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Abstract

Higher-order Markov models are more powerful than first-order models, but
suffer from an exponential increase in model parameters with order, which leads
to data scarcity problems during training. A more efficient approach is to use
mixed-order Markov models, which model data sequences with contexts of dif-
ferent lengths.

This study proposes two algorithms for inferring mixed-order Markov chains
and hidden Markov models (HMMs), respectively. The basis of these algorithms
is the prediction suffix tree (PST), an efficient representation of a mixed-order
Markov chain.

The smallest encoded context tree (SECT) algorithm constructs PSTs from
data, based on the minimum description length principle. It has no user-specifi-
able parameters to tune, and will expand the depth of the resulting PST as far as
the data set allows it, making it a self-bounded algorithm. It is also faster than
the original PST inference algorithm.

The hidden SECT algorithm replaces the underlying Markov chain of an
HMM with a prediction suffix tree, which is inferred using SECT. The algorithm
is efficient and integrates well with standard techniques.

The properties of the SECT and hidden SECT algorithms are verified on syn-
thetic data. The hidden SECT algorithm is also compared with a fixed-order
HMM training algorithm on an automatic language recognition task, where the
resulting mixed-order HMMs are shown to be smaller and train faster than the
fixed-order models, for similar classification accuracies.
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Opsomming

Hoër-orde Markov-modelle is kragtiger as eerste-orde modelle, maar hul pa-
rametertelling neem eksponensieel met hul orde toe, wat tot probleme met data-
skaarsheid lei tydens afrigting. ’n Meer effektiewe benadering is om gemengde-
orde Markov-modelle aan te wend, wat datasekwensies modelleer met kontek-
ste van verskillende lengtes.

Hierdie studie stel twee nuwe algoritmes voor vir die afrigting van gemeng-
de-orde Markov-kettings en verskuilde Markov-modelle (HMM’s), onderskei-
delik. Die basis van hierdie algoritmes is die probabilistiese agtervoegsel-boom
(PST), ’n effektiewe voorstelling van ’n gemengde-orde Markov-ketting.

Die kleinste geënkodeerde konteksboom (SECT) algoritme konstrueer PST’s
vanaf data, gebaseer op die beginsel van minimum beskrywingslengte. Dit het
geen gebruiker-verstelbare parameters nie en is self-begrens, aangesien dit die
diepte van die uiteindelike PST uitbrei so ver as wat die data dit toelaat. Dit is
ook vinniger as die oorspronklike PST afrigtingsmetode.

Die verskuilde SECT algoritme vervang die onderliggende Markov-ketting
van ’n HMM met ’n PST wat afgerig word met die SECT algoritme. Die algo-
ritme is effektief en integreer goed met bestaande metodes.

Die eienskappe van die SECT en verskuilde SECT algoritmes word beves-
tig op sintetiese data. Die verskuilde SECT algoritme word ook vergelyk met
’n vaste-orde HMM afrigtingsmetode op ’n outomatiese taalherkenningstaak,
waar die resulterende gemengde-orde HMM’s kleiner is en vinniger afrig as die
vaste-orde modelle, vir soortgelyke klassifikasie-akkuraathede.
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Chapter 1
Introduction

Sequential data are ubiquitous in many problem domains, including speech pro-
cessing, natural language processing, bioinformatics and financial time-series
modelling. One of the most successful statistical models of this type of data is
the Markov model, in which the probability of observing an element or symbol
in the sequence only depends on a finite number of preceding symbols. While
this assumption restricts its modelling capabilities, it also makes the Markov
model highly tractable and efficient. The standard Markov model for discrete-
valued data is the Markov chain [1], while the hidden Markov model (HMM) [2]
is a more powerful extension that is especially useful for modelling discrete-time
sequences of continuous-valued data.

The number of preceding symbols that influence the probability of the next
symbol is known as the order of the Markov model. While Markov models are
typically first-order in practice, higher-order Markov chains are also found in
various guises, such as the n-gram language model [3] of natural language pro-
cessing. Training these models from data is straightforward, as the model struc-
ture is fixed once the model order is selected. On the other hand, these models
are generally very large, because the number of parameters increases exponen-
tially with the order, and thus require large amounts of training data. They are
also structurally poor [4], which means that their complexity increases in large
discrete steps with increasing order.

These defects are addressed by mixed-order Markov chains, which allow the
model order to vary, depending on the specific symbol sequence (or context) pre-
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CHAPTER 1. INTRODUCTION 2

ceding the symbol to be predicted. While the contexts in a standard (fixed-order)
Markov chain all have the same length, which is equal to the model order, the
mixed-order Markov chain has contexts of different lengths. This frequently al-
lows the mixed-order model to be more compact for similar performance, as
many data sets contain mixed-order dependencies. A good example of such a
data set is natural language text. The disadvantage of mixed-order models is that
they require more complex training algorithms to infer their model structures
from data. Mixed-order Markov models are also referred to as variable-order,
variable-memory-length or variable-length models, and we will use these terms in-
terchangeably.

Variable-order Markov chains have been successfully used for text compres-
sion [5, 6], natural language modelling [7, 8, 9, 10, 11], reinforcement learn-
ing [12], motion tracking from video and human gesture recognition [13, 14],
analysing user navigation on the web [15], high-frequency financial time-series
modelling [16, 17, 18], and bioinformatics [19, 20, 21].

In this study we examine the prediction suffix tree (PST) [22], a mixed-order
Markov model that explicitly maintains a tree of variable-length symbol con-
texts, which allows efficient training from data. Since its inception in [23], many
PST inference algorithms have been proposed [24, 25, 26, 20, 27], which testify
to its popularity. Other examples of mixed-order Markov chains (not considered
in this study) include1 the variable-length Markov chain (VLMC) [4, 32], con-
text tree weighting (CTW) [33, 6], multigrams [34, 35], utile suffix memory [36],
hierarchical sparse n-grams [37], and fractal prediction machines [38].

Hidden Markov models have the same issues with model order as Markov
chains do. Most HMMs are first-order in practice, and the literature on higher-
order HMMs is sparse [39]. Mixed-order HMMs have received even less atten-
tion. They promise to provide more compact higher-order models with sim-
ilar performance to fixed-order HMMs. As the model order is an aspect of
the topology of the HMM, algorithms for HMM topology inference, such as
[40, 41, 42, 43], are also relevant when considering mixed-order models.

1The mixed-memory Markov model (or mixture transition distribution model) of [28, 29, 30]
approximates an Lth-order Markov model as a weighted mixture of L non-adjacent first-order
models, which drastically reduces the number of model parameters. It is also referred to as a
mixed-order Markov model in [31], in reference to the weighted mixture in the model, but it is a
constrained fixed-order Markov chain according to our definitions.
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1.1 Research objectives

This work aims

• to improve existing inference algorithms for mixed-order Markov chains,

• to find an efficient inference algorithm for mixed-order HMMs,

• and to demonstrate the advantages of mixed-order HMMs over fixed-or-
der models on a non-trivial problem.

1.2 Overview of research

The focus of this study is on inference algorithms for mixed-order Markov chains
and HMMs. This section summarises the algorithms and experiments that are
described in more detail in the rest of this dissertation.

1.2.1 The smallest encoded context tree (SECT) algorithm

The original PST inference algorithm, Learn-PSA [22], has several drawbacks.
It has five user-specifiable parameters that control the expansion of the context
tree, of which one is a limit on the model order (or tree depth). If the problem
domain does not suggest suitable values for these parameters, they are typically
determined using an expensive cross-validation step on held-out data. While
the algorithm is memory-efficient, its computational complexity can also be im-
proved.

The smallest encoded context tree (SECT) algorithm proposed in this study is
one of the first improvements on Learn-PSA. It is introduced in [44] and de-
scribed in detail in Chapter 4.

The algorithm removes the need for tunable parameters by invoking the min-
imum description length (MDL) principle [45, 46, 47]. This principle states that the
model that results in the smallest combined description length of the model itself
and a data set encoded in terms of the model is to be preferred, as it represents
a good compromise between the complexity of the model and the accuracy with
which it describes the data set. It is therefore a mathematical rendition of the
scientific principle of Occam’s razor, which states that models should only be as
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complex as is required to explain some phenomenon, and no more. The descrip-
tion length is frequently expressed in bits, as the MDL approach is closely related
to the information-theoretic concept of lossless compression. MDL is also related
to maximum a posteriori (MAP) estimation, where the model description length
serves as a model prior.

The SECT algorithm uses a heuristic compact encoding for the PST structure,
while the description length of the data set in terms of the PST is provided by
the standard negative log probability (or Shannon information content) of the
data. The amount of data required to infer a given PST structure is minimised
by making the encoding of the PST as compact as possible while still ensuring
unique decodability. The algorithm also does not impose a prior limit on the
model order or PST depth, which will expand as far as the data set allows it.

SECT uses an efficient recursive procedure to infer the PST. It starts with an
empty tree and recursively adds nodes that can potentially improve the code
length provided by their parent nodes. The tree expansion policy is liberal, be-
cause while a specific node might not be an improvement on its parent, some of
its children might. A subtree is only kept if it results in a smaller code length
for the data associated with it than the code length provided by its parent node,
even after including the overhead of specifying the subtree structure.

The sufficient statistics driving most PST inference algorithms are the counts
of symbols following particular context strings in the training data sequence.
These next-symbol counts are used to measure the similarity between parent and
child nodes, and to estimate the next-symbol probability distributions in the final
model. Obtaining these counts also represents the major computational hurdle
in most of these algorithms. SECT speeds up the counting process by sorting a
set of symbol pointers according to the symbol contexts preceding each symbol,
as part of the recursive tree-building procedure. When counting the symbols
following a specific symbol context, only the symbols that actually follow that
context have to be considered. This improves on the computational complexity
of Learn-PSA, while remaining reasonably memory-efficient.
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1.2.2 The hidden SECT algorithm

Many algorithms for inferring the topology of a hidden Markov model (for ex-
ample [40, 41, 42, 43]) merge or split its states in a greedy iterative fashion un-
til some measure of model fitness stops increasing. This study follows a more
global approach, by focusing on the Markov chain underlying the HMM instead.
As explained in Chapter 2, this Markov chain models sequences of observation
density indices, or symbols. The HMM topology is directly reflected in the struc-
ture of this Markov chain, which can be learnt from an estimated symbol se-
quence using any variable-length Markov chain inference algorithm. A suitable
symbol sequence can be obtained from the training data using the Viterbi algo-
rithm [48, 49].

In this context, we propose the hidden smallest encoded context tree (hidden
SECT) algorithm, which is introduced in [50] and described in detail in Chap-
ter 5. It replaces the underlying Markov chain of an HMM with a prediction
suffix tree, which has equivalent modelling capabilities but is more amenable to
structure learning. This PST is inferred by the SECT algorithm from the optimal
(Viterbi) symbol sequence associated with the training observation sequence.

The hidden SECT algorithm is closely related to standard Viterbi re-estima-
tion [51]. It simply adds a structure learning step to the maximisation (“M”)
step of this algorithm, while the expectation (“E”) step and the estimation of
the observation densities and transition probability values are performed in the
usual way. The algorithm therefore has little computational overhead compared
to standard training methods, as the E step dominates the computational com-
plexity in typical problems. It can be seen as approximate maximum a posteriori
(MAP) estimation of the HMM, where the prior on model structure is provided
by the MDL terms in the SECT algorithm.

Hidden SECT can be provided with a training schedule that gradually in-
creases the maximum model order during the iterations of Viterbi re-estimation.
By first training models constrained to lower orders and then using them to ini-
tialise the training of higher-order models, the optimisation process is hopefully
steered towards better local optima. This is reminiscent of the FIT algorithm for
training high-order HMMs [39], and deterministic annealing [52].
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1.2.3 Experiments

1.2.3.1 Synthetic experiments

In order to gain a better understanding of the properties of the SECT and hidden
SECT algorithms, the techniques are first applied to synthetic data generated
from known Markov models. In the case of the SECT algorithm, a true PST with
specified parameters generates a symbol sequence, and SECT is used to infer a
PST from this sequence. The structure of the inferred PST can be directly veri-
fied against that of the true PST. The true and inferred PSTs are also compared
on other criteria, such as the number of states and the (true) Kullback-Leibler
divergence rate between the models, which can be determined analytically for
ergodic PSTs [53]. To our knowledge, this is the first study that compares mixed-
order Markov models using this analytic expression of the true divergence rate.
Various experiments examine the effect of the parameters of the true PST on its
inference, by modifying the perplexity of the next-symbol distributions and the
number of symbols in the alphabet, and corrupting the symbols before inference.

In the case of the hidden SECT algorithm, a simple hidden Markov model
with one-dimensional Gaussian observation densities and a specified ergodic
structure generates an observation sequence. The hidden SECT algorithm infers
an HMM from this sequence, which is compared to the true HMM on a variety of
criteria. The HMM structure cannot be verified directly, as the true and inferred
HMMs will in effect have different alphabets if their observation densities differ.
Similar problems arise when considering the Kullback-Leibler divergence rate
between two HMMs. This is estimated instead as the average log-likelihood ra-
tio of the two models calculated on a large test set generated by the true HMM.
The number of states in the two models are also compared, which serves as a
simple indication of their structure. Another criterion is the ability of the in-
ferred model to correct the symbol errors introduced by the true model during
the generation process, as a result of its hidden nature. Various experiments
measure the performance of different training schedules for the hidden SECT
algorithm, and the influence of the number of observation densities and their
overlap on HMM topology inference.
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1.2.3.2 Language recognition experiments

The final set of experiments compare mixed-order HMMs with fixed-order mod-
els on the real-world problem of language recognition. Automatic language
recognition (ALR) 2 algorithms attempt to determine the language that a person
speaks, based on recordings of her speech. This can be used to drive dialogues
in interactive voice response (IVR) systems or to automatically channel callers to
the appropriate consultant in call centres. A more useful application is as an aid
to searching in large speech databases typically containing recorded telephone
conversations. There has recently been a resurgence of interest in this field, as the
language recognition evaluations [54, 55] of the National Institute of Standards
and Technology (NIST) attest.

The current state-of-the-art ALR systems (for example [56, 57]) fuse the out-
puts of many subsystems to achieve their high performance. Some of these sub-
systems focus on the acoustic-phonetic aspects of a language, which describe the
set of basic sounds or phonemes found in the spoken language. The sounds
are typically characterised by cepstral features, which are subsequently mod-
elled by Gaussian mixture models (GMMs) or support vector machines (SVMs).
Other subsystems model phonotactic constraints, which describe the phoneme se-
quences that are allowed in the language, and which differ between languages.
These subsystems typically rely on a set of parallel phone recognisers followed
by an n-gram-based language model [58] to capture the phonotactic constraints.
The subsystems are finally fused together in a combined classifier that performs
better than any of the individual subsystems. The interested reader can find
an overview of earlier work in [59, 58], while many of the latest advances are
described in publications related to the NIST language recognition evaluations.

High-order HMMs can also be used to model phonotactics, as was shown
in [39]. Instead of explicitly recognising phones and then modelling their in-
teractions on a symbolic level, high-order HMMs model phonotactics implicitly,
by describing longer-range dependencies between regions in acoustic feature
space. These feature space regions are determined by unsupervised clustering
and are shared among the languages, but do not directly correspond to phones.
However, they can be trained on untranscribed speech databases, which benefits

2ALR is also known as language identification (LID).
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languages for which extensive transcribed data do not exist. The cost of creat-
ing transcriptions for training phone recognisers can otherwise be prohibitive.
Furthermore, high-order HMMs avoid the errors introduced by the hard classi-
fication step of phone recognisers, by combining the steps of phone recognition
and language modelling into one.

This study recreates the experimental setup of [39], but uses a much larger
speech database for training. Mixed-order HMMs trained with the hidden SECT
algorithm are compared with fixed-order HMMs trained with the FIT algorithm
of [39], and are shown to be smaller and faster for similar classification accuracy.

It should be emphasised that these HMMs are not intended to be full-fledged
ALR systems in their own right. The experiment merely serves as a useful test
case for higher-order HMMs. However, because of their alternative approach
to phonotactic modelling, these models may still be useful subsystems that im-
prove the classification accuracy of a language recogniser after fusion with other
more accurate subsystems.

1.3 Related work

This section contrasts the SECT and hidden SECT algorithms with related meth-
ods for inferring PSTs and HMMs, which are discussed in greater detail in Chap-
ter 3. Many of these methods were introduced after SECT and hidden SECT.

Since the introduction of the prediction suffix tree in [23], many variants of
the basic PST inference algorithm (Learn-PSA) have been proposed. Some vari-
ants [24, 25, 20] address the quadratic computational complexity of Learn-PSA,
improving it to become linear in the training sequence length. In the case of
[24], this is achieved at the expense of increased memory usage. Other variants
[26, 20, 27] reduce the number of user-specifiable parameters, and allow trees of
unbounded depth, where the data set itself determines the optimal model order.
Bejerano’s variant [26, 20] is particularly relevant to this study, as it is also based
on the minimum description length principle.

The SECT algorithm has a computational complexity of O(LT log T) for a
sequence length of T and maximum tree depth of L, which improves on the
(worst-case) O(LT2) complexity of standard Learn-PSA. While its complexity is
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not linear in T, it is more memory-efficient than the linear-time version of Learn-
PSA proposed in [22]. It also requires less memory than the method in [24],
especially for highly variable context lengths.

In addition, SECT has no user-specifiable parameters, which removes the
need for an expensive cross-validation step, and it is self-bounded. In this re-
spect it is closely related to Bejerano’s MDL algorithm [26, 20]. SECT predates
this method, however, and is faster and has no restrictions on the types of PST it
can infer (see Section 4.6 for details).

While there are several studies devoted to mixed-order Markov chains, there
is surprisingly little literature on mixed-order hidden Markov models. This is re-
lated to the lack of studies dealing with high-order HMMs in general, as noted in
[39]. As the order of an HMM is an aspect of its topology, research that focuses on
the inference of HMM topology is also relevant to this study. This includes state
merging methods such as [40, 41, 60], state splitting methods [42, 43], Brand’s en-
tropic prior approach [61] and the higher-order HMM training approach of [39].
Many of these methods only apply to discrete observation sequences, while the
hidden SECT algorithm can also handle continuous observations.

The algorithm of Sage et al. [62] bears the closest relation to hidden SECT. It
also combines a PST with a continuous HMM to obtain a mixed-order model,
and derives the PST from soft symbol counts, which is still an unexplored av-
enue for hidden SECT. On the other hand, the derivation in [62, 63] does not ex-
plore the full generality of mixed-order HMMs, and some aspects of the training
algorithm are customised for a specific application (stochastic trajectory genera-
tion for motion tracking). The development of hidden SECT also preceded that
of the algorithm in [62] by several years.

1.4 Contributions of this work

1. The SECT algorithm is an improvement on many existing algorithms for
learning mixed-order Markov chains. It has no tunable parameters and
trains models with a potentially unlimited model order that is bounded by
the data set itself. It is also faster than the original PST algorithm. This is
shown in Chapter 4.
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2. Mixed-order hidden Markov models are still uncommon in the literature,
and this study provides insight in the training of these models. It points
out the connection between mixed-order HMMs and mixed-order Markov
chains in Chapter 2. Furthermore, the formulation of a higher-order HMM
in terms of symbols rather than states simplifies its notation and directly
suggests training algorithms such as hidden SECT, as shown in Chapter 5.

3. The hidden SECT algorithm is a flexible and efficient way to train the topol-
ogy of a continuous mixed-order HMM from data. It focuses exclusively
on topology inference, and allows the use of standard techniques for up-
dating the observation densities and transition probability values. The al-
gorithm is described in Chapter 5.

4. Mixed-order HMMs are shown to outperform fixed-order models in terms
of speed and model size on a non-trivial task of language recognition, as
discussed in Section 6.3.

1.5 Organisation of dissertation

Chapter 2 introduces various models, algorithms and concepts that serve as
background knowledge for the rest of the dissertation. This includes the min-
imum description length principle, Markov chains, prediction suffix trees and
hidden Markov models. It also establishes the mathematical notation used in
the following chapters. The literature study of Chapter 3 focuses on algorithms
that infer PSTs and HMM topology, which are thereby directly comparable to
the SECT and hidden SECT algorithms, respectively. Special attention is paid to
the computational complexity of each method.

The two main algorithms of this study are introduced in Chapters 4 and 5.
The chapters describe the algorithms in detail, and also discuss their computa-
tional complexity. Chapter 6 describes the experiments done in this study, and
presents and discusses the results of each experiment. This includes both ex-
periments on synthetic data and language identification experiments. Chapter
7 provides some concluding remarks, and also recommends various improve-
ments to the SECT and hidden SECT algorithms.



Chapter 2
Background

This chapter introduces some basic concepts that serve as background for the
rest of the dissertation. The focus is on Markovian models, including Markov
chains, prediction suffix trees and hidden Markov models. A good overview of
these models can be found in [2, 22]. Minimum description length and related
topics from information theory are also introduced. The chapter aims to be self-
contained and may be skipped by readers familiar with these topics. It also
serves as a reference for the notation used in the rest of the dissertation.

2.1 Information Theory

Information theory originated with the seminal paper of Shannon [64], who first
showed the intimate connection between the transfer of information and prob-
ability theory. Subsequently, many texts have been published on the subject,
of which [65] is a very readable (and freely available) introduction and [66] is
a standard textbook. This section provides the theoretical background of data
compression and the principle of minimum description length.

2.1.1 Data compression

Consider a finite set or alphabet of M symbols Σ = {s1, s2, ..., sM}. These symbols
can for example represent various messages to be received, or the possible an-
swers to a question. A random variable X is now defined on Σ, so that each sym-

11
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bol si has a probability P(X = si) = pi to occur, where pi ≥ 0 and ∑M
i=1 pi = 1.

The Shannon information content [65] or self-information of an individual outcome
X = si is given by

h(si) = log2
1
pi

in bits, and the average information content of the random variable X is known
as the entropy

H(X) = E[h(X)] =
M

∑
i=1

pi log2
1
pi

,

where a zero probability pi = 0 contributes zero to the sum. The entropy ranges
over 0 ≤ H(X) ≤ log2 M, where H(X) = 0 implies one of the probabilities
pi = 1 and the rest are zero (i.e. X is deterministic), and H(X) = log2 M implies
all pi = 1/M (i.e. X is uniform). The entropy will also be indicated as H(p),
where p is the vector of probabilities {p1, p2, ..., pM}.

A sequence of symbols of length T is indicated by x = xT
1 = {x1, x2, ..., xT},

or x1x2...xT if there is no ambiguity. The set of all length-T sequences of symbols
from Σ is ΣT, while Σ+ is the set of all finite-length sequences of symbols from
Σ (excluding the empty string λ). A variable-length binary symbol code c : Σ →
{0, 1}+ is a function that assigns a variable-length string of zeroes and ones, or
codeword, c(si) to each symbol si. The length of codeword c(si) will be indicated
by l(si) = li. The expected length of the code is L(c, X) = ∑M

i=1 pili. The extended
code c+ : Σ+ → {0, 1}+ maps strings of symbols to strings of binary digits or
encodings, by concatenating the codewords for each symbol as

c+(x1x2...xT) = c(x1)c(x2)...c(xT).

An example [65, Example 5.10] of a random variable X and symbol code c
is shown in Table 2.1. The entropy of X, as well as the expected length of the
code L(c, X), is 1.75 bits. The symbol string x = acdbac is encoded as c+(x) =
0110111100110.

For a symbol code to be useful, it has to be uniquely and easily decodable.
A code c is uniquely decodable if no two distinct symbol strings have the same
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Table 2.1: An example of a symbol code c for random variable X. From left to
right, the columns show the symbol, symbol probability, symbol information
content, codeword and codeword length, respectively.

si pi h(si) c(si) l(si)

a 1/2 1.0 0 1
b 1/4 2.0 10 2
c 1/8 3.0 110 3
d 1/8 3.0 111 3

encoding, i.e. if

∀x, y ∈ Σ+, x 6= y =⇒ c+(x) 6= c+(y).

A code is easy to decode if it is a prefix-free code,1 which means that no codeword
is a prefix2 of any other codeword. This allows the ends of codewords to be
recognised without having to look ahead in the encoding. Prefix-free codes are
also uniquely decodable. The code in Table 2.1 is prefix free, and the encoded
string c+(x) = 0110111100110 can easily be decoded as x = acdbac.

The codeword lengths li of any uniquely decodable binary symbol code sat-
isfy the Kraft-McMillan inequality [67, 68]

M

∑
i=1

2−li ≤ 1. (2.1.1)

Conversely, if a set of codeword lengths satisfy this inequality, there exists a
prefix-free code with these codeword lengths. A uniquely decodable binary code
can therefore always be converted to a prefix-free code. If a uniquely decodable
code satisfies the Kraft-McMillan inequality with equality, the code is called com-
plete.

An optimal code for a random variable X should be uniquely decodable and
have the minimum expected length L(c, X), thereby achieving the best possible

1A prefix-free code is also known as a prefix code, instantaneous code or self-punctuating
code.

2A string p is a prefix of another string x if a third (possibly empty) string s can be found such
that ps = x. Similarly, a string s is a suffix of string x if ps = x for some p. A proper prefix or
suffix cannot be the string x itself.
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compression in the long run. This occurs if and only if its codeword lengths are
equal to the Shannon information contents of the random variable, that is

li = log2
1
pi

. (2.1.2)

In this case, the code is prefix free and complete, and its expected length is equal
to the entropy H(X). The entropy of X is therefore the smallest average size to
which symbols occurring with the distribution of X can be compressed.

Any code which does not satisfy (2.1.2) will have an expected codelength
L(c, X) > H(X). For example, the raw code associated with alphabet Σ of size
M = |Σ| has M codewords with identical lengths li = log2 M, which represents
the default encoding of symbols from Σ, even before a probability distribution is
assigned to them. An example of such a raw encoding is ASCII, which assigns
eight bits to each character, regardless of their distribution. The raw code is only
optimal if the symbols are uniformly distributed. Since typical text strings have
a non-uniform character distribution, text compression algorithms can improve
on ASCII and encode text files to less than eight bits per character.

The relative entropy, cross-entropy, Kullback-Leibler divergence [69] or simply di-
vergence quantifies the optimality of a code. If a code that is optimal for distribu-
tion r = {r1, r2, ..., rM}, with codeword lengths li = − log2 ri, encodes symbols
with a probability distribution p = {p1, p2, ..., pM} instead, the excess expected
codelength is given by the divergence

D(p‖r) =
M

∑
i=1

pili − H(p)

=
M

∑
i=1

pi log2
pi

ri
. (2.1.3)

This can be interpreted as a similarity measure between the two discrete proba-
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bility distributions p and r. The divergence satisfies Gibbs’ inequality [65]3

D(p‖r) ≥ 0, (2.1.4)

with equality only if p = r. This makes the divergence appear like a metric
on the space of probability distributions, but it is not symmetric: in general,
D(p‖r) 6= D(r‖p). It also does not satisfy the triangle inequality. Note that
D(p‖r) = ∞ if pi > 0 and ri = 0 for some i. In this case, the code is forced to
encode a symbol si that it did not expect at all.

2.1.2 Minimum description length

The minimum description length (MDL) principle originated in the 1960s, fol-
lowing independent studies by Solomonoff [70], Kolmogorov [71, 72, 73], Chai-
tin [74], Wallace [45] and Rissanen [46]. The original formulation of Kolmogorov,
Solomonoff and Chaitin used Kolmogorov or algorithmic complexity [75] as descrip-
tion length, which is defined as the length of the shortest computer program that
can generate a given data sequence. The subsequent work of Wallace and Ris-
sanen defined description length in information-theoretic terms, as the length of
a message that can transmit the data sequence without error. Since then, it has
found widespread application in the fields of data compression [76, 77], statis-
tical inference [78], model comparison [79], clustering [80, 81] and classification
[45, 82]. Good tutorial introductions can be found in [47, 83, 84], while [85] is a
collection of recent research results.

The two most practical manifestations of the MDL principle are Wallace’s
minimum message length (MML) [45, 86] and Rissanen’s MDL4 [46, 87, 47]. A
discussion of the differences between MML and Rissanen’s MDL can be found

3Gibbs’ inequality is an application of Jensen’s inequality [65], which states that

E[ f (x)] ≥ f (E[x])

for any random variable x and any convex function f , where E[·] denotes expectation with re-
spect to the density of x. Since the logarithm is concave, it can be used to prove (2.1.4).

4Strictly speaking, MDL refers to Rissanen’s approach [46]. Nevertheless, all the approaches
mentioned so far share the same basic idea, of which Rissanen’s version is the most well-known.
Modern textbooks such as [65] refer to the collective concept as the MDL principle. We follow this
convention, and will refer to the original MDL as Rissanen’s MDL. Discussions on these naming
conventions can also be found in [84].
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in [75, 85]. While they differ philosophically, their practical results are frequently
similar. A good introduction to MML can be found in [88, 89, 86], while [87] is a
good explanation of the philosophy behind Rissanen’s MDL. An understanding
of the basic idea of MDL will suffice for this study.

The MDL principle starts off with a data set D and a set of models M =
{M1, M2, . . .} which will be used to explain the data. A two-part message is
formed, consisting of a description of a model Mi and of the data D in terms of
this model, usually in the form of a binary string based on algorithmic complex-
ity or information content. According to MDL, the best model in M is the one
that allows the shortest total encoding of model and data, where the length is
measured in bits.

The encoding process follows the basic principles of Shannon’s information
theory: if an event x has a probability of occurrence of P(x), it requires a mes-
sage length of L(x) = − log2 P(x) bits. The model part of the message typically
contains descriptions of the model structure and parameter values stored to a
certain precision. The data part of the message contains the data set encoded by
an optimal code based on the probability distribution provided by the model.
MDL focuses solely on the message lengths involved and is not concerned with
the actual implementation of an encoder and decoder, as long as the overall en-
coding is uniquely decodable.

In the case of a finite number of models, the MDL principle is related to the
Bayesian maximum a posteriori (MAP) approach. Bayes’ rule states that

P(Mi|D) =
P(Mi) P(D|Mi)

P(D)
,

and the MAP model MMAP obtained by maximising the posterior model proba-
bility is the same5 as the model found by minimising the message length as

MMAP = arg max
i

P(Mi|D)

= arg min
i

[− log2(P(Mi) P(D|Mi))]

= arg min
i

[L(Mi) + L(D|Mi)] .

5The connection between MDL and MAP is less direct than is implied here, and becomes
even more tenuous for a continuum of models—see [90, 89] for more details.
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MDL therefore provides a practical way to compute model priors P(Mi), by
encoding the relevant model information and calculating its codelength.

The MDL principle is useful because of its generalisation ability and robust-
ness. Since the total complexity of model and data is minimised, MDL penalises
both overly simple models that explain the data poorly and highly complex
models that fit the data perfectly, thereby performing the role of Occam’s ra-
zor [65, 91]. It avoids overfitting, which improves prediction and classification
of unseen (test) data.

2.2 Markov Chains

A Markov chain (MC) [1, 92, 93] is a statistical model that describes sequential
data. The data is in the form of a sequence of symbols sT

1 = {s1, s2, ..., sT}, where
each symbol is an element of a set Σ called the alphabet. The symbols are assumed
to be completely distinguishable and the alphabet is assumed to be finite with
size M = |Σ| < ∞. Examples of such symbol sequences include written text,
phoneme strings, DNA sequences, and many more.

The model provides a probability distribution over the set ΣT of all symbol
sequences of a fixed but arbitrary length T. The probability6 of a specific se-
quence, P(sT

1 ), can be factored by the standard chain rule of probability theory
[94] as

P
(

sT
1

)
= P(s1)

T

∏
t=2

P
(

st

∣∣∣st−1
1

)
. (2.2.1)

The conditional probability P(st|st−1
1 ) can be thought of as a prediction of the

next symbol, given the past symbols (or string prefix). This form of P(sT
1 ) is in-

tractable in general, since the complexity of the conditional probability P(st|st−1
1 )

increases with t. The Markov chain therefore introduces a simplifying assump-
tion, the so-called Markov property, which states that the conditional probability
of symbol st, given the values of preceding symbols st−1

1 , only depends on the

6To be precise, each symbol st is replaced by a random variable St, and the random sequence
ST

1 then has the joint probability distribution P(ST
1 = sT

1 ) = P(S1 = s1, S2 = s2, ..., ST = st).
For simplicity, we will use the notation P(x) to mean the probability P(X = x) that the random
variable X takes the value x, unless it leads to ambiguity.
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values of a finite number L of them, i.e.

P
(

st

∣∣∣st−1
1

)
= P

(
st

∣∣∣st−1
t−L

)
,

where L is known as the order of the model. This conditional independence
property allows the joint distribution of a sequence to be decomposed as

P
(

sT
1

)
= P(s1)

T

∏
t=2

P
(

st

∣∣∣st−1
t−L

)
,

which makes the model less expressive, but highly tractable. Stated informally,
the defining feature of a Markov model is that it forgets everything except the
recent past. In the case of a first-order Markov chain, the distribution simplifies
even further to

P
(

sT
1

)
= P(s1)

T

∏
t=2

P(st|st−1) ,

which is completely specified by the initial symbol probabilities P(s1) and symbol
transition probabilities P(st|st−1).

A very useful concept in Markov models is that of a state variable, which rep-
resents all information at a given point in the sequence relevant to the distribu-
tion of the next symbol. In the case of an Lth-order Markov chain (denoted by
L-MC), the relevant information at time t is summarised by the state variable7

qt = st
t−L+1,

where this sequence of L symbols is also referred to as the context string associ-
ated with the state. The symbol associated with the state is the last symbol in the
context string. For first-order models, the state simplifies to qt = st, and states
and symbols turn out to be equivalent. The state variable qt takes on values from
the setQ = ΣL, which is also known as the state space. The state space is finite for

7This definition of the state variable qt differs from the standard approach in pattern recog-
nition texts such as [49] and [2], which instead choose to call the symbols st states. It is closely
related to the definition of probabilistic suffix automata (PSAs) in [22]. The two approaches are
equivalent for first-order models, which is by far the most prevalent case. The approach taken
by this text and [22] has the advantage of simpler notation in the case of higher-order Markov
models.
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a finite alphabet and order, with a fixed size of N = |Q| = ML. This underlines
the tractability of the Markov chain, as the general sequential model of (2.2.1)
has a state space that grows unbounded over time.

Using the state notation, the sequence distribution is transformed to

P
(

sT
1

)
= P(q1)

T

∏
t=2

P(st|qt−1) ,

where P(q1) is the initial state distribution and P(st|qt−1) is referred to as the
next-symbol distribution. Instead of indexing the states with symbol strings, it
is possible to relabel them with numerical indices by enumerating the N ele-
ments of the finite state space. The symbol st can likewise be replaced by the
state qt = st

t−L+1, by prepending its length-(L− 1) historical context. This trans-
forms the Lth-order Markov chain into an equivalent first-order Markov chain
based on a sequence of states with the state space ΣL as alphabet, and sequence
distribution given by

P
(

qT
1

)
= P(q1)

T

∏
t=2

P(qt|qt−1) ,

where P(qt|qt−1) is known as the state transition probability function.
The two formulations are equivalent in that there is a one-to-one correspon-

dence between symbol sequences sT
1 and state sequences qT

1 , and P(sT
1 ) = P(qT

1 )
for each corresponding pair.8 The higher-order relations between the symbols
are encoded in the first-order model as constraints on the state transitions. Al-
though there are ML states, each state has at most M outbound transitions, and
the context strings of connected states have to match up appropriately. If there
is a transition from state q1 to state q2, the last L− 1 symbols of the context string
of q1 has to match the first L− 1 symbols of the context string of q2. For example,
a transition can be made from state abaab to state baabc but not to state ababa.

8This correspondence is not guaranteed if the Markov chain had been constructed with an
arbitrary state topology and assignment of symbols to states for orders L > 1, in which case the
model would turn into a hidden Markov model or general probabilistic finite-state automaton.
Higher-order Markov chains have a highly constrained state topology by design, which is why
it is important to distinguish between symbols and states. Each state in a properly constructed
higher-order Markov chain can always be associated with a unique symbol context.



CHAPTER 2. BACKGROUND 20

2.2.1 Initial and final states

In the initial part of the symbol sequence, for t < L, the context strings are
shorter than L symbols, which require special treatment. There are two ways to
handle this. A special initial symbol9 ∧ can be added to the alphabet (i.e. Σ′ =
Σ∪ {∧}), so that st = ∧ for t ≤ 0. This allows the use of length-L context strings
throughout the model, and the state sequence is started off with q0 = ∧ ∧ ...∧.
Another option is to add all context strings of lengths 0 to L− 1 as start-up states,
with the length-0 empty string indicated by λ (i.e. Q′ = ∪L

m=1Σm ∪ {λ}). These
states serve to connect the new initial state q0 = λ to the states with length-L
contexts, and cannot be reached after t = L− 1. This is the approach followed
in this study. With this approach, the initial state distribution P(q1) becomes a
set of state transition probabilities, given by P(q1) = P(q1|q0), which unifies the
parameters of the model.

The standard Markov chain provides a probability distribution normalised
over ΣT, the set of all length-T strings over Σ. Variable-length strings are mod-
elled by a distribution over the set Σ∗ of all possible strings over Σ instead. This
distribution is normalised over Σ∗, i.e. ∑x∈Σ∗ P(x) = 1. The Markov chain can
be extended to handle variable-length strings [95], by adding the concept of a
final state. A special final symbol or end-of-string event $ can be added to the
alphabet, while a final state q$ with context string $ is added to the state space.
The model is forced to end up in q$, by requiring that qT+1 = q$. The probability
of a sequence therefore becomes

P
(

sT
1

)
= P(q1)

[
T

∏
t=2

P(st|qt−1)

]
P($|qT) .

When generating strings with the model, the generation process only stops when
q$ is reached. The sequence length is modelled by the amount of probability
mass “leaked” into the final symbol in each next-symbol distribution.

The inclusion of a final state is important when the model is used to compare
the probabilities of strings of different lengths. In typical problems involving
sequence classification and verification, however, a single length-T sequence is
presented to multiple models in order to choose the model with the best fit to the

9The symbols for initial and final contexts are inspired by Posix regular expressions.
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data. This allows the use of distributions normalised over ΣT, such as Markov
chains without a final state.

2.2.2 Definitions

A homogeneous or time-invariant Markov chain has state transition probabilities
that do not change with time. This simplification is frequently required in prac-
tice to enable reliable estimation from data, and all Markov chains will hence-
forth be considered to be homogeneous. This allows a simpler notation for the
probability that the state with index i makes a transition to state j, given by

aij = P(qt = j|qt−1 = i) , 1 ≤ i, j ≤ N,

since P(qt|qt−1) does not depend on absolute time t, but only on the actual states
involved. Alternatively, the transition probability can be indicated in terms of
symbols, by appending the symbol associated with state j (the last symbol of its
context string) to the context string of state i. For example the probability of a
transition between state abaab and state baabc is aabaabc.

A homogeneous Markov chain has two very useful representations. It can
be seen as a graph, with the states as nodes and transitions between states as
edges, like the first-order model shown in Figure 2.1. It can also be represented
by an N × N transition matrix A with elements aij, where N = |Q|. The key
properties of the chain is reflected in the properties of this matrix. The rows of
A are normalised, i.e. ∑j aij = 1.

Formally, therefore, an Lth-order homogeneous Markov chain is a 4-tuple
(Σ,Q, τ, η), where Σ is a finite alphabet, Q = ∪L

m=1Σm ∪ {λ} is the state space,
τ : Q × Σ → Q is the state transition function, and η : Q × Σ → [0, 1] is the
next-symbol probability distribution. The state transition function r = τ(q, s)
creates the context string of the next state r by appending its associated symbol
s to the context string of q, and removing the first symbol in the string if its
length becomes larger than L. The next-symbol distribution is normalised so
that ∑s∈Σ η(q, s) = 1. The initial state is always taken to be q0 = λ. Alternatively,
the functions τ and η can be replaced by the transition matrix a : Q×Q → [0, 1],
with the appropriate constraints on state transitions as imposed by τ.
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Figure 2.1: A first-order Markov chain with Σ = {a,b}. The left-hand version
indexes transitions using symbols, while the right-hand version numbers each
state and indicates transitions in aij format. The start-up state is drawn in dashed
lines.

It is very useful to think of a Markov chain in terms of a state machine. The
state is initialised to q0 = λ, and at each time step, the state advances randomly
to a new state according to the transition matrix A. The state probability distribu-
tion at time t is a vector at = {P(qt = 1), P(qt = 2), ..., P(qt = N)}, which is
advanced to the next time step by multiplication by the transition matrix, giving

at = a0At

with initial value a0 = {1, 0, 0, ..., 0} (assuming the initial state has index 1). A
state of an MC is said to be persistent if the state machine will ultimately return
to it in finite time with probability one; otherwise, it is called transient. Persis-
tent states typically occur perpetually, while transient states typically occur only
once.

An ergodic Markov chain [1] contains a single special group of states that

• are all persistent,

• can all reach each other through the appropriate state transitions,

• cannot reach any states outside the group,

• and does not contain any deterministic loops in the transitions within the
group (also known as periodic states).

In other words, the states of an ergodic MC all keep recurring randomly (except
possibly for a finite number of transient start-up states). In this case, the state
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probabilities converge over time to a long run distribution10

π = lim
t→∞

at.

This implies that πA = π, which provides a simple way to obtain π as the
eigenvector of A associated with the (largest) eigenvalue of one, normalised so
that ∑i πi = 1. The long run distribution is useful in various calculations involv-
ing the MC, such as determining its entropy. Ergodic models are generally used
to model sequential data with a recurring nature, such as natural languages.

An example of a generic second-order Markov chain on the binary alphabet
Σ = {a,b} is shown in Figure 2.2. Assume its transition matrix is given by

A =



0 0.5 0.5 0 0 0 0
0 0 0 0.8 0.2 0 0
0 0 0 0 0 0.5 0.5
0 0 0 0.8 0.2 0 0
0 0 0 0 0 0.5 0.5
0 0 0 0.5 0.5 0 0
0 0 0 0 0 0.3 0.7


.

The matrix A is very sparse, since each state can have at most two outbound
transitions. The model is ergodic, as all allowed connections are non-zero (it is
fully connected). The start-up states {1, 2, 3} are transient, while states {4, 5, 6, 7}
form the persistent subset. The long run distribution is π = {0, 0, 0, 0.41, 0.16,
0.16, 0.27}. The symbol sequence s8

1 = abaababb has an associated state sequence
of q8

0 = {1, 2, 5, 6, 4, 5, 6, 5, 7} and would be assigned a probability of

P(abaabaab) = aa · aab · aaba · abaa · aaab · aaba · abab · aabb

= 0.5 · 0.2 · 0.5 · 0.5 · 0.2 · 0.5 · 0.5 · 0.5 = 0.000625.

Besides scoring sequences as in the example above, Markov chains are also
efficient generators of symbol sequences. The model is initialised in state q0 = λ.
Thereafter, a random transition is made according to the state transition distribu-

10The long run distribution is also known as the stationary, equilibrium or invariant proba-
bility distribution for the Markov chain.
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Figure 2.2: A generic second-order Markov chain on the binary alphabet Σ =
{a,b}. The start-up states are indicated with dashed lines.

tion (i.e. the appropriate transition matrix row), and the symbol associated with
the new state is emitted. This process is repeated until T symbols are generated.
This use of Markov chains is the basis of the popular Markov chain Monte Carlo
(MCMC) approach to the evaluation of statistical expectations [96, 65], which
uses ergodic MCs to achieve a desired long run distribution.

Markov chains have the useful property that models of different orders form
a natural hierarchy, with expressive power increasing with order. An L-MC
can be turned into an (L − 1)-MC by constraining the next-symbol probabili-
ties of all states with the same length-(L − 1) suffix of their context strings to
be equal, i.e. by letting P(st|st−1

t−L) = P(st|st−1
t−L+1). The reverse is not possible,

hence 1-MC ⊂ 2-MC ⊂ ... This provides a natural way to smooth the estimates
of higher-order transition probabilities, by backing off to models of lower order
[97].

2.2.3 Learning MCs from data

It is straightforward to infer a Markov chain from training data. Since the struc-
ture of an L-MC is fixed, all that remains is to estimate the next-symbol probabil-
ities (or state transition probabilities) from the data. The next-symbol probabili-
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ties of the start-up states of an MC can only be reliably estimated from multiple
training sequences, while the next-symbol probabilities of the persistent states of
an ergodic MC can be efficiently estimated from a single (typically long) training
sequence. The maximum likelihood estimate of η(q, s) is given by

η̂(q, s) =
#(q · s)
#(q∗) , (2.2.2)

where q · s indicates string concatenation, string count #(x) is the number of (pos-
sibly overlapping) occurrences of the string x in the training data, and non-suffix
string count

#(q∗) = ∑
s∈Σ

#(q · s) (2.2.3)

is the number of occurrences of q followed by any symbol, therefore disregarding
occurrences of q right at the end of training sequences. While #(q∗) is usually
equal to #(q), its use in (2.2.2) ensures that η̂(q, s) remains normalised.

2.3 Prediction Suffix Trees

The prediction suffix tree11 (PST) is introduced in [23, 98, 99, 22], along with the
related probabilistic suffix automaton, which will be explained first.

2.3.1 Probabilistic suffix automata

A probabilistic suffix automaton (PSA) is essentially a variable-order Markov
chain. As with Markov chains, each state in the PSA is associated with a finite-
length symbol sequence or context string. The only difference between a PSA
and an MC is that the lengths of the context strings may vary in a PSA, while the
context strings of an L-MC are all the same length L (ignoring start-up states).

A PSA is therefore a 4-tuple (Σ,Q, τ, η), where Σ is a finite alphabet, Q ⊂ Σ∗

is a set of finite-length strings (including the empty string λ) serving as state
space, τ : Q× Σ → Q is the state transition function, and η : Q× Σ → [0, 1]
is the next-symbol probability distribution. The next-symbol distribution is nor-

11PSTs are also referred to as probabilistic suffix trees.
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malised so that ∑s∈Σ η(q, s) = 1, and the initial state is taken to be q0 = λ, as
before.

The state transition function r = τ(q, s) has to be carefully designed to ensure
that the destination state of any possible transition (with η(q, s) > 0) exists and
is unique. It selects the next state r as the one whose context string is the longest
suffix of the string q · s formed by appending the symbol s to the context string
of q (hence the name of the model). The set of all suffixes of a length-T string
sT

1 is given by S(sT
1 ) = {sT

i |1 ≤ i ≤ T} ∪ {λ}. The transition function r = τ(q, s)
therefore chooses r to be the longest string in S(q · s) ∩Q. This set will never be
empty, as the empty string λ is a state and also a suffix of any string. The state
transition function is therefore well defined.

This definition of the PSA differs from the definition found in [22], which al-
lows r to be any suffix and instead requires the state set to be suffix free to ensure
a unique value for r. A set of strings S is called suffix free if ∀s ∈ S, no proper
suffixes of s are in S. This prevents the inclusion of start-up states (and even λ)
in the state set, which is handled by an additional initial state distribution in-
stead. The new definition places no restrictions on the state space (except that it
should contain λ), while still ensuring a well-defined state transition function. It
also simplifies the relationship between PSAs and PSTs, and lifts the restriction
in [22] that PSAs are ergodic (which is used to prove the equivalence of PSTs and
PSAs).

The subclass of PSAs in which the maximum context string length is L is
denoted by L-PSA, for any L ≥ 0. An L-PSA is equivalent to an L-MC, since
any context string shorter than L can be extended to a length-L string without
affecting the probabilities assigned to symbol sequences. That is, the equivalent
L-MC contains all length-L strings as states, and the next-symbol distribution of
MC state q is equal to that of the PSA state whose context string is the longest
suffix of q. Similarly, any L-MC can be represented as an L-PSA, by forcing
the PSA state space to contain all length-L strings. Although these models are
equivalent in expressive power, the L-PSA is potentially much more efficient
and compact, as the L-MC may have many more states if the PSA context strings
tend to be much shorter than L. Since the prediction of the next symbol with a
PSA depends on varying context lengths, it can be seen as a Markov chain with
variable order, mixed order or variable memory.
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Even though the transition function is well defined, it is possible that certain
states in Q can never be reached from the initial state λ, even though their con-
text strings appear in the symbol sequence. For example, a PSA with states Q =
{λ, aa, aba, bba, b} can never reach state bba, as the symbol sequence s3

1 = bba

has a corresponding state sequence q3
0 = {λ, b, b, λ} according to the longest-

suffix rule.
The problem is solved by adding all prefixes of PSA states to the state space.

The set of all prefixes of a length-T string sT
1 is given by P(sT

1 ) = {si
1|1 ≤ i ≤ T}

∪ {λ}. The state space is therefore extended to Q′ = ∪q∈QP(q), where the ad-
ditional glue states Q′ − Q ensure that all states in Q are reachable. The next-
symbol distribution of glue state q′ is equal to that of the longest suffix of q′ in
Q. The glue states therefore do not introduce new prediction capabilities of their
own, but serve as context memory to enable longer significant contexts to be
reached. In the previous example, the glue states {a, ab, bb} would be added,
and the symbol sequence s3

1 = bba now has a corresponding state sequence
q3

0 = {λ, b, bb, bba}. The resulting PSA is shown in Figure 2.5. The number of
glue states in an L-PSA has an upper bound of L · |Q|, given that the longest
context string in Q has at most L prefixes to be added.

It is straightforward to learn an L-MC from data, as the state space is known
beforehand and the state transition function is also fixed, leaving the next-sym-
bol distribution as the only unknown to be estimated. The learning of a PSA is
much more involved, as the state space has to be determined as well. In order
to identify the significant contexts in the data, it is useful to recast the PSA in
a different representation that is more amenable to the learning process. This
representation is the prediction suffix tree.

2.3.2 Definition of prediction suffix tree

A prediction suffix tree (PST) is a triple (Σ,Q, η), where Σ is a finite alphabet,
Q ⊂ Σ∗ is a set of finite-length strings (including the empty string λ), which will
be referred to as coding contexts, and η : Q× Σ → [0, 1] is the next-symbol prob-
ability distribution associated with each coding context. If the longest context
string inQ has length L, the PST will be referred to as an L-PST. The next-symbol
distribution is normalised so that ∑s∈Σ η(q, s) = 1 for all q ∈ Q. Its definition
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Figure 2.3: A PST on the binary alphabet Σ = {a,b} (left), and its equivalent PSA
(right). The next-symbol distribution associated with each context is indicated
above the relevant PST node in brackets, where aq·s = η(q, s). By drawing the
root node of the PST on the right and the leaves on the left, the context strings
grow longer to the left, as they would in the symbol sequence.

is similar to that of the PSA, but it lacks the concept of a state variable, focusing
instead on the idea of contexts.

Another key feature of the PST is that it is represented by a tree instead of a
general (cyclic) graph like the PSA. Each node in the tree is labelled by a unique
context string q ∈ Q, and has at most |Σ| children.12 The root node is labelled
by the empty string λ. The edges of the tree are labelled by single symbols.
Given an internal node with label q, each of its children has a unique symbol s
on the edge connecting it to the parent, and the label of the child node is given
by s · q. The label of any node can therefore be obtained by reading off the edge
symbols as the tree is traversed from the node to the root. The leaf nodes of the
tree represent the longest contexts, and all node labels in a subtree of the PST
share the same suffix, given by the label at the root of the subtree. An L-PST has
L levels (not counting the root node as a level). An example PST is shown in
Figure 2.3.

12In the original definition of the PST in [22], each internal node had exactly |Σ| children, or
at least all children labelled by context strings with non-zero probability of occurrence. That
requirement is relaxed here, by allowing internal nodes to provide the next-symbol probability
distribution for missing leaf nodes, thereby tying their distributions. This provides an equivalent
but more compact representation.



CHAPTER 2. BACKGROUND 29

2.3.3 Scoring and generating data

A PST calculates the probability of a symbol sequence sT
1 as

P
(

sT
1

)
=

T

∏
t=1

η(qt−1, st),

where q0 = λ and qt is the longest suffix of st
1 found in Q (hence the name of

the model). That is, the context qt is determined by starting at the root node of
the PST and following the edges labelled by st, st−1, and so forth back in time,
until either s1 is reached or no edge labelled by the specific symbol is found. The
label of the node where the walk has ended up becomes qt. For example, the
PST in Figure 2.3 would score the string s5

1 = abaab as P(s5
1) = aaaababaabaaaaab

(where aq·s = η(q, s)), with the corresponding context sequence given by q5
0 =

{λ, a, b, ba, aa, b}.
To ensure that this scoring procedure is well-defined and to cater for the start

of the sequence, the context set Q is extended by adding all suffixes of each con-
text string, i.e. the new context set becomes Q′ = ∪q∈QS(q). This fills in any
missing internal nodes in the PST, so that any leaf node can be reached from
the root. The additional contexts Q′ −Q are referred to as non-coding contexts,
as each q ∈ Q′ −Q does not introduce a new next-symbol distribution, but as-
sumes the distribution of the coding context in Q which is the longest suffix of
q. This distribution is easily obtained by traversing the tree towards the root
until a coding context is found. It is therefore useful to require the root node to
be a coding context (by including it in Q), as it provides a default next-symbol
distribution for any non-coding context and also serves as initial context. Al-
ternatively, the default or a priori next-symbol distribution can be a separate en-
tity η0(s), which comes into play whenever a suitable coding context cannot be
found.

2.3.4 Equivalence of PSAs and PSTs

Any L-PSA (Σ,Q, τ, η) has an equivalent L-PST (Σ,Q, η) that provides the same
probability for the same symbol strings. The models are equivalent by construc-
tion, which simplifies the derivation of equivalence found in [22]. Similarly, each
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Figure 2.4: The 2-PST that is equivalent to the 2-MC of Figure 2.2. The dashed
nodes are the start-up states of the MC, while the solid nodes are its persistent
states.

L-PST can be converted into an equivalent L-PSA, as long as glue states are taken
into account [22]. That is, the PST context set Q is extended to include all pre-
fixes, becoming Q′ = ∪q∈QP(q). The additional nodes Q′ −Q are non-coding
contexts, deriving their next-symbol distributions from coding contexts nearer
to the root, as before. The equivalent PSA has Q′ as state space, with the same
next-symbol distribution as the PST, and the standard state transition function
design.

An L-PST is therefore also a variable-order Markov chain with maximum or-
der L. An L-MC is represented by an L-PST with all its leaf nodes on level L, and
all internal nodes representing start-up states. In general, if all the internal nodes
of a PST associated with an ergodic PSA has all possible children, they represent
the start-up states of the PSA, while the leaf nodes represent the persistent states.
A typical mixed-order ergodic PST therefore has leaf nodes on different levels.
Figure 2.4 shows the 2-PST associated with the second-order Markov chain of
Figure 2.2. Its leaf nodes are all on level two, unlike the mixed-order PSTs shown
in Figures 2.3 and 2.5.

Figure 2.5 shows a more complicated example of a 3-PST. It has a binary
alphabet Σ = {a,b} and five significant contexts, Q = {λ, aa, aba, bba, b}. To
complete the internal nodes of the tree, non-coding contexts a and ba are added
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as suffixes, which play a role during sequence start-up. These nodes do not have
their own next-symbol distribution, but use the distribution at the root node in-
stead. In addition, nodes ab and bb are added as prefixes, to make the deeper
contexts aba and bba reachable in the equivalent PSA. These nodes share the
next-symbol distribution of node b. The equivalent (ergodic) PSA is also shown
in Figure 2.5. Note that the PSA has nine states and 18 links, but many links are
tied to the same value. In comparison, the PST has only five significant nodes
and ten next-symbol probabilities, which makes it a more compact representa-
tion.

While PSTs can be used for calculating string probabilities and generating
symbol sequences, it is not an efficient process. For every symbol to be scored
or generated, the search for the current context has to start at the root of the
tree, due to the lack of a state machine structure. The computational cost of
using an L-PST in these cases is therefore up to L times higher than that of the
equivalent L-PSA. It is also difficult to obtain a long-run context distribution, in
the case of ergodic models. For these purposes it is more prudent to convert the
PST to a PSA, especially if large sequences are to be processed. On the other
hand, the PST is a more compact representation of the significant contexts in
the model, since no glue states are required and non-coding contexts are simple
to incorporate. The PST is also more suited to inference from data, as the tree
structure represents a natural way to discover longer contexts incrementally in
a data set.

2.3.5 Learning PSTs from data

The original PST learning algorithm, here referred to as Learn-PSA [22], is moti-
vated by the Probably Approximately Correct (PAC) framework [100]. Given a
training set of K symbol sequences with lengths totalling T, the algorithm makes
use of the empirical string probability

P̂(q) =
#(q∗)
T − K

and the empirical next-symbol probability η̂(q, s) of (2.2.2). It is a top-down approach
that starts with an empty tree and adds nodes until some criterion is satisfied.
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Figure 2.5: A more involved example of a PST (above) on the binary alphabet
Σ = {a,b} with context set Q = {λ, aa, aba, bba, b}, and its equivalent PSA
(below). The dashed PST nodes are non-coding contexts without unique next-
symbol distributions, which instead use the first distribution found when walk-
ing from the node to the root. PST nodes a and ba were added as missing suffixes
to serve as start-up states, while nodes ab and bb were added as missing prefixes
to aid conversion to the PSA. The dashed PSA states are the start-up states, while
the solid states within the circled area are the persistent states, which correspond
to the leaf nodes of the PST.
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Learn-PSA

1. Initialise: contexts Q = {λ}, frontier F = {s
∣∣s ∈ Σ and P̂(s) ≥ Pmin}.

2. While F 6= ∅, pick any q ∈ F and do:

(A) Remove q from F;

(B) Let p be the parent of q such that q = rp for r ∈ Σ;

(C) If there exists a symbol s ∈ Σ such that

η̂(q, s) ≥ α and
η̂(q, s)
η̂(p, s)

≥ 1 + β,

then add q to Q and add all missing suffixes (S(q)−Q) to F;

(D) If |q| < L, then for every r ∈ Σ, if P̂(r · q) ≥ Pmin, then add r · q to F.

3. For each coding context q ∈ Q and each symbol s ∈ Σ, let

η(q, s) = η̂(q, s)(1− Mηmin) + ηmin.

Figure 2.6: Pseudo-code for the Learn-PSA algorithm, adapted from [22].

Specifically, a new leaf node with context string q is added if q occurs frequently
enough in the training set, and its next-symbol probability η̂(q, s) differs signif-
icantly from that of its parent node, at least for one symbol s that occurs with
non-negligible probability. The set of nodes that are considered for addition is
called the frontier F. The maximum depth of the tree is limited to L. Once the
structure of the PST (represented by the context set Q) is fixed, the next-symbol
probabilities are calculated. This includes a smoothing term that limits the min-
imum probability to ηmin. The pseudo-code for Learn-PSA is adapted from [22]
and reproduced in Figure 2.6.

Learn-PSA contains five user-controllable parameters: the three thresholds
Pmin, α and β, the depth bound (maximum memory length) L and the proba-
bility floor ηmin. The threshold Pmin eliminates contexts (especially longer ones)
with very low frequency in the data, which prevents the inclusion of poorly esti-
mated next-symbol distributions and also prevents exponential growth in node
evaluation. The probability floor ηmin ensures that the Kullback-Leibler diver-



CHAPTER 2. BACKGROUND 34

gence is well-behaved when models are compared. All these parameters have
default values in terms of M, L and an approximation accuracy parameter ε,
provided in [22]. Nevertheless, the user also has the option to fine-tune these
parameters via cross-validation [20].

The next-symbol distribution of a node may be very similar to that of its
parent, but very different from those of its children. This subtlety forces the
algorithm to consider all context strings with lengths up to the length bound L,
otherwise a useful subtree could be eliminated prematurely. It is therefore up to
threshold Pmin to curb the tree growth.

The worst-case computational complexity of the standard Learn-PSA infer-
ence algorithm is O(LT2), where L is the maximum context string length con-
sidered by the PST and T is the total length of the training data [22, 25]. This is
based on a straightforward implementation that performs a complete pass over
the data for each context string q added to F, in order to count occurrences of
q and to collect next-symbol statistics. The worst-case complexity for scoring
sequences of length T with the PST is O(T2) [25].

2.4 Hidden Markov Models

A hidden Markov model (HMM) [101, 49, 102, 2] is an extension of a Markov
chain that in essence allows for ambiguous or “soft” symbols.13 The HMM mod-
els sequences of observations, denoted by xT

1 = {x1, x2, ..., xT}. These observa-
tions xt are elements of an observation space X , which can be discrete (e.g. X ⊂
N), giving rise to so-called discrete HMMs, or a continuous vector space14 X =
RD of dimension D, resulting in continuous or semi-continuous [107, 108] HMMs.
A continuous HMM effectively models trajectories in observation space.

The observations themselves do not necessarily display Markovian statistics.
Instead, it is assumed that there are underlying structures in the observation
space that do behave in a Markovian manner. Specifically, a finite number of
regions are identified in the observation space, where each region is described by
a probability density function (pdf) over X . This allows the regions to overlap,

13HMMs were originally referred to as probabilistic functions of Markov processes/chains, for ex-
ample in the classic papers of Baum and his colleagues [103, 104, 105, 106].

14This is frequently called feature space, where the observations x become feature vectors.
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as each x ∈ X belongs to a varying degree to each region, as described by the set
of pdfs. The regions are referred to as symbols.15 Each symbol has a label s ∈ Σ
taken from an alphabet Σ, and an associated symbol probability density function16

σ(s, x) for x ∈ X .
The HMM assumes that the symbols show a Markovian dependence, where-

by a sequence of symbols can be adequately modelled by a Markov chain of the
appropriate order. This dependence is obscured, however, because the symbols
are not directly observed. Instead, the actual observations can be interpreted as
fuzzy or corrupted versions of the underlying symbols when the symbol pdfs
overlap. This is the hidden aspect of the model.

A classic example of a time series that shows this kind of behaviour is a
speech signal. Speech consists of a sequence of basic sounds, or phones. The
recorded signal of a specific phone varies a lot, depending on the context in
which it is produced, the speaker, and so forth. This complicates the process
of phone recognition and frequently causes some phones to be confused with
others. Phones are therefore not completely distinguishable when observed in
a recorded speech signal. On the other hand, natural language constrains the
sequence of phones by grouping them into words and sentences. These con-
straints can be crudely modelled as Markovian. It is therefore natural to attempt
to model speech with an HMM, where the symbols represent phones.

An Lth-order hidden Markov model is defined as a 4-tuple (X , Σ, σ,ML),
where X is the D-dimensional observation space, Σ is an alphabet of M symbol
labels, σ : Σ×X → R+ are the symbol probability density functions for various
s, and ML = (Σ,Q, τ, η) is the underlying Lth-order Markov chain with N =
|Q| states. The symbol pdfs are normalised so that

∫
X σ(s, x)dx = 1 for all s ∈ Σ.

An example of a continuous HMM is shown in Figure 2.7.
Recall that the symbol sequence sT

1 has a one-to-one correspondence with the
state sequence qT

0 of a Markov chain, since qt = τ(qt−1, st) and st is the last sym-

15In the standard HMM nomenclature (e.g. in [49, 95]), symbols are only found in discrete
HMMs, where they refer to the elements of the discrete observation space. By redefining symbols
to be the observation densities (or regions) themselves, a closer fit is achieved to the notation of
Markov chains, especially for continuous HMMs. This has advantages for higher-order HMMs,
where it improves the notation by clearly separating the concepts of state and symbol.

16This is commonly referred to as an observation pdf [49], output pdf or emission distribution
[2], where s is usually considered a state index instead of a symbol label.
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Figure 2.7: An example of a second-order continuous HMM with seven states
and two symbols Σ = {a,b} in observation space X = R2. The HMM therefore
describes sequences of two-dimensional feature vectors. The symbol pdfs are
assumed to be Gaussian, and are represented by their 1σ contours on the plot.
They show substantial overlap.

bol in the context string of qt. HMM calculations tend to be simpler in terms of
states instead of symbols, since the states always have first-order dependencies
while the symbols potentially have higher-order dependencies. It is therefore
useful to reinterpret the HMM as the 6-tuple (X , Σ, σ,Q, sq, a), whereX , Σ, σ and
Q have the same meanings as before, sq : Q → Σ is the state-to-symbol mapping
where sq(q) is the last symbol of the context string of q, and a : Q×Q → [0, 1] is
the state transition probability function (i.e. the elements of the transition matrix
A).

The Markov assumption of the underlying Markov chainML can be restated
in the context of the HMM as

P
(
qt+1

∣∣xt
1, qt

0
)

= P(qt+1|qt) (2.4.1)

= P(τ(qt, st+1)|qt)

= P(st+1|qt) = η(qt, st+1).
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This means that, given knowledge of the current state, the probability of the
next state (or next symbol) is independent of the past states and past and current
observations.

2.4.1 Scoring and generating data

The probability (or pdf height in the case of continuous HMMs) P(xT
1 ) assigned

by an HMM to an observation sequence xT
1 is more difficult to compute than in

the case of Markov chains, as xT
1 can arise from many underlying state sequences

qT
0 . The joint sequence probability density function P(xT

1 , qT
0 ) has a simpler form, and

can be factored as
P
(

xT
1 , qT

0

)
= P

(
xT

1

∣∣∣qT
0

)
P
(

qT
0

)
.

The state sequence probability P(qT
0 ) is calculated by the underlying Markov

chain ML of the HMM as a product of state transition probabilities

P
(

qT
0

)
=

T

∏
t=1

a(qt−1, qt).

The conditional sequence pdf P(xT
1

∣∣qT
0 ) can be factored via the chain rule as

P
(

xT
1

∣∣∣qT
0

)
= P

(
x1

∣∣∣qT
0

) T

∏
t=2

P
(

xt

∣∣∣xt−1
1 , qT

0

)
.

In order to make this decomposition tractable, the HMM output independence
assumption is introduced, which states that

P
(

xt

∣∣∣xt−1
1 , qt

0

)
= P(xt|qt) = σ(sq(qt), xt). (2.4.2)

This means that, given knowledge of the current underlying symbol (or the cur-
rent state), the probability of the current observation is independent of past ob-
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servations and states.17 The joint sequence pdf therefore simplifies to

P
(

xT
1 , qT

0

)
=

T

∏
t=1

a(qt−1, qt)σ(sq(qt), xt). (2.4.3)

The observation sequence pdf is then obtained by marginalising the joint se-
quence pdf over all possible state sequences, resulting in

P
(

xT
1

)
= ∑

qT
0∈QT

P
(

xT
1 , qT

0

)
. (2.4.4)

This sum is computationally intractable if done directly, as the number of
state sequences grows exponentially with T. Fortunately, a tractable recursive
version of (2.4.4) known as the forward algorithm [104, 49, 2] exists, which makes
effective use of the Markov assumption (2.4.1) and the output independence as-
sumption (2.4.2) to reduce the number of calculations. The algorithm focuses on
P(xt

1, qt), the probability of observing the subsequence xt
1 while also ending up

in state qt at time t. Using (2.4.1) and (2.4.2), this can be written as

P
(
xt

1, qt
)

= P
(

xt

∣∣∣xt−1
1 , qt

)
P
(

xt−1
1 , qt

)
= P(xt|qt) ∑

qt−1

P
(

xt−1
1 , qt, qt−1

)
= P(xt|qt) ∑

qt−1

P
(

qt

∣∣∣xt−1
1 , qt−1

)
P
(

xt−1
1 , qt−1

)
= P(xt|qt) ∑

qt−1

P(qt|qt−1) P
(

xt−1
1 , qt−1

)
.

This probability is frequently referred to as the forward variable [49] α(t, j) =
P(xt

1, qt = j), which simplifies the calculation of P(xT
1 ) to the three steps shown

in Figure 2.8 (where it is assumed that state λ has index j = 1). The computa-
tional complexity of the forward algorithm is O(GT), where G ≤ MN represents
the number of non-zero transition probabilities. The memory requirements are
minimal, involving two buffers of size N that contain α(t, j) and α(t− 1, j).

17There is still an indirect dependence on past values, as the current state depends on the
previous state, and so forth. This assumption merely states that knowledge of the current symbol
allows the best possible prediction of the current observation.
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Forward

1. Initialise: α(0, j) =

{
1, j = 1
0, otherwise

2. Recurse: α(t, j) =

[
N

∑
i=1

α(t− 1, i)aij

]
σ(sq(j), xt)

3. Terminate: P(xT
1 ) =

N

∑
j=1

α(T, j)

Figure 2.8: The forward algorithm for calculating P(xT
1 ).

The HMM is a generative model like the Markov chain, which implies that it
can efficiently generate random observation sequences. The generation process
has two components: the underlying MC generates a symbol sequence, and each
symbol is independently transformed to an observation by sampling from the
appropriate symbol pdf σ(s, x).

2.4.2 Obtaining the optimal state sequence

In many applications of HMMs, the state (or symbol) sequence has meaning in
itself. For example, when HMMs are used to model speech, the symbol sequence
might reflect the underlying sequence of phones, words or other speech units. It
is therefore useful to estimate the state sequence that best matches a given obser-
vation sequence. The most likely state sequence qT∗

0 associated with observation
sequence xT

1 is given by

qT∗
0 = arg max

qT
0

P
(

qT
0

∣∣∣xT
1

)
= arg max

qT
0

P
(

qT
0 , xT

1

)
.

The Viterbi algorithm [48, 109] is an efficient procedure for calculating qT∗
0 ,

based on Bellman’s dynamic programming [110]. It recursively updates the
quantity

V(t, j) = max
qt−1

0

P
(

xt
1, qt−1

0 , qt = j
)

,

which can be interpreted as the best score produced by a single state sequence
which accounts for the first t observations and ends up in state j at time t. At the
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Viterbi

1. Initialise: V(0, j) =

{
1, j = 1
0, otherwise

2. Recurse: V(t, j) =
[

max
i

V(t− 1, i)aij

]
σ(sq(j), xt)

i∗(t, j) = arg max
i

V(t− 1, i)aij

3. Terminate: V∗ = max
j

V(T, j)

q∗T = arg max
j

V(T, j)

4. Backtrack: q∗t−1 = i∗(t, q∗t )

Figure 2.9: The Viterbi algorithm for calculating qT∗
0 .

same time, the best previous state i∗(t, j) associated with state j at time t is also
recorded. It calculates

V(t, j) = P(xt|qt = j) max
i

[P(qt = j|qt−1 = i)V(t− 1, i)]

i∗(t, j) = arg max
i

[P(qt = j|qt−1 = i)V(t− 1, i)]

in a forward pass from t = 1 to t = T. This produces V∗ = maxqT
0

P(qT
0 , xT

1 ) =
maxj V(T, j), which is the maximum score achieved by qT∗

0 . The sequence itself
is obtained by starting at q∗T = arg maxj V(T, j) and following the path matrix
i∗(t, j) back in time as q∗t−1 = i∗(t, q∗t ). This backtracking procedure is a standard
feature of dynamic programming.

The Viterbi algorithm is summarised in Figure 2.9. Its recursion step is sim-
ilar to that of the forward algorithm in Figure 2.8, replacing the sum over pre-
vious states with a maximisation. The computational complexity of the Viterbi
algorithm is therefore also O(GT), where G ≤ MN represents the number of
non-zero transition probabilities. Its memory requirements are higher than that
of the forward algorithm, though, as the path matrix i∗(t, j) with NT elements
has to be stored in its entirety.
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2.4.3 Learning HMMs from data

The last important procedure involving an HMM is to infer it from training data.
A distinction is commonly made between the topology or structure of the model,
and the remaining HMM parameters [2]. The topology of an HMM refers to the
set of state context strings Q (trivial in the case of first-order models), as well
as the set of all state transitions with non-zero probability. This determines the
graph structure and node labels of the underlying MC. Once the topology of the
HMM is specified, the remaining parameters are the transition probabilities and
symbol pdfs, which will be indicated by θ.

It is customary to specify the topology of the model beforehand, based on
knowledge of the problem domain. For example, a popular topology in speech
modelling is the left-to-right or Bakis configuration [111, 112], which arranges
the HMM states in a sequence and only allows transitions in one direction along
the sequence. An example is shown in Figure 2.10. This first-order HMM is
frequently used to represent phones, where the three states correspond to the
beginning, middle and end of the phone. It therefore models the phone as a
trajectory that visits three consecutive regions in observation space. Another
popular topology is the ergodic HMM, such as the example in Figure 2.7, where
the underlying MC is ergodic. The ability to specify the structure of an HMM
in a flexible way to match the problem at hand is indeed one of the strengths of
this model.

Once the topology of the HMM is fixed, the transition probabilities and sym-
bol pdfs must be estimated from the training data. The maximum likelihood
estimate of θ is given by

θML = arg max
θ

P
(

xT
1

∣∣∣θ) . (2.4.5)

This is a difficult optimisation problem for which no analytical solution exists
[49]. As an alternative, there are iterative procedures that increment the likeli-
hood step by step until a local maximum is reached. The most popular of these
are based on the EM algorithm, which is discussed next.
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eb m

b
m

X

e

Figure 2.10: An example of a left-to-right HMM, which is a popular topology for
speech phone models. The edges of the graph indicate transitions with non-zero
probability. The symbols b, m and e correspond to the beginning, middle and
end regions of the phone, respectively. Examples of these regions are indicated
in observation space X by the contours of the associated Gaussian symbol pdfs.
Note that this HMM is not ergodic.

2.4.4 The EM algorithm

The Expectation-Maximisation (EM) algorithm is a general optimisation proce-
dure that maximises the likelihood of a statistical model with hidden variables.
The original ideas behind the algorithm have been around since the 1950s, for
example in [113] and the work of Baum and his colleagues on HMM training
[103, 106], but the seminal paper of [114] illustrated the generality of the ap-
proach and coined the name. Modern textbooks on the algorithm include [115]
and [116]. We follow the derivation of Neal and Hinton [117, 118, 119], which
provides a deeper understanding of the algorithm and its convergence proper-
ties.

Consider a statistical model with parameters θ that models two random vari-
ables, X and Q. Suppose that we have observed the value of variable X = x, but
not the value of variable Q. We refer to X as the observed variable and to Q as
the hidden or latent variable. We wish to obtain the maximum likelihood esti-
mate θML = arg maxθ P(x|θ), given the observed data x. Alternatively, we can
maximise the log likelihood L(θ) = log P(x|θ). If the joint distribution of the
observed and hidden variables P(x, q|θ) is simpler in form than the marginal



CHAPTER 2. BACKGROUND 43

distribution of the observed variable P(x|θ) =
∫

P(x, q|θ)dq that we wish to
maximise, we can use it to make the problem tractable.18

The key idea behind the EM algorithm is to maximise a lower bound of the
likelihood instead of the likelihood itself. This bound is obtained by an appli-
cation of Jensen’s inequality [65], which states, informally, that the logarithm
of a weighted average (or convex linear combination) is always greater than or
equal to the weighted average of the logarithms, since the logarithm is a concave
function. Thus we have

L(θ) = log P(x|θ) = log
[∫

P(x, q|θ)dq
]

= log
[∫

W(q)
P(x, q|θ)

W(q)
dq
]

≥
∫

W(q) log
P(x, q|θ)

W(q)
dq, (2.4.6)

for any weight function W(q) on the sample space of the hidden variable Q
which satisfies the properties of a pdf: W(q) ≥ 0 and

∫
W(q)dq = 1.

The bound in (2.4.6) can be written in terms of the introduced weight function
W and model parameters θ as

F(W, θ) =
∫

W(q) log
P(x, q|θ)

W(q)
dq = EW

[
log

P(x, q|θ)
W(q)

]
,

where the expectation operator EW [·] is compact notation for a weighted aver-
age over the values of the hidden variable Q, with respect to weights W. The
properties of the bound become clear if the bound is rewritten in two different
ways. The first way isolates θ in a simpler term as

F(W, θ) = EW [log P(x, q|θ)]− EW [log W(q)]

= EW [log P(x, q|θ)] + H(W), (2.4.7)

where H(W) is the entropy of distribution W. The second way isolates W in a

18The joint distribution P(x, q|θ) is also known as the complete likelihood, while the marginal
distribution P(x|θ) is the incomplete likelihood.
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simpler term as

F(W, θ) = EW

[
log

P(x|θ)P(q|x, θ)
W(q)

]
= EW [log P(x|θ)]− EW

[
log

W(q)
P(q|x, θ)

]
= L(θ)−D(W‖Pθ) , (2.4.8)

where Pθ(q) is shorthand for P(q|x, θ). From (2.4.8) it is immediately obvious
that F(W, θ) ≤ L(θ) for any W and θ, as the Kullback-Leibler divergence is al-
ways non-negative.

Equation (2.4.7) has an analogy in statistical physics, where it defines the
variational free energy [117], a quantity that is used to approximate the more fun-
damental free energy of a system of particles. In the analogy, −F(W, θ) repre-
sents the variational free energy, q represents the state of a physical system,
− log P(x, q|θ) represents the energy of state q, −L(θ) represents the free energy
F, P(x|θ) becomes the partition function Z, and Pθ(q) is known as the Boltzmann,
Gibbs, canonical or equilibrium distribution that minimises the variational free en-
ergy. Statistical physics has had a valuable influence on statistical inference, in-
spiring concepts such as mean field approximations, Ising models, Boltzmann
neural networks, deterministic annealing and variational Bayes methods. The
EM algorithm also belongs to this family of techniques, which is explored in
more detail in [65].

Let W = W0 = Pθ0 for a specific choice of θ = θ0. The lower bound F(W0, θ)
then touches the objective function L(θ) at θ0 without crossing it, as the diver-
gence in (2.4.8) becomes zero. This implies that the gradients of F(W0, θ) and
L(θ) with respect to θ are equal at θ0, assuming the gradients exist and are finite.
If F(W, θ) achieves a local maximum at W∗ and θ∗, we also have W∗ = Pθ∗ , as
this maximises the right-hand side of (2.4.8). Since θ∗ is a stationary point of
F(W∗, θ), it is also a stationary point of L(θ). Moreover, it is a local maximum
of L(θ), due to continuity. See [117] for a proof based on the assumption that Pθ

varies continuously with θ.
Maximisation of the lower bound therefore leads directly to maximisation of

the log likelihood. Neal and Hinton [117] show that any technique for maximis-
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ing or even just increasing F(W, θ) is acceptable, leading to many variations of
the EM algorithm. Nevertheless, Minka [118] points out that generic gradient
ascent on F(W, θ) is no different from gradient ascent on L(θ), in which case
nothing is gained by using the EM algorithm. The standard approach to the
maximisation of F(W, θ) is to use coordinate ascent. That is, the standard EM
algorithm starts with an initial guess of the model parameters, θ0, and then al-
ternately maximises F(W, θ) with respect to W and θ until convergence.

Maximisation with respect to W is known as the expectation step or E step, and
is simplest to do on the version of the bound in (2.4.8). This turns out to be a
simple distance minimisation, with optimum

[E] Wk(q) = arg max
W

F
(

W, θk−1
)

= Pθk−1(q) = P
(

q
∣∣∣x, θk−1

)
. (2.4.9)

Maximisation with respect to θ is known as the maximisation step or M step, and
is more natural to do on the version of the bound in (2.4.7). This is problem-
dependent, with optimum

[M] θk = arg max
θ

F
(

Wk, θ
)

= arg max
θ

EWk [log P(x, q|θ)] . (2.4.10)

The algorithm takes its name from these two steps. It is sensible to use EM as
long as P(q|x, θ) and P(x, q|θ) are easier to compute than P(x|θ).

The effect of these two steps on the lower bound is illustrated in Figure 2.11.
The E step finds the optimum bound F(Wk, θ) that touches the likelihood func-
tion at θk−1, and the M step finds the optimum θk that maximises this bound.
This process is repeated until θk converges to a local maximum at θ∗. The EM
algorithm can hereby be seen as a form of gradient ascent, with an automatically
determined step size that generally ensures fast convergence. It also suffers from
the same problems as gradient ascent, such as convergence to saddle points and
possibly even to minima if the initial guess θ0 happens to fall on a minimum (see
[118] for an example).

The EM algorithm replaces the missing value of Q with a distribution W(q)
over the range of Q instead of a single value. If a single estimate is used instead,
we obtain an approximate algorithm that is simpler to implement and typically
faster than standard EM. This EM variant is referred to as winner-take-all in [117].
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θθ∗

L(θ) = log P(x|θ)

θ0 θ1 θ2 θ3

F(W1, θ)

F(W2, θ)
F(W3, θ)

F(W4, θ)

Figure 2.11: The EM algorithm as lower bound maximisation. The initial guess
of the model parameters is θ0. The E step finds the optimum bound F(Wk, θ)
that touches the likelihood function at θk−1, and the M step finds the optimum
θk that maximises this bound. This process converges to a local maximum of
L(θ) at θ∗.

The approximation is good if the hidden variable posterior P(q|x, θ) is highly
peaked at a single dominant value q = q∗. It can be interpreted as a “hard”
approximation to “soft” EM.

The winner-take-all variant restricts the weight function W to be an impulse,
that is

W(q) = δ(q− q∗) =

1, q = q∗,

0, q 6= q∗,
(2.4.11)

where we assume that Q is discrete for simplicity. This weight function assigns
all probability mass to a specific value q∗ of q, and zero probability to the rest.
The lower bound F(W, θ) can now be rewritten in terms of q∗ as

F(q∗, θ) = ∑
q

δ(q− q∗) log
P(x, q|θ)
δ(q− q∗)

= log P(x, q∗|θ).

This EM variant therefore uses the joint distribution P(x, q|θ) as a lower bound
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for the likelihood P(x|θ). As with standard EM, the bound is maximised by co-
ordinate ascent, which alternately maximises P(x, q|θ) with respect to q (E step)
and θ (M step).

Maximisation of F(q, θ) is not equivalent to maximisation of F(W, θ), due
to the extra constraint of (2.4.11). The winner-take-all method therefore does
not guarantee a monotone increase in likelihood, and generally also does not
converge to a local maximum of L(θ). Nevertheless, it increases a lower bound
on the likelihood, it is guaranteed to converge [120], and it has been successfully
applied in several domains. An example is the well-known K-means clustering
algorithm [121, 122, 65], which is a winner-take-all variant of the standard EM
algorithm for Gaussian mixture models (GMMs) [117]. Instead of weighting the
contribution of each data point to each cluster like EM, the K-means algorithm
assigns each point to the nearest cluster in a “hard” fashion.

2.4.5 HMM training revisited

An HMM can be regarded as a statistical model with hidden variables, where the
observation sequence xT

1 is the observed variable and the state sequence qT
0 is the

(discrete) hidden variable. The likelihood P(xT
1 |θ) can therefore be maximised

by the EM algorithm.
The E step (2.4.9) determines a set of weights W(qT

0 ) defined on all possible
state sequences as

Wk(qT
0 ) = P

(
qT

0

∣∣∣xT
1 , θk−1

)
.

Instead of committing to a single state sequence, the EM algorithm therefore pro-
vides a distribution over all state sequences. These weights can be decomposed
into a set of state posterior probabilities P(qt = j|xT

1 , θ) and transition posterior
probabilities P(qt = j, qt−1 = i|xT

1 , θ), due to the conditional independence struc-
ture of the HMM imposed by (2.4.1) and (2.4.2) (see [2] for details). The posterior
probabilities can be calculated efficiently using the forward recursion of Figure
2.8 and a corresponding backward recursion. In the M step of (2.4.10), the model
parameters θ are updated to

θk = arg max
θ

EWk

[
log P

(
xT

1 , qT
0

∣∣∣θ)] ,
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which has the form of a weighted maximum likelihood estimate and is also an
efficient process for many standard choices of symbol pdf.

This application of the EM algorithm to HMM training is known as the Baum-
Welch or forward-backward re-estimation algorithm [103, 104, 105, 106, 49], and it
was one of the precursors of general EM. The algorithm is frequently explained
in terms of Baum’s auxiliary function [49, 2], which is related to the lower bound
F(W, θ) by

Q
(

θk−1, θ
)

= EP
θk−1 [log P(x, q|θ)] = F (Pθk−1 , θ)− H (Pθk−1) .

In terms of the auxiliary function, the E step determines Q(θk−1, θ) and the M
step maximises the auxiliary function to obtain the next model estimate as θk =
arg maxθ Q(θk−1, θ). More details on the Baum-Welch algorithm can be found in
[49, 2].

In this study we focus on a related training procedure known as Viterbi re-
estimation or segmental k-means [51], a winner-take-all variant of Baum-Welch re-
estimation which is faster but suboptimal. It maximises the joint distribution
P(xT

1 , qT
0 |θ), which serves as a lower bound for the likelihood P(xT

1 |θ), using co-
ordinate ascent. The E step determines the optimal state sequence qT∗

0 using the
Viterbi algorithm of Figure 2.9, based on the training data and a previous esti-
mate of θ. The M step then calculates the maximum likelihood estimate of θ,
based on the training data and the state sequence obtained in the E step. Con-
vergence is checked by observing the Viterbi score V∗ after each iteration.

The maximum likelihood estimates of the state transition probabilities aij and
symbol pdfs σ(s, x) are calculated independently, since the joint distribution can
be factored as in (2.4.3). The transition probabilities form part of the underlying
Markov chain, and are estimated from the state sequence in a similar fashion to
(2.2.2). The maximum likelihood estimate is

âij =
#(i · j)
#(i∗) ,

where #(i · j) is the number of times that state i is followed by state j in the state
sequence, and #(i∗) = ∑N

j=1 #(i · j). On the symbol pdf side, each observation xt
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Viterbi re-estimation

1. Obtain initial model θ

2. Iterate until convergence (based on Viterbi score V∗):

E: Obtain optimal state sequence qT∗
0 using Viterbi

M: Update model to θML = arg max
θ

P
(

xT
1 , qT∗

0

∣∣∣θ)
In terms of transition probabilities aij and symbol pdf parameters θs:

âij =
#(i · j)
#(i∗)

θ̂s = arg max
θs

∏
x∈Xs

P(x|θs), for Xs = {xt | sq(qt) = s}

Figure 2.12: The Viterbi re-estimation algorithm.

is assigned to a symbol estimation set

Xs = {xt | sq(qt) = s}

associated with the symbol pdf of state qt. The observations in each set are as-
sumed to be independent and identically distributed, and form the training data
for the corresponding symbol pdf. The maximum likelihood estimates of the
parameters θs of symbol pdf σ(s, x) are then obtained by

θ̂s = arg max
θs

∏
x∈Xs

P(x|θs),

where P(x|θs) = σ(s, x). The algorithm is summarised in Figure 2.12.
Viterbi re-estimation is guaranteed to converge [51, 120], but typically does

not converge to a local maximum of the likelihood, as it is a winner-take-all vari-
ant of EM. Its computational complexity is dominated by the E step for standard
choices of symbol pdf, and can be expressed as O(KGT), where K is the average
number of iterations until acceptable convergence (typically 20-30), G ≤ MN
represents the number of non-zero transition probabilities and T is the size of
the training set.

An important aspect of HMM training is proper initialisation of the model
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parameters. The likelihood function is highly complex in most typical prob-
lems, and both Baum-Welch and Viterbi re-estimation can get stuck on poor lo-
cal maxima. This is alleviated by proper specification of the HMM structure and
initialisation of the symbol pdfs, for example by unsupervised clustering.

2.5 Connections with other finite-state models

The models described in this chapter all have a natural connection with finite-
state automata [123, 124, 125]. This connection inspires the graphical represen-
tation of these models as state machines. The most general model in this class is
the probabilistic finite-state automaton (PFA or PFSA) [126, 95], which is associated
with a stochastic regular grammar [127, 41].

Discrete hidden Markov models are equivalent to PFAs [128, 95]. Markov
chains, on the other hand, are encountered in the theoretical computer science
literature as k-testable stochastic automata in the strict sense (k-TSAs) [129, 95] or
finite context automata (FCAs) [10], a subclass of PFAs. A k-TSA is equivalent to
a (k − 1)-MC, and the special case of a 2-TSA (or first-order Markov chain) is
known as a stochastic local language [95].

Markov chains are also commonly encountered in the fields of natural lan-
guage processing and speech recognition as n-gram models [3]. A bigram is a pair
of symbols (typically words or phonemes), a trigram is a triplet of symbols, and
so forth. The bigram (n = 2) model is equivalent to a first-order Markov chain,
trigrams (n = 3) correspond to a 2-MC, and, in general, an n-gram model is
equivalent to an (n− 1)-MC. N-gram models for n > 3 are uncommon, as the
large alphabet size typically found in natural language problems makes them
very difficult to estimate from the available data.

Probabilistic suffix automata and prediction suffix trees are PFA subclasses
as well, due to their equivalence to Markov chains. Several studies suggest that
the general class of PFAs and discrete HMMs cannot be efficiently learnt from
data [130, 131, 132]. However, Ron proves the following theorem in [22]: Given
a bound L on the order of a source PSA, and a bound Nmax on the number of
states, the Learn-PSA algorithm will generate a model arbitrarily close to the
source PSA, from a set of sequences generated by the source model, in time
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polynomial in L, Nmax, alphabet size M, and the desired accuracy parameters
[20]. PSTs (and PSAs) therefore form an efficient subclass of PFAs.

An interesting finite-state model with modelling power between that of a
Markov chain and a discrete HMM is the deterministic probabilistic finite au-
tomaton (DPFA) [60]. It is not a hidden-variable model like the HMM, as it main-
tains the one-to-one relationship between a symbol sequence and its underlying
state sequence. Unlike a Markov chain, however, it can model dependencies be-
tween symbols that are arbitrarily far apart in the sequence. The examples which
follow illustrate the difference between MCs, DPFAs and HMMs.

Figure 2.13 shows a DPFA with five symbols and eight states. Each state
emits a single symbol with probability one, except states 1 and 8, which are
the initial and final states. It admits or assigns a non-zero probability to symbol
sequences such as

abc, abbbbc, dbe, dbbbe, ...

It is always possible to deduce the state sequence from the symbol sequence,
as the initial or final symbol uniquely identifies which of the two paths in the
model graph was followed. This DPFA cannot be reduced to a Markov chain,
as the identity of the final symbol depends on the symbol which preceded the
intervening b’s, of which there may be arbitrarily many. The problem is that
the DPFA in Figure 2.13 contains two states that emit symbol b, and while both
states resemble first-order contexts, their next-symbol distributions differ.

The closest Markov chain to this DPFA is shown in Figure 2.14. It merges the
two problematic states of the DPFA to create a unique first-order context for b.
This destroys the long-range dependence between the initial and final symbols,
and expands the set of admitted symbol sequences to

abc, abbbbc, abe, abbbe, dbc, dbbbbbc, dbe, dbbbe, ...

All strings admitted by the DPFA are therefore also admitted by the MC, but
the MC assigns them half the probability that the DPFA does. It preserves the
relative probabilities of these strings, though. The other half of the probability
mass is assigned to extra strings not admitted by the DPFA.

Figure 2.15 shows an example of a discrete HMM that cannot be reduced to
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Figure 2.13: Example of a deterministic probabilistic finite automaton (DPFA)
that cannot be reduced to a Markov chain. Each state emits the symbol printed
inside its circle with probability one, while the state index is indicated below the
circle. State 1 is the initial state and state 8 is the final state, which do not emit
symbols.
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Figure 2.14: The Markov chain that is the closest match to the DPFA in Figure
2.13.

a DPFA. Its graph also contains two paths like that of the DPFA in Figure 2.13,
but the paths of the HMM contain the same symbols in the same order. The only
distinction between the paths is a different expected number of occurrences of
the symbol b in the symbol sequence. The HMM therefore admits sequences of
the form

abc, abbc, abbbbbbc, abbbbbbbbc, ...

where the number of b’s in the sequence is a random variable with a mixture
distribution. The symbol sequence cannot unambiguously identify which of the
two paths in the HMM graph was followed, which prevents the model from
being reduced to a DPFA.
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Figure 2.15: Example of a discrete HMM that cannot be reduced to a DPFA.

The surveys of [128, 133, 95] explore the connection between Markov chains,
discrete HMMs, DPFAs and PFAs in detail. They point out that there are fre-
quently confusion in the literature over the definitions and capabilities of these
models.19 Figure 2.16 illustrates the relationship between the various stochas-
tic sequential models described in [133, 95, 22], which highlights that Markov
chains and PSTs are equivalent, but discrete HMMs and PFAs are more power-
ful models.

2.6 Summary

This chapter provides a brief introduction to information theory and the concept
of minimum description length. It defines a Markov chain as a mixed-order
model from the onset, and carefully distinguishes between symbols and states,
which are strings of symbols serving as contexts. While the concepts of symbols
and states coincide in first-order models, which have context strings of length
one, their distinction simplifies the notation for higher-order Markov models.

Prediction suffix trees are defined next, and are shown to be equivalent to
mixed-order Markov chains. The basic Learn-PSA inference algorithm is also
introduced.

The hidden Markov model is defined as a mixed-order Markov chain com-
bined with a set of observation densities, which simplifies the discussions of
mixed-order models. Section 2.4 reviews the basic HMM algorithms, such as

19For example, the PFSAs in [10] and [24, 7] are in actual fact DPFAs.
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Other Classes of Languages

SCFG (Context-Free)

Discrete HMM ≡ PFA (Regular)

DPFA

MC ≡ n-gram

≡ PST ≡ PSA ≡ k-TSA

Figure 2.16: The relationship between various stochastic language models, in-
cluding stochastic context-free grammars (SCFGs), stochastic regular grammars,
discrete hidden Markov models, probabilistic finite-state automata (PFAs), de-
terministic probabilistic finite automata (DPFAs), Markov chains (MCs), n-gram
models, prediction suffix trees (PSTs), probabilistic suffix automata (PSAs), and
k-testable stochastic automata in the strict sense (k-TSAs). See [133, 95, 22] for
more details.

the forward algorithm, Viterbi algorithm, forward-backward re-estimation and
Viterbi re-estimation, along with an introduction to the Expectation-Maximisa-
tion approach.

Finally, HMMs and Markov chains are shown to be part of a family of finite-
state statistical models. An interesting intermediate model is the deterministic
probabilistic finite automaton (DPFA), which does not have the hidden nature
of an HMM, but is effectively an infinite-order Markov chain.



Chapter 3
Literature Study

This chapter describes a selection of methods for the training of prediction suffix
trees (PSTs) and the inference of hidden Markov model (HMM) topology from
data. Some of these methods serve as a backdrop to the development of the
smallest encoded context tree (SECT) and hidden SECT algorithms, while the
rest illustrate the current state of the art in these problem domains.

3.1 PST algorithms

3.1.1 Learn-PSA

The original PST training algorithm is Learn-PSA, which is introduced by Ron,
Singer and Tishby in [23, 98, 22] and is described in more detail in Section 2.3.5.
The algorithm has five user-specified parameters. Two of these parameters, the
tree depth bound L and the empirical probability threshold Pmin, control the
expansion of the PST. The maximum memory length of the PST is therefore user-
specified, or determined via a validation experiment. The algorithm is a batch
or two-pass procedure. This requires the training data to be available for the
computation of next-symbol counts while the PST is grown or, alternatively, the
relevant counts are collected for contexts up to the desired depth bound L before
the PST inference starts. The worst-case computational complexity of Learn-PSA
is O(LT2), where T is the total length of the training data. In terms of memory
requirements, Learn-PSA either stores the training set of length T or a set of next-

55
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symbol counts of maximum size O(ML+1), where M is the number of symbols
in the alphabet.

3.1.2 Guyon and Pereira’s method

Guyon and Pereira use a slightly different approach to learn PSTs in [24, 7]. They
first build a prefix tree (similar to a trie [134]) of depth L + 1 by sliding a window
of length L + 1 over the training sequence. Each prefix string within the window
is added as a node to the tree if it is not there already, otherwise its node count
is incremented. This operation has a relatively low computational complexity of
O(LT), but a large storage requirement of up to O(ML+2). When the algorithm
runs out of memory, it prunes contexts with a probability of occurrence below a
threshold εp.

The prefix tree is converted to a PST by a procedure similar to Learn-PSA,
which recursively visits the nodes of the prefix tree up to depth L, and adds a
context to the PST if the Kullback-Leibler divergence1 between its next-symbol
distribution and the next-symbol distribution of its suffix exceeds a threshold
εs. This procedure has a worst-case computational complexity of O(ML+1). The
algorithm therefore has three user-specifiable parameters: the tree depth L and
thresholds εp and εs. The threshold εs controls the capacity of the model in a
more fine-grained manner than the order L, and is optimised on a validation set
to provide a form of structural risk minimisation. The algorithm is also a batch
procedure like Learn-PSA.

The final step of the method converts the PST into a PSA. Instead of smooth-
ing the next-symbol probabilities, this PSA uses a back-off strategy [97] during
sequence scoring. Whenever the current state assigns zero probability to the next
symbol in the sequence, the state is reset to the initial state, thereby backing off
to the zeroth-order empty context. The algorithm is tested by training a PSA on
the AP news corpus of English text. The resulting PSA achieves a similar cross-
entropy on the Brown corpus than a state-of-the-art word trigram model, for a
fraction of the model size and training set size.

1The original Learn-PSA algorithm [22] measures the difference between next-symbol distri-
butions by the maximum ratio between corresponding probabilities instead.
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3.1.3 Bejerano’s variants

Bejerano describes several alternative PST learning algorithms in his Ph.D. dis-
sertation [20]. The “optimised” variant, also described in [25], addresses the
computational complexity of Learn-PSA. It uses the efficient data structure of a
classical suffix tree [135, 136] to achieve a computational complexity of O(MT),
as well as memory requirements that are linear in T. A compact suffix tree is con-
structed for the data set, and the nodes of this tree are visited from the bottom
up. For each node, the next-symbol counts are calculated and the tests of Learn-
PSA are carried out to determine whether the context should be included in the
PST. If a context is included, all suffixes of the context are also included. Any
excluded nodes are finally pruned from the tree. This is also a batch algorithm,
due to the construction of the suffix tree. The optimised PST algorithm still has
the same five user-specified parameters of Learn-PSA, which also control the
maximum memory length of the model.

The “non-parametric” variant, also described in [26, 137], uses the minimum
description length (MDL) principle to remove the need for user-specified param-
eters and to obtain a self-bounded tree. This means that the maximum tree depth
is automatically adjusted to the amount of training data. A two-part message is
constructed, which describes the PST and the training data in terms of the PST.
The description length of a node q in the PST is given by

L(q) = M + M log2

√
#(q∗), (3.1.1)

where the first term represents M one-bit flags that indicate the existence of the
corresponding child nodes of q, and the second term codes the M next-symbol
counts #(qs), s ∈ Σ, to within an accuracy of the square root of their total #(q∗),
based on [47]. The description length of the PST is the sum of the description
lengths of all the nodes in the tree. The data description length is the data set
size, T, times the entropy of the PST.

The algorithm consists of two steps. The first step starts with an empty tree,
and grows the PST by recursively inserting all potentially useful nodes. These
nodes have a chance of coding the data assigned to them better than their parent
nodes can, even after including their model overhead in the description length.
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A node with context string q = rp, r ∈ Σ, and parent node p is potentially useful
if it has a potentially useful parent and its node description length satisfies

L(q) < #(q∗)H(p),

where H(p) is the entropy of the next-symbol distribution of the parent node.
The second step in the algorithm recursively prunes the tree from the bottom
up, by removing subtrees that did not deliver on their promise to improve the
description length. That is, if the total description length of the subtree rooted
at q exceeds the code length #(q∗)H(p) assigned by the parent node p to the
next-symbols of q, the subtree is removed.

This algorithm is a batch procedure, like the previous algorithms. The max-
imum tree depth is controlled by the data set size T, and up to O(T) nodes are
inserted in the first step of the algorithm, while the maximum depth L can be
O(T) in the worst case. Depending on how the next-symbol counts are obtained,
the algorithm has a computational complexity of O(T2), which can potentially
be improved to O(T) using ideas from the optimised variant described above.

3.1.4 Online version of Dekel et al.

Dekel et al. describe an online learning algorithm in [27], which learns a deci-
sion-theoretic version of the PST. The algorithm can accommodate an additional
optional sequence of real-valued input vectors xt

1, which is ignored here. Its for-
mulation is particularly simple in the case of a binary alphabet Σ = {+1,−1},
but it can be extended to larger alphabets. The algorithm predicts the next sym-
bol st in a sequence, based on the past symbols st−1

1 . The hypothesis for st takes
the form

h(st−1
1 ) =

t−1

∑
i=1

2−i/2g(st−1
t−i ),

where g : Σ∗ → R is a context function that assigns weights to strings. The sign
of h is the prediction ŝt of the next symbol, while the magnitude of h indicates
the confidence in this prediction.

The learning algorithm starts with an initial hypothesis h1 = 0 with context
function g1(q) = 0, q ∈ Σ∗, and then adapts the hypothesis after each symbol is
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observed. The symbol st at time t is therefore predicted by hypothesis ht, with
corresponding context function gt. The hypothesis update rule is designed to
increase the margin stht(xt, st−1

1 ), or, alternatively, to reduce the hinge loss

`t = max{0, 1− stht(xt, st−1
1 )},

which is zero for correct predictions with sufficient confidence and increases
linearly otherwise. The context function is therefore updated to

gt+1(q) = gt(q) +
1
3

st`t2−|q|/2, ∀q ∈ S(st−1
1 ),

for all strings in the suffix set of the symbol history. The strings with non-zero
values in the context function resemble the context set of a traditional probabilis-
tic PST.

The main advantage of this algorithm is its online nature. It only requires a
single pass through the training set, which therefore does not have to be stored
and makes very large data sets viable. However, in the basic version of the al-
gorithm, the size of the PST grows unbounded with the data set size T, which
potentially poses an even bigger storage problem. Instead of resorting to a user-
specified bound, [27] introduces a self-bounded version of the algorithm which
remains competitive with larger fixed-size PSTs. The computational complexity
of the unbounded version is O(T2), as all (t− 1) suffixes of the symbol history is
added to the context function at time t. The self-bounded version has a complex-
ity of O(LT), where L is the automatically determined bound on the tree depth
which typically grows as O(log T).

3.2 HMM topology inference

The topology of a hidden Markov model refers to its graphical structure, which
includes the number of states, the symbols associated with each state, and the
state transitions with non-zero probabilities. The standard HMM training pro-
cedure [49, 2] assumes that the HMM topology is specified beforehand, usually
based on domain knowledge. While this is a powerful way to include expert
knowledge in the HMM, it can also be problematic if the problem domain pro-
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vides no guidance on the topology design. In this instance, it makes more sense
to infer the HMM topology from the training data as well.

This section describes various algorithms that have been proposed for HMM
topology inference. Standard HMM algorithms use parameter estimation to
modify the HMM structure, by removing any zero-probability links after train-
ing. Brand’s method [61] also falls in this category. The rest of the algorithms can
be broadly divided into state merging methods [138, 41, 60], which start with a
maximal-size model and shrink it, and state splitting methods [42, 39, 43], which
start with a minimal-size model and grow it. Algorithms that explicitly incor-
porate a PST [13, 63] can also be labelled as state splitting methods, but are dis-
cussed in a separate section instead, because of their close relationship to hidden
SECT.

3.2.1 Entropic prior

Brand proposes a maximum a posteriori (MAP) estimation procedure in [61] that
uses a special entropic prior to bias the HMM towards a sparse structure. This
prior has the form Pe(p) ∝ exp[−H(p)], with H(p) the entropy of distribution
p. For a multinomial distribution p = {p1, p2, ..., pM} it has the elegant form of
Pe(p) ∝ ∏i ppi

i . Unlike the usual Dirichlet prior, the entropic prior favours highly
skewed, low-entropy distributions above uniform ones. The entropic MAP es-
timator for multinomials is calculated in a fast iterative procedure which solves
transcendental equations involving the Lambert W function. This estimator has
a minimum description length interpretation, and selects the strongest model
hypothesis compatible with the data, rather than the fairest one. This drives
irrelevant parameters toward extinction, leading to a sparse model structure.

The algorithm can be applied to continuous and discrete HMMs alike, by
incorporating the entropic MAP estimator in the M step of the standard EM al-
gorithm for HMMs. The estimator replaces the maximum likelihood estimator
for the transition probabilities of each state in the HMM, and also estimates the
symbol distributions if the HMM is discrete. The training is accelerated by a
trimming procedure that removes low-probability transitions that would other-
wise slowly decay to zero, and pinches off states that do not contribute to the
most likely paths through the model. Since the algorithm is a simple modifi-
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Figure 3.1: An example of the initial HMM in Stolcke’s state merging algorithm,
based on the data set {ab, aab, cbab, cbbaa}. Each state emits the observation
symbol in its circle with probability one, and all transitions without labels have
a probability of one.

cation of EM, its computational complexity is similar to that of standard HMM
training, which is linear, O(T), in the data set size T.

3.2.2 State merging methods

3.2.2.1 Stolcke’s method

Stolcke and Omohundro introduce a Bayesian model merging technique [40,
138, 139] that learns the structure of discrete HMMs from sequences of discrete
observations. It is an incremental greedy search for the MAP HMM. The al-
gorithm starts with an initial HMM that includes each observation sequence in
the training set as a path of corresponding HMM states. The initial state of this
HMM has a transition to the start of each state path, and the rest of the states
emit a single observation and make a single transition to the next state in the
path (or the final state). This HMM is the most specialised model that assigns
the highest probability to the training set, and represents a rote memorisation of
the data. Figure 3.1 shows an example of such an HMM.

The algorithm uses a model prior that penalises large HMMs, based on the
MDL principle [46, 45] for the HMM structure and Dirichlet priors [140] for the
HMM parameters. It then iteratively merges HMM states in a greedy fashion,
until the posterior probability of the model reaches a local maximum. This pro-
cess generalises the HMM, which allows it to model data outside the training set.
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Figure 3.2: An example of the initial PPTA in ALERGIA, for the data set
{ab, aab, cbab, cbbaa}. Each state emits the observation symbol in its circle with
probability one, and all transitions without labels have a probability of one.

The algorithm can be adapted to train continuous HMMs, as long as the symbol
pdfs have suitable priors and can be merged efficiently during the search pro-
cess [139]. The computational complexity of the method is O(T3), where T is the
number of observations in the training set [60], which makes it intractable for
large data sets.

3.2.2.2 ALERGIA

Carrasco and Oncina describe a similar algorithm, known as ALERGIA, in [41]. It
determines the structure of deterministic probabilistic finite automata (DPFAs), a
subclass of discrete HMMs, from sequences of observations. The algorithm pro-
ceeds in a similar fashion to Stolcke’s method, by first forming a large DPFA that
best fits the training set and then iteratively merging states to create a smaller
and more generalised model. The initial model is a probabilistic prefix tree automa-
ton (PPTA) [41, 133] that has the prefix tree of the training data as state structure.
It is equivalent to Stolcke’s initial HMM, but more compact, as can be seen in
Figure 3.2.

ALERGIA uses the Mealy form for its DPFAs, with observations emitted on
the transitions instead of by the states, which rolls the transition and symbol
distributions into one. Two states are considered similar if their corresponding
empirical transition probabilities are all within confidence intervals based on
the Hoeffding bound [141] (similar to Chernov bounds). If two states and all
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their corresponding successor states are similar, the two states are merged. The
merging process visits the merge candidates in a breadth-first order, and also
performs extra merges to keep the model deterministic. The typical computa-
tional complexity of ALERGIA is O(T) [41], and the algorithm has been proven
to converge in polynomial time with probability one to the correct DPFA [142].

3.2.2.3 MDI

Thollard et al. combine ALERGIA and ideas from Stolcke’s method into the min-
imal divergence inference (MDI) algorithm [60] for training DPFAs. Similar to
ALERGIA, the algorithm starts with the PPTA of the training data and attempts
to merge similar states in a specified order. Instead of measuring the similar-
ity between two states locally, based on the difference between their transition
probabilities, MDI evaluates the proposed structural change globally, based on
the Kullback-Leibler divergence between the DPFAs. The PPTA is considered
to be the reference model, as it fits the data best. Any state merge will tend to
increase the divergence between the final and reference models, but will also
decrease the size of the model. If the ratio of the divergence increase to the size
decrease is less than a specified threshold, the merge is accepted. MDI outper-
forms ALERGIA in terms of test set perplexity on a language modelling task, at
the cost of a computational complexity of O(T2).

3.2.3 State splitting methods

3.2.3.1 ML-SSS

Ostendorf and Singer propose the maximum likelihood successive state split-
ting (ML-SSS) algorithm in [42], which is an improvement on the original SSS
algorithm in [143], and use it to train context-dependent triphone models. The
algorithm starts with a simple initial HMM, and runs the Baum-Welch algorithm
to calculate state and transition posteriors for the training data. Each state in the
HMM is now split in two ways, independent of the rest of the states. These splits
are illustrated in Figure 3.3. The temporal split replaces the state with two states
in series, initialised to have the same symbol pdf, and self-loop probabilities that
match the duration of the state pair to that of the original state. The parameters
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Figure 3.3: The two types of split in the successive state splitting (SSS) algorithm.
If state 4 in the original model on the left is to be split, it can either undergo a
temporal or a contextual split, resulting in one of the models on the right. In the
process, the symbol pdf of 4 is split into two new pdfs for states 4a and 4b. Note
that the contextual split may invalidate some transitions that are not compatible
with the phonetic contexts of the new states, which are indicated by a crossed-
out link.

of the two new states are then retrained on the subset of data associated with the
original state, using a few iterations of the Baum-Welch algorithm. The contex-
tual split partitions the data associated with the original state into two subsets,
using a decision tree design technique known as Chou’s iterative partitioning
algorithm, from which the parameters of two new states connected in parallel
are derived.

The ML-SSS algorithm applies the single split which leads to the largest in-
crease in the lower bound of the EM algorithm (see Section 2.4.4), which can
be calculated efficiently for each state and split type. This step of ML-SSS is an
incremental variant of the EM algorithm [117], which ensures that the overall
model likelihood does not decrease because of the split. The Baum-Welch algo-
rithm is rerun for all states affected by the split in order to update their state and
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transition posteriors, and the splitting process is repeated on the new model. The
state splitting stops when the HMM reaches a pre-specified size. This is a weak-
ness of ML-SSS, as the appropriate model size has to be determined by a model
validation experiment. The computational complexity appears to be O(T), as
the algorithm effectively consists of multiple iterations of the Baum-Welch algo-
rithm. The hidden constant factor in this complexity is large, however.

3.2.3.2 FIT

Another approach to topology inference focuses on the Markov order of the
HMM. An Lth-order Markov chain describes Lth-order dependencies between
the symbols in a symbol sequence. However, by introducing states associated
with symbol context strings of length L, the model becomes first-order in terms
of the state indices in the corresponding state sequence, as described in Section
2.2. This equivalent first-order model has many states tied to the same symbol,
and a highly constrained sparse topology. The same idea can be applied to hid-
den Markov models. An HMM can encode higher-order dependencies between
the soft symbols (or observation distribution indices), but it will be first-order
in terms of state indices if the states are identified with symbol context strings
of the appropriate length. This equivalent first-order model can be trained with
standard HMM methods, as long as the state tying and constrained topology
imposed by the higher-order symbol dependencies are respected.

This concept is explored in [39, 144, 145], where Du Preez introduces two al-
gorithms for training high-order2 HMMs. The order reducing (ORED) algorithm
reduces any high-order HMM to an equivalent first-order HMM (first-order in
terms of states), which can then be trained by standard algorithms such as Baum-
Welch and Viterbi re-estimation. This equivalent first-order model is frequently
very large, which results in excessive computational complexity and overfitting
on the training data. The situation is improved by the fast incremental training
(FIT) algorithm. The algorithm is initialised with a standard first-order HMM
(first-order in terms of both symbols and states) with a topology dictated by the
application of the HMM. This initial model is trained with a standard algorithm,

2In the description that follows, all higher-order models describe higher-order symbol de-
pendencies. These models always have an equivalent model that is first-order in terms of state
indices.
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and the trained first-order HMM is then expanded to form an initial second-
order HMM. These steps are illustrated in Figure 3.4.

The order expansion is effectively a state splitting procedure, as each state in
the first-order HMM is split into multiple states, one for each link entering the
state. Each transition with non-zero probability in the first-order model therefore
becomes a state in the second-order model. These states share the symbol pdf
and transition probability values of the state in the first-order model from which
they were derived, but have different transition destinations to satisfy the con-
strained topology of the second-order model. This ensures that the first-order
and initial second-order HMMs are equivalent, providing identical scores for the
same observation sequence. The second-order HMM is now trained in the same
way as the first-order model, by considering it to be a first-order HMM in terms
of its state indices. The symbol pdfs are updated but remain tied among the
same states, while the transition probabilities are free to change. This changes
the HMM from a degenerate first-order model into a fully-fledged second-order
model. The steps of order expansion and training are alternately repeated until
a specified model order is reached.

The advantage of FIT is that any transition that disappears during the train-
ing of a lower-order model is not expanded any further, which reduces the num-
ber of parameters in the final higher-order model. Another useful property is
that the likelihood cannot decrease during training if Baum-Welch re-estimation
is used, because the order expansion step increases the model complexity with-
out changing its likelihood. Each subsequent phase of Baum-Welch training can
therefore increase the model likelihood even further, while searching for an opti-
mal HMM in a model space of ever-increasing size. The computational complex-
ity of the order expansion step only depends on the model size and is negligible
compared to that of the subsequent (standard) training step. The overall com-
plexity of FIT is therefore O(T), although the large model sizes associated with
higher-order HMMs can make it comparatively slow.

3.2.3.3 tSnob

Edgoose and Allison describe tSnob, an extension to the Snob classification pro-
gram [82] that is capable of hidden Markov modelling, in [43, 146]. The program
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Figure 3.4: The two basic steps of the FIT algorithm. The example initial model
at the top is a continuous first-order HMM with two symbols, a and b, in a two-
dimensional observation space X . The Gaussian symbol pdfs are indicated by
their 2σ contours in the graphs on the right-hand side. The dashed nodes and
links indicate start-up states. The first-order HMM in the middle is obtained
after training, during which transition abb was removed. The corresponding ini-
tial second-order HMM is shown at the bottom. The states within each encircled
area are second-order extensions of the same first-order state, with tied transi-
tion probability values and symbol pdfs, but different transition destinations.
The training and order expansion steps are alternately repeated.



CHAPTER 3. LITERATURE STUDY 68

uses the minimum message length (MML) [45, 86] paradigm to calculate the
length of a two-part message describing a first-order HMM and the observation
data in terms of the HMM. The symbol pdfs of the HMM can be discrete, diago-
nal Gaussian or von Mises distributions, in univariate or multivariate form. The
model part of the message serves as model prior, and encodes the number of
symbols, the symbol pdfs and the next-symbol probability distributions. Each
observation is assigned a symbol and encoded relative to the corresponding
symbol pdf. The contributions of all possible symbol assignments are summed
to obtain the data part of the message, in a step similar to the calculation of HMM
likelihoods with the forward algorithm.

tSnob is also an unsupervised clustering algorithm. It has an efficient search
strategy to discover the relevant number of symbols underlying the observation
data, and hence the number of states in the HMM. Starting with a hypothesis of
M symbols, it attempts to merge and split symbols to reduce the overall mes-
sage length. It considers the (M

2 ) possible ways in which two symbols can be
merged into one symbol, and also chooses a randomised split of each symbol
into two new symbols. The merge and split candidates resulting in the short-
est message length are selected as challengers for the current M-symbol model.
The model parameters of both challengers are improved using an EM algorithm
closely related to the standard forward-backward algorithm, and if a challenger
produces a lower message length than the M-symbol model, it becomes the new
incumbent model. If the M-symbol model prevails, a new pair of candidates are
chosen as challengers.

Note that tSnob has the capability to merge states, although it is grouped with
the state splitting methods. The algorithm has a computational complexity that
is linear in the data size T, since all interactions with the data set are through
forward and forward-backward algorithms of O(T) complexity. The optimal
number of symbols, M∗, may depend on the data set size, which would make
the algorithm super-linear in T, unless the search for the number of symbols is
initialised close to M∗. The search procedure has a computational complexity of
O(M4T) if the current model has M symbols, which is dominated by the large
number of merge candidates (about M2) combined with the O(M2T) complexity
of the forward algorithm, which is required to calculate the data parts of their
message lengths. This makes the algorithm intractable for large values of M.
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3.2.4 Algorithms based on PSTs

3.2.4.1 Galata et al.

Galata et al. apply PSTs to real-valued data in [147, 13]. While they do not infer
HMMs, their approach is one of the first attempts (together with this study) to
marry PSTs with a continuous feature space, and it provides the background for
the HMM inference method in the following section. They model trajectories in
D-dimensional feature space, where each feature vector represents a set of points
describing the shape of an object, augmented by the first derivatives of these
points. The feature space is discretised by robust vector quantisation, which
determines M centroids or prototype vectors. Each feature vector sequence is
therefore turned into a symbol sequence by assigning each feature vector to the
nearest prototype.

Consecutive repetitions of the same prototype symbol are replaced by a sin-
gle occurrence of that prototype. Without this step, large context memories are
potentially required to “see past” long periods where the object remains station-
ary. This also alleviates the effects of sampling the feature trajectory at a rate that
is much higher than the rate of the actual events to be modelled. The technique is
similar to the context-emphasised mixed-order HMM introduced in [39]. Mod-
elling the pruned symbol sequence with a Markov chain effectively models the
original symbol sequence with a DPFA, which is a more powerful model.3 As
described in [39], the downside of this step is that the duration of a specific pro-
totype is poorly modelled.

A PST is inferred from the symbol sequence using the method described in
[7], and converted into an equivalent PSA. Once trained, the PSA can be used to
generate or predict object trajectories. This algorithm is combined with a particle
filter for hand tracking in [14], where it is used to learn repetitive hand motions.

3.2.4.2 Sage et al.

Sage et al. [62, 63] extend the previous method by replacing the prototypes with
Gaussian pdfs, which provide soft clustering. They train a standard first-order
HMM with M Gaussian symbol pdfs σ(m, x) on a training sequence xT

1 , and
3The DPFA example in Figure 2.13 illustrates this. The distinct symbol which follows a arbi-

trarily long run of b’s depends on the distinct symbol which precedes the run.
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identify the symbol pdf indices as an alphabet Σ = [1, M]. The trained transition
probabilities are replaced by uniform probabilities of value 1/M, which turns
the HMM into a Gaussian mixture model (GMM) with equal mixture weights.
The probability to have a symbol m at time t then simply becomes the responsi-
bility of the mth Gaussian component for the observation xt, given by

p(m, t) = P(st = m|xt) =
σ(m, xt)

∑M
m=1 σ(m, xt)

.

Instead of estimating a symbol sequence sT
1 from the observation sequence xT

1 ,
the symbol probabilities p(m, t) are used to derive soft counts for any desired
symbol string rl

1 with length l ≤ L, given by

#′(rl
1) =

T

∑
t=l

l

∏
i=1

p(ri, t + i− l).

A PST is now trained on these soft counts, using a modified version of Learn-
PSA based on Kullback-Leibler divergence. This PST inference algorithm has
two free parameters: the maximum tree depth L and the divergence threshold ε.

The PST is converted into a PSA with N states, which is used to derive an
N × T forward evaluation trellis with elements α(t, j) for a test sequence xT

1 (see
Section 2.4.1 for details). This trellis is similar to the one produced by the HMM
that has the PSA as underlying Markov chain, combined with the same M Gaus-
sian symbol pdfs as before, which are shared between the N states. The pdf
sharing is now disabled, after which the symbol pdfs are refined by performing
one iteration of Baum-Welch re-estimation. This results in N independent sym-
bol pdfs, one per state. Refinement of the pdfs improves the ability to generate
trajectories similar to the training sequence. The final model is applied to a hand
tracking experiment, where it replaces missing observations with stochastically
generated ones.

This method trains continuous HMMs of mixed order. The computational
complexity is dominated by the calculation of soft counts, which is O(LMLT) in
the worst case.
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3.3 Summary

Many PST inference algorithms have been proposed since the original Learn-
PSA algorithm. Some variants reduce the computational complexity from qua-
dratic to linear in the training sequence length, while others remove the need for
tunable parameters, which otherwise require expensive cross-validation steps.
This includes not having to specify a bound on the PST depth, which is deter-
mined automatically from the training set. Dekel’s version also allows online
operation, which does not require the storage of the training sequence.

The various inference algorithms have different measures of the discrepancy
between parent and child node distributions, which range from probability ra-
tios to the Kullback-Leibler divergence. They also differ in the way they smooth
their probability estimates, which range from no smoothing and fixed offsets to
Krichevsky-Trofimov estimators and back-off strategies.

While no HMM training algorithms exist that explicitly infer generic mixed-
order HMMs, there are several algorithms that infer the topology of an HMM
from data. Most of these algorithms either start with a minimal-size model and
split states, or start with a maximal-size model and merge states. This is typically
done in a greedy iterative fashion, by continually picking the split or merge that
maximises the increase in a model fitness function. This fitness function ideally
combines the usual likelihood score with some measure of model complexity,
which allows a trade-off between model accuracy and complexity in a way sim-
ilar to minimum description length methods. In some of the cases the model
complexity is specified by a prior distribution over HMMs, or by the number of
states in the HMM.

HMM training algorithms of particular relevance to this study are the FIT
algorithm, which infers generic fixed-order HMMs, and Sage’s algorithm, which
combines prediction suffix trees with HMMs.



Chapter 4
The SECT Algorithm

The smallest encoded context tree (SECT) algorithm infers prediction suffix trees
(PSTs) from training data. It improves on the standard Learn-PSA algorithm
[22] by not having any explicit thresholds and user-controllable parameters to
tune, and by allowing the tree to expand without an explicit bound on its depth.

While Learn-PSA follows the PAC learning framework [100], SECT is based
on minimum description length (MDL) or Bayesian maximum a posteriori (MAP)
arguments [84]. It selects the PST that results in the smallest combined descrip-
tion length for the training data and the PST itself. That is, given training data
D and the set of PSTs or hypotheses H, SECT chooses H∗ ∈ H as

H∗ = arg min
H∈H

[L(H) + L(D|H)] ,

where L(H) is the description length of the PST model, and L(D|H) is the de-
scription length of the training data, as encoded by the model H, in bits. In
Bayesian MAP notation, this becomes

H∗ = arg max
H∈H

P(H)P(D|H) = arg max
H∈H

P(H|D).

Using SECT, simple (low-order) PSTs have short description lengths L(H),
but do not fit the data as well, resulting in larger L(D|H). Similarly, highly com-
plex PSTs may fit the training set well (i.e. have low L(D|H)), but are penalised
by higher L(H). The complexity of the inferred PST also depends on the amount

72
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of available training data. With small samples, simpler models are preferred,
while larger data sets can support more complex PSTs if they are warranted. In
this way, the SECT algorithm curbs overfitting and balances modelling power
with model complexity.

The SECT algorithm follows a two-part MDL approach which divides the
total description length into a model part, L(H), and a data part, L(D|H). The
model part is based on a constructive code that attempts to store the PST struc-
ture and parameters as efficiently as possible, while remaining uniquely decod-
able, while the data part is coded according to the predictive distribution pro-
vided by the PST. This approach is referred to as “crude” MDL in [84].

4.1 Basic routines

Three basic routines are commonly encountered in the SECT algorithm. The
first involves the coding of a data set of independent (exchangeable) symbols
according to a prescribed probability distribution. The data set is based on
an alphabet of M symbols, Σ = {s1, s2, ..., sM}, and contains ni occurrences of
symbol si. The data set is therefore represented by the set of symbol counts
n = {n1, n2, ..., nM}. The probability distribution is specified as a set of sym-
bol probabilities p = {p1, p2, ..., pM}. The optimal code length of symbol si is
li = − log2 pi, according to (2.1.2), and the code length of data set n according to
distribution p is defined as

D(n|p) =
M

∑
i=1

ni log2
1
pi

. (4.1.1)

The second routine involves the efficient storage of a table of M counts, n =
{n1, n2, ..., nM}. It is assumed that the sum of counts N = ∑i ni is known before
coding begins. The counts are coded in sequence, and each successive count
requires fewer bits, as the number of possible values of the count decreases.
The first count, n1, can take any value in the range [0, N]. If these values are
considered equiprobable, storing n1 requires log2(N + 1) bits. The next count,
n2, has a range of [0, N − n1], and, by the same token, requires log2(N − n1 + 1)
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bits. In general, count ni requires

li = log2

(
1 +

M

∑
m=i

nm

)

bits of storage, and the entire table has a code length of

LT(n) =
M−1

∑
i=1

li =
M−1

∑
i=1

log2

(
1 +

M

∑
m=i

nm

)
. (4.1.2)

The last count, nM, does not have to be coded, as its value can be inferred from
the first M− 1 counts as nM = N −∑M−1

i=1 ni.
The third routine involves the storage of a list of N symbols, S ⊂ Σ, which

forms a subset of the M-symbol alphabet Σ = {s1, s2, ..., sM}. The alphabet is
assumed to be known before coding begins, and the list contains no duplicate
symbols. Using the same reasoning as in the previous routine, the first symbol
of S is one of M possibilities, and therefore requires log2 M bits of storage (again
assuming equiprobable values). The second symbol is one of M− 1 possibilities,
and requires a code length of log2(M− 1), and so forth. The code length of the
subset S becomes

LL(S) =
N−1

∑
i=0

log2 (M− i) . (4.1.3)

4.2 The philosophy of SECT

The input to the SECT algorithm is an alphabet Σ of M symbols, and a sequential
data set D defined on this alphabet. The data set typically contains a single
symbol sequence sT

1 of length T, but the algorithm can also operate on multiple
symbol sequences. The purpose of SECT is to produce a prediction suffix tree
(PST) T that captures the relevant Markovian statistics of the data set.

The approach of the SECT algorithm is based on information theory. Sup-
pose a transmitter, Alice, wants to transmit the data set to a receiver, Bob. The
message she selects to send depends on the state of knowledge of the receiver.
If Bob knows the alphabet Σ and expects a sequence of symbols from Σ, Alice
can encode each symbol with a raw code that assigns log2 M bits to each symbol
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in the alphabet.1 This assumes that the symbols are uniformly distributed in the
data set. If their actual distribution is significantly non-uniform, this informa-
tion can be used to transmit a shorter message. The specific distribution used
to construct the improved code has to be communicated to Bob as well, other-
wise he will not be able to decode the message. For example, Alice can send the
counts of each symbol in the data set as a table to Bob, which he can then use to
reconstruct the code. If the benefit of the improved data coding outweighs the
extra overhead of the table, this is a useful step to take.

In mathematical terms, a data set with symbol counts n = {n1, n2, ..., nM}
is to be coded according to a (possibly sub-optimal) default distribution p0 =
{p1, p2, ..., pM} (with pi = 1/M in the raw case). This results in a code length for
the data set of D(n|p0) bits. The minimum code length for this data set, based
solely on the counts n, is produced by the maximum likelihood distribution p∗ =
n/T = {n1/T, n2/T, ..., nM/T}, where T = ∑M

i=1 ni. The optimal distribution p∗

is preferred to the default distribution p0 if

D(n|p∗) + L(T) + LT(n) < D(n|p0) . (4.2.1)

The term L(T) + LT(n) represents the table overhead, which stores the total
count T as a code of length L(T) (depending on the expected range for T), and
the table itself as a code of length LT(n), constructed according to (4.1.2).

Another way to express the model acceptance test (4.2.1) is as

D(p∗‖p0) >
L(T) + LT(n)

T
, (4.2.2)

where D(p∗‖p0) is the Kullback-Leibler divergence between the optimal and
default coding distributions. The table overhead grows as O(log T) for large T,
which means that the right-hand side of (4.2.2) approaches zero as T increases.
This indicates that p∗ will be preferred to the default even if it is very close to p0,
as long as the data set is large enough to support the choice.

1In the majority of practical communication systems, even less knowledge of the data set is
assumed. The exact size M of the alphabet is also considered unknown, and a superset of Σ of
size M′ > M is used as alphabet instead. This results in a code length of log2 M′ per symbol.
Examples of this include the representation of arbitrary data as 8-bit ASCII characters or 32-bit
integers.
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If the model p∗ is accepted, the data symbols are modelled as independent
and identically distributed according to p∗. This amounts to a zeroth-order
Markov model. First-order Markovian dependencies are captured by first parti-
tioning the data set according to first-order context. That is, all symbols which
follow symbol s1 are collected together and counted; the same for all symbols
following s2, and so forth. This results in M sets of symbol counts, which add
up2 to the original zeroth-order counts n. The SECT algorithm repeats the basic
model selection process of (4.2.1) on each of these subsets, where the zeroth-
order distribution p∗, if accepted, becomes the new default distribution to beat.
In addition to the table overhead, the context symbol associated with each subset
also has to be transmitted.

A similar process is repeated to detect higher-order Markovian dependen-
cies. The higher-order empirical distributions have to differ significantly from
the lower-order ones to justify their inclusion in the model. The model overhead
for each higher-order context includes the specification of its context string and
the table of symbol counts. The core of the SECT algorithm is an efficient recur-
sive procedure that tests as many contexts as the data set will allow, and collects
the useful ones in a PST structure.

4.3 The algorithm

The inputs to the SECT algorithm include an M-symbol alphabet Σ and a symbol
sequence sT

1 of length T, with symbols taken from Σ. Alternatively, the data set
may have multiple sequences of total length T—this only slightly complicates
the symbol counting. Also required is a default distribution η0, which will be
used to code the data in the absence of any further knowledge of the data, and
which the PST will have to improve upon to justify its inference. A sensible
choice for η0 is the uniform distribution, with η0(s) = 1/M. The last input is the
maximum expected size Tmax of the data set, which will be used as constraint

2There will actually be one less symbol in the accumulated first-order counts, as no symbol
follows the last symbol of the data set, sT . If the data set contains K symbol sequences, the
first-order counts will be K less than the zeroth-order counts. This discrepancy is negligible for
T � K.
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to encode the actual size T of the data set. Its value is not critical and may be
chosen as 109, for example.

SECT starts with an empty tree, and grows the PST in a top-down fashion.
This is because the usefulness of higher-order contexts largely depends on the
lower-order contexts, and not the other way around. The PST node structure
is represented by a set of context strings Q, which contains the useful or coding
nodes of the PST. Each context q ∈ Q has an associated set of next-symbol counts

#q = {#(qs) | s ∈ Σ} (4.3.1)

derived from the training data set, where #(qs) is the number of times that string
qs = q · s occurs in the data. These counts are used to estimate the associated
next-symbol probability distribution

ηq = {η(q, s) | s ∈ Σ}

of PST node q in a separate procedure, usually as the maximum-likelihood esti-
mate given by

ηML(q, s) =
#(qs)
#(q∗) =

#(qs)
∑s #(qs)

.

The core SECT algorithm focuses on determining Q, which starts out empty.
The main routine in SECT is CodeSubtree. This routine codes the symbols

which follow the context string q in the data set, and attempts to improve on the
code of the default distribution for context q. In the process, it recursively maps
out the useful contexts in the entire subtree rooted at q. It outputs a set of coded-
symbol counts, nq, which represents the symbols which were successfully coded
within subtree q, and a score, L(q), which is the combined model overhead and
data code length for these symbols. It also updates the PST context set Q with
any useful contexts it found. The top-level routine of SECT calls CodeSubtree

with the empty context string λ as argument, which corresponds to the root
node of the PST, thereby constructing the entire tree.

The end result of the SECT algorithm is the set Q of useful coding contexts,
and a score, L(T ), which represents the total code length of the data set, includ-
ing the model overhead of the PST. Any symbols which have not been coded
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SECT

Inputs: alphabet Σ, data sT
1 , default distribution η0, maximum length Tmax

Outputs: PST context set Q, score L(T )

1. Start with empty tree: Q = ∅

2. Code tree and update Q: [nλ, L(λ)] = CodeSubtree(λ, η0, Tmax)

3. Code any uncoded symbols: L(T ) = L(λ) + D(#λ − nλ|η0)

Figure 4.1: Pseudo-code for the top level of the SECT algorithm. The highlighted
CodeSubtree routine is described elsewhere in this chapter.

by the PST are coded by the default distribution η0 instead, which adds to the
final score. Any non-coding internal nodes can be added to the PST as described
in Section 2.3.3, and the next-symbol distribution of each coding node q can be
estimated in various ways from the corresponding next-symbol counts #q. The
top-level routine of the SECT algorithm is summarised in Figure 4.1.

4.3.1 Calculating model overheads

In the CodeSubtree routine it will be necessary to quantify the model overhead
of each potential node in the prediction suffix tree. A PST node with context
string q has to keep track of the presence or absence of its children nodes, as well
as the state of its next-symbol probability distribution ηq. Coding nodes have
to store their own next-symbol distributions, while non-coding nodes use the
distributions of their parents (or a default distribution η0 if it is the root node).
The model overhead of node q is therefore constructed as

M(∗q, ηq) = MP(∗q) + MN(ηq),

where MP(∗q) is the overhead associated with the children nodes, and MN(ηq)
is the overhead associated with the next-symbol distribution ηq.

The children nodes of node q are identified in a previous-symbol list Pq ⊂ Σ.
If node mq is a child of node q, then m ∈ Pq, while an empty list indicates that
node q is a leaf node. A typical PST has roughly the same number of internal
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and leaf nodes, especially if it has a fixed order L. This motivates the choice to
indicate the presence or absence of a previous-symbol list with a one-bit flag. A
leaf node therefore has overhead

MP(∗q) = MPE(−) = 1,

where the dash indicates the absence of children. If the previous-symbol list
exists, a straightforward encoding of the list is to indicate the presence or absence
of child node mq with a one-bit flag. With one flag for each m ∈ Σ, this full list
requires M bits of storage. It assumes that the connections in the tree are fairly
random.3 If the tree is known to be sparsely connected, the previous-symbol list
may be more compactly stored as an explicit sparse list of symbols, especially for
large M. The number of elements in the list is stored using log2 M bits (as the list
is expected to be non-empty with maximum size M), and each symbol is stored
with decreasing bit width, as specified by (4.1.3). In SECT, both list codes are
attempted, and the smallest one is kept, with an extra one-bit flag indicating the
choice. The full previous-symbol list option therefore has overhead

MP(∗q) = MPF(Pq) = 1 + 1 + M,

while the sparse list has overhead

MP(∗q) = MPS(Pq) = 1 + 1 + log2 M + LL
(

Pq
)

.

The next-symbol distribution ηq of a coding node q also has to be communi-
cated to the receiver. The calculation of the description length of an arbitrary
probability distribution is complicated by the infinite information content of
irrational-valued probabilities, as indicated by an infinite non-repeating deci-
mal expansion. One option would be to quantise the probability values to some
accuracy, thereby making the space of distributions countable. SECT codes the
sufficient statistics of the distribution instead. The sufficient statistics of a multi-
nomial distribution such as ηq is the set of symbol counts #q observed in the data
set. The advantage of this approach is that the counts are already discrete, and

3Note that the previous-symbol list itself is unnecessary if the tree is of full degree M and
each internal node therefore has exactly M children. In this case, the leaf flags are sufficient.
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also allow perfect reconstruction of ηq, once the choice of estimator is known.
A coding node q therefore has to store its next-symbol counts table #q. As

with the previous-symbol list, the presence or absence of the table is indicated by
a one-bit flag. This assumes that roughly half of the PST nodes are coding nodes.
Next, the total of the next-symbol counts, #(q∗), is stored. This is assumed to take
values in the range [1, #(p∗)], where #(p∗) is the total of the next-symbol counts
of the parent node p, and q = np for n ∈ Σ. It requires log2 #(p∗) bits of storage.
The total count is useful to coding nodes, as it constrains the next-symbol counts
and thereby reduces their description lengths.

It is also useful to non-coding nodes, as it constrains the total counts of chil-
dren nodes further down the tree. An example will illustrate this advantage.
Suppose the PST has an alphabet size M and fixed order L, and the data set
has T symbols which are evenly distributed among the ML leaf nodes of the
PST. Suppose also that all leaf nodes are coding and all internal nodes are non-
coding. The first scenario only stores the total data size T, leaving the internal
non-coding nodes blank. This requires each count total in a leaf node to be coded
with log2 T bits, as this is the only known constraint on these counts, leading to
a combined length of ML log2 T for the counts in this scenario.

The second scenario stores a network of total counts, one for each PST node.
The root node contains the total data size T, as before. The first tree level has
M nodes, and each of their total counts requires log2 T bits. The second tree
level has M2 nodes, and each of their totals requires log2(T/M) bits, as it uses
the knowledge of the total counts of their parents as constraint. This process re-
peats until the leaf nodes are reached, which require log2(T/ML−1) bits per total
count, leading to a length of M log2 T + M2 log2(T/M) + ... + ML log2(T/ML−1)
in this scenario.

The second scenario is better than the first if

M log2 T + M2 log2(T/M) + ... + ML log2(T/ML−1) < ML log2 T

(M + ... + ML) log2 T − (M2 log2 M + ... + ML log2 ML−1) < ML log2 T,
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or if

(M + M2 + ... + ML−1) log2 T < (M2 + 2M3 + .. + (L− 1)ML) log2 M
log2 T
log2 M

<
M2(1 + 2M + ... + (L− 1)ML−2)

M(1 + M + ... + ML−2)
,

where the right-hand side is approximately equal to (L− 1)M for large M and
L. Therefore, if the data size approximately satisfies (for L ≥ 2)

log2 T < (L− 1)M log2 M, or T < M(L−1)M,

it is useful to save the total counts at each node. This is always true for large
enough M (e.g. M ≥ 10) and L, and also becomes more likely if the PST has a
mixed order with relatively few internal nodes, or if the next-symbols are non-
uniformly distributed among the leaf nodes. A non-coding node therefore has
overhead

MN(ηq) = MNE(−) = 1 + log2 #(p∗),

where the dash indicates the absence of a next-symbol table, and the parent total
count #(p∗) is always available during decoding.

The next-symbol counts table #q also has to be stored for coding nodes. As
with the previous-symbol list, there are two options. The full table stores the
counts in the order in which their corresponding symbols appear in the alpha-
bet, using the construction of (4.1.2). This has the advantage that no symbol
information is required, but it can be suboptimal if the largest counts appear
near the end of the table. The bit widths of each count will show a maximal
decrease if the table is sorted in descending order first, which is the approach
of the sparse table encoding. The new symbol order has to be specified too, by
storing the list of next-symbols with non-zero counts, Nq = {s ∈ Σ | #(qs) > 0},
according to (4.1.3). The number of elements in the list is in the range [1, M], and
requires log2 M bits. The choice of full or sparse table is indicated by a one-bit
flag. The full table option therefore has overhead

MN(ηq) = MNF(#q) = 1 + 1 + log2 #(p∗) + LT(#q),
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Table 4.1: Model overhead for various node configurations.

Node configuration Model overhead

Internal, coding M(∗q, η∗q) = min
[
MPF(Pq), MPS(Pq)

]
+ min

[
MNF(#q), MNS(#q)

]
Internal, non-coding M(∗q,−) = min

[
MPF(Pq), MPS(Pq)

]
+ MNE(−)

Leaf, coding M(−, η∗q) = MPE(−) + min
[
MNF(#q), MNS(#q)

]
Leaf, non-coding M(−,−) = 0

while the sparse table has overhead

MN(ηq) = MNS(#q) = 1 + 1 + log2 M + LL(N′
q) + log2 #(p∗) + LT(#′q),

where #′q is the sorted next-symbol count table, and N′
q is the corresponding set

of next-symbols.
The previous-symbol terms MP(∗q) and next-symbol terms MN(ηq) can be

combined in four different configurations, as shown in Table 4.1. The only one
that is not found in the CodeSubtree routine is the term M(−,−). This is because
a non-coding leaf node has no modelling value and is therefore eliminated by the
SECT algorithm. Figure 4.2 shows an example of the various model overheads
described in this section.

4.3.2 The CodeSubtree routine

The CodeSubtree routine is described in more detail in Figure 4.3. The first im-
portant step in the routine is the counting of the next-symbols, which are the
symbols that follow occurrences of the context string q in the data set. This pro-
duces a table of next-symbol counts #q as in (4.3.1). There are various ways to
obtain these counts, and they have a major impact on the computational com-
plexity of the algorithm, which will be discussed in Section 4.5.
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Figure 4.2: An example of the model overheads involved in the SECT algorithm.
The various options for the next-symbol count table and previous-symbol list
of node b are shown. The width of each box containing a value indicates the
number of bits required to store that value. The box colours alternate to highlight
the various sections of each table and list.
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CodeSubtree

Inputs: root context q, default distribution η0
q, parent next-symbol total #(p∗)

Outputs: coded-symbol counts nq, score L(q)

1. Initialise nq(s) = 0 for all s ∈ Σ, and let children score L(∗q) = 0.

2. Count next-symbols to obtain table #q and optimal distribution η∗q .

3. Calculate model overhead M(−, η∗q).

4. Table useful if M(−, η∗q) + D
(

#q

∣∣∣η∗q) < D
(

#q

∣∣∣η0
q

)
.

5. If worthwhile to go deeper:

a) If table useful, child default distribution η0
mq = η∗q , else η0

mq = η0
q.

b) For each previous-symbol m in {m ∈ Σ | #(mq) > 0}, do recursion

[nmq, L(mq)] = CodeSubtree(mq, η0
mq, #(q∗))

and accumulate nq = nq + nmq and L(∗q) = L(∗q) + L(mq).

c) Useful children form previous-symbol list Pq = {m ∈ Σ | L(mq) > 0}.

6. Calculate model overheads M(∗q, η∗q) and M(∗q,−).

7. Table still useful if it codes uncoded symbols better than default; i.e. if

M(∗q, η∗q) + D
(

#q − nq

∣∣∣η∗q) < M(∗q,−) + D
(

#q − nq

∣∣∣η0
q

)
.

8. If table useful, subtree rooted at q takes care of all counts #q, so that

L(q) = L(∗q) + M(∗q, η∗q) + D
(

#q − nq

∣∣∣η∗q) and nq = #q;

otherwise, only nq symbols are coded so far, and

L(q) = L(∗q) + M(∗q,−).

9. If subtree q cannot code nq better than default, i.e. if L(q) ≥ D(nq|η0
q),

delete subtree q (remove all nodes with suffix q from Q) and reset nq(s) = 0
and L(q) = 0; otherwise, add node q to context set Q if the table is useful.

Figure 4.3: Pseudo-code for the CodeSubtree routine in the SECT algorithm. The
steps in bold are described elsewhere in this chapter.
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The first of three tests in CodeSubtree now checks whether the optimal cod-
ing (maximum-likelihood) distribution

η∗q =
#q

#(q∗) =
{

#(qs)
#(q∗)

∣∣∣∣s ∈ Σ
}

(4.3.2)

based on the next-symbol counts can improve on the default distribution η0
q

when coding the next-symbols, while also including the overhead for specify-
ing η∗q . This occurs when

M(−, η∗q) + D
(

#q

∣∣∣η∗q) < D
(

#q

∣∣∣η0
q

)
, (4.3.3)

where the model overhead M(−, η∗q) is that of a coding leaf node. If this test
succeeds, the table #q is marked as provisionally useful. This indicates that even
if the rest of the subtree fails to improve on the coding of the next-symbols, node
q will be kept as a coding leaf node. On the other hand, the children of q might
compress the next-symbols even further, in which case table #q will be dropped
and q will remain as a non-coding internal node.

The next step determines whether it is worthwhile to continue expanding the
tree. The expansion will stop if any of the following conditions are met:

• The length of context string q (the tree level or order) is greater than or
equal to an optional user-specified limit Lmax. This allows the user to con-
trol the maximum order of the inferred PST, if so desired.

• The next-symbol table #q contains a single symbol with non-zero count.
This indicates that node q is a zero entropy node which perfectly predicts the
next symbol based on the context q. It is therefore impossible to improve on
its coding of the next-symbols (which receive zero bits each), and further
expansion of the tree is pointless.

• The next-symbol table #q is not useful, and the most optimistic subtree
scenario is useless as well. This scenario has one zero-entropy child node
for every symbol with non-zero count in #q. In this scenario, the next-
symbols of q can be perfectly predicted, with zero bits allocated for each
symbol, if the context length is increased by one more symbol. The code
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length for the subtree, given by

L′(q) = M(∗q,−) + |Nq| · (1 + 1 + log #(q∗) + 1 + 2 log2 M),

only contains model overhead terms, where the current node q becomes
an internal non-coding node with overhead M(∗q,−), |Nq| is the number
of non-zero counts in #q and also the number of children nodes, and each
child node is a coding leaf node with a sparse table containing a single
symbol. In a sense, this subtree scenario is the most radical departure from
the distribution of ηq, which have already failed to beat the default distri-
bution. If the new attempt also fails to improve on the default coding, by
having L′(q) ≥ D(#q|η0

q), the tree expansion stops and the current subtree
is discarded.

If expansion of the tree is accepted, all unique symbols which precede context
string q in the data set is collected in a previous-symbol list Pq = {m ∈ Σ | #(mq) >

0}. For each symbol m in this list, the child context string mq is formed. If the
current next-symbol table was found to be useful, η∗q becomes the new default
distribution for the children nodes to beat. The CodeSubtree routine is then re-
cursively called on the child context, also passing on the appropriate default dis-
tribution and the total next-symbol counts #(q∗) of the current node. The routine
returns with a list of coded symbols nmq and an associated score L(mq), which
are accumulated for all child nodes. The end result is a list of symbols, nq, that
have been successfully coded by some offspring of q, and the combined descrip-
tion length L(∗q) for these symbols. The previous-symbol list Pq is also pruned
to contain only children nodes who managed to code some of the next-symbols
better than q did.

The second test in CodeSubtree checks whether the next-symbol table #q is
still useful to store. If all next-symbols have been successfully coded by the
children of q, the table can be safely discarded. On the other hand, any uncoded
symbols will be sent back up the tree until some node is able to code it. If η∗q
compresses the uncoded symbols #q − nq better than the default distribution
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does, it is still worthwhile to keep the next-symbol table.4 This succeeds if

M(∗q, η∗q) + D
(

#q − nq

∣∣∣η∗q) < M(∗q,−) + D
(

#q − nq

∣∣∣η0
q

)
, (4.3.4)

where the model overheads M(∗q, η∗q) and M(∗q,−) describe q as a coding and
non-coding node, respectively. These overheads make use of the pruned previ-
ous-symbol list Pq. This list could be empty, in which case q is a leaf node and
the second test becomes identical to the first test in (4.3.3).

If the table #q is still found to be useful, all uncoded counts are coded by η∗q ,
and the score for the subtree becomes

L(q) = L(∗q) + M(∗q, η∗q) + D
(

#q − nq

∣∣∣η∗q) .

This combines the scores of all children nodes with the model overhead of hav-
ing q as a coding node and the data code length of the previously uncoded
counts. If the previous-symbol list Pq is empty, q becomes a coding leaf node
and the score simplifies to

L(q) = M(−, η∗q) + D
(

#q

∣∣∣η∗q) .

All symbols in #q are also marked as coded, by setting nq = #q. On the other
hand, if the table is rejected in test (4.3.4), the subtree score only contains the chil-
dren scores and the overhead of setting up q as a non-coding node, i.e. L(q) =
L(∗q) + M(∗q,−), and the coded counts nq remain unchanged. Without chil-
dren, the node q is doomed in this case, as no symbols have been coded yet.

The final test in CodeSubtree checks whether all the effort of constructing
the PST subtree was worthwhile, by comparing the final subtree score with the
default code length of the symbols nq that have been coded by the subtree. If

L(q) < D(nq|η0
q), (4.3.5)

4Note that this is not ideal, as the optimal code for the uncoded counts is the maximum
likelihood distribution based on these counts, which generally differs from η∗q . This situation
is referred to as wild-card nodes in [20]. The table #q is not replaced by an arbitrary uncoded-
symbol count table, however, to preserve the consistency of the PST encoding. The next-symbol
table of each node is currently a subset of the table of its parent, which allows further refinement
of the constraints on the table and more efficient coding. This advantage would be lost if tables
are replaced by arbitrary smaller ones.
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the subtree improves on the default coding, and node q is added to the coding
context set Q if it is a coding node. This will be the case if test (4.3.4) found the
next-symbol table #q to be useful. If q is non-coding, nothing needs to be done.
Any coding children nodes will have been added to Q already, and the non-
coding nodes can be added to the PST afterwards, by following the procedure in
Section 2.3.3. Note that if q is a coding leaf node, test (4.3.5) is again identical to
tests (4.3.3) and (4.3.4).

If the subtree fails test (4.3.5), it is discarded. All children nodes of q that
were added to the coding context set Q are removed again in this case. These
nodes are identified by having q as a suffix of their context string. Note that it
is quite possible for a deeper context q to be added to the list of useful contexts,
only to be removed again later when the overhead of non-coding internal nodes
required to connect node q with the root node became too much. If the subtree
fails test (4.3.5), the coded-symbol counts nq and score L(q) are also reset to zero.

The CodeSubtree routine finally returns the values of nq and L(q).

4.3.3 Estimation of next-symbol probabilities

The core SECT algorithm discovers the useful coding nodes in a PST that allows
a compact description of the data set. The output of the algorithm is the context
set Q, which represents the node structure of the PST. The full specification of a
PST is {Σ,Q, η}, however, where the alphabet Σ is assumed to be known, but the
next-symbol distribution η is still unspecified. The SECT algorithm is flexible in
this regard, and allows the use of any estimator for the next-symbol distribution
function η(q, s) that is based on the next-symbol counts #q = {#(qs) | s ∈ Σ},
with total count #(q∗) = ∑s #(qs). Some popular estimators include:

Maximum likelihood: ηML(q, s) =
#(qs)
#(q∗)

Krichevsky-Trofimov: ηKT(q, s) =
#(qs) + 1

2

#(q∗) + M
2

Laplace rule: ηLR(q, s) =
#(qs) + 1

#(q∗) + M
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Dirichlet prior: ηDP(q, s) =
#(qs) + α

#(q∗) + Mα
, 0 < α ≤ 1

Learn-PSA: ηPSA(q, s) =
#(qs)
#(q∗) (1− ηminM) + ηmin, 0 < ηmin <

1
M

The maximum likelihood estimate ηML(q, s) assigns the maximum probability to
the training data, but ηML(q, z) = 0 for any symbol z which did not follow the
context string q in the training data. If the data set is small and symbol z rarely
follows context q, it is highly likely that #(qz) = 0. Any test string containing
the substring qz will be awarded zero probability by the maximum likelihood
PST if node q is the relevant coding context for qz. This is referred to as the zero
frequency problem [148, 149], and it is especially an issue in the fields of language
modelling [150, 3, 151] and text compression [152, 153].

The other estimators mentioned above all include some form of smooth-
ing, which prevents the next-symbol probabilities from becoming zero. The
Krichevsky-Trofimov estimator [154] is applied to PSTs in [20], and Laplace’s
rule of succession [155, 156] is commonly used for smoothing. Both of these
estimators are special cases of the use of Dirichlet priors [140]. In contrast, the
Learn-PSA algorithm provides a lower bound ηmin for η(q, s), which has the dis-
advantage that the resulting bias in the estimate does not diminish with training
set size. A good overview of smoothing techniques for language modelling can
be found in [151, 157].

4.3.4 Refinement of SECT

The SECT algorithm constructs a description of a PST, and a description of the
data in terms of the PST. The data description is straightforward to optimise, by
using the optimal code of (2.1.2) associated with the predictive distribution of
the PST. On the other hand, the PST description is more difficult to optimise,
as it is constructed heuristically to be a compact representation that maintains
decodability. The performance of SECT can be improved by shrinking the PST
description length as much as possible, without losing decodability. This allows
the correct model to be inferred using less training data, as implicated by (4.2.2).



CHAPTER 4. THE SECT ALGORITHM 90

The description length of the PST depends largely on the description length
of the next-symbol count tables, as these take up most of the space in the rep-
resentation. The table descriptions can be shrunk if tighter constraints on the
values of the next-symbol counts in them are discovered and exploited.

The current incarnation of SECT, as described in Section 4.3.1, stores the next-
symbol table #q of node q as the total count #(q∗) followed by the individual
counts #(qs), where s ∈ Σ. The total count of q is constrained to be less than
or equal to that of its parent node p, which allows it to be stored in log2 #(p∗)
bits. Since all nodes store their total counts, decodability of #(q∗) is guaranteed.
Each individual count in the table is constrained to be less than or equal to the
total count. Furthermore, as each successive count is decoded, the sum of the
remaining counts can be calculated, which serves as a tighter constraint on the
value of the next count. The last count is superfluous and need not be stored, as
it can be determined by subtracting the rest of the counts from the total count.
These constraints are captured in the table length formula of (4.1.2).

Additional constraints can be obtained if the parent is a coding node. Sup-
pose node q = n · p has parent p, with n ∈ Σ. The next-symbol counts of q are
constrained to be less than or equal to the corresponding next-symbol counts of
p; that is, #(nps) ≤ #(ps) for any s ∈ Σ. For example, this constraint comes into
effect if the first count in #p is less than #(q∗), which allows the first count in #q

to be stored in fewer bits. The symbols with non-zero counts in #p, indicated by
the set Np = {s ∈ Σ | #(ps) > 0}, can also replace the full alphabet Σ in calcula-
tions involving the next-symbol table #q, as #(ps) = 0 implies #(nps) = 0. The
full table option only has to code |Np| counts, while the symbol list in the sparse
table option are drawn from Np instead of Σ.

The constraint can be refined even more by subtracting any accumulated
coded-symbol counts np from the parent table #p before presenting it to the
child node q. The subtracted symbol counts represent next-symbols that were
successfully coded by sibling subtrees of q that have already been encoded by
the SECT algorithm. As a concrete example, consider a PST on the binary al-
phabet {a, b}, with a parent node p = bb having a next-symbol table #p =
{#(bba) : 120, #(bbb) : 50}. Node p has two children, r = abb and q = bbb.
Suppose node r is encoded first, and its subtree manages to code 50 a’s and 30
b’s of the next-symbols of p, resulting in accumulated coded-symbol counts of



CHAPTER 4. THE SECT ALGORITHM 91

np = {a : 50, b : 30}. Instead of using #p as upper bound for #q, a tighter bound
is given by #p − np = {a : 70, b : 20}. These uncoded-symbol counts perform the
same role as the sum of remaining symbols in the original constraints of (4.1.2).

It is important to check unique decodability when these constraints are em-
ployed. Although the SECT algorithm adds coding children nodes to Q before
their parents in CodeSubtree, a practical compression scheme will write out the
tree in a top-down left-to-right fashion. This is because the children nodes were
encoded based on constraints derived from their parents. Using this scheme,
the next-symbol table of a parent node will therefore be decoded and available
before it is required by a child node. Similarly, the coded-symbol counts associ-
ated with a subtree will be available for the calculation of uncoded-symbol count
constraints for the next child node, as long as the children nodes are decoded in
the same order as they were encoded.

The only complication is that the decision to keep the next-symbol table of
a node, and thereby mark it as coding, is made after all its children have been
encoded. If the parent table is discarded, it cannot be used as constraint for the
children tables anymore, and the children nodes would have to be re-encoded,
based on the original constraints of (4.1.2). To prevent two passes through the
subtree in this case, the subtree score L(q) is replaced by two scores. The “best”
score assumes that the parent p of the subtree root q is a coding node, while the
“safe” score assumes that it is not. Both these scores are returned to the parent
node, which incorporates the appropriate one in its own scores after the fate
of its table has been decided. Any other tests in CodeSubtree are based on the
“safe” score, which preserves decodability at the expense of code length.

An implementation of these refined constraints modifies the CodeSubtree

routine to receive the uncoded-symbol counts #p− np of the parent node as extra
argument, and to return both the “best” and “safe” subtree scores.

4.4 Conversion to Markov chain

While the prediction suffix tree has an efficient structure for inference, it is less
efficient when it comes to scoring and generating data sequences. A PST with
maximum depth L requires O(LT) computations to score or generate a sequence
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of length T, while the equivalent Markov chain has O(T) complexity. This prob-
lem can be overcome by converting the PST into its equivalent Markov chain,
also known as a probabilistic suffix automaton (PSA).

The equivalent PSA starts off by having all the coding nodes Q of the PST
as states. If Q does not contain the zero-order context λ, it is added to Q with
the default distribution η0 as next-symbol distribution. The conversion process
then adds all required glue states to the PSA, as described in Section 2.3.1. That
is, the state space Q is extended to Q′ = ∪q∈QP(q) ∪ Σ, where P(q) is the set of
all prefixes of the coding context string q. All first-order contexts Σ are explic-
itly added to Q′, as the PST may be empty or missing some of these contexts.5

The extra added states Q′ −Q are non-coding and do not have their own next-
symbol distributions. Instead, glue state q ∈ Q′ −Q uses the distribution of the
longest suffix of q in Q. The extended PSA contains at most L|Q| + M states,
and typically considerably fewer states. For example, a fixed-order PST with all
leaf nodes as coding nodes has an equivalent PSA with less than M

M−1 |Q| states
for M > 1.

Each state q inQ′ now receives a unique numerical index k(q) ∈ [1, N], where
N = |Q′| is the number of states in the PSA. The standard formulation of a
Markov chain describes it in terms of a transition probability matrix A of dimen-
sions N × N. If context q is followed by symbol s with probability η(q, s), while
making a transition to context r = τ(q, s), the transition matrix A contains the
corresponding element aij = η(q, s), with i = k(q) and j = k(r). The construc-
tion of matrix A starts by initialising it with zeroes. For each source state q ∈ Q′

and each symbol s ∈ Σ, the destination state r = τ(q, s) of the corresponding
state transition is determined by finding the longest suffix r of string qs in Q′.
Both q and r are expressed by their numerical indices k(q) and k(r), and the
corresponding element of A becomes ak(q)k(r) = η(q, s). The symbol associated
with state k(q) is the last symbol of the context string q, and the initial state of
the Markov chain has index k(λ). This completes the specification of the Markov
chain equivalent to the PST.

5This assumes that the PSA is implemented in a Moore form, where symbols are emitted by
the states. Each symbol therefore requires its own state, and the PSA cannot have less than M
states. If the PSA is implemented in a Mealy form, with symbol emissions on the state transitions,
this is unnecessary.
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4.5 Computational complexity

The two most time-consuming steps in Learn-PSA, SECT, and several other PST
inference algorithms [22, 25, 19, 20] are the calculation of the next-symbol counts
{#(qs) | s ∈ Σ} and previous-symbol candidates {m ∈ Σ | #(mq) > 0} of node
q. In the algorithms mentioned, these steps also represent the only interaction
of the algorithm with the data set. The two steps can easily be combined into
one step, by searching for the context string q in the data and simultaneously
observing the symbols which precede and follow it.

The original Learn-PSA algorithm [22] adds context strings from a data set to
a list, and scans the entire data set to count the symbols following each of these
strings. The scanning process requires O(T) time. If L is the maximum depth of
the tree (and maximum length of the context strings) and T is the data length,
the list potentially contains T − l different context strings for each 1 ≤ l ≤ L,
leading to a worst-case computational complexity of O(LT2) [22, 20].

The time complexity of Learn-PSA can be improved from quadratic to linear
in the data length T, by modifying the counting process as mentioned in [22].
Each node q in the PST receives a list of pointers to the occurrences of the string
q in the data set. To initialise the process, the root node λ receives a list of T
pointers, one for each symbol in the data set. When the next-symbols of q are
counted, only the pointer list of q needs to be scanned, instead of the whole
data set. The pointer list of q is then partitioned to create the pointer lists of the
children nodes. Both scanning and partitioning require time that is linear in the
number of pointers. There are T − l pointers in total on level l ∈ [0, L] of the
tree, and with L + 1 levels in the tree this results in a computational complexity
of O(LT). The drawback of this method is a corresponding increase in storage
requirements, as O(LT) pointers have to be stored.

The SECT algorithm uses a similar approach, but maintains a single list con-
taining T pointers for the entire tree, instead of a separate list for each node.
Each pointer in the list points to a unique symbol in the data set. Each node
q is associated with a contiguous section of this list, which represents the next-
symbols following context q in the data. The section associated with the root
node is the full list, as all symbols follow the empty context λ. The next-symbols
of node q are counted by scanning the pointers in the list section associated with
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q, and counting the symbols to which they point. In the partitioning step, the
list section of q is sorted according to the previous-symbols which precede each
occurrence of the string q in the data. This subdivides the section of q into con-
tiguous subsections based on the deeper contexts, which are then assigned to the
children nodes of q.

For an example of this process, consider the data sequence abcbabcac on
the alphabet Σ = {a, b, c}. The pointer list is initialised to {1, 2, 3, 4, 5, 6, 7, 8, 9},
where the pointers are implemented as symbol indices. The next-symbol counts
for the root node are #λ = {a : 3, b : 3, c : 3}. The pointer list is now sorted ac-
cording to the symbol preceding each symbol which is pointed to, resulting in an
updated list {2, 6, 9, 3, 5, 7, 4, 8, 1}. The first three elements in the new list point to
symbols following a, the next three elements point to symbols following b and
the next two elements point to symbols following c. The last pointer in the new
list points to the first symbol in the data sequence, which has no preceding sym-
bol and is therefore ignored. Node a is associated with the first three elements
in the list, from which #a = {b : 2, c : 1}. In the next round, the section of node
a is sorted according to the symbol two positions behind each symbol which is
pointed to, resulting in the new list {6, 9, 2, 3, 5, 7, 4, 8, 1}. Symbol 6 is the next-
symbol of context ba, symbol 9 is the next-symbol of context ca, and symbol 2 is
once again discarded, as it is not preceded by a second-order context.

While the scanning of the pointer list in SECT still requires time linear in the
number of pointers, the partitioning step is now more expensive, as it is based
on sorting. A list of T elements is sorted in O(T log T) time. On level 0 of the
tree, the entire pointer list of T elements is sorted. If the symbols are roughly
equiprobable, M lists of T/M elements are sorted on level 1 in the tree, M2 lists
of T/M2 elements on level 2, and so forth. At the other extreme, a single sym-
bol might dominate the data set, which results in roughly T log T operations
on each level of the tree. Both scenarios indicate a computational complexity
of O(LT log T) for the SECT algorithm, where L is the maximum tree depth
explored during inference. While SECT is asymptotically slower than the im-
proved Learn-PSA algorithm, it requires less storage. Excluding the tree struc-
ture itself, the algorithm only needs to store the data sequence and pointer list,
both of length T. SECT therefore represents a useful compromise between time
complexity and space complexity.



CHAPTER 4. THE SECT ALGORITHM 95

The Learn-PSA algorithm requires a user-specified bound L on the maximum
depth of the tree. The SECT algorithm is self-bounded, on the other hand, with
a maximum tree depth that is effectively a function of the data size T and un-
derlying model complexity. If the symbols are roughly equiprobable, SECT will
expand the tree up to a maximum depth of L = logM T, which results in an over-
all computational complexity of O(T(log T)2). In the worst case, the maximum
depth L = O(T) (although this would require a pathological data set), resulting
in a computational complexity of O(T2 log T).

The optimised PST inference algorithm described in [25, 20] has time and
space requirements that are both linear in the data length T. It is based on the
efficient constructs of the trie [134], the classical suffix tree [135, 136] and the mul-
tiple pattern matching machine (MPMM) [158]. Its main ideas can be adapted
to benefit the SECT algorithm as well. SECT is designed to be flexible: it can in-
corporate any of the symbol counting procedures mentioned in this section. The
specific implementation, based on a single sorted pointer list, was chosen for its
simplicity and trade-off between speed and storage.

The conversion algorithm in Section 4.4, which converts a PST to an equiv-
alent Markov chain, has a computational complexity of O(LG), where L is the
maximum depth of the PST and G ≤ MN is the number of non-zero transition
probabilities in the Markov chain. This results from the last step in the algo-
rithm, which traverses the tree to find the destination state of each allowed state
transition. There are G transitions with non-zero probability, and up to L nodes
have to be followed from the root of the PST to reach the appropriate destina-
tion state. In contrast, the original conversion routine in [22] is claimed to have
a worst-case complexity of O(LT2) in [20], which is similar to that of Learn-PSA.

4.6 Relation to Bejerano’s MDL algorithm

The non-parametric PST training algorithm described in [26, 20] and summa-
rised in Section 3.1.3 is the algorithm that bears the closest relation to SECT. Like
SECT, it is also based on the minimum description length principle, which allows
it to be self-bounded and removes the need for user-specifiable parameters.

The basic test that determines whether a specific node is an improvement



CHAPTER 4. THE SECT ALGORITHM 96

on its parent node is similar for both algorithms. The version of SECT is more
accurate, though. Let ηq be the next-symbol distribution derived from the next-
symbol counts of node q, L(q) the description length of node q, and #(q∗) the
number of occurrences of the context q in the data. As described in Section 4.2,
the SECT version considers a node q to be useful when the Kullback-Leibler
divergence between its next-symbol distribution and that of its parent p exceeds
a threshold; that is, if

D
(
ηq
∥∥ηp

)
>

L(q)
#(q∗) .

Based on the description in [20, Section 5.2], Bejerano’s algorithm tests whether

H(ηp)− H(ηq) >
L(q)

#(q∗)

instead, where H(ηq) is the entropy6 of the next-symbol distribution ηq. While
the entropy difference is similar to divergence in some regards (for example, it is
also zero when the two distributions are the same), this test will only allow nodes
with a lower entropy than their parents in the final PST. Although it caters for
a common scenario, this form of the test nevertheless restricts the type of PSTs
that can be learnt by Bejerano’s algorithm. The SECT algorithm does not have
this restriction.

From a computational perspective, SECT is an improvement. Bejerano’s al-
gorithm shares the quadratic complexity of Learn-PSA, which means that SECT
has a lower computational complexity. Furthermore, Bejerano’s algorithm first
fully expands the PST before pruning it. The SECT algorithm rolls these two
steps into one recursive tree-building phase, whereby useless subtrees are dis-
carded before new ones are explored. This requires less memory.

6In Bejerano’s algorithm, the parent node p assigns a code length #(q∗)H(ηp) to the next-
symbols of its child node q, which can be expanded to

∑
s∈Σ

#(q∗)η(p, s) log2
1

η(p, s)
.

In comparison, SECT assigns a (more correct) code length of

D
(
#q
∣∣ηp
)

= ∑
s∈Σ

#(qs) log2
1

η(p, s)
.
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On the other hand, the node description length of Bejerano’s algorithm, as
specified by (3.1.1), is potentially more efficient than the conservative heuristic
approach of SECT. The encoding of its next-symbol counts is related to the ap-
proaches in [45, 47], which have stronger theoretical underpinnings than SECT.
This could allow Bejerano’s algorithm to learn the correct PST structure from
less data.

4.7 Summary

This chapter describes the SECT algorithm in detail. In summary, the algorithm
starts with an empty context tree and recursively adds nodes that can potentially
improve on the coding of their parent nodes, while also considering the over-
head of specifying these nodes. The tree expansion stops if an optional bound
on the tree depth is reached, or the children nodes of the current node cannot
improve on its coding, even in the most optimistic case. As the recursive process
moves back up the tree, it discards subtrees that do not deliver on their promises.

The coding difference between a node and its parent is measured by the
Kullback-Leibler divergence between the next-symbol distributions of the two
nodes, while the node overhead consists of specifying its next-symbol table and
previous-symbol list. The algorithm uses sorting to count the next-symbols
faster without incurring a large memory overhead.

The computational complexity of SECT is typically O(T(log T)2), where T
is the training sequence length. The resulting PST can be efficiently converted
into an equivalent Markov chain. The conversion process has a computational
complexity of O(LG), where L is the maximum order of the model and G is the
number of links with non-zero transition probability in the Markov chain.



Chapter 5
The Hidden SECT Algorithm

The hidden smallest encoded context tree (hidden SECT) algorithm applies the SECT
algorithm for prediction suffix trees to the inference of hidden Markov models.
The key idea behind this algorithm is to replace the underlying Markov chain in
a hidden Markov model with an equivalent prediction suffix automaton. This
provides a straightforward way to infer the HMM topology from data, by focus-
ing on symbols instead of states.

5.1 Rationale (symbols versus states)

It is instructive to view an HMM from the perspective of symbols. Recall from
Section 2.2.2 that an Lth-order Markov chain ML = (Σ,Q, τ, η) models symbol
sequences sT

1 ∈ ΣT, where Σ is the alphabet of M symbols, Q is a set of N states,
τ is the state transition function and η is the next-symbol distribution. Each state
q ∈ Q is a string of up to L symbols, representing a symbol context. There is a
one-to-one correspondence between the symbol sequence sT

1 and its associated
state sequence qT

0 . To obtain the symbol sequence from the state sequence, write
down the last symbol in the context string of each state. To obtain the state
sequence from the symbol sequence, start with q0 = λ and iteratively apply the
state transition function qt = τ(qt−1, st). The distinction between symbol and
state becomes very useful when L > 1, since the dependencies between states
remain first-order by design, while the dependencies between symbols become
higher-order.
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The Markov chain is turned into an HMM by introducing an observation
space X and identifying each symbol s ∈ Σ with a probability density function
σ(s, x) on this space. The HMM models observation sequences xT

1 ∈ X T instead
of symbol sequences. If the symbol pdfs overlap, the symbol sequence cannot
be deduced from the observation sequence and effectively becomes hidden.

A symbol refers to an observation density label (output pdf index) in this
notation. In a higher-order HMM, many states are tied to the same observation
density or symbol, which makes symbols more fundamental than states, in a
sense. This is especially true for continuous HMMs, where a symbol is bound to
a specific region in observation space, while states function as symbol contexts
on a higher level.

This use of the term “symbol” can also be confusing. In a discrete HMM, the
observation space X is also an alphabet of (different) symbols, and the obser-
vation sequence is usually called the “symbol sequence” in the discrete HMM
literature. This views a discrete HMM as a more powerful MC instead of as a
two-level model. It is possible to merge the two alphabets into one Cartesian
product alphabet and redesign the HMM accordingly, but this tends to obscure
the Markovian relationships in the model. As we are more interested in higher-
order continuous HMMs, we will tolerate this potential confusion, and always
refer to symbol and observation to distinguish between the two cases.

Given a symbol sequence sT
1 , there are several ways to infer an Lth-order

Markov chain from it. The PST learning algorithms are particularly useful, as
they provide variable-order models. Most of these methods are based on the
counts of various context strings in sT

1 and the symbols which follow them. In
an HMM, the symbol sequence is hidden, however, and has to be uncovered
in some way during training to estimate the underlying Markov chain in the
HMM. Baum-Welch re-estimation uncovers sT

1 probabilistically, while Viterbi re-
estimation estimates it explicitly.

Consider a first-order HMM with parameters θ. The Baum-Welch algorithm
provides an efficient way to calculate the probability P

(
qt = i, qt+1 = j

∣∣xT
1 , θ
)
,

based on the forward and backward variables. Since states and symbols are
equivalent in a first-order HMM (ignoring the initial state λ), this can also be
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written as P
(
st = i, st+1 = j

∣∣xT
1 , θ
)
. The quantity

#′(ij) =
T−1

∑
t=1

P
(

st = i, st+1 = j
∣∣∣xT

1 , θ
)

is the expected number of occurrences of the symbol string ij in the hidden sym-
bol sequence. This “soft” count is normally used in Baum-Welch re-estimation
to estimate the transition probability aij as

âij =
#′(ij)
#′(i∗) =

#′(ij)
∑j #′(ij)

,

but it can also be used as the basis for any other MC inference algorithm. The
idea can be extended to longer context strings: e.g., the count #′(ijk) can be ob-
tained as the sum over time of the probability P

(
st = i, st+1 = j, st+2 = k

∣∣xT
1 , θ
)
.

The calculation of higher-order soft symbol counts can become complicated
if the HMM is higher-order to start with, as the Baum-Welch algorithm oper-
ates on states instead of symbols, and the mapping between states and symbols
is not so straightforward anymore. Alternatively, in order to obtain soft counts
of all symbol strings up to length L, the HMM can be extended to order L be-
fore applying the forward-backward procedure. The posterior state probability
P
(
qt = i

∣∣xT
1 , θ
)

simultaneously serves as the probability that the context string
of i occurs in sT

1 with its last symbol at time t, and summing the state probability
over time produces the soft count of its context string. This is in effect what the
FIT algorithm [39] does. This symbol counting procedure can be costly in terms
of memory and computation time, though.

These costs can be avoided by using the Viterbi algorithm instead. This
produces a single optimal state sequence qT∗

0 , which is converted into its cor-
responding symbol sequence sT∗

1 . While a single sequence does not capture all
the variability of the model, it greatly simplifies the symbol counting procedure.
In fact, any MC inference algorithm can be applied to sT∗

1 . In order to control the
size of the resulting Markov chain, it is useful to incorporate a model prior dur-
ing training. This leads to the topic of maximum a posteriori (MAP) estimation
of HMMs.
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5.2 MAP estimation of HMMs

The Expectation-Maximisation (EM) algorithm [114] is normally used to max-
imise the likelihood P(x|θ) of the parameters θ of a model, but it can maximise
the posterior density P(θ|x) or the joint density P(x, θ) as well (for an example,
see the derivation in [118]). This is because Jensen’s inequality can be used to
obtain a lower bound for any of these densities, which can then be maximised.

Let x ≡ xT
1 be compact notation for the observation sequence, while s ≡

sT
1 is the symbol sequence and q ≡ qT

0 is the state sequence. The maximum a
posteriori (MAP) estimate of the HMM parameters θ is given by

θMAP = arg max
θ

P(θ|x) = arg max
θ

P(x, θ) .

The EM algorithm maximises a lower bound for the joint density P(x, θ). If we
choose the lower bound to be

P(x, s, θ) ≤ P(x, θ) ,

we obtain a winner-take-all variant of EM [117], which is a MAP version of Viterbi
re-estimation for HMMs. Although it does not converge to a local maximum
of the posterior density and is therefore an approximation to MAP, Viterbi re-
estimation greatly simplifies the MC inference step we want to add. The bound
P(x, s, θ) is maximised using coordinate ascent. The E step optimises the bound
with respect to s, resulting in

s∗ = arg max
s

P(x, s, θ) = arg max
s

P(x, s|θ) ,

where the optimal state sequence q∗ is first found using the familiar Viterbi al-
gorithm and then converted to the corresponding optimal symbol sequence s∗.
This is possible because of the one-to-one correspondence between q and s.

The M step of the algorithm maximises the bound with respect to θ, while
setting the symbol sequence to its optimal value, to obtain

θ∗ = arg max
θ

P(x, s∗, θ) .
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The HMM parameters θ = (θx, θs) are now divided into two sets, where θx is the
parameter set of the symbol pdfs, and θs is the parameter set of the underlying
Markov chain. The set θx therefore represents the spatial structure of the HMM,
while θs represents its temporal structure. The significance of this is that θs is
estimated solely from the symbol sequence s, while the estimation of θx requires
both x and s. Furthermore, the parameter sets are conditionally independent,
given knowledge of the symbol sequence. The lower bound is factorised as

P(x, s∗, θx, θs) = P(x, s∗, θx) P(θs|x, s∗, θx)

= P(x, s∗|θx) P(θx) P(θs|s∗) .

It is possible to impose a prior P(θx) on the symbol pdfs as well, which allows
control over the model complexity in observation space. As the focus is currently
on the underlying MC, we ignore this prior by setting P(θx) = 1. The M step
now determines the optimal model θ∗ = (θ∗x , θ∗s ) as

θ∗x = arg max
θx

P(x, s∗|θx)

θ∗s = arg max
θs

P(θs|s∗) .

The parameters θx of the symbol pdfs are therefore updated to their maximum
likelihood estimates, as in standard Viterbi re-estimation. All observations in x
with the same symbol label according to s∗ are grouped together as a set of inde-
pendent samples and passed to the corresponding symbol pdf for re-estimation.
The Markov chain parameters θs undergo MAP estimation, however, which in-
corporates a model prior P(θs) to control the complexity of the MC.

This approximate MAP training algorithm for HMMs is guaranteed to con-
verge, as the winner-take-all variant of EM is guaranteed to converge [51, 120].

5.3 The algorithm

The hidden SECT algorithm replaces the underlying Lth-order Markov chain
of the HMM with an Lth-order prediction suffix automaton (PSA). The L-PSA
has identical modelling capabilities to the L-MC, but is potentially much more
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compact because of its variable-order nature. Furthermore, it can be efficiently
learnt from the symbol sequence by first casting it as a prediction suffix tree
(PST). Since the PSA also has a state machine structure, it is really a drop-in
replacement for the Markov chain.

The approximate MAP HMM training algorithm introduced in the previous
section allows MAP estimation of the Markov chain. The SECT algorithm is
useful in this regard, as it is a MAP estimation procedure for PSTs. Once the
PST is inferred from the symbol sequence, it can be converted to an equivalent
PSA state machine. This provides an efficient way to control the size of the
underlying Markov chain, and hence the order and topology of the HMM.

The code construction process of SECT insists on unique decodability, which
tends to make the practical code length of a PST θs slightly larger than the opti-
mal value of − log2 P(θs). In turn, this means that the PST prior P(θs) is under-
estimated by SECT. This mismatch in the prior cannot increase the lower bound

P(x, s, θx, θs) = P(x, s|θx, θs) P(θs)

of the EM algorithm, which preserves its properties as bound.
The hidden SECT algorithm is summarised in Figure 5.1. The algorithm

starts with an initial HMM, which is usually a standard first-order model with
a topology that matches the application domain of the HMM. The symbol pdfs
are also appropriately initialised, for instance by unsupervised clustering. The
E step of the EM variant obtains the optimal symbol sequence, using the stan-
dard Viterbi algorithm. The M step is split into two parts, which separately
handles the spatial and temporal sections of the HMM. The temporal structure
is re-estimated by inferring a PST from the symbol sequence with SECT and
converting it to an equivalent PSA, which replaces the existing Markov chain
structure in the HMM. The spatial structure is re-estimated using standard max-
imum likelihood estimation. The E and M steps are alternately repeated until the
Viterbi score settles1 or a specified maximum number of iterations are reached.

1The Viterbi score is given by
V∗ = max

s
P(x, s|θ) ,

which tracks changes in the likelihood instead of the actual objective function, P(x, s, θ). It is
simpler to calculate, however, and works well in practice.
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Hidden SECT

1. Obtain initial HMM θ0 = (θ0
x, θ0

s ) for iteration k = 1

2. Iterate until convergence (based on Viterbi score V∗):

a) (E) Obtain optimal state sequence qT∗
0 and V∗ from Viterbi(xT

1 , θk−1)

b) Convert state sequence qT∗
0 to corresponding symbol sequence sT∗

1

c) (M) Infer PST from sT∗
1 using SECT

d) Convert PST to PSA, which becomes new underlying MC, θk
s

e) (M) Obtain ML estimate θk
x of symbol pdfs, based on xT

1 and sT∗
1

f) Update HMM to θk = (θk
x, θk

s ), and increment iteration k

Figure 5.1: The hidden SECT algorithm.

5.4 Training schedules

The basic hidden SECT algorithm in Figure 5.1 expands the PST as far as the
training data will allow it on each iteration. This may result in an HMM with
a large number of states at the start of the next iteration, which complicates the
estimation of the optimal state sequence and increases the chances of getting
stuck at a poor local optimum. To aggravate the problem, the symbol pdfs do
not start at their optimal positions in observation space. Informally stated, the
symbol pdfs should settle down first before higher-order contexts can be reliably
estimated from them.

A useful remedy for complex optimisation problems of this kind is to op-
timise a simpler version of the objective function first. The complexity of the
objective function is then gradually increased to its full level as the optimisation
progresses. This steers the solution towards optima with broader basins of at-
traction, which tend to be more robust choices. This form of complexity control
is reminiscent of deterministic annealing [52], and is one of the main virtues of
the FIT algorithm [39]. It is also proposed for PST learning in [20].

The hidden SECT algorithm can also employ this trick, by limiting the depth
to which the SECT algorithm may expand the PST. The implementation of this
depth limit, Lmax, is described in Section 4.3.2. Note that the PST is not forced
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to attain a depth of Lmax—it merely serves as the maximum possible order of
the HMM. The depth limit can be gradually increased as training progresses, to
allow more complex HMMs in a controlled fashion. The procedure by which the
limit is increased is referred to as a training schedule, in analogy to the annealing
schedule or cooling-off schedule of annealing methods [52].

Three training schedules are considered for the hidden SECT algorithm:

• Unlimited: The PST can expand without limit at all times, and training
stops when the EM algorithm converges.

• Incremental: The maximum allowed depth of the PST at iteration k is
Lmax = k, and training stops when the EM algorithm converges.

• Rounds: The training process is divided into rounds, where each round is
a full run of the EM algorithm. The round stops when the EM algorithm
converges, after which the PST depth limit is increased and training con-
tinues with the next round. The depth limit for round k is Lmax = k, and
training stops after a fixed number of rounds, or when the Viterbi score at
the end of each round does not change appreciably. This is similar to the
approach of FIT [39].

5.5 Computational complexity

Consider an HMM with M symbols, N states and G ≤ MN non-zero transition
probabilities. The typical computational complexity of the SECT algorithm is
O(T(log T)2) for a data set size of T, while the Viterbi algorithm has a complex-
ity of O(GT). It would appear that the hidden SECT algorithm is much slower
than standard Viterbi re-estimation for large data sets. This is not the case, how-
ever, as the (log T)2 term in SECT’s complexity can be easily surpassed by the
corresponding G term of Viterbi, even for medium-sized HMMs. This makes
the computational complexity of hidden SECT comparable to that of Viterbi re-
estimation, as long as the HMM is large enough.

The complexity of SECT is also independent of the observation space dimen-
sion D, which has a major impact in typical HMM applications such as speech
recognition. Consider an HMM with K-component full-covariance Gaussian
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mixture models as symbol pdfs. The symbol pdf evaluations in Viterbi would
require O(MKD2T) calculations in this case, typically making it more expensive
than the main dynamic programming complexity of O(GT).

A more relevant source of computational complexity in hidden SECT is the
large sizes of higher-order HMMs. Mixed-order HMMs are more compact than
fixed-order models, but typically still have hundreds or thousands of states. This
affects the performance of the Viterbi algorithm in the E step of hidden SECT,
which requires more memory and computation time.

5.6 Summary

The hidden SECT algorithm considers an HMM to be a Markov chain coupled
with a set of unique symbol pdfs. The Markov chain describes sequences of
symbols, while the symbol pdfs map these symbols into observations. Instead
of inferring the HMM topology on the state level, hidden SECT does it in terms
of symbols, which it considers to be more basic than states. The topology of the
underlying Markov chain (and hence the topology of the HMM) is inferred from
the optimal symbol sequence provided by the Viterbi algorithm, using the SECT
algorithm. This topology inference step can be slotted into the standard Viterbi
re-estimation procedure to train the complete HMM. Hidden SECT is guaran-
teed to converge, as it is a winner-take-all MAP variant of the EM algorithm.

As hidden SECT is an iterative algorithm, it is useful to impose various train-
ing schedules on it. The order can be expanded incrementally during training in
various ways. This controls the complexity of the cost function to be optimised
and typically allows the optimisation process to reach better optima.

The computational complexity of hidden SECT is dominated in practice by
the E step of Viterbi re-estimation, which has a complexity of O(GT), where G is
the number of links in the model with non-zero transition probabilities, and T is
the size of the training set. It can be reduced by limiting the order to which the
HMM is expanded.



Chapter 6
Experiments and Results

The experiments in this study are divided into three main sets. The first set ex-
amines the inference of prediction suffix trees from synthetic data, using the
smallest encoded context tree (SECT) algorithm. The second set repeats this
framework, by inferring hidden Markov models from synthetic data, using the
hidden SECT algorithm. The final experiment compares the performance of
mixed-order and fixed-order HMMs on an automatic language recognition task.

6.1 Synthetic experiments with SECT

The experiments in this section verify the performance and properties of the
SECT algorithm on synthetic data. The estimated model can be directly com-
pared with the known true model in this case. Each experiment starts off by
creating a true prediction suffix tree from scratch. This PST is converted into an
equivalent Markov chain (PSA), which efficiently generates a (random) symbol
sequence of length T. The generated symbol sequence can optionally be cor-
rupted, by randomly relabelling some of the symbols. The SECT algorithm then
infers a PST from this training sequence. This model is assumed to be ergodic,
as it can be reliably inferred from a single sequence. SECT can also infer non-
ergodic models, but this requires multiple training sequences, which introduces
an extra level of complexity. The outcome of the experiment is a comparison of
the inferred PST with the true PST on various criteria. In order to form an idea
of the variance of the results, each experiment is repeated twenty times.
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6.1.1 PST setup

The true PST is characterised by three parameters: alphabet size M, order O, and
perplexity P. The model can have a fixed order of one, two or three, or a mixed
order with first-order and second-order contexts, indicated by O = 1.5. These
options are illustrated in Figure 6.1, for a binary alphabet.

Each PST potentially has a large number of transition probabilities as param-
eters. One way to control this complexity is to randomise the parameter values
while maintaining some properties of the model. This typically requires extra
experimental trials to offset the increased variance of the results. We focus on
simple constrained models instead. While these models might not be represen-
tative of ones used in actual applications, they allow fine-grained control over
their properties, which can then be studied in isolation.

To this end, all leaf nodes of the PST are coding nodes, with next-symbol
distributions constrained to have the same entropy, H, specified by the perplexity
P = 2H. To simplify the setup even further, each leaf distribution contains a
single large probability, pmax, while the rest of its probabilities are equal. The
relationship between pmax and P is given by

pmax log2
1

pmax
+ (1− pmax) log2

M− 1
1− pmax

= log2 P. (6.1.1)

An iterative binary search for pmax in terms of P is effective, since the relation-
ship in (6.1.1) is one-to-one and monotonic. The remaining internal nodes of
the PST are non-coding, and share a uniform default next-symbol distribution
which typically only plays a role during sequence start-up.

The only degree of freedom left in each next-symbol distribution is the iden-
tity of the most likely symbol. A simple assignment rule is chosen that ensures
that each model exhibits its intended order. For the first-order, second-order and
third-order models, the next-symbol distribution of each leaf node assigns the
maximum probability pmax to the first symbol of the node’s context string. The
mixed-order PST starts out like the first-order model, but one of its first-order
contexts is expanded to second order. The resulting second-order contexts all
have the same next-symbol distribution as their first-order parent node, except
one, which assigns the maximum probability to a different symbol.
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Figure 6.1: An example of the PST structures used in the synthetic experiments,
illustrated for a binary (M = 2) alphabet Σ = {a, b} and a perplexity of P =
1.65. The miniature bar graph next to each solid node indicates the next-symbol
distribution of that context, while the dashed nodes are non-coding. The bar
graph above each root context is the uniform default distribution. The yellow
bars and nodes are associated with symbol a, while the green ones are associated
with symbol b. The first-order, second-order and third-order PSTs are fixed-
order models, while the PST with O = 1.5 is a mixed-order model.
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Table 6.1: Example symbol sequences generated by medium-perplexity PSTs of
various orders on the binary alphabet Σ = {., 0}. The alphabet is chosen to
make the observed symbol patterns stand out more.

PST order Example symbol sequence

1 ...00....000000.....0000..0......00000.000...00...000
1.5 ...00.......00...00........000.......0......00....00.
2 .....0.0.0.0000000.0.0.0.0....0.....0.0.0.0.0...00000
3 .00.00.00.000000000..0..0..0..0.00.00..0..0..0....0..

Table 6.1 illustrates the typical symbol sequences associated with each PST
order. The first-order PST is an ergodic Markov model with large self-loops
on each state, which is associated with sequences containing long runs of each
symbol. The next symbol in the sequence is most likely the same as the symbol
directly preceding it. Similarly, the second-order PST predicts the next symbol
in the sequence as the symbol two positions in the past, which leads to runs of
symbol pairs. The third-order PST predicts the next symbol based on the symbol
three positions in the past, which leads to runs of symbol triples. The sequences
associated with the mixed-order PST are similar to those of the first-order model,
except that one of the symbols tend to have runs of length two before switching
to another symbol.

When the PST is constructed in this way, each of its parameters plays a dis-
tinct role. The alphabet size, M, is an important overall setting. The order, O,
determines the memory length of the model, as well as its topology. Together,
these two parameters dictate the model size. The perplexity, P, determines the
predictability of the symbol sequences associated with the PST, which influences
the learnability of the PST. A perplexity close to its minimum value of one is
associated with largely deterministic and highly structured symbol sequences,
while a perplexity close to its maximum value of M is associated with highly
random, largely unstructured sequences.
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6.1.2 Comparison of PSTs

The simplest comparison between the true and inferred PSTs is based on the
number of nodes in the PST, which coincides with the number of states N in its
equivalent Markov chain. A fixed-order true PST of order O has N = ∑O

i=0 Mi

states, while the mixed-order PST with O = 1.5 has N = 2M + 1 states (consider
for example the models in Figure 6.1). These counts include both transient and
persistent states. Each true PST also has G = NM non-zero transition proba-
bilities, or links. While two PSTs are not guaranteed to have the same structure
if they have the same number of nodes, the state count is nevertheless a useful
indicator which highlights many properties of the inference process.

The structure of the inferred PST can also be directly verified, as the true PST
is available. The inferred PST is considered to have the correct structure if it has
the same context set as the true PST. This is checked by recursing down both
trees and comparing the labels of the children of each node, an operation which
would be much more difficult in the PSA domain.

While its structure may be correct, the inferred PST can still differ signifi-
cantly from the true PST if their corresponding next-symbol distributions dif-
fer. The two PSTs are only equivalent if they assign the same probabilities to
the same symbol strings. A distance measure that takes this into account is the
Kullback-Leibler divergence of (2.1.3). In the case of two Markov models M1

andM2, the divergence is measured between the respective probability distribu-
tions P1(st

1) and P2(st
1) induced by the models on symbol sequences of length t.

In order to obtain an invariant quantity independent of t, we turn to the Kullback-
Leibler divergence rate

D(M1‖M2) = lim
t→∞

1
t

D
[
P1(st

1)
∥∥P2(st

1)
]

,

which is the average divergence per symbol. Since the Markov models in this ex-
periment are homogeneous and ergodic, the divergence rate is easily calculated
as the divergence between corresponding next-symbol distributions, averaged
with respect to the long run distribution of the first model [53, 159].

There are a few practical issues with this calculation. First, the context setsQ1

and Q2 of the two models should both be extended to Q′ = Q1 ∪Q2, to ensure
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that each state in the one model has a corresponding state in the other. The extra
contexts added to each model use the next-symbol distributions of their parent
nodes, which effectively makes them non-coding nodes.

Second, in order to obtain the long run distribution of the first PST, it is much
easier to convert the PST into an equivalent PSA first. The long run distribution
is then found by applying the power method [160] to the transition matrix A of
the PSA. This is an iterative procedure that finds the largest eigenvalue and the
corresponding dominant eigenvector of a square matrix. In the case of a transi-
tion matrix of an ergodic Markov model, the maximum eigenvalue is one and
the (normalised) dominant eigenvector is the long run distribution. The power
method is well suited to large sparse matrices, and forms a prominent part of
Google’s PageRank algorithm [161].

The last issue arises when the inferred PST assigns zero probability to tran-
sitions that may occur according to the true PST, which results in infinite diver-
gence values. This is a common situation when the training set is small, and
another manifestation of the zero frequency problem [149]. The standard solu-
tion is to smooth the next-symbol probabilities of the inferred PST, so that no
probability is exactly zero [23, 151, 20]. We use Laplace smoothing (see Section
4.3.3), which adds one to each next-symbol count of the inferred PST before cal-
culating the divergence.

The formula for the divergence between two PSTs is therefore given by

D(M1‖M2) = ∑
q∈Q′

π1(q) D[η1(q, s)‖η2(q, s)] ,

where Q′ is the combined state space of the two models, π1(q) is the long run
probability of state q in the first PST, η1(q, s) is the (unsmoothed) next-symbol
distribution of state q in the first PST, and η2(q, s) is the corresponding smoothed
next-symbol distribution of state q in the second PST.

6.1.3 PST base experiment

The first PST experiment verifies that the SECT algorithm is indeed learning the
correct structure of the model, and also evaluates comparison criteria to be used
in the rest of the experiments.
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Figure 6.2: The true PST used in the PST base experiment, with parameters M =
4, O = 2 and P = 2. The miniature bar graph next to each solid node is the
next-symbol distribution associated with that coding context, while the dashed
nodes are non-coding. The eight second-order contexts ending with symbols b
and c are omitted to save space.

The true PST is selected to be a second-order model with M = 4 symbols and
a perplexity of P = 2, which is shown in Figure 6.2. The model has 21 states
and 84 transition links, and the perplexity implies a maximum probability of
pmax = 0.81071. The training sequence length T is varied from 100 to 1 000 000.
The length T is incremented by a hundred until it reaches 1000, after which it is
incremented by a thousand until it reaches 10 000, and so forth. Twenty trials are
run for each setting of T.

Figure 6.3a shows the number of inferred PSTs that have the correct structure
for each setting of T, expressed as a percentage. The graph can be divided into
three regions. If the sequence length is 500 or less, the data is insufficient to infer
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Figure 6.3: Results of the PST base experiment. (a) The percentage of the twenty
PSTs inferred for each setting of T that have the correct structure. (b) The average
number of states and links in the inferred PSTs. The grey bars indicate the range
of values (from minimum to maximum) observed in the twenty trials at each
setting of T. The true model has 21 states and 84 links.

the full structure of the PST. For sequence lengths between 500 and 2000, the
SECT algorithm sometimes finds the correct structure. Once the sequence length
is 2000 or more, SECT reliably finds the correct PST structure. This structural
correctness check is therefore useful to determine the minimum training set size
for the reliable learning of a specified PST.

The structural correctness is corroborated by the number of states and links in
the inferred PST, shown in Figure 6.3b. The plots include the average, minimum
and maximum values observed over twenty trials. They show that the SECT
algorithm already finds partial PST structures at data lengths down to 200. Since
the number of links show a very similar pattern to the number of states, it is not
considered in the rest of this study. The usefulness of the state count is that
it reveals PST learning at an earlier stage than the correctness measure, and is
more widely applicable.

Recall that the SECT score is the total code length of the training data set ob-
tained during SECT encoding, which includes the model overhead of the PST.
On the other hand, the entropy of the PST only represents the data portion of the
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code length. We calculate an entropy rate or average entropy per symbol for the
PST, based on the same principles that apply to the divergence rate [53]. That is,
the entropy rate is obtained as the average entropy of each next-symbol distribu-
tion, with the average taken with respect to the long run distribution of the PST.
The true PST has an entropy rate of log2 P regardless of its long run distribution,
since all next-symbol distributions are constrained to have the same entropy.
This is the justification for choosing the next-symbol distributions in this way.
The SECT score is normalised with respect to the training sequence length, to
allow it to be compared with the entropy rate. Both quantities therefore have a
unit of bits per symbol.

Figure 6.4a shows that both the SECT score and entropy rate start at the raw
code length of log2 M when the data set is too small to infer the correct PST. As
the data size increases, the entropy rate quickly drops to the true rate of log2 P.
The difference between the SECT score and the entropy rate is the model over-
head. It is very small when no model can be found for small data sets, increases
for medium-sized data sets that support inference of the PST structure, and fi-
nally converges to zero for large data sets.

The divergence rate between the true and inferred PSTs is shown in Figure
6.4b, for various settings of T. The plot includes the average, minimum and
maximum values observed over twenty trials, similar to many of the other plots
in this chapter. Two divergence rates are shown: the one is based on smoothed
next-symbol distributions for the inferred PST, and the other uses unsmoothed
distributions. For sequence lengths below 3000, some trials produce an un-
smoothed divergence of infinity, which causes the average divergence rate to
blow up. In contrast, the smoothed divergence rate is well-defined for all se-
quence lengths, and also closely approximates the unsmoothed version. For this
reason, all divergence rates will hereinafter be smoothed.

For small data sets, the divergence rate is effectively calculated between the
true PST and a zeroth-order model with a uniform symbol distribution (the
“raw” model). The divergence rate remains at this level, until there is sufficient
data to uncover the PST structure. The graph displays a knee at this point, after
which the divergence rate converges to zero at a rate of the order 1/T. In this
regime, the model structure is correct and only the estimates of the transition
probabilities remain to be improved.
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Figure 6.4: Results of the PST base experiment. The grey bars indicate the range
of values observed at each setting of T. (a) The SECT score (solid blue line) rep-
resents the total code length (model + data), while the PST entropy rate (dashed
red line) represents the average data code length. Both quantities are normalised
by the sequence length to have a unit of bits per symbol. (b) The divergence rate
between the true and inferred PSTs, averaged over twenty trials. The solid blue
line calculates the divergence based on unsmoothed next-symbol distributions,
while the dashed red line results from smoothing.

Based on this preliminary experiment, the rest of the experiments will use
the structural correctness check, the state count and the divergence rate as the
main criteria for comparing PSTs.

6.1.4 PST perplexity experiment

The next experiment examines the effect of perplexity on the learning of PSTs.
The true PST is still a second-order model with M = 4 symbols, but its perplexity
P is now varied between its minimum value of one and its maximum value of
M = 4. Each perplexity value P is converted into a corresponding maximum
next-symbol probability pmax, which is used in the construction of the PST. The
relationship between these two quantities is shown in Figure 6.5.

The percentage of inferred PSTs with the correct structure is shown in Figure
6.6, for various values of the perplexity P and different settings of T. The cor-
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Figure 6.5: The maximum next-symbol probability, pmax, as a function of per-
plexity, P, for an alphabet size of M = 4.
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Figure 6.6: The left-hand graphs show the percentage of inferred PSTs with the
correct structure, for various values of the perplexity P. The right-hand graphs
show the corresponding average number of states in each inferred PST, where
the grey bars indicate the observed range of values.
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Figure 6.7: The divergence rate between the true and inferred PSTs for various
values of the perplexity P, averaged over twenty trials. The grey bars indicate
the range of values observed in each set of trials.

responding number of states in the inferred PST is shown alongside, providing
a similar picture of how learning progresses with increasing training set size.
As expected, models with higher perplexity require more data to learn, because
they are less distinguishable from the default raw model, which is maximally
random. A more surprising result is that models with very low perplexities also
require more data to learn. This is because the sequences associated with these
models typically contain long runs of the dominant contexts of the model, and a
short sequence may not contain all these contexts if the runs are long enough.

Figure 6.7 illustrates the effect of perplexity on the divergence rate between
the true and inferred PSTs. The plot contrasts three models, with a high (P =
3.75), medium (P = 2), and low (P = 1.25) perplexity, respectively. The high-
perplexity model starts off with the lowest divergence rate, as it is the closest to
the default raw model. It requires more data than the other models to uncover
its structure, however. While it has a tenth of the divergence of the medium-
perplexity model on small data sets, it requires ten times as much data to learn its
structure. The low-perplexity model starts with the highest divergence rate, but
also requires more data than the medium-perplexity model. The SECT algorithm
successfully learns the structure of all three models on sequences with more than
30 000 symbols, and their divergence rates become very similar.
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The following experiments will focus on the model order and alphabet size,
and it is desired to fix the perplexity to a sensible value. Models with medium
perplexity require less data to learn, and the perplexity will henceforth be fixed
at P = M/2. This has the added advantage that the divergence rate between the
true PST and the default raw model is fixed to one bit per symbol, which makes
it easier to compare models with different alphabet sizes. One disadvantage
of this choice of P is that models with a binary alphabet is excluded from the
experiments, as these models would end up with the degenerate perplexity of
one. Choosing a different perplexity for models with M = 2 does not help, as
this prevents them from being directly comparable to the other models.

6.1.5 PST alphabet size experiment

With the perplexity fixed at half the alphabet size, both the order and alphabet
size are varied in the next experiment, to determine their effect on PST inference.

Figure 6.8 shows the percentage of inferred PSTs with the correct structure,
and the number of states in the inferred PSTs, for various orders and alphabet
sizes. Because they provide very similar information, these measures are here-
inafter combined on the same plot, by scaling the structural correctness percent-
age so that 100% coincides with the correct number of states. This makes it easier
to see when the SECT algorithm has produced the correct model size.

Both the order and alphabet size greatly influence the amount of training data
required to learn the PST structure successfully. The data requirements increase
with increasing order and alphabet size. This suggests that the required training
set size really depends on the number of parameters in the PST, which is the
number of transition probabilities, G.

The mixed-order PST inference proceeds in phases, whereby the first-order
structure is discovered before the second-order structure, as the training set size
increases. The mixed-order model seems to require an excessive amount of train-
ing data—even more than the full second-order model. This is an artifact of the
way in which the correct structure is defined. The mixed-order PST in this ex-
periment effectively only has a single second-order context, chosen to differ sig-
nificantly from its first-order parent context. This context will be referred to as
the major second-order context, an example of which is context aa in the mixed-
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Figure 6.8: Results of the PST alphabet size experiment. The black line in each
graph is the number of states in each inferred PST for various values of the true
order O and alphabet size M, averaged over twenty trials. The grey bars indicate
the minimum and maximum number observed in each set of trials. The height
of the blue region represents the percentage of inferred PSTs with the correct
structure, scaled so that 100% coincides with the correct number of states, which
is indicated on the axis.
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Figure 6.9: A closer look at mixed-order PST inference. (a) The most compact
PST that is equivalent to the mixed-order PST in Figure 6.1. (b) The result of the
inference of a PST with O = 1.5, M = 16 and P = 8. The black line is the average
number of states in the PSTs inferred in twenty trials, and the height of the blue
region represents the percentage of these PSTs that have the correct structure.

order PST in Figure 6.1. Its second-order siblings share the same next-symbol
distribution, which happens to be the original distribution of the parent node.
These minor second-order contexts can be collapsed back into the parent node,
resulting in a more compact but equivalent PST, of which an example can be
seen in Figure 6.9a.

The SECT algorithm cannot learn such compact PSTs, though, because the
next-symbol distribution assigned to a node is forced to coincide with its distri-
bution observed in the training data. The parent of the second-order contexts
will have an actual next-symbol distribution that is a mixture of those of its chil-
dren, and therefore differs from all of them. Given enough data, SECT will dis-
tinguish all these second-order contexts from their parent, and add them to the
PST structure instead.

The major second-order context will typically be discovered in much smaller
data sets than its siblings. This is apparent in Figure 6.9b, which shows the
number of states and structural correctness of an inferred mixed-order PST with
M = 16 symbols. The full mixed-order structure of 33 states is only reliably
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Figure 6.10: The divergence rate between the true and inferred PSTs for various
values of the true order O and alphabet size M, averaged over twenty trials. The
grey bars indicate the range of values observed in each set of trials.

inferred from sequences containing 500 000 symbols or more, while the major
second-order context is already discovered in sequences of 20 000 symbols, lead-
ing to a model with 18 states. While this compact model is not considered to
have the correct structure, it nevertheless represents the essence of the mixed-
order model, and has data set requirements between those of the first-order and
second-order models.

The divergence rate between the true and inferred PSTs is illustrated in Fig-
ure 6.10, for various orders and alphabet sizes. All divergence rates start at one
bit per symbol, due to the choice of perplexity. The graphs confirm that the data
requirements for learning increase with order and alphabet size. The mixed-
order graphs have a knee in the same position as their corresponding first-order
graphs, and display an additional knee (sometimes merged with the first) that
represents learning of the second-order structure.
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Figure 6.11: The divergence rate between the true and inferred PSTs, for various
values of the true order O, averaged over twenty trials. The difference from
Figure 6.10 is that the divergence rate is plotted against a normalised sequence
length T/G, which is the number of symbols per transition probability (or model
parameter). Each plot is the superposition of the divergence rates for several
values of the alphabet size M, which ranges from four to 32 in steps of two.

It is instructive to plot the divergence rate against a normalised sequence
length, which is obtained by dividing T by the number of model parameters or
transition probabilities, G. Figure 6.11 shows this for various orders, and for
alphabet sizes ranging from four to 32 in steps of two. The fixed-order graphs
are remarkably similar, and indicate that the fixed-order structure is success-
fully inferred once the normalised sequence length exceeds 10-20 symbols per
parameter.1 The mixed-order graphs do not line up as well, because the data
requirements of the first-order and second-order contexts differ in their depen-

1This is coincidentally a general rule of thumb in the pattern recognition community, used
to estimate an adequate data set size for the training of a model of given size.
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dence on M. This makes the parameter count less useful as a tool to predict an
adequate training set size. A more accurate measure has to take the different
long run probabilities of each context into account.

Figure 6.12 shows the time taken to infer a PST with SECT, for various or-
ders, alphabet sizes and training sequence lengths, as measured on a 2 GHz Intel
Core Duo processor. The measurements do not include the time taken to convert
the PST to a Markov chain, which is considerably less than the PST inference
time. The clock resolution is 10 ms, which causes training times for sequence
lengths T < 104 to be unreliable. The relationship between the observed train-
ing times and the sequence length T fits the expected computational complexity
of O(T(log T)2). Furthermore, the training time is effectively independent of the
true order and alphabet size, because of the self-bounded nature of SECT. As
the alphabet size increases, there are more possible symbol contexts of a given
length, but also fewer observations of each context in a data set of fixed size T. In
this case, the SECT algorithm will stop its exploration of the data set at shorter
context lengths, which counters the increase in computational complexity be-
cause of the extra PST nodes. On the other hand, smaller alphabets allow SECT
to explore longer contexts for the same data set size.

6.1.6 Corrupted symbol experiment

The last SECT experiment trains PSTs on noisy or corrupted symbol sequences,
which serves as a precursor to the hidden SECT experiments. This is similar to
a study by Angluin and Csűrös [162].

The true PST is selected to have an alphabet size of M = 4 symbols and
a perplexity of P = 2. After the true PST generates a symbol sequence in an
experimental trial, the sequence is corrupted. Each symbol in the sequence is
independently corrupted with a probability of 1− A, where A is a new exper-
imental parameter known as the symbol accuracy. A symbol is corrupted by re-
placing it by a different symbol selected with a uniform probability. The cor-
ruption hides the random symbol sequence behind another stochastic process,
and the corrupted sequence is therefore properly modelled by a hidden Markov
model. Nevertheless, it is instructive to model it by a PST, which is the purpose
of this experiment.
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Figure 6.12: The time taken by SECT to infer a PST for various values of the true
order O and alphabet size M, averaged over twenty trials. The grey bars indicate
the range of values observed in each set of trials. The measurements were done
on a 2 GHz Intel Core Duo processor.

Figure 6.13a shows the structural correctness and number of states of PSTs
inferred from noisy sequences of various lengths, where the underlying true
PST is first-order and the symbol accuracy is A = 80%. The most important
observation is that the number of states do not stabilise on the correct value of
five as the training sequence length increases, but shows a step-wise increase
with T. This is a sign that the PST is attempting to model the noise process as
well as the underlying sequence statistics.

This behaviour can be explained by means of an example. Consider a first-
order true PST with a binary alphabet Σ = {a, b} and relatively low perplexity.
This model might generate sequences of the form

aaaaaabbbbbaaaaaaabbabbbbbbbaaabbb . . .
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After corruption with a symbol accuracy of 80%, the sequence becomes

aabaaabbbababaabaabbabbabbbaaaabab . . . ,

where the corrupted symbols are underlined.
The corruption disturbs the sequence statistics. For example, the context b is

usually followed by another b in the uncorrupted sequence. In the corrupted se-
quence, however, the context ab is frequently associated with a single corrupted
a in a run of a’s, which increases the probability that it is followed by an a. Since
the next-symbol distributions of b and ab differ, the PST will be expanded to sec-
ond order, given enough data. This process repeats itself for higher orders. For
instance, a context of bab is more likely to be associated with a single erroneous
a in a run of b’s, which increases the probability that the next symbol is a b. The
contexts bab and ab now have different next-symbol distributions, which allows
the PST to be expanded up to third order, and so forth. This explains the step-
wise increase in the number of PST states in Figure 6.13a, as the SECT algorithm
finds contexts of increasing length with slightly different statistics.

Figure 6.13b shows the effect of a noisy symbol sequence on the divergence
rate between the true and inferred PSTs. On uncorrupted sequences, the di-
vergence rate decays to zero as the sequence length increases, which indicates
that the inferred PST converges to the true PST. On corrupted sequences, how-
ever, the divergence rate initially decreases and then remains stuck at a non-zero
level. The inferred PST cannot converge any further, as it contains elements of
the noise model which are not found in the true PST.

Figure 6.14 shows the structural correctness and number of states of PSTs
inferred from corrupted symbol sequences, for various sequence lengths, sym-
bol accuracies and true model orders. The effect of symbol corruption is two-
fold. The structure of the inferred PST grows past its true size as the training
data increases, and learning the PST requires progressively more data as the
symbol accuracy decreases. To put the symbol accuracy values into perspec-
tive, consider that the worst symbol accuracy for an alphabet size of M = 4 is
A = 1/M = 25%, which represents total obliteration of the underlying sequence
statistics. The SECT algorithm can still learn the PST structure at the relatively
high noise levels of A = 40%, although much more data is required to combat
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Figure 6.13: Results of the PST corrupted symbol experiment. For both these
plots, the true PST that generated the uncorrupted sequences is first-order, with
M = 4 and P = 2. As before, the grey bars indicate the range of values observed
in each set of trials. (a) The black line is the number of states in the PSTs inferred
from sequences with a symbol accuracy of A = 80%, averaged over twenty
trials. The height of the blue region represents the percentage of these PSTs that
have the correct structure. (b) The divergence rate between the true and inferred
PSTs for various values of the symbol accuracy A, averaged over twenty trials.

the noise. The mixed-order learning results should again be interpreted in light
of the discussion in the previous section.

Angluin and Csűrös study the learning of PSTs from noisy symbol sequences
in [162]. They modify the Learn-PSA algorithm [22] to include an explicit noise
model, which changes the way in which the next-symbol probabilities are es-
timated from the noisy data. They suggest that a PST inferred from corrupted
data will have comparable performance to a PST inferred from uncorrupted data
if the corrupted training sequence is longer than the uncorrupted sequence by a
factor of (1 + θ)2(L+2), where

θ =
ν

1− M
M−1 ν

,

and ν = 1 − A is the symbol error rate, M is the alphabet size and L is the
maximum depth of the PST during Learn-PSA training.
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Figure 6.14: Results of the PST corrupted symbol experiment. The true PST has
M = 4 symbols and a perplexity of P = 2. The black line in each graph is
the number of states in each inferred PST for various values of the true order O
and symbol accuracy A, averaged over twenty trials. The grey bars indicate the
minimum and maximum number observed in each set of trials. The height of the
blue region represents the percentage of inferred PSTs with the correct structure,
scaled so that 100% coincides with the correct number of states.
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Figure 6.15: The solid lines show the minimum sequence lengths measured for
various symbol accuracies and fixed model orders, while the dashed lines are
the lengths predicted by the Angluin-Csűrös factor.

We now check if this factor applies to models inferred by the SECT algorithm.
In order to identify PSTs with comparable performance, we focus on the mini-
mum sequence length, defined as the smallest length for which more than 75%
of inferred PSTs have the correct structure. The minimum lengths are clearly
visible on the plots in Figure 6.14 as the points where the state counts and struc-
tural correctness graphs first rise to their correct values. The effect of symbol
corruption is to shift these points to larger sequence lengths, and the idea is to
compare the relative size of the shift with the factor predicted by Angluin et
al. The tree depth bound L is taken to be the order O of both the true and cor-
rectly inferred PST (although SECT is technically a self-bounded algorithm). The
Angluin-Csűrös factor is applied to the minimum uncorrupted sequence length
to obtain predictions of the minimum lengths of the corrupted sequences.

The results are shown in Figure 6.15. The minimum sequence length in-
creases significantly slower with decreasing symbol accuracy than predicted by
the Angluin-Csűrös factor, except for first-order models with low symbol accura-
cies. It should be kept in mind, however, that the Angluin-Csűrös PST inference
method includes an explicit error model, which is absent from the SECT method
used in this study. This error model can also be added to SECT, which should
ensure a fairer comparison.
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6.2 Synthetic experiments with hidden SECT

The hidden SECT algorithm is first evaluated on synthetic data, which allows
a better understanding of its properties. Each experiment in this section starts
off by creating a true HMM with a specified set of properties. The HMM can
be discrete or continuous. The true HMM generates an observation sequence
xT

1 of length T in two phases. The underlying Markov chain of the true HMM
first generates a symbol sequence sT

1 , which is then converted to observations by
sampling from the HMM symbol pdfs. An initial HMM is created and trained on
the observation sequence, using the hidden SECT algorithm. Finally, the trained
HMM is compared with the true model on various criteria. Each experiment is
repeated twenty times, to incorporate variance information in the results.

6.2.1 HMM setup

The true HMM is characterised by four parameters: alphabet size M, order O,
perplexity P, and symbol accuracy A. The first three parameters specify a PST
as defined in the previous section. This PST is converted into an equivalent
Markov chain, which forms the underlying MC of the true HMM. This allows
direct comparison of the hidden SECT results with the results in the previous
section. The symbol accuracy, A, sums up the effect of the HMM symbol pdfs in
a single number. It is the probability that a symbol pdf assigns the highest value
of all the symbol pdfs to an observation generated by itself, averaged over all
the symbol pdfs. A small symbol accuracy implies that the symbol pdfs have a
large overlap, which makes the HMM more “hidden”.

If the HMM is discrete, the M symbol pdfs are discrete distributions on
X = Σ. The observation symbol alphabet is therefore the same as the under-
lying symbol alphabet. Each symbol distribution assigns a probability of A to a
unique symbol in Σ, and a probability of (1− A)/(M− 1) to the rest. The sym-
bol distributions only differ in their choice of the symbol with the maximum
probability. This discrete HMM therefore exactly models the corrupted symbol
sequences studied in Section 6.1.6.

For a continuous HMM, the observation space is X = R and the M symbol
pdfs are one-dimensional Gaussian densities, with unique means at the integers
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[0, M − 1] and a common variance. With this setup, the decision boundary be-
tween adjacent symbol pdfs is always halfway between their means, regardless
of the value of the variance. The variance is chosen so that each symbol pdf, on
average, has a probability weight of A within the decision boundaries with its
neighbours.2. Its calculation is complicated by the fact that the “outside” sym-
bols 0 and (M− 1) behave differently from the “inside” ones, and it also depends
on the long run symbol distribution of the underlying Markov chain, which may
be non-uniform.

The continuous symbol pdfs have different overlaps with each other, and a
specific symbol is more easily confused with adjacent symbols than those fur-
ther away. In order to reduce any interactions this might have with the Markov
dependencies of the symbols (which is a relevant concern in the mixed-order
case), the mapping between symbols and means is randomised in each experi-
mental trial involving continuous HMMs. An example of the symbol pdfs in an
alphabet of size M = 4 is shown in Figure 6.16, for various values of the symbol
accuracy, A. Note that A = 100% results in a degenerate Gaussian pdf with zero
variance, which is avoided by introducing a very small symbol error.

While R is a particularly simple continuous observation space, there are
other attractive choices for X in controlled synthetic experiments like the ones in
this section. For example, the symbol pdf means can be placed at the vertices of
a regular (M− 1)-simplex. Coupled with a common variance, this highly sym-
metrical setup ensures that each symbol pdf pair has identical overlap. This is
the closest analog to the discrete case, but requires a observation space dimen-
sion of D = M − 1, which complicates the parameter count and increases data
requirements for proper estimation of the symbol pdfs. Another option for X
is the unit circle3 in the complex plane, ejx. This gets rid of special “outside”
symbols, but complicates the form of the symbol density, which typically has to
change from Gaussian to von Mises to account for the wrap-around nature of
the observation space.

2Calculating the Gaussian variance based on A is the inverse process of determining the
probability of error for a M-ary pulse amplitude modulation (PAM) scheme transmitting over
an additive white Gaussian noise channel [163, p. 408] In this communication system analog, the
probability of error becomes (1− A), the PAM symbol amplitudes have unity spacing, and the
desired variance is the noise power N0/2.

3This setup is analogous to M-ary phase-shift keying (PSK).
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Figure 6.16: The symbol pdfs of the continuous HMMs in this section, for an
alphabet size of M = 4 and various values of the symbol accuracy, A. The
left-hand plot shows the individual densities, while the right-hand plot shows
their combined mixture density, to emphasise the severe symbol overlap at low
symbol accuracies. The pdf heights are not drawn to scale.

The hidden SECT training algorithm is an iterative scheme, which requires
an initial HMM. The underlying Markov chain of this HMM is constructed as
a first-order model (O = 1) with the same number of symbols M as the true
HMM, and a perplexity of P = M. Since the perplexity is maximal, all transition
probabilities in the model are equal to 1/M, and the HMM is actually a zeroth-
order model. The symbol pdfs of the discrete HMM are difficult to initialise
due to their flexibility, and are therefore initialised (somewhat optimistically)
to their true values. The continuous symbol pdfs are initialised by performing
unsupervised clustering on the observation sequence. The M symbol pdf means
are obtained by a binary split algorithm [164] followed by k-means clustering
[121, 65], a procedure similar to Linde-Buzo-Gray vector codebook design [122].
The symbol pdf variances are initialised to one. The initial continuous HMM is
therefore a Gaussian mixture model with M one-dimensional components and
equal mixture weights.
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6.2.2 Comparison of HMMs

The simplest comparison between the true and inferred HMMs is based on the
number of states in each model. Unfortunately, the structural correctness check
of Section 6.1.2 is not available for HMMs, because the symbol pdfs of the in-
ferred HMM may not correspond to those of the true HMM, causing their alpha-
bets to differ. The inferred HMM structure is verified by observing the number
of states and doing manual checks of the structure for some parameter settings.

It is also very difficult to compute the exact Kullback-Leibler divergence rate
between two HMMs. The alternatives include fast upper bounds [165, 166, 167]
and Monte-Carlo numerical approximations [166]. The latter casts the diver-
gence as the average log-likelihood ratio of two distributions, P1 and P2, given
by

D[P1(x)‖P2(x)] = EP1

[
log2

P1(x)
P2(x)

]
.

The divergence can therefore be approximated by generating a large but finite
number of sequences from distribution P1, calculating the log-likelihood ratio
for each sequence, and averaging these values over all the sequences. Since the
HMMs in this section are ergodic, a single long sequence will suffice.

We therefore approximate the divergence rate between the true HMM θ1 and
inferred HMM θ2 by using the true model to generate a test observation sequence
xTKL

1 with a length of TKL = 100 000, and calculating

D(θ1‖θ2) ≈
1

TKL

[
log2 P

(
xTKL

1

∣∣∣θ1

)
− log2 P

(
xTKL

1

∣∣∣θ2

)]
.

This measure is referred to as the average log-likelihood ratio per symbol. It is im-
portant to use the forward algorithm to calculate the HMM likelihoods instead
of approximating them by Viterbi scores, otherwise the divergence rate may be-
come negative. It is also important to calculate the divergence rate on an inde-
pendently generated sequence instead of the original training sequence, other-
wise the estimate may be overly optimistic.

Another useful criterion examines the estimation of the symbol sequence un-
derlying an observation sequence xT

1 , based on an HMM that models xT
1 . The

estimated symbol sequence ŝT
1 will typically differ from the true underlying sym-
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bol sequence sT
1 , due to the obscuring effect of the symbol pdfs during generation

of xT
1 . We are interested in the accuracy of ŝT

1 , which is obtained by comparing it
to the true sequence and expressing the number of correct symbols as a percent-
age of T.

If the provided HMM is not the true HMM that generated xT
1 , but a model in-

ferred from training data, it will have a different set of symbol pdfs. This makes
it difficult to compare the estimated and true symbol sequences directly. One
recourse is to map the inferred symbols to the closest true symbols. For discrete
symbol pdfs, the symbol with the highest probability is chosen as the associated
true symbol. In the continuous case, the true and inferred symbol pdf sets are
aligned with dynamic programming [110]. This assigns a single true pdf to each
inferred pdf, while ensuring that the resultant mapping between the pdf means
are monotonic. The dynamic programming procedure operates on a matrix of
distances between each true and inferred pdf, for which a suitable distance mea-
sure is the Kullback-Leibler divergence, which has a simple analytical expression
for one-dimensional Gaussian pdfs.

Given a set of symbol pdfs, {σ(s, x)|s ∈ Σ} , a simplistic symbol estimation
procedure assigns to each observation xt the symbol ŝt whose pdf has the highest
value at xt; that is, ŝt = arg maxs σ(s, xt). The symbols estimated in this way have
a maximum accuracy of A, as dictated by the true symbol pdf overlap.

More accurate estimation is possible by exploiting the Markov dependencies
of the underlying symbols. We use the Viterbi algorithm to obtain the optimal
symbol sequence ŝT

1 , based on the training observation sequence xT
1 and the in-

ferred HMM. If the inferred HMM successfully captures the symbol statistics,
we expect the estimated symbol accuracy to equal or exceed A. This problem
can be cast in communication system terms, by viewing the symbol pdfs of the
true generating HMM as noise models, and xT

1 as a noisy version of sT
1 . The

Viterbi algorithm can then be seen to correct4 some of the errors introduced by
the generation of xT

1 , and the resulting measure is therefore called the corrected
symbol accuracy.

4The Viterbi algorithm was originally introduced in the domain of error correction [48].
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6.2.3 Hidden SECT and discrete HMMs

Preliminary experiments revealed that the current incarnation of the hidden
SECT procedure is not suitable for discrete HMMs, because of the way in which
it combines Viterbi re-estimation with a zeroth-order initial model. The first E
step of Viterbi re-estimation will select the observation sequence itself as the op-
timal symbol sequence, because the transition probabilities have no influence
yet. During the following M step, each symbol pdf is updated to a degenerate
distribution with all its probability mass assigned to a single symbol. This effec-
tively disables the symbol pdfs, which lose their “soft” nature. Further iterations
of Viterbi re-estimation have no effect, and the trained HMM is identical to a PST
inferred by the SECT algorithm from a corrupted symbol sequence, as described
in Section 6.1.6.

This difficulty with training discrete HMMs stems from the flexibility of the
model. The discrete symbol pdfs in this study are generic discrete distributions
without any additional priors or smoothing, and are prone to overfitting during
training. Furthermore, there is some redundancy between the observation sym-
bol distributions and next-symbol distributions, so that several different HMM
topologies may result in equivalent models. This corroborates the findings of
studies that indicate that generic discrete HMM inference is hard [130, 131]. In
contrast, continuous symbol pdfs such as Gaussian distributions have compara-
tively few degrees of freedom, so that continuous HMMs suffer less from these
issues.

There are several ways to prevent the degenerate behaviour of the discrete
symbol pdfs. The simplest way changes the zeroth-order initial HMM to a
proper first-order model (for example, by adding large self-loop probabilities),
but this presupposes extra knowledge of the underlying true HMM. Viterbi re-
estimation can be replaced by Baum-Welch re-estimation, which allows data
points to update more than one symbol pdf in the M step, but this complicates
the estimation of next-symbol counts. Finally, the discrete symbol pdfs can be
chosen from a different family of densities or smoothed by any of the methods
described in Section 4.3.3, which prevents them from becoming degenerate.

These avenues are not explored in this study, as the inference of continuous
HMMs is considered to be more fruitful. Continuous HMMs are widely used
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in speech recognition and other fields, but there are relatively few structural
inference algorithms available for them. Discrete HMM inference, on the other
hand, has been researched more extensively in the computer science literature.
The rest of the experiments in this chapter will therefore focus on continuous
HMMs.

6.2.4 HMM training schedule experiment

The first HMM experiment chooses an appropriate training schedule to use in
the rest of the experiments. The true HMM is chosen to be second-order, with an
alphabet of M = 4 symbols (as seen in Figure 6.16), and perplexity P = 2. The
training sequences have lengths T that range from 100 to 500 000. The upper
limit of T had to be reduced to accommodate the large memory requirements
of the path matrix formed during Viterbi re-estimation. The symbol accuracies
range from 40% to 99.9999%, where the upper limit ensures virtually error-free
symbol sequences while avoiding degenerate symbol pdfs with zero variance.
All three training schedules introduced in Section 5.4 are investigated.

Figure 6.17 shows the number of states of the inferred HMMs for a sym-
bol accuracy of 60%. Similar to the results in Section 6.1.6, the HMM achieves
the correct number of 21 states on medium-sized training sets (for values of T
around 30 000 in this case). The HMM structure was manually verified to be
correct at these settings. For larger data sets, the inferred HMM continues to ex-
pand, as it incorporates some of the statistics of the symbol corruption process.
This is caused by discrepancies between the Viterbi-estimated and true symbol
sequences.

The training schedules show similar overall behaviour, but the unlimited
schedule produces larger HMMs on large data sets. The complexity control ap-
plied by the other schedules therefore has merit. The average log-likelihood
ratio measure shows very little difference between the training schedules, and is
therefore not included here. The rounds schedule does show a higher variance
in this measure, however, and is computationally the most expensive schedule.
For these reasons, the incremental schedule is used in the rest of the experiments.
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Figure 6.17: A comparison of the HMM training schedules, based on the number
of states in the inferred HMM for various settings of the sequence length T. The
true HMM is second-order and continuous, with M = 4, P = 2 and A = 60%.

6.2.5 HMM symbol overlap experiment

The next experiment examines the effect of the true underlying order and the
overlap between symbol pdfs on the inference of HMM structure. The true
HMM again has an alphabet of M = 4 symbols, and a perplexity of P = 2. The
sequence length, T, varies between 100 and 500 000, and the symbol accuracy, A,
varies between 40% to 99.9999%.

The number of states of the inferred HMMs are shown in Figure 6.18, for var-
ious values of the sequence length, symbol accuracy and true order. The hidden
SECT algorithm requires more data as the order increases and the symbol accu-
racy decreases, as expected. It is instructive to compare Figure 6.18 with Figure
6.14. The HMMs in this experiment require less data to uncover its structure,
compared with a PST with the same experimental settings. The expansion of the
model structure on large data sets is also less pronounced in the HMMs. This is
due to the presence of an error model in the HMM (in the form of the symbol
pdfs), and the non-uniform symbol pdf overlap in the HMM, which reduces the
impact of symbol corruption on the sequence statistics.

Figure 6.19 illustrates the average log-likelihood ratio per symbol between
the true and inferred HMMs. It is similar to the divergence rate for PSTs trained
on corrupted symbol sequences, as seen in Figure 6.13b, since it only converges
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Figure 6.18: The results of the HMM symbol overlap experiment. The black lines
are the number of states in the trained HMMs for various values of the sequence
length T, true order O and symbol accuracy A, averaged over twenty trials. The
grey bars indicate the observed range of state counts at each setting. The true
HMM has M = 4 symbols and a perplexity of P = 2. It is instructive to compare
this figure with Figure 6.14.
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Figure 6.19: The results of the HMM symbol overlap experiment. The average
log-likelihood ratio per symbol between the true and inferred HMMs, for vari-
ous values of the sequence length T, true order O and symbol accuracy A, av-
eraged over twenty trials. The grey bars indicate the observed range of values.
The true HMM has M = 4 symbols and a perplexity of P = 2.

to zero with increasing training set size if there is no symbol overlap. While the
PST divergence is an average divergence between next-symbol distributions, the
HMM divergence measure contains an additional component, however, repre-
senting the average divergence between the symbol pdfs. Symbol pdfs with less
overlap tend to have larger divergences, which increases the log-likelihood ratio,
especially at small values of T.

The corrected symbol accuracy is shown in Figure 6.20. For raw symbol ac-
curacies A > 50% and fixed-order true HMMs, the Viterbi algorithm is able to
improve the accuracy of the symbol sequence, based on an HMM inferred from
a sufficiently large training set. The Viterbi algorithm does even better on mixed-
order sequences, presumably because of the non-uniform long run distribution
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Figure 6.20: The accuracy of the symbol sequence after correction by the trained
HMM, for various values of the sequence length T, true order O and raw symbol
accuracy A, averaged over twenty trials. The grey bars indicate the observed
range of values. The true HMM has M = 4 symbols and a perplexity of P = 2.
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of the mixed-order HMM, which improves the estimation of the dominant con-
text statistics. On small training sets, however, the Viterbi algorithm decreases
the accuracy on average, because the trained HMM does not sufficiently resem-
ble the true HMM. As the structure of the HMM is discovered, the corrected ac-
curacy increases from below to above A. The sequence length where this change
occurs is another indication of the data requirements for learning the HMM.

The expansion of the HMM structure on large training sets is clearly evident
in the number of states of the HMM, but has a limited effect on the log-likelihood
ratio, and does not show up at all in the corrected symbol accuracy. It might only
be a problem if the HMM structure itself is the end goal of an experiment.

6.2.6 HMM alphabet size experiment

The last synthetic HMM experiment investigates the effect of alphabet size on
HMM structure inference. The raw symbol accuracy is fixed to A = 80%, while
the alphabet size M ranges from four to 32, with a corresponding perplexity of
P = M/2. The maximum sequence length and alphabet size had to be reduced
for second-order and third-order models, as the memory requirements of Viterbi
re-estimation became excessive otherwise.

Figure 6.21 shows the average log-likelihood ratio and corrected symbol ac-
curacy for a first-order true model. The results for other orders are similar. The
log-likelihood ratio increases with the alphabet size, and the knee in its graph
shifts to larger sequence lengths. It is instructive to compare the log-likelihood
ratios to the PST divergence rates for O = 1 in Figure 6.10. The corrected sym-
bol accuracies increase from below to above 80% as the HMM structure is learnt,
and confirms the increase in data requirements with an increase in alphabet size.

The number of states in the inferred HMM is displayed in Figure 6.22, for var-
ious settings of the sequence length, alphabet size and true order. It resembles
the corresponding number of PST states in Figure 6.8, the main difference being
the expansion of the HMM structure on large data sets. The performance of the
hidden SECT algorithm on sequences with a symbol accuracy of 80% therefore
approaches that of the SECT algorithm on uncorrupted symbol sequences. This
is noteworthy, considering the significant symbol overlap implied by an accu-
racy of 80%, as shown in Figure 6.16.
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Figure 6.21: Results of the HMM alphabet size experiment. The left-hand figure
shows the average log-likelihood ratio per symbol between the true and inferred
HMMs, for various settings of the alphabet size M and sequence length T. The
right-hand figure shows the accuracy of the corrected symbol sequence for the
same settings. In both cases, the underlying true HMM is first-order, and the
symbol accuracy is 80%.

6.3 Language recognition experiments

The state-of-the-art automatic language recognition (ALR) systems are based on
phone recognisers and n-gram language models, which require the use of tran-
scribed speech databases for training [168, 57]. An alternate solution to the ALR
problem directly applies mixed-order hidden Markov models (HMMs) to un-
transcribed speech. The advantage of this approach is its ease of implementa-
tion, its applicability to a wider set of languages, and a greater abundance of
training data. Its main disadvantage is poor performance compared with the
more advanced phone-based methods. Most modern language recognition sys-
tems fuse the outputs of several independent ALR systems, however, to create a
larger system that is better than any of its components [57, 56, 169]. The mixed-
order HMM ALR system can provide a positive contribution to such a system.

The purpose of the following ALR experiments is to highlight the advan-
tages of mixed-order models over fixed-order models in a practical application.
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Figure 6.22: The results of the HMM alphabet size experiment. The black lines
are the number of states in the trained HMMs for various values of the sequence
length T, true order O and alphabet size M, averaged over twenty trials. The
grey bars indicate the observed range of state counts at each setting. The state
count indicated in the middle of each axis is the number of states in the true
model. The true HMM has a perplexity of P = M/2, and the symbol accuracy is
80%. It is instructive to compare this figure with Figure 6.8.
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It is therefore not intended to be competitive with state-of-the-art systems. The
experimental setup mirrors that of a similar experiment involving fixed-order
models in [39].

6.3.1 Experimental setup and signal processing

The ALR experiments are performed on the CALLFRIEND speech corpus [170],
a large untranscribed database of conversational telephone speech. The cor-
pus contains twelve languages, of which three (English, Mandarin and Spanish)
have two dialects each, and is divided into a training, development and eval-
uation set. A language model is trained for each of the fifteen dialects on the
full training and development set. This results in approximately fifteen hours of
training data per model, after silent sections and crosstalk are removed.

After pre-emphasis and power normalisation, the speech signal is broken
up into 32 ms frames, spaced at 16 ms intervals. We apply a Hamming win-
dow to each frame, and calculate tenth-order linear prediction coefficient (LPC)
cepstra [171, 172] from each windowed frame. This speech feature is a well-
known and closely related alternative to the popular mel-frequency cepstral co-
efficient (MFCC) feature [173]. Ten delta cepstral coefficients are also calculated
per frame, which model correlations between adjacent feature vectors. Cepstral
mean subtraction [171] is used to alleviate some of the adverse telephone chan-
nel effects, and the final twenty-dimensional feature vectors are fed directly to
HMM recognisers for language recognition.

Evaluation is done on the National Institute of Standards and Technology
(NIST) 1996 Language Recognition Evaluation corpus. This data set consists of
telephone speech segments of various durations (3 s, 10 s and 30 s), spoken in
one of twelve target languages. The vast majority of these segments are derived
from the CALLFRIEND evaluation set, which are augmented with extra English
conversations from the Switchboard-1 [174] and KING [175] corpora. These ex-
tra segments were ignored during testing, in line with existing published results
[176]. The evaluation set represents approximately one hour of test data per
dialect.

The three languages with two dialects each are treated as single languages
during evaluation. This is achieved by taking the maximum of the two related
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dialect scores as the score for the language they represent. The final system
therefore considers twelve alternatives during classification. Additional tests
evaluate pairwise classification, whereby every language is compared with ev-
ery other language and the error rates are averaged. In all cases the classifier is
forced to choose a specific language from a closed set, thereby avoiding verifica-
tion issues.

6.3.2 Language models and algorithms

The fifteen HMMs, one for each dialect, share a common acoustic alphabet of
M = 32 diagonal Gaussian symbol pdfs, which is initialised on the training set
by binary split unsupervised clustering [164] and trained along with the HMMs.
This language-independent codebook makes the system more robust against ad-
verse channel effects, a major concern when using telephone speech. The lan-
guage models therefore only differ in their transition probabilities, resulting in
a purely phonotactic approach to language recognition. The symbol pdfs are
kept simple in form, in order to allocate more degrees of freedom to high-order
transition statistics.

The choice of an acoustic alphabet size of M = 32 is in agreement with the
similar experimental setup found in [39]. It is also intended to be comparable
with the number of phonemes in a typical language. Furthermore, the fifteen
hours of training data per model, coupled with a feature vector spacing of 16 ms,
imply a symbol sequence length of approximately T = 3× 106 symbols. From
the results of the synthetic experiments shown in Figures 6.11, 6.14 and 6.22,
it seems reasonable that such a training set size could support models with an
average order of O = 2 for a symbol overlap in the order of A = 60%.

All HMMs are trained with Viterbi re-estimation incorporating a beam [173,
Chap. 12] that discards highly unlikely state sequences at each time instant. This
cuts computation times by between a factor two and four, with very little effect
on the final likelihood scores. The test set scores are also calculated with a Viterbi
beam similarity measure.

The baseline system is a standard ergodic first-order HMM with 32 states
(termed F1 in the following). Although not as powerful as the high-order mod-
els, it will serve as a useful reference and also as initialisation for the incremental
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training of second-order models. The fixed second-order model, F2, and third-
order model, F3, are trained with the FIT algorithm [39], which initialises the
training of model F2 with the trained model F1, and similarly initialises the train-
ing of model F3 with the trained model F2.

The mixed-order approach also allows for FIT training, by incrementally lift-
ing a constraint on the maximum order of the model. This is achieved by the
rounds training schedule, which has the closest correspondence to the fixed-
order FIT process. The mixed-order MR2 model is initialised from F1 and trained
with hidden SECT until convergence, while limiting its maximum order to two.
The order limit is increased to three, and training again continues until conver-
gence, this time producing the MR3 model. The mixed-order MUx model uses
the unlimited training schedule, and is trained directly from the initial codebook,
without any limit on its context lengths.

6.3.3 Results

The mixed-order training selectively expands the HMM where the training data
supports it. This allows the modelling of sparse high-order structures, which
has the ability to lock onto common sound patterns in the language, at the sub-
phone level. Fixed-order training becomes infeasible above about fifth order,
while the large training set supports up to eighth-order contexts with unlim-
ited mixed-order models (MUx). As can be seen in Figure 6.23, the vast major-
ity of contexts has a length of two or three, confirming the sparse mixed-order
behaviour. The average order of the MUx model can be estimated as the log-
arithm of its number of states to the base of the number of symbols, resulting
in logM(N) = log32(1123) = 2.03. Also interesting to note is the mismatch of
standard first-order modelling to this task.

Table 6.2 and Figure 6.24 summarise the results obtained on the 30 s CALL-

FRIEND segments of the NIST 1996 test set. As expected, performance increases
with increasing model order. The mixed-order models, MR2 and MR3, per-
form slightly worse than their fixed-order counterparts, F2 and F3, while train-
ing faster and ending up smaller. Their weaker performance is attributed to
the conservative nature of the SECT algorithm, which underestimates the model
structure and thereby misses out on useful longer contexts. Bejerano [20] came
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Figure 6.23: Histogram of states in mixed-order model MUx according to asso-
ciated order (context length). The decline with order indicates a sparse mixed-
order model.

Table 6.2: ALR results obtained on the 30 s CALLFRIEND segments of the NIST
1996 test set. F1 is a standard first-order model. The fixed-order models, F2 and
F3, are trained incrementally via FIT. The mixed-order models, MR2 and MR3,
are trained with hidden SECT and the rounds training schedule, while model
MUx is trained with the unlimited schedule. The training times are relative to a
Celeron 400 MHz processor, and the model size is the average number of links
in the dialect HMMs.

Model Training time Model size Test set error (%)
(hr/dialect) (links) 12-way pairwise

F1 0.5 585 48.2 13.4

F2 1.6 2640 37.8 10.2
MR2 1.4 2313 38.5 10.3

F3 5.8 9074 33.9 9.1
MR3 2.0 4313 35.0 9.1

MUx 3.2 11280 38.1 8.7

to a similar conclusion in his study of MDL-trained PSTs. The advantage of in-
cremental (FIT) training can be seen from the fact that MR3 outperformed the
directly trained MUx model on the twelve-way classification problem. Interest-
ingly, the MUx model outperformed all other models on pairwise classification.
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Figure 6.24: Average error rates on the 30s CALLFRIEND segments of the NIST
1996 evaluation set. The left-hand bars represent pairwise classification, while
the right-hand bars represent twelve-way classification.

6.4 Summary

A set of experiments on synthetic data verifies that the SECT algorithm success-
fully learns PSTs. It also examines the effects of training set size, alphabet size,
order and perplexity (which serves as an effective alphabet size) on the perfor-
mance of the algorithm. SECT is applied to corrupted symbol sequences as well,
which typically leads to overexpanded PSTs that attempt to model the symbol
errors.

The synthetic data experiments are repeated for hidden SECT, while adding
symbol accuracy as a parameter. The algorithm successfully learns HMMs, al-
though it tends to overexpand them on large training sets. This indicates that
the Viterbi symbol sequence still contains errors that can skew the underlying
symbol statistics. The idea of gradually incrementing the HMM order during
training was found to be useful.

Finally, an automatic language recognition experiment based on the CALL-

FRIEND corpus and ergodic HMMs shows that mixed-order HMMs train faster
and are smaller than fixed-order models, for similar classification accuracies.



Chapter 7
Conclusions and Recommendations

This study confirms that the prediction suffix tree (PST) is a useful representa-
tion of Markov chains, especially for inference and storage. The smallest en-
coded context tree (SECT) algorithm is introduced as a promising new inference
method for PSTs. The underlying Markov chain in a hidden Markov model can
also be replaced by a PST, which leads to the hidden SECT algorithm for infer-
ring HMM topology from data. The algorithms were validated on synthetic data
and a language identification task.

The SECT algorithm has several advantages over the standard PST algo-
rithm, Learn-PSA [22]. It is faster (O(T(log T)2) versus O(T2) for a data se-
quence length of T), and has no user-specifiable parameters, which removes the
need for expensive cross-validation steps. It is self-bounded, and will expand
the model order as far as the data set warrants it. The disadvantages of SECT is
that it is slower than the latest PST variants [25, 20], and it is a batch algorithm
with O(2T) memory requirements. Its reliance on MDL and lack of tunable pa-
rameters make it more conservative as well, and it underestimates rather than
overestimates the model structures.

The hidden SECT algorithm has many advantages for HMM topology infer-
ence. It slots into the standard EM training algorithms, with a small overhead
in computational complexity. It does not rely on costly state merging and split-
ting operations. It is guaranteed to converge. It infers variable-order instead of
fixed-order models. Its main disadvantage is an overexpansion of HMM struc-
ture on large data sets, due to its dependence on Viterbi re-estimation, which

149
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slows down training and testing of the resulting HMM. It also underestimates
the model structure on small data sets, due to the nature of SECT.

Two useful concepts in this study can be summed up as “compression is
modelling” and “focus on symbols instead of states”. The first concept is the
tenet of the minimum description length approach to modelling. SECT can be
used as a compression algorithm as well, as described in [44]. Similarly, many
ideas from text compression are finding use in statistical modelling. While some
of them are controversial (see [177] and the comments in [178, 179, 180]), studies
such as [181] show the usefulness of this connection, especially for Markov mod-
elling. The second concept advocates a different perspective on HMM structure,
which simplifies the specification of high-order HMMs and opens new avenues
for structural inference, such as the hidden SECT algorithm.

The remainder of this chapter examines specific improvements and recom-
mendations for the SECT and hidden SECT algorithms.

7.1 Recommendations for SECT

Many improvements to the SECT algorithm are possible. Its computational
complexity can be reduced to O(T), based on the ideas expressed in [25, 20].
The MDL framework of SECT can be complemented by other Bayesian tech-
niques. For instance, Wolpert describes a Bayesian test in [182] which deter-
mines whether two sets of symbol counts were generated by the same underly-
ing multinomial distribution. This could be useful to check whether a child node
differs sufficiently from its parent.

The smoothing of the next-symbol distributions have not been investigated
in full. In particular, [183] shows that the simplistic smoothing of Learn-PSA
hampers the performance of a PST on a protein domain detection task, where it
is outperformed by a standard Markov chain with more advanced Kneser-Ney
back-off smoothing [184]. An interesting alternative to smoothing is to include
Brand’s entropic prior [61], which would force the model structure to become
more definite.

More careful coding of the model overheads would improve the sensitivity
of SECT, allowing it to detect structure in shorter symbol sequences. The next-
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symbol counts table can be coded according to the approach in [45] instead. This
takes the precision of the resulting next-symbol distribution into account, which
enables the use of a coarser set of counts if it reduces the overall code length.

More experiments are required to characterise the performance of SECT on
mixed-order models. This could result in an explicit formula for the minimum
data set size required to infer the structure of a given PST, which would depend
on the perplexity, the long run context distribution and the number of parame-
ters in the model. It would also be useful to compare the SECT algorithm to other
variable-order Markov methods on the same data sets. A good starting point
could be the experiments of [181], which compare six prominent variable-order
Markov models on tasks of general text compression, musical file compression
and protein classification.

7.2 Recommendations for hidden SECT

The most immediate improvement to the hidden SECT algorithm would be to
base it on Baum-Welch re-estimation instead of Viterbi re-estimation. The op-
timal symbol sequence produced by the Viterbi algorithm still contains errors
when compared to the true symbol sequence. With sufficiently large data sets,
hidden SECT attempts to model these errors in the HMM, which then over-
expands its structure. Baum-Welch re-estimation allows “soft” symbol counts,
which would lend extra support to the correct contexts that are ignored by Vi-
terbi in many cases.

The implementation of a version of hidden SECT based on Baum-Welch re-
estimation faces some obstacles, though. While it is simple to count the number
of occurrences of any context string such as abc in a symbol sequence, Baum-
Welch requires the calculation of probabilities such as P(st−2 = a, st−1 = b, st =
c), based on manipulation of the forward and backward variables (“alphas” and
“betas”). These probabilities are summed over all values of t to obtain the corre-
sponding soft counts. A symbol sequence of length T with alphabet size M po-
tentially supports ML(T − L) such probabilities for contexts of length L, which
indicates that the maximum context length should in practice be bounded to
reduce the computational complexity.
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A simpler and less accurate option is to focus on state probabilities such as
P(qt = i) instead, which can be readily obtained from the forward-backward
recursion. The probability of a specific symbol at time t then becomes the sum
of the probabilities of the states associated with that symbol. The desired proba-
bility P(st−2 = a, st−1 = b, st = c) can then be estimated as P(st−2 = a)P(st−1 =
b)P(st = c), before summing it over the length of the sequence to obtain the soft
count. The problem with this approach is that it does not respect the constraints
of the model structure, which might prohibit a sequence abc, even though the
individual symbols are allowed to occur. A more practical alternative to Baum-
Welch re-estimation is to obtain the N best symbol sequences via Viterbi [185],
which would allow soft counts without the corresponding explosion in compu-
tational complexity.

A second problem with soft counts is that they lack the natural discretisation
of hard counts, which complicates the coding of next-symbol count tables in
SECT. A crude solution is to round off the counts to the nearest integer, while the
approach in [45] is more correct and also promises a more compact next-symbol
count table.

The symbol structure and consequent HMM state tying inferred by the hid-
den SECT algorithm are constrained to be Markovian. More general symbol
structures can be inferred by replacing the SECT algorithm in hidden SECT with
a procedure such as ALERGIA [41] or MDI [60]. This allows the underlying sym-
bol structure to become a DPFA (like the example shown in Figure 2.13), which
provides more general HMM state tying capabilities. While the resulting HMM
would not be a more powerful model, it can be much more compact. Such a
“hidden ALERGIA” algorithm might be more sensitive to symbol estimation er-
rors and computationally more complex, though.

Another extension to the hidden SECT algorithm estimates the symbol pdfs
within the minimum description length framework as well, as is done in tSnob
[43]. This extension automatically determines the number of symbols in the al-
phabet, and favours continuous HMMs. It requires coding of the symbol pdf
parameters, for which MML [86] is attractive. An important issue is the search
strategy for the optimal alphabet, especially when combined with the PST in-
ference step. A symbol splitting procedure would be computationally less ex-
pensive than one that merges symbols, as there are more symbol pairs to merge
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than symbols to split. This would also complement the top-down approach of
the SECT algorithm, by starting with small alphabets and gradually increasing
the model complexity.

The language identification experiment in this study is preliminary in nature.
Its main purpose is to show the advantage of mixed-order models over fixed-
order models. A major improvement to the experiment would be to replace the
codebook of Gaussian pdfs with a bank of language-independent phone HMMs.
These HMMs can be regarded as the symbol pdfs of a higher-level HMM. The
hidden SECT algorithm would be used to train the transitions and structure of
the top-level HMM, while the phone HMMs are left unchanged. A suitable
framework for this process is the hierarchical HMM [186]. The end result is
again an HMM language model. This allows hidden SECT to focus directly
on the phonotactic constraints of the languages, instead of modelling subphone
patterns of lengths typically shorter than 250 ms. Further improvements can be
gained by including a Gaussian backend classifier [57], and fusing with other
LID subsystems.

Mixed-order Markov models are successfully applied in many problem do-
mains. Some of the more promising research areas are motion tracking from
video and human gesture recognition [13, 14], high-frequency financial time se-
ries modelling [16, 17] and bioinformatics problems such as protein classification
[19, 20]. The hidden SECT algorithm might still have its biggest success in one
of these fields.
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