in populations from the Soutpansberg and northern parts of South Africa as 

well as those in the Karoo, leading to suggestions of two separate routes of dispersal - one 

along the Great Escarpment (their south-western clade) and the other along the Soutpansberg-

Magaliesberg axis (their north-eastern clade). In addition, the gain or loss of specific 

restriction sites was unique to each studied population. However, whether distinct genetic 

groups exist in the Namaqualand (Northern Cape) and western Fynbos (Western Cape) 

regions is unknown. The Prinsloo and Robinson (1992) study included single specimens from 

the Western Cape (De Hoop Nature Reserve) and Northern Cape regions (Springbok) 

respectively, precluding a robust assessment of these geographic areas. 

 

In addition to the available spatial genetic information on hyrax referred to above, an 

unpublished study by Palmer (Cape Nature; G. Palmer, personal communication) 

documented large differences in the maxillary tooth length and structure among certain 

populations in the Western Cape raising the prospect of subdivision in these areas. However, 

whether these differences have an underlying genetic basis is unknown since dental 

differences might also be correlated to food choice (Yom-Tov, 1993).  Interestingly, Gerlach 

and Hoeck (2001) reported that the extralimital P. johnstoni similarly displays 

metapopulation dynamics in the Serengeti National Park with extinctions and subsequent 

recolonization among populations (or koppies - their “kopjes”). In this study overall genetic 

diversity was low, inbreeding was high and dispersal was not gender-biased. 
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1.1.3. Interpretive tools  

 

Historical geographic processes acting on populations produce a distinct pattern in the 

distribution of alleles among populations (Irwin, 2002) provided sufficient time has elapsed 

(i.e., generation turn-over) for these differences to manifest and be detected with the markers 

employed. In the present study both mitochondrial and microsatellite markers are used to 

characterize connectivity (i.e., gene-flow) among contiguous (connected by intermediate 

suitable habitat) hyrax colonies, as well as between those from distinctly different geographic 

localities across the Namaqualand/western Fynbos regions. 

 

Mitochondrial DNA has traditionally been used as marker of choice in phylogeographic 

studies as it is non-recombinant and inherited uniparentally (Avise, 1994, 1998; Irwin, 2002). 

The assignment of individuals to particular clades is relatively straight-forward and the 

partitioning of genetic variation, if present, is easily detected.  Phylogeographic structure, 

resulting from barriers to gene-flow or isolation-by-distance, may be detected as genealogical 

gaps (Irwin, 2002). Mitochondrial DNA is therefore useful for disentangling genealogical 

relationships. It has many drawbacks, however, foremost its unimodal pattern of inheritance. 

Consequently the inclusion of nuclear markers is of critical importance (Zhang and Hewitt, 

2003). Microsatellites (short tandem repeats scattered throughout the nuclear genome; 

Ingram, 2005) are invaluable in detecting genetic partitions within and among populations 

and are thus fundamental to elucidating gene-flow, population subdivision, migration patterns 

and genetic distance (Burland et al. 2001; Ingram, 2005). Social structure and mating patterns 

may also be inferred from microsatellite data and microsatellites are therefore frequently used 

in landscape genetics (Storfer et al. 2010). The inclusion of both microsatellite and 

mitochondrial markers allow a holistic assessment of population structure and landscape 

evolution.   

 

Markers with different modes of inheritance (uniparental vs. biparental) are frequently 

employed to compare dispersal capabilities between the sexes in vertebrate organisms (as 

reviewed by Prugnolle and De Meeus, 2002). The basis of this approach is that for 

uniparentally inherited markers the one sex does not contribute to the genetic make-up of the 

offspring, while both sexes contribute in the case of biparentally inherited markers. Should 

sex-biased dispersal occur, a difference in the genetic structure of the two types of markers 

Stellenbosch University http://scholar.sun.ac.za



6 
 

will be evident (Goudet et al. 2002). Consequently, most molecular studies have relied on 

mitochondrial DNA data in conjunction with nuclear markers (such as microsatellites, 

allozymes or nuclear RFLPs) to investigate sex-biased dispersal (Quinn and White, 1987; 

Avise et al. 1992; Bowen et al. 1992; Melnick and Hoelzer, 1992; FitzSimmons et al. 1997; 

Wilmer et al. 1999; Nyakaana and Arctander, 1999; Escorza-Treviño and Dizon, 2000; Gibbs 

et al. 2000; Castella et al. 2001; Helbig et al. 2001; Doums et al. 2002; Kerth et al. 2002; 

Cegelski et al. 2003; Van Hooft et al. 2003; Zenger et al. 2003; Ujvari et al. 2008; Caparroz 

et al. 2009).  

 

1.1.4. Sex-biased dispersal 

 

Sex-biased dispersal (where individuals from one sex exhibit site phylopatry i.e., stay in or 

return to their natal site to breed or show reduced dispersal relative to the other sex which is 

more prone to disperse) is a frequent phenomenon in social vertebrate taxa (Prugnolle and De 

Meeus, 2002). The pattern resulting from sex-biased dispersal depends to a large extent on 

the breeding system of the species concerned (Greenwood, 1980; Pusey, 1987; Handley and 

Perrin, 2007); for example, male-biased dispersal is usually characteristic of polygynous 

species, while female-biased dispersal is predominantly found in monogamous taxa 

(Prugnolle and De Meeus, 2002). Most mammals exhibit male-biased dispersal (i.e., 

polygynous breeding systems; Greenwood, 1980; Dobson, 1982; Handley and Perrin, 2007), 

whereas dispersal in birds is female-biased (i.e., monogamous breeding systems; Greenwood, 

1980).  

 

Several hypotheses articulate the evolutionary role of sex-biased dispersal in social systems 

(Handley and Perrin, 2007). These include (i) kin selection with resource competition 

(Clarke, 1978; Greenwood, 1980), (ii) local mate competition (Hamilton, 1967; Dobson, 

1982; Perrin and Mazalov, 2000) and (iii) inbreeding avoidance (Bengtsson, 1978; Packer, 

1979; Dobson, 1982; Waser et al. 1986; Pusey, 1987; Clutton-Brock, 1989; Wolff, 1993; 

Perrin and Mazalov, 2000). Male-biased dispersal is predicted when local mate competition 

exceeds local resource competition, as is the case in polygynous/promiscuous systems (e.g., 

mammals; Perrin and Mazalov, 2000) - a system characterizing the rock hyrax.  

 

In polygynous/promiscuous systems males and females compete for different resources. 

Males have higher reproductive output compared to females (copulation is a short process 
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and can happen with multiple partners), and male fitness is therefore limited by female 

availability (Perrin and Mazalov, 2000; Lehmann and Perrin, 2003). Inbreeding is not 

deleterious to males as they do not forfeit other breeding opportunities. In contrast, females 

have a large parental investment in reproductive output (pregnancy, lactation and rearing) and 

female fitness is limited by the processing of resources. Sex-biased dispersal may therefore 

introduce sexual asymmetries to patterns of local competition in hyrax as males engage in 

local mate (male-male) competition (Clutton-Brock, 1989; Fourie, 1983 for rock hyrax), 

while females show local resource competition.  

 

As a consequence, inbreeding incurs costs due to the reproductive investment of female hyrax 

(Lehmann and Perrin, 2003). Inbreeding can result in a loss of fitness through inbreeding 

depression. Intrasexual competition between related individuals for access to limited 

resources (to maximize reproductive success) directly influences kin selection and inbreeding 

avoidance - the main factors resulting in sex-biased dispersal between populations 

(Bengtsson, 1978; Packer, 1979; Dobson, 1982; Pusey, 1987; Clutton-Brock, 1989; Pusey 

and Wolf, 1996). Therefore, if members of one sex disperse (be it natal or breeding 

dispersal), there is less risk of inbreeding to the other (phylopatric) sex and reduced 

competition among kin, thus increasing inclusive fitness (Clarke, 1978; Perrin and Mazalov, 

2000). In polygynous systems, females choose immigrants above a certain inbreeding 

threshold (depending on relatedness) that in turn boosts male dispersal. Theory predicts that 

females should therefore prefer immigrants over residents at high inbreeding loads, however 

at lower levels of inbreeding, more related males will be favoured (Lehmann and Perrin, 

2003). 

 

Like other polygynous mammals (as reviewed by Storz, 1999), the rock hyrax mating system 

should therefore partition populations into breeding groups that are maintained both by the 

phylopatry of females and the aggressive exclusion of immigrant males. While both sexes 

may have the potential to disperse (Handley and Perrin, 2007), long-distance gene-flow may 

be facilitated by males.   

 

Male-biased dispersal has been demonstrated through the use of genetic markers in several 

mammalian taxa (in both uniparental and biparental situations; Melnick and Hoelzer, 1992; 

Nyakaana and Arctander, 1999; Wilmer et al. 1999; Escorza-Treviño and Dizon, 2000; 

Castella et al. 2001; Kerth et al. 2002; Cegelski et al. 2003; Van Hooft et al. 2003; Zenger et 
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al. 2003). Indeed, similar patterns of male dispersal were demonstrated in two species with 

identical social systems to the rock hyrax. The closest relatives of conies, the African 

elephant (L. africana; Nyakaana and Arctander, 1999), as well as the macaque monkey 

(Macaca mulatta; Melnick and Hoelzer, 1992) have systems where males leave their natal 

group before sexual maturity, whereas females remain for life. Consequently contrasting 

patterns were evident from the analysis of mitochondrial DNA versus microsatellites in these 

species.  

 

Sex-biased dispersal due to a polygynous mating system influences the evolutionary potential 

of a species as it results in differing genetic patterns across the landscape, be it with 

uniparentally (mitochondrial DNA) or biparentally (microsatellites) inherited markers. In 

addition, the spatial scale of investigation also impacts on the genetic patterns observed. The 

following section will show how landscape structure may influence genetic substructuring 

between populations in conjunction with sex-biased dispersal.  
 

1.1.5. Landscape Genetics 

 

Landscape genetics is an emerging field which considers the actual movement of organisms 

(with respect to habitat connectivity) from that organism’s perspective (Holderegger and 

Wagner, 2006). This is an important concept since an animal’s perception of the landscape 

differs from the simplistic simulations incorporated in isolation-by-distance (IBD) analyses 

(Coulon et al. 2004). According to Storfer et al. (2007), landscape genetics may be defined as 

“research that explicitly quantifies the effects of landscape composition, configuration and 

matrix quality on gene-flow and spatial genetic variation”. This field integrates ecology, 

spatial statistics and population genetics (Holderegger and Wagner, 2006; Storfer et al. 2007; 

Holderegger and Wagner, 2008; Storfer et al. 2010), and examines these in the context of 

evolutionary processes within species (Holderegger and Wagner, 2006). It aims to quantify 

the relationship between ecological variables, genetic variation and the actual spatial 

partitioning thereof (Storfer et al. 2007). The focus is on the degree to which the landscape 

structure facilitates the movement and subsequent gene-flow of certain organisms, i.e., 

landscape connectivity (Taylor et al. 1993).  

 

Landscape connectivity refers to the connectivity of the surrounding matrix - defined by 

Holderegger and Wagner (2008) as “the often hostile space that separates the patches of a 
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species’ habitat in a given landscape”. Landscape connectivity is consequently a result of an 

animal’s dispersal behaviour combined with the grain (penetrability/connectivity) of that 

particular landscape (Brooks, 2003; Baguette and Van Dyck, 2007). The matrix is a major 

factor determining biological and ecological processes as the quality and quantity of areas 

that separate suitable habitat affects the distribution of genetic variation, be it adaptive or 

non-adaptive (Holderegger and Wagner, 2008). Two types of landscape connectivity are 

evident. Gene-flow is an example of functional connectivity, whereas structural connectivity 

relates to how suitable habitat patches are distributed across the landscape (Brooks, 2003; 

Baguette and Van Dyck, 2007; Holderegger and Wagner, 2008).  

 

In addition to the structural features (connectivity and habitat quality), gene-flow is also 

affected by ecological factors. These include habitat porosity, habitat persistence and 

population persistence (Peterson and Denno, 1998; Pérez-Espona et al. 2008). As the 

landscape imposes selective pressures on dispersal behaviour, populations of the same 

species inhabiting differing environmental regimes may evolve different behaviours 

(aggregated versus fragmented; as reviewed by Baguette and Van Dyck, 2007). Variation in 

the dispersal behaviours that characterize populations depend on how residents perceive the 

surrounding landscape. As each organism has a perceptual range (the range at which it is able 

to detect suitable habitat patches), dispersal will depend on suitable habitat patches that 

overlap within this range. If the distribution of suitable habitat patches is larger than the 

perceptual range (visual acuity) of an animal, a dispersal event will incur costs (through 

increased search time and possible predation). Reluctance to cross the boundary of suitable 

habitat patches has been reported for various taxa, especially when the habitat is fragmented. 

For example, Baguette and Van Dyck (2007) demonstrated that butterflies from fragmented 

systems were less inclined to cross habitat boundaries than those from aggregated landscapes. 

 

The only spatial aspect included in traditional population genetic studies is isolation-by-

distance (IBD) which is limited with regard to spatial inference (Storfer et al. 2007; 

Holderegger and Wagner, 2008). Since Manel et al. (2003) coined the term “landscape 

genetics”, however, a substantial number of studies have incorporated geographic variables 

(such as coordinates and landscape features, Storfer et al. 2010) when evaluating the spatial 

distribution of genetic variation. Processes such as gene-flow are affected by the quality of a 

landscape and not just purely spatial distance (Holderegger and Wagner, 2006; McRae and 

Beier, 2007). Multivariate models that take landscape variables into account perform 
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significantly better at explaining genetic differences among populations than do simple 

isolation-by-distance tests (Michels et al. 2001; Coulon et al. 2004; Spear et al. 2005; 

Broquet et al. 2006; Pérez-Espona et al. 2008; Zalewski et al. 2009; Storfer et al. 2010). As a 

consequence, analyses of genetic structure are becoming increasingly spatial in nature. 

Landscape genetics is therefore much closer to the real-world situation as the actual dispersal 

of organisms may deviate from an abstract gene-flow index for populations or from an 

ecological connectivity index (Holderegger and Wagner, 2006). 

 

Various questions have already been addressed through landscape genetic studies including 

the identification of barriers to gene-flow, quantifying diversity, the inference of landscape 

change, identification of migrants in relation to landscape condition, estimation of source-

sink dynamics, invasive species and the spread of disease (as reviewed by Storfer et al. 

2010). The field provides valuable information for disciplines such as evolutionary biology, 

ecology and conservation biology (Holderegger and Wagner, 2006).  

 

Understanding the effects of landscape connectivity on the genetic structure of organisms 

provides insight into spatial genetic patterns such as barriers to gene-flow, metapopulations, 

isolation-by-distance and clines (Coulon et al. 2004), and can aid in identifying possible 

dispersal corridors (Coulon et al. 2004; Storfer et al. 2007). The field further sheds light on 

biological processes such as speciation and species’ distributions (Storfer et al. 2007). 

Genetic variation may vary over different spatial scales as particular landscape variables may 

differentially affect gene-flow on differing scales - a process linked to a species’ biology 

(Storfer et al. 2007). Landscape genetic approaches using spatial information may also permit 

the identification of barriers which are undetectable by conventional population genetic 

methods (Coulon et al. 2004) and where various structures across the landscape may cause 

abrupt breaks (Dupanloup et al. 2002), or more gradual transitions (Geffen et al. 2004) in 

gene-flow patterns. In addition, anthropogenic landscape changes may have a profound 

impact on the connectivity between suitable habitat patches through fragmentation and thus 

reduce gene-flow and genetic diversity (Coulon et al. 2004). Unsuitable habitat does not 

provide cover against predators and is often too extensive for a species to cross in one step; 

thus fragmented landscapes affect the dispersal capability of species. Direct observational 

data on the movement of species is difficult or not practical for many taxa. Landscape 

genetics thus offers a framework to examine variables that facilitate or impede dispersal and 

gene-flow. In a conservation context, the field may help elucidate dispersal routes between 
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populations in fragmented habitats which will allow the construction of corridors to facilitate 

gene-flow between fragmented areas (either reserves or anthropogenically fragmented areas). 

 

1.1.6. Regional barriers to gene-flow 

 

Genetic subdivision and phylogenetic gaps have been demonstrated in a myriad of 

mammalian taxa (see examples in Avise, 1994). These genetic gaps arise due to mutations 

becoming independently fixed in a species genome (through drift and/or selection) following 

its divergence and subsequent evolutionary trajectory from common ancestry. Concordant 

patterns should emerge in the genealogies of different (mitochondrial and nuclear) genetic 

markers when a barrier to gene-flow separates populations for protracted periods (Avise, 

1994).  

 

Comparative phylogeography aims to compare the contemporary spatial patterns of genetic 

variation in multiple co-distributed, unrelated taxa and to assesses the degree to which these 

taxa responded to historical biological, climatic and geographic (orogenic factors such as 

uplift) events (Bermingham and Martin, 1998; Schneider et al. 1998; Brunsfeld et al. 2000; 

Ditchfield, 2000; Arbogast and Kenagy, 2001; Hewitt, 2001; Zink, 2002; Dawson, 2005; 

Lapointe and Rissler, 2005; Cotterill, 2006; Feldman and Spicer, 2006; Soltis et al. 2006; 

Castoe et al. 2009; Wallis and Trewick, 2009; Yang et al. 2009; Rodríguez-Sánchez et al. 

2010; Cotterill and De Wit, 2011; Goodier et al. 2011). If similar historical forces (geological 

or environmental) affected population processes in multiple taxa across the same geographic 

region, similar phylogeographic patterns are to be anticipated (see for example Sullivan et al. 

2000; Zink, 2002; Lapointe and Rissler, 2005; Joseph and Omland, 2009).  

 

Genetic data on a diverse array of taxa have facilitated comparative phylogeographic 

approaches in the northern hemisphere (Australia, Europe, China, eastern European Alps, the 

Caribbean, Canary islands, Hawaii, Pacific Northwest and North America, Central America, 

south-eastern United States, the California Floristic Region and South America; Avise, 1998; 

Bermingham and Martin, 1998; Avise, 2000; Brunsfeld et al. 2000; Ditchfield, 2000; Hewitt, 

2001; Soltis et al. 2006; Joseph and Omland, 2009; Wallis and Trewick, 2009; Yang et al. 

2009). Comparatively few studies have, however, been conducted in the southern hemisphere 

(Wallis and Trewick, 2009) and specifically in South Africa (but see Tolley et al. 2009).  
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For species confined to rocky habitats two notable landscape features significantly structure 

the spatial distribution of genetic variation. First, the Knersvlakte was documented as a 

geographic barrier in various taxa from different taxonomic groups and with different life-

histories (Branch et al. 1995; Matthee and Robinson, 1996; Lamb and Bauer, 2000; Matthee 

and Flemming, 2002; Smit et al. 2007; Daniels et al. 2010; Portik et al. 2011). The 

Knersvlakte is a large, arid plain in the Namaqualand area situated between the Bokkeveld- 

and Kamiesberg Mountains (Kounov et al. 2008). The formation of this area has been 

attributed to uplift during the Miocene approximately 18 Mya (Moon and Dardis, 1988), 

however, more recent studies suggest that it has in fact been forming since ~ 90 Mya 

(Kounov et al. 2008). The Knersvlakte was once the outlet of the paleo-Karoo River drainage 

system during the Cretaceous (Kounov et al. 2008). Continued erosion following the end of 

the Cretaceous shaped the present-day topography of the area. This large, sparsely vegetated, 

flat area with an elevation of 109 - 153 metres above sea-level (Kounov et al. 2008), is 

approximately 40 - 100 km in width and offers little refuge for dispersing rock-dwelling taxa. 

 

A second potential geographic barrier to gene-flow is situated further to the south and 

comprises a ~ 60 kilometres wide stretch of sand between the Cape Peninsula and the 

Hottentots Holland Mountains (Schalke, 1973; Adelana et al. 2010) that offers little suitable 

habitat and refuge to dispersing species with saxicolous requirements. This area is currently 

referred to as the Cape Flats. Although small disjunct outcrops occur on the Cape Flats 

(Schalke, 1973), these are quite rare (Adelana et al. 2010) and not deemed adequate in aiding 

dispersing animals. The area mainly consists of aeolian sands of marine origin (Walker, 

1952; Siesser and Dingle, 1981; Adelana et al. 2010) and includes a large part of the existing 

Cape Town metropolitan area. This barrier has also repeatedly been enforced since the low-

lying area is frequently inundated during marine transgressions. 

 

1.1.7. The study 

 

Five major research questions can be identified within a landscape genetics context: (1) 

quantifying influence of landscape variables and configuration on genetic variation; (2) 

identifying barriers to gene flow; (3) identifying source-sink dynamics and movement 

corridors; (4) understanding the spatial and temporal scale of an ecological process; and (5) 

testing species-specific ecological hypotheses (Storfer et al. 2007). This project addresses all 
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five of these questions using both mitochondrial and nuclear (microsatellite) markers in P.  

capensis.  

 

Sampling was designed to examine questions of connectivity at different spatial scales. In 

addition to a stratified sampling regime across the South African Namaqualand/western 

Fynbos regions, sampling efforts were also focussed around presumed barriers to movement 

in rock hyrax. This is important as different landscape features may differentially affect 

genetic variation at various spatial scales and few landscape studies have been conducted 

using this approach. At a fine scale the spatial genetic structure, gene-flow and sex-biased 

migration of hyrax between five different koppies in an isolated population were investigated. 

To address intermediate spatial scales, genetic structure and gene-flow across and around 

known barriers such as the Cape Flats and Knersvlakte were targeted. At a regional spatial 

scale we investigated how landscape connectivity affects gene-flow and the distribution of 

genetic variation across the landscape in two regions with differing connectivities 

(Namaqualand and the western Fynbos region). Finally, these results were compared to other 

investigations that identified the Cape Flats and Knersvlakte as phylogeographic breaks along 

the South African west coast.  

 

Stellenbosch University http://scholar.sun.ac.za



14 
 

CHAPTER 2 

Phylogeography of Procavia capensis across the Namaqualand and western 

Fynbos regions of South Africa – a mitochondrial and microsatellite 

perspective 

 

2.1. Introduction 

 

Habitat preference can impact on the distribution of genetic variation across landscapes (Smit 

et al. 2011). Saxicolous species are by definition habitat bound (Chapter 1) and one may 

anticipate that tracts of open terrain represent significant barriers to a species’ successful 

dispersal. Consequently, it is no surprise that two such areas, the Knersvlakte (Branch et al. 

1995; Matthee and Robinson, 1996; Lamb and Bauer, 2000; Matthee and Flemming, 2002; 

Smit et al. 2007; Daniels et al. 2010; Portik et al. 2011) and Cape Flats (Daniels et al. 2001; 

Wishart and Hughes, 2001, 2003; Gouws et al. 2004; Swart et al. 2009; Gouws et al. 2010; 

McDonald and Daniels, 2012), both depauperate in this type of habitat, have been found to 

structure the spatial distribution of genetic variation in rock-dwelling taxa.  

 

Given its habitat preferences, similar patterns of genetic structure may consequently be 

anticipated in the rock hyrax (P. capensis). Prinsloo and Robinson (1992) identified 

significant genetic structure across the species’ South African distribution. Based on 

mitochondrial DNA restriction-fragment-length polymorphisms (RFLPs) two major clades (a 

south-western and north-eastern clade) were detected, evidently tracking different dispersal 

routes. However, their study included only two collection sites in the current area of interest, 

one in the Western Cape (De Hoop Nature Reserve - Fynbos region) and one in the Northern 

Cape (Springbok - Namaqualand region). Consequently whether the Knersvlakte and the 

Cape Flats have impacted on the phylogeography of P. capensis in these regions is moot. 

Nonetheless, it is noteworthy that hyrax from the De Hoop Nature Reserve were genetically 

the most divergent of those sampled nationally by Prinsloo and Robinson (1992) possibly 

reflecting long periods of very limited gene-flow into this region from surrounding areas, 

coupled to the gradual accumulation of new mutations within the population. 
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This study extends what is known of the genetics and population structure of South African 

saxicolous species through the analysis of P. capensis collected at numerous sites across the 

Namaqualand and western Fynbos regions of South Africa (Figure 2.1). Conclusions were 

based on structure using both mitochondrial and nuclear markers and these data examined in 

the context of the species’ ecology, social structure and life history parameters. In so doing, 

the sampling deficiencies inherent in the Prinsloo and Robinson (1992) and Prinsloo (1993) 

studies were addressed through the inclusion of larger sample sizes and the selection of 

multiple sampling localities across the Namaqualand and western Fynbos regions. Lastly, a 

search for correspondence with published phylogeographic patterns from other rock-dwelling 

specialist taxa across the same broad geographic area was undertaken. It was anticipated that 

this would give greater insight to factors influencing the distribution of genetic variation in 

these and other saxicolous species thereby informing conservation strategies for these 

ecologically important areas. 

 

The inclusion of both microsatellite and mitochondrial markers allows for a holistic 

assessment of population structure, population dynamics and sex-biased dispersal. The 

approach also permits an assessment of the landscape on genetic patterns and processes. The 

mitochondrial cytochrome b gene is widely used in species identification (Parson et al. 2000; 

Bradley and Baker, 2001) due to its ease of amplification and unambiguous genetic 

assignment benefits (Parson et al. 2000).  Consequently, a large database of cytochrome b 

sequences from multiple taxa is available on public databases such as GenBank (Parson et al. 

2000) and representative sequences from taxa of interest may be obtained for genealogical 

and phylogeographic analyses. The cytochrome b segment has wide application in 

phylogeography (Avise, 1994, 1998; Irwin, 2002) as the assignment of individuals to 

particular clades is relatively straight-forward and therefore geographic patterning resulting 

from long-term barriers to gene-flow may be detected (Irwin, 2002). Its maternal pattern of 

inheritance also makes the investigation of female gene-flow possible. On the other hand 

microsatellites (variable tandem repeats scattered throughout the genome) are frequently used 

in landscape genetics (Storfer et al. 2010) as they are invaluable in detecting gene-flow, 

genetic partitions within and among populations, social structure and mating patterns 

(Burland et al. 2001; Ingram, 2005). The microsatellite markers used in this study were 

developed for Procavia (although they also show variability in Heterohyrax) to investigate 

population dynamics and genetic structure of hyrax populations in the Serengeti National 

Park (Gerlach et al. 2000; Gerlach and Hoeck, 2001). The selection of markers for use in the 
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present investigation was based on the Gerlach and Hoeck (2001) study with the aim of 

providing maximum resolution with respect to gene-flow, population substructuring, 

population dynamics and mating patterns of P. capensis at different several spatial scales. 

 

2.2. Materials and Methods 

 

2.2.1. Sample collection 

 

The analysis of phylogeographic structure was based on a minimum of 20 animals per 

sampling site (Figure 2.1.) - the only exceptions were Klawer (n = 15), Loeriesfontein (n = 

11) and Boulders (n = 12). Ear-clippings were taken and stored at room temperature in a 

saturated salt solution supplemented with 20% dimethyl sulfoxide (DMSO). 

 

 

 

 
Figure 2.1.  Map showing the 16 P. capensis collection sites sampled 

across the Namaqualand and western Fynbos regions of South Africa. 

The positions of the two known biogeographic breaks, the Knersvlakte 

(delineated in red) and Cape Flats (delineated in blue), are also indicated. 

100 km 
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2.2.2. Experimental procedures 

 

2.2.2.1. Mitochondrial DNA 

 

Total genomic DNA was extracted from ear clippings using a commercial DNA extraction kit 

(DNeasy Blood & Tissue kit; Qiagen) following the manufacturer's protocols. The entire 

mitochondrial cytochrome b gene including forward and rear flanking regions was amplified 

and sequenced. Universal primers (L14724 and H15915) were used for amplification and 

sequencing (Kocher et al. 1989; Irwin et al. 1991). The studies by Prinsloo and Robinson 

(1992) and Prinsloo (1993) were based largely on mitochondrial RFLP data (although 

cytochrome b sequence data was also included in the Prinsloo 1993 study). To facilitate 

comparison with the Prinsloo (1993) investigation (and because RFLP investigations have 

been superseded by sequencing approaches), mitochondrial cytochrome b sequence data was 

used in this study. In an attempt to investigate male-biased dispersal in the species, an attempt 

was made to amplify the Y specific locus, SRY (Menotti-Raymond et al. 2003), from all 

sampled males.  

  

Amplification of the cytochrome b region was carried out for 10 adult animals (five males 

and five females) per sampling locality. PCR amplifications followed standard protocols. In 

short, amplifications were carried out in a GeneAmp PCR 2700 system (Applied Biosystems) 

with a thermal profile involving an initial denaturation step of 4 min at 96°C followed by 35 

cycles of 96°C for 30 s, a region-specific annealing temperature of 50°C for cytochrome b for 

30 s and 72°C for 1 min. A final extension step at 72°C for 5 min completed all reactions. 

Successful amplifications were visualized on a 1% agarose gel. Sequencing reactions were 

performed using BigDye chemistry (Applied Biosystems). Sequencing products were cleaned 

to remove unincorporated dye label using sephadex columns.  Samples were analysed on an 

ABI 3170 (Applied Biosystems) automated sequencer at the Central Analytical Facility 

(Stellenbosch University). Electropherograms of the raw data were checked manually 

(Geneious Pro™ 5.0 software, Biomatters Ltd, New Zealand) and aligned in MacClade 

version 4.06 for OS X (Maddison and Maddison, 2003). 
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2.2.2.2. Microsatellites 

 

Four microsatellite loci Hy-D49, Hy-T12, Hy-T17 (Gerlach et al. 2000) and HCA18 (P. 

Bloomer, personal communication) were selected (Appendix A). These loci were chosen for 

ease of amplification and levels of polymorphism detected in various populations.  The 

forward primer of each primer pair was 5'-labelled with one of four fluorophores (6-FAM, 

HEX, VIC or NED). Genotyping was performed on all available specimens from each 

sampling locality. Following primer optimization, all loci were amplified at 48ºC; subsequent 

amplifications were performed in a multiplex at this annealing temperature. A Multiplex PCR 

Kit (Qiagen) was used for the amplification in a final reaction volume of 10 µl consisting of 5 

µl Qiagen Multiplex Master Mix, 2 µl of primer mix (2 mM), 1 µl water and 2 µl of template 

DNA (~ 30 ng). PCR conditions were 15 min of initial denaturation at 95ºC, 35 cycles of 30 s 

of denaturation at 94ºC, 90 s of annealing at 48ºC, 90 s of extension at 72ºC and 10 min of 

final elongation at 72ºC. For genotyping, 1 µl of diluted (1/80) PCR product was combined 

with 15 µl of deionized formamide and 0.2 µl of the GS500LIZ size standard (Applied 

Biosystems). Samples were genotyped on an ABI3170 Prism (Applied Biosystems) and 

scored using ABI Prism Genemapper software 3.7 (Applied Biosystems). 

 

2.2.3. Data analyses 

 

2.2.3.1. Mitochondrial DNA 

 

2.2.3.1.1. Genealogical and molecular dating analyses 

 

Genealogical analyses were conducted to search for phylogeograhic patterns and to date 

divergence events between clades. An additional eight P. capensis sequences were available 

on GenBank; these were downloaded and aligned to the data generated in the present study. 

The outgroups for the genealogical analyses were members of the Afrotheria and include 

Heterohyrax brucei, Dendrohyrax dorsalis, Loxodonta africana, Dugong dugong, 

Orycteropus afer, Elephantulus edwardii, Macroscelides proboscideus and Echinops telfairi.  

 

Phylogenetic trees were constructed using parsimony and Bayesian Inference approaches. For 

this, specimens sharing a specific sequence-based haplotype (genetically unique sequence) in 

sampling localities were collapsed into a single representative haplotype. Parsimony analyses 
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were executed in PAUP* version 4.0 (Swofford, 2003). Trees were generated with heuristic 

searches and TBR branch swapping using 100 random taxon additions. Statistical confidence 

in nodes was determined through 1 000 bootstrap replicates (Felsenstein, 1985). Bayesian 

Inference trees were constructed in MrBayes 3.2 (Ronquist et al. 2011). The model of 

evolution that best fitted the data (GTR+I(0.485)+G(0.232)) was determined by jModelTest 

version 2.0.2 (Posada, 2008) using the Akaike Information Criterion (AIC) (Akaike, 1973). 

The programme was run for 5 x 106 generations with sampling every 100 generations. After 

discarding the first 25% of the trees as burnin, a majority rule consensus tree with posterior 

probabilities was constructed. Posterior probabilities of >0.90, and bootstrap values >70% 

were considered statistically acceptable.   

 

To obtain estimates of times of divergence for various clades, a relaxed molecular clock 

approach was adopted in BEAST version 1.7 (Drummond et al. 2007). Five calibration points 

were specified which included the root of the Afrotheria (80.9 ± 11.1 million years ago), the 

ages of the Paenangulata (64.3 ± 7.3 million years), the Macroscelidea (49.1 ± 9.8 million 

years), the Hyracoidea (6.1 ± 2.2 million years), and the Proboscidea (5.3 ± 3.1 million years) 

(Meredith et al. 2011). Runs were continued for 20 x 106 generations sampling every 1 000 

generations (burnin = 2 000). Results were visualized in Tracer version 1.5 (Rambaut and 

Drummond, 2003).  

 

Phylogenetic trees are not always sensitive enough to detect variation and relationships below 

the species level (Posada and Crandall, 2001). In addition, several assumptions underpinning 

phylogenetic tree construction (such as evolution is strictly bifurcating) are violated (Posada 

and Crandall, 2001). As an alternative to the tree approach, a haplotype network was 

constructed using TCS 1.21 (Clement et al. 2000).  

 

To determine the amount of genetic divergence among groups identified in the phylogenetic 

analyses, as well as hyrax populations sampled in geographically distant localities, sequence 

divergences (uncorrected p-values) were calculated in DnaSP version 5.10.01 (Librado and 

Rozas, 2009). 
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2.2.3.1.2. Population analyses 

 

To determine whether genetic variation was significantly structured, ɸST was calculated with 

all sampling localities included. Additionally, pair-wise ɸST values were calculated between 

localities. Significance was determined through 9 999 permutations of the data (Arlequin 

version 3.5; Excoffier and Lischer, 2010).  

 

Distinct groups identified using phylogenetic approaches are often caused by barriers to 

migration and reflected by limited gene-flow across the landscape. To further investigate this, 

the programme Alleles In Space (AIS) version 1.0 (Miller, 2005) was used. AIS uses 

Monmonier’s algorithm to search for barriers by searching for the greatest genetic distance 

between any two locations in a triangle. An interpolation-based graphic approach was used to 

detect genetic structure over the landscape. The default settings of “midpoint derived from 

Delaunay triangulation” and “residual genetic distances” were used; the “distance weight 

value” was set to 1.5 when the visual spatial approach was adopted. 

 

2.2.3.2. Microsatellites 

 

2.2.3.2.1. Summary statistics and inbreeding  

 

The presence of null alleles introduces a potential bias to analyses. We used Microchecker 

version 2.2.3 (Van Oosterhout et al. 2004) to assess whether null alleles were present in the 

data and followed Okello et al. (2005) in viewing a value >0.2 as indicative of their presence. 

Linkage disequilibrium was investigated using Genepop version 4.0.10 (Raymond and 

Rousset, 1995; Rousset, 2008) by running Markov chains for 10 000 iterations. We also 

assessed whether colonies conformed to Hardy-Weinberg equilibrium (HWE) (Genalex 

version 6.4; Peakall and Smouse, 2006). 

  

2.2.3.2.2. Population and clustering analyses 

 

Population differentiation was estimated through pairwise FST values (Arlequin version 3.5; 

Excoffier and Lischer, 2010). The spatial location of genetic clusters within the studied areas 

was determined using Bayesian assignment approaches implemented in Geneland version 

2.0.10 (Guillot et al. 2005). This programme determines the spatial location of populations 
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(without prior input) from multi-locus genotypes through the simultaneous analysis of both 

genetic and geographical data (Guillot et al. 2005). A Reversible Jump (RJ) Markov Chain 

Monte Carlo (MCMC) algorithm was applied to estimate the number and location of genetic 

clusters (K) across the landscape (Guillot et al. 2005). Geneland also outperforms other 

spatial genetic clustering programmes when FST values are >0.04 (i.e., when the number of 

migrants between populations is low) and is efficient at detecting potential contact zones 

between populations (Chen et al. 2007). As allele frequencies were uncorrelated between 

sampling localities (calculated in Genalex; Peakall and Smouse, 2006) and gene-flow was 

low (Chapter 3), the “no admixture” model with “independent/uncorrelated allele 

frequencies” was selected in subsequent analyses. We ran 100 000 permutations with a 

thinning of every 100 trees to search the optimal spatial distribution of markers. Ten chains 

were run, and the one with the highest likelihood retained. 

 

2.2.4. Phylogeography of regional saxicolous fauna: a comparative perspective 

 

Comparative data were sourced from published genetic studies representative of the same 

broad geographic region that, importantly, included the Knersvlakte (Branch et al. 1995; 

Matthee and Robinson, 1996; Lamb and Bauer, 2000; Matthee and Flemming, 2002; Smit et 

al. 2007; Daniels et al. 2010; Portik et al. 2011) and the Cape Flats (Daniels et al. 2001; 

Wishart and Hughes, 2001, 2003; Gouws et al. 2004; Swart et al. 2009; Gouws et al. 2010; 

McDonald and Daniels, 2012).  These data were compared to the phylogenetic analysis of 

hyrax drawn from the 16 sampling localities of the present study. 

 

2.3. Results 

 

2.3.1. Mitochondrial DNA 

 

2.3.1.1 Population and clustering analyses 

 

The trees generated by MP, BEAST and the Bayesian methods were largely congruent 

(Figure 2.2.) with two major well-supported P. capensis clades evident across the 

Namaqualand and western Fynbos regions (uncorrected sequence divergence separating these 

clades = 1.916%; Jukes-Cantor corrected = 1.941%).  These can be assigned to two 
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vegetation types: a Namaqualand and a western Fynbos biome (Mucina and Rutherford, 

2006). These two clades reflect the disruption caused by the Knersvlakte and this divergence 

is dated at ~ 8.9 Mya (Figure 2.2.). The same clades were evident in the haplotype network 

and could not be connected at the 95% confidence level (Figure 2.3.). Overall, shallow 

genetic structure was evident in the haplotype network with few mutational changes/missing 

haplotypes within clades (Figure 2.3.). The AIS analysis confirmed the Knersvlakte to be a 

major barrier to gene-flow for rock hyrax populations across the Namaqualand/western 

Fynbos regions (Figure 2.4.). In addition, significant genetic discontinuity was detected 

among populations across the western Fynbos region (Figure 2.4.). Significant pairwise 

differentiation was evident between all localities across the sampled distribution area (Table 

2.1.). Amplification of the male-specific marker (SRY) proved unsuccessful, even with 

modifications to the protocol. Male-biased dispersal could thus not be directly estimated. The 

SRY marker used in this study was developed for the domestic cat (Felis catus; Menotti-

Raymond et al. 2003) and it is probable that mutations in the primer binding site of P. 

capensis precluded the annealing of the primers. 
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Locality Springbok Garies Brand-
se-Baai Nuwerus Kliprand Loeries-

fontein 
Nieuwoudt-

ville Klawer Donkies-
baai 

Elands 
Bay Vredenburg Ceres Paardeberg Table 

Mountain Boulders Bettysbaai 

Springbok - 0.025 0.039   0.024   0.024 0.077      0.033 0.139 0.064 0.132 0.200 0.076 0.215 0.151 0.347 0.222 
Garies 0.230 - 0.055 0.050   0.024 0.085      0.027 0.140 0.066 0.123 0.160 0.081 0.191 0.141 0.336 0.214 

Brand-se-Baai 0.305 0.448 - 0.044   0.026 0.066      0.020 0.123 0.054 0.108 0.196 0.081 0.207 0.179 0.368 0.242 
Nuwerus     0.108 0.280 0.377 -   0.036 0.083      0.038 0.145 0.065 0.120 0.182 0.062 0.203 0.102 0.33 0.224 

Kliprand 0.113 0.030 0.218 0.129 -     0.069      0.013 0.151 0.054 0.121 0.201 0.059 0.208 0.141 0.375 0.218 

Loeriesfontein 0.912 0.918 0.978 0.906   0.795 - 0.072 0.109 0.067 0.195 0.179 0.091 0.206 0.199 0.411 0.184 

Nieuwoudt-ville 0.571 0.594 0.621 0.566 0.436 0.328 - 0.135 0.058 0.102 0.192 0.088 0.208 0.165 0.347 0.227 

Klawer 0.619 0.635 0.658 0.615 0.501 0.411      0.125 - 0.050 0.220 0.186 0.092 0.115 0.198 0.379 0.118 
Donkiesbaai 0.707 0.720 0.752 0.701 0.591 0.492      0.209   0.019 - 0.100 0.158 0.036 0.098 0.122 0.339 0.129 
Elands Bay 0.799 0.810 0.857 0.793 0.686     0.782      0.457   0.110    0.107 - 0.241 0.122 0.209 0.194 0.434 0.286 

Vredenburg 0.918 0.926 0.989 0.911 0.798 0.821      0.232   0.350 0.436 0.777 - 0.144 0.232 0.200 0.386 0.208 
Ceres 0.860 0.869 0.926 0.854 0.748 0.894      0.566   0.214 0.307   0.079 0.903 - 0.151 0.087 0.354 0.139 

Paardeberg 0.913 0.921 0.979 0.907 0.799 0.827      0.321   0.405 0.487 0.781 0.833 0.895 - 0.149 0.252 0.112 
Table Mountain 0.918 0.926 0.989 0.911 0.808 0.979      0.624   0.471 0.535 0.701 1.000 0.855 0.982 - 0.258 0.189 

Boulders 0.908 0.916 0.974 0.902 0.802 0.956      0.629   0.492 0.552 0.704 0.972 0.839 0.958 0.727 - 0.283 
Bettysbaai 0.808 0.815 0.856 0.804 0.705 0.741      0.451   0.385 0.428 0.578 0.732 0.681 0.740 0.737 0.735 -/ 

Table 2.1.  Pairwise ɸST/FST values between the 16 P. capensis populations sampled across the Namaqualand and western Fynbos regions. Values above the 

diagonal are based on the microsatellite (FST) data and those below the diagonal represent the mitochondrial sequence data (ɸST) (cytochrome b). Differentiation 

across the Knersvlakte (red block) and the Cape Flats (the blue block) is highlighted.  All values were significant at p < 0.05 except those indicated in red. 
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Figure 2.2.  Bayesian phylogram obtained from the analyses of the cytochrome b haplotypes among the 16 P. 

capensis sample sites across the Namaqualand and western Fynbos regions of South Africa. The values 

above each node represent the posterior probability (pP) values derived from the Bayesian inference 

(MrBayes and BEAST) analyses and those below nodes are the Maximum Parsimony values (“-“ indicate 

that the grouping was not found by the particular analysis). The populations comprising the Namaqualand 

and western Fynbos clades are shown. The divergence dates for two nodes, the Hyracoidea (14.4 ± 3.0 Mya; 

black arrow) and Knersvlakte-split (8.9 Mya; white arrow) are indicated. 
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Figure 2.3.  Haplotype networks based on cytochrome b gene sequences demonstrating the two mitochondrial DNA clades (western 

Fynbos and Namaqualand) detected in P. capensis from localities across the Namaqualand/western Fynbos regions South Africa. 

The size of each circle reflects the number of specimens with a particular haplotype. Numbers on branches represent the mutational 

steps separating haplotypes. 

western Fynbos Namaqualand 
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Figure 2.4.  A graphical interpolation-based representation of the genetic structure in the 

cytochrome b sequence data over the Namaqualand and western Fynbos distribution of P. 

capensis. Peaks represent the genetic differentiation between sampled populations. The 

genetic breaks across the Knersvlakte (circled in red) and between the populations of the 

south-western Cape (circled in blue) are shown. Structure was also evident along the 

southern rim of the Knersvlakte (circled in green) and in the south-western Cape region 

between Paardeberg and Ceres (A), and Table Mountain and Boulders (B). 
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2.3.1.2. Phylogeography of regional rupicolous fauna: a comparative perspective 

 

The comparison of the key findings of published phylogeographic studies that included the 

Knersvlakte and Cape Flats in their coverage may be found in Appendix C. These include the 

Smith’s red rock rabbit (Pronolagus rupestris; Matthee and Robinson, 1996), southern rock 

agama (Agama atra; Matthee and Flemming, 2002; Swart et al. 2009), Cape rock elephant-

shrew (Elephantulus edwardii; Smit et al. 2007), speckled padloper tortoise (Homopus 

signatus; Daniels et al. 2010), freshwater river crab (Potamonautes brincki; Daniels et al. 

2001), net-winged midge (Elporia barnardi; Wishart and Hughes, 2001, 2003), freshwater 

phreatoicidean isopod (Mesaphisopus capensis; Gouws et al. 2004; Gouws et al. 2010) and 

Cape velvet worm (Peripatopsis capensis; McDonald and Daniels, 2012). Whereas studies 

that included the Knersvlakte surveyed mostly vertebrate taxa (Mammalia and Reptilia; 

Appendix C), those with coverage of the Cape Flats included mostly invertebrate taxa 

(Crustacea, Insecta and Euonycophera; Appendix C). The exception was the investigation by 

Swart et al. (2009) who studied A. atra. In the summary (Appendix C), particular attention 

was paid to the genetic markers used, the precise locality of phylogeographic breaks detected 

(if present), the amount of sequence divergence between clades, divergence time estimates 

between clades, type of phylogeographic pattern found and, finally, the factors that may have 

influenced the observed phylogeographic profiles (i.e., the phylogeographic interpretation).   

 

2.3.4. Microsatellites 

 

Four microsatellite marekers were amplified in this study; all four showed relatively high 

levels of polymorphism (i.e., comparable to those reported in the Gerlach and Hoeck, 2001 

study; see Appendix B). Three additional markers were tested but these failed to amplify, 

even with modifications to the protocol.  

 

2.3.4.1. Population and clustering analyses 

 

Significant pairwise genetic differentiation was detected between all localities over the 

sampling range (Table 2.1.). The Geneland analysis retrieved seven genetic clusters over the 

landscape (Figure 2.5.). These clusters correspond to the following areas: 1.) Springbok and 

Garies, 2.) the northern rim of the Knerslakte also including Loeriesfontein and Nieuwoudt-
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ville on the southern rim, 3.) Klawer, 4.) Donkiesbaai, 5.) Elands Bay, Ceres and Vredenburg, 

6.) Table Mountain, Boulders and Paardeberg, 7.) Bettysbaai. 

 

 

 
 

 

 

 

2.4. Discussion 

 

2.4.1. Population differentiation  

 

Significant genetic differentiation was detected among rock hyrax colonies across the 

Namaqualand and western Fynbos regions in both the mitochondrial DNA and microsatellites 

(Table 2.1.). The pairwise FST values based on the microsatellite data were generally lower 

than the ΦST values obtained from the mitochondrial DNA. This is readily explained by the 

way in which the values were calculated. Population structure is commonly analysed through 

the use of Wright’s FST with values close to 0 indicating little differentiation (Meirmans, 

2006; Jost, 2008). FST values depend on the amount of within-population variation relative to 

the amount of total between-population variation (Jost, 2008), thus higher levels of genetic 

variation (higher polymorphism) usually lead to more within-population variation and 

consequently lower FST-values (Hedrick, 1999; Meirmans, 2006; Jost, 2008). It should be 

noted that the higher within-population variation in microsatellite markers compared with 

Figure 2.5.  Genetic groupings revealed by the Geneland analysis of the microsatellite data. 

Dots reflect the location of each population and the colours correspond to each seperate genetic 

grouping. 
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lower within-population variation in the mitochondrial markers have somewhat biased 

(lowered) the FST-values compared with the ΦST values. Non-significance in some of the 

pairwise ΦST values (Table 2.1.) may be attributed to gene-flow into and from these localities 

subsequently decreasing the differentiation. 

 

2.4.2. Genetic structure across the Cape Flats 

 

Given reports of the Cape Flats acting as a biogeographic barrier to invertebrate dispersal 

(Daniels et al. 2001; Wishart and Hughes, 2001, 2003; Gouws et al. 2004; Gouws et al. 2010; 

McDonald and Daniels, 2012) an attempt was made to determine whether a similar pattern 

would possibly hold for P. capensis (although considered unlikely given its greater vagility). 

To address this, sampling localities were selected in the Hottentots Holland Mountains and 

Cape Peninsula (Figure 2.1.). No evidence of a geographic break was observed in either the 

genealogical (Figures 2.2. and 2.3.) or clustering analyses (Figure 2.5.).  

 

Several factors other than vagility may have acted to cause this, one being that the separation 

of the Hottentots Holland and Cape Peninsula populations is too recent to result in reciprocal 

monophyly in the hyracoid mitochondrial lineages. The invertebrate taxa all have faster 

mutation rates due to their smaller body size, lower longevity and less effective DNA 

copying and repair mechanisms (Janecka et al. 2012; Leffler et al. 2012). It is to be expected, 

therefore that invertebrates will become reciprocally monophyletic in a shorter time-span 

across the same geographic barrier (in this case the Cape Flats). 

 

Interestingly, in spite of lack of evidence of a geographic break, significant (and high) levels 

of genetic subdivision characterise the hyrax sampling localities in the Hottentots Holland 

Mountains and Cape Peninsula (Table 2.1.) - observations that are consistent with the AIS 

analysis which identified barriers to gene-flow between localities in each of these regions 

(Figure 2.4.). It is hypothesised that this reflects low landscape connectivity since little 

suitable habitat (crevices) is present in the sandstone formations of these areas (Mucina and 

Rutherford, 2006; Chapter 3). This makes movement between colonies problematic, resulting 

in elevated levels of divergence between populations over time. 
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2.4.3. Genetic structure across the Knersvlakte 

 

Two major, well-supported matrilineal clades were evident that essentially comprise 

populations to the north (Namaqualand clade) and south (western Fynbos clade) of the 

Knersvlakte (see TCS, MP, Bayesian and BEAST analyses; Figures 2.2. and 2.3.). This 

finding supports the hypothesis that the Knersvlakte is the major biogeographic barrier (see 

AIS analysis; Figure 2.4.) to saxicolous species. It reflects the scarcity of suitable rock hyrax 

habitat that in turn has impacted on gene-flow across this region.  

 

The lack of concordance with the microsatellite data (Figure 2.5.) can readily be explained 

when viewing these data in a geographic context. The cluster that includes the Springbok and 

Garies localities probably reflects the connected nature of these localities through the 

dispersal route provided by the Kamiesberg mountain range. The populations from the 

margins of the Knersvlakte region (Brand-se-Baai, Nuwerus, Kliprand, Loeriesfontein, 

Nieuwoudt-ville) similarly formed a single genetic cluster rather than reflecting the 

phylogeographic break evidenced by the mitochondrial DNA data. The Knersvlakte 

essentially consists of a large stretch of open habitat bracketed by a mountainous margin 

(escarpment) to the north (Kamiesberg Mountains) and south (Warm Bokkeveld Mountains) 

(Figure 2.1); the southern rim terminates at the Nieuwoudtville sampling site. These margins 

do not converge to the east; rather the escarpment (margins) is cleaved by a ~ 40 kilometre 

swaith of land that has little or no suitable habitat.  

 

Although one may anticipate (based on the mitochondrial DNA data) that gene-flow 

measured by the microsatellites would similarly be impaired across the Knersvlakte, genetic 

exchange does exist between the northern and southern margins of this region. The most 

plausible explanation for these contrasting patterns (mitochondrial DNA versus 

microsatellites) is to invoke male-biased dispersal. The microsatellites thus show the 

movement of males across and around the Knersvlakte, whereas the genetic structure evident 

in the mitochondrial DNA is maintained by the lack of dispersal by the females (Figures 2.2. 

and 2.3.). Importantly, dispersing males carry the mitochondrial DNA of their mothers and 

strong geographic patterning of the mitochondrial DNA would therefore, in theory, point to 

the phylopatry of both males and females. Although strong geographic patterning is found 

across the Knersvlakte in the mitochondrial DNA, no similar patterns are evident along the 

margins of this region - factors pointing to the inability of females to disperse across this 
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barrier although not excluding the contribution of female (and male) movement along the 

margins. Although attempts to investigate population structure using a Y-specific locus 

proved unsuccessful (see Materials and Methods section), male-biased dispersal has been 

recorded in P. capensis using observational experiments (Fourie, 1983) and in P. capensis’ 

close relative, P. johstoni, using mark-recapture experiments (Hoeck, 1982, 1989). Males of 

these species voluntarily disperse as subadults (12 – 30 months) (natal dispersal; Hoeck, 

1982; Fourie, 1983) before and during the mating season, or as adults during the breeding 

season (breeding dispersal; Fourie, 1983) whereas females largely show site phylopatry 

(Hoeck, 1975, 1982; Fourie, 1983; Hoeck, 1989) as they are not under similar pressure (as 

males are) to leave the colony (Hoeck, 1982; Fourie, 1983; Hoeck, 1989; Gerlach and Hoeck, 

2001). These are all important life history traits that impact on the genetic structure of 

Procavia populations.  

 

Among the localities to the south of the Knersvlakte, the Klawer and Donkiesbaai/Elands 

Bay/Ceres areas (Figure 2.1.) clustered separately in the microsatellite survey (Figure 2.5.). 

The AIS analysis (using mitochondrial DNA sequences) also identified barriers between 

these areas (Figure 2.4.). The populations here are surrounded by the large expanses of 

unsuitable habitat that separate them from adjacent areas resulting in terrestrial islands. The 

Donkiesbaai/Elands Bay/Ceres genetic cluster is more complex but may also reflect 

landscape connectivity. For example, Donkiesbaai and Elands Bay are connected through the 

coastal belt that may serve as a dispersal route to hyrax in these regions, although this is 

speculative. These localities are, however, connected to Ceres by the Cederberg mountain 

range which contains ample suitable habitat. Nonetheless, explanations for the dispersal of 

animals (and hence gene-flow) from Elands Bay and Donkiesbaai to the Cederberg 

Mountains are not immediately obvious as both localities are surrounded by large tracts of 

unsuitable habitat to the south-east.  

 

2.4.4. Divergence time between clades 

 

The split between the Namaqualand and western Fynbos (mitochondrial) clades occurred ~ 

8.9 Mya (Figure 2.2.). This coincides with a major marine transgression during the late 

Miocene that began in the middle Miocene and reached its greatest extent (~ 300 metres) in 

the late Miocene/early Pliocene (Siesser and Dingle, 1981). The upper reaches of the 

Knersvlakte today has an elevation of 109 - 153 metres above sea-level (Kounov et al. 2008), 
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and a marine transgression of this magnitude would have inundated this low-lying area thus 

effectively isolating the higher regions to the north and south. It is important to emphasize 

that the correspondence in divergence time and transgression may be purely coincidental.  If 

the Miocene transgression was in large part the driver of the Namaqualand and western 

Fynbos divergence, multiple subsequent regression events (which have been recorded at 

Miocene/Pliocene boundary and in the late Pliocene; Siesser and Dingle, 1981) and the 

resultant pulses of low sea-levels, such as currently experienced, would have facilitated gene-

flow across the Knersvlakte thus reversing differentiation. Such a pattern is, however, not 

found.  A more plausible explanation probably entails gender-biased dispersal coupled to low 

connectivity across this region as the main factors influencing the integrity of the two 

mitochondrial DNA clades. Females appear to exhibit “site phylopatry” (unlike males; Figure 

2.5.), which maintains the integrity of the two mitochondrial lineages.   

 

Different routes of dispersal may also be a causal factor in the divergence between the 

Namaqualand and western Fynbos clades. Sequences from the Karoo specimens that were 

downloaded from Genbank were found to cluster within the western Fynbos clade in both the 

Bayesian and MP analyses (they form a sister assemblage to the Namaqualand/western 

Fynbos P. capensis in the BEAST analysis). This suggests the hyrax comprising the 

Namaqualand clade (specifically females) followed a different colonization route, whereafter 

they were separated from those of the western Fynbos clade by the poor connectivity of the 

Knersvlakte. Divergence due to different dispersal routes have been previously shown for P. 

capensis (see Prinsloo and Robinson, 1992; Prinsloo 1993). 

 

2.4.5. Intraclade paraphyly 

 

Protracted divergence times with low levels of gene-flow are considered to have been 

necessary to produce the reciprocal monophyly observed between the Namaqualand and 

western Fynbos clades. However, weak geographic patterning and paraphyly was observed 

within each phylogroup with few mutational steps characterizing the haplotypes (Figure 2.3.). 

This is surprising given the divergence of the Namaqualand and western Fynbos clades at ~ 

8.9 Mya. This may reflect (i) a low rate of mutation in cytochrome b gene within this 

particular genus or (ii) the relatively short times of geographic isolation between sampling 

localities within each clade. In other words, connectivity between populations has decreased 

in relatively recent times. A conserved rate of mutation is, however, a more plausible 
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explanation. If it is assumed the dating estimates of the present study are accurate for the 

origin of the Hyracoidea (the divergence date in the present study is corroborated by recent 

molecular dating studies and fossil evidence; see Chapter 4), this gives a mutation rate of 

0.003 (between Procavia and Heterohyrax) to 0.004 (between Procavia and Dendrohyrax) 

substitutions per site per million years at the third codon position. This mutation rate is 

indeed lower than reported for other mammals (0.007 - 0.008 substitutions per site per 

million years reported for e.g., Cetaceans; Nabholz et al. 2008; Leffler et al. 2012), thus 

confirming the slow rate of change in the Procavia mitochondrial genome. 

 

2.4.6. Phylogeography of regional rupicolous fauna: a comparative perspective 

 

As with the findings of this study, most other phylogeographic investigations covering the 

region of interest found significant differentiation (FST > 0.5) (Matthee and Flemming, 2002; 

Smit et al. 2007; Daniels et al. 2010) and relatively low sequence divergence estimates 

(below 2%) for vertebrate taxa whose distributions traversed the Knersvlakte (Smit et al. 

2007; Daniels et al. 2010; Appendix C). Various factors have been proposed to explain 

genetic discontinuities across this barrier. These include glacial cycles during the 

Pleistocene/Pliocene, marine transgressions causing vicariant events, climate change resulting 

in refugia, isolation due to limited dispersal, habitat heterogeneity with intervening unsuitable 

habitat between suitable patches, geographic barriers and difference in elevation (Matthee 

and Robinson, 1996; Matthee and Flemming, 2002; Smit et al. 2007; Swart et al. 2009; 

Daniels et al. 2010). The factors influencing the genetic structure of various rock-dwelling 

taxa across the Namaqualand and western Fynbos regions are thus varied and not mutually 

exclusive. Of these the present study shows that habitat heterogeneity (unsuitable habitat 

between suitable habitat patches) and geographic barriers are the major factors influencing 

genetic substructuring between P. capensis populations across the sampled distribution. 

Importantly, however, none of the above studies has empirically tested the effects of 

landscape connectivity as a long-standing phylogeographic barrier to gene-flow across a 

landscape - a notion which is not frequently raised when comparing multiple taxa. The 

development of the Knersvlakte is dated at ~ 18 Mya (Moon and Dardis, 1988) although 

recent studies suggest a much more ancient date (~ 90 Mya; Kounov et al. 2008). Irrespective 

of this wide variance, the region has been an enduring and persistent geographic barrier that 

predates the distribution of all the species for which phylogeographic data are available (P. 

capensis, P. rupestris, A. atra, E. edwardii, H. signatus) and it is reasonable to expect that the 
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low connectivity of this area continues to influence the dispersal of saxicolous taxa through 

recent times. As is evident from the data presented thus far, P. capensis is a good model 

species to examine finer-scale genetic structure linked to the formation of the surrounding 

landscape (referred to as landscape genetics, Storfer et al. 2007) and this will form the 

substance of Chapter 3. 

 

Phylogeographic congruence in co-distributed taxa is commonplace (Bermingham and Avise, 

1986; Avise, 1992; Scribner and Avise, 1993; Avise, 2000; Arbogast and Kenagy, 2001; 

Lapointe and Rissler, 2005; Feldman and Spicer, 2006; Castoe et al. 2009; Tolley et al. 2009) 

suggesting that vicariance and dispersal occurred in concert due to common historical events. 

While the studies of Avise (1992; 2000), Lapointe and Rissler, (2005) and Tolley et al. 

(2009) among others included taxa with different life-histories and ecological requirements, 

similar patterns have been detected between co-distributed but ecologically similar taxa 

(Arbogast and Kenagy, 2001; Feldman and Spicer, 2006; Castoe et al. 2009). The present 

investigation was similarly based on taxonomically diverse yet ecologically similar 

(saxicolous) taxa that coincide in terms of distribution (Chapter 2) and not surprisingly, 

congruent phylogeographic patterns were also found, although the timing of the divergences 

was different.   

 

A review of the literature revealed large differences in divergence time estimates across the 

Knersvlakte (Appendix A). Similarly, major differences were noted in the timing of genetic 

splits between co-distributed taxa worldwide (Zink, 1996; Brunsfeld et al. 2000; Zink, 2002). 

Timing of divergences may be tiered since expansions are not abrupt but periodic (Zink, 

1996; Zink, 2002; Soltis et al. 2006; Yang et al. 2009). Another factor influencing the 

accuracy of molecular dating is that lineage-specific mutation rates are not homogenous 

(Bermingham and Moritz, 1998), something that was assumed in most of the studies included 

in this review. This has largely been solved through the use of new molecular dating 

techniques (Bayesian estimates) and multiple unlinked genetic markers (Bermingham and 

Moritz, 1998).    

 

Zink (1996) proposed that the only prerequisite when comparing phylogeographic patterns is 

that species should be co-distributed. This somewhat narrow view ignores the possibility that 

differences in genetic patterns may also be subject to other factors. These include expansions 

from refugia that vary in space, time and extent due to different life-histories, the effects of 
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several isolating and dispersal events, recent population expansions, population histories, 

ancestral populations sizes, and dispersal capabilities (dispersal rates) of animals, as well as 

the effects of different barriers to gene-flow and mitochondrial DNA rate heterogeneity 

between taxa (Zink, 1996; Bernatchez and Wilson, 1998; Schneider et al. 1998; Brunsfeld et 

al. 2000; Zink, 2002; Arbogast and Kenagy, 2001; Dawson, 2005; Soltis et al. 2006; Wallis 

and Trewick, 2009; Yang et al. 2009). It is clearly evident that including taxa with a diverse 

array of ecological requirements may blur the effects of vicariance simply because different 

species respond differently to certain environmental barriers. Consequently to search for a 

common genetic pattern among a large diversity of taxa may prove problematic and a more 

focused approach that includes only taxa with similar ecological requirements may be more 

informative for comparative phylogeographic inference. Such a study would give a clearer 

and more biologically appropriate pattern since similar landscape features could, potentially, 

act as barriers to gene-flow. While South Africa has a complex climatic and orogenic history, 

this investigation shows that the comparison of ecologically similar species may, in fact, 

result in an improved understanding of the effects of landscape structure as a barrier to gene-

flow. 
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CHAPTER 3 

Connectivity of Procavia capensis colonies at various spatial scales with a 

specific focus on barriers to gene-flow 

 

3.1. Introduction 

 

Landscape connectivity refers to the connectivity of the surrounding matrix, defined by 

Holderegger and Wagner (2008) as “the often hostile space that separates the patches of a 

species’ habitat in a given landscape”. The matrix is a major factor determining the 

movement of animals with specific habitat requirements. Therefore the quality and quantity 

of areas that separate suitable habitat affect the distribution of both adaptive and non-adaptive 

genetic variation (Coulon et al. 2004; Storfer et al. 2007; Holderegger and Wagner, 2008). 

Two types of landscape connectivity are identified to assess the influence of the landscape on 

the movement of species. Gene-flow is an example of functional connectivity, whereas 

structural connectivity relates to how suitable habitat patches are distributed across the 

landscape (Holderegger and Wagner, 2008). These approaches are invaluable (Castella et al. 

2001; Scribner et al. 2001; Hammond et al. 2006; Keogh et al. 2007; Ujvari et al. 2008) since  

assessing the movement of animals through direct observational methods, such as mark-

recapture experiments or radio-telemetry, are often laborious, difficult or not feasible (Goudet 

et al. 2002; Broquet et al. 2006). Moreover these do not, for instance, show long-distance 

gene-flow events (Dallimer et al. 2002; Hammond et al. 2006). Landscape genetics thus 

offers a framework by which one can isolate the influence of landscape variables and their 

impact on genetic variation as well as the identification of barriers to gene flow, source-sink 

dynamics and movement corridors between populations. This informs our understanding of 

the spatial and temporal scales of an ecological process (Storfer et al. 2007).  

 

For species restricted to rocky outcrops, the connectivity of the surrounding landscape should 

have a notable influence on the distribution of genetic diversity across the landscape (see 

Chapter 1 for examples). Put differently, this type of habitat is important in determining the 

connectivity between habitat patches since intervening unsuitable habitat may form a 

significant barrier to dispersal. The rock hyrax, Procavia capensis, is a case in point. 

Although P. capensis is relatively mobile (Chapter 2), there is a cost to dispersal as the 
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dispersal distance is largely constrained by predator density and availability of suitable refuge 

sites (Turner and Watson, 1965; Fairall et al. 1986; Fairall and Hanekom, 1987; Kotler et al. 

1999; Druce et al. 2006). This makes P. capensis a suitable model species to investigate the 

effect of landscape connectivity on the distribution of genetic variation in a rock-dwelling 

vertebrate. 

 

In this chapter both mitochondrial- and nuclear DNA (microsatellite) markers were used in a 

landscape genetics approach to show how habitat connectivity affects the genetic 

distinctiveness of rock hyrax populations at various spatial scales. At a fine scale, the spatial 

genetic structure, gene-flow and sex-bias in migration between five different koppies 

comprising an isolated population were ivestigated (see Figure 3.1. below). To address 

intermediate spatial scales, genetic structure and gene-flow were investigated focussing 

sampling across and around known barriers to other saxicolous species, the Cape Flats and 

Knersvlakte. Although these areas are known geographic barriers to gene-flow, their effects 

on connectivity between populations have never been explicitly investigated. At the largest 

spatial scale it was demonstrated that functional connectivity influences the distribution of 

genetic variation in two regions with contrasting connectivity; Namaqualand and the western 

Fynbos regions. This is also important as convention suggests that there is currently a general 

decline in the rock hyrax numbers at most monitored sites in the Western Cape (western 

Fynbos region) although no similar declines are evident in the north-lying Namaqualand 

region (Chapter 1). Finally, the data was examined for signatures typical of populations 

decline by comparison to hyrax from the Namaqualand region where no similar declines have 

been reported. 

 

3.2. Materials and Methods 

 

3.2.1. Sample collection 

 

Sampling of P. capensis was conducted in a hierarchical fashion across the Namaqualand and 

western Fynbos regions focussing on known geographic barriers (Knersvlakte and Cape 

Flats) (Figure 2.1). Sampling procedures were similar to those outlined in Chapter 2. The 

following sampling schemes were adopted: 
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3.2.1.1. Fine scale 

 

At a fine spatial scale, connectivity among koppies was assessed in the Vredenburg area. The 

Vredenburg study site is a single, isolated population comprising five koppies (Figure 3.1.). 

As relatedness and sex-bias in dispersal was investigated at this locality, the sex and a rough 

estimate of age (adult > 1 year, juvenile < 1 year; following Fourie, 1983) was recorded for 

each of the specimens. 

 

 
 

 

 

3.2.1.2. Intermediate scale 

 

Connectivity at intermediate spatial scales was assessed across and around two geographic 

barriers, the Cape Flats and Knersvlakte. Specimens were collected from four localities 

across the Cape Flats (colonies on the Cape Peninsula and those in the Hottentots Holland 

Mountains). Although five colonies occur along both the Atlantic and False Bay sides of the 

Cape Peninsula only two (Table Mountain on the Atlantic side and Boulders on the False Bay 

side) could be accessed and sampled in this study (Figure 2.1.). In addition, connectivity of 

populations (both around and across the Knersvlakte) was assessed by including eight 

Figure 3.1.  Arial view of the Vredenburg population showing the five different koppies  

where animals were sampled.  

100 m 
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sampling localities from the mountainous margins (rims) of this geographic region (Figure 

3.1.). 

 

3.2.1.3. Regional scale 

 

To address the regional spatial scale component, specimens were collected from sixteen 

localities across the Namaqualand (Springbok, Garies, Brand-se-Baai, Nuwerus, Kliprand, 

Loeriesfontein, Nieuwoudt-ville, Klawer and Donkiesbaai) and western Fynbos (Elands Bay, 

Vredenburg, Ceres, Paardeberg, Table Mountain, Boulders and Bettysbaai) regions (Figure 

2.1.). This permitted the analysis of large-scale connectivity patterns between these regions 

comprising matrices of contrasting connectivity (Figure 3.2.). 
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Figure 3.2.  The Namaqualand landscape consists of multiple close-lying suitable habitat patches (A) with abundant suitable crevices 

(B). In contrast, the western Fynbos landscape contains quantitatively fewer and more dislocated habitat patches (C) with a limited 

number of suitable crevices (arrowed) (D).  
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3.2.2. Experimental procedures 

 

Detailed protocols for both mitochondrial and microsatellites are presented in Chapter 2. 

 

3.2.3. Data analyses 

 

3.2.3.1. Summary statistics and inbreeding  

 

Genetic diversity detected within each sampling locality and summary statistics for the 

mitochondrial DNA analyses (including number of haplotypes and nucleotide () diversity) 

were calculated in Arlequin version 3.5 (Excoffier and Lischer, 2010). Similar measures of 

genetic diversity resulting from the microsatellite analysis were also calculated; these 

included allelic diversity indices (total number of alleles and mean number of alleles per 

locus; FSTAT version 2.9.3.2; Goudet, 2001), observed as well as expected heterozygosities 

(Genalex version 6.4; Peakall and Smouse, 2006). These values were compared between the 

Namaqualand and western Fynbos regions using Statistica version 10 (Statsoft Inc. 2011). 

Inbreeding in each colony was assessed by Wright’s FIS (Genalex version 6.4; Peakall and 

Smouse, 2006). 

 

3.2.3.2. Population analyses 

 

Fluctuations in population size (based on the mitochondrial DNA data) in sampling localities 

in each of the two major clades (Namaqualand and western Fynbos; Chapter 2) were 

investigated. This was done using Fu’s Fs (a statistic that evaluates population equilibrium; 

Fu, 1997) and mismatch distributions (plotting the various haplotypes against their respective 

frequencies) in DnaSP 5.10.01 (Librado and Rozas, 2009). To visualize this variability 

through time, Bayesian skyline plots were constructed in BEAST 1.4 (Drummond et al. 

2007). The programme simulated 10 x 106 generations sampling every 1 000 generations 

(burnin = 1 000). Bottleneck version 1.2.02 (Cornuet and Luikart, 1996) was used to 

investigate whether demographic changes were evident in the history of each sampling 

locality based on the microsatellite data. This programme measures recent effective 

population size changes. A two-phased model of mutation was employed (recommended by 

Luikart et al. 1998 for microsatellite data) and the Wilcoxon sign-rank test value was applied 
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to assess the probability that an excess of heterozygosity existed at a significant number of 

loci in a colony. 

 

The hierarchical spread of variation was assessed using an analysis of molecular variation 

(AMOVA implemented in Arlequin version 3.5; Excoffier and Lischer, 2010) between the 

Hottentots Holland Mountains and Cape Peninsula (Cape Flats), the northern (Brand-se-baai, 

Nuwerus, Kliprand) and southern rim (Loeriesfontein, Nieuwoudt-ville, Klawer, 

Donkiesbaai, Elands Bay) localities, and between the Namaqualand and western Fynbos 

clades (Chapter 2). Isolation-by-distance was evaluated using a Mantel test as employed in 

Arlequin version 3.5 (Excoffier and Lischer, 2010) for the mitochondrial DNA dataset. 

Geographical distances were determined “as the crow flies”; i.e., the shortest and most direct 

route between localities rather than along mountain ranges. A Mantel test (implemented in 

Genalex version 6.4; Peakall and Smouse, 2006) was also applied to estimate isolation-by-

distance in the microsatellite data; geographical distances were calculated by the programme 

based on the coordinates of each sampling point. 

 

The spatial locations of genetic clusters (based on microsatellite data) across the landscape 

were determined by Bayesian assignment implemented in Geneland version 2.0.10 (Guillot et 

al. 2005) using the same settings as those in Chapter 2. Gene-flow among sampling localities 

was estimated in Lamarc version 2.1.6 (Kuhner, 2006). Lamarc involves a Markov chain 

Monte Carlo coalescent genealogy sampling approach to calculate parameters such as 

effective population size, growth rate and immigration rate. The programme was run using 

the Bayesian search strategy under the GTR model for the mitochondrial DNA; 10 initial 

chains were run for 10 000 generations (burnin = 1 000) and 3 final chains of 5 x 106 

generations (burnin = 10 000) completed the analysis. In the case of the microsatellite data, 

the “Brownian” model was selected and 10 initial chains were run for 10 000 generations 

(burnin = 1 000); two final chains of 1 x 106 generations (burnin = 10 000) completed the 

analysis. Statistically significant differences in gene-flow around the Knersvlakte versus 

across this region, as well as between the Namaqualand region versus the western Fynbos 

region, were determined (Statistica version 10, Statsoft Inc. 2011). Gene-flow values based 

on the mitochondrial DNA data were compared to values from the microsatellite data 

(Statistica version 10, Statsoft Inc. 2011) to test for a sex-bias in dispersal. This was done for 

the Namaqualand and western Fynbos regions respectively.  
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Additional analyses of the fine spatial scale microsatellite data from the Vredenburg sampling 

locality were performed. This was done to investigate relatedness and the population 

assignment of specimens within and between colonies. Relatedness was calculated in 

Coancestry version 1.0 (Wang, 2010). This permitted estimates of average relatedness of 

specimens within colonies, between colonies, and between genetic groups, and is thus also a 

measure of inbreeding. Differences between intracolony, intercolony and intergroup 

(Geneland cluster) relatedness were determined in Statistica version 10 (Statsoft Inc. 2011). 

An assignment test was performed to investigate sex-bias in dispersal and whether each 

animal originated from koppies other than the ones at which they were sampled (Genalex 

version 6.4; Peakall and Smouse, 2006). For this test, animals were placed into four groups: 

adult males, adult females, juvenile males and juvenile females. Assignment of specimens 

was done considering each colony as a separate population, and each “Geneland genetic 

cluster” as a separate population. 

 

3.3. Results 

 

3.3.1. Fine scale 

 

The 10 specimens from the Vredenburg locality all had the same mitochondrial DNA 

haplotype (Table 3.2.). No further tests of gene-flow or genetic structure were performed. 

 

Microsatellite data from 77 specimens was derived from five colonies in the Vredenburg 

area. Pairwise FST values between colonies ranged between 0 and 0.117 (Table 3.3.). Genetic 

diversity was significantly partitioned (FST = 0.568; p < 0.001) among colonies in the 

Vredenburg sampling locality. Colonies A and B were not significantly different; not 

surprising given the geographic proximity of the rocky outcrops to each other. All other 

colonies were significantly distinct with the exception of colony E. Although this may 

indicate the regular exchange of individuals, it may also simply reflect the much smaller 

sample size of this colony, and hence weaker statistical resolution.    

 

Isolation-by-distances (r = 0.165; p < 0.01) was evident over the landscape in the Vredenburg 

sampling locality. Geneland retrieved three genetic clusters (Figure 3.3.). Colonies that 

grouped together were geographically adjacent. The highest levels of gene-flow (>10 
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individuals per generation) were observed between Colonies A and B and Colonies D and E 

respectively (Table 3.4.). Gene-flow between different koppies was comparatively low 

ranging from <1 individual per generation, to two individuals per generation. The gene-flow 

(Table 3.4.) results confirm that each genetic cluster (Figure 3.3.) may be regarded as a 

breeding colony.  In the assignment test of population membership, dispersal among these 

three clusters (breeding colonies) was female-biased (40% of adult females assigned to 

different koppies from where they were sampled compared to 15% in males) in the case of 

adult animals; no sex-bias was evident for dispersing juveniles. In addition, intracolony and 

intragroup relatedness was significantly higher than intercolony relatedness when juveniles 

were included (Table 3.1; a.), however when only adult animals were tested, no similar 

patterns were evident for male, female or all adult animals overall (Table 3.1; b.). By 

including only juvenile animals, relatedness was again shown to be higher within colonies 

(Table 3.1; c.).  
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Label Variable Mean ± S.D Null hypothesis Test value df p-value 

 
Relatedness (juveniles included) 

 
a.) Intracolony relatedness 0.372 ± 0.026 Intracolony and intragroup 

relatedness do not differ 
significantly from inter-
colony relatedness 

3.957 (T-test) 13 < 0.01 
  Intercolony relatedness 0.297 ± 0.050      
  Intragroup relatedness 0.398 ± 0.035      

 

Relatedness (juveniles excluded) 

 
b.) Male relatedness 0.083 ± 0.058 Intracolony and intragroup 

relatedness do not differ 
significantly from inter-
colony relatedness 

-0.15 8 > 0.05 
0.147 ± 0.066 
0.153 ± 0.090 

  Female relatedness 0.155 ± 0.052 Intracolony and intragroup 
relatedness do not differ 
significantly from inter-
colony relatedness 

0.373 (T-test) 13 > 0.05 
0.152 ± 0.065 
0.158 ± 0.043 

  All adults relatedness 0.164 ± 0.040 Intracolony and intragroup 
relatedness do not differ 
significantly from inter-
colony relatedness 

0.932 (T-test) 13 > 0.05 
0.156 ± 0.056 
0.171 ± 0.039 

 
Relatedness (juveniles only) 

  
c.) Intracolony relatedness 0.194 ± 0.045  Intracolony does not differ 

significantly from inter-
colony relatedness 

10.000 
(Mann-
Whitney U) 

13 < 0.05 

  Intercolony relatedness 0.148 ± 0.051     
  

Nucleotide diversity (mitochondrial DNA) 

  
d.) Namaqualand 0.005 ± 0.004 Nucleotide diversity does 

not significantly differ 
between the Namaqualand 
and western Fynbos regions 

2.093 (T-test) 14 > 0.05 
  western Fynbos 0.002 ± 0.002     

 
 

 

 

 

 

Table 3.1. Statistical tests of the hypotheses formulated to examine relatedness in the Vredenburg 

rock hyrax population, genetic diversity (including nucleotide diversity, haplotype diversity, 

microsatellite genetic diversity and expected heterozygosity) and gene-flow (around and across the 

Knersvlakte, within the Namaqualand and western fynbos region and between the mitochondrial 

DNA and microstallite datasets within each of these regions).  The labels (a - l) refer to the specific 

hypothesis investigated (see text). For each variable the mean, the null hypothesis investigated, the 

test value, degrees of freedom and the p-value of the appropriate statistical test are presented. 

Values in red indicate non-significance. 
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Number of haplotypes (mitochondrial DNA) 

  
e.) Namaqualand 5.444 ± 2.007  The number of haplotypes 

does not significantly differ 
between the Namaqualand 
and western Fynbos regions 

2.358 (T-test) 14 < 0.05 
  western Fynbos 3.286 ± 2.059      

  
Genetic diversity (microsatellites) 

  
f.) Namaqualand 27.222 ± 3.073 Genetic diversity does not 

significantly differ between 
the Namaqualand and 
western Fynbos regions 

4.199 (T-test) 14 > 0.001 
  western Fynbos 16.714 ± 5.345      

  
Expected heterozygosity (microsatellites) 

  
g.) Namaqualand 0.798 ± 0.020  Expected heterozygosity 

does not significantly differ 
between the Namaqualand 
and western Fynbos regions 

2.816 (T-test) 14 < 0.05 
  western Fynbos 0.643 ± 0.130      

  
Gene-flow (Knersvlakte) 

  
h.) Around 1.196 ± 0.876 Gene-flow around the 

Knersvlakte does not differ 
significantly from gene-flow 
across this region 

2.247 (T-test) 12 < 0.05 
  Across 0.430 ± 0.212      

  
Gene-flow (regional scale) 

  
  Mitochondrial DNA       
i.) Namaqualand 0.290 ± 0.231 Gene-flow levels do not 

significantly differ between 
the Namaqualand and 
western Fynbos regions 

2.918 (T-test) 20 < 0.01 
  western Fynbos 0.117 ± 0.069      

  Microsatellites       
j.) Namaqualand 0.873 ± 0.432   Gene-flow levels do not 

significantly differ between 
the Namaqualand and 
western Fynbos regions 

3.084 (T-test) 20 < 0.01 
  western Fynbos 0.378 ± 0.137      

 
Gene-flow (regional scale) 

 
  Namaqualand       
k.) Mitochondrial DNA 0.290 ± 0.231 Gene-flow levels do not 

significantly differ between 
the mitochondrial DNA and 
microsatellite datasets 

-5.379 36 < 0.001 
  Microsatellites 0.873 ± 0.432      

  western Fynbos       
l.) Mitochondrial DNA 0.117 ± 0.069  Gene-flow levels do not 

significantly differ between 
the mitochondrial DNA and 
microsatellite datasets 
  

-5.442 18 < 0.001 
  Microsatellites 0.378 ± 0.137       
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Locality n Nucleotide 
diversity () 

No. 
Haplotypes  n Total No. 

Alleles 
Expected 

Heterozygosity FIS 

Springbok 10 0.003 ± 0.002 6 21 28 0.703 ± 0.126 0.144 
Garies 10 0.003 ± 0.002 6 30 31 0.679 ± 0.129 0.138 

Brand-se-Baai 10 0.000 ± 0.000 3 29 26 0.669 ± 0.117 0.036 
Nuwerus 10 0.004 ± 0.002 7 26 31 0.663 ± 0.140 0.157 
Kliprand 10 0.008 ± 0.004 6 21 27 0.684 ± 0.104 0.054 

Loeriesfontein 10 0.000 ± 0.000 2 11 21 0.740 ± 0.041 0.125 
Nieuwoudt-ville 10 0.010 ± 0.006 4 21 26 0.661 ± 0.140 0.123 

Klawer 10 0.011 ± 0.006 7 15 26 0.676 ± 0.089 0.186 
Donkiesbaai 10 0.008 ± 0.005 8 21 29 0.743 ± 0.075 0.121 
Elands Bay 10 0.004 ± 0.003 5 25 19 0.545 ± 0.096 0.098 
Vredenburg 10 0.000 ± 0.000 1 77 16 0.617 ± 0.057 0.250 

Ceres 10 0.002 ± 0.001 6 22 25 0.715 ± 0.079 0.258 
Paardeberg 10 0.000 ± 0.000 2 18 16 0.574 ± 0.043 0.110 

Table Mountain 10 0.000 ± 0.000 1 22 16 0.591 ± 0.108 0.100 
Boulders 10 0.001 ± 0.001 3 12 7 0.233 ± 0.145 -0.122 

Bettysbaai 10 0.006 ± 0.003 5 25 18 0.657 ± 0.044 0.202 
Total 160 0.004 ± 0.002 72 396 60 0.634 ± 0.027 0.098 

 

 

 

 

 

 

 

 

 

 

Mitochondrial DNA 

 

Microsatellites 

Table 3.2.  Genetic diversity values for the mitochondrial DNA and microsatellites of the P. 

capensis populations sampled across the South African west coast region. In the case of 

mitochondrial DNA, the number of specimens (n), nucleotide diversity () and number of 

haplotypes in each population is presented, whereas the number of specimens (n), total number of 

alleles, expected heterozygosity within each population and the inbreeding coefficient (FIS) of each 

population is shown for the microsatellite data. Localities in the vicinity of the Knersvlakte (red 

block) and Cape Flats (blue block) are indicated. 
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Colony Microsatellites Microsatellites 

  -----> <-----  
A-B  12.384 + 0.569 - 5.283      10.096 + 3.171 - 0.693  
A-C 0.756 + 0.329 - 0.525 0.278 + 0.267 - 0.228 
B-C 1.180 + 1.169 - 0.368 2.028 + 0.606 - 0.394 
C-D 1.019 + 0.209 - 0.483 0.393 + 0.897 - 0.056 
C-E 1.122 + 0.864 - 0.795 0.890 + 0.755 - 0.469 
D-E 2.097 + 1.624 - 1.063 19.126 + 0.684 - 19.051 
A-D 0.018 + 0.003 - 0.007 1.191 + 0.213  - 0.105 
B-D 1.521 + 0.561 - 0.219 0.706 + 0.304 - 0.119 
A-E 2.324 + 0.401 - 0.641 0.955 + 0.067  - 0.169 
B-E 0.745 + 0.244 - 0.523 0.176 + 0.091 - 0.115 

 

 Colony A B C D E 
A /     

B 0.029  /    

C 0.079 0.071 /   

D 0.086 0.117 0.038 /  

E 0.034  0.044  -0.034  -0.022  / 

Table 3.4.  Gene-flow between the five colonies in the Vredenburg 

P. capensis population based on the microsatellites data. Values in 

red are gene-flow levels >1 individual per generation (standard 

error included). 

Table 3.3. Pairwise FST values between the five 

colonies in the Vredenburg P. capensis population 

based on the microsatellites data. Values in black were 

significant at p < 0.05; those in red were non-

significant. 
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3.3.2. Intermediate scale 

 

3.3.2.1. Cape Flats 

 

Cytochrome b sequence (n = 40 specimens) and microsatellite data (n = 77 specimens) were 

obtained from animals collected in the Cape Peninsula and Hottentots Holland Mountains 

(Paardeberg, Table Mountain, Boulders and Bettysbaai).  Variation was significantly 

partitioned between the two groups (Hottentots Holland Mountains and Cape Peninsula) 

across the Cape Flats for both the mitochondrial DNA (FST = 0.434; p < 0.001) and 

microsatellites (FST = 0.148; p < 0.001). Gene-flow between all sampling localities was <1 

individual per generation for both data sets (Table 3.5.). The Geneland analysis retrieved four 

genetic clusters over the Cape landscape corresponding to the sampling areas (Paardeberg, 

Bettysbaai, Table Mountain and Boulders; Figure 3.4.). 

 

Figure 3.3.  The three genetic groupings detected over the landscape in the Vredenburg population 

using microsatellites analysed by Geneland. Dots represent the location of each colony. 
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3.3.2.2. Knersvlakte 

 

Cytochrome b (n = 80 specimens) and microsatellite data (n = 169 specimens) were drawn 

from localities across the Knersvlakte. Genetic diversity was significantly partitioned 

between P. capensis sampling localities on the northern and southern rims of the Knersvlakte 

in both the mitochondrial DNA (FST = 0.563; p < 0.001) and microsatellites (FST = 0.239; p < 

0.001). Evidence of gene-flow (>1 individual per generation) was apparent around and across 

the Knersvlakte (Table 3.5.). Genetic exchange around the Knersvlakte was significantly 

higher (Table 3.1; h.) than across this region in the case of mitochondrial DNA. No similar 

significant pattern was evident from the microsatellites. The Geneland analysis retrieved 

three genetic clusters over the Knersvlakte landscape (Figure 3.5.). These pertain to the 

northern rim of the Knerslakte (but including two localities on the south rim - Loeriesfontein 

and Nieuwoudt-ville), the Klawer area, and the coastal localities of Donkiesbaai and Elands 

Bay respectively.  

Figure 3.4.  Genetic groups detected in the microsatellite data by Geneland analysis on 

an intermediate spatial scale across the Cape Flats. Dots represent the locations of each 

of the four sampling localities. 
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3.3.3. Regional scale 

 

Overall 160 specimens were sequenced for the cytochrome b gene (characterized by 72 

haplotypes i.e., genetically unique sequences) whereas microsatellite data were obtained for 

396 P. capensis specimens sampled from populations across the Namaqualand and western 

Fynbos regions. Less than 4% of the microsatellite dataset comprised missing data. No 

linkage was detected between loci across the sampled distribution. Although null alleles were 

not detected, the Hy-T12 locus had more than 50% of its alleles in the same size class. This 

precluded a binomial test for null alleles at this locus. All sampling localities, with exception 

of the Vredenburg sampling locality, fulfilled the requirements of Hardy Weinberg 

Equilibrium. In total 60 alleles were detected at the four loci (Table 3.2.). Allele diversity 

ranged between 1 (monomorphic) to 12 alleles. 

 

Figure 3.5.  Genetic groups detected in the microsatellites at an intermediate 

spatial scale across the Knersvlakte landscape by Geneland analysis. Dots 

represent the locations of each of the sampling localities. 
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Nucleotide diversity did not differ significantly (Table 3.1; d.) between the Namaqualand and 

western Fynbos regions; however, sampling localities in the western Fynbos region contained 

significantly fewer (Table 3.1; e.) haplotypes compared to those of Namaqualand (Table 

3.2.). In the microsatellite data, significantly lower genetic diversity (Table 3.1; f.) and 

expected heterozygosity (Table 3.1; g.) was evident in the western Fynbos region compared 

to the Namaqualand region (Table 3.2.). Inbreeding was evident between colonies across the 

sampled distribution (average FIS = 0.098; P < 0.01; Table 3.2.). 

 

The partitioning of variance was maximized when the sampling localities were grouped into 

the two clades detected previously (i.e., Namaqualand and western Fynbos clades; Chapter 

2). This held for both the mitochondrial DNA (FST = 0.600; p < 0.001) (21.31% of the 

variation among sampling localities and 18.71% within sampling localities) and 

microsatellites (FST = 0.160; p < 0.001) (5.68% of the variation among sampling localities 

and 94.32% of the variation within sampling localities). Isolation-by-distance was evident 

over the sampled distribution in both the mitochondrial DNA (r = 0.434; p < 0.001) and 

microsatellite data sets (r = 0.208; p = 0.001). Overall gene-flow levels between sampling 

localities were low (from <1 individual to 3 individuals per generation; Table 3.5.); these 

were, however, significantly higher between localities in the Namaqualand region relative to 

the western Fynbos region (Table 3.1; i.; j.). In addition, gene-flow estimates based on the 

microsatellites were significantly higher than for the mitochondrial DNA in both the 

Namaqualand (Table 3.1; k.) and western Fynbos (Table 3.1; l.) regions. The Geneland 

analysis retrieved seven genetic clusters over the landscape (see Chapter 2 discussion). 
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Locality Locality mtDNA mtDNA Microsatellites Microsatellites 

  -----> <----- -----> <----- 
Springbok Garies 0.036 + 0.599 - 0.036 0.027 + 0.344 - 0.027 1.237 + 0.231 - 0.237 2.033 + 0.265 - 0.067 

Garies Brand-se-Baai 0.000 + 0.282 - 0.000 0.019 + 0.362 - 0.019 0.276 + 0.037 - 0.037 1.707 + 0.006 - 0.002 
Nuwerus Springbok 0.502 + 1.126 - 0.502 0.374 + 0.969 - 0.373 2.650 + 0.130 - 1.245 0.552 + 0.487 - 0.051 
Garies Nuwerus 0.000 + 0.683 - 0.000 0.124 + 1.935 - 0.124 0.695 + 0.032 - 0.062 1.379 + 0.003 - 0.403 

Kliprand Garies 0.276 + 0.656 - 0.267 1.046 + 1.688 - 1.007 0.424 + 0.188 - 0.028 0.766 + 0.003 - 0.001 
Brand-se-Baai Nuwerus 0.083 + 0.774 - 0.083 0.039 + 0.265 - 0.039 1.365 + 0.057 - 0.045 0.134 + 0.006 - 0.009 

Nuwerus Kliprand 0.840 + 0.699 - 0.822 0.731 + 1.183 - 0.557 0.664 + 0.002 - 0.001 1.042 + 0.003 - 0.136 
Kliprand Loeriesfontein 0.001 + 0.049 - 0.001 0.000 + 0.599 - 0.000 0.420 + 0.001 - 0.001 0.551 + 0.235 - 0.035 

Loeriesfontein Nieuwoudt-ville 0.116 + 0.683 - 0.116 0.016 + 0.187 - 0.016 1.899 + 0.066 - 0.836 1.551 + 0.107 - 0.738 
Nieuwoudt-ville Klawer 0.394 + 0.805 - 0.394 0.367 + 0.312 - 0.364 1.192 + 0.032 - 0.116 1.023 + 0.047 - 0.180 

Klawer Donkiesbaai 0.941 + 2.145 - 0.941 0.116 + 2.378 - 0.116 0.318 + 0.006 - 0.000 0.328 + 0.028 - 0.262 
Donkiesbaai Elands Bay 0.493 + 0.149 - 0.276 1.147 + 1.225 - 0.999 0.121 + 0.097 - 0.017 0.394 + 0.083 - 0.243 

Loeriesfontein Nuwerus 0.000 + 0.257 - 0.000 0.000 + 0.115 - 0.000 0.345 + 0.067 - 0.017 0.753 + 0.071 - 0.162 
Nieuwoudt-ville Nuwerus 0.131 + 1.146 - 0.131 0.113 + 0.150 - 0.113 0.631 + 0.076 - 0.037 1.052 + 0.005 - 0.717 

Klawer Nuwerus 0.001 + 0.237 - 0.001 0.026 + 0.591 - 0.026 0.872 + 0.068 - 0.017 0.975 + 0.115 - 0.166 
Donkiesbaai Nuwerus 0.002 + 0.290 - 0.002 0.002 + 0.328 - 0.002 0.475 + 0.230 - 0.001 0.456 + 0.001 - 0.001 

Nieuwoudt-ville Kliprand 0.021 + 0.485 - 0.021 0.006 + 0.068 - 0.006 0.965 + 0.193 - 0.270 0.889 + 0.036 - 0.566 
Brand-se-Baai Donkiesbaai 0.001 + 0.462 - 0.001 0.003 + 0.248 - 0.003 1.856 + 0.115 - 0.573 0.289 + 0.025 - 0.010 

Klawer Elands Bay 0.338 + 0.409 - 0.333 0.448 + 0.140 - 0.438 0.521 + 0.014 - 0.282 0.367 + 0.110 - 0.094 
Vredenburg Donkiesbaai 0.002 + 0.673 - 0.002 0.000 + 0.147 - 0.000 0.781 + 0.003 - 0.105 0.314 + 0.010 - 0.042 
Elands Bay Vredenburg 0.000 + 0.086 - 0.000 0.000 + 0.135 - 0.000 0.649 + 0.140 - 0.603 0.450 + 0.175 - 0.015 

Ceres Elands Bay 0.145 + 0.548 - 0.144 0.525 + 0.769 - 0.524 0.301 + 0.095 - 0.053 0.492 + 0.002 - 0.001 
Vredenburg Ceres 0.028 + 0.610 - 0.028 0.000 + 0.099 - 0.000 0.265 + 0.001 - 0.000 0.135 + 0.037 - 0.046 

Ceres Klawer 0.199 + 0.317 - 0.199 0.261 + 0.496 - 0.259 0.361 + 0.033 - 0.007 0.260 + 0.003 - 0.003 

Table 3.5.  Gene-flow between the 16 P. capensis populations sampled in the South African west coast region. Calculations are 

based on both mitochondrial DNA (cytochrome b) and microsatellite data. Gene-flow across three different areas, the 

Knersvlakte (red block) (around and across), the Cape Flats (blue block) and the Cape Peninsula (green block) are indicated. 

Values in red are gene-flow levels >1 individual per generation (standard error included).  
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Table Mountain Vredenburg 0.001 + 0.100 - 0.001 0.001 + 0.055 - 0.000 0.251 + 0.009 - 0.008 0.293 + 0.136 - 0.016 
Ceres Paardeberg 0.000 + 0.172 - 0.000 0.009 + 0.454 - 0.009 0.390 + 0.051 - 0.000 0.369 + 0.001 - 0.000 

Paardeberg Table Mountain 0.007 + 0.101 - 0.007 0.001 + 0.433 - 0.001 0.214 + 0.020 - 0.007 0.645 + 0.181 - 0.039 
Boulders Bettysbaai 0.065 + 0.688 - 0.065 0.012 + 0.475 - 0.012 0.473 + 0.042 - 0.217 0.563 + 0.007 - 0.005 

Table Mountain Boulders 0.106 + 0.031 - 0.106 0.014 + 0.606 - 0.014 0.202 + 0.018 - 0.007 0.156 + 0.062 - 0.061 
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3.3.3.1. Changes in population size 

 

The Namaqualand clade showed a population expansion as evidenced by its highly negative and 

significant test value (Fu’s F = -12.297, p < 0.05). No similar findings were evident in the 

western Fynbos clade. These results were supported by the mismatch distributions and Bayesian 

skyline plot analyses (Figure 3.6.). Additionally, no evidence of a population bottleneck was 

reflected in the history of any of the sampling localities. 

 

 

 

 

3.4. Discussion 

 

3.4.1. Genetic structure at a fine spatial scale 

 

Significant genetic structure was evident between P. capensis colonies on a fine spatial scale 

(Table 3.3.). Data on fine-scale genetic structure within populations are comparatively scarce 

Figure 3.6. Bayesian skyline plot showing changes to population size over time in the 

Namaqualand clade. 
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(Aars and Ims, 1999; Vos et al. 2001; Arnaud, 2003; Holzhauer et al. 2006; Sander et al. 2006; 

Cabe et al. 2007; Pérez-Espona et al. 2008) and especially so for smaller mammals (but see 

Coltmann et al. 2003; Schweizer et al. 2007). The subjective nature of defining the spatial scale 

of an investigation as “fine” (these have varied from 50 metres to 14 kilometres - Coltmann et al. 

2003; Brouat et al. 2003) has, to some extent, compromised direct comparisons with the results 

of the present study (spatial scale of 210m - 850m). Those with the closest spatial sampling 

regimes to that of the hyrax reported here are the Soay sheep (Ovis aries; > 50m; Coltmann et al. 

2003), and the common vole (Microtus arvalis; 330m - 2560m; Schweizer et al. 2007) which 

yielded FST values of 0.003 - 0.010 in the case of the former and 0.013 - 0.054 for the latter. 

Consequently the finding in the present study of significant levels of differentiation (0.038 - 

0.117; Table 3.3.) between colonies of rock hyrax is striking. 

 

Three genetic groups (clusters) were evident over the landscape (Colonies A/B, colony C and 

colonies D/E; Figure 3.3.) that correspond to geographic positions of the different koppies. In 

line with this, gene-flow within the three Geneland groups (clusters) was higher than between 

them (see for instance genetic exchange between colonies A and B; Table 3.4.). Gene-flow 

between Colonies D and E (separated by 500 metres of open farmland) was also high, but biased. 

More animals are dispersing to Colony E from Colony D than vice versa (this was also 

confirmed by the assignment analysis where all of the animals from Colony E assigned to 

Colony D). Colony D is thus a source “population” and Colony E a sink as it consists of a large 

rock with only two crevices, thus representing marginal habitat. The large number of hyraxes in 

the area (up to 50 animals per colony were observed; personal observation) increases 

competition for food and shelter which results in assymetrical gene-flow from larger to smaller 

colonies (as reviewed by Palstra et al. 2007). Although significant isolation-by-distance was 

evident at a fine scale, the koppies are relatively near one another (5 koppies; 210m - 850m 

apart) and dispersal will therefore incur minimal predation costs (Turner and Watson, 1965; 

Fairall et al. 1986; Kotler et al. 1999; Druce et al. 2006). 

 

Intragroup relatedness of the three Geneland groups was significantly higher than intergroup 

relatedness (Appendix F), a result biased by the inclusion of juveniles. Juvenile animals are 

probably mostly the offspring of a territorial male (peripheral males seldom mate; Fourie, 1983), 
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and sampling was done during the breeding season before natal dispersal - a factor which would 

have increased the intracolony relatedness. A parentage analysis would have confirmed whether 

juveniles are mostly fathered by a single male; however such analysis could not be performed as 

the relatively low genetic diversity in the microsatellites rendered the assignment of parents 

ambiguous. With juvenile animals excluded, no significant difference in the relatedness of adult 

male and female animals was observed between groups. Although we could provide no evidence 

of colony stability based on relatedness (kin selection), sex-biased dispersal was evident within 

the Vredenburg population. This would also structure the distribution of genetic variation since 

one sex remains largely philopatric (see e.g., Avise, 1994).  

 

Sex-bias is most likely a result of the social structure of the rock hyrax in addition to the high 

hyrax population density at this sampling locality, a situation that would deter the random 

immigration of animals (Barocas et al. 2011) and in this case, specifically males. Due to social 

hierarchy (Chapter 1) females receive less resistance when moving between colonies at a fine 

spatial scale (female dispersal occurs between neighbouring colonies at <500 metres; Fourie, 

1983). At higher densities, however, males would confront resistance when dispersing due to 

aggressive exclusion by other males (and will thus remain in their natal group area; Hoeck, 1982; 

Fourie, 1983). Female biased dispersal is not frequently encountered although it has been 

detected in pikas (Ochotona princeps; Smith, 1974), African wild dogs (Lycaon pictus; Frame 

and Frame, 1976), chimpanzees (Pan troglodytes; Sugiyama, 1973), mountain gorillas (Gorilla 

gorilla; Harcourt et al. 1976), the hamadryas baboon (Papio hamadrys; Hammond et al. 2006) 

and in the white-lined bat (Saccoteryx bilineata; Bradbury and Vehrencamp, 1976). In these 

social systems males acquire and defend resources (as reviewed by Handley and Perrin, 2007). It 

is not clear how long a territorial male hyrax holds tenure in a colony, however, they are long-

lived (Hoeck, 1989) and probably remain in a dominant position for several generations. As a 

consequence, daughters may disperse at sexual maturity to prevent mating (inbreeding) with 

their father (Handley and Perrin, 2007). As females are not constrained by hierarchy (Fourie, 

1983), they are accepted into nearby colonies and this short-distance dispersal is sufficient to 

prevent inbreeding and kin competition. The social system and population structure of the rock 

hyrax thus seem to be the main factors influencing genetic differentiation between colonies at a 

fine spatial scale.  
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Clearly, it would appear that behavioural attributes rather than landscape features shape fine-

scale genetic patterns in highly mobile species (Carlsson et al. 1999; Coltmann et al. 2003; 

Schweizer et al. 2007), in contrast to geographical (Carlsson et al. 1999; Brouat et al. 2003; 

Lampert et al. 2003; Pampoulie et al. 2004; Cabe et al. 2007) and anthropogenic features (Vos et 

al. 2001; Arnaud, 2003; Holzhauer et al. 2006) which act as major barriers to poorly dispersing 

taxa. Both the Soay sheep and common vole have polygynous/promiscuous social systems 

similar to the rock hyrax (Coltmann et al. 2003; Schweizer et al. 2007; Chapter 3). As 

behavioural attributes including dispersal are closely linked to the social system of a particular 

species (Schweizer et al. 2007), it is no surprise that the behaviour of the rock hyrax significantly 

structures the distribution of genetic variation at a fine spatial scale between colonies only a few 

hundred metres apart. Usually a social system such as this leads to sex-biased dispersal 

(Greenwood, 1980; Dobson, 1982; Handley and Perrin, 2007). 

 

3.4.2. Genetic structure at intermediate and regional spatial scales  

 

Given genetic structure at a scale of a few hundred metres (previous section), it is no surprise 

that a structured genetic pattern was evident between rock hyrax colonies at larger (intermediate 

and regional) spatial scales. At an intermediate spatial scale (within and between the Hottentots 

Holland Mountains and Cape Peninsula) each sampling locality formed a distinct genetic group 

in the clustering analyses (Figure 3.4.). Similarly, significant genetic differentiation was detected 

across the Knersvlakte in both the data sets, although it was more pronounced on the southern 

side of this region (Figure 3.5.). In summary, landscape connectivity appears to have a 

significant role in influencing genetic patterns and this forms the substance of the following 

section. 

 

3.4.3. Landscape connectivity  

 

Regionally, gene-flow in Namaqualand was significantly higher compared to the western Fynbos 

region in both the data sets reflecting differences in the connectivity of these areas. The western 

Fynbos region has quantitatively fewer suitable habitat patches (rocky outcrops) between 
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sampled areas compared to Namaqualand which comprises a matrix of abundant rocky outcrops 

connected to mountainous areas (Kamiesberg Mountains, Warm Bokkeveld Mountains and 

Cederberg Mountains) (Figure 3.2.). In addition, the granitic mountains and koppies of the 

Namaqualand region are characterized by suitable crevices, whereas the sandstone Cape Fold 

Mountains offers little in the way of similar suitable habitat (Figure 3.2.). As a result, movement 

of hyrax is facilitated in the aggregated Namaqualand landscape, a situation not found in the 

fragmented western Fynbos region. Consequently, rock hyrax occur in “terrestrial islands” that 

are more pronounced in the western Fynbos region. In this system, populations are relatively 

isolated from one another (impaired genetic exchange), hence within-population variability is 

diminished (due to inbreeding under breeding isolation) and between-population variability 

exaggerated. This has been demonstrated for various taxa (Selander, 1970; Avise et al. 1975; 

Ashley and Wills, 1987; Gerlach and Hoeck, 2001).  

 

Given that habitat quantity (connectivity) and quality affect dispersal (Coulon et al. 2004; 

Neville et al. 2006; Pérez-Espona et al. 2008; Spear et al. 2005; Smit et al. 2010; Spear et al. 

2010), open areas devoid of suitable habitat such as the Knersvlakte and Cape Flats are expected 

to impair gene-flow. Although the Cape Flats does not constitute a barrier to gene-flow in P. 

capensis (Chapter 2), the pronounced genetic differentiation across the surrounding Hottentots 

Holland Mountains and Cape Peninsula regions is puzzling. The low connectivity within and 

between (across the Cape Flats) the Hottentots Holland Mountains and Cape Peninsula must 

therefore impede gene-flow between hyrax colonies, resulting in breeding isolation.  

 

Genetic exchange across and around the Knersvlakte was more complex. Some gene-flow (>1 

individual per generation) was evident from the analysis of populations around and across this 

region, although genetic exchange around the Knersvlakte was significantly higher than across it 

(in the mitochondrial DNA but not the microsatellites). Dispersal around the Knersvlakte may 

occur around the margins of this region which are mountainous (Kamiesberg- and Warm 

Bokkeveld Mountains) and have abundant suitable habitat. Dispersal across the Knersvlakte is, 

however, less obvious since this large arid plain (40 - 100 kilometres in breadth) contains no 

suitable habitat. Although Hoeck (1989) postulated that hyrax dispersal to koppies 15 kilometres 

apart was unlikely, rock hyraxes have been observed to cross large distances. For example, in the 
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Steytlerville area a hyrax was found to occupy a springhare burrow >40 kilometres from the 

nearest rocky habitat suggesting that they are able to utilize a large variety of cover types 

(Kingdon, 1971; Olds and Shoshani, 1982; Rubsamen et al. 1982).   

 

The presence of a genetic break at the Knersvlakte suggested by the mitochondrial DNA 

indicates that while it serves as a semipermeable barrier to gene-flow, the levels of gene-flow are 

insufficient to reverse the genetic differentiation in the mitochondrial DNA over time. Indeed, 

differentiation between subpopulations been reported even if the gene-flow is >1 individual per 

generation (Jost, 2008). Given that the microsatellites show evidence of gene-flow (reflecting 

both male and female dispersal) but mitochondrial DNA does not, this would suggest that 

females are less inclined to cross this barrier (Knersvlakte) compared to males. Female site 

phylopatry (although not complete site fidelity) also influences genetic structure in highly mobile 

species such as the green turtle (Chelonia mydas) in the Indian-Pacific and Atlantic-

Mediterranean Oceans (Meylan et al. 1990; Bowen et al. 1992), Atlantic salmon (Salmo salar) 

from North America and Europe (Bermingham et al. 1991; Davidson et al. 1989), seaside 

sparrow (Ammodramus maritimus), and the Canada goose (Branta Canadensis; Avise and 

Nelson, 1989; Van Wagner and Baker, 1990; Zink, 1991). 

 

Males thus mediate the spread of genetic diversity (nuclear DNA) at larger (intermediate and 

regional) spatial scales (also see Chapter 2). We thus propose the following scenario: Male rock 

hyraxes that disperse across relatively large distances probably establish as peripheral males near 

colonies where they constantly try to replace the territorial male (Fourie, 1983). After the 

territorial male dies or when its condition deteriorates to such an extent that it is unable to defend 

its territory, it is replaced by the peripheral male (also see Fourie, 1983; Hoeck, 1989). In 

addition, inbreeding is evident in rock hyrax populations, especially in isolated areas (also see 

Gerlach and Hoeck, 2001).  Consequently dispersal will be a major driving force to prevent 

inbreeding depression. In terms of mate choice, the findings of the present study are in 

agreement with data on other species (Lehmann and Perrin, 2003) since the rock hyrax displays 

inbreeding above the threshold value and consequently the dispersal of males is favoured. Sexual 

selection is clearly an influencing factor in driving sex-biased dispersal in the rock hyrax. 
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3.4.4. Genetic diversity 

 

The most genetically diverse hyrax colonies were found in the Namaqualand region - an 

observation underscored by both the data sets. Genetic diversity in the western Fynbos region 

was, by comparison, lower. Importantly, we could provide no statistical evidence of past 

bottlenecks at any of the sampling localities (and in this respect the results of the present study 

mirror those of Gerlach and Hoeck, 2001 for hyrax populations in the Serengeti); all colonies 

were at equilibrium (i.e., not expanding or contracting). 

 

The amount of genetic diversity within populations (under a constant population size) thus 

appears to be linked to the connectivity of the surrounding matrix. Consequently, in fragmented 

areas (such as the western Fynbos region), few animals successfully migrate and this may result 

in limited genetic diversity being represented in the founding population. Moreover, little new 

genetic diversity is accumulated over time since gene-flow with surrounding areas is low; 

populations consequently persist under conditions of breeding isolation. In the Namaqualand 

area, on the other hand, the aggregated landscape facilitates greater dispersal success and hence 

higher levels of gene-flow that in turn results in higher genetic diversity. 

 

These findings show a link between landscape connectivity and genetic diversity in the western 

Fynbos region where sampling included geographically isolated localities as well as localities 

connected to mountain ranges. Genetic patterns suggesting small founder populations (although 

we could provide no empirical evidence of founder effects) were detected in the poorly 

connected localities of Vredenburg, the Cape Peninsula and Hottentots Holland Mountains 

(Paardeberg). Even though animals were sampled from multiple colonies at each locality, low 

genetic diversity was evident in both the mitochondrial DNA (Vredenburg, Table Mountain and 

Paardeberg) and microsatellites (Boulders) indicating the possibility of small founding 

populations of females or males respectively. The deviation from Hardy-Weinberg in the 

Vredenburg population is most likely because of inbreeding (Table 3.2.). Although the overall 

sample size for this locality is large, the population itself is isolated given its location.  Cluster 

analysis confirms this with the Vredenburg population grouping as a distinct cluster (Figure 2.5.) 

- a consequence of lack of gene flow into this site (Table 3.5.). Colonies in the above-mentioned 
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areas thus show breeding isolation. In contrast, localities connected to mountain ranges, for 

example Bettysbaai (connected to the Kogelberg and Rooi-Els) and Ceres (connected to the 

Witzenberg), displayed relatively higher genetic diversity resulting from exchange with colonies 

from surrounding areas.  

 

Finally, unlike other regions, the hyrax populations from the Namaqualand region were found to 

be expanding (Figure 3.6.) reflecting the high connectivity and an abundance of intermediate 

“bridging” habitat in this region. These conditions and the high population densities have 

facilitated the spread of genetic diversity across the Namaqualand landscape. 
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CHAPTER 4 

Conclusions and future prospects 

 

Several factors influence genetic structure within species including mobility, behavioural 

attributes such as habitat choice, barriers to dispersal, gender-biased dispersal as well as 

historical demographic events that remove populations from equilibrium (Avise, 1994). This 

thesis employed a multi-disciplinary approach and showed that the genetic structure of rock 

hyrax populations across the Namaqualand/western Fynbos regions is influenced by the 

behaviour and social structure of the species, the connectivity of its habitat, its dispersal 

capability and the presence of long-term barriers to gene-flow. Here I discuss how this complex 

system influences genetic patterns across the landscape and relate the findings to patterns found 

in other taxa.  

 

4.1. This study 

 

4.1.1. Quantifying the influence of landscape variables and configuration on genetic variation  

 

Several studies have compared genetic structure between aggregated and fragmented areas 

(Pither and Taylor, 1998; Keyghobadi et al. 2005; Broquet et al. 2006; Baguette and Van Dyck, 

2007). These all demonstrate that the propensity for dispersal decreases with increasing 

fragmentation. A similar result was obtained in the rock hyrax, a species which largely depends 

on habitat connectivity for dispersal (Chapter 3). By comparing aggregated and fragmented 

landscapes it was shown that aggregated (high connectivity) areas facilitate gene-flow among 

populations, whereas fragmented (low connectivity) areas result in reproductive isolation of 

populations (Chapter 3; Gerlach and Hoeck, 2001).  

 

In addition to habitat quantity, its quality also impacts on hyrax genetic structure. Rock hyrax 

utilize crevices within rocks (Sale, 1966; Hoeck, 1975; Olds and Shoshani, 1982; Hoeck, 1989). 

Sandstone (which is dominant in the western Fynbos region) contains few suitable crevices when 

compared to the granite extrusions that are common in the Namaqualand region (Chapter 3). 
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Habitat quality is thus an important contributing factor to the lower levels of gene-flow and to 

genetic diversity detected among hyrax populations in the western Fynbos region. 

 

In summary therefore, the present study focuses on two areas frequently investigated in 

landscape genetics, (i) quantifying genetic diversity and (ii) identifying migrants in relation to 

landscape condition (as reviewed by Storfer et al. 2010). It is clear that higher habitat quality and 

quantity promotes population stability and results in higher genetic diversity and gene-flow in 

natural systems (Pérez-Espona et al. 2008; Keyghobadi et al. 2005). Surprisingly this is a 

relationship that remains poorly explored in the field of landscape genetics.   

 

4.1.2. Testing species-specific ecological hypotheses 

 

The landscape matrix in conjunction with an individual’s acuity (an awareness of surrounding 

areas) may influence dispersal behaviour of species (Spear et al. 2005). For instance, fragmented 

landscapes may negatively affect dispersal as animals are unable to identify nearby habitat 

patches and are thus reluctant to disperse. Consequently to fully appreciate these factors’ 

influence on gene-flow, and ultimately their role in evolution, a thorough understanding of the 

autecological characteristics of a species is necessary.   

 

It is possible that the dispersal behaviour of rock hyrax is influenced by its perception of the 

surrounding landscape. The Namaqualand area (aggregated) comprises numerous close-lying 

granite koppies that fall well within the perceptual range of this small mammal. In addition, the 

ground-cover comprises “open” vegetation (Namaqualand Hardeveld; Mucina and Rutherford, 

2006) which does not hinder perception of nearby habitat patches. In sharp contrast, the western 

Fynbos region has few suitable habitat patches and these are surrounded by thick stands of 

Fynbos (Sandstone Fynbos; Mucina and Rutherford, 2006). This would cause suitable habitat 

patches to fall outside the perceptual range of resident rock hyraxes and increase the reluctance 

of animals to disperse. The Knersvlakte Bioregion provides additional support for the 

perception-hypothesis in the rock hyrax. This sparsely vegetated, flat-plain is apparently crossed 

readily by males (Chapters 2 and 3), even though it comprises a relatively large stretch of 

unsuitable habitat (~ 40 kilometres). The adjacent mountainous margins are clearly visible across 
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the Knersvlakte (at least to the human eye) and it seems reasonable to speculate that male hyrax 

are aware of these areas when dispersing. In effect, the rock hyrax social system promotes the 

long distance dispersal of males, while perceptual range determines the distance of dispersal 

events. 

 

4.1.3 Identifying barriers to gene flow 

 

Although the Knersvlakte, a long-term barrier to gene flow, has caused historic isolation (due to 

low habitat connectivity) in P. capensis, this was only evident for the matrilineal genetic line 

(Chapter 2), a phenomenon attributable to sex-biased dispersal (Chapters 2 and 3). Regions of 

low connectivity act as barriers to dispersal of females, more so than they do in males (Chapter 

3). Consequently, it may be anticipated that large regions of low connectivity act as significant 

barriers to gene-flow in female rock hyrax. 

 

Given that suitable rocky habitat is often sparsely distributed across the landscape, it is no 

surprise that a structured genetic pattern between habitat patches has been demonstrated in rock 

hyrax (Chapter 2) and other saxicolous taxa (King, 1987; Wyatt et al. 1992; Lovich, 2001). 

Areas devoid of rocky habitat act to limit dispersal between colonies occupying these habitat 

islands (Kim et al. 1998; Gerlach and Hoeck, 2001; Lovich, 2001). Various factors have been 

proposed to explain the formation of phylogeographic breaks across certain geographic barriers 

(Chapter 2; Arnaud, 2003; Berthier et al. 2004; Pérez-Espona et al. 2008), although few studies 

have focussed on addressing the influence of the landscape matrix (connectivity) on spatial 

genetic variation. This is surprising given that the identification of barriers to gene-flow has been 

crucial to the development of landscape genetics (Keyghobadi et al. 2005; Vos et al. 2001). 

Landscape connectivity is inextricably tied to geographic barriers since reduced connectivity 

over protracted periods will impact on the differentiation of populations straddling poorly 

connected areas thus contributing to evolutionary processes (Lovich, 2001; Keyghobadi et al. 

2005). 
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4.1.4. Understanding the spatial and temporal scale of an ecological process 

 

In addition to comparing dispersal patterns between broad geographic regions, a stratified 

approach to determine connectivity at various spatial scales was also undertaken. Dispersal 

capability in conjunction with environmental patchiness (as perceived by the organism) is 

proposed to influence gene-flow and population genetic structure at differing spatial scales 

(Avise, 1994; Keyghobadi et al. 2005; Murphy et al. 2010; Storfer et al. 2010), however, few 

studies  have applied this reasoning (see Keyghobadi et al. 2005 as an exception). Using this 

approach it was shown that landscape connectivity influenced the distribution of genetic 

variation in the rock hyrax at larger (intermediate and regional) spatial scales (Chapter 3), while 

at a fine spatial scale behavioural attributes come into play. In addition, a switch in sex-biased 

dispersal (from a fine to a regional scale) was detected - a pattern that would have been 

overlooked if only one spatial scale was studied. 

 

4.1.5. Identifying source-sink dynamics and movement corridors 

 

Source-sink dynamics and movement corridors determine the distribution of genetic variation in 

the rock hyrax (Chapter 3; Gerlach and Hoeck, 2001). Although the study did not provide 

empirical evidence of population bottlenecks, connectivity appears to be the major factor 

influencing the genetic diversity of contemporary hyrax populations (Chapter 3). Populations in 

the higher connectivity, Namaqualand landscape displayed increased levels of genetic diversity 

compared to their western Fynbos counterparts - a testament to the higher gene-flow in this 

region and the consequent buffering against loss of genetic diversity in these populations. In 

addition, mountain ranges act as movement corridors between rock hyrax populations (Chapter 

2; Prinsloo and Robinson, 1992) thereby facilitating gene-flow to smaller populations 

neighbouring such areas (Chapter 3; Gerlach and Hoeck, 2001). It therefore seems likely that 

areas of higher connectivity and mountainous corridors influences the persistence of small 

satellite populations. 
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4.2. Conservation implications  

 

Curbing genetic diversity loss is an important consideration in determining conservation 

strategies.  Consequently studies that focus on habitat and population fragmentation are crucial to 

conservation and management decisions (Moritz et al. 2000; Storfer et al. 2010). The effect of 

habitat fragmentation, albeit natural, is important in shaping the distribution of genetic variation 

in the rock hyrax (Chapter 3). Populations in poorly connected areas show reduced genetic 

diversity and impaired genetic exchange. This poses a problem to current conservation initiatives 

as three of the sampling localities (Bettiesbay, Table Mountain National Park and Boulders) are 

in conservation areas. Fluctuations in the number of animals in isolated colonies will likely occur 

over time and cause a loss in the genetic diversity and homogenize genetic profiles across a 

landscape. In a conservation context this means that animal numbers should be augmented in at 

least one of the conservation areas (Boulders which has maximally 20 animals) through a 

breeding programme, or by translocation of genetically closely related animals (e.g., from the 

Cape Peninsula National Park or Table Mountain National Park).  

 

Conservation planning should take cognizance of the lower landscape connectivity of certain 

areas under their management (Tankwa Karoo National Park, West Coast National Park, Table 

Mountain National Park, Silvermine National Park; Cape Peninsula National Park, Boulders and 

the Betties Bay Penguin colonies and the Kogelberg Nature Reserve) and consider strategies that 

would establish corridors (as with the Greater Cederberg Biodiversity Corridor; Low et al. 2004) 

to allow migration and gene-flow among them.  

 

4.3. Limitations and future prospects 

 

The present study used the latest genetic software to analyse datasets of an adequate size. 

Additionally, a well-structured, stratified sampling scheme was adopted. Some limitations, 

however, might have compromised the results, especially the number of genetic markers used 

and their variability. The conservative nature of the cytochrome b region (Chapters 2 and 3) 

impacted the detailed analysis of geographic patterning among populations. Although a more 

variable region such as the mitochondrial control region may have improved phylogeographic 

Stellenbosch University http://scholar.sun.ac.za



68 
 

signal, this may have compromised its iclusion with data from Prinsloo and Robinson (1992) and 

Prinsloo (1993) in an extensive taxonomic revision of Procavia. Additionally, the limited 

number of microsatellite markers available for procaviids precluded important information such 

as parentage; a greater number of variable markers would bolster estimations of gene-flow and 

genetic clustering.  

 

From this study it is evident that the rock hyrax is an appropriate model to investigate the effects 

of landscape connectivity on a rock-dwelling vertebrate. Future studies should therefore aim to 

develop and employ a higher number of more variable markers such as microsatellites and SNPs. 

With the increasing availability, efficiency and increasingly lower costs of whole-genome 

sequencing and improved annotation technology and SNP recovery (G10KCOS, 2009; Ng and 

Kirkness, 2010), the volume of genetic information can be expected to increase exponentially in 

the following decade. The development of more powerful Bayesian coalescent-based 

programmes (Rosenberg and Nordberg, 2002; Beaumont and Rannala, 2004) coupled with new 

landscape genetic approaches that quantify landscape variables and/or rely on a GIS (Geographic 

Information Systems) basis will further this field and promote our understanding of species’ 

distributions and the landscape’s impact on genetic patterns. Furthermore, given the anticipated 

availability of increasingly large genetic data sets, the use of more holistic approaches that 

include factors such as the social system, mating patterns, biology, ecology and dispersal 

behaviour of taxa will be invaluable in unravelling intergeneric and intrageneric relationships 

and identifying regions of conservation importance.  

 

In addition, these approaches will likely sharpen our understanding of what constitutes a 

“species”. Currently, the various species concepts (as reviewed by De Queiroz, 2007) are are 

hotly debated the outcome of which will impact taxonomy and the way in which we classify 

animals. The Hyracoidea are unlikely to escape this since it is evident that a taxanomic revision 

of the group and especially Procavia and Heterohyrax is long overdue (Prinsloo 1993). New 

multi-faceted concepts of a “species” may be developed and fruitfully tested in P. capensis.  
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4.4. Conclusion 

 

This study deals with the complex interplay of an organism’s ecology, social system, behaviour, 

dispersal capability and the distribution and quality of the habitat it occupies. This interaction 

influences the distribution of genetic variation across the landscape. Behaviour data in 

conjunction with genetics is central to understanding how an animal’s social system may 

influence dispersal patterns. This is especially so in social species where dispersal and gene-flow 

between the sexes may be reflected in differences between nuclear- and mitochondrial DNA 

patterns. Dispersal behaviour may, however, also depend on the perception by an animal of the 

surrounding landscape, and the distribution of suitable habitat within this matrix. Landscape 

connectivity may significantly impede or facilitate gene-flow at various spatial scales - a result 

exemplified by this study. Areas of low connectivity may act as barriers to gene-flow resulting in 

vicariance (especially pronounced in the Knersvlakte region in South Africa), although this has 

rarely been invoked to explain genetic patterns. In addition, this is one of few comparative 

phylogeographic studies that rely on taxa with similar ecological requirements. This allows a 

more accurate elucidation of historic events influencing a particular set of taxa. Finally, the 

investigation demonstrates the importance of using a well-structured sampling scheme, the 

inclusion of both mitochondrial and nuclear markers and the application of appropriate, powerful 

statistical programmes to infer genetic patterns. This shows that landscape genetics may be 

useful in a conservation context and should be taken into account when planning conservation 

initiatives and possible corridors.  
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APPENDICES 

 

Appendix A 

 

 

 

 

 

Locus Size Repeat Reference 

Hy-T12 147 (TTA)6 Gerlach et al. 2000 
Hy-T17 110 (CAA)5 Gerlach et al. 2000 
Hy-D49 242 (AC)12 Gerlach et al. 2000 

HCA18 140 (ACT)6 P. Bloomer, personal 
communication 

Information on the microsatellite markers used in 

this study. The table includes the locus name, size 

of the marker, composition of the repeat making up 

the microsatellite and the reference from where the 

marker was sourced. 
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Appendix B 

 

 

Locus Allele Springbok Garies Brand-
se-Baai Nuwerus Kliprand Loeriesfontein Nieuwoudt-

ville Klawer Donkiesbaai Elandsbaai Vredenburg Ceres Paardeberg Tafelberg Boulders Bettiesbaai 

Hy-T12 137 0.214 0.074 0 0.058 0 0.273 0 0 0.071 0 0 0 0 0 0 0.280 

 143 0 0.074 0.155 0.038 0.125 0.227 0.143 0.567 0.333 0.200 0.454 0.409 0.417 0.159 0 0.520 

 147 0.786 0.833 0.810 0.865 0.775 0.5 0.857 0.433 0.595 0.800 0.546 0.591 0.583 0.841 1.000 0.200 

 154 0 0.019 0.034 0.019 0.1 0 0 0 0 0 0 0 0 0 0 0 

 164 0 0 0 0.019 0 0 0 0 0 0 0 0 0 0 0 0 

Hy-T17 100 0.048 0 0 0 0.024 0 0 0 0 0 0 0 0 0 0 0 

 102 0.333 0.233 0.345 0.231 0.333 0.136 0.286 0.100 0.150 0 0 0.091 0 0 0 0 

 104 0 0 0.017 0.019 0.024 0 0 0 0 0 0 0 0 0.136 0.542 0.100 

 105 0.310 0.350 0.103 0.365 0.238 0.182 0.262 0.167 0.125 0.240 0.396 0.386 0.167 0.477 0.250 0.260 

 107 0 0.067 0.017 0.096 0.071 0.409 0.143 0 0.075 0 0 0.045 0.111 0 0 0.060 

 108 0.190 0.200 0.207 0.192 0.190 0 0.071 0.067 0.250 0.640 0.013 0.227 0.278 0.136 0 0 

 109 0 0 0 0 0 0 0 0 0 0 0.468 0.068 0 0.114 0 0.240 

 110 0.119 0.133 0.224 0.096 0.119 0.182 0.143 0.633 0.375 0.120 0.123 0.182 0.444 0.136 0.208 0.340 

 111 0 0.017 0.086 0 0 0.045 0.095 0 0.025 0 0 0 0 0 0 0 

 112 0 0 0 0 0 0.045 0 0 0 0 0 0 0 0 0 0 

 113 0 0 0 0 0 0 0 0.033 0 0 0 0 0 0 0 0 

Hy-D49 227 0 0 0 0.023 0.025 0 0 0 0 0 0 0 0 0 0 0 

 228 0.048 0.038 0 0.068 0 0 0.119 0.133 0 0.022 0 0.025 0 0 0 0 

 229 0 0 0 0 0 0 0 0 0 0 0 0.025 0 0 0 0 

 230 0 0 0.096 0 0 0.045 0.071 0 0.194 0.326 0.24 0.175 0.056 0 0 0 

 231 0 0 0.058 0 0 0 0 0 0 0 0 0 0 0 0 0 

 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0.341 0 0 

 233 0 0 0 0 0 0 0 0.033 0.028 0 0 0 0 0 0 0 

 234 0.119 0 0.250 0.250 0.050 0.227 0.048 0.300 0.028 0.043 0 0.150 0 0 0 0.063 
 235 0 0 0 0 0 0 0 0 0.028 0 0 0 0 0 0 0 

Allele frequencies per population for the four microsatellite loci used in this study. 
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 236 0.024 0.308 0.038 0.023 0.025 0 0 0 0.028 0 0.329 0 0 0 0 0 

 237 0.095 0.135 0 0.045 0.200 0.182 0.024 0.067 0.083 0.043 0.164 0.050 0 0 0 0.021 

 238 0.190 0.058 0.212 0.318 0.075 0.227 0.19 0.167 0.194 0.174 0.014 0.050 0.028 0 0 0 

 239 0 0.019 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 240 0.262 0.192 0.250 0.159 0.275 0.091 0.262 0.100 0.167 0.152 0 0.300 0.028 0 0 0.313 

 242 0 0.038 0.038 0 0.050 0 0 0.100 0.139 0.217 0 0.100 0.556 0.341 0.208 0.208 

 243 0 0 0.019 0.023 0 0.182 0 0 0 0 0 0 0 0 0 0 

 244 0.095 0.077 0.019 0.023 0.250 0.045 0.143 0.033 0.111 0.022 0 0 0.028 0.023 0 0 

 245 0 0 0 0 0 0 0 0 0 0 0 0.050 0 0.045 0 0 

 246 0 0.019 0 0 0 0 0.024 0.033 0 0 0.164 0 0 0 0 0.021 

 247 0 0.019 0 0 0 0 0.048 0.033 0 0 0.089 0.050 0.306 0.250 0.792 0.375 

 248 0 0 0 0.023 0 0 0 0 0 0 0 0 0 0 0 0 

 249 0.048 0 0.019 0.045 0 0 0 0 0 0 0 0 0 0 0 0 

 251 0 0.058 0 0 0 0 0 0 0 0 0 0.025 0 0 0 0 

 253 0.024 0.038 0 0 0.025 0 0.071 0 0 0 0 0 0 0 0 0 

 255 0 0 0 0 0.025 0 0 0 0 0 0 0 0 0 0 0 

 257 0.095 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

HCA18 131 0 0 0 0 0 0 0 0 0 0 0 0 0.194 0 0 0 

 132 0 0 0 0.019 0 0 0 0 0 0 0 0 0 0 0 0 

 133 0.024 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 136 0.119 0.241 0.036 0.058 0 0 0.143 0.214 0.029 0 0 0 0 0 0 0 

 137 0 0 0 0 0 0 0 0 0.235 0 0 0 0 0 0 0 

 138 0 0.034 0 0.077 0.029 0 0.048 0 0.029 0 0 0 0 0 0 0.260 

 139 0.048 0.207 0.196 0 0.265 0.318 0.119 0.036 0.029 0 0 0.125 0 0 0 0.020 

 140 0.024 0 0 0 0 0.091 0 0 0 0 0 0 0 0 0 0 

 141 0 0 0 0.250 0.147 0 0 0 0.118 0.071 0.171 0.300 0 0.432 0 0.120 

 142 0 0.103 0 0.135 0.029 0 0.048 0.286 0.235 0.143 0.143 0.100 0.639 0.295 1.000 0.600 

 143 0.143 0.034 0.036 0.038 0.059 0 0 0.036 0.029 0.048 0 0.250 0 0.136 0 0 

 145 0.048 0 0.214 0.154 0.147 0.182 0.048 0.036 0.118 0.048 0 0.175 0 0.136 0 0 

 147 0.119 0.207 0.304 0.135 0.324 0.182 0.429 0.071 0.147 0.643 0.093 0.050 0.028 0 0 0 

 149 0.119 0.103 0.214 0.135 0 0.227 0.119 0.143 0.029 0.048 0.593 0 0.139 0 0 0 
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 151 0.143 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 152 0 0.017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 153 0.119 0.052 0 0 0 0 0 0.036 0 0 0 0 0 0 0 0 

 155 0.095 0 0 0 0 0 0.048 0.143 0 0 0 0 0 0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



102 
 

 

Appendix C 

 

 

 

 

Reference Species Class Markers FST 
Sequence 

Divergence 
(%) 

Divergence 
Time (Mya) Phylogeographic Pattern Phylogeographic interpretation 

Prinsloo 
and 

Robinson, 
1992 

Procavia 
capensis 

Mammalia 10 RFLPs 
(mtDNA) - 4.2 ± 0.9 2 

Two major clades (species) were found across 
South Africa. Gain or loss of restriction sites 
was unique to each population and low levels 
of genetic divergence were evident.  Same 
haplotypes were shared south and north of the 
Knersvlakte. De Hoop was the most 
genetically divergent population. 

Clades were attributed to dispersal along two 
different routes. Low levels of divergence due 
to recent colonizations from the Karoo (due to 
migration out of this area following a 
population increase). 

Knersvlakte 

Present 
study 

Procavia 

capensis 
Mammalia 

Cytochrome b 
(mtDNA); 4 

Microsatellites 
(nDNA) 

0.72 (mtDNA); 
0.16 

(Microsatellites) 
1.92 8.87 

Significant structure was evident in both 
mtDNA and microsatellites over Knersvlakte 
(and whole sampling range) with two major 
matrilineal clades (Namaqualand and western 
Fynbos) evident on either side of this region. 
Same clades not evident in the microsatellite 
data (seven nuclear clusters).Significantly 
higher levels of gene-flow between sampling 
localities in Namaqualand compared to 
western Fynbos region. Consequently, 
colonies in Namaqualand were genetically 
more diverse compared to those of the western 
Fynbos region.  

Low habitat connectivity coupled with male-
biased dispersal and female site phylopatry 
(intermediate- and regional spatial scales) 
across the Knersvlakte caused vicariance 
event in matriline. Microsatellite groups were 
influenced by landscape connectivity. Higher 
gene-flow and genetic diversity in 
Namaqualand region may also be attributed to 
the connectivity of the landscape as the 
Namaqualand region has more suitable habitat 
patches between sampled populations, thus 
facilitating gene-flow and preventing 
bottlenecks. 

Outcomes of the different genetic studies conducted on diverse organisms that show the Knersvlakte and Cape Flats shaped genetic profiles of extant 

taxa. The reference to each study, the species, taxonomic class, genetic markers used, the sequence divergence between clades, divergence time 

estimates between clades, phylogeographic patterns found, and the proposed factors thought to have shaped the phylogeographic structure are 

presented. 
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Matthee 
and 

Robinson, 
1996 

Pronolagus 

rupestris 
Mammalia 14 Allozymes 

(mtDNA) 0.246 7.94 ± 1.40 - 

Two clades (south-eastern and north western) 
were evident across South Africa. South-
eastern clade (relatively high sequence 
divergences and significant sub-structure.) is 
bound to the Great Escarpment region. North-
western clade (contains two sub-clades) is not 
similarly constrained. North-western clade 
populations are not as distantly related, even 
though they are geographically far apart. 

A difference in elevation created refugia 
during Pleistocene glacial cycles. Isolation of 
populations for long periods with limited 
gene-flow has caused high sequence 
divergences in south-eastern clade while 
subclades of north-western clade are due to 
vicariance. Populations that are not distantly 
related were influenced by recent dispersal.  

Smit et al. 
2007 

Elephantulus 
edwardii 

Mammalia 

Cytochrome b 
(mtDNA); 

Control Region 
(mtDNA) 

0.834 1.97 1.4 - 2.0 

Three clades (Karoo, Namaqua, central 
Fynbos) were found over the distribution of 
which the central Fynbos clade could be 
subdivided into four sub-clades. Sympatric 
haplotypes were found and explained at the 
hand of ancestral polymorphism or secondary 
contact after differentiation and range 
expansion. There was an absence of gene-flow 
with no shared haplotypes between groups, 
however haplotypes were shared within 
groups. 

Divergence of Namaqua and central Fynbos 
clades caused by Pliocene/Pleistocene glacial 
cycles that resulted in topographic and 
climatic changes which were repeatedly 
enforced through multiple events. A series of 
marine transgressions (2 Mya) inundated the 
western coastal plains in conjunction with 
changing flow patterns of rivers and harsh 
climate change on the western side of the 
continent. Additionally, the Namaqualand 
habitat is not homogenous as rocky outcrops 
are terrestrial islands. The central Fynbos 
clade lies in the safety of the CFM and the 
four subclades here resemble climatic 
differences and vegetation differences related 
to the position of mountains. This resulted in 
restricted gene-flow and IBD. 

Matthee 
and 

Flemming, 
2002 

Agama atra Reptilia 

16S rRNA 
(mtDNA); 

Cytochrome b 
(mtDNA) 

- 9.45 2.2 - 4.4  

Three distinct clades (Southern Namibia, 
north-central S.A., south-eastern S.A.) were 
evident. On a fine scale, isolated habitat 
islands were genetically distinct from other 
populations in a clade. 

Historic isolation (vicariance) between clades 
were caused by Pleiocene glacial cycles and 
subsequent climatic changes resulting in 
isolation in refugia. The distribution of 
mountains and koppies are also important as 
isolated populations were more genetic 
structured. Limited dispersal, long term 
isolation, and barriers to gene-flow 
(Knersvlakte, Orange River and Kalahari 
sand-flows) thus influenced genetic structure.  
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Daniels et 
al. 2010 

Homopus 
signatus 

Reptilia 

Cytochrome b 
(mtDNA); ND4 

(mtDNA); 
Prolactin 
(nDNA) 

0.571 

0.62 ± 0.13 
(cyt b);  

1.20 ± 0.32 
(ND4) 

1.0 - 2.6 

Two clades (North-western and south-eastern) 
were evident which contain 3 distinct yet 
linked clades. Five groupings in haplotype 
network and phylogenetic tree (1.) North 
western Kamiesberg mountains and koppies 
including Loeriesfontein, 2.) koppies of the 
south western coast towards the Bokkeveld 
Mountains at Nieuwoudt-ville, 3.) south-east 
in the Cederberg, 4.) Hantam Mountains, 5.) 
Pofadder). High genetic divergence wasa 
evident between haplotypes of southern 
distribution. Geographic clustering largely 
characterized the haplotype network, although 
sympatric haplotypes were found.  

North-western and south-eastern clades 
diverged across the Knersvlakte. The 
Cederberg was a historic refugium during 
Pliocene glacial cycles. High genetic 
divergence in south influenced by the 
heterogenous landscape where populations 
occur on mountains and are separated by 
valleys that restrict gene-flow. 

Lamb and 
Bauer, 
2000 

Pachydactylus 

rugosus 
Reptilia 16S rRNA 

(mtDNA) - 22.95 ± 3.85 - Two species, P. barnardi and P. formosus separated near Knersvlakte. 

Cape Flats 

Present 
study 

Procavia 
capensis 

Mammalia 

Cytochrome b 
(mtDNA); 

Microsatellites 
(4) 

0.79 (mtDNA); 
0.15 

(Microsatellites) 
- - 

In the Hottentots Holland Mountains and 
Cape Peninsula, gene-flow was equally 
restricted (in both data sets) within these 
mountainous areas compared to localities that 
traversed the Cape Flats. 

The fragmented landscape resulted in 
breeding isolation of populations. 

Swart et 

al. 2009 Agama atra Reptilia 
Control Region 
(mtDNA); ND2 

(mtDNA) 
0.865 

4.47 ± 0.94 
(Control 
Region); 

 5.34 ± 0.88 
(ND2) 

0.64 - 2.36 
(northern 

CFR - 
Limietberge); 

0.64 - 1.67 
(Cape 

Peninsula - 
Central CFR) 

Four genetic provinces (Cape Peninsula, 
northern CFR, Limietberg, central CFR) were 
evident with no shared haplotypes in the Cape 
Flats; three of these provinces (northern CFR, 
Cape Peninsula and Limietberg) contact in the 
western CFR. Central CFR contained three 
subclades of which only one was well-
supported. Shared haplotypes were found over 
long distances in two of the sub-clades.  

There are no extant geographic barriers 
between the clades, but vicariance due to 
Pleistocene glacial cycles and resulting 
climate fluctuations is responsible for 
isolation; these resulted in fragmentation of 
mountain habitat. The CFR was fragmented 
into isolated dry areas (which A. atra prefer) 
during the Pleistocene. The Cape Flats also 
acted as a barrier as aridification reduced plant 
cover. This led to colonization of the Cape 
Peninsula whereafter Pleistocene marine 
interglacial transgressions inundated the Cape 
Flats and plant cover increased during mesic 
periods (thus isolating the Cape Peninsula). 
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Gouws et 

al. 2004 
Mesaphisopus 

capensis 
Insecta 

12 Allozymes 
(nDNA); 12S 

rRNA (mtDNA) 

0.673 
(Allozymes) 

17.67 ± 2.03 
(12S rRNA)  

 

14 
(Allozymes); 
6.8 - 8.0 (12S 

rRNA) 

Two clades (Cape Peninsula and Hottentots 
Holland Mountains) were evident which could 
be sub-divided into five sub-clades (Table 
Mountain–Southern Peninsula, Silvermine, 
Franschhoek, Jonkershoek and Gordon’s 
Bay). Populations were identical in Table 
Mountain but there was significant sequence 
divergence between Table Mountain and the 
Southern Peninsula. 

Pleistocene glacial cycles caused climatic 
oscillations and sea-level fluctuations. Marine 
transgressions thus inundated the Cape Flats 
and gaps in the Cape Peninsula causing 
barriers to gene-flow. Climatic oscillations 
coupled with environmental changes (causing 
drainage evolution) may have caused 
divergence though extinctions and 
recolonizations. Forests also existed on the 
Cape Flats, but climate change caused it to 
become dry and the water unsuitable, thus 
restricting gene-flow. 

Gouws et 
al. 2010 

Mesaphisopus 
capensis 

Insecta 

12 Allozymes 
(nDNA); 12S 

rRNA (mtDNA); 
COI (mtDNA) 

- - - 

Four clades were evident of which two are 
found in the Cape (Cape Peninsula, Hottentots 
Holland Mountains). Four genetically 
divergent regions evident in the Cape 
(Bettysbaai, Hottentots Holland Mountains, 
Steenbras and Kogelberg). 

The Cape Peninsula clade diverged from the 
Hottentots Holland Mountains clade over the 
Cape Flats. Pliocene/Pleistocene glacial cycles 
also caused allopatric divergence through 
refugia (e.g., Cape Fold Mountains outliers on 
the Agulhas Plain).  Dispersal took place 
when the climate was favourable and 
divergence occurred when conditions 
deteriorated (intervening populations went 
extinct). 

Wishart 
and 

Hughes, 
2001 

Elporia 
barnardi 

Insecta 6 Allozymes 
(nDNA) 0.390 - - A large amount of differentiation was evident 

between streams in Table Mountain. 
Limited dispersal and gene-flow coupled with 
high habitat fidelity caused differentiation. 

Wishart 
and 

Hughes, 
2003 

Elporia 

barnardi 
Insecta COI (mtDNA) 0.791  ~ 5 2.0 - 3.5 

Two divergent clades (Table Mountain and 
Hottentots Holland Mountains) were evident 
and there was a large amount of 
differentiation (sub-structuring) between 
streams in Table Mountain on a small spatial 
scale. 

Limited dispersal and gene-flow coupled with 
high habitat fidelity are biological attributes 
that shaped the genetic structure of this 
species. The period of isolation on Table 
Mountain was short, but animals are confined 
to catchments; however the Hottentots 
Holland Mountains and Table Mountain has 
had a long period of isolation as the 
connecting land-bridge between these areas 
has been eroding since the geologically stable 
Tertiary. 

Daniels et 

al. 2001 
Potamonautes 

brincki 
Crustacea 13 Allozymes 

(nDNA)  

0.655 (Cape 
Peninsula - 

southern 
Hottentots 

Holland); 0.825 
(Cape Peninsula 

- northern 
Hottentots 
Holland 

- - 

Four lineages were evident pertaining to the 
Cape Peninsula, Jonkershoek/Somerset West 
area, south-west coast area and Fernkloof 
respectively. Two of these clades (Cape 
Peninsula and Hottentots Holland Mountains) 
are situated in the Cape. Individuals from the 
Cape Peninsula were closely related to those 
of the Jonkershoek/Somerset West and 
individuals from the south-west coast grouped 
with those of Fernkloof. 

Divergence caused by historical differences in 
rainfall and temperature brought on by the 
glacial climatic oscillations in the 
Miocene/Pliocene (divergence between the 
Cape Peninsula and south-west coast area due 
to regressions) and Pleiocene/Pleistocene 
(divergence between the south-west coast area 
and Hottentots Holland Mountains due to arid 
conditions).  
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McDonald 
and 

Daniels, 
2012 

Peripatopsis 
capensis 

Euonychophora 
COI (mtDNA);  

18S rRNA 
(nDNA) 

- 8.93 2.13 – 4.38 

Three geographically discrete genetically 
distinct clades were evident (Cape Peninsula, 
Overberg, Theewaterskloof/Overstrand). 
Genetic differentiation was low among 
populations in Cape Peninsula (compared to 
other clades where there was considerable 
genetic structure). This conforms to an island-
mainland system with low dispersal. 

Cape Flats, Ruêns and Breede River valley 
basin act as barriers to gene-flow.  
Additionally, these animals are habitat (forest) 
specialists with a poor dispersal capability 
thus restricting dispersal. Forests were 
paleorefugia on Cape Peninsula in ravines and 
gorges, therefore Pliocene⁄Pleistocene glacial 
cycles caused climatic oscillations which 
affected afromontane forest contraction and 
expansion cycles. This led to allopatric 
diversification. Marine regressions also 
resulted in a decline in rainfall in mountains 
and decreased forest cover, thus causing a 
decline in the genetic diversity of the Cape 
Peninsula. The Cape Flats was a historic 
(today it is shrub-dominated) corridor 
(Podocarpus forest covered it in the 
Pleistocene) which allowed dispersal. The 
Theewaterskloof/Overstrand clade exhibits 
high genetic diversity due to a long 
evolutionary history in the heterogenous 
landscape of the Cape Fold Mountains. 
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Appendix D  

 

 

   

 

  Mitochondrial DNA   Microsatellites   

Locality No. Polymorphic sites Hy-T12 Hy-T17 Hy-D49 HCA18 
Observed 

Heterozygosity 
Springbok 10 2 5 10 11 0.619 ± 0.101 S.D. 

Garies 9 4 6 12 9 0.597 ± 0.118 S.D. 
Brand-se-Baai 2 3 7 10 6 0.657 ± 0.110 S.D. 

Nuwerus 13 5 6 11 9 0.572 ± 0.137 S.D. 
Kliprand 31 3 7 10 7 0.665 ± 0.083 S.D. 

Loeriesfontein 1 3 6 7 5 0.682 ± 0.059 S.D. 
Nieuwoudt-ville 23 2 6 10 8 0.595 ± 0.172 S.D. 

Klawer 34 2 5 10 9 0.574 ± 0.075 S.D. 
Donkiesbaai 20 3 6 10 10 0.674 ± 0.071 S.D. 
Elandsbaai 17 2 3 8 6 0.504 ± 0.136 S.D. 
Vredenburg 0 2 4 6 4 0.466 ± 0.084 S.D. 

Ceres 8 2 6 11 6 0.547 ± 0.160 S.D. 
Paardeberg 2 2 4 6 4 0.528 ± 0.066 S.D. 

Table Mountain 0 2 5 5 4 0.545 ± 0.145 S.D. 
Boulders 3 1 3 2 1 0.542 ± 0.164 S.D. 

Bettiesbaai 18 3 5 6 4 0.537 ± 0.156 S.D. 
Total 191 5 11 26 18 0.565 ± 0.029 S.D. 

 

 

 

 

 

 

 

 

Genetic diversity in the mitochondrial DNA and microsatellites of the 16 P. capensis populations sampled 

across the South African west coast region. The number of polymorphic sites in each population is shown for 

the mitochondrial DNA. In the case of the microsatellites, the number of alleles for each marker (Hy-T12, Hy-

T17, Hy-D49, HCA18) and observed heterozygosity within each population are presented. 
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Appendix E 

 

 

 

 

Colony n Hy-T12 Hy-T17 Hy-D49 HCA18 Total Observed 
Heterozygosity 

Expected 
Heterozygosity FIS 

A 12 2 3 5 2 12 0.458 ± 0.070 0.528 ± 0.098 0.176 
B 20 2 3 5 2 12 0.368  ± 0.137 0.523 ± 0.127 0.320 
C 20 2 3 4 3 12 0.588  ± 0.103 0.593 ± 0.044 0.035 
D 17 2 3 5 4 14 0.453  ± 0.037  0.638 ± 0.069 0.319 
E 8 2 3 4 3 12 0.429  ± 0.160 0.556 ± 0.039 0.310 

Total 77 2 4 6 4 16 0.459  ± 0.047 0.568 ± 0.034 0.206 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microsatellite genetic diversity detected among the five colonies comprising the P. capensis Vredenburg 

population. For each colony the number of samples (n), number of alleles for each marker (Hy-T12, Hy-T17, 

Hy-D49, HCA18), total number of alleles, observed heterozygosity within the colony and the inbreeding 

coefficient (FIS) is shown. 
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Appendix F 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Genetic relatedness based on microsatellite data between specimens collected from the five 

koppies comprising the Vredenburg population. The pairs of letters represent the colonies 

between which relatedness was tested. For instance, AA represents intracolony relatedness 

(relatedness within colony A) and AB intercolony relatedness (between colonies A and B). 

Intracolony, intragroup and intercolony relatedness is indicated. 
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