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SYNOPSIS 

In regions of moderate seismicity it has been shown that a suitable structural system is 

created when designing the shear wall with a plastic hinge zone at the lower part of the 

wall, with the shear walls resisting lateral loads and all other structural elements 

designed to resist gravity loads.  A suitably stiff foundation is required for the 

assumption of plastic hinge zones to hold true.  This foundation should have limited 

rotation and should remain elastic when lateral loads are applied to the structure. 

Ensuring a foundation with a greater capacity than the shear wall results in excessively 

large shear wall foundations being required in areas of moderate seismicity for 

buildings with no basement level. 

This study aims to investigate the feasibility of reducing the size of shear wall 

foundations in areas of moderate seismicity for buildings with no basement level.  The 

investigation is aimed at allowing shear wall foundation rocking and taking into account 

the contribution of structural frames to the lateral stiffness of the structure.  An example 

building was chosen to investigate this possibility. 

Firstly, lateral force-displacement capacities were determined for a shear wall and an 

internal reinforced concrete frame of this investigated building.  Nonlinear moment-

rotation behaviour was determined for the wall foundation size that would traditionally 

be required as well as for six other smaller foundations. 

The above capacity curves against lateral loads were then used to compile a simplified 

model of the structural systems assumed to contribute to the lateral stiffness of the 

building.  This simplified model therefore combined the effect of the shear wall, internal 

frame and wall foundation. 

Nonlinear time-history analyses were performed on this simplified model to investigate 

the dynamic response of the structure with different wall foundation sizes.  By assessing 

response results on a global and local scale, it was observed that significantly smaller 

shear wall foundations are possible when allowing foundation rocking and taking into 

account the contribution of other structural elements to the lateral stiffness of the 

building. 
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SAMEVATTING 

Daar is reeds getoon dat ŉ voldoende strukturele sisteem verkry word in gebiede van 

gematigde seismiese risiko indien ŉ skuifmuur ontwerp word met ŉ plastiese skarnier 

sone naby die ondersteuning van die muur.  Skuifmure word dan ontwerp om weerstand 

te bied teen laterale kragte met alle ander strukturele elemente ontwerp om gravitasie 

kragte te weerstaan.  Vir die aanname van plastiese skarnier sones om geldig te wees 

word ŉ fondasie met voldoende styfheid benodig.  Só ŉ fondasie moet beperkte rotasie 

toelaat en moet elasties bly wanneer laterale kragte aan die struktuur aangewend word. 

ŉ Fondasie met ŉ groter kapasiteit as dié van die skuifmuur lei daartoe dat uitermate 

groot fondasies benodig word in gebiede van gematigde seismiese risiko vir geboue met 

geen kelder vlak. 

Hierdie studie is daarop gemik om die moontlikheid van kleiner skuifmuur fondasies te 

ondersoek vir geboue met geen kelder vlak in gebiede van gematigde seismiese risiko.  

Die ondersoek het ten doel om skuifmuur fondasie wieg aksie toe te laat en die bydrae 

van strukturele rame tot die laterale styfheid van die struktuur in ag te neem. 

Eerstens is die laterale krag-verplasing kapasiteit van ŉ skuifmuur en ŉ interne 

gewapende beton raam van die gekose gebou bepaal.  Nie-lineêre moment-rotasie 

gedrag is bepaal vir die skuifmuur fondasie grootte wat tradisioneel benodig sou word 

asook vir ses ander kleiner fondasie grotes. 

Die bogenoemde kapasiteit kurwes is gebruik om ŉ vereenvoudigde model van die 

strukturele sisteme wat aanvaar word om laterale styfheid tot die gebou te verleen, op te 

stel.  Hierdie vereenvoudigde model kombineer gevolglik die effek van die skuifmuur, 

interne raam en skuifmuur fondasie. 

Nie-lineêre tydgeskiedenis analises is uitgevoer op die vereenvoudigde model ten einde 

die dinamiese reaksie van die struktuur te ondersoek vir verskillende fondasie grotes.  

Resultate is beoordeel op ŉ globale en lokale vlak.  Daar is waargeneem dat aansienlik 

kleiner skuifmuur fondasies moontlik is deur wieg aksie van die fondasie toe te laat en 

die bydrae van ander strukturele elemente tot die laterale styfheid van die gebou in ag te 

neem. 
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NOTATION 

 

CAPITAL LETTERS 

A  Area 

cA  Concrete area of critical perimeter and columns 

sA  Area of tensile reinforcement 

'
sA  Area of compression reinforcement 

B  Foundation width 

D  Foundation depth 

E  Modulus of elasticity 

sE  Static stress-strain modulus 

'
sE  Plane strain modulus 

F  Force 

I  Moment of inertia 

SI  Steinbrenner influence factor 

cJ  Polar moment of inertia of critical perimeter section around a column 

K  Confinement ratio 

eK  Effective lateral stiffness 

tK  Torsional stiffness 

L  Foundation length 

M  Bending moment 

bM  Base bending moment 

mM  Maximum bending moment 

nM  Nominal yield bending moment 

qLM  Normalized nondimensional bending moment 

RM  Bending moment resistance 

+
RdM  Overstrength bending moment 

ultimateRM ,  Ultimate foundation bending moment resistance 
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uM  Ultimate bending moment 

yM  Yield bending moment 

'
yM  First yield bending moment 

dN  Overstrength normal force 

P  Normal load 

*R  Closest Distance to Fault Rupture 

aS  Spectral acceleration 

dS  Spectral displacement 

paS  Pseudo acceleration 

T  Vibration period 

nT  nth natural vibration period 

bV  Base shear force 

dV  Design base shear force 

+
dV  Overstrength base shear force 

gV  Shear force due to gravity loads 

RV  Shear resistance 

yV  Yield base shear 

 

LOWER-CASE LETTERS 

ga   Peak ground acceleration 

dga ,   Design peak ground acceleration 

c   Viscous damping 

d   Effective depth to tensile reinforcement 

jird −,   Drift ratio between storeys i and j 

1f   Fundamental frequency measured in Hz 

'
cf   Unconfined concrete compressive strength 

'
ccf   Confined concrete compressive strength 

dcf ,   Design concrete cube compressive strength 
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meancf ,   Mean concrete cube compressive strength 

cylmeancf ,,  Mean concrete cylinder compressive strength 

cuf   Design concrete compressive strength 

'
l

f   Effective confining stress of concrete 

yf   Yield strength 

dyf ,   Design yield strength of steel 

effyf ,   Effective yield strength 

hyf ,   Yield strength of transverse reinforcement 

meanyf ,   Mean yield strength of steel 

g   Gravitational acceleration 

h   Height 

k   Stiffness 

sk   Modulus of subgrade reaction 

l   Length 

wl   Shear wall web length 

m   Mass 

q   Behaviour factor (response factor) / Soil pressure 

uq   Soil bearing capacity 

t   Time 

wt   Shear wall web thickness 

( )tu   Relative lateral displacement 

( )0stu   Maximum value of static displacement 

cv   Shear resistance of concrete 

Rv   Total shear resistance 

sv   Resistance of shear reinforcement 

x   Dimension parameter 

z   Internal lever arm of a reinforced concrete section 
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GREEK CAPITAL LETTERS 

nΓ   nth modal participation factor 

∆   Global (roof) displacement 

d∆   Design roof displacement 

p∆   Plastic displacement 

rel∆   Relative roof displacement 

u∆   Ultimate global (roof) displacement 

y∆   Global yield (roof) displacement 

Χ   Reduction factor for slab width 

 

GREEK LOWER-CASE LETTERS 

eα   Exterior effective slab width factor 

iα   Interior effective slab width factor 

γ   Specific weight 

cγ   Specific weight of reinforced concrete 

mγ   Partial material safety factor 

sγ   Partial material safety factor for steel / specific weight of steel 

δ   Displacement 

ccε   Concrete strain at peak stress 

cuε   Ultimate concrete compressive stain 

sε   Steel material strain 

smε   Steel material strain at maximum tensile stress 

suε   Steel material fracture strain 

uε   Ultimate steel material strain 

yε   Yield strain 

η   Correction factor 

θ   Rotation 

µ  Ductility / Poisson’s ratio for soil / Strain hardening parameter / Mean 

value 
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∆µ   Displacement ductility 

ν   Poisson’s ratio 

ξ   Damping ratio (percentage of critical damping) 

*
nξ   Modal damping ratio of the nth mode 

ρ   Density 

sρ   Transverse reinforcement ratio 

σ   Normal stress / Standard deviation 

yσ   Yield stress 

φ   Curvature 

iφ   Component of ith mode shape 

{ }iφ   ith mode shape 

{ }nφ   nth eigenvector 

uφ   Ultimate curvature 

yφ   Yield curvature 

'
yφ   First yield curvature 

ϕ   Internal soil friction angle 

1ω   Fundamental natural circular frequency 

Dω   Damped circular natural frequency 

nω   nth natural circular frequency 
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ACRONYMS 

 

ADRS Acceleration-Displacement Response Spectra 

ATH Acceleration Time-History 

CP Collapse Prevention Performance Level 

CQC Complete Quadratic Combination Rule 

DL Permanent Loads 

EL Earthquake Loads 

FEMA Federal Emergency Management Agency 

IO Immediate Occupancy Performance Level 

LC Load Combination 

LFRS Lateral Force Resisting System 

LL Imposed Loads 

LS Life Safety Performance Level 

MDOF Multi Degrees of Freedom 

NEHRP National Earthquake Hazard Reduction Program 

NLTHA Nonlinear Time-History Analysis 

PEER Pacific Earthquake Engineering Research Centre 

PGA Peak Ground Acceleration 

SDOF Single Degree of Freedom 

SLS Serviceability Limit State 

SRSS Square Root of Sum of Squares Combination Rule 

STD DEV Standard deviation 

ULS Ultimate Limit State 
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Accelerogram Ground acceleration recorded by strong-motion accelerographs. 

Campbell’s GEOCODE Symbol to describe different soil types 

Classical damping 
Diagonal damping matrix resulting in uncoupled differential 

equations in modal coordinates. 

Critical damping 
The smallest damping coefficient that inhibits oscillation 

completely. 

Ductility The ability of structural members to deform inelastically. 

Equal displacement approximation Equal displacement of elastic and inelastic capacity curves. 

Equal energy approximation 
Equal area under the elastic and inelastic capacity curves 

resulting in the same energy of the systems. 

Mode shape 
The expected displacement shape of a natural mode of 

vibration. 

Overstrength 
Ratio of effective (mean) strength to the design strength of an 

element. 

Participation factor 
The contribution of a natural vibration mode to the dynamic 

response of a system. 

Response spectrum 

A plot of the maxima of the acceleration response of SDOF 

systems with various natural periods when subjected to an 

earthquake ground motion. 

Soft storey 
A column sway-mechanism developing in the lower storey in a 

building. 

Winkler soil model 

Foundation model when foundation flexural rigidity is taken 

into account modelling the foundation as a beam on an elastic 

foundation. 

100% foundation 
Foundation size required to resist the full shear wall 

overstrength bending moment 
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Chapter 1 

 

1 INTRODUCTION 
 

 

1.1 Background 

Reinforced concrete structures consisting of flat slabs, columns and shear walls are 

common structural systems in many parts of the world.  These structures are usually 

designed with the shear walls resisting all lateral forces which can be either wind or 

seismic loads.  The flat slabs and columns are designed to resist only gravity loads. 

In regions of moderate seismicity it has been shown that a suitable structural system is 

created when designing the shear wall with a plastic hinge zone at the lower part of the 

wall with the shear walls resisting lateral loads and all other structural elements 

designed to resist gravity loads.  The behaviour of the columns and flat slabs then needs 

to be verified against lateral drift criteria and the possibility of punching shear failures 

in flat slabs at slab-column connections. 

For the assumption of plastic hinge zones at the bottom of shear walls to hold true a 

suitably stiff foundation is required.  This foundation should have limited rotation and 

should remain linear elastic when lateral loads are applied to the structure.  Buildings 

with at least one basement level may provide such a sufficiently stiff foundation to a 

shear wall. 

If a building has no basement level, the stiff support to the shear wall will have to be 

provided by the foundation.  Shear walls designed to resist seismic loads lead to 

significantly larger foundations than with wind loading as the dominant lateral load 

condition depending on the height of the building and the number of shear walls in the 

building. 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 1:  Introduction 22 
 

J. E. van der Merwe  University of Stellenbosch 

Traditionally the wall foundation is designed to have a greater capacity than the shear 

wall to ensure that damage does not occur in the footing where damage is difficult to 

assess and repair. 

The result is that excessively large shear wall foundations are required even in areas of 

only moderate seismicity. 

 

1.2 Aim of the study 

This study aims to investigate the possibility of reducing the size of shear wall 

foundations in areas of moderate seismicity for buildings with no basement level.  The 

investigation is aimed at allowing shear wall foundation rocking and taking into account 

the contribution of structural frames, consisting of columns and flat slab, to the lateral 

stiffness of the structure. 

The shear wall, rocking wall foundation and the structural frame will therefore work 

together to resist the seismic loading on the building with the main mechanism being 

the rocking motion of the wall foundation.  Such a reduction in shear wall foundation 

can potentially lead to a significant reduction in cost. 

 

1.3 Methodology of study 

The methodology of this study is set out graphically in Figure 1-1. 

For the purpose of the investigation an example building was set up and was used for all 

comparative analyses.  The example building is a flat slab structure with shear walls 

resisting lateral forces and no basement level.  Based on a conventional design 

approach, all required reinforcement was calculated as well as the required size of the 

wall foundation. 

The capacity of structural elements could be calculated taking into account the amount 

of reinforcement, dimensions of the elements, as well as the material properties.  Failure 

criteria, in terms of structural capacity and material response, were defined for the 

numerical model. 
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Figure 1-1:  Investigation methodology 
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First, nonlinear static pushover analyses were performed on structural systems to 

determine their lateral force-displacement behaviour.  These analyses were performed 

on structural systems assumed to contribute to the lateral stiffness of the building, 

being: 

o A wall foundation. 

o An internal frame consisting of slab and column elements. 

o Either a shear wall or an edge frame consisting of a shear wall and the slab and 

column elements in the plane of the shear wall. 

Furthermore, the nonlinear behaviour of the wall foundation was determined taking 

uplifting of the foundation and yielding of the underlying soil into account.  For the 

purpose of the investigation foundation sizes were chosen, dimensioned with 0%, 20%, 

40%, 60%, 80% and 100% of the shear wall overstrength bending moment applied to 

the foundation.  Even the foundation size obtained by applying no bending moment will 

provide a nominal amount of bending moment resistance.  It was therefore decided to 

investigate a seventh wall foundation support where no bending moment resistance is 

provided, therefore providing a pinned support to the shear wall. 

Finally the three systems contributing to the structural system of the building were 

incorporated into a simplified finite element model.  The nonlinear behaviour of the 

systems was modelled and several time-history analyses were performed on the system.  

Results from these analyses were then compared to limiting criteria. 

 

1.4 Overview of the document 

The literature review investigating previous research and publications on topics of 

relevance to this investigation is presented in chapter two.  Important concepts that must 

be understood for this investigation are also presented in this chapter. 

Chapter three discusses the example building that was used for all comparative 

analyses.  This includes determining actual and design material properties as well as 

determining performance criteria for the various structural members. 
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Chapter four present the numerical modelling used to determine the nonlinear stiffness 

of the various superstructure systems.  The software that was used to perform the 

nonlinear static pushover analyses is also discussed.  This chapter also explains 

modelling assumptions that were made and shows the resulting capacity curves. 

The procedure followed to determine the nonlinear response of the various foundation 

sizes, is set out in chapter five.  Soil and foundation properties that influence the 

response of the foundations are also described in this chapter. 

Seven ground motions were used to perform nonlinear time-history analyses.  The 

procedure of selecting appropriate ground motions and scaling them to the relevant site 

and structure properties, are discussed in chapter six. 

Chapter seven presents the nonlinear modelling of the combination of the various 

structural systems.  Simplified models were used to represent these systems and the 

procedure followed to model the nonlinear lateral stiffness of the components is 

discussed. 

Results from the nonlinear time-history analyses are provided in chapter eight and the 

assessment of the results on a local and global level are discussed. 

Finally, conclusions and recommendations are made in chapter nine.  This includes 

conclusions drawn from the assessment of the response quantities as well as 

recommendations for possible further research. 
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Chapter 2 

 

2 LITERATURE REVIEW 

 

This chapter presents a literature review of the following topics: 

o A background into the causes of seismic activity as well as basic seismic design 

philosophy. 

o Important concepts of seismic design. 

o Methods of seismic analysis with a detailed discussion of the analysis methods 

used in this study. 

o Different proposed methods for the bilinear approximation of capacity curves. 

o The various effective slab width models proposed by different researchers. 

o The effect of lateral loading on flat slab-column connections. 

o Previous research regarding rigid foundation rocking. 

o Material properties of confined concrete. 

 

2.1 Background 

A short discussion is provided into the causes and effects of earthquakes as general 

background to the philosophy of seismic engineering.  An understanding of structural 

systems that can be used to resist the effect of earthquakes as well as the basic design 

philosophy are crucial in deciding on structural systems that contribute to the lateral 

stiffness of building structures. 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2:  Literature review 27 
 

J. E. van der Merwe  University of Stellenbosch 

2.1.1 Causes of seismic activity 

Seismic activity can be divided into natural seismic activity and artificial seismic 

activity.  Natural seismic activity can be caused by the relative movement of tectonic 

plates, volcanic activity and the collapse of natural underground cavities.  Artificial 

seismic activity can be caused by blasting due to mining activity as well as nuclear 

blasting. 

According to Tarbuck and Lutgens an earthquake is the vibration of earth produced by 

the rapid release of energy [1].  Most often natural seismic activity is caused by the 

relative movement between tectonic plates on the earth’s crust.  The earth is divided 

into roughly fifteen tectonic plates that can move relative to each other along what is 

called fault boundaries.  Figure 2-1 shows these tectonic plates. 

 

Figure 2-1:  Tectonic plates 

These tectonic plates move relative to each other in four ways causing shockwaves to 

travel through the crust of the earth.  Figure 2-2 shows these four different relative 

movements [2]. 
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Figure 2-2:  Fault mechanisms 

2.1.2 Natural versus mining induced seismic activity 

Regions of seismic risk in South Africa are divided into two types of zones.  Zone I 

refers to regions of low natural seismic activity, whilst zone II refers to regions of 

mining-inducing seismic activity.  Figure 2-3 shows these regions [3]. 

 

Figure 2-3:  Seismic zones of South Africa [2] 
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In 2003 the Council for Geoscience released a contour map of nominal peak ground 

acceleration (PGA) for a 10% probability of occurrence in 50 years and is shown in 

Figure 2-4 [4]. 

Nominal peak ground 
acceleration (g) for 10% 

in 50 years
(Council for Geoscience

2003)

 

Figure 2-4:  Nominal peak ground acceleration for South Africa [4] 

From the above two figures it is clear that ‘n larger peak ground acceleration is expected 

in zones of mining-inducing seismic activity than for zones of moderate natural seismic 

activity.  The effect of natural seismic activity and mining induced seismic activity 

differs and as a result the structural response of buildings to the two different sources of 

seismic activity also differs. 
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Figure 2-5:  Structural response to seismic activity [2] 

As can be seen from Figure 2-5 the normalized spectral displacement for mining 

induced seismic activity has a peak value at a low natural vibration period.  The peak 

value of spectral displacement for natural seismic activity occurs at higher natural 

vibration periods.  Increasing building height leads to an increasing value for the natural 

vibration period of a building and therefore it can be stated that mining induced seismic 

activity only significantly affect low rise building structures.  Natural seismic activity 

will therefore have a more severe effect on medium to high-rise buildings [2]. 

2.1.3 Structural systems 

All structural elements in a building are designed to support gravity loads.  Buildings 

may however also be loaded laterally due to the effect of wind and earthquakes.  The 

significance of the effect of these lateral forces increases with increasing building 

height.  Lateral loading according to seismic criteria are usually more severe than the 

effect of wind loads for reinforced concrete buildings.  For this reason it is important 

that structural systems be identified that will provide lateral stiffness and strength to the 

building structure. 

Various different structural systems exist to ensure the seismic resistance of a building.  

These systems are discussed in the following paragraphs. 
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Single or coupled shear walls 

These structural systems rely on reinforced concrete shear walls to provide lateral 

resistance to the building.  Shear walls are also commonly known as structural walls, 

since the flexural behaviour of these walls are more important than their shear 

behaviour.  Lateral forces usually govern the design of shear walls and therefore gravity 

load effects on these walls are seldom significant.  Other structural elements in the 

building are assigned to carry gravity loads and the contribution of these elements (such 

as flat slabs, columns and beams) to the lateral stiffness of the building is usually 

neglected [5] [2]. 

Moment resisting frames 

Multistorey reinforced concrete buildings often consist of frames with columns, floor 

slabs and beams.  The connections between these elements are often referred to as rigid 

joints when designed to transfer bending moments.  These frames are designed to carry 

gravity loads whilst also providing lateral stiffness to the building in any direction [5]. 

Dual systems 

Dual building systems consist of reinforced shear walls and moment resisting frames 

that interact to provide lateral stiffness to the building as one system.  Each structural 

element is also designed to carry its own share of gravity load.  These systems are also 

termed hybrid or wall-frame structures [5]. 

These systems combine the stiffness, strength and cost effectiveness of shear walls with 

the large deformation capacity and ductility of moment resisting frames, which can 

provide lateral stiffness in case of shear wall failure.  Beams, floor slabs and columns 

are used to carry most of the gravity load, whilst the capacity of the columns is utilized 

to resist the lateral forces in both horizontal directions [7]. 

2.1.4 Capacity design philosophy 

Ensuring ductile behaviour in structures requires that yield capacity is reached first in 

ductile structural elements rather than in brittle ones.  Capacity design ensures that 

brittle elements are designed to be strong enough to ensure that failure occurs in the 

ductile elements [6]. 
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These failures are closely linked to energy dissipation within the structure.  In the 

capacity design of structures, specific elements of the primary lateral force resisting 

system are chosen and designed and detailed for energy dissipation under severe 

imposed deformations.  The critical regions of these elements, termed plastic hinges, are 

detailed to ensure inelastic flexural behaviour with sufficient resistance to avoid shear 

failure.  All other structural elements are provided with strength greater than that 

corresponding to development of maximum feasible strength in the potential hinge 

regions to avoid failure of these elements [5]. 

It is therefore necessary for brittle elements to be strong enough to withstand the forces 

induced by yielding of the ductile members, allowing a suitable margin to give a high 

level of confidence that the brittle elements will not reach their failure loads.  Brittle 

elements should therefore be stronger than the actual strength of the plastic regions.  

This strength almost always exceeds the minimum code requirement due to the 

rounding up of member dimensions or reinforcement bar diameters as well as partial 

safety factors for materials [6]. 

Refer to [5] for a description of capacity design. 

 

2.2 Methods of seismic analysis 

Various methods exist for the seismic design and analysis of buildings.  These methods 

can be divided into force-based and displacement-based methods. 

Seismic design of structures has traditionally been based on the inertia forces that are 

caused by earthquakes.  One of the main reasons for this design choice is that other 

actions such as dead and live loads are considered in this manner.  Structural elements 

are therefore safe if their capacity exceeds the applied loads. 

Displacement-based seismic design of structures is not yet codified and hence, not used 

in this study. 
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2.2.1 Overview of seismic analysis methods 

Table 2-1 gives a summary of the different available methods of force-based design and 

analysis in the order of increasing complexity [2]. 

 

Table 2-1:  Methods of seismic analysis 

 

Equivalent 

lateral force 

method 

Response 

spectrum 

method 

Nonlinear static 

analysis 

Nonlinear time-

history analysis 

Dynamic model 
Linear SDOF 

system 

Linear MDOF 

system 

Nonlinear SDOF 

system 

Nonlinear 

MDOF system 

Geometric 

model 
2D 2D or 3D 2D 2D or 3D 

Material model Linear Linear Nonlinear Nonlinear 

Damping model Viscous Viscous Viscous 
Viscous and 

hysteretic 

Modes of 

vibration 

considered 

Fundamental 

mode only 
All modes 

Fundamental 

mode only 
- 

Consideration 

of torsion 

Amplification 

factor 
Linear 

Amplification 

factor 
Nonlinear 

Consideration 

of material 

nonlinearities 

q-factor q-factor 
Nonlinear 

material model 

Nonlinear 

material model 

Seismic action Design spectrum Design spectrum Design spectrum Time-history 

Output 

Sectional forces 

and 

deformations 

Sectional forces 

and 

deformations 

Local duct. 

demand, 

sectional forces 

and deformation 

Local duct. 

demand, 

sectional forces 

and deformation 

Applicability 
Regular 

buildings only 
All buildings 

Regular 

buildings only 
All buildings 
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Typical 

application 
Design Design 

Assessment of 

existing 

buildings 

Assessment of 

new and existing 

buildings 

Effort Low Moderate Moderate Large 

Methods of analysis that were used in this study are discussed in detail in the following 

sections. 

2.2.2 Modal response spectrum method 

The response spectrum method can be implemented if only the maximum response of a 

structure to an entire time-history is of interest.  According to Booth and Key [6] this 

method involves calculating the principal elastic modes of vibration of a structure and 

then calculating the maximum responses in each mode from a response spectrum. 

As first step in the response spectrum method the modal quantities of the structure 

should be determined.  Resulting from an eingenvalue analysis are the natural circular 

frequencies (ωn), natural periods of vibration (Tn), the natural mode shapes ({φn}), as 

well as the modal participation factors (Γn). 

In order to implement the modal response spectrum method it is required to compute the 

response spectrum that applies to the desired level of seismic excitation.  Values for the 

spectral displacement and spectral acceleration that corresponds to the calculated natural 

frequencies can be determined using this response spectrum. 

It is important to note that the maximum displacement vector for different modes does 

not occur at the same instant and for this reason it is impossible to calculate the 

maximum response exactly.  A detailed discussion of methods to determine an estimate 

of the total maximum response from the maximum modal responses can be found in [8]. 

Number of modes to consider 

Eurocode 8 [7] prescribes that enough modes of vibration should be taken into account 

that will result in a cumulative effective modal mass of 90% of the total mass of the 

structure in the direction of the desired response.  In other words, N modes should be 

taken into account that will result in a cumulative modal participation factor of 0.9. 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2:  Literature review 35 
 

J. E. van der Merwe  University of Stellenbosch 

2.2.3 Nonlinear static pushover analysis 

Pushover analyses are frequently utilised to estimate the horizontal capacity of 

structural systems.  The conventional static pushover analysis is applicable in situations 

where the dynamic response of a structure is not significantly affected by the levels of 

deformation caused by the seismic action [9].  For this type of analysis the pattern of 

horizontal loading can be assumed to be constant.  This analysis method was used to 

determine the lateral force-displacement behaviour of the superstructure systems that 

were investigated. 

According to Krawinkler and Seneviratna [10] the static pushover analysis is becoming 

a popular tool for the evaluation of the seismic performance of both existing and new 

structures.  They also stated that the purpose of the static pushover analysis is to 

evaluate the performance that can be expected from a structural system by first 

estimating its strength and deformation demands in design earthquakes by means of a 

static inelastic analysis and then comparing these demands to the capacities of the 

structure.  This analysis can provide information on the following: 

o Force demands on brittle elements in the structural system such as shear forces 

at beam-column connections. 

o Estimation of deformation demands for elements that are required to undergo 

inelastic deformation in order to dissipate energy. 

o Influence of strength deterioration of individual elements on the behaviour of the 

structural system. 

o Identification of critical regions with regard to deformation demands that will 

have to be taken into account when detailing the structure. 

o Estimation of interstorey drift. 

Typically structural systems such as shear walls, moment resisting frames etc. will be 

required to resist a certain design base shear.  In order to perform a static pushover 

analysis the base shear force should be distributed over the height of the lateral load 

resisting system.  The structure is loaded with constant gravity loads and incrementally 

increasing lateral loads which are applied at positions of concentrated mass of the 

system.  According to the designers’ guide to EN 1998-1 and EN 1998-5 [7] these 

increasing lateral load simulates the inertia forces induced by a single horizontal 
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component of the seismic action.  It is also stated in this document that this method is 

therefore essentially an extension of the lateral force method of linear analysis into the 

nonlinear regime. 

No single load pattern will be able to capture the variations in the local demands in 

certain structural elements during a design earthquake and for this reason the Eurocode 

8 prescribes that two lateral load distribution patterns must be used: 

1. A uniformly distributed lateral load pattern.  This corresponds to uniform 

unidirectional lateral acceleration at every level where the lateral forces are 

applied. 

2. A modal pattern that depends on the type of linear analysis applicable to the 

structural system.  In the case of structures that comply with the requirements of 

the lateral force analysis method, an inverted triangular unidirectional loading 

pattern such as the one used in the lateral force analysis method can be used. 

Base shear force
 

Figure 2-6:  Lateral force distribution patterns 

Figure 2-6 shows the position of concentrated mass of a shear wall loaded with a certain 

base shear and the two lateral load distribution patterns as described above.  It is also 

stated in [7] that the most unfavourable result of the pushover analyses using the two 
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standard lateral load distribution patterns should be adopted.  Unless perfect symmetry 

exists about an axis orthogonal to that of the seismic action component considered, each 

lateral load pattern should be applied in both directions and the most unfavourable result 

should be used. 

Increasing lateral load will invariably lead to an increase in lateral displacement of the 

structure.  Resulting from the static pushover analysis is a relationship of increasing 

base shear (and therefore an increasing lateral load at positions of mass concentration) 

and lateral displacement of the structure, typically measured at roof level.  As this 

analysis is carried out into the nonlinear regime this curve is one of decreasing slope.  

The resulting lateral force-displacement behaviour is used in the capacity spectrum 

method, discussed in section 2.2.6. 

Krawinkler and Seneviratna [10] identified certain aspects that are important for the 

static pushover analysis to be applicable.  They found that most successful static 

pushover analyses were limited to structures with about six stories or less in which 

inelasticity was distributed rather uniformly over the height of the structure.  Low rise 

structures are largely unaffected by higher mode shapes and it was found that this 

analysis will most likely provide a good estimation of global as well as local inelastic 

deformation demands for structures that vibrate primarily in the fundamental mode. 

It was the above authors’ opinion that the static pushover analysis can be used for all 

structures but should be complemented with other evaluation procedures if higher 

modes are expected to influence the dynamic response of the structure under seismic 

action.  Additional analyses that can be used for this purpose are inelastic dynamic 

analyses with a suitable number of ground motions, and modal analyses using the 

unreduced design spectrum and a suitable modal contribution procedure such as SRSS 

and CQC. 

As stated previously the capacity curve that results from the static pushover analysis is a 

nonlinear relationship of base shear and lateral displacement of the structure.  The slope 

of the nonlinear graph decreases with decreasing lateral stiffness of the system as 

cracking of concrete, spalling of cover concrete and other inelastic deformation occur.  

It is convenient to approximate the capacity curve with a curve consisting of lines of 
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constant slope.  Usually a bilinear approximation is made of the curve as will be 

discussed in section 2.3. 

2.2.4 Nonlinear adaptive pushover analysis 

Nonlinear adaptive pushover analysis is another way of determining the capacity of a 

structural system to lateral loading.  This type of analysis is available in the seismic 

software package SeismoStruct [9].  According to the user manual of this program the 

nonlinear static pushover analysis suffers from an inability to account for the effects that 

the progressive degradation of stiffness has on the dynamic response characteristics of 

structures typically when subjected to strong earthquake motion.  Nonlinear static 

pushover analysis assumes fixed lateral loading patterns and therefore ignores the 

potential redistribution of lateral loads that can occur due to the progressive degradation 

of stiffness.  Degradation of stiffness usually leads to an elongation of the period of the 

structure and consequently changes the modal characteristics thereof.  The resulting 

change in dynamic response is therefore not taken into account in the static pushover 

analysis. 

From the above discussion it is clear that the nonlinear static pushover analysis does not 

yield a good estimation of the capacity of a structure when progressive stiffness 

degradation is expected to be prominent.  Contrary to the static pushover analysis the 

lateral loading pattern in the adaptive pushover analysis is not kept constant but updated 

during every load step in the analysis according to the modal shapes and participation 

factors that is obtained from an eigenvalue analysis that is performed at every load step 

of the analysis. 

This type of analysis is especially appropriate to structures where stiffness irregularities 

exist and where higher mode shapes can be expected to play an important role in the 

dynamic response of the structure.  The building investigated in this study is regular in 

plan and elevation and therefore it was concluded that this method of analysis would not 

be required. 

2.2.5 Nonlinear time-history analysis 

As stated in Table 2-1 nonlinear time-history analysis can be used to analyse both new 

and existing structures.  This method of analysis is however computationally expensive 
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but with increasing computing power and more sophisticated software this method of 

analysis is being used more frequently.  According to [6] the use of nonlinear time-

history analysis was effectively mandatory for the seismic design of tall buildings in 

Japan since the 1980s. 

It is stated in [5] that this method is the most sophisticated level of analysis available to 

predict design forces and displacements due to seismic loading.  This method involves a 

stepwise solution through time of the MDOF equations of motion that represents the 

response of a MDOF structure to a seismic event. 

The designers’ guide to EN 1998-1 and EN 1998-5 [7] states that, unlike modal 

response analysis, which provides only estimates of the peak response of a MDOF 

system, the nonlinear time-history analysis provides peak response quantities that are 

exact, assuming that the ground motion used is reliable and applicable to the site 

conditions of the investigated structure.  Eurocode 8 prescribes that the analysis should 

be based on time-histories of ground motion that conforms on average to the 5% 

damping elastic response spectrum defining the seismic action. 

Nonlinear time-history analyses are very sensitive to the ground motion that is used and 

the following aspects should be considered: 

Recorded vs Synthetic time-histories 

According to Bommer and Acevedo [11] ground motion data sets can be divided into 

three main groups:  artificial spectrum-compatible accelerograms generated using 

software such as SIMQKE [12], synthetic accelerograms and recorded accelerograms. 

Artificial spectrum-compatible ground motions are generated by generating a power 

spectral density function from a smoothed response spectrum.  Sinusoidal signals with 

random phase angles and amplitudes are derived, summed and matched to the smoothed 

response spectrum.  The advantage of this method is that it generates ground motions 

that are almost exactly compatible to the smooth elastic design spectrum.  Bommer and 

Acevedo [11] stated that the problem with these ground motions is the excessive 

amount of cycles of strong motion.  This results in the ground motion having 

unreasonably high energy content. 
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Synthetic ground motion is generated from seismological source models and accounts 

for path and site effects of the earthquake event due to the geological characteristics of 

the location of interest.  Ground motion of this type suffers from two major drawbacks 

according to Bommer and Acevedo [11].  A lot of parameters are required to 

characterise the earthquake source and therefore the engineer would have to engage the 

services of specialist engineers in the field of engineering seismology.  The 

determination of the required source parameters also carries a high level of uncertainty. 

Various recorded earthquake ground motion data sets are available from the website of 

the University of California in Berkeley [13].  Data of each event are available as 

acceleration time-histories (ground acceleration vs time) and response spectra for 

various damping ratios (spectral acceleration vs vibration period).  Information 

regarding the geological and seismological conditions at the location of measurement is 

also supplied and can be used to choose appropriate ground motion data as will be 

discussed later. 

Selection of appropriate ground motion 

In this study seven ground motions were used to analyse the selected building.  For this 

reason the selection of appropriate ground motion is discussed here. 

Recorded ground motion should be chosen that are representative of the geological and 

seismological conditions at the location of the structure under consideration.  The 

selection of appropriate ground motion records is important in obtaining accurate 

results.  Dhakal, Mander and Mashiko [14] established a method to identify critical 

ground motions to be used in physical testing to assess different levels of seismic 

performances.  A collection of twenty ground motion records, measured in the United 

States, were chosen to represent a location in New Zealand.  Two important parameters 

that were considered were the soil type and the distance from the source to the site 

where the ground motion is measured. 

It is also important that the response spectrum of the recorded ground motion is 

representative of the elastic response spectrum [15].  A good choice of recorded ground 

motion should therefore have a response spectrum with peak values in the same period 

range as that of the elastic response spectrum of the structure.  This can be explained by 

comparing Figure 2-7 and Figure 2-8.  In Figure 2-7 the period range of maximum 
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acceleration values of the response spectrum of the recorded ground motion differs from 

that of the elastic response spectrum.  As the period range of large accelerations is not 

representative of the structure for which the elastic response spectrum was derived, this 

ground motion is not a good choice for a time-history analysis of the structure.  In 

Figure 2-8 the period range of large acceleration values falls in the same range as that of 

the elastic response spectrum and therefore this ground motion would be a good choice 

for a time-history analysis of the structure provided that the soil conditions are also 

representative of that at the site of the structure used for analysis.  Appropriate scaling 

factors for the ground motion histories are determined by scaling ground motion 

response spectra to the elastic response spectrum within a vibration period range 

discussed in the following section. 

 

Figure 2-7:  Bad comparison 
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Figure 2-8:  Good comparison 

Scaling of ground motion data 

Once appropriate ground motion data sets are chosen, the accelerograms (ground 

acceleration vs time) should be scaled as these data sets may have a wide variety of 

peak ground acceleration.  Various different authors have proposed methods to scale 

recorded ground motion data.  All of the methods have one thing in common:  the 

ground motion data sets are scaled by a constant factor throughout to fit the elastic 

response spectrum.  The factor required to scale the ground motion to the elastic 

response spectrum will not necessarily be the same as the factor required in order to 

scale the accelerogram of the ground motion to obtain the required peak ground 

acceleration and hence, the predefined peak ground acceleration applicable in a certain 

region will not necessarily be obtained after scaling. 

In work done by Schwab and Lestuzzi [16] synthetically generated ground motion 

response spectra were scaled to fit the elastic response spectrum within an upper and 

lower limit of 25% of the elastic response spectrum.  The response spectra were scaled 

throughout with a constant factor which was then also used to scale the accelerograms 

of the selected ground motion time-histories. 

The NEHRP recommendations in FEMA 451 [15] describe a scaling procedure that can 

be followed.  In this document it is prescribed that the response spectra should be scaled 

to fit the damped elastic response spectrum in the period range 0.2T1 to 1.5T1 where T1 
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is the fundamental vibration period of the structure.  The value of 0.2T1 is used to 

account for higher mode effects whilst the value of 1.5T1 is used to take inelastic 

behaviour into account which tends to increase the fundamental period. 

The method used by researchers at the ETH in Zurich [2] is to scale the ground motion 

response spectra in the period range Ti to T1√(µ∆) in such a manner that the SRSS of the 

difference in acceleration values over this period range is as small as possible.  Here Ti 

is the last mode that should be taken into account to obtain a cumulative effective modal 

mass percentage of 90% that result from an eigenvalue analysis of the structure.  The 

factor “√(µ∆)” takes the ductility of the structure into account and hence, accounts for 

inelastic behaviour which reduces the stiffness of the structure and therefore increases 

the fundamental period of vibration. 

Number of ground motion records to be used 

According to Dhakal et al [14] different ground motion records having the same peak 

ground acceleration will not induce equal levels of response and will not cause the same 

extent of damage on a structure.  For this reason the results obtained by using only one 

ground motion time-history record may not provide accurate information regarding the 

response of the structure.  It would be possible for another ground motion record with 

the same PGA to yield a more unfavourable response. 

Various authors have different opinions regarding the number of ground motion records 

to be used when performing a nonlinear time-history analysis.  According to FEMA 451 

[15] two to three records are sufficient when performing linear time-history analyses 

whilst four to five records should be used when the structure is expected to respond into 

the inelastic range.  According to Dazio [2] a minimum of seven ground motion records 

should be used.  The above are the recommended minimum number of ground motion 

records that should be used, but various researchers have used a much larger number of 

records.  Lestuzzi et al [17] used 164 recorded records, Dhakal et al [14] used 20 

recorded records and Schwab and Lestuzzi [16] used nine recorded and 100 synthetic 

records. 

The Designers’ Guide to EN 1998-1 and EN 1998-5 [7] states that at least three ground 

motion records should be used.  If the response of a structure is investigated by at least 

seven nonlinear time-history analyses, the average response quantities can be used as 
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the seismic demand in the relevant verifications.  If fewer than seven records are used, 

the most unfavourable response quantity resulting from the analyses should be used. 

In this study seven recorded ground motions were used as described in chapter 7. 

2.2.6 Capacity spectrum method 

According to Fajfar [18] the capacity spectrum method compares the capacity of a 

structure with the demand of earthquake ground motion on it by means of a graphical 

procedure.  In this method the capacity of the structure can be obtained by performing a 

pushover analysis on the structure resulting in a lateral force-displacement response, 

whilst the demand of the earthquake is obtained from an Acceleration-Displacement-

Response-Spectra (ADRS) diagram.  This ADRS diagram gives the relationship 

between pseudo-acceleration (Spa) and the displacement spectra (Sd).  Figure 2-9 shows 

the concept of the capacity spectrum method. 

 

Figure 2-9:  Capacity spectrum method [18] 

The procedure is based on converting the base shear forces and roof displacement of the 

MDOF pushover curve to spectral accelerations and spectral displacements of an 

equivalent SDOF system respectively.  These spectral values therefore define the 

capacity spectrum.  The intersection of the capacity spectrum and the demand spectrum 

provides the inelastic acceleration and displacement demand of the equivalent SDOF 
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system.  The displacement demand can be transformed back to that required for the 

MDOF system. 

Markis and Konstantinidis [19] observed that conversion of an MDOF system to an 

equivalent SDOF system does not result in equivalent response when foundation 

rocking is taken into account.  Hence, the capacity spectrum method can not be applied 

when foundation rocking is investigated. 

The capacity spectrum method is discussed in detail by Fajfar [18]. 

 

2.3 Bilinear approximation of a capacity curve 

Lateral force-displacement behaviour of structural systems and moment-curvature 

response of structural elements are obtained using computer software packages.  As the 

response is expected to be nonlinear, an iterative solution procedure is implemented by 

these software packages.  Variations in the number of iterations during each load step in 

the nonlinear solution usually results in a rough nonlinear response curve with yield- 

and ultimate values not clearly defined.  It is therefore convenient to approximate the 

resulting curve with straight lines that clearly defines yield- and ultimate points. 

The procedure of approximating a nonlinear capacity curve of a structural system with a 

bilinear curve with a well defined yield point is discussed in this section.  Various 

procedures are described in different sources, all of which requires some degree of 

engineering judgement. 

FEMA 440 [20] sets out a procedure to determine a bilinear approximation for the 

global force-deformation behaviour of structures with strength degradation. 
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Figure 2-10:  FEMA 440 force-displacement idealization [20] 

As can be seen in Figure 2-10 the calculated behaviour can be replaced with an 

idealized relationship with an effective lateral stiffness (Ke), effective yield strength 

(Vy) and effective positive or negative post-yield stiffnesses (α1Ke and α2Ke).  The 

elastic part of the idealized curve starts at the origin with the post yield part ending at a 

point which can be either a calculated target roof displacement or the point of maximum 

base shear force, whichever is the least.  The intersection of the two parts defines the 

yield point of the idealized curve.  It is stated that the yield point of the idealized curve 

must be chosen to satisfy two conditions.  The effective stiffness must be chosen such 

that the first segment of the idealized curve passes through the actual capacity curve at a 

point where the base shear is 60% of the effective yield strength.  To satisfy the 

principle of conservation of energy, the areas between the actual and idealized curve 

above and below the idealization should be approximately equal.  The selection of the 

point of 60% of the yield strength is therefore based purely on judgement. 

The ATC-40 document [21] describes a slightly different procedure to that of FEMA 

440.  Here it is stated that the initial stiffness of the idealized curve is chosen to be equal 

to the initial elastic stiffness of the actual capacity curve as shown in Figure 2-11. 
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Figure 2-11:  ATC-40 force-displacement idealization [22] 

Again the elastic part of the idealized curve starts at the origin with the second, post 

yield, part ending at the point of target displacement or maximum base shear, whichever 

is the least with the intersection of the two parts defining the yield point.  The position 

of the yield point should be chosen to comply with the principle of conservation of 

energy with areas “A” and “B” in Figure 2-11 being approximately equal and as small 

as possible. 

In both procedures mentioned above it was the global capacity curve that was idealized 

with a bilinear curve.  Dazio [2] describes a procedure to idealize local capacity curves 

which is expressed in terms of the moment-curvature relationship of a structural 

element.  The procedure is described for a reinforced concrete section with an applied 

normal force and incrementally increasing bending moment.  The idealized bilinear 

curve is shown in Figure 2-12. 
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Figure 2-12:  Moment-curvature idealization [2] 

A four step procedure is described to determine the above bilinear idealization: 

a) First yield point (φ’ y;M’ y) 

This is the point on the actual capacity curve where the outermost tension reinforcement 

bar yields for the first time. 

b) Nominal yield (Mn) 

This is defined as the point on the actual curve where the concrete strain exceed 0.004 

or where the reinforcement strain exceed 0.015 for the first time, whichever occurs first.  

The bending moment at this point is termed the nominal yield bending moment. 

c) Nominal yield curvature (φy) 

The curvature at the nominal yield point can be determined by extrapolating between 

the origin and the point of first yield.  The following expression is used to compute the 

nominal yield curvature: 

'
'

y

n
yy M

M
⋅= φφ  

With these points calculated the first (elastic) part of the bilinear idealization is 

determined. 
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d) Plastic range 

It is left to the engineer to interpolate the plastic region as best as possible.  There is 

however some guidelines as to how this can be done.  It is stated that the plastic region 

should pass through the point of maximum bending moment (Mm) and to be extended to 

a curvature value that corresponds to a point on the actual graph where the bending 

moment has dropped by 20% from the maximum value (Mu). 

 

2.4 Effective slab width models 

It can be expected that the width of slab elements modelled in framed structural systems 

will influence the lateral force-displacement behaviour thereof.  This topic is discussed 

as such a framed structural system is investigated in this study. 

The effective slab width to be used in the dynamic analysis of reinforced concrete flat 

slab frames has received much attention to date.  Many different models have been 

proposed by different researchers.  Parameters that affect the effective slab width of a 

flab slab frame model are the following [23]: 

o The aspect ratio of the column and panels. 

o The type of connection:  interior-, exterior- or edge connections. 

o The level of gravity load. 

o Different positive and negative bending moment response. 

o The amount of initial cracking. 

o The presence of a drop panel. 

According to clause 4.6.5.1.1.1 of the South African concrete design code SABS 0100-1 

[24] a structure can be divided into frames consisting of columns and strips of slabs 

with an uniform width equal to half the centre distance between panels for lateral load 

effects.  The slab width modelled at the slab-column connections is therefore prescribed 

as equal to that between connections. 

Due to the complexity of the moment-transfer mechanism between the slab and the 

column under lateral loading, the assumptions made in the past regarding the effective 

slab width and its stiffness have been very subjective.  Luo, Durrani and Conte [25] 
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stated that the use of the same effective slab width for both interior and exterior slab-

column connections is not appropriate.  They stated that different effective slab widths 

should be modelled at interior and exterior connections, but with the same effective slab 

depth at all slab-column connections.  The reason for this difference in effective slab 

width is to account for the shear and unbalanced moment transfer at flat slab-column 

connections.  The advantage of this method is that both the strength and stiffness 

calculations can be based on the same effective slab width. 

The effective slab width model proposed by Luo and Durrani [26] [27] is shown in 

Figure 2-13. 

 
Figure 2-13:  Effective slab width model proposed by Luo and Durrani [26] [27] 

 

From Figure 2-13 the following parameters: 

αe = Exterior effective slab width factor 

αi = Interior effective slab width factor 

χ = Reduction factor 
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Equations for the above parameters were determined empirically and are as follows: 
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In order to determine the effective slab widths at interior and exterior slab-column 

connections the following parameters are therefore required: 

Vg = Direct shear force due to gravity loads only. 

Ac = Area of slab critical section for punching shear as specified in ACI 318-89 

fc’  = Compressive strength of concrete. 

c1 = Column dimension in the bending direction of the frame. 

c2 = Column dimension normal to the bending direction of the frame. 

ℓ1 = Centre-to-centre distance between columns in the bending direction of the 

frame. 

ℓ2 = Centre-to-centre distance between columns in normal to the bending direction. 

Kt = Torsional stiffness of torsional members in the slab as defined by the ACI 

Building Code. 

Ks = (4EcsI)/ ℓ1 = Flexural stiffness of the slab framing into the exterior connection. 

Ecs = Modulus of elasticity of the slab concrete. 

I = Moment of inertia of the full slab width. 

In the case of flat slab structures there are no torsional members such as beams at the 

edge of the slab.  For this reason Kt = 0 for flat slab building structures. 

Other models have also been proposed for structures where drop panels are used at slab-

column connections.  Dovich and Wight [23] performed experimental work on two 
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storey, two panel frames with drop panels.  They proposed different effective slab width 

models to be used to determine the strength and stiffness of the frame.  For both models 

the effective slab width at the slab-column connection were chosen as the width of the 

drop panel with the effective slab width being larger between slab-column connections 

for the model used to determine the strength of the frame.  Figure 2-14 shows these 

effective slab width models with the top figure showing the model used for the 

determination of the strength of the frame.  The bottom figure shows the model used to 

determine the stiffness of the frame. 

 

Figure 2-14:  Effective slab width for strength (a) and stiffness (b) [23] 
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2.5 Flat slab-column connections 

Failures in framed structural systems are expected to occur at slab-column connections 

and therefore the behaviour of these connections due to lateral loading of such frames 

plays an important role in this study. 

Flat slabs refer to buildings consisting mostly of slabs and columns without beams.  

This type of construction is very often preferred to systems consisting of beams and 

slab, as it has the following advantages [28]: 

o These buildings are aesthetically pleasing. 

o Erecting and dismantling formwork is easy. 

o Services are installed much easier than with other forms of construction. 

o The total height of the building is reduced. 

Flat slab construction however has several disadvantages such as [28]: 

o The slab-column connection is much more flexible than a beam-column 

connection. 

o The behaviour of the slab is complicated, three dimensional and non-linear. 

It is important that sufficient flexural reinforcement be placed in the flat slab to resist 

the bending moments in the slab caused by the combined gravity and lateral loads.  The 

slab must also be able to transfer unbalanced moments to the columns.  These 

unbalanced moments cause additional shear forces at the flat slab-column connections 

that, combined with the shear force caused by gravity loads, must be resisted by the 

slab.  The shear that must be resisted at these connections can also be expressed in terms 

of stresses as shown in the following: 

c

uv
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With: Vu = Ultimate shear force at the flat slab-column connection. 

 Ac = Critical area around the flat slab-column connection. 

 γvMu = Ultimate bending moment that is transferred to the column. 
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c =  The distance from the centroid of the critical section to the perimeter of 

this section. 

 Jc = Polar moment of inertia of the critical section. 

Figure 2-15 shows the position where the shear stress caused by the unbalanced bending 

moment (γvMuc/Jc) needs to be added or subtracted. 

 

Figure 2-15:  Addition or subtraction of unbalanced bending moment 

Figure 2-16 shows the distribution of shear stresses at a flat slab-column connection 

first due to direct shear and secondly due to bending [29]. 
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Figure 2-16:  Shear stresses at a flat slab-column connection 

The shear resistance of a flat slab-column connection (vR) is obtained from the shear 

resistance of the slab concrete (vc) and the shear reinforcement placed in the slab at 

these connections (vs) and therefore:  vR = vc + vs [30]. 
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Failure due to the internal shear force exceeding the shear capacity of a connection is 

termed a punching shear failure.  These failures are brittle and can occur rapidly.  

According to Theodorakopoulos and Swamy [31] variables such as concrete strength, 

the ratio of column size to effective slab depth, the ratio of shear strength to flexural 

strength, the column shape and any lateral restraints, all have an effect on the punching 

shear strength of flat slabs. 

Though not ideal, frames consisting of flat slabs and columns can be designed as 

moment resisting frames to provide lateral stiffness to a building.  These frames are 

commonly termed lateral-force-resisting-systems (LFRS).  Here the frames must not 

only be able to withstand the lateral effect of seismic action, but also limit the lateral 

drift to acceptable levels.  The proposed new loading code SANS 10160 [3] sets limits 

on the storey drift between two adjacent storeys i and j to the following: 

o dr i-j ≤ 0.025h for buildings with T < 0.7s. 

o dr i-j ≤ 0.020h for buildings with T > 0.7s. 

Here “h” refer to the storey height and “T” to the fundamental period of vibration. 

The flat slab-column connections in seismic regions must therefore poses adequate 

strength against punching shear failure and adequate ductility to undergo inelastic 

deformations without failure, that is, the ability to undergo the specified minimum 

interstorey drift ratio. 

Under seismic loading it is essential that the structure is able to dissipate energy. The 

energy dissipated during the loading cycle that increases the shear force at a slab-

column connection is represented by the area enclosed in a moment-drift hysteresis loop 

as shown in Figure 2-17 [32]. 
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Figure 2-17:  Moment-drift hysteresis loop [32] 

 

2.6 Rigid foundation rocking 

The rocking response of wall foundations is investigated in this study.  Certain 

behaviour and modelling issues of concern to this topic is discussed in this section. 

The concept of rigid foundation rocking of bridge piers has received much attention in 

research [33].  Rigid foundation rocking implies a foundation that rotates about one of 

the axes of the foundation without deformation of the foundation itself. 

Assuming that the foundations of a structure and the underlying soil is firmly bonded to 

ensure a fixed support to the structure may lead to lateral earthquake induced forces on 

the structure that can produce a base shear and overturning moment that is greater than 

the overturning resistance due to gravity loads.  This implies that a portion of the 

foundation would intermittently lift up for small time durations during an earthquake. 

Yim and Chopra [34] stated that foundation uplift may be responsible for the good 

performance of seemingly unstable structures during earthquakes.  Under the action of 

static lateral force, they found that uplift of the foundation mat is initiated when the base 

shear reaches a value of one-third of the critical base shear.  The critical base shear is 

known as the base shear corresponding to the unrealizable condition of uplift of the 

entire foundation mat from the supporting soil except for one edge.  This parameter 

depends only on the gravity force and slenderness-ratio parameter, which is defined as 

the ratio of superstructure height to half the width of the foundation. 
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It was found that for slender structures representative of medium to high rise structures, 

the base shear is reduced during an earthquake because of foundation mat uplift.  The 

response of short structures, with short natural vibration periods, however increases.  As 

a consequence Yim and Chopra [34] stated that increased response is of little practical 

consequence for medium-rise to high-rise structures. 

Vibration periods that leads to an increase in response of the structure are however 

unrealistically short for slender structures with longer vibration periods.  For this reason 

the increased response of very short period structures is of little practical consequence. 

In the above mentioned paper it was also stated that foundation uplift generally reduces 

the structural deformations and forces.  Foundation uplift should therefore not be 

prevented, and it is, on the contrary, desirable to permit it. 

Analytical expressions for the moment-rotation response of a rigid foundation on a 

Winkler soil model (discussed later in this section) were derived by Allotey and Naggar 

[35].  Equations were derived for four main states.  State 1 represents an elastic soil 

condition with no foundation uplift, state 2 represents an elastic soil condition with 

foundation uplift, state 3 represents yielding of the supporting soil prior to foundation 

uplift and finally state 4 represents a condition of yielding of the supporting soil with 

foundation uplift.  These different stated can be seen in Figure 2-18. 
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Figure 2-18:  Schematic of moment-rotation response states [35] 

The solution of these equations enables the full definition of the entire static moment-

rotation response of the foundation.  This solution can then be used to effectively study 

the response of a foundation where yielding of the supporting soil and foundation uplift 

can occur. 

It has been stated by Gazettas [36] that the deformability of soil increases the natural 

period of a structure which in turn leads to smaller ground accelerations and stresses in 

the super structure and foundation.  He also stated that in most cases, footing uplift 

helps to reduce the ductility demand of columns due to reduced deformations.  Uplifting 

of the foundation mat also has no detriment to the vertical load carrying capacity and 

the consequence in terms of vertical settlement may be minor. 

Overstrength factors, used in the capacity design method, may ensure that the structure 

does not yield due to overturning and simultaneous bearing capacity failure.  The 

permanent rotation of the structure depends largely on the static safety factor against 

bearing failure as well as the frequency content of the excitation.  Other structural 
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elements should however be designed for the associated shedding of load from the shear 

wall to the structural frame. 

The seismic response of a 10m tall standard bridge supported on a direct foundation was 

investigated by Kawashima and Hosoiri [33] taking into account the inelastic rocking 

response of the foundation.  They found that the plastic deformation of the bridge pier 

decreases if uplifting of the foundation occurs as a result of softening of the moment-

rotation hysteresis loops of the foundation.  The inelastic rocking of the foundation 

therefore results in an isolation effect on the response of the bridge.  Jumping of the 

foundation did not occur at any instance during the excitation. 

Markis and Konstantinidis [19] investigated the similarities and differences between the 

oscillatory response of a single-degree-of-freedom oscillator (regular pendulum) and the 

rocking response of a slender rigid block (inverted pendulum).  These two systems are 

shown in Figure 2-19. 

 
Figure 2-19:  SDOF oscillator (regular pendulum) vs rocking block (inverted pendulum) [19] 

The study examined the characteristics of the rocking spectrum and compared the 

observed trends with the response spectrum.  It was found that there are fundamental 

differences in the mechanical structure of the two dynamic systems shown above and 

consequently, that the rocking structure cannot be replaced by an “equivalent” single-

degree-of-freedom oscillator.  The response of the one system can therefore not be used 
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to draw conclusions about the other.  Based on these conclusions, Markis and 

Konstantinidis proposed that rocking spectra be used as an additional valuable measure 

of the intensity of ground shaking. 

Anderson [37] investigated the effect of a rocking wall foundation to determine how 

this approach can be used to reduce wall foundation sizes, with the main response 

investigated being the drift ratio of the structure.  Buildings having 7, 15 and 30 storeys 

were investigated.  The shear wall and foundation, not including any other structural 

elements, were modelled using a number of soil springs with zero tension gap elements 

to allow for rocking of the wall foundation. This concept was extended to include the 

contribution of other structural elements for the investigation of this study. 

It was confirmed that the concept of rocking foundations can reduce the size of 

foundations considerably to sizes smaller than that required to resist the moment 

capacity of the shear wall without the building falling over.  The force reduction factor 

used for foundation design was modified in the National Building Code of Canada 

based on the results of his investigation. 

Winkler soil model 

As stated previously the moment-rotation expressions derived by Allotey and Naggar 

[35] for rigid foundations were based on a Winkler soil model.  According to Bowles 

[38] a solution based on a model of a beam on elastic foundation can be used when 

flexural rigidity of a footing is taken into account.  This solution can then be based on 

the classical Winkler foundation model where the foundation is considered as a bed of 

springs as shown in Figure 2-20. 
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Figure 2-20:  Schematic of a Winkler soil model [35] 

The underlying soil of a foundation can only provide compressive resistance to a 

foundation and presents no tensile resistance.  For this reason the spring elements that 

are used to model the rotation stiffness are usually modelled with “zero-gap” elements.  

This means that the spring elements are not connected to the foundation, but that the 

foundation rather only rests on the spring elements so as to prevent the spring elements 

from lifting up. 

Bowles [38] states that the modulus of subgrade reaction (ks, with unit kN/m3) is used to 

calculate the elastic stiffness of the spring elements by multiplying this value by the 

contributing foundation area in plan to a certain spring element.  The modulus of 

subgrade reaction is defined as the increment of contact pressure on the foundation (∆σ) 

and the corresponding change in deformation (Δδ) and therefore: 

δ
σ

∆
∆=sk  

Since pressure is defined as the ratio of axial force and contact area, multiplying the 

modulus of subgrade reaction by the contributing contact area leads to a spring stiffness 

that describes the increment of axial force and deformation. 

Many authors have used the Winkler soil model to investigate the effect of foundation 

rocking and some variations were used.  Yim and Chopra [39] used a Winkler soil 

model with only two spring elements to investigate the dynamics of structures with their 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 2:  Literature review 62 
 

J. E. van der Merwe  University of Stellenbosch 

foundation mat permitted to uplift from the supporting soil.  This model is shown in 

Figure 2-21. 

 

Figure 2-21:  Two spring-damper Winkler soil model [39] 

Winkler soil models have also been used by Yim and Chopra to investigate the dynamic 

response of MDOF systems with the foundation allowed to uplift in the same manner as 

above [40]. 

 

2.7 Confinement of concrete 

Material properties were assigned to confined and unconfined concrete material in the 

models used to determine the lateral force-displacement behaviour of the various 

superstructure systems investigated in this study. 

Due to Poisson’s ratio effect which is enhanced by extensive micro cracking, concrete 

tends to expand in the direction normal to an applied compressive stress.  This may lead 

to instability of the concrete in the core region and finally to failure. 
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The ultimate compressive strain of unconfined concrete is often inadequate to allow the 

structure to achieve the design level of ductility without extensive spalling of the cover 

concrete.  To prevent failure of structural elements due to spalling of the cover concrete 

and buckling of longitudinal reinforcement, adequate transverse reinforcement should 

be provided to confine the compressed concrete in the core region.  Attention to 

confinement of the core concrete should especially be given to elements in potential 

plastic hinge regions where inelastic material response can be expected [41]. 

Transverse reinforcement in conjunction with longitudinal reinforcement restrains 

lateral expansion of the concrete.  Therefore larger compression stresses and strains can 

be sustained before failure occurs as can be seen from Figure 2-22 [5]. 

 

Figure 2-22:  Confined and unconfined concrete stress-strain behaviour [5] 

 

It therefore follows that adding more longitudinal and transverse reinforcement 

increases the confinement of the section as can be seen from Figure 2-23. 
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Figure 2-23:  Confinement by transverse and longitudinal reinforcement [5] 

Expressions to determine the stress-strain curve of confined concrete as a function of 

the concrete strength and amount of transverse reinforcement were derived by Mander 

et al. in 1988 [41].  They also stated that the compression strength of confined concrete 

is directly related to the effective confining stress (fℓ’) that can develop at yield of the 

transverse reinforcement. 

The confined strength ratio (K) is an important parameter in seismic design and is 

defined by the ratio of confined concrete compressive strength (fcc’) to the unconfined 

concrete compressive strength (fc’).  This confined strength ratio can be obtained from 

the graph shown in Figure 2-24. 

 
Figure 2-24:  Determination of confined strength ratio [5] 
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With the confined strength ratio known, the confined concrete compressive strength can 

be calculated. 

Expressions have also been proposed to compute the concrete strain at peak stress (εcc) 

and the ultimate compressive strain in the concrete section (εcu).  These values can also 

be seen on the graph in Figure 2-22.  These expressions are given in [5] as follows: 













 −+= 1'

'51002.0
c

cc
cc f

fε  

( )ccsmyhscu ff '/4.1004.0 ερε +=  

A more detailed discussion of the above equations can be found in [5]. 

 

The example building structure that was used for all comparative analyses in this study 

is discussed in the following chapter. 
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Chapter 3 

 

3 DESCRIPTION OF STRUCTURE 
 

 

3.1 Objectives 

This chapter presents the example building structure that was used for the purpose of 

comparative analyses.  Figure 3-1 shows the part of the study, extruded from Figure 1-1, 

which is addressed in this chapter.  This includes: 

o Design and detailing of the building. 

o Determining material properties. 

o Determining failure criteria of various structural elements. 

 

Figure 3-1:  Chapter three objectives 
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3.2 Building design 

An example building was designed in order to perform various comparative analyses.  

An office building for general use in the Cape Town region was chosen for the purpose 

of this investigation.  The following properties were used: 

o Provision is made for light weight partitioning = 1.5kPa in plan. 

o Permanent load due to ceilings and services = 0.3kPa in plan. 

o Cover to reinforcing steel = 35mm according to SABS 0100-2, Table 5 [42]. 

o The roof of the building is inaccessible. 

o A slab thickness of 250mm is used. 

o A screed thickness of 40mm is used. 

o A masonry wall is provided around the perimeter of the floor slabs and has a 

weight of 5kPa in elevation with 20% of the wall consisting of openings. 

o The building has eight floors. 

o Floor to floor height is 3500mm. 

o The bearing capacity of the underlying soil is 750kN/m2 with a density of 

18kg/m3. 

o Assume that the soil has a friction angle of φ = 42˚ as is typical in the Cape 

Town region. 

o The building is regular in plan with a centre to centre distance of 6000mm 

between columns. 

o Column dimensions 600mm x 600mm. 

o Shear wall dimensions 6000mm x 300mm. 

o The design concrete compressive strength is fcu = 30MPa. 

o The design yield strength of the reinforcing steel is fy = 450MPa. 

Four shear walls are placed to provide lateral stiffness to the structure in the north-south 

direction.  In this study, ground motion will only be considered in one direction and 

therefore no shear walls are providing lateral stiffness in the east-west direction. 

 

 

 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 3:  Description of structure 68 
 

J. E. van der Merwe  University of Stellenbosch 

Figure 3-2 shows a plan layout of the building. 

 

Figure 3-2:  Plan layout 

The structural elements in the building were designed according to the assumption that 

only the shear walls resist lateral forces such as wind and earthquake loads.  The 

columns and flat slabs were therefore designed to resist gravity loads only. 

The lateral response of the building is only investigated in the north-south direction and 

therefore the reinforcement in the flat slabs was calculated in this direction only. 

Slab reinforcement 

The required slab reinforcement was computed at grids A and B from the building plan 

layout.  Table 3-1 shows the calculated reinforcement for grid A. 
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Table 3-1:  Grid A slab reinforcement 

Positive bending moment: 

Column strip: Y12 - 250 

Middle strip: Y12 - 250 

Negative bending moment: 

Centre column strip: Y16 - 125 

Remainder column strip: Y16 - 250 

Middle strip: Y12 - 200 

The reinforcement required for grid B was determined in a similar manner and is as 

shown in Table 3-2. 

Table 3-2:  Grid B slab reinforcement 

Positive bending moment: 

Column strip: Y12 - 250 

Middle strip: Y12 - 300 

Negative bending moment: 

Centre column strip: Y16 - 150 

Remainder column strip: Y16 - 300 

Middle strip: Y12 - 300 

The amount of shear reinforcement that should be placed at corner -, edge -, and interior 

slab-column connections to prevent punching shear failures due to gravity loads were 

also determined.  Stirrups should be placed in two rows at all slab-column connections 

at a centre to centre spacing of 150mm.  The number of stirrups required at the slab-

column connections is as follows: 

o Corner slab-column connections:  20 - R8. 

o Edge slab-column connections:  34 - R8. 

o Interior slab-column connections:  56 - R8. 

Column reinforcement 

Only critical columns were considered to determine the required reinforcement in the 

columns.  These columns are located at grids 2B, 2G, 7B and 7G.  It was determined 

that nominal reinforcement can be placed from the second floor level to roof level.  The 

reinforcement layout in the columns is shown in Figure 3-3. 
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Figure 3-3:  Column reinforcement detailing 

Shear wall reinforcement 

The shear wall on grid A is considered in the analyses and therefore the required 

reinforcement for this shear wall was determined using the equivalent lateral force 

method as set out in SANS 10160 [43].  It was determined that the plastic hinge height 

is six meters. 

It was chosen to design the shear wall as an elastic section between fourth floor and the 

roof level.  The reinforcement that was required in the plastic hinge height was therefore 

extended up to the fourth floor.  Figure 3-4 shows the reinforcement layout in the plastic 

region of the shear wall whilst the reinforcement layout in the elastic region is shown in 

Figure 3-5. 

 

Figure 3-4:  Plastic detailing of shear wall 
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Figure 3-5:  Elastic detailing of shear wall 

The overstrength forces at the base of the shear wall must be used to design the wall 

foundation.  These overstrength forces were determined to be the following: 

o Overstrength bending moment:  MRd
+ = 30 100kNm 

o Overstrength normal force:  Nd = 4 165kN 

o Overstrength base shear force:  Vd
+ = 2 316kN 

Shear wall foundation dimensions 

As stated in chapter one it was decided to investigate six different wall foundation sizes 

with a seventh model where no moment resistance is provided to the shear wall support.  

The sizes of the different foundations were determined by designing it to withstand 

different applied bending moments.  Wall foundations are designed to withstand the 

overstrength bending moment at the base of the shear wall.  Different foundation sizes 

were determined by applying different percentages of this overstrength bending 

moment:  0%, 20%, 40%, 60%, 80% and 100% of the overstrength bending moment.  

The axial force on the different foundations was kept constant. 

Required foundation dimensions were determined using the Base module of Prokon 

[44].  In addition to the information provided above the following parameters were used 

to determine the required foundation dimensions. 

o Base friction constant between concrete and soil = 0.6 (corresponding to the 

chosen soil friction angle of 42°). 

o A load factor for overturning due to self weight (ULS) = 0.9. 

o A load factor for other self weight effects (ULS) = 1.0. 

o An ULS safety factor of 1.1 against both overturning and slip. 
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The optimum foundation size was determined for the appropriate applied bending 

moment.  Table 3-3 shows the required foundation dimensions that were obtained. 

Table 3-3:  Wall foundation dimensions 

Percentage of applied MRd
+ Length [m] Width [m] Depth [m] 

100% 14.0 4.0 1.3 

80% 12.0 4.0 1.3 

60% 11.5 3.0 1.3 

40% 9.5 3.0 1.3 

20% 8.0 2.5 1.3 

0% 6.5 2.0 0.8 

It is important to keep in mind that the purpose of this investigation is to determine 

whether the size of wall foundations can be reduced by allowing rocking of the 

foundation.  The different foundation dimensions were investigated to enable results 

from analyses performed later to show a trend in increasing lateral roof displacement 

with decreasing foundation size.  Hence, the above method of determining the wall 

foundation sizes is considered to be satisfactory. 

Foundation dimensions were determined conservatively and therefore each foundation 

is able to provide a bending moment resistance greater than the bending moment that 

was applied to determine the required dimensions.  Practical dimensions were chosen 

and therefore it can be expected that the bending moment resistance provided by the 

investigated foundations will not differ by exactly the same amount as the bending 

moments that were applied to determine the required foundation dimensions.  The 

bending moment resistance provided by the “40%” foundation for instance will not be 

exactly 60% less than the bending moment resistance of the “100%” foundation. 

 

3.3 Material properties 

To determine the lateral force-displacement behaviour of the different investigated 

superstructure systems using SeismoStruct, properties were required for the various 

material types.  Material properties used in these analyses are discussed in this section. 
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To ensure that the correct results are obtained from analyses of different structural 

elements and/or structural systems it is important to define the appropriate material 

properties.  Design codes such as SABS 0100-1 use partial material factors as safety 

factors to scale actual material properties for design purposes. 

Material factors are therefore used in normal static design conditions leading to lower 

values being used for the strength of materials.  This conservative approach leads to 

structures being designed with a greater strength than is required and generally, to stiffer 

structural elements.  Structural overstrength is the result of this higher actual strength. 

Various factors can lead to the actual strength to exceed the nominal or ideal value and 

are taken into account in the overstrength of a section.  These factors include [5]: 

o Mean material strengths that are higher than the design material strengths. 

o Rounding up of member dimensions or reinforcement diameters. 

o Increased structural resistance due to the effect of non-structural members. 

As stated in section 2.1.4 the aim of capacity design is to design certain elements to 

contain plastic regions that dissipate energy with all other elements to remain elastic.  

To do so, the elastic elements must be strong enough, and for this reason the 

overstrength of the plastic regions need to be considered. 

Mean material properties at overstrength does not account for any material safety 

factors and should therefore be used for seismic design of building structures.  Design 

material properties should however account for these material safety factors as this is 

conservative in conventional design of structures. 

The material properties of concrete and reinforcement steel are discussed in the 

following paragraphs. 

3.3.1 Concrete material properties 

From the above discussion it follows that the mean material properties instead of the 

characteristic properties are of importance in the plastic regions and therefore material 

properties should be used without material factors.  Various different concrete material 

properties were considered. 
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Concrete Compressive Strength 

The concrete compressive strength used in the design of the example building was 

30MPa, cube strength.  According to clause 3.3.3.2 of SABS 0100-1 [24] the partial 

safety factor for the strength of concrete should be taken as γm = 1.5. 

To obtain the mean cube compressive strength of the concrete 8MPa is added to the 

characteristic (5th percentile value to the nominal (mean)) cube compressive strength 

[7].  Therefore the conversion expression is as follows: 

( ) 85.1,, +×= dcmeanc ff  

A mean cube concrete compressive strength of 38MPa was hence obtained using the 

above equation. 

The cylinder concrete compressive strength can be obtained by scaling the cube 

compressive strength by a factor of 0.8 [46].  Therefore: 

8.0,,, ×= meanccylmeanc ff  

This leads to a mean cylinder compressive strength of 30.4MPa.  Table 3.1 of EN 1992-

1-1:2004(E) [7] however prescribes a mean cylinder compressive strength of 33MPa 

associated with the relevant concrete cube strength used in this investigation. 

Concrete Tensile Strength 

Concrete tensile strength should never be taken into account for the dependable strength 

of structural members under seismic action, because of its variable nature and due to the 

influence of, for instance, shrinkage on the tensile strength of the concrete. 

Confined Concrete Strength Ratio (K) 

The increase in compression strength of confined concrete depends on the amount of 

longitudinal reinforcement as well as the amount of confining reinforcement.  The 

confinement factor (K) also depends on the yield strength of the reinforcing steel.  The 

mean yield strength of the reinforcing steel (discussed later) and the nominal concrete 

compressive strength were used to calculate the confinement ratio. 
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Confinement ratios were calculated for the columns between ground and second floor, 

for columns between second floor and roof level, as well as for the confined regions of 

the shear wall in the plastic region.  The following values were obtained: 

o Columns between ground and second floor:  K = 1.049 

o Columns between second floor and roof level:  K = 1.058 

o Confined regions in plastic region of shear wall:  K = 1.100 

The calculation of these confinement factors were performed as described in [5] and can 

be seen in Appendix A. 

The confinement ratio is therefore only used in defining the material properties of 

confined concrete.  If a confinement ratio must be prescribed for unconfined concrete, 

unity should be chosen, such as for instance the case when a confinement factor is 

prescribed for concrete material in slab sections 

Concrete Strain at Peak Stress (εcc) 

Refer to Figure 2-22 for the definition of εcc.  The concrete strain at peak stress is a 

function of the confinement ratio (K = fcc’/f c’).  This relationship is as follows [5]: 
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Using the confinement ratios as described above the following values were obtained 

(refer to Appendix A): 

o Columns between ground and second floor:  εcc = 0.0025 

o Columns between second floor and roof level:  εcc = 0.0026 

o Confined regions in plastic region of shear wall:  εcc = 0.0030 

For unconfined concrete K=1 and therefore εcc = 0.002 from the expression provided 

above. 

Ultimate Concrete Compression Strain (εcu) 

The maximum useful strain for design purposes can be much higher than the concrete 

strain at peak stress.  The useful strain limit occurs when the transverse confining 

reinforcement in a section fractures, known as the ultimate concrete compression strain. 
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The ultimate concrete compression strain is determined by the transverse reinforcement 

ratio (ρs), the yield strength of the transverse reinforcement (fyh), the steel strain at 

maximum tensile stress (εsm) and the compressive strength of the confined concrete 

(fcc’) in the following manner [5]: 

( )'/4.1004.0 ccsmyhscu ff ερε ⋅⋅⋅+=  

This value can be four to 16 times greater than the traditionally assumed value for 

unconfined concrete [5]. 

The following values have been calculated (refer to Appendix A): 

o Columns between ground and second floor:  εcu = 0.0041 

o Columns between second floor and roof level:  εcu = 0.0041 

o Confined regions in plastic region of shear wall:  εcu = 0.0046 

The collapse strain for unconfined concrete is prescribed in Figure 1 of SABS 0100-1 

[24] as εcu = 0.0035. 

3.3.2 Reinforcement steel material properties 

A yield strength value of 450MPa was used for design purposes.  The mean tensile 

strength of the reinforcing steel is determined by conversion from the characteristic 5th 

percentile value of the tensile strength to the nominal tensile strength, this time by a 

factor of “1.1x1.15”.  The following equation shows the calculation of the mean tensile 

yield strength of the reinforcing steel. 

( ) ( ) ( )( )iiiiii
dymeany ff ⋅⋅⋅⋅⋅⋅⋅⋅⋅ ×××= 15.11.115.1,,  

(i) First, the factor “1.15” is the partial material factor prescribed in clause 

3.3.3.2 of SABS 0100-1 [24]. 

(ii)  The factor of “1.1” was prescribed by Mirza et al [47] and is used to 

convert the yield strength from a characteristic value to a nominal yield 

value together with (iii). 
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(iii)  SABS 920 [48] prescribes that the ultimate tensile strength of a 

reinforcement bar shall be at least 15% greater than the yield stress.  The 

factor of “1.15” is therefore used to obtain the characteristic tensile 

strength from yield strength. 

Mean tensile yield strength of 569.25MPa was consequently obtained for the tension 

reinforcing steel from the expression provided above. 

 

3.4 Performance criteria 

For analysis purposes various criteria should be set that defines different failures.  This 

is also the case when performing a pushover analysis using the structural analysis 

package SeismoStruct [9], where material strain limits, shear forces, element chord 

rotations, etc. associated with various modes of failure of certain structural elements 

must be prescribed. 

The criteria that define various modes of failure are termed the performance criteria.  

Performance criteria can be defined in terms of the ultimate limit state and serviceability 

limit state.  Ultimate limit state performance criteria include shear failures, bending 

moment failures and tensile and compressive material failures.  Serviceability limit state 

performance criteria include rotation limits for structural elements and interstorey drift 

limits. 

Mean material properties were used to determine the performance criteria to be used in 

numerical analyses of the various structural systems of the selected building.  The 

following performance criteria are discussed: 

o Bending moment resistance of slab elements. 

o Punching shear resistance of slab-column connections. 

o Steel material strain limits. 

o Concrete material strain limits. 

o Element rotation limits. 
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3.4.1 Internal force performance criteria 

Flat slab bending moment resistances and punching shear resistance of flat slab-column 

connections were determined using mean material properties.  The assumptions made in 

SABS 0100-1 [24] was used to determine both the sagging and hogging bending 

moment resistance of the column strip and middle strip of the slab on grid A and B of 

the example building. This assumption is based on a compression block of uniform 

compressive stress in the concrete with a depth of 90% of the depth of the neutral axis 

with no concrete tensile strength as shown in Figure 3-6. 

 

Figure 3-6:  Assumption for the determination of flexural resistance 

The bending moment resistance of the slab at various positions were determined to be 

as shown in Table 3-4. 

Table 3-4:  Slab bending moment resistances 

Grid Bending Position MR [kNm] 

A Sagging Column strip 92.2 

A Sagging Middle strip 76.8 

A Hogging Column strip 236.6 

A Hogging Middle strip 86.1 

B Sagging Column strip 153.6 

B Sagging Middle strip 130.2 

B Hogging Column strip 333.1 

B Hogging Middle strip 130.2 
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Shear reinforcement in the slab at the connection of columns were calculated for three 

different slab-column connections: 

o Interior connections with the slab continuous in both orthogonal directions. 

o Edge connections with the slab only continuous in one of the orthogonal 

directions. 

o Corner connections with the slab not continuous in any of the orthogonal 

directions. 

The South African concrete design code SABS 0100-1 [24] was used to calculate the 

shear resistance of the slab at the connection of columns with the resistance given by 

combining the shear resistance of the punching shear reinforcement and the shear 

resistance provided by the slab concrete. 

Table 3-5 shows the calculated punching shear resistance of the different slab-column 

connections. 

Table 3-5:  Slab-column punching shear resistance 

Slab-column connection VR [kN] 

Interior connections 1711.4 

Edge connections 1076.2 

Corner connections 638.6 

3.4.2 Material performance criteria 

Failures can also be identified by material properties such as strain limits being 

exceeded.  Both reinforcement and concrete material strain performance criteria were 

specified. 

As discussed previously, the mean yield strength of the reinforcement steel was 

calculated to be 569.25MPa.  Assuming a modulus of elasticity of 200GPa results in a 

reinforcement steel strain yield limit of εy = 0.00285.  FEMA 273 [49] states that the 

maximum permissible strain in reinforcement steel may not exceed 0.05.  The 

reinforcement steel ratio to identify steel fracture was therefore taken to be εu = 0.05. 

Concrete cover spalling occurs when the compressive resistance of cover concrete is 

exceeded.  This will result in a decrease in the stability of longitudinal reinforcement in 

columns and structural walls and can result in collapse of a structure.  Hence, cover 
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spalling was considered to be an important failure to be identified when performing 

nonlinear analyses.  Using the expressions provided in [5] to calculate strain limits for 

confined concrete the strain limit of the unconfined concrete could also be determined 

by using a value of K = 1.0 for the confinement factor.  This results in a compressive 

strain limit of 0.002 for unconfined concrete. This strain limit was chosen as the 

performance criteria for spalling of cover concrete. 

Compressive stresses in concrete can also lead to the crushing of confined concrete.  

The ultimate compression strain values as discussed in section 3.3.1 were prescribed as 

concrete compressive strain limits associated with crushing of core concrete. 

3.4.3 Element rotation performance criteria 

Yielding of flexural reinforcement steel in a structural element will lead to the 

formation of a plastic hinge at the location of flexural failure only if the shear resistance 

of the section is not exceeded.  Structural elements will therefore be able to undergo a 

greater degree of rotation in these regions.  FEMA 273 [49] prescribes limits to the 

chord rotation of plastic hinges that can form in different structural elements, different 

reinforcement conditions and desired performance levels.  Rotation limits were obtained 

from FEMA 273 for possible plastic hinges in columns, slabs as well as the shear wall 

in the region between ground and fourth floor. 

FEMA 273 defines four main performance levels as shown in Figure 3-7 [49]. 
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Figure 3-7:  FEMA 273 building performance levels [49] 

 

For the purpose of this investigation the plastic hinge rotation limits of Life Safety were 

chosen. 

Plastic hinge rotation limit for columns 

When determining the flexural resistance of the columns the axial capacity of the 

column was chosen equal to the applied axial force in the column.  It was therefore 

assumed that the applied axial load in the column exceeds 70% of the axial capacity 

thereof.  The rotation limit from FEMA 273 [49] for plastic hinges in columns where 

this is the case, is 0.005 radians as shown in Table 3-6. 
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Table 3-6:  FEMA 273 column plastic hinge rotation limits [49] 

 

Plastic hinge rotation limit for slab-column connections 

The rotation limit provided for slab-column connections for a life safety performance 

level is 0.015 radians as shown in Table 3-7 [49]. 

Table 3-7:  FEMA 273 slab-column plastic hinge rotation limits [49] 

 

Plastic hinge rotation limit for shear wall 

The performance level of life safety was also chosen for the rotation limits prescribed 

for shear walls controlled by flexure.  As can be seen from Figure 3-4 that the section of 

the wall where plastic deformation is expected is provided with confined boundaries.  

Using the mean material properties, geometry of the shear wall, as well as the 
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reinforcement content, the following ratios were calculated as required by FEMA 273 to 

determine the appropriate rotation limit for the shear wall [49]: 
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Hence, as can be seen from Table 3-8, a rotation limit of 0.010 radians was used [49]. 

 

Table 3-8:  FEMA 273 shear wall plastic hinge rotation limits [49] 

 

The numerical modelling procedure that was followed to determine the lateral capacity 

of various structural systems of the example building structure is discussed in the 

following chapter. 
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Chapter 4 

 

4 NUMERICAL MODELLING 
 

 

4.1 Objectives 

This chapter discusses the numerical modelling of the various structural systems that 

were considered to contribute to the lateral stiffness of the building.  Figure 4-1 shows 

the part of the study, extruded from Figure 1-1, which is addressed in this chapter.  This 

includes: 

o A description of the software package used to determine the lateral force-

displacement behaviour of the various investigated superstructure systems. 

o Input parameters required for these analyses. 

o Determining an adequate element mesh. 

o Verification of output results with regard to: 

� Calculation of internal forces. 

� Identification of bending moment failures. 

� Calculation of roof displacements. 

� Calculation of material strains. 

o Lateral force-displacement capacity curves of: 

� An internal frame. 

� A shear wall. 

� An edge frame. 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 4:  Numerical modelling 85 
 

J. E. van der Merwe  University of Stellenbosch 

 

Figure 4-1:  Chapter four objectives 

4.2 Numerical analysis software 

The structural analysis software package SeismoStruct [9] was chosen to perform the 

numerical modelling of the different structural systems.  This is a finite element 

software package that can be used to investigate the large displacement behaviour of 

framed structures under static or dynamic loading taking various forms of nonlinearity 

into account.  A range of different analyses can be performed using SeismoStruct such 

as eigenvalue analyses to determine natural vibration properties, nonlinear static 

pushover analyses (conventional and adaptive) to determine the capacity of structural 

systems, nonlinear static time-history analyses, nonlinear dynamic as well as 

incremental dynamic analyses. 
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4.2.1 Nonlinearity and modelling assumptions 

Both geometric and material nonlinearity can be incorporated into a finite element 

model in SeismoStruct. 

Geometric nonlinearity 

Geometric nonlinearity of a model due to large deformations is taken into account by 

employing a co-rotational formulation with element displacements and the resulting 

internal forces defined by the movement of a local chord system.  As shown in Figure 

4-2 this local system consist of six basic degrees of freedom, five rotational and one 

translational. 

 

Figure 4-2:  Local degrees of freedom [9] 

The resulting element internal forces, Figure 4-3, and element stiffness matrix are 

directly transformed into the global system of coordinates, allowing large geometric 

nonlinearity to be accounted for. 

 

Figure 4-3:  Element internal forces [9] 
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A constant axial strain shape function is assumed over the length of an element and 

therefore its application is only fully valid to model geometric nonlinearity of relatively 

short members.  For this reason SeismoStruct propose that at least three to four elements 

should be used per member [9].  Another important assumption to be taken into account 

is that shear strains are not modelled across an element cross section and therefore a 

Bernoulli flexure-only beam formulation is employed, as opposed to a Timoshenko 

flexure-shear beam model. 

Material inelasticity 

Material inelasticity across an element section and length is taken into account by 

employing a fibre element approach.  This enables the accurate representation of 

structural damage distribution. 

The fibre modelling approach incorporated in the inelastic beam-column elements used 

by SeismoStruct consists of modelling the material inelasticity by dividing a section in 

various fibres.  Each fibre in the section can be assigned a nonlinear uniaxial stress-

strain response with the sectional stress-strain response of the member obtained by 

integrating the nonlinear behaviour of the individual fibres.  This subdivision of an 

element into fibre elements with different material nonlinearity is shown in Figure 4-4. 

 

Figure 4-4:  SeismoStruct element modelling [9] 

If a sufficient number of fibres are employed, the distribution of material nonlinearity 

across a section will be accurately modelled.  A two Gauss point integration scheme is 
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employed with the strains being computed at the Gauss sections and not the element end 

nodes.  The spread of inelasticity along the element member length can be accurately 

estimated if a sufficient number of elements are used per structural member. 

The help file of SeismoStruct propose that 200 to 400 fibres should be used to 

accurately estimate the spread of inelasticity over the cross section of a member and that 

five to six elements should be used per structural member to accurately estimate the 

spread of material inelasticity over the member length.  Analyses were performed to 

determine the appropriate number of fibre elements for the structural systems 

investigated in this study and will be discussed in section 4.4.2. 

 

4.3 Input parameters 

As shown in Figure 4-1, numerical analyses were performed on three structural systems:  

a shear wall located on grid A of the example building (Figure 3-2), an edge frame on 

grid A (Figure 3-2) as well as an internal frame of the building located on grid B (Figure 

3-2).  The input parameters for the finite element models of the above mentioned 

structural systems are discussed in this section. 

4.3.1 Material properties 

Properties were prescribed for three main groups of material types:  reinforcement steel, 

unconfined concrete, as well as confined concrete.  The properties of confined concrete 

are highly dependent on the reinforcement detail of a section and for this reason 

different material properties were prescribed for the confined concrete of different 

sections. 

Reinforcement steel 

SeismoStruct provides various material types with predefined response patterns.  A 

bilinear model including strain hardening was chosen to model reinforcement steel 

fibres as specified in SIA 2018 [50].  Parameters that are required to define the stress-

strain characteristics of the steel model are summarised in Table 4-1. 
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Table 4-1:  Reinforcement steel material properties 

Material property Symbol Value Stress-strain relationship 

Modulus of elasticity [GPa] Es 200.0 

 

Yield strength [MPa] fy 569.25 

Strain hardening parameter [-] µ 0.005 

Specific weight [kN/m3] γs 78.0 

Fracture strain [m/m] εsu 0.05 

Confined concrete 

A nonlinear constant confinement material model was used to describe the stress-strain 

characteristic of the confined concrete material.  The mean material properties discussed 

in chapter 3 were used.  Figure 4-5 shows the stress-strain relationship defining the 

confined concrete. 

 

Figure 4-5:  Confined concrete stress-strain relationship 

Confined concrete was prescribed for the reinforcement layouts of the columns of the 

example building as well as for the confined zones in the plastic region of the shear 

wall.  Calculation of the material properties of the confined concrete for the different 

sections is discussed in chapter 3.  The prescribed parameters for the various sections 

are summarised in Table 4-2. 
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Table 4-2:  Confined concrete material properties 

Material 

property 
Symbol 

Ground to 2nd 

floor columns 

2nd floor to roof 

columns 
Shear wall 

Compressive 

strength [MPa] 
fc

’ 33.0 33.0 33.0 

Strain at peak 

stress [m/m] 
εcu 0.0025 0.0026 0.0030 

Confinement 

factor [-] 
K 1.049 1.058 1.100 

Specific weight 

[kN/m3] 
γc 24.0 24.0 24.0 

Collapse strain 

[m/m] 
εcc 0.0041 0.0041 0.0048 

No tensile strength was prescribed for the confined concrete.  It is also important to note 

that the concrete compressive strength is the cylinder strength of a 100mm × 200mm 

specimen. 

Unconfined concrete 

As unconfined concrete material response is not dependent on reinforcement detail, the 

same unconfined concrete material was used for all columns and shear wall elements.  

The nonlinear constant confinement concrete material model was used to define the 

response of the unconfined concrete as was used for the confined concrete but by using 

a confinement factor of nearly unity.  For reasons related to numerical stability of the 

nonlinear analyses performed using SeismoStruct, a confinement factor of slightly 

larger that unity must be prescribed.  A value of 1.001 was used for the confinement 

factor of the unconfined concrete.  The same compressive strength and specific weight 

was prescribed for this material as was used to define the confined concrete.  Figure 4-6 

shows the stress-strain relationship assumed for the unconfined concrete. 
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Figure 4-6:  Unconfined concrete stress-strain relationship 

The strain at peak stress that is applicable to unconfined concrete was calculated as 

0.002 as discussed in chapter 3.  The collapse strain as prescribed in SABS 0100-1 [24] 

was chosen. 

Slab tension reinforcement has no confinement characteristics and therefore unconfined 

concrete was chosen for the entire slab section.  It should be noted that all permanent 

and imposed loads in the structure other than own weight is applied on the slab of the 

building.  To take the effect of these additional loads into account the specific weight of 

the slab material was increased. 

For seismic design of building structures the following load combination applies [43]: 

ELLLDLLC 0.13.00.1 ++=  

With DL = permanent loads 

 LL = imposed loads 

 EL = earthquake loads 

From the assumptions made for the design of the example building the load on the slab 

elements can be determined (see section 3.2 for these assumptions). 

Imposed loads: Office building for general use: 2.5kN/m2 

 Partitions: 1.5kN/m2 

 Σ =  4kN/m2 
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Permanent loads: 250mm slab: 6kN/m2 

 40mm screed: 0.96kN/m2 

 Ceilings and services: 0.3kN/m2 

 Σ =  7.26kN/m2 

Combining these loads according to the appropriate load combination, results in a 

distributed load of 8.46kN/m2 on slab elements in plan.  No distributed load can be 

applied to the slab in SeismoStruct and therefore the slab specific weight must be 

adjusted to incorporate this distributed load.  The slab member depth should however be 

kept equal to the true depth to prevent errors in the calculation of the slab stiffness.  

Since a 250mm slab is used the required specific weight of the slab is as follows: 

3
2

/84.33
25.0

/46.8
mkN

m

mkN
slab ==γ  

4.3.2 Sections 

Reinforced concrete sections were defined for two column sections (ground to 2nd floor 

and 2nd floor to roof), two shear wall sections (ground to 4th floor and 4th floor to roof) 

as well as two slab sections. 

Due to negative bending moments in the concrete slab at slab-column connections 

tension reinforcement is placed in the top layer of the slab at these locations.  Between 

these slab-column connections, bottom tensile reinforcement is placed in the slab to 

resist positive bending moments resulting from gravity loads.  Rules for the curtailment 

of reinforcement bars as set out in the South African concrete design code SABS 0100-

1 [24] was used to determine the reinforcement detail in the slab and hence, alternating 

reinforcement bars are curtailed at different distances from slab-column connections.  A 

simplified approximation of the reinforcement layout was used to model positions of 

tensile reinforcement in slab elements. 

The span between two adjacent column centres was chosen as six meters.  To simplify 

the modelling of tensile slab reinforcement it was assumed that a top and bottom layer 

of tension reinforcement is provided over slab-column connections and that it extends to 

a distance of 2100mm from the centre line of the column supports.  The centre 1800mm 
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of slab between slab-column connections was modelled to only contain bottom tensile 

reinforcement.  Figure 4-7 shows this assumption for the curtailment of the slab tension 

reinforcement. 

 

Figure 4-7:  Slab reinforcement modelling 

SeismoStruct provides the user with various types of sections that can be used to model 

different structural elements.  Table 4-3 shows the section types that were chosen for the 

various sections. 

Table 4-3:  Section types [9] 

Section Section type Default layout 

Column sections 
Reinforced concrete 

rectangular section (rcrs) 
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Slab sections 

Reinforced concrete 

asymmetric rectangular 

section (rcars) 

 

Shear wall sections 

Reinforced concrete 

flexural wall section 

(rcfws) 

 

The coordinates and diameters of reinforcement bars are defined for each section 

according to the reinforcement layout of the relevant section. 

4.3.3 Element classes 

The element classes section in SeismoStruct is used to define the type of finite element 

that is to be used to model different structural members.  Element types provided by 

SeismoStruct enable the user to model structural elements such as columns and beams, 

non-structural components such as masonry infill panels as well as a variety of different 

boundary conditions such as flexible foundations and seismic isolation of footings. 

Three main groups of element types are available:  beam-column elements, link 

elements and mass elements.  As only the structural elements of the above ground 

structure were modelled in SeismoStruct not all of the above mentioned element types 

were used.  All structural members in this investigation were modelled with beam-

column elements. 
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Various different types of beam-column elements are available in SeismoStruct.  These 

include inelastic frame elements (“infrm” and “refrm”), elastic frame elements 

(“elfrm”), inelastic infill panel elements (“infill”) and inelastic truss elements (“truss”). 

Inelastic frame elements were used to model the columns, shear wall and slab elements 

in the various models as this type of element is divided into fibre elements taking into 

account the different material types that each of these sections consist of. 

Rigid link elements 

One additional element type was implemented in the model of the edge frame located 

on grid A of the example building.  Elastic frame elements were used to create rigid link 

elements between the centre line of the shear wall and the node where the slab elements 

adjacent to the shear wall would be connected to the edge of the shear wall.  The reason 

for the implementation of these elements can be explained by referring to Figure 4-8 

and Figure 4-9. 

 

Figure 4-8:  Undeformed edge frame 
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Figure 4-9:  Deformed edge frame 

The above figures show the centre lines of the columns, slab- and shear wall elements 

that would be modelled for the edge frame of an arbitrary building structure.  Due to the 

larger dimension of the shear wall in the plane of bending, points where slab elements 

are connected to the shear wall will tend to lift on the one side of the deformed shear 

wall (point A shown in Figure 4-9) whilst the slab connections on the other side of the 

wall will be forced downward (point B in Figure 4-9).  The deformed shape of the slab 

elements at the connection with the shear wall will therefore differ from that at slab-

column connections where the slab-column connections tend to undergo only a slight 

change in elevation. 

By connecting slab elements to the centre line of the shear wall in a finite element 

model of an edge frame, it will lead to an incorrect representation of the real lateral 

displacement response of the frame.  It can be expected that the slab elements adjacent 

to the shear wall will have a small contribution to the lateral stiffness of the frame 

compared to the contribution of the shear wall and columns.  For this reason it was 

decided not to model any slab elements adjacent to the shear wall as can be seen in 

Figure 4-10. 
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Figure 4-10:  SeismoStruct edge frame model 

Since the rigid links are modelled with elastic frame elements, it is required to assign 

elastic sectional properties to these elements.  It was decided to assign sectional 

properties to the rigid link elements that are 100 times greater than the elastic sectional 

properties of the adjacent slab elements. 

To calculate the required stiffness of these rigid links the following elastic material 

properties were chosen for the slab concrete material [24]: 

o Modulus of elasticity:  E = 28GPa 

o Poisson’s ratio:  ν = 0.2. 

The first step in determining the elastic sectional properties of the rigid links would 

therefore be to determine elastic properties for the slab section shown in Figure 4-11. 
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Figure 4-11:  Slab element section 

The elastic sectional properties of the above shown slab section is as follows: 
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These calculated values lead to the following sectional properties being assigned to the 

rigid link elements: 
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4.4 Element meshing 

It is important to choose an appropriate number of elements per structural member to 

accurately estimate the strain distribution over the length of the member, as well as to 

choose the appropriate number of fibre elements per section to accurately estimate the 

strain distribution over the element section.  The most suitable element meshing will 

differ for models of different element sections and therefore the only way to determine 

the appropriate number of elements is to perform sensitivity analyses of the required 

element member length and number of fibres to be used per section. 

4.4.1 Elements per member length 

Two sensitivity analyses were performed:  one to determine the required element 

lengths for slab and column elements, and another to determine the required element 
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length for shear wall elements. It is stated in the SeismoStruct help file that three to four 

elements should be used per member. 

Slab and column elements 

The appropriate number of elements into which the column and slab members should be 

divided was determined by incrementally refining the element mesh of a simple frame 

consisting of two columns connected at the top by a slab member.  The column 

dimensions and reinforcement detail were chosen to be identical to that determined for 

the columns of the building from ground to 2nd floor with the slab detail also identical to 

that used in the models of the frames.  A column height of 3500mm and column spacing 

of 6000mm was chosen to ensure that the frame represents a panel of the internal frame 

situated on grid B of the example building (Figure 3-2). 

A single horizontal load was applied at the top of one of the columns to perform a 

pushover analysis.  The first mesh that was investigated was a mesh that is 

automatically generated by SeismoStruct (created by the “Wizard” of SeismoStruct).  

This meshing divides the members into four elements with the edge elements having a 

length of 35% of the member length and the centre elements having a length of 15% of 

the member length.  Four other models were investigated by dividing the edge element 

of the Wizard mesh into two, three, four and five elements respectively.  Table 4-4 

shows the different models that were investigated. 
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Table 4-4:  Sensitivity analysis models 

Mesh Elements per member Model 

Wizard 4 

 

Mesh01 6 

 

Mesh02 8 

 

Mesh03 10 

 

Mesh04 12 
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The pushover curves obtained from the sensitivity analysis are shown in Figure 4-12. 

 

Figure 4-12:  Element meshing pushover curves 

Conversion was obtained between the pushover curves of Mesh03 and Mesh04 and 

therefore it was decided that Mesh03 would be an appropriate choice of element mesh. 

In subsequent analyses that were performed on the frames using the mesh as determined 

above, however, led to numerical stability issues.  As short element lengths lead to 

numerical instability, longer element lengths should be chosen. 

Important bending moments in the slab elements occur at the face of columns at slab-

column connections.  It was therefore chosen to use an element mesh for the slab 

elements, at slab-column connections, that would result in one of the Gauss points of 

the slab element to lie at a position that would be representative of the face of the 

column.  By using the known distance of the Gauss points from the end nodes of an 

element as shown in Figure 4-4, the required slab element length could be determined.  

Hogging moments will occur in slab elements at slab-column connections under gravity 

loading and therefore any element with a length shorter than the determined length will 

result in an overestimation of the bending moments at these connections, whilst a longer 

element length will result in an underestimation of the bending moments as the Gauss 

point will be situated further away from the column support. 
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To ensure numerical stability it was also decided to model each column between 

adjacent floor slabs with five elements as this would result in an element length close to 

the width of the columns.  The final choice of element lengths for slab and column 

elements is shown in Figure 4-13. 

 

Figure 4-13:  Slab and column element mesh 

Shear wall elements 

No plastic deformation is expected above the height of the plastic hinge region and 

therefore it was decided to use one shear wall element per storey outside the plastic 

hinge region.  It can be expected that plastic deformation can occur in the bottom 

6000mm of the shear wall [2].  For this reason one shear wall element per storey was 

chosen from the third floor upwards.  Within the plastic hinge zone of the shear wall it 

is important to have a finer mesh as most of the deformation of the shear wall material 

is expected to occur in this region.  Hence, and as a result of a sensitivity analysis, it 

was decided to use an element length of 500mm for the shear wall elements in this 

region, with the last element under the second floor being 1000mm long to ensure 

continuity of the elements. 

The chosen shear wall element mesh is shown in Figure 4-14. 
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Figure 4-14:  Shear wall element mesh 

4.4.2 Fibre element mesh 

An inelastic frame element section should be divided into a sufficient number of fibre 

elements to accurately estimate the spread of material inelasticity over the cross section 

of the element.  It is stated in the help file of SeismoStruct that 100 fibre elements 

should be sufficient to model sections that consist of only one material type and that 200 

or more fibre elements should be used to model sections that consist of more than one 

material.  A sensitivity analysis was performed to determine the appropriate number of 

fibre elements to accurately estimate the spread of material inelasticity over the cross 

section of the elements. 

Inelastic frame elements were used to model the columns, slab elements, as well as the 

shear wall and therefore sensitivity analyses were performed to determine the required 

number of fibre elements for each of these types of members. 

 

 

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 4:  Numerical modelling 104 
 

J. E. van der Merwe  University of Stellenbosch 

Column element sections 

The same two column frame as described in section 4.4.1 was used to determine the 

appropriate number of fibre elements for the column sections.  Five different numbers 

of fibre elements per column section were investigated:  200, 300, 400, 500 and 600 

fibre elements per column section. 

Resulting capacity curves from the pushover analyses that were performed are shown in 

Figure 4-15. 

 

Figure 4-15:  Column fibre element sensitivity analysis 

All capacity curves compared quite well and therefore is was decided to use 200 fibre 

elements per column section. 

Slab element sections 

Using the same two column model, the appropriate number of fibre elements for the 

slab elements were determined.  The same number of fibre elements was investigated as 

for the column elements.  Again the resulting capacity curves compared quite well as 

can be seen from Figure 4-16 and hence, 200 fibre elements per slab element section 

were chosen. 
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Figure 4-16:  Slab fibre element sensitivity analysis 

Shear wall element sections 

Sensitivity analyses were performed on both shear wall reinforcement layouts used in 

the building.  The shear wall section with the reinforcement layout as provided from 

ground floor to fourth floor was termed the “plastic section”, whilst the section with 

reinforcement layout as provided from the fourth floor to roof level was termed the 

“elastic section”. 

The model that was used to investigate the effect of using different amounts of fibre 

elements per section was a ten meter high shear wall with 500mm element lengths as 

shown in Figure 4-17. 
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Figure 4-17:  Shear wall sensitivity analysis model 

Different numbers of fibre elements were investigated for the different shear wall 

sections used.  For the plastic section 200, 500, 1000 and 1500 fibre elements were 

investigated, whilst 1000, 1500 and 2000 fibre elements were investigated for the elastic 

section.  As can be seen from Figure 4-17 only one lateral load at the top of the shear 

wall was used to perform the pushover analyses. 

Here again it was found that the resulting capacity curves compare quite well for both 

shear wall sections as shown in Figure 4-18 and Figure 4-19.  From a previous 

investigation performed at the University of Stellenbosch [51] it was shown that 2000 

fibre elements provided good results to determine the capacity of lateral loaded shear 

wall members.  For this reason, and because the capacity curves obtained from the 

sensitivity analyses compared quite well, it was decided to employ 2000 fibre elements 

per shear wall section. 

From Figure 4-18 and Figure 4-19 it is clear that high and low peaks were obtained on 

the resulting pushover curves.  These peaks occur due to iterative difficulty in the 

nonlinear solution performed by the solver of SeismoStruct.  The solver performs a 

number of iterations per displacement increment until conversion is obtained.  If the 
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displacement increment is chosen too large, or the maximum number of iterations 

allowed per displacement increment is chosen too small, the number of iterations could 

be insufficient to achieve conversion.  This may result in unrealistically high or low 

lateral force values being calculated by the solver.  By reducing the displacement 

increment and/or increasing the number of iterations allowed per displacement 

increment, smoother pushover curves can be obtained. 

 

Figure 4-18:  Shear wall fibre element sensitivity analysis – plastic section 

 

Figure 4-19:  Shear wall fibre element sensitivity analysis – elastic section 
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4.5 Verification of software 

To ensure that the pushover analyses performed using SeismoStruct provide accurate 

estimations of the capacities of different structural systems against lateral loading, 

different verification analyses were performed.  These investigations include the 

following: 

o The calculation of internal forces. 

o The identification of bending moment failures. 

o The calculation of roof displacements. 

o The calculation of material strains. 

4.5.1 Slab element internal forces 

It is essential that the internal forces in a structural system are correctly calculated by 

the software to ensure that failures within the system can be correctly determined.  

These internal forces change incrementally from that due to gravity loading as the 

lateral applied loading increases. 

To determine whether internal forces are calculated correctly with only gravity loads 

applied, the bending moments and shear forces in the first floor slab of the internal 

frame situated on grid B of the example building (Figure 3-2) was investigated.  Results 

obtained from SeismoStruct were compared to that resulting from a model of the slab in 

Prokon [44]. 

SeismoStruct 

The bending moments and shear forces in the first floor slab of the internal frame were 

investigated taking only the own weight of the slab into account. 

Prokon 

A model of the first floor slab was analysed using the Continuous Beam module 

provided by Prokon [44] as shown in Figure 4-20. 
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Figure 4-20:  Continuous Beam model 

Only linear material properties can be analysed in this module.  Since the slab is only 

loaded with its own weight it is assumed that the slab element material will remain 

elastic.  The elements provided by Prokon allow quadratic interpolation of bending 

moments and therefore linear interpolation of shear forces. 

From the output of the analysis a maximum sagging moment of 28.26kNm was 

obtained in the first span with a maximum hogging moment of 56.22kNm at the first 

interior support.  The maximum shear force in the slab was obtained at the first interior 

support with a value of 55.16kN. 

Comparison of results 

Bending moment and shear force results as obtained from SeismoStruct and Prokon 

compared quite well as shown in Figure 4-21 and Figure 4-22. 
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Figure 4-21:  Bending moment results 

 

Figure 4-22:  Shear force results 

A summary of the values of the maximum internal forces are shown in Table 4-5. 
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Table 4-5:  Critical internal forces – first floor slab 

Source Sagging moment [kNm] Hogging moment [kNm] Shear force [kN] 

SeismoStruct 29.32 54.49 50.22 

Prokon 28.26 56.22 55.16 

Since the results as obtained from SeismoStruct and Prokon compare quite well it can 

be stated with confidence that the initial internal forces in the slab elements are 

computed accurately by SeismoStruct when no lateral loads are applied to the structure. 

4.5.2 Bending moment failure 

Bending moments in slab elements exceeding the flexural capacity of these elements are 

expected to be a critical mode of failure.  The correct identification of a bending 

moment failure by the software was therefore investigated. 

Material strain limits were set in SeismoStruct as performance criteria for the tensile 

reinforcement in slab elements with the aim of identifying the formation of a plastic 

hinge.  Tensile strains develop in the slab tensile reinforcement due to bending moments 

with the bending moment resistance of the slab determined by the amount of tensile 

reinforcement placed in the slab.  It is therefore expected that the material strain limit in 

the tensile reinforcement should be reached when the bending moment capacity of the 

slab is exceeded. 

To investigate whether internal slab bending moments exceeds its flexural capacity 

when a steel yielding material strain limit is reached, a simple frame was modelled in 

SeismoStruct.  The frame consists of two columns and of three floor slab members 

connecting the columns.  Reinforcement details and member dimensions were chosen to 

be identical to that of the example building and the same performance criteria were set 

as determined earlier.  A pushover analysis was performed on the frame using a 

triangular distribution of incremental lateral forces.  The frame is shown in Figure 4-23. 
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Figure 4-23:  Three storey frame model 

From the output of the pushover analysis it was found that the steel material yield strain 

limit was first reached in the slab element at the slab-column connection of the first 

floor and the column to which the lateral loading was applied.  The strain limit was 

reached when a base shear value of 148.251kN was reached and the corresponding 

bending moment in the relevant element was calculated as MU = 168.78kNm and 

resulted in tension in the bottom reinforcement layer. 

The critical slab element was provided with 17 Y16 reinforcement bars in the top layer 

and seven Y16 reinforcement bars in the bottom layer.  The seven Y16 reinforcement 

bars were used to calculate the bending moment resistance as these bars are in tension.  

Using the mean material factors as discussed in section 3.3, the sagging moment 

resistance of the slab at this position was hand calculated as M R = 160.96kNm.  It is 

therefore clear that the bending moment resistance of the slab was indeed exceeded and 

that a plastic hinge could therefore be expected to have developed in the slab. 

It was therefore assumed that the calculated steel material strain limit was correct and 

that this enabled SeismoStruct to correctly identify the formation of a plastic hinge. 

4.5.3 Roof displacement 

The control node when performing a pushover analysis is typically situated at roof 

level.  This results in a capacity curve showing the nonlinear relationship between the 
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base shear force and lateral roof displacement.  For this reason it is essential that the 

calculation of the lateral roof displacement is accurate.  To investigate the roof 

displacement calculated by SeismoStruct, the same two-column, three floor slab frame 

described in section 4.5.2 was employed.  It was decided to compare the roof 

displacement calculated by SeismoStruct to that predicted for the same frame using the 

Frame module of Prokon [44]. 

Only elements with linear elastic material properties can be analysed in this module of 

Prokon and therefore the material properties of the frame in SeismoStruct was adjusted 

to have only linear elastic material properties as to ensure comparable results from the 

two analyses.  A target loading on the frame as well as the number of increments that 

should be used to apply the incremental load is defined in SeismoStruct by the user.  For 

the purpose of this investigation a target base shear value of 2000kN with a target roof 

displacement of 1.5m was chosen.  A response control pushover analysis was performed 

with 1000 lateral roof displacement increments chosen.  It was chosen to investigate the 

roof displacement at the tenth increment leading to lateral loads on the first, second and 

third floor as follows: 
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These loads were consequently also applied to the frame in Prokon and the roof 

displacements obtained from the two analyses compared.  A lateral roof displacement of 

13.50mm was obtained from the SeismoStruct output, whilst the result from Prokon 

was 14.28mm.  It was decided that the 5.5% difference in the results are acceptable for 

the purpose of this investigation and hence, that SeismoStruct provides acceptably 

accurate estimations of lateral roof displacements during an elastic analysis. 

4.5.4 Strain calculation 

Correct identification of failures in structural systems associated with material strain 

limits depend on the accuracy by which strain limits are determined as well as the 

calculation of material strains by the software.  The accuracy of the material strains 

calculated by the software was therefore investigated. 
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The estimation of strains in fibre elements is highly dependent on the length of the 

element.  It is therefore essential that the calculated strains should be investigated for 

the chosen element mesh.  Steel material strain calculation in the internal frame located 

on grid B of the example building was investigated. 

As stated previously a steel material yield strain limit of εsy = 0.00285 was calculated 

and used as one of the performance criteria.  The steel yielding criteria was exceeded in 

a slab element on the seventh floor.  This value for steel material strain was investigated 

by calculating a steel strain value from the chord rotation of the elements where the 

failure was identified, as the chord rotation is not dependant on the element length. 

At the location (and lateral force value) where the strain limit was identified an internal 

bending moment of Mu = 204.458kNm and a chord rotation of θ = 0.0121 radians were 

calculated by SeismoStruct.  The length of the relevant element was 1420mm and 

taking this element length into consideration the curvature was calculated as follows: 

100852.042.1
0121.0 −=== m

l
θφ  

Bernoulli beam theory is employed in the frame elements used by SeismoStruct and 

therefore the assumption is made that sections that are initially plane and orthogonal to 

the neutral axis of the element will remain plane and orthogonal to the deformed neutral 

axis.  The steel material strain was therefore calculated using the curvature determined 

above.  By using the assumptions for beam bending as provided in the South African 

concrete design code SABS 0100-1 [24] the bending moment resistance could be 

calculated.  The strain distribution of the code assumption is shown in Figure 4-24. 
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Figure 4-24:  SABS 0100-1 bending assumption 

From the above, strains can be related to curvature by calculating the slope of the strain 

distribution over the section: 
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The depth of the neutral axis (x) should therefore be calculated by setting the resistance 

bending moment equal to the internal bending moment. 
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The steel material properties as determined in section 3.3 were used for this calculation.  

It leads to a steel material strain of εs = 0.0027.  The strains are therefore as summarized 

in Table 4-6. 
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Table 4-6:  Internal frame strain investigation 

Case Strain 

Performance limit 0.00285 

Identified 0.00286 

Hand calculation 0.00270 

The strain values compare well, showing a 5.3% difference between the performance 

limit and the value obtained from simple hand calculations. 

As the calculation of the element chord rotation is not sensitive to the length of an 

element and the strains determined above compare reasonably well, it can be stated that 

the steel material strains determined by SeismoStruct compare well with the value 

corresponding to the relevant internal bending moment.  Calculation of the internal 

forces were verified in section 4.5.1 and since it was found that the internal force 

calculation is accurate, it follows that the results obtained from SeismoStruct for the 

chosen element mesh can be considered suitable. 

 

4.6 Capacity curves 

Using SeismoStruct to perform pushover analyses on structural systems of the example 

building, capacity curves were determined for the internal frame, shear wall and edge 

frame.  Two patterns of lateral loading were used as discussed earlier. 

4.6.1 Internal frame 

The internal frame that was investigated is shown in Figure 4-25. 
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Figure 4-25:  Internal frame 

Displacement controlled pushover analyses were performed whereby a constant lateral 

roof displacement increment is defined.  The lateral loads required to obtain the lateral 

roof displacement is calculated during each displacement increment.  A lateral roof 

displacement increment of 1.5mm was chosen. 

Nonlinear response is obtained from the result of a pushover analysis as the material 

strains enter the inelastic range.  The resulting nonlinear pushover curve up to the value 

of maximum base shear therefore defines the lateral force-displacement capacity of the 

structure.  Using the procedure described in FEMA 440 [20], a bilinear approximation 

could be made of the nonlinear capacity curve obtained from the pushover analysis. 

Two pushover analyses were performed on the frame:  one using a uniformly distributed 

lateral loading pattern and another using a triangular distributed lateral loading pattern.  

Points where different performance criteria were first exceeded were also plotted on the 

capacity curves.  The capacity curves that were obtained from the pushover analyses as 

well as the bilinear approximation of these curves are shown in Figure 4-26 and Figure 

4-27. 
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Figure 4-26:  Internal frame, triangular force distribution 

 

Figure 4-27:  Internal frame, uniform force distribution 

From the above it is clear that the steel material yield limit is reached before the slab 

plastic hinge rotation limit is reached.  This can be expected as a plastic hinge should 

first form before the maximum permitted plastic hinge rotation is reached.  The 



CHAPTER 4:  Numerical modelling 119 
 

J. E. van der Merwe  University of Stellenbosch 

compressive strain limit of cover concrete is reached near the end of both of the 

capacity curves. 

As stated in the designers’ guide to EN 1998-1 and EN 1998-5 [7] only the most 

unfavourable capacity curve of the two lateral load approximations should be used for 

further investigation.  The most unfavourable result will be the curve that results in the 

largest lateral roof displacement for a given base shear force.  For this reason the most 

unfavourable result will be the lower of the two curves when drawn on the same axis. 

 

Figure 4-28:  Internal frame comparison 

From Figure 4-28 it is clear that the capacity curve from the pushover analysis using a 

triangular lateral force distribution is the most unfavourable result. 

Values that define the bilinear approximation of the capacity curve obtained by applying 

a triangular lateral force distribution are shown in Table 4-7. 

Table 4-7:  Internal frame capacity curve 

Position Roof displacement [mm] Base shear [kN] 

Start 0.0 0.000 

60% Yield 210.0 511.109 

Yield 350.0 857.950 

Ultimate 585.0 981.737 
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4.6.2 Shear wall 

The lateral force-displacement behaviour of the shear wall is discussed in this section. 

No slab elements were modelled with the shear wall and therefore the gravity load 

effect of the contributing slab area had to be taken into account by adding lumped mass 

at the various floor levels.  The contributing slab area for gravity loading on the shear 

wall was taken to be half the slab span between the wall and adjacent columns.  The 

contributing slab area is as shown in Figure 4-29 with a length of 12 meters and a width 

of 3 meters.  With the slab density as calculated in section 4.3.1 the lumped mass at 

each floor level was calculated as: 
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Figure 4-29:  Contributing slab area to shear wall 

These permanent lumped masses as well as the incrementally increasing lateral forces 

were applied at the same nodes located at the different floor levels as shown in Figure 

4-14. 

It was found that a displacement increment of 0.67mm resulted in a smooth capacity 

curve from the output of the response control pushover analyses.  Positions of 
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performance criteria being reached for the first time are shown on the capacity curves.  

Figure 4-30 and Figure 4-31 show the resulting capacity curves. 

 

Figure 4-30:  Shear wall, triangular force distribution 

 

Figure 4-31:  Shear wall, uniform force distribution 
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Locations where identified performance criteria are first reached compare well between 

the two resulting capacity curves.  In both cases the steel material yield strain and 

compressive cover concrete strain limits are reached. 

The procedure described in FEMA 440 was used to determine a bilinear approximation 

for the capacity curves.  Comparing the bilinear approximations of the capacity curves it 

is clear that the triangular distribution of lateral forces was the most unfavourable 

loading pattern as shown in Figure 4-32. 

 

Figure 4-32:  Shear wall comparison 

Values that define the bilinear approximation of the capacity curve obtained by applying 

a triangular lateral force distribution are as shown in Table 4-8. 

Table 4-8:  Shear wall capacity curve 

Position Roof displacement [mm] Base shear [kN] 

Start 0.0 0.000 

60% Yield 45.3 579.910 

Yield 75.6 961.915 

Ultimate 350.0 1234.067 

4.6.3 Edge frame 

The lateral force-displacement behaviour of the edge frame located on grid A of the 

example building (Figure 3-2) is discussed in this section. 
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For the edge frame it was observed that a displacement increment of 2mm resulted in a 

smooth capacity curve.  Performance criteria limits that were exceeded in the pushover 

analysis of the edge frame, using a triangular- and uniform lateral load distribution, 

were: 

o Steel material yield strain limit. 

o Cover concrete compressive strain limit. 

o Core concrete compressive strain limit. 

o Steel material fracture strain limit. 

Bilinear approximations of the capacity curves were determined by following the 

procedure described in FEMA 440 with resulting capacity curves as shown in Figure 

4-33 and Figure 4-34. 

 

Figure 4-33:  Edge frame, triangular force distribution 
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Figure 4-34:  Edge frame, uniform force distribution 

Comparing the bilinear approximations of the two capacity curves in Figure 4-35 it is 

clear that the triangular lateral force distribution is the most unfavourable loading 

pattern. 

 

Figure 4-35:  Edge frame comparison 

Values that define the bilinear approximation of the capacity curve obtained by applying 

a triangular lateral force distribution are as shown in Table 4-9. 
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Table 4-9:  Edge frame capacity curve 

Position Roof displacement [mm] Base shear [kN] 

Start 0.0 0.000 

60% Yield 38.7 930.260 

Yield 64.6 1551.417 

Ultimate 277.5 2384.493 

It is shown in chapter seven that it is not required to include the contribution of the edge 

frame to the structural system of the building.  The lateral force-displacement behaviour 

of the shear wall, the internal frame, and the moment-rotation behaviour of the wall 

foundation, was therefore used in subsequent analyses. 

The nonlinear moment-rotation capacity curves that were determined for the various 

foundation sizes are discussed in the next chapter. 
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Chapter 5 

 

5 FOUNDATION BEHAVIOUR 
 

 

5.1 Objectives 

The nonlinear response of the various wall foundation sizes is discussed in this chapter.  

Allotey and Naggar [35] derived analytical equations for the moment-rotation response 

of a rigid foundation.  These equations were applied to determine the nonlinear 

moment-rotation behaviour of the chosen foundation sizes.  Figure 5-1 shows the part of 

the study, extruded from Figure 1-1, which is addressed in this chapter.  The following 

are presented: 

o First, soil parameters that influence the foundation behaviour. 

o A discussion of the different conditions of foundation response follows. 

o Thereafter a comparison of the nonlinear behaviour of the various foundation 

sizes that were investigated is discussed. 

o Verification of the nonlinear foundation behaviour follows. 

o Finally, conversion of the units of the foundation capacity curve is discussed. 



CHAPTER 5:  Foundation behaviour 127 
 

J. E. van der Merwe  University of Stellenbosch 

 

Figure 5-1:  Chapter five objectives 

 

5.2 Foundation parameters 

Various soil and foundation properties are required to determine the nonlinear response 

of rigid foundations.  Parameters have been chosen that are appropriate to this 

investigation and are discussed in this section. 

Poisson’s ratio (µ) 

It is suggested by Bowles [38] that the typical range of values for the Poisson’s ratio for 

sand and gravelly sand is 0.3 to 0.4.  As this type of soil was chosen for the example 

building, a value of µ = 0.4 was chosen. 

Static stress-strain modulus (Es) 

The static stress-strain modulus of soil is commonly used to compute estimates of 

foundation settlement.  For any given soil type a wide range of values are possible for 

this parameter and it is therefore suggested by Bowles [38] that field values from in situ 

testing should be used where possible.  For loose sand and gravel a range of values 

between 50MPa and 150MPa is suggested.  A value of Es = 50MPa was chosen for the 

purpose of this investigation. 
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Plane strain modulus (E’s) 

Bowles [38] provides an expression for the calculation of the plane strain modulus: 

21
'

µ−
= s

s

E
E  

A value of E’ s = 59.5MPa was calculated for the example in this investigation.  This 

parameter is used in the calculation of the modulus of subgrade reaction, as will be 

discussed later. 

Influence factors (IF, I1, I2, IS) 

Influence factors (IF, I1, I2, IS) are used to calculate the modulus of subgrade reaction, as 

will be discussed later.  Bowles [38] provides a chart that is used to determine the factor 

IF.  This influence factor depends on the dimensions of the foundation and values are 

provided graphically for a range of foundation depth to length ratios between 0.5 and 

10.  Wall foundations typically have foundation depth to length ratios of less than 0.5 

and therefore a value of IF = 1 was assumed for the purpose of this investigation. 

Expressions are provided by Bowles [38] to calculate values for the influence factors I1 

and I2. 
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Parameters “M” and “N” depends on the foundation dimensions. 

Using the influence factors I1 and I2 together with Poisson’s ratio, the Steinbrenner 

influence factor (IS) can be determined from the equation: 
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Influence factors IF and IS are subsequently used directly to calculate the modulus of 

subgrade reaction. 
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Modulus of subgrade reaction (ks) 

The modulus of subgrade reaction is described by Bowles [38] as a conceptual 

relationship between soil pressure and deflection that is used in the analysis of 

foundations.  If the symbol “q” is used to describe soil pressure under a foundation and 

“δ” is used to describe the settlement of the foundation, the modulus of subgrade 

reaction can be expressed as: 

δ
q

ks =  

As the soil pressure and resulting foundation deflection is dependent on the soil 

properties, foundation dimensions, and loading on the foundation, other expressions 

were also derived using the parameters discussed earlier.  For the purpose of this 

investigation it was chosen to use an expression provided in [38] as derived by A.S. 

Vesić: 
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In the above equation “B” denotes the width of the foundation.  Using this expression, 

results in an estimation of the modulus of subgrade reaction. Bowles [38] provides a 

table with a range of typical values to be used to assess the calculated value.  A value of 

between 4800kN/m3 and 128000kN/m3 can apply to the modulus of subgrade reaction 

for loose to dense sands.  The value calculated for each investigated foundation size was 

compared to this typical range of values to ensure realistic results. 

Chi (Χ) – dimensionless parameter 

Another important parameter that defines the nonlinear rocking response of rigid 

foundations is the inverse of the foundation bearing capacity safety factor under vertical 

load, Χ.  This parameter is calculated as the ratio of applied normal load on the 

foundation per meter of foundation width to the bearing capacity of the underlying soil: 

Bq

P

u
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In the above expression “P” denotes the normal force per meter foundation width 

[kN/m], “qu” the soil bearing capacity [kN/m2] and “B” the width of the foundation [m].  

It was stated by Allotey and Naggar [35] that Χ-values of less than 0.5 implies that the 

foundation mat will lift up from the underlying soil before yielding of the soil occurs.  

Values of greater than 0.5 indicate that the underlying soil will yield before foundation 

uplift.  Figure 5-2 shows the resulting soil pressure under a foundation when Χ is less 

than 0.5, whilst Figure 5-3 shows the soil pressure when Χ is greater than 0.5. 

 

Figure 5-2:  Foundation uplift prior to yielding of soil 

 

Figure 5-3:  Soil yielding prior to foundation uplift 

It was determined that all the foundations investigated in this study had Χ-values of less 

than 0.5 and hence, all the investigated foundations were expected to lift up prior to 

yielding of the underlying soil. 
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5.3 Conditions of foundation behaviour 

As the Χ-value defines a sequence of the behaviour of rigid foundations under rocking 

response, it can be expected that the nonlinear moment-rotation response of foundations 

will differ for Χ-values of above and below 0.5.  Allotey and Naggar [35] provided 

expressions to determine this nonlinear response for the two situations.  In this 

calculation the ratio of soil stiffness to its strength (denoted with “Ψ”) also plays an 

important role and is expressed as follows: 

u

v

q

Lk ⋅
=Ψ  

In this expression “L” denotes the foundation length and “kv” the stiffness of the spring 

elements of the Winkler soil model which is related to the modulus of subgrade 

reaction. 

Expressions are provided by Allotey and Naggar [35] for a normalized nondimensional 

moment: 

For Χ ≤ 0.5: 

 

For Χ ≥ 0.5: 
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Using the ultimate soil bearing capacity (qu), foundation length (L), and foundation 

width (B), this normalized moment is transformed to the bending moment capacity for a 

given rigid rotation as follows [35]: 

BLqMM uqL ⋅⋅⋅= 2  

Expressions are also provided by Allotey [35] for the different conditions of rigid 

foundation rocking response: 

o A condition of elastic response. 

o A condition of initial uplift of the foundation prior to yielding of the soil. 

o A condition of initial yielding of the underlying soil prior to foundation uplift. 

o A condition of combined soil yielding and uplift of the foundation. 

As the bending moment applied to the foundation increase the foundation can either 

uplift or the underlying soil could yield.  The condition of combined foundation uplift 

and soil yielding could occur if the applied bending moment increases further.  This 

sequence is shown in Figure 5-4. 

The above mentioned conditions therefore follow upon each other and bending 

moments and rotations at foundation performance points can be determined from the 

various conditions: 

o From the elastic condition, the condition of soil yielding or foundation uplift can 

be determined, depending on which condition is achieved first. 

� The condition of initial uplift of the foundation occurs first if Χ < 0.5. 

� The condition of initial soil yielding is reached first if Χ > 0.5. 

o The point of soil yielding can be determined from the condition of initial uplift 

of the foundation if Χ < 0.5. 

o The point of foundation uplift can be determined from the condition of initial 

soil yielding if Χ > 0.5. 

o The ultimate bending moment resistance (when θ→∞) can be determined from 

the condition of combined soil yielding and foundation uplift. 
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ELASTIC CONDITION

INITIAL UPLIFT INITIAL SOIL YIELDING

SOIL YIELDS FOUNDATION UPLIFTS

FOUNDATION UPLIFT AND SOIL YIELDING

 

Figure 5-4:  Rigid foundation rocking response 

5.4 Comparison of nonlinear behaviour 

As discussed earlier it was decided to investigate foundations designed with 0%, 20%, 

40%, 60%, 80% and 100% of the overstrength bending moment of the shear wall 

applied to the foundation.  This led to foundations determined in section 3.2.  These 

sizes are shown in Table 5-1. 

Table 5-1:  Investigated wall foundation dimensions 

Percentage MRd
+ applied Length (L) Width (B) Depth (D) 

100% 14.0 m 4.0 m 1.3 m 

80% 12.0 m 4.0 m 1.3 m 

60% 11.5 m 3.0 m 1.3 m 

40% 9.5 m 3.0 m 1.3 m 

20% 8.0 m 2.5 m 1.3 m 

0% 6.5 m 2.0 m 0.8 m 

Using the expressions provided by Allotey and Naggar [35] the nonlinear rigid rocking 

response of the wall foundations were determined together with positions where uplift 
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of the foundations and yielding of the underlying soil occur for the first time.  Figure 

5-5 shows the resulting moment-rotation capacity curves for the investigated 

foundations. 

 

Figure 5-5:  Foundation capacity curves 

The ultimate moment capacities of the foundations were determined to be as shown in 

Table 5-2. 

Table 5-2:  Ultimate moment capacities 

Foundation MR,ultimate [kNm] 

100% 26264 

80% 22099 

60% 20094 

40% 15929 

20% 12034 

0% 7754 

From Table 5-2 it is clear that there is not a linear relationship between foundation size 

and the applied bending moment.  This is because these percentages merely refer to the 

percentage of shear wall overstrength bending moment applied to determine the 

required foundation dimensions.  Even a 0% foundation has definite dimensions and 



CHAPTER 5:  Foundation behaviour 135 
 

J. E. van der Merwe  University of Stellenbosch 

hence, will provide a nominal amount of bending moment resistance.  Expressed as a 

percentage of the 100% foundation properties, the concrete volume and ultimate 

bending moment resistance of the other foundations are as shown in Table 5-3. 

Table 5-3:  Foundation comparison 

Foundation size Concrete volume MR,ultimate 

100% 100.0% 100.0% 

80% 85.7% 84.1% 

60% 61.6% 76.5% 

40% 50.9% 60.6% 

20% 36.0% 45.8% 

0% 14.3% 29.5% 

 

5.5 Verification of procedure to analyse foundation behaviour 

A spreadsheet was set up to determine the nonlinear rocking response of the foundations 

that were investigated.  To validate the results obtained from this spreadsheet the 

parameters used in a previous study [52] was implemented in the spreadsheet and the 

results compared. 

In the investigation that was used for the validation, nonlinear rigid foundation response 

to seismic action was determined for bridge pier foundations.  The expressions as 

presented by Allotey and Naggar [35] were used in this investigation and therefore the 

results obtained from Kuhn [52] were expected to be identical to that obtained from the 

spreadsheet.  The parameters of interest to the investigated foundation are as follows: 

o Soil bearing capacity:   qu = 1688kN/m2 

o Soil density:    ρ = 18kg/m3 

o Poisson’s ratio:   µ = 0.4 

o Static stress-strain modulus:  Es = 50MPa 

o Width of foundation:   B = 3.8m 

o Length of foundation:   L = 7.4m 

o Depth of foundation:   D = 0.9m 

o Applied bending moment:  M’ = 21951.43kNm 

o Applied normal force:   N’ = 7100kN 
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It was calculated that Χ < 0.5 and therefore foundation uplift is expected to occur before 

the underlying soil yields.  The ultimate bending moment resistance was calculated as 

MR,ultimate = 22340kNm and the bending moments and rotations at positions of 

foundation uplift and yielding of the underlying soil was calculated to be the following: 

Table 5-4:  Foundation performance point 

Position M [kNm] Θ [rad]  

Foundation uplift 8757 0.0034 

Soil yielding 21031 0.0381 

Identical moment rotation curves were obtained as shown in Figure 5-6.  Data was only 

presented by Kuhn [52] for foundation rotation values up to 0.015 radians and therefore 

this was the only available range in which to compare the results. 

 

Figure 5-6:  Moment-rotation validation curves 

It is therefore assumed that the results in this study obtained with the spreadsheet used 

for the investigated foundation sizes are accurate. 
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5.6 Conversion of capacity curve 

The structural systems considered in this study consist of: 

o An internal reinforced concrete frame consisting of columns and slab elements. 

o Either a shear wall or an edge frame consisting of a shear wall, columns and slab 

elements in the plane of the shear wall. 

o A wall foundation. 

In this section, it is shown how the capacity curve of the wall foundation is converted so 

that the capacity curves of all investigated systems are expressed in the same units. 

The capacity curves that were obtained for the investigated foundations as discussed in 

section 5.4 results in nonlinear moment-rotation curves.  These can be seen as the 

nonlinear rotational stiffness of the various foundation sizes.  When modelling the 

foundation with a rotational spring element, this curve would therefore describe the 

nonlinear stiffness of the rotational spring element.  Rotational stiffness is defined as the 

slope of the moment-rotation curve and hence, the unit of the stiffness is the ratio of 

bending moment and rotation (kNm/rad). 

Capacity curves that show the relationship between base shear and lateral roof 

displacement were determined in chapter 4.  These curves therefore define the nonlinear 

lateral stiffness of the various systems that were investigated with the slope of the curve 

being the lateral stiffness.  The unit of this lateral stiffness is therefore defined by the 

ratio of base shear and lateral roof displacement (kN/m). 

If the nonlinear stiffness of the rocking foundation and the various above ground 

structural systems are to be combined, the units of the nonlinear stiffness should be the 

same.  It will therefore be required to convert capacity curves to ensure that the axes of 

the curves define the same parameters. For this reason the capacity curves of the 

rocking foundations were also converted to curves showing the relationship between the 

base shear force that corresponds to the relevant base bending moment, and the lateral 

roof displacement caused by a rotating foundation. 

Equivalent lateral force methods assume a distribution of the base shear force in a 

predefined pattern, {φ}, over the height of a structure.  These forces can be used to 
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determine the bending moment that results at the base of a shear wall.  Assuming a rigid 

shear wall, the conversion can be explained by considering Figure 5-7. 

 

Figure 5-7:  Moment-rotation and base shear-roof displacement relationship 

The lateral distribution of the base shear force over the height of the shear wall as well 

as the height of every floor can be expressed in vector notation: 
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For horizontal force and moment equilibrium of the structure: 
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The pattern of lateral force distribution is decided upon by the engineer and the height 

vector is determined by the geometry of the structure and therefore the above moment 

equilibrium expression can be used to equate a bending moment value to the relevant 

base shear value: 

{ } { }h

M
V

T
b

b φ
=  

If the shear wall is assumed to remain rigid as shown in Figure 5-7, a relationship 

between the rotation of the footing and the lateral roof displacement of the shear wall 

can be determined: 

N

roof

h
∆=θsin  

For small rotations it is known that sinθ ≈ θ and therefore:  
N

roof

h
∆≈θ . 

This allows the conversion of rigid footing rotation to the lateral roof displacement of 

the rigid shear wall using the following expression: 

Nroof h⋅=∆ θ  

The example building that was investigated consists of eight storeys with a vertical 

spacing of 3.5m between floor slabs.  A triangular distribution of lateral forces was 

found to be critical for all above ground structures and hence, this force distribution 

pattern was also used in the conversion of the foundation capacity curves.  Therefore the 

height vector, {h} with meter units, and lateral loading pattern vector, {φ), are as 

follows: 
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Note that the factor of “1/36” is used to normalize the shape vector to ensure horizontal 

equilibrium of the structure.  Expressions to convert the moment-rotation response of 

the foundations to the corresponding base shear-roof displacement response are 

therefore the following: 

119

6 b
b

M
V =  

θ⋅=∆ 28roof  

 

Earthquake ground motion histories were selected and scaled in order to perform 

nonlinear time-history analyses.  The procedure followed to choose appropriate ground 

motions and scaling these ground motion data are discussed in the following chapter. 
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Chapter 6 

 

6 TIME-HISTORY DATA 
 

 

6.1 Objectives 

In order to perform nonlinear time-history analyses with real ground motion 

accelerograms it was necessary to obtain appropriate time-history data and to scale the 

selected data.  The procedure followed to accomplish the aforementioned is discussed in 

this chapter.  Figure 6-1 shows the part of the study, extruded from Figure 1-1, which is 

addressed in this chapter.  This includes first selecting a sufficient number of ground 

motion time-histories and then scaling these ground motion data sets to be 

representative of the expected site conditions and seismic hazard. 

 

Figure 6-1:  Chapter six objectives 
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6.2 Selection of real ground motion 

Various ground motion data sets are freely available on the internet and it is left to the 

engineer to choose the most appropriate ground motions as well as the most appropriate 

number of ground motions to be used in time-history analyses.  As stated in section 

2.2.5 the selection of appropriate ground motion data is dependent on the geological and 

seismological conditions at the location of the structure being considered. 

For the purpose of this investigation the 20 ground motion data sets used by Dhakal et 

al [14] were used as an initial set of ground motions from which to select appropriate 

ground motions to perform nonlinear time-history analyses.  Here ground motion data 

sets were chosen that are appropriate for firm soils with a moderate distance from the 

location where the ground motion was measured to the source of the earthquake.  All 

ground motion data sets were recorded in the United States of America. 

Two properties that are essential for the choice of 20 ground motion data sets are the 

expected site conditions and the distance of the site from a fault zone [14].  The 

“Campbell’s GEOCODE” and the “Closest Distance to Fault Rupture”, denoted by R*, 

are used to define these properties respectively [13].  The chosen ground motion data 

sets had R*-values ranging from 15.1km to 31.7km.  Campbell’s GEOCODE describes 

different soil types with alphabetical letters A to F: 

o A:  Firm soil 

o B:  Very firm soil 

o C:  Soft rock 

o D:  Firm rock 

o E:  Shallow rock 

o F:  Extremely soft or loose soils such as beach sand 

Campbell’s GEOCODE classifications A, B and C were used to choose the set of 20 

ground motions.  Ground motions can be freely downloaded from the PEER Strong 

Motion Database [13] and the set of 20 ground motion records are shown in Table 6-1. 
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Table 6-1:  Initial set of 20 ground motion data [13] 

No Event Year Station Component (φ) R* [km] PGA [g] Campbell’s GEOCODE 
1 Loma Prieta 1989 Agnews State Hospital 90 28.2 0.159 A 

2 Imperial Valley 1979 Plaster City 135 31.7 0.057 A 

3 Loma Prieta 1989 Hollister Diff. Array 255 25.8 0.279 A 

4 Loma Prieta 1989 Anderson Dam 270 21.4 0.244 B 

5 Loma Prieta 1989 Coyote Lake Dam 285 22.3 0.179 B 

6 Imperial Valley 1979 Cucapah 85 23.6 0.309 A 

7 Loma Prieta 1989 Sunnyvale Colton Ave 270 28.8 0.207 A 

8 Imperial Valley 1979 El Centro Array #13 140 21.9 0.117 A 

9 Imperial Valley 1979 Westmoreland Fire Sta. 90 15.1 0.074 A 

10 Loma Prieta 1989 Hollister South & Pine 0 28.8 0.371 A 

11 Loma Prieta 1989 Sunnyvale Colton Ave 360 28.8 0.209 A 

12 Superstition Hills 1987 Wildlife Liquefaction Array 90 24.4 0.180 A 

13 Imperial Valley 1979 Chihuahua 282 28.7 0.254 A 

14 Imperial Valley 1979 El Centro Array #13 230 21.9 0.139 A 

15 Imperial Valley 1979 Westmoreland Fire Sta. 180 15.1 0.110 A 

16 Loma Prieta 1989 WAHO 0 16.9 0.370 C 

17 Superstition Hills 1987 Wildlife Liquefaction Array 360 24.4 0.200 A 

18 Imperial Valley 1979 Plaster City 45 31.7 0.042 A 

19 Loma Prieta 1989 Hollister Diff. Array 165 25.8 0.269 A 

20 Loma Prieta 1989 WAHO 90 16.9 0.638 C 
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As stated in section 2.2.5 it was decided to use seven ground motion histories from the 

above set of 20 for nonlinear time-history analyses.  The elastic response spectrum of 

the structure is required to select the most appropriate data sets.  Calculation of this 

response spectrum is discussed in the following section. 

6.2.1 Elastic response spectrum 

The procedure as described in the Swiss code [53] was used.  Ground type A from this 

code corresponds to ground type 1 of SANS 10160 [43] and the following parameters 

are provided to determine the elastic response spectrum. 

o S = 1.0 

o TB = 0.15 s 

o TC = 0.4 s 

o TD = 2.0 s 

Other parameters that were required as discussed below: 

Damping ratio (ξ) 

A damping ratio of 5% was chosen for the example building and therefore ξ = 0.05. 

Peak ground acceleration (ag,d) 

As shown in Figure 2-4 a PGA of 0.15g was prescribed by the Council of Geoscience 

for the Cape Town region.  Therefore agd = 0.15g was chosen. 

Correction factor (η) 

This dimensionless parameter depends on the damping ratio and can be calculated from 

the following equation: 

55.0
105.0

1 ≥
+

=
ξ

η  

For the chosen 5% damping ratio:  η = 1.0. 

Expressions are given in SIA 261 to determine the elastic response spectrum in the 

various period intervals.  These expressions are as follows [53]: 
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The resulting elastic response spectrum is as shown in Figure 6-2. 

 

Figure 6-2:  Elastic response spectrum 

6.2.2 Final choice of ground motion data 

The procedure to select the most appropriate ground motion data is discussed in section 

2.2.5.  This procedure entails scaling the 5% damped response spectra of the various 

ground motion data sets to the elastic response spectrum and seeing how well the elastic 

response spectrum represents the ground motion response spectrum.  The seven ground 

motion response spectra that best fit the shape of the elastic response spectrum were 

chosen for the nonlinear time-history analyses.  These seven ground motions were 

numbers 1, 2, 4, 5, 8, 14 and 15 from Table 6-1. 

Appendix B shows the response spectra of the seven selected ground motions fitted to 

the elastic response spectrum of the structure. 
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6.3 Scaling of selected ground motion 

As mentioned in section 2.2.5 recorded ground motion must be scaled to fit the elastic 

response spectrum of the structure.  Clearly it will not be possible to fit the whole 

earthquake response spectrum to fit the elastic response spectrum and for this reason the 

response spectra are scaled only within a range of period values in which the structure 

can be expected to vibrate. 

For the purpose of scaling the chosen recorded ground motions it was assumed that the 

shear wall will have a dominant effect on the vibrating response of the building.  

Natural vibration periods of the shear wall were therefore used to determine the period 

range in which to scale the earthquake response spectra.  An eigenvalue analysis was 

performed on the shear wall using SeismoStruct.  Enough modes of vibration must be 

considered that will result in a cumulative effective modal mass of 90% of the total 

mass as discussed in section 2.2.2, and it was determined that the first three modes of 

vibration should be considered.  The results from the eigenvalue analysis for the first 

three modes of vibration are shown in Table 6-2. 

Table 6-2:  Shear wall natural vibration periods 

Mode Period Cumulative mass Deformed shape 

1 T1 = 1,264 s 64.95% 

 

2 T2 = 0.201 s 84.96% 

 

3 T3 = 0.071 s 91.85% 
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Eigenvalue analyses are performed assuming linear material vibration response.  To 

account for the increase in natural vibration periods due to nonlinear material behaviour 

the upper limit of the scaling period range was chosen to be 1.5T1 as used by Naeim et 

al [54]. 

The range of period values in which the recorded earthquake ground motion was scaled 

to fit the elastic response spectrum was therefore between T3 = 0.071s and 1.5T1 = 

1.896s.  Spectral acceleration values over the entire period range were scaled by a 

constant factor to obtain a best fit with the elastic response spectrum within the 

determined period range.  It was attempted to obtain a scaling factor that ensures an 

equal area between the two curves above and below the elastic response spectrum as 

well as attempting to obtain a good fit between the curves at the fundamental period of 

vibration.  Figure 6-3 shows this graphical procedure for the second ground motion data 

set (“ATH02”) from the initial set of twenty. 

Appendix B shows the scaled response spectra of the chosen ground motions. 

 

Figure 6-3:  Scaling of ground motion data set number two 

Table 6-3 shows the scaling factors that were determined for the seven chosen ground 

motion data sets. 
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Table 6-3:  Ground motion scaling factors 

Ground 
motion 

ATH01 ATH02 ATH04 ATH05 ATH08 ATH14 ATH15 

Scaling 
factor 

0.90 2.70 0.60 0.65 1.20 1.30 1.60 

The scaling factors determined above were then used to scale the accelerograms of these 

ground motion data sets.  Resulting peak ground accelerations after scaling are as 

shown in Table 6-4. 

Table 6-4:  Ground motion PGA 

Ground 
motion ATH01 ATH02 ATH04 ATH05 ATH08 ATH14 ATH15 

PGA [g] 0.14 0.15 0.15 0.12 0.14 0.18 0.18 

Appendix B shows the scaled ground acceleration time-histories. 

 

Nonlinear time-history analyses were performed on a simplified model that incorporates 

different structural systems.  Simplified modelling of the different structural systems, 

the determination of inelastic material response for the various components, as well 

combining these systems into one lateral load resisting system, are discussed in 

chapter 7. 
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Chapter 7 

 

7 NONLINEAR MODELLING OF COMBINED MODEL 
 

 

7.1 Objectives 

Figure 7-1 shows the part of the study, extruded from Figure 1-1, which is addressed in 

this chapter. 

 

Figure 7-1:  Chapter seven objectives 

For the final analyses of the selected building, a simplified model was developed.  Such 

a model would reduce computational effort.  This chapter presents steps to compute this 

model. 

First, the combined stiffness of the wall foundation and edge frame was investigated.  

From this investigation it was found that the edge frame was not needed, and that the 

following elements should be included in the simplified model: 
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o The shear wall 

o The wall foundation 

o The internal frame 

The next step was to determine the geometry of the three elements of the simplified 

model.  This included the choice of element type and lumped mass. 

Finally, nonlinear material properties were assigned to the elements used to model the 

shear wall and internal frame to ensure the accurate representation of the lateral force-

displacement behaviour of these systems, as presented in chapter four.  Damping 

coefficients were determined for both systems to ensure that 5% viscous damping is 

obtained. 

 

7.2 Choice of structural systems 

It is shown in this section that the edge frame is not needed in the simplified model of 

the edge element.  The edge element would consist of the shear wall and its foundation.  

For this purpose, the elastic stiffness of the wall foundation and edge frame, located on 

grid A of the example building (Figure 3-2), is investigated. 

Three components were identified to contribute to the lateral stiffness of the structure.  

These are: 

o An internal frame. 

o A wall foundation 

o Either an edge frame or a shear wall 

In chapter 4 the capacity curves of these elements were discussed.  Chapter 5 discussed 

the nonlinear rocking capacity of the various investigated foundation sizes.  In this 

chapter these capacity curves are used to investigate the seismic response when these 

systems are combined into one lateral load resisting system. 

Rocking foundation response is expected to act as a mechanism of energy dissipation 

and it is possible for this mechanism to be more dominant than the mechanism due to 

plastic rotation of the shear wall.  For this reason it was decided to investigate whether 

the edge frame should be included in the combined model at all.  This was done by 
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investigating the combined effect of the initial elastic lateral stiffness of the wall 

foundation and that of the edge frame. 

It is assumed that the same lateral roof displacement will apply to all frames when the 

investigated building is loaded laterally.  From this assumption it follows that the lateral 

roof displacement of the investigated internal frame (grid B, Figure 3-2) will be equal to 

the roof displacement resulting from the combined stiffness of the edge frame (grid B, 

Figure 3-2) and the wall foundation. 

This concept can be explained by representing the lateral stiffness of the different 

systems with spring elements.  From the above discussion it follows that the spring 

elements of the wall foundation and the edge frame should be connected in series to 

ensure that the total lateral displacement is equal to the sum of the displacements of 

these two systems.  As the total displacement resulting from these two systems should 

be equal to the displacement of the internal frames it follows that the internal frame 

spring element should be connected in parallel with the other two elements.  The 

resulting combination of stiffness would therefore be as shown in Figure 7-2. 

 

Figure 7-2:  Lateral stiffness combination of systems 

In Figure 7-2, “kF” refers to the nonlinear stiffness of the wall foundation, “kEF” that of 

the edge frame and “kIF” that of the internal frame.  The stiffness of the foundation and 

that of the investigated edge frame can be added to produce the stiffness of the whole 

edge element located on grid A of the example building (Figure 3-2). 
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7.2.1 Stiffness contribution 

If the subscript “e” denotes the combined effect of the wall foundation and the edge 

frame it is clear that for spring elements connected in series, the total displacement is 

equal to the sum of the displacement of the different components: 

eEFF ∆=∆+∆  

All components connected in series will experience the same internal force and will be 

equal to the internal force of the combined spring element, and hence: 

eEFF FFF ==  

As stiffness is defined as the ratio of force and the displacement in the direction of the 

applied force, the addition of displacement can be expressed as follows: 
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Dividing by Fe throughout, the effective stiffness can be expressed in terms of the 

stiffness of the various components: 
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The above expression can be used to determine the combined stiffness of the edge frame 

and the wall foundation. 

7.2.2 Elastic comparison 

To determine the contribution of the foundation and edge frame to the combined 

stiffness of the whole edge element located on grid A of the example building (Figure 

3-2), it was decided to compare the elastic stiffness of each of these systems to their 

combined elastic stiffness.  The initial slope of the nonlinear capacity curves of these 

systems were used as the elastic stiffness.  Note that the capacity curves used for the 

foundation are that of the converted curve showing the relationship of base shear to 

lateral roof displacement. 
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Combination of the foundation and edge frame was only investigated for the 40%, 60%, 

80% and 100% foundation sizes to determine whether a trend can be observed.  The 

elastic stiffness of relevance is shown in Table 7-1. 

Table 7-1:  Elastic stiffness 

System Stiffness 

Edge frame 70 080.4 kN/m 

100% footing 32 963.1 kN/m 

80% footing 21 386.5 kN/m 

60% footing 17 994.6 kN/m 

40% footing 10 494.7 kN/m 

Combining the elastic edge frame stiffness with that of the various foundation sizes 

resulted in a combined stiffness that is lower than either of the two components for all 

investigated foundation sizes.  The combined stiffness differs only slightly from that of 

the foundation stiffness.  This difference between the elastic foundation stiffness and the 

combined elastic stiffness decreases with decreasing foundation size, that is, for smaller 

elastic foundation stiffness.  This can be seen from Figure 7-3 that shows the combined 

stiffness using the 100% foundation size and Figure 7-4 showing the result using the 

40% foundation. 

 

Figure 7-3:  Edge frame + 100% footing elastic comparison 
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Figure 7-4:  Edge frame + 40% footing elastic comparison 

A summary of the combined elastic stiffness are shown in Table 7-2. 

Table 7-2:  Combined elastic stiffness 

System Elastic stiffness 

Edge frame + 100% footing 22 418.3 kN/m 

Edge frame + 80% footing 16 386.0 kN/m 

Edge frame + 60% footing 14 318.1 kN/m 

Edge frame + 40% footing 9 127.8 kN/m 

Due to the combined elastic stiffness being close to that of the wall foundation it was 

concluded that the effect of the edge frame can be neglected for the sake of simplicity 

with only the effect of the foundation being taken into account. 

Some superstructure member should however be attached to the foundation to ensure 

that the rotation of the footing results in lateral roof displacement.  For the purpose of 

achieving lateral roof displacement the shear wall is included in the model.  This 

combined foundation and shear wall model could therefore have geometry similar to 

that shown by the free body diagram of Figure 5-7. 
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7.3 Component geometry 

Simplified geometries were chosen to represent the various structural systems to reduce 

the number of elements and nodes in the combined model that will lead to a reduction in 

computational effort when performing nonlinear time-history analyses.  The finite 

element analysis system Strand7 [55] was chosen to perform the nonlinear time-history 

analyses.  This software package allows the modelling of nonlinear spring elements, 

various types of link elements, beam elements and lumped mass elements, all of which 

were used for the combined model as will be discussed later. 

In section 7.2 it was shown that the edge frame is not needed in the simplified model.  

The simplified model would therefore consist of the following elements: 

o The wall foundation 

o The shear wall 

o The internal frame 

The properties of these components are discussed in the following paragraphs. 

7.3.1 Wall foundation 

Nonlinear rocking response of the various foundation sizes were determined resulting in 

a moment-rotation relationship for the foundations.  A spring element with nonlinear 

rotation stiffness was chosen to represent the foundation.  This enables the direct use of 

the nonlinear moment-rotation response to describe the stiffness of the spring element. 

7.3.2 Shear wall 

Rotation of the footing will result in lateral roof displacement and therefore it was 

decided to include the shear wall in the combined model.  Displacement of the centre 

line of the shear wall relative to the foundation is equivalent to that of a cantilever beam 

and hence, the shear wall was modelled with a beam element that includes lumped mass 

representing the contributing mass of floor slab at the various floor levels as shown in 

Figure 7-5. 
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Figure 7-5:  Shear wall model concept (schematic) 

Equal mass were modelled at each floor level as the example building structure is 

regular in plan and elevation.  As discussed in section 4.3.1 the equivalent density of the 

slab concrete material is γ = 33.84 kN/m3 to include imposed loads.  The mass at each 

floor level of the shear wall represents the three meter wide edge frame strip of slab.  

The following lumped mass was obtained at each floor level: 

kgDepthAreaDensitym 11021381.9
100025.036.4284.33 =××××=××=  

7.3.3 Internal frame 

It is important that the simplified model that accounts for the nonlinear response of the 

internal frame is able to accurately represent the displaced shape of the frame.  From the 

pushover analysis performed in SeismoStruct the displaced shape was found to be as 

shown in Figure 7-6. 
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Figure 7-6:  Displaced internal frame 

To enable the simplified model to displace in the same manner as the internal frame it 

was decided to use a model consisting of two columns with nonlinear material 

behaviour and lumped mass at the various floor levels.  Slab elements were not included 

in the simplified model.  Column material properties would therefore be determined to 

accurately represent the lateral force-displacement behaviour of the internal frame. 

Rigid link elements were connected between the two columns at every floor level to 

ensure equal lateral displacement and rotation of the columns at every floor level. 

The column foundations are designed to provide no bending moment resistance and 

therefore pinned supports were provided to the columns.  This will also result in the 

displaced shape to better represent the displaced shape of the frame.  Figure 7-7 shows 

the concept of the simplified model to represent the internal frame. 
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Figure 7-7:  Internal frame model concept (schematic) 

Contributing permanent and imposed loads on the slabs were included in the masses 

modelled at the floor levels in much the same way as done for the shear wall model.  

Here the contributing slab width used to determine the mass at every floor level was 

chosen to be midway between the adjacent grids of columns, resulting in a six meter 

width of contributing slab.  The mass at every floor level was calculated as: 

kgDepthAreaDensitym 22042681.9
100025.066.4284.33 =××××=××=  

7.3.4 Combined model 

It was already stated that the shear wall model was connected to the rotational spring 

element representing the foundation rocking response at the base of the wall.  As the 

total lateral displacement resulting from the combination of shear wall and foundation is 

equal to lateral displacement of the internal frame, these systems were connected by link 

elements ensuring equal lateral displacement of the systems at every floor level.  Figure 

7-8 shows the concept of the combined model. 
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Figure 7-8:  Combined model concept (schematic) 

Nonlinear material properties were assigned to both the elements of the shear wall and 

two-column frame models to ensure an accurate representation of the displaced shape 

due to lateral loading.  This is discussed in the following section. 

 

7.4 Nonlinear material response 

It has been shown in section 7.2 that the shear wall, wall foundation, and internal frame 

should be included in the simplified model.  The procedure to determine nonlinear 

material properties for the simplified model is presented in the following paragraphs. 

Nonlinear material response is required to describe the nonlinear behaviour of the two 

superstructure systems as discussed in chapter 4.  These superstructure systems, as 

shown in Figure 7-8, consist of an internal frame and a shear wall.  Nonlinear material 

response, the hysteretic response assigned to the simplified model, as well as required 

damping coefficients are discussed in this section. 

In this section the bilinear approximations of the lateral force-displacement behaviour 

curves of these superstructure systems were used to determine nonlinear moment-

curvature material response for the beam elements used to model the shear wall and 

internal frame. 
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7.4.1 Shear wall 

As simplification, the lateral force-displacement behaviour determined for the shear 

wall in section 4.6.2 was represented as a bilinear curve.  The bilinear curve was used as 

reference to determine a nonlinear moment-curvature material response for the 

simplified model.  The following parameters had to be defined for a bilinear 

approximation of the moment-curvature material response: 

o Elastic stiffness 

o Yield curvature 

o Ultimate curvature 

The procedure followed to determine this material response is discussed in the 

following paragraphs. 

Standard parameters 

Standard properties of the beam elements representing the shear wall and the mass used 

at all floor levels were the following: 

o Lumped mass of m = 110212.8kg at every floor level. 

o Shear wall material density of ρ = 2400kg/m3 to represent the density of 

reinforced concrete. 

o A viscous damping ratio of ξ = 5% was chosen. 

o Poisson’s ratio of ν = 0.2 as was prescribed to the concrete material of the 

SeismoStruct model. 

o Beam element dimensions of 6000mm x 300mm were used to represent the 

section of the shear wall with the strong axis of the section providing stiffness in 

the plane of the two-dimensional model. 

Bilinear capacity curve and lateral loads 

The bilinear approximation of the shear wall capacity curve (Figure 4-30) defines a 

yield point and ultimate point as described in Table 7-3. 

Table 7-3:  Bilinear approximation of shear wall capacity 

 Base shear force (F) [kN] Roof displacement (∆) [m] 

Yield point (y) 961.915 0.0756 

Ultimate point (u) 1234.067 0.3500 
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Distributing the above base shear forces in a triangular pattern over the height of the 

shear wall will result in applied forces as shown in Table 7-4. 

Table 7-4:  Lateral force distribution – shear wall 

Floor level Fy [kN] Fu [kN] 

1 26.7 34.3 

2 53.4 68.6 

3 80.2 102.8 

4 106. 9 137.1 

5 133.6 171.4 

6 160.3 205.7 

7 187.0 240.0 

8 213.8 274.2 

Elastic stiffness 

An iterative procedure was followed to determine the required elastic stiffness of the 

shear wall model.  Linear static analyses were performed applying the lateral force 

distribution of the yield base shear force and the resulting lateral roof displacement was 

obtained.  It was found that using an elastic modulus of E = 10.45GPa results in a 

lateral roof displacement of 0.0756m which is equal to the required lateral roof 

displacement of the wall when the yield base shear is applied. 

Yield point of the moment-curvature response 

Performing a linear static analysis with the lateral force distribution of the yield base 

shear force, resulted in a bending moment of M y = 19 078.0kNm at the base of the wall 

model.  The lateral forces applied here will result in elastic material response with larger 

lateral forces resulting in inelastic material response.  For this reason this bending 

moment corresponds to the point where inelastic material response is initiated.  The 

bending moment at the base of the shear wall model was considered because this is the 

point of maximum bending moment in the wall model due to lateral loading, and 

therefore the position where inelastic material response will start. 

The curvature of the section that corresponds with the observed bending moment was 

determined using the elastic modulus determined above.  Strong axis bending applies 

and therefore the moment of inertia is as follows: 
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Assuming a linear distribution of bending stress over the section will result in the 

following yield stress: 
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The yield strain associated with this stress was calculated using the elastic modulus: 

001014.010450
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y
y

σε  

Curvature is defined as the slope of the strain distribution, which will be linear with the 

assumption of linear stress distribution over the section.  As the section is assumed to 

remain elastic at this bending moment value it was also assumed that the neutral axis 

will remain at the centre of the section.  The yield curvature was calculated as the 

following: 
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This results in the yield point of the nonlinear moment-curvature response of the 

material being:  (φy; M y) = (3.38×10-4; 19 078.0)  [m-1; kNm] . 

Ultimate point of the moment-curvature response 

Applying forces greater than that resulting from the yield base shear force should result 

in nonlinear material response of the model and therefore linear static analysis is 

inappropriate for a base shear force larger than yield.  Applying the lateral force 

distribution corresponding to the ultimate base shear force resulted in a maximum 

bending moment obtained at the base of the shear wall equal to Mu = 24 475.6kNm. 

Nonlinear moment-curvature material response was defined with the yield point as 

described above and the ultimate bending moment equal to that mentioned in the 

previous paragraph.  An iterative procedure was followed to determine the required 

ultimate curvature value that will result in the ultimate roof displacement as determined 

in section 4.6.2.  This procedure is shown in Figure 7-9. 
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Figure 7-9:  Determining ultimate curvature 

A larger ultimate curvature value results in a decreased slope of the post-yield moment-

curvature response as the ultimate moment value is kept constant.  This leads to reduced 

post-yield stiffness of the material and increased lateral roof displacement. 

The nonlinear material response was prescribed to the shear wall material.  Nonlinear 

static analyses were then performed with the lateral roof displacement investigated.  It 

was observed that a lateral roof displacement of 0.3503m is obtained when an ultimate 

curvature of φu = 0.0048m-1 is prescribed.  This roof displacement differs from the 

required ultimate roof displacement (section 4.6.2) by only 0.09% and it was therefore 

assumed that this curvature value results in a sufficiently accurate lateral roof 

displacement. 

The ultimate point of the moment-curvature material response is therefore:  (φu; M u) = 

(0.0048; 24 475.6)  [m-1; kNm] . 

Figure 7-10 shows the resulting shear wall moment-curvature response. 
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Figure 7-10:  Shear wall moment-curvature material response 

7.4.2 Internal frame 

The same procedure as for the shear wall was followed to determine the nonlinear 

moment-curvature response of the internal frame material.  The following parameters 

had to be defined for a bilinear approximation of the moment-curvature material 

response: 

o Column size 

o Elastic stiffness 

o Yield curvature 

o Ultimate curvature 

This procedure is described in the following paragraphs. 

Standard parameters 

Modelling the internal frame with a single element will result in cantilever bending 

behaviour and not frame behaviour.  A two-column frame was therefore chosen to 

represent the nonlinear response of the internal frame.  The number of columns 

modelled is therefore reduced from eight to two.  Sectional dimensions of the columns 

are of little importance as the material properties are determined to result in sufficient 

stiffness of the model to represent the frame response.  As the eight columns of the 
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internal frame is reduced to only two columns in the simplified model, it was decided to 

choose sectional dimensions that will result in an inertia moment of roughly four times 

that of one of the internal frame columns. 

The moment of inertia for one column of the internal frame is as follows: 

4
44
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12
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I ===  

If the simplified model column dimension is denoted by “x”, it will follow that: 

mx
x

849.040108.0
12

4

=⇒×=  

Column dimensions of the simplified model were subsequently chosen as 

850mm×850mm.  Other parameters include the following: 

o A lumped mass of m = 220425.6kg at each floor level. 

o Material density of ρ = 2400kg/m3 to represent concrete material. 

o A viscous damping ratio of ξ = 5% was chosen. 

o Poisson’s ratio of ν = 0.2 as prescribed to the concrete material of the 

SeismoStruct model. 

Bilinear capacity curve and lateral loads 

The bilinear approximation of the internal frame capacity curve (Figure 4-26) needs to 

define a yield point and ultimate point as described in Table 7-5. 

Table 7-5:  Bilinear approximation of internal frame capacity 

 Base shear force (F) [kN] Roof displacement (∆) [m] 

Yield point (y) 857.9 0.3500 

Ultimate point (u) 981.7 0.5850 

Distributing the above base shear forces in a triangular pattern over the height of the 

frame will result in applied forces as shown in Table 7-6. 
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Table 7-6:  Lateral force distribution – internal frame 

Floor level Fy [kN] Fu [kN] 

1 23.8 27.3 

2 47.7 54.5 

3 71.5 81.8 

4 95.3 109.1 

5 119.2 136.3 

6 143.0 163.6 

7 166.8 190.9 

8 190.7 218.2 

Elastic stiffness 

The lateral load distribution corresponding to the yield base shear force was applied to 

the model and linear static analyses performed iterating through values for the elastic 

modulus of the column material.  A lateral roof displacement of 0.3502m was observed 

when an elastic modulus of E = 2.845GPa was prescribed.  The 0.06% difference 

between this lateral roof displacement and the target roof displacement (Table 7-5) was 

assumed to be negligible. 

Yield point of the moment-curvature response 

The yield point of the moment-curvature response for the column elements had to be 

found.  With the lateral load distribution as used above and performing a linear static 

analysis, it was observed that the maximum bending moment in the columns were 

obtained just below the connection between the column and the rigid link element at 

first floor level as shown in Figure 7-11. 
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Figure 7-11:  Bending moment diagram:  internal frame model 

It was observed that the bending moment at this position was My = 1 501.4kNm. 

Making the same assumptions as was made for the shear wall model it follows that: 

4
44

0435.0
12

85.0

12
m

d
I ===  

The maximum stress in the section due to the yield bending moment is therefore: 
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The resulting curvature can therefore be determined using the strain calculated above. 
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The yield point of the moment-curvature was therefore determined to be:  (φy; M y) = 

(0.01213; 1 501.4)  [m-1; kNm] . 
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Ultimate point of the moment-curvature response 

The next step was to determine the ultimate curvature for the frame columns.  Applying 

the lateral force distribution corresponding to the ultimate base shear force resulted in a 

maximum bending moment in the column of M u = 1 718.0kNm at the same location as 

with the yield base shear applied.  Following the same procedure as for the shear wall 

model, it was determined that defining an ultimate curvature of φu = 0.244m-1 resulted 

in a lateral roof displacement of 0.5851m by performing a nonlinear static analysis.  The 

0.02% difference between this obtained displacement and the ultimate lateral roof 

displacement of the bilinear force-displacement behaviour (section 4.6.1) was 

considered to be negligible. 

The ultimate point of the nonlinear moment-curvature response of the simplified 

internal frame model is therefore defined as:  (φu; M u) = (0.244; 1 718.0)  [m-1; kNm] . 

Figure 7-12 shows the resulting nonlinear moment-curvature material response assigned 

to the column elements of the simplified internal frame model. 

 

Figure 7-12:  Internal frame moment-curvature material response 



CHAPTER 7:  Nonlinear modelling of combined model 169 
 

J. E. van der Merwe  University of Stellenbosch 

7.4.3 Hysteretic response properties 

The nonlinear material behaviour had to be defined for the Strand7 model and is 

discussed in this section. 

Nonlinear material behaviour can be implemented by Strand7 in different ways.  The 

way in which the nonlinearity is applied will depend on the chosen type of nonlinearity, 

as well as the specified hardening rule. 

Type of nonlinearity 

The user is given a choice between Elastic and Elastic-Plastic nonlinear material 

behaviour.  Elastic material behaviour is used when a nonlinear stress-strain relationship 

exists but no plastic deformation is allowed.  Therefore this choice of nonlinearity will 

result in all applied strains to be recovered during unloading.  Repetitive loading and 

unloading will follow the same deformation path. 

Elastic-Plastic material behaviour refers to material that can exhibit plastic deformation.  

If the stress in the material exceeds the specified yield value, strains will result that 

comprise of elastic and plastic strain:  εtotal = εelastic + εplastic.  Elastic strain will be 

recovered during unloading but plastic strain will not be recovered, resulting in 

hysteretic behaviour. 

Hardening rule 

Various hardening rules are available to the user to define the type of hysteretic 

behaviour of repetitive loading and unloading.  Isotropic hardening describes hysteretic 

behaviour of which the compressive and tensile yield strengths are equal.  Kinematic 

hardening is used when the elastic range in compression and tension is equal.  The 

compressive and tensile yield deformations are, however, not equal.  Increasing tensile 

yield deformation will therefore result in a reduced compressive yield deformation and 

vice versa [55]. 

Inelastic material response is of importance in this investigation and therefore Elastic-

Plastic nonlinear behaviour was defined to ensure plastic deformation.  Capacity curves 

of the various structural systems were obtained by performing static analyses loading 

these systems in only one direction.  For the purpose of this investigation it was 

assumed that the capacity of the structural systems would be the same for lateral loading 
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in both directions.  An Isotropic hardening rule was therefore chosen to describe the 

hysteretic behaviour. 

 

7.5 Damping properties 

Time-history analyses were performed in Strand7 using the Nonlinear Transient 

Dynamic procedure.  As the name implies, this dynamic procedure is able to account for 

inelastic material response.  Damping effects for beam elements are taken into account 

by prescribing a damping coefficient per cubic meter of beam element material with 

unit kNs/m/m3.  It was therefore necessary to determine damping coefficients for the 

shear wall and frame models that will result in a 5% viscous damping ratio. 

The procedure followed to determine appropriate damping coefficients is discussed in 

the following paragraphs, first for the shear wall material and then for the column 

material of the internal frame model. 

7.5.1 Theoretical response 

Theoretical expressions for the vibration response of a structure forced at its resonance 

frequency are provided by A.K. Chopra [8].  These expressions include the effect of 

damping.  The displacement response of a system forced at resonance frequency is 

described by the following equation [8]: 
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In the above equation: 

o 21 ξωω −⋅= nD  = damped natural frequency. 

o ( )0stu  = maximum displacement due to the statically applied force. 

o ξ  = Percentage of critical damping (expressed as a ratio). 
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Plotting the relationship of ( )
( )0stu

tu  and 
nT

t  results in a theoretical response for a 

5% damped system as shown in Figure 7-13.  As can be seen from Figure 7-13 the 

response is contained in an envelope in both directions of displacement. 

Chopra [8] also provides expressions for these envelopes. 

 

Figure 7-13:  Response of a 5% damped system to a sinusoidal force at resonance frequency 

7.5.2 Shear wall material damping coefficient 

An iterative procedure was followed to determine the damping coefficient for the shear 

wall elements required to obtain the response shown in Figure 7-13. 

Maximum value of static deformation 

A linear static analysis was performed on the shear wall model applying 100kN lateral 

forces at every floor level.  The roof displacement due to these applied loads was (ust)0 

= 45.6mm. 

Fundamental mode of vibration 

It was decided to apply the lateral forces harmonically at the fundamental frequency and 

therefore this mode of vibration was to be found.  Natural Frequency Analysis was 
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performed to obtain the fundamental mode of vibration.  The fundamental frequency 

was found to be f1 = 0.807Hz.  Therefore: 

s
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Harmonic analysis 

The 100kN lateral forces at each floor level were then applied harmonically according 

to the following forcing function: 

( ) ( ) ( )ttFtF ⋅⋅=⋅= 068.5sin100sin 10 ω  

This harmonic analysis was performed prescribing a damping coefficient to the shear 

wall model material.  The damping coefficient value was changed iteratively and the 

ratio of dynamic displacement to static displacement compared with the theoretical 

curve shown in Figure 7-13. 

It was found that the ratio compared well with the theoretical curve when prescribing a 

damping coefficient of c = 12.6kNs/m/m3 to the shear wall material as shown in Figure 

7-14. 
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Figure 7-14:  Shear wall harmonic response 

7.5.3 Internal frame material damping coefficient 

The same procedure was followed to determine the required damping coefficient for the 

column material of the simplified model of the internal frame.  The following results 

were obtained: 

Maximum value of static deformation 

Performing a linear static analysis with 100kN lateral forces applied at every floor level 

resulted in a static lateral roof displacement of (ust)0 = 253.4mm. 

Fundamental mode of vibration 

From a Natural Frequency Analysis it was found that the fundamental mode of 

vibration was f1 = 0.245Hz and therefore: 
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Harmonic analysis 

The 100kN forces were then applied harmonically at a forcing frequency equal to the 

fundamental frequency of the model: 

( ) ( ) ( )ttFtF ⋅⋅=⋅= 538.1sin100sin 10 ω  

It was observed that a damping coefficient of c = 8.7kNs/m/m3 for the column elements 

resulted in a lateral displacement response that compares well with the theoretical curve 

as shown in Figure 7-15. 

 

Figure 7-15:  Internal frame harmonic response 

 

Chapter eight discusses the results from the nonlinear time-history analyses as well as 

the assessment of the results on a local and global level. 
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Chapter 8 

 

8 ANALYSES, RESULTS AND ASSESSMENT 
 

 

8.1 Objectives 

Figure 8-1 shows the part of the study, taken from Figure 1-1, which is addressed in this 

chapter.  This includes: 

o Determining an appropriate time step to be used in nonlinear time-history 

analyses of the investigated models. 

o A discussion of the procedure and relevant parameters used in the software 

package Strand7 to perform the time-history analyses. 

o The response quantities that were used for assessment of the various structural 

systems. 

o Assessment of the building on a local and global level. 

 

Figure 8-1:  Chapter eight objectives 
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8.2 Nonlinear time-history analyses 

Nonlinear time-history analyses were performed using the Nonlinear Transient 

Dynamic procedure of Strand7.  The simplified models described in chapter seven were 

investigated with the six different foundation sizes as well as a model where no 

rotational stiffness is provided to the shear wall support, resulting in seven different 

models being investigated.  The seven chosen ground motion accelerograms discussed 

in chapter 6 were used to perform nonlinear time-history analyses on each of the 

models.  A total of 49 analyses were therefore carried out. 

A discussion of the appropriate time step for nonlinear time-history analyses, a 

description of the software procedure used, and the output results used for assessment 

purposes are discussed in the following paragraphs. 

8.2.1 Determining the appropriate time-step 

Recorded ground motion histories obtained from the PEER Strong Motion Database 

[13] provides accelerograms with a time step of 0.005 seconds.  It was decided to 

investigate whether a larger time-step could be used for the nonlinear time-history 

analyses in order to reduce computational effort.  Various time-step increments were 

investigated for two accelerograms applied to the internal frame model, comparing the 

lateral roof displacement response. 

Total accelerogram of ATH01 ground motion data set 

The first ground motion that was investigated was the Loma Prieta event recorded at 

Agnews State Hospital, referred to as “ATH01” in this study.  Refer to event number 

one in Table 6-1.  This scaled accelerogram was applied to the frame for the total 

duration of the recorded ground motion.  Four time-step increments were investigated.  

As the time increment of the recorded data is 0.005 seconds, it is assumed that using a 

time-step of ∆t = 0.005s will result in a suitably accurate result and was the first time-

step investigated.  The other time-step values investigated were 0.01s, 0.02s and 0.1s.  

Resulting maximum lateral roof displacement for the different time-step values are 

shown in Table 8-1. 
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Table 8-1:  Time-step investigation results – ATH01 

∆t [s] Roof displacement [mm] Difference from 0.005s value 

0.005 76.2 0.00% 

0.010 74.8 1.84% 

0.020 74.5 2.23% 

0.100 87.8 13.21% 

Using a time-step of ∆t = 0.01s will half the computational effort and the resulting 

maximum lateral roof displacement does not differ much from the minimum time-step 

value.  A time-history comparison of the lateral roof displacement response of the frame 

model for the time-step values of 0.005s and 0.01s are shown in Figure 8-2. 

 

Figure 8-2:  Comparison of lateral roof displacement – ATH01 

From Figure 8-2 it is clear that the lateral displacement response of the frame is 

calculated sufficiently accurate using a time-step of ∆t = 0.01s. 

Region of maximum acceleration of ATH04 ground motion data set 

The influence of a larger time-step was also investigated applying the Loma Prieta event 

recorded at Anderson Dam, referred to as “ATH04” in this study.  Refer to event 

number four in Table 6-1.  Here it was decided to only investigate the time period where 
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maximum ground acceleration had been recorded.  The range of ground acceleration 

values from 5 seconds to 15 seconds of the scaled accelerogram was therefore chosen as 

shown in Figure 8-3. 

 

Figure 8-3:  ATH04 region of maximum ground acceleration 

Time-step values investigated were 0.005s, 0.01s, 0.02s, 0.05s, 0.08s and 0.1s.  The 

maximum lateral displacement response for the different investigated time-step values 

are shown in Table 8-2. 

Table 8-2:  Time-step investigation results – ATH04 

∆t [s] Roof displacement [mm] Difference from 0.005s value 

0.005 137.3 0.00% 

0.010 137.6 0.22% 

0.020 139.3 1.44% 

0.050 146.6 6.34% 

0.080 158.2 13.21% 

0.100 202.1 32.06% 

From Table 8-2 it is clear that a time-step value of ∆t = 0.01s results in a maximum 

lateral displacement response sufficiently close to that obtained implementing the 
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smallest time-step.  A good comparison of the total lateral displacement response of the 

frame is obtained between these two time-step values as shown in Figure 8-4. 

 

Figure 8-4:  Comparison of lateral roof displacement – ATH04 

All subsequent nonlinear time-history analyses were therefore performed using a time-

step of ∆t = 0.01s. 

8.2.2 Nonlinear Transient Dynamic procedure 

The Nonlinear Transient Dynamic procedure provided by Strand7 [55] is able to apply 

time dependant acceleration of restrained nodes taking nonlinearity into account.  This 

was therefore the preferred procedure for the nonlinear time-history analyses.  The 

following conditions must be defined by the user: 

Initial Conditions 

Initial velocities and accelerations of all free nodes are prescribed in each of the global 

axis directions.  The structure is assumed to be static prior to a seismic event and 

therefore zero values were prescribed here. 
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Base Acceleration 

Time dependant acceleration of all restrained nodes is prescribed by a direction vector 

and a table reference prescribing the time dependant acceleration in that direction.  The 

values in the direction vector are used to scale the acceleration table prescribed in that 

direction.  Required output results are also chosen here to be either total or relative 

displacement, velocity or acceleration.  Total results were chosen because the relative 

quantities can be obtained by comparing the absolute results at different nodes from the 

output.  The Newmark-β method was implemented to solve the time-history analyses 

with β = ½ and α = ¼ [55]. 

Node History 

Nodes where output is required must be chosen by the user.  All possible displacement, 

velocity and acceleration output were chosen at the base and roof nodes of the model. 

8.2.3 Response quantities for result assessment 

Different response quantities were used to assess the various structural systems: 

o Lateral roof displacement was used to assess the response of the internal frame. 

o Rotation of the foundation spring element was used to investigate failures 

associated with the foundations. 

o As the capacity curve of the shear wall was determined by assuming a fixed 

support to the shear wall, it follows that the lateral roof displacement, taking 

footing rotation into account, was used to assess the shear wall response. 

The results that were obtained from the output of the analyses will be discussed in the 

following sections. 

 

8.3 Local assessment of results 

The performance of each individual component of the investigated lateral load resisting 

system was evaluated as well as the performance level of the combined system on a 

global level. 
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o First, the lateral roof displacement response is used to investigate failures in the 

internal frame. 

o Footing rotation response is used to assess foundation performance. 

o Lateral roof displacement of the shear wall model relative to the footing rotation 

is then used to investigate failures in the shear wall model. 

o Finally, the lateral roof displacement response is used to assess the performance 

level of the entire building structure. 

8.3.1 Internal frame 

Lateral roof displacement response obtained from the time-history analyses was used to 

investigate whether failures can be expected to occur in the internal frame.  The same 

response quantities were therefore used for the local assessment of the internal frame 

and the global assessment of the entire structure. 

From the lateral force-displacement curve of the internal frame applying a triangular 

distribution of the base shear force (section 4.6.1), it was observed that failures were 

first identified at the following lateral roof displacements: 

o Steel yielding:  390mm 

o Slab rotation limit:  420mm 

o Cover spalling:  585mm 

Seven recorded ground motion accelerograms, scaled to fit the elastic response 

spectrum, were used to perform time-history analyses on each of the seven models with 

different foundation responses.  Roof displacement response relative to that of the base 

nodes was investigated from the output of the analyses and the maximum lateral 

displacement was obtained from this response.  As discussed in section 2.2.5 the 

average response can be investigated when at least seven ground motions are 

investigated and therefore the average maximum lateral displacement was also 

calculated for each case. 

The maximum lateral roof displacement response resulting from the various analyses 

(measured in millimetre) are shown in Table 8-3. 
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Table 8-3:  Lateral roof displacement response [mm] 

 Model foundation size 

Event 100% 80% 60% 40% 20% 0% None 

ATH01 181.6 199.4 195.5 208.9 197.4 188.9 154.1 

ATH02 76.4 83.0 87.5 90.3 102.9 120.5 178.3 

ATH04 66.1 70.7 67.9 74.2 92.3 75.9 112.5 

ATH05 121.7 125.7 125.1 118.7 102.4 86.8 141.8 

ATH08 147.3 145.5 174.3 144.3 138.4 138.3 155.3 

ATH14 112.3 131.6 142.3 150.9 143.5 139.4 255.6 

ATH15 227.2 240.6 248.2 268.2 289.2 308.3 360.8 

AVERAGE 133.2 142.4 148.7 150.8 152.3 151.2 194.1 

STD DEV 53.0 56.0 58.1 63.0 65.0 72.9 79.6 

A graphical representation of the above results is shown in Figure 8-5. 

 

Figure 8-5:  Graphical representation of maximum displacement response 

Eurocode 8 specifies that at least three artificial, recorded or simulated ground motion 

records should be used as input for nonlinear time-history analyses.  If the response of a 

structural system is obtained from at least seven nonlinear time-history analyses, it is 
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specified that the average of the response quantities from all these analyses may be used 

as the action effect in subsequent evaluations.  If less than seven ground motion records 

are used, the most unfavourable response quantity from the analyses should be used [7]. 

As seven recorded ground motions were used in this investigation the average response 

of each model may be evaluated.  The standard deviations between the lateral roof 

displacement responses obtained from the various ground motions are quite large as 

shown in Table 8-3.  It therefore follows that ground motion leading to more severe 

lateral displacement response is a significant possibility.  For this reason it was chosen 

to not only assess the mean response, but also the maximum response obtained from 

each investigated model.  Ground motion number 15 from Table 6-1, “ATH15”, 

resulted in the most unfavourable response for each of the investigated models. 

Figure 8-6 shows the average and maximum lateral displacement response. 

 

Figure 8-6:  Lateral displacement response 

A general increasing trend in lateral displacement is observed for both the average and 

maximum response with the exception that the mean lateral displacement response of 

the foundation size determined to resist zero percent of the shear wall overstrength 

bending moment is slightly smaller than that of the foundation size determined to resist 

20% of the same bending moment. 
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The increase in lateral displacement response between successive foundation sizes is not 

constant.  This can be contributed to the fact that the increase in ultimate bending 

moment resistance between successive foundations is not constant as can be seen from 

Table 5-2. 

An increasing trend in lateral displacement response with decreasing foundation size 

can be expected as the bending moment resistance of the foundation decreases with 

decreasing size.  The response of the structure to ground motion can result in nonlinear 

material response and therefore the natural vibration periods of the structure will tend to 

increase.  For this reason the natural vibration periods of the structure will be unknown 

and will differ as the response of the structure becomes increasingly nonlinear.  The 5% 

damped response spectra of the various recorded ground motions differ in shape and 

none of these response spectra are smooth.  The resulting peak ground acceleration from 

different ground motion response spectra can therefore be expected to differ at the same 

natural vibration period. 

For this reason it is clear that the lateral displacement response from random excitation 

can not be predicted precisely and this could be the reason for the smaller average 

lateral displacement response obtained with the “0%” foundation size than with the 

“20%” foundation size. 

From the output it is can also be observed that none of the performance criteria limits 

are reached for any of the response quantities.  It can therefore be stated that no flexural 

failures are expected in the internal frame. 

8.3.2 Foundations 

Rotation response of the spring element used to model the rotational stiffness of the 

foundations was used to assess failures associated with the various foundation sizes.  

Rocking of the foundations is expected and therefore the only performance criteria 

investigated in the local assessment of the foundations were yielding of the underlying 

soil.  Footing rotation limits associated with yielding of the underlying soil were 

determined from the capacity curves of the foundations as discussed in chapter 5.  These 

limits are shown in Table 8-4. 
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Table 8-4:  Footing rotation associated with soil yielding 

Foundation size Footing rotation [rad] 

100% 0.0135 

80% 0.0131 

60% 0.0077 

40% 0.0075 

20% 0.0052 

0% 0.0033 

Maximum footing rotations, measured in radians, from each nonlinear time-history 

analysis of the model with the various foundation sizes were as shown in Table 8-5. 

Table 8-5:  Footing rotation response [radians] 

 Model foundation size 

Event 100% 80% 60% 40% 20% 0% 

ATH01 0.0028 0.0038 0.0043 0.0056 0.0057 0.0054 

ATH02 0.0013 0.0015 0.0017 0.0023 0.0034 0.0047 

ATH04 0.0010 0.0014 0.0012 0.0024 0.0027 0.0026 

ATH05 0.0021 0.0036 0.0035 0.0033 0.0037 0.0038 

ATH08 0.0026 0.0029 0.0033 0.0037 0.0040 0.0049 

ATH14 0.0015 0.0021 0.0025 0.0036 0.0038 0.0044 

ATH15 0.0034 0.0061 0.0064 0.0071 0.0081 0.0096 

AVERAGE 0.0021 0.0031 0.0033 0.0040 0.0045 0.0050 

STD DEV 0.0008 0.0015 0.0016 0.0016 0.0017 0.0020 

For the same reason as discussed in the local assessment of the internal frame, both the 

average response and maximum response were investigated.  The ground motion 

“ATH15” generally resulted in the most unfavourable response. 

A graphical representation of the footing rotation response and the rotation limit 

associated with soil yielding is presented in Figure 8-7 for the average and maximum 

rotation response. 
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Figure 8-7:  Footing rotation response 

The following is observed: 

o The average rotation response of the “0%” footing exceeds the soil yielding 

performance criteria by 34%. 

o The maximum rotation response of the “20%” footing exceeds this limit by 

35.8%. 

o The maximum rotation response of the “0%” footing exceeds the soil yielding 

limit by 65.6%. 

It follows that yielding of the underlying soil can be expected only for very small wall 

foundation sizes. 

8.3.3 Shear wall 

Lateral roof displacement response obtained from the time-history analyses was used to 

investigate whether failures can be expected to occur in the shear wall.  From the lateral 

force-displacement curve of the shear wall determined by distributing the base shear 

force in a triangular pattern over the height of the wall (section 4.6.2), failures were first 

identified at the following lateral roof displacements: 
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o Steel yielding:  148.7mm 

o Cover spalling:  282mm 

Lateral roof displacement cannot be used directly to assess the shear wall response as 

the footing rotation will tend to influence strains in the shear wall, depending on the 

direction of lateral roof displacement relative to the rotation of the shear wall footing.  

The capacity curve of the shear wall was determined by assuming a fixed moment 

support to the bottom of the shear wall and therefore the lateral displacement that 

should be used for assessment of the shear wall response is the relative lateral 

displacement as shown by ∆rel in Figure 8-8. 

 

Figure 8-8:  Relative shear wall displacement 

Footing rotations used to investigate the foundation response were transformed to lateral 

roof displacement of a rigid wall.  If this calculated displacement act in the same 

direction as the lateral roof displacement, shear wall material strains will be reduced.  

With this calculated displacement acting in the opposite direction as the roof 

displacement, shear wall material strains will however increase.  Relative lateral 

displacement response of the shear wall, measured in millimetre, was determined to be 

as shown in Table 8-6. 
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Table 8-6:  Relative shear wall roof displacement [mm] 

 Model foundation size 

Event 100% 80% 60% 40% 20% 0% 

ATH01 120.5 102.6 87.0 80.1 67.8 60.1 

ATH02 64.0 59.5 60.9 62.1 75.5 85.0 

ATH04 56.2 56.3 54.5 65.3 63.8 64.3 

ATH05 84.6 84.3 78.6 75.0 82.1 74.9 

ATH08 103.5 92.4 92.8 91.0 83.8 71.3 

ATH14 70.3 73.9 77.1 73.6 86.8 94.9 

ATH15 155.5 133.0 92.7 81.0 78.1 74.4 

AVERAGE 93.5 86.0 77.7 75.4 76.8 75.0 

STD DEV 32.8 24.7 13.9 9.1 7.8 11.0 

From Table 8-6 it is observed that the maximum displacement responses occur at 

different ground motions for models with different foundation sizes: 

o “ATH15” results in the maximum response for the foundation sizes determined 

to resist 100% and 80% of the shear wall overstrength bending moment. 

o “ATH08” results in the maximum response for the foundation sizes determined 

to resist 60% and 40% of the shear wall overstrength bending moment. 

o “ATH14” results in the maximum response for the foundation sizes determined 

to resist 20% and 0% of the shear wall overstrength bending moment. 

A graphical representation of the output results with the relevant performance criteria 

limits is shown in Figure 8-9 for the average and maximum lateral displacement 

response respectively. 
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Figure 8-9:  Relative shear wall lateral roof displacement response 

A general decrease in relative lateral roof displacement is observed with diminishing 

footing size.  The rocking effect of the foundation therefore generally has the effect of 

reducing strains in the shear wall and hence, decreases the relative lateral roof 

displacement response of the shear wall.  This phenomenon is well known.  Booth and 

Key [6] mentioned that collapse of structures resulting from the failure of the moment 

capacity of foundations is comparatively rare.  Paulay and Priestley [5] stated that the 

satisfactory seismic response of some structures can only be attributed to foundation 

rocking. 

The observed generally reducing trend of lateral displacement is therefore expected.  No 

failures are observed from the average response.  The roof displacement associated with 

the steel yielding performance criteria is however exceeded by 4.4% for the maximum 

response of the model with the “100%” footing subjected to ground motion ATH15. 

It is therefore clear that the response of the shear wall is improved by the rocking action 

of the wall foundation, as observed by previous researchers.  For the model with a wall 

foundation size determined to resist the full shear wall overstrength bending moment, it 

can be expected that a plastic hinge mechanism should form in the shear wall near the 

foundation to dissipate energy.  Steel material strain in the shear wall is therefore 
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expected to approach the yielding strain limit as the foundation size increases and that 

the steel yielding strain limit should be exceeded for the foundation size that resist the 

full shear wall overstrength bending moment.  This is indeed observed from the most 

unfavourable output results. 

From the above evaluation of response results it is clear that the mechanism of energy 

dissipation changes from a plastic hinge mechanism in the shear wall, when large wall 

foundations are present, to a foundation rocking mechanism when smaller wall 

foundations are used. 

 

8.4 Global assessment of results 

Assessment of the lateral roof displacement of the combined models that were 

investigated was performed using performance levels as described in the Vision 2000 

report on Performance Based Seismic Engineering of Buildings [56]. 

8.4.1 Vision 2000 performance levels 

According to the Vision 2000 report [56] a performance level is an expression of the 

maximum desired extent of damage to a building, given that a specific earthquake 

design level affects it.  The condition of structural elements, nonstructural elements and 

contents are all considered in the performance levels, as are availability of site utilities 

necessary to building function. 

Four performance levels are defined in the Vision 2000 report for structures displaced 

beyond the elastic response and are the following [56]: 

Fully Operational 

Essentially no damage has occurred in this performance level and the consequences to 

the building users are negligible.  The building can be occupied and all equipment and 

services associated with basic occupancy and function are available for use.  Repair of 

the building is generally not required. 

Operational 

Building structures in this performance level experience moderate nonstructural damage 

and light structural damage.  This damage to the structure is limited and does not affect 
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the safety thereof for occupancy.  The structure would be safe for occupancy for its 

normal intended function, immediately after the earthquake.  Damage to some contents, 

utilities and nonstructural elements may result in the disruption of some normal 

functions of the building. 

Life Safe 

Building structures with moderate structural and nonstructural damage is classified in 

the Life Safe performance level.  The lateral stiffness of the structure and the ability 

thereof to resist additional lateral loads has been reduced but some resistance against 

collapse remain.  Some electrical and mechanical equipment may not function.  It would 

be possible to repair the building but it may not be economically feasible. 

Near Collapse 

This is an extreme damage state in which the vertical and lateral load resistance of the 

building structure have been substantially compromised.  Partial or total collapse may 

result from aftershocks.  All vertical load resisting elements continue to function 

although debris hazards may have occurred.  This structure will most likely be unsafe 

for occupancy and repair may not be technically or economically feasible. 

Displacement limits determined by the capacity curve of the total lateral load resisting 

system of the building have been prescribed by the Vision 2000 report for the various 

performance levels.  The yield displacement (∆y), ultimate displacement (∆u) and plastic 

displacement (∆p = ∆u – ∆y) are used to define these performance levels.  The building 

structure is assumed to have deformed elastically if the lateral displacement does not 

exceed the yield displacement of the capacity curve of the lateral load resisting system 

of the building and it is assumed that the building collapses if the lateral displacement 

exceeds the ultimate lateral displacement of the capacity curve. 

Lateral displacement limits of the various performance levels are the following: 

o Elastic:   0 ≤ ∆ ≤ ∆y 

o Fully Operational: ∆y ≤ ∆ ≤ ∆y + 0.3∆p 

o Operational:  ∆y + 0.3∆p ≤ ∆ ≤ ∆y + 0.6∆p 

o Life Safe:  ∆y + 0.6∆p ≤ ∆ ≤ ∆y + 0.8∆p 

o Near Collapse:  ∆y + 0.8∆p ≤ ∆ ≤ ∆y + ∆p 

o Collapsed:  ∆y + ∆p ≤ ∆ 
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It was therefore required that a capacity curve be determined for the investigated 

combined lateral load resisting system to enable global assessment of the lateral roof 

displacements.  The global capacity curve is discussed in the following section. 

8.4.2 Global capacity curve 

A capacity curve of the investigated combined lateral load resisting system requires the 

combination of capacity curves of each structural system included in the combined 

model:  the internal frame, shear wall and wall foundation.  The spring analogy 

describing how the various structural systems contribute to the total stiffness of the 

investigated model was discussed in section 7.2.  Global stiffness of the combined 

system can be determined by replacing the different elements in the spring analogy with 

only one spring element representing the global stiffness as shown in Figure 8-10. 

 

Figure 8-10:  Spring analogy for global stiffness 

Here the spring elements represent the following: 

o kSW = Capacity of the shear wall. 

o kF = Capacity of the wall foundation. 

o kIF = Capacity of the internal frame. 

o keff = Effective stiffness of the global system. 

In the same manner as was done in section 7.2 the effective stiffness of the global 

system can be determined by the following expression: 
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The stiffness of a structural system is defined as the slope of the capacity curve which 

describes the nonlinear relationship between base shear force (Vi) and lateral roof 

displacement (∆i) and therefore: 

i

i
i

Vk ∆=  

To determine a global capacity curve representing the relationship between base shear 

force and lateral roof displacement of the combined system, base shear values at any 

given displacement value can therefore be determined in the same manner as for the 

stiffness: 
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Where, at a given lateral roof displacement: 

o VSW = Shear wall base shear value. 

o VF = Wall foundation base shear value. 

o V IF = Internal frame base shear value. 

o Veff = Base shear force of the global system. 

Global capacity curves were determined for each model with varying foundation sizes.  

For each model it was observed that the yield displacement and ultimate displacement 

of the resulting global capacity curve compared well with that of the shear wall capacity 

curve.  A bilinear approximation of the global capacity curve was determined using the 

yield- and ultimate displacement values of the shear wall capacity curve.  This 

procedure was also followed by Schwarz et al. [57] for a model combining the capacity 

of a shear wall and reinforced concrete frame. 

Figure 8-11 shows the global capacity curve determined for the model consisting of the 

internal frame, shear wall, and wall foundation of which the foundation size was 

determined by applying the full shear wall overstrength bending moment. 
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Figure 8-11:  Global capacity curve of model with foundation of full overstrength moment 

It is therefore clear that the lateral load capacity of the shear wall dominates the global 

effect.  The stiffness of the shear wall is much greater than that of the internal frame and 

for smaller wall foundations the shear wall is the structural element with the greatest 

stiffness.  It can therefore be expected that the shear wall will have a greater influence 

on the global lateral load capacity than the other structural systems. 

A comparison of the global capacity curves of the various models are shown in Figure 

8-12.  As could be expected, a decreasing capacity was observed with decreasing 

foundation size. 
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Figure 8-12:  Comparison of bilinear global capacity curves 

From the above discussion it follows that the same yield- and ultimate lateral roof 

displacement values are applicable for all investigated models and equal to that obtained 

from the lateral force-displacement behaviour of the shear wall (section 4.6.2).  The 

relevant lateral displacement values are: 

o Yield displacement:  ∆y = 76mm (Figure 8-12) 

o Ultimate displacement:  ∆u = 350mm (Figure 8-12) 

o Plastic displacement range:  ∆p = ∆u = ∆y = 274mm 

These displacement values were used to assess the lateral roof displacements that 

resulted from the nonlinear time-history analyses. 

8.4.3 Global assessment 

With the yield- and ultimate lateral roof displacement values as defined in section 8.4.2 

the performance levels discussed in section 8.4.1 are defined as follows: 

o Elastic:  0 ≤ ∆ ≤ 76  [mm] 

o Fully operational: 76 ≤ ∆ ≤ 158.2  [mm] 

o Operational:  158.2 ≤ ∆ ≤ 240.4 [mm] 
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o Life Safe:  240.4 ≤ ∆ ≤ 295.2 [mm] 

o Near Collapse:  295.2 ≤ ∆ ≤ 350 [mm] 

o Collapsed:  350 ≤ ∆  [mm] 

The lateral roof displacement of the lateral load resisting system as shown in Table 8-3 

are therefore assessed using these displacement limits.  A graphical representation of the 

lateral roof displacement response quantities and the above performance level 

displacement limits are shown in Figure 8-13 for the average and maximum response 

respectively. 

 

Figure 8-13:  Lateral roof displacement response 

It is observed that all average lateral roof displacement response quantities are within 

the displacement limits defining the Fully Operational performance level.  Maximum 

lateral roof displacement response however result in various performance levels being 

achieved for the different foundation sizes as shown in Table 8-7. 
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Table 8-7:  Global assessment of foundation sizes (maximum response) 

Foundation size Performance level 

100% Operational 

80% Life Safe 

60% Life Safe 

40% Life Safe 

20% Life Safe 

0% Near Collapse 

None Collapsed 

From this assessment it is clear that the size of the wall foundation can be significantly 

reduced whilst limiting the damage to a moderate level and ensuring that life safety is 

protected. 

The Vision 2000 report prescribes performance objectives associated with building 

structures for different occupancies and uses [56].  Buildings containing large quantities 

of hazardous materials, the release of which would result in extensive hazard to the 

public are defined as Safety Critical Facilities.  The minimum performance level 

associated to this type of building is Fully Operational. 

Building structures that are critical to post-earthquake operations are classified as 

Essential Facilities and includes hospitals, police stations, fire stations, emergency 

control centres and shelters for emergency response vehicles.  The minimum 

performance level associated to this building type is Operational. 

Building structures not classified in the above categories are classified as Basic 

Facilities and would include the building structure investigated in this study.  The 

minimum performance level associated with this type of building is Life Safe.  Wall 

foundation sizes able to resist 20% or more of the shear wall overstrength bending 

moment are therefore sufficient to comply with the minimum performance level 

objective of the Vision 2000 report. 

 

Chapter nine discuss the conclusions and recommendations that can be made from this 

study. 
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Chapter 9 

 

9 SUMMARY, CONCLUSIONS AND 
RECOMMENDATIONS 

 

9.1 Summary 

This study aims to investigate the feasibility of reducing the size of wall foundations in 

areas of moderate seismicity for buildings with no basement level.  The investigation is 

aimed at allowing shear wall foundation rocking and taking into account the 

contribution of structural frames to the lateral stiffness of the structure. 

An example building with no basement level was chosen.  Shear wall rocking was 

investigated by reducing the foundation size from that required to resist the full shear 

wall overstrength bending moment to one designed to resist no bending moment. 

Lateral force-displacement behaviour was determined for the shear wall, the wall 

foundation and a reinforced concrete frame.  A simplified model was used to represent 

the combined lateral stiffness of these systems.  Time-history analyses were performed 

on this model. 

Response quantities were assessed on a local and global level and results showed that a 

significant reduction in wall foundation size is possible when allowing the foundation to 

rock and taking into account the contribution of structural frames to the lateral stiffness 

of the structure. 

 

9.2 Conclusions 

From the output of the nonlinear time-history analyses conclusions can be made 

regarding the performance of the investigated structure.  Assessment of the response 
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quantities were performed on a global and local level and conclusions can be made from 

these assessments. 

9.2.1 Global performance 

From the maximum lateral roof displacement response it is clear that the wall 

foundation size could be reduced significantly whilst still limiting damage to structural 

and nonstructural elements to a moderate level, as defined by the Life Safe performance 

level [56].  With a foundation designed to withstand the entire shear wall overstrength 

bending moment only light structural damage occurs. 

Lateral roof displacement tends to increase as the wall foundation size, and resulting 

foundation bending moment resistance, decrease.  It is observed that some measure of 

moment resistance should still be provided to the shear wall in order to prevent extreme 

structural damage. 

9.2.2 Internal frame performance 

From the assessment of the lateral roof displacement response of the internal frame no 

flexural failures were observed.  Large lateral displacement of the frame however 

increase shear forces at flat slab-column connections and could lead to punching shear 

failures occurring prior to the bending capacity of the slab being exceeded.  Punching 

shear failures were not investigated in this study. 

9.2.3 Foundation performance 

It is observed from the wall foundation response that foundation rocking tends to 

increase with decreasing foundation size.  This is expected, as the bending moment 

capacity of the foundations decrease with decreasing size. 

Footing rotations associated with yielding of the underlying soil are only approached for 

foundation sizes designed to resist 40% or less of the shear wall overstrength bending 

moment.  Rocking of the wall foundation increases as the foundation size decreases and 

yielding limits, as well as resulting lateral roof displacements, tend to increase with 

decreasing foundation size.  It can therefore be stated that the contribution of the 

rocking shear wall foundation to energy dissipation increase with decreasing wall 

foundation size. 
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9.2.4 Shear wall performance 

A decreasing trend is observed in the lateral roof displacement of the shear wall relative 

to the rotation of the wall foundation.  When rocking of the wall foundation is limited, a 

plastic hinge mechanism in the lower part of the shear wall is used to dissipate energy.  

It is therefore expected that the steel yielding strain limit of the shear wall reinforcement 

would be exceeded when the wall foundation is large enough to resist the full shear wall 

overstrength bending moment.  From the maximum response of the model when the 

aforementioned foundation size was used, it was observed that a plastic hinge would 

indeed form in the shear wall. 

As the foundation size decreases, and as a result contribute to energy dissipation to a 

greater extent, the required contribution of the shear wall plastic hinge mechanism to 

energy dissipation will decrease.  From the relative roof displacement response of the 

shear wall it is observed that the relative shear wall roof displacement decreases with 

decreasing foundation size.  Hence, the shear wall response approaches that of a rigid 

wall element as the foundation size decrease, resulting in a smaller contribution to 

energy dissipation by the shear wall. 

9.2.5 Overall performance 

From the assessment of the response quantities it follows that it would be possible to 

reduce the wall foundation size of the investigated building structure by roughly 40% of 

volume.  It should be noticed that this reduction is valid for the investigated building 

structure of this study and that different site conditions, as well as building geometry 

and use, could lead to different results. 

The aim of this thesis was to investigate the feasibility of reducing the size of shear wall 

foundations in areas of moderate seismicity for buildings with no basement level.  From 

the discussion of the assessment of the response quantities it follows that allowing the 

shear wall foundation to rock, could result in significantly smaller shear wall 

foundations being required. 
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9.3 Recommendations 

This study was limited to the investigation of an example building structure with certain 

site conditions and building geometry in order to determine if the reduction of wall 

foundation sizes is feasible.  It was concluded that the size of wall foundations can be 

reduced significantly by taking into account the contribution of shear wall rocking to 

dissipate energy.  Future investigations are however required to investigate the 

following: 

Number of storeys 

The effect of the number of storeys should be investigated.  A building with eight 

storeys was investigated in this study.  Buildings with more and less storeys should be 

investigated. 

Number of bays 

Building geometry that includes different numbers of bays in the plane of stiffness of 

the lateral load resisting system should be investigated.  This parameter is expected to 

be less critical than the number of storeys due to the restricted amount of damaged 

observed in the assessment of the internal frame. 

Punching shear failures 

Punching shear should be considered as a failure mechanism.  This was excluded from 

the current study. 

To do so, the capacity curve of the internal frame should be determined using elements 

that are able to calculate shear strain effects more accurately.  These elements should be 

able to account for the increase in punching shear forces due to unbalanced bending 

moment transfer. 

Influence of soil type 

It is expected that the soil type will play an important role in the dynamic response of 

the wall foundation and as a result influence the response of the superstructure.  The 

influence of different soil types should be investigated as other soil types could lead to 

yielding of the underlying soil to the foundation to occur prior to foundation uplift. 
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For this reason it is recommended that future study be performed investigating the 

sensitivity of the dynamic building response to the characteristics of the supporting soil.  

Further study should specifically be focussed on the effect of different static stress-

strain modulus values (Es) for the supporting soil. 

Effective slab width 

Different researchers have proposed various effective slab width models to be used for 

reinforced concrete frames loaded laterally.  The simplified model proposed by the 

South African concrete design code, SABS 0100-1 [24], has been used in this study.  It 

is recommended that future investigation be focussed on the sensitivity of the lateral 

force-displacement behaviour of reinforced concrete frames using the various proposed 

effective slab width models. 

Foundation sliding failure 

Uplifting of the shear wall foundation and yielding of the underlying soil were the only 

performance criteria prescribed to the investigated footings.  Sliding failure of the 

foundations was therefore not investigated.  The simplified model that was used in this 

study could be improved to include the possibility of this mode of foundation failure by 

adding nonlinear lateral spring elements to the shear wall support to model the lateral 

stiffness of the foundation. 

Soil yielding could be expected to occur earlier than a sliding failure and for this reason 

it is the opinion of the author that soil yielding remains a more critical mode of failure 

than sliding. 
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Appendix A 

 

A CONFINEMENT CALCULATIONS 

This appendix presents the calculation of the following parameters [5] [41]: 

o Confinement factor (K) 

o Concrete strain at peak stress (εcc) 

o Ultimate concrete compressive strain (εcu) 

These parameters were calculated for the following structural elements: 

o Ground to second floor columns. 

o Second floor to roof level columns. 

o Shear wall sections. 
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A.1 Ground to second floor columns 

Column width: 600mm 

Concrete cover: 35mm 

Stirrup diameter: 8mm 

Stirrup spacing: 200mm 

Clear distance between adjacent longitudinal bars: wi
’ = 215mm 

bc = 522mm 

dc = 522mm 

s’ = 192mm 

As = 4474mm2 

Acore = 272484mm2 

ρcc = 0.0164 
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Lateral confining stresses in the x and y directions: 
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Characteristic concrete compressive strength:  30MPa 
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A.2 Second floor to roof columns 

Column width: 600mm 

Concrete cover: 35mm 

Stirrup diameter: 8mm 

Stirrup spacing: 175mm 

Clear distance between adjacent longitudinal bars: wi
’ = 224mm 

bc = 522mm 

dc = 522mm 

s’ = 167mm 

As = 2767mm2 

Acore = 272484mm2 

ρcc = 0.0102 
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Characteristic concrete compressive strength:  30MPa 
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A.3 Shear wall 

Note that only the edge regions are confined. 

Wall length:  6000mm 

Wall thickness: 300mm 

Concrete cover: 50mm 

Stirrup diameter: 10mm 

Stirrup spacing: 100mm 

Clear distance between adjacent longitudinal bars: w1
’ = 230mm 

       w2
’ = 140mm 

bc = 780mm 

dc = 190mm 

s’ = 90mm 

As = 2513mm2 

Acore = 148200mm2 

ρcc = 0.0170 
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Characteristic yield strength of stirrups:  250MPa 

fyh = 316.25MPa 

yhxex fkf ⋅⋅= ρ'
l

 and yhyey fkf ⋅⋅= ρ'
l
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MPaf x 437.3' =
l

 

MPaf y 558.0' =
l

 

Characteristic concrete compressive strength:  30MPa 

fc
’ = 33MPa 

Smallest confining stress ratio: 0169.0/''
1 =cff
l

 

Largest confining stress ratio:  1041.0/ ''
2 =cff

l
 

Confinement coefficient: 

From Figure 2-24: K = 1.100 

MPafKf ccc 30.36'' =⋅=  

Concrete strain at peak stress: 

0030.0151002.0 '

'

=






 −






+=
c

cc
cc f

fε  

Ultimate concrete compressive strain (collapse strain): 

εsm = 0.0018 

0046.0
4.1

004.0
'

=
⋅⋅⋅

+=
cc

smyhs
cu f

f ερ
ε  
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B GROUND MOTION 

This appendix presents the scaled ground motion response spectra used in this study.  

The scaled ground motion time-histories are also presented. 
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B.1 Scaled response spectra 
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B.2 Scaled accelerograms 
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