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Abstract

Classi�cation of Selected Cardiac Abnormalities through

Machine Learning

K. Murugan

Department of Mechanical and Mechatronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MScEng (Biomedical)

April 2022

Cardiovascular diseases contribute to a large number of deaths worldwide per
year. From an engineering perspective, an opportune point of intervention
is the examination phase of a patient where the equipment and supporting
software is concerned. This study aims to develop a prototype supervised
machine learning algorithm that can be used as a diagnostic tool in medical
practise. Four hundred and six (406) Echocardiography examinations were col-
lected containing six (6) di�erent cardiac abnormalities associated with the left
ventricle and aortic valve. Data was considerably insu�cient thus augmenta-
tion techniques were required to generate synthetic samples. Image processing
techniques and various calculations were used to derive measurements and fea-
tures to be suitable input for the machine learning models. Random Forest
and Neural Network models with a variety of dimensions were developed and
trained in 3 di�erent tests. The �rst 2 tests investigated the value of engi-
neering (measurement-derived) and medical (patient information) features to
model outputs. Test 3 investigated the e�ect of various training set sizes.
Both models were better informed by medical features than those extracted
geometrically or calculated. This was found due to the e�ect of noise distort-
ing measurements extracted for features. Models also performed better on the
largest training set size (90% of data). All models were evaluated by selected
performance metrics and/or learning curves (where applicable). The most
suitable model selected was a Random Forest instance, as Neural Networks
were prone to over�tting training data. These results were not true re�ections
of either model's capabilities due to the underlying data representativeness
issue.
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Uittreksel

Classi�cation of Selected Cardiac Abnormalities through

Machine Learning

K. Murugan

Department of Mechanical and Mechatronic Engineering,

University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Tesis: MScEng (Biomedical)

April 2022

Kardiovaskulêre siektes dra by tot 'n groot aantal sterftes wêreldwyd per jaar.
Vanuit 'n ingenieursperspektief is die ondersoekfases van pasiëntbehandeling
die venster vir intervensie. Die doel van die studie is om 'n prototipe toe-
sig masjienleer-algoritme te ontwikkel wat as 'n diagnose hulpmiddel in die
mediese praktyk gebruik kan word. Vierhonderd-en-ses (406) eggokardiogram
toetse is ingesamel vir ses (6) verskillende kardiale abnormaliteite wat verband
hou met die linker ventrikel en aortaklep. Uiters onvoledoende data is versa-
mel, en daarom was dit noodsaaklik om van aanvullingstegnieke gebruik te
maak om sintetiese monsters te genereer. Beeldverwerkingstegnieke en ver-
skeie berekeninge is gebruik om a�eidings kenmerke en metings te identi�seer
om geskikte insette vir die masjienleermodelle te bied. Random Forest en Neu-
rale Netwerk modelle met 'n verskeidenheid dimensies is ontwikkel en opgelei
in 3 verskillende toetse. Die eerste twee toetse het die waarde van ingenieurs-
wese (meting-afgeleide) en mediese (pasiëntinligting) kenmerke ondersoek om
uitsette te modelleer. Die derde toets het die e�ek van verskeie opleidingstel
groottes ondersoek. Beide modelle is beter ingelig deur mediese kenmerke as
die wat meetkundig uitgewerk of bereken is. Die rede hiervoor is later geïn-
deti�seer as geraas metings wat as kenmerke onttrek is en gebruik is. Modelle
het beter gevaar met die grootste opleidingstel grootte (90% van die data).
Alle modelle is geëvalueer deur prestasiemaatstawwe of leerkurwes (waar van
toepassing). Die mees geskikte gekose model, was 'n Random Forest geval,
aangesien Neurale netwerke geneig was om opleidingsdata te oorpas. Hierdie
resultate was nie ware weerspieëling van enige van die modelle se vermoëns nie
as gevolg van die teenwoordigheid van onderliggende data kwessies en geraas.
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1 Introduction

The study presented in this document, entitled Classi�cation of Cardiac Ab-

normalities using Machine Learning, is introduced in this chapter. Some back-
ground (in §1.1) is provided to set the context for the Motivation (§1.2) and
Problem Statement (§1.3) that follow. Aims and Objectives (§1.4) are high-
lighted before the chapter closes with a brief description of the Document
Structure (§1.5).

1.1 Background

For both animals and humans alike, the heart is among the �ve organs con-
sidered essential for survival together with the brain, lungs, liver and kidneys
(Marieb, 2015). It is a key component of the cardiovascular system of the body,
responsible for maintaining the continuous circulation of blood. This provides
a means of transport for (i) oxygen and nutrients and/or carbon dioxide and
cell metabolic products, and (ii) for endocrine hormones to speci�c sites in the
body. The heart can be described as a double pump, with left and right sides
functioning in parallel; each structurally suited to their speci�c purposes. It
beats roughly 115 000 times per day, pumping more than 7000 L of blood for
the average human being (Marieb, 2015). When the heart is not functioning
normally, the entire body is starved of oxygen; preventing cells from working
optimally before eventually dying.

The health of the heart a�ects every component of the body, and is usually a
function of an individual's diet, lifestyle (especially physical health) choices and
even psychological well-being. Diseases of the heart or cardiovascular diseases
involve disorders with any part of the cardiovascular system. Cardiovascular
diseases are the leading cause of deaths with recent statistics being roughly
±33% worldwide and ±17.3% for South Africa, according to the World Heart
Federation (2017). In addition to an individual's lifestyle, contact points with
health care professionals regarding any heart-related issues are of immense
importance. E�cient and e�ective tests and practises, correct diagnoses and
successive treatments are key factors in the care and mortality of heart-patients
speci�cally.

1
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CHAPTER 1. INTRODUCTION 2

The incorporation of Arti�cial Intelligence (AI) into the medical �eld specif-
ically, has boosted the overall e�ectiveness of the practises and supporting
technologies o�ering improved ways of identifying disorders, diagnosing and
treating patients. Not only has it contributed to more sophisticated systems
and enhanced patient care, but has saved - and is projected to save - mil-
lions (monetarily) in the healthcare industry (Greenlight Medical, 2020). This
becomes more apparent as the in�ux of patients and challenges continuously
increase, AI proves to ease many of the strains on health care professionals and
administrative workers. With the increased productivity and more regulated
incorporation of AI into the medical �eld, emerging technologies promise to
consistently improve patient care.

1.2 Motivation

The motivation behind this research endeavour is to develop a diagnostic tool
to aid or assist health care professionals in diagnostic processes by introduc-
ing suitable machine learning algorithms. Machine learning algorithms are
capable of successfully processing both large and/or limited data sets, and are
superb in recognising patterns to make accurate classi�cations, predictions, or
in this case diagnoses (Greenlight Medical, 2020). Their addition also serves to
improve the speed, e�ciency and reliability of diagnoses as they continuously
learn from the continuous stream of incoming data. Deep learning methods,
speci�cally may further provide cardiologists new insights into correlations pre-
viously unknown. This project serves to contribute to the collective attempt
to develop smart tools to be incorporated into routine medical practises and
increase reaction windows and improve service delivery.

1.3 Problem Statement

The study explores the use of simple machine learning techniques in the devel-
opment of a diagnostic tool to aid cardiologists in clinical practise. Echocar-
diogram data of 1183 patients will be used to develop a method of feature
extraction before the most appropriate algorithm is selected based on key per-
formance metrics. Six cardiac abnormalities were selected to be classi�ed using
information extracted from apical 2-chamber views from a standard transtho-
racic echocardiogram. Traditional means are preserved by means of key visual
indicators (to cardiologists) when translated to engineering features to main-
tain relevance and/or readability to health care professionals.
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CHAPTER 1. INTRODUCTION 3

1.4 Aim and Objectives

The aim of the study is to develop a prototype diagnostic tool that employs
relevant features and appropriate machine learning models to correctly clas-
sify selected cardiac abnormalities. Cardiovascular diseases contribute to a
signi�cant fraction of annual deaths and is noted as an area where machine
learning methods can aid health care professionals by improving the speed and
reliability of diagnoses. Correct and e�cient diagnoses with better supporting
infrastructure may contributes to decreasing cardiovascular-related fatalities.

The objectives for the project can thus be stated as follows:

1. To collect a su�ciently high quality, diverse and unbiased dataset to be
used to su�ciently train the machine learning algorithms.

2. To develop an e�ective, generalised pipeline for pre-processing input
video data incorporating applicable computer vision techniques and key
visual indicators of routine echocardiography practises.

3. To extract relevant measurements from input images and translate them
to appropriate model features.

4. To compare appropriate machine learning models for the classi�cation
task.

5. To evaluate model performances using meaningful evaluation metrics
that can be comprehended for the intended end-use.

6. To identify the best performing machine learning model for the classi�-
cation of cardiac abnormalities.

7. To scrutinize all the �ndings to present germane recommendations for
further improvements to the selected model and its corresponding per-
formance.

1.5 Document Structure

The overall layout and content of successive chapters with each of their main
sections outlined in this section. Following this introductory chapter is a thor-
ough Literature Review, in Chapter 2, containing topics aimed at providing
a theoretical foundation for the project. A discussion on the Fundamentals
of Cardiology (§2.1) is presented that covers: the anatomical structures, cir-
culatory and conduction systems, selected physiological aspects of the heart,
working principles of Echocardiography practises and descriptions of the car-
diac abnormalities selected for the study. The next section covers theory asso-
ciated with Applied Machine Learning (§2.2). Special needs of medical (image)
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data are discussed, such that they can be made appropriate for the algorithms
selected and detailed thereafter. Topics such as data augmentation, feature
selections and evaluation methods are included thereafter.

The Methodology, presented in Chapter 3, comprises of 3 main sections.
First, Ethical Considerations (§3.1) discuss the aspects most fair and appro-
priate to data (patient) selections for the study. Previous work (§3.2) is then
presented to set the context for recent work done in the respective �elds. The
chapter concludes with details of all practical work (§3.3), from data pre-
processing to model development, training and evaluations.

Results and Discussion follow in Chapter 4, where the output of all
practical steps are presented (§4.1 - §4.3). Model evaluations (§4.4) present
detailed summaries of all �ndings, with many comparisons before a suitable
model is identi�ed. This �nal model is then discussed hypothetically in its
desired context (§4.5). The Limitations and Recommendations outlined
in Chapter 5, highlight areas of improvement considering all practical steps and
methods, with alternative suggestions presented in some areas. The document
closes with a Conclusion in Chapter 6, of all the work done and documented
in this report.
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2 Literature Review

The literature review presented in this chapter covers the most relevant aspects
of Cardiology and Applied Machine Learning techniques needed for successive
chapters, in Sections 2.1 and 2.2, respectively. The Fundamentals of Cardiol-
ogy (§2.1) outlines the main subsystems, anatomy and applicable physiology
of the heart (§2.1.1 - §2.1.3). With echocardiography (§2.1.5), this theory sets
the backdrop for the discussion of the cardiac abnormalities selected for the
study (§2.1.6). The Applied Machine Learning section includes considerations
for medical image processing (§2.2.1) before describing supervised machine
learning algorithms used (§2.2.2). Data augmentation and feature selection
methods are presented before an evaluation methods discussion concludes the
chapter (§2.2.3 - §2.2.5).

2.1 Fundamentals of Cardiology

The human heart can be described as a muscular pump, approximately the
size of a clenched �st that rests atop the diaphragm, between the lungs. The
function of the heart and the accompanying blood vessels is to transport nutri-
ents, oxygen and metabolic products to and from speci�c places in the body.
The heart's functioning is facilitated by its anatomical structures and conduc-
tion system. A labelled diagram of the internal structures and adjoining blood
vessels of the heart can be seen in Figure 2.1.

2.1.1 The Cardiovascular System

The cardiovascular (or circulatory) system is responsible for the circulation of
vital substances throughout the human body in a closed circuit. It comprises
of the heart, blood vessels, lymphatic vessels / glands, blood and lymph. The
blood vessels (or vasculature) consists of 5 classes: arteries, arterioles, capil-
laries, venules and veins - all structurally suited for their respective functions.
Arteries transport blood out of heart, while veins transport blood toward the
heart. The arteries are large, elastic blood vessels with more muscular walls for
withstanding high pressures of blood pumped from the heart. Arteries subdi-
vide into arterioles; smaller, �ner branches with a thinner muscular layer, that

5
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Figure 2.1: Labelled diagram of the internal structures of the human heart
(Marieb, 2015)

further divide into capillaries. Capillary walls are thin and semipermeable to
allow for di�usions to occur. Capillaries join arterioles to venules, which en-
large to form veins. Veins and venules have thinner, less elastic muscular walls
(compared to arteries/arterioles) and valves to ensure one-way �ow (Marieb,
2015).

The cardiovascular system can be divided into 2 sub-circuits; the pulmonary
and the systemic circuit. The pulmonary circuit, or venous circulation, consists
of the blood vessels that transport deoxygenated blood to the lungs where
carbon dioxide (CO2) is exchanged for oxygen (O2). The systemic circuit, or
arterial circulation, consists of the vessels that transport oxygenated blood to
the rest of the body. The arterial system's secondary function is to smooth
�uid �ow oscillations (pulses) of blood pumped from the heart. Blood �ow
is thus non-pulsatile as it enters the capillaries and venous circuits thereafter
(Walley, 2016).

The interaction of the pulmonary and systemic circuits can be seen in Figure
2.2: arrows indicate the direction of blood �ow, red representing oxygenated
blood and blue, the deoxygenated blood. With reference to Figure 2.1, the
pulmonary circuit begins in the right ventricle, which pumps blood into the
pulmonary artery towards the lungs. Within the lungs, arteries and arterioles
divide into capillary networks to facilitate gas exchange (near the alveolar
walls). Capillaries become venules and veins, returning blood from each lung
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to the left atrium via pulmonary arteries. The systemic circuit begins as blood
moves into the left ventricle and out the aorta (largest artery). The aorta
branches to coronary arteries (that feed cardiac muscle), arteries and arterioles
as it moves toward capillary networks near body tissues. At the capillary
networks, O2 and nutrients are exchanged for cellular metabolic products.
Capillaries become arterioles and arteries, returning blood to the right atrium
via the superior and inferior vena cavae (largest veins) (Marieb, 2015).

Figure 2.2: Interaction of the pulmonary and systemic circuits (Burkho�, 2002)

2.1.2 Anatomical Structures

Anatomy of the heart refers to the study of its sub-structures (viz. the cham-
bers, valves and papillary muscles) in the context of their functions. Figure
2.1 shows the 4 main divisions (chambers) of the heart; 2 smaller, upper (left
and right) atria, and 2 larger, lower (left and right) ventricles. The role of
the atria is to collect blood returned to the heart, acting as an intermediary
reservoir before blood enters the ventricles. Ventricles collect and pump blood
at high pressures out of the heart through the large arteries. All chambers
of the heart di�er signi�cantly based on their required pump capacities. Due
to low pressure blood returned to the heart, both atria have thin muscular
walls compared to ventricles. The crescent-shaped right ventricle muscular
wall is roughly ±3-5 mm thick, as it pumps blood to the lungs in a shorter
circuit. The asymmetric ellipsoidal left ventricle is distinguished by its thick
muscular wall (±1 cm); necessary for generating high pressures to pump blood
with enough force to reach parts of the body further away (against peripheral
resistance caused by arterial walls and decreasing diameters) (Marieb, 2015).
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The left and right chambers are separated by the muscular septum that
prevents blood on either side from intermingling. Between each atrium and
ventricle is an atrioventricular (AV) valve; a tricuspid valve on the right and
mitral valve on the left. AV valves are bound to papillary muscle projections
(chordae tendineae) that extend into the ventricles from their walls. Papillary
muscles contract with the ventricles and prevent valves from swinging back
into the atria. Semi-lunar valves occur between ventricles and arteries, and
open during ventricular contraction to allow blood into the aorta and pul-
monary artery. The pulmonary valve occurs between the right ventricle and
pulmonary artery, and the aortic valve is between the left ventricle and aorta.
AV valves prohibit back�ow of blood into the atria from ventricles during ven-
tricular contraction. Semi-lunar valves prohibit back�ow into the ventricles
from arteries during ventricular relaxation (Anatomy, 2017). The valvular
arrangement can be seen in Figure 2.3.

Figure 2.3: Arrangement of the 4 valves of the heart (Anatomy, 2017)

The walls of the heart consist of 3 functionally unique layers, as per Figure
2.4, described as follows:

1. The pericardium is a double-layered sac that encloses the heart and
attaches it to the vasculature leaving the heart. At the attachment sites,
the pericardium folds or re�ects back on itself and continues along the
muscular surface of the heart.

2. The myocardium is the thickest layer, consisting primarily of cardiac
muscle tissue organised in ring-like arrangement, as per Figure 2.5 - such
that ventricles twist upon contraction.
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Figure 2.4: Layers of the heart wall (Marieb, 2015)

Figure 2.5: Ring-like arrangement of cardiac muscles

3. The endocardium forms the inner lining of the chambers, continuous
with the attached blood vessels.

Cardiac muscle cells are cushioned by �brous connective tissue in branched
networks. When any portion of the network is stimulated by an impulse, con-
tractions across chamber/s occurs as a unit (Marieb, 2015). Cardiac muscle
cells are joined by junctions that facilitate impulse conductions that bring
about coordinated movements regulated by the conduction system. Cardiac
muscle cells are either myogenic or contractile. Myogenic cells are autorhyth-
mic and are where impulses (spontaneous depolarisation) originate that aid
rhythmic functioning. Contractile cells bring about muscle contractions in
response to impulse stimuli (Biga et al., 2019).

2.1.3 The Conduction System

The conduction (or electrical) system of the heart refers to the internal cir-
cuitry responsible for coordinating rhythmic contractions. This system com-
prises of nodes and/or strands of autorhythmic cardiac tissue located at speci�c
regions of the heart, seen in Figure 2.6. These tissues initiate and distribute
electrical impulses through cardiac muscle cells of the myocardium (Marieb,
2015).
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Figure 2.6: Components of the Conduction System of the Heart (Marieb, 2015)

The sinoatrial (SA) and atrioventricular (AV) nodes are small masses of au-
torhythmic cardiac tissue located beneath the epicardium of the right atrium.
Impulses initiated from the SA node are conducted through the atrial syn-
cytium (circuitry in the myocardium) bringing about atrial contractions. The
atrial and ventricular syncytium are connected by the AV node, through which
impulse conduction can continue. Impulse delayed (due to narrow �bres) at
the AV node allows time for the atria to (actively) discharge blood into the ven-
tricles. After the AV node, impulses are conducted through the bundle of His
(in the interventricular septum) and Purkinje �bres that spread throughout
cardiac muscles of ventricular walls and papillary muscles. Impulse stimulation
brings about ventricular contractions (Burkho�, 2002).

2.1.4 Basic Cardiac Physiology

Physiology of the heart includes a vast collection of knowledge encompassing
all mechanisms involved in its functioning. The theory presented in this sec-
tion summarises facets necessary for this project, and is tailored based on the
relationships / calculations used. The cardiac cycle is �rst outlined (§2.1.4.1)
before selected pressure-volume relationships are explored (§2.1.4.2). Most
of the information in this section comes from Burkho� (2002), unless stated
otherwise.
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2.1.4.1 The Cardiac Cycle

The cardiac cycle refers to the series of events that occur within the heart for
every heartbeat. Each cycle comprises the following phases: systole (contrac-
tion and ejection) and diastole (relaxation and �lling) - mostly used to describe
the ventricles. Systole occurs when cardiac muscles transform from maximally
relaxed to maximal mechanical activation. Diastole occurs when cardiac mus-
cles transform from maximally activated to maximally relaxed. Pressure and
volume changes for the left atrium, left ventricle and aorta during the cardiac
cycle are included in Figure 2.7 to aid event descriptions below:

Figure 2.7: Key Pressure and Volume curves for 1 Cardiac Cycle

� Pressure in the heart is low as it becomes completely relaxed (ventricular
diastole). Both AV valves are open, and blood actively �lls the ventricles
from the atria. Approximately 70% of atrial reserves enter the ventri-
cles before atrial contraction begins, forcing out much of the remainder.
Semi-lunar valves are closed during ventricular Filling.

� Contraction (ventricular systole) follows and ventricular pressure rapidly
increases. Once atrial pressure is exceeded, AV valves close and ventricles
begin Isovolumic Contraction (as both valves are closed) and ventricular
pressure increases with no change in volume.

� When ventricular pressure exceeds pressure in the large arteries, semi-
lunar valves open and Ejection begins. Low atrial pressures allow atrial
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�lling to begin for the next cardiac cycle. Ventricular pressure contin-
ues to rise (as the volume now decreases), reaching a maximum before
declining (onset of ventricular diastole).

� When ventricular pressure is below that of major arteries, semi-lunar
valves close and Isovolumic Relaxation occurs. The next cardiac cycle
begins as ventricular pressure fall below atrial pressure and AV valves
re-open.

2.1.4.2 Pressure-Volume Loops & Relationships

The cardiac cycle for the left ventricle can be represented as a Pressure vs.
Volume plot. This PV-Loop, seen in Figure 2.8, is read chronologically in
an anti-clockwise direction. The phase labels and coloured dots on the loop
coincide with the coloured lines in Figure 2.7, (except the pink dot). The
abbreviated labels are explained as follows:

Figure 2.8: Pressure-Volume Loop of the Left Ventricle for the Cardiac Cycle
(Burkho�, 2002)

� Pes: End-systolic pressure of the ventricle

� LAP: Left atrial pressure; below which AV valves open and ventricular
�lling begins.

� EDP: End-diastolic pressure; the point before ventricular systole where
there is maximal volume at minimal pressure.

� DBP/AoP: Diastolic blood pressure; occurs when ventricular pressure
equals aortic pressure (AoP) where semi-lunar valves open and ejection
begins.
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� SBP: Systolic blood pressure; the highest pressure attained during the
cardiac cycle (crest of ventricular and aortic pressure curves in Figure
2.7).

� ESV: End-systolic volume or minimum ventricular volume attained by
the end of ejection.

� EDV: End-diastolic volume or maximum ventricular volume as �lling
ends.

� SV: Stroke volume; the volume of blood ejected per cardiac.

A host of properties / relationships can be derived from the PV-loops about the
heart. Some examples include elastance, compliance, end-diastolic and end-
systolic pressure volume relationships (EDPVR and ESPVR, respectively).
Many of these relationships require pressure readings not included in the data
acquired, thus only those utilised for later calculations are discussed. These
include stroke volume, cardiac output and ejection fraction - all considerably
important parameters in practise and among other studies (Bizopoulos and
Koutsouris, 2019).

Blood Pressure:
Blood pressure is formally de�ned as the force exerted by blood against the
interior walls of blood vessels; usually referring to pressure in the arteries -
where it is highest (Marieb, 2015). Arterial pressures mimic those of the aorta
and heart as it moves through phases of the cardiac cycle. The arterial walls
distend upon blood in�ow but recoil quickly thereafter. Blood pressure is
a�ected by both blood volume and peripheral resistance. Pressure gradients
are responsible for driving passive blood �ow through the circulatory system
(Walley, 2016).

Stroke Volume (SV):
Arterial blood pressure is a function of heart rate (HR), volume of blood,
peripheral resistance (PR), blood viscosity and stroke volume. As seen in
Figure 2.8, stroke volume is calculated by the di�erence between the maximum
(EDV) and minimum (ESV) volumes of the left ventricle, as per Equation 2.1.1:

SV = EDV − ESV (2.1.1)

Cardiac Output (CO):
The cardiac output of a heart refers to the volume of blood discharged from
the left ventricle per minute; calculated by the product of SV and HR, as per
Equation 2.1.2:

CO = SV ∗HR (2.1.2)
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Ejection Fraction (EF):
In clinical practice, one of the older and most employed measures of contractil-
ity is ejection fraction. Ejection fraction is the ratio between the blood volume
ejected to the maximum ventricular volume; de�ned by Equation 2.1.3:

EF =
SV

EDV
∗ 100 (2.1.3)

As per the American Heart Association (2017), normal ranges of ejection frac-
tions lie between 55-70%; estimated by techniques such as nuclear imaging,
cardiac catheterization, CT scans or echocardiography. Certain abnormalities
such as Heart Failure result in ejection fractions below 40%. Ejection fraction
is still the much-preferred contractility index used in practice today as a result
of its �rm knowledge foundations and long use history (Silva et al., 2018).

2.1.5 Echocardiography

Echocardiography is the practise of utilising an ultrasound imaging modality to
non-invasively observe functionality of the human heart (Bizopoulos and Kout-
souris, 2019). When an echocardiogram is performed, the internal structures,
functioning and size of the heart can be viewed in real-time for the purpose of
examination (The Heart Foundation, 2017). One of the most e�ective tools for
accurate diagnoses (Jeanrenaud et al., 2015), standard 2D echocardiograms are
routinely performed and are the preferred option for identi�cation of cardio-
vascular diseases or normal functioning of all structural components (Mandes
et al., 2020).

Standard transthoracic echocardiograms are conducted by cardiac sonogra-
phers and involve moving a probe, over the speci�c windows of the chest's
surface, shown left in Figure 2.9 (Lohr and Sivanandam, 2015). Complete
echocardiogram examinations involve capturing around 12-16 di�erent views
of various anatomical structures; based on particular probe orientations at
the chest windows. Cardiologists require a combination of technical skill, at-
tention to detail, and holistic understanding of cardiac physiology, anatomy,
and physiopathology to diagnose a patient (Jeanrenaud et al., 2015). For this
project, apical 2-chamber views from standard transthoracic echocardiograms
were used to extract information of left heart structures, as per Figure 2.9
(right).

2.1.6 Cardiac Abnormalities

Many cardiovascular diseases (CVDs) that occur frequently today are due to
poor lifestyle choices or aging, may be hereditary, or a result of other dis-
eases. CVDs related to the heart speci�cally can occur in any of the subsys-
tems previously discussed. For example, electrical disorders (arrhythmias) are
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Figure 2.9: Standard chest windows for transducer positioning (left) and a
labelled apical 2-chamber view (right)

due to issues of the conduction system that result in irregular, disorganized
heartbeats. In this section, special attention is given to the cardiac abnormal-
ities included in the study. All content of previous sections described normal
functioning hearts, against which the selected abnormalities are contrasted
(American Heart Association, 2017):

1. Heart Failure (HF):
Heart failure occurs when cardiac muscles are not strong enough to ef-
�ciently pump blood to meet the demand of the body. It is a chronic
condition that continually progresses, forcing the heart and body to com-
pensate in other ways. The heart attempts to increase cardiac output by
enlarging (chamber volume), increasing muscle mass or simply beating
faster. The body compensates by narrowing blood vessels (to increase
pressure) or diverting blood away from non-vital organs. As the heart
and body cope less over time, the following mild symptoms surface: wet
coughs, shortness of breath during activity, swelling of lower limbs, rapid
weight gain, abdominal swelling/discomfort and trouble sleeping - all of
which intensify as the condition worsens. Heart failure with preserved
EF occurs when EF is normal; but can occur with reduced EF, where
EF is around 30-40%.

2. Left Ventricular Hypertrophy (LVH):
Hypertrophy refers to the enlargement/thickening of cardiac muscle cells
(of the left ventricle) which cause ine�cient pump functioning. Similar
to heart failure, the muscles of the left ventricle expand to cope with the
experienced demand. This works temporarily, but as the ventricle thick-
ens it becomes progressively weak and less elastic/sti�. The symptoms of
LVH, such as shortness of breath, fatigue or chest pain (in severe cases)
overlap with other heart conditions; and is accompanied by heart palpi-
tations or dizziness. LVH typically occurs due to high blood pressures,
diabetes, or heart valve issues.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 16

3. Myocardial Infarction (MI):
Myocardial Infarction (heart attack) is caused by narrowed coronary ar-
teries (due to blood clots or other causes) that restrict blood �ow /
oxygen supply to cardiac muscles. The muscles are damaged or killed,
thus causing a heart attack. The extent of damage is a function of how
long the vessel was blocked, time between the attack and medical inter-
vention, and the size of the area a�ected. Heart attacks are the result of
circulation issues, however can seldom be attributed to coronary artery
spasms or spontaneous tearing. Signs of an impending heart attack in-
clude periodic chest pains; pain or discomfort in one/both arms, neck,
back, stomach or jaw; shortness of breath; sporadic cold sweats; light-
headedness or nauseousness.

4. Heart Valve Complications:
Typically hereditary or self-developing, issues of any valve a�ects cardiac
output. Treatments of valve abnormalities usually involve blood-thinning
medications or valve replacement surgery. In this study, 2 aortic valve
instances were included:

� Aortic Regurgitation (AR):
Aortic (valve) regurgitation refers to a leaking aortic valve, in which
blood pumped out of the left ventricle leaks back in during dias-
tole. Since less blood (thus less oxygen) is pumped to the body,
the heart compensates for the di�erence by increasing work done.
Ventricle walls may thicken (as with LVH) resulting in ine�ective
pump functioning as cardiac muscles become fatigued and sti�en
over time. It is mostly caused by high blood pressure, aging valve
tissues, injury, untreated syphilis or a bacterial infection; resulting
in symptoms that overlap with HF and LVH.

� Aortic Stenosis (AS):
Aortic stenosis refers to atypical narrowing of the aortic valve open-
ing. Consequently, blood �ow and oxygen supply to the body are
restricted, and left atrial pressure may be a�ected. It is often the
result of bicuspid aortic valves; a congenital heart defect that de-
velops with age. Valve cusps may experience scarring or calcium
accumulation that narrows the valve opening. Symptoms overlap
with HF, with �uttering heartbeats and diminishing ability to do
daily tasks. AS can develop further by muscular thickening of the
left ventricle as a compensation measure to increase cardiac output
- ultimately leading to HF.
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2.2 Applied Machine Learning

This section includes literature required for the machine learning aspects of
the study. The theory summarises processing steps implemented from medical
data handling to the input requirements and evaluation methods of the selected
models. For the remainder of this section, Müller and Guido (2016) was the
main reference unless stated otherwise.

2.2.1 Medical Image Processing

Medical data can be collected from a multitude of (primary or secondary)
sources in both qualitative and quantitative formats (NIH, 2021). Some of
these formats include measurements, visual or audio formats, electrical signals
or physical samples. Echocardiogram data speci�cally, is output in the form
of images and videos. To be used as appropriate input data to any machine
learning algorithm, various pre-processing steps must occur - with speci�cs
being a function of the algorithm used. In the case of Random Forests and
Neural Networks, features from the images must be extracted and input as 1D
arrays - necessitating the use of computer vision techniques.

Computer Vision is a branch of computer science that aims to create systems
that mimic the manner in which humans analyse images. These systems enable
computers to analyse images at pixel-level before they can understand the
content, and thus recognise or interpret graphic data (Babich, 2020). Common
computer vision applications can be categorised into object detection, object
classi�cation or object tracking; with examples in the works of Chen et al.

(2014), (Panda, 2018), and Jiang et al. (2020), respectively. Based on the
underlining objective, many methods and platforms exist for image processing.
Commonly applied steps include binarization, morphological operations and
edge detections; all adopted in this project and described as follows:

Binarization
As per Thapliyal et al. (2017), binarization was a crucial �rst step for successive
edge detection steps. Binarizing an image involves converting the pixel values
of an image to be 1 of 2 values; namely 255 (white) or 0 (black). The degree
of binarization is a function of a prede�ned threshold applied to image pixels.
An example of a binarized image can be found in Figure 2.10.

Morphological Operators
Morphological operations are applied sets of kernels (matrices) that achieve
various image e�ects by manipulating pixel gradients. Common examples in-
clude embossing, altering contrast or sharpening e�ects; less common examples
include noise injection, dilation and erosion. Noise injection involves adding
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Figure 2.10: Example of Binarization, Erosion and Dilution e�ects on an image
(OpenCV, 2021)

a randomly initialized 2D matrix (containing values in the range of pixel val-
ues) to an image, introducing haphazard colour/brightness variations (Portilla,
2018). Dilations and erosions are opposing functions; dilation serves to extend
or thicken the boundaries of image features, while erosion shrinks boundaries,
as seen in Figure 2.10. Dilations are performed by increasing pixel values of
a neighbourhood (of some kernel size) to the highest pixel value within the
neighbourhood; whereas erosions assign the lowest pixel values.

Edge Detection: Watershed Algorithm
The Watershed algorithm is a method of image segmentation, whereby objects
in an image are distinguished from one another. The algorithm is based on
the Watershed Transformation: Gradients of greyscale images are considered
to resemble a topographic map. The map consists local minima (dark) and
maxima (light), de�ned by pixel values. Assuming the topographic region
�oods - where hypothetical water �lls the region submerging the global min-
imum �rst - until sure local maxima are left; providing information of where
boundaries exist. An example of this is taken from OpenCV (2021) documen-
tation, using the original image of Figure 2.10, various stages of the Watershed
algorithm can be seen in Figure 2.11.

2.2.2 Machine Learning

Machine learning entails obtaining knowledge from data and is the meeting
point of �elds such as mathematics, statistics and computer science. There are
countless applications of machine learning, limited only by human imagination
and resources. In this technological era, machine learning is present in many
facets of everyday life. Some examples encountered daily are embedded in
cell phone applications, search engines, social media, production lines and
telecommunication systems (Vashistha, 2019). Data is harvested through these
platforms to improve the machine learning algorithms operating behind the
scenes or to drive new research and developments.
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Figure 2.11: Intermediary steps of the Watershed algorithm (OpenCV, 2021)

2.2.2.1 Supervised Machine Learning

Machine learning algorithms are either unsupervised or supervised, based on
the manner in which they learn. Unsupervised learning involves providing
an algorithm with input data in which patterns must be found without prior
knowledge of what to look for. Supervised learning involves model learning
guided by expected outputs provided for each sample (Bizopoulos and Kout-
souris, 2019). Supervised machine learning problems can be categorised as
either regression or classi�cation. Regression tasks are associated with predic-
tions of continuous or real numbers, such as the prediction of housing prices
(Kaggle, 2016). Classi�cation tasks are those where the correct label, or class,
must be predicted from a list of prede�ned classes. Examples include a bi-

nary (2 classes) classi�cation task for emails identi�ed as spam or not spam,
respectively (Awad, 2011).

Many classi�cation problems are multi-class ; having more than 2 output
classes. Each sample �ts into 1 of many classes; such as classi�cation of fruit,
where each sample can only have one label. Other classi�cation problems
are multi-label, whereby samples in the data belong to more than 1 class;
such as topic prediction for text or video sample, with many applicable labels
like religion and politics (Scikit-learn, 2007). Multi-output problems are both
multi-class and multi-label; as is with the classi�cation task of this research
where a fraction of the input data contains 2/3 labels (some patients have
more than one abnormality).

The supervised machine learning models selected for this study include Ran-
dom Forests and Neural Networks. Both methods are among the supervised
machine learning algorithms in Python's Scikit-learn package capable of han-
dling multi-output classi�cation problems.
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2.2.2.2 Random Forests

Random Forests (RF) is an ensemble method whereby multiple models (viz.
Decision Trees) are combined to improve overall performance of the single
model. Decision Tree models make decisions based on a learned hierarchy
but tend to over�t the training data (explained in §2.2.5.1). Random Forests
circumvent this tendency by its internal structure. For the speci�ed number
of trees (estimators) per forest, each tree is built with randomness injected
to force variation among all trees. Each tree in the forest makes its own
prediction on a random subset of the input data (known as "bagging" or
Bootstrap Aggregation). With each individual tree slightly over�tting the
data in di�ering ways, their averaged results serve to diminish over�tting in
the forest. This is based on the concept of the "wisdom of crowds", where a
committee of uncorrelated trees outperform individual trees (Yui, 2019).

Random Forests have various strengths and weaknesses identi�ed in practise.
One of their major advantages is they make up for the de�cits of individual De-
cision Trees, with regards to over�tting while expanding overall capacity. They
are also among the most popular machine learning methods; requiring minimal
hyperparameter tuning or data scaling and operating well on default param-
eters. Some disadvantages include tendencies to perform poorly on sparse or
considerably high dimensional datasets, they are more computationally expen-
sive (due to size), and results are more di�cult to interpret.

2.2.2.3 Neural Networks

Neural Networks (NN) refer to a collection of deep learning models inspired
by biological principles and how the human brain learns. The building block
of Neural Networks is the perceptron. They are comprised of numerous per-
ceptrons in multiple layers that perform di�erent steps of processing before
the network arrives at a decision. Neural Network internal structures imitate
neurons and neural pathways of the brain, seen in Figure 2.12.

Figure 2.12: Inspiration of Neurons for Perceptrons of a Neural Network (Por-
tilla, 2018)
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Each perceptron applies some nonlinear (activation) function to its learned
weights (w), bias term (b) and data variables (x); as per Equation 2.2.1 (Por-
tilla, 2018). There is one weight between every unit (perceptron) in one layer
and every unit in the next immediate layer. These models, thus, have large
computational loads given the number of weights to learn. The activation
functions applied at each unit is usually the recti�ed linear unit (ReLU) or
sigmoid/hyperbolic tangent (tanh). In this project, and typically for classi-
�cation tasks, both activation functions are used; ReLU for all hidden layer
units except the second last layer where the sigmoid function is used (Brownlee,
2016).

n∑
i=0

wixi + b (2.2.1)

One of the advantages of Neural Networks is that they are highly customisable
with many parameters to tune to improve model performances - with many
defaults also working relatively well. Another advantageous property is the
random initialisation of weights at the onset of training and the inclusion of
bias - facilitating better �ts as training progresses. The disadvantages are that
Neural Network training is computationally expensive, they are very sensitive
to data scales and require relatively homogeneous data (where features have
similar value).

2.2.3 Data Augmentation Techniques

Large datasets are one of the most e�ective and reliable ways to improve the
performance of any machine learning algorithm; especially for complex (inher-
ent patterns) datasets or complex (large) models. However, since ideal data
amounts may be in the order of thousands, data acquisition is capped under
generally limited conditions (Ng, 2015). One solution is data augmentation;
whereby synthetically modi�ed data is generated from original data to increase
the amount of samples (m) available for model training and testing (Nolen,
2019). For image data, one way to synthesize data is to apply transformations
(translations, rotations, re�ections) or inject noise. Data augmentations en-
sure su�cient data for model development, equalise slightly skewed datasets,
or aid in improving model robustness to outliers (Raj, 2018) and noise (Lit-
jens et al., 2019). For this research, the data was augmented by the following
means using OpenCV functions:

� Clockwise and counter-clockwise rotations were applied to input images
about image centres.

� x- and y-translations involve o�setting all pixels by variables speci�ed
for either direction.
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� Black noise injections involve the addition of randomly located black
pixels to the image, distorting the lighter (grey/white) foreground.

Suitable augments were chosen to synthesize data while preserving the essence
of the original images in latter steps.

2.2.4 Feature Selection

Features are simply all variables present in a dataset. Feature selection, there-
fore, refers to techniques of evaluating all features of a dataset to identify the
most informative ones. Features are regarded as informative based on the
degree to which they inform the model about the desired output. Careful
selection involves removing or creating features that improve model perfor-
mance (Guhanesvar, 2021). There are 3 strategies used in practise for feature
selection:

1. Univariate Statistics:
Univariate statistical methods use con�dence values to determine corre-
lations between individual features and target variable/s. One example is
Mutual Information (Information Theory), de�ned as the measure of un-
certainty (entropy) between 2 variables. It evaluates the degree to which
the (known) feature reduces uncertainty about the (unknown) target.
For multi-class classi�cation, mutual information scores are determined
between each feature and each class. Mutual information scores are
non-negative: higher values (never greater than 2) indicate stronger de-
pendency, lower values indicate lower dependency and 0 implying mutual
independence. They are simple to implement and interpret, computa-
tionally e�cient, and robust to relationships of higher orders (Holbrook,
2021). Score are obtained from training sets and may inform successive
decisions on model selection/parameters.

2. Model-based Feature Selection:
This method entails using another supervised learning model to assess
the importance of each feature before making a selection; thus more
powerful than univariate tests. All features are considered altogether
with their respective inter-feature relationships. Further details on this
method are excluded as it was not used in the study.

3. Iterative Feature Selection:
Multiple models are built with di�ering combinations of features included
from their training datasets. For this approach, 1 of the following 2 iter-
ative methods are undertaken until some prede�ned criteria is satis�ed:

� Either begin with 0 features and adding 1 at a time, or

� Begin with all features included and remove 1 at a time
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Features are only as informative to the extent that the model implemented
can learn its relation to the target. In some cases, features may need further
engineering to reveal associations learnable to a model. Feature engineering or
selections must be guided by speci�c domain knowledge. Appropriate consid-
eration must be given to features best for the model and those most relevant
to the domain. This ensures models are e�ective when deployed into indus-
try/practice.

2.2.5 Evaluation Methods

A vital part of model development is keeping in mind the overall goal (business
metric) and the consequences of the model outputs (business impact). Model
parameters, features and architectures should be decided based on what is
most favourable in these two aspects. Another key aspect is robust evaluation;
to ensure model performances are meaningful for their intended context. The
errors/performances produced must be properly represented and accounted for
with respect to the context. For medical practise, the type of errors that occur
hold varying implications as human lives and resources are at stake.

2.2.5.1 Performance Metrics

Performance metric scores are some of the many ways to evaluate the pre-
dicted outputs of a model. Di�erent scores reveal di�erent characteristics /
capabilities of a model; valuable for assessing key aspects of its behaviour.
These assessments direct further improvements and/or give indications about
how the model will perform in its desired context. From the consortium of
performance metrics available, the Confusion Matrix and some of its derived
metrics were utilized. Confusion Matrices are among the most comprehensive
approaches when evaluating binary classi�cation results with a positive and
negative class. It is constructed by comparing each prediction of the model
against the true labels (for each class in multi-class instances) and classifying
the prediction in one of the following categories:

1. True Negative (TN): correctly predicted negative sample

2. False Positive (FP): incorrectly predicted positive (true label is negative)

3. False Negative (FN): incorrectly predicted negative (true label is posi-
tive)

4. True Positive (TP): correctly predicted positive sample

Categories are then tallied and represented in a Confusion Matrix, as seen
in Figure 2.13. From di�erent combinations of these tallies, the following
performance metrics are de�ned:
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Figure 2.13: Confusion Matrix layout for Binary Classi�cation

� Accuracy: a measure of all correct predictions as a fraction of the total
number of predictions; de�ned by Equation 2.2.2

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2.2)

� Precision: correctly predicted positives as a fraction of all (correctly
and incorrectly) predicted positives; de�ned in Equation 2.2.3

Precision =
TP

TP + FP
(2.2.3)

Precision is used to assess the number of false positives predicted with
the goal of reducing them.

� Recall: correctly predicted positives as a fraction of all true positives;
de�ned by Equation 2.2.4

Recall =
TP

TP + FN
(2.2.4)

Recall is used to monitor the occurrences of false negative predictions.

� F1-score: a measure of the trade-o� between Recall (false negatives)
and Precision (false positives), providing insight about a model's false
predictions. The F1-score refers to the Fβ score in Equation 2.2.5 when
β = 1; representing the harmonic mean between Recall and Precision.

Fβ = (1 + β2)
Precision ∗Recall

(β2Precision) +Recall
(2.2.5)

Fβ=1 =
2 ∗ Precision ∗Recall
Precision+Recall

(2.2.6)

For multi-class classi�cation problems, all performance metrics are obtained
by treating the problem as a collection of binary classi�cation problems (equal
to the number of output classes) and averaging across all classes. Average
weightings are varied based on how imbalanced the dataset is.

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 2. LITERATURE REVIEW 25

The information present in all datasets can be classi�ed as signal (infor-
mative) or noise (non-informative). The noise present in a dataset can either
assist in building robust models or be detrimental by obscuring underlying pat-
terns or contributing to model error. Error that measures how much the output
di�ers from the target value is referred to as Loss. For each epoch (iteration)
during model training, loss can be calculated as a quantitative measure (Jose,
2019). For this project, binary cross-entropy was used as the loss function, as
it accommodates multi-output classi�cation (TensorFlow, 2021).

2.2.5.2 Learning Curves

A Learning Curve is a mathematical representation of a model's performance
over time (experience) (Brownlee, 2019). Before being adopted into machine
learning, Learning Curves were used as to measure the e�ect on production
when (i) engineering changes or (ii) workforce training was introduced (Adler
and Clark, 1991). Learning curves were thus created as tools to assess the per-
formance of sta� over time exposed to a new variable in their daily tasks (An-
zanello and Fogliatto, 2011). As repetitions continued, workers took less time
to perform the new tasks and production increased with familiarity. Learn-
ing curves are used in a similar way for diagnosing machine learning models.
During training, performance metrics are tracked per iteration as the train-
ing subset increases incrementally (per epoch). Loss and Accuracy are most
commonly used to construct the Learning curves of the model and diagnose
learning behaviours (Jose, 2019), such as the following:

Learning Rates
The Learning Rate refers to extent to which weights of a model are adjusted
per epoch. They are identi�ed by the rate of change of the (training) Loss
curve gradient. Some examples of learning rates deduced from Loss curves are
seen in Figure 2.14. The lower learning rates appear more linear, but become
exponential with further increases. Tuning the learning rate forms part of the
optimisation strategy for a given model and can positively a�ect performance
if selected carefully (Peace et al., 2015).

Model generalisation
Poor predictive abilities arise when models over�t or under�t their training
data; reducing their ability to generalise new data. Over�tting occurs when
the model, having excess complexity (model size), learns the noise or particu-
larities of the training data. The performance on the training set is typically
much better in comparison to that of the test set. Under�tting occurs when
the model is not su�ciently complex to capture inherent patterns of the data,
performing poorly for both the train and test sets. The ideal model generali-
sation is the sweet-spot between these two extremes.
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Figure 2.14: Loss Learning Curves with di�ering Learning Rates (Venugopal
and Ramaswamy, 2015)

Model generalisation is diagnosed by the shape of the performance metric
curves of both training and validation subsets. For example, Figure 2.15 shows
sketches of hypothetical accuracy curves. The gaps present between the train-
ing and validation curves is indicative of the degree of over�tting present (Jose,
2019). Ideally, accuracy (and other performance metrics) training curves are
minimally higher than their corresponding validation curves; although for loss
curves, training curves are ideally minimally lower than validation curves. Un-
der�t models display training and validation curves at low values that (may
temporarily increase but) usually continue decreasing as learning progresses
(Muralidhar, 2021).

Figure 2.15: Degrees of Over�tting observed from Accuracy Learning Curves
(Venugopal and Ramaswamy, 2015)
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Data Representativeness
Data representativeness refers to how well a data subset (training and/or val-
idation) captures the statistical attributes present in another subset drawn
from the same domain (Brownlee, 2019). Unrepresentative data is usually a
case of insu�cient samples in one subset compared to the other, such as in
the case where data classes are imbalanced. This can be seen when comparing
training and validation curves for the same metric. Referring to Loss curves,
unrepresentative data can be distinguished as follows:

� Training data: When the training subset is unrepresentative, it does
not contain enough information (samples or learnable patterns) for the
model to learn or generalise for the given validation subset. The loss
learning curves for this instance contain a consistent considerable gap
between the training and validation curves despite both showing im-
provement over time.

� Validation data: When the validation subset is unrepresentative, the
model's ability to generalise cannot be properly evaluated. The valida-
tion data is either too easy or not su�ciently related (to the training
data) for the model to predict. This occurs when the validation sub-
set contains too few samples compared to the training set. On learning
curves, this may be identi�ed by (i) the presence of a lower validation
than training loss; or (ii) if the validation loss is consistently noisy rela-
tive to the training loss.
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3 Methodology

The following chapter details the approach executed to meet the aims and
objectives of this research project. The most important factors regarding the
study population chosen are discussed in §3.1 as per internal (Stellenbosch
University) and external (sourcing hospital) institutional requirements for the
use of human subjects in research. Previous work (§3.2), thereafter, contains
a discussion on other endeavours investigating the use of machine learning in
cardiology, speci�cally those used to identify pathologies. Lastly, Experimental
Work (§3.3) includes a detailed discussion on practical steps involving all work
with acquired data and the various machine learning models. The methods
for each phase from input preparations to model development and evaluations
is detailed in this section. The following terms are used interchangeably for
the remainder of this report: (i) target variables and labels and (ii) test and
validation. As per request of the sourcing hospital and associated sta�, any
identifying information was not to be included in this report.

3.1 Sample Selection

Since data of human subjects were used in this study, Ethical Clearance was
required both internally and externally. In the proposal submitted to both
Ethics committees, assurance of involved persons identity protection and de-
mographic diversity / bias negation were among the most important consider-
ations before �nal clearance could be granted. Details on (i) Randomisation,
Con�dentiality and Bias measures, (ii) Data Collection and Management and
(iii) Project Commencement Plan can be found in Appendix D; in §D.1.1,
§D.1.2 and §D.1.3, respectively. The remainder on this section discusses how
the study population was selected with the removal of bias by means of an
Exclusion-Inclusion criterion.

The Study Population is a target group of patients that satisfy a unique cri-
terion that qualify them as observable subjects in answering a research question
(Garg, 2016). The patients included were sampled from a larger population
from the sourcing hospital's echocardiogram archives. Generally, for clinical
trials, sampling is restricted to what is available from the source, some pre-

28
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de�ned criteria or desired sample size (determined statistically). However, in
machine learning applications, there are generally no upper bounds on the
amount of data to use (Ng, 2015). The sample size needed depends on the
complexity of the model or problem. The sample size must be su�ciently
large enough to represent the population. The higher the quality and wider
the variety of data available to train a model, the greater the corresponding
performance with regard to predictive capabilities.

Patients were selected for the study by means of an Exclusion-Inclusion
criterion - seen in Table 3.1. An Exclusion-Inclusion criterion is used as part
of a clinical trial to identify eligible patients who can/cannot be considered
for the study in an objective and consistent manner. Patients recruited in
this manner ensure suitability (to the study) and minimal bias of the study
population. Further details regarding randomisation measures, con�dentiality
considerations and bias mitigations can be found in Appendix D (§D.1.1).

Table 3.1: Exclusion-Inclusion Criterion

Exclusion Inclusion
Patient cases lacking apical 2- Patient cases with apical 2-

chamber views chamber views
Patients tested before 2016 Patients tested between 2016-2020

Patient cases where noise heavily Patients diagnosed with a
distorts video frames shortlisted pathology

3.2 Previous Work: Machine Learning in

Cardiology

Previously, diagnosis of a patient rested solely on the shoulders of a medi-
cal professional or physician. Ultimately, diagnosis is a function of their as-
sessment method, training, experience, access to medical history and suitable
equipment (Bizopoulos and Koutsouris, 2019). Physicians proceed to subjec-
tively interpret and match the patient's information to some traditional tax-
onomy of medical conditions. Coupled with earlier, less sophisticated imaging
techniques and signi�cant manual tuning, these methods collectively serve to
exacerbate errors. Before the advent of advanced imaging modalities in the
domain of cardiology, relevant clinical indicators were obtained o� cardiovascu-
lar images in the same error-prone manner. Since the introduction of machine
learning into specialised medical and routine clinical practices, modern systems
allow physicians to capture information more accurately (Litjens et al., 2019).
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The remainder of this subsection summarises a range of recent works with
respect to cardiology, echocardiography and automated diagnostics research.

Venugopal and Ramaswamy (2015) sought to investigate a method hypothe-
sized to allow early detection of heart disease. The dataset, sourced during the
2015 Kaggle Data Science Bowl (Kaggle, 2015), consisted of 500 anonymised
MRI's with 30 time series images each. This data was fed into convolutional
neural network (CNN) models of di�ering architectures to estimate and pre-
dict volumes associated with di�erent stages of the cardiac cycle. The output
was then used to assess how likely a patient was to experience heart disease,
evaluated using the prescribed metric of Continuous Ranked Probability Score
(CRPS) - description in Appendix D.2. Their best model was a 7-layered net-
work that resulted in a 0.032 CRPS (where smaller scores are desired), earning
the duo a place in the Top 20%.

Walley (2016) investigated left-ventricular functioning from a physiological
point of view by measuring and characterising time-varying elastances. In-
corporating physiological relationships, such as those de�ned in §2.1.4, new
insights were uncovered about ventricular function and its role in regulating
cardiac output. The match or mismatch of ventricular and aortic elastances
were key in qualifying mechanical loads on the heart resulting from vasculature
interactions. Another study by Bozkurt (2019) also used mathematical mod-
elling to assess cardiac function by making use of heart chamber geometries.
Inclusion of physiological relationships further allowed haemodynamic indica-
tors to be incorporated. LV ejection fraction, end-diastolic and end-systolic
volumes and sphericity indices could also be estimated. This study success-
fully proved a feasible model for healthy and dilated cardiomyopathy (DCM)
cases in both adults and children.

In 2018, much research was published investigating automated echocardio-
gram diagnoses in e�orts to further improve predictive accuracy of machine
learning models. Three such examples follow:

� Two such studies were undertaken by Madani et al. (2018) and Zhang
et al. (2018). Madani et al. (2018) sought to investigate a deep learning
solution addressing the issue of unannotated data and the lack of acces-
sible databases - typical of medical image data. Using supervised and
semi-supervised learning approaches, they developed 2 models to perform
view classi�cation and LV hypertrophy classi�cation on echocardiogram
images. They conclude their study with deep learning solutions for car-
diac assessments made from medical imaging.

� Zhang et al. (2018) designed a similar model to include cardiac chamber
segmentation and detection of 3 additional pathologies. Segmentation
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results were used to estimate LV volume, mass and ejection fractions.
Additionally, longitudinal strains were deduced using speckle tracking
techniques. The model built was of a CNN architecture trained on >14
000 echocardiograms for all the various tasks with impressive results
obtained.

� A study by Silva et al. (2018) used a 3D-CNN to classify ejection fractions
into 4 classes; unhealthy, intermediate, healthy and abnormally high. A
dataset of 5600 transthoracic exams was used to train and test the model.
The exams consisted of apical 4-chamber view cine-loops consisting of 30
sequential frames each. Their study investigated interesting architecture
adjustments, exploring the e�ects of asymmetric convolution �lters and
residual learning blocks.

Ghorbani et al. (2020) stretched the capabilities of their deep learning model,
EchoNet, in the identi�cation of cardiac structures, cardiac function estimation
and prediction of systemic phenotypes, exceeding the scope of expert interpre-
tations. The model could predict certain abnormalities, LV end-systolic and
end-diastolic volumes, and systemic phenotypes of sex, age, height and weight
from echocardiogram information only. An interpretation analysis validated
that EchoNet could identify regions of interest (ROIs) coinciding with those
observed in practice by cardiologists.

3.3 Experimental Work

This section focuses on the practical work-�ow of the project, design decisions
and methodology of individual steps. It documents the Image Pre-processing
(§3.3.1) steps followed prior to Model Input Preparation (§3.3.2), which ex-
pands on model features extracted. Model Development details model param-
eters and iterative training procedures. Lastly, Model Performance Evaluation
(§3.3.4) explains the approach used to assess the model performances and pre-
dictions on test data. Finally, considering all tests, the most successful model
instances are compared before a Final Model Selection (§3.3.5) concludes the
practical work�ow.

A schematic representation of the solution pipeline utilised in this project
can be seen in Figure 3.1. The main work order is denoted by the bold chain
(text and arrows) in the diagram, from Start to End. The �ow of information
and related inputs/outputs of each step are included in side branches. The
groupings (colour blocks) in the schematic coincide with successive sections
for the remainder of this chapter and Chapter 4.
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Figure 3.1: Solution Pipeline

3.3.1 Image Pre-processing

The pre-processing procedures involved with "neatening" the raw data derived
from the videos, before being prepared for the model, have been divided into
the following steps:

1. Initial Processing

� Video Frame Isolation: all video data was separated into individual
frames before successive augmentations could take place.

� Conversion to Greyscale: this was done in preparation for the bi-
narization step that forms part of later image processing.

2. Data Augmentation
Data obtained from the sourcing hospital was considered insu�cient
when compared to the typical amounts of data required to train simple-
to-complex machine learning algorithms (as per examples in §3.2). In
this case, only 406 patient cases (break down in Table 3.3) were able to
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be collected in the allocated time for data acquisition. Therefore, for re-
alistic synthetic data, subtle (small ranged) augmentations were made to
the existing cases, extending the data to 1 183 cases (200 per pathology
with some multi-label samples). The methods and ranges of augmenta-
tions chosen, listed below, were applied in random combinations to all
cases per pathology until the target number (200) was met:

� Rotations in a degree range of [-5,5] were randomly selected and
applied using SciPy 's ndimage.rotate to an input image.

� Di�ering translations in both x- and y-directions (denoted tx and ty
respectively) were randomly selected from a pixel range of [-20,20].
Translations were applied to individual frames using OpenCV 's
warpA�ne function by means of the translation matrix in Equation
3.3.1.

Tmat =

[
1 0 tx
0 1 ty

]
(3.3.1)

� Black noise was introduced by the addition of a dense matrix (of 0's
and -255's for black and white, respectively) using Numpy 's function
random.randint.

3.3.2 Model Input Preparation

This phase includes the preparation of data from augmented inputs to suitable
model inputs. This involves further processing of the images for measurement
extractions. These measurements allow for calculations of geometric parame-
ters that de�ne model input features.

1. Frame Selection
Frames that most clearly showed one cardiac cycle were selected manu-
ally; all frames between two consecutive maximally relaxed (diastole)
states were included. This facilitated the identi�cation of key tem-
poral attributes associated with maximum contraction (minimal vol-
ume) and maximum relaxation (maximum volume) for parameter cal-
culations/features.

2. Image Processing (FIJI)
FIJI was used to identify boundaries on the images by applying a range
of standard plug-ins. All images in a case were processed as single image
stacks. Whole stacks were converted to HSB stacks, before binarizing
and denoising processes followed. The Watershed plug-in was applied to
the images, demarcating the foreground in smaller shapes from which
measurements (such as centroids or areas) could be extracted. This
process was automated and applied as a FIJI macro (script �le); a �ow
diagram of which can be seen in Appendix D.3, Figure D.1.
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3. Parameter Calculations & Feature De�nitions
Many models in reviewed literature specify the need for consistency be-
tween the input variables, such as an equal number of frames per image
stack/video processed, images of the same dimensions (Bozkurt, 2019), or
in the case of echocardiograms, videos of a single cardiac cycle (Ouyang
et al., 2020). Since Random Forest Classi�ers and simple Neural Net-
works were used, whole image stacks could not be processed. There-
fore, (pixel) measurements were geometrically derived for feature de�ni-
tions/calculations.

Parameter calculations are based on the equations and relationships
de�ned in §2.1.4; such as for cardiac output, stroke volume and ejec-
tion fraction. Dynamic volumes were calculated under the assumption
that the left ventricle shape could be approximated as half an ellipsoid
(Marieb, 2015). Other parameters included were from patient electronic
medical records (EMR); such as age, gender and heart rate during test-
ing. Certain features, although clinically signi�cant, were excluded as
key values for calculations were unavailable; such as pressure as it is not
routinely (dynamically) tracked.

Post FIJI processing, data for each case existed as 2D arrays; with
measurements extracted from each slice representing a speci�c times-
tamp. The mean (avg), standard deviation (SD) and variance (VAR)
of all time-varying parameters were recorded to capture dynamic be-
havioural aspects during each cardiac cycle. All dynamic characteristics
associated with maximum and minimum volumes of the cardiac cycle
were included. These summarised dynamic, statistic and static (EMR)
parameters comprise the �nal 48 features; listed in Table 3.2.

4. De�nition of Output Classes
The output classes are based on the 6 pathologies listed in Table 3.3.
Their abbreviated names will be used to refer to the pathologies for the
remainder of this report.
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Table 3.2: Input Features to Models with Variable Names in parentheses

Summarised Dynamic Features:
Minimum Volume [Vmin] Maximum Volume [Vmax]
Area @ min Vol [A_vmin] Area @ max Vol [A_vmax]
Centroid coordinate @ Vmin [Xc_min] Centroid coordinate @ Vmax [Xc_max]
Centroid coordinate @ Vmin [Yc_min] Centroid coordinate @ Vmax [Yc_max]
Centerline gradient @ Vmin [m_min] Centerline gradient @ Vmax [m_max]
Centerline intercept @ Vmin [b_min] Centerline intercept @ Vmax [b_max]
Minor axis radius @ Vmin [a_min] Minor axis radius @ Vmax [a_max]
Major axis radius @ Vmin [c_min] Major axis radius @ Vmax [c_max]
Timestamp @ Vmin [t_min] Timestamp @ Vmax [t_max]
Static Features Statistical Features
Gender Volume: V_avg, V_SD, V_VAR
Age Area: A_avg, A_SD, A_VAR
Test year x-coordinate: Xc_avg
2C,3C,4C Heart Rates [HR2/3/4] y-coordinate: Yc_avg
Stroke Volume [SV] Gradient m: m_avg, m_SD, m_VAR
Cardiac Output [CO] Intercept b: b_avg, b_SD, b_VAR
Ejection Fraction [EF] Minor radius a: a_avg, a_SD, a_VAR
Time per cycle [1cycl_dur] Major radius c: c_avg, c_SD, c_VAR

Table 3.3: Pathologies, Abbreviations and Unaugmented case Totals

Pathology Abbreviation No. cases
Normal N 106

Heart Failure HF 58
Left Ventricular Hypertrophy LVH 41

Myocardial Infarction MI 100
Aortic Regurgitation AR 42

Aortic Stenosis AS 59

5. Model Pre-processing
Pre-processing of input features was necessary prior to model training.
These steps involved imputations of missing values with a Simple Im-

puter, scaling numerical data (using a Min-Max Scaler), discretizing cat-
egorical data and target labels (whose entries were strings) by using a
One-hot encoder andMulti-label Binarizer respectively. All functions are
from Scikit-learn's Impute and Preprocessing packages; using mostly de-
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fault parameters except where otherwise required. Train and test subsets
were processed separately to avoid information leakage across the sub-
sets; as pre-processing steps were �t to training sets and labels before
being used to transform the test set and labels, respectively.

3.3.3 Model Development

The Model Development phase involved the general steps associated with train-
ing, iterating and testing model instances. The three steps from Figure 3.1
can be described as follows:

1. Model Construction
Two types of models were developed side-by-side to investigate the dif-
ferences between an ensemble model and a deep learning model for the
classi�cation task at hand. The model types chosen were:

� Random Forests adapted for multi-output classi�cation

� Neural Networks

Multiple model instances of varying dimensions for each model type were
created to be tested. The models were also made to output comparable
scoring metrics; including Accuracy, Recall, Precision and (occasionally)
F1-score for successive comparisons and evaluations.

The Random Forest model instances were created for all combina-
tions of the following parameters and scoring methods:

� Number of estimators (E): 100, 150, 200, 250, 300, 350, 400, 450,
500

� Depths (D): 4, 8, 16

� Metrics: Multi-label Confusion Matrix: entries were used to cal-
culate the Accuracy, Recall, Precision and F1-score for each target
variable. Averaged metrics were used for all comparisons.

The Neural Network model instances were created similarly, investi-
gating the following parameters and scoring methods:

� Depths/Hidden layers (D): 1, 2, 3

� Widths/Neurons per hidden layer (W): 16, 64, 256

� Additions to hidden layers: Batch Normalisation, Dropout (30%),
and ReLU Activation

� Addition to last layer: Sigmoid Activation

� Layer connection types: Dense
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� Metrics: The models were compiled to output Accuracy, Recall and
Precision. F1-score was calculated according to the formulae in
Equation 2.2.6 for comparisons (with Random Forests).

� Call backs: Models were compiled with Early Stopping where learn-
ing ceased after 15 epochs of no improvement (Patience) or if ab-
solute change <0.001 (Minimum delta). The restore_best_weights
argument was also activated; thus, the models were saved with the
weights from epochs with the best scores.

2. Model Training
This phase involved training all models through the respective tests with
their associated features, discussed below (§3.3.4).

3.3.4 Model Performance Evaluation

This phase of the pipeline included �nal testing and outputting of performance
metrics of the models. Individual steps as per Figure 3.1 thus follow:

1. Model Testing
To investigate the capabilities and/or preferences of the models all under-
went various tests to identify the best suited model for the classi�cation
task. In order of application, test details follow:

� Engineering Tests: involved removing "medical" features consid-
ered to be more relevant to health care professionals. The aim of
these tests was to investigate the predictive capabilities of the model
as it relies increasingly on "engineering"/geometric features. Medi-
cal features were removed individually then cumulatively until only
engineering features - those derived from the images - remained. All
models used a train-test ratio of 0.8-0.2, and features removed per
test are tabulated in Table 3.4.

� Medical Tests: similar to the above approach, involved the removal
of engineering features until only medical features remained. The
aim of this test was to investigate the degree to which patient data
assists the predictive abilities of a model. Models were developed
with an 0.8-0.2 train-test ratio, with features removed speci�ed in
Table 3.4.
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Table 3.4: Engineering and Medical Tests: Test names and associ-
ated features removed

Test Number/s Description
E Denotes Engineering tests
M Denotes Medical tests
EM 0 Baseline test where all features were included
E/M 12,123, Combinations of test numbers indicate that

1234,12345, features associated with individual numbers
123456 (below) were cumulatively removed

E 1 All Heart Rate features removed
E 2 Age removed
E 3 Gender removed
E 4 Test year removed
E 5 Single cycle duration removed
M 1 Y-intercept data removed
M 2 Centroid data removed
M 3 Center axis data removed
M 4 All Area features removed
M 5 Centerline gradient
M 6 Ellipsoidal radius

� Data Tests: were the last set of tests applied to the best perform-
ing Random Forest and Neural Network instances for the �rst two
tests. In these tests, model instances were trained on di�ering train-
test ratios to �nd the ideal split for the models before �nal selec-
tion. Feature selections for data tests are based upon both domain
knowledge and previous results. Test details are included in Table
3.5 with respective reasoning for features deletions that follow:

a) Test year: For the time period over which data was collected,
there are no known correlations between any of the selected
pathologies nor the frequency at which they occurred and the
given year.

b) Centreline y-intercept: Although this variable was useful in ex-
tracting other geometric information from the echocardiogram
images, it is not medically informative. For data collected, none
showed visual variation to the degree where this feature would
prove valuable.

c) Centroid data: Most useful for extracting other geometric char-
acteristics, it is not relevant in practice.
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Table 3.5: Data Tests Details

Train-Test Features Tested Model
Ratios Deleted Architectures
0.1-0.9 Test year Random Forests:
0.2-0.8 E100D16
0.3-0.7 Centreline y- E300D16
0.4-0.6 intercept data E500D16
0.5-0.5 [b variables]
0.6-0.4 Neural Networks:
0.7-0.3 Centroid data D1W16
0.8-0.2 [Xc and Yc D2W64
0.9-0.1 variables] D3W256

2. Model Performance Evaluation
Assessments of the model types are based on applicable evaluations of
performance metrics and/or learning curves for all tests. Discussions
presented in Chapter 4 account for the e�ects of feature deletions and
model architectures when comparing the results. Comparative discus-
sions of the best performing model instances and feature combinations
for both model types conclude all tests. Additionally, performances and
feature combinations are discussed (i) in the context of their mutual in-
formation scores, and (ii) compared to results of the baseline test EM0.

3.3.5 Final Model Selection

The best performing model instances for Random Forests and Neural Net-
works were thoroughly compared before one was selected as best suited for
the classi�cation task. The section concludes by assessing the selected model's
results in its desired context.
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4 Results and Discussion

This chapter expands on the results of all phases of the solution pipeline out-
lined in §3.3; namely Pre-processing (§4.1), Model Input Preparation (§4.2),
Model Development (§4.3), Evaluation (§4.4) and Final Selection (§4.5). The
results will be discussed in one of the following ways, according to what is
most applicable:

� Using an example case to display results associated with steps such as
pre-processing, feature extraction and model input preparations.

� Considering the whole dataset in discussions of model performances
and/or comparisons, where confusion matrices or learning curves are
investigated.

For this chapter, some phrases or terminology are used interchangeably or are
di�erentiated as follows:

1. Centroid refers to the centroid of individually demarcated area output
from the Watershed plug-in. Composite centroid refers to the centroid
of the system; considering all areas.

2. Model and model instance are used to refer to the speci�c dimensions a
model type (either Random Forest or Neural Network).

3. Epochs and experience are used interchangeably when discussing the
learning curves of the Neural Network instances.

4. Echo refers to echocardiogram.

5. Dynamic, statistical and geometric are used interchangeably to highlight
various aspects of the engineering features.

6. EMR is sometimes used to refer to medical features.

4.1 Image Pre-processing

Data augmentations included combinations of noise, translations and rota-
tions. In Figure 4.1, the (original) �rst frame of the example case can be seen

40
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alongside its (individually applied) augments. The dataset acquired contained
34 samples with more than one pathology/label. For multi-label instances,
caution was taken to ensure no repeats of originals or its augments existed to
avoid data leakage between training and test subsets during model develop-
ment.

Figure 4.1: Individually applied Data Augmentations

4.2 Model Input Preparation

After applying the FIJI macro (as per §3.3.2), the output images contained
outlines of the (white) foreground identi�ed in the input images; as seen in
Figure 4.2. The Watershed plug-in segmented the foreground into smaller
areas/shapes sharing common boundaries. The Analyse Particles plug-in ex-
tracted measurements in pixel values thereafter - since no measurement scale
was provided.

Unfortunately, many of the unaugmented cases contained noise; seen by
the white speckles or blurs in areas where there is no cardiac tissue. This,
inadvertently, had a detrimental e�ect on the FIJI output measurements, and
thus features extracted. For example, in Figure 4.3, is a Heart Failure (HF)
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Figure 4.2: Input and Output of FIJI Image Processing

case where much noise is present in the unaugmented image (top left); resulting
in poor FIJI output (top right). The bottom images to provide a visualisation
of the exacerbated errors due to a further noised augment (bottom left) of the
original image.

Figure 4.3: Visual representation of the e�ect of inherent and added noise on
FIJI output

The area of interest in a 2-chamber view are those that coincide with the

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 43

anatomical structures represented in the foreground of the echo images. In
each frame, centroids of the smaller shapes (composite centroids) were used to
calculate the centroid of the whole system according to Equation 4.2.1:

C = (

∑
xn
n

,

∑
yn
n

) (4.2.1)

Centroid calculations were heavily in�uenced by the presence of outliers and
noise. Thus, an area exclusion criterion was de�ned and applied in the order
below:

1. Exclude areas found outside a range of x-coordinates, as seen by the red
boundaries in Figure 4.4 (left).

2. Exclude areas in the �rst 2 (of 100) bins of the Area histogram as smaller
speckles were considered noise. The Histogram bins selected are shown
by the red bracket in Figure 4.4 (right).

Figure 4.4: Visual representation of area exclusion Criteria 1 & 2

3. Exclude areas whose distance to the centroid is greater than some thresh-
old de�ned by the Interquartile Range (IQR) rule in Equation 4.2.2. This
was to exclude noise too far from the area of interest centrally located:

threshold = Q3 + IQR (4.2.2)

The composite centroid was used to de�ne the centreline (or central axis) that
passes through the apex of the ventricle and the mitral valve. The centreline,
described by gradient m and y-intercept b, was used to estimate the long and
short ellipsoidal radii, c and a respectively. In the frames, c is identi�ed as the
distance from the apex of the heart to the centroid, while a coincides with the
maximum perpendicular distance from the centreline to the chamber walls.
Figure 4.5 depicts the centreline (blue), centroid (green) and perpendicular
distances calculated to �nd a (grey lines and text). For this particular frame,
a was identi�ed as 142.
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Figure 4.5: Visual example of geometric parameters derived, with the system
centreline (blue), centroid (green) and c and a parameters (red)

The instantaneous ventricular volumes were calculated according to Equa-
tion 4.2.3. Thereafter, parameters such as stroke volume (SV ), cardiac output
(CO) and ejection fraction (EF ) could be calculated as per Equations 2.1.1,
2.1.2 and 2.1.3, respectively.

V =
2

3
πa2c (4.2.3)

Summarising dynamic data involved calculations of means, standard devia-
tions and variances. This, in conjunction with other parameters at key vol-
umes, EMR data and static variables were thus in a suitable features format
to be used as model input.

4.3 Model Development

The Random Forest and Neural Network model instances were constructed
as per the speci�cations outlined in Section 3.3.3. For all tests and model
instances, data was pre-processed in the same manner. Prior to all testing, an
investigation on the mutual information scores of all features were obtained
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to gain insight on their value in relation to the target variables. For multi-
class problems, mutual information scores are obtained for each target variable
then summed together, constituting the "Final Contributions". The mutual
information scores of all features (in baseline test EM0) can be seen in Figure
4.6; feature names as per Table 3.2.

Figure 4.6: Mutual Information of all Features

Medical features have the highest mutual information scores while most
other features all score poorly. Of the top 5 scores, heart rate information seems
to be most important - as duration of a single cardiac cycle (1cycl_dur) was
calculated using heart rate too. This reinforces the importance of considering
the patient's unique history and vitals in the process of diagnosis.

An alternative reason to the above observation could be due to the multiple
duplicates within certain (pathology) categories from multi-label samples and
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augmented data. For instance, 4 of the 6 pathologies selected have rare oc-
currences, thus as little as 41-59 samples were collected over the period (2016-
2020) of interest. As a result, to reach the target number (200 per pathology),
some cases were augmented 3-5 times. Despite all image augmentations being
unique and providing the desired geometric variations, the EMR data remained
unchanged. This was assumed to be acceptable as many pathologies are more
common to certain patients (based on characteristics such as age or gender),
thus augmented cases would remain on par with original cases.

Examining the dynamic and statistical features more closely, certain fea-
tures expected to score higher, fall short. For instance, cardiologists visually
observe pump functionality when inspecting an echocardiogram. The shape
descriptors of the left ventricle, included in features such as centreline gra-
dient (m) or minor ellipsoidal radius (a), were included to inform the model
about the movement of the heart as it beats. The centreline gradient provides
a measure of how much a particular heart oscillates in the view plane. The
minor ellipsoidal radius was expected to be important as it experiences much
variation as ventricular volume changes throughout the cardiac cycle.

Mutual Information scores were checked for every test to assess dependencies
between the remaining features and the target variables. Mutual information
scores of all Engineering tests can be found in Appendix A (Tables A.1 and
A.2) and those of Medical tests in Appendix B (Tables B.1 and B.2).

4.4 Model Performance Evaluation

This section presents a discussion of the model performances for the Engi-
neering, Medical and Data tests in §4.4.1, §4.4.2 and §4.4.3, respectively. Dis-
cussions within subsections are structured similarly; multi-output Random
Forests are discussed �rst, then Neural Networks, before a comparison of the
best instances of each type. Recall is considered with much importance in all
discussions with F1-scores (where applicable). These comparisons aid in iden-
tifying the most suitable model types and instances for the Data tests (§4.4.3)
and �nal model selection (§4.5). Due to the length of the results tables, most
�gures and tables in this section summarise selected instance �ndings only. Full
tables for the Engineering, Medical and Data tests can be found in Appendices
A, B and C, respectively. For the remainder of this chapter, abbreviated forms
of pathologies (as per Table 3.3) and model instance descriptors (listed below)
will be used:

� E: Number of estimators (Random Forests only)

� W: Width or neurons per hidden layer (Neural Networks only)
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� D: Depth (Random Forests) / number of hidden layers (Neural Networks)

4.4.1 Engineering Tests

The Engineering Tests explore model dependence on engineering features as
medical/ EMR features are removed. For this section, all test labels presented
in tables or �gures align with the names and descriptions in Table 3.4. The
results of the Random Forest models (§4.4.1.1) are discussed prior to the Neural
Networks (§4.4.1.2). The section closes with a comparative discussion on their
respective performances (§4.4.1.3).

4.4.1.1 Random Forest Models

The Random Forest models exhibited much variation between which model
architecture performed best across the di�erent tests. However, there was
some correlation between model dimensions and pathologies predicted. Tables
A.3 and A.4, in Appendix A, lists the models that scored highest per test and
pathology and their performance metrics, respectively. Summarising the most
important aspects, the following points are listed:

� No D4 models performed well enough for any of the individual patholo-
gies. D16 models occur most frequently across all tests. D8 models begin
to perform on par with D16 models as more cumulative deletions occur.

� A range of correlations exist between model architectures and pathologies
predicted. A strong correlation example includes E100D16; predicting N
well for 7 of the 9 tests (EM0 excluded). The same model predicts AR
and AS well only 5 out of 9 tests, but never predicts HF well for any
test. These sorts of patterns are evident across all models; showing con-
sistently strong / weak abilities in predicting speci�c pathologies despite
feature variations.

� Continuing the above point; smaller (less estimators), deeper forests pre-
dict N, HF, AS and AR better, while larger (more estimators), deeper
forests perform better for LVH and MI.

� HF is least predicted well; at best predicted by E200D16 in 3 tests.

� There seems to be no in�uence of the number of original cases on the
models (dimensions) that predict certain pathologies better. For exam-
ple, N (having 106 original cases) and AS (having only 59) are both
predicted consistently well by E100D16. As with LVH (with 41 original
cases) and MI (with 100) which are both predicted well by E500D16.
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Figure 4.7 is a dot plot of the highest scoring models for all Engineering tests;
where dots of the same colour represent equal (averaged) scores. From the �g-
ure, the most versatile model instances are E100D16 and E500D16; performing
well for all tests. E150D16, E200D16 and E450D16 trail behind, performing
well for 8 tests (excluding EM0). Additionally, all D16 models perform well
for tests E2, E3, E5 and E123, while E1234 is predicted equally well by D8
and D16 models. D8 models begin to perform on par with D16 models when
valuable features (referring to their respective mutual information scores) are
deleted. This suggest data complexity decreases enough to be predicted com-
parably well by shallower models.

Figure 4.7: Schematic showing Random Forest instances that output the high-
est scores per Engineering test

To investigate the apparent convergence of D8 and D16 models, performance
metrics of the highest and lowest scoring instances per test are tabulated in
Table 4.1 - including those of D4 models (generally lowest). From the table,
the following observations are made:
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Table 4.1: Highest scoring Random Forest instances per Engineering test with
output Performance metrics. Minimums of each test are included in parenthe-
ses below

Test Best Model Accuracy Recall Precision F1-score
EM0 E150D16 0,837 0,226 0,950 0,352

(0,800) (0,039) (0,827) (0,083)
E1 E500D16 0,820 0,139 0,933 0,233

(0,797) (0,011) (0,833) (0,039)
E2 E500D16 0,828 0,196 0,931 0,304

(0,800) (0,035) (0,769) (0,090)
E3 E100D16 0,832 0,208 0,942 0,327

(0,800) (0,032) (0,833) (0,101)
E4 E500D16 0,833 0,205 0,956 0,320

(0,799) (0,035) (0,861) (0,091)
E5 E250D16 0,832 0,209 0,958 0,322

(0,799) (0,024) (0,857) (0,084)
E12 E200D16 0,814 0,127 1,000 0,250

(0,797) (0,011) (0,774) (0,041)
E123 E150D16 0,814 0,118 0,935 0,193

(0,796) (0,007) (0,667) (0,040)
E1234 E100D16 0,808 0,093 0,902 0,153

(0,796) (0,007) (0,667) (0,040)
E12345 E100D16 0,806 0,077 0,886 0,134

(0,796) (0,003) (0,500) (0,034)

� A notable decline in performance metrics ranges is evident for cumulative
feature are deletions (E12 - E12345) compared to individual deletions
(E1 - E5). As medical features are removed individually and (more so)
cumulatively, the models perform worse than the baseline test EM0 for all
Recalls and F1-scores. This is explained by the high mutual information
scores of medical features.

� The highest scoring test was EM0 (the baseline test) where no medical
features are removed, with model E150D16 scoring highest.

� The lowest scores were produced in E12345, where all medical features
were removed, with E100D16 performing best.

� All model instances per test perform within narrow ranges of each other
showing convergence of their predictive capacities as more medical fea-
tures are excluded.
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� Precision does not follow the trends of other metrics. For example, test
EM0 produces the highest Recall, Accuracy and F1-score, while E12 has
the highest Precision.

The internal workings of the model instances are investigated by means of con-
fusion matrix outputs. The outputs of the highest and lowest scoring models
(for tests EM0 and E12345) are tabulated in Table 4.2; on the left and right
respectively. For multi-output Random Forests, confusion matrix values are
output for each pathology. Their respective performance metrics are presented
altogether in Table 4.3. From both tables, the following is noted:

Table 4.2: Confusion Matrices of highest (left) and lowest (right) scoring mod-
els for each pathology in tests EM0 and E12345

E150D16 in EM0 E450D4 in EM0

N HF LVH MI AR AS N HF LVH MI AR AS

TN 203 190 191 179 188 174 203 192 191 179 188 174
FP 0 7 0 0 0 0 0 5 0 0 0 0
FN 30 25 35 46 37 52 34 33 45 57 48 63
TP 4 15 11 12 12 11 0 7 1 1 1 0

E100D16 in E12345 E450D4 in E12345

N HF LVH MI AR AS N HF LVH MI AR AS

TN 202 192 190 179 188 174 203 196 191 179 188 174
FP 1 5 1 0 0 0 0 1 0 0 0 0
FN 32 33 42 55 47 60 34 40 46 57 49 63
TP 2 7 4 3 2 3 0 0 0 1 0 0

Table 4.3: Comparison of performance metrics for highest and lowest scoring
model instances for Tests EM0 and E12345

Test EM0 E12345
Performance E150D16 E450D4 E100D16 E450D4
metrics
Accuracy 0,837 0,800 0,808 0,796
Recall 0,226 0,039 0,093 0,003
Precision 0,947 0,896 0,902 0,500
F1-score 0,352 0,096 0,153 0,034
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� The best and worst model instances for each test are distinguished by
their TP values. Models for each test have similar values for TN, FP
and FN; all within small ranges of each other.

� These tests were performed on the same train-test split of data, thus all
columns sum to 237. High Accuracies of all models are attributed to the
high fraction of TN values.

� High Precision values noted previously are a result of to the low FP
values of the model instances.

� Recalls across all Random Forest models are low due to the low fractions
of FN and TP to the total amount of predictions (TN + FP + FN + TP).
This is especially noteworthy as Recall is more valuable when assessing
model performance for the healthcare context; as false negative diagnoses
have more serious repercussions (depending on the abnormality).

� The low F1-scores indicate unsatisfactory balances between Recalls and
Precisions for all Random Forest models, evident by their major di�er-
ences in FN and FP values.

In conclusion, no Random Forest model clearly outperformed another across
all Engineering Tests. With no clear winner regarding model instances or
feature/s deleted, the models of interest identi�ed are those which were most
versatile; viz. E100D16 and E500D16. E100D16 performed best for tests E3,
E1234 and E12345 while E500D16 performed best for E1, E2 and E4. E150D16
in EM0 was also considered the best performing model due to high metrics,
though it is not as versatile as those aforementioned.

4.4.1.2 Neural Network Models

The best performing model instance per Engineering test and their perfor-
mance metrics are summarised from Table A.5, in Appendix A. From Table
4.4, the following observations about the Neural Network models are made:
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Table 4.4: Best performing Neural Networks per Engineering Test with Vali-
dation performance metrics

Test Model Accuracy Recall Precision F1-score
EM0 D3W256 0,540 0,500 0,681 0,577
E1 D3W256 0,536 0,507 0,631 0,562
E2 D3W256 0,523 0,438 0,585 0,501
E3 D3W256 0,498 0,438 0,620 0,513
E4 D3W256 0,468 0,403 0,594 0,480
E5 D3W256 0,511 0,483 0,645 0,552
E12 D2W256 0,418 0,314 0,558 0,402
E123 D1W256 0,359 0,152 0,489 0,232
E1234 D1W256 0,304 0,093 0,500 0,157
E12345 D3W64 0,304 0,048 0,483 0,088

� There is a decrease in most performance metrics relative to the base-
line test EM0, for every test performed - except test E1. Additionally,
the scores decrease steadily for all cumulative medical features deletions
(tests E12 - E12345).

� For single feature deletions, largest model D3W256 performs best. As
the tests involved more cumulative feature deletions, the architectures
required to �t the data become smaller; typically, shallower (D decreases)
before narrowing (W decreases).

� Low performance metric scores and smaller models associated with cu-
mulative feature deletions suggest that less complex relationships exist
between the features and target variables. This is reinforced by the low
mutual information scores (discussed further in §4.4.1.3) con�rming the
low contributions of remaining features to the targets.

� Another trend observed when investigating the results for all models
(seen in Table A.5), is that the deep, narrow models perform similarly,
if not worse, than shallower models of the same width. This con�rms
the sensitivity of Neural Network performances to model complexity and
features deleted.

From Table 4.4, the best and worst results are associated with tests E1 and
E12345, respectively. To explore the di�erent model instance behaviours in
these tests, their Learning Curves are analysed. The learning curves include
Training and Validation curves for Loss, Accuracy and Recall to investigate
the internal workings of the models. All dashed lines represent training curves,
while solid lines represent validation curves, colour-coded per metric for easy
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identi�cation. The learning curves of model D3W256 , Test E1, in Figure
4.8 reveal and/or display very strong characteristics about the model and its
response to the data:

Figure 4.8: Test E1 - Learning Curves of model instance D3W256

� A high learning rate is present, seen by the initial gradient change in the
Training Loss curve.

� Training and Validation Loss curves continue to decrease as epochs in-
crease with neither stabilising. This is an indicator that the model's
capacity is greater than required for the problem at hand. Continual
decrease of both Loss curves indicate continued learning.

� The large gap between the Training and Validation Loss curves indicates
strong over�tting. This is in agreement with the above points, as the
model continually learns until the stopping criteria was met. The noise
increasingly present in the Validation Loss curve further supports this
conclusion.

� The other indicators of strong over�tting are the large gaps between
the Training and Validation curves of both Accuracy and Recall. The
noise in the Validation curves further support that the model has learnt
particulars in the training dataset, thus unable to generalise well.

� The noise present in all Validation curves (especially Accuracy and Re-
call) and gap between all Training and Validation Loss curves suggest
that that the model has been trained on an unrepresentative training
dataset. For the model complexity, over�tting was thus an expected
occurrence.
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Observing D3W64 in Test E12345, the model at the opposite end of the perfor-
mance spectrum, the following can be noted on model and data characteristics:

Figure 4.9: Test E12345 - Learning Curves of model instance D3W64

� Gradient change at the beginning of the Training Loss curve suggests
the learning rate is considerably high.

� The maximum epochs (when the stopping criteria was reached) is similar
to D3W256 despite the Loss of D3W64 remaining relatively high and the
Accuracy/Recall remaining low. Training Loss continues to decrease to a
lesser degree than that of D3W256, indicating some continued learning.

� The gap between the Loss curves widen with experience, indicating in-
creasing presence of over�tting - also slight in comparison to D3W256 in
test E1.

� Slight over�tting is con�rmed by the gap between the Training and Val-
idation Accuracy curves that increase with experience.

� The slight noise in both the Accuracy (more evidently) and Recall Val-
idation curves are attributed to the degree of over�tting present. The
degree of noise and over�tting are much less in D3W64 (than D3W256)
as it is better suited to the data complexity in E12345.

� The noise in the Training and Validation Recall and Accuracy curves are
a common symptom for model instances trained or tested with unrepre-
sentative data, capping the overall performance of the model. Under�t-
ting may have been a possibility considering both Loss curves continually
decrease over time yet remain high or Accuracy/Recall curves that re-
main low.
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Considering models D3W256 and D3W64 alongside one another in the context
of E1 and E12345, both models may be improved by additional data. Both
model instances experience di�erent e�ects of unrepresentative data, exhibiting
varying degrees of over�tting and noise due to their sizes. This was seen in all
model instances for all Engineering tests.

4.4.1.3 Comparison of Best Models & Features

A summary of the best and worst Engineering tests (representing feature com-
binations) and model instances for the Random Forests and Neural Networks
can be found in Table 4.5. For both model types, the highest scoring tests were
EM0 and E1 (Heart Rate features deleted); while E12345 (all medical features
deleted) was unanimously worst. Considering the mutual information scores
of features in tests E1 and E12345, in Tables A.1 and Table A.2 respectively,
insight into model performances can be further explained.

Table 4.5: Summary of highest scoring Engineering tests and model instances

Random Forests Neural Networks
Best Test EM0 E1
Worst Test E12345 E12345
Best Models E100D16, E500D16 D3W256

E150D16

Tests EM0 and E1 result in the best performance outputs as they contain the
most medical features - which maintain the highest mutual information scores.
Apart from individual architectures, models depend mostly on features of Age
and single cycle duration for E1. For test E12345, no feature has a signi�cant
relationship with the target variable. Despite both tests having features with
scores that vary, the presence of the higher scores associated with medical
features contribute to the performance di�erences. Cumulative deletions of
medical features are the main contributors to the performance convergence of
the D8 and D16 models (with D4 models trailing, seen in Table 4.1) for Ran-
dom Forests, and the smaller/narrower models outperforming larger Neural
Network models.

In general, the Random Forests produced much higher accuracies than the
Neural Networks. Upon further investigation, the Random Forest accuracies
were skewed on account of the TN. True predictive capacity of the model
instances was revealed better when observing TP verses FN values represented
in Recall scores. Conversely, Neural Networks generally had Recalls roughly
double those of the Random Forests. No clear winner exists between the
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Random Forest model instances (as compared to for the Neural Networks),
although results were harmonious in re�ecting the better performance of deeper
forests. The same can be said for the Neural Networks; however, further
investigation of the associated learning curves showed over�tting and high
learning rates for deeper, wider instances.

From Table 4.5, the best model instances are listed and considered on the
following basis:

� Random Forests:
E100D16 and E500D16 represent the most versatile of the architectures
based on their ability to predict more pathologies. E150D16 was listed
as it produced the highest Recall in test EM0 and performs best for
E123. The results show that small, medium and larger forests all exhibit
di�erent strengths and abilities to predict certain pathologies as these
models are sensitive to the features selected and internal architectures.

� Neural Networks:
The best performing and most versatile Neural Network model instance
was D3W256; scoring highest for most tests. Further investigation into
respective learning curves revealed the inevitable tendency of this model
to over�t the training data. Neural Networks also showed sensitivity to
features present, data representativeness and model dimensions.

4.4.2 Medical Tests

The Medical Tests explore the dependence of the models on the medical fea-
tures as more engineering features are excluded. As was for the previous
section, all test labels presented correspond with the names and descriptions
in Table 3.4. Similarly, the results of the Random Forests are presented sepa-
rately §4.4.2.1, before the Neural Network models (§4.4.2.2) and a comparison
of their respective performances (§4.4.2.3).

4.4.2.1 Random Forest Models

Tables B.3 and B.4 in Appendix B, show all model instances that best predicted
certain pathologies for all 11 Medical tests (excluding test EM0). Summarised
observations made from these tables are listed below, with many similarities
seen previously in Engineering test results:

� All of the best performing model instances listed are D16 forests.

� Most models, at best, predict 1 or 2 pathologies well. For example, model
instance E100D16 predicts N and AR best, however does poorly for HF
and LVH.
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� As previously seen, there are no correlations between model dimensions
and the number of unique cases in certain pathologies. For example,
E100D16 best predicts N (having 106 original cases) and AR (which has
42 original cases) as speci�ed in Table 3.3.

� The above points further con�rm that speci�c model instances are con-
siderably invariant to feature changes when predicting certain patholo-
gies well - as with E100D16 predicting N well in most Engineering and
Medical tests.

� Smaller forests (E100-E200) predict N, AR and AS better; middle-sized
forests(E250-E350) do well for HF, and larger forests (E400-E500) do
better for LVH. MI is an exception to this trend and the above point; as
there was no clear pattern to identify which model architecture worked
best - varying based on the features removed.

To better understand how model versatilities compare, Figure 4.10 shows the
highest scoring models against all tests. Dots of the same colours indicate the
same high score was achieved. The following observations are thus listed:

Figure 4.10: Schematic showing Random Forest instances that output the
highest scores per Medical test
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� Since all models are deep forests (D16), this preludes to the high value
of the remaining features as the more complex models perform best for
all tests.

� No model instances do well across all Medical tests. The closest instances
are E100D16, E150D16 and E400D16 that perform well for 10 of the 11
tests.

� Test M3 (where major ellipsoid radius data was removed) resulted in all
instances performing well and in close range of each other.

The range in which all models (including D4 and D8 forests) perform per test
can be seen in Table 4.6. The performance metrics of the highest and lowest
scoring models per test are tabulated for all Medical tests. The best performing
model instances were identi�ed based on Recall and F1-score values primarily.
General observations were noted as follows:

� In general, the ranges of performance metrics across all tests increase as
more engineering features are removed. This indicates that the models
somewhat diverge in their predictive capacities as engineering features
are deleted individually and cumulatively. This is expected given their
low mutual information scores.

� As with the results of the engineering tests, there is no clear pattern as
to which architectures perform best in terms of forest sizes.

� There is improvement of Recall and F1-scores in all tests compared to test
EM0. The highest scores are achieved by E300D16 in M123456 - roughly
doubled the Recall and F1-score of EM0. Recall and F1-score values for
all tests including single feature deletions (M1-M6) remain close to those
in EM0. Both metrics increase as features are cumulatively removed
(M12-M123456); opposing the trend seen in Engineering tests.

� Precisions show no clear pattern with feature deletions across all tests.
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Table 4.6: Highest scoring Random Forest instances per Medical test with
associated Performance metrics. Minimums of each test are included in paren-
theses below

Test Best Model Accuracy Recall Precision F1-score
EM0 E150D16 0,837 0,226 0,950 0,352

(0,800) (0,039) (0,827) (0,083)
M1 E150D16 0,842 0,249 0,957 0,383

(0,797) (0,028) (0,750) (0,077)
M2 E400D16 0,839 0,239 0,946 0,365

(0,800) (0,039) (0,792) (0,098)
M3 E250D16 0,836 0,219 0,958 0,346

(0,799) (0,028) (0,800) (0,125)
M4 E450D16 0,834 0,212 0,980 0,337

(0,803) (0,049) (0,918) (0,099)
M5 E100D16 0,837 0,224 0,952 0,346

(0,800) (0,036) (0,900) (0,076)
M6 E350D16 0,836 0,228 0,952 0,356

(0,797) (0,028) (0,815) (0,082)
M12 E250D16 0,843 0,270 0,946 0,402

(0,798) (0,039) (0,808) (0,080)
M123 E300D16 0,852 0,299 0,957 0,443

(0,798) (0,035) (0,761) (0,088)
M1234 E100D16 0,855 0,313 0,969 0,462

(0,804) (0,054) (0,913) (0,112)
M12345 E500D16 0,873 0,388 0,944 0,541

(0,804) (0,048) (0,873) (0,126)
M123456 E300D16 0,887 0,458 0,947 0,613

(0,809) (0,081) (0,861) (0,208)

To assess the quality of model predictions, the confusion matrices of the highest
and lowest scoring models (from tests M123456 and M4) are investigated. All
respective confusion matrix outputs are tabulated, per pathology, in Table
4.7: highest scoring models on the right and lowest on the left. The associated
performance metrics of these models can be found in Table 4.8. Observing
information from both tables, the following is noted:

� Despite the TP values of E300D16 and E150D4 being similar, the largest
di�erences exist between the FN and TP values of the two models. In
line with the trends noted for Random Forests, the shallower (D4) forests
struggle to model more complicated relationships - noted by the di�er-
ences in FN values.
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� The considerable di�erences between the Recall and F1-score values are
due to the FN values and its respective trade-o� with FP values (Preci-
sion).

� Interestingly, the highest and lowest scoring models of test M4 have sim-
ilar TN values. E450D16 has higher FP values for HF and LVH, result-
ing in the slightly lower Precision of this model compared to instances
E200/E250D4. Their large di�erences in Recall values are attributed to
the di�erence in TP values.

Table 4.7: Confusion Matrices of highest (left) and lowest (right) scoring mod-
els for each pathology in tests M123456 and M4

E300D16 in M123456 E150D4 in M123456

N HF LVH MI AR AS N HF LVH MI AR AS

TN 200 196 191 179 188 172 202 195 191 179 188 174
FP 3 1 0 0 0 2 1 2 0 0 0 0
FN 25 19 22 34 23 32 32 33 46 55 39 63
TP 9 21 24 24 26 31 2 7 0 3 10 0

E450D16 in M4 E200/250D4 in M4

N HF LVH MI AR AS N HF LVH MI AR AS

TN 203 192 190 179 188 174 203 194 191 179 188 174
FP 0 5 1 0 0 0 0 3 0 0 0 0
FN 29 27 35 48 37 54 34 32 45 57 47 62
TP 5 13 11 10 12 9 0 8 1 1 2 1

Table 4.8: Performance metrics of highest and lowest scoring model instances
for Tests M123456 and M4

Test M123456 M4
Performance E300D16 E150D4 E450D16 E200D4/

metrics E250D4
Accuracy 0,887 0,809 0,834 0,803
Recall 0,458 0,082 0,212 0,049

Precision 0,941 0,861 0,940 0,945
F1-score 0,613 0,208 0,337 0,100
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In conclusion, the best performing Random Forest in the Medical Tests was
E300D16 in Test M123456 where most engineering features have been removed
and the model depended predominantly on medical features. As with the
Engineering tests, there were no instances that outperformed the others with
regards to performance metrics. However, a model of interest, due once again
to versatility, was instances E100D16 performing well for many Medical Tests.

4.4.2.2 Neural Network Models

The best performing model instances per Medical test and their �nal perfor-
mance metrics summarised in Table 4.9 are based on Table B.5 in Appendix B.
The following is observed about the performances of Neural Network models
instances and tests:

Table 4.9: Best performing Neural Networks per Medical Test Validation per-
formance metrics

Test Model Accuracy Recall Precision F1-score
EM0 D3W256 0,540 0,500 0,681 0,577
M1 D3W256 0,451 0,431 0,610 0,505
M2 D3W256 0,523 0,497 0,632 0,556
M3 D3W256 0,549 0,510 0,682 0,584
M4 D2W256 0,489 0,428 0,629 0,509
M5 D3W256 0,540 0,534 0,683 0,600
M6 D3W256 0,532 0,497 0,634 0,557
M12 D3W256 0,527 0,517 0,617 0,563
M123 D3W256 0,519 0,514 0,618 0,561
M1234 D3W256 0,553 0,476 0,627 0,541
M12345 D2W256 0,527 0,455 0,660 0,539
M123456 D3W256 0,570 0,538 0,678 0,600

� The widest models (W256) produce the highest scores for all Medical
tests, based on their �nal performance metrics. Again, model D3W256
most frequently performs best (except in M4 and M12345).

� Performance metrics values typically increase as Engineering features are
cumulatively deleted.

� Test M1, at best, produced performance metrics all lower than that of
the baseline test EM0. However, based on Recall alone, the worst result
was of model instance D2W256 in test M4.
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� The best results are of test M123456, where almost all engineering fea-
tures are removed with some static and EMR data remaining. However,
the best Precision was associated test M5.

� Tests M123456 and M4 resulted in highest and lowest scores, respectively;
similar to the Random Forest results previously.

Learning curves were used to further investigate model behaviours associated
with tests M123456 (D3W256) and M4 (D2W256) in response to the data,
features and relative model sizes. The following information can be deduced
from the curves of D3W256, test M123456, seen in Figure 4.11:

Figure 4.11: Test M123456: Learning Curves of model instance D3W256

� A higher learning rate is present; seen by the steep gradient in the Train-
ing Loss curve.

� Both the Training and Validation Loss curves continually decrease with-
out stabilizing. This indicates the continued learning of the model until
the stopping criteria was reached. This behaviour can be attributed to
the model's capacity compared to the few remaining features; introduc-
ing the likelihood of over�tting.

� A relatively large gap between the Training and Validation Loss curves
results from over�tting. Furthermore, the gap remains more-or-less con-
stant throughout model learning.

� Large gaps between the Training and Validation Accuracy and Recall
curves further con�rms the over�tting present. The large gaps in the
curves, most prominent for Recall curves.
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� There is a signi�cant amount of noise seen in the Accuracy and Recall
curves over time suggesting that the model has been trained/tested on
unrepresentative data.

� Over�tting is also the cause of the decrease in Validation Accuracy
around ±130 epochs

Figure 4.12: Test M4: Learning Curves of model instance D2W256

From Figure 4.12, the following can be noted about the performance of D2W256
in test M4:

� Training and Validation Loss curves continually decrease without stabi-
lizing, while the gap between them gets larger despite ongoing learning.
This suggests the model has over�t the data or that training halted pre-
maturely as the curves did not stabilize before the stopping criteria was
reached.

� Larger gaps (compared to D3W256) present between the Training and
Validation curves for both Accuracy and Recall support that strong over-
�tting is present.

� Both Validation curves for Accuracy and Recall show a greater degree of
noise compared to their Training counterparts; suggesting unrepresenta-
tive data.

Comparing the model architectures associated with tests M123456 and M4,
both exhibit similar behaviours despite di�erences in �nal performance metrics
values. The e�ects of unrepresentative data on both models support the need
for more training data for more complex models. As with the Engineering
tests, data representativeness is an issue common to all Neural Network models,
presenting itself di�erently based on the architecture and features included.
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4.4.2.3 Comparison of Best Models & Features

The highest and lowest scoring Medical tests, together with the highest scoring
models are summarised in Table 4.10.

Table 4.10: Summary of key Medical tests and model instances

Random Forests Neural Networks
Best Test M123456 M123456
Worst Test M4 M4
Best Models E300D16 D3W256

The best and worst tests are unanimous among both the Random Forest and
Neural Network instances. To investigate further, mutual information scores
of both tests, from Table B.1 and B.2 are compared. Test M123456 has the
least features present among all tests; as most engineering features, where
most variation exists, are removed. This set of features results in the best
performance metrics for both Random Forests and Neural Network model
instances, as opposed to their highest Engineering test results. The e�ect
of less features (with low contributions) involved for Medical tests can be seen
by the number of small-to-medium sized Random Forest models that perform
best in Table 4.6.

Another possible explanation for this result may be in the unaugmented
EMR data. Multiple samples containing similar (EMR) data exists in both
training and test subsets. This implies that there may be a degree of data
leakage between these subsets - whereby many of the EMR features, with the
highest mutual information scores, are replicated. There may not be enough
variation provided by non-EMR features remaining (such as EF or CO) to
better distinguish one sample from another given their associated (lower) mu-
tual information scores. Thus, higher model scores may be a result of learning
similar data.

In test M4, model instance scores are lowest compared to other Medical tests
due to the deletion of surface area (A) information. Mutual information scores
of 4 of the 5 A features deleted are in the top 20 for test EM0, in Figure 4.6.
This deletion is thus considered a loss for all models predictive capabilities.
This can be seen by the di�erence in model instance dimensions that scored
best (E450D16 and D2W256) that di�ered from respective trends observed.

The models in Table 4.10 were selected based on �nal Recall scores. Ad-
ditionally, Random Forest instances E100D16, E150D16, E250D16 are also
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worth noting. Similar to the Engineering tests, these model instances (includ-
ing E300D16) were slightly more versatile, performing well for 2 (of 11) tests
each. Larger forests do not repeatedly perform well among Medical tests. As
previously noted, model instances of certain sizes perform better for certain
pathologies (Tables B.3 and B.4). For example, E300D16 predicts HF and
LVH well, but poorly for N, AS and AR; which E100D16 / E150D16 predicts
better.

The highest scoring, most commonly occurring Neural Network model in-
stance is D3W256. However, as before, this particular instance is prone to
over�tting the training data. This is of greater concern in the Medical tests
(especially M123456) where features do not di�er to the degree of the engi-
neering features removed; enabling over�tting and poor generalisation.

4.4.3 Data Tests

This test is performed on shortlisted Random Forest and Neural Network mod-
els from previous tests results. These models and feature deletions are dis-
cussed (§4.4.3.1) before Data tests results are reported for the Random Forest
(§4.4.3.2) and Neural Networks (§4.4.3.3). The Data tests train-test ratios are
speci�ed in Table 3.5 (§3.3.4). The results of this section were used to select
the most suitable model for the classi�cation task at hand.

4.4.3.1 Shortlisted Features & Models

Based on both Engineering and Medical tests results, the following instances
of each model type were selected:

� Random Forests: E100D16, E300D16, E500D16
These models either had the highest performance metrics, were versa-
tile (despite feature deletions) or consistent with the pathologies they
predicted well. Since there was no distinct pattern, 3 model instances
(all D16) across the range of forest sizes were included to investigate the
e�ect of altered training set sizes on model performances. Other depths
were not included as they did not have comparable results in previous
tests.

� Neural Network: D1W16, D2W64, D3W256
The pattern exhibited for the Neural Network performances was unan-
imous among all tests: D3W256 performed best. Due to the observed
tendency to over�t, models across the dimension spectrum (both depths
and widths) were included to investigate the e�ect of altered training set
sizes on model performances.
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The e�ects of each Engineering and Medical test on the models can be seen in
Figures C.1 and C.2 in Appendix C. Associated observations are summarised
as follows:

� Random Forests:
For the various medical features deleted, all Random Forests instances
respond similarly; unanimously increasing or decreasing for speci�c fea-
ture/s deletions. Model instances across all tests scored less than test
EM0, however features removed in E1 (heart rates) and E3 (Gender)
were most detrimental, producing the poorest Recalls. Cumulative med-
ical feature deletions result in the gradual decline of Recall. An opposing
response to engineering feature deletions was seen (in Figure C.2) as all
instances improved for the individual deletion in test M1 (y-intercept
data) and cumulatively for most tests thereafter.

� Neural Network:
Each of the shortlisted Neural Network model instances exhibit vastly
di�erent behaviours to feature deletions. For both tests, there are no sim-
ilar responses between model instances. For example, models D1W16,
D2W64 and D3W256 decrease, increase and (slightly) increase, respec-
tively, for test E1 (compared to EM0). These results, thus, contribute
negligibly to the features selected for the Data tests. They do, how-
ever, provide insight as to what to expect with the inclusion/exclusion
of certain features.

The �nal list of features excluded for the Data tests is based loosely on the
Random Forests and on clinical relevance:

� Most medical features greatly contribute to the performance of the model,
however in practice the year of testing (Test_yr) was not be considered
relevant to disease occurences and thus excluded.

� Based loosely on the Random Forest results in Figure C.1; features of
(test M12) y-intercept and centroid data don't have signi�cance in prac-
tice and were excluded.

4.4.3.2 Random Forest Results

Figure 4.13 graphically presents learning curves for Accuracy, Recall and F1-
score that result from the shortlisted Random Forest model instances. All
models experience a slow, steady increase in performance as the training set
size increases. The largest di�erences are seen in the Recall (orange) and F1-
score (green) curves in the �gure, as Accuracy (blue) improves only slightly.
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Figure 4.13: Learning Curves of Random Forest instances

The highest scores were seen for train-test split 0.9-0.1. Tables 4.11 and
4.12 show confusion matrices and corresponding performance metrics for all
instances, respectively; from which the following is noted:

Table 4.11: Confusion Matrices for Random Forest models at a 0.9-0.1 train-
test split

N HF LVH MI AR AS

E
1
0
0
D
1
6 TN 102 94 96 86 95 89

FP 0 3 0 1 0 1
FN 15 14 20 26 14 17
TP 2 8 3 6 10 12

E
3
0
0
D
1
6 TN 102 95 96 87 95 89

FP 0 2 0 0 0 1
FN 14 14 21 27 14 18
TP 3 8 2 5 10 11

E
5
0
0
D
1
6 TN 102 95 96 86 95 89
FP 0 2 0 1 0 1
FN 14 15 21 26 14 18
TP 3 7 2 6 10 11
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� Model instances for Data tests show a range of predictive abilities with
the pathologies included in the study; consistent with performances in
previous (E/M) tests. Across all model instances, HF, AR and AS have
high (similar) TP values - greatly improving for HF and worsening for N.
Previously, model E100D16 best predicted N and AR (and occasionally
well for MI and AS). Similarly, E300D16 and E500D16 predicted better
for HF, LVH and MI.

� As seen previously, TN and FP values are minimal; resulting in the high
Accuracies and Precisions.

� The models correctly identify small numbers of TP for this train-test
ratio and more FN than previously - seen by the low Recalls. The low
F1-scores reinforce the poor trade-o� between Recall and Precision.

Table 4.12: Averaged performance metrics from 0.9-0.1 train-test ratio

E100D16 E300D16 E500D16
Accuracy 0,845 0,845 0,843
Precision 0,918 0,953 0,925
Recall 0,272 0,263 0,261
F1-score 0,399 0,393 0,391

For the features selected, the shortlisted Random Forest instances perform in
similar ranges to the Engineering tests despite the altered train-test ratios.
This is attributed to the many features with inherently little mutual infor-
mation with the targets. However, model instance E100D16 was identi�ed as
most successful, achieving the highest performance metric scores at train-test
split 0.9-0.1.

4.4.3.3 Neural Network Results

The �gures and tabulated results of the Neural Network instances in this sec-
tion are representations of those in Appendix C, Table C.2. The behaviour of
all models was analysed to identify the most successful model. The learning
curves of the 3 model instances for train-test splits 0.1-0.9 and 0.9-0.1 can be
found in Figure 4.14. These ratios were selected for each instance to represent
the progression of learning behaviour for models from the minimum to the
maximum training set size. The general trends are thus listed below:

� As model dimensions increase (going down a column), the noise present
in the Training (dashed-lined) curves decrease.
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� As the training set size increases (from left to right), the degree of noise
in the Training curves decrease.

� Learning rates increase as model dimensions and training set size in-
crease. This is seen by the rate of change of the gradients in the Train-
ing Loss curves of the models for split 0.1-0.9 (left) compared to 0.9-0.1
(right). For example, D1W16 (top left) has a low learning rate at 0.1-
0.9 that improves by 0.9-0.1; whereas D3W256 has an increasingly high
learning rate present from split 0.1-0.9.

� All models with train-test ratio 0.1-0.9 (left column) experience noise in
their Training Loss curves. The training set is unrepresentative at this
ratio. Unrepresentative training data prevents the model from learning
the problem and thus making good predictions on validation sets - seen
by the low validation scores.

� The noise in Validation Loss curves at larger train set sizes increases
as model dimensions increase; opposite to that of Training Loss at lower
train set sizes. Unrepresentative validation data does not provide enough
information to properly assess the predictive capabilities of a model - also
seen by the low validation scores produced.

� For all train-test ratios tested, the gap between the Training and Valida-
tion curves for Loss, Accuracy and Recall increases with model dimen-
sions. Gaps in speci�c curves have unique interpretations:

- For D1W16 in 0.1-0.9 and 0.9-0.1, a small gap is present between
the Training and Validation Loss curves (usually ideal) which stabi-
lize at a high values; indicating under�tting. Accuracy curves reveal
under�tting as both Training and Validation curves show improve-
ment but remain at low values. Model complexity of D1W16 may
also be insu�cient for the task.

- For both D2W64 and D3W256, there is over�tting with unrepresen-
tative training data in test split 0.1-0.9. These model complexities
are more than what is required for the given data. Both mod-
els show improvements in all Training curves, however over�tting
(unrepresentative training data) resulted in very large gaps with
respective Validation curves. Validation curves are relatively �at
in comparison, showing little to no improvement with experience.
As the training set sizes increase (as in 0.9-0.1), the degree of over-
�tting (gap) decreases and Validation curves show improvements.
The e�ects of unrepresentative data are seen in the poor �nal scores
for all Validation sets relative to Training sets.
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Figure 4.14: Learning Curves for Test-Train ratios 0.1-0.9 (left) and 0.9-0.1
(right)
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Across all model instances and train-test ratios, performances are generally
poor, exhibiting some degree of under- or over�tting. This implies that the
dataset, in general, is unrepresentative in that no model instance could identify
inherent patterns within it. As a result, increasing the training data did not
have the desired e�ect of improving performances.

Based on the above observations, instances D1W16 and D3W256 cannot
qualify as suitable models. Model D1W16 consistently exhibited under�tting
and slow learning rates, irrespective of the train-test split used. Model D3W25
was too complex for the data and/or classi�cation task at hand, consistently
over�tting the data with undesirably high learning rates. As a result, model
D2W64 can be identi�ed as the best-suited instance. D2W64 learning curves of
remaining train-test splits are seen in Figure 4.15. From the learning curves,
and resulting performance metrics in Table C.2, Appendix C; the following
points were considered in identifying the optimal train-test ratio:

� The learning rate steadily moves from relatively low for the smallest
split (0.1-0.9) (from Figure 4.14), to relatively high as the training set
size increases.

� The Training Loss stabilizes better as curves begin to �atten with in-
creasing train-test ratios. The gap between the Training and Validation
Loss curves continually decreases too.

� Training set sizes of 10-40% have the largest amount of noise present in
their Training curves. These train-test ratios also result in larger gaps
between the Training and Validation curves for Loss (in 0.1-0.9 and 0.2-
0.8), Accuracy and Recall. Additionally, the �nal Validation scores for
all metrics are among the poorest: showing low Recalls and Accuracies,
and the high Losses.

� Training sizes of 50-80% contain less noise for the Training curves than
those aforementioned. This indicates better learning from the train-
ing subset, although gaps between the Training and Validation curves
are signi�cant. Validation curves improve as training set sizes increase;
however, the noise present increases too.

� For train-test split 0.9-0.1, although over�tting (gap) is minimal, the
�nal scores for Accuracy and Recall are among the lowest.

� Looking at speci�c performance metrics on the validation subset, 3 train-
test ratios stand out for D2W64. Split 0.5-0.5 results in the highest
Validation Accuracy and the smallest gap between the Training and Val-
idation Accuracy curves. Split 0.6-0.4 results in the highest Recall and
lowest Loss. Split 0.9-0.1, however, results in the smallest overall degree
of over�tting.
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Figure 4.15: D2W64 Learning Curves for all Test-Train ratios

Stellenbosch University https://scholar.sun.ac.za



CHAPTER 4. RESULTS AND DISCUSSION 73

� Conversely, the lowest performance metrics on the Validation set are of
splits 0.1-0.9 and 0.2-0.8. The smallest training size also results in the
largest gaps between all Training and Validation curves.

Considering the above observations, the most promising training set sizes iden-
ti�ed were 50%, 60% and 90%. Of these three training set sizes, split 0.6-0.4 re-
sulted in the highest Recall while 0.9-0.1 exhibited the best learning behaviour
(relatively). For �nal model comparisons, D2W64 was thus considered with
the 0.9-0.1 train-test split. Even though noise in its Validation curves show
that the validation dataset is unrepresentative; it is preferred over the degree
of over�tting present for split 0.6-0.4.

4.5 Final Model Selection

This �nal section compares the most successful model instances, at their se-
lected train-test splits, to identify which model best classi�es selected cardiac
abnormalities. Random Forest E100D16 and Neural Network D2W64 will be
assessed on the quality of their predictions, before a discussion on the in�uence
of model type, architecture and hyper-parameters is presented. The section
concludes with commentary on the overall �ndings and clinical implications of
the selected model.

Mutual Information Scores and Train-Test Ratios
The mutual information scores vary with the size of the training set from which
they are calculated. Observing those of the 0.9-0.1 train-test split in Figure
4.16, more features decrease (21) than increase (17) relative to the scores test
EM0. As a result, it was expected that both models would not perform better
than test EM0, having mostly lower feature scores.

Predictions
Upon assessing model predictions against true labels, both models exhibited
many similarities. For most multi-label samples, the models were only able
to predict 1 of the 2/3 labels correctly. In the case of the Random Forest
E100D16, there were much less FP compared to those of the Neural Network
D2W64, as it would often misclassify a sample of one pathology class as an-
other.

Comparing New Results
Models E100D16 and D2W64 were re-initialised and re-run on re-shu�ed data
at train-test split 0.9-0.1. As a common means of comparison, confusion ma-
trices Table 4.13 were constructed from each model's predictions against the
true labels. The resulting performance metrics found in Table 4.14. D2W64
has higher FP, FN and TP values compared to E100D16.
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Figure 4.16: Mutual Information Scores for Train-Test Split 0.9-0.1

Table 4.13: Confusion Matrices of E100D16 and D2W64

N HF LVH MI AR AS

E
1
0
0
D
1
6 TN 101 92 91 97 92 95

FP 0 0 0 1 0 0
FN 15 20 18 13 17 17
TP 3 7 10 8 10 7

D
2
W
6
4 TN 95 91 90 96 92 93

FP 6 1 1 2 0 2
FN 10 19 26 18 22 20
TP 8 8 2 3 5 4

Table 4.14: Performance Metrics of E100D16 and D2W64

E100D16 D2W64
Accuracy 0,859 0,822
Precision 0,981 0,732
Recall 0,304 0,218
F1-score 0,458 0,314
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Label-swapping and Class Confusions
As previously noted, both models perform in small ranges of each other. The
Random Forest model outputs higher performance metrics, mostly due to the
di�erences in FN and FP values. Upon inspection of D2W64's 12 FP pre-
dictions, there were a range of classes confused (labels switched). The most
common labels switched were (i) N and LVH, and (ii) N and MI (occuring 3
times each) - the single FP of E100D16 was as per (ii). Other classes confused
by D2W64 included N-AS, N-HF, MI-AS, MI-AR, and LVH-AS. Confusions of
aortic valve abnormalities (AR/AS) can be attributed to the lack of features
that inform models on valve action more speci�cally, as 2-chamber views do
not view the aortic valve directly.

Multi-label Predictions
The test subset contains 7 multi-label samples, as per Table 4.15. Both models
recover 2 of these combinations at low rates. Table 4.15 columns show tallies
of the multi-label samples discovered by each model compared to the Total
in the test set. Missed combinations account for FN values of both models in
Table 4.13; missing many HF, MI, AS and AR samples. Both models were able
to predict 2 labels, however there was no discovery of samples with 3 labels.

Table 4.15: Tallies and Total of correctly predicted Multi-label samples per
model

Class Combinations E100D16 D2W64 Total
AS-AR 4 1 7
MI-AS-AR 0 0 2
MI-AR 0 0 1
MI-AS 0 0 2
HF-MI 4 1 7
HF-AR 0 0 1
HF-LVH 0 0 2

Best-suited Model Identi�ed
Based on the relative quality of the predictions and resulting performance
metrics, the Random Forest instance is the most suitable classi�er for this ap-
plication. E100D16 correctly predicts both single label and multi-label samples
more frequently than D2W64, thus produces slightly better performance met-
rics, although both sets of results are relatively poor.
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Input Data and Noise e�ects
Special mention of the feature quality is made to address the underlying issue
of unrepresentative data, which ultimately caps the performance of all model
instances in all tests. The consistently low performance metric scores despite
the number of samples available suggests that the data has little discoverable
patterns. As a result, the true predictive capacities of both model types tested
are not represented well in the results.

A deeper exploration of the pipeline steps was done to identify the cause
/ degree of variation-correlation trade-o� present in the input data. Figure
4.3 (§4.2) presents an example of a noisy HF case with the output from the
image pre-processing (FIJI) step - during which measurements were acquired
prior to geometry calculations. Comparing the unaugmented and augmented
echocardiogram images, the naked eye can identify a rough shape of the heart.
The unaugmented images were already considerably noisy, with the addition of
black noise lessening the prominence/clarity of the foreground. The diminished
(white) areas of interest were partially �ltered and removed in image pre-
processing steps. Noise was further removed using a histogram (of areas) when
model input features were being prepared. These observations also apply to
inherently noisy original cases augmented by other means.

The e�ect of noise on features can be seen in Table 4.16 where selected mea-
surements are included to reveal output di�erences. Parameters calculated
by multiplications, divisions, additions or subtractions of these measurements
thus exacerbate errors further - seen in the di�erence of volume (V ) values cal-
culated from ellipsoidal radii (c and a) measurements. Volumes were then used
to estimate stroke volume (SV ), ejection fraction (EF ) and cardiac output
(CO). They were also used to identify measurements at maximal and minimal
volumes - such as associated times (t) and surface areas (A). Lastly, due to the
dynamic nature of the data, the statistical measures intended to summarise
temporal variations do not represent original data patterns/relationships. As a
result, inherent relationships cannot become apparent to the machine learning
models. Measurement noise across all input data thus cause model instances
to confuse to pathology classes.

Table 4.16: Resulting measurements extracted from unaugmented and noised
frame of the Heart Failure case

c a A V m b
Unaugmented 243,14 137,67 24956 9650767 -8,722 4502,50
Augmented 247,81 145,97 10379 11059009 -5,777 3016,54
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Clinical Implications
Considering E100D16 in the context of medical practice, the likelihood of FN
and FP do not favour its implementation. For this project, there are a range of
low-to-high risk cardiac abnormalities selected. Patients usually go for echocar-
diograms as a secondary investigation to further understand issues experienced
pertaining to their heart or to monitor certain characteristics post some ab-
normal experience. Diagnoses are successful when information from patient
history and practitioner's knowledge / experience are combined. Therefore,
with no medical history or medical expert in tandem with the model, false
negative / positive predictions could have serious implications if undetected.
For example: a false negative classi�cation for non-lethal abnormality may
not be as serious. However, false negatives for more serious issues have mortal
consequences. Alternatively, false positives may result in patients undergo-
ing unnecessary treatments; wasting both time, money and resources. As a
result, this model requires further development before clinical trials or any
implementation can occur.

4.6 Conclusion

The chapter opened detailing the image pre-processing (FIJI) outputs and the
feature de�nitions to prepare data as suitable model inputs. The issues associ-
ated with noisy measurement/feature extractions presented themselves early;
in the FIJI outputs. This was then con�rmed by the mutual information scores
(§4.3) where most geometric and statistical features derived from images were
poorly related to the targets. These insights remained consisted throughout
all tests, as model performances improved when features with higher mutual
information scores were included. Some of the more valuable features were
not clinically relevant; thus, feature selection for Data tests were based more
on medical practice. Performance did not improve much for the training set
sizes tested, as the model instances were found to poorly identify innate rela-
tionships in the data. Predictions were closely scrutinised to highlight speci�c
issues found to be common to both models tested - such as failure to identify
most multi-label samples. Random Forest E100D16 was selected as the best
suited model on the basis of relatively better detection of multi-label instances
and higher performance metric scores.
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5 Limitations & Recommendations

This chapter presents a discussion on the gaps/limitations on this project
together and related recommendations. All practical work phases of project
are considered, including the clinical and engineering aspects of all events in
Figure 3.1.

The initial reasoning for conservative ranges in the data augmentations (ap-
plied to the echocardiogram video frames) was to maintain realistic synthetic
samples. Based on the results for both models, more training data would
have better contributed to improving overall performance, navigating the bias-
variance (under�t-over�t) trade-o� and balancing data in all classes. There-
fore, the respective ranges for rotations and translations could be widened to
provide more distinguishable variations in the extracted measurements from
the images. Additionally, conservative augmentations could have been applied
to the EMR data as these features were merely repeated for original and corre-
sponding augmented cases. Minor adjustments to variables, such as Age, could
have been reasonable - especially where cases were augmented more than twice.

Based on results from the tests and mutual information scores, medical his-
tory and speci�c patient data are major contributors to the predictive capabil-
ities of machine learning models in this application. This lack of information
ultimately caps model performances; compromising validity and e�ectiveness.
Despite ethical regulations barring access to personal details, there is still room
to collect other medically informative data; such as previous procedures, blood
pressure (usually monitored before a procedure), or stress-strain information
(available in more recent echocardiogram reports). Such information allows
for other physiological attributes to be estimated and included as features;
such as instantaneous pressure, elastance and compliance, or cardiac muscle
characteristics. Research involving echocardiograms are normally integrated
with supporting clinical or patient data. This presents a challenge in cases
where con�icting information exists about prognosis (Mandes et al., 2020).

Another limitation is the lack of medical data available over longer peri-
ods for more recently developed methods. Echocardiography, for example, is
a newer technique that has undergone many additions and improvements for
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its various imaging modalities, but lacks large public databases (Litjens et al.,
2019). As a result, there is high variability in existing literature from the mod-
els developed, architectural choices and evaluation methods; thus comparisons
are di�cult where there is little/no overlap (Bizopoulos and Koutsouris, 2019).

Of the many views and imaging modes available from an echocardiogram,
only one mode and orientation was used to extract information in this project;
viz. apical 2-chamber view. Including other views or modalities (with ac-
companying domain knowledge) would allow for more feature extractions. For
example, information from a collection of views would provide more insightful
features on global/localised behaviours of valves, papillary muscles or surround
vasculature. More views/features about valves would have informed models
better on abnormalities such as Aortic Regurgitation or Aortic Stenosis - not
captured in a 2-chamber view.

Machine learning methods applied to any facet of healthcare require su�-
ciently large amounts of training data to achieve results of comparable quality.
Working with medical data involves extensive manual labelling by healthcare
specialists (Madani et al., 2018). This is necessary for transdisciplinary re-
search and development where experts in other �elds attempt work on health
care systems. Across hospital environments, not all data, apart from patient
information, is stored in a standardized, well-labelled manner suitable for ex-
ternal research. Moreover, most medical data belongs to the wide normal

category as opposed to the abnormal (Bizopoulos and Koutsouris, 2019); cre-
ating vastly unbalanced datasets. This was the case in the project at hand,
which necessitated augmentations for su�cient training/testing data.

The complexity of the (relatively) larger Neural Networks included in the
study proved to be, or quickly become, too complex for the classi�cation task
and data at hand. Other than collecting more training data and implement-
ing early stopping; alternative approaches to minimize over�tting include in-
creasing the dropout rate of hidden layer neurons or learning rate alterations
(Zulki�i, 2018). A dropout rate of 30% was used for all Neural Network model
sizes, however this can be increased to at least 50%. This would also negate
the high learning rates typical of larger models applied to small / unrepre-
sentative datasets. Learning rates themselves are a�ected by optimisers. The
Adam (Adaptive Moment Estimator) optimiser was used in the compilation
of the Neural Networks, however, model instances still tended to over�t of-
ten. Other optimisers such as AdaGrad (Adaptive Gradient Algorithm) or
RMSprop (Root Mean Square Propagation) could be tried (Zulki�i, 2018);
however, with the same dataset, improvements may plateau.
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From a consultation with a collaborating doctor on the process of diagnosing
any cardiac pathology, much of the decision-making is based on both years of
training and experience in practice (Van der Bijl, 2021). In both ways, e�orts
toward transdisciplinary implementation of machine learning demands study
or easy access (at least) to applicable domain knowledge. For this project,
the intersection between characteristics observed in practice by experts and
that which could be extracted from images alone, was the geometry. Although
the video frames provided a means of extracting some dynamic / geometric
information, it was not enough to inform the models (through better features)
for good predictions. Furthermore, geometry was heavily a�ected by noise
content of the images - compromising overall model performance.

Less explored domains were those of computer vision, statistics, mathemat-
ics and data science - which ultimately limit model quality and capability. The
following areas of improvement were thus observed:

� Alternative computer vision techniques and appropriate quality control
checks would optimise image processing steps.

� More complex statistics could have been applied to better capture the
behaviour of the heart when used to summarise dynamic features.

� More sophisticated mathematical methods could be used to approximate
/ �t the extracted information (from images) to some derived function for
volume (primarily). For example, �tting non-uniform rational B-splines
(NURBS) could be further investigated as opposed to the geometric ap-
proach undertaken to approximate the asymmetric geometry of the left
ventricle.

� Knowledge and training in the aforementioned �elds are foundational in
good data science practices; for better intuition about parameter tuning
or evaluation methods, etc. Another direction to investigate would be
the use of other deep learning architectures. Such alternatives include
convolutional neural networks (CNNs) and recurrent neural networks
(RNNs). CNNs are normally used for image classi�cation, and RNNs
are used for dynamic/temporal input data. Both conditions apply in
this project and thus allow videos to be used as training data directly.

� Autoencoders and Generative Adversarial Networks (GANs) are other
alternative deep learning architectures that could be used for dimension
reductions (Raj, 2018) and realistic augmentations (Goodfellow et al.,
2014), respectively. However, successful application of these alternatives
requires adequate training data.
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6 Conclusion

This study endeavoured to develop a diagnostic tool that employs machine
learning algorithms for the task of classifying selected cardiac abnormalities.
In this �nal chapter, a review of all previous content, methods and conclusions
are presented in relation to the aims and objectives outlined in Chapter 1.

For the context of this project, the �elds of cardiology and supervised ma-
chine learning intertwine. Essential theory from both �elds was collected and
presented in a literature review in Chapter 2. The literature facilitated the
translation of medically relevant information to measurable engineering fea-
tures. Data sourced was in the form of echocardiogram videos, from which
measurements were extracted for calculations and feature de�nitions, detailed
with previous work in Chapter 3.

Upon close examination of all model instances in all tests (with associated
feature combinations) in Chapter 4, clear model behaviours could be identi-
�ed for both Random Forests and Neural Networks. In the Engineering and
Medical tests, Random Forest architectures showed consistent strengths and
weakness in predicting certain pathologies. Neural Network instances that
scored highest usually over�t the training data. Both model types showed
sensitivity to feature selections and/or data representativeness throughout all
results. Upon altering training set sizes in Data tests, ideal train-test ratios
were identi�ed for both model type instances shortlisted. However, data repre-
sentativeness hindered model performances due to the e�ect of inherent and/or
injected noise in the echocardiogram video frames.

Limitations were discussed, in Chapter 5, from a variety of steps in the
project, with recommendations or alternatives provided where possible; other
solutions being available with more domain knowledge. Much of the latter
steps in the pipeline were a�ected by noise present, and unfortunately the
true potential of the models could not be explored. However, all outputs were
analysed according to plan, providing valuable insights into model behaviour
with regards to internal dimensions / parameters, value of the features included
and response to the quality of data for training and testing.
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A Appendix 1: Engineering Tests

Results

A.1 Mutual Information Scores

The tables included in this section include the Mutual Information scores for
all Engineering tests performed. They contain colour-coded blocks: green
indicating increased scores compared to baseline EM0, and red indicating de-
creased scores. Table A.1 contains scores for Tests E1-E5; where single feature
deletions were done. Table A.2 contain scores for Tests E12-E12345; where
cumulative feature deletions were done. The baseline test results are included
in both tables for comparison purposes.

Table A.1: Mutual Information Scores of all individual feature deletions for
Engineering Tests

Features EM0 E1 E2 E3 E4 E5
1cycl_dur 1,3407 1,3314 1,3353 1,3375 1,3353
A_avg 0,0380 0,0380 0,0380 0,0380 0,0380 0,0380
a_avg 0,0359 0,0359 0,0359 0,0359 0,0359 0,0359
a_max 0,0675 0,0675 0,0675 0,0675 0,0675 0,0675
a_min 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548
A_vmax 0,0707 0,0713 0,0711 0,0695 0,0711 0,0711
A_vmin 0,0964 0,0981 0,0979 0,0987 0,0979 0,0979
Age 0,6334 0,6170 0,6170 0,5913 0,5913

b_avg 0,0698 0,0698 0,0698 0,0698 0,0698 0,0698
b_max 0,0302 0,0302 0,0302 0,0302 0,0302 0,0302
b_min 0,0618 0,0618 0,0618 0,0618 0,0618 0,0618
c_avg 0,0873 0,0873 0,0870 0,0873 0,0870 0,0870
c_max 0,0737 0,0737 0,0737 0,0737 0,0737 0,0737
c_min 0,0157 0,0157 0,0157 0,0157 0,0157 0,0157
CO 0,0584 0,0584 0,0584 0,0584 0,0584 0,0584
EF 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623

Gender 0,1375 0,0942 0,1323 0,1323 0,1323
Continued on next page
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Table A.1 � Continued from previous page

HR2 0,5847 0,5951 0,5806 0,5951 0,5719
HR3 0,5285 0,5953 0,5338 0,5953 0,5229
HR4 0,5274 0,5745 0,5041 0,5745 0,6049
m_avg 0,0453 0,0453 0,0453 0,0453 0,0453 0,0453
m_max 0,0146 0,0146 0,0146 0,0146 0,0146 0,0146
m_min 0,0805 0,0805 0,0805 0,0805 0,0805 0,0805
SD_A 0,0927 0,0927 0,0927 0,0927 0,0927 0,0927
SD_a 0,0101 0,0101 0,0101 0,0101 0,0101 0,0101
SD_b 0,0243 0,0243 0,0243 0,0243 0,0243 0,0243
SD_c 0,0646 0,0646 0,0646 0,0646 0,0646 0,0646
SD_m 0,0048 0,0048 0,0048 0,0048 0,0048 0,0048
SD_Vol 0,0494 0,0494 0,0494 0,0494 0,0494 0,0494
SV 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623

t_max 0,0875 0,0778 0,0905 0,0855 0,0905 0,0905
t_min 0,1738 0,1836 0,1688 0,1683 0,1688 0,1688
Test_yr 0,1142 0,1308 0,1233 0,1308 0,0905
VAR_A 0,0932 0,0932 0,0932 0,0932 0,0932 0,0932
VAR_a 0,0109 0,0109 0,0109 0,0109 0,0109 0,0109
VAR_b 0,0310 0,0245 0,0345 0,0135 0,0345 0,0345
VAR_c 0,0621 0,0621 0,0621 0,0621 0,0621 0,0621
VAR_m 0,0140 0,0020 0,0113 0,0100 0,0113 0,0113
VAR_Vol 0,0483 0,0483 0,0483 0,0483 0,0483 0,0483
Vavg 0,0460 0,0460 0,0460 0,0460 0,0460 0,0460
Vmax 0,0520 0,0520 0,0520 0,0520 0,0520 0,0520
Vmin 0,0227 0,0227 0,0227 0,0227 0,0227 0,0227

Xc_avg 0,0483 0,0482 0,0482 0,0482 0,0482 0,0482
Xc_max 0,0148 0,0148 0,0148 0,0148 0,0148 0,0148
Xc_min 0,0522 0,0522 0,0522 0,0522 0,0522 0,0522
Yc_avg 0,0219 0,0219 0,0219 0,0219 0,0219 0,0219
Yc_max 0,0175 0,0175 0,0175 0,0175 0,0175 0,0175
Yc_min 0,0400 0,0400 0,0400 0,0400 0,0400 0,0400

Table A.2: Mutual Information Scores of all cumulative feature deletions for
Engineering Tests

Features EM0 E1 E12 E123 E1234 E12345
1cycl_dur 1,3407 1,3314 1,3377 1,3410 1,3356
A_avg 0,0380 0,0380 0,0380 0,0380 0,0380 0,0380
a_avg 0,0359 0,0359 0,0359 0,0359 0,0359 0,0359
a_max 0,0675 0,0675 0,0675 0,0675 0,0675 0,0675

Continued on next page
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Table A.2 � Continued from previous page

a_min 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548
A_vmax 0,0707 0,0713 0,0703 0,0697 0,0696 0,0700
A_vmin 0,0964 0,0981 0,0999 0,0983 0,0990 0,0987
Age 0,6334 0,6170

b_avg 0,0698 0,0698 0,0698 0,0698 0,0698 0,0702
b_max 0,0302 0,0302 0,0302 0,0302 0,0302 0,0302
b_min 0,0618 0,0618 0,0618 0,0618 0,0618 0,0618
c_avg 0,0873 0,0873 0,0873 0,0873 0,0873 0,0870
c_max 0,0737 0,0737 0,0737 0,0737 0,0737 0,0737
c_min 0,0157 0,0157 0,0157 0,0157 0,0157 0,0157
CO 0,0584 0,0584 0,0584 0,0584 0,0584 0,0584
EF 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623

Gender 0,1375 0,0942 0,1003
HR2 0,5847
HR3 0,5285
HR4 0,5274
m_avg 0,0453 0,0453 0,0453 0,0453 0,0453 0,0453
m_max 0,0146 0,0146 0,0146 0,0146 0,0146 0,0146
m_min 0,0805 0,0805 0,0805 0,0805 0,0805 0,0805
SD_A 0,0927 0,0927 0,0927 0,0927 0,0927 0,0927
SD_a 0,0101 0,0101 0,0101 0,0101 0,0101 0,0101
SD_b 0,0243 0,0243 0,0243 0,0243 0,0243 0,0243
SD_c 0,0646 0,0646 0,0646 0,0646 0,0646 0,0646
SD_m 0,0048 0,0048 0,0048 0,0048 0,0048 0,0048
SD_Vol 0,0494 0,0494 0,0494 0,0494 0,0494 0,0494
SV 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623

t_max 0,0875 0,0778 0,0788 0,0955 0,0883 0,0928
t_min 0,1738 0,1836 0,1635 0,1647 0,1668 0,1837
Test_yr 0,1142 0,1308 0,1286 0,1550
VAR_A 0,0932 0,0932 0,0932 0,0932 0,0932 0,0932
VAR_a 0,0109 0,0109 0,0109 0,0109 0,0109 0,0109
VAR_b 0,0310 0,0245 0,0314 0,0383 0,0318 0,0280
VAR_c 0,0621 0,0621 0,0621 0,0621 0,0621 0,0621
VAR_m 0,0140 0,0020 0,0020 0,0122 0,0108 0,0194
VAR_Vol 0,0483 0,0483 0,0483 0,0483 0,0483 0,0483
Vavg 0,0460 0,0460 0,0460 0,0460 0,0460 0,0460
Vmax 0,0520 0,0520 0,0520 0,0520 0,0520 0,0520
Vmin 0,0227 0,0227 0,0227 0,0227 0,0227 0,0227

Xc_avg 0,0483 0,0482 0,0482 0,0483 0,0483 0,0482
Xc_max 0,0148 0,0148 0,0148 0,0148 0,0148 0,0148
Xc_min 0,0522 0,0522 0,0522 0,0522 0,0522 0,0522
Yc_avg 0,0219 0,0219 0,0218 0,0219 0,0219 0,0219
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Yc_max 0,0175 0,0175 0,0175 0,0175 0,0175 0,0175
Yc_min 0,0400 0,0400 0,0400 0,0400 0,0400 0,0400

A.2 Random Forest Results

The following tables are to be read in conjunction with one another, as the
model entries in Table A.3 all coincide with their performance metrics in Ta-
ble A.4. Coloured blocks in Table A.4 highlight the highest scores for the
respective Engineering test.

Table A.3: Best performing Random Forest models based on performance
metrics for each pathology, listed by architectural descriptors

Test N HF LVH MI AR AS
EM0 E100:D16 E100:D16 E100:D16

E150:D16 E150:D16 E150:D16
E200:D16 E200:D16

E500:D16
E1 E100:D16

E150:D16 E150:D16 E150:D16
E300:D16

E400:D16 E400:D16 E400:D16
E450:D16 E450:D16
E500:D16 E500:D16 E500:D16

E2 E100:D16
E150:D16 E150:D16

E200:D16 E200:D16 E200:16
E250:D16

E300:D16 E300:D16 E300:D16
E350:D16 E350:D16

E400:D16 E400:D16 E400:D16
E450:D16 E450:D16 E450:D16

E500:D16 E500:D16 E500:D16 E500:D16 E500:D16
E3 E100:D16

E150:D16 E150:D16
E200:D16 E200:D16

E250:D16 E250:D16 E250:D16
E300:D16
E350:D16
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E400:D16 E400:D16
E450:D16 E450:D16
E500:D16 E500:D16

E4 E100:D16 E100:D16 E100:D16
E150:D16

E200:D16
E250:D16 E250:D16

E350:D16
E450:D16 E450:D16

E500:D16 E500:D16 E500:D16
E5 E100:D16 E100:D16

E150:D8
E150:D16 E150:D16
E200:D16 E200:D16 E200:D16
E250:D16 E250:D16
E300:D16 E300:D16 E300:D16

E350:D16 E350:D16
E400:D16 E400:D16

E450:D16 E450:D16 E450:D16
E500:D16 E500:D16 E500:D16

E12 E100:D16
E200:D16 E200:D16 E200:D16

E250:D16
E300:D16
E350:D16
E400:D16 E400:D16
E450:D16 E450:D16
E500:D16

E123 E150:D8
E200:D8
E250:D8
E300:D8
E350:D8
E400:D8
E450:D8
E500:D8
E100:D16 E100:D16
E150:D16 E150:D16 E150:D16 E150:D16
E200:D16
E250:D16
E300:D16
E350:D16 E350:D16 E350:D16
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E400:D16 E400:D16
E450:D16 E450:D16 E450:D16
E500:D16 E500:D16 E500:D16

E1234 E100:D8 E100:D8
E150:D8 E150:D8
E200:D8 E200:D8
E250:D8 E250:D8
E300:D8 E300:D8
E350:D8
E400:D8
E450:D8 E450:D8
E500:D8
E100:D16 E100:D16 E100:D16

E150:D16 E150:D16 E150:D16
E200:D16 E200:D16
E250:D16
E300:D16

E350:D16 E350:D16
E400:D16 E400:D16

E450:D16
E500:D16

E12345 E100:D16 NONE NONE E100:D16 E100:D16
E150:D16 E150:D16

E200:D16 E200:D16
E400:D16
E450:D16
E500:D16

Table A.4: Averaged Performance Metrics for Best Performing Random Forest
Models per Engineering Test

Test Model Accuracy Recall Precision F1-score
EM0 E100:D16 0,8333 0,2171 0,9309 0,3357

E150:D16 0,8368 0,2264 0,9470 0,3523
E200:D16 0,8354 0,2201 0,9493 0,3404
E500:D16 0,8326 0,2063 0,9372 0,3243
E200:D16 0,83544 0,22011 0,94928 0,34039
E500:D16 0,83263 0,20626 0,93718 0,32433

E1 E100:D16 0,8136 0,1130 0,8512 0,1947
E150:D16 0,8179 0,1325 0,8824 0,2222
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E300:D16 0,8172 0,1230 0,9167 0,2101
E400:D16 0,8193 0,1348 0,9117 0,2276
E450:D16 0,8193 0,1314 0,9213 0,2230
E500:D16 0,8200 0,1390 0,9153 0,2327

E2 E100:D16 0,8221 0,1787 0,8442 0,2793
E150:D16 0,8249 0,1830 0,8941 0,2862
E200:D16 0,8256 0,1822 0,9179 0,2860
E250:D16 0,8242 0,1713 0,9214 0,2692
E300:D16 0,8242 0,1757 0,9179 0,2728
E350:D16 0,8242 0,1749 0,8604 0,2781
E400:D16 0,8256 0,1847 0,8699 0,2866
E450:D16 0,8270 0,1874 0,9255 0,2918
E500:D16 0,8284 0,1964 0,9281 0,3044

E3 E100:D16 0,8277 0,1319 0,8948 0,2192
E150:D16 0,8319 0,1318 0,9335 0,2141
E200:D16 0,8319 0,1153 0,9385 0,1916
E250:D16 0,8298 0,1284 0,9258 0,2116
E300:D16 0,8291 0,1165 0,9247 0,1941
E350:D16 0,8291 0,1094 0,9265 0,1842
E400:D16 0,8319 0,1115 0,9318 0,1897
E450:D16 0,8298 0,1157 0,9265 0,1943
E500:D16 0,8326 0,1115 0,9417 0,1883

E4 E100:D16 0,8312 0,1915 0,9510 0,3102
E150:D16 0,8305 0,1943 0,9524 0,3083
E200:D16 0,8270 0,1785 0,9444 0,2831
E250:D16 0,8298 0,1909 0,9500 0,3045
E350:D16 0,8312 0,1978 0,9470 0,3114
E450:D16 0,8319 0,2005 0,9470 0,3152
E500:D16 0,8326 0,2054 0,9493 0,3199

E5 E100:D16 0,8326 0,1970 0,9537 0,3153
E150:D8 0,8165 0,1219 0,9249 0,2088
E150:D16 0,8319 0,2044 0,9351 0,3186
E200:D16 0,8326 0,2074 0,9414 0,3218
E250:D16 0,8319 0,2091 0,9375 0,3218
E300:D16 0,8319 0,2085 0,9354 0,3227
E350:D16 0,8312 0,2071 0,9315 0,3163
E400:D16 0,8291 0,1934 0,9318 0,3014
E450:D16 0,8319 0,2051 0,9394 0,3195
E500:D16 0,8312 0,1995 0,9348 0,3154

E12 E100:D16 0,8108 0,1105 0,8121 0,1868
E200:D16 0,8136 0,1274 0,8732 0,2086
E250:D16 0,8129 0,1183 0,9033 0,1937
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E300:D16 0,8122 0,1183 0,8699 0,1933
E350:D16 0,8101 0,1066 0,8397 0,1774
E400:D16 0,8122 0,1134 0,8984 0,1853
E450:D16 0,8101 0,1022 0,8690 0,1702
E500:D16 0,8136 0,1128 0,9097 0,1896

E123 E150:D8 0,7961 0,0070 0,6667 0,0402
E200:D8 0,7961 0,0070 0,6667 0,0402
E250:D8 0,7961 0,0070 0,6667 0,0402
E300:D8 0,7961 0,0070 0,6667 0,0402
E350:D8 0,7961 0,0070 0,6667 0,0402
E400:D8 0,7968 0,0107 0,7778 0,0410
E450:D8 0,7968 0,0107 0,7778 0,0410
E500:D8 0,7975 0,0107 0,8333 0,0414
E100:D16 0,8094 0,0988 0,8660 0,1646
E150:D16 0,8143 0,1175 0,9352 0,1931
E200:D16 0,8115 0,1031 0,9271 0,1728
E250:D16 0,8108 0,1047 0,9259 0,1718
E300:D16 0,8115 0,1000 0,9333 0,1673
E350:D16 0,8115 0,1007 0,9333 0,1680
E400:D16 0,8115 0,0966 0,9359 0,1638
E450:D16 0,8115 0,0994 0,9286 0,1675
E500:D16 0,8108 0,0926 0,9306 0,1580

E1234 E100:D8 0,8017 0,0520 0,8611 0,0923
E150:D8 0,7996 0,0403 0,8083 0,0878
E200:D8 0,7989 0,0374 0,8667 0,0809
E250:D8 0,7996 0,0374 0,8750 0,0815
E300:D8 0,7996 0,0374 0,8750 0,0815
E350:D8 0,7989 0,0338 0,8750 0,0739
E400:D8 0,7982 0,0338 0,8667 0,0734
E450:D8 0,7996 0,0416 0,8800 0,0885
E500:D8 0,7989 0,0380 0,8800 0,0809
E100:D16 0,8080 0,0930 0,9021 0,1527
E150:D16 0,8080 0,0883 0,8244 0,1501
E200:D16 0,8066 0,0868 0,8160 0,1450
E250:D16 0,8059 0,0821 0,8333 0,1381
E300:D16 0,8073 0,0862 0,8438 0,1441
E350:D16 0,8066 0,0875 0,8426 0,1432
E400:D16 0,8066 0,0875 0,8426 0,1432
E450:D16 0,8059 0,0834 0,8382 0,1383
E500:D16 0,8045 0,0763 0,8333 0,1284

E12345 E100:D16 0,8059 0,0768 0,8417 0,1337
E150:D16 0,8052 0,0664 0,8333 0,1188
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E200:D16 0,8052 0,0687 0,7778 0,1217
E400:D16 0,8031 0,0651 0,7278 0,1150
E450:D16 0,8024 0,0622 0,7333 0,1095
E500:D16 0,8017 0,0622 0,6778 0,1093
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A.3 Neural Networks Results

Each Neural Network model performance is summarised for all Engineering tests. Final scores of the training and validation
subsets (di�erentiated by v_) are presented in Table A.5, with blue coloured blocks highlighting the best performing model
per test.

Table A.5: Averaged Performance Metrics for Best Performing Neural Network Models per Engineering Test

Test Model loss accuracy recall precision v_loss v_accuracy v_recall v_precision
EM0 D1W16 0,4323 0,4034 0,1517 0,5768 0,4585 0,3840 0,0345 0,4545

D1W64 0,3586 0,5333 0,3268 0,7109 0,4358 0,4135 0,1172 0,5000
D1W256 0,2591 0,6663 0,5835 0,8344 0,4361 0,4093 0,2621 0,5891
D2W16 0,2591 0,6663 0,5835 0,8344 0,4361 0,4093 0,2621 0,5891
D2W64 0,3660 0,5048 0,3411 0,6972 0,4330 0,4219 0,1345 0,5909
D2W256 0,1892 0,7635 0,7343 0,8758 0,4166 0,4388 0,3207 0,6039
D3W16 0,4577 0,3590 0,0682 0,5468 0,4632 0,3038 0,0069 0,2222
D3W64 0,3517 0,5533 0,3662 0,6974 0,4173 0,4304 0,2483 0,5669
D3W256 0,1240 0,8163 0,8447 0,8945 0,3922 0,5401 0,5000 0,6808

E1 D1W16 0,4401 0,3928 0,1176 0,5928 0,4622 0,3544 0,0172 0,5000
D1W64 0,3840 0,4857 0,2711 0,6331 0,4408 0,4093 0,0793 0,6389
D1W256 0,2763 0,6526 0,5332 0,8060 0,4350 0,4051 0,2000 0,5631
D2W16 0,4481 0,3442 0,0817 0,5322 0,4597 0,3376 0,0103 0,4286
D2W64 0,3737 0,5016 0,3268 0,6642 0,4242 0,4135 0,1931 0,5895
D2W256 0,1364 0,8237 0,8223 0,8998 0,4315 0,5274 0,4172 0,6471
D3W16 0,4791 0,3031 0,0449 0,4464 0,4703 0,3544 0,0207 0,6667
D3W64 0,3708 0,4879 0,3061 0,6713 0,4321 0,4135 0,1724 0,5102
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Table A.5 � Continued from previous page

D3W256 0,1416 0,7994 0,8106 0,8923 0,3906 0,5359 0,5069 0,6309
E2 D1W16 0,4498 0,3622 0,0978 0,5648 0,4777 0,3080 0,0379 0,6875

D1W64 0,3776 0,4974 0,2549 0,6961 0,4672 0,3586 0,1207 0,5833
D1W256 0,4114 0,4182 0,1993 0,6510 0,5732 0,2025 0,0241 0,4118
D2W16 0,4761 0,3094 0,0709 0,5163 0,4786 0,3038 0,0103 0,7500
D2W64 0,3849 0,4583 0,2873 0,6584 0,4480 0,3544 0,1448 0,5000
D2W256 0,1681 0,7899 0,7612 0,8843 0,4099 0,4641 0,3931 0,6064
D3W16 0,4774 0,2872 0,0287 0,5161 0,4874 0,2869 0,0069 0,2500
D3W64 0,3859 0,4667 0,2684 0,6458 0,4502 0,3882 0,1655 0,5106
D3W256 0,1525 0,7888 0,7998 0,8752 0,4343 0,5232 0,4379 0,5853

E3 D1W16 0,4517 0,3611 0,0880 0,4804 0,4658 0,3080 0,0207 0,5000
D1W64 0,3768 0,5090 0,2953 0,6985 0,4456 0,3797 0,1034 0,5263
D1W256 0,2712 0,6737 0,5530 0,8031 0,4510 0,3924 0,2103 0,5083
D2W16 0,4496 0,3474 0,0987 0,5473 0,4489 0,3671 0,0345 0,9091
D2W64 0,3519 0,5312 0,3555 0,6655 0,4213 0,4388 0,2138 0,6392
D2W256 0,1614 0,7909 0,7675 0,8824 0,4255 0,4557 0,3207 0,6078
D3W16 0,4761 0,2851 0,0359 0,4301 0,4720 0,3122 0,0069 0,4000
D3W64 0,3950 0,4593 0,2612 0,5988 0,4399 0,3755 0,1241 0,5455
D3W256 0,1316 0,8036 0,8294 0,9041 0,4256 0,4979 0,4379 0,6195

E4 D1W16 0,4427 0,3728 0,1194 0,5473 0,4627 0,3460 0,0172 0,5000
D1W64 0,3769 0,4921 0,2846 0,7060 0,4497 0,3755 0,1103 0,5424
D1W256 0,2720 0,6790 0,5503 0,8024 0,4510 0,4135 0,1931 0,5437
D2W16 0,4535 0,3495 0,0952 0,5550 0,4634 0,3207 0,0621 0,5806
D2W64 0,3601 0,5079 0,3348 0,6907 0,4355 0,3755 0,1655 0,5647
D2W256 0,1705 0,7951 0,7603 0,8888 0,4238 0,4641 0,4034 0,5969
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Table A.5 � Continued from previous page

D3W16 0,4734 0,2946 0,0485 0,5000 0,4699 0,3038 0,0172 0,7143
D3W64 0,3812 0,4752 0,2935 0,6462 0,4394 0,3797 0,1655 0,5106
D3W256 0,1709 0,7730 0,7792 0,8637 0,4310 0,4684 0,4034 0,5939

E5 D1W16 0,4434 0,3759 0,1329 0,5175 0,4568 0,3629 0,0207 0,4000
D1W64 0,3644 0,5143 0,2890 0,6736 0,4374 0,4093 0,1103 0,6154
D1W256 0,3929 0,4784 0,2478 0,6781 0,5748 0,2236 0,1069 0,4306
D2W16 0,4413 0,3759 0,1059 0,5673 0,4516 0,3291 0,0448 0,6190
D2W64 0,3508 0,5143 0,3833 0,6789 0,4211 0,4008 0,2172 0,5780
D2W256 0,1329 0,8416 0,8106 0,9177 0,4007 0,5401 0,4448 0,6355
D3W16 0,4703 0,2957 0,0539 0,5455 0,4690 0,2911 0,0000 0,0000
D3W64 0,3615 0,5153 0,3582 0,6763 0,4128 0,4262 0,2345 0,5574
D3W256 0,1433 0,8046 0,8214 0,8815 0,3745 0,5105 0,4828 0,6452

E12 D1W16 0,4569 0,3664 0,0808 0,5882 0,4800 0,3165 0,0172 0,6250
D1W64 0,4079 0,4488 0,2217 0,6730 0,4666 0,3502 0,0448 0,5417
D1W256 0,3072 0,6241 0,4695 0,7877 0,4544 0,3502 0,1552 0,5357
D2W16 0,4700 0,3126 0,0503 0,5000 0,4846 0,3207 0,0069 0,4000
D2W64 0,3866 0,4762 0,2738 0,6408 0,4605 0,3418 0,1276 0,5781
D2W256 0,1965 0,7687 0,7253 0,8587 0,4483 0,4177 0,3138 0,5583
D3W16 0,4837 0,2756 0,0171 0,5000 0,4813 0,3333 0,0000 0,0000
D3W64 0,3958 0,4752 0,2648 0,6330 0,4475 0,3207 0,1655 0,5581
D3W256 0,3403 0,5364 0,4004 0,6778 0,5092 0,1857 0,0483 0,3889

E123 D1W16 0,4857 0,2619 0,0422 0,3507 0,4940 0,2363 0,0000 0,0000
D1W64 0,4111 0,4245 0,1777 0,6535 0,4694 0,2954 0,0276 0,3200
D1W256 0,3183 0,5660 0,4210 0,7363 0,4696 0,3586 0,1517 0,4889
D2W16 0,4723 0,2988 0,0422 0,4608 0,4787 0,2785 0,0241 0,5833
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D2W64 0,4048 0,4277 0,2172 0,6302 0,4583 0,3249 0,0793 0,5610
D2W256 0,3312 0,5913 0,4013 0,7500 0,5087 0,1814 0,0069 0,2857
D3W16 0,4775 0,2883 0,0287 0,5614 0,4737 0,3122 0,0034 0,2500
D3W64 0,4133 0,4161 0,1939 0,6067 0,4583 0,3502 0,1241 0,4557
D3W256 0,3403 0,5322 0,4372 0,6850 0,5196 0,2321 0,0655 0,3393

E1234 D1W16 0,4746 0,2988 0,0359 0,4938 0,4971 0,2574 0,0034 0,5000
D1W64 0,4167 0,4129 0,1598 0,6473 0,4833 0,2869 0,0276 0,2963
D1W256 0,3378 0,5649 0,3770 0,7460 0,4795 0,3038 0,0931 0,5000
D2W16 0,4785 0,2946 0,0305 0,5862 0,4983 0,2025 0,0000 0,0000
D2W64 0,4108 0,4182 0,1966 0,6329 0,4748 0,3291 0,0655 0,4634
D2W256 0,3486 0,5385 0,3680 0,7335 0,5073 0,1646 0,0000 0,0000
D3W16 0,5012 0,2408 0,0251 0,3944 0,4979 0,2236 0,0000 0,0000
D3W64 0,4230 0,4065 0,1688 0,6006 0,4783 0,3080 0,0552 0,4000
D3W256 0,3405 0,5343 0,4210 0,6897 0,5047 0,2658 0,0034 0,3333

E12345 D1W16 0,4944 0,2555 0,0242 0,3462 0,5037 0,2152 0,0000 0,0000
D1W64 0,4296 0,3939 0,1338 0,6032 0,4889 0,2700 0,0207 0,5455
D1W256 0,4419 0,3664 0,1050 0,5442 0,5823 0,2068 0,0000 0,0000
D2W16 0,4933 0,2693 0,0233 0,2955 0,5012 0,2447 0,0000 0,0000
D2W64 0,4258 0,4192 0,1697 0,6097 0,4783 0,3586 0,0483 0,5000
D2W256 0,3463 0,5396 0,3636 0,7155 0,5062 0,1688 0,0034 0,1667
D3W16 0,4933 0,2376 0,0171 0,4419 0,5002 0,2194 0,0000 0,0000
D3W64 0,4318 0,4002 0,1499 0,5986 0,4792 0,3038 0,0483 0,4828
D3W256 0,3543 0,5417 0,3842 0,6971 0,5290 0,2405 0,0034 0,2000
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B Appendix 2: Medical Tests Re-

sults

B.1 Mutual Information Scores

The tables included in this section include the Mutual Information scores for
all Engineering tests performed. They contain colour-coded blocks: green
indicating increased scores compared to baseline EM0, and red indicating de-
creased scores. Table B.1 contains scores for Tests M1-M6; where single feature
deletions were done. Table B.2 contain scores for Tests M12-M123456; where
cumulative feature deletions were done. The baseline test results are included
in both tables for comparison purposes.

Table B.1: Mutual Information Scores of all individual feature deletions for
Medical Tests

Features EM0 M1 M2 M3 M4 M5 M6
1cycl_dur 1,3407 1,3446 1,3664 1,3446 1,3446 1,3446 1,3446
A_avg 0,0380 0,0380 0,0380 0,0380 0,0380 0,0380
a_avg 0,0359 0,0359 0,0359 0,0359 0,0359 0,0359
a_max 0,0675 0,0675 0,0675 0,0675 0,0675 0,0675
a_min 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548
A_vmax 0,0707 0,0695 0,0703 0,0695 0,0695 0,0695
A_vmin 0,0964 0,0995 0,0970 0,0995 0,0995 0,0995
Age 0,6334 0,6413 0,6035 0,6413 0,6413 0,6413 0,6413

b_avg 0,0698 0,0702 0,0698 0,0698 0,0698 0,0698
b_max 0,0302 0,0302 0,0302 0,0302 0,0302 0,0302
b_min 0,0618 0,0618 0,0618 0,0618 0,0618 0,0618
c_avg 0,0873 0,0870 0,0873 0,0870 0,0870 0,0870
c_max 0,0737 0,0737 0,0737 0,0737 0,0737 0,0737
c_min 0,0157 0,0157 0,0157 0,0157 0,0157 0,0157
CO 0,0584 0,0584 0,0584 0,0584 0,0584 0,0584 0,0584
EF 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623

Gender 0,1375 0,1106 0,1638 0,1106 0,1106 0,1106 0,1106
Continued on next page
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HR2 0,5847 0,6077 0,5857 0,6077 0,6077 0,6077 0,6077
HR3 0,5285 0,5546 0,5684 0,5546 0,5546 0,5546 0,5546
HR4 0,5274 0,5816 0,5727 0,5816 0,5816 0,5816 0,5816
m_avg 0,0453 0,0453 0,0453 0,0453 0,0453 0,0453
m_max 0,0146 0,0146 0,0146 0,0146 0,0146 0,0146
m_min 0,0805 0,0805 0,0805 0,0805 0,0805 0,0805
SD_A 0,0927 0,0927 0,0927 0,0927 0,0927 0,0927
SD_a 0,0101 0,0101 0,0101 0,0101 0,0101 0,0101
SD_b 0,0243 0,0243 0,0243 0,0243 0,0243 0,0243
SD_c 0,0646 0,0646 0,0646 0,0646 0,0646 0,0646
SD_m 0,0048 0,0048 0,0048 0,0048 0,0048 0,0048
SD_Vol 0,0494 0,0494 0,0494 0,0494 0,0494 0,0494 0,0494
SV 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623

t_max 0,0875 0,0960 0,0884 0,0960 0,0960 0,0960 0,0960
t_min 0,1738 0,1713 0,1633 0,1713 0,1713 0,1713 0,1713
Test_yr 0,1142 0,1595 0,1594 0,1595 0,1595 0,1595 0,1595
VAR_A 0,0932 0,0932 0,0932 0,0932 0,0932 0,0932
VAR_a 0,0109 0,0109 0,0109 0,0109 0,0109 0,0109
VAR_b 0,0310 0,0421 0,0361 0,0286 0,0286 0,0361
VAR_c 0,0621 0,0621 0,0621 0,0621 0,0621 0,0621
VAR_m 0,0140 0,0057 0,0155 0,0057 0,0094 0,0057
VAR_Vol 0,0483 0,0483 0,0483 0,0483 0,0483 0,0483 0,0483
Vavg 0,0460 0,0460 0,0460 0,0460 0,0460 0,0460 0,0460
Vmax 0,0520 0,0520 0,0520 0,0520 0,0520 0,0520 0,0520
Vmin 0,0227 0,0227 0,0227 0,0227 0,0227 0,0227 0,0227

Xc_avg 0,0483 0,0482 0,0482 0,0482 0,0482 0,0482
Xc_max 0,0148 0,0148 0,0148 0,0148 0,0148 0,0148
Xc_min 0,0522 0,0522 0,0522 0,0522 0,0522 0,0522
Yc_avg 0,0219 0,0219 0,0219 0,0219 0,0219 0,0219
Yc_max 0,0175 0,0175 0,0175 0,0175 0,0175 0,0175
Yc_min 0,0400 0,0400 0,0400 0,0400 0,0400 0,0400

Table B.2: Mutual Information Scores of all cumulative feature deletions for
Medical Tests

Features EM0 M1 M12 M123 M1234 M12345 M123456
1cycl_dur 1,3407 1,3446 1,3270 1,3648 1,3486 1,3660 1,3316
A_avg 0,0380 0,0380 0,0380 0,0380
a_avg 0,0359 0,0359 0,0359 0,0359 0,0359 0,0359
a_max 0,0675 0,0675 0,0675 0,0675 0,0675 0,0675

Continued on next page

Stellenbosch University https://scholar.sun.ac.za



APPENDIX B. APPENDIX 2: MEDICAL TESTS RESULTS 97

Table B.2 � Continued from previous page

a_min 0,0548 0,0548 0,0548 0,0548 0,0548 0,0548
A_vmax 0,0707 0,0695 0,0707 0,0706
A_vmin 0,0964 0,0995 0,0984 0,0982
Age 0,6334 0,6413 0,5976 0,5823 0,5713 0,5852 0,6210

b_avg 0,0698
b_max 0,0302
b_min 0,0618
c_avg 0,0873 0,0870 0,0870
c_max 0,0737 0,0737 0,0737
c_min 0,0157 0,0157 0,0157
CO 0,0584 0,0584 0,0584 0,0584 0,0584 0,0584 0,0584
EF 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623

Gender 0,1375 0,1106 0,1297 0,1201 0,1199 0,1038 0,0869
HR2 0,5847 0,6077 0,6025 0,5882 0,5722 0,5799 0,5962
HR3 0,5285 0,5546 0,5063 0,5450 0,5466 0,5630 0,5129
HR4 0,5274 0,5816 0,5854 0,5318 0,5611 0,5960 0,6279
m_avg 0,0453 0,0453 0,0453 0,0453 0,0453
m_max 0,0146 0,0146 0,0146 0,0146 0,0146
m_min 0,0805 0,0805 0,0805 0,0805 0,0805
SD_A 0,0927 0,0927 0,0927 0,0927
SD_a 0,0101 0,0101 0,0101 0,0101 0,0101 0,0101
SD_b 0,0243
SD_c 0,0646 0,0646 0,0646
SD_m 0,0048 0,0048 0,0048 0,0048 0,0048
SD_Vol 0,0494 0,0494 0,0494 0,0494 0,0494 0,0494 0,0494
SV 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623 0,0623

t_max 0,0875 0,0960 0,0828 0,0851 0,0958 0,0835 0,0908
t_min 0,1738 0,1713 0,1654 0,1669 0,1651 0,1610 0,1693
Test_yr 0,1142 0,1595 0,0833 0,0937 0,1083 0,1243 0,1963
VAR_A 0,0932 0,0932 0,0932 0,0932
VAR_a 0,0109 0,0109 0,0109 0,0109 0,0109 0,0109
VAR_b 0,0310
VAR_c 0,0621 0,0621 0,0621
VAR_m 0,0140 0,0057 0,0060 0,0082 0,0094
VAR_Vol 0,0483 0,0483 0,0483 0,0483 0,0483 0,0483 0,0483
Vavg 0,0460 0,0460 0,0460 0,0460 0,0460 0,0460 0,0460
Vmax 0,0520 0,0520 0,0520 0,0520 0,0520 0,0520 0,0520
Vmin 0,0227 0,0227 0,0227 0,0227 0,0227 0,0227 0,0227

Xc_avg 0,0483 0,0482
Xc_max 0,0148 0,0148
Xc_min 0,0522 0,0522
Yc_avg 0,0219 0,0219

Continued on next page
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Yc_max 0,0175 0,0175
Yc_min 0,0400 0,0400

B.2 Random Forest Results

The following tables are to be read in conjunction with one another, as the
model entries in Table B.3 all coincide with their performance metrics in Table
B.4. Coloured blocks in Table B.4 highlight the highest scores for the respective
Medical test.

Table B.3: Best performing Random Forest models based on performance
metrics for each pathology, listed by architectural descriptors

Test N HF LVH MI AR AS
EM0 E100:D16 E100:D16 E100:D16

E150:D16 E150:D16 E150:D16
E200:D16 E200:D16

E500:D16
M1 E100:D16 E100:D16 E100:D16

E150:D16 E150:D16 E150:D16 E150:D16 E150:D16
E200:D16 E200:D16 E200:D16
E250:D16
E300:D16

E400:D16 E400:D16
E450:D16 E450:D16
E500:D16 E500:D16 E500:D16

M2 NONE E100:D16 E100:D16
E150:D16

E200:D16 E200:D16
E300:D16 E300:D16
E350:D16 E350:D16 E350:D16
E400:D16 E400:D16 E400:D15

E450:D16 E450:D16
M3 E100:D16 E100:D16 E100:D16

E150:D16 E150:D16
E200:D16 E200:D16 E200:D16 E200:D16

E250:D16 E250:D16 E250:D16 E250:D16
E300:D16 E300:D16 E300:D16 E300:D16 E300:D16

E350:D16 E350:D16 E350:D16 E350:D16
Continued on next page
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E400:D16
E450:D16 E450:D16
E500:D16 E500:D16 E500:D16

M4 E150:D16 E150:D16
E200:D16 E200:D16 E200:D16
E250:D16
E300:D16 E300:D16
E350:D16 E350:D16 E350:D16
E400:D16 E400:D16
E450:D16 E450:D16 E450:D16 E450:D16 E450:D16

E500:D16 E500:D16
M5 E100:D16 E100:D16 E100:D16 E100:D16

E200:D16
E250:D16

E300:D16
E400:D16

M6 NONE E100:D16
E150:D16

E350:D16 E350:D16
E400:D16

E500:D16
M12 E100:D16 E100:D16

E150:D16 E150:D16
E250:D16

E300:D16
E350:D16

E500:D16 E500:D16
M123 E100:D16

E200:D16
E250:D16 E250:D16

E300:D16 E300:D16
E350:D16

E400:D16
E450:D16
E500:D16

M1234 E100:D16 E100:D16
E150:D16 E150:D16 E150:D16
E250:D16 E250:D16
E300:D16 E300:D16
E350:D16 E350:D16 E350:D16

E400:D16 E400:D16
M12345 E100:D16 E100:D16 E100:D16
Continued on next page
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E150:D16 E150:D16
E200:D16 E200:D16
E300:D16 E300:D16
E350:D16 E350:D16
E400:D16 E400:D16
E450:D16
E500:D16

M123456 E150:D16 E150:D16
E250:D16 E250:D16 E250:D16

E300:D16 E300:D16
E350:D16

E400:D16 E400:D16
E450:D16 E450:D16 E450:D16
E500:D16 E500:D16

Table B.4: Averaged Performance Metrics for Best Performing Random Forest
Models per Medical Test

Test Model Accuracy Recall Precision F1-score
EM0 E100:D16 0,8333 0,2171 0,9309 0,3357

E150:D16 0,8368 0,2264 0,9470 0,3523
E200:D16 0,8354 0,2201 0,9493 0,3404
E500:D16 0,8326 0,2063 0,9372 0,3243

M1 E100:D16 0,8397 0,2449 0,9374 0,3761
E150:D16 0,8418 0,2486 0,9545 0,3834
E200:D16 0,8397 0,2423 0,9493 0,3737
E250:D16 0,8368 0,2334 0,9365 0,3605
E300:D16 0,8376 0,2341 0,9514 0,3610
E400:D16 0,8390 0,2363 0,9565 0,3644
E450:D16 0,8383 0,2329 0,9545 0,3611
E500:D16 0,8383 0,2331 0,9545 0,3615

M2 E100:D16 0,8376 0,2349 0,9041 0,3590
E150:D16 0,8354 0,2242 0,8517 0,3422
E200:D16 0,8361 0,2281 0,8613 0,3471
E300:D16 0,8368 0,2260 0,9464 0,3433
E350:D16 0,8383 0,2325 0,9464 0,3543
E400:D15 0,8390 0,2394 0,9464 0,3646
E450:D16 0,8383 0,2360 0,9454 0,3611

M3 E100:D16 0,8347 0,2178 0,9474 0,3459
E150:D16 0,8333 0,2132 0,9444 0,3372

Continued on next page
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E200:D16 0,8361 0,2180 0,9561 0,3457
E250:D16 0,8354 0,2195 0,9306 0,3449
E300:D16 0,8361 0,2172 0,9583 0,3423
E350:D16 0,8347 0,2123 0,9524 0,3329
E400:D16 0,8340 0,2166 0,9396 0,3394
E450:D16 0,8333 0,2123 0,9341 0,3305
E500:D16 0,8340 0,2123 0,9396 0,3318

M4 E150:D16 0,8291 0,1963 0,9176 0,3114
E200:D16 0,8312 0,2015 0,9306 0,3225
E250:D16 0,8298 0,1918 0,9358 0,3102
E300:D16 0,8305 0,1954 0,9371 0,3150
E350:D16 0,8312 0,1993 0,9398 0,3192
E400:D16 0,8312 0,1991 0,9386 0,3191
E450:D16 0,8340 0,2119 0,9398 0,3369
E500:D16 0,8319 0,2007 0,9398 0,3206

M5 E100:D16 0,8368 0,2240 0,9434 0,3455
E200:D16 0,8319 0,2026 0,9444 0,3193
E250:D16 0,8298 0,1943 0,9306 0,3053
E300:D16 0,8319 0,2019 0,9444 0,3185
E400:D16 0,8326 0,2047 0,9524 0,3234

M6 E100:D16 0,8319 0,2066 0,9333 0,3269
E150:D16 0,8333 0,2126 0,9288 0,3364
E350:D16 0,8354 0,2278 0,9394 0,3561
E400:D16 0,8326 0,2124 0,9394 0,3338
E500:D16 0,8319 0,2103 0,9420 0,3288

M12 E100:D16 0,8425 0,2700 0,8984 0,4019
E150:D16 0,8439 0,2694 0,8902 0,4021
E250:D16 0,8363 0,2912 0,8967 0,4282
E300:D16 0,8418 0,2635 0,8826 0,3926
E350:D16 0,8411 0,2593 0,8812 0,3879
E500:D16 0,8425 0,2630 0,8881 0,3940

M123 E100:D16 0,8432 0,2783 0,8914 0,4122
E200:D16 0,8474 0,2774 0,9472 0,4160
E250:D16 0,8509 0,2948 0,9479 0,4385
E300:D16 0,8516 0,2992 0,9533 0,4434
E350:D16 0,8502 0,2958 0,9429 0,4383
E400:D16 0,8502 0,2860 0,9565 0,4298
E450:D16 0,8488 0,2826 0,9327 0,4245
E500:D16 0,8502 0,2894 0,9327 0,4325

M1234 E100:D16 0,8544 0,3130 0,9241 0,4624
E150:D16 0,8551 0,3079 0,9330 0,4591
E250:D16 0,8516 0,2928 0,9417 0,4409

Continued on next page
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E300:D16 0,8530 0,2986 0,9417 0,4482
E350:D16 0,8523 0,2944 0,9388 0,4415
E400:D16 0,8537 0,2982 0,9373 0,4475

M12345 E100:D16 0,8706 0,3790 0,9106 0,5294
E150:D16 0,8720 0,3842 0,9122 0,5366
E200:D16 0,8692 0,3714 0,9127 0,5236
E300:D16 0,8720 0,3821 0,9217 0,5356
E350:D16 0,8727 0,3846 0,9293 0,5397
E400:D16 0,8713 0,3855 0,9167 0,5374
E450:D16 0,8713 0,3846 0,9167 0,5363
E500:D16 0,8727 0,3880 0,9227 0,5412

M123456 E150:D16 0,8861 0,4570 0,9366 0,6122
E250:D16 0,8854 0,4504 0,9403 0,6070
E300:D16 0,8868 0,4580 0,9407 0,6132
E350:D16 0,8840 0,4481 0,9337 0,6032
E400:D16 0,8840 0,4503 0,9308 0,6042
E450:D16 0,8854 0,4547 0,9375 0,6101
E500:D16 0,8847 0,4562 0,9300 0,6094
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B.3 Neural Networks Results

Each Neural Network model performance is summarised for all Medical tests. Final scores of the training and validation
subsets (di�erentiated by v_) are presented in Table B.5, with blue coloured blocks highlighting the best performing model
per test.

Table B.5: Averaged Performance Metrics for Best Performing Neural Network Models per Medical Test

Test Model loss accuracy recall precision v_loss v_accuracy v_recall v_precision
EM0 D1W16 0,4323 0,4034 0,1517 0,5768 0,4585 0,3840 0,0345 0,4545

D1W64 0,3586 0,5333 0,3268 0,7109 0,4358 0,4135 0,1172 0,5000
D1W256 0,2591 0,6663 0,5835 0,8344 0,4361 0,4093 0,2621 0,5891
D2W16 0,2591 0,6663 0,5835 0,8344 0,4361 0,4093 0,2621 0,5891
D2W64 0,3660 0,5048 0,3411 0,6972 0,4330 0,4219 0,1345 0,5909
D2W256 0,1892 0,7635 0,7343 0,8758 0,4166 0,4388 0,3207 0,6039
D3W16 0,4577 0,3590 0,0682 0,5468 0,4632 0,3038 0,0069 0,2222
D3W64 0,3517 0,5533 0,3662 0,6974 0,4173 0,4304 0,2483 0,5669
D3W256 0,1240 0,8163 0,8447 0,8945 0,3922 0,5401 0,5000 0,6808

M1 D1W16 0,4269 0,3886 0,1706 0,5919 0,4503 0,3629 0,0621 0,4865
D1W64 0,3712 0,5227 0,2953 0,7015 0,4456 0,3882 0,1034 0,4000
D1W256 0,2588 0,7001 0,5969 0,8200 0,4424 0,4304 0,2069 0,5660
D2W16 0,4512 0,3263 0,1149 0,5541 0,4604 0,3249 0,0621 0,4500
D2W64 0,3418 0,5354 0,4039 0,7132 0,4427 0,4051 0,2586 0,5000
D2W256 0,1685 0,7941 0,7693 0,9002 0,4007 0,5232 0,4172 0,6173
D3W16 0,4586 0,3242 0,0628 0,6195 0,4605 0,3122 0,0069 1,0000
D3W64 0,3741 0,4921 0,3169 0,6610 0,4408 0,3797 0,2034 0,5315

Continued on next page

Stellenbosch University https://scholar.sun.ac.za



A
P
P
E
N
D
IX

B
.
A
P
P
E
N
D
IX

2
:
M
E
D
IC
A
L
T
E
S
T
S
R
E
S
U
L
T
S

1
0
4
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D3W256 0,1423 0,8036 0,8061 0,8918 0,4100 0,4515 0,4310 0,6098
M2 D1W16 0,4338 0,3970 0,1149 0,5333 0,4437 0,3544 0,0345 0,4348

D1W64 0,3755 0,5037 0,2765 0,6769 0,4326 0,3755 0,1069 0,5741
D1W256 0,2932 0,6230 0,4955 0,7677 0,4344 0,4219 0,2552 0,5441
D2W16 0,4566 0,3168 0,0817 0,5417 0,4538 0,3671 0,0379 0,6471
D2W64 0,3558 0,5037 0,3519 0,6701 0,4296 0,4219 0,2345 0,5075
D2W256 0,1758 0,7835 0,7666 0,8841 0,3913 0,4979 0,4552 0,6286
D3W16 0,4478 0,3706 0,0646 0,6316 0,4472 0,3882 0,0345 0,6250
D3W64 0,3866 0,4530 0,2801 0,6316 0,4233 0,3671 0,1897 0,5789
D3W256 0,1447 0,7994 0,8187 0,8872 0,3956 0,5232 0,4966 0,6316

M3 D1W16 0,4272 0,4382 0,1544 0,6014 0,4486 0,3966 0,0379 0,5238
D1W64 0,3834 0,4699 0,2729 0,6831 0,4447 0,3629 0,1172 0,4722
D1W256 0,2789 0,6452 0,5368 0,7973 0,4442 0,4135 0,2483 0,5180
D2W16 0,4476 0,3559 0,0781 0,5472 0,4600 0,3713 0,0103 0,4286
D2W64 0,3682 0,4963 0,3348 0,6782 0,4252 0,4262 0,2138 0,5536
D2W256 0,1681 0,7761 0,7630 0,8882 0,4006 0,5021 0,4414 0,6531
D3W16 0,4710 0,2841 0,0305 0,3400 0,4736 0,2700 0,0034 0,3333
D3W64 0,3734 0,4963 0,3250 0,6830 0,4179 0,4430 0,1828 0,5521
D3W256 0,1393 0,8057 0,8214 0,8858 0,3799 0,5485 0,5103 0,6820

M4 D1W16 0,4499 0,3580 0,1239 0,5349 0,4591 0,3376 0,0207 0,6667
D1W64 0,3863 0,4794 0,2567 0,6560 0,4417 0,4262 0,0759 0,6286
D1W256 0,2978 0,6135 0,5027 0,7898 0,4351 0,4008 0,2069 0,5882
D2W16 0,4590 0,3453 0,0700 0,5417 0,4607 0,3797 0,0138 0,8000
D2W64 0,3725 0,5143 0,3079 0,6874 0,4281 0,4388 0,2034 0,6941
D2W256 0,1783 0,7761 0,7531 0,8767 0,3945 0,4895 0,4276 0,6294

Continued on next page
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D3W16 0,4737 0,3105 0,0512 0,4286 0,4639 0,3713 0,0172 0,5556
D3W64 0,3871 0,4773 0,2890 0,6252 0,4262 0,4219 0,2138 0,5391
D3W256 0,1672 0,7677 0,7621 0,8654 0,4144 0,4810 0,4103 0,6263

M5 D1W16 0,4345 0,3939 0,1248 0,5697 0,4486 0,3291 0,0172 0,4545
D1W64 0,3574 0,5396 0,3303 0,6904 0,4373 0,4135 0,1483 0,5811
D1W256 0,2719 0,6621 0,5431 0,8045 0,4439 0,3671 0,2897 0,5563
D2W16 0,4462 0,3749 0,0978 0,5317 0,4477 0,3586 0,0345 0,6667
D2W64 0,3683 0,4974 0,3294 0,6746 0,4310 0,4262 0,1966 0,5758
D2W256 0,1484 0,7899 0,7935 0,8893 0,3738 0,5021 0,4966 0,6729
D3W16 0,4528 0,3495 0,0566 0,4846 0,4462 0,3376 0,0138 0,8000
D3W64 0,3796 0,4889 0,3088 0,6641 0,4269 0,4051 0,2034 0,5728
D3W256 0,1266 0,8258 0,8384 0,9042 0,3733 0,5401 0,5345 0,6828

M6 D1W16 0,4252 0,3939 0,1508 0,5695 0,4533 0,4008 0,0483 0,4242
D1W64 0,3715 0,5037 0,3007 0,6781 0,4461 0,4008 0,1172 0,4595
D1W256 0,2700 0,6684 0,5512 0,8079 0,4277 0,4515 0,2276 0,5280
D2W16 0,4613 0,3390 0,0925 0,5124 0,4679 0,3460 0,0276 0,5333
D2W64 0,3588 0,5290 0,3384 0,7167 0,4320 0,3966 0,1862 0,5934
D2W256 0,1396 0,8163 0,8115 0,9067 0,4063 0,4937 0,4000 0,6554
D3W16 0,4588 0,3622 0,0871 0,5673 0,4632 0,3376 0,0310 0,5000
D3W64 0,3897 0,4731 0,2837 0,6767 0,4340 0,4346 0,1517 0,5238
D3W256 0,1104 0,8458 0,8573 0,9200 0,3926 0,5316 0,4966 0,6344

M12 D1W16 0,4404 0,3738 0,1373 0,5484 0,4575 0,3797 0,0655 0,5429
D1W64 0,3823 0,4784 0,2675 0,6578 0,4377 0,4008 0,0586 0,4857
D1W256 0,2958 0,6357 0,4937 0,7757 0,4337 0,4177 0,2000 0,6304
D2W16 0,4399 0,3738 0,1194 0,6552 0,4494 0,3924 0,0483 0,5185

Continued on next page
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Table B.5 � Continued from previous page

D2W64 0,3750 0,4847 0,3250 0,6654 0,4321 0,4135 0,1897 0,5556
D2W256 0,1982 0,7476 0,7020 0,8593 0,4178 0,4641 0,3690 0,5879
D3W16 0,4675 0,2946 0,0431 0,5275 0,4669 0,3333 0,0138 1,0000
D3W64 0,3840 0,4773 0,2926 0,6481 0,4346 0,4008 0,1862 0,5510
D3W256 0,1398 0,8046 0,8187 0,8854 0,3910 0,5274 0,5172 0,6173

M123 D1W16 0,4464 0,3548 0,0943 0,5097 0,4616 0,3629 0,0138 0,4444
D1W64 0,3861 0,4900 0,2415 0,6642 0,4379 0,4051 0,1069 0,5636
D1W256 0,3122 0,5818 0,4417 0,7822 0,4459 0,4051 0,1448 0,5316
D2W16 0,4499 0,3400 0,0880 0,5665 0,4519 0,3418 0,0379 0,5789
D2W64 0,3661 0,5185 0,3276 0,6887 0,4267 0,4557 0,2310 0,5234
D2W256 0,2030 0,7497 0,7065 0,8453 0,3882 0,5021 0,4069 0,6243
D3W16 0,4759 0,3073 0,0655 0,4867 0,4649 0,3460 0,0345 0,5556
D3W64 0,3746 0,4921 0,3133 0,6994 0,4397 0,3966 0,2690 0,5306
D3W256 0,1686 0,7508 0,7738 0,8663 0,4021 0,5190 0,5138 0,6183

M1234 D1W16 0,4547 0,3379 0,1041 0,5577 0,4546 0,3333 0,0276 0,7273
D1W64 0,4038 0,4361 0,1867 0,6322 0,4426 0,3840 0,0724 0,5250
D1W256 0,3268 0,5935 0,4174 0,7573 0,4384 0,3713 0,1931 0,5385
D2W16 0,4567 0,3168 0,0557 0,5124 0,4521 0,3713 0,0310 0,8182
D2W64 0,3915 0,4520 0,2496 0,6541 0,4277 0,4093 0,1414 0,5942
D2W256 0,2329 0,6895 0,6481 0,8177 0,4115 0,4599 0,3897 0,6075
D3W16 0,4684 0,2893 0,0557 0,5636 0,4600 0,3671 0,0034 0,2500
D3W64 0,4071 0,4319 0,2226 0,6200 0,4268 0,4093 0,1034 0,4918
D3W256 0,1860 0,7339 0,7280 0,8600 0,4059 0,5527 0,4759 0,6273

M12345 D1W16 0,4578 0,3485 0,0961 0,4886 0,4552 0,3966 0,0207 0,8571
D1W64 0,4085 0,4351 0,1795 0,6173 0,4399 0,3924 0,0862 0,6250

Continued on next page

Stellenbosch University https://scholar.sun.ac.za



A
P
P
E
N
D
IX

B
.
A
P
P
E
N
D
IX

2
:
M
E
D
IC
A
L
T
E
S
T
S
R
E
S
U
L
T
S

1
0
7

Table B.5 � Continued from previous page

D1W256 0,3456 0,5544 0,3627 0,7608 0,4297 0,4008 0,1793 0,6047
D2W16 0,4655 0,3242 0,0512 0,4254 0,4537 0,3586 0,0034 0,5000
D2W64 0,3913 0,4382 0,2415 0,6692 0,4291 0,4346 0,1310 0,5938
D2W256 0,2145 0,7043 0,6840 0,8467 0,3784 0,5274 0,4552 0,6600
D3W16 0,4678 0,2957 0,0404 0,6000 0,4683 0,3122 0,0172 0,6250
D3W64 0,3933 0,4625 0,2433 0,6362 0,4182 0,4304 0,2138 0,5905
D3W256 0,2208 0,7064 0,6750 0,8291 0,3850 0,4979 0,4138 0,6383

M123456 D1W16 0,4560 0,3432 0,0835 0,5196 0,4474 0,3671 0,0207 0,6667
D1W64 0,4142 0,4108 0,1768 0,6234 0,4369 0,3840 0,1069 0,6458
D1W256 0,3540 0,5280 0,3474 0,7274 0,4313 0,4388 0,1793 0,6118
D2W16 0,4571 0,3157 0,0727 0,5159 0,4546 0,3629 0,0276 0,8889
D2W64 0,3822 0,4562 0,2648 0,6674 0,4140 0,4515 0,2000 0,6517
D2W256 0,2291 0,7012 0,6499 0,8399 0,3734 0,5316 0,4138 0,6977
D3W16 0,4696 0,3052 0,0548 0,4919 0,4509 0,4008 0,0448 0,7647
D3W64 0,4047 0,4414 0,1966 0,6460 0,4230 0,4304 0,1483 0,5890
D3W256 0,1657 0,7709 0,7882 0,8702 0,3781 0,5696 0,5379 0,6783
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C Appendix 3: Data Tests Results

C.1 Shortlisted Models: Previous Results

Figures C.1 and C.2 show model responses to feature deletions associated
with all Engineering and Medical tests. Data test feature/s selections were
loosely based on these results. To read these �gures, the plots for "Individual"
metrics directly correlate with the x-axis labelling. For example, in Figure
C.1 the "Individual Accuracy" plotted for test E2 is the accuracy for test E2
alone (where Age data was removed). However, for "Cumulative Accuracy",
E2 represents the accuracy for test E12 - where all features associated with
test E2 and those prior (excluding EM0) were deleted. Similarly, "Cumulative
Accuracy" at E3, represents the accuracy for test E123, and so forth.

C.2 Random Forest Results

Table C.1: Performance metrics output for each Random Forests instance for
each train-test ratio tested

Train- Training Average Average Average Average
Test Split Duration Accuracy Precision Recall F1-score

E100D16
0.1-0.9 0,7922 0,8044 0,5834 0,0752 0,1196
0.2-0.8 0,9361 0,8092 0,6978 0,1065 0,1750
0.3-0.7 1,1269 0,8164 0,6994 0,1426 0,2318
0.4-0.6 1,3821 0,8207 0,7711 0,1459 0,2387
0.5-0.5 1,6767 0,8198 0,7305 0,1604 0,2552
0.6-0.4 1,7958 0,8249 0,7724 0,1898 0,2956
0.7-0.3 2,0252 0,8305 0,8192 0,2005 0,3133
0.8-0.2 2,1964 0,8347 0,8883 0,2290 0,3478
0.9-0.1 2,4073 0,8445 0,9179 0,2716 0,3989

E300D16
0.1-0.9 2,3262 0,8046 0,5929 0,0632 0,1059
0.2-0.8 2,7747 0,8092 0,6979 0,0974 0,1611

Continued on next page
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Table C.1 � Continued from previous page

0.3-0.7 3,3708 0,8148 0,6725 0,1301 0,2130
0.4-0.6 4,0038 0,8214 0,8029 0,1413 0,2326
0.5-0.5 4,7547 0,8229 0,7785 0,1635 0,2621
0.6-0.4 5,2733 0,8263 0,8053 0,1873 0,2930
0.7-0.3 6,1849 0,8282 0,8033 0,1904 0,3032
0.8-0.2 6,6693 0,8397 0,8958 0,2400 0,3621
0.9-0.1 7,13889 0,8445 0,9528 0,2632 0,3925

E500D16
0.1-0.9 3,8483 0,8046 0,5855 0,0618 0,1037
0.2-0.8 4,6434 0,8078 0,6781 0,0961 0,1580
0.3-0.7 6,1680 0,8156 0,7046 0,1289 0,2116
0.4-0.6 7,6762 0,8204 0,7963 0,1411 0,2316
0.5-0.5 7,8686 0,8229 0,7899 0,1589 0,2553
0.6-0.4 8,8288 0,8267 0,7784 0,1945 0,3023
0.7-0.3 9,8492 0,8291 0,8048 0,1931 0,3051
0.8-0.2 10,9182 0,8383 0,8981 0,2347 0,3557
0.9-0.1 11,9124 0,8431 0,9253 0,2608 0,3907
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Figure C.1: Performance metric plots of shortlisted models for Engineering
Tests
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Figure C.2: Performance metric plots of shortlisted models for Medical Tests
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C.3 Neural Networks Data tests Results

Table C.2: Train and Validation set performance metrics for Neural Network model instances in all Data tests

Test Model loss accuracy recall precision v_loss v_accuracy v_recall v_precision
0,1-0,9 D1W16 0,4226 0,4576 0,1691 0,4600 0,5091 0,2298 0,0126 0,3404

D2W64 0,2604 0,7034 0,5074 0,8625 0,4939 0,2871 0,0615 0,4216
D3W256 0,0964 0,9068 0,8971 0,9760 0,5110 0,2054 0,0426 0,2857

0,2-0,8 D1W16 0,4488 0,3729 0,1176 0,4384 0,5030 0,2395 0,0124 0,6364
D2W64 0,3419 0,5678 0,3493 0,7197 0,5003 0,2321 0,0760 0,4456
D3W256 0,1825 0,7585 0,7353 0,8850 0,5178 0,1540 0,1352 0,3493

0,3-0,7 D1W16 0,4565 0,3831 0,1175 0,5213 0,4782 0,3004 0,0365 0,5538
D2W64 0,3397 0,5324 0,3981 0,7186 0,4634 0,3486 0,1317 0,5179
D3W256 0,1973 0,7296 0,7242 0,8555 0,4846 0,2099 0,0932 0,3882

0,4-0,6 D1W16 0,4590 0,3298 0,1227 0,5113 0,4786 0,2743 0,0518 0,5176
D2W64 0,3678 0,5201 0,3303 0,6803 0,4502 0,3572 0,0871 0,5441
D3W256 0,2624 0,6871 0,5758 0,7975 0,4980 0,2363 0,0376 0,4103

0,5-0,5 D1W16 0,4385 0,3699 0,1019 0,5035 0,4616 0,3226 0,0339 0,6486
D2W64 0,3769 0,4848 0,2855 0,6723 0,4460 0,4003 0,1443 0,4880
D3W256 0,1852 0,7720 0,7360 0,8754 0,4487 0,3936 0,3239 0,5401

0,6-0,4 D1W16 0,4573 0,3408 0,1134 0,4872 0,4689 0,2911 0,0477 0,6429
D2W64 0,3500 0,5408 0,3711 0,7182 0,4382 0,3882 0,2138 0,5378
D3W256 0,1821 0,7479 0,7470 0,8448 0,4492 0,4008 0,2686 0,5278

0,7-0,3 D1W16 0,4459 0,3466 0,1086 0,5889 0,4637 0,3455 0,0421 0,6000
D2W64 0,3788 0,4771 0,2941 0,6769 0,4470 0,3624 0,1449 0,5082

Continued on next page
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Table C.2 � Continued from previous page

D3W256 0,2604 0,6703 0,6096 0,7933 0,4635 0,3343 0,2266 0,4619
0,8-0,2 D1W16 0,4498 0,3654 0,0844 0,5081 0,4661 0,3333 0,0483 0,5385

D2W64 0,3746 0,5069 0,3187 0,6974 0,4449 0,3586 0,1517 0,4783
D3W256 0,2673 0,6695 0,5646 0,7972 0,4827 0,3122 0,1655 0,4948

0,9-0,1 D1W16 0,4422 0,3709 0,0979 0,5371 0,4635 0,3277 0,0340 0,7143
D2W64 0,4057 0,4385 0,2339 0,5731 0,4458 0,3529 0,1293 0,4419
D3W256 0,2479 0,6723 0,6325 0,7958 0,4134 0,3613 0,4218 0,5741
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D Appendix 4: Additional Infor-

mation

/

D.1 Research Protocol Content

This section presents some of the details of the project, for data acquisition
from the sourcing hospital, as required by their internal Ethics Committee
before permissions were granted. Ethical clearance was granted by both the
hospital (ref: UNIV-2020-0007) and Stellenbosch University (ref: S19/02/032)
prior to data collection.

D.1.1 Randomisation, Con�dentiality & Bias

Randomisation is a method of arbitrary allocation of participants when assign-
ing (to groups) or choosing them for a study. Randomisation is advantageous
in maximising the statistical power of sub-grouped analyses while minimising
bias. Thus, the distribution of characteristics explored is equally present in all
sub-groups. For this project, Selective sampling was used to identify patients
for the study. This method is a type of non-probability randomised sampling
based on the judgement of the primary investigator (Garg, 2016). Given the
boundaries of the exclusion-inclusion criterion and the time restriction of the
study, it was most suitable for the application.

Con�dentiality in clinical research prioritises the protection of human par-
ticipant identities and personal information. For this project, all data was ex-
tracted without any indicators of a patient's private information (anonymised).
Data was exported based on internal diagnostic codes (used by the sourcing
unit) associated with the abnormalities of interest. Together with randomisa-
tion, these measures masked subjects to the researcher, minimizing room for
potential bias.

114
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Bias is de�ned as the systematic deviation of a study's outcomes leading to
skewed results and is often the product of a defective study design. In this
particular study, the potential biases and respective corrective measures were
identi�ed and discussed below (Garg, 2016):

� Investigator Bias: conscious / subconscious favouring of a particular
group over another. This bias is removed with the method of selec-
tion and sample scarcity. All data that satis�ed the exclusion-inclusion
criterion was exported without investigator bias due to lack of domain
knowledge of the investigator. Furthermore, rare abnormalities were all
included for the study.

� Selection Bias: occurs during sampling, where due to some hindrance
in admission of patients for a study or their refusal to participate, the
sampled data will be unrepresentative of the larger population. This
bias is addressed as only existing patient cases will be exported having
already undergone an echocardiograph exam.

� Ascertainment/Information Bias: measurement error that results
from some misclassi�cation of a patient (during diagnostic procedures).
This is addressed by the structure within the Cardiac Unit. Analyses are
done by experienced cardiologists, while trained sta� perform echocardio-
graph exams. Diagnoses are further based on visually observed charac-
teristics in conjunction with secondary measurements obtainable during
echocardiograms.

D.1.2 Data Collection & Management

The amount of data acquired for the context of this project must be su�ciently
large to be representative of the larger population. For the allocated time pe-
riod, a sample size of 1200 (200 per pathology) was to be collected. However,
given the scarcity of some of the included abnormalities, at best 50 could be
extracted over the given time - hence the need for data augmentations. As
per ethical requirements, data was to be viewed only the involved parties of
the study at speci�ed locations; viz. various places of work. Video data was
exported (as .avi �les), pre-processed as discussed in Section 3.3, making it
suitable as model input (as training/testing data). The training subset will
used to aid model learning, while the test set will be used to assess model per-
formance. All programming takes place in Python (using standard packages,
OpenCV, and Tensor�ow) primarily, with image processing steps occurring in
FIJI. All results will be represented by means of model performance metrics
or graphs, accompanied by thorough discussions.
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D.1.3 Project Commencement Plan

A commencement plan is usually requested to inform Ethical Committees how
sensitive data will be managed once it is no longer used. These regulations
are necessary to ensure appropriate measures are taken at all points to protect
patient information. In this study, the data collection process concluded on 18
November 2020, with the project completion pending until submission from
15-18 November 2021. Upon completion of the project, the external hard
drive used will be returned to the hospital for deletion of all data. As per
requirements for research conducted in collaboration with the hospital, the
�nal dissertation must be submitted to their internal research project manager.
Additionally, any formal documents or publications must exclude the name of
the sourcing hospital but can include names of sta� that externally advised
(as per request).

D.2 Continuous Ranked Probability Score

The Continuous Ranked Probability Score (CRPS) was the prescribed for eval-
uating model output in the 2015 Kaggle contest (Venugopal and Ramaswamy,
2015). It is typically used when probabilistic forecasting is being done by gen-
eralising the mean absolute error (MAE) across all probabilities. CRPS can
be de�ned mathematically as per Equation D.2.1:

C =
1

600N

n∑
m=1

599∑
n=0

(P (y ≤ n)− I[(n− Vm) ≥ 0])2 (D.2.1)

C =
1

600N

n∑
m=1

599∑
n=0

|P (y ≤ n)− I[(n− Vm) ≥ 0]| (D.2.2)

where P represents the predicted cumulative distribution and I, the Heaviside
step function equal to 1 if true or 0 otherwise. In general, the smaller the score,
the closer the predicted distribution is to the actual distribution (Gneiting and
Raftery, 2007).

D.3 FIJI Image Processing Schematic

The �ow diagram presented in Figure D.1 depicts the the individual steps
and associated key parameters or settings used to generate the output used in
successive steps as per Figure 3.1.
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Figure D.1: Flow diagram of FIJI image processing steps implemented
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