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ABSTRACT

In this study near infrared (NIR) spectroscopy was used to discriminate between different muscle types within
each species of selected game animals, and to classify species regardless of the muscle. Muscle steaks from
longissimus thoracis et lumborum (LTL) located at the 6th rib of the carcasses, infraspinatus (IS) and supraspinatus
(SS) located on the forequarter, and biceps femoris (BF), semitendinosus (ST) and semimembranosus (SM) located on
the hindquarter of impala and eland species; and samples from fan fillet (FF), big drum (BD), triangle steak (TS),
moon steak (MS) and rump steak (RS) of ostrich species were scanned with a handheld NIR spectrophotometer in
the spectral range of 908-1700 nm. Spectra were pre-treated with different pre-processing methods and clas-
sification models were developed using partial least squares discriminant analysis (PLS-DA). Classification ac-
curacies were higher when the muscles were grouped according to their anatomical location in the carcass, than
attempting to classify them separately. Classification accuracies ranging from 85.0 to 100% were achieved
throughout, with forequarter muscles yielding the highest classification accuracy rate for both impala and eland
species. Furthermore, when the species were discriminated regardless of muscles, PLS-DA models pre-treated
with SNV-Detrend and Savitzky-Golay 1st derivative yielded accuracies of 97, 81 and 92% for eland, impala and
ostrich, respectively. These results indicate that NIR spectroscopy can be used for the authentication of game
meat, specifically impala, eland and ostrich. Furthermore, it was easier to discriminate species regardless of the
muscle used than different muscles within each species.

1. Introduction

The deception of consumers by retailers selling substituted food
products for economic gain is illegal (DoH, 2014), and in the food in-
dustry it is termed food fraud. As tempting as it may be to retailers or
suppliers, the consequences of food fraud are destructive and may in-
clude damaging the company's reputation (Van Ruth, Luning, Silvis,
Yang, & Huisman, 2018). Food fraud is defined by Spink and Moyer
(2011) as a collective term used to encompass the deliberate and in-
tentional substitution, addition, tampering, or misrepresentation of
food, food ingredients, or food packaging; or false or misleading
statements made about a product, for economic gain.

Meat and meat products are often targets of food fraud, and are
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currently leading the top 5 list of EU food categories of illegal import
fraud examples (Soon & Manning, 2018). Finding horse meat in beef
burgers produced in Ireland in 2013 showed that consumers are un-
doubtedly encountering undeclared animal species in meat products
(O'Mahony, 2013; Walker, Burns, & Burns, 2013). In South Africa,
Cawthorn, Steinman, and Hoffman (2013) found species in beef sau-
sages that were not declared on the product labelling. Thus, the re-
ported and unreported incidents of undeclared labelling of meat pro-
ducts have subsequently raised the consumers' awareness of quality,
traceability and origin of the food they eat (Verbeke & Ward, 2006).
Consumers are very aware of the different muscle types (cuts) and
their retail value, mainly due to quality differences. When a customer
decides which meat species to buy, the next decision is to choose the
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muscle type. In most cases tenderness and selling price tend to influence
this decision. It is then disappointing and fraudulent to purchase what is
thought to be a tender expensive muscle, only to discover it is tough
and likely a low-priced muscle. Thus, mislabelling of food products is a
serious issue that can even potentially affect the country of origin, in
the case of exported products. Proper labelling of meat products is
important to help fair trade and to enable consumers to make informed
choices (DoA, 2015; DoH, 2014). In South Africa, there are regulatory
bodies governing food legislation. The Foodstuff, Cosmetics and Dis-
infectant Act, under the Department of Health (DoH), controls the la-
belling and advertising guidelines of meat and meat products to ensure
consumers are not misled and given false information (DoH, 2014). As
much as there are regulations in place to protect consumers, the food
products need to be verified (authenticated). Food authentication is a
procedure that verifies that food complies with its label description
(Danezis, Tsagkaris, Camin, Brusic, & Georgiou, 2016).

Authenticity issues associated with substitution of meat and its
products are identified by a variety of standard analytical methods
(chromatography, electrophoretic separation of proteins, enzyme-
linked immunosorbent assay (ELISA) procedures and DNA based tech-
niques) available (Cawthorn et al., 2013; Fajardo, Gonzalez Isabel,
Rojas, Garcia, & Martin, 2010; Jonker, Tilburg, Hagele, & de Boer,
2008; Nakyinsige, Man, & Sazili, 2012). However, all of these are te-
dious, costly, require complicated laboratory procedures and hazardous
solvents, need skilled personnel and sample preparation, with most of
them also including a destructive step that damages or lowers the
quality of the product being tested (Kamruzzaman, Sun, ElMasry, &
Allen, 2013; Manley, 2014). Therefore, there is a need of a rapid,
chemical-free method and near infrared (NIR) spectroscopy offers this.

Kamruzzaman, Elmasry, Sun, and Allen (2011) used NIR hyper-
spectral imaging to discriminate lamb muscles (Semitendinosus (ST),
Longissimus dorsi (LD) and Psoas major (PM)) in a wavelength range of
900-1700 nm. They used principal component analysis (PCA) for wa-
velength reduction and linear discriminant analysis (LDA) (Fisher,
1936) to build classification models. The results showed that it was
possible to discriminate between the three lamb muscles with an overall
accuracy of 100%. Similarly, Sanz et al. (2016) discriminated lamb
muscles using hyperspectral imaging in the wavelength range of
380-1028 nm, in a follow-up to the conclusions of Kamruzzaman et al.
(2011) by including an additional muscle type and using more samples.
In their work, they used four different muscle types (LD, ST, PM and
Semimembanosus (SM)) from 30 animals of a different breed to that
Kamruzzaman et al. (2011) used and found that the Linear Least Mean
Squares (LMS) classifier gave the best classification accuracy of
96.67%. They also found that the inclusion of an additional muscle
(SM) made the classification problem more complex. Furthermore,
Alomar, Gallo, Castafieda, and Fuchslocher (2003) segregated different
types of bovine meat and predicted several chemical fractions from two
breeds and three muscles (LD, ST and Supraspinatus (SS)) using NIR
spectroscopy in a wavelength range of 400-2500nm. The results
showed the two breeds were correctly classified with 78.8% accuracy
and the three muscle types yielded 97.8 (LD), 97.7 (SS) and 89.5% (ST)
classification accuacy.

Game meat offers a healthy alternative to red meat consumers, as it
contains low fat and high protein levels (Hoffman, 2007). It is known
that within an animal, different muscles have diverse textural and
chemical properties (Van Ba, Park, Dashmaa, & Hwang, 2014). More-
over, different muscle types differ in their retail price as their quality is
not the same, for example fillet is more expensive than sirloin steak. To
date, no study has been done on rapid techniques to support the
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Table 1
The total number (females and males) of impala, eland and ostrich species and
their average weight (kg).

Species Total number Sex Average Weight (kg)
Females Males

Impala 12 0 12 37.1

Eland 15 7 8 337.3

Ostrich 15 4 11 85.9

authenticity of different muscle types within species of South African
game meat. Therefore, the aim of this study was to investigate the
ability of NIR spectroscopy in discriminating selected game muscle
types and, to discriminate different species irrespective of the muscle
used.

2. Material and methods
2.1. Meat samples

Meat samples were obtained from carcasses of three different game
species. A total of 42 animals from the following species were harvested
from farms in Bredasdorp and Oudtshoorn, South Africa: 12 Impala
(Aepyceros melampus), 15 Eland (Taurotragus oryx) and 15 Ostrich
(Struthio camelus). All of these species were harvested in winter. The
ostriches were semi-domesticated hence their age could be determined
(10 months old), whereas eland and impala were free roaming feeding/
grazing on natural vegetation hence their age could not be determined
at the time of slaughter. The sex of all animals was known and is illu-
strated in Table 1. All animals were harvested according to the standard
operating procedure (Van Schalkwyk & Hoffman, 2010) with ethical
clearance (approval number: SU-ACUM14-001SOP; Stellenbosch Uni-
versity Animal Care and Use Committee). The animals were eviscerated
at abattoirs according to the South African red meat regulations (DAFF
(Department of Agriculture Forestry and Fisheries), 2004; Van
Schalkwyk & Hoffman, 2010), and transported chilled to the meat la-
boratory at the Department of Animal Sciences, Stellenbosch Uni-
versity. After 24-48 h post-mortem, the six muscles were removed from
the impala and eland carcasses. These were longissimus thoracis et lum-
borum (LTL) located at the 6th rib of the carcasses; infraspinatus (IS) and
supraspinatus (SS) located in the forequarter; and biceps femoris (BF),
semitendinosus (ST) and semimembranosus (SM) located in the hind-
quarter of the carcass. For the ostrich, only five commercially important
muscles, (fan fillet (Muscularis iliotibialis cranialis), big drum (Muscularis
femorolibialis medium), triangle steak (Muscularis iliofibularis), moon
steak (Muscularis flexor crusis lateralis) and rump steak (Muscularis
iliotibialis lateralis), were removed from the leg of the birds. It is im-
portant to note that, within the ostrich species there were three geno-
types (South African Black, Zimbabwean Blue and Kenyan Red). Iden-
tification of the muscles was done by an experienced animal
physiologist and verified online (http://bovine.unl.edu/). This in-
formation was in turn used to create categories for each muscle type
and dummy variables, zero or one, were used to indicated presence or
absence during PLS-DA modelling. For example, for category LTL, all
LTL muscles would be assigned a one (belonging) and all other muscles
a zero (not belonging).
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2.2. NIR spectroscopy spectral acquisition

From each carcass, fresh muscles of approximately 2.0-2.5 cm thick
steaks were scanned with a portable MicroNIR™ OnSite spectro-
photometer (Viavi Solutions®, San Jose, CA, USA) over the NIR range of
908-1700 nm. The illumination source of the spectrophotometer in-
cluded two joined vacuum tungsten lamps coupled to a linear variable
filter and a 128-pixel Indium Gallium Arsenide (InGaAs) photodiode
array detector. The InGaAs detector was used to achieve a resolution of
30 um x 250 um/50 ym (< 12.5nm resolution). And, the reflectance
spectra were recorded at 6.2 nm intervals, resulting in 125 data points.
Each muscle steak was scanned in triplicate at different positions at
ambient temperature after allowing a minimum bloom period of
30 min. When scanning, a 2mm thick glass Steriplan petri dish was
placed on top of the meat samples to prevent direct contact of the meat
surface moisture with the instrument. Each spectrum was the average of
100 scans, thus a sample spectrum was recorded in about 0.25-0.5s. An
external white and dark reference standards were scanned every 10 min
during sample collection. The total number of impala samples scanned
were 72 muscles (12 carcasses X 6 different muscles), while the eland's
total samples were 90 (15 carcasses X 6 muscles). For ostrich the total
number of samples scanned were 75 muscles (15 birds X 5 different
muscles).

2.3. Chemical analysis

Moisture, protein and fat content of the game meat steaks were
determined as described by Neethling, Hoffman, & Britz, (2014).

2.4. Warner Bratzler shear force (WBSF)

After scanning, the muscle steaks were placed individually into
plastic bags that were then submerged into a pre-heated water bath
(maintained at 80 °C) for 60 min and then cooled at 4 °C overnight.
Once cooled, the samples were then removed from the plastic bags and
blotted dry using absorbent paper to remove excess moisture. The
cooled cooked meat samples were then used to determine the tender-
ness using a 3345 model Instron Universal Testing Machine (Apollo
Scientific cc, Alberta, Canada) fitted with a Warner-Bratzler blade. Two
scalpels fixed at 1 cm from each other were used to cut through the 2 cm
thick steaks to produce a rectangular prism of 1 cm X 1 cm X 2 cm that
ran parallel with the muscle fibres. Six pieces were removed from each
muscle steak and sheared perpendicular to the fibres’ longitudinal or-
ientation with a Warner Brazler blade. The average of six measurements
was calculated and the value was used to determine the Warner-
Bratzler shear force (N) of the muscle, with a greater force being as-
sociated with tougher meat (Honikel, 1998).

2.5. Multivariate data analysis

The Unscrambler® X version 10.5 (CAMO Software, Oslo, Norway)
and PLS Toolbox (Version 8.6.2, Eigenvector Research, Inc., Manson,
WA USA) data analysis software packages were used to analyse the
spectra. The spectral range was reduced from 908-1700nm to
908-1680 nm to remove the spectral noise segments. As each muscle
was scanned three times at different points, spectra were averaged to
obtain one spectrum per sample.
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2.5.1. Spectral pre-processing

Different pre-processing methods were applied to reduce the scat-
tering effects, baseline shifts and background information (noise) in the
data. For impala, ostrich and the combined species, spectra were first
treated with standard normal variate (SNV) to remove the scatter ef-
fects by centering and scaling each individual spectrum. Detrend
transformation was then applied to reduce the baseline shift and cur-
vature in the spectroscopic data (Barnes, Dhanoa, & Lister, 1989).
Subsequently, for impala and ostrich, SNV-Detrend was followed by
Savitzky-Golay 2nd derivative, 2nd order polynomial, with five
smoothing points; while for combined species, 1st derivative was used.
Savitzky-Golay 1st and 2nd derivative were applied to smooth the noise
fluctuations without introducing distortions to the data, and to expose
the peaks that were not clearly visible (Savitzky & Golay, 1964). For the
eland muscles, the spectra were only treated with SNV and Savitzky-
Golay 2nd derivative, 2nd order polynomial, with five smoothing
points.

2.5.2. Principal component analysis

Principal component analysis (PCA), was performed to explore the
spectral data and to get an overview of correlations among the muscle
types (Cowe & McNicol, 1985; Esbensen, Guyot, Westad, & Houmoller,
2002, pp. 19-74; Wold, 1987). For muscle type discrimination, each
species was analysed separately; and then later the different species
were collectively analysed regardless of the muscles used.

2.5.3. Calibration and validation (test set) samples
The Kennard-Stone (KS) algorithm was applied to separate the data

Table 2
Proximate chemical composition (moisture, fat and protein) (%) and shear force
(WBSF) (N) of impala, eland and ostrich muscles.

Species Muscle Moisture (%) Fat (%) Protein (%) WBSF (N)
Impala LTL 75.5 1.2 229 36.9

BF 75.4 1.6 23.1 44.4

SM 74.9 1.4 23.5 45.9

ST 76.1 1.1 22.6 33.6

IS 76.3 1.9 21.6 28.8

SS 76.1 1.3 22.1 33.7
Eland LTL 75.6 1.2 23.0 97.6

BF 77.8 1.8 20.3 91.5

SM 76.0 1.6 22.4 78.7

ST 77.2 1.4 21.3 77.5

1S 77.3 1.3 21.2 65.5

SS 77.2 1.6 20.8 89.2
Ostrich FF 75.6* 1.36* 20.6* 35.8

RS 76.2% 1.21* 21.4% 56.3

BD 77.0% 0.95* 20.8* 51.9

MS 75.8% 1.44* 21.5% 71.0

TS 77.2% 1.1* 20.7* 46.8
Standard error of - 0.2 0.27 1.6 8.6

laboratory
(SEL)
Abbreviations:  LTL = longissimus  thoracis et lumborum, BF = biceps
femoris, SM = semimembranosus, ST = semitendinosus, IS = infraspinatus,

SS = supraspinatus, FF = fan fillet, RS = rump steak, BD = big drum,
MS = moon steak, TS = triangle steak, WBSF= Warner Bratzler shear force.
*Majewska et al. (2009).



P. Dumalisile, et al.

Food Control 110 (2020) 106981

14
(a) 1422
13
1186
[+
g 1.2 -
8 —1S
5 / LTL
2 SM
<11 976 ———s8
ST
1
o'goa. 951. 994. 1038 1081 1124 1168 1211 1254 1298 1341 1385 1428 1471 1515 1558 1601 1645
Wavelength (nm)
0.04 ( )
0.03 P
A
0.02
o 0.01 \ U | N\
Q | —_—
§ g / /\\ o
I ‘ / - o —T
(=} | \ \ /
3 n - \/ SM
< —SS
-0.01 \ / > ST
‘ 1403
-0.02 )
976
-0.03 /
1155

-0.04
908. 951. 994. 1038 1087 1137 1186 1236 1285 1335 1385 1434 1484 1533 1583 1632
Wavelength (nm)

Fig. 1. Mean spectra of impala selected muscles (BF, IS, LTL, SM, SS and ST) showing the wavelength bands of (a) raw spectra, (b) SNV-Detrend and 2nd derivative
pre-processed spectra Abbreviations: LTL = longissimus thoracis et lumborum, BF = biceps femoris, SM = semimembranosus, ST = semitendinosus, 1S = infraspinatus,

SS = supraspinatus.

into a calibration and validation set (Kennard & Stone, 1969). In this
approach, a subset of samples providing uniform coverage across the
entire data set, including samples on the periphery, are selected. The
method begins by finding the two samples which are farthest apart
using geometric distance, usually Euclidean distance. To add more
samples to the selection set, the algorithm selects from the remaining
samples those with the greatest separation distance from the previously
selected samples. This process is repeated until the required number of
samples, k, have been added to the selection set. In this study, the ca-
libration set was 70% of the original data set and the remaining 30%
was used for validation.

2.5.4. Classification

Partial least squares discriminant analysis (PLS-DA) was used to
develop models for differentiating the muscle types and species, based
on the categories created and the dummy variables assigned, irrespec-
tive of muscle used (Barker & Rayens, 2003; Chevallier, Bertrand,
Kohler, & Courcoux, 2006; Varmuza & Filzmoser, 2009). Venetian
blinds cross-validation was applied to select the optimum number of
latent variables (LVs). Subsequently, the models developed were then
used to predict unknown samples. When the forequarter, hindquarter
and ostrich leg muscles were combined as one class, class modelling
was set to “Class Predict Strict”. In the PLS_Toolbox (Version 8.6.2,
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Fig. 2. Mean spectra of impala, eland and ostrich species showing the wavelength bands of (a) raw spectra, (b) SNV-Detrend and 1st derivative pre-processed spectra.

Eigenvector Research, Inc., Manson, WA USA) software, the option
“strictthreshold” specifies the “predict strict” classification approach
and has a default value of 0.5. This technique reveals only one class that
the model is confident to assign each sample. If no class could be as-
signed to a sample, because the sample's probability is less than the
specified threshold, then the sample will be assigned to class zero (0).
Afterwards, confusion matrices were used to evaluate the individual
models. To interpret the confusion matrix results, percentage classifi-
cation accuracy was calculated using the following equation (Oliveri &
Downey, 2012):
TP + TN

% Accuracy = X 100
TP + TN + FP + FN

where:

TP = True positive (samples belonging to the modelled class, if they

are correctly predicted to be inside the boundary of that class) e.g.
for an LTL class model, true positive samples are LTL samples pre-
dicted as such.

FP = False positive (when samples not belonging to the modelled
class are incorrectly predicted to be inside the boundary of that
class) e.g. in an LTL class model, false positives are samples that are
not LTL predicted as LTL.

TN = True negative (samples not belonging to the modelled class, if
they are correctly predicted to be outside the boundary of that class)
e.g. in an LTL class model, true negatives are samples that are not
LTL, predicted as such.

FN = False negative (when samples belonging to the class being
modelled are incorrectly predicted to be outside the boundary of
that class), e.g. in an LTL class model, false negatives are LTL
samples that are misclassified.
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Fig. 3. (a) PCA scores plot of PC1 vs. PC2 contributing 93% explained variance
of the model showing the clustering of the ostrich muscle types (SNV-Detrend
and 2nd derivative pre-processed spectra). (b) PC1 loadings line plot showing
the bands responsible for the clustering of muscle types. Abbreviations:
FF = fan fillet, RS = rump steak, BD = big drum, MS = moon steak,
TS = triangle steak.

3. Results and discussion
3.1. Physico-chemical analysis

The proximate chemical composition analysis was done to support
the spectral interpretation of the species, and the results are presented
in Table 2. For the ostrich samples, only the shear force values were
analysed from the samples scanned, the proximate analysis values were
from a previous study by Majewska et al. (2009) for comparison pur-
poses.

In this study, a moisture content difference of approximately 2%
was observed throughout the muscle types of the same species. For
impala the moisture ranged from 74.9 to 76.3% where the highest
moisture content was obtained from the IS muscle; for eland the
moisture ranged from 75.6 to 77.8% where the highest was obtained
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showing the clustering of all impala, eland and ostrich muscles irrespective of
the type (SNV-Detrend and 1st derivative pre-processed spectra). (b) PC1 and
(c) PC3 loadings line plots showing the bands responsible for the clustering of
the muscles of these species.

from the BF muscle. Majewska et al. (2009) reported a moisture dif-
ference across the ostrich muscles ranging from 75.6 to 77.2%. In
general, the moisture variation of these species between 70 and 77% is
supported by Hoffman (2007), even though the eland BF muscle was
slightly higher than the other muscles. Likewise, a noticeable protein
variation across the muscle types in both impala and eland species was
observed. However, there was less variation in fat as compared to other
analysis.

It was observed from the eland and impala muscles and also con-
firmed from the literature (Neethling, Hoffman, & Muller, 2016; Van
Heerden, 2018), that the IS muscle is the most tender. Tenderness is a
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is regarded as the other classes not predicted.

Table 3

Confusion matrix obtained with PLS-DA (pre-treated with SNV-Detrend and
2nd derivative) showing muscle types of impala. The true positives, false po-
sitives, true negatives, false negatives and the total number of muscle type used
for the calibration model are presented.

Class

True + (%) False + (%) True - (%) False - (%) n

BF 33.0 0.0 100.0 66.7 9

IS 0.0 0.0 100.0 100.0 11

LTL 57.1 2.3 97.7 42.9 7

SM 57.1 0.0 100.0 42.9 7

SS 33.3 2.4 97.6 66.7 9

ST 57.1 2.3 97.7 429 7
Abbreviations:  LTL = longissimus  thoracis et lumborum, BF = biceps
femoris, SM = semimembranosus, ST = semitendinosus, IS = infraspinatus,
SS = supraspinatus, + = positive, - = negative.

considerable technological parameter used for evaluating the eating
quality of meat from a consumer's perception (Cheng, Nicolai, & Sun,
2017). Neethling et al. (2016) reported the SM muscle as the toughest
of all, and that was confirmed with the impala muscles (Table 2), with
the exception of the eland muscles that showed LTL as the toughest.
Regarding the ostrich muscles, FF showed to be the most tender and MS
was the toughest.

3.2. Characterisation of NIR spectra

The average NIR spectra of impala selected muscles (BF, IS, LTL,
SM, SS and ST) are shown in Fig. 1. The raw spectra (Fig. 1a) of the
different muscles adhere to a similar shape even though there are ab-
sorbance differences, which could be the associated to differences
amongst the muscle types.

In Fig. la, two broad absorption bands are observed at 976 and
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Fig. 6. Class predict strict plot obtained by PLS-DA pre-treated with SNV-Detrend
and 2nd derivative pre-processing method showing the segregation of impala
muscle types (BF, SM, ST, IS, SS and LTL) when hindquarter muscles are combined
as one class, and the forequarter muscles as another. The red dotted line represents
the discrimination line. Any sample that is above the red dotted line is regarded as
the predicted class and those below the red line are regarded as the other classes not
predicted. Samples located at O are unassigned samples.

Abbreviations: LTL = longissimus thoracis et lumborum, BF = biceps femoris,
SM = semimembranosus, ST = semitendinosus, IS = infraspinatus, SS = supraspinatus.
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Table 4

Classification accuracy of PLS-DA models, calibration (Cal) and validation
(Val), for discriminating muscles (when hindquarter (BF, SM and ST), fore-
quarter (IS and SS) and ostrich leg (RS and TS) muscles are combined according
to their anatomical locations) of impala and ostrich species (SNV-Detrend and
2nd derivative pre-processing) and eland (SNV-2nd derivative pre-processing).

Species Class Cal (%) Val (%)
Impala BF, SM, ST 97.8 84.6
IS, SS 100 79.2
LTL 92.9 100
Eland BF, SM, ST 85.5 75.9
IS, SS 92.2 90.4
LTL 89.1 67.7
Ostrich BD 95.5 75.0
MS 88.9 55.3
FF 85.0 70.0
RS, TS 87.5 89.7
Abbreviations:  LTL = longissimus  thoracis et lumborum, BF = biceps

femoris, SM = semimembranosus, ST = semitendinosus, IS = infraspinatus,
SS = supraspinatus, FF = fan fillet, RS = rump steak, BD = big drum,
MS = moon steak, TS = triangle steak.

1422 nm, the bands are related to third and second overtone stretching
of the O-H bond (Barbin, Elmasry, Sun, & Allen, 2012; Elmasry, Igbal,
Sun, Allen, & Ward, 2011) that is associated with the water content of
the samples. Water is the main component of meat (Table 2). In addi-
tion to these, there is a band at 1186 nm that corresponds to the second
overtone C-H stretching bond representing the intramuscular fat
(Cozzolino & Murray, 2004; Ding & Xu, 2000; Osborne, Fearn, &
Hindle, 1993). It is also observed in the raw spectra that IS and SS
(forequarter) muscles overlap throughout the wavelength range, while
SM and ST (hindquarter) muscles overlap only at 1422 nm. A possible
explanation for the overlapping of these muscles might be that they are
close in their anatomical location and functions. Neethling, Hoffman,
and Britz (2014b) reported similar findings on the effect of season on
the chemical composition of male and female blesbok IS and SS mus-
cles. Furthermore, there were noticeable variations between fore-
quarter and hindquarter muscles throughout the spectra. In Fig. 1b
(SNV-Detrend, 2nd derivative pre-processed spectra), there are no
prominent differences between the muscle types observed at bands lo-
cated at 976, 1155 and 1403 nm.

The mean spectra of selected muscle types of eland (BF, IS, LTL, SM,
SS and ST) and ostrich (BD, MS, FF, RS and TS) are presented in the
Appendix, Figs. 1 and 2 respectively. The spectra of eland muscles were
very similar to that of impala muscles regarding the shape, absorption
bands and the fact that the IS and SS muscles were overlapping. Fur-
thermore, the spectra of ostrich muscles also followed a similar pattern
as the impala muscles, except that ostrich had different muscle types. In
addition, there was a noticeable difference between the BD and TS
muscles. It should be noted that all ostrich muscles are from the leg,
unlike other species with muscles from different anatomical locations.

Regarding the mean spectra of impala, eland and ostrich when all
muscles were used, Fig. 2 illustrates that there is a visible difference
amongst impala and the other two species. Furthermore, some
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overlapping between eland and ostrich at different wavelengths was
evident in both the raw (Fig. 2a) and SNV-Detrend and 1st derivative
pre-processed spectra (Fig. 2b). The impala muscles had prominent
bands situated at 963 and 1143 nm. The 963 nm band is related to the
third overtone stretching of an O-H bond (Barbin et al., 2012) asso-
ciated with the moisture content, and the 1143 nm band corresponds to
the second overtone C-H stretching bonds representing the in-
tramuscular fat (Cozzolino & Murray, 2004). Numerous researchers
conducting studies on proximate chemical composition of game meat
have revealed that the male animals have lower fat and higher moisture
contents than females (Von la Chevallerie, 1972; Neethling, Britz, &
Hoffman, 2014a; Neethling, Muller, van der Rijst, & Hoffman, 2018).
Therefore, the difference in intramuscular fat and moisture content of
impala meat compared to the other species might have been caused by
the fact that only male impala animals were slaughtered in this study
(Table 1). Moreover, the eland and ostrich muscles had an overlapping
prominent band situated at 1392nm, which is associated with the
second overtone C-H stretching bond (Cozzolino & Murray, 2004) that
is related to the fat content of the samples. Thus, it was easier to observe
the differences in spectral features of the different species (Fig. 2b) than
to differentiate the spectral features of different muscles within the
same species (Fig. 1b).

3.3. Principal component analysis

Fig. 3a shows the PCA scores plot of ostrich muscles (BD, FF, MS, RS
and TS) pre-treated with SNV-Detrend and 2nd derivative. The first two

principal components (PCs) that explained 93% of the variation, re-
vealed separation only between BD and TS muscles in the direction of
PC1. From the PC1 loadings line plot (Fig. 3b), the bands that were
most influential for the grouping of these muscles are shown. The wa-
velength bands at 1149 and 1366 nm represent the C-H bond that
corresponds to the fat (Osborne et al., 1993). According to Majewska
et al. (2009), BD has the lowest fat content (0.95%) versus TS (1.1%)
with higher fat content, which explains the variation between the two
muscles. Another band that contributes to the clustering is 976 nm
which is related to the third overtone stretching of the O-H bond
(Barbin et al., 2012; Elmasry et al., 2011) associated with the moisture
content of the samples.

Regarding the impala muscles (BF, IS, LTL, SM, SS and ST), the PCA
scores plot of PC1 (73%) versus PC3 (4%), treated with SNV-Detrend
and 2nd derivative pre-processing (Appendix, Fig. 3a), showed two
clusters separating the muscles. Clustering was according to their
anatomical locations. The forequarter (SS and IS) muscles had negative
score values, the back (LTL) muscles had positive scores and, the
hindquarter (BF, ST and SM) muscles were clustered around the origin;
all in the direction of PC3. It was also observed that there was over-
lapping of SS and IS muscles, which was also noticed in the spectra
(Fig. 1a). PC3 loadings line plot (Appendix, Fig. 3b) shows the main
wavelength band responsible for the clustering as 1360 nm. This band,
the C-H bond, corresponds to the fat (Cozzolino & Murray, 2004). The
PCA scores plot and the loadings line plot of eland muscles (Appendix,
Fig. 4) follow the same sequence and explanation as impala, except that
the clustering is in the direction of PC1.
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Fig. 8. Class predict strict plot obtained by PLS-DA pre-treated with SNV-
Detrend, 1st derivative pre-processing method showing the segregation of all
impala, eland and ostrich different muscles. The red dotted line represents the
discrimination line. Any sample above the discrimination line is regarded as the
predicted class and those below the red line are regarded as the other classes
not predicted. Samples located at 0 are unassigned.

Table 5

Percentage accuracy results of PLS-DA models, calibration (Cal) and validation
(Val), for classification of all eland, impala and ostrich muscles regardless of the
muscle type used (SNV-Detrend and 1st derivative, pre-processing).

Species Class PLS-DA
Cal (%) Val (%)
Different species using all muscles Eland muscles 94 97
Impala muscles 85 81
Ostrich muscles 93 92
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Table 6

Confusion matrix obtained by PLS-DA showing impala muscle types (pre-
treated with SNV-Detrend and 2nd derivative) and different species using all
muscles (pre-treated with SNV-detrend and 1st derivative). The true positives,
false positives, true negatives, false negatives and the total number of muscles
of the models are presented.

Category Class True + (%) False + (%) True False n
- (%) - (%)
Impala muscle BF, SM, ST 95.7 0.0 100 4.3 23
types IS, SS 100.0 0.0 100 0.0 20
LTL 85.7 0.0 100 14.3 7
Different species Eland 88.9 1.0 99.0 11.1 63
regardless Impala 72.0 2.6 97.4  28.0 50
of the Ostrich 86.8 1.8 98.2 13.2 53
muscles
+ = positive, - = negative.
Abbreviations:  LTL = longissimus  thoracis et Ilumborum, BF = biceps
femoris, SM = semimembranosus, ST = semitendinosus, IS = infraspinatus,

SS = supraspinatus.

Finally, the PCA scores plot presenting all impala, eland and ostrich
muscles regardless of the muscle type is shown in Fig. 4. PC1 and PC3
explained 90% of the total variance. Impala samples had positive score
values in the direction of PC1, while eland and ostrich had negative and
positive score values, respectively, in the direction of PC3. The bands
responsible for the clustering of impala muscles are shown in PC1
loadings line plot (Fig. 4b). The main band at 1131 nm represents the
C-H bond corresponding to the fat (Osborne et al., 1993), while the
957 nm band represents an O-H bond associated with moisture content.
In contrast, PC3 loadings plot (Fig. 4c) shows the major bands con-
tributing to the clustering of the eland and ostrich muscles. The
1323 nm band was responsible for the clustering of ostrich samples,
while the 1397 nm band was for the eland samples. Both bands re-
presented the C-H bond associated with the intramuscular fat (Osborne
et al., 1993). Additionally, there was some minor overlapping observed
between species.

3.4. Classification methods

Fig. 5 shows the PLS-DA scores plot of the impala muscles (BF, IS,
LTL, SM, SS and ST), pre-treated with SNV-Detrend and 2nd derivative.
Based on cross-validation, five LVs were selected for model calibration
with an explained Y variance of 95.6%. For the BF muscle class, six out
of nine samples were correctly classified, while two ST and one from
each class of LTL, SM, IS and SS muscles were misclassified as BF. For
the ST class, six out of seven muscles were correctly classified, whilst
three BF (also a hindquarter muscle) samples were misclassified as ST.
Misclassification of muscles from the same anatomical location was also
observed in the SM class; where one BF muscle was misclassified as SM
muscles that were 100% correctly classified. The same misclassification
occurred for the forequarter (SS and IS) muscles. However, none was
noticed for the LTL class which had a different anatomical location.
From the confusion matrix table (Table 3), it is apparent that 100% of
the IS muscles were misclassified as SS muscles. This misclassification
contributed to the high percentage error of the model that resulted in
the 50% classification accuracy for the IS muscles (Table 1, Appendix)
of the impala model. The same transpired for the hindquarter (BF, ST
and SM) muscles. Misclassification between the hindquarter muscles
resulted in a low percentage of correctly predicted (true positive) BF
muscles (33%) (Table 3), and low prediction (57.1%) of ST muscles
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(Table 1, Appendix). This means the model cannot be used as a reliable
tool to authenticate these muscles. Similarly, Sanz et al. (2016) re-
ported difficulty in discriminating multiple muscles (four types) of lamb
with hyperspectral imaging. In contrast, Kamruzzaman et al. (2011)
managed to discriminate fewer (three) muscle types of lamb meat and
obtained 100% classification accuracy. The muscle types that
Kamruzzaman et al. (2011) used in their study were also from different
anatomical locations. From these results and previous findings from
other researchers, it was decided to combine the forequarter (IS and SS)
muscles into one class and the hindquarter (BF, ST and SM) muscles
into another.

Fig. 6 displays the prediction plot of impala muscle when hind-
quarter and forequarter muscles were combined. The first four LVs
explained 93.9% of the Y variation and was used for model calibration.
For the hindquarter muscles, one ST muscle was misclassified as LTL,
and one LTL muscle was misclassified as a hindquarter muscle. This is
confirmed by the confusion matrix table (Table 6). Furthermore, none
of the forequarter muscles were misclassified. The best classification
accuracies obtained for these models ranged from 92.9 to 100%
(Table 4). These models were validated externally, with samples that
were not part of the calibration model and gave excellent results ran-
ging from 79.2 to 100% accuracy. Fig. 5 in the Appendix illustrates the
PLS-DA scores plot of eland muscle types pre-treated with SNV-2nd
derivative pre-processing. Similar to the impala muscles, the eland
model could correctly classify the forequarter, hindquarter and LTL
muscles with a classification accuracy rate ranging from 85.5 to 92.2%
(Table 4). When assessing the classification accuracies of these two
species, it was noted that eland is lower than impala. This could have
been caused by the fact that, for this study, there was no variation in sex
for impala samples; hence the higher accuracies compared to eland that
had almost equal number of sexes (Table 1). This effect of sex needs
further investigation.

The PLS-DA scores plot presenting the ostrich muscle types (BD, FF,
MS, RS and TS) pre-treated with SNV-Detrend and 2nd derivative
technique is shown in Fig. 6 of the Appendix. Based on cross-validation,
six LVs were selected for model calibration with an explained Y var-
iance of 98.1%. From the RS muscle class model, it was observed that
the majority of TS muscles were misclassified as RS muscles. The mis-
classification of TS muscles contributed to the lowest percentage of
correctly predicted (true positive) TS samples (18.2%) (Table 2, Ap-
pendix). Subsequently, that resulted to the lowest classification accu-
racy (56.7%) of the TS class of the model (Table 1, Appendix). Anato-
mically, TS and RS muscles are both in the same category of the silver
side muscles of the ostrich thigh. It was then decided to classify these
muscles as the same category, and the class predict strict plot shown in
Fig. 7 is the improved model for ostrich muscles. An explained Y var-
iance of 97.7% described the model calibration selected by six LVs
based on cross-validation. In the BD class model, no BD muscles were
misclassified. It was observed that only one sample from the MS class
was misclassified as the RS/TS class. The same sample from the MS
class was detected again in all other class models. In general, no sam-
ples were misclassified as other classes, rather they were unassigned
(sample either allocated in more than one class or not assigned in any
class) with the exception of this MS muscle. Thus, the MS class was the
only class with the lowest prediction accuracy (55.3%). The confusion
matrix shows no samples were misclassified as BD, FF and MS muscles,
however, only 3.3% of other muscles were misclassified as RS/TS
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(Table 3, Appendix). The classification accuracy obtained for the os-
trich model ranged from 85.0 to 95.5% (Table 4). The different ostrich
genotypes did not show any visible groupings, hence did not have any
influence on the muscle type results. However, the misclassification of
the ostrich muscle types might have been caused by the fact that all of
these muscles are from the leg, thus similar anatomical locations.
Finally, the three (impala, eland and ostrich) species were dis-
criminated regardless of their muscles and the class predict strict plot
pre-treated with SNV-Detrend, 1st derivative pre-processing is shown in
Fig. 8. An explained Y variance of 95.3% described the model calibra-
tion with five LVs. In all of these class models, there is one similarity;
one impala sample was misclassified as eland, one impala was mis-
classified as ostrich and two ostrich samples were misclassified as im-
pala. As much as there was no class model that attained a 100% clas-
sification accuracy, it is however apparent that the models attained
good classification accuracies ranging from 85 to 94% (Table 5) with
the overall classification accuracies obtained ranging from 70 to 96%.
Thus, it has been demonstrated that NIR spectroscopy can discriminate
game meat species irrespective of the muscles used. It was expected that
there would be a substantial difference when the different muscles were
used, since the muscles within each species differ in their anatomical
locations and function (Neethling et al., 2016; Van Heerden, 2018).

4. Conclusions

From this study it was confirmed that it is possible to discriminate
muscle types of game species with classification accuracies ranging
from 85 to 100% using NIR spectroscopy. However, the muscles were
discriminated successfully when they were grouped according to their
anatomical locations (forequarter, back and hindquarter regions). It
was also noted that, muscles that are in the same anatomical location
e.g. IS and SS, can be easy targets for fraudsters since it is not easy to
distinguish them from one another with NIR spectroscopy.
Furthermore, it was easier to classify the different species regardless of
the muscle used than to classify the different muscles within the same
species. Nevertheless, that was expected as the different species also
differ in their DNA. These results reveal the development of classifi-
cation methods based on NIR analysis for the authentication of impala,
eland and ostrich muscles.
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Tables 1-3 and Figs. 1-6 are given in this appendix. The large amount of data generated was placed in a separate appendix to simplify the

discussion section of this paper.

Abbreviations: LTL = longissimus thoracis et lumborum, BF = biceps femoris, SM = semimembranosus, ST = semitendinosus, IS = infraspinatus,
SS = supraspinatus, FF = fan fillet, RS = rump steak, BD = big drum, MS = moon steak, TS = triangle steak, + = positive, - = negative.

Table 1

Percentage accuracies of PLS-DA models showing calibration (Cal) and validation (Val), for the classification of
different muscles of impala and ostrich species pre-treated with SNV-Detrend and 2nd derivative pre-processing

Species Muscle Cal (%) Val (%)

Impala BF 66.7 66.7
Iy 50.0 50.0
LTL 77.4 90.0
SM 78.6 70.0
SS 65.4 64.0
ST 77.4 57.1

Ostrich BD 90.9 62.5
FF 82.2 58.4
MS 85.0 70.0
RS 73.8 100
TS 56.7 50.0

Table 2

Confusion matrix obtained with PLS-DA (pre-treated with SNV-Detrend and 2nd derivative) showing muscle types of ostrich The true positives, false positives, true
negatives, false negatives and the total number of muscle type used for the calibration model are presented.

Class True + (%) False + (%) True - (%) False - (%) n

BD 81.8 0.0 100 18.2 11

FF 66.7 2.3 97.7 33.3 9

MS 70.0 0.0 100 30.0 10

RS 50.0 2.4 97.6 50.0 12

TS 18.2 4.8 95.2 81.8 11
Table 3

Confusion matrix obtained with PLS-DA showing muscle types (when certain muscles are combined according to their anatomical locations) of eland (pre-treated
with SNV-2nd derivative) and ostrich (pre-treated with SNV-Detrend and 2nd derivative). The true positives, false positives, true negatives, false negatives and the

total number of muscle type used for the calibration model are presented.

Species Class True + (%) False + (%) True - (%) False - (%) N

Eland BF,SM,ST 80.0 9.1 90.1 20.0 30
IS,SS 87.0 2.5 97.5 13.0 23
LTL 80.0 1.9 98.1 20.0 10

Ostrich BD 90.9 0.0 100 9.1 11
FF 77.8 0.0 100 22.2 9
MS 70.0 0.0 100 30.0 10
RS, TS 78.3 3.3 96.7 21.7 23
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Fig. 1. Mean spectra of eland muscles (BF, IS, LTL, SM, SS and ST) showing the wavelength bands of (a) raw spectra, (b) SNV-2nd derivative pre-processed spectra.

Fig. 2. Mean spectra of ostrich muscles (BD, MS, FF, RS and TS) showing the wavelength bands of (a) raw spectra, (b) SNV-Detrend and 2nd derivative pre-processed

spectra.
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Fig. 4. (a) PCA scores plot of PC1 vs. PC2 contributing 83% explained variance of the model showing the clustering of the eland muscle types (SNV-2nd derivative
pre-processed spectra). (b) PC1 loadings line plot showing the bands responsible for the clustering of muscle types.
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