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1

Summary

The multicell inverter, being a widely used multilevel converter, has received much
attention in recent years due to problems associated with cell capacitor voltage. In this
dissertation we study the balancing problem with a focus on steady-state unbalance. This
is achieved by systematic and mathematically rigorous study of the natural balancing
mechanisms of the three-phase 2-cell and 3-cell multicell converter, undertaken by using
dynamic modelling of the multicell converter, Bennet’s geometric model, steady-state and
time constant analysis. Space vector analysis is also performed for the three-phase 2-cell
multicell converter. The theory is verified by comparing theoretical results with simula-

tion results.
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Opsomming

Die multisel omkeerder as algemeen-gebruikte meervlakkige omsetter het die
afgelope jare groot belangstelling gewek op grond van die probleme wat met selkapasitor
stroomspanning geassosieer word. In hierdie proefskrif word die balanseringsprobleem met
die klem op die ewewigswanbalans bestudeer. Dit is verrig deur 'n sistematiese en streng
wiskundige studie van die natuurlike balanseringsmeganismes van die drie-fase 2-sel en 3-
sel multisel omsetter te maak. Dit is gedoen deur die gebruik van dinamiese modellering
van die multisel omsetter, Bennet se geometriese model, ewewigtoestand tydkonstante
analises, en ruimtevektoranalise is vir die drie-fase 2-sel multisel omsetter gedoen. Die

teorie word bevestig deur die teoretiese resultate met die simuleringsresultate te vergelyk.
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Chapter 1
Introduction

This chapter introduces the reader to what motivated the present research into natural
balancing of three-phase multicell converters. We begin this chapter by giving an overview
of the development of multicell converters. However work done on natural balancing
of multicell converters is treated separately in chapter 2. Furthermore we provide the

research objective and the outline for achieving this objective.

1.1 Multilevel Converters

The need for high power ratings and reduction of harmonic content of generated voltage
and current waveforms led to the design of different multilevel converter topologies. These
converters use voltage clamps to equally share the input voltage between the series con-
nected devices and supply a multilevel output voltage [1], [13], [14], [15], [16], [50]. The
multilevel converter structure was introduced as a means of eliminating the need for the
step-up transformer in high-voltage drives and reducing the output waveform harmonic
content [17], [18].

The multilevel converter topology attempts to address some of the limitations of the
standard two level converter. Because of their modular and simple structure, they can be
stacked up to almost unlimited number of levels [51]. Motor damage and failure caused
by adjustable-speed drive converters’ high-voltage change rates(dv/dt)[16] was overcome
by multilevel converters because their individual devices have a much lower (dv/dt) per
switching and they operate at high efficiency because they can switch at a much lower
frequency than PWM-controlled converters.

Increasing the output voltage meant raising the DC-bus voltage, which leads to significant
problems with voltage sharing among switching devices connected in series during turn-on
and turn-off [52],[53], thus limiting the number of devices to a maximum of five. This
problem is avoided by employing multilevel converters because as the DC-bus voltage is

raised, the voltage stress on each switching device can be held constant by adding more
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levels to the converter. This helps in reducing the harmonics, because the increase in
voltage levels leads to improved harmonic performance without increased switching loss
and also reduces the filter size. Multilevel converters are used extensively in high-power
applications with medium-voltage levels. Applications include laminators, mills, convey-
ors, pumps, fans, blowers and compressors [15]. The three most often used topologies for

multilevel converters are briefly discussed in the following subsections.

1.1.1 Cascaded multicell

Cascaded multicell was not fully realised until Lai and Peng patented and presented its
advantages in 1997. The interest in its research development ranges from small-power ap-
plications such as hybrid electric vehicles to very-high-power applications such as STAT-
COM and FACTS controllers. A cascaded multicell with separate DC source consists
of half-bridge converter units connected in series as shown in Figure 1.1 [16], [70], [54].

Figure 1.1 depicts a cascaded multicell converter.

| |
|

— | — — | — | —
vy}

Figure 1.1: Cascaded multicell

1.1.2 Diode-clamped converters

This converter appeared in several papers including the study of vector control [19], [20]
and of PWM strategy [55]. The topology consists of two capacitors that divide the DC-

bus in half. Each phase leg consists of a number of switches in series connected via diode
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to the tap points, which are connected to the neutral point between the two DC-bus
capacitors as shown in Figure 1.2. Advantages of this converter include the improved
quality of the output waveform and higher DC-bus voltage. Though initially intended
for use in the reduction of current harmonics caused by nonsinusoidal voltage feeding
that caused power losses, electromagnetic interferences and pulsating torques in ac motor
drives [21], its applications now include a static var compensation system [22], [53], a
high-voltage direct-current(HVDC) transmission system [23], [1], active filtering [23] and
power conditioning systems for superconductive magnetic energy storage [23]. Figure 1.2

shows a five level diode-clamp converter.

N <

Vi
2
Figure 1.2: Five level diode-clamp converter

1.1.3 Capacitor-clamped converter

This converter, also known as a flying capacitor and multicell converter [50],[14],[24],
consists of independent capacitors clamping the device voltage to one capacitor voltage
level, allow an increase in the commutation voltage as well as the apparent frequency and

having application in high-voltage DC transmission. Figure 1.3 shows a 2-cell 3-phase
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multicell converter.

Sax S
o
* J}Ica i L + Voo -
VaTC = R,
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n Ve T Cy bgb’ R N
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Sa | ]
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Figure 1.3: 2-cell 3-phase multicell converter

1.2 Research Objective

Natural balancing has been successfully applied in a series-stacked converter [71], a three-
level NPC converter [25], [72], [56] and a single-phase p-cell multicell converter [73].
Though work has been done in the natural balancing of three-phase multicell converters
[57], it has not been proved that their capacitor voltages naturally balance. This dis-
sertation provides an insight into natural balancing of capacitor voltages of three-phase
multicell converters. The work is divided into the following chapters:

Chapter 2 Literature Review

This chapter briefly reviews the work done by other authors in the natural balancing of
capacitor voltages of multicell converters.

Chapter 3 Circuit and Spectral Analysis

This chapter analyses the switching functions of 2-cell and 3-cell three phase multicell
converters using interleaved switching. It uses Bennet’s geometric technique and Bowe’s
double Fourier series method to calculate the coefficients of the switching functions. The-

oretical results are then verified with simulation results.
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Chapter 4 Steady State Analysis
This chapter derives steady-state equations and uses them to describe the balancing of
the cell capacitor voltages. This is done by mathematically modelling the coefficients
of the switching functions to obtain the steady-state behaviour of the 2-cell and 3-cell
three-phase multicell converter.
Chapter 5 Time Constant Analysis
This chapter calculates the time constants associated with the rebalancing of the DC-
bus voltages. These time constants are then used to plot the exponential decay of the
capacitor voltages. The results are then verified with simulations.
Chapter 6 Space Vector Analysis
This chapter studies the natural balancing of a 2-cell multicell converter under space
vector modulation. It computes the switch combination sequences of 2-cell multicell and
plots the waveform of the reference vector when in different regions of the six sectors. It
then proves, using simulations, that a 2-cell multicell converter naturally balances under
space-vector modulation.
Chapter 7 Conclusion

This chapter provides a summary and describes the contribution of this dissertation.



Chapter 2
Literature Review

In this chapter we review the work carried out on natural balancing of the cell capacitor
voltages of multicell converters. Though progress has been made in the natural balancing

of capacitor voltages, there is still opportunity for further investigation.

2.1 Meynard et al.’s Model

This model represents the self-balancing property of the imbricated cells of multilevel
converters [24]. It focuses on the harmonic content of the cell capacitor currents which

are modelled as functions of duty-cycles over the cells.

(Po®)  (Bwgs) (BL@) (Dus)  (Dug)
R S R
8 St 1,= Si+t t qs(i—l)t Si |
o 0 T A ui Le
Y ¥ ¢ 7
Spo Si+1p Sb S Sy

Figure 2.1: Commutation cell

Figure 2.1 consists floating interconnected capacitors and series connected switching
devices. These floating capacitors acts as DC-sources and thus have to be charged to the
correct voltage. The voltage across each capacitor is determined by the input voltage and
the number of cells. The sum of the instantaneous voltage across the switches is equal to
the voltage E. The equation that describes the voltage across each cell capacitor is given

by equation 2.1.

Ve =4-E/p, 1=0,--+,p. (2.1)
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The equivalent circuit is developed where each blocking switch is replaced with a
voltage source and each conducting switch is replaced with a current source. The following

assumptions were made:

e The switches are ideal; that is the on-state voltage, off-state currents, delays and

switching times are zero.
e Dead times are zero.

e The floating capacitors are designed to limit the variations of the voltage applied to

each commutation cell.

e The load has a time constant which is less than the switching period so that at each

switching period, the load current is the steady state current.

The nth harmonic of a zero to one square signal with phase ¢ and duty cycle D is
given by:
2 )
H, = —sin(nDm)e™? 2.2
e sin(nD)e (2.2)

The n'"* harmonic for the chopped voltage is given by:
p 2 )
V=3 ——sin(mDr)(Vy — Vei1)e!"" (2.3)
i=1 T
The n'"* harmonic for the load current is given by:

"= |1 "

The average current in the top " switch S;; generated by the n® harmonic of the load
current is given by:
I’I’L
I, = ucos(@Z)” — ne;)sin(nD;m) (2.4)
! nm
where 9" is the phase of the n'* harmonic of the load current.

The quantity G} is given by:

1 )
G" = ; D; Jng; 2.5
P= sin(nD;m)e (2.5)
Since i, = C d;;c it follows that:
Ve = & le (2.6)

where Vc? is the variation of the cell capacitor voltage over one switching period and I¢,
is the average cell capacitor current over one switching period.

Rewriting I, = Ig

_Tn L
Suiry: — 18, results in:

yn = Cim o =arrm) (2.7)
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With " = % the above equation is rewritten as:

—ﬂ%“éﬁj7ﬂ§ﬂ@@-;@&ﬁﬁ+@m} (2.8)

Writing the above equation in the general form X = A- X + B - U with

X=v (2.9)

U=Y, (2.10)
1 41

A=Re { [aagﬂ - G;ﬂ G- ;?H...}} (2.11)
1 . /m 1 n

Taking r harmonics into account equation 2.8 becomes:

([-cr-ary ] va] +apvi) b (213)

[Vr] = 3 2Re2Re 1@I_T¥ -

n=1

This results in a model

Ve, = A(Di)VCZ. + B(Di)Vt, 1=1,...p—1 (2.14)
with
éi-¢ .. TG Gi-Gy ... Gi=Gjp
4 C1 Z1 zZ1
A= —2Re z - : : ; - ; (2.15)
Gp1=Gp R w B0
Cp_1 Cp1 zr zr
IR </ A
C1 Cl z1
B = 2%Re : s : o (2.16)
L Cp71 Cp 1 zr

The following are the conclusions reached by the model:

e A static and dynamic model of multicell converters must take into account phenom-

ena that occur within a switching period.

e Model techniques based on average values cannot represent the characteristics of a

multicell converter.

e The harmonic content of the current is used to calculate the DC current in the cell
capacitor currents which is used to construct an equivalent circuit that is used to

derive state-equations of the model representing the converter.

e The model can be used to determine the steady-state as well as the dynamic response

of the capacitor voltages.
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2.2 Barbi et al.’s Model

This model is focussed on the self-balancing property of the cell capacitor voltages in a
multicell converter [26]. The inverter is in a steady state in terms of cell capacitor voltages
as long as the DC component of the current flowing through the clamping capacitor
is zero. If this DC component deviates from zero, the cell capacitor will be charged
or discharged, leading to load voltage variation, load current variation and in turn DC
component variation in the cell-capacitor current. This model uses sub-harmonic PWM
modulation, also known as interleaved switching, and it was observed that DC component
variation will discharge or charge the cell capacitor until the DC component in the cell

capacitor current returns to zero. The spontaneous cell capacitor current control loop is

shown in Figure 2.2.

capacitor
current
DC component in\/"_

the clamping y
capacitor current in
steady state is zero

(charge balance)

Figure 2.2: Spontaneous cell capacitor current control loop

DC
component in
the clamping
_ clamping load
Charging or | yojtage switching | Voltage
discharging > . »
. functions
cell capacitors
A
DC component in
the clamping-
capacitor-current
load
switching | current load | _
functions | impedance |
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lem :(SN.L_S\NZ)
= Vt
o 1% |
-V 10 chl
Tl

Figure 2.3: Half-bridge three-level capacitor-clamping converter

Figure 2.3 shows the structure of a half-bridge three-level capacitor-clamping con-
verter. The switching functions generated using subharmonic modulation are expressed

in Fourier form as follows:

1 M > 1
s1 = =+ —sin(wat)+ Y. (=1) sin(mwet — E)
2 2 m=1,3,5,... 2
+oo QJT:ngWTr

Py Y

sm(g)cos[(mwct + nw,t) — mn|

m=1,3,5,... n=+2,+4,... 1T
o +oo mD7
2Jn 2 mm, .
+ > > - COS(T)SZTL[(mwct + nwpt) — mn| (2.17)
m=2,4,...n==21,+3
JmJQM'/r
1 o mt1 2
2 = 3 + —sin(wnt) — m:1235 ) (—1) N - sin(mw.t — 5)
oo +oo mMmn
2Jn 2
- > sm(m)cos[(mwct + nw,t) — mn|
m=1,35,..n=+2,+4,... 11T
oo +oo mMmn
2Jn ? mm., .
+ > > o COS(T)SZR[(met + nwpt) — mn| (2.18)

where M is the modulation index, w,, is the modulating angular frequency, w. is the

carrier angular frequency and J,, is the bessel function of the first kind.
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The load voltage variation in response to the deviation of the clamping-capacitor-

voltage away from its steady state value is given by:

A‘/AO = (‘/cm.steady - ‘/cm> { Z (_1)mT-H

oo +o0 mMmn
A4Jn *
+ Y Sin(%)cos[(mwct + nwmt) — mﬁ]} (2.19)

where Vi, stcaay is the steady state value of the cell capacitor voltage.

The load current variation resulting from the load voltage variation is given by:

mMm
s ma1 4Jn 2 T
A-oa = ‘/cmsea _‘/cm _1% 0 » ct___ mw,
itoad = (Vem.steady ) {mlz?):S( ) pr— sin(mw 5 B )
00 +oo 4(]%
+ Y = sin(m)cos[(mwct + nwmt) — MT — G, + MWy |
=135, netod,. MT(Zmw, + Nwp) 2

(2.20)
The corresponding cell capacitor current variation is given by:
Aicm = Aiload(sl — 82) (221)

Substituting 2.17, 2.18 and 2.20 into 2.21, the DC component in the cell capacitor current

variation is written as follows:

AZ-cm.alc = (‘/cm.steady - ‘/cm) G (222)
where
4Jm12w7r 2

1 >0 +1 1
G = = —1)7 20 -

2 [( et ] o)

00 +o0 4Jm]2MTr 2 1
+ > - S’m(m) ————OS[Pmw, T M)
m=135,. n=+2+4,. | MT 2 (Zmuw, + nwm)

(2.23)

Since the DC component in the cell capacitor current at steady state is zero, the cell

capacitor voltage transient is given by:

1

__mt

‘/cm = ‘/cm.steady + [‘/cm(o) - ‘/cm.steady] e ¢

(2.24)

where V,,,,(0) is the initial value of the cell capacitor voltage during transient, C,, is the

capacitance of the cell capacitor, and %” is the time constant of the transient.
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From the above equations except for the case of when the load is purely reactive, the
DC component in the cell capacitor current variation, caused by cell capacitor voltage
deviation, counteracts such deviation until the DC component in the cell capacitor current
variation becomes zero and the cell capacitor voltage returns to its steady state. This
phenomenon is called the self-balancing of the cell-capacitor voltage.

This model reached the following conclusions:

e cell capacitor voltage self-balances under sub-harmonic PWM modulation when the

load is not purely reactive.

e the time constant of the cell capacitor voltage transient increases with the capaci-
tance of the cell capacitor, the load impedance amplitude and angle, and decreases

with modulation index.

e to deal with small loads, reactive load and a low modulation index there is a need

for balance boosters to enhance self-balancing.

2.3 Ruderman et al.’s Model

This model uses switched systems to analyse the flying capacitor converter [58]. The
analysis is performed in the time domain, treating the flying capacitor converter as a
switched system. The subsystems are the various configurations obtained for each state
of the circuit switches, and the switching law is determined by the modulation. Consider

m continuous-time system described by:
(t) = fi(z(t), i=1,..m. (2.25)

where z(-)eR" is the state vector, and f;(-) : R"—R" describes the dynamics of system

1. A switched system is a mathematical model in the form:

:L'(t) = fa(t) (x(t))a (2.26)

where o(+) € {1,...,m} is the swtching law. The swtching-law determines which subsystem
is active at which time instant.

Switched systems provide suitable models for electric circuits that contain on and off
switches. Each possible configuration of the set of swtches induces a continuos time
dynamics of the state variables. The dynamics of the system changes every time a switch

opens or closes, that is, the modulation of the switches determines the switching law.
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Figure 2.4: Single-phase three-level Flying Capacitor Converter with an RL load
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-V,

con
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A\ 4

S Sx St Sa S S Sy | SpSx

Figure 2.5: DC modulation and corresponding switch states

Figure 2.4 shows a flying capacitor converter with the switching states determined by
equations 2.27 and 2.28.

S — { on ?f s(t) < Veon (2.97)
of f if s(t) < Veop

S, — { on ?f s(t) > —Vion (2.28)
of f if s(t) < —Vion

where Vi, (t) = Vi, is a constant signal compared to triangular signal s(¢) when using

DC-modulation strategy. The resulting modulation is periodic and the flying capacitor
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converter switches between the four possible phases P, P, P;, and P, as shown in
Figure 2.5. Now let T}, denote the time of one period and At; the time spent in phase
P; during one period such that T, = Z?Zl At;. In the AC-modulated case equations 2.27

and 2.28 are written as shown in equations 2.29 and 2.30.

— { on if s(t) < M sin(nt) (2.29)
of f if s(t) < M sin(nt)

- { on if s(t) > —M sin(nt) (2.30)
of f if s(t) < —M sin(nt)

From the perfomed simulations it was observed that the average value of the capacitor
voltage converges exponentially to the desired value %, and then the converter operates
as expected. This was found to be true for various initial conditions and for both DC and
AC modulations. The time domain approach was then used to analysize the converter
by combining the effects of the subsystems that correspond to the various switching
configurations. The analysis provided information on the circuit behaviour and natural

balancing property.

2.4 Holmes et al.’s Model

This model presents a strategy for the analytic determination of the natural voltage bal-
ancing dynamics for three phase flying capacitor converters [27], [28], [29], [57], [59]. It
uses a double Fourier series representation of the modulation process to construct a lin-

earized state-space model of the converter operation.

Figure 2.6: Three phase flying capacitor converter
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Using Figures 2.6 and 2.1 the capacitor current is given by:

dvg

dt
where the switching function S, x(t) € {0,1}, x € {a,b,c} and k =1,2...,p — 2
The phase leg output voltages are given by:

Ch

() = [Ser1(t) = Sop(t)] ia(t) (2.31)

p—2

e = 1280p100) = 1) [] = 3 [Suksa(9) = Sual®)] vaslt) (232

k=1
and v, x(t) is the capacitor voltage.

Using double Fourier series the difference switching functions in 2.31 becomes:

oo o0

(S r1(t) — Z Z [ 1 COS (wmn + 92,;”)] (2.33)

m=1n=—oo

[Sa:N 1 Z BOnCOS{ th + ¢z + Z Z Amnc0s u)mn + 7" )] (2'34)
m=1 m=1n=—o00

where

Wmn = MW, + MWy

A = 28in ( m7r1> Cinn

p—
2 T mMr
Cmn—%szn{(m—i—n)g}{]n( 5 >
Varsn’n:mqsp—l'f_nqsz
and
™ — ng —|—m[(2k—1) V
ok TR N—-1]2

Now, writing the capacitor voltage derivative in matrix form results in:

V.(t) = AV.(t) + BV, (2.35)
where
Aaa Aab Aac
) C_1 mn\* mn\T
A= Aba Abb Abc ) z :_Zm 1Zn—foo { 3‘(ZA,,zn|iJ1(anIn) }’
Aca Acb Acc

o C oy (apm)”
- — Zm 1 an—oo { 3|Zmn‘ejl(bmzil )
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Baa Bab Bac 1
00 0o C_ ;nn * ;nn
B=| Bw By B | Bee = =201 205w %e{ 3|ZE,/L\n|eJ')ngn }’
Bca Bcb Bcc

-1
_ v g0 C _apm-wpn
Ba}y - Zm:l Zn:—oo §R€ { 3| Zmn|ed¥mn }

o

am,n . am,mn .
and C = diag|C,..Cy_a], U™ = By, A" = Ay, [ %57 /%]

A root locus analysis strategy is used to illustrate the potential of the modelling technique.
The analysis investigates the capacitor voltage, balancing dependence on modulation in-
dex, carrier frequency and load resistance. This was done by plotting the loci of the
system poles using the eigenvalues of the state-space matrices and recalculating the coef-
ficients of the matrices at a number of points. The root-locus was plotted as a function

of modulation index, carrier frequency, load resistance and load inductance.
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2.5 Wilkinson et al.’s Model

Natural balancing was successfully studied for single phase p-cell converters [73], [30], [31].
The work used a mathematical model to derive equivalent circuits in d and t parameters
and then analysed the switching functions of single to p-cell cases of single phase multicell
under interleaved switching.

Now using Figure 2.1 and double Fourier analysis the following equation under steady

state conditions was derived:
Va,
Vi
Va,
Vi

2mi(p—2)

2R 90 11 ¢

Zf 11 6]

-

2R {s @ Fa]
{Zz re’ Pl)\l}

2R {07 A )

)\l} 2%{ . 11 eij%l( 3))\1}

ml(p—3)

2R

-1 —j&
116

R{I A

|
2% {Zl 1 Oél}
2%{21 L€ 5

jTOél

where
_ [Sa (&)
T
_ St (f)sdl (f)
= 0

and Vg, to Vg, _, are voltages difference in the cell capacitor, V; is DC-bus voltage, Sg,

is the difference switching function, S; is the total switching function and Z is the load
impedance.
It was found that under steady-state conditions natural balance was guaranteed under

the following conditions:

e When the switching frequency is sufficiently higher than the reference frequency

such that there is no overlapping of the harmonics.

e When the reference signal does not contain a high frequency which results in aliasing

of the harmonics.

e When the load impedance is reactive (ReZ(w) > 0).

(2.36)
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2.6 Summary

This chapter offers a brief review of the work done on the natural balancing of multicell
converters. Natural balancing of capacitor voltages for single and three-phase converters
has been studied using different approaches. However, opportunities for further investi-

gation in both the single and three phase multicell still exists.



Chapter 3

Circuit and Spectral Analysis

3.1 Introduction

In this chapter we analyse the 2-cell and 3-cell three-phase multicell converter. This we do
by analysing the switching functions and deriving the equivalent circuits of the 2-cell and
3-cell three-phase multicell converters. These circuits make it easier for us to undertake
steady-state analysis in the next chapter. Furthermore we analyse the switching functions
of the three-phase multicell converter using interleaved switching strategies in order to

prove the natural balancing of cell-capacitor voltages.

We use Bennet’s geometric technique and Bowe’s double Fourier series method to cal-
culate the coefficients of the switching functions. We then employ the derived results
[73] of Fourier series expansions of the switching functions to plot the harmonics of the
switching functions using the Matlab and Maple packages. Newton Raphson simulations
and calculations of the switching functions are dealt with in detail in Appendices B and
C; in this chapter we only refer to the results. The theory developed will be used in
the next chapters to prove that the difference in cell-capacitor voltages vs decays to zero

under steady-state conditions.

19
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3.2 Operation of Multicell Converter

Figure 3.1 shows the p-cell structure of a single phase multicell converter topology. The
switches of the it cell are arranged in pairs with the top switch denoted by S;; and the
bottom switch by S;. The top and bottom switches of a cell must never conduct nor

block simultaneously.

St _ o iy S Su S
* i'C(p—l) * i'ci t i )
N G Wi
V. =V
e - Sisap - So_ Sw - Sb
Spb S(p—l)b
cell i

Figure 3.1: Multilevel commutation cell

The cell capacitor is denoted by C;. The p** or last cell is directly connected to the

DC-bus.
The following assumptions are used when modelling the multicell converter circuit:

e Ideal switches are used, that is, on-state voltage, off-state current, dead-times, delays

and switching times are zero.
e All passive components are ideal and linear.

e The DC-bus is assumed to be infinitely stiff and connected to two equally split

voltage sources.

e | —=
+ . + V, =8y,
\V; S v, .
2 _ I, =Sl

Figure 3.2: Two-port circuit

Figure 3.2 shows the two-port switching circuit which was first introduced in [71]. We
will be using this two-port switching circuit in our analysis. The arrow points from port
1 to port 2. The relations between voltages v; and v, and the currents ¢; and 75 are given
by:

vy = SU; (3.1)

’il = S’ig (32)
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where s is the switching function and assumes the values —1 and 1.
The two-port circuit will be used in the next two sections for deriving the equivalent

circuits of 2-cell and 3-cell 3-phase multicell converters.

3.3 2-cell Multicell Converter

Figure 3.3 depicts a 2-cell multicell converter. It consists of the following:

e a DC-voltage V; split into two series DC-voltages of % each with the centre-point

grounded;
e two cells in each phase; and

e a low-pass filter and load resistor.

Sax S
N\ . N\
e G
+ M'“a i L v Vpa -
i
Siop T S +
gy - p!
AV bV C
. &2 . Swox Ve
Y/ o+ i,
fTE‘ iCb - L + Vg -
Tn Ve T Cy — R N
ﬁf& ]’ +  Va
R i
o o Vbc
Seapr . ~Sa
e + L _ . I_ + VpC —
J;llcc i R
Ve Cd -tim .
So | ]
S -
hv4 hv4

Figure 3.3: 2-cell 3-phase multicell converter

3.3.1 Circuit analysis

Let s,1 and s.9 represent the switching functions of phase A defined as follows:

1 if S,y is closed
Sal = (33)
—1 if S,1p is closed

_ 1 %f St i'S closed (3.4)
—1 if S,9p is closed
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The switching functions sy, sp2, Se1 and s.o of phases B and C are defined in a similar
manner. Now let us consider Figure 3.3, excluding the load for the moment, that is,

considering Figure 3.4 for phase A and similarly for the other phases.

Szt S
+ N . 7~
L e
2 i

nV Vel Cd .aii»
— S T S
L T 2 o - >H
- AV hV4

Figure 3.4: Phase A of 2-cell 3-phase multicell converter without load.

Expressing v, vp, and v, in terms of the a, b and ¢ switching functions results in

Van Sa2 V 1 Sal — Sa2 0 0 (a1

t
Ubn | = | S | g + 3 0 Sp1 — Sk2 0 Ve2 (3.5)
Ven Se2 0 0 Sc1l 7 Se2 Ve3

and the cell capacitor currents are given by:

Z-ca 1 Sa2 — Sal 0 0 Z-a
ley | = 3 0 Sp2 — Sp1 0 ip (3.6)
Z.cc 0 0 Se2 — Sel Z.c

The differential equations describing the system are given by equation 3.7:

dz)lgl 1 Sq2 — Sal 0 0 g

dUCQ _ O ) 3 7
= Sp2 — Sp1 0 1y .

ddt QCd ' ( )

% 0 0 Sc2 = Se1 (25

3.3.2 Equivalent circuit

We now define the differences between the required voltages of a cell capacitor and the
actual voltage across the cell capacitor. This is important for the study of the capacitor

voltage balance. We define the voltage difference for phases A, B and C by vs,, vs and

Vse-
v
Vg = é — Vo (3.8)
Vi
Vsp = Et — Voo (3.9)
V
Ve = — — Vg3 (3.10)
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We also define the difference switching functions sg,, Sg and sg. as a scaled difference

between the switching function of cell 2 and cell 1 of phases A, B and C respectively as

follows:
1
Sda = 5 {802 = Sar} (3.11)
1
Sdb = 5 {sb2 — su } (3.12)
1
Sde = 3 {Se2 — S1 } (3.13)

In the same way we define the total switching function as the scaled sum of the switching

function of cell 2 and cell 1 as follows:

1

Sta = 5 {Sal + SaQ} (314)
1

Sth = 5 {561 + sp2} (3.15)
1

Ste = 5 {801 + 8,32} (3.16)

We rewrite matrix equations 3.5, 3.6 and 3.7 in terms of d and t parameters as shown in

matrix equations 3.17, 3.18 and 3.19 respectively.

Van Sta% + SdaVsa

Vpn | = Stb% -+ SapUsh (317)
L Uen Stc% + SdcVse

Z-ca Sdaia

icb = Sdbib (318)
L Z.cc Sdcic
i d%tm Sdaia Z'ca

o IR N L (3.19)

é; Cd db -b Cd -cb :

dt Sdclec Lee

Using equations 3.17, 3.18, 3.19, and the two-port circuit shown in Figure 3.2, we obtain
the equivalent circuit of Figure 3.4 given by Figure 3.5. Figure 3.5 shows the two-port

circuits and their direction.



CHAPTER 3 — CIRCUIT AND SPECTRAL ANALYSIS 24

Ve c,
+| V5o =
Sa¥| . | Sab i
[ [laT [ .
n a

Figure 3.5: Equivalent circuit of Figure 3.4

We obtain similar equivalent circuits for phase B and C. Substituting these equivalent
circuits into Figure 3.3 we obtain the equivalent circuit to the 2-cell 3-phase multicell
converter, shown in Figure 3.3, as given by Figure 3.6. Z denotes the impedance of the
filter and load.

I\J|<

Z
+ vg /
Sda i L R

V 3 + Vg —H—
i L
n. v — +Vpb N
t C, &
e ww-
Sot] i | Ser] o L
] -5 c N +v_ -

Figure 3.6: Equivalent circuit for 2-cell 3-phase multicell converter
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3.4 Circuit Analysis of 3-Cell Multicell Converter

Figure 3.7 illustrates a 3-cell 3-phase multicell converter.

Saa Sazt Sa
» Cay (]
T ;
bcaZ ' l'cal . L + Vea -
1 na |
Vead T Cd Veal T Cd -a—a_;qu_._é
S S | Sw |
— - Ve c
ot S~ S Vab
sl 7S Sy Swm
—__—_t bcbz llcbl _ . L + Vpb -
2 | N |
n Vepz T Cd Vepr T Ca ibim—‘—é N
__—i +  Va |
1 > %gb _ b_ %h; =
bV hv4 AV
Sc e Ve
N &2 e
L + | ‘—K—'+ i 5__ R L + Vpc -
cc2 ccl I R
Vccz——cd Veer Cd '-C—m—‘—E
So | Sm | Sw I
O Van

Figure 3.7: 3-cell 3-phase multicell converter

3.4.1 Circuit analysis

The switching functions s,; and s, are defined the same way as in equations 3.3 and 3.4

whilst s,3 is defined as follows:

) 1 if S,3; is closed (3.20)
Saq = )
° —1 if S,3p is closed

The switching functions for phases B and C are defined in a similar way.

Expressing vy, vy, and v., in terms of the a, b and ¢ switching functions results in

Van Sa3 Vo1 Sa2 = Sa3 0 0 Va2
L I B O 0 Sb2 — Sb3 0 Veb2
Ven, Se3 0 0 Se2 = S¢3 Vee2
1 Sal — Sa2 0 0 Veal
—|—§ 0 Sp1 — Sp2 0 Veal (3.21)

0 0 Sel — Se2 Veal
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while the cell capacitor currents are given by 3.22

leal
Lebl

lecl ]

Lea2

Leb2

Lee2

_1 SQQ;Sal
2
I 0
_1 5@3;5(12
2
0

and 3.23:
0 0 iq
Sp2 — Sp1 0 iy
0 Sc2 — Sei 1L ic ]
0 0 iq
Sp3 — Sp2 0 1
0 Sc3 — Se2 1L ic ]

The differential equations describing the system are given by:

dVeal
dt
dvea2
dt
dv cbl
dt
dvcpo
dt
dveel
dt
dVec
dt

2Cy

Sa2 —

Sal

3.4.2 Equivalent circuit

0
Sa3 — Sa2

0

0
0
0

0
0
Sp2 — Sb1
0
0
0

0
0
0
Sb3 — Sb2
0
0

o O O

Se2 — Sel

0

Se3 —

26

(3.22)

(3.23)

Sc2

The difference between the required voltage of the cell capacitor and the actual voltage

across the cell capacitor is given by:

Vi

Va1 = 3 — Vcal
Vi

Vsb1 = g — Ucebl
Vi

Vse1 = § — Ucel
2V,

Va2 = 3 — Vca2
2V

Usp2 = ? — Uch2
2V

Vsc2 = 3 — Uec2

The difference switching functions are given by:

1

Sdal = 5 {SQZ - Sal}

lq
1
ip
le

(3.24)
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1
Sdb1 = 5 {Sb2 - 8b1}

1
Sdel = 5 {302 - Scl}

1
Sda2 = 5 {5a3 - SaZ}

1
Sdb2 = 5 {5b3 - 8b2}

1
Sde2 = 5 {303 - 502}

The total switching functions are given by:

1

Sta = 5 {Sal + Sq2 + Sa3}
1

Sth = 5 {sp1 + Sp2 + sp3}

1
Ste = 5 {Scl + Se2 + 303}

Thus equation 3.21 can be written as follows:

Vi
Sta? + Sda1Vsa1l + Sda2Vsa2

Uan

— Vi
Ubn = St + Sdb1Usb1 + Sab2Usb2
/UC’I’L

Vi
L Stc?t + Sdc1Vsel + Sdc2Usc2 ]

and equations 3.22 and 3.23 as follows:

Z-cal Sdal 0 0 ’ia
tpr | =1 0 sgp1 O ip
| et | 0 0 Sger | | te |
Z-ca2 Sda2 0 0 ia
teie | = 0 Sap2 O ip
| lec2 | 0 0 Sqcz | | tc |

27

(3.25)

(3.26)

(3.27)
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The differential equations in 3.24 are rewritten in terms of d and t parameters as follows:

dv . .
C?tal Sdalla leal

dvsqeo : :
dta Sda2%a Lea2

d'U . .
=k | St Leb1

_ _ (3.28)

dv . .
=2 Sap2tb Leb2

dvsct : :
dtc Sdc1lc Leel

dvs . .
dt 2 Sdc2lc Lec2

Using similar reasoning to that in section 3.3.2 we obtain the equivalent circuit to the

3-phase 3-cell multicell converter given by Figure 3.8.

% Gy o 7
+| V50— +| V|- /
Sa v Staz Sar¥ | L R
|Vt | | | | . a + Vg =
=y Gy o C
T Vol — +| Vg =
”‘4\4 S RS | GRS VN
3 Ca G C
*|V3eo|— +| Vo1 |-
Sc¥ Ejgﬂ EZEH B L R
- I L — v
C

Figure 3.8: Equivalent circuit for 3-cell 3-phase multicell converter
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3.5 Interleaved Switching

The main advantage of interleaved switching is that the switching frequency is effectively
multiplied by the number of cells. That is, it is doubled for 2-cell and tripled for 3-cell. In
order to analyze the behaviour of the three-phase multicell converter, it is important to
study the harmonics of the PWM switching functions. We use the double Fourier series
to study the harmonics of the switching functions. This approach was originally devised
by W.R. Bennet and H.S. Black [2], [32] and then adapted for use with power converter
systems by Bowes [60] and has been used in other application [25], [30], [33], [61], [72].
The harmonics of interleaved sinusoidal PWM were analyzed in [34] and the harmonic
cancellation for non-sinusoidal reference signal was verified using simulation in [35] . How-
ever the detailed theoretical analysis of the harmonics of interleaved switching for non-
sinusoidal reference signal was first applied in series-stacked converter [71]. In this study
we use the approach that is similar to the one used in [71], [73]. We will derive the Fourier
Coefficients using the switching functions of single-cell converter, followed by the study
of the switching functions of the 2-cell and 3-cell 3-phase multicell converter.

Throughout this section we assume that the frequency modulation ratio(my) is given by

oy
Jo

where

fs is the switching frequency; and

fo is the frequency of the reference signal.

We also assume that my is an integer.

Also, the angular switching frequency and fundamental frequency are respectively given

by ws = 27 fs and wg = 27 fy.

3.5.1 Switching functions of a single-cell converter

In this subsection we summarise the switching functions of a single-cell (half-bridge)
converter since these were studied in [73]. The reason for this is that the sections which
will follow are based on the calculations of the coefficients of the single-cell.

Figure 3.9 depicts the pulsewidth modulation applied to a single-cell converter. The

reference signal f,.(¢) is periodic along the t-axis and can be written as follows:
fr(t) = mg sin(wot) (3:29)

where m, is the modulation index.

The carrier signal f. as shown in Figure 3.9 (a) is written as follows:

fe(t) = %arcsin[sm(wst)] (3.30)



CHAPTER 3 — CIRCUIT AND SPECTRAL ANALYSIS 30

Figure 3.9 (b) shows the resulting switching function s(t), defined by:

s(t) = ! ?ffr(t)>fc(t) (3.31)
—1 if f.(t) < f(¢)

—=0.

o

£

05

o 0.005 001 ?.015 002 0 0005 00l _ 0015 002

( a) Time(t)[s ( b) Time(t)[s]

Figure 3.9: Generation of interleaved switching for cell 1 of phase A of 2-cell multicell

converter

O R N W b O

‘2 05 EX \\
g =
(] ()
E ERY
= B 1
g ‘ ' ‘ ' g,
0 -3
-4
1 0.02 o 03 0.04 20 0.01 0.02 0.03 0.04

Time t (b) Time (t) [s]

Figure 3.10: Construction of the background function F(h,t)

Now from Figure 3.10 (a), the area below f,.(¢) is coloured blue and is located where
s(t) = 1 whereas the area above f,.(t) is coloured red and is situated where s(t) = —1

when viewed in three dimensions. That is:

s(t) = { 1 for the blue region (3.32)

—1 for the red region
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5] 5
4 4
— 3 ' ' ' ' ' =3
i 2 .E.2 /
SO <1
(B}
S o =
g - 3-1
< 2 -2
-3 -3
4 4
-50 0.01 0.02_ 0.03 0.04 -50 0.01 0.02_ 0.03 0.04
(a) Time(t)[s] (b) Time(t)[s]

Figure 3.11: Construction of the background function F(h,t)

Figures 3.10 and 3.11 illustrate the construction of a background function F'(h,t). In
Figure 3.10 (a) we have placed arrows on the carrier signal to indicate direction. In Figure
3.10 (b) we separate the carrier signal into quarters of a period and place them on top of
each other. Then we place the arrows in one direction to form a straight line by choosing
the "up’ direction as the correct direction. The resulting figure is shown in Figure 3.11 (b).
The alternative method is that of Figure 3.11 (a). Here we stretch the carrier by turning
it at the first corner from the origin. The resulting triangular carrier will occupy regions
between 1 and 3 above the zero reference and —1 and —3 below the zero reference. We
repeat the same procedure in such a way that the resulting triangular carrier will occupy
regions between 3 and 5 above the zero reference and —3 and —5 below the zero reference
as shown in the figure. Similarly this results in Figure 3.11 (b). Figure 3.11 (b) depicts
the backgrou