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SUMMARY 
 

Sustainability is difficult to achieve in a world where population and economic growth leads to 

increased production of greenhouse gases, resource depletion and waste generation.  Today, the 

environmental dimension of sustainability, which is more commonly known as the natural 

environment, and the construction industry are two terms often mentioned together.  In Europe,  

12.4 % of greenhouse gas emissions are induced by the construction and manufacturing industry 

(Maydl, 2004).  Also, 50 % of the resources extracted are used in the construction industry and more 

than 25 % of waste generated is construction and demolition waste.  In South Africa, the building 

sector accounts for approximately 23 % of the total greenhouse gas emissions (Milford, 2009).  

Furthermore, 60 % of investment is made in the residential sector where 33 % of the building stock is 

the focus of the government’s Housing Programme.  It is seen that the construction industry 

significantly impacts the natural environment and the aim should be to reduce this negative impact. 

 

Within the local residential sector, the low-cost housing sector presents potential when it comes to 

sustainable improvements.  Each of the three spheres of sustainability, namely economy, natural 

environment and society, plays a crucial role in this sector.  Various studies have been done on the 

economical and social fields, but little information exists on the impact low-cost houses have on the 

environment.  A need arises to scientifically quantify the environmental impact hereof, therefore it is 

chosen as the focus of this study. 

 

Various methods in order to determine the environmental impact of the built environment exist 

globally, but they tend to be complex, are used in conjunction with difficult to understand databases 

and require expensive software.  A need for a local quantification method with which to determine the 

environmental impact of the built environment, more specifically low-cost housing, has been 

identified.  A simple and easy-to-use analysis-orientated quantification method is proposed in this 

study.  The quantification method is compiled with indicators related to the local conditions; these 

include Emissions, Resource Depletion and Waste Generation.  The end objective is to provide the 

user with an aggregated total value called the Environmental Impact Index to ease comparison of 

possible alternatives. 

 

The quantification method is developed as a mathematical tool in the form of a partial Life Cycle 

Assessment which can aid in objective decision making during the conception and design phase of a 

specific project.  Note that only the Pre-Use Phase of the building life cycle is considered during the 

assessment, but can be extended to include the Use Phase and End-of-Life Phase.  The proposed 

method has the capability of calculating and optimising the environmental impact of a building.  
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Regarding low-cost housing, different housing unit designs can be compared in order to select the best 

alternative. 

 

The quantification method is implemented for two low-cost house design types in this study.  Firstly, 

the conventional brick and mortar design is considered whereafter a Light Steel Frame Building is 

viewed as an alternative.  The model implementation demonstrates that the model operates in its 

supposed manner.  Also, Light Steel Frame Building housing units are shown to be worth 

investigating as an alternative to the conventional brick and mortar design but should be confirmed 

with a more accurate Life Cycle Assessment. 

 

  

Stellenbosch University  http://scholar.sun.ac.za



v 
 

OPSOMMING 
 

In ’n wêreld waar toenemende ekonomiese en bevolkingsgroei veroorsaak dat al hoe meer 

kweekhuisgasse voortgebring word, hulpbronne uitgeput word en groter hoeveelhede rommel 

geproduseer word, is dit ’n bykans onbegonne taak om volhoubaarheid te probeer bereik. 

 

Volhoubaarheid rakende die natuurlike omgewing en konstruksie is twee terme wat vandag dikwels 

saam genoem word.  Ongeveer 12.4 % van die kweekhuisgasse wat in Europa vrygestel word kom uit 

die konstruksie- en vervaardigingbedrywe (Maydl, 2004).  Die konstruksiebedryf gebruik ook bykans 

die helfte van hulpbronne wat ontgin word en meer as 25 % van rommel word deur konstruksie of 

sloping produseer.  Die Suid-Afrikaaanse boubedryf is verantwoordelik vir 23 % van die totale 

hoeveelheid kweekhuisgasse wat die land vrystel.  Die behuisingsektor, waar die regering aan die 

hoof van 33 % van eenhede staan, ontvang 60 % van bestaande beleggings (Milford, 2009).  Dit is dus 

duidelik dat die boubedryf ’n negatiewe impak op die natuurlike omgewing het en dat dit van groot 

belang is om dié situasie te verbeter. 

 

In die behuisingsektor het lae-koste-behuising groot potensiaal as dit kom by volhoubaarheid.  

Volhoubaarheid bestaan uit drie sfere: ekonomie, natuurlike omgewing en sosiaal, en al drie speel ’n 

betekenisvolle rol in lae-koste-behuising.  Daar is reeds verskeie studies aangepak om die ekonomiese 

en sosiale sfere te beskryf, maar daar is steeds min inligting beskikbaar oor die omgewingsimpak van 

’n lae-koste-huis.  Dit laat die behoefte ontstaan om hierdie impak te kwantifiseer. 

 

Bestaande metodes wat wêreldwyd gebruik word om ŉ omgewingsimpak te bepaal is dikwels 

besonder kompleks en benodig duur sagteware tesame met ingewikkelde databasisse om dit te 

implementeer.  ’n Behoefte aan ’n plaaslike kwantifiseringsmetode is geïdentifiseer.  Hierdie studie 

stel ’n eenvoudige, gebruikersvriendelike kwantifiseringsmetode bekend.  Dit word saamgestel uit 

faktore wat verband hou met die plaaslike omgewing: Uitlaatgasse, Hulpbronuitputting en 

Rommelvervaardiging.  Uiteindelik word ’n saamgestelde waarde, wat die Omgewingsimpak-indeks 

genoem word, bereken om vergelyking te vergemaklik. 

 

Hierdie kwantifiseringsmetode word aan die hand van ’n gedeeltelike lewenssiklus-analise as ’n 

wiskundige hulpmiddel ontwikkel.  Slegs die eerste fase van ’n gebou se lewenssiklus word beskou 

tydens hierdie studie, maar dit is moontlik om die ander twee fases in te sluit.  Die voorgestelde 

metode het die vermoë om die omgewingsimpak te bereken en ook te optimeer.  Tydens die 

ontwerpsfase, wanneer belangrike besluite geneem moet word, kan so ’n hulpmiddel van enorme 

waarde wees om die beste opsie uit verskillende alternatiewe te help identifiseer. 
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Die studie beskou twee tipes behuisingseenhede vir die doel van implementering van die 

kwantifiseringsmetode: die konvensionele baksteen en mortel metode en alternatiewelik ’n ligte 

staalraamwerk-gebou.   

 

Tydens implementering van die voorgestelde metode, demonstreer die model dat dit werk soos dit 

veronderstel is om te funksioneer.  Verder is getoon dat ’n ligte staalraamwerk-gebou ’n waardevolle 

alternatief is om te ondersoek, maar dit moet liefs met ’n meer akkurate lewenssiklus-analise bevestig 

word. 
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Chapter 1 
 

INTRODUCTION 
 

Sustainable development is defined according to the Brundtland Report (WCED, 1987) published by 

the World Commission on Environment and Development in 1987, as development that “meets the 

needs of the present generation without compromising the ability of the future generation to meet their 

own needs”.  However, sustainability is difficult to achieve in a world where population and economic 

growth lead to increased production of greenhouse gases (GHG), resource depletion and waste 

generation. 

 

Today, the environmental dimension of sustainability, which is more commonly known as the natural 

environment, and the construction industry are two terms often mentioned together.  In Europe,  

12.4 % of GHG emissions are induced by the construction and manufacturing industry (Maydl, 2004).  

Also, 50 % of the resources extracted are used in the construction industry and more than 25 % of 

waste generated is construction and demolition waste.  In South Africa, the building sector accounts 

for approximately 23 % of the total GHG emissions (Milford, 2009).  Furthermore, 60 % of 

investment is made in the residential sector where 33 % of the building stock is the focus of the 

government’s Housing Programme.  It can be seen that the construction industry significantly impacts 

the natural environment, from here onwards named the environment, and the aim should be to reduce 

this negative impact. 

 

Within the local residential sector, the low-cost housing sector presents potential when it comes to 

sustainable improvements.  Sustainability consists of three spheres, namely economy, environment 

and society.  Each of these areas plays a crucial role within this sector.  Various studies have been 

done on the economical and social fields, but little information exists on the impact low-cost houses 

have on the environment.  A need arises to scientifically quantify the environmental impact hereof, 

therefore it is chosen as the focus of this study. 

 

Various methods in order to determine the environmental impact of the built environment exist 

globally, but they tend to be complex, are used in conjunction with difficult to understand databases 

and require expensive software.  A simple and easy-to-use analysis-orientated quantification method 

is proposed in this study to be used locally.  The quantification method is compiled applying 

indicators related to the local conditions; these include Emissions, Resource Depletion and Waste 

Generation.  The end objective of the method is to provide the user with an aggregated total value 
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called the Environmental Impact Index (EII) to ease comparison of possible alternatives.  All 

indicators contribute to the final EII. 

 

The quantification method is developed as a mathematical tool in the form of a partial Life Cycle 

Assessment (LCA) which can aid in objective decision making during the conception and design 

phase of a specific project.  Note that only the Pre-Use Phase is considered during this study, but it 

can be extended to include the Use Phase and End-of-Life Phase.  The proposed model has the 

capability of calculating and optimising the environmental impact of a building.  Different housing 

unit designs can be compared in order to select the best option. 

 

The quantification method is implemented for two low-cost house design types in this study.  Firstly 

the conventional brick and mortar design is considered whereafter a Light Steel Frame Building 

(LSFB) is viewed as an alternative.  Results are produced in various formats: environmental impacts 

of the chosen indicators separately, the EII and the cost of the unit for both design types. 

 

Furthermore, alternative materials were substituted as input to investigate the effect on the 

environmental impacts, possibly leading to an optimised design.  The proposed model shows to be 

useful as an optimisation tool.  Lastly, a sensitivity analysis is performed on certain assumptions in 

order to quantify their significance. 

 

Chapter 2 sheds light on the current situation with regards to construction and low-cost housing in 

South Africa.  Topics such as design types, legislation, the economical impact, social factors and 

challenges within this sector are addressed.  The next chapter explains the proposed environmental 

impact quantification method in full.  Chapter 4 provides the framework wherein the quantification 

method is implemented for low-cost housing types specifically. 

 

Chapters 5 and 6 demonstrate in detail how the environmental impact is determined for the 

conventional design type and LSFB alternative respectively and provides graphical results.  The 

following chapter compares the results for both design types. 

 

Chapter 8 presents the proposed model as an optimisation tool whereafter Chapter 9 provides a 

sensitivity analysis on assumptions made to determine the significance thereof.  Finally, conclusions 

are made and recommendations for future studies are put forward. 
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Chapter 2 
 

BACKGROUND ON CONSTRUCTION AND LOW-COST 

HOUSING IN SOUTH AFRICA 
 

Data is readily available on the environmental, economical and social impacts of the construction 

industry globally, but little information exists on the impacts in South Africa.  Firstly, the current 

position of the local building sector is described whereafter the residential sector becomes the 

particular focus.  More specifically, low-cost housing is studied from a sustainability viewpoint. 

 

2.1 Economical and environmental impact of the building sector 

 

The United Nations Environment Programme Sustainable Buildings & Climate Initiative  

(UNEP-SBCI) commissioned a report titled Greenhouse Gas Emission Baselines and Reduction 

Potentials from Buildings in South Africa: A Discussion Document (Milford, 2009).  This report was 

the first of its kind aiming to quantify and provide tangible information on the impact of the 

construction industry in South Africa.  This section aims to provide a broad view on this topic with 

the aid of statistical and graphical extracts from the mentioned document. 

 

Figure 1 shows the ratio of investment in the various building sectors for the year 2007.  It can be 

deduced that the residential sector plays the biggest role in this regard with a total investment of 63 %. 

 
 

Figure 1: Investment in building by sector in 2007 (Milford, 2009) 
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In 2006, stock was taken of the residential sector.  The outcome can be seen in Figure 2 with divisions 

for Flats and Townhouses, Dwelling units either larger or smaller than 80 m2 and also a part labelled 

Other which includes backyard properties, informal or squatter units and traditional or rural housing.  

This part, contributing 33 % to the total building stock, is the focus of the government’s Housing 

Programme. 

 

Figure 2: Total residential building stock in 2006 (Milford, 2009) 

 

Even though a large proportion of residential units in South Africa form part of programmes 

established by the government to facilitate the process of providing all inhabitants with adequate 

housing, Figure 3 shows that insufficient finances are invested in the public residential sector if 

compared to the private sector.  This may relate to reasons why South Africa suffers such a large 

housing backlog. 

 

 

Figure 3: Investment in residential buildings (Milford, 2009) 
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The UNEP-SBCI document does not only focus on the economical impact of the building industry in 

South Africa, but goes further into quantifying equivalent carbon emissions in order to portray the 

environmental impact thereof.  Note that only the operation phase was included in the compilation of 

this data for each contributing sector.  Figure 4 shows the percentage of equivalent carbon dioxide 

emissions (CO2e) per sector in the year 2007.  The building sector comprises the residential and 

commercial sections and it can be seen in Figure 4 that after manufacturing, the building sector plays 

the second largest role in South Africa considering CO2e emissions. 

 

 

Figure 4: CO2e emissions per sector (Milford, 2009) 

 

It is therefore clear that the building sector in South Africa strongly impacts the economy and 

environment.  As mentioned before, the residential sector plays a large role, but for the purpose of this 

study, the focus is on the low-cost housing sector specifically since it presents potential for 

improvement within a sustainability framework considering the economy, environment and society. 

 

2.2 Economical context of low-cost housing 

 

South Africa is ranked as one of the ten countries with the highest inequality rate in terms of income.  

Income inequality can be measured by the Gini-coefficient (Gini, 1912) and currently stands at 0.72 

for South Africa.  This number increases from the 0.72 to 0.80 for the whole country if taxes and 

grants are excluded (Statistics South Africa, 2008).  The coefficient can be described as 0.0 being 

absolute income equality and 1.0 absolute income inequality.  It is possible that this unacceptable rate 
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of inequality contributes to the large number of poor people with inadequate housing and living 

conditions. 

 

According to the Banking Council of South Africa, it is estimated that approximately 80 % of new 

households are unable to gain access to mortgage loans or non-mortgage finance in order to procure 

housing opportunities (Tonkin, 2008). 

 

Quantifying the large housing backlog is a difficult task as there is no final agreement on the 

definition of inadequate housing.  The lack of reliable statistics also adds to this problem.  The poor 

levels of housing delivery and increasing backlog may be due to insufficient resources being assigned 

to the housing problem, skills shortages and a lack of capacity in government (Tonkin, 2008). 

 

The Housing White Paper (New Housing Policy and Strategy for South Africa: White Paper, 1994) 

provides the National Housing Goal which states that the budget of the housing sector should be 

increased to 5 % of the total government expenditure in order to obtain a decent delivery rate of  

350 000 houses per annum; this number is calculated to reduce the housing backlog over the next 

years.  Unfortunately, the government has cut state expenditure in order to reduce the budget deficit 

resulting in housing expenditure decreasing to below 2 % of the total budget (Tonkin, 2008).  Table 1 

provides the actual expenditure per financial year of the Department of Human Settlements as 

extracted from Annual Reports.  This value includes the amount of money spent by each of the 

participating programmes within the Department of Human Settlements, namely Administration, 

Housing Policy, Research and Monitoring, Housing Planning and Delivery Support, Housing 

Development Finance and Strategic Relations and Governance.  The number of houses completed or 

in process of completion is given in the adjacent column.  Accounting for inflation, the expenditure 

increases exponentially as the number of housing units delivered remains relatively steady. 

 

Table 1:  Actual annual expenditure and number of housing units delivered (Tonkin, 2008 & 

Department of Human Settlements, Annual Reports) 

Year Expenditure [mil R]  Housing Units Delivered 

2003/2004 4 520 193 615 

2004/2005 4 808 217 348 

2005/2006 5 256 216 133 

2006/2007 7 165 271 219 

2007/2008 8 586 248 850 

2008/2009 10 920 245 082 

2009/2010 13 370 226 425 
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Typically, households earning below R 3 500 per month collectively qualify for a state subsidy 

(Breaking New Ground, 2004).  The government subsidy for the top structure of a standard 40 m2 

house is R 55 706 effective 1 April 2009 (van der Merwe, 2011).  Also, if the project features difficult 

soil conditions an additional 15 % of this value may be applied for.  Furthermore, if the site is located 

within the Southern Cape Coastal Condensation Area (SCCCA), an extra R 10 803 is added to the 

subsidy amount summing to a total of approximately R 75 000 per house.   Municipal engineering 

services may be financed from a further R 22 162 subsidy per stand and the cost of raw land is 

financed from the annual allocation to Provincial Governments of R 6 000 per stand (Department of 

Human Settlements, 2009).  The various subsidy programmes which may be applied for include the 

Integrated Residential Development Programme, Individual Housing Subsidy and the Enhanced 

People’s Housing Process among others. 

 

The annual budget of the Department of Human Settlements and grants contributed by government is 

established and driven by relevant legislation and policies.  The following section provides short 

descriptions of regulations considered. 

 

2.3 Housing legislation, policies and regulations 

 

In order to understand the workings of the Housing Sector in South Africa, background information is 

given on the various applicable policies and legislation. 

 

Section 26 of the South African Constitution states the following: 

 

 (1) “Everyone has the right to have access to adequate housing. 

(2) The State must take reasonable legislative and other measures, within its available 

resources, to achieve the progressive realisation of this right” (Constitution of the 

Republic of South Africa, 1996). 

 

After the first democratic election in 1994, various policies and strategies have been implemented in 

support of the new approach to the Housing Sector.  These include the Reconstruction and 

Development Programme (RDP) of 1994, the Growth, Employment and Redistribution (GEAR) 

Strategy of 1996, the Accelerated and Shared Growth Initiative – South Africa (ASGI-SA) of 2005 as 

well as the Housing Act No. 107 of 1997.  There are two documents which constitute the National 

Department of Human Settlements’ directive, namely the New Housing Policy and Strategy for South 

Africa: White Paper 1994 and the Comprehensive Plan for the Development of Sustainable Human 
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Settlements, also known as “Breaking New Ground” of 2004 (Department of Human Settlements, 

2010).  Both of these documents will be discussed in more detail hereafter. 

 

2.3.1 New Housing Policy and Strategy for South Africa, 1994 

 

The vision of this Policy (New Housing Policy and Strategy for South Africa: White Paper, 1994) is 

to establish integrated communities who are situated in close proximity of job or other economical 

opportunities, health and educational services along with social facilities.  All South Africans will 

have access to: 

 

(1) “A permanent residential structure with secure tenure, ensuring privacy and providing 

adequate protection against the elements, and 

(2) Potable water, adequate sanitary facilities including waste disposal and domestic 

electricity supply.” 

 

The approach to implementation of this Policy (New Housing Policy and Strategy for South Africa: 

White Paper, 1994) follows 7 key strategies: 

 

(1) Stabilising the housing environment, in other words motivating private sector 

investments in the low-income housing sector whilst ensuring optimum benefit of 

governmental expenditure. 

(2) Mobilising housing credit.  Ultimately this strategy promotes saving by beneficiaries 

so that they can establish creditworthiness and maintain their own housing. 

(3) Providing subsidy assistance. 

(4) Supporting the Enhanced People’s Housing Process (EPHP) entailing greater input 

from beneficiaries in housing delivery – at least the top structure. 

(5) Rationalising institutional capacities thus creating an environment where regulators 

and implementers could fulfil their respective roles effectively and efficiently 

whether it be at national, provincial or local municipality level. 

(6) Facilitating the speedy release and servicing of land. 

(7) Coordinating government investment in development by integrating the public and 

private sector. 

 

It is important to note that the Policy strongly emphasises the fact that special needs of the youth, 

disabled, the aged and single-parent families should be considered carefully (Department of Human 

Settlements, 2010). 
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2.3.2 Breaking New Ground:  Comprehensive Plan for the Development of 

Sustainable Human Settlements, 2004 

 

The Comprehensive Plan (Breaking New Ground, 2004) is based on the principles of the Housing 

White Paper of 1994, although the focus now shifts to the integration of communities and sustainable 

human settlements by improving the quality of the housing environments.  Another important focal 

point is the Upgrading of Informal Settlements to improve the lives of people living in slums - in line 

with the United Nations Millennium Goals (Department of Human Settlements, 2010).  Target 11 of 

Goal 7 says that a substantial improvement in the lives of at least 100 million inhabitants should be 

achieved by the year 2020 (United Nations, 2001). 

 

With the broader vision of providing integrated sustainable human settlements, the objectives of the 

National Department of Human Settlements are poverty alleviation, job creation, wealth creation and 

empowerment, economical growth and improving the quality of life of poor citizens.  A variety of 

literature proposes that increased access to low-income housing has little impact on poverty 

alleviation (Department of Human Settlements, 2010). 

 

Sustainable human settlements actuates sustainable development, creates wealth, reduces poverty and 

results in equity owing to the balance in the economic growth, social upliftment along with the natural 

systems being in equilibrium with its carrying capacity required for its existence (Breaking New 

Ground, 2004). 

 

In order to achieve these objectives of government, nine strategies are implemented and are listed.  

More detailed information on each strategy can be found in the National Housing Policy and Subsidy 

Programmes of 2010 (Department of Human Settlements, 2010). 

 

(1) Supporting the entire residential housing market. 

(2) Moving from housing to sustainable human settlements. 

(3) Applying existing housing instruments. 

(4) Adjusting institutional arrangements with government. 

(5) Building institutions and capacity. 

(6) Enhancing financial arrangements. 

(7) Creating jobs and providing housing. 

(8) Building awareness and enhancing information communication. 

(9) Implementing systems for monitoring and evaluation. 
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2.3.3 National Building Regulations 

 

The purpose of Building Regulations is to ensure socially acceptable levels of health, safety, welfare 

and agreement between the inhabitants and community in which the building is located.  These 

objectives can be achieved by rendering rules on the design, construction and operation of the 

building.  Certificates reporting on the adequacy of a system or material can be obtained from the 

South African Bureau of Standards (SABS), Council for Scientific and Industrial Research (CSIR) or 

Agrément Board South Africa.  SANS 10400 of 2004 provide a revised interpretation of the National 

Building Regulations of 1990 (Tonkin, 2008). 

 

2.3.4 National Home Builders’ Registration Council (NHBRC) 

 

The NHBRC was set up as a Section 21 company in 1995 and now operates as a statutory body.  All 

home builders are obliged to register with this body and have to enrol all new houses built under the 

Defect Warranty Scheme.  Housing consumers are protected from dishonest and corrupt builders, 

contractors and developers through the Product Defect Warranty Scheme and a Code of Conduct for 

Home Builders effective 16 March 2007.  Registration fees constitute most of the Warranty Scheme’s 

funding which is then used to pay for repairs and structural defects when claims are made (Tonkin, 

2008). 

 

Furthermore, the NHBRC provides minimum ethical and technical standards to be adhered to and 

requires a five year standard home builders warranty from the builder for each bondable new home 

built.  These norms and requirements can be found in the Home Builders Manual (NHBRC, 1999).  

Spot check inspections are carried out on enrolled homes under construction to verify that the builder 

complies with the NHBRC’s building standards and guidelines.  The NHBRC also acts in an 

arbitrative capacity between consumers and home builders if major structural defects occur after 

hand-over of the completed, enrolled unit (Tonkin, 2008). 

 

Concluding this section on applicable regulations, no guidelines depicted in mentioned policies or 

legislation exist with regard to the environmental impact of the low-cost housing unit. 

 

2.4 Social aspects of low-cost housing 

 

Apart from the political and economical aspects influencing the Housing Sector, inevitable social 

impacts exist which may not be ignored.  The following section provides information regarding the 
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living conditions of inhabitants and also touches on the topic of public participation during project 

development. 

 

2.4.1 Housing conditions 

 

Poverty alleviation often hides behind a false sense created by statistics on access to water, electricity, 

housing and education facilities.  A variety of literature proposes that an increased access to  

low-income housing has little impact on decreasing the state of poverty.  Furthermore, governmental 

expenditure on this sector does not necessarily improve the quality of living (Charlton et al., 2006). 

 

Provision of shelter and security are two main intentions of housing.  The accelerated need for 

adequate housing and the lack of efficient delivery, has forced some inhabitants to live in backyard 

dwellings of new housing developments as seen in Figure 5.  These shacks provide a source of 

income for the owners of the low-cost house (Govender et al., 2010).  According to the South African 

Institute of Race Relations, the percentage of people living in backyard dwellings is increasing more 

rapidly than the number of people living in informal settlements (South African Institute of Race 

Relations, 2008).  Allowing these backyard dwellings may result in a decrease in the quality of living 

conditions. 

 

 

 

 

 

 

 

 

Figure 5: Backyard dwelling (Govender et al., 2010) 

 

Shack dwellings are considered shameful by most; however, people still tend to live here due to the 

shortage in job opportunities and inner-city housing along with overcrowding elsewhere.  Alcohol 

misuse, noisiness (including domestic violence) and the lack of privacy in shack dwellings are 

expressed as some of the main problems by inhabitants (Ross, 2010).  Formal housing is considered 

relief from forced close living conditions. 

 

Beneficiaries do not necessarily realise that the maintenance of their home is their own responsibility 

and that if they do not look after the unit, it will degenerate structurally over time causing further 
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problems (Ross, 2010).  Most consider the government responsible for maintenance.  Some even 

approach the local municipality when something is broken – this burden may only fall on them in the 

case of rental stock, not ownership (van Stavel, 2011).  Fire risk is one important point to bear in 

mind.  On the other hand, most beneficiaries cannot afford to live in new houses considering water 

and electricity bills, maintenance etc. that has to be paid (Ross, 2010). 

 

Structurally, these houses tend to show large cracks after a certain period of time while damp is 

visible on the walls of many dwellings (Govender et al., 2010).  The inadequate indoor air quality 

may lead to inhabitants falling ill.  TB (Tuberculosis) is especially prevalent in these overcrowded 

communities.  Poor waste disposal and removal create unhealthy living conditions and cases of 

diarrhoea attacks are frequently reported. 

 

During a survey in the City of Cape Town Metropole, it was discovered that many housing units do 

not have an outside drain connected to the sewerage system.  Inhabitants dispose of waste water by 

flushing it down a toilet which is a terrible waste of potable water (Govender et al., 2010). 

 

2.4.2 Public participation 

 

Community participation is commonly related to a bottom-up approach whereas the conventional  

top-down approach requires less input and resources from the local area.  There is a belief that 

community participation is the only way leading to sustainable development, but little information 

exists on the negative aspects and disadvantages of this approach (Lizarralde et al., 2007).  Negative 

outcomes may include restricted integration of economic opportunities, low typology densities, urban 

fragmentation, limited possibilities for extensions on the housing unit and little variety of models 

used. 

 

Lizarralde et al. (2007) argues that in some housing project instances the wrong decisions are justified 

by the desires of the community.  For example, the residents of a certain township demanded single 

detached units as this was the norm of typology being built in upmarket areas.  This was not the 

optimised solution for this particular area, but the developers built what the residents wanted.  The 

desires of the community should be taken into account but not at the cost of negatively affecting 

neighbouring communities or even the environment. 

 

The complex interaction between participants, interests, objectives, resources and processes ultimately 

determines the performance of low-cost housing projects (Lizarralde et al., 2007).  Participants 

include the three spheres of government, civil society, the private sector and other important role 

players (Tonkin, 2008).  Community participation is in fact crucial in these developments, but the 
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value of their input with regard to the decision making process should be managed effectively.  In the 

end, developing countries should aim at producing sustainable environments that further develop and 

improve the quality of living of its residents (Lizarralde et al., 2007). 

 

2.5 Design types of low-cost housing 

 

Diverse design types for low-cost housing exist although only a few will be discussed in more detail 

in the following sections.  Even though the building systems explained differ greatly in construction 

method and materials used, the final products are not easily distinguishable from one another.  

Generally, social acceptance plays a crucial role in the choice of design type.  Firstly the conventional 

brick and mortar design is presented where after certain alternative building technologies are shared. 

 

2.5.1 Conventional design 

 

The conventional design is known to most contractors locally and is usually selected as a design type 

for its low cost and the fact that it complies with the National Home Builders’ Registration Council 

(NHBRC) Home Building Manual (NHBRC, 1999).  Variations on some material items are possible 

and will be explained next. 

 

Depending on the soil conditions as specified by a geotechnical report, an appropriate foundation type 

is chosen.  If a raft foundation is required, it has to be designed and certified by a structural engineer.  

For stable soil conditions, a strip-footing foundation is adequate.  According to the NHBRC Home 

Building Manual (NHBRC, 1999), the minimum depth of the foundation must be  

200 mm; for external walls the minimum foundation width is 500 mm and for internal walls a 

minimum width of 400 mm is required.  At least 10 MPa concrete should be used for the foundations.  

A damp proof course (DPC) layer is necessary beneath the reinforced floor slab which should be of at 

least 25 MPa and power floated to a smooth finish. 

 

Typically, external walls are at least 140 mm in thickness and constructed with concrete hollow 

masonry units whereas internal walls are similar but only 90 mm thick.  Internal load bearing walls 

should also have a thickness of 140 mm.  External walls are usually plastered to avoid rain 

penetration, while the minimum requirement for internal masonry walls is that it should be neatened 

and smoothed, also known as bagged walls or bag-washing.  The brickforce is normally galvanised 

when used in coastal areas. 
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Concrete lintels are generally placed across all door and window frame openings for crack prevention.  

Normally steel window and door frames are used.  Figure 6 shows typical doors and windows used 

during low-cost housing construction. 

 

 

Figure 6: Completed semi-detached 40 m2 house 

 

A more economical way of roof construction, compared to a timber truss system, entails placing 

timber rafters in the length of the house with sheeting used as covering.  This method requires the 

gable walls to be built up to the required height of the roof.  Figure 7 depicts this method of 

construction.  If corrugated or IBR roof sheeting is used rather than clay roof tiles, it should be at least 

0.5 mm thick.  Note that the roof design should be done by a specialist according to the specific area 

conditions.  The NHBRC Home Building Manual specifies the minimum roof pitch.  This depends on 

the type of roof covering used and whether an underlay is considered or not.  For example, corrugated 

iron roof covering requires a pitch of at least 11° whereas a roof covered without an underlay and clay 

tiles should be pitched at a minimum of 26° (NHBRC, 1999).  A framework of the construction 

process is provided in Section 4.1. 

 

 

Figure 7: Typical roof construction of the conventional design 
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2.5.2 Alternative Building Technologies (ABT’s) 

 

The current Human Settlements Minister, Tokyo Sexwale, stated in October 2010 that of the  

2.5 milllion houses built since 1994, only 17 000 were constructed using ABT’s – this is a mere  

0.68 % of the total housing units delivered (Moladi, [s.a.]).  He is determined to increase this ratio in 

future in order to eradicate the 2.1 million housing backlog South Africa still faces. 

 

Three alternative building technologies applicable to the low-cost housing sector are discussed.  It is 

believed that these are currently the most widely implemented alternative building systems in the low-

cost housing sector although other building systems exist on the market. 

 

Light Steel Frame Building (LSFB) 
 

Although Light Steel Frame design has widely been in use in the United States, Europe and Australia 

for decades, it has only recently been introduced in South Africa.  LSFB is a system offering various 

benefits including cost-efficiency, quality products, durability, minimal wastage, low mass panels 

with ease of handling and reduced construction time (SASFA, [s.a.]). 

 

Depending on the soil conditions, foundation types can vary from a raft foundation, strip-footings, 

slab-on-ground and pad-and-pier configurations.  The Light Steel Frame Building code, SANS 

517:2009, has a guide to foundation design for these structures.  Conditions permitting, strip-footings 

would be chosen since contractors are familiar with the method of construction.  It is important that 

the slab be power floated to an exact level ensuring accurate erection of the pre-fabricated wall panels. 

 

The steel elements used are cold formed and manufactured from high strength, thin (typically 0.5 – 

1.0 mm thick) galvanised steel sheets.  The design yield strength is 550 MPa.  Wall frames and roof 

trusses are assembled in a factory with fasteners connecting the elements through pre-punched holes. 

 

Wall panels consisting of various different material layers can be designed according to the 

specifications and layouts provided in the code (SANS, 2009).  External walls comprise of an external 

cladding, waterproof membrane, a thermal break, bulk insulation between the steel elements 

(minimum thickness of 25 mm) and internal lining.  Cladding includes brick veneer, fibre cement 

board panels or weatherboard whereas lining generally refers to gypsum board.  Internal walls simply 

consist of gypsum board, with a minimum thickness of 15 mm, on either side of the bulk insulation in 

the wall panel. 
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Furthermore, the LSFB design code (SANS, 2009) provides information on roofs and ceilings.  

Insulation is an important element which should be considered carefully.  A DPC layer is placed onto 

the truss followed by wooden or steel purlins.  Any type of sheeting or clay/cement tiles may be used 

as roof covering but should be designed for accordingly.  Gypsum board acts sufficiently as ceiling 

material. 

 

Similar doors and windows as for the conventional method are used and are placed into the pre-

fabricated positions in the wall panels. 

 

Figure 8 shows a simple, schematic diagram of the construction process of a light steel frame unit.   

 

 

Figure 8: LSFB building process (Light Frame Homes, [s.a.]) 

 

Imison 
 

The Imison building system is similar to LSFB construction.  A housing unit typically consists of a 

galvanized light-gauged, cold formed structural steel frame erected on a concrete surface bed.  

Different to the various layers required for wall panels in LSFB units, infill panels comprise of an 

expanded polystyrene (EPS) core sprayed externally with Fibrecote, a special fibre reinforced plaster.  

The roof structure can be designed as a timber or light steel frame truss with conventional roof 

covering and optional insulation (Agrément, 2009). 
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This ABT was the winner of the ABSA Bank International Innovation Housing and Sustainable 

Energy Efficiency competition in 2010 held (Imison wins ABSA housing competition, [s.a.]).  The 

building system also holds an Agrément certificate, 2008/342 (Agrément, 2009).  More than a 

thousand homes were built in Zola, Soweto, using the Imison system (Department of Human 

Settlements, 2009).  Other housing projects have been completed in Attredgeville and Mamelodi, 

Gauteng, as well as in the Western Cape. 

 

Moladi © building system 
 

The Gauteng Department of Housing commissioned the construction of 17 houses in the Innovation 

Hub in Soshanguve near Pretoria in 2006 (Delivering low-cost housing using alternative technology, 

[s.a.]).  Various non-conventional building technologies were tested in the hope of complementing the 

conventional design and accelerating the delivery process.  The Housing Technology Innovation Hub 

is jointly sponsored by the NHBRC and ABSA Bank (Dlamini, 2006).  A competition emerged from 

this initiative, and of the 17 houses built, the Moladi building system was the winner. 

 

Moladi© patented a building system comprising a lightweight, reusable and recyclable plastic 

formwork filled with an aerated mortar.  The formwork can be easily handled, assembled and 

transported as it only weighs 8 kg/m2.  The modular formwork components are fully interlocking and 

any desired dimensional structure can be designed for.  Typically the wall cavity is either 100 mm or 

150 mm wide with any safe specified wall length or height.  Also, the formwork panels can be re-used 

up to 50 times, providing a cost effective solution (Moladi, [s.a.]). 

 

All internal and external walls are designed to have steel reinforcing as specified by an independent, 

certified engineer.  The reinforcement, window frames, doors, electrical conduits, plumbing and other 

fittings are positioned before the wall cavity is filled with the mortar mix.  The aerated mortar consists 

of sand, cement, water and a non-toxic, water based chemical called MoladiCHEM.  The mortar mix, 

or more specifically the chemical additive, holds an Agrément Certificate number 94/231.  No 

plastering is necessary after the formwork is removed as the formwork and mortar fill system results 

in a smooth wall finish.  Lastly, the roof is constructed according to engineering design specifications.  

Typically the roof system comprises purlins with IBR sheeting as cover.  Figure 9 shows a photo of a 

40 m2 house constructed with the Moladi system (Moladi, [s.a.]). 
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Figure 9: A typical 40 m2 house constructed with the Moladi building system (Moladi, [s.a.]) 

 

The top structure, that is everything erected above the completed foundation, of a single house can 

typically be constructed within two days granted enough labour is provided.  Figure 10 lists the steps 

completed over the course of two days.  Once the formwork is removed, it can immediately be used 

for the construction of a unit on the adjacent plot further reducing project construction time. 

 

 

Figure 10: Construction flow of the Moladi building system (Moladi, [s.a.]) 

 

The Moladi system has been used in housing projects in Gauteng and the Western Cape, specifically 

the Morgen’s Village development in Mitchell’s Plain (Social Housing Trends, 2010). 

 

2.6 Housing challenges and incentives 
 

It is often argued that South Africa’s housing problem originates from the Apartheid era (Tonkin, 

2008).  More than 80 % of the population was denied housing and land rights.  Most of the people had 

Stellenbosch University  http://scholar.sun.ac.za



19 
 

to reside in informal settlements, backyard shacks and hostels as a result of the Apartheid laws 

controlling where they could live.  Today, South African cities still have a similar typology since the 

racial structure of the past is now replaced by hard class lines. 

 

Due to population growth, the large increase in the number of households, continuing high rates of 

urbanisation, and South Africa’s high unemployment rate (ever increasing), the demand for 

government assisted housing has changed greatly over the last couple of years (Department of Human 

Settlements, 2010).  Since 1994, approximately 2.5 million houses have been built, but the current 

backlog of over 2 million still faces the following challenges, impeding the progressive supply and 

delivery of housing (Tonkin, 2008): 

 

(1) The lack of affordable, well-located land causes these developments to form on urban 

peripheries with weak prospects of integration.  Slow release of land further complicates 

the process. 

(2) The slow response of funding allocated by government. 

(3) The number of subsidies required is increasing as pointed out by President Thabo Mbeki 

in the 2004 State of the Nation Address (Mbeki, 2004). 

(4) Insufficient capacity of the Housing Sector, especially common in local municipalities 

(Department of Human Settlements, 2010). 

(5) The withdrawal of large construction groups.  This commenced after the announcement 

that as from April 2002 local authorities will become the developers of low-income 

housing projects (Charlton et al., 2006). 

 

Residents have different needs and housing might not be an equal priority for all.  Providing the same 

solution to different types of users is not a sustainable answer.  It should be taken into account that 

there are different household sizes of dissimilar economic levels (Lizarralde et al., 2007). 

 

With political elections every five years, the structure of municipalities changes along with the 

Integrated Development Plan (IDP).  The IDP is one of the main motivators in industry as this 

document summarises the priorities of each municipality/ward (van Stavel, 2011).  It is important that 

politicians look beyond a five-year horizon and sacrifice the short-term self gain for the long-term 

benefit of all citizens (Tonkin, 2008).  Instead of delivering a large number of poorly planned houses 

within a short time, the government should incorporate health and safety of the inhabitants when 

planning such projects (Govender et al., 2010). 

 

Achieving sustainability within the low-cost housing sector is a challenge itself.  Various incentives 

are provided with the goal of sustainable human settlements in mind.  Densification of housing 
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typologies is one of the main motivators along with improving the location of new housing 

developments.  It is advised that subsidies be increased accordingly in order to provide better quality 

housing units (Charlton et al., 2006).  The subsidy amount has not been increased with inflation over 

the years since its inception in 1994.  Charlton et al. (2006) furthermore argues that funding for land 

should be done separately from the housing subsidy trusting this would accelerate the process and 

provide adequate finances for the housing unit itself.  Keeping the lack of skills in municipalities in 

mind, accreditation of municipalities should be put in place in order to quantify the capacity of the 

institution.  Catering for the unemployed, labour intensive construction methods are to be used with 

on-site production of building materials and training of local contractors (Department of Human 

Settlements, 2010). 

 

Generally, information on the low-cost housing sector is concerned with the political, economical and 

social aspects only.  Only a few reviews on the environmental impact of this sector exist, therefore a 

need arises for a scientifically based quantification model which can be applied locally in order to 

calculate the environmental impact of low-cost housing projects or units.  
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Chapter 3 

 

QUANTIFYING THE ENVIRONMENTAL DIMENSION OF 

SUSTAINABILITY 
 

Several environmental impact quantification methods are available globally but these methods are 

often complex, require expensive software for implementation and are not easy to use.  This chapter 

proposes an easy-to-use analysis-orientated method which is inexpensive to implement and based on 

environmental indicators applicable to local conditions. 

 

3.1 Defining sustainability 
 

According to the Brundtland Report of 1987 (WCED, 1987), sustainable development is defined as 

development that “meets the needs of the present generation without compromising the ability of the 

future generation to meet their own needs”.  In order to achieve sustainability, the following three 

dimensions need to be considered: economy, society and the natural environment.  Figure 11 

represents the interaction between these three dimensions.  Sustainability is achieved when the three 

spheres overlap and are in balance. 

 

 

Figure 11: Dimensions of sustainability 

 

The economical sphere includes elements such as economic growth, job creation and efficient 

resource use (Moldan et al., 2011).  The ultimate objective is decoupling economic growth from 

environmental degradation as there is a tendency towards a decline in the latter as development 

increases. 
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Aspects describing the social dimension of sustainability are the following: health and human well-

being, security, nutrition, shelter or housing, education and freedom of cultural expression (Moldan et 

al., 2011).  Tonkin (2008) further states that the aim should be to improve the quality of living in 

general. 

 

Lastly, the dimension labelled environment entails aspects that impact on the ecological sphere, 

including climate change, land use, efficient transport systems, energy conservation, food systems, 

water security, waste generation and maintenance of ecosystem integrity through resource 

management (Moldan et al., 2011).   

 

Sustainability does not consist of three independent spheres, rather the integration of economy, 

environment and society.  Technically, a single dimension cannot be isolated even though this 

research does consider the environmental dimension separately.  Future research should consider 

quantification of the economical and social dimensions resulting in full integration and achievement 

of sustainability.  Integrated criteria possibly include the use of local materials stimulating the local 

economy and reducing the environmental impact due to transportation distances.  Another example is 

local job creation which influences the local economy and benefits society. 

 

As the focus of this study is on the environmental dimension of sustainability only, the environmental 

impact is elaborated in the following sections. 

 

3.2 Current assessment methods 

 

Two types of assessment methods currently exist in an effort to quantify the environmental impact of 

a building: 

 

(1) The application-oriented method:  A basic assessment system which uses a checklist compiled 

from building life cycle theory and comparing qualitative and quantitative aspects of a building’s 

environmental impact by relative scores given.  Existing methods include the UK BREEAM and 

the US Leadership in Energy and Environmental Design, LEED (Liu et al., 2010).  The Green 

Star SA Rating Tool is also included in this category. 

 

(2)  The analysis-oriented method: Also based on building life cycle theory but in addition includes 

all accumulated environmental impacts measured quantitatively.  The main functionality of this 

method lies in a database of building materials and their associated environmental impacts 

together with a weighting system aiming to quantify the overall environmental impact of a 
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building with simple calculations.  Known examples include the Building for Environmental and 

Economic Sustainability (BEES) in the US and the Canadian Athena (Liu et al., 2010).  The 

method proposed in this study falls under this category as the analysis-orientated method is 

believed to be more scientific and comprehensive.  Also, a local method already exists regarding 

the application-orientated method. 

 

Within the analysis-orientated category, various Life Cycle Impact Assessment (LCIA) methods exist.  

This includes the CML 2001 method published by the Center of Environmental Science of Leiden 

University; the Environmental Design of Industrial Products (EDIP) 1997 and 2003 from 

collaboration in Denmark and the Eco-indicator 99 method produced by Goedkoop and Spriensma in 

1999.  All these methods are based on a similar framework considering three steps.  The first step 

entails calculating the environmental impact potentials where the contribution of each emission to the 

different impact categories, as defined by the method considered, is computed with the use of 

characterisation factors also known as equivalency factors.  The next step is normalising these 

potentials in order to compare their impact with a common reference.  Lastly, to be able to compare 

the impacts in relation to one another, weighting factors are applied (Hischier et al., 2010). 

 

The mentioned methods are complex to use and require the utilisation of large databases implemented 

with expensive software.  Also, it generally relates to global factors.  Within a South African context, 

a scientifically based analysis-orientated method is needed which is easy to use, inexpensive to 

implement and is region specific.  The purpose of this study is to create such a model using different 

indicators as explained in the following sections. 

 

3.3 Proposed method for quantifying the Environmental Impact 
 

This proposed method of quantifying the environmental impact of the built environment covers a 

broader scope than the conventional carbon footprint calculation.  The goal is to provide a guideline 

or tool which can be used in order to objectively improve the environmental impact of the built 

environment.  Even though this proposed model may be applied to the built environment in general, it 

will be implemented to quantify the environmental impact of low-cost housing units specifically. 

 

3.3.1 Selected indicators 
 

Three different environmental indicators are proposed namely Emissions, Waste Generation and 

Resource Depletion to assist with the quantification process.  Indicators are typically identified and 

applied over a certain period of time in order to determine a trend and may be measured between an 
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established baseline and set targets (Moldan et al., 2011).  The three indicators are selected as they are 

relevant to the current local context and believed to induce the greatest impact on the environment in 

relation with various other environmental impacts considered globally. 

 

Emissions 

 

In Figure 4, representing the CO2e emissions per sector, it is seen that the manufacturing sector 

contributes 40 % of the total emissions whereas the building sector is responsible for a further 23 % 

(Milford, 2009).  Emissions due to the built environment link with both these sectors since the 

percentage applicable to the building sector only includes operation of buildings.  Production of 

construction materials also has a significant impact on the environment and this is classified under the 

manufacturing sector. 

 

Furthermore, in line with international trends, President Jacob Zuma’s address at the UN Climate 

Change Conference in Copenhagen on 18 December 2009 pledged the following:  

 

“With financial and technological support from developed countries, South Africa for 

example will be able to reduce emissions by 34 % below ‘business as usual’ levels by 2020 

and by 42 % by 2025” (Address by President Jacob Zuma, [s.a.]). 

 

To be able to reach such a level of emissions in 2020, a significant reduction in the total contribution 

of 63 % from both the building and manufacturing sectors will lead to a substantial decrease in the 

overall emissions.  Emissions is thus an important environmental indicator which needs to be 

considered. 

 

Resource Depletion 

 

It is estimated that the total global combustion of fossil energy during the 20th century amounts to  

500 Gt (Krausmann et al., 2009).  Furthermore, it is believed to have greatly contributed to the 

amount of greenhouse gas emissions in turn accelerating climate change.  South Africa supplies 

almost 90 % of its energy by using non-renewable fossil fuels as energy resources.  This is evident in 

Figure 12. 
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Figure 12: Primary energy supply in 2006 (DoE, 2010) 

 

Also, energy consumption per sector is shown in Figure 13.  It can be seen that the building sector 

consumes 27.2 % of the total energy whereas the manufacturing industry uses 32.2 % of the energy 

supplied.  Once again, similar to the case of emissions, the building and manufacturing sectors are 

responsible for the largest energy consumption, a total of 59.4 %.  Note that apart from resources 

being used to supply energy, other mineral and metal resources are extracted to manufacture products. 

 

Figure 13: Sectoral consumption of energy in 2006 (DoE, 2010) 
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At the beginning of the 21th century, the global amount of materials extracted was approximated 

between 47 and 59 billion metric tons per annum (Krausmann et al., 2009).  Also, 70 % of the 

resources extracted are non-renewable resources and this proportion is ever increasing.  The 

predominant increase in material resource use is ascribed to population growth.  This complex process 

is furthermore driven by the global economy (Krausmann et al., 2009). 

 

The amount of resources extracted has increased significantly since 1980 as seen in Figure 14.  The 

total resource extraction escalated from 40 billion tons to 55 billion tons in 2002.  It is clear from the 

figure that industrial and construction materials are the greatest contributor to the total amount of 

resources extracted.  An increase in this category is also evident. 

 

 

Figure 14: Global used resource extraction by material category (Behrens et al., 2007) 

 

If resources are not managed effectively, whether it is on a global level or in South Africa, a 

possibility of exhausting them emanates.  It is therefore important to be able to quantify the impact of 

Resource Depletion as it significantly influences the environmental impact of the built environment. 

 

Waste Generation 

 

The choice of Waste Generation as an indicator relates to the fact that South Africa suffers from 

limited landfill space and the consequent occurrence of widespread illegal dumping. 

 

The following sites and activities typically generate solid waste: households, offices, shops, markets, 

restaurants, public institutions, industries, water works and sewage facilities, construction and 

demolition, and agricultural practices (Pipatti et al., 2006).  Also, of the total municipal solid waste 
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generated in South Africa, 90 % thereof is disposed at solid waste sites.  South Africa suffers from 

limited land which can serve as space for the development of new landfill sites (DEAT, 2005).  

Several landfills have been closed or will be closed in the near future as capacities have been reached. 

 

Widespread illegal dumping occurs possibly due to the shortage of landfill sites, long transportation 

distances, dumping fees, the lack of education on recycling options and enforcement measures not 

managed well (Katz et al., 2011). 

 

Construction and demolition waste contributes 10 - 20 % of landfill space and is currently an 

untapped resource in South Africa (DEAT, 2005).  Construction and demolition waste includes 

defective items, leftover materials, wastage and packaging (Katz et al., 2011).  Various useful 

recycled or re-used forms of construction and demolition waste exist, therefore it is important to be 

able to quantify the amount of waste generated from construction and demolition activities. 

 

3.3.2 Indicators across building life cycle 

 

Each of the above mentioned environmental indicators is quantified using one or more variables, 

defined as EIi (ith environmental impact).  In order to simplify this complex procedure, a typical 

building life cycle is divided into three phases, namely the Pre-Use Phase, the Use Phase and the  

End-of-Life Phase. 

 

The Pre-Use Phase typically includes resource extraction, production of materials and construction on 

and off site while the Use Phase is synonymous with the operation of the building. The End-of-Life 

Phase comprises of demolition of the building.  Figure 15 shows a concise graphical representation of 

the life cycle of a building. 

 

 

Figure 15: Building life cycle (Wang et al., 2005) 

 

A great amount of gasses emitted into the atmosphere as a result of the built environment are from 

production of building materials and transport thereof as acquired in the Pre-Use Phase.  Energy 

required for building operation in the Use Phase also contributes significantly to Emissions.  

Resources can be defined to include raw materials, fuels, water and land mostly acquired during the 

Stellenbosch University  http://scholar.sun.ac.za



28 
 

Pre-Use Phase of a building.  Most waste accumulates as demolition waste during the End-of-Life 

Phase of a structure although construction waste is generated in the Pre-Use Phase. 

 

Life Cycle Assessment (LCA) is a system analysis method that is useful in evaluating resource 

consumption and waste emissions across the whole life cycle of products or processes (Wang et al., 

2005). 

 

According to ISO 14040:2006, a LCA consists of the following four phases: goal and scope 

definition, inventory analysis, impact assessment and interpretation of results.  During the first phase, 

audience and system boundaries are determined.  Secondly, the inventory analysis requires 

quantifying relevant inputs and outputs whereafter evaluation of the significance of the environmental 

impact based on the inventory is done during the assessment phase.  Finally, based on the results, 

conclusions can be reached and recommendations for improvements can be made (Schreuer et al., 

2003). 

 

The following sections discuss the chosen indicators, namely Emissions, Resource Depletion and 

Waste Generation which each have negative impacts on the environment.  Methods for quantifying 

these impacts in each phase of a building’s life cycle are proposed. 

 

3.3.3 Quantification of Emissions 

 

Cement production contributes between 3 % and 6 % of global equivalent carbon dioxide (CO2e) 

emissions annually (Marland et al., 2007, Jegatheesan et al. 2009).  Even if zero emission cement 

production technology is used, 0.44 tons of CO2 will still be emitted per ton of pure limestone used 

due to calcination.  Two possible solutions exist to this problem: reduce consumption – in a world 

with a growing population and demand it is not readily possible – or develop new materials producing 

less CO2e emissions (Chaturvedi et al., 2004). 

 

The international steel industry often affirms that steel is a more environmentally friendly material 

than concrete as it is highly recyclable.  Steel also has a higher modulus of elasticity compared to 

concrete and can carry a greater load with less material being used when slenderness issues are 

overcome (Chaturvedi et al., 2004).  It is however difficult to justify these statements without taking 

an objective holistic approach of the environmental impact for each application. These arguments 

should also not be based on a single environmental indicator, e.g. only on the carbon footprint.  

 

Nitrogen oxides (NOx), sulphur dioxide (SO2), carbon monoxide (CO) and carbon dioxide (CO2) are 

the primary emissions in the cement manufacturing process while CO2, CO, SOx and NOx are the 
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principal gas emissions during steel production (TFEIP, 2006).  It is thus important to quantify these 

emissions as the environmental impact of cement and steel production is substantial. 

 

Quantification method 

 

For each process or material flow under study, different emissions are emitted due to the constituent 

materials and energy needed.  Various emission factors exist for each material or energy used.  

Emission factors usually occur in the form of kg CO2/unit (Carbon Trust, 2008).  Furthermore, the 

amount of gas (kg) emitted can be calculated as follows: 

 

�� = ����	      (1) 

 

where ei is the emission factor associated with the material or energy considered and mi its related 

mass or flow. 

 

Associated with the gasses emitted during the production of steel and cement, two Environmental 

Impacts (EI’s) are proposed for the quantification of the emissions of the built environment, namely 

Carbon Footprint and Acidification Potential. 

 

Carbon Footprint 

 

Certain gasses in the earth’s atmosphere trap the energy from the sun in turn warming the earth’s 

surface.  These gasses, better known as greenhouse gasses (GHG’s), form part of the natural 

greenhouse effect and without it life on earth would not be possible.  However, an enhanced 

greenhouse effect will have negative consequences.  GHG’s as listed in the Kyoto Protocol (United 

Nations, 1998) include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 

hydrofluorocarbons (HFC’s), perfluorocarbons (PFC’s) and sulphur hexafluoride (SF6).  All these 

emissions are used in calculating the carbon footprint of a system although only the first three 

mentioned are applicable to the built environment. 

 

Quantifying a carbon footprint requires all components to be of CO2e form (Azapagic et al., 2004).  

This facilitates the comparison procedure.  Once the CO2e for all the components has been 

determined, the sum of these kg CO2e values produces the carbon footprint of the system.  It may be 

obtained as follows: 

 

��� = 	
 =	∑ �
����=1 ��     (2) 
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where the global warming potential (GWP) associated to a certain emission i is obtained from  

Table 2 and Ei the amount of gas emitted as calculated earlier.  EI1 is the first environmental impact 

considered. 

 

Table 2:  GWP factors (Pachauri et al., 2007) 

GHG Name Chemical Formula 
GWP for a 100-year  

time horizon 

Carbon dioxide CO2 1 

Methane CH4 25 

Nitrous Oxide N2O 310 

 

Acidification Potential 

 

The acidification of soils and water resources through acids such as HNO3 and H2SO4 occurs mainly 

by way of transformation of air pollutants, including SO2 and NOx, into the mentioned acids.  The 

acidification potential is given in sulphur dioxide equivalents (SO2e).  Increased acidity of water and 

soil can consequently increase corrosion of manmade structures (Azapagic et al., 2004).  The 

Acidification Potential value in kg, the second EI, is determined as follows: 

 

���	 = �� = ∑ ������=1       (3) 

 

where fi represents the acidification factor of gas i found in Table 3 and Ei the emitted amount in kg.  

Note that other emissions causing acidification are not considered here since only emissions typically 

related to the built environment are taken into account. 

 

Table 3:  Acidification factors (Azapagic et al., 2004) 

 Name  Chemical name  Acidification factor (f)  

 Sulphur dioxide  SO2  1 

 Oxides of nitrogen  NOx  0.7 

 

3.3.4 Quantification of Resource Depletion 

 

It is rather complex to quantify resource depletion using indexes or reserve-to-use ratios; therefore it 

is advised that exergy be incorporated into a life cycle analysis (Wang et al., 2005).  There exists a 

direct relation between the exergy use of fossil fuels and minerals and the environmental impact of 

natural resource depletion (Cornelissen et al., 2000). 
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Definition of Exergy 

 

A resource, whether natural or artificial, is defined as a material which is in a state of disequilibrium 

with the environment, consequently possessing exergy.  Processes such as purification increase the 

value and exergy of resources (Rosen et al., 2008). 

 

Exergy is defined as the maximum obtainable work potential of a material or energy flow in relation 

to the environment (Cornelissen et al., 2000).  Exergy is thus the maximum theoretical work or 

available energy which can be extracted from a combined system, including its environment, as the 

system passes from a given state of energy to equilibrium with the environment (Wang et al., 2005). 

 

The first law of thermodynamics states that energy is conserved in all processes even if energy 

conversions take place.  The quality or usefulness of energy can however be reduced in worth and this 

concept is formulated by the second law of thermodynamics concerned with the non-conservation of 

entropy (De Meester et al., 2009).  Exergy comprehends this quality concept and is also a measure of 

its potential to cause change.  When in equilibrium with the reference environment, the exergy of a 

system is zero (Rosen et al., 2008).  The unit of exergy is Joule (Jex). 

 

This environment can be a local or global average, more often referred to as the reference conditions.  

These conditions have been defined as a temperature of 298 K and atmospheric pressure of  

101,325 Pa (De Meester et al., 2009). 

 

Exergetic Life Cycle Analysis 

 

In order to accommodate resource depletion as an environmental impact, it is suggested that the 

conventional LCA be extended to an Exergetic Life Cycle Analysis (ELCA).  The framework of 

assessment remains similar.  The first phase, the goal and scope definition, is identical but the 

inventory analysis of the ELCA is more detailed.  A simplified input-output approach could be used to 

quantify material mass and energy flow balances of processes taken into account.  The impact 

assessment phase represents the calculation of exergy flows and the phase where exergy destruction 

of the processes is determined.  The accumulation of exergy destruction over the entire life cycle 

gives the irreversibility of the product.  Important to note is that the ELCA points out places in the life 

cycle where exergy destruction takes place.  Aiming to minimise exergy destruction, objective 

improvement possibilities may be presented (Cornelissen, 2000). 
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Quantification of Cumulative Exergy 

 

Calculation of cumulative annual exergy demand can be done as follows (De Meester et al., 2009): 

 

(1) Draw up an inventory of all materials and energy per annum for the full life cycle. 

(2) Calculate embodied energy of materials using Ecoinvent database for the Swiss Centre for 

Life Cycle Inventories. 

(3) Quantify above in terms of exergy by using the eXoinvent method developed by De Meester 

et al. (2009) in conjunction with earlier research by Dewulf et al. (2007). 

 

In Step 3 conversion factors called X-factors are introduced which quantify the cumulative exergy 

extraction from the natural environment (Dewulf et al., 2007).  The factor X is defined as the exergy 

content in MJex/unit of reference flow for units defined in the Ecoinvent database.  The CEENE 

(Cumulative Exergy Extraction from the Natural Environment) in MJex for a product j, can be 

calculated as the sum over all reference flows considering the appropriate X-factor. This results in the 

third EI and is defined as follows: 

 

��� = 	����� = ∑ ���������      (4) 

 

where Xi is the factor of the ith reference flow and aij the amount of reference flow i needed to 

produce product j (Dewulf et al., 2007). 

 

3.3.5 Quantification of Waste Generation 

 

The construction and building industry is responsible for a large amount of waste or building rubble 

also referred to as CDW (construction and demolition waste).  Furthermore, the volume of CDW is 

depleting available land space in landfills and causes illegal dumping to a considerable extent (dos 

Santos et al., 2004).   

 

From construction and demolition activities, concrete, bricks and blocks are currently commonly 

disposed of at landfill sites because little demand exists for their recycled forms.  These materials 

have the potential to be crushed and used as secondary aggregates in road base and sub-base 

construction.  Other uses for recycled aggregates include bulk fill or concrete.  Making use of 

recycling and other initiatives reduces the volume of resource extraction and the number of new 

quarries required (Duran et al., 2005). 
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Proposed Waste Minimisation Strategy 

 

The following strategy is proposed for the demolition of any part of the built environment.  Firstly, 

prior to demolition, an inventory of materials in a building needs to be made.  This includes the 

estimation of the volume, separability and composition in order to determine the feasibility of the 

exercise.  Secondly, suitable areas on site where materials can be separated into the following 

different categories are required.  The categories include hazardous waste, construction materials 

which can be reused, building materials sufficient for recycling (e.g. aggregates for concrete), 

materials which can be used to provide energy and finally the material disposed of at a solid waste site 

(Bokalders et al., 2010). Only after the above mentioned preparation is done should the demolition 

commence.  Figure 16 shows the proposed order of dealing with CDW.  Note that construction waste 

is typically generated during the Pre-Use Phase and demolition waste during the End-of-Life Phase. 

 

The reduced environmental impact due to waste treatment can be measured in two ways: the reduced 

mass of waste ending up in landfills, or quantifying the avoided production and extraction of virgin 

resources.  The latter mentioned requires initiatives or strategies such as recycling, re-use, recovery, 

incineration etc.  Once the best strategies have been selected, the implementation thereof will include 

a study of the economical viability. 

 

 

 

Figure 16: Quantification and minimisation of the environmental impact of waste 
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Quantification of Classified Waste Volumes 

 

A method for quantifying the volume of construction and demolition waste expected has been 

proposed by Solís-Guzmán et al. (2009), but it only relates to dwelling type buildings in Spain.  This 

quantification model has been developed by studying 100 dwelling projects, particularly their Bill of 

Quantities, and defining three coefficients, associated with the three sources of waste, to estimate the 

demolished volume, wreckage volume and the packaging volume. 

 

Proposed procedure of waste quantification (Solís-Guzmán et al., 2009):  

 

(1) Classification system – put together similar materials of same unit. 

(2) Determine quantity of each item per m2 of the building. 

(3) Calculate the expected waste. 

 

Although the coefficients and quantities determined by Solís-Guzmán et al. (2009) have not yet been 

determined for the South African context, the Spanish values will be used for the purpose of this 

study.  These coefficients can easily be calibrated once a study of the South African context has been 

done.  Note that even though this method calculates the volume of waste generated, the mass can be 

determined by multiplying with the respective material density factors. 

 

The following sections explain two means of minimising the negative environmental impact of waste 

once the volume has been quantified, namely Waste Diversion and Production Avoidance. 

Furthermore, methods of evaluating these impacts are presented. 

 

Waste Diversion 

 

Without recycling initiatives, the volume of waste may increase at an alarming rate.  Consequential 

increase in landfill costs could encourage waste producers to find new methods of diverting waste 

from landfills.  Recycling initiatives are likely to be implemented without any enforcing regulations 

when the cost of landfilling exceeds the cost of transporting waste to a recycling station and also when 

the cost of using primary aggregates exceeds the cost of using recycled aggregates.  Strategies such as 

taxes and or the use of subsidies would however accelerate the implementation (Duran et al., 2005). 

 

In order to monitor the state of landfill sites, it is necessary to quantify the mass (kg) of waste 

disposed.  Considering recycling, re-use and so forth, the following equation provides a way with 

which to determine the mass of waste ending up in landfill: 
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��� = 	� −��      (5) 

=	� 					 
 

where M is the total mass of waste quantified after classification, Mr the waste mass recovered by 

implementing recycling strategies in turn corresponding to Md, the reduced mass of waste disposed at 

the landfill site.  Md is proposed as the fourth EI. 

 

Production Avoidance 

 

Waste material recovered from the demolition phase as the ‘avoided product’ is quantifiable as 

‘avoided cumulative exergy consumption’. The cumulative exergy consumption (Jex) can be 

calculated with the eXointvent tool as mentioned before. 

 

If a product is merely disposed of, an extra amount of cumulative exergy will be required for its 

disposal, CExCdisp.  However, if a waste product is recovered for secondary use, two new cumulative 

exergy factors need to be considered.  Firstly, natural virgin resources are preserved noted as CExCav.  

Secondly, other processes for example transport and incineration requirements involve some 

cumulative exergy, CExCrec.  The natural resource savings that are earned when a disposal scenario is 

replaced by a recovery scenario can be labelled the net avoided virgin resource consumption or the net 

avoided cumulative exergy consumption, CExCnet.av (Dewulf et al., 2009).  The last mentioned can be 

determined as follows and is proposed as the fifth EI: 

 

��! = 	�"	�#$.&' = 	�"	&' + 	�"	 �)* − 	�"	�#+   (6) 

 

If resulting CExCnet.av values are positive, it indicates that for whichever scenario and waste fraction 

considered, it results in net virgin natural resource savings.  Note that when a shorter lifetime is 

assumed for the building, the relative importance of the End-of-Life Phase naturally increases 

(Dewulf et al., 2009). 

 

3.3.6 Proposed Environmental Impact Index 

 

In order to obtain a holistic view of the environmental impact of the built environment, it is proposed 

that environmental impacts defined are to be combined into a final index called the Environmental 

Impact Index (EII).  Table 4 shows a summary of the proposed environmental impacts along with the 

unit of measurement. 
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Table 4: Summary of Environmental Impacts 

No. Name Unit 

EI1 Carbon Footprint kg CO2e 

EI2 Acidification Potential kg SO2e 

EI3 Resource Depletion Jex 

EI4 Waste Diversion kg 

EI5 Production Avoidance Jex 

 

Each environmental impact is divided by a normalisation reference EIref in order to obtain 

dimensionless units for all impacts which then make them comparable.  Also, a weighting factor is 

assigned to each environmental impact corresponding to the relative importance of the associated 

impact.  The EII can thus be calculated as: 

 

��� = 	,-�
���
���#.�

!

���
 

  (7) 

 

where ci is the weighting factor related to EIi, the environmental impacts and EIrefi the associated 

normalisation reference. 

 

Agreement has not been reached with current research as how to aggregate environmental impacts 

into a single index as proposed above.  Various techniques exist such as expert decision and analytical 

studies, but the decision remains which selection would be the best.  Some scholars argue that while 

trying to combine these impacts into one comparative index, it obscures the relative contribution of 

each.  Transparency of decision making over the building life cycle may thus be enhanced in a 

disaggregated form (Azapagic et al., 2004).  

 

LCIA methods mentioned in Section 3.2 include Eco-Indicator 99 and the EDIP 1997 or 2003 

version.  Weighting factors for the three damage categories defined in the Eco-Indicator method is 

determined by an expert panel survey (Hischier et al., 2010) whereas for the EDIP method, these 

weighting factors are based on political targets set in accordance with selected reference values 

(Stranddorf et al., 2005). 

 

As mentioned previously, this quantification method may be applied to the built environment in 

general, but this study focuses on low-cost housing specifically for which the proposed model will be 

implemented in the following chapters.  
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Chapter 4 

 

IMPLEMENTATION FRAMEWORK OF PROPOSED MODEL 
 

The proposed quantification method will be implemented within a certain framework following three 

main assumptions and for two low-cost housing design types.  This chapter provides information on 

the chosen framework along with the methodology used when implementing the quantification 

method. 

 

4.1 Framework 

 

This section provides background information on the reference housing project selected to simplify 

calculations and decrease material and design assumptions.  In order to implement the proposed 

method, three assumptions are made related to the phase of the building life cycle selected, impact 

assessment factors required in order to determine the impact potentials and proportion waste volumes 

expected due to construction activities. 

 

4.1.1 Reference housing project 

 

For the quantification method to be implemented, an existing housing project was used as a reference, 

namely the Kayamandi Watergang Housing Project near Stellenbosch.  The project consisted of two 

phases.  Phase 1A went to out tender in November 2006 for the construction of 534 low-cost houses 

whereas the second phase concluded the construction of 113 housing units at the end of April 2011.  

The project consisted of nine different types of unit combinations ranging from single units, duplex 

units and two or more semi-detached single or duplex units (Allen, 2011).  Figure 17 shows two types 

of unit combinations.  The functional unit used for the implementation of the quantification process is 

a single housing unit of 40 m2. 

 

Soil conditions were classified according to the NHBRC Home Building Manual (NHBRC, 1999).  

One half of the site was classified as H/S founding material whereas the rest was found to be H1/S1 

material (van der Merwe, 2011).  Residential site class designations mentioned refer to expansive and 

compressible soils typically fine grained clays, silts and sandy material. 
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Figure 17: a) Semi-detached duplex units, and b) Semi-detached single units (Allen, 2011) 

 

The Master Plan of the area showing the layout and orientation of the different housing units can be 

found in Appendix A. 

 

Furthermore, for the purpose of implementing the proposed environmental impact quantification 

method, two of the three mentioned design types as described in Section 2.5 are chosen.  The 

conventional design type is widely used in low-cost housing projects, well-known by contractors and 

the NHBRC Building Manual (NHBRC, 1999) assists during the design stage.  Along with the 

advantages mentioned when constructing a Light Steel Frame Building, a design code SANS 

517:2009 has been published recently.  Light Steel Frame design hence presents itself as a building 

system with potential increase in popularity locally as opposed to alternative building systems run on 

a small scale by an individual or small group. 

 

4.1.2 Pre-Use Phase and system boundary 

 

For the purpose of this study only the Pre-Use Phase is considered.  It is believed that the conceptual 

and design phase, which is included in the Pre-Use Phase, may prove to have an important influence 

on the impact of the building across the whole life cycle.  Also, it is during the Pre-Use Phase where 

the structural engineer possibly has the most influence as the Use Phase is concerned with the 

operation of the building and the End-of-Life Phase the demolition thereof.  Variables such as 

building orientation, material selection, construction methods and so forth influence the sustainability 

of the building; therefore the Pre-Use Phase entails important choices affecting society and the 

environment in the long term (Wang et al., 2005).  Llatas (2011) mentions that several studies have 

identified the reasons for the substantial amount of construction waste generated as poor decisions and 

design concepts submitted during the design stage.  Keep in mind that conclusions regarding the 

better alternative should not be based on the Pre-Use Phase only as it does not provide a holistic view.  

For such results it is advised to incorporate the other building life cycle phases. 

b) a) 
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Following the choice of building life cycle phase, it is furthermore important to define the system 

boundary.  A system boundary is a set of criteria specifying which unit processes are part of a system 

(BS EN ISO 14040, 2006).  The exclusion of certain elements of the phase may have a significant 

effect on the outcome; it is thus crucial that the most accurate system boundary be selected for the 

study undertaken.  Figure 18 shows the system boundary of the Pre-Use Phase for a conventional 

designed low-cost house whereas Figure 19 is similar but for a Light Steel Frame Building as an 

alternative to the brick and mortar design.  Note that the finishes and services are excluded from the 

system boundary for both cases as the same elements or processes are used for both design types.  In 

this instance, the EII will increase by the same amount for both cases and can been seen as a common 

factor. 

 

 

Figure 18:  System boundary for conventional brick and mortar design 

 

 

Figure 19:  System boundary for LSFB as an alternative 

 

Once the system boundary has been clearly defined, the quantification method can be applied. 
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4.1.3 Ecoinvent database 

 

The Ecoinvent project was initiated early in the 1990’s.  Swiss Centre for Life Cycle Inventories 

developed the database which accommodates approximately 4000 datasets for products, services and 

processes.  These datasets are often used in Life Cycle Assessments and case studies.  The Ecoinvent 

Centre functions as collaboration between the following institutes: Swiss Federal Institute of 

Technology Zürich (ETHZ), Swiss Federal Institute of Technology Lausanne (EPFL), Paul Scherrer 

Institute (PSI), Swiss Federal Laboratories for Materials Testing and Research (Empa) and the 

Agroscope Reckenholz-Tänikon Research Station (ART).  They are considered to be the world 

leaders of consistent and transparent life cycle inventory data and use of the Ecoinvent database is 

recognised worldwide (Frischknecht et al., 2007). 

 

Such an extensive materials impact potentials database is not available locally despite the fact that the 

Cement and Concrete Institute has published emission factors for building materials related to 

concrete production (Perrie, 2010).  Therefore the Ecoinvent database is selected for use. 

 

Version 2.2 (2010) of the Ecoinvent data was used for obtaining Life Cycle Impact Assessment 

(LCIA) factors of various materials.  Several LCIA methods exist for which information are available 

on the Ecoinvent database.  In aid of calculating the environmental impact, factors were obtained from 

the EDIP 1997/2003 method.  This method was selected as similar impact units were observed for the 

proposed method.  More specifically impact potential factors for the carbon footprint [kg CO2e], 

acidification potential [kg SO2e] and bulk waste [kg] were utilised.  The Eco-Indicator 99 method 

works on a point system, creating difficulty to extract impact potential factors from the database. 

 

As explained in Section 3.2, the EDIP method consists of three steps namely environmental impact 

assessment, normalisation with respect to a common reference and finally weighting of the impacts in 

terms of relative importance.  This correlates to the proposed quantification method.  Only the first 

step is implemented in the Ecoinvent database, normalisation and weighting should be done by the 

user separately. 

 

Normalisation is done by dividing the environmental impact with a common reference in order to 

obtain dimensionless units for all impacts which are then comparable.  A widely used reference is the 

average yearly environmental load in the region considered divided by die number of inhabitants.  

Region may refer to a country, continent, global or even a smaller local area (Goedkoop et al., 2008). 
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The weighting factors in the EDIP method are based on the political reduction targets for each 

environmental impact category (Stranddorf et al., 2005).  The year 1994 has been selected as the 

reference year, purely as data was easily available for that year, simplifying the compilation thereof.  

The method stipulates a 10 year difference between the reference and target year, hence 2004 is the 

target year.  Calculating these weighting factors simply imply dividing the actual impact value for the 

year 1994 with the target value of the year 2004. 

 

Dimensionless weighting factors are linked to the above mentioned normalisation references with 

regard to the geographical area considered.  Weighting factors for Denmark, Europe (EU-15) and the 

world are obtainable (Stranddorf et al., 2005).  Normalisation and weighting factors used in this study 

can be seen in Table 5. 

 

Table 5:  EDIP normalisation and weighting factors (Stranddorf et al., 2005 & Goedkoop et al., 

2008) 

Environmental Impact Normalisation reference 

Unit                      Value 

Weighting 

factor 

Reference 

year 

Reference 

region 

Carbon Footprint kg CO2e/per/yr 8.7E+03 1.12 1994 Global 

Acidification Potential kg SO2e/per/yr 59 1.27 1990 Europe 

Bulk Waste kg/per/yr 1350 1.1 1991 Denmark 

 

Where global factors are not available, it is advised to use European values for impact potentials 

located outside of Europe.  As for bulk waste, the Danish weighting factor is provided due to a lack of 

availability for other regions (Stranddorf et al., 2005).  The EDIP method is of Danish origin and it is 

possible that Denmark was the only country with waste reduction targets in 2004. 

 

Aggregating the factors presented for the EDIP method into a single environmental impact index is 

allowed, although resources (kg) may not be included as a different weighting method is used 

(Goedkoop et al., 2008).  Weighting factors are not based on political targets, instead on the proven 

reserves per person.  A different method is selected in order to obtain the environmental impact for 

Resource Depletion separately, namely the Cumulative Exergy Demand method.  Ten different 

impact categories are identified for this method, including seven energy categories and three material 

resources categories each represented with a MJ-eq value.  Table 6 shows the ten categories along 

with a description of each. 
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Table 6:  Categories of Cumulative Exergy Demand method (Hischier et al., 2010) 

Category Description 

Fossil non-renewable energy resources, fossil 

Nuclear non-renewable energy resources, nuclear 

Wind renewable energy resources, kinetic (in wind), converted 

Solar renewable energy resources, solar, converted 

Water renewable energy resources, potential (in barrage water), converted 

Primary Forest non-renewable energy resources, primary forest 

Biomass renewable energy resources, biomass 

Water resources resources renewable material resources, water 

Metals non-renewable material resources, metals 

Minerals non-renewable material resources, minerals 

 

South Africa mainly depends on fossil resources for energy production as shown in Figure 12.  

Derived from Figure 12, South Africa supplies 90.2 % of energy with fossil fuel resources.  For this 

reason only four impact categories of the Cumulative Exergy Demand method were selected for use.  

They are highlighted in Table 6 above: fossil, water resources, metals and minerals. 

 

Normalisation is not included in this method and in order to obtain an aggregated total, each impact 

category is multiplied with a weighting factor of 1.0 (Goedkoop et al., 2008). 

 

4.1.4 Spanish model for quantification of construction waste 

 

The Spanish model was selected in order to estimate the construction waste generated as it is a simple 

to use method and based on the Bill of Quantities which forms the base of calculations in the 

following chapters.  Local waste proportion factors are not yet available but can easily be replaced in 

the future when such studies have been done.  Therefore Spanish values were used for the purpose of 

this study. 

 

Referring to the article by Solis-Guzman et al. (2009), a summary of the equations and steps used to 

estimate the volume of construction waste from items on the Bill of Quantities are provided: 

 

1. Calculate the material quantity per m2 of the building. 

 

2. Determine the apparent constructed volume VACi for each item i on the Bill with its quantity 

Qi and respective unit. CCi is a conversion factor. 
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VACi [m3/m2] = Qi [unit/m2] x CCi [m3/unit]   (8) 

 

3. Calculate the apparent wreckage waste volume VARi by multiplying with a dimensionless 

factor CRi. 

 

VARi [m3/m2] = VACi [m3/m2] x CRi    (9) 

 

4. Calculate the apparent packaging waste volume VAEi by multiplying with a dimensionless 

factor CEi. 

 

VAEi [m3/m2] = VACi [m3/m2] x CEi    (10) 

 

5. Add VARi and VAEi and multiply with the building area to obtain the volume of waste for 

item i. Sum over all the items to determine the total waste volume [m3]. 

 

6. To convert into total mass [kg] of waste generated, multiply the waste volume of each item 

with its respective density and sum over all. 

 

4.2 Methodology 

 

The quantification process can easily be implemented in a spreadsheet using the Bill of Quantities as 

the template.  This simplifies mathematical operations and the tool can thus be presented in a user-

friendly format.  Information required for quantifying the environmental and economical impact may 

be obtained from the Bill of Quantities of the project.  Material quantities are used as input values for 

calculating the environmental impact, whereas rates and prices are used to determine the cost.  For 

each design type, a separate calculation sheet is used. This is typically an extension of the Bill of 

Quantities implementing the environmental and economical impact or cost calculations.  The 

following two chapters will explain the specific calculations and assumptions in depth for both the 

conventional and Light Steel Frame Building design types. 
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Chapter 5 
 

QUANTIFYING THE EI AND COST OF A CONVENTIONAL 

DESIGN HOUSING UNIT 
 

This chapter explains the implementation of the proposed quantification method, consequently 

calculating the environmental impact and cost.  The design type of focus in this chapter is the 

conventional brick and mortar design as a type of low-cost housing unit.  A project at Watergang, 

Kaymandi, Stellenbosch, was used as an example where required. 

 

5.1 Structural system 
 

Section 2.5.1 provided a broad description on the conventional design and materials typically used.  

Furthermore, Figure 17 provided the system boundary selected for quantification purposes; however, 

it also showed the structural breakdown of the system.  The substructure comprises of the foundation 

and slab whereas the top structure includes construction of the walls, roof system and various finishes.  

For the purpose of further calculations, the structure was further broken down into building elements 

to ease comparison of different design types later on.  A list of the building elements follow with a 

short description of each thereafter: 

 

• Foundations 

• Floor slab 

• External walls 

• Internal walls 

• Ceiling and insulation 

• Roofing 

• Roof covering 

 

The foundation was designed as strip-footings and includes reinforced concrete bases with concrete 

hollow masonry units (blockwork) as the foundation walls.  A simple reinforced concrete floor slab is 

then cast upon compacted fill material which acts as slab support with the slab bearing on the external 

foundation walls.  A damp proof course is inserted between the foundation and external walls to 

prevent moisture from entering underneath the top structure.  External walls consist of the 

construction of concrete hollow masonry courses with the external face plastered.  Internal walls are 
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similar but not plastered.  Roofing entails a Howe timber truss system with purlins and galvanised 

sheeting as roof covering. 

 

A detailed plan of a single 40 m2 house and foundation details used for populating the Bill of 

Quantities can be seen in Appendix B. 

 

5.2 Conventional design 

 

A Bill of Quantities was obtained from the civil and structural engineering consultants on the 

Watergang Kayamandi Housing Project.  This was used a template when quantifying the 

environmental impact of a low-cost house designed according to conventional principles. 

 

For some building elements, a further breakdown of materials required was necessary in order to 

calculate the environmental impact more accurately.  These include for example concrete foundations 

to be categorised as concrete and reinforcing steel along with foundation and external walls to be 

decomposed into blockwork, mortar, galvanised brickforce and certain layers filled with concrete.  

Table 7 shows the breakdown of building elements; seen as the indented text. 

 

Table 7:  Extract of expanded Bill of Quantities 

 

 

Limited detail was given on the truss layout and quantities of materials needed as a sub-contractor 

would typically design and supply the materials for a quoted rate.  It was therefore required to design 

the truss according to the NHBRC Home Building Manual (NHBRC, 1999) in order to obtain 

material quantities needed for further environmental impact calculations.  A Howe type truss can be 

designed for different types of roof coverings, roof pitches and maximum spans according to detail 

plans.  With known input details regarding the timber truss with roof sheeting, the truss layout was 

Item Unit Quantity Rate [R/unit] Cost [R]

Foundations

Excavation m
3

8.94 50.34 450.04

10 MPa concrete foundation 

(600x200mm) m
3

3.00 791.92 2375.76

           Reinforcing (4 x Y12) kg 103.00

190 mm blockwork including m
2

14.90 103.04 1535.30

           brickforce (75x2.8mm), m 125.00

           galvanised m
2

2.45

           filled with concrete m
3

0.97

Materials
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determined from Table 1, Section 4 of Part 2 (NHBRC, 1999) providing particulars such as the 

number of bays required, grade of timber, centre-to-centre truss spacing and the timber profile sizes 

needed. 

5.3 Assumptions 
 

Various assumptions were made for the implementation of the quantification model to fully function 

for this specific design type.  A list follows: 

 

• Project and construction time is estimated at one year.  The normalisation step requires impact 

potentials to have a unit per year, resulting in dimensionless normalised values which can 

then be compared. 

• Mortar and plaster sand:cement ratio taken as 4:1 (Addis, 1998).  Impact potentials for mortar 

are not available on the Ecoinvent database; a ratio between the available factors for sand and 

cement were opted for. 

• Transport of all materials from plant to site and transport of construction waste to landfill total 

a distance of 100 km.  The implication of this selection is investigated with a sensitivity 

analysis in Chapter 9.  A model can be proposed to quantify the total distances more 

accurately, but the process tends to become complex. 

• 3.5 – 7.5 t truck used for transport.  Small scale contractors are used for low-cost housing 

projects; therefore the size of the truck seems a fair estimation. 

• Labour costs and cost of transporting materials to site are included in the rates given in the 

Bill of Quantities.  This is typically how a Bill of Quantities is compiled in industry. 

• All waste generated goes to landfill.  If a proportion of waste is to be recycled or re-used, it 

will affect EI4 (Waste Diversion) and EI5 (Production Avoidance).  The cumulative exergy 

from avoided production has to be subtracted from the exergy due to resource extraction and 

initial production.  Recycling or other initiatives is not considered in this study, hence the 

effect of EI5 is not taken into account. 

 

Quantifying the environmental impact requires impact factors to be multiplied with the amount of 

input material.  Factors obtained were taken as materials carefully selected from the Ecoinvent 

database to be closely related to the item on the Bill of Quantities.  Table 8 shows the materials 

selected from the database and provides a description for each.  Note that this table also includes 

possible alternative materials to the original design, stated previously, for subsequent optimisation 

purposes. 
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Table 8:  Materials selected from the Ecoinvent database for conventional design type 

Item on Bill Ecoinvent Name Unit  Description 

Concrete Concrete, normal, at 

plant 

m3 Includes the whole manufacturing processes to 

produce ready-mixed concrete, internal 

processes (transport, etc.) and infrastructure.  

Density: 2380 kg/m3.  Ingredients: Cement  

300 kg, Water 190 kg, Aggregates 1890 kg. 

Reinforcing Reinforcing steel, at 

plant 

 

Section bar rolling, 

steel 

kg 

 

 

kg 

Mix of differently produced steels and hot 

rolling. 

 

The module describes the rolling process of 

section bar.  It includes 50 % of the wire 

drawing process.  Does not include the material 

being rolled. 

Blockwork Concrete block, 

normal at plant 

kg Includes the raw material normal concrete 

which is poured into a mould, air-dried and 

packed. Some transports and infrastructure are 

also included. 

Lightweight 

concrete block 

Lightweight 

concrete block, 

expanded clay, at 

plant 

kg Includes the raw materials, their transport to the 

finishing plant, the air-drying, the packing, the 

infrastructure and the disposal of wastewater 

and some solid household (e.g. packing 

material) waste. 

Brickforce Steel, low-alloyed at 

plant 

 

Wire drawing, steel 

 

 

 

 

Zinc coating, coils 

(galvanising) 

kg 

 

 

kg 

 

 

 

 

m2 

Mix of differently produced steels and hot 

rolling. 

 

Includes the process steps: pre-treatment of the 

wire rod, dry or wet drawing, in some cases 

heat treatment and finishing. Does not include 

coating and the material being rolled. 

 

Includes the process steps surface cleaning, 

heat treatment, immersion in a bath of molten 

zinc and finishing treatment.  Also includes 

zinc input and transportation to coiling plant. 
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Damp proof 

membrane/course 

Polyethylene, 

granulate, at plant 

Extrusion, plastic 

film 

kg 

 

 

kg 

Aggregated data for all processes from raw 

material extraction until delivery at plant. 

This process contains the auxiliaries and energy 

demand for the mentioned conversion process 

of plastics. 

Plaster Silica sand, at plant 

 

 

 

 

Portland calcareous 

cement, at plant 

(CEM II A-L 32.5) 

kg 

 

 

 

 

kg 

Includes the raw material sand, a certain 

additional amount of conveyor belt and the 

energy for drying the sand.  No requirements 

for administration are included. 

 

Includes the manufacturing processes mixing 

and grinding, internal processes (transport, etc.) 

and infrastructure.  No administration and no 

packing are included.  Composition: gypsum  

5 %, additional milling substances 16 %, 

clinker 79 %. 

Ceiling Gypsum plaster 

board, at plant 

kg Production of board (incl. drying) 

Thermal insulation Glass wool mat 

 

 

 

 

 

 

Rock wool, at plant 

kg 

 

 

 

 

 

 

kg 

Included processes: melting, fibre forming & 

collecting, hardening & curing and internal 

processes (workshop, etc.). Additionally 

transportation of raw materials and energy 

carrier for furnace, packing and infrastructure 

are included. 

 

Included processes: melting, fibre forming and 

collecting, hardening and curing furnace, and 

internal processes (workshop, etc.). Transport 

of raw materials and energy carrier for furnace 

are also included. 

Roofing Sawn timber, 

softwood, planed, 

air dried at plant 

m3 Includes planing process. Planing mill is 

assumed to be located on the sawmill site.  No 

transports are considered.  Dust emissions are 

neglected for a lack of data. 

Sheeting Steel, low-alloyed at 

plant 

kg 

 

Mix of differently produced steels and hot 

rolling. 
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Cold rolling 

 

 

 

 

Zinc coating, coils 

(galvanising) 

 

 

kg 

 

 

 

 

m2 

 

Includes the process steps continuous pickling 

line, cold rolling, annealing, tempering, 

inspecting and finishing, packing coils or 

sheets, roll maintenance.  

 

Includes the process steps surface cleaning, 

heat treatment, immersion in a bath of molten 

zinc and finishing treatment. Also includes zinc 

input and transportation to coiling plant. 

Roof Tiles Roof tile, at plant kg Includes first grinding process, wet process, 

storage, forming and cutting, drying, firing, 

loading, packing and storage. 

Transport 

 

Transport, lorry 3.5-

7.5 t, EURO3 

 

tkm Operation of vehicle; production, maintenance 

and disposal of vehicles; construction and 

maintenance and disposal of road. 

 

Furthermore, when estimating the construction waste, assumptions were made to the proportions of 

remains and packaging material as proposed in Solis-Guzman et al., 2009.  The article provides one 

with waste factors applicable to new construction projects as well as the demolition of buildings.  

These factors are classified according to a system used in building project budgets in Andalusia, 

Spain.  Such proportionate values are not yet available locally therefore Spanish values are used for 

the purpose of this study – they are however believed to be similar.  Table 9 gives the waste factors as 

a proportion of the volume of each item, aiding the estimation of construction waste for the 

conventional design using the Bill of Quantities. 

 

Table 9:  Waste factors for the conventional design (Solis-Guzman et al., 2009) 

Item Unit Proportion wreckage 

waste material CRi 

Proportion packaging 

waste material CEi 

Concrete m3 0.03 0.00 

Steel reinforcing kg 0.05 0.00 

External and internal walls m2 0.056 0.10 

Plaster m2 0.03 0.00 

Roof m2 0.061 0.03 

Ceiling m2 0.05 0.20 
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Important to note that no construction waste was estimated for the following items: damp proof 

membranes, brickforce, bagged walls, transport and roofing.  The trusses used as the roofing system 

are supplied by a sub-contractor to the construction site as an assembled product.  It is therefore 

assumed that no construction waste is generated by this building element.  Construction waste 

produced by the other excluded items is assumed to be negligible.  The waste produced due to 

manufacturing of the products is calculated with the Waste from Production factor obtained from the 

Ecoinvent database.  The distinction is explained by an example later on. 

 

5.4 Environmental impact computation 
 

Impact categories or indicators identified for determination of the environmental impact include 

Emissions, Resource Depletion and Waste Generation as mentioned in Section 3.3.  The following 

section systematically explains how to determine the environmental impact potentials related to each 

indicator for the conventional brick and mortar design type. 

 

5.4.1 Calculation sheet 

 

The calculation sheet implements all the factors mentioned previously along with simple 

mathematical operations.  Steps followed will be clearly explained with an example item on the Bill 

of Quantities, namely blockwork and mortar used for the construction of external walls.  Appendix C 

shows the entire Bill of Quantities implementing these factors and calculations for each material item.  

References of certain values are provided if required. 

 

For some items the units on the Bill and in the Ecoinvent database differ; therefore, a conversion is 

necessary before the amount of material can be multiplied with each environmental impact factor 

separately.  For example the area of blockwork is required as the mass of materials: 

 

Mass of blockwork = Area [m2] x mass per area [kg/m2]   (11) 

        = 75.0 x 160.0 

        = 12 000 kg 

 

The conversion factor of 160 kg/m2 was obtained from the CMA Concrete Masonry Manual  

(Jane, 2005). 
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Environmental impacts as stated in the proposed quantification model include the Carbon Footprint, 

Acidification Potential, Resource Depletion and Waste Generation in respective units.  Each of these 

is calculated using factors from the Ecoinvent database as follows: 

 

Carbon Footprint = Mass [kg] x factor [kg CO2e/kg]    (12) 

      = 12 000 x 0.12122 

      = 1454.64 kg CO2e 

 

Acidification Potential = Mass [kg] x factor [kg SO2e/kg]   (13) 

             = 12 000 x 0.00027702 

             = 3.324 kg SO2e 

 

Resource Depletion = Mass [kg] x factor [MJ-eq/kg]    (14) 

         = 12 000 x 0.817615 

         = 9811 32 MJ-eq 

 

Waste Generation = Waste from Production [kg] + Construction Waste [kg] (15) 

Where 

Waste from Production = Mass [kg] x factor [kg/kg]    (16) 

   = 12 000 x 0.01498 

   = 179.76 kg 

 

Construction Waste = 1801.8 kg, calculated according to the steps explained in 

Section 4.1.4.  Appendix C presents a layout of the waste estimation calculations. 

Therefore  

Waste Generation = 179.76 + 1801.8      (17) 

      = 1981.56 kg 

 

Note that the impacts from transport are calculated as the product of the total mass (t) of the 40 m2 

house plus the mass of construction waste generated, a 100 km distance and the respective 

environmental impact factors for the truck used. 

 

The Carbon Footprint for the functional unit, that is the 40 m2 house, is the sum of all the individual 

kg CO2e values for each material item.  The total Acidification Potential, Resource Depletion and 

Waste Generation is determined in a similar fashion. 
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5.4.2 Graphical results 

 

The following section provides graphical representations of the various impact categories.  Each 

building element is shown separately.  Conclusions follow each diagram with a concluding summary 

at the end of the chapter. 

 

Figure 20 shows the Carbon Footprint in kg CO2e of each building element for the functional unit. 

 

 

Figure 20:  Carbon Footprint of each building element for the conventional design 

 

Transport, external walls and the foundation, closely followed by the floor slab, have the largest 

Carbon Footprint in descending order of all building elements.  The main component affecting the 

considered outcome is concrete along with other cementitious materials.  The reason why transport 

contributes greatly may be prescribed to the mass of concrete materials which have to be transported.  

Furthermore, of all the materials required for construction of the conventional designed low-cost 

house, concrete has the largest environmental impact factor when it comes to the carbon footprint.  

The factor of 264.1 kg CO2e/m
3 concrete is obtainable from the Ecoinvent database.  This value is 

similar to values produced by the model using local emission factors for concrete mixes and processes 

quantified by the Cement and Concrete Institute (Perrie, 2010). 

 

The next diagram, Figure 21, shows the Acidification Potential in kg SO2e. 
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Figure 21:  Acidification Potential of each building element for the conventional design 

 

Clearly, roof covering and transport has the largest impact concerning Acidification Potential.  

Appendix C shows the calculation sheet for the conventional design type; note the large acidification 

potential arising from galvanising the sheeting used for roof covering.  Even though the factor 

obtained from the database is not the largest considering all materials, the significant area which has 

to be galvanised brings about the result. 

 

Figure 22 shows the impact of Resource Depletion similarly to the diagrams above. 

 

 

Figure 22:  Resource Depletion of each building element for the conventional design 
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Transport evidently presents a major deviation from the other impacts as seen in Figure 22.  This is 

possibly linked to the fact that large amounts of non-renewable fossil fuel resources are depleted for 

the truck to operate and transport the substantial mass of materials. 

 

Lastly, the Waste Generation in kg for each building element is shown in Figure 23.  Note that this is 

the sum of Waste from Production calculated with Ecoinvent database factors and Construction Waste 

amounts estimated with the model by Soliz-Guzman et al. (2009). 

 

 

Figure 23:  Waste Generation of each building element for the conventional design 

 

The building element, external walls, clearly presents a major deviation from the other impacts 

shown.  The construction waste calculation sheet shown in Appendix C indicates that the concrete 

blockwork used for external walls generate the largest amount of construction waste.  This relates to 

the high volume proportions selected for the calculation of waste prediction. 

 

5.5 Cost 
 

The cost of the substructure and top structure for this design type totals R 51 478.   

Figure 24 shows the cost of each building element as a percentage of the total. 
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Figure 24:  Conventional design price breakdown shown as percentages of the total 

 

As seen in Figure 24, external walls are the greatest contributor concerning cost.  This is purely 

because of the large area covered.  Still, cheaper construction methods may exist.  Second to external 

walls in terms of cost is the roof covering. 

 

5.6 Concluding summary and remarks 
 

Concluding this chapter is a summary of the results for the conventional design type and some 

remarks.  A total of each environmental impact for the conventional design housing unit is provided in 

Table 10. 

 

Table 10:  Summarised results for conventional design 

No. Environmental Impact Total Unit 

EI1 Carbon Footprint 8736 kg CO2e 

EI2 Acidification Potential 43 kg SO2e 

EI3 Resource Depletion 92434 MJ-eq 

EI4 Waste Generation 4375 kg 

 

It was seen that transport distinctively has a large effect on the three impacts: Carbon Footprint, 

Acidification Potential and Resource Depletion.  Note that an assumption regarding the distance 

multiplied with the mass and respective factors was made for calculation purposes.  The effect and 
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significance of this assumption will be explored by means of a sensitivity analysis performed in 

Chapter 9. 

 

Alternative materials for external walls and roof covering should be investigated as both affect the 

environmental impact and cost significantly.  Optimisation of the design is possible; additionally this 

will be investigated in Chapter 8. 
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Chapter 6 

 

QUANTIFYING THE EI AND COST OF A LSFB AS AN 

ALTERNATIVE 
 

Various options can be considered for the construction of low-cost housing.  This chapter will focus 

on the impact of a Light Steel Frame Building as an alternative to the conventional brick and mortar 

design.  The design is relevant to site conditions at Watergang, Kayamandi, Stellenbosch.  A detail 

explanation is provided as to how the quantification method is implemented for this design type. 

 

6.1 Structural system 
 

Section 2.5.2 provided a broad description on Light Steel Frame Buildings and materials typically 

used.  Furthermore, Figure 18 provided the system boundary selected for quantification purposes; 

however, it also showed the structural breakdown of the system.  The substructure comprises of the 

foundation and slab whereas the top structure includes construction of the steel structure, roof system, 

cladding, insulation and various finishes.  For the purpose of further calculations, the structure was 

further divided into building elements similarly done for the conventional design.  A material 

description of each building element is given next. 

 

The foundation materials include concrete, steel reinforcing and concrete hollow masonry units.  A 

similar floor slab as for the conventional design is constructed.  External walls comprise of various 

layers but perform the same function as the plastered masonry walls for the conventional design, 

especially concerning weatherproofing, insulation and acoustics.  These layers are erected in 

conjunction with the light steel frame wall panels and include fibre cement board external cladding, a 

vapour permeably membrane, orientated strand board used as a thermal break, glass wool bulk 

insulation and gypsum plasterboard as internal lining.  Regarding internal walls, gypsum plasterboard 

is erected on both sides of the steel wall frame with glass wool insulation as infill.  Construction of the 

ceiling is similar to the conventional design.  The roofing system comprises of light steel frame 

trusses with similar profiles used for purlins and galvanised sheeting as roof covering. 
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6.2 LSFB design 
 

Design of the light steel frame structure was done by a professional in the field (During, 2011).  A 

similar layout and dimensions were used as for the conventional design of a 40 m2 housing unit 

provided in Appendix B.  The dead load applied in the design provided for two types of roof covering, 

namely sheeting and clay roof tiles.  Appendix D contains the detailed drawings of the LSFB design.  

Drawings provided include the layout, side view of two wall panels and also truss specifications.  

Material usage reports are also included.  Thereafter, the Bill of Quantities was compiled according to 

material and other specifications in SANS 517:2009. 

 

Special attention was given to the foundation details.  A strip-footing design was applicable to the 

conditions.  The Light Steel Frame Building code (SANS, 2009) specifies that foundations should be 

designed to resist the horizontal loads and uplift forces due to wind or other loading conditions 

causing such forces.  The following checks must be carried out: uplift resistance, horizontal stability 

and overturning both of the structure as a whole and of the individual parts.  Furthermore, the code 

states that uplift forces shall be resisted by the weight equal to that of the foundation wall, the 

foundation itself and any fill above the foundation plus a proportion of the floor slab if applicable. 

 

6.3 Assumptions 
 

Assumptions were made for the implementation of the quantification model to fully function for the 

LSFB design alternative.  These include: 

 

• Project and construction time estimated at one year, similar to the conventional design. 

• 10 % of mass added to steel profiles for fasteners as typically done in industry. 

• Transport of all materials from plant to site as well as transport of construction waste to 

landfill total a distance of 100 km, similar to the conventional design. 

• 3.5 – 7.5 t truck used for transport, similar to the conventional design. 

• Assume the cost of transporting materials to site is included in the rates given in the Bill of 

Quantities, also the labour costs of LSFB erection is included in manufacturing costs. 

• All waste generated goes to landfill due to similar reasons as assumed for the conventional 

design. 

 

Quantifying the environmental impact requires impact factors to be multiplied with the amount of 

input material.  Factors obtained were taken from the Ecoinvent database for materials carefully 
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selected to be closely associated to the item on the Bill of Quantities.  Table 11 shows the materials 

selected from the database and provides a description for each. 

 

Table 11:  Materials selected from the Ecoinvent database for LSFB as an alternative 

Item on Bill  Ecoinvent Name Unit  Description 

Concrete Concrete, normal, at 

plant 

m3 Includes the whole manufacturing 

processes to produce ready-mixed 

concrete, internal processes 

(transport, etc.) and infrastructure.  

Density: 2380 kg/m3.  Ingredients: 

Cement 300 kg, Water 190 kg, 

Aggregates 1890 kg. 

Reinforcing Reinforcing steel, at 

plant 

 

Section bar rolling, 

steel 

kg 

 

 

kg 

Mix of differently produced steels 

and hot rolling. 

 

The module describes the rolling 

process of section bar.  It includes 

50 % of the wire drawing process. 

Brickwork (clay) Brick, at plant kg Includes first grinding process, wet 

process, storage, forming and 

cutting, drying, firing, loading, 

packing and storage. 

Brickforce Steel, low-alloyed at 

plant 

 

Wire drawing, steel 

 

 

 

 

 

 

Zinc coating, coils 

(galvanising) 

kg 

 

 

kg 

 

 

 

 

 

 

m2 

Mix of differently produced steels 

and hot rolling. 

 

Includes the process steps: pre-

treatment of the wire rod, dry or 

wet drawing, in some cases heat 

treatment and finishing.  Does not 

include coating and the material 

being rolled. 

 

Includes the process steps surface 

cleaning, heat treatment, immersion 

in a bath of molten zinc and 

finishing treatment.  Also includes 
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zinc input and transportation to 

coiling plant. 

Damp proof 

membrane 

Polyethylene, LDPE, 

granulate, at plant 

 

 

Extrusion, plastic 

film 

kg 

 

 

 

kg 

Aggregated data for all processes 

from raw material extraction until 

delivery at plant. 

 

This process contains the 

auxiliaries and energy demand for 

the mentioned conversion process 

of plastics. 

Light steel profiles Steel, low-alloyed at 

plant 

 

Cold rolling 

 

 

 

 

 

 

Zinc coating, coils 

(galvanising) 

 

 

 

kg 

 

 

kg 

 

 

 

 

 

 

m2 

 

Mix of differently produced steels 

and hot rolling. 

 

Includes the process steps 

continuous pickling line, cold 

rolling, annealing, tempering, 

inspecting and finishing, packing 

coils or sheets, roll maintenance.  

 

Includes the process steps surface 

cleaning, heat treatment, immersion 

in a bath of molten zinc and 

finishing treatment. Also includes 

zinc input and transportation to 

coiling plant. 

Cladding 

Fibre Cement Board 

 

 

 

 

Weatherboard 

 

Fibre cement facing 

tile, at plant 

 

 

 

Sawn timber, 

softwood, planed, air 

dried at plant 

 

kg 

 

 

 

 

m3 

 

Includes the whole manufacturing 

process to produce fibre cement 

products, transports to plant and 

infrastructure. 

 

Includes planing process.  Planing 

mill is assumed to be located on the 

sawmill site.  No transports are 

considered.  Dust emissions are 

neglected for a lack of data. 
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Thermal break 

Orientated Strand 

Board (OSB) 

 

 

 

 

Expanded Polystyrene 

(EPS) 

 

Orientated strand 

board, at plant 

 

 

 

 

Polystyrene foam 

slab, at plant 

 

m3 

 

 

 

 

 

kg 

 

Includes the inputs to the 

production processes and transports 

of those inputs.  No process 

emission data are available.  

 

 

Includes production and 

thermoforming of EPS. 

Insulation 

Glass wool 

 

 

 

 

 

 

 

Rock wool 

 

Glass wool mat 

 

 

 

 

 

 

 

Rock wool, at plant 

 

kg 

 

 

 

 

 

 

 

kg 

 

Included processes: melting, fibre 

forming and collecting, hardening 

and curing, and internal processes.  

Additionally transportation of raw 

materials and energy carrier for 

furnace, packing and infrastructure 

are included. 

 

Included processes: melting, fibre 

forming and collecting, hardening 

and curing furnace, and internal 

processes. Transport of raw 

materials and energy carrier for 

furnace are included. Not included 

are administration, packing and 

infrastructure. 

Lining and ceiling 

Gypsum plasterboard 

 

Gypsum plaster 

board, at plant 

 

kg 

 

 

Production of board (incl. drying) 

Roof Covering 

Roof Tiles 

 

 

 

Sheeting 

 

Roof tile, at plant 

 

 

 

Steel, low-alloyed at 

plant 

 

kg 

 

 

 

kg 

 

 

Includes first grinding process, wet 

process, storage, forming and 

cutting, drying, firing, loading, 

packing and storage. 

Mix of differently produced steels 

and hot rolling. 
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Cold rolling 

 

 

 

 

 

Zinc coating, coils 

(galvanising) 

 

 

 

kg 

 

 

 

 

 

m2 

 

Includes the process steps 

continuous pickling line, cold 

rolling, annealing, tempering, 

inspecting and finishing, packing 

coils or sheets, roll maintenance.  

 

Includes the process steps surface 

cleaning, heat treatment, immersion 

in a bath of molten zinc and 

finishing treatment. Also includes 

zinc input and transportation to 

coiling plant. 

Transport Transport, lorry 3.5-

7.5 t, EURO3 

 

tkm Operation of vehicle; production, 

maintenance and disposal of 

vehicles; construction and 

maintenance and disposal of road. 

 

Similar to Table 9, waste factors are given as a proportion of the volume of each item considered.  See 

Table 12 for applicable factors used for the light steel frame design type. 

 

Table 12:  Waste factors for LSFB (Solis-Guzman et al., 2009) 

Item Unit Proportion wreckage 

waste material CRi 

Proportion packaging 

waste material CEi 

Concrete m3 0.03 0.00 

Steel reinforcing kg 0.05 0.00 

External and internal walls m2 0.056 0.10 

Fibre cement facing tile m2 0.045 0.50 

Thermal Insulation m2 0.01 0.00 

Roof m2 0.061 0.03 

Ceiling m2 0.05 0.20 

 

Similar to the conventional design type, construction waste of brickforce, damp proof membranes and 

transport are not included.  Since light steel frame profiles are pre-fabricated and the wall panels and 

trusses are assembled in the factory, it is safe to assume all waste contributing from this process is 

contained in the Waste from Production factor. 
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6.4 Environmental impact computation 
 

The environmental impact of a Light Steel Frame Building is calculated for the same layout and site 

conditions as for the conventional brick and mortar design for comparison purposes. 

 

6.4.1 Calculation sheet 

 

Mathematical operations follow the same pattern as explained with the example in  

Section 5.4.1.  The Bill of Quantities expanded to implement the environmental impact calculations as 

well as the volume of construction waste estimation for each item can be seen in Appendix E.  

References are provided where required. 

 

6.4.2 Graphical results 

 

The following section provides graphical representations of the various impact categories.  Each 

building element is shown separately.  Figure 25 shows the Carbon Footprint in kg CO2e of each 

building element of the 40 m2 LSFB house. 

 

 

Figure 25:  Carbon Footprint of each building element for the LSFB design 
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Similarly, Figure 26 shows the Acidification Potential. 

 

 

Figure 26:  Acidification Potential of each building element for the LSFB design 

 

In Figure 27, the impact of Resource Depletion can be seen for each building element in the Light 

Steel Frame Building. 

 

 

Figure 27:  Resource Depletion of each building element for the LSFB design 
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Finally, the combined Waste from Production as well as predicted Construction Waste can be viewed 

in the graph in Figure 28. 

 

 

Figure 28:  Waste Generation of each building element for the LSFB design 

 

It is clear from Figures 25 through 28 that external walls present a major deviation from the other 

impacts in all cases.  It is reasoned that this is because of the building element consisting of several 

layers of various materials along with the large area coverage, similar to the conventional design.  

These layers include the external cladding, damp proof membrane, thermal break, bulk insulation, 

internal lining as well as the light steel frame panel.  Some of these materials have significant 

environmental impact potentials per unit which in turn sums to a substantial total when calculating the 

total environmental impact. 

 

6.5 Cost 
 

The total price of the LSFB substructure and top structure is calculated as R 68 217.  Figure 29 shows 

the cost breakdown as percentages of the total for each building element. 

 

Prices corresponding to elements similar in the Bill of Quantities for the conventional design type 

agree.  Other rates were provided by Des Palm (2011) but 14% VAT had to be included manually.  

The cost of the external walls comprises almost half of the total price of the LSFB structure. 
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Figure 29:  Proportionate price contributions for LSFB building elements 

 

6.6 Concluding summary and remarks 

 

In summary, a total of each environmental impact for the LSFB design housing unit is provided in 

Table 13.  Compared to the summarised values for the conventional design type, only EI4 provides a 

lower impact.  At this point it seems that a LSFB unit does not provide better alternative results 

compared to the conventional design. 

 

Table 13:  Summarised results for LSFB design 

No. Environmental Impact Total Unit 

EI1 Carbon Footprint 9207 kg CO2e 

EI2 Acidification Potential 113 kg SO2e 

EI3 Resource Depletion 113943 MJ-eq 

EI4 Waste Generation 2933 kg 

 

It is evident that alternative layouts of external walls be sought, as it is the dominating factor 

regarding both the environmental impact and cost.  Alternative input materials may lead to a decrease 

in the Carbon Footprint, Acidification Potential, Resource Depletion, cost or a combination of these.  

Chapter 8 investigates the effect if material input parameters are substituted with alternatives in order 

to possibly optimise the given design.  A detailed comparison is drawn between the two design types 

in the following chapter.  
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Chapter 7 
 

COMPARISON OF MODEL IMPLEMENTATION FOR 

CHOSEN DESIGN TYPES 
 

This chapter provides a broad comparison of the model implementation for both the conventional and 

LSFB design types.  Firstly, the environmental impacts of respective building elements and the 

housing unit is compared whereafter the aggregated impact index is given.  A cost comparison is also 

made. 

 

7.1 Environmental impacts compared 

 

The following section compares the environmental impact values for separate building elements, 

namely the foundation, floor slab, external walls, internal walls, ceiling and insulation, roofing and 

roof covering.  The effect of transport is also included.  Furthermore, the EI totals for each housing 

unit per design type are provided along with the normalised and weighted values to produce the EII. 

 

7.1.1 Building elements 
 

The EI for each building element is compared with regards to the Carbon Footprint, Acidification 

Potential, Resource Depletion and Waste Generation. 

 

Figure 30 shows the Carbon Footprint comparison.  The Carbon Footprint of transport for the 

conventional design is approximately twice the magnitude compared to the LSFB alternative.  This is 

clearly due to the large difference in mass of the two structures.  The conventional brick and mortar 

unit weighs 47.43 t whereas the LSFB has a mass of 22.44 t, almost half the mass of the conventional 

design.  The difference in EI1 for external walls is substantial.  The various layers required for the 

LSFB, especially the fibre cement board external cladding, contributes largely to the Carbon 

Footprint.  Also, the Carbon Footprint of the foundation for the conventional design generates slightly 

more CO2e emissions since a heavier foundation is required for the conventional design.  The Carbon 

Footprint for the other building elements is of similar order. 
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Figure 30:  Comparison of Carbon Footprint for each building element 

 

Similarly, the comparison of Acidification Potential for each building element for both design types 

can be seen in Figure 31.  From this diagram it is evident that the manufacturing and construction of a 

LSFB unit produces the most kg SO2e.  Galvanisation of these light steel profiles leads to such a 

significant EI2 for several building elements considered.  Likewise, galvanising of roof sheeting 

results in a large Acidification Potential for both design types in this case. 

 

 

Figure 31:  Comparison of Acidification Potential for each building element 
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Figure 32 graphically represents the comparison of Resource Depletion.  EI3 is of similar order for 

nearly all of the building elements except for transport, roofing and internal and external walls.  

Recall that the impact of transport is related to the mass of the unit; again the conventional design has 

a greater unit mass and will hence impact Resource Depletion to a greater extent.  Concerning 

external walls, nearly the same quantity of exergy is required for the production of light steel profiles 

and galvanisation thereof when compared to the total for all material items needed to construct 

external walls with concrete masonry.  Moreover, LSFB wall panels involve a variety of other 

material layers which in turn increase the effect on Resource Depletion for this particular building 

element. 

 

 

Figure 32:  Comparison of Resource Depletion for each building element 

 

Lastly, Figure 33 shows the Waste Generation for each building element.  The values found for the 

conventional design are similar to that of the Watergang Kayamandi Housing Project.  It is clear that a 

pre-fabricated building system, in this case a LSFB, generates less construction waste even though the 

Waste from Production is included in the totals portrayed in the diagram.  The mass of waste 

generated by concrete blocks for the conventional design, as calculated with Spanish waste factors, is 

substantial.  The factor typically considers the proportion of defective and leftover materials along 

with wastage and packaging thereof.  Therefore, external walls, internal walls and foundation for the 

conventional design generate more waste than the LSFB unit as large quantities of concrete blocks are 

used during construction. 
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Figure 33:  Comparison of Waste Generation for each building element 

 

7.1.2 Environmental impact totals of housing unit 
 

The environmental impact values given in Table 14 are the total impacts determined as the sum over 

all the material items and building elements for each indicator.  Normalisation and weighting is done 

according to the values in Table 5 given previously. 

 

Table 14:  Environmental impact, normalised and weighted values for both design types 

 Carbon Footprint  

[kg CO2e] 

Acidification Potential 

[kg SO2e] 

Waste Generation  

[kg] 

 CD LSFB CD LSFB CD LSFB 

Environmental 

Impact 
8735.68 9207.18 42.90 113.14 4373.07 2933.10 

Normalised 1.00 1.06 0.73 1.92 3.24 2.17 

Weighted 1.12 1.19 0.92 2.44 3.56 2.39 

CD - Conventional Design 

LSFB - Light Steel Frame Building 

 

Moreover, the weighted impact values are represented graphically in Figure 34.  These show the 

relative importance of each impact relative to the other for both design types.  The effect of each 

indicator can easily be derived from the diagram.  Note, only the Carbon Footprint, Acidification 

Potential and Waste Generation is shown while Resource Depletion is considered separately as 

explained previously. 
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Figure 34:  Weighted environmental impacts for each indicator and design type 

 

Clearly, as seen in Figure 34, Waste Generation is the indicator resulting in the largest environmental 

impact, followed by Acidification Potential and Carbon Footprint respectively.  Recall that the 

weighting factor used to determine the relative importance of Waste Generation is of Danish origin.  

This factor might not be applicable to local conditions thus care should be taken in the interpretation 

of this EI and the contribution thereof.  A comparison on all three levels is listed next: 

 

• The conventional design brings about the largest Waste Generation.  The impact is almost 1.5 

times more than for the LSFB design.  No generation of construction waste was assumed for 

the pre-fabricated LSFB elements; however, the production waste is included. 

• LSFB results in the greatest Acidification Potential.  The impact is considerably more than 

that of the conventional design; approximately 2.7 times larger.  This is mostly due to the 

galvanisation of the light steel profiles and roof sheeting used. 

• The Carbon Footprint for both design types is similar.  It is therefore important that a Carbon 

Footprint not be used as the only criterion in objective decision making. 

 

In Figure 35 follows the impact values from Resource Depletion.  The impact of Resource Depletion 

resulting from selecting LSFB as an alternative is significantly more than for the conventional design 

type. For the conventional design the total came to 92 432 MJ-eq whereas for LSFB a total of  

133 943 MJ-eq was calculated.  In reference with Figure 31, the Resource Depletion brought about by 

the external walls compared to other building elements for the LSFB option, considerably influences 

the total impact.  This is possibly the reason for the conventional design proving to be the better 

alternative in this regard. 
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Figure 35:  Environmental impact from Resource Depletion 

 

7.1.3 Environmental Impact Index 
 

The Environmental Impact Index (EII) is the sum of the weighted impact potentials for Carbon 

Footprint, Acidification Potential and Waste Generation.  EII values are 5.61 for the conventional 

design and 6.00 for the LSFB respectively, shown graphically in Figure 36. 

 

These two indices are alike even though the conventional design proves to be a better option if the EII 

is considered as selection criteria.  The EII is optimised with the proposed environmental impact 

quantification method in Chapter 8 by substituting various material input parameters.  Depending on 

the input materials, the outcome may differ since the given result is of similar order. 

 

 

Figure 36:  Environmental Impact Index for both design types 
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7.2 Cost comparison 
 

A representation of the cost of each building element for both design types is given in Figure 37.  The 

cost of nearly all building elements is of similar order except for the internal and external walls.  Here 

the LFSB walling is almost double in price.  It is clear that the cost of all materials required, 

performing a certain function in the layered wall element, add up to a substantial amount. 

 

 

Figure 37:  Cost comparison per building element 

 

The total cost of each housing unit is given in Table 15. 

 

Table 15:  Total cost of each housing unit 

Design Type Total Cost [R] 

Conventional 51 478 

LSFB 68 217 

 

The cost per housing unit is significantly more for the LSFB alternative.  Keep in mind that only the 

Pre-Use Phase is considered during the model implementation.  A study of the full life cycle cost will 

provide a more holistic view on the cost per unit over its lifetime.  The LSFB unit might prove to be 

more cost efficient in the long run. 
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7.3 Concluding summary and discussion 

 

The environmental impacts were compared for both design types with regard to building elements, the 

housing unit and finally the aggregated EII was provided.  A cost comparison was also done.  Apart 

from Waste Generation, the conventional design type turns out to be a better option regarding the 

Acidification Potential, Carbon Footprint (by a small margin), Resource Depletion, EII and total cost 

considering the input materials. 

 

Building elements which considerably influence the EI of the conventional design include external 

walls and to a lesser extent the foundation.  Transport impacts all EI’s greatly.  Considering the LSFB, 

similar trends are observed although roof covering also proves to have a significant impact. 

 

To possibly decrease the environmental impact of building elements mentioned, alternative input 

materials should be considered.  Optimisation of the respective designs is investigated in the 

following chapter.  If the environmental impact and cost of building elements can be reduced by using 

alternative materials and designs, the total EI and consequently EII will surely decrease. 
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Chapter 8 
 

THE PROPOSED MODEL AS AN OPTIMISATION TOOL 
 

This chapter investigates the effect on the environmental impact and cost if different materials are 

selected as input for the respective design types.  Graphical representations provided previously 

shows certain building elements result in large impacts.  The following sections attempt to decrease 

the impact of building elements contributing significantly by substituting materials and in turn 

possibly producing an optimised design.  The EI’s, EII and cost is compared for both optimised 

design types generated. 

 

8.1 EI optimisation with material input in building elements – 

conventional design 

 

Remarks concluding Chapter 5 mentioned transport and external walls affecting the environmental 

impact of the conventional design considerably.  Therefore, attempting to reduce the environmental 

impact of the external walls, lightweight hollow concrete masonry units were opted for.  This in turn 

reduces the overall mass of the house also reducing the impact of transport.  Different structural roof 

systems were considered as the Acidification Potential that arose from sheeting used as roof covering 

were reason for concern.  Alternatives included a timber rafter roof system with sheeting as well as a 

timber truss system with roof tiles as covering.  A different foundation design was selected for the 

purpose of investigation. 

 

The following option combinations were decided upon, this is represented by the diagrams to follow: 

 

• Option 1: design as in Chapter 5. 

• Option 2: slab-on-ground foundation type, lightweight hollow concrete masonry units, timber 

rafters with sheeting, stone wool as insulation used in the ceiling. 

• Option 3: timber trusses with clay roof tiles as roof covering superimposed on Option 2, 

possibly further optimising the original design as in Option 1.  This implies that the following 

building elements will have the same impact as in Option 2: ceiling and insulation, internal 

walls, external walls, the floor slab and foundation. 
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Note that the slab-on-ground foundation was designed according to principles stipulated in the 

NHBRC Building Manual (NHBRC, 1999).  Also, the timber truss in Option 3 had to be redesigned 

due to the different type of roof covering used, namely clay roof tiles.  This was done according to the 

NHBRC Building Manual in a similar fashion as explained in Section 5.2.  For this choice of roof 

covering compared to metal sheeting used in Option 1, the centre-to-centre truss spacing reduced in 

order to support the load of the clay roof tiles. 

 

8.1.1 Carbon Footprint 

 

From Figure 38 it is clear that Option 2 is not an improvement to the design and material selection as 

in Option 1.  Although the lightweight hollow masonry units contributes less to the overall mass of 

the structure, the Carbon Footprint resulting from manufacturing such units is higher than for the 

conventional masonry units used.  Furthermore, the alternative slab-on-ground foundation design does 

not prove to be a better choice considering the impact of strip-footings as applied in Option 1.  The 

increased mass of the slab-on-ground foundation compared to strip-footings result in the effect of 

transport being alike.  Only the roofing system used in Option 2 provides an alternative with a 

reduced impact.  The type of roof covering used does not affect the Carbon Footprint much.  The 

increased mass due to roof tiles selected for Option 3 explains the increase in the impact of transport. 

 

 

Figure 38:  Carbon Footprint for alternative construction materials – conventional design 
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8.1.2 Acidification Potential 

 

The effect on Acidification Potential if lightweight hollow concrete masonry units are used is 

substantial.  The impact of external walls for Option 2 and 3 greatly differs from that of Option 1 as 

seen in Figure 39.  Also, the Acidification Potential arising from galvanised sheeting as used in 

Options 1 and 2 is significantly higher than for the alternative in Option 3, clay roof tiles.  If the 

principal criterion for material selection is the Acidification Potential impact thereof, then roof 

sheeting and lightweight hollow concrete masonry units would definitely be ruled out. 

 

 

Figure 39:  Acidification Potential for alternative construction materials – conventional design 

 

8.1.3 Resource Depletion 

 

Once again, the lightweight hollow concrete masonry units display a major deviation from the other 

impacts for applicable building elements; in this case with regards to the impact on Resource 

Depletion as shown in Figure 40. 

 

As seen on the diagram, the impact of transport is similar for Options 1 and 2, this is purely 

coincidental.  It is believed that the reduction in mass from utilising lightweight concrete masonry 

units is evened out by the heavier slab-on-ground foundation investigated.  Option 3 results in a 

higher impact due to transport since the roof tiles contribute considerably to the overall mass of the 

structure. 
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Figure 40:  Resource Depletion for alternative construction materials – conventional design 

 

8.1.4 Waste Generation 

 

Figure 41 shows the Waste Generation for each building element respectively, taking into account the 

alternative construction materials used as input to the quantification process.  Interestingly, the 

lightweight hollow concrete masonry units turn out to be an improvement to Option 1.  This can be 

prescribed to the higher Waste from Production factor for conventional masonry units.  Besides, when 

quantifying the mass of construction waste owing to concrete masonry units, the higher density for 

conventional masonry units results in more waste.  This is purely because of the mathematical nature 

of the waste quantification model used. 

 

 

Figure 41:  Waste Generation for alternative construction materials – conventional design 
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8.1.5 Cost 

 

Lastly, a cost comparison is made.  Note that the price of the two types of concrete masonry units 

used was assumed to be the same even though this is not necessarily realistic.  From Figure 42 it can 

be seen that the chosen type of roofing system produces a significant variation in price.  The timber 

rafter system is the cheapest, followed by the trusses used in conjunction with sheeting and lastly the 

increased number of trusses required for roof tiles used as covering. 

 

 

Figure 42:  Cost comparison for different materials used – conventional design 

 

Also, the figure shows that roof tiles solely are a cheaper roof covering material than sheeting.  Recall 

that the design of the truss or rafter system is dependent on the type of roof covering.  Careful 

consideration should be made as the cost of both the roof covering and roofing system must be added 

before the optimum can be selected. 

 

8.1.6 Summary of conventional design options 
 

Table 16 shows the environmental impact totals for the design options considered for the conventional 

design type.  In general, Option 1 proves to be the better alternative regarding all environmental 

impacts except for Waste Generation, also in terms of cost. 
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Table 16:  Environmental impact totals for conventional design options 

 Unit Option 1 Option 2 Option 3 

Carbon Footprint [kg CO2e] 8 736 12 078 12 271 

Acidification Potential [kg SO2e] 43 66 53 

Resource Depletion [MJ-eq]  92 434 149 925 148 482 

Waste Generation [kg]  4 375 3 741 3 595 

Cost [R]  51 478 52 458 56 255 

 

8.2 EI optimisation with material input in building elements – LSFB 

 

Remarks concluding Chapter 6 stated that alternative material combinations for external walls should 

be explored as the economical and environmental impacts are substantial concerning the LSFB 

design.  The following sections show the comparison between two design options selected for 

investigation: 

 

• Option 1: design as in Chapter 6. 

• Option 2: slab-on-ground foundation, weatherboard as external cladding, expanded poly-

styrene as the thermal break, stone/rock wool used for bulk insulation and roof tiles as an 

alternative to sheeting as roof covering. 

 

Section 8.2.6 describes the various external wall layer combinations in more detail.  Thereafter the 

outcome or implication of using these alternative materials is discussed. 

 

8.2.1 Carbon Footprint 

 

Substituting orientated strand board (OSB) with expanded polystyrene (EPS) as a thermal break and 

replacing the fibre cement board cladding with weatherboard, results in a significant reduction in the 

Carbon Footprint of the external walls as seen in Figure 43.  This can be ascribed to the substantial 

reduction in mass of the external walls by replacing the mentioned materials.  Little change in the 

Carbon Footprint occurs for the other building elements. 
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Figure 43:  Carbon Footprint for alternative construction materials – LSFB design 

 

8.2.2 Acidification Potential 

 

Galvanisation of the steel profiles or roof sheeting is the biggest contributor to Acidification Potential.  

It can clearly be seen in Figure 44 that Option 2 results in a reduced Acidification Potential when it 

comes to roof covering.  This is mainly because of galvanised roof sheeting being replaced by clay 

roof tiles.   

 

 

Figure 44:  Acidification Potential for alternative materials – LSFB design 
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The Acidification Potential for other building elements shown alters slightly for the two options 

given.  The visible reduction in Acidification Potential regarding the external walls for Option 2 is 

related to the combination of materials substituted. 

 

8.2.3 Resource Depletion 

 

Option 1 consequently provides a reduced impact in terms of Resource Depletion regarding transport 

of materials as seen in Figure 45.  Increased mass due to roof tiles is the possible explanation for this 

result.  Recall from Section 6.2 that the design of the LSFB unit was done according to a specified 

dead load in order to provide for both types of roof covering, namely sheeting and clay roof tiles.  

This results in the same value for roofing for both options. 

 

Option 2 is the better alternative considering the following building elements: roof covering, external 

walls and foundations.  For roof covering, more exergy is required to produce steel sheeting and 

galvanisation thereof compared to clay roof tiles.  Concerning external walls, a reduction of 

approximately 16500 MJ-eq occurs when replacing OSB with EPS and substituting fibre cement 

board cladding with weatherboard planks.  Lastly, the slab-on-ground foundation for Option 2 proves 

to be a better alternative than strip-footings when considering Resource Depletion.  Note that clay 

bricks were used for the foundation walls in Option 1.  This was selected because in the case where 

the client would like brick veneer as external cladding, the external layer of the foundation walls can 

be extended upwards to serve as the brick veneer.  The use of concrete masonry units for foundation 

walls would possibly result in less exergy extraction. 

 

 

Figure 45:  Resource Depletion for alternative construction materials – LSFB design 
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8.2.4 Waste Generation 

 

Figure 46 shows the Waste Generation for the two options stated as the sum of the Waste from 

Production and Construction Waste. 

 

Roof covering related to Option 1 has a significantly larger impact than Option 2.  The Waste from 

Production factor for sheeting is almost a hundred times larger than the factor for clay roof tiles.  

Consequently, more waste is generated. 

 

Furthermore, the combination of materials for the external walls in Option 1 leads to 50 % more waste 

generated than for Option 2.  This is mainly because of the use of fibre cement board as external 

cladding along with OSB as a thermal break.  Calculating the mass of construction waste requires the 

volume of waste for each building element to be multiplied with the respective material density factor.  

The density for fibre cement board and OSB is considerably more than weatherboard planks or EPS 

used in Option 2.  Therefore Option 1 contributes to a greater extent to the mass of construction waste 

generated. 

 

Finally, strip-footing foundations produce more waste than slab-on-ground foundations.  Mostly since 

the waste proportion factors for the brickwork in foundation walls result in more waste generated than 

for slab-on-ground foundations. 

 

 

Figure 46:  Waste Generation for alternative construction materials – LSFB design 
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8.2.5 Cost 

 

As the economical impact is not the main focus, various materials are assumed to have the same cost 

due to the lack of available information locally.  Figure 47 shows the cost comparison for the various 

building elements. 

 

 

Figure 47:  Cost comparison for alternative materials – LSFB design 

 

It is clear that substituting roof sheeting with clay roof tiles is a cheaper alternative.  Furthermore, the 

slab-on-ground foundation as in Option 2 provides a less costly alternative if designed correctly. 
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of six other possible combinations as seen in Table 17. 
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Table 17:  Material layer combinations for external walls 

Option External cladding Thermal Break Bulk Insulation 

1 Fibre cement board Orientated strand board Glass wool 

2 Weatherboard planks Expanded Polystyrene Rock/Stone wool 

3 Weatherboard planks Orientated strand board Glass wool 

4 Weatherboard planks Orientated strand board Rock/Stone wool 

5 Weatherboard planks Expanded Polystyrene Glass wool 

6 Fibre cement board Orientated strand board Rock/Stone wool 

7 Fibre cement board Expanded Polystyrene Glass wool 

8 Fibre cement board Expanded Polystyrene Rock/Stone wool 

 

The respective environmental impacts were calculated for the mentioned combinations and the 

outcomes can be seen in Table 18. 

 

Table 18:  Environmental impacts for given combinations 

Option 
EI 1 

[kg CO2e] 

EI 2 

[kg SO2e] 

EI 3 

[MJ-eq]  

EI 4 

[kg waste] 

1 3425.8 48.0 54902.2 1249.9 

2 2172.4 44.9 38497.6 805.0 

3 2454.4 45.9 46169.8 859.8 

4 2504.4 46.6 46539.2 853.8 

5 2122.4 44.3 38128.2 811.2 

6 3475.9 48.6 55271.5 1239.7 

7 3039.9 46.4 46860.6 1197.1 

8 3143.9 47.0 47229.9 1191.1 

 

The shaded cells show the minimum for each environmental impact respectively.  Considering the 

impacts individually and not normalising or weighing the values into an aggregated total, it is clear 

that Option 5 provides the minimum with regards to external walls. 

 

8.2.7 Summary of LSFB design options 
 

Table 19 shows the environmental impact totals for the design options considered for the LSFB type.  

Option 2 proves to be the better alternative regarding all environmental impacts and cost. 

 

 

Stellenbosch University  http://scholar.sun.ac.za



86 
 

Table 19:  Environmental impact totals for LSFB design options 

 Unit Option 1 Option 2 

Carbon Footprint  [kg CO 2e] 9 207 8 203 

Acidification Potential  [kg SO2e] 113 97 

Resource Depletion  [MJ-eq] 113 943 112 634 

Waste Generation  [kg] 2 933 2 176 

Cost  [R]  68 217 64 521 

 

8.3 Environmental impacts and cost of optimised housing unit designs 
 

The combination of materials rendering a reduced environmental impact and cost for the several 

building elements were used as input to obtain an optimised design of a low-cost house for both the 

conventional and LSFB design types.  Material combinations resulting in minimum impacts per 

building element were selected according to the following criteria: if more than one of the EIi’s are 

reduced and the cost is a minimum.  The selected building materials can be seen in Table 20.  These 

are consequently used as input for the optimised design of each housing unit and comparisons 

between the two design types are drawn. 

 

Table 20:  Material input for optimised designs 

Building 

element 

Conventional Design LSFB design 

Foundations Strip-footings Slab-on-ground  

Floor slab 100 mm 25 MPa concrete slab 

with steel mesh reinforcement 

100 mm 25 MPa concrete slab with steel 

mesh reinforcement 

External walls 140 mm concrete masonry units, 

plastered externally 

Weatherboard cladding, EPS thermal break, 

glass wool insulation and gypsum 

plasterboard as internal lining 

Internal walls 90 mm concrete masonry units, 

bagged 

Gypsum plasterboard as lining with glass 

wool insulation 

Ceiling and 

insulation 

Gypsum board and glass wool mat Gypsum board and glass wool mat 

Roofing Timber rafter system Light steel frame trusses 

Roof covering Zincalume galvanised sheeting Clay roof tiles 
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Even though clay roof tiles in combination with light steel frame trusses provide a minimum 

environmental impact for the LSFB design, clay roof tiles were not selected for the conventional 

design.  This is due to the fact that the timber truss roofing system which would be required to support 

the clay roof tiles, increase the environmental impact significantly.  Therefore the timber rafter system 

which may only be constructed in conjunction with galvanised sheeting according to design principals 

in the NHBRC Home Building Manual (NHBRC, 1999) was opted for. 

 

A similar calculation procedure as explained in Chapters 5 and 6 is adopted in order to determine the 

impact of the optimised housing units.  The succeeding information shows the comparison of results. 

 

Figure 48 gives the separate normalised and weighted environmental impacts for both design types.  

The LSFB unit clearly generates less waste whereas the conventionally designed housing unit has less 

than half the impact on Acidification Potential.  Since a large percentage of the LSFB unit is 

assembled in a factory under supervised conditions, it explains the reduced amount of waste generated 

when compared to the conventional brick and mortar design.  Again, the galvanising of light steel 

frame profiles and sheeting has a profound impact on Acidification Potential.  The Carbon Footprint 

for both design types is similar. 

 

 

Figure 48:  Normalised and weighted environmental impacts 

 

For the original input data, Resource Depletion for the conventional design totalled 92 434 MJ-eq.  It 

can be seen in Figure 49 that this value has been reduced slightly by the optimisation process.  

Alternatively for the LSFB design, the original 133 528 MJ-eq has been reduced to 111 502 MJ-eq by 

substituting certain input materials.  This is a substantial reduction of almost 17 %.  Still the LSFB 

unit has a worse effect on Resource Depletion. 
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Figure 49:  The effect on Resource Depletion for the optimised designs 

 

Likewise, the Environmental Impact Index (EII) is reduced for both design types.  Section 7.1.3 states 

the EII’s for the original input data; 5.61 for the conventional design and 6.00 for the LSFB 

alternative.  In Figure 50, the output for the optimised housing units is given in terms of an EII.  The 

conventional design has undergone a marginal reduction from 5.61 to 5.57, but the EII for the LSFB 

unit as decreased from 6.00 to 4.89.  Note that the LSFB design type is favoured slightly in the 

optimal case. 

 

 

Figure 50:  Aggregated impact index for the optimised designs 
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Furthermore, changes in the mass and cost of the housing units have occurred.  The mass of the 

conventional brick and mortar designed housing unit has decreased from 47.34 t to 44.85t; this will 

have a significant effect on the impact transport has on the environment.  The mass of the LSFB unit 

has increased from 22.44 t to 25.63 t mostly due to roof tiles used in stead of sheeting.   

 

Regardless of the increase in mass, the optimised LSFB unit is less costly than the original design.  

The original LSFB unit is priced at R 68 216 whereas the optimised unit costs R 62 863.  Keep in 

mind that various materials were assumed to have the same cost, thus this outcome may not prove to 

be reliable.  However, the rates of the conventional design are trustworthy and a reduction in unit 

price of R 2 651 amounts to an optimised unit cost of R 48 826.  Note that this does not include the 

cost of services. 

 

8.4 Concluding summary and remarks 

 

This chapter showed that by substituting materials used for certain building elements, a reduction in 

the environmental impacts considered is possible.  This is an important step during the design process 

as the aim should be to have a minimum impact on the environment while reducing costs at the same 

time.  The purpose of the optimisation process is to show that simple adjustments made can result in 

significant reductions which in turn provide an optimised design alternative. 

 

Note that a minimum for transport is not mentioned as this is dependant on the total mass of the house 

considered and not building elements separately.  The final cost of the unit also depends on all the 

materials required.  This will be looked into in the following chapter. 

 

Even though definite conclusions cannot be drawn to which design type proves to be the best option, 

optimising the design demonstrates to be a worthy and suitable process to pursue.  Selecting the best 

housing unit type depends on the criteria established for this decision making process.  A choice can 

be made based on the cost, EII, effect on Resource Depletion or a combination of these.  The purpose 

of this study is not to prove which design type succeeds over the other, it purely shows that 

mathematical impact calculation and optimisation tools may prove valuable during the decision 

making process. 
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Chapter 9 
 

SENSITIVITY ANALYSIS 
 

Based on the optimised designs, a sensitivity analysis is performed on some variables which were 

assumed to have specific values while calculating the respective environmental impacts.  The purpose 

of this exercise is to establish whether the assumptions made have a significant effect on the outcome 

or whether it is negligible.  Variables considered include the distance covered by transporting 

materials and waste, the percentage of construction waste generated (this is related to the factors 

selected to determine the volume of construction waste) and weighting factors used for calculating the 

EII. 

 

9.1 Transport 

 

The effect of the distance travelled while delivering materials and transporting waste to landfill is 

measured against the EII and Resource Depletion separately.  A total distance of 100 km was assumed 

for the original calculations.  The sensitivity analysis considers a variation in distance between  

0 – 200 km. 

 

The unit for the transport entry in the Ecoinvent database is tonne-kilometres (tkm).  Recall that a  

3.5 - 7.5 t truck is used for transporting materials.  Firstly the mass of each housing unit is multiplied 

with the distance in km.  Thereafter the value is multiplied by the various environmental impact 

factors.  These include the Carbon Footprint, Acidification Potential and Waste Generation factors of 

the truck used for transport.  The results regarding transport are normalised, weighted, aggregated and 

added to the EII calculated with all required input materials for a 0 km distance travelled.  The impact 

exclusive of transport, that is for 0 km travelled, is alike for both design types although the LSFB unit 

is slightly favoured.  The graphical representation can be seen in Figure 51. 

 

Although the increase in the EII for the conventional design is larger as the distance increases, the 

graphs have a positive gradient for both design types.  An additional 27 % is added to the EII for the 

conventional design over 200 km while an increase of approximately 17 % is observed for the LSFB 

alternative.  Even though these two graphs illustrated in Figure 50 will never intersect, different input 

data may result in the opposite outcome.  Consequently the LSFB unit might prove a better solution in 

terms of the EII after a certain distance for example or vice versa. 
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Figure 51:  The effect of distances travelled on the EII 

 

A similar calculation was done regarding the effect of transporting distances on Resource Depletion.  

The same steps were followed as explained previously, except no normalising or weighting of the 

impacts were performed.  Figure 52 shows the graphical output. 

 

 

Figure 52:  The effect of distances travelled on Resource Depletion 
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more than the conventional design option.  The picture soon changes as the slope of the graph 
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increases with a substantial 125 % over 200 km whereas for the LSFB alternative it grows with 43 %.  
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The mass of the conventionally designed unit is 1.75 times more than that of the LSFB house.  

Evidently this is the reason for the steep gradient observed for the conventional design type.  

 

The two graph lines are bound to intersect if slightly more than a total of 200 km distance is covered.  

If a selection is based on the impact on Resource Depletion, careful consideration is advised as one 

option may favour the other for certain conditions only. 

 

It can be concluded that these results and desired outcomes are sensitive towards the transporting 

distances covered.  Even though the EII is sensitive towards the distances travelled, it is not sensitive 

when the EII is used for comparison of different design types. 

 

9.2 Construction waste 

 

A further study was undertaken to measure the effect the amount of construction waste has on the EII.  

Firstly, the aggregated results, or EII, were determined exclusive of construction waste to be used as 

baseline.  Note that construction waste affects EI4 as well as the impact transportation has since the 

transport of waste to landfill is included in the calculations.  Construction waste is varied as a 

percentage of the total mass (excluding construction waste) of the housing unit.  A range between 4 

and 10 % was considered.  For each percentage, the total EII was determined for both design types.  

This is done by adding the normalised and weighted impact of construction waste along with transport 

to the already computed EII values used as the baseline.  Figure 53 shows this graphically. 

 

For construction waste percentages under 8 %, the conventional design type shows to result in a lower 

EII while the reverse results in the LSFB alternative.  The gradient of the LSFB curve is less steep 

than the conventional design, pertaining to the fact that a large part of the light steel frame housing 

unit is pre-fabricated; generating less waste under controlled conditions.  The diagram shows that the 

EII is quite sensitive to the percentage of construction waste generated.  The EII for the conventional 

design increases by half of its original magnitude as the percentage construction waste is varied from  

4 - 10 % while a similar increase is noticed for the LSFB type, but only by an amount of 25 % in this 

case. 
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Figure 53:  Change in EII as the % construction waste is varied 

 

It is important to realise what the amount of construction waste, as a percentage of the total mass of 

the unit, for the optimised designs are.  These values can be seen in Table 21. 

 

Table 21:  Construction waste as a % of total unit mass 

Design Type Percentage construction waste 

Conventional 8 % 

LSFB 5 % 

 

If the percentage of construction waste for the conventional design type can further be reduced by 

incentives such as re-use, recycling, monitoring and so forth, this option will have the smaller impact 

on the EII since the LSFB curve produces higher EII values for the range of construction waste below  

8 %. 

 

Only the effect on the aggregated impact index was considered in this section as Resource Depletion 

will be affected minimally if all waste goes to landfill.  However, if recycling or other incentives 

occur, the ‘saving’ in virgin exergy should be subtracted from the existing total value.  This is added 

as a remark since it does not fall under the scope of this study. 
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9.3 Weighting factors 

 

Finally, the change in the Environmental Impact Index is investigated for a variation in the weighting 

factors used to calculate the aggregated total.  The EII consists of the sum of three normalised and 

weighted impacts namely the Carbon Footprint, Acidification Potential and Waste Generation.  For 

each of these, the respective weighting factors were varied between 0.9 and 1.4 for a single impact 

while the others were kept constant.  See Figure 54. 

 

Recollecting previous information from Table 5, the weighting factors chosen for calculating the 

environmental impacts are given in Table 22. 

 

Table 22:  Weighting factors 

Environmental impact Weighting factor 

Carbon Footprint 1.12 

Acidification Potential 1.27 

Waste Generation 1.10 

 

 

Figure 54:  Change in EII as weighting factors are varied 

(a)  Conventional design: Carbon Footprint weighting factor varied 

(b)  LSFB: Carbon Footprint weighting factor varied 

(c)  Conventional design: Acidification Potential weighting factor varied 

(d)  LSFB: Acidification Potential weighting factor varied 

(e)  Conventional design: Waste Generation weighting factor varied 

(f)  LSFB: Waste Generation weighting factor varied 
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The change in the EII as the Carbon Footprint weighting factor is varied is quite significant.  

Although the curves for the two design types are parallel, in other words the same effect on the EII for 

both design types are observed as the weighting factor is altered, the slope of the lines is 

approximately one. 

 

Regarding Acidification Potential, the value chosen as weighting factor does not significantly 

influence the impact when considering the conventional design.  However, for the LSFB design a 

slope of approximately 1.6 is noticed on the respective curve. 

 

Lastly, looking at the effect on the EII as a range of weighting factors for Waste Generation is 

analysed, it is clear that this is a sensitive value concerning the conventional design type.  The curve 

plotted has a slope of about 3.6; still the LSFB alternative also represents a significant gradient of 1.6. 

 

In summary, weighting factors used for calculating aggregated totals should be selected carefully as 

the outcome is sensitive towards it and will affect the end result.  However, regarding comparison of 

design types in terms of the EII, the outcome is not sensitive towards the selected range of weighting 

factors.  Even though the factor for EI1 is global and can be assumed to be a realistic value for South 

African conditions, the other weighting factors for EI2 and EI4 are for Europe and Denmark 

respectively.  It can be argued that these values may not correspond to local conditions for a 

developing country like South Africa.  Future studies should consider determining these weighting 

factors for local conditions and more recent data, not 1994/2004. 

 

9.4 Summary and observations 
 

To conclude this chapter, a sensitivity analysis on three variable assumptions, namely transport 

distances, percentage of waste generated and weighting factors was performed.  The EII is sensitive 

towards the distance travelled; however, in terms of design type comparison the EII is not sensitive 

towards it.  Similarly, the EII is sensitive towards weighing factors chosen, but for comparison 

purposes the EII is not sensitive towards the range of weighting factors selected.  Then again, the EII 

shows sensitivity towards construction waste as a percentage of the total mass of the unit but this also 

influences the final result.  Such a study is advised in order to determine which assumptions 

significantly impact the outcome, in this case the percentage of construction waste generated. 
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Chapter 10 
 

CONCLUSIONS AND RECOMMENDATIONS 
 

Globally and in South Africa, it is seen that the construction industry significantly impacts the 

environment, economy and society whereas the objective should be to reduce this negative impact.  

Aiming to reduce this impact locally, the low-cost housing sector is selected as a platform to 

implement sustainability motivators within the residential sector.  The low-cost housing sector 

presents potential when it comes to sustainability improvements as each of the three spheres of 

sustainability, namely economic, environmental and social, plays a crucial role in this sector.  Various 

studies have been done on the economical and social fields, but little information exists on the impact 

low-cost houses have on the environment. 

 

A need for a local scientifically based quantification method in order to determine the environmental 

impact of the built environment, more specifically low-cost housing, has been identified.  Existing 

global methods are complex, implemented with difficult to understand databases and expensive to 

operate.  Several studies related to the economical en social impacts of the local Housing Sector have 

been done previously.  A simple and easy-to-use analysis-orientated environmental impact 

quantification method is proposed in this study incorporating selected indicators namely Emissions, 

Resource Depletion and Waste Generation.  It is recommended that the model be expanded to include 

other conclusive indicators if future research proves necessary for South African conditions, obtaining 

more accurate results. 

 

The proposed model has the capability of calculating and optimising the environmental impact of a 

building unit.  Furthermore, the method has been implemented and demonstrates that the model 

operates in its supposed manner, is simple and also user-friendly.  It was shown that this mathematical 

tool proves useful during the decision making process.  This model can be used during the conception 

phase as a tool guiding the decision around which low-cost housing design type would prove more 

environmentally friendly.  Note that clear criteria on how to select the best option should be 

established beforehand and must be related to the specific project needs.  The simple calculations 

along with easy to understand graphical output makes this a valuable tool to use. 

 

Various assumptions as listed in Chapters 4 through 6 have been made for this model implementation 

to fully function.  These may be altered if more accurate data arise in future.  The calculation of the 

Environmental Impact Index tend to obscure the influence of the individual impacts, still it is useful 
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for comparison purposes.  It is recommended that the possible integration of Resource Depletion into 

the EII be investigated in future.  This may provide a more realistic aggregated index.  With regards to 

determining the EII, global and European normalisation references and weighting factors were used.  

If possible, these values should be determined for a local context and replaced in the model workings.  

Also, proportions used to estimate the volume of waste expected as determined from the Bill of 

Quantities, were of Spanish origin.  It is important that these ratios be substituted by locally 

determined values to obtain an end result for the specific region considered, namely South Africa. 

 

Provision should be made for alternative building technologies to be able to get a foothold in the local 

low-cost housing construction sector.  It has been shown that LSFB units are worth investigating as an 

alternative to the conventional brick and mortar design but should be confirmed with a more accurate 

LCA.  It is recommended that this study be expanded in future to include the whole building life 

cycle.  This will provide one with the bigger picture right from the start and aid in objective decision 

making before construction commences.  This extensive scope may show that an initial increase in the 

economical impact, else known as the cost of the unit, may prove to have a reduced environmental 

impact in the long run. 

 

It is important to include transport in these life cycle assessment calculations as it would be unrealistic 

to exclude it from the system boundary.  A more accurate method of determining the total distance 

travelled should be investigated in future studies.  In general, local resources and material suppliers 

should be used for construction materials as this will decrease the distances that have to be travelled. 

 

As construction waste has a significant effect on the environmental impact, the focus should turn to 

effective waste management strategies and the implementation thereof.  If recycling initiatives are 

implemented, this will in turn reduce the amount of construction waste ending up in landfill also 

affecting the impact transport has.  Other incentives such as increasing dumping costs, sorting waste 

on site followed by recycling or re-use strategies will result in less waste being transported to a 

landfill site. 

 

No legislation exists with regards to the environmental impact of low-cost housing units.  Even 

though an Environmental Impact Assessment of the project is done beforehand, no guidelines with 

regard to energy efficient or sustainable building materials or methods are available.  It is proposed 

that the NHBRC Home Builders Manual of 1999 be revised to include sustainable initiatives.  

Alternative building technologies may be included here along with a tool to assist in the decision 

making process, typically as what is presented in this study. 
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If the need arises for comprehensive quantification which includes all three spheres of the 

sustainability model, ways of quantifying the social impacts of this sector can be integrated with the 

proposed model calculating the environmental and economical impacts producing an aggregated 

sustainability index. 

 

Lastly, to improve the automation and appearance of the proposed analysis-orientated quantification 

model, it is suggested that it be developed into a software application which can then be easily 

distributed and used in design offices. 

 

The proposed analysis-orientated method along with these recommendations will aid the improvement 

of the environmental dimension of sustainability for the built environment in South Africa. 
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Conventional Design: Environmental Impacts

Item Unit Quantity Rate [R/unit] Cost [R] Ecoinvent unit New Amount factors [kg CO2e] per item [kg SO2e/unit] per item [MJ-eq/unit] per item [kg/unit] per item m
3
 per item kg per item

Foundations

Excavation m
3

8.94 50.34 450.04 0.00 0.00 0.00 0.00 0.00 0.00

10 MPa concrete foundation 

(600x200mm) m
3

3.00 791.92 2375.76 m
3

264.1000 792.30 0.5066 1.52 1512.3900 4537.17 23.7230 71.17 0.09 216.00

           Reinforcing (4 x Y12) kg 103.00 1.6841 173.47 0.0057 0.59 26.8955 2770.24 0.2769 28.52 0.00 5.15

190 mm blockwork including m
2

14.90 103.04 1535.30 kg 160.00
1

2384.00 0.1212 288.99 0.0003 0.66 0.8176 1949.19 0.0150 35.71 0.33 357.96

           brickforce (75x2.8mm), m 125.00 kg 0.11
2

13.62 2.1555 29.35 0.0078 0.11 36.1469 492.28 0.7218 9.83 0.00 0.00

           galvanised m
2

2.45 4.4401 10.86 0.28458 0.70 76.75068 187.75 0.27793 0.68 0.00 0.00

           filled with concrete m
3

0.97 m
3

264.1000 255.14 0.5066 0.49 1512.3900 1461.09 23.7230 22.92 0.03 69.56

Floor Slab

Damp proof membrane 250 micron m
2

41.00 5.93 243.13 kg 0.23
3

9.43 2.6085 24.60 0.0098 0.09 81.1856 765.58 0.0586 0.55 0.00 0.00

Conversion factor

Waste generation EI4

Materials Carbon Footprint EI1 Acidification Potential EI2 Waste from Production Resource Depletion EI3Conversion Construction Waste

Damp proof membrane 250 micron m 41.00 5.93 243.13 kg 0.23 9.43 2.6085 24.60 0.0098 0.09 81.1856 765.58 0.0586 0.55 0.00 0.00

25 MPa concrete (power floated) m
3

4.92 850.00 4182.00 264.1000 1299.37 0.5066 2.49 1512.3900 7440.96 23.7230 116.72 0.15 354.24

steel mesh ref 193 m
2

41.00 5.22 214.02 kg 1.93
4

79.13 1.6841 133.27 0.0057 0.45 26.8955 2128.24 0.2769 21.91 0.00 3.96

External walls 140 mm

Two top courses of brickwork to be 

filled with 10 Mpa concrete m
3

0.65 m
3

264.1000 171.67 0.5066 0.33 1512.3900 983.05 23.7230 15.42 0.02 46.80

Blockwork, mortar & m
2

75.00 205.01 15375.75 kg 160.00
5

12000.00 0.1212 1454.64 0.0003 3.32 0.8176 9811.38 0.0150 179.76 1.64 1801.80

         brickforce as NHBRC standard m 125.00 kg 0.11
6

13.62 2.1555 29.35 0.0078 0.11 36.1469 492.28 0.7218 9.83 0.00 0.00

           galvanised m
2

2.45 4.4401 10.86 0.28458 0.70 76.75068 187.75 0.27793 0.68 0.00 0.00

Plaster externally (12mm thick) m
2

75.00 32.51 2438.25 kg 27.60
7

2070.00 0.1605 332.26 0.0003 0.59 0.9594 1986.06 0.0023 4.73 0.03 62.10

Bagged internally m
2

75.00 6.13 459.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DPC (110mm width) - 375micron m 29.00 0.70 20.30 kg 0.03
8

0.88 2.6085 2.30 0.0098 0.01 81.1856 71.48 0.0586 0.05 0.00 0.00

Internal Walls 90 mm

Blockwork, mortar m
2

26.00 132.00 3432.00 kg 130.00
9

3380.00 0.1212 409.72 0.0003 0.94 0.8176 2763.54 0.0150 50.63 0.37 401.54

Bagged m
2

52.00 12.24 636.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00Bagged m 52.00 12.24 636.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ceiling and Thermal Insulation

6.4 mm gypsum plaster board and m
2

40.00 164.29 6571.60 kg 5.70
10

228.00 0.3540 80.72 0.0012 0.27 5.3486 1219.49 0.0131 2.99 0.06 56.96

50 mm glass wool laid to 

manufacturers specifications, finished 

with coverstrips (incl cornices) m
2

40.00 kg 2.00 80.00 1.4934 119.47 0.0074925 0.60 30.110873 2408.87 0.24145 19.32 0.00 0.00

Roofing

Howe type truss to be designed by 

supplier for 7 m span Sum 1.00 4553.14 4553.14 m
3

0.63 88.8730 55.99 0.5546 0.35 1337.8280 842.83 18.4910 11.65 0.00 0.00

114x38 wall plate including beam 

filling m 12.00 20.27 243.24 m
3

0.05 88.8730 4.62 0.5546 0.03 1337.8280 69.55 18.4910 0.96 0.00 0.00

50x76 mm purlins on edge at 

maximum 1.2 m spacing sum 1.00 404.38 404.38 m
3

0.22 88.8730 19.25 0.5546 0.12 1337.8280 289.77 18.4910 4.01 0.00 0.00

Roof CoveringRoof Covering

0.54 mm Fielders corrugated 

Colorbond G550 AZ150 anti-corrosive m
2

46.00 168.39 7745.94 kg 5.03
11

231.38 2.1191 490.32 0.0082 1.91 38.0209 8797.28 0.6900 159.66 0.00 21.45

   "Zincalume" based steel sheeting m
2

46.00 4.4401 204.24 0.28458 13.09 76.7507 3530.53 0.2779 12.78 0.00 0.00

Ridge cappings 450 mm girth m 6.00 99.50 597.00 kg 2.26 13.58 2.1191 28.78 0.0082 0.11 38.0209 516.36 0.6900 9.37 0.00 0.00

           galvanised m
2

2.70 4.4401 11.99 0.28458 0.77 76.7507 207.23 0.2779 0.75 0.00 0.00

Transport (100km) tkm 4734.00 tkm 0.48632 2302.24 0.0026554 12.57 7.715323 36524.37 0.039471 186.86

Total impact R 51,478.08 8735.77 42.90 92434.31 977.47 3397.52

Total EI4 [kg] = 4374.98
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Conventional Design: Estimation of Construction Waste

Material Unit on Bill Quantity Quantity/m
2

CCi VACi CRi VARi CEi VAEi m
3
 waste m

3
 waste Density kg waste

unit unit/m
2

m
3
/unit m

3
/m

2
- m

3
/m

2
- m

3
/m

2
per m

2
per house kg/m

3
per house

Foundations

Excavation m
3

8.94 0.22 0.00

10 MPa concrete foundation 

(600x200mm) m
3

3.00 0.08 1.0000 0.0750 0.0300 0.0023 0.0000 0.0000 0.00 0.09 2400.00 216.00

           Reinforcing (4 x Y12) kg 103.00 2.58 0.0001 0.0003 0.0500 0.0000 0.0000 0.0000 0.00 0.00 7800.00 5.15

190 mm blockwork including m
2

14.90 0.37 0.1400 0.0522 0.0560 0.0029 0.1000 0.0052 0.01 0.33 1100.00 357.96

           brickforce (75x2.8mm), m 125.00 3.13 0.0000 0.0000 0.0000 0.00 0.00 0.00

           galvanised m
2

2.45 0.06 0.0000 0.0000 0.0000 0.00 0.00 0.00

           filled with concrete m
3

0.97 0.02 1.0000 0.0242 0.0300 0.0007 0.0000 0.0000 0.00 0.03 2400.00 69.56

Floor Slab

Damp proof membrane 250 micron m
2

41.00 0.00

25 MPa concrete (power floated) m
3

4.92 0.12 1.0000 0.1230 0.0300 0.0037 0.0000 0.0000 0.00 0.15 2400.00 354.24

steel mesh ref 193 kg 79.13 1.98 0.0001 0.0003 0.0500 0.0000 0.0000 0.0000 0.00 0.00 7800.00 3.96

External walls 140 mm

Two top courses of brickwork to be 

filled with 10 Mpa concrete m
3

0.65 0.02 1.0000 0.0163 0.0300 0.0005 0.0000 0.0000 0.00 0.02 2400.00 46.80

Blockwork, mortar & m
2

75.00 1.88 0.1400 0.2625 0.0560 0.0147 0.1000 0.0263 0.04 1.64 1100.00 1801.80

         brickforce as NHBRC standard m 125.00 3.13 0.0000 0.0000 0.0000 0.00 0.00 0.00

           galvanised m
2

2.45 0.06 0.0000 0.0000 0.0000 0.00 0.00 0.00

Plaster externally (12mm thick) m
2

75.00 1.88 0.0120 0.0225 0.0300 0.0007 0.0000 0.0000 0.00 0.03 2300.00 62.10

Bagged internally m
2

75.00 0.00

DPC (110mm width) - 375micron m 29.00 0.00

Internal Walls 90 mm

Blockwork, mortar m
2

26.00 0.65 0.0900 0.0585 0.0560 0.0033 0.1000 0.0059 0.01 0.37 1100.00 401.54

Bagged m
2

52.00 1.30 0.0000 0.0000 0.0000 0.00 0.00 0.00

Ceiling and Thermal Insulation

6.4 mm gypsum plaster board and m
2

40.00 1.00 0.0064 0.0064 0.0500 0.0003 0.2000 0.0013 0.00 0.06 890.00 56.96

50 mm glass wool laid to 

manufacturers specifications, finished 

with coverstrips (incl cornices) m
2

40.00 1.00 0.0000 0.0000 0.0000 0.00 0.00 0.00

Roofing

Howe type truss to be designed by 

supplier for 7 m span Sum 1.00 0.03 0.0000 0.0000 0.0000 0.00 0.00 0.00

114x38 wall plate including beam filling m 12.00 0.30 0.0000 0.0000 0.0000 0.00 0.00 0.00

50x76 mm purlins on edge at 1.2 m 

spacing sum 1.00 0.03 0.0000 0.0000 0.0000 0.00 0.00 0.00

Roof Covering

0.54 mm Fielders corrugated 

Colorbond G550 AZ150 anti-corrosive m
2

46.00 1.15 0.0005 0.0006 0.0610 0.0000 0.0300 0.0000 0.00 0.0023 9490.00 21.45

   "Zincalume" based steel sheeting m
2

46.00 1.15 0 0 0 0.00 0.00 0.00

Ridge cappings 450 mm girth m 6.00 0.15 0 0 0 0.00 0.00 0.00

           galvanised m
2

2.70 0.0675 0 0 0 0.00 0.00 0.00

Transport (100km) tkm

m
3

2.71 kg 3397.52
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 ProCAD SFSI Framing Module Panel Usage Report

Job Details

Company

Project

Job Ref.
Designer
Drawing No. Report Date

Chandré Brewis  

Client Name  
  
  

???  
JC During
wall panels.dwg 29-03-2011

 It costs no more to get it right

Report By Panels

ID Section Quantity Length Total Weight (kg) Cost

EN1 S8975 Stud 1 1053 1053 1.147
EN1 S8975 Stud 1 1251 1251 1.363
EN1 S8975 Stud 1 1342 1342 1.461
EN1 S8975 Stud 1 1382 1382 1.505
EN1 S8975 Stud 1 1742 1742 1.897
EN1 S8975 Plate 1 2319 2319 2.525
EN1 S8975 Stud 1 2594 2594 2.825
EN1 S8975 Stud 1 2635 2635 2.870
EN1 S8975 Plate 1 2688 2688 2.928
EN1 S8975 Stud 1 2874 2874 3.129
EN1 S8975 Stud 1 2971 2971 3.235
EN1 S8975 Plate 1 3109 3109 3.385
EN1 S8975 Stud 1 3370 3370 3.670
EN1 S8975 Stud 1 3433 3433 3.739
EN1 S8975 Stud 1 3657 3657 3.982
EN1 S8975 Plate 1 515 515 0.561
EN1 S8975 Plate 1 651 651 0.709
EN1 S8975 Plate 1 844 844 0.919
EN1 S8975 Stud 3 879 2637 2.872
EN1 S8975 Stud 1 890 890 0.969
EN1 S8975 Plate 2 891 1782 1.941

43739 47.632
EN2 S8975 Plate 1 125 125 0.136
EN2 S8975 Stud 1 1277 1277 1.391
EN2 S8975 Stud 4 1279 5116 5.571
EN2 S8975 Stud 1 1316 1316 1.433
EN2 S8975 Stud 15 2394 35910 39.106
EN2 S8975 Stud 4 294 1176 1.281
EN2 S8975 Stud 1 339 339 0.369
EN2 S8975 Stud 1 364 364 0.397
EN2 S8975 Plate 1 6805 6805 7.411
EN2 S8975 Plate 2 6811 13622 14.834
EN2 S8975 Plate 2 891 1782 1.941

67831 73.868
EN3 S8975 Plate 1 1040 1040 1.133
EN3 S8975 Stud 1 1086 1086 1.182
EN3 S8975 Stud 1 1342 1342 1.462
EN3 S8975 Stud 1 1359 1359 1.479
EN3 S8975 Stud 1 1398 1398 1.522
EN3 S8975 Stud 1 1626 1626 1.771
EN3 S8975 Stud 1 1742 1742 1.897
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 It costs no more to get it right

 ProCAD SFSI Framing Module Panel Usage Report Cont.

Report By Panels

ID Section Quantity Length Total Weight (kg) Cost

EN3 S8975 Plate 1 2261 2261 2.462
EN3 S8975 Stud 1 2594 2594 2.825
EN3 S8975 Stud 1 2626 2626 2.860
EN3 S8975 Plate 1 2635 2635 2.870
EN3 S8975 Stud 1 2906 2906 3.165
EN3 S8975 Plate 1 3010 3010 3.278
EN3 S8975 Stud 1 3062 3062 3.335
EN3 S8975 Stud 1 3461 3461 3.769
EN3 S8975 Stud 1 3629 3629 3.952
EN3 S8975 Plate 1 394 394 0.429
EN3 S8975 Plate 1 485 485 0.528
EN3 S8975 Stud 3 879 2637 2.872
EN3 S8975 Plate 2 891 1782 1.941
EN3 S8975 Stud 1 981 981 1.069

42056 45.799
EN5 S8975 Plate 1 125 125 0.136
EN5 S8975 Stud 2 1277 2554 2.781
EN5 S8975 Stud 4 1279 5116 5.571
EN5 S8975 Stud 2 1316 2632 2.866
EN5 S8975 Plate 1 195 195 0.212
EN5 S8975 Stud 16 2394 38304 41.713
EN5 S8975 Stud 4 294 1176 1.281
EN5 S8975 Stud 1 339 339 0.369
EN5 S8975 Stud 1 364 364 0.397
EN5 S8975 Plate 1 6805 6805 7.411
EN5 S8975 Plate 2 6811 13622 14.834
EN5 S8975 Plate 2 891 1782 1.941

73014 79.512
EN9 S8975 Stud 1 1012 1012 1.102
EN9 S8975 Plate 1 1129 1129 1.229
EN9 S8975 Stud 1 1209 1209 1.317
EN9 S8975 Stud 1 1329 1329 1.447
EN9 S8975 Stud 1 1603 1603 1.746
EN9 S8975 Plate 1 2194 2194 2.389
EN9 S8975 Stud 1 2594 2594 2.825
EN9 S8975 Plate 1 2711 2711 2.952
EN9 S8975 Stud 1 2832 2832 3.084
EN9 S8975 Stud 1 2929 2929 3.190
EN9 S8975 Plate 1 3010 3010 3.278
EN9 S8975 Stud 1 3328 3328 3.625
EN9 S8975 Stud 1 3391 3391 3.693
EN9 S8975 Stud 1 3671 3671 3.998
EN9 S8975 Stud 1 3797 3797 4.135
EN9 S8975 Stud 1 3839 3839 4.180
EN9 S8975 Plate 1 755 755 0.822
EN9 S8975 Stud 1 849 849 0.924
EN9 S8975 Stud 3 879 2637 2.872
EN9 S8975 Plate 2 891 1782 1.941

46601 50.749
IN4 S8975 Stud 7 2394 16758 18.249
IN4 S8975 Plate 1 2705 2705 2.946
IN4 S8975 Plate 2 2711 5422 5.905

24885 27.100
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 ProCAD SFSI Framing Module Panel Usage Report Cont.

Report By Panels

ID Section Quantity Length Total Weight (kg) Cost

IN6 S8975 Plate 1 1003 1003 1.092
IN6 S8975 Plate 1 125 125 0.136
IN6 S8975 Stud 8 2394 19152 20.857
IN6 S8975 Plate 2 2710 5420 5.902
IN6 S8975 Stud 3 294 882 0.960
IN6 S8975 Plate 1 876 876 0.954
IN6 S8975 Plate 1 895 895 0.975

28353 30.876
IN7 S8975 Plate 1 1885 1885 2.052
IN7 S8975 Plate 1 1891 1891 2.059
IN7 S8975 Plate 1 1891 1891 2.059
IN7 S8975 Stud 5 2394 11970 13.035

17636 19.206
IN8 S8975 Stud 3 294 882 0.960
IN8 S8975 Plate 1 831 831 0.904
IN8 S8975 Plate 1 831 831 0.905

2544 2.770
EN13 S8975 Stud 1 1082 1082 1.179
EN13 S8975 Stud 1 1128 1128 1.228
EN13 S8975 Stud 1 1188 1188 1.294
EN13 S8975 Plate 1 1264 1264 1.376
EN13 S8975 Stud 1 1372 1372 1.494
EN13 S8975 Stud 1 1411 1411 1.536
EN13 S8975 Stud 1 2594 2594 2.825
EN13 S8975 Plate 1 2635 2635 2.870
EN13 S8975 Stud 1 2635 2635 2.870
EN13 S8975 Stud 1 2668 2668 2.905
EN13 S8975 Plate 1 2800 2800 3.049
EN13 S8975 Stud 1 2908 2908 3.167
EN13 S8975 Plate 1 3109 3109 3.385
EN13 S8975 Stud 1 3307 3307 3.602
EN13 S8975 Stud 1 3507 3507 3.820
EN13 S8975 Stud 1 3787 3787 4.124
EN13 S8975 Stud 1 3881 3881 4.226
EN13 S8975 Plate 1 709 709 0.772
EN13 S8975 Stud 1 827 827 0.901
EN13 S8975 Stud 4 879 3516 3.829
EN13 S8975 Plate 2 891 1782 1.941
EN13 S8975 Stud 1 968 968 1.054

49078 53.445
IN10 S8975 Plate 1 2135 2135 2.325
IN10 S8975 Plate 2 2141 4282 4.663
IN10 S8975 Stud 6 2394 14364 15.642

20781 22.631
IN11 S8975 Plate 1 1796 1796 1.955
IN11 S8975 Plate 1 1802 1802 1.962
IN11 S8975 Plate 1 1802 1802 1.962
IN11 S8975 Stud 4 2394 9576 10.428

14975 16.308
IN12 S8975 Stud 3 294 882 0.960
IN12 S8975 Plate 1 821 821 0.894
IN12 S8975 Plate 1 821 821 0.894

2524 2.748
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Truss Material Report

Company Name        Chandré Brewis  

Client Name         Client Name  

Job Number          ???  

Dwg Number          truss diagram.dwg

Current Date        29-03-2011

Materials Summary

Material                               Length    Weight

S8975                                  117917    128.53

                                                 128.53

Parts Summary

#10-16x16 Tek                             390

Software Licenced for Unlimited Use Page 1
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LSFB: Environmental Impacts

Item Unit Quantity Rate [R/unit] Cost [R] EcoInvent unit new amount [kg CO2e/unit] per item [kg SO2e/unit] per item [MJ-eq/unit] per item [kg/unit] per item m
3
 per item kg per item

Foundations

Excavation m
3

4.06 50.34 204.58 0.0000 0.00

Concrete (400x150mm) - 25 

MPa m
3

1.54 850.00 1310.70 m
3

264.1000 407.24 0.5066 0.78 1512.3900 2332.11 23.7230 36.58 0.0463 111.02

        Reinforcing (2-Y10) kg 31.35 kg 1.6841 52.80 0.0057 0.18 26.8955 843.17 0.2769 8.68 0.0002 1.57

Brickwork (clay) - double 

layer cavity wall m
2

12.70 230.00 2921.00 kg 171.00
1

2171.70 0.2388 518.52 0.0006 1.35 3.1435 6826.83 0.0063 13.77 0.1783 338.79

        Mortar m
3

0.19 kg 2100.00
2

399.00 0.1605 64.04 0.0003 0.11 0.9594 382.82 0.0023 0.91 0.0001 0.14

       Brickforce m 76.20 kg 0.11
3

8.30 2.1555 17.89 0.0078 0.07 36.1469 300.09 0.7218 5.99 0.0000 0.00

Floor Slab

Concrete (100mm - 25MPa) m
3

4.00 850.00 3400.00 m
3

264.1000 1056.40 0.5066 2.03 1512.3900 6049.56 23.7230 94.89 0.1200 288.00

Reinforcing - Mesh ref 193 m
2

41.00 5.22 214.02 kg 1.93
4

79.13 1.6841 133.27 0.0057 0.45 26.8955 2128.24 0.2769 21.91 0.0003 2.05

conversion factor

Waste generation EI4

Construction WasteMaterials Carbon Footprint EI1 Acidification Potential EI2 Waste from ProductionResource Depletion EI3Conversion

Reinforcing - Mesh ref 193 m 41.00 5.22 214.02 kg 1.93 79.13 1.6841 133.27 0.0057 0.45 26.8955 2128.24 0.2769 21.91 0.0003 2.05

Damp proof membrane m
2

41.00 5.93 243.13 kg 0.23
5

9.43 2.6085 24.60 0.0098 0.09 81.1856 765.58 0.0586 0.55 0.0000 0.00

Anchor Bolts

External Walls

Light steel profiles m 357.00 29.64 10581.48 kg 386.10 2.1191 818.20 0.0082 3.18 38.0209 14679.99 0.6900 266.42 0.0000 0.00

     galvanised m
2

134.95 m
2

4.4401 599.17 0.2846 38.40 76.7507 10357.20 0.2779 37.51

Fasteners: #10-16x16 wafer 

screws No. 530.00

Cladding  - 9mm fibre 

cement board m
2

75.00 131.10 9832.50 kg 12.60
6

945.00 1.0915 1031.47 0.0026 2.47 10.1962 9635.39 0.1881 177.72 0.3679 515.03

Vapour permeable 

membrane m
2

75.00 6.76 507.02 kg 0.23
7

17.25 2.6085 45.00 0.0098 0.17 81.1856 1400.45 0.0586 1.01 0.0000 0.00

Thermal Break - OSB m
2

75.00 45.60 3420.00 m
3

0.02 1.43 312.7200 445.63 1.3923 1.98 7659.4071 10914.66 30.3060 43.19 0.0143 11.40

Bulk Insulation - 25mm glass 

wool m
2

75.00 57.00 4275.00 kg 1.00
8

75.00 1.4934 112.01 0.0075 0.56 30.1109 2258.32 0.2415 18.11 0.0188 0.75

Gypsum plasterboard lining - 

15mm m
2

75.00 67.15 5035.95 kg 14.10
9

1057.50 0.3540 374.39 0.0012 1.26 5.3486 5656.18 0.0131 13.86 0.1755 164.97

Internal Walls

Light Steel profiles m 125.00 29.64 3705.00 kg 133.80 2.1191 283.54 0.0082 1.10 38.0209 5087.31 0.6900 92.33 0.0000 0.00

       galvanised m
2

47.25 4.4401 209.79 0.2846 13.45 76.7507 3626.47 0.2779 13.13

Fasteners: #10-16x16 wafer 

screws No. 224.00 0.00

Gypsum plasterboard lining - 

15mm m
2

52.00 67.15 3491.59 kg 14.10 733.20 0.3540 259.57 0.0012 0.87 5.3486 3921.62 0.0131 9.61 0.1217 114.38

Bulk Insulation - 25mm glass 

wool m
2

26.00 57.00 1482.00 kg 1.00
10

26.00 1.4934 38.83 0.0075 0.19 30.1109 782.88 0.2415 6.28 0.0065 0.26

Ceiling and Insulation

Gypsum Plasterboard - 

6.4mm m
2

40.00 34.94 1397.64 kg 5.70
11

228.00 0.3540 80.72 0.0012 0.27 5.3486 1219.49 0.0131 2.99 0.0640 56.96

Bulk Insulation - Glass wool 

mat 25mm m
2

40.00 57.00 2280.00 kg 1.00
12

40.00 1.4934 59.74 0.0075 0.30 30.1109 1204.43 0.2415 9.66 0.0100 0.40

Roofing

Light Steel profiles m 131.00 29.64 3882.84 kg 141.38 2.1191 299.61 0.0082 1.17 38.0209 5375.51 0.6900 97.56 0.0000 0.00Light Steel profiles m 131.00 29.64 3882.84 kg 141.38 2.1191 299.61 0.0082 1.17 38.0209 5375.51 0.6900 97.56 0.0000 0.00

       galvanised m
2

49.52 4.4401 219.86 0.2846 14.09 76.7507 3800.54 0.2779 13.76

Fasterners: #10-16x16 TEK No. 390.00

Purlins m 57.00 29.64 1689.48 kg 1.07 61.10 2.1191 129.49 0.0082 0.50 38.0209 2323.23 0.6900 42.16 0.0000 0.00

       galvanised m
2

22.06 4.4401 97.94 0.2846 6.28 76.7507 1693.04 0.2779 6.13

Covering

Sheeting m
2

46.00 168.39 7745.94 kg 5.03
13

231.38 2.1191 490.32 0.0082 1.91 38.0209 8797.28 0.6900 159.66 0.0023 21.45

       galvanised m
2

46.00 4.4401 204.24 0.2846 13.09 76.7507 3530.53 0.2779 12.78

Ridge cappings 450 mm girth m 6.00 99.50 597.00 kg 2.26 13.58 2.1191 28.78 0.0082 0.11 38.0209 516.36 0.6900 9.37 0.0000 0.00

           galvanised m
2

2.70 4.4401 11.99 0.2846 0.77 76.7507 207.23 0.2779 0.75

Transport (100km) tkm 2245.72 tkm 0.4863 1092.14 0.0027 5.96 7.7153 17326.44 0.0395 88.64

Total impact R 68,216.87 9207.18 113.14 133942.94 1305.93 1627.17

Total EI4 [kg] = 2933.10
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LSFB: Estimation of Construction Waste

Material Unit on Bill Quantity Quantity/m
2

CCi VACi CRi VARi CEi VAEi m
3
 waste m

3
 waste density kg waste

unit/m
2

m
3
/unit m

3
/m

2
- m

3
/m

2
- m

3
/m

2
per m

2
per house kg/m

3
per house

Foundations

Excavation m
3

4.064 0.10

Concrete (400x150mm) - 25 Mpa m
3

1.542 0.04 1.0000 0.0386 0.0300 0.0012 0.0000 0.0000 0.00116 0.0463 2400 111.0240

        Reinforcing (2-Y10) kg 31.35 0.78 0.0001 0.0001 0.0500 0.0000 0.0000 0.0000 0.00001 0.0002 7800 1.5675

Brickwork (clay) m
2

12.7 0.32 0.0900 0.0286 0.0560 0.0016 0.1000 0.0029 0.00446 0.1783 1900 338.7852

       Mortar m
3

0.19 0.00 0.0120 0.0001 0.0300 0.0000 0.0000 0.0000 0.00000 0.00007 2100 0.1436

       Brickforce m 76.2

Floor Slab

Concrete (100mm - 25MPa) m
3

4 0.10 1.0000 0.1000 0.0300 0.0030 0.0000 0.0000 0.00300 0.1200 2400 288.0000

Reinforcing - Mesh ref 193 m
2

41 1.03 0.0001 0.0001 0.0500 0.0000 0.0000 0.0000 0.00001 0.0003 7800 2.0500

Damp proof membrane m
2

41

Anchor Bolts

External Walls

Light steel profiles kg 386.1033 9.65

Fasteners: #10-16x16 wafer screws No. 530

Cladding  - 9mm fibre cement board m
2

75 1.88 0.0090 0.0169 0.0450 0.0008 0.5000 0.0084 0.00920 0.3679 1400 515.0250

Vapour permeable membrane m
2

75

Thermal Break - OSB m
2

75 1.88 0.0190 0.0356 0.0100 0.0004 0.0000 0.0000 0.00036 0.0143 800 11.4000

Bulk Insulation - 25mm glass wool m
2

75 1.88 0.0250 0.0469 0.0100 0.0005 0.0000 0.0000 0.00047 0.0188 40 0.7500

Gypsum plasterboard lining - 15mm m
2

75 1.88 0.0150 0.0281 0.0560 0.0016 0.1000 0.0028 0.00439 0.1755 940 164.9700

Internal Walls

Light Steel profiles kg 133.8029 3.35

Fasteners: #10-16x16 wafer screws No. 224

Gypsum plasterboard lining - 15mm m
2

52 1.30 0.0150 0.0195 0.0560 0.0011 0.1000 0.0020 0.00304 0.1217 940 114.3792

Bulk Insulation - 25mm glass wool m
2

26 0.65 0.0250 0.0163 0.0100 0.0002 0.0000 0.0000 0.00016 0.0065 40 0.2600

Ceiling and Insulation

Gypsum Plasterboard - 6.4mm m
2

40 1.00 0.0064 0.0064 0.0500 0.0003 0.2000 0.0013 0.00160 0.0640 890 56.9600

Bulk Insulation - Glass wool mat 25mm m
2

40 1.00 0.0250 0.0250 0.0100 0.0003 0.0000 0.0000 0.00025 0.0100 40 0.4000

Roofing

Light Steel profiles kg 141.383 3.53

Fasterners: #10-16x16 TEK No. 390

Covering

Purlins m 57 1.43

Sheeting m
2

46 1.15 0.0005 0.000621 0.0610 3.79E-05 0.0300 1.86E-05 0.00006 0.0023 9490 21.4516

Ridge cappings 450 mm girth m 6.00

           galvanised m
2

2.70

Transport (100km) tkm

m
3

1.1259 kg 1627.1661
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