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Abstract

Modern mineral processing companies are driven towards improving productivity by leveraging
existing processes optimally. This can be achieved by improving diagnosis of faults that degrade
process performance to provide insightful and actionable information to process engineers.

In mineral processing plants, units and variables are connected to each other through material
flow, energy flow, and information flow. Faults propagate through a process along these intercon-
nections, and can be traced back along their propagation paths to their root causes. Techniques
have been developed for extracting these causal connections from historical process data. These
techniques have proven successful for fault diagnosis in chemical processes. However, they have
not been widely accepted by industry due to lack of automation of the techniques, complicated
implementation, and complicated interpretation.

This dissertation investigated the limitations of the causality analysis procedures currently avail-
able to process engineers as fault diagnosis tools and developed improvements on them. Improve-
ments were developed and tested using a combination of simulated case studies and real world
case studies of operational faults occurring in a mineral processing plant.

Objective I: was to investigate the factors that affect performance of causality analysis tech-
niques. The use of transfer entropy for fault diagnosis in a minerals processing concentrator plant
was demonstrated. The desired performance criteria of causality analysis techniques were then
defined in terms of: general applicability; automatability; interpretability; accuracy; precision;
and computational complexity. The impact of process conditions on the performance of Granger
causality and transfer entropy were then investigated. An analysis of variance (ANOVA) was
performed to investigate the impact of process dynamics, fault dynamics, and the parameters
on the accuracy of transfer entropy.

Objective II: was to design a systematic workflow for application of causality analysis for fault
diagnosis. The ANOVA was used to develop a novel relationship between the optimal transfer
entropy parameters and the process and fault dynamics. This relationship was then placed
within a systematic workflow developed for the application of transfer entropy for oscillation
diagnosis, addressing the need for clear procedures and guidelines for data selection and param-
eter selection. The workflow was applied to an oscillation diagnosis case study from a minerals
concentrator plant, and shown to provide a systematic approach to accurately determining the
fault propagation path.

Objective III: was to design a tool to aid the decision of which causality analysis method
to select. A comparative analysis of Granger causality and transfer entropy for fault diagnosis
based on the performance criteria defined was performed. The comparison showed that transfer
entropy was more precise, generalisable, and visually interpretable. Granger causality was more
automatable, less computationally expensive, and easier to interpret. Guidelines were developed
from these comparisons to aid users in deciding when to use Granger causality or transfer entropy.
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vi Abstract

Objective IV: was to present tools for interpretation of causal maps for root cause analysis.
Methods for construction of causal maps from the results of the causality analysis calculation
were presented, and methods for interpretation of causal maps. The usefulness of these tech-
niques for diagnosis of real world case studies was demonstrated.

Stellenbosch University  https://scholar.sun.ac.za



Uittreksel

Mineraalprosesseringsmaatskappye plaas hul fokus op die verhoging van produktiwiteit deur
bestaande prosesse te optimeer. Dit word bereik deur op ‘n meer doeltreffende manier foute op
te spoor wat prosesprestasie hinder en sodanig insiggewende inligting aan prosesingenieurs oor
te dra.

Proseseenhede en veranderlikes word verbind aan mekaar in ‘n mineraalproseseringsaanleg deur
die vloei van material, energie en inligting. Foute word deur ‘n proses voortgesit deur die
verbintenis van die proseseenhede aan mekaar, en die kernoorsaak van ‘n fout kan opgespoor word
deur terug te werk deur prosesverbintenisse. Tegnieke is ontwikkel om oorsaaklike verbintenisse
te onttrek vanuit historiese prosesdata. Hierdie tegnieke word as suksesvol geag vir foutdiagnose
in chemiese prosesse. Hulle is egter nie in die mineraalprosesseringsbedryf aanvaar nie weens
die tekort aan die moontlikheid van outomasie, die ingewikkelde implementasie daarvan, asook
ingewikkelde interpretasie.

Hierdie verhandeling ondersoek die beperkinge van beskikbare oorsaaklikheidsanalisemetodes as
foutdiagnosegereedskap vir prosesingenieurs en ontwikkel verbeteringe op die metodes. Verbe-
terings is ontwikkel en getoets deur ‘n kombinasie van gesimuleerde gevallestudies en werklike
gevallestudies van ‘n mineraalprosesseringsaanleg.

Doel I: was om faktore te ondersoek wat die prestasie van oorsaaklikheidsanalises affekteer. Die
gebruik van oordragsentropie vir foutdiagnose in ‘n mineraalprosesserings konsentrasie-eenheid
is gedemonstreer. Die gewenste prestasiekriteria van oorsaaklikheidsanalises is toe gedefinieer
in terme van: algemene toepaslikheid; outomiseerheid; interpreteerbaarheid; akkuraatheid; pre-
sisie; en berekeningkompleksiteit. Die impak van prosestoestande op die prestasie van Granger
oorsaaklikheid en oordragsentropie is toe ondersoek. ‘n ANOVA variansieanalise is toe uit-
gevoer om die impak van prosesdinamika, foutdinamika, en geselekteerde parameters op die
akkuraatheid van oordragsentropie te ondersoek.

Doel II: was om ‘n systematiese werksvloei te ontwerp vir die toepassing van oorsaaklikheid-
sanalises op foutdiagnose. Die ANOVA was gebruik om ‘n nuwe verhouding te ontwikkel tussen
die optimale oordragsentropieparameters en die proses- en foutdinamika. Hierdie verhouding is
toe in ‘n sistematiese werksvloei geplaas ontwikkel vir die toepassing van oordragsentropie vir
ossillasiediagnose, wat die nodigheid vir duidelike prosedures en riglyne vir data- en parame-
terseleksie addresseer het. Die werkvloei is toegepas op ‘n ossilasiediagnose gevallestudie van
‘n mineralekonsentrasieaanleg, en is gewys om ‘n systematiese benadering te verskaf om die
foutvoortplantingspad akkuraat vas te stel.

Doel III: was om gereedskap te ontwerp om te help besluit tussen oorsaaklikheidsanaliseme-
todes. ‘n Vergelykende analise van Granger oorsaaklikheid en oordragsentropie vir foutdiag-
nose gebaseer op gedefinieerde prestasiekriteria is uitgevoer. Die vergelyking het getoon dat
oordragsentropie meer presies, veralgemeenbaar en visueel interpreteerbaar is. Granger oor-
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viii Uittreksel

saaklikheid is meer outomeerbaar, minder berekeningsintensief en makliker om te interpreteer.
Riglyne is ontwikkel vanuit hierdie vergelykings om verbruikers te help kies tussen Granger
oorsaaklikheid en oordragsentropie.

Doel IV: was om gereedskap voor te stel vir die interpretasie van oorsaaklikheidskaarte vir
kernoorsaakanalises. Metodes om oorsaaklikheidskaarte op te stel vanuit die resultate van oor-
saaklikheidsanaliseberekeninge is voorgestel, asook metodes vir die interpretasie van oorsaak-
likheidskaarte. Die nut van hierdie tegnieke vir die diagnosering van werklike gevallestudies is
gedemonstreer.
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Glossary

Adjacency matrix Matrix representation of a graph. Square matrix whose rows and columns
correspond to nodes, and binary entries represent the edges.

Causality Links between elements in a process, so that a change in one element cause a change
in another, and the direction of the influence is known.

Causality map Graph with nodes representing measured variables, and edges representing
causal connections between them.

Connectivity Links between elements in a process, so that changes in either variable influence
the other.

Cross correlation Causality measure base on lagging two time series to find the time lag at
which the correlation between them is at a maximum

Convergent cross-mapping Causality measure based on the mutual prediction ability of em-
bedding manifolds

Depth-first search Algorithm for graph traversal. Works by beginning at a start node, and
discovering adjacent nodes sequentially until the algorithm encounters a node where all the
adjacent nodes have already been visited. At this point, the search backtracks along the
discovered path to the closest previously discovered node without a discovered neighbour.
This is implemented recursively until all nodes reachable from the start node have been
visited.

Diffeomorphism Isormorphism of smooth manifolds.

Edge Connection between nodes in a graph. Also called arc In causality maps it indicates a
causal connection between two measured variables.

Fault Abnormal event occurring in a process that causes measured variables or KPIs to deviate
from desired values, possibly causing performance or safety degradation.

Fault detection Procedure for determining whether a fault is present in a process or not.

Fault diagnosis Combination of fault detection and identification.

Fault identification Procedure for determining the type, magnitude and location of a fault.

Granger causality Causality measure based on autoregressive models. Quantifies the predic-
tion improvement of a variable when including past values of another variable.

Graph A mathematical model of pairwise relationships between elements. Consists of nodes
representing the elements, and edges representing the relationship between the elements.

xvii
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xviii Glossary

Hazard and operability analysis Risk analysis performed typically during process design
phase to identify all potential safety and performance degradation risks.

Inflow Number of edges entering a node.

Isomorphism Mapping that can be reversed using the inverse of the mapping.

k-Nearest Neighbours In this dissertation this refers to a causality measure based on predic-
tion of a variable based on its nearest neighbours.

Node Element in a graph. Also called vertex. In a causality map it represents measured
variables.

Outflow Number of edges exiting a node.

Partial directed coherence Causality measure based on frequency-domain autoregressive mod-
els.

Process monitoring Strategy for analysing process behaviour to determine performance.

Process recovery Corrective action taken to return a process to its desired state after devia-
tion from this state has been diagnosed.

Process topology The way in which constituent parts of the model are interconnected. May
be described in terms of connectivity or causality of the variables in the process.

Reachability Ability to negotiate from one node to another within a graph

Root cause analysis Procedure for isolating the location of a fault.

Smearing effect The effect of a fault spreading throughout a process and affecting numerous
variables and units.

Strongly connected component A subgraph of of a graph, G, where all the nodes in the
subgraph are mutually reachable.

Subgraph A subgraph of a graph, G, is a graph made of a subset of the nodes and edges of G.

Transfer entropy Information theoretic causality analysis approach. Quantifies the reduction
in uncertainty of one variable given past values of another variable.

Transitive reduction The transitive reduction of a graph G, is another graph, Greduction,
with the same number of nodes, but the fewest edges, so that Greduction has the same
reachability as G.

Vertex See Node.
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Symbols in this dissertation conform to the following font conventions:
A Symbol denoting a variable (Upper case letter)
a symbol denoting a scalar (Lower case letter)
a Symbol denoting a vector (Bold lower case letter)
A Symbol denoting a matrix (Bold upper case letter)

Symbol Meaning

αk Random phases added for AAFT
A Coefficient matrix for full AR model
B Regression coefficient for reduced AR model
Di(x) Predictability factor for k-nearest neighbours
di,j Distance between two embedded vectors, i and j
E Prediction error matrix for autoregressive model
ε Prediction error in autoregressive model
Fxi→xj Granger causality from variable xi to variable xj

H(yi+h|y
(K)
i ) Shannon entropy for y conditioned on past values of itself

H(yi+h|y
(K)
i ,x

(L)
i ) Shannon entropy for y conditioned on past values of x and y

h Prediction horizon for transfer entropy
η(x|y) Dependence measure for k-nearest neighbours
ηx→y Causality measure for k-nearest neighbours
ι Imaginary unit
K Embedding dimension for output variable Y in transfer entropy calculation
k Model order for Granger causality calculation
κ Number of nearest neighbours
L Embedding dimension for input variable X in transfer entropy calculation
M Number of variables
M Embedded matrix (manifold)
µ Mean
NS Number of samples
p(.) Probability density function
p(.|.) Conditional probability density function
π̂ij(ω) partial directed coherence between variable i and variable j, at frequency, ω
ρ Cross-correlation function
r̄(t) iAAFT surrogate time series
R̄(ω) Frequency domain representation of r̄(t)
σ Standard deviation
s̄(t) AAFT surrogate time series
Sx→y Significance threshold for transfer entropy from x to y

xix

Stellenbosch University  https://scholar.sun.ac.za
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TS Sampling time
Tx → y Transfer entropy from variable x to variable y
τ Time interval for transfer entropy
τp Residence time of process

x
(L)
i Embedded vector for variable x, at time step i, with embedding dimension, L
yi+h Value of variable y at time step i+ h
ω Frequency
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CHAPTER 1

Introduction
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1.4 Dissertation objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
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1.6 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6.1 Conference papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6.2 Journal publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.7 Dissertation organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

This dissertation investigates the use of causality analysis for fault diagnosis in mineral processes.

1.1 Background

Modern mineral processing companies are driven towards improving productivity. Rather than
initiating large capital expenditure projects, mineral processing companies are interested in
leveraging existing processes optimally. One of the ways to optimise process productivity is to
improve process monitoring. In Deloitte’s article titled ‘The Future of Mining in Africa’ [Deloitte,
2018], the major challenges that need to be addressed in the industry involve improving visibility
on actions to be taken to improve the a process:

‘Mining processes lack visibility to real time, accurate information. This hinders
the ability to track resource performance and increase equipment uptime. More
complete, timely, and insightful information and leading indicators enables leadership
and frontline teams to intervene more proactively. Incorporating smart workflows
that highlight process deviations will trigger the desired response mechanisms and
support the required behavioural change.’

Process monitoring that provides insightful and actionable information is therefore paramount
to improving process productivity. Accurate fault diagnosis can be used to investigate process
changes and determine the required corrective action.

1
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2 Chapter 1. Introduction

In mineral processing plants, units and variables are connected to each other through material
flow, energy flow and information flow. Knowledge of this interconnection of the process can
be a useful tool for process engineers. One of the uses for this information is fault diagnosis.
Faults propagate through a process along these interconnections, possibly causing performance
or safety degradation. With knowledge of the connections a fault may be traced back to its
root cause along these propagation paths. This information can then be used to determine what
corrective action needs to be taken.

Causality analysis techniques can be used for fault diagnosis. These techniques infer causal con-
nections between measured variables from historical process data. This dissertation investigates
and improves on existing causality analysis techniques for fault diagnosis.

1.2 Informal problem description

Techniques have been developed for extracting causality information from historical process data.
The variations of causality analysis include: transfer entropy [Duan et al., 2013]; Granger causal-
ity [Yuan & Qin, 2014]; cross-correlation [Bauer & Thornhill, 2008]; partial directed coherence
[Landman et al., 2014]; convergent cross-mapping [Luo et al., 2017]; and k-nearest neighbours
[Stockmann et al., 2012]. Numerous authors have demonstrated successful fault diagnosis using
these techniques. However, data-based causality analysis has not been widely accepted by in-
dustry as a solution for automated fault diagnosis. The reason for industry’s reluctant adoption
can be ascribed to: the complex implementation procedures of the techniques; the sensitivity
of their performance to process conditions; and the difficult interpretation of the results of the
causality analysis. These shortcomings need to be addressed to make these techniques accessible
to industry practitioners.

1.3 Dissertation aim

The aim of this dissertation is to improve performance of data based causality analysis methods
for fault diagnosis by developing systematic procedures and clear guidelines fo application of
the techniques and interpretation of their results. Improvements will be developed and evalu-
ated using a combination of simulated case studies and real world case studies from a mineral
processing plant.

1.4 Dissertation objectives

The following objectives will be pursued in this dissertation:

Objective I. To investigate the factors that affect performance of causality analysis techniques.

Objective II. To design a systematic workflow for application of causality analysis for fault
diagnosis.

Objective III. To design a tool to aid the decision of which causality analysis method to select.

Objective IV. To present tools for interpretation of causal maps for root cause analysis.
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1.5. Significance and novel contributions of this dissertation 3

1.5 Significance and novel contributions of this dissertation

The improvements to causality analysis based fault diagnosis to be developed in this dissertation
aim to make the tools more accessible for engineers in the processing industries. This improved
accessibility will allow engineers to diagnose faults in a process rapidly, and implement corrective
action. According to Reis & Gins [2017], reducing the time taken for diagnosis of the faults after
they have been detected presents a significant potential improvement in the time taken from
when a fault occurs to when it is corrected. This means that the detrimental impact of the
fault will be limited to a shorter time. This means that processes can become more efficient,
extracting more value from the raw materials, and utilising less energy for processing. The safety
of the processes will also be improved, since some faults pose a potential degradation in safety,
as well as performance.

The novel contributions of this project are:

1. Application of causality analysis is complicated, with multiple decision-making steps that
could affect the results. In the literature of causality analysis for fault diagnosis, no
systematic framework addressing these numerous, complicated steps has been presented.
Chapter 7 provides a systematic workflow incorporating these steps.

2. The accuracy of causality analysis techniques is sensitive to data selection and parameter
selection. Chapter 7 provides an analysis of variance on the impact that process and fault
dynamics and calculation parameters have on transfer entropy. These results are used to
provide guidelines for the above-mentioned workflow. This approach of parametrisation
of causality analysis techniques based on process dynamics is novel, and is shown to be
effective.

3. The comprehensive comparative analysis of Granger causality and transfer entropy based
on all desired performance criteria for causality analysis techniques presented in Chapter
8 is novel. This comparison was used to provide useful guidelines for selection of which
causality analysis technique to use and how to interpret the results.

4. Construction and interpretation of causality maps is an important step for root cause anal-
ysis using these methods that has been neglected in fault diagnosis literature, with most
authors providing ad-hoc interpretations of results. Chapter 9 provides novel guidelines
for construction and interpretation of causality maps based on existing techniques.

1.6 Publications

Sections of this dissertation have been submitted for publication in peer-reviewed conference
proceedings, and in peer-reviewed journals.

1.6.1 Conference papers

The following papers based on this work were published in peer-reviewed conference proceedings:

1. Lindner B, Auret L & Bauer M, 2017a, Investigating the Impact of Perturbations in Chem-
ical Processes on Data-Based Causality Analysis. Part 1: Defining Desired Performance of
Causality Analysis Techniques, IFAC-PapersOnLine, 50(1), pp. 3269-3274.[Lindner et al.,
2017a]
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2. Lindner B, Auret L & Bauer M, 2017b, Investigating the Impact of Perturbations in
Chemical Processes on Data-Based Causality Analysis. Part 2: Testing Granger Causality
and Transfer Entropy, IFAC-PapersOnLine, 50(1), pp. 3275-3280.[Lindner et al., 2017b]

3. Lindner B, Chioua M, Groenewald J, Auret L & Bauer M, 2018b, Diagnosis of Os cillations
in an Industrial Mineral Process Using Transfer Entropy and Nonlinearity Index, IFAC-
PapersOnLine, 51(24), pp. 1409-1416.[Lindner et al., 2018b]

1.6.2 Journal publications

The following papers based on this work have been submitted for publication in peer-reviewed
journals:

1. Lindner B, Auret L & Bauer M, 2018, A systematic workflow for oscillation diagnosis
using transfer entropy, Manuscript accepted by IEEE Transactions on Control Systems
Technology. [Lindner et al., 2018a]

2. Lindner B, Auret L, Bauer M & Groenewald JWD, Comparative analysis of Granger
causality and transfer entropy to present a decision flow for the application of oscillation
diagnosis. Manuscript accepted pending revision. Journal of Process Control.

1.7 Dissertation organisation

This dissertation is organised as follows: Chapter 2 presents the relevant background on causal-
ity analysis in the context of fault diagnosis; Chapter 3 present an overview of the research
methodology followed to address the objectives of the dissertation; Chapter 4 presents an exam-
ple of causality analysis used to isolate the root cause in an industrial case study to demonstrate
the effectivity of the techniques; Chapter 5 discusses the desired performance of causality anal-
ysis techniques; Chapter 6 investigates the impact of process conditions on the performance of
Granger causality and transfer; Chapter 7 develops a systematic workflow for application of
causality analysis techniques, including a novel procedure for optimal parametrisation based on
fault and process dynamics; Chapter 8 presents a comparative analysis of Granger causality and
transfer entropy for fault diagnosis based on the performance criteria defined, to provide guide-
lines for the decision of which causality analysis technique to use; Chapter 9 presents algorithmic
and visual techniques for interpreting causality analysis results; and finally, Chapter 10 presents
the conclusions of the study and future recommendations based on the conclusions.
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2.1 Chapter introduction

Modern technological advances have presented the mineral processing industry with opportu-
nities for improving process monitoring. Improved monitoring can be leveraged to improve
efficiency, safety, quality, and throughput of a process. Advances in data storage, sensing tech-
nology, computational technology, and analytics, associated with the Big Data and Industry 4.0
movements, have been instrumental in providing the means for this improvement [Reis & Gins,
2017].

Figure 2.1 illustrates the flow of information for operational performance monitoring. The pro-
cess can consist of multiple operations, including: processing steps; automatic control; and
optimisation strategies. Within this process, multiple sensors are employed to measure pro-
cess variables. For example, measurements may include temperatures, flow rates, and pressures.
These measurements can be combined into a dataset that can be analysed to monitor the perfor-
mance of the process operations. Poor performance may be characterised by unstable controlled
variables, sub-optimal key performance indicators, or unwanted variation in key operational
measurements. The results of this performance analysis can then be used to signal alarms or
generate performance reports to alert plant engineers of the performance state of the process.

Process monitoring can have different objectives. Process data can be analysed to identify areas
for optimisation and improvement of the process to meet targets from a control, production,
or safety perspective. Process data can also be used for offline or online fault detection and
identification. This function of process monitoring is to diagnose problems that originate due to
abnormal process behaviours, sensor failures, controller failure, equipment failure, measurement
gross random errors, or even more subtle problems, such as measurement biases [Hodouin, 2011].

This chapter presents a discussion of the theory of causality analysis as it is used for large
scale industrial processes. The main focus of this thesis is the use of causality analysis for fault
diagnosis.

2.2 Chapter objectives

The objectives of this chapter are:

I To conduct a critical review of the relevant literature on causality analysis for fault diag-
nosis, to identify areas that require improvement to aid industrial implementation.

II To present the relevant background information of causality analysis techniques.
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Figure 2.1: Basic components of process monitoring.
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2.3 Connectivity and causality in processes

Elements in mineral processes are connected to each other through material, energy and in-
formation flow. Knowledge of these connections in processes can be useful for engineers for
monitoring, analysis, and optimisation of the process. Connectivity and causality analysis tech-
niques can be used to infer these connections. For further discussion purposes, connectivity and
causality are defined as:

Definition 1. Connectivity: Links between elements in a process, so that changes in one variable
influences the other. However, connectivity only describes the existence of influence between
elements, without describing the direction of influence.

Definition 2. Causality: Links between elements in a process, so that a change in one element
cause a change in another, and the direction of the influence is known. Causality from x to y
means that changes in x cause changes in y.

From Definitions 1 and 2 it can be reasoned that connectivity is a necessary, but not suffi-
cient, criteria to establish causality. Therefore, causality is characterised by two components:
an observable connection between elements; and an observable direction of influence of that
connection.

A definition of causality was put forward by the philosopher, David Hume, in 1748 [Hume, 2008]:

we may define a cause to be an object followed by another, and where all the objects,
similar to the first, are followed by objects similar to the second. Or, in other words,
where, if the first object had not been, the second never had existed.

Derivatives of Hume’s first definition, that a causal succession is supposed to be a succession
that instantiates a regularity, remain prolific in the philosophy of causation[Lewis, 1973]. A
formal description of causality in a statistical context was proposed by Wiener [1956]:

X could be said to ‘cause’ Y when predictability of Y is improved by incorporating
information about X

However, the existence of a connection does not provide sufficient information to infer that a
causal link exists. The direction of influence also needs to be established. When X causes Y , a
change in X results in a change in Y after some time has passed. Causality needs to incorporate
a temporal element as well.

Elements in Definitions 1 and 2 can represent units or variables in a process. The flow of the
material between units means that there will be a causal connection between the units. For
example, the feed mass flow to a milling circuit will have a causal influence on the mill load.
The causal influence is observable, e.g. increased feed mass flow will cause an increase in the
mill loading. The direction of the causal influence is also observable by considering the temporal
aspect of the influence. The increase in mill loading will be observed after the increase in the
feed mass flow. The time delay between the increase in the feed mass flow and the mill loading
may be due to transport delay, from where the feed mass flow is measured on a weightometer
to the load cells measuring the load on the mill. The time delay may also be due to residence
time in units with significant volume. For example, the mill discharge sump’s residence time will
means that deviations in slurry density before the sump will not instantaneously be observed if
measured after the sump.
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X Y Z

Figure 2.2: Example of causal map for a system of three variables. Nodes represent variables, edges
represent causal influence from one variable to another.

2.4 Representing causality and connectivity

Graph theory can be used for the analysis and visualisation of connectivity and causality. In
this section some basic graph theory that will be used for causality analysis in this dissertation
are presented.

A graph is a mathematical model of pairwise relationships between elements[Bang-Jensen, 2010].
A graph is made up of nodes (sometimes called vertices), representing the elements, and edges
(sometimes called arcs), representing the relationship between the elements. For connectivity
analysis, the nodes represent variables or units within the process, and the edges represent a
connection between them. A graph can be directed or undirected. In a directed graph, edges in
the graph specify the directionality of the influence between nodes[Bang-Jensen, 2010]. When
there is an edge between a pair of nodes, the node from which the edge originates is is the source
node and the node to which the edge points is the sink node. Directed graphs are sometimes
abbreviated to digraphs. In an undirected graph, there is no directionality assigned to edges
between nodes[Bang-Jensen, 2010].

Many implementations of of causality and connectivity analysis exploit the advantages of visu-
alisation of the connectivity. A graph can be represented visually. An example for a system of
three variables, X, Y , and Z, is shown in 2.2.

A graph can be represented by an adjacency matrix[Bang-Jensen, 2010]. An adjacency matrix
is a square matrix whose rows and columns correspond to nodes, and binary entries represent
the edges. An entry of 1 in row i, column j, indicates that the node represented by row i has
a causal influence on the node represented by column j. An entry of 0 indicates no connection
exists. By convention the row represents the source element, and the column represents the
sink element. Equation 2.1 provides an example of an adjacency matrix for the graph in Figure
2.2. The 1 in row 1, column 2 represents the edge that indicates that variable X has a causal
influence on Y .

A =
0 1 0
0 0 1
1 0 0

(2.1)

2.5 Uses for causality and connectivity analysis for process engi-
neers

Connectivity and causality information in large-scale processes provide a number of potential
applications for design and analysis of processes. These applications are briefly discussed here
to illustrate the usefulness of these techniques.
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2.5.1 Topology modelling and system identification

Chemical and mineral processes are complex. Understanding the interactions between elements
in the process can be difficult, requiring scrutiny of disparate information sources. These in-
formation sources include process data from different types of sensors, engineering diagrams,
process models, and design documents. The volumes of data available to engineers is increasing
with advancements in Industry 4.0 solutions to process engineering problems[Reis & Gins, 2017].
Visual analytics can be used to provide engineers with more tangible tools for understanding
this information [Keim et al., 2010]. Knowledge of connectivity and causality of a process can
be used to build a topology model of the process and visualise it. Romero & Graven [2013]
developed a user-centered design methodology to visualise connectivity information to support
engineers responsible for operation and maintenance of an oil and gas facility.

Parameter estimation for system identification can also be performed with a known system
structure[Yang et al., 2014]. Fixing the system structure in advance can streamline the system
identification procedure, so that not every possible combination of inputs and outputs needs to
be evaluated.

2.5.2 Process monitoring

Causality analysis can be used as a tool for process monitoring. One use for causality analysis
is for fault diagnosis fault diagnosis. A fault may be defined as follows:

Definition 3. Fault: Abnormal event that causes that causes measured variables or key perfor-
mance indicators (KPIs) to deviate from desired values, possibly causing performance or safety
degradation.[Isermann, 2006]

Identifying the location of the fault is often termed root cause analysis (RCA). Modern chemical
and mineral processes are highly interconnected through units, equipment, energy flow and ma-
terial flow and information flow through control loops. This interaction is further complicated
through recycle streams, complex control strategies, and control interaction. This interconnec-
tivity means that a fault originating in one part of a process propagates to different parts of
the process. This causes numerous measured variables to show effects of the fault, obscuring
the root cause. The effect of the fault spreading through the process is often referred to as the
‘smearing effect’[Van den Kerkhof et al., 2013].

Since the faults propagate along connected paths in a process, knowledge of these connections
may be utilised to trace the fault back to its root cause[Reis & Gins, 2017]. This connectivity
information is often available from process knowledge. Fundamental process knowledge, acquired
by engineers through education, training, or experience, can reveal the connections between
variables[Yang et al., 2014]. Another resource for this connectivity information is historical
process data, which can be used to model the causality[Yang et al., 2014].

Another way to look a the process monitoring problem is that engineers want to know the cause
for a change in the process. In the cause of fault diagnosis, the change has detrimental effect,
and the engineer wants to find the root cause of the change so that it can be corrected. However,
change with a positive effect may also occur. For example if the recovery of a process increased,
it would be useful to know what conditions caused the positive change so that the scenario can
be repeated, or the process moved to an optimum by obtaining these conditions again.

Engineers can leverage data analysis techniques to analyse large time spans of data and classify
operations of good and bad performance. The difference in performance may be due to specific
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process conditions. Causality analysis can be used to identify the contributing variables to those
conditions, and how they are influenced by, and influence other variables in the process.

2.5.3 Consequential alarm identification

Industrial processes have numerous alarms to indicate to an operator when an abnormal sit-
uation has occurred. Alarms are usually triggered when a KPI or measured variable deviates
significantly from a desired value. Ideally only one alarm should be triggered during an abnor-
mal event. However, as a result of interconnectivity and redundancy, an abnormal event which
has propagated through a process may triggers a multitude of alarms[Wang et al., 2016]. This
abnormal event propagating through the process will trigger the alarms in sequential order.
Causality analysis could then be used to determine the root cause alarm. This application can
be seen as a type of fault diagnosis, with specific focus on alarm propagation.

The online consequential alarm identification results could be used to identify typical alarm
patterns. These patterns could be saved offline. When a new alarm sequence matches one of the
saved patterns, a single alarm for the known root cause can be triggered, instead of triggering
all the alarms in the pattern. In this way alarm flooding can be reduced[Yang et al., 2014].

By taking into account time lags between alarm variables, Yang et al. [2012] generated a cor-
relation colour map of the alarm data to show clusters of alarms strongly correlated with each
other. They found that this was useful to identify redundancy in the alarm network and alarm
settings could be improved. The application was demonstrated on an industrial case study of a
hydro-treater process in a refinery. Zhang et al. [2018] demonstrate the use of causality analysis
for consequential alarm identification. This application was to analyse alarms of high central
processing unit (CPU) utilisation in a computing network, as opposed to alarms from an indus-
trial process. However, the application can be extended to different types of alarms. Hu et al.
[2017] investigated the use of causality analysis techniques to determine cause-effect in alarm
data. the application was demonstrated on data from an industrial oil plant.

2.5.4 Risk analysis

Risk analysis and hazard and operability (HAZOP) studies can be performed using connectivity
and causality analysis. The possible fault propagation path can be identified using these tech-
niques, so that the effects of a fault can be predicted in advance. This can be seen as a type of
prognosis application of these techniques. The connectivity structure can be used to automate
the inference using forward propagation[Yang et al., 2014].

Risk analysis and HAZOP studies are typically done during design and commissioning of pro-
cesses[Sinnott, 2009]. In scenarios where the connectivity was obtained from knowledge-based
methods, once the process has been designed the connectivity can be extracted. Data-based
causality techniques can only be applied on an existing process that is already running. So un-
less the risk and HAZOP are being re-evaluated, the data-based techniques would not be useful
in this context. Re-evaluation of risk may be necessary if units are replaced or process operation
is altered significantly.

Venkatasubramanian et al. [2000] reviewed how intelligent HAZOP techniques based on signed
digraph (SDG) approach (see Section 2.8 for more information) can be used to aid traditional
manual HAZOP methodologies. They demonstrated how these SDG based systems can reduce
the engineering time and effort, and improve the reliability of the analysis by limiting the room
for subjective human error[Venkatasubramanian et al., 2000].
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Cui et al. [2010] investigated an approach where automated connectivity extraction from piping
and instrumentation diagrams (P&IDS) was integrated with HAZOP expert systems. They
found that the integration aided the HAZOP procedure by sparing time and effort required for
process specification.

Wang et al. [2012] developed a support system for HAZOP studies. The system first classifies
typical accidents (or faults) and describes of their causes. A connectivity model, or ‘influence
relationship model’ as it is referred to in the paper, is then constructed using the SDG approach.
This connectivity model is then used to identify spread paths (propagation paths) of the fault
through the system. this program, a number of influence relationship models, which can be uti-
lized to present the relationship structure of the whole system, can be established, and a variety
of spread paths, which can be employed to describe the occurrence of the accidents, can be iden-
tified. These models and paths can help analyzers to understand the analysis process of different
chemical processes and to verify the analysis results. The system suggested helped to capture
and formalise knowledge from process experience typically passed on from engineer to engineer.
This experience knowledge includes the connectivity structure of the process, classification of
typical faults, reasons for typical faults, and their effects.

This was suggested as a possible future research direction for the field of connectivity and
causality analysis in the paper by Romero & Thornhill [2014], where the integration, navigation,
and exploration of plant connectivity was discussed.

2.5.5 Control structure design

Connectivity and causality represent the basic causal nature of the process. Understanding the
interactions of variables can aid design of the control structure of the process. This information
can be used to determine the best locations for control loops and for sensors in the process [Yang
et al., 2014]. This application only makes sense for an existing process, with existing control
structures. It could be used to improve control structure in an existing process. For example,
complex interactions that are not apparent from traditional process modelling techniques may
be revealed using causality analysis.

Birk et al. [2014] presented application software to support engineers in the selection of control
configuration in interconnected processes. The software combines a graphical representation of
the physical process layout, a directed graph that represents the process dynamics and con-
trollers, and control configuration analysis tools, in one unified user interface. The control
configuration analysis tool utilised most extensively was the relative gain array [Skogestad,
2010].

2.6 Causality analysis in the context of fault diagnosis

Figure 2.3 gives an overview of the process monitoring procedure. Fault detection is applied to
data measured in the process. When no abnormal behaviour is detected, the fault detection loop
continues. When an abnormality is detected, further investigation into the fault is performed
with fault identification. When the root cause of the fault has been identified then the operator
may decide what corrective action is necessary and the operator can then perform process
recovery to return the process to its desired operation.

The focus of the mining industry on process optimisation and process monitoring[Deloitte, 2018,
Hodouin, 2011], means that the fault diagnosis application of causality analysis is highly relevant.
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Figure 2.3: Illustration of process monitoring loop.

Therefore, this dissertation focuses on the use of causality analysis for fault diagnosis. This
section therefore introduces fault diagnosis and places causality analysis within that context.

2.6.1 Fault detection

According to the the survey on industrial process monitoring and diagnosis by Qin [2012], two
different approaches are followed in fault detection. One approach is to construct a model of
the process based on observed normal operating conditions (NOC), and when new data deviates
from this normal model, the presence of a fault is inferred. The other approach is to build
models for all relevant fault cases, and determine whether new data matches any of these fault
models. In this approach, fault detection and identification may happen simultaneously. Clearly
the latter approach requires more modelling effort, and an extensive fault library that is difficult
to construct. Therefore most process monitoring methods use the approach modelling NOC
[Qin, 2012].

Principal component analysis (PCA) and partial least squares (PLS) have been the predominant
techniques used for fault detection [Qin, 2012]. These multivariate projection methods allow for
feature extraction of data from a large number of variables to effectively model process data
[MacGregor & Kourti, 1995]. Principal component analysis (PCA) has been used by numerous
authors. [Ge & Song, 2013, Kourti & MacGregor, 1995, MacGregor & Kourti, 1995, Westerhuis
et al., 1998, Xiao & He, 2011]. PLS has also been widely applied[Dong & Qin, 2017, MacGregor
et al., 1994, Westerhuis et al., 1998, Wold et al., 1996, Zhang et al., 2012]. Independent compo-
nent analysis (ICA) is another way to extract factors from data when significant non-Gaussian
distributions make up the process data [Qin, 2012]. This approach was used by Liu et al.
[2013], Odiowei & Yi Cao [2010], Yingwang & Ying [2013], Zhang & Ma [2012]. Using Fisher
discriminant analysis (FDA), data collected from the plant during specific faults is categorized
into classes. FDA is a dimensionality reduction technique in terms that maximise separation
between these classes[Chiang et al., 2000].

Some issues arise when considering the approach of modelling the NOC. The question of how
to define and identify NOC does not have a straightforward answer. Another issue that is
tied both to the problem of identifying NOC and with the implementation of fault detection,
is that processes are dynamic and operating conditions vary over time[Li et al., 2000]. The
feed conditions may be different, set-points may be altered according to different performance
priorities, control strategies may be altered. All these may cause an observed deviation from
the observed NOC, but are not necessarily faults. To mitigate this measures can be employed to
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ensure that the NOC data used covers a wide range of process conditions. Another mitigation
strategy is to perform adaptive monitoring, where the model is updated recursively whenever a
‘plant-model mismatch’ is found. Li et al. [2000] discuss the use of a recursive PCA methodology,
for example.

Spectral techniques for the purposes of oscillation detection are available. Jiang et al. [2007]
presented the spectral envelope technique to detect and diagnose oscillations. The spectral
envelope is calculated from the eigenvalues of the power spectral density matrix. When a peak
in the spectral envelop is observed, it indicates the presence of an oscillation.

2.6.2 Fault identification

Detecting a fault is not sufficient on its own. Once it has been detected it is imperative to know
more information, such as where the fault originated, what type of fault it was, and what was
the magnitude of the fault. This additional information is useful to determine the corrective
action needed to bring the process back to its desired state.

The application of causality analysis for fault identification was discussed in Section 2.5.2.

Fault identification methods are often paired with specific fault detection methods. For example,
when PCA is used for fault detection, the contribution of each variable to the metric quantifying
the deviation of the new data from NOC data can be analysed[Qin, 2003]. When a variable is
shown to have a large contribution to the fault it is taken as an indication of the root cause.
However, due to the smearing effect [Van den Kerkhof et al., 2013], a large number of variables
may show significant contributions, and therefore no single variable can be taken as an indication
of the root cause. Adaptations of traditional contribution plots have been developed that improve
fault identification. For example, the reconstruction based contribution method presented in
Alcala & Qin [2009].

For oscillations diagnosis, the spectral envelope technique[Jiang et al., 2007] allows for a hy-
pothesis test to determine which variables contribute to the oscillation detected. An oscillation
contribution index can also be calculated, which gives an indication of the relative contributions
of each variable to the oscillation [Jiang et al., 2007]. The ability to identify which variables
are contributing to the oscillation, as well as the oscillation contribution index, give useful fault
identification capabilities to this technique. However, the oscillation contribution index gives no
indication of the order in which the oscillation propagated through the system.

Another oscillation diagnosis technique, the nonlinearity index, developed by Thornhill [2005],
ranks variables according to the nonlinearity of their time series. The central concept of this
approach is to exploit the fact that a process can act as a mechanical low pass filter [Thornhill,
2005] as the oscillation propagates to different variables. The low-pass process dynamics remove
the higher harmonics in the trends and destroy the phase-coupling. This makes the waveforms
more sinusoidal and more linear the further away from the root cause the variable is. Therefore
the variables with the highest nonlinearity index are assumed to be closest to the root cause.
The basis of the nonlinearity test is comparison of the predictability of the time series trend to
that of generated surrogate trends [Thornhill, 2005]. Although this assumption, that the degree
of nonlinearity indicates the order in which the oscillation propagated through the process, is
generally reliable, there may be other causes for nonlinearity in the time series trends that
mean that nonlinearity may be higher further away from the root cause. Chapter 4 presents an
example of this.

As mentioned in Section 2.5.2, faults propagate along connected paths in a process, knowledge of
these connections may be utilised to trace the fault back to its root cause. Causality analysis can
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be used to analyse the propagation paths of faults through a process [Yang & Xiao, 2012]. This
addresses the limitations of fault identification using traditional fault detection methods. Section
2.9 presents various causality analysis techniques and their application for fault diagnosis.

The performance of a fault detection methodology is often defined in terms of the detection
delay; the time between the fault occurrence and the fault detection. Rapid fault detection
is desired because the sooner a fault is detected the sooner it can be diagnosed and corrected
for. Due to extensive research into numerous applications and techniques detection delay can
be in the order of seconds or minutes in many applications, as reported by Reis & Gins [2017].
However, the diagnosis step can often take hours or days, with ad-hoc analyses that are note well
formalised. This means that the limiting factor in the process monitoring loop is the diagnosis
step [Reis & Gins, 2017]. Therefore improvements in this step presents the most potential
benefit to industry. One of reasons for the slow progress of fault diagnosis techniques is that
the techniques available often require significant input from engineers to apply the methods
and interpret their results. This limitation is addressed in Section 5.3, by defining the desired
performance of these methods.

2.6.3 Process recovery

The previous steps of the process monitoring loop are aimed at determining whether a fault has
occurred, and when it has occurred, what the cause was. These steps are performed so that
the corrective action needed to return the process to its desired state can be determined. At
this point the automated, or data-based approaches typically end, and a process engineer can
interpret the results of the fault diagnosis techniques and intervene in the process. Corrective
action is dependent on the fault, but it may include direct intervention, such as replacement of
faulty equipment. Corrective action could also be more indirect intervention, such as changes
in control strategy, controller tuning, or set-point changes.

Olivier & Craig [2017] presented a strategy to determine the need for shutdown of a plant during
fault conditions to take corrective action. When a fault has been identified and diagnosed an
adaptive hypothesis test is used to determine whether to maintain plant operation. An economic
operability analysis is then performed to determine whether the faults adversely affect economic
performance enough to justify shutdown to repair the faults.

2.7 Resources for causality and connectivity information

Connectivity can be modelled either from knowledge of the process or from statistical methods
applied to historical process data.

Process knowledge refers to the fundamental characteristics of the process that are understood
by process experts. This information is either stored in mathematical models of the process, in
process schematics that describe the connections between units, or fundamental process knowl-
edge[Yang et al., 2014]. This process knowledge is acquired by engineers through education,
training, and experience.

Causal information may also be extracted from process data. The connections between measured
variables are reflected in the data, since an event observed in one variable will be propagated
through to the variable it is connected to.

The extraction of causality from process knowledge is discussed further in Section 2.8, while
extraction of causality from process data is discussed further in Section 2.9.
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2.8 Capturing connectivity from process knowledge

Process knowledge is a valuable source for determining process connectivity. Process knowledge
is encoded in a variety of forms: equations/models describing the process from first princi-
ples; stored in human minds; process schematics, such as piping and instrumentation diagrams
(P&IDs); and rule-based models[Arroyo et al., 2014]. Topology captured from process knowl-
edge is typically qualitative in nature[Yang et al., 2014, Yang & Xiao, 2012]. This means that
the existence of a connection can be inferred, but the strength of the connection cannot.

2.8.1 Connectivity from first principles and empirical mathematical models

For some processes, models have been developed expressing the dynamic system as a set of
differential and algebraic equations[Maurya et al., 2003]. In other instances, empirical or semi-
empirical models can be used to describe the processes. These equations describe the relation-
ships between variables in the process. In the case of differential equations, these relationships
are causal, while with algebraic equations the relationships are non-causal[Maurya et al., 2003].
Non-causal means only connectivity information can be obtained, not causality information. A
connectivity map can be constructed systematically by analysing these equations. The drawback
of this method is that these types of models are not available for all processes. Mineral processes
tend to be characterised by a large degree of uncertainty and complexity. This uncertainty an
complexity is a result of a number of factors, including: complex physical and chemical pro-
cesses; varying ore compositions; complex multiphase characteristics; and varying distributions
of solid particle sizes[Wills, 2007]. These factors make accurate models of mineral processes
scarce. In some cases the accuracy of the available models, although adequate for the purposes
of simulation or prediction, may be insufficient for accurate modelling of the process causality
structure [Maurya et al., 2003].

2.8.2 Manual construction of connectivity maps from human knowledge

Process experts have extensive knowledge of the interactions in a process, and this knowledge
can be drawn upon to manually construct topology. Formalised procedures to perform this
encoding of process knowledge into topology maps exist [Maurya et al., 2003], known as signed
directed graph (SDG) modelling. SDGs are connectivity maps where nodes process variables and
edges between nodes indicate the directed connections between nodes. Each edge is assigned
either a positive or negative sign, to indicate a positive or negative influence of one node on
another. For a positive edge, an increase or decrease in one variable would cause a change in the
same direction for the other variable. For a negative edge, a change in one variable would cause
a change in the opposite direction for the other variable[Iri et al., 1979]. The topology maps
generated from human knowledge encapsulate a lot of information accurately, and propagation
paths can be confidently identified. However, the procedures for generating these maps are
extremely time-consuming and complicated [Yang et al., 2014, Yang & Xiao, 2012].

Jiang et al. [2009] presented a methodology where a plant expert manually constructs an adja-
cency matrix that describes the connections between control loops. While it also requires process
knowledge, this method is simpler than SDG construction from process knowledge, since only
basic knowledge of the control loops is required. Despite its simplicity, it was shown to accu-
rately identify fault propagation paths, since the faults would propagate through the control
structure [Duan et al., 2014, Jiang et al., 2009, Yang et al., 2014, Yang & Xiao, 2012].
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2.8.3 Extraction of topology from process schematics

Models of the process based on the physical layout of units are referred to as topology-based
models[Di Geronimo Gil et al., 2011]. Plant diagrams, such as piping and instrumentation
diagrams (P&IDs), can be considered formal descriptions of process knowledge. The connections
between units, sensors and controllers are displayed visually. When an extensible mark-up
language (XML) description of the diagram is available, the visual representation of connections
is encoded in a programmatic format that can be exploited to automatically determine the
connectivity[Thambirajah et al., 2009]. Significant research has been performed to automate
this procedure [Arroyo Esquivel, 2017, Thambirajah et al., 2009, Yang et al., 2014, Yang &
Xiao, 2012, Yim et al., 2006]. In a series of papers by Romero & Graven [2013], Romero
et al. [2014] and Romero & Thornhill [2014], work on commercial software for extracting and
visualising connectivity from XML schematics has been presented. The software allows for
simple construction of an XML-based P&ID. This series of papers focuses on developing easy
to use software for connectivity extraction and providing visual aids for various connectivity
applications.

Although connectivity extraction from schematics may be automated, it requires that an ac-
curate and up-to-date P&ID is available, and that this P&ID is available in XML description.
Process schematics in digital formats are not always readily available or up-to-date. Often in-
dustrial companies only have these schematics in hard copy printouts. XML models can be
constructed manually from these printouts, but this requires significant effort, especially if the
schematic had to be updated. To address this challenge, [Arroyo Esquivel, 2017] developed a
tool for capturing connectivity from hard copies of process schematics using computer vision
techniques. The process schematics may be scanned into a PDF format and the connectivity
information is automatically generated.

2.9 Capturing causality from historical process data

Sensors in processing plants measure process variables, generating a set of time series of the
variables. These time series measurement can be recorded on a data historian. The relationship
between variables’ time series gives an indication of whether a causal connection between the
variables exists. A number of techniques are available for analysing these relationships to capture
causality information from process data [Yang et al., 2014].

A formal description of causality inferred from process data was proposed by Wiener [1956]:

X could be said to ‘cause’ Y when predictability of Y is improved by incorporating
information about X

However, this does not provide sufficient information to infer that a causal link exists. If X
causes Y , a change in X results in a change in Y after some time has passed. Therefore, causal
dependency between variables is characterised by a temporal element as well[Pearl, 2003].

A number of methods exist, including: Granger causality; transfer entropy; cross-correlation;
partial directed coherence; convergent cross-mapping; and k-Nearest neighbours. Calculations
for each of these techniques are presented briefly to establish the core concepts for causality
analysis.
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2.9.1 Granger causality

Granger [1969] developed a formalisation of Wiener’s causality definition in the context of re-
gression models, called ‘Granger causality’:

when inclusion of past measurements of X in a regression model of Y results in an
improvement on the prediction of the autoregressive model of Y , then X is said to
have a causal influence on Y

This definition incorporates some quantifiable measure of predictability improvement, but also
incorporates temporal information, by including past measurements of the input. Consider the
time series of two variables, xi(t) and xj(t). xj(t) can be modelled as an autoregressive (AR)
model [Madsen, 2008], as shown in Equation 2.2, referred to as the restricted model.

xj(t) =

k∑
r=1

Bjxj(t− r) + εj(t) (2.2)

In this case only past values of xj are incorporated to predict future values of itself. In Equation
2.2: k is the model order defining the time lag; B is the AR coefficient; and εj is the prediction
error. xj(t) can also be modelled incorporating past values of both xi(t) and xj(t), known as
the full model as shown in Equation 2.3.

xj(t) =
k∑
r=1

[Aji,rxi(t− r) +Ajj,rxj(t− r)] + εj|i(t) (2.3)

In Equation 2.3: Aji and Ajj represent the regression coefficients. Aji, Ajj and Bj can be
determined using the least squares approach[Hill, 2011]. The model order, k, can be determined
using the Akaike Information Criterion (AIC)[Akaike, 1974]. When the variance of εj|i(t) is less
than the variance of εj(t), it implies that the prediction of Y is improved by including past
values of xi. xi is then said to Granger cause xj [Bressler & Seth, 2011]. The Granger causality
can be quantified as shown in Equation 2.4.

Fxi→xj = ln
var(εj(t))

var(εj|i(t))
(2.4)

When the prediction of xj is not improved by including xi, var(εj|i(t)) = var(εj(t)) and Fxi→xj =
0 . When the prediction of xj is improved by including xi, var(εi|j(t)) < var(εi(t)) and Fxi→xj >
0 [Bressler & Seth, 2011].

Granger causality provides a causality measure with simple calculations that are computation-
ally inexpensive. The linear regression concept from which the measure is derived is easy to
understand and the results are easy to interpret, since regression is well understood.

A drawback of Granger causality is that the causality measure is dependent on the accuracy of
the AR models. Granger causality relies on linear models of time series interaction that need to
be fit to the data[Bressler & Seth, 2011], therefore nonlinear interactions in processes may cause
Granger causality to be inaccurate.

Granger causality was initially developed for financial data analysis[Granger, 1969], but re-
searchers have since found it to be useful for a number of applications. This includes extensive
application in neuroscience[Bressler & Seth, 2011]. Granger causality has been applied for fault
diagnosis in chemical processes[Yang & Xiao, 2012].
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Yuan & Qin [2014] applied Granger causality for oscillation diagnosis. Their approach employed
Principal Component Analysis (PCA) to first isolate the variables contributing to the oscillation.
Since the first few PCs would have the most variation, and therefore would contain the variations
caused by the oscillations. Therefore, the variables that contributed most according to the
contribution plots were taken as oscillation source candidates. They also employed a spectral
variation of Granger causality. They tested their methods on a simulated case study as well
as industrial application on a case study from a plant of the Eastman Chemical Company.
The time domain Granger causality analysis effectively identified the controlled variable (CV)
and manipulated variable (MV) from one of the level control loops in the process, since these
variables showed connections to many other variables in the system, but no connections from
other variables in the system. The spectral Granger causality was also applied. As described in
Section 2.9.4, the results of the spectral Granger causality were presented in a matrix of plots
indicating the spectral GC magnitude as a function of the frequency. A peak at the oscillation
frequency indicates the connection strength for the oscillation. They found that the time-domain
Granger causality was good at identifying the propagation path, while the spectral GC provides
more in-depth analysis of the individual connections strengths at the oscillation frequency [Yuan
& Qin, 2014].

Kuhnert & Beyerer [2014] investigated a combined analysis with Granger causality, transfer en-
tropy, and cross-correlation. The methods were tested on a simulated case study of a continuous
stirred tank reactor (CSTR). The authors found that combining the results of all the causality
analysis methods aided in root cause analysis. The reasoning for this combined approach was
that the existence of a causal connection is a hypothesis that needs to be tested. The confidence
in rejectingthe null hypothesis, that no connection exists, is improved when more evidence for
its rejection is provided from different methods. The authors did indicate that this combination
is ad-hoc, and lacks systematic guidelines for how the results should be combined.

Landman et al. [2014] applied Granger causality and PDC for diagnosis of oscillations in a large
scale board machine. This is similar to the approach of [Yuan & Qin, 2014], since spectral
Granger causality and PDC are equivalent. Landman’s approach combined process knowledge-
based connectivity with the data-based methods by limiting the data-based search for causal
connections to those already confirmed by the plant connectivity. This was applied to reduce
the large amount of spurious causal connections found by Granger causality. Even with this
refinement procedure, Granger causality still found multiple propagation paths. Therefore PDC
was used to refine the causality map even further, by exploiting the fact that it is able to find
direct causal connections more effectively. This use of PDC by Landman et al. [2014] is discussed
in Section 2.9.4.

Wakefield et al. [2018] applied Granger causality and transfer entropy for disturbance diagno-
sis in a simulation of a milling circuit in a minerals processing plant. The Granger causality
results did show useful information for root cause analysis of the simulated faults. However, it
was found that the results were difficult to interpret, with a large number of spurious causal
connections. Additionally, the lack of clear systematic procedures for applying the techniques,
such as guidelines for data selection and parametrisation, made the application difficult and
interpretation of the results uncertain.

2.9.2 Transfer entropy

Another way to formulate Wiener’s causality description is in an information-theoretic context.
Consider two variables, X and Y . In this discussion the symbols X and Y are used in place of xi
and xj to avoid confusing variable indices with time step indices. Transfer entropy is a measure
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of the reduction in uncertainty of Y when incorporating past values of X[Schreiber, 2000]. The
transfer entropy from X to Y can be calculated as shown in Equation 2.5.

Ty|x =
∑

p(yi+h,y
(K)
i ,x

(L)
i ) log

p(yi+h|y
(K)
i ,x

(L)
i )

p(yi+h|y
(K)
i )

(2.5)

In Equation 2.5: i represents the time step index; p(a, b) represents the joint probability distri-
bution function (PDF) between a and b; p(a|b) represents the conditional PDF of a given b; h

is the prediction horizon; x
(L)
i = [xi, xi−τ , ..., xi−(L−1)τ ] and y

(K)
i = [yi, yi−τ , ..., yi−(K−1)τ ] are

the embedded vectors of X and Y with embedding dimensions, L and K respectively, and time
interval, τ .

For example, an embedded matrix with K = 3 and τ = 4, is shown in Equation 2.6.

X(K) =


x9 x5 x1
x10 x6 x2
x11 x7 x3

...
...

...
xN xN−4 xN−8

 (2.6)

The numerator of the logarithmic term in Equation 2.5 represents the probability that Y has
a certain value (yi+h), h samples in the future, when past values of both Y and X are known.
The denominator of the logarithmic term in Equation 2.5 represents the probability that Y has
a certain value (yi+h), h samples in the future, when past values of only Y are known. When
Y is independent of X, the numerator and denominator are equal, and the logarithm reduces
to log(1) = 0, giving Ty→x = 0. When prediction of Y is improved by inclusion of X, the
numerator is greater than the denominator and Tx→y > 0. The PDFs can be calculated using
kernel density estimation [Silverman, 1986]. The kernel density estimation approach used in this
dissertation is discussed in a subsection at the end of this section.

A causality measure comparing the influence of X on Y with the influence of Y on X can be
calculated according to Equation 2.7 [Bauer et al., 2007a].

Tx→y = Ty|x − Tx|y (2.7)

The practice of subtracting the forward and reverse causal influence to obtain a net causal
influence is common in causality analysis [Barnett & Seth, 2014].

The transfer entropy measure shown in Equation 2.5 can be unpacked to express it in terms of
conditional Shannon entropies [Kantz & Schreiber, 1997], as shown in Equation 2.8.

Ty|x =
∑

p(yi+h,y
(K)
i ,x

(L)
i ) log

p(yi+h,y
(K)
i ,x

(L)
i )

p(y
(K)
i ,x

(L)
i )

−
∑

p(yi+h,y
(K)
i ) log

p(yi+h,y
(K)
i )

p(y
(K)
i )

=H(yi+h|y
(K)
i )−H(yi+h|y

(K)
i ,x

(L)
i )

(2.8)

where

H(yi+h|y
(K)
i ) = −

∑
p(yi+h,y

(K)
i ) log(yi+h|y

(K)
i ) (2.9)
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is the Shannon entropy for Y conditioned on past values of itself, and

H(yi+h|y
(K)
i ,x

(L)
i ) = −

∑
p(yi+h,y

(K)
i ,X

(L)
i ) log p(yi+h|y

(K)
i ,X

(L)
i ) (2.10)

is the Shannon entropy for Y conditioned on past values of itself and X.

The similarity between transfer entropy and Granger causality is apparent. Where Granger
causality focuses on predictability improvement when including past values of another variable,
transfer entropy focuses on uncertainty reduction when including past values of another variable.
In fact, Barnett et al. [2009] and Hlavackov-Schindler [2011] have demonstrated that Granger
causality and transfer entropy are equivalent when applied to Gaussian variables.

Transfer entropy is not limited by the linearity assumption[Schreiber, 2000], therefore it may
be more suited for application to systems showing nonlinear behaviour. Transfer entropy is
restricted by the stationarity assumption[Schreiber, 2000]. This means that the dynamic prop-
erties of the system must not change over the set of data used[Box, 2008].

Transfer entropy has as many as four different parameters to select, namely: the embedding
dimension for the source k; the embedding dimension for the destination L; the time interval
τ ; and the prediction horizon h. This makes automation of the procedure complicated. This is
discussed further in Section 2.12.2.

Estimation of the PDF using kernel density estimation can make transfer entropy extremely
computationally expensive. The size of PDF that has to be estimated is determined by the
embedding dimensions. The largest PDF to be calculated would be K + L + 1 dimensions.
This computational burden makes transfer entropy less appealing. The computational burden
is increased when the optimal embedding dimensions need to be determined, since this also
requires PDF estimation[Bauer et al., 2007a]. Additionally, when the surrogate time series
method is used to determine the significance threshold (explained in Section 2.12.3), the transfer
entropy calculation is repeated a large number of times, further exasperating the computational
complexity.

Bauer et al. [2007a] introduced the use of transfer entropy for fault diagnosis in chemical pro-
cesses. The calculation procedures were presented, including a description of KDE for prob-
ability distribution estimation. Some parameter optimisation was investigated. The authors
determined the minimum number of samples required for a significant transfer entropy to be
calculated for a known causal connection. The optimal prediction horizon (h) and time interval
(tau) were determined for the causal connections in the case study. This parametrisation is dis-
cussed further in Section 2.12.2 The techniques were applied to two case studies. The first was
a reaction process at the Eastman Chemical Company, where an oscillatory disturbance entered
the process through the reactor feed. The second was a distillation process at the Eastman
Chemical Company, where sharp, repeating spikes were observed affecting multiple variables.
Transfer entropy was able to effectively point to the pressure of an inert gas valve as the first
variable in the causal map. Therefore the techniques were shown to be effective at isolating the
root cause.

Shu & Zhao [2012] developed a modified transfer entropy to more accurately identify the time

delay between variables. In Equation 2.5, the reference for the decrease in uncertainty is x
(K)
i .

This means that as the prediction horizon, h, varies, the reference varies. In Shu’s modification,

x
(K)
i is replaced with x

(K)
i+h−1, so that as h varies, the reference is fixed.

Naghoosi et al. [2013] applied transfer entropy, while using the mutual dependency and dif-
ferential dependency curves for transfer entropy. The mutual dependency between all pairs of
variables is used as a screening process, so that only variables that show significant mutual de-
pendency are analysed further to calculate the transfer entropy. The mutual dependency curves
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X Y

Z

?

Figure 2.4: Example of causal map showing indirect connection observed from X → Y .

are also used for parameter selection for transfer entropy. This parametrisation is discussed
further in Section 2.12.2. They tested the ability of their method to identify accurate causal
connections between variables in an industrial oil sands separation process used for bitumen ex-
traction. They found that these techniques provided useful information for detecting causality
between a number of process variables. This case study did not investigate any specific fault
condition, but was rather concerned with individual causal connections.

Duan et al. [2013] demonstrated the use of direct causality detection using transfer entropy.
Direct transfer entropy is used to calculate the transfer entropy between two variables while
conditioning on the effect of confounding variables. Figure 2.4 illustrates this scenario. When
X is connected to Z, and Z is connected to Y , it may appear that X is connected to Y .
This indirect connection may be spurious. One way to determine whether this connection is
a true connection is to condition on the intermediate variable, Z. In this way the effect of
X on Y without the effect of Z is determined. By only considering direct transfer entropy,
spurious causal connections can be minimised. A possible drawback of this technique is that the
embedding dimensions of additional variables (not just K and L) also have to be selected, further
complicating the parametrisation. This also requires estimation of additional conditional PDFs,
so the computational expense is increased[Duan et al., 2013]. The direct transfer entropy was
tested on a case study of a flue gas desulfurization process at an oil company. The technique was
shown to identify causal connections accurately, with minimal spurious connections identified.

Another complication is with the hypothesis test for significance (see Section 2.12.3). Surrogate
time series are typically generated for this hypothesis test [Schreiber & Schmitz, 2000], where
the causal connection from X to Y are destroyed. However, for direct transfer entropy the
surrogate data has to satisfy the conditions that there is no connection from X to Y , but the
indirect connection through Z still exists[Duan et al., 2013].

Hajihosseini et al. [2014] applied transfer entropy to the Tennessee Eastman benchmark dataset.
The novelty of their approach was that they used transfer entropy to generate causal maps
to determine the patterns of information flow for different faults. These patterns could then
be used to isolate different faults more effectively by matching them to previously identified
patterns. This approach directly addresses the fact that processes often exhibit multimodality,
where different process behaviour arises from operational changes, switching between control
strategies, and from fault conditions[Yu, 2012]. Other applications of causality analysis apply
causality measures to the data generated by the fault conditions under consideration.

As mentioned in Section 2.9.1, Kuhnert & Beyerer [2014] investigated a combined analysis
with Granger causality, transfer entropy, and cross-correlation. The methods were tested on
a simulated case study of a continuous stirred tank reactor (CSTR). The authors found that
combining the results of all the causality analysis methods aided in root cause analysis.

Duan et al. [2015] developed an adaptation of transfer entropy that didn’t involve estimation of
the PDFs, called transfer 0-entropy (T0E). The motivation for the development of this tech-
nique was that measured variables in processes do not always follow a well-defined probability
distribution. The probability distribution is typically estimated empirically, using KDE, for
example. However, when a variable has a known range, but an unknown distribution, its uncer-
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tainty can be quantified by the Lebesgue measure of the support of this random variable[Renyi,
1961]. Duan et al. [2015] exploited this idea to develop an analogous transfer entropy measure
that utilises this uncertainty quantification, and applied this T0E for fault diagnosis. The T0E
method was shown to be effective for fault diagnosis on the benchmark industrial process data
set of the Eastman Chemical Company. One identified limitation of this approach was that it
was found t be conservative at detecting causal connections. This means that expected causal
connections were missed using this approach. The authors stated that a possible reason for
the conservativeness is that the information transfer measure calculates the least amount of
information transferred from one variable to another.

Analogous to their previous work with Granger causality and process knowledge-based connec-
tivity, Landman & Jamsa-Jounela [2016] applied the direct transfer entropy method[Duan et al.,
2013] for oscillation diagnosis in the large scale board machine. In this approach, transfer en-
tropy was first calculated for all the pairs of candidate variables. A search algorithm was then
employed to identify connections that were considered to be direct connections from a plant
connectivity derived from process knowledge. The direct transfer entropy was then applied to
exclude indirect connections. This approach reduces the computational load, so that direct
transfer entropy does not have to be applied to every possible pair of candidate variables. The
authors found that, although this hybrid method reduced the number of spurious connections,
several spurious and indirect connections were still detected.

Rashidi et al. [2018] developed a modification of transfer entropy, the symbolic dynamic-based
normalised transfer entropy (SDNTE), to address the computational burden of transfer entropy.
The developed SDNTE is based on principles of time-series symbolization, xD-Markov machine,
and Shannon entropy. The proposed approach was shown to work for the Tennessee Eastman
simulation, as well as for an industrial case study of a large scale centrifuge.

As mentioned in Section 2.9.1, Wakefield et al. [2018] applied Granger causality and transfer
entropy for disturbance diagnosis in a simulation of a milling circuit in a minerals processing
plant.

Previous work by the author of this dissertation [Lindner & Auret, 2014] used principal compo-
nent analysis (PCA) for fault detection, combined with transfer entropy and cross correlation
for root cause analysis of disturbances in a simulated two-tank with heat exchange system. The
same approach was then used for root cause analysis of disturbances in a base metals refinery
simulation [Lindner et al., 2014]. Finally, the approach was validated on an industrial case study
of a fault in a platinum concentrator plant [Lindner & Auret, 2015]. These studies showed that
the techniques were useful for fault diagnosis, but the interpretation of the causality analysis
results was time consuming and fraught with possible errors due to human intervention. The
need for a more automated approach to reduce ambiguity and uncertainty in the results was
identified.

Kernel density estimation

The transfer entropy calculation shown in Equation 2.5 relies on calculation of probability density
functions (PDFs). These PDFs can be estimated using non-parametric kernel density estimation
(KDE) [Schreiber, 2000].

Kernel density methods can be understood in relation to histograms. Given some input data,
x(t), a histogram can be constructed, where the range of the data is divided into equal sized
bins. The number of values, xi, that fall into each bin is counted. Figure 2.5 illustrates the
estimation of a distribution using histograms. This is equivalent to placing a rectangular box
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Figure 2.5: Comparison of density estimation using histograms and Gaussian kernels.

over the bin for every point that falls within it, and stacking these boxes on top of one another.
However, the resulting distribution is sensitive to the width and placement of the bins.

Kernel density estimation provides a more accurate approach for estimation of the distribution
[Silverman, 1986]. Kernel density estimation places a kernel function, K(x), centered over every
point, xi, and the kernel functions are summed to give an estimated of the probability density:

p(x) =
1

N

N∑
i=1

K(x− xi) (2.11)

A Gaussian kernel function can be used, where:

K(x− xi) =
1√

(2π)θ
exp

(
−(x− xi)2

2θ2

)
(2.12)

θ is the bandwidth of the kernel. The bandwidth suggested by Li & Racine [2011] can be used
as a rule of thumb θ = 1.06N−0.2σx, where σx is the standard deviation of the input data.

Figure 2.5 shows the histogram and Gaussian kernel estimations with the actual distribution.
Since the kernel function placed over each point is smooth, the estimated distribution is smooth.
In contrast, the rectangular boxes used in the histogram approach gives a very discrete looking
distribution.

2.9.3 Cross-correlation

Cross-correlation[Govindan et al., 2005] takes a slightly different approach to that of Granger
causality and transfer entropy. Consider the two criteria that a relationship between the time
series of X and Y must exist and that this relationship takes time to manifest. Cross-correlation
analysis adjusts the time series of X and Y so that there is a lag between them. The correlation
coefficient between the adjusted time series can be calculated, and this procedure can be repeated
for a range of assumed lags. The correlation, ρ, for an specified lag, k, is calculated as shown in
Equation 2.13.

ρk =
1

N − k

N−k∑
i=1

(xi − µx)(yi+k − µy)
σxσy

(2.13)
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Figure 2.6: Gaussian kernel density estimation illustration.

In 2.13, N represents the number of samples and µ and σ represent the mean and standard
deviation respectively of the time series. The maximum correlation found, ρmax, is assumed to
be the actual correlation between the time series. The lag that yields this maximum correlation
value, kmax is assumed to be an estimate of the time delay between the variables.

The advantage of cross-correlation lies mostly in its simplicity and its computationally inexpen-
sive calculation. It is easy to implement and to interpret the results.

However, cross-correlation can only detect linear interaction between time series. In processes
where nonlinear behaviour is present, the linear correlation between the two time series may not
be an accurate representation of the interaction between them[Bauer & Thornhill, 2008].

The trend in a time series is ignored in the linear correlation calculated for each lag. The time
series is treated as ergodic, where every sample is representative of the entire time series. Values
at different time instants are regarded as samples of the same random event [Yang et al., 2014].
In other words, when the correlation between X and Y at a specific lag, k, is calculated, the
values of the time series of X and Y are considered to be repeated measurements of the same
event, instead of being seen as measurements of different events over time.

Bauer & Thornhill [2008] applied cross-correlation as a causality analysis measure for fault
diagnosis for two industrial case studies. The cross-correlation value, ρ, was calculated, as well
as the estimate fo the time delay, kmax. The time delay values were then used for a consistency
check, to determine whether the time delays along the propagation paths were consistent. The
first case study was a part of the Eastman Chemical Company process, where an oscillatory
disturbance affected a number of measured variables. The second case study was a section of a
large petroleum plant containing a recycle stream, where an oscillatory disturbance affected a
large number of variables. For both case studies, the developed techniques accurately identified
the propagation paths of the faults through the process.

As mentioned in Section 2.9.2, previous work by the author of this dissertation [Lindner & Auret,
2014] used principal component analysis (PCA) for fault detection, combined with transfer
entropy and cross correlation for root cause analysis of disturbances in a simulated two-tank with
heat exchange system. The same approach was then used for root cause analysis of disturbances
in a base metals refinery simulation [Lindner et al., 2014]. Finally, the approach was validated
on an industrial case study of a fault in a platinum concentrator plant [Lindner & Auret, 2015].

As mentioned in Section 2.9.1, Kuhnert & Beyerer [2014] investigated a combined analysis
with Granger causality, transfer entropy, and cross-correlation. The methods were tested on
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a simulated case study of a continuous stirred tank reactor (CSTR). The authors found that
combining the results of all the causality analysis methods aided in root cause analysis.

2.9.4 Partial directed coherence

Frequency domain methods for analysis of time series are often used to explore the periodic
nature of time series [Jiang et al., 2007]. This is especially useful when the application is analysis
of oscillations in the process. Frequency domain methods for causality analysis represent the
energy transfer between pairs of time series at each frequency[Baccal & Sameshima, 2001].
Partial directed coherence was developed to provide a frequency domain description of Granger
causality [Baccal & Sameshima, 2001]. The time series system can be modelled according an
M-dimensional autoregressive model, as shown in Equation 2.2. x1(t)

...
xM (t)

 =
k∑
r=1

Ar

 x1(t− r)
...

xM (t− r)

+

 ε1(t)
...

εM (t)

 (2.14)

The frequency response of the process can be obtained by application of the Z transform (discrete
version of Laplace transform) and setting z−1 = e−ιω, where ι represents the imaginary unit.
This gives Equation 2.15.

A(ω)X(ω) = E(ω) (2.15)

where A is a coefficient matrix whose entries are the coefficients between variable i and j are:

Aij(ω) = −
k∑
r=1

aij(r)e
−ιωr (2.16)

X(ω) = x1(ω)x2(ω) · · ·xN (ω) (2.17)

E(ω) = ε1(ω)ε2(ω) · · · εN (ω) (2.18)

When aij(r) = 0 for all values of r, there is statistical evidence that there is no causality from
xi to xj . Building on this concept, the PDC from xi to xj is defined by Equation 2.19.

|π̂ij(ω)| = |Aij(ω)|√∑M
i=1 |Aij(ω)|2

(2.19)

As with Granger causality, the regression coefficients for PDC can be calculated using AIC[Zhang
et al., 2015].

Since the PDC is based on frequency domain calculations, it may be particularly useful for ap-
plications where the process experiences oscillatory behaviour[Yang et al., 2014]. One drawback
of this technique is that it does not provide a single value to quantify the causal connection
between two variables. A matrix plot representation of the responses of each pair of variables is
employed [Yang et al., 2014]. Interpretation of frequency domain methods can be more obscure
than interpretation of time series methods, which means that the physical meaning of the results
of PDC is more difficult to grasp.

Landman et al. [2014] applied Granger causality for diagnosis of oscillations due to valve stiction
in a drying process. They found that the high level of connectivity in the system made interpre-
tation of the propagation paths difficult. Therefore, they used PDC to refine the causality map
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further, due to its ability to capture direct causal connections[Faes et al., 2010]. The ability to
capture direct causal connections is attributed to the fact that PDC incorporates conditioning
to exclude the influence of confounding variables[Gigi & Tangirala, 2010]. Landman et al. [2014]
found that the PDC complemented the ability of Granger causality to find the propagation path
of the oscillations.

As mentioned in Section 2.9.1, Yuan & Qin [2014] applied Granger causality for oscillation
diagnosis, and investigated a spectral Granger causality approach, which is analogous to PDC.
They tested their methods on a simulated case study as well as industrial application on a case
study from a plant of the Eastman Chemical Company. The time domain Granger causality
analysis effectively identified the controlled variable (CV) and manipulated variable (MV) from
one of the level control loops in the process, since these variables showed connections to many
other variables in the system, but no connections from other variables in the system. The spectral
Granger causality was also applied. The results of the spectral Granger causality were presented
in a matrix of plots indicating the spectral GC magnitude as a function of the frequency. A peak
at the oscillation frequency indicates the connection strength for the oscillation. They found
that the time-domain Granger causality was good at identifying the propagation path, while
the spectral GC provides more in-depth analysis of the individual connections strengths at the
oscillation frequency [Yuan & Qin, 2014].

Zhang et al. [2015] used PDC for oscillation diagnosis in a simulated process, as well as the
Tennessee Eastman benchmark dataset. Independent component analysis (ICA) was used to
isolate the candidate variables, and then PDC was applied to these variables. The PDC values
at the dominant oscillation frequency were calculated, and used to construct a causal map. They
demonstrated that PDC was effective at root cause analysis in both case studies

2.9.5 Convergent cross-mapping

Convergent cross-mapping (CCM) was proposed to detect causality for coupled variables in
strong nonlinear variables in ecosystems [Sugihara et al., 2012]. CCM compares the mutual
prediction ability of embedding manifolds. Takens theorem [Takens, 1981] states that when two
variables are causally linked, their shadow manifolds, Mx and My, are diffeomorphic to the
manifold of the original system. Diffeomorphism is an isomorphism of smooth manifolds. Mx

and My are reconstructed using embedded vectors of the series for X and Y :

Mx,i = [xi, xi−τ , ..., xi−(L−1)τ ] (2.20)

My,i = [yi, yi−τ , ..., yi−(L−1)τ ] (2.21)

where L represents the embedding dimension, and xi and yi represent the values of x and y
at time ti. When xi converges to a specific point xi−1, yi will converge to the corresponding
point yi−1. CCM predicts the point, yi, using the nearest points for each, xi, in Mx and their
corresponding mapped points My. The prediction is denoted as ŷi. The cross mapping between
x and y is then the correlation between yt and ŷt.

Mx is used to predict Mx and evaluate the influence of y on x. When Mx and My are diffeo-
morphic to original system manifold, there is a one to one mapping between the points in Mx

and My:
lim

Mx,i→Mx,k0

My,i →My,k0 = 0 (2.22)

With L + 1 points in the manifold Mx:

Mx,ki = [Mx,k1,Mx,k2, . . . ,Mx,k(L+1)] (2.23)
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When we determine these K + 1 points which are close to Mx,k0. The value of My,k0 can be
estimated using My,ki:

d(Mx,ki,Mx,k0) = exp(−Mx,ti −Mx,t0

Mx,k1 −Mx,k0
) (2.24)

M̂y,k0|Mx =

L+1∑
i=1

d(Mx,ki,Mx,k0)∑L+1
j=1 d(Mx,kj ,Mx,k0))

My,ki (2.25)

The correlation between y and the prediction of y given x is the calculated as:

ρx→y = lim
N→∞

cov(My, M̂y|Mx) (2.26)

Similar to transfer entropy, the computational complexity of CCM can get large very quickly as
the embedding dimension, K, is increased. However, it is not as computationally expensive as
transfer entropy, where the PDFs have to be estimated. An advantage of CCM is that it has
been reported to work well for short time series [Clark et al., 2015, Sugihara et al., 2012]. This
means that it may be preferable in cases where the number of samples is limited. CCM is also
attractive due to its applicability to nonlinear systems [Luo et al., 2017].

According to Ye et al. [2015], CCM works better for systems with weaker causal strengths, since
strong causal dependencies will make CCM unable to distinguish between unidirectional and
bidirectional connections.

Luo et al. [2017] applied CCM for detection of causal connections in the Tennessee Eastman
simulated process. No specific fault conditions were analysed in this investigation. The focus
was rather on detection of individual causal connections. The authors found that CCM was able
to detect causal connections that were missed using transfer entropy, especially some loops in
the system. Some known causal connections were, however, missed due to excessive noise.

Aftab et al. [2017] also demonstrated the use of CCM for oscillation diagnosis in industrial data
from a South East Asian refinery. The authors presented an automated embedding dimension
selection procedure that ensures optimal parametrisation. The case study data set was limited
to only 512 samples, confirming that CCM can be useful for short time series. The authors
found the procedure provided accurate information for root cause analysis.

2.9.6 k-Nearest neighbours

Again building on the idea of causality being quantified by predictability improvement, a causal-
ity measure can be derived from k-Nearest Neighbours (kNN) estimation.

Given two variables x, and y, embedded matrices are constructed. The Euclidean norm repre-
senting the distance between two embedded vectors, xi and xj is given by Equation 2.27.

di,j = ||xi − xj || (2.27)

where

xi = [xi, xi−τ , . . . , xi−(L−1)τ ] (2.28)

xj = [xj , xj−τ , . . . , xj−(L−1)τ ] (2.29)

In Equation 2.28, τ represents the sampling constant, and L represents the embedding dimension.
The nearest neighbours of an embedded vector, xi, are the embedded vectors, xj , that have the
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smallest value of di,j . A total of κ nearest neighbours are found, and ri,j represents the indices
of the nearest neighbours for i from j = 1 : κ. A future value, xi+h is assigned to each embedded
vector. xi+h is called the prediction value, and h represents the prediction horizon . The
prediction value obtained from the nearest neighbours are denoted by xri,j+h. This formulation
is repeated for y, giving the indices of the nearest neighbours, si,j , and the prediction value yi+h.
The self-predictability factor can be calculated by Equation 2.30.

Di(x) =
1

κ

κ∑
j=1

|xi+h − xri,j+h| (2.30)

The prediction value xi+h is assigned to yi. When xi+h is close to the predicted values of all
the nearest neighbours, xsi,j+h, it can be inferred that y is a good predictor of x.

The predictability factor of x given y can be calculated using Equation 2.31

Di(x|y) =
1

κ

κ∑
j=1

|xi+h − xsi,j+h| (2.31)

The dependence measure can then be calculated by Equation 2.32.

η(X|Y ) =
1

Ñ
∑Ñ

i=1
Di(x|y)
Di(x)

(2.32)

The prediction ability of x to y is then determined using the reverse. When there is an asym-
metric prediction ability, the existence of a directional causal relationship can be inferred. The
causality measure can be calculated using Equation 2.33:

ηx→y = η(x|y)− η(y|x) (2.33)

As with transfer entropy and CCM, the kNN approach’s computational complexity will be
influenced by the choice of the embedding dimension. The approach is simple to follow, and the
mechanisms easier to understand than transfer entropy. However, the intuitive regression-based
approach of Granger causality is still more straightforward than kNN.

Bauer et al. [2007b] used the kNN approach for fault diagnosis of a distillation unit in the
Eastman Chemical Company. In the first case study, a periodic disturbance affected multiple
measured variables. In the second case study, a repeating spiky disturbances affected the process.
The results showed that kNN was able to accurately identify the propagation paths of the faults
in both case studies. The authors also developed default parameters for the calculation of kNN,
so that industrial implementation could be simplified.

Stockmann et al. [2012] also applied the kNN approach for causality analysis for diagnosis of
oscillations in a hydrocracking plant. The authors showed that the root cause was successfully
identified using this technique. The authors indicated that the method could be used even in
the difficult cases of nonlinear multi-input single-output systems.

2.10 Combining knowledge and data-based connectivity and causal-
ity

Knowledge-based resources and data-based resources for connectivity and causality each have
advantageous and disadvantageous characteristics. The characteristics of knowledge-based and
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data-based methods are discussed here, and also summarised in Table 2.1 to illustrate the
comparison between them.

Knowledge-based methods are typically static. The schematics or models used do not take into
account changing process conditions. For example, changes in feed ore composition common
in mineral processing plants [Wills, 2007] can significantly alter process operation. Models can
be constructed that depend on the operating conditions, but that requires that these changing
conditions are observable. In some cases, feed ore compositions are not measured, for example.

Data-based methods can be dynamic, since the most up-to-date data can be used to generate
the causality models. The presence of a fault can also change the causal structure of the process.
For example, faulty actuator behaviour could mean that the link between a controlled variable
and the manipulated variable associated with the actuator is broken. Data-based causality can
be used to analyse the data in the presence of a fault, to ensure that the propagation paths
observed are representative of the causality in the process.

Not all of the knowledge-based methods can be automated. Using the automated XML cause-
and-effect analyser discussed in Thambirajah et al. [2009], and the vision-based techniques of
Arroyo Esquivel [2017]. The procedure for manual generation of topology from process knowl-
edge can be time consuming[Yang & Xiao, 2012]. Approaches where the topology generation
can be automated once the information has been updated are therefore more useful.

The computational complexity of data-based causality techniques can be a hindrance to appli-
cation for engineers[Duan et al., 2015]. Computational complexity of the automated knowledge
based techniques is not as severe[Arroyo Esquivel, 2017].

Provided that the source of the topology information is accurate and up-to-date, knowledge-
based connectivity extraction provides reliable topology. One can be confident that the con-
nections derived are true connections in the process, and there will be no spurious connection.
Data-based causality can find spurious connections (see Section 2.12.3). However, some inter-
actions within a process are very complex, and may be missed by knowledge-based methods.
For example, the interaction between multiple control loops may cause connections between
variables that are far removed from each other physically.

Process knowledge-based techniques are qualitative in nature [Thambirajah et al., 2009]. This
means that relative strengths of connections cannot be inferred. Connection strength can aid
interpretation of the propagation paths of faults. Data-based causality analysis measures can
provide relative strengths of the connections.

From Table 2.1 it can be seen that data-based and knowledge-based techniques may be com-
plementary. Therefore, some researchers have incorporated a hybrid approach that combines
both. Different approaches may include validating the knowledge-based connections using the
data-based connections, or vice-versa.

An approach used frequently is to first establish knowledge-based connections, and validate
them with data-based connections. This approach reduces the amount of variable pairs which
are tested for causality, thereby reducing the computation burden of the data-based techniques.
This approach was used by Landman et al. [2014] to combine Granger causality with connectivity
obtained from XML schematics and Landman & Jamsa-Jounela [2016] to do the same with
transfer entropy. Both these papers found that incorporating the knowledge-based information
reduced the number of spurious connections.

Yang et al. [2010] constructed signed digraphs (SDGs) from process knowledge, and used transfer
entropy to validate the edges in the graph. In Thambirajah et al. [2009] transfer entropy was
used to determine possible root causes. Process connectivity extracted from XML descriptions of
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Table 2.1: Summary of comparisons of the characteristics for knowledge and data-based causality.

Criteria Knowledge-Based Data-based

Dynamic Sometimes X
Non-intuitive connections X
Automation X X
Computationally conservative X
No possible spurious connections X
Possible missed connections X X
Quantitative X
High resolution X

the process was then used to determine which of the propagation paths was physically possible.

Yang et al. [2014] presented a technique in their textbook that used both cross-correlation and
transfer entropy to validate a SDG generated from process knowledge. They also presented the
opposite approach, using process knowledge to validate data-based connectivity. They generated
a connectivity matrix from cross-correlation, and then validated each edge with the reachability
matrix in the SDG.

Two approaches to combining process connectivity with data-based causality exist: specifying
the connectivity structure in advance and only considering those connections; or calculating the
causality and then using the process connectivity for validation. The former approach allows
reduction of the computational burden of the causality analysis methods. It may also ensure
that indirect and shortcut connections are ignored, since only direct connections are specified
in advance. However, it may be that assuming this structure in advance may miss non-intuitive
connections that may be present in the process. Consider a case where the control structure is
broken due to saturation of a valve.

2.11 Summary of causality analysis literature

Now that the concepts of causality analysis have been introduced, a broad overview of the
published literature can be discussed. This section presents a summary of causality analysis
applications for fault diagnosis in published literature. Table 2.2 provides a summary of the
data-based causality analysis applications. The table provides an overview of the method used,
the type of disturbance it was used for, and the type of process it was used for. The entries are
also sorted according to publication date, which gives an overview of how the method popularity
changed over time. This serves as an overview of the relevant literature.

Table 2.2: Overview of literature on causality analysis for fault diagnosis in industrial processes. The
methods are abbreviated as follows: TE = Transfer Entropy; GC = Granger Causality; PDC = Partial
Directed Coherence; CC = Cross-Correlation; CCM = Convergent Cross Mapping; KNN = K-Nearest
Neighbours.

Reference Method Fault type Process

Bauer et al. [2007a] TE Oscillation Chemical Process
Bauer et al. [2007b] kNN Oscillation and irreg-

ular spiky deviation
Chemical Process

Stellenbosch University  https://scholar.sun.ac.za



32Chapter 2. Critical literature review: Causality analysis for fault diagnosis

Table 2.2: Overview of literature on causality analysis for fault diagnosis in industrial processes. The
methods are abbreviated as follows: TE = Transfer Entropy; GC = Granger Causality; PDC = Partial
Directed Coherence; CC = Cross-Correlation; CCM = Convergent Cross Mapping; KNN = K-Nearest
Neighbours.

Reference Method Fault type Process

Bauer & Thornhill
[2008]

CC Oscillation Chemical Process
& Section of Petro-
chemical Plant

Thambirajah et al.
[2009]

TE Oscillation and irreg-
ular spiky deviations

Chemical process

Yang et al. [2010] TE & CC Oscillation Final Tailings Pump-
house

Shu & Zhao [2012] TE Oscillation Water mixing process
& Tennessee East-
man

Stockmann et al.
[2012]

kNN Oscillation Hydrocracking plant

Yang & Xiao [2012] TE, GC, CC, & PDC NA Literature review
Duan et al. [2013] TE Oscillation Flue gas desulphuri-

sation process (Oil
and gas)

Naghoosi et al. [2013] TE Normal operating
conditions

Final Tailings Pump-
house

Duan et al. [2014] TE & GC Oscillation Tennessee Eastman
dataset

Kuhnert & Beyerer
[2014]

TE, GC, & CC White noise addi-
tion&Periodic valve
malfunction

Simulated CSTR
&Laboratory scale
level control system

Lindner & Auret
[2014]

TE & CC Step input distur-
bance

Two-tank simulation

Lindner et al. [2014] TE & CC Abrupt valve failure Base metals refinery
simulation

Landman et al.
[2014]

GC & PDC Oscillation Large Scale board
machine

Yuan & Qin [2014] GC Oscillation Chemical process
Yang et al. [2014] TE, GC, PDC, & CC Oscillations Tennessee Eastman
Hajihosseini et al.
[2014]

TE Oscillations Tennessee Eastman

Duan et al. [2015] TE Oscillation Tennessee Eastman
dataset

Lindner & Auret
[2015]

TE & CC Gradual change in
feed conditions

Platinum concentra-
tor plant

Zhang et al. [2015] PDC Oscillations Tennessee Eastman
Landman & Jamsa-
Jounela [2016]

TE Oscillations Large scale board
machine

Aftab et al. [2017] CCM Oscillation Refinery
Luo et al. [2017] CCM Oscillation Tennessee Eastman

Simulation
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Table 2.2: Overview of literature on causality analysis for fault diagnosis in industrial processes. The
methods are abbreviated as follows: TE = Transfer Entropy; GC = Granger Causality; PDC = Partial
Directed Coherence; CC = Cross-Correlation; CCM = Convergent Cross Mapping; KNN = K-Nearest
Neighbours.

Reference Method Fault type Process

Lindner et al. [2018b] TE Oscillations Platinum concentra-
tor plant

Rashidi et al. [2018] TE Oscillations Tennessee Eastman
Simulation & large
scale centrifuge

Wakefield et al.
[2018]

TE & GC Abrupt change in ore
hardness

Milling circuit simu-
lation

2.11.1 Applications by industry

Many of the applications listed in Table 2.2 have considered the Tennessee Eastman benchmark
dataset. The variety of real processes to which these techniques have been applied is limited.
This gives an indication of the reluctance of industry to accept these techniques as viable fault
diagnosis approaches. The reason for this reluctance may be attributed to the difficulty of
applying these methods in an automated and robust fashion to diverse process conditions and
trends in process data.

Figure 2.7 presents a pie chart summarising the causality analysis applications by industry. The
majority of the applications are in the chemical processing industry or simulations of chemical
process, and most of these consider the Tenessee Eastman benchmark dataset.

In previous works by this author, transfer entropy and cross-correlation were used for causality
analysis in mineral processing plants [Lindner et al., 2014]. Another work from the same research
lab, on which this author was co-author, applied transfer entropy and Granger causality to a
simulation of a milling circuit in a concentrator plant [Wakefield et al., 2018]. To the best of the
author’s knowledge no other examples of application to the minerals processing industry exist
in published literature. The nature of mineral processes provide significant opportunities for
improving performance in mineral processes using fault diagnosis. However, it also poses unique
challenges for application of causality analysis in these processes.

Minerals processing involves a large amount of uncertainty. Measuring techniques for many
important variables are often unavailable due to cost or process constraints. Important prop-
erties of processing streams cannot be measured without intrusive or time consuming sampling
methods. For example, the grade of processing streams is often calculated offline using X-ray
fluorescence (XRF) analyses, or mineral assays on a shiftly basis. The grade is one of the most
important product quality variables, so being unable to measure it frequently means that control
and operational set-points have to rely on other measurements.

Input conditions, such as feed grade and ore hardness, vary significantly, since the feed originates
from underground ores with varying properties. The difficulty of measuring important feed,
operational, and quality variables means that datasets are often information-sparse.

For some properties, measurements are available, but the measurement techniques are prone to
inaccuracy, often due to environmental influences. This means that the measurements can be
unreliable or noisy. The accuracy of any data-based analysis will be affected by the noisy and
inaccurate measurements.
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Chemical Process: 13
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Figure 2.7: Percentage of works cited in Table 2.2 grouped by industry application.

2.11.2 Application by technique

Of the 27 works cited in Table 2.2 (aside from the literature review [Yang & Xiao, 2012] and
textbook [Yang et al., 2014]), 19 of them use transfer entropy, 6 use Granger causality, 4 use
PDC, 9 use cross-correlation, 2 use convergent cross-mapping, and 2 use kNN. Figure 2.8 presents
a pie chart of the works cited, showing the percentages of each method used. The popularity of
a technique can be seen as an indication of its maturity. If more researchers have investigated
its use, the strengths and weaknesses are well known and may have been addressed already.

Transfer entropy is overwhelmingly the most popular technique. The entries in Table 2.2 are
sorted by date, so it also shows that transfer entropy has remained popular in recent times. This
also indicates that, despite the numerous examples of transfer entropy accurately identifying
root causes, the challenges of applying transfer entropy are still being addressed. More recent
applications focus on avoiding the computational burden [Naghoosi et al., 2013] or extending
the approach for direct transfer entropy calculations [Duan et al., 2013, Landman & Jamsa-
Jounela, 2016]. Cross-correlation is also popular technique, although its use has diminished in
recent applications. The cross-correlation technique is simple and easy to interpret, which may
account for its popularity. Granger causality has been gaining traction in the fault diagnosis
literature. The regression concepts of Granger causality are easy to understand and interpret,
and the computational burden is low. The simple extension to multivariate calculations and
conditional Granger causality [Yuan & Qin, 2014] makes it appealing for many engineers.
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Figure 2.8: Percentage of works cited in Table 2.2 grouped by causality analysis method. The percent-
ages are calculated from the total number of applications of individual methods, since some works apply
more than one technique.

2.11.3 Applications by fault type

The ‘Fault Type’ column in Table 2.2 indicates what type of fault was being diagnosed in the
case study. The vast majority of the case studies considered oscillations affecting the process.
Chemical process often exhibit oscillatory behaviour, as a result of poorly tuned feedback con-
trollers, faulty valves, or external disturbances [Thornhill & Horch, 2007]. Oscillations propagate
through causal connections in a process with unique trends that tend to be persistent. Causal-
ity analysis techniques are well suited to analysing this kind of problem. The fluctuation in
measurements caused by oscillations also means that the data-based techniques are able to cap-
ture a wide range of variation in values, making their modelling (for example for kernel density
estimation) more accurate.

Step changes can occur in chemical processes, such as abrupt changes in feed compositions,
temperatures or flow rates. Such abrupt changes may be caused, for example, by changing oper-
ator shifts, switching control strategies or changing feedstocks. Another type of non-oscillatory
faults is a ramp change that may occur in some processes; where a persistent increasing or de-
creasing trend may be observed. Ramp trends can occur as a result of drifting sensors or valve
malfunctions.
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Components of causality analysis for fault diagnosis
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Figure 2.9: Overview of components of causality analysis based fault diagnosis.

2.12 Critical literature review of components of causality analysis
based fault diagnosis

Now that the concepts of causality analysis have been introduced, and a broad overview of the
published literature has been discussed, the important components of causality analysis can be
discussed.

The application of causality analysis for fault diagnosis consists of a large number of components.
Successful application of causality analysis requires that all these components work together
harmoniously and effectively. Figure 2.9 provides an overview of all the components required
for application of causality analysis. The components are subdivided into five overall steps:
data selection, causality analysis calculation, significance testing, causal map construction, and
causal map interpretation. This section discusses how these components have been addressed in
literature, and highlights the areas that still require improvement. This discussion is limited to
Granger causality and transfer entropy, which were identified in Section 2.11 as being the most
popular and industrially mature of the techniques considered in this chapter.
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2.12.1 Data selection

The first step in the causal analysis is to select the data that will be analysed.

Variable selection

Selecting variables to include in the causality analysis is important. It can greatly reduce the
computational load, and can simplify interpretation of the results. Most of the applications
identify oscillations in the time series and determine which variables oscillate at this common
frequency. Only these variables are then included in further analysis. Landman et al. [2014] and
Landman & Jamsa-Jounela [2016] identified variables with a common oscillation by observing
their power spectra. Only these variables were included in the analysis. Duan et al. [2014]
used the spectral envelope method [Jiang et al., 2007] to automatically identify the variables
oscillating at a the same frequency. Yuan & Qin [2014] used principal component analysis (PCA)
to identify which variables contributed to the oscillation.

Sampling time selection

As part of the data selection, the sampling time of the data used in the analysis needs to be
selected.

Barnett & Seth [2017] investigated the impact of subsampling on the causal detection ability
of Granger causality in neurophysical processes. They found that the causal delay between the
variables had a significant effect on the appropriate sampling time. They observed that the
detection ability decays exponentially as the sampling time increases beyond the causal delay.
Although their study focused on Granger causality, the same result can be inferred for other
causality analysis techniques, such as transfer entropy.

To the best of this author’s knowledge, none of the other applications of causality analysis for
fault diagnosis have specified the sampling time required for causality analysis.

Number of samples selection

The number of samples to include in the analysis needs to be selected.

Bauer et al. [2007a] performed a sensitivity analysis on the number of samples. The minimum
number of samples required to obtain a significant transfer entropy value for known causal
connections was determined. The results indicated that the minimum number of samples should
be set to 2000 samples if possible, but could be as low as 400 samples. This investigation
considered known causal connections from an industrial case study. Therefore it is uncertain
whether these results are representative for different case studies. The impact of different process
dynamics, and different process characteristics was therefore not considered. Additionally, the
interaction between the optimal number of samples and other parameters, such as the sampling
time, or prediction horizon, have not been considered.

2.12.2 Causality analysis calculation

In the published literature focusing on the use of transfer entropy for fault diagnosis in industrial
processes, few authors discuss the workflow applied for data selection, variable selection, and
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optimal parametrisation. The results of the transfer entropy analysis are extremely sensitive to
selection of these properties.

Horch et al. [2007] presented a workflow for the application of transfer entropy. Although the
workflow involved many of the same general steps as presented in this section, key applica-
tion details were omitted. Specific parametrisation guidelines were omitted, and the default
parameters for transfer entropy suggested by Bauer et al. [2007a] were used. The number of
samples to include, sampling time selected, and which variables to include were not discussed
either. Transfer entropy results are very sensitive to parameter selection, as noted by Duan et al.
[2014].

Table 2.3 summarises the parameter selection approaches for transfer entropy used by other
authors. In some cases the selection procedures were not described, but the values used were
given. In other cases neither were described.
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Table 2.3: Summary of decisions and parameter selection methods used for transfer entropy in literature. In cases where no guidelines were given, the
value used for the specific case study is reported. In cases where neither guidelines nor the actual values used are provided, ‘not given’ is reported.

Reference Bauer et al.
[2007a]

Naghoosi
et al. [2013]

Shu & Zhao
[2012]

Duan et al.
[2013]

Duan et al.
[2015]

Hajihosseini
et al. [2014]

Landman
& Jamsa-
Jounela [2016]

Variables Common
oscillations

Not given Not given Not given Spectral enve-
lope to deter-
mine common
oscillations

Not given Common
oscillations

NS Preferably
minimum of
2000 , possibly
as low as 400

15000 200 3544 No less than
2000

Sliding win-
dow of 400

3000

TS 10s 60s 1.8s 60s 3 min 10s

τ Vary until
∆Tx→y = 0

Differential
dependency
method

1 Initialise τ =1 Initialise τ =1 1 Initialise τ =1

h h = τ Differential
dependency
method

Vary h and
find maximum

Initialise h = 1 Initialise h = 1 1 Initialise h = 1

K 0 Differential
dependency
method

1 Vary until
∆Hyy = 0

Vary until
∆Hyy = 0

1 Vary until
∆Hyy = 0

L 2 Differential
dependency
method

1 Vary until
∆Tx→y = 0

Vary until
∆Tx→y = 0

2 Vary until
∆Tx→y = 0
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Causality analysis method selection

Duan et al. [2014] demonstrated and compared different techniques for root cause diagnosis of
plant wide oscillations. Granger causality and transfer entropy were the data-based causality
analysis techniques they compared, and some of their advantages and disadvantages were listed.
They found that Granger causality is easier to implement, robust to data selection, has low
computational burden, and its application techniques are well developed. However, it is only
suitable for linear relationships between variables, and may be prone to model misspecification.
They also found that transfer entropy is robust to data selection, suitable for both linear and
nonlinear relationships. However, it is sensitive to calculation parameter selection, difficult to
implement, and the computational burden is large.

Kuhnert [2013] presented guidelines for technique selection based on process characteristics.
These guidelines were developed based on simulated experiments to determine which technique
gave the most accurate results for different process characteristics. They found that transfer
entropy was applicable for both linear and nonlinear systems, and applicable for systems with
long dead time and short dead time between variables. They also found that Granger causality
was only applicable for linear systems with short dead time between variables. Although these
guidelines are useful, they were were based on simulated experiments and not on real case
studies. Also, only the accuracy of the techniques was considered. Investigation of other factors,
as discussed in Chapter 5 is also important.

Parameter selection

For Granger causality, parameter selection is limited to choosing the model order, k. Selection
of this parameter is straightforward, and accurate using the AIC.

The parametrisation of transfer is complex, requiring four important parameters to be set. The
hyper-parameters for transfer entropy are: the prediction horizon, h; the sampling parameter,
τ ; the embedding dimension for the output variable, K; and the embedding dimension for the
input variable, L.

The kernel density estimation step itself, discussed in Section 2.9.2, has a bandwidth param-
eter that has to be selected. The accuracy of the estimated distribution will be sensitive to
this parameter. This means that the accuracy of the calculated transfer entropy may also be
sensitive to this parameter. Optimal selection of this bandwidth was not included in the scope
of this dissertation, since many robust guidelines for the selection of the bandwidth have been
developed. For example, the rule of thumb suggested by Li & Racine [2011].

Bauer et al. [2007a] addressed some aspects of parametrisation. The optimal prediction horizon
(h) and time interval (tau) were determined for the causal connections in an industrial case
study, where existing causal connections were known from process knowledge. They chose default
values of K = 0 and L = 2. The transfer entropy between all the known causal connections was
calculated over a range of tau , to find the τ that gave the largest significant transfer entropy
value. The same was then applied to determine the optimal h values. The results indicated
that default values of τ = h = 4 provided robust transfer entropy results for a wide range of
process conditions. Subsequently, many implementations of transfer entropy have used these
default values. These optimal parameters were based on a specific case study, however. The
impact of different process dynamics, and different types of processes was not considered in this
investigation.

Many parametrisation techniques approach the problem by calculating transfer entropy over
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a range of embedding dimensions (e.g. K) to find the embedding where there is no longer a
difference in information captured between K and K+1. K is an optimal embedding dimensions
if points in the K-dimensional space remain close in the (K + 1)-dimensional space [Cao, 1997].
Default values of K = 0 and L = 2 are chosen. The time interval, τ , was then varied until
the difference in Tx→y no longer varied significantly with changing τ . If this plateau of τ is not
observed over the range of values, then the prediction horizon, H, is increased until Algorithm
2.1 shows the procedure.

Algorithm 2.1: Parameter selection method 1: Finding optimal τ and H

Input : X,Y
Output: K,L

K = 1;1

L = 2;2

while ∆Tx→y > 0 do3

X
(K)
i = [xi,xi−τ , ...,xi−(K−1)τ ];4

Y
(L)
i = [yi,yi−τ , ...,yi−(L−1)τ ];5

Tx→y =;6

∆Tx→y = Tx→y(k)− Tx→y(k − 1);7

τ = H = τ + 1;8

Another method, applied by Duan [2014], first selects a default value of h = τ = 1, then varies
K until the Shannon entropy for Y (see Equation 2.9) no longer changes with changing K. Then
L is varied until Tx→y no longer changes significantly with changing L. However, when K or L
becomes too large a larger τ is chosen and the procedure is repeated. Algorithm 2.2 details the
procedure.

Algorithm 2.2: Parameter selection method 2: Finding optimal K and L

Input : X,Y
Output: K,L

τ = H = 4;1

while ∆Hyy > 0 do2

X
(K)
i = [xi,xi−τ , ...,xi−(K−1)τ ];3

Y
(L)
i = [yi,yi−τ , ...,yi−(L−1)τ ];4

Hyy =;5

∆H(yi+h|y
(K)
i ) = H(yi+h|y

(k)
i )−H(yi+h|y

(k−1)
i );6

k = k + 1;7

while ∆Tx→y > 0 do8

X
(K)
i = [xi,xi−τ , ...,xi−(K−1)τ ];9

Tx→y =;10

∆Tx→y = Tx→y(k)− Tx→y(k − 1);11

l = l + 1;12

The second method can be computationally expensive, which is why the first method is preferred.

Naghoosi et al. [2013] approached parametrisation from the viewpoint of mutual dependency.
The authors used time lagged dependency and differential dependency curves to determine the
most important time lags in the variables and use this information to parametrise transfer
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entropy. The additional steps for determining these time lags are computationally expensive,
although not as expensive as the previous methods. The method does consider the time delay
between variables. However, other dynamics, such as the residence time and oscillation period,
are not considered.

Approaching the problem from the other direction, identifying the dynamics and using them
to specify the parameters, may make the application procedure more robust and remove the
computational burden of searching for optimal parameters over a range of values. Chapter 7
therefore introduces a novel parametrisation procedure that selects the optimal h an τ based on
the interaction of these parameters with the process and fault dynamics.

2.12.3 Significance testing

Uncertainty inherent in process measurement means that non-zero transfer entropy values will
be calculated even when there is no causal relationship. These spurious connections make
analysis of fault propagation paths difficult. Spurious connections give a false representation
of the propagation path of the fault. Therefore, a hypothesis test is needed to determine the
statistical significance of the causality measure. However, this significance test is not infallible,
and spurious connections may still be found. A causal connection means that variation in one
variable will cause similar variation in another variable, after some time. Variation caused by
sensor noise would mean that variation in the output variable is not caused by variation in
the input variable, therefore the causal connection would be obscured. Process noise, caused
by common cause variation (for example slight variation in feed compositions) may show a
strong trend between the variation in the input and output variables, meaning that the causal
connection may be detected. However, high frequency variations can cause the value of the
input variable to change too quickly for a response to be seen in the output variable, which
would obscure the causal connection. Mitigation of the impact of noise can be achieved through
proper significance testing.

The hypothesis tests for transfer entropy and Granger causality have been discussed extensively
in the fault diagnosis literature. The methods for determining statistical significance are well
developed and robust. The methods used in this dissertation are discussed in detail in the
following subsections.

Significance threshold method selection

Hypothesis tests to determine the statistical significance of the values obtained need to be
employed. For Granger causality the hypothesis test can take the form of an F-statistical test
[Bressler & Seth, 2011], as shown in Equation 2.34. Ns represents the sample size of the time
series used. RSSr and RSSf represent the sum of the square of the residuals in the restricted
and full models respectively, as shown in Equation 2.35.

RSSr−RSSf

k
RSSf

Ns−2k−1

∼ Fk,N−2k−1 (2.34)
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where the numerator degrees of freedom are k, and the denominator degrees of freedom are
N − 2k − 1, and

RSSr =

Ns∑
t=k+1

ε2j (t) (2.35)

RSSf =

Ns∑
t=k+1

ε2j|i(t) (2.36)

When the F-test calculated from Equation 2.34 is larger than the value of the F-distribution at a
chosen α value, the null hypothesis that there is no causal connection between the two variables
can be rejected[Bressler & Seth, 2011].

Unlike Granger causality, the distribution of the causal statistic for transfer entropy is not
known[Bressler & Seth, 2011]. This means that computationally expensive resampling tech-
niques must be used for the hypothesis test. A significance threshold for the transfer entropy
can be calculated using a method suggested by Kantz & Schreiber [1997], Schreiber & Schmitz
[2000], where Monte Carlo simulations are used to generate a distribution for a hypothesis test
using multiple (Nsurr) surrogate time series for each variable. The null hypothesis is that there
is no causal connection between the pair of variables. Therefore, the surrogate data sets are
designed have the same statistical properties as the original data, but with any potential causal
link destroyed[Vicente et al., 2010].

To generate surrogates with these criteria, the iteratively Adjusted Amplitude Fourier Transform
(iAAFT) approach is used. The iAFFT works by Gaussian rescaling of the time series, a Fourier
transform with randomised phases is applied to the scaled time series, and then the inverse of the
first scaling step is applied. These steps are repeated until deviation of autocorrelation from that
of original time series is satisfactorily small or until there is no change in amplitudes[Schreiber
& Schmitz, 2000].

The first step in iAAFT surrogate data generation is Gaussian rescaling of the time series. Let
g(t) be a sequence drawn from a Gaussian distribution and sorted in ascending order. rank(x(t))
denotes the ascending rank of x(t). The rescaled sequence is then given by:

s(t) = g(rank(x(t))) (2.37)

A Fourier transform can be applied to this scaled series:

|S(ω)| =

∣∣∣∣∣ 1√
N

N−1∑
t=0

r(t) exp

(
ι2πtω

N

)∣∣∣∣∣ (2.38)

The Amplitude Adjusted Fourier Transform (AAFT) surrogate can then be calculated by mul-
tiplying the Fourier transform by random phases and then performing the inverse Fourier trans-
form:

s̄(t) =
1√
N

N−1∑
ω=0

|S(ω)| exp

(
− ι2πtω

N

)
eιαk (2.39)

where αk is uniformly random sampled between 0 < αk < 2π. eιαk in Equation 2.39 is the phase
randomisation term.

The iAAFT applies the AAFT procedure iteratively. The initial r̄(0)(t) is an AAFT of the
original data x(t). The Fourier transform is applied to r̄(i)(t)

R̄(i)(ω) =
1√
N

N−1∑
t=0

r̄(i)(t) exp

(
ι2πtω

N

)
(2.40)
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The surrogate data for this iteration is then obtained by applying the inverse Fourier transform.
In this inversion, the actual amplitudes are replaced by |S(ω)|, but keeping the phase from

Equation 2.40, eιω
(i)

= R̄(i)(ω)/|R̄(i)(ω)|:

s̄(i)(t) =
1√
N

N−1∑
ω=0

|S(ω)| exp

(
− ι2πtω

N

)
eιω

(i)
(2.41)

The next r̄(i+1)(t) is then assigned by rank ordering the original data:

r̄(i+1)(t) = c(rank(s̄(i)(t))) (2.42)

where c(t) is a copy of x(t) in ascending order. This process is repeated until deviation of
autocorrelation from that of original time series is satisfactorily small or until there is no change
in amplitudes. The final r̄(t) is then taken as the final surrogate time series, s̄(t).

The transfer entropy between the surrogates for each pair of variables, T surrx→y , is then calculated,
and an a× σ threshold is set. This threshold, Sx→y, is calculated as shown in Equation 2.43.

Sx→y = µT surr
x→y

+ a× σT surr
x→y

(2.43)

where µT surr
x→y

and σT surr
x→y

represent the mean and standard deviation of the Nsurr surrogate
transfer entropies respectively, and a represents the number of standard deviations from the
mean. When Tx→y > Sx→y , then the null hypothesis that there is no causal connection between
the two variables can be rejected[Wibral et al., 2014].

Threshold strictness selection

The hypothesis test described in the previous section are not infallible, an spurious causal
connections will still be observed. Strict threshold for the hypothesis will ensure that less
spurious causal connections are identified. On the other hand, too strict thresholds will cause
true connections to be missed. There is a trade-off between the number of true connections and
the number of missing connections.

For the hypothesis test for statistical significance for Granger causality, show in Equation 2.34,
the α value can be chosen according to how strict the threshold should be. An α value of 0.05,
for example, means that the null hypothesis is accepted or rejected with a 95% significance level.
An α value of 0.01 was used by Landman et al. [2014]. In Duan et al. [2014], an α value of 0.05
was chosen. Yuan & Qin [2014] stated that the α value was typically 0.01 or 0.05.

For transfer entropy, the strictness of the significance threshold can be altered by choosing the
number of standard deviations from the mean, a. However, since the transfer entropy does not
strictly follow a Gaussian distribution, it is not valid to assign a confidence level to a specific a
value. [Bauer et al., 2007a], Hajihosseini et al. [2014], and Duan et al. [2014] all reported using a
6−σ significance threshold, as opposed to a 2− or 3−σ threshold, to have more robust results.

2.12.4 Causal map construction

Once the causality analysis has been performed, an adjacency matrix is populated from the
results. A causal map is then constructed to visualise the causality between the measured
variables. This causal map can represent the propagation path of the fault through the process.
The construction of the causal map has not been discussed much in the literature of causality
analysis for fault diagnosis. The reason for this is that most authors have focussed on improving
the accuracy and reliability of techniques to extract causality from process data, and have not
focussed on the visualisation of the results.
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Layout

Visual interpretation of causality maps can be aided by the layout of the nodes. The layout
methods can be simple. For example, Bauer et al. [2007a] presented the causal map with all the
nodes in a straight line, ordered so that source nodes are first, and sink nodes are last. This
layout is useful for quickly identifying the root cause variable. However, for dense graphs this
layout may be very confusing. Landman et al. [2014] used a grid layout. This layout is neat,
but makes it difficult to visualise the direction of propagation. Forcing a structured grid layout
may be useful to mirror the plant layout, e.g. it can be used to mimic the process flow diagram,
showing how the data-based causal structure compares to the flow of the process.

In many scenarios a layout that reveals hierarchical structure may be desired. A layered layout
reveals such a hierarchical structure [Sugiyama et al., 1981]. In the layered algorithm the nodes
are arranged in a set of layers, so that each edge joins two nodes belonging to different layers.
In the layered structure, the sequence of nodes on the propagation path may be visualised in
sequential order. Figure 2.10 shows an example of causality map using the layered layout.

    Node 1

    Node 2

    Node 3

    Node 4

    Node 5

    Node 6

    Node 7

Figure 2.10: Example of layered layout of causality maps

Another layout is the circle layout. In the circle layout, the nodes are placed in a circle centred
around the origin. This layout is useful for visualising the importance of each node, by visualising
the amount of edges entering or leaving the node. This may reveal which node is a source node
that influences many other nodes, or which is a sink node that is influenced by many other
nodes. Figure 2.11 shows a causality map with the circle layout. This layout can be especially
useful in scenarios where there is no clear start and end node, i.e. in a cyclical graph. In such
a graph it is useful to see which nodes are most important relative to the others. The circle
layout reveals this readily. A drawback of this layout is that it does not reveal anything about
the structure of the underlying process. This layout was used by Yuan & Qin [2014], Zhang
et al. [2015]. Duan et al. [2015] first used the circular layout to present the results, and then
constructed a layered map to better visualise the propagation paths.

The force layout assigns attractive forces to the endpoints of edges, and repulsive forces to nodes.
The balance of repulsive and attractive forces means that nodes that two nodes that are not
connected by edges are pushed away from each other, since there is no attractive force between
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    Node 7

Figure 2.11: Example of circle layout of causality maps

them. This structure is useful for revealing the importance of nods, as with the circular layout.
A node with many edges associated will attract the nodes that it connected to, making them
cluster together. These clusters can also reveal hierarchical structure, as with the layered layout.
A causality map with the force layout is shown in Figure 2.12.

    Node 1

    Node 2
    Node 3

    Node 4

    Node 5

    Node 6

    Node 7

Figure 2.12: Example of force layout of causality maps

Although the authors mentioned in the paragraphs above utilised different layouts, none pro-
vided specific motivation for the use. Therefore, this component of causality analysis requires
improvement.
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X Y

Z

?

(a) Shortcut scenario

X

Y

Z

?

(b) Com-
mon variable
scenario

Figure 2.13: Example of causal map showing indirect connection observed from X → Y .

Pruning

Causality maps may often show indirect connections, where a causal connection is identified
due to the influence of an intermediate variable. Figure 2.13a illustrates this scenario. When
X is connected to Z, and Z is connected to Y , it may appear that X is connected to Y .
This indirect connection may be spurious. One way to determine whether this connection is
a true connection, is to condition on the intermediate variable, for example, using the direct
transfer entropy approach in Duan et al. [2013]. In this way the effect of X on Y without the
effect of Z is determined. However, in the case of transfer entropy, this conditioning increases
the computational load[Duan et al., 2013]. Additionally, shortcut connections may still be
true connections. However, the more dense a graph i,s the more difficult it is to interpret the
propagation path. Therefore, a practical way of dealing with these shortcut connections is to
use ‘pruning’ algorithms, that remove all shortcut edges. A version of this approach was used
by Bauer et al. [2007a] to simplify the causal map obtained from transfer entropy. However, this
approach can be improved using graph theoretic tools for graph pruning.

The transitive reduction algorithm is a formalised algorithm for removing shortcut edges. The
transitive reduction of a graph G, is another graph, Greduction, with the same number of nodes,
but the fewest edges, so that Greduction has the same reachability as G [Aho et al., 1972]. This
is achieved by iterating through the graph using a depth-first search. For each combination of
three nodes found, x, y, and z, if there are edges x → y, y → z, and x → z, then x → z is
removed [Aho et al., 1972].

Figure 2.14 illustrates the transitive reduction. The original graph, G, is shown in Figure 2.14a,
and the transitive reduction, Greduction is shown in Figure 2.14b. The shortcut edges from A→
and D → E were removed.

The transitive reduction for an acyclic graph, G, will always be a unique subgraph of of G
with the same nodes as G. A subgraph is a graph made of a subset of the nodes and edges
of G. For a graph with cycles, however, the transitive reduction is not unique, and will not
necessarily be a subgraph of the original. Consider the graph, G, in Figure 2.15a. The graph
has a cycle between nodes A,B, C, and D. The transitive reduction of G is obtained by finding
all the strongly connected components (SCCs) of G. An SCC is a subgraph of G, where all
the nodes in the subgraph are mutually reachable. The cycle between nodes A,B, C, and D
is an SCC. Nodes E and F each form their own SCC. A directed cycle is constructed for each
SCC, connecting all the nodes in the SCC. An edge is constructed between each individual SCC.
Because the transitive reduction in this case is not unique, edges may be constructed that did
not exist in the original graph. For example, the edges from A → F and from A → E. This
artificial construction of edges may be misleading when interpreting causal maps. However, the
presence of the cycles means that there was a path from A→ F in the original graph. Despite
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(a) Original graph, G
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  C

  D

  E

(b) Transitive reduction , Greduction

Figure 2.14: Transitive reduction illustration. Shortcuts from A→ C and D → E were removed.

the possible confusion caused by these artificial edges, the transitive reduction can be used as
a visualisation tool, to succinctly capture the information about the propagation path of the
fault.

Assigning node and edge attributes

In addition to visualising the pairwise connections between measured variables, causality maps
can be augmented with additional attributes that can aid interpretation.

Nodes can be coloured differently according to specifics attributes, such as variable categories, or
sensor location. To do this the appropriate meta-data must be available for the engineer applying
this technique. This is one way of incorporating process knowledge to aid fault diagnosis using
causality maps. In many cases the data historian may already contain this meta-data for each
variable. This structure can be exploited automatically to augment causal maps.

The strength of the connections in a causality map gives an indication of the relative importance
of the connections. In scenarios where there are multiple possible propagation paths, the relative
connection strengths can give an indication of which propagation path is more likely to reveal
the true root cause. The connection strengths can be visualised by assigning them as edge
weights, and adjusting the line thickness of the edges to represent these edge weights.

To the best of this author’s knowledge, this component of causality analysis has not been ex-
ploited to aid interpretation of causal maps.

2.12.5 Causal map interpretation

Causality maps provide powerful visualisation tools for fault diagnosis. The connections in the
map may represent the propagation path. This interpretation can be subjective in many cases.
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(a) Original graph with cycle
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    B

    C

    D

    E

    F

(b) Transitive reduction of graph with cycle

Figure 2.15: Transitive reduction of graph with a cycle.

X Y Z

Figure 2.16: Causality map showing straightforward root cause interpretation. In this scenario x is
considered the root cause.

For example, what if multiple propagation paths appear? What if multiple root causes appear?
This ambiguity complicates the decision making process. For the causality analysis procedure
to meet the desired characteristics described in Section 5.3, the interpretation procedure needs
to be as automated and systematic as possible.

The simplest approach assumes that the root cause is found at the start of the causality map and
that that the causality map presents the variables in sequence as the fault propagated through
the process. This approach was used by Bauer et al. [2007a], Landman & Jamsa-Jounela [2016],
Landman et al. [2014]. In Figure 2.16, for example, variable x would be considered the root
cause. However, there are scenarios where this interpretation is more ambiguous. For example
in more complex causality maps, where multiple propagation paths point to different root nodes.

Causal maps can be augmented with further interpretation tools to deal with cases where the
causality map is more complex.

Node importance

Yuan & Qin [2014] assigned a ‘maximum flow’ (maxflow) attribute to each node in the causal

X Y

A B

Z

Figure 2.17: Causality map demonstrating maximum flow attribute. Maximum flow is defined as
number of edges exiting node minus the number of edges entering the node. MaxFlow for each node:
XMaxFlow = 1, YMaxFlow = 2, ZMaxFlow = 0, AMaxFlow = −2, BMaxFlow = −1.
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map. The maximum flow was taken as difference between ‘outflow’ and ‘inflow’ for each node.
Inflow is defined as the number of edges entering the node, and outflow is defined as the number
of edges exiting the node. The variables were then ranked according their maximum flow. The
variable ranked first was considered the root cause variable. The logic behind this approach
is that variables with higher maximum flow have a larger net influence on subsequent nodes,
and this influence is due to that variable being a driver of the fault. The maxflow is illustrated
further in Section9.6. The concept of the maxflow of a node is illustrated in Figure 2.17. In this
example the maximum flows for each node are shown in Equation 2.44.

XMaxFlow = 1− 0 = 1
YMaxFlow = 3− 1 = 2
ZMaxFlow = 1− 1 = 0
AMaxFlow = 0− 2 = −2
BMaxFlow = 0− 1 = −1

(2.44)

Therefore Y would be considered the root cause, since it ranked highest according to maximum
flow. This method provides a more systematic approach to interpreting causality maps. In this
example, however, the node with the higher maximum flow, Y , still has a preceding node, X.
The maximum flow application is more useful in scenarios where the causal map is dense, as
with the case study in [Yuan & Qin, 2014]

Kuhnert & Beyerer [2014] generated a root cause priority list, summing the causal influence of
one variable on all the other variables in the system, as shown in Equation 2.45.

RCj =

i6=j∑
i=1

qxj→xi (2.45)

where qxj→xi is the causal strength from xj to xi. In the paper by Kuhnert & Beyerer [2014],
causal strength, scaled from 0 to 1, is assigned to each node. In addition to this method for
assigning node importance, Kuhnert & Beyerer [2014] also presented visualisation adaptations
on traditional causal maps. These adaptations allowed visualisation of the causal strengths
obtained from multiple causality analysis techniques, namely the cross-correlation, transfer en-
tropy, Granger causality, and a support vector machine method. These visualisations are useful
when multiple techniques are to be compared.

Another approach used for ranking nodes in the graph is one using the PageRank[Bryan & Leise,
2006] algorithm. Streicher et al. [2014] used this approach. The algorithm assigns a score to each
node based on its influence on the rest of the causal network. This is similar to the maximum
flow approach. However it considers the effect of each node in the context of the entire network,
whereas the maximum flow approach only considers the effect of the node directly before and
after the node under consideration.x

Complexity metrics

Complex causality maps are difficult to interpret. A metric describing the complexity of causal
maps can give an indication of how easy it is to identify the root cause and the propagation
path of the fault. To the best of this author’s knowledge, none of the applications of causality
analysis for fault diagnosis has discussed the use of any complexity metric.

Stellenbosch University  https://scholar.sun.ac.za



2.12. Critical literature review of components of causality analysis based fault diagnosis 51

    Node 1

    Node 2

    Node 3

    Node 4

    Node 5

    Node 6

    Node 7

Figure 2.18: Example of shortest path found between Node7 and Node3

Graph traversal

The causal map provides a model for how process elements are connected to each other. In the
fault diagnosis use case, this model gives a representation of how the fault propagated through
the process. Tools for graph traversal, where the paths between different nodes can be identified
in the graph, can be used to analyse propagation paths of faults[Yang & Xiao, 2012]. This can
be useful to understand the propagation of the fault, to compare multiple propagation paths to
determine which is most plausible, and to verify results of the causality analysis.

In the SDG-based fault propagation analysis, the most common algorithm for graph traversal is
depth-first search[Yang & Xiao, 2012]. A depth-first search algorithm of Tarjan [1972] constructs
paths in the causal map by beginning at a start node (specified by the user), and discovers
adjacent nodes sequentially. This continues until the algorithm encounters a node where all
the adjacent nodes have already been visited. At this point, the search backtracks along the
discovered path to the closest previously discovered node without a discovered neighbour. This
is implemented recursively until all nodes reachable from the start node have been visited. This
can then be used to determine all propagation paths from a single node in a causal map.

Iri et al. [1979] used the depth-first search algorithm to find the maximum strongly connected
component in a SDG, and used this maximum strongly connected component as an indication
of the fault origin.

Graph traversal can be used to highlight the shortest path between two nodes. This can be
used to analyse propagation paths between a possible root cause node in a causality map, and a
symptom node. For example, in the graph shown in Figure 2.10, one can determine the shortest
path between Node7, which appears as a root node, and Node3, which appears as the final sink
node. The resulting shortest path is shown in Figure 2.18.

To the best of this author’s knowledge, this kind of fault propagation inference based on graph
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Components of causality analysis for fault diagnosis

C
au

sa
lit

y 
an

al
ys

is
 

ca
lc

u
la

ti
o

n
D

at
a 

Se
le

ct
io

n
Si

gn
if

ic
an

ce
 

te
st

in
g

C
au

sa
l m

ap
 

co
n

st
ru

ct
io

n
C

au
sa

l m
ap

 
in

te
rp

re
ta

ti
o

n

Significance 
threshold method 

selection

Variable selection
Number of samples 

selection
Sampling time 

selection

Causality analysis 
method selection

Parameter 
selection

Threshold 
strictness selection

Layout Pruning
Node and edge 

attributes

Node importance Complexity metrics Graph traversal

Well-developed

Requires further 
research

Key

Fa
ct

or
s 

in
flu

en
ci

n
g 

ca
u

sa
lit

y 
an

al
ys

is

Figure 2.19: Overview of components of causality analysis based fault diagnosis that require improve-
ment.

traversal has not been applied directly to causality maps obtained from data-based causality
analysis. As mentioned in Section 2.12.4, the reason for this is that most authors have focussed
on improving the accuracy and reliability of techniques to extract causality from process data,
and have not focussed on the interpretation of the results from the techniques.

2.13 Components of causality analysis based fault diagnosis that
require improvement

Section 2.12 showed that the application of causality analysis for fault diagnosis consists of a
large number of components. Successful application of causality analysis requires that all these
components work together harmoniously and effectively. Figure 2.19 provides an overview of all
the components required for application of causality analysis, which components this dissertation
aims to contribute to.
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2.14 Chapter conclusions

The objectives of this chapter were: to conduct a critical review of the relevant literature on
causality analysis for fault diagnosis, to identify areas that require improvement to aid indus-
trial implementation; and to present the relevant background information of causality analysis
technique.

This chapter introduced the concepts and calculations required for causality analysis. This
chapter also provided a critical literature review of causality analysis for fault diagnosis. This
literature review showed that transfer entropy and Granger causality were the most popular,
and therefore the most mature, techniques. For this reason the rest of this dissertation focuses
on these two techniques.

The literature review identified components necessary for causality analysis that require further
research to aid industrial implementation of the techniques. These components are discussed in
Section 2.12. The components are subdivided into five overall steps: data selection, causality
analysis calculation, significance testing, causal map construction, and causal map interpreta-
tion. The first component that requires improvement is that there is no systematic workflow for
data selection and causality analysis calculation. Specifically, the selection of the sampling time,
the number of samples, and the parameters (such as the embedding dimensions, time interval,
and prediction horizon). For this reason Objective II was defined.

Another component of causality analysis that requires further research is the decision of which
causality analysis method to use in a specific scenario. Some researchers have investigated this,
but not all the performance criteria of causality analysis techniques were investigated. Objective
III was defined to address this.

Causality analysis for fault diagnosis relies on the interpretation of the results to provide useful
information to users. This requires construction of a causal map, and interpretation of that map.
This chapter identified that construction and interpretation of causality analysis techniques
has been neglected in the published literature, with most applications employing an ad-hoc
interpretation of results. Specifically, the layout of causal maps, techniques for pruning causal
maps, and metrics to describe the complexity of causal map need further research. Objective
IV was defined to address this shortcoming.

Chapter 3 gives an overview of the research methodology to address these objectives in this
dissertation.
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CHAPTER 3

Overview of dissertation methodology

Contents
3.1 Chapter introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Demonstrating the effectiveness of causality analysis for fault diagnosis . . . . . 57

3.3 Investigating the factors that affect causality analysis . . . . . . . . . . . . . . . 57

3.4 Developing a workflow for the application of causality analysis . . . . . . . . . 57

3.5 Comparative analysis of Granger causality and transfer entropy . . . . . . . . . 57

3.6 Tools for interpretation of causality analysis . . . . . . . . . . . . . . . . . . . . 58

3.1 Chapter introduction

Chapter 2 discussed the literature pertaining to the use of causality analysis for fault diagnosis
in industrial processes. The discussion revealed that the literature is rich with examples of
application of causality analysis for fault diagnosis, but industrial adoption of the techniques
is still limited. This is due to the limitations of the techniques for automated application,
unclear decisions on which techniques to use, and the difficulty of interpreting the results of the
techniques.

The objectives outlined in Chapter 1 will be used to address these shortcomings. These objectives
are repeated here:

Objective I. To investigate the factors that affect performance of causality analysis techniques.

Objective II. To design a systematic workflow for application of causality analysis for fault
diagnosis.

Objective III. To design a tool to aid the decision of which causality analysis method to select.

Objective IV. To present tools for interpretation of causal maps for root cause analysis.

Section 2.12 showed that the application of causality analysis for fault diagnosis consists of a
large number of components. Successful application of causality analysis requires that all these
components work together harmoniously and effectively. Figure 3.1 provides an overview of all
the components required for application of causality analysis, which components this dissertation
aims to contribute to, and in which chapter that contribution is presented. The components
are subdivided into five overall steps: data selection, causality analysis calculation, significance
testing, causal map construction, and causal map interpretation.

55
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Components of causality analysis for fault diagnosis
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Figure 3.1: Overview of chapters addressing components of causality analysis based fault diagnosis.
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An overview of the research methodology followed to address these objectives is presented in
this chapter.

3.2 Demonstrating the effectiveness of causality analysis for fault
diagnosis

Before any of the objectives are directly addressed, Chapter 4 demonstrates the usefulness of
causality analysis for fault diagnosis. Transfer entropy and the nonlinearity index are used to
diagnose an oscillation propagating through multiple control loops in a mineral process plant.
The nonlinearity index was chosen because it is a well established oscillation diagnosis technique
[Thornhill & Horch, 2007]. Transfer entropy was chosen because it is a popular causality anal-
ysis technique, as discussed in Chapter 2. Their validity for oscillation diagnosis is compared,
highlighting the benefits and pitfalls when applied to a real industrial case study.

3.3 Investigating the factors that affect causality analysis

Objective I addresses the need for understanding the factors that affect causality analysis so that
they can be successfully applied for fault diagnosis in industrial processes. To understand the
factors that impact causality analysis, performance criteria for the techniques have to be estab-
lished. Chapter 5 discusses the desired performance of causality analysis techniques. Chapter 6
investigates some of the factors that impact causality analysis, namely: controller interaction;
disturbance type; and process noise. Additionally, in Section 7.4, the relationships between
process dynamics and calculation parameters are determined using an ANalysis Of Variance
(ANOVA). The results of this analysis are also used to provide guidelines for parameter selec-
tion, as part of the fulfilment of Objective II, discussed in the following section.

3.4 Developing a workflow for the application of causality anal-
ysis

Once the performance criteria and the factors affecting them have been investigated, Objective
II can be addressed. This objective addresses the need for a systematic workflow to remove
uncertainty and ambiguity in application of causality analysis techniques. Chapter 7 presents
a systematic workflow for the application of transfer entropy for oscillation diagnosis. The
workflow addresses the selection of each important parameter required and provides guidelines
for selecting the optimal parameters based on the process conditions. The workflow is then
demonstrated on an industrial case study of oscillations affected a mineral processing plant.

3.5 Comparative analysis of Granger causality and transfer en-
tropy

Objective III addresses the need to provide guidelines for which of the numerous available
causality analysis techniques to select. Chapter 8 present a comparative analysis of This chapter
compares transfer entropy and Granger causality based on the performance criteria established in
Chapter 5. The accuracy and precision of Granger causality and transfer entropy are tested and
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compared using a simulated case study. Based on this comparison, a decision flow is presented,
to aid engineers in deciding which technique to use and how to interpret the results. Finally,
the features and the presented decision flow are illustrated on an industrial case study of a
plant-wide oscillation.

3.6 Tools for interpretation of causality analysis

The final step in the causality analysis procedure is the root cause analysis once the results have
been obtained. This root cause analysis requires interpretation of the causal maps generated
from causality analysis. Objective IV addresses the need for tools to aid interpretation of the
causal maps. In Chapter 9 visualisation and algorithmic tools to aid graph interpretation are
developed and demonstrated.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 4
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4.1 Chapter introduction

A version of this chapter was published as a peer-reviewed conference paper: Lindner B, Chioua
M, Groenewald J, Auret L & Bauer M, 2018b, Diagnosis of Oscillations in an Industrial Mineral
Process Using Transfer Entropy and Nonlinearity Index, IFAC-PapersOnLine, 51(24), pp. 1409-
1416.[Lindner et al., 2018b]

Data-based causality analysis methods have been discussed in Chapter 2. In this chapter, the
usefulness of causality analysis for fault diagnosis is demonstrated. The transfer entropy analysis,
as well as the discussion of the results and formulation of the paper was primarily performed
by this author. The nonlinearity index analysis was performed by the co-author of the paper.
The results are discussed here to compare the nonlinearity index, which is a well established
oscillation diagnosis technique, with transfer entropy, which is a causality analysis technique.
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Figure 4.1: Basic methodology for transfer entropy application.

This is used to highlight the usefulness of causality analysis techniques for fault diagnosis, but
also to demonstrate the shortcomings of these techniques that this dissertation aims to improve.

Mineral processes employ advanced control strategies to operate multiple units at desired con-
ditions for optimisation of production rate and grade. Hundreds of control loops are typically
used in such a control strategy. Satisfactory operation of these loops is essential to ensure op-
timal process conditions are maintained. Oscillations in these processes can cause fluctuations
in the controlled variables of multiple units as the oscillation propagates through the process.
Swift diagnosis and corrective action of such oscillations is essential to ensure efficient mineral
beneficiation.

This chapter is structured as follows: Section 4.2 outlines the objectives of this chapter; Section
4.3 describes the application of transfer entropy and the nonlinearity index; Section 4.4 describes
the case study of the oscillation in a flotation circuit; Section 4.5 presents the results of applica-
tion of transfer entropy and nonlinearity index for oscillation diagnosis; and finally Section 4.6
presents the conclusions and some some further recommendations.

4.2 Chapter objectives

The objectives of this chapter are:

I To investigate the root cause of an oscillation in a flotation circuit of a mineral process.

II To demonstrate the effectiveness of causality analysis for fault diagnosis.

4.3 Methods

The application of transfer entropy and the nonlinearity index are described here.

4.3.1 Transfer entropy

Transfer entropy was discussed in Chapter 2.9.2

Application of transfer entropy for oscillation diagnosis is achieved by the following steps in
Figure 4.1. These steps are described here:

Step 1) Calculate Tx→y, using Equations 2.7 and 2.5, for every pair of variables.
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    LI1

    LI2

    FI1

    TI1

Figure 4.2: Example of causal map of adjacency matrix in Equation 2.1.

Step 2) Create Nsurr surrogate time series for each variable. Calculate transfer entropy between
the surrogates of pairs of variables. The significance threshold for each pair is then
calculated with Equation 2.43. When Ti→j < Si→j , the value is set to 0.

Step 3) Construct an adjacency matrix, A. This is a square matrix whose rows and columns
represent process variables, and binary entries represent the edges. By convention the
row represents the source element, and the column represents the sink element. An
example of an adjacency matrix is presented here:

A =

LI1 LI2 FI1 TI1

LI1 0 1 0 0
LI2 0 0 1 0
FI1 0 0 0 0
TI1 0 0 1 0

(4.1)

An entry of 1 in row i, column j, indicates Ti→j > Si→j , which means that the node
represented by row i has a causal influence on the node represented by column j. An
entry of 0 indicates Ti→j < Si→j , and therefore no connection exists.

Step 4) Construct a causality map from A, where nodes represent the variables, and edges
represent connections between them. Figure 4.2 shows the causal map constructed
from the adjacency matrix in Equation 4.1 This map illustrates the propagation path
of the oscillation. The first variable in this propagation path is closest to the root cause
of the oscillation.

4.3.2 Nonlinearity index

Thornhill [2005] developed a nonlinearity index that ranks variables according to the nonlinearity
of their time series. See Section 5.4.4 for a description of nonlinearity in processes. Details
of the application can be found in Thornhill [2005]. A plant acts as a mechanical low pass
filter [Thornhill, 2005] as the oscillation propagates to different variables. The low-pass process
dynamics remove the higher harmonics in the trends and destroy the phase-coupling. This
makes the waveforms more sinusoidal and more linear the further away from the root cause the
variable is. The basis of the nonlinearity index is comparison of the predictability of the time
series trend to that of generated surrogate trends [Thornhill, 2005]. A higher nonlinearity index
value indicates a more nonlinear time series. Values below 1 indicate no significantly linear
behaviour. Therefore the variables with the highest nonlinearity index are assumed to be closest
to the root cause.
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Horch et al. [2007] presented a solution for plant-wide disturbance analysis that incorporates both
the nonlinearity index and transfer entropy. In their approach, the two analyses are performed
in parallel. Both results combined are taken into consideration to determine the root cause.

4.4 Description of case study
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Figure 4.3: Simplified process flow diagram of flotation circuit under consideration. Two banks of seven
flotation cells in series make up the circuit. Each cell’s outflow flows into the subsequent cell.

Oscillations in a flotation circuit of a mineral concentrator plant were observed. To provide
sufficient context for diagnosis of the oscillations, the operation and control of the circuit is
described, and the trends of the variables showing oscillations are presented.

4.4.1 Flotation circuit operation and control

Flotation is used to separate valuable mineral particles from gangue particles in a concentrator
process. Separation is achieved by selectively imposing hydrophobicity on the valuable mineral
particles, so that they will attach to air bubbles and float to the top of the cell [Wills, 2007]. A
flotation circuit is a series of flotation cells. A simplified process flow diagram of the flotation
circuit under consideration is shown in Figure 4.3. This flotation circuit consists two parallel
banks, each with seven flotation cells in series. The concentrate from the first three cells of each
bank are combined, and the concentrate from the last four cells are combined. The outflow
(tails) from each cell flows into the following cell. Finally the combined tails are combined and
processed further in downstream units.

A flotation circuit control strategy to stabilise the mass pull and optimise the final concentrate
grade of the circuit is implemented in a layered approach [Muller et al., 2010]. The first layer
utilises PID feedback loops for regulatory control of the cell levels and air addition rate. The
cell outflows are used to control cell levels using a multivariable level controller that considers
interaction of upstream cells on downstream cells to compensate for disturbances that could
propagate down a series of cells. This multivariable level controller allows all control valves in
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the circuit to act simultaneously. The second layer is a supervisory control layer to stabilise the
individual cell and overall circuit mass pulls by manipulating reagent addition, froth depth (by
manipulating cell level set points) and air addition rate. This control layer implements a fuzzy
logic rules-based expert controller. The third layer is an optimisation layer that optimises the
final concentrate grade by manipulating the set-points of the mass pulls. A model predictive
control strategy is implemented to achieve this.

4.4.2 Oscillations in the flotation circuit
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(a) Bank 1 levels. Red lines indicates set-points.
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(b) Bank 1 outflows.
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(d) Bank 2 outflows.

Figure 4.4: Flotation circuit variables showing oscillatory behaviour. Vertical dashed lines indicate
onset and end of oscillations.

Oscillations were observed in the levels of the cells in the flotation circuit. The oscillations
were present in both flotation banks. This section of the plant is responsible for extracting
the majority of the valuable minerals in the plant [Muller et al., 2010], therefore poor control
performance in this section has significant adverse effects on the recovery of valuable minerals.

The oscillations propagated through the circuit, affecting both the controlled variables (CVs), the
levels, and manipulated variables (MVs), the outflows. Figure 4.4 plots the levels and outflows in
the flotation circuit. Processing units directly upstream and downstream of this flotation circuit
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did not show any effect of the oscillation, so this oscillation was localised to this flotation circuit.
The oscillation was detected from manual inspection of the plant data. Automated oscillation
detection techniques are available, see Thornhill & Horch [2007] for examples. However, the
oscillations in this case study were clearly observable and localised to one section of the plant,
and the focus of this chapter is root cause diagnosis. Therefore oscillation detection techniques
were not employed or discussed in this work.

It was noted that the multivariable level control layer, and the optimisation layer were off during
this oscillatory period. Therefore, the only control affecting this section during this time was
the base layer regulatory control between the levels and the outflows.

The root cause analysis was limited to variables that displayed oscillations. These 28 variables
are shown in Figure 4.4. The oscillation is transient, persisting for 1h 30 min. The start and end
times of the oscillations are clear, since the CVs are stable and well controlled at their set-points
before and after the oscillations. The sampling time is 10s, and the number of samples is 560.
Variables from the processing unit directly upstream of this flotation circuit did not show effects
of the oscillations.

This is a useful case study for testing of analysis techniques. The oscillations are clearly present
in a large number of variables, with clear start and end times. To encourage the develop-
ment and testing of different control performance monitoring methods on real industrial data,
the data for this case study has been made available on the industrial data repository on
the website for the South African Council for Automation and Control. The case study can
be found at: ‘sacac.org.za/resources/’ under ‘PID Data/Plantwide data/plantwide-minerals-
lindner-2018.csv’.

Using the fast-Fourier transform (FFT) to find the peak oscillation frequencies [Shumway &
Stoffer, 2014] it was observed that the oscillations in Bank 1 (Cells 1 to 7) were at a lower
frequency than Bank 2 (Cells 8 to 14). The CVs and MVs in Bank 1 all displayed a common
oscillation period of 465 s. The CVs and MVs in Bank 2 all displayed a common oscillation
period of 266 s.

4.5 Results and discussion

Transfer entropy and the nonlinearity index were both applied to the dataset for oscillation
diagnosis in order to compare the advantages and pitfalls of each method for industrial oscillation
diagnosis. The nonlinearity index analysis was performed by the co-author of the conference
paper where a version of this chapter was previously published [Lindner et al., 2018b].

The variables displaying the oscillation were grouped according to their common oscillation
frequencies, as described in Section 4.4.2, so Bank 1 and Bank 2’s variables were analysed
separately.

4.5.1 Transfer entropy results

Transfer entropy was applied to the data from the flotation circuit. Default calculation param-
eters suggested by Bauer et al. [2007a] were used. The CVs and MVs were separated, and the
transfer entropy analysis was performed separately for each group, since the oscillation could
propagate through both the CVs and MVs due to the control and material flow in the circuit.
This grouping of variables according to their categories is discussed further in Section 9.5. The
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Figure 4.5: Propagation paths derived from transfer entropy for oscillations in the flotation circuit.

results for each group were then compared to determine whether the propagation paths were
consistent with each other.

The propagation paths obtained from transfer entropy applied to Bank 1’s levels and outflows
are shown in Figures 4.5a and 4.5b respectively. Both show a propagation path from Cell 2 to
Cell 7. Neither causal map shows a causal flow from Cell 1 to Cell 2. Observing the trends for
LI1 and LI2 in Figure 4.4, the oscillation in LI1 appears less pronounced than in other trends.
This indicates that process noise may have obscured the causal connections. Figure 4.5b shows
a connection from Cell 5 to Cell 4, which is contradicts the physical flow of the process. From
the inspection of the trends for Cells 4 and 5 in Figure 4.4 it can be seen that Cell 4 showed some
saturation at its lower limit. The trends for LI5 show jagged peaks, where there are multiple
peaks for each cycle. These irregular trends may have caused transfer entropy to fail at detecting
a causal connection from Cell 4 to Cell 5.

Figure 4.5b also shows both FC2 and FC5 as possible root nodes. This result is confusing,
making it unclear what the actual root cause is. Considering that LI2 is the root node for the
level variables’ causal map, there is more evidence to support the hypothesis that Cell 2 is the
root node.
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The propagation paths obtained from transfer entropy applied to Bank 2’s levels and outflows are
shown in Figures 4.5c and 4.5d. Fig 4.5c shows a propagation path from Cell 10 to Cell 13. Fig
4.5d shows a propagation path from Cell 8 to Cell 13. Notably, no connection is observed from
LI8 to LI9 or LI9 to LI10. Figure 4.4c shows that the trend of LI8 displays a less pronounced
oscillation and a bit of noise, which may have obscured the causal connection. Cell 14’s level
and outflow show no causal connection with other variables. Figures 4.4c and 4.4d show severe
saturation for Cell 14’s level and outflow. This means that the causal connection between these
variables and the other variables may have been obscured.

Transfer entropy applied to Bank 1 and Bank 2’s variables both indicate the oscillations origi-
nating in the first cells and propagating down the banks to the last cells. Bank 1’s causal map
shows Cell 2 as the root node, while Bank 2’s causal map for the outflows shows Cell 8 as the root
node. Both Banks’ results can be considered in context of one another. Since these two banks
are in parallel, when an oscillation appears to propagate from the first cell of Bank 2, it is likely
that this oscillation originated simultaneously in the first cell of Bank 1. The transfer entropy
results are compared with those of the nonlinearity index and their accuracy when considering
additional process knowledge context is discussed in Section 4.5.3.

4.5.2 Nonlinearity index results

The nonlinearity index approach was applied to rank the variables according to the degree of
nonlinearity. This analysis was performed by the co-author of the conference paper, where a
version of this chapter was previously published [Lindner et al., 2018b].

The results of the nonlinearity index are presented in Table 4.1. The results for Bank 1 indicate
strong nonlinearity in a number of the flotation circuit variables. LI5 displayed strong nonlinear-
ity. In Figures 4.4a and 4.4b the severe nonlinear trends for Cell 5 can be seen. The oscillations
appear jagged, with a smaller peak present in each repeating peak. In contrast, Cells 1 and 2
show oscillations with a smoother sine wave form. These observations confirm the nonlinearity
rankings obtained using the nonlinearity index.

For Bank 2, Cell 13 showed the highest nonlinearity index value, indicating that this cell’s level
was closest to the oscillation root cause. Cells 8 and 9 showed linear results, indicating they were
furthest from the oscillation root cause. The trends in Figures 4.4c and 4.4d show smoother sine
oscillations for Cells 8 and 9, with more jagged trends for Cells 11 and 13. Bank 1 and Bank 2
showed similar results, where the first cells showed linear oscillatory trends, and the later cells
showed nonlinear behaviour. Cells 5 and 13 may be considered closest to the root cause of the
oscillation in each bank according to this technique, since they displayed the largest nonlinearity
indices.

4.5.3 Discrepancy of different methods and further analysis

The transfer entropy results indicated that the oscillation propagated from the first cells through
the circuit to the last cells, for both banks. The nonlinearity index gave contradictory results,
indicating that LI5 and LI13 were closest to the sources of the oscillation for each Bank. To
determine which of the methods gave the correct root cause, some additional context is necessary.

An oscillation takes time to propagate through the process, due to the residence time of the cells
and the transport delay between cells. The sequence of the oscillation propagation may give
further insight into the propagation path. The trends for the levels were inspected to determine
when the first peak of the oscillations appeared. The locations of these peaks establishes the
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Table 4.1: Nonlinearity index results for Bank 1 and Bank 2.

Bank 1 Bank 2

Variable Nonlinearity Index Variable Nonlinearity Index

LI5 2.48 LI13 2.88
LI7 1.97 LI11 2.86
FC5 1.92 LI12 2.71
FC7 1.88 LI14 2.49
LI4 1.7 LI10 2.36
LI6 1.57 FC11 2.01
LI3 1.35 FC13 1.87
FC6 1.33 FC12 1.38
FC3 1.19 FC10 1.22
FC4 1.09 LI9 Linear
FC1 Linear FC8 Linear
FC2 Linear LI8 Linear
LI2 Linear FC9 Linear
LI1 Linear

Table 4.2: Start times of oscillations, indicating sequence of oscillation propagation.

Bank 1 Bank 2

Variable Start time [hh:mm:ss] Variable Start time [hh:mm:ss]

LI1 03:10:00 LI8 03:10:10
LI2 03:11:00 LI9 03:10:40
LI3 03:11:50 LI10 03:11:50
LI4 03:12:10 LI11 03:11:40
LI5 03:12:20 LI12 03:12:20
LI6 03:13:10 LI13 03:12:20
LI7 03:13:00 LI14 03:10:50

sequence in which the oscillations appear in the cells. The start times are shown in Table 4.2.
Most of the start times are in sequential order, from the first cell to the last cell for each bank.
One exception is that the start time for LI14 is earlier than for LI10, LI11, LI12, and LI13.
However, in Figure 4.4c it can be seen that the signal for LI14 displays saturation, making it
difficult to accurately determine the start of the oscillation. LI7 appears to precede LI6, and LI11
appears to precede LI10. However, since the difference is only one sample (with the sampling
time at 10 seconds), it is difficult to determine which was first.

The sequential order of the oscillations confirms the propagation path obtained from the trans-
fer entropy results. This indicates that the nonlinearity index failed to correctly identify the
root cause. The nonlinearity index approach assumes that a nonlinearity occurs, causing an
oscillation, and as that oscillation propagates through the process it becomes less nonlinear. In
this case however, the oscillation caused nonlinear trends to arise downstream of the root cause
of the fault. Taking the trend of LI5 as an example, Figure 4.4a shows double peaks at each
cycle.

Data-based diagnosis techniques have an inherent limitation in that they can only point to
variables associated with the root cause of the fault. Further analysis is needed to determine
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Figure 4.6: Cyclone pressure just upstream of flotation circuit showing sharp dip at oscillation start at
time 03:08:00.

what caused the oscillation to manifest in that variable. Considering the unit just upstream of
this flotation circuit, it was observed that the cyclone pressure decreased sharply just before the
onset of the oscillation, as shown in Figure 4.6. This pressure is measured for a bank of cyclones
where the number of cyclones in operation can be varied. This drop in pressure occurred when
an additional cyclone was brought online. This sudden drop caused as flow disruption to the
flotation banks, which caused the levels of the first cells in each bank (LI1 and LI8) to deviate
from their set-points.

Further inspection also revealed that both the supervisory and optimisation advanced process
control (APC) and the multivariable level controller were switched off for the duration of the
oscillation. Only the base layer PID control, regulating the cell levels using the outflows from
the cells, was enabled. This indicates that the regulatory control was unable to correct for the
deviations in LI1 and LI8. Poor controller tuning may have caused the levels to become unstable
and the absence of the multivariable controller allowed the resulting oscillations to propagate
throughout the circuit. This may indicate that the base layer PID tuning had not been updated
for a long time, and the corrective action suggested by this analysis was to retune the base layer
control. Each bank was tuned with different PID parameters, which explains why the oscillation
periods for each bank was different.

After the oscillations persisted for some time, the supervisory control level is switched back
on to compensate for the oscillations by gradually changing the set points of the levels. This
compensation is ineffective at first, but when the multivariable level controller is turned on again,
the circuit quickly stabilises. This indicates that the multivariable controller is very effective at
rejecting oscillations.

To summarise the findings of this analysis: transfer entropy indicated that the oscillation origi-
nated in Cells 1 and 8. This was confirmed by observing the sequence in which the oscillations
appeared in each cell. A cyclone immediately upstream of the cells where the oscillation orig-
inated showed a sudden decrease in pressure, causing deviation of LI1 and LI8 from their set
points. Suboptimal controller tuning may have resulted in the inability of the control to correct
for these deviations, allowing the oscillation to propagate through the circuit. The corrective
action suggested by this analysis was to retune the base layer control.

Stellenbosch University  https://scholar.sun.ac.za



4.6. Chapter conclusion 69

4.5.4 Shortcomings of causality analysis approach

Although transfer entropy was used to successfully diagnose the fault conditions in this case
study, numerous difficulties in the implementation were encountered.

In the applications of causality analysis for fault diagnosis in literature, no clear, systematic
guidelines have been presented for the numerous steps required for implementation of transfer
entropy. The variables selected for analysis were those that showed oscillations from visual
inspection. The length of the data set used was limited to the data under fault conditions.
These decisions were made based on process knowledge and intuition, and from past experience
with causality analysis. More systematic guidelines for these decisions can aid engineers who
are not experts in causality analysis to implement these techniques successfully. This limitation
is therefore addressed in Chapter 7.

For parameter selection, the approach followed in this case study was to use the basic procedure
of transfer entropy, with the default parameters suggested in Bauer et al. [2007a]. A trial-and-
error approach was implemented before settling on this, where different values of K, L, τ and
h were tested. The results of transfer entropy are sensitive to optimal parameters [Duan et al.,
2014]. Therefore more systematic procedures for parametrisation can ensure confidence that the
results obtained are representative of the propagation paths in the process. This limitation is
therefore addressed in Chapter 7.

Some difficulties were also observed in the interpretation of the results once the causality analysis
calculations had been performed. The decision to separate the variables based on the different
banks was a logical decision since the two flotation banks are parallel processing streams. The
decision to separate the variables according to their categories as either CVs or MVs was made
since the causal map with all the variables was complex and difficult to interpret. This decision
was made based on process knowledge and experience with causality analysis techniques.

Figure 4.5b also showed both FC2 and FC5 as possible root nodes. This result is confusing,
making it unclear what the actual root cause is. The causal maps need to be considered with
careful attention to all the information available to the practitioner.

Clear guidelines of how to construct the causal maps, and augment them with process knowledge,
could aid engineers who are not causality analysis experts to interpret the causal maps. The
difficulties associated with interpreting causal maps are addressed in Chapter 9.

Causality analysis can, in most cases, point to variables closely associated associated with the
fault. This analysis is limited to measured variables. The fault to be corrected was poor
controller tuning. The causal map could not point directly to this, but could point to the
sequence of events related to this.

4.6 Chapter conclusion

An oscillation propagating through a flotation circuit was diagnosed using transfer entropy and
the nonlinearity index. The two methods gave contradictory results. Considering knowledge of
the material and control flow in the process, and the sequence of the oscillations in the system,
it was concluded that the propagation path obtained using transfer entropy was accurate. The
oscillation originated in, or just upstream of the first cells (Cells 1 and 8), in the flotation
circuit. The nonlinearity index indicated that LI5 was closest to the sources of the oscillation.
The nonlinearity index assumes that as an oscillation propagates through a process, appearing
in different variables’ time series, the trends become less nonlinear. In this case however, the
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oscillation caused nonlinear trends to arise downstream of the root cause of the fault.

The discrepancy in the results obtained for the two methods demonstrates the need to fully
consider the assumptions of data-based techniques when interpreting their results. A universally
applicable method for oscillation diagnosis is unlikely, with different techniques working for
different scenarios. Understanding the limitations of techniques can lead to more successful and
reliable applications of oscillation diagnosis strategies in industrial processes.

Once the correct propagation path had been identified, further analysis was needed to determine
what caused the oscillations in Cells 1 and 8. A cyclone immediately upstream of the cells where
the oscillation originated showed a sudden decrease in pressure. This drop in pressure caused
a flow disruption to the flotation banks. This may have initiated the deviation of LI1 and LI8
from their set points. Suboptimal base layer controller tuning may have resulted in the inability
of the control to correct for the fluctuations, allowing the oscillation to propagate through the
circuit. The corrective action suggested by this analysis was to retune the base layer control.

These results indicate that careful consideration of process knowledge is paramount to mean-
ingful interpretation of the results from otherwise automated techniques.

This chapter demonstrated that transfer entropy can effectively be used to aid diagnosis of
oscillations in an industrial process. However, the approach followed in this case study was
based on previous experience with causality analysis techniques. No clear guidelines exist in
literature for many of the steps required to successfully implement causality analysis for fault
diagnosis. For this reason the factors affecting performance of causality analysis techniques
need to be investigated, so that such guidelines can be developed. Chapter 5 defines the desired
performance and then discusses the factors affecting the performance. Subsequent chapters then
address these factors and develop guidelines for the implementation of the techniques for fault
diagnosis.
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5.1 Chapter introduction

Parts of this chapter were published in a peer-review conference paper: Lindner B, Auret L &
Bauer M, 2017a, Investigating the Impact of Perturbations in Chemical Processes on Data-Based
Causality Analysis. Part 1: Defining Desired Performance of Causality Analysis Techniques,
IFAC-PapersOnLine, 50(1), pp. 3269-3274.[Lindner et al., 2017a]

The summary of the literature provided in Chapter 2.11 demonstrated that many authors have
proven the effectiveness of causality analysis techniques. Additionally, Chapter 4 in this dis-
sertation demonstrated the effectiveness of causality analysis for fault diagnosis. However, the
techniques have not been widely adopted in industry. The aim of this dissertation is to improve
on existing causality analysis techniques to make them more accessible to industry experts. To
achieve this, Objective I was defined: to investigate the factors affecting performance of causality
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analysis techniques. To address the objective, the desired performance of causality analysis tech-
niques are defined in this chapter, so that their usefulness and shortcomings for fault diagnosis
can be evaluated. The factors affecting the performance of the techniques are then discussed.

This chapter is structured as follows: Section 5.3 formulates the desired characteristics and
performance criteria of causality analysis methods; Section 5.4 identifies the factors that affect
the characteristics and performance of causality analysis. Finally, Section 5.5 presents some
conclusions drawn.

5.2 Chapter objectives

The objectives of this chapter are:

I To define the desired characteristics of causality analysis techniques.

II To identify the factors that impact the characteristics of the techniques.

5.3 Performance criteria for causality analysis

In this section, the desired performance criteria for causality analysis techniques are defined.
The desired performance criteria discussed here are: accuracy and precision; automatability;
interpretability; computational complexity; applicability for different process characteristics.
Automatability, interpretability and applicability for process characteristics are subjective per-
formance criteria. Accuracy, precision, and computational complexity are quantifiable metrics.
Although some of these performance criteria are subjective, this chapter aims to address them
as thoroughly as possible, to provide a basis for comparing techniques.

5.3.1 Accuracy and precision of causality analysis

Causality analysis is considered accurate when the method was able to identify the correct
root cause of the fault. The diagnosis procedure can be considered useful when the corrective
action suggested by the root cause analysis successfully removes the fault. This view of the
accuracy considers how accurately overall causality analysis procedure was able to point out
the propagation path of the fault. This procedure includes calculation of the causal statistic
for individual pairs of measured variables, as well as interpretation of the causal map for the
entire system of pairwise causal connections. However, this accuracy can only be evaluated for
individual case studies.

Uncertainty in process measurements means that non-zero transfer entropy and Granger causal-
ity values will be calculated even when there is no causal relationship. As mentioned in Section
2.12.3, a hypothesis test is needed to determine the statistical significance of the causal statistic
calculated between a pair of measured variables. However, this significance test is not infallible,
and spurious connections may still be found[Bressler & Seth, 2011]. These spurious connections
make analysis of fault propagation paths difficult. Spurious connections give a false representa-
tion of the propagation path of the fault. The reverse is also true, real causal connections might
be missed because of this uncertainty.

Spurious and missing connections may also occur due to the limiting assumptions discussed in
Section 5.3.5. For example, if Granger causality was used to calculate causality in a process
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with nonlinear behaviour, the linear regression model may not be able to capture the nonlinear
process dynamics and the causal connection may be missed. Non-stationarity in the time series
could cause spurious connections for both techniques. The factors affecting the accuracy are
discussed further in Section 5.4.

The validity of individual causal connections can be scrutinised to evaluate the method’s accu-
racy. When the ground truth causality is known, one can quantify the missed connection rate,
true connection rate, and the false (or spurious) connection rate:

Definition 4. True connection rate (TCR): the fraction of causal connections in the true prop-
agation path in the true propagation path that were detected using the data-based technique:

TCR =
Cdetected,true
Cknowledge

(5.1)

where Cdetected,true is the number of true causal connections found using the data-based tech-
nique, and Cknowledge is the number of connections in the true propagation path. This is the
opposite of the missing connection rate (MCR): MCR = 1− TCR.

Definition 5. Relative true connection rate (RTCR): the fraction of total edges in the causality
map that are true connections:

RTCR =
Cdetetcted,true
Cdetected

(5.2)

where Cdetected,true is the number of true causal connections found, and Cdetected is the total
number of detected connections. This is the opposite of the relative false connection rate (FCR):
FCR = 1−RTCR.

Accuracy is defined by a high true connection rate and low false and missed connection rates.
Precision can be defined by how consistently the method detects the connections under similar
conditions. Section 8.4 utilises these accuracy and precision metrics in a simulated case study
where the true causal structure is known.

5.3.2 Automatability of causality analysis

Section 2.12, and the case study in Chapter 4, illustrated that application of causality analysis
for fault diagnosis is complex. Numerous steps are required, including data selection, param-
eter selection, causality analysis calculation,and interpretation of results. Each of these steps
introduces possible entrance points for errors in subjective human reasoning. Often engineers
will have to resort to time consuming trial-and-error approaches until useful causality maps are
generated.

Automated procedures for each of these steps, and for their integration into an overall fault
diagnosis methodology, can limit the need for human intervention. In the steps where full
automation is not possible, systematic procedures and detailed guidelines for the steps can also
limit the need for trial-and error approaches. Improved automatability will therefore improve
accuracy and precision of the techniques, in turn improving the robustness. This means that an
engineer applying the techniques can be more confident in the validity of the reasoning applied
to the results of causality analysis. Additionally, improving automatibililty can also save time
and effort for engineers, so that their reasoning skills can rather be applied to determining what
corrective action to take after root cause analysis.

The following definition is used to test whether a calculation procedure is automatable:

Definition 6. A calculation procedure is automatable when all hyper-parameters can be defined
without human intervention.
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5.3.3 Interpretability of causality analysis

Fault diagnosis techniques are used by engineers to gain insight into abnormal behaviour oc-
curring within a process. When applying causality analysis for fault diagnosis, the engineer has
to interpret the causal map to see whether a clear propagation path is identified. It is impor-
tant that the engineer can understand the information presented simply, and understand the
implications. For example, when a spurious connection passes the significance test because of
excessive noise in the signal, and is displayed on the causal map, the engineer will need to use
process knowledge and understanding of the causal statistic to understand why that spurious
connection was found.

This interpretation has two components: mathematical interpretation of the underlying causal
statistic; and visual interpretation of the causality maps.

When the underlying causal statistic is based on mathematical concepts that are easy to un-
derstand, the implementation is more accessible for an engineer to implement themselves. As
illustrated further in Chapter 7, the accuracy of the causality analysis calculations are sensitive
to parameter selection, such as the model order in Granger causality, or the time interval for
transfer entropy. Successful application of the techniques can be improved when the engineer
understands the importance of the parameters. Therefore, in simpler mathematical calcula-
tions for causality, it may be easier to grasp the importance of the parameters. Additionally,
once the causal analysis has been implemented, understanding the underlying mathematics aids
successful interpretation of the results.

On the other hand, the reason complex mathematical techniques are developed is to accurately
capture complex interactions in time series. Therefore, relying on only simple techniques may in
some scenarios produce inaccurate results. The scenarios where different methods are applicable
is investigate further in Chapter 8.

This criteria is subjective, since it depends on the familiarity and personal experience of an
engineer with different mathematical concepts. However, it is still useful to keep this criteria in
mind when evaluating techniques.

The end result of the causality analysis is a causality map. When this causality map gives a clear
indication of the propagation path that is logically consistent with process knowledge, then the
variables at the start of the propagation path can be further investigated. When the suggested
propagation path is ambiguous, it may be uncertain what the root cause was. There may be
more than one suggested propagation path in the causal map pointing to different root cause
variables. In the case where these different root cause variables are associated with the same
unit in the plant, or the same controller, then it can be inferred that the root cause is closely
associated with that unit and can be investigated.

When there are multiple root causes all associated with different units, or sections of the plant,
then the root cause is more ambiguous. In this scenario it is possible that multiple faults
are occurring simultaneously[Chiang et al., 2015]. However, a simplifying assumption that is
typically applied is that only one fault occurs at any time is applied, since the probability of
occurrence of simultaneous independent faults is small, as suggested by [Shiozaki et al., 1985].

All causal effects in a system are identifiable when the causal map is acyclic [Pearl, 2009].
Cyclical causal maps, where each node is reachable from any other node[Bang-Jensen, 2010],
show no clear start or end nodes, and therefore give no clear indication of the possible root cause
of the fault. Figure 5.1 gives an example of a cyclical graph. In such a scenario, there is no clear
indication of which variable is the driving force for the system.
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    Node 1

    Node 2

    Node 3

    Node 4

    Node 5

Figure 5.1: Example of a cyclical causal map.

The complexity of a causal can give an indication of how difficult it is to interpret. For example,
in a dense causal map, with many edges, it may be difficult to follow the paths between nodes
in the map. This would make it difficult to identify the propagation path of the fault through
the system. Section 9.7 presents some graph complexity metrics.

5.3.4 Computational complexity of causality analysis

Ideally, computational complexity of causality analysis techniques should be as low as possible.
This makes the implementation accessible to engineers in an industrial setting. Solutions for
reducing the computational time for complex calculations exist. Cloud computing utilities are
readily accessible. Graphics processing units can also be used. However, if the need for these
advanced computing solutions can be avoided, implementation can be more accessible.

What amount of time is considered excessive depends on the situation. Online, automated fault
diagnosis would require a solution within minutes. If the plant is experiencing an ongoing fault
the engineer needs to isolate the root cause as fast as possible to return the plant to normal
operation. On the other hand, if the analysis is being performed offline to gain more information
about fault conditions that happened some time in the past, the engineer may not mind waiting
a few hours for results.

5.3.5 Applicability for different process characteristics

The applicability of a causality analysis technique may be limited by the underlying assumptions
of the calculations it is based on. These limitations include linearity and stationarity (see Section
5.4.4), A technique that is applicable for a wider range of process characteristics is desirable, so
that the technique can be used with confidence in different scenarios.

Kuhnert [2013] presented guidelines for technique selection based on process characteristics.
These guidelines were developed based on simulated experiments to determine which technique
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ProcessInput
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Measured output

ProcessInput

Sensor Noise

Measured outputOutput

Figure 5.2: Illustration of sensor and process noise.

gave the most accurate results for different process characteristics. The characteristics investi-
gated included linearity, as well as the dead time between variables. This is investigated further
in Chapter 8.

5.4 Factors affecting performance of causality analysis

Section 5.3 outlined the criteria to evaluate the performance of causality analysis techniques for
fault diagnosis. This defines a basis for discussion of the factors that may affect this performance
in this section. This section provides a discussion of these factors, and the impact of these factors
investigated in detail in subsequent chapters of this dissertation.

5.4.1 Noise and significance testing

Sensor noise and common process noise can add uncertainty to the causality analysis calculations.
Figure 5.2 illustrates the distinction between sensor noise and process noise. Process noise
refers to common cause variation in a process. An example of common cause variation may be
variations in mineral compositions of ore fed to a concentrator process. Sensor noise is noise
that arises due to the uncertainty in measurement of a property.

A causal connection means that variation in one variable will cause similar variation in another
variable, after some time. Variation caused by sensor noise would mean that variation in the
output variable is not caused by variation in the input variable, therefore the causal connection
would be obscured. Variation caused by process noise may show a strong trend between the
variation in the input and output variables, meaning that the causal connection may be detected.
However, high frequency variations can cause the value of the input variable to change too quickly
for a response to be seen in the output variable, which would obscure the causal connection.
Proper significance testing can mitigate the impact of noise on the performance of causality
analysis methods. See Section 2.12.3 for a discussion of significance testing methods.

The impact of noise on the accuracy of causality analysis measures is investigated in Chapter 6.

5.4.2 Fault type

The type of fault affecting the process may affect the results of the causality analysis. Section
2.11 showed that the majority of the research into causality analysis for root cause analysis has
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DV CV

MV

Figure 5.3: Example of causal map for control loop. DV = disturbance variable, CV = controlled
variable, MV = manipulated variable.

been applied for diagnosis of plant-wide oscillations. Chemical processes often exhibit oscillatory
behaviour, often as a result of poorly tuned feedback controllers[Thornhill & Horch, 2007].
Oscillations propagate through causal connections in a process with a unique trend that tends
to be persistent, and causing enough excitation in one variable that it manifests in another
variable. The causal effect from one variable to another is therefore pronounced, and persistent,
meaning that long data-sets are available for analysis. Causality analysis is therefore well suited
for diagnosis of oscillations.

However, oscillations are not the only fault trend of interest when diagnosing fault conditions.
Step changes can occur in chemical processes, such as abrupt changes in feed compositions, tem-
peratures or flow rates. Such abrupt changes may be caused, for example, by changing operator
shifts, switching control strategies or changing feedstocks. Another type of non-oscillatory fault
is a slow drift that may occur in some processes; where a persistent increasing or decreasing trend
may be observed. Ramp trends can occur as a result of drifting sensors or valve malfunctions.

Applications to non-oscillatory data conditions have been researched. Duan et al. [2013], Kuh-
nert [2013], and Yang et al. [2014] all demonstrated the use of transfer entropy to capture
causality in a non-oscillating process. However, these applications investigated the ability of the
techniques to identify individual causal connections. They did not investigate the diagnosis of
non-oscillatory faults. Therefore, the strengths and weaknesses of different causality analysis
techniques to accurately detect causality between two variables influenced by such faults have
not been investigated. In Chapter 6, oscillatory and step perturbations of varying amplitudes
and dynamics are input into a simulation to observed their effect on the ability of causal analysis
techniques to detect a causal connection.

5.4.3 Process interactions

Causality analysis should detect all types of causal connections in a process. For chemical
processes these include: mass flow; energy flow; and information flow. Information flow, or
controller influence, presents interesting interactions.

Consider a case where there is some disturbance variable (DV) that influences the controlled
variable (CV). Without control, a change in the DV would cause a change in the CV. However,
when control is applied, a change in the DV would cause a change in the manipulated variable
(MV) as well. A causal connection therefore exists between X and the MV, and another causal
connection may exist between the MV and CV. Figure 5.3

A confounding variable may result in spurious causality between two variables being detected.
For example, a disturbance in a utility, such as steam supply, may affect a large number of
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X

Y

Z

?

Figure 5.4: Example of causal map showing possible confounding from variable X, where X is an
unmeasured variable.

measured variables, which in turn affect each other. The causal influence of the utility on
two variables may be misinterpreted as an apparent causal influence between the variables
themselves. Figure 5.4 illustrates this scenario. This is particularly relevant, considering that
in Chapter 4, one of the limitations of causality analysis that was identified was that only
the measured variables can be analysed. Therefore, a fault can be due to an unmeasured,
confounding variable.

5.4.4 Time series characteristics

As mentioned in Section 5.3.5, causality analysis techniques may have limitations for detecting
causality with certain time series characteristics, such as linearity of the data, and stationarity
of the data. The time series characteristics may therefore affect how generally applicable the
causality analysis measure is, and how accurately the measure identifies causal connections in
specific scenarios.

Granger causality incorporates linear regression models of time series’, and may therefore be
limited in its ability to capture nonlinear features of the time series trends[Bressler & Seth,
2011]. Consider a differential equation describing the relationship between variables x and y in
its continuous and discrete forms:

dy

dt
= a1y + b1x

y(t+ 1) = a2y(t) + b2x(t)
(5.3)

The differential equation describing y in Equation 5.3 is linearly separable, containing no nonlin-
ear terms. The discrete part of Equation 5.3 is similar to the AR models presented for Granger
causality in Equations 2.2 and 2.3. The differential equation describing y in Equation 5.3.
Therefore the past observations of x and y can be used to predict y using the linear regression
model shown in Equation 2.3. Equation 5.3 is an example of a description of a process where
there is linear interaction between the two variables. For example, the change in a tank’s level
is linearly proportional to a change in the flow rate into the tank.

Consider another differential equation:

dy

dt
= a1yx

y(t+ 1) = a2y(t)x(t)
(5.4)

The differential equation describing the relationship between y and x in Equation 5.4 contains
a nonlinear term. Even when the parameters in Equation 5.4 are stationary, the system is
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nonlinear. Therefore a linear regression model would not be able to fit the past observations of
y and x to y. Equation 5.4 is an example of a description of a process where the interaction
between the variables is nonlinear. For example, where a reaction rate is some nonlinear function
of a species concentration.

Although transfer entropy is not limited to linear time series, the joint PDFs need to be calcu-
lated for stationary time series[Lizier, 2014]. This means that the autocorrelation, mean, and
variance of the time series are not a function of time [Girod, 2001]. Granger causality also
assumes stationarity to calculate the regression coefficients[Bressler & Seth, 2011].

The impact of time series characteristics on the general applicability of causality analysis tech-
niques is investigated further in Chapter 8.

5.4.5 Time frame and parameter selection

The dynamics of the system under consideration has a profound impact on the calculated causal-
ity. The causality analysis techniques considered in this dissertation, Granger causality and
transfer entropy, are lag-based techniques [Yang et al., 2014]. The influence of X on Y is only
felt after that time delay, so that predictability improvement of Y occurs when incorporating
past information about X at a time delay.

The residence time of the process being analysed is also important. When the process dynamics
are very slow, and the causality analysis technique is only considering a small portion of the
data, the influence of the input variable on the output variable will not be detectable.

The time frame of the data included in the analysis should therefore be long enough to include
sufficient information to incorporate the process dynamics. The process dynamics includes the
time delay and the residence time of the process.

This temporal information is included in parameters in the calculations of the techniques. For
Granger causality the parameter that includes temporal information is the model order, k. For
transfer entropy it is the embedding dimensions (K and L), the prediction horizon (h), and
the time interval (τ). Additionally, the sampling time of the data (Ts) will affect how long a
time frame is included in the analysis. Optimal selection of these parameters is important to
ensure that they correspond to the physical dynamics between the pairs of variables. There is
some interaction between these parameters. For example, a larger sampling time will mean that
a larger time frame is covered. However, it will also mean that the data included is of lower
resolution, and may therefore negatively affect the ability to detect the causal connection.

Figure 5.5 illustrates the time frame covered by the causality analysis, and how the parameters
relate to this time frame. For Granger causality, the total time frame is the sampling time
multiplied by the model order. For transfer entropy, the total time frame is determined by the
largest embedding dimension. In the example in Figure 5.5b, K = 3, L = 4, h = 3, and τ = 2.
Therefore the overall time frame is Ts(Lτ + h).

To determine whether the fault dynamics do have a significant impact on the causality analysis
methods, Section 6.4 investigates the impact of changing oscillation frequency on the causal
connection calculated between two variables. More importantly, Section 7.4 investigates the
impact of process dynamics, such as the time delay, residence time, and again the oscillation
frequency, on the optimal parameter selection.
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(a) Time frame for Granger causality calculations.
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(b) Time frame for transfer entropy calculations.In this example, K = 3, L = 4, h = 3, and τ = 2.

Figure 5.5: Illustration of the parameters influencing time frame for Granger causality and transfer
entropy calculations.

5.5 Chapter conclusion

Development of accurate and automated causality analysis techniques requires an improved
understanding of the strengths and limitations of the available techniques to detect causality
under a wide range of typical process conditions.

In this chapter, the desired performance of causality analysis techniques is defined. The desired
performance criteria was defined in terms of: general applicability; automatability; interpretabil-
ity; accuracy; precision; and computational complexity.

The factors affecting the performance of causality analysis techniques were discussed. Factors
affecting the performance include: noise; fault types; process interactions; time series character-
istics; and parameter selection.

Now that the desired performance has been defined, and factors affecting the desired performance
have been identified and discussed, subsequent chapters will further investigate the impact of
these factors. Chapter 6 investigates the impact of noise, controller interaction, and different
fault types on the performance of causality analysis techniques. Parts of Chapter 7 investigates
the impact of process dynamics on the accuracy of causality analysis techniques, as well as the
interaction of process dynamics with the optimal parameter selection.
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6.1 Chapter introduction

A version of this chapter was published as a peer-reviewed conference paper: Lindner B, Auret
L & Bauer M, 2017b, Investigating the Impact of Perturbations in Chemical Processes on Data-
Based Causality Analysis. Part 2: Testing Granger Causality and Transfer Entropy, IFAC-
PapersOnLine, 50(1), pp. 3275-3280.[Lindner et al., 2017b]

The discussion in Chapter 5 established that important desired performance criteria for causality-
based fault diagnosis are: accuracy and precision; automatability; interpretability; computa-
tional complexity; and applicability for different process characteristics. The factors affecting
performance of causality analysis techniques were also discussed. Among those factors discussed
was the impact of noise, process interaction, and types of faults. This chapter investigates the
impact of those factors on the accuracy of Granger causality and transfer entropy. Specifically,
the impact of process noise and sensor noise, the impact of controller interaction, and the impact
of step perturbations and oscillatory perturbations are investigated.

This chapter is structured as follows: Section 6.2 outlines the objectives of this chapter; Section
6.3 presents the methodology followed to address these objectives; Section 6.4 presents the results
for the system under the influence of oscillatory perturbations; Section 6.5 presents the results
for the system under the influence of step perturbations; and finally, Section 6.6 summarises the
conclusions of this chapter.

81
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Cold water:
Fin, Tin

Steam: 
Fs, Ts

Tank outflow:
Fout

TTTC

FsC
FsT

Tank:
L, T

Figure 6.1: Diagram of simulated tank with heat exchange system.

6.2 Chapter objectives

The objectives of this chapter are:

1. To investigate the impact of different perturbations on the causality analysis between
variables.

2. To investigate the impact of noise on the performance of causality analysis techniques.

3. To investigate the impact of controller interaction on the performance of causality analysis
techniques.

6.3 Methodology

In this chapter, the impact of some of the factors affecting the accuracy of causality analysis
techniques are to be investigated. The impact of process noise and sensor noise, the impact of
controller interaction, and the impact of step perturbations and oscillatory perturbations are
investigated. Step and oscillatory perturbations will be simulated for a simple system with a
clear, direct cause-effect relationship between a pair of variables. The Granger causality and
transfer entropy between this pair of variables will be calculated, and the results analysed in the
context of the desired performance outlined in Chapter 5.

For Granger causality the Akaike Information Criterion (AIC) was used to select the model
order, k. The same model order was used for the reduced and full model.

For transfer entropy the embedding dimensions had to be selected. First, the prediction horison
and time interval were assumed to be the same as the transport delay between Tin and T :
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Table 6.1: Tank simulation model parameters.

Parameter Description Value/Initial value Units

A Cross-sectional area of tank 1 [m2]

Cp Specific heat capacity of water 4186 [ J
kgK ]

Cp,s Specific heat capacity of steam 1996 [ J
kgK ]

ρ Density of water 1000 [ kg
m3 ]

ρs Density of steam 0.6 [ kg
m3 ]

KL Level proportionality constant 0.128 [ m3

m0.5min
]

L Tank level 2 [m]
T Tank temperature 50 [◦C]

TD Time delay 2 [min]
Tref Reference temperature 25 [◦C]
Tin Inlet temperature 25 [◦C]

Fin Inlet flowrate 0.181 [ m
3

min ]
Ts Inlet steam temperature 100 [◦C]

Fs Inlet steam flowrate 0.5 [ m
3

min ]

h = τ = 2. The embedding dimensions K = 1 and L = 2 were selected.

Parametrisation of transfer entropy is complex, so for this study the parameters chosen may not
have been optimal. However, the objectives of this chapter are not to compare optimal imple-
mentations of the two techniques, but rather to gain an understanding of how the techniques
are affected by the factors outlined in Chapter 5. Chapter 7 addresses optimal parametrisation
methods.

6.3.1 Two-tank simulation used to generate experimental time series data

A SIMULINK simulation of a water tank with a heat exchange coil, as shown in Figure 6.1, was
used to generate the time series data. A cold water stream enters the tank with a flow rate Fin
and temperature Tin. The flow rate out of the tank is proportional to the square root of the
tank level, L. Steam coils run through the tank at a measured flow rate of Fs. When control
is implemented, the tank temperature is controlled by varying Fs using a PID controller. The
mass balance is given by:

A
dL(t)

dt
= Fin − kL

√
L(t) (6.1)

where Fin is kept constant. The energy balance is given by:

ρCpA
dL(t)T (t)

dt
=ρCpFin(Tin(t− TD)− Tref )− ρCpkL

√
L(t)(Tout(t)− Tref )

+ ρsCp,sFs(Ts,in(t)− Ts,out(t))
(6.2)

where TD is the time delay between the measurement point for Tin and T .

To simulate process noise and sensor noise, Gaussian noise is added to the measured variables
(Tin and T ) using a random number generator in Simulink. An illustration of the distinction
between process noise and sensor noise is shown in Figure 5.2.
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Table 6.3: Ranges of perturbations used for sensitivity analysis (δ = fault size).

Perturbation δ Period

Oscillatory 0◦C → 25◦C 1min→ 50min
Step 0◦C → 25◦C -

Time [min]
0 50 100 150 200 250 300 350 400 450 500

°C

10

20

30

40
T1in (Y)

Time [min]
0 50 100 150 200 250 300 350 400 450 500

°C

46

48

50

52

54
T1 (X)

(a) Response of T1 to oscillating T1in.
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45

50
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(b) Response of T1 to step change in T1in.

Figure 6.2: Response of T1 to perturbations in T1in.

It can be argued that time series generated from simulations may not accurately represent
the real-world response of processes. However, the benefit of being able to simulate different
perturbations to the process and examine their effect on the causality makes a simulated case
study ideal for the purposes of this work.

A sensitivity analysis on the effect of oscillating perturbations and step perturbations on the
causality from Tin to T was performed. Oscillations in Tin and step changes in Tin were intro-
duced. Three different simulated scenarios were generated:

• Base case: Gaussian sensor noise added to Tinand T signals.

• Process noise case: Gaussian noise is introduced to Tin signal before numerical integration,
in addition to sensor noise added to both measured variables (Tin and T ). The effect of
extra excitation introduced by process noise on the causality is to be investigated.

• Closed loop case: a controller is added that varies Fs to control T . The effect of controller
action on the causality is to be investigated.

Examples of the time series for oscillating inputs and step inputs are shown in Figures 6.2a and
6.2b respectively.

6.3.2 Expected performance of causality analysis

To investigate the impact of the factors considered in this chapter, step and oscillatory pertur-
bations are introduced into a simulated process. Figure 6.3 illustrates the expected response
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C

δ 

C < Csig when 
δ < δcrit 

Csig

δcrit

C > Csig and ΔC   0 
when δ > δcrit 

Figure 6.3: Expected response of causality measures to perturbations. δ = fault size. C = causality
measure

of the causality measures to increasing size of perturbations. The ideal responses of the topol-
ogy methods is a flat response, where the causality measure remains significant and constant
(allowing for some variation due to stochasticity) regardless of the perturbations experienced;
∆C ∼= 0 and C > Csig. This flat response would indicate that the causality measure is accurate
at identifying the known causal connection, and precise, since it identifies the causal connection
consistently. The actual responses may deviate from this ideal.

The expected trend is that large amplitude oscillations or large step changes would cause strong
causal connections between variables, since a large change in the input would cause a pronounced
change in the output. It is expected that this effect would only be noticeable once the amplitude
of the perturbation exceeded some signal to noise ratio threshold, since noise would obfuscate
the causal connection. This means that there would be some critical value of the perturbation
amplitude, δcrit, where C < Csig for δ < δcrit.

For oscillatory perturbations, medium frequency oscillations would result in strong causal con-
nections, since the response of the output variable to changes in the input is gradual enough
that a clear trend would appear. Very low frequency oscillations, however, would cause such
gradual changes that the effect would be obscured by the more rapid dynamics of the noise
in the process. Very high frequencies would appear similar to noise, where insufficient time is
allowed for a trend to develop between the input and output.

6.4 Results for system under influence of oscillatory perturba-
tions

Figure 6.4 displays the causality measures between Tin and T obtained for oscillatory perturba-
tions. Table 6.4 shows the mean and standard deviations of the Granger causalities and transfer
entropies for each contour plot.

High frequency, large amplitude oscillations result in larger values for Granger causality and
transfer entropy. Observing the response as the process conditions move from high frequency
to low frequency, a steep slope in the causality measure is observed at very high frequencies.
At very high frequencies the oscillations appear as fluctuations similar to noise, obscuring the
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Table 6.4: Means and standard deviations of Granger causality and transfer entropies shown in Figure
6.4.

Granger causality Transfer entropy

Open loop oscillation µ = 0.100, σ = 0.015 µ = 1.38, σ = 0.99
Open loop with process noise µ = 0.087, σ = 0.016 µ = 0.798, σ = 0.695
Closed loop oscillation µ = 0.074, σ = 0.016 µ = 0.802, σ = 0.477

causal relationship. As the frequency decreases the more gradual slope in Tin results in a more
pronounced oscillatory trend in T . This means that values of T are easier to predict using past
values of Tin, resulting in larger causality values.

As the process conditions move towards even lower frequencies the causality measures decrease
slightly. The perturbation in the input propagating to the output is so gradual that the effect
is dominated by the more rapid dynamics of the noise in the process. The decrease in causality
measure at lower frequencies is more gradual for Granger causality than it is for transfer entropy.
This is due to the fact that the transfer entropy parameters were kept constant. The window
over which the transfer entropy observe the responses becomes too small to capture the longer
dynamics. With Granger causality, the model order selected with the AIC compensates for the
longer dynamics.

An increase in the causality measure is also seen as process conditions move from low amplitude
to high amplitudes. As the amplitude increases the excitation in the system increases, meaning
that oscillations in Tin cause more pronounced oscillations in T . The signal to noise ratio
increases, meaning that the perturbation dominates the noise. This pronounced effect means
that the noise has less of an impact on the accuracy of the PDFs calculated for transfer entropy.
The information transferred from Tin to T is not contaminated by the uncertainty added by the
noise. This pronounced effect means that information contained in past values of Tin provides
information for predicting values of T . This response corresponds to the expected response
demonstrated in Figure 6.3.

By comparing Figure 6.4b with 6.4d, and considering the mean transfer entropies shown in Table
6.4 are 1.38 and 0.708 respectively, it can be seen that the calculated transfer entropy values
are lower when process noise is added. This indicates that the process noise adds stochasticity,
meaning that the information contained in past values of Tin is unrelated to information in T .
This means that the causal connection is obscured by adding information that is not transferred
from one variable to another. The signals, Tin and T , are now influenced by both the input noise
and the oscillatory perturbations. The PDFs calculated for the signals may be more inaccurate,
since the true distributions are now a mix between the distributions for the input noise and
the distributions for the perturbations. Kernel density estimation may overfit to the noise in
the process, resulting in a fit with high variance. By comparing Figure 6.4a with 6.4c, there is
no observable effect of the noise, as there is for transfer entropy. Granger causality fits linear
regression models to the data, which assumes that the errors follow a Gaussian distribution.
This means that the while the model fit may have a large bias, it would have a low variance.
The possibility that the KDEs for transfer entropy may have overfit the noise in the data could
account for its sensitivity to noise when compared to Granger causality.

Figures 6.4e and 6.4f show the response during closed loop operation. There is still a peak
at high amplitudes and high frequencies, but at low frequencies the causality values are lower
than the open loop case. Low frequency oscillations are more successfully attenuated by the
controller, so the impact of these oscillations on the temperature would be less pronounced,
obscuring the causal relationship.
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The significance thresholds for transfer entropy are shown as red contours on the plots. For
Granger causality, where each calculated value is subjected to the F-test, all the calculated values
were significant. This indicates that Granger causality is able to detect the causal connection
even when there is little excitation caused by perturbations. Despite the extreme cases, for
a large range of conditions the responses are flat, indicating that the causality measures are
effective for calculating causality in oscillatory conditions. Comparing the left side of Figure 6.4
with the right side, Granger causality appears to provide a flatter response surface than transfer
entropy. This indicates that Granger causality is more reliable at detecting causality for the
ranges of oscillations considered.
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(a) Granger causality for open loop oscillations
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(b) Transfer entropy for open loop oscillations
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(c) Granger causality for oscillations with process
noise.
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(d) Transfer entropy for oscillations with process noise
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(e) Granger Causality for closed loop oscillations
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(f) Transfer entropy for closed loop oscillations

Figure 6.4: Impact of oscillatory perturbations on Granger Causality and transfer entropy. Red line
on transfer entropy graphs represent the significance value. For Granger causality, the F-test determined
that all calculated values were significant.
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6.5 Results for system under influence of step perturbations

Figure 6.5 shows the resulting Tin → T causality measure for the step perturbations. For
the open loop cases, increasing step size results in larger causality measures. As the step size
increases, the excitation in the system becomes more pronounced. This means that the changes
in Tin cause more pronounced changes in T and the causal relationship is easier to detect. The
signal to noise ratio increases, and the effect of the noise is reduced.

For the Granger causality, all the values were significant according to the F-test, indicating that
Granger causality was reliable for causality detection for all the step inputs. The significance
thresholds for transfer entropy are shown as the red line on the figures. Transfer entropy showed
small values below the threshold initially, and gradually increasing to significant values as the
step size increased. This indicates that when the excitation in the system is small, the transfer
entropy fails to detect the causal relationship. When the amplitude is larger, the signal to noise
ratio increases, and the effect of the perturbation dominates the effect of the noise. The results
of both Granger causality and transfer entropy were consistent with the expected response
show in Figure 6.3. Increasing amplitudes of the step perturbations showed increasing causality
strengths.

For Granger causality, no difference is observed with the introduction of process noise, indicating
robustness to the extra noise in the step input conditions. For transfer entropy the introduction
of process noise caused a dramatic decrease in the calculated values, indicating that transfer
entropy is very sensitive to the extra stochasticity added by the introduction of process noise.
This effect was observed in Section 6.4, and the discussion is repeated here for clarity. The
signals, Tin and T , are now influenced by both the input noise and the oscillatory perturbations.
The PDFs calculated for the signals may be more inaccurate, since the true distributions are now
a mix between the distributions for the input noise and the distributions for the perturbations.
Since Granger causality is not trying to fit any distributions, but rather just linear models, it
may be more robust to the noise.

Figures 6.5a and 6.5b show the response during closed loop operation. For Granger causality
the response is flat, since the controller successfully attenuates the disturbance caused by the
step change, obscuring the causal relationship. For transfer entropy, the calculated causality
is only slightly lower, indicating that for step disturbances transfer entropy can still detect the
causal relationship even with the effect of the controller. The Granger causalities calculated were
still significant, even though they were slightly lower, indicating that both techniques reliably
detected the causal relationship.

6.6 Chapter conclusions

The impact of noise, controller interaction, and fault types on causality analysis performance
were investigated in this chapter. Overall, both techniques displayed robustness by accurately
detection known causal connections for all the process conditions investigated. There were some
logically consistent exceptions. For oscillatory conditions, high frequencies resemble noise, where
the variation in the input variable does not propagate to the output variable. Therefore lower
causality measures were obtained at high frequencies. The effect of low frequency oscillations is so
gradual that the observed window used by the causality measures are too small to detect a causal
relationship. Closed loop operation attenuates slow acting oscillations and step perturbations,
disguising causal relationships.

Although the purpose of this chapter is not to provide a comparative analysis of Granger causal-
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Figure 6.5: Impact of step perturbations on Granger causality and transfer entropy. All calculated
Granger causality values were significant according to the F-test.

ity and transfer entropy (Chapter 8 addresses this), some points of comparison are useful to
discuss the strengths and weaknesses of each. Granger causality gave flatter responses than
transfer entropy for a wide range of oscillatory conditions, indicating reliability. Transfer en-
tropy was less affected by the influence of the controller in detecting the causal connection.
Transfer entropy was more sensitive to the influence of additional process noise.

This chapter investigated the impact of some process conditions on the accuracy of causality
analysis measures. Now that this investigation has provided some insight into the strengths and
weaknesses of these techniques, pragmatic guidelines for their implementation can be addressed.
Chapter 7 provides an investigation of how different process dynamics affect the ability of these
techniques to accurately identify causal connections between variables, and how these dynamics
are related to the optimal parameters to calculate the causality between variables. Guidelines for
data selection, parameter selection, and the overall implementation procedure are introduced in
the framework of a systematic workflow. It may be noted that this section already investigated
the impact of the dynamics of oscillatory disturbances, however, Chapter 7 also investigates the
interaction between these dynamics and the optimal parameters for causality analysis.
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7.1 Chapter introduction

A version of this chapter has been submitted for publication: Lindner B, Auret L & Bauer
M, 2018, A systematic workflow for oscillation diagnosis using transfer entropy, Manuscript
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accepted for final submission by IEEE Transactions on Control Systems Technology. [Lindner
et al., 2018a].

As discussed in Chapter 2.11, transfer entropy is a popular causality analysis technique that has
been proven effective at fault diagnosis in a variety of applications [Bauer et al., 2007a, Duan
et al., 2013, 2015, Hajihosseini et al., 2014, Landman et al., 2014, Naghoosi et al., 2013, Shu &
Zhao, 2012, Wakefield et al., 2018]. Despite the evidence of successful fault diagnosis applica-
tions, transfer entropy has not been widely adopted for fault diagnosis in processing industries.
Chapter 5 presented the desired characteristics of causality analysis techniques and identified
automated application and reliability of the results as crucial for feasible implementation.

Application of transfer entropy is a complicated procedure, with numerous parameters to be
selected. Many of the academic applications of transfer entropy use default parameters, or often
don’t specify what values of parameters were used or how they were selected. Horch et al. [2007]
presented a workflow for the application of transfer entropy. However, specific parametrisation
guidelines were omitted, and the default parameters for transfer entropy suggested by Bauer
et al. [2007a] were used. Lack of systematic guidelines for application of transfer entropy means
that results are often unreliable or too time consuming to implement. Naghoosi et al. [2013] and
Duan et al. [2013] presented systematic parametrisation approaches. However, these approaches
require information theory calculations to be performed at multiple embedding dimensions, and
are therefore time consuming and computationally expensive. Additionally, these parametri-
sation procedures were not integrated into a complete workflow with all the application steps
required.

Development of systematic workflow for application of transfer entropy can provide a meaningful
contribution to this technique. This chapter presents a systematic workflow for the application
of transfer entropy for oscillation diagnosis. The workflow addresses the selection of each impor-
tant parameter required and provides guidelines for selecting the optimal parameters based on
the process conditions. Transfer entropy is applied to time series generated from process mea-
surements. It exploits lagged information between pairs of variables. This means that process
dynamics will have a significant influence on the optimal parameter selection. Identifying and
understanding the relationships between process dynamics and transfer entropy parameters will
allow for more robust, systematic procedure of parametrisation.

The outline of this chapter is as follows: in Section 7.3 the workflow for calculation of transfer
entropy is presented; in Section 7.4 the relationships between process dynamics and calculation
parameters are determined to provide guidelines for parameter selection; in Section 7.5 the
workflow is demonstrated and tested on an industrial case study; in Section 7.6 the conclusions
of the investigation are presented.

7.2 Chapter objectives

The objectives of this chapter are:

I To develop a systematic workflow for the application of transfer entropy for oscillation
diagnosis. This workflow must address:

(a) robust parametrisation of transfer entropy

(b) variable selection

(c) data selection
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II To test the systematic workflow for diagnosis of an oscillation in a case study of oscillations
in the flotation section of a platinum concentrator plant.

7.3 Workflow for application of transfer entropy for oscillation
diagnosis

Oscillations in industrial processes can propagate to multiple units and possibly degrade perfor-
mance [Thornhill, 2005]. Swift and accurate diagnosis of the oscillation is necessary to ensure
that corrective action can be taken as soon as possible. Transfer entropy can be used to diagnose
such a plant-wide oscillation by inferring its propagation path. However, application of transfer
entropy for oscillation diagnosis is a complex task with multiple steps. Many of these steps
require the user to specify parameters which significantly affect the accuracy of the results. A
systematic workflow for application of transfer entropy is presented in Figure 7.1. Each step of
the workflow is described in detail in this section.
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Figure 7.1: Workflow for application of transfer entropy for oscillation diagnosis. Dashed outlines indicate optional steps.
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7.3.1 Detect fault

The first step in the workflow is to detect the fault. This is either by visual inspection, alarms
indicating deviation of measured variables or KPIs from their acceptable ranges, or an automated
fault detection strategy, such as the spectral envelope method [Jiang et al., 2007]. The duration
of the fault can be found by determining when the oscillation’s effects first appeared, and when
it disappeared, either due to corrective action, or disappearance of the disturbance. In an online
setting, the fault may be ongoing, and it is up to an engineer to apply the diagnosis procedure
and take corrective action. The general location of the fault can be determined, by identifying
which process units are affected. Visual inspection of the time series data can indicate which
variables show symptoms of the fault. This initial step can narrow the suspect variables down
to a unit or section of the plant.

This workflow is focused on oscillation diagnosis. Indeed, the majority of applications of transfer
entropy in chemical or mineral processes has been for oscillation diagnosis. Oscillations often
occur in processes and there is therefore a need for automated diagnosis procedures. In the
presence of an oscillatory disturbance, there is enough excitation in the signals that a wide
range of values are observed. This means that the PDF estimation is more accurate, since
the distributions of the signals are smoother. This workflow could be adapted to be used for
other types of disturbances, such a step changes in feed conditions. However, the impact on the
optimal parameters would have to be investigated.

7.3.2 Perform spectral analysis (optional)

Spectral analysis may then be performed on this reduced set of variables to determine the
oscillation period. A fast Fourier transform can be used to find the frequency that gives the
peak power spectrum [Shumway & Stoffer, 2014]. This dominant frequency may represent the
frequency of the oscillation. The oscillation period may later be used for parameter selection.
Each of the variables that show this common oscillation period may possibly be an indication
of where the oscillation originated, or they may be showing symptoms of the oscillation after
it has propagated through the process. The suspect variables can then be narrowed down even
further to those with this common oscillation period.

This is an optional step. This variable selection is commonly used when applying transfer entropy
for oscillation diagnosis [Bauer et al., 2007a, Duan et al., 2013, 2015, Landman & Jamsa-Jounela,
2016]. If the dominant frequency is not identified, the causality analysis can be performed on
the suspect variables identified in the fault detection step. However, this means that the transfer
entropy will have to be calculated for a large number of candidate variables. This will increase
the computation time dramatically.

In this workflow the oscillation period can be used to select optimal parameters for transfer
entropy. If this information is not available other parametrisation techniques (discussed further
in Section 7.3.5) may be used. However, Section 7.4 shows that the optimal parameters are
sensitive to the oscillation period. Therefore using different parametrisation techniques that do
not take into account the oscillation period may result in suboptimal parameter selection.

7.3.3 Select data for transfer entropy analysis

The next step is to select the data to be included in further analysis. Namely, selecting the
number of samples to include (Ns), the sampling time of the data used (Ts), and the variables
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to include. The duration of the fault and the sampling time of the data available may dictate
the selection of Ns and Ts. However, it may be desired to include a smaller number of samples to
reduce the computational burden. This can either be done by simply selecting a smaller subset
of data, or by subsampling the data. The variables identified as possible suspect variables in the
fault detection step can be used for subsequent analysis. Alternatively, if the spectral analysis
step has been performed then only the variables showing oscillations at a common frequency
can be selected.

7.3.4 Determine process dynamics (optional)

In this workflow the process dynamics, specifically the time delays of the process, are used to
inform the parameter selection. System identification techniques can be used to estimate the
time delay between each of the suspect variables.

This step is optional, if this information is not available other parametrisation techniques (dis-
cussed further in Section 7.3.5) may be used. However, Section 7.4 shows that the optimal
parameters are sensitive to the process dynamics. This is confirmed by [Duan et al., 2014].
Therefore using different parametrisation techniques that do not take into account the process
dynamics may result in suboptimal parameter selection.

7.3.5 Select parameters for transfer entropy analysis

The next step is to select the parameters for calculation of the transfer entropy. Knowledge of
the process and fault dynamics will allow robust selection of these parameters. This selection
has been addressed by other researchers. Section 2.12.2 discusses these in detail. Bauer et al.
[2007a] suggested choosing default values of K = 0 and L = 2. The sampling time τ is then
varied until the difference in Tx→y no longer changes significantly with changing τ . Duan et al.
[2013] suggested a slightly different approach, where initial values of H = τ = 1 are selected.
The embedding dimension, K, is varied until the Shannon entropy for y no longer changes.
Then the embedding dimension, L, is varied until Tx→y no longer changes significantly. If K
or L becomes too large, a larger τ is chosen and the procedure is repeated. Naghoosi et al.
[2013] used time lagged dependency and differential dependency curves to determine the most
important time lags and used this information to parametrise transfer entropy. This approach is
more systematic, and does consider the underlying process dynamics indirectly. However, these
procedures are computationally expensive, since they require calculating PDFs for a range of
parameter values.

This chapter proposes a novel parameter selection methodology that incorporates process dy-
namics. In Section 7.4 relationships between process dynamics and the tunable parameters are
investigated in order to provide guidelines for their selection in the context of this workflow.
These guidelines are an important contribution of this work. The suggested guidelines related
the optimal H and τ to the oscillation period (obtained from the ‘Perform spectral analysis’
step) and the time delay (obtained from the ‘Determine process dynamics’ step).

7.3.6 Perform transfer entropy analysis

With the parameters selected in the previous step, the transfer entropy calculations between
each pair of variables can then be calculated using Equation 2.5. The PDFs can be calculated
using kernel density estimation [Bauer et al., 2007a]. The kernel density estimation step itself
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has a bandwidth parameter that has to be selected. Optimal selection of this bandwidth was not
included in the scope of this parametrisation investigation. This is discussed in Section 2.9.2.
The focus of this investigation was on the parameters most sensitive to the process dynamics.
The bandwidth suggested by Li & Racine [2011] can be used as a rule of thumb θ = 1.06N−0.2σx.

Because transfer entropy is calculated for data generated from a process influenced by stochas-
ticity, non-zero values for transfer entropy will be calculated even when there is no causal
relationship. Hypothesis tests are needed to determine the statistical significance of the calcu-
lated values. A significance threshold can be calculated using Equation 2.43. A causal map can
then be constructed. The nodes in the causal map represent the measured variables, and the
edges represent significant causal connections between the variables. From this causal map, the
propagation path of the oscillation can be inferred. Further analysis can then be performed to
establish the sequence of events that lead to the oscillation occurring in the process.

7.4 Establishing guidelines for transfer entropy application

The workflow presented in Section 7.3 involves selection of multiple parameters, namely: the
number of samples (NS); the sampling time (TS); the time interval (τ); the prediction horizon
(h); the output embedding dimension (K); and the input embedding dimension (L). The optimal
values for these tunable parameters may be influenced by the process conditions. Therefore the
relationships between process and fault dynamics and the parameters required for calculation
of transfer entropy are investigated.

A simple tank process was simulated, where an oscillation was introduced in the temperature of
the tank’s inlet stream. This simulation was described in Section 6.3.1. There is a known causal
connection between this inlet temperature and the outlet temperature of the tank. Therefore
this oscillation would propagate from Tin to Tout. The process dynamics that could affect the
calculated transfer entropy between Tin and Tout are the time delay between them (TD), the
time constant between them (τp), and the period of the introduced oscillation (P ).

The calculation parameters that may influence the transfer entropy result are: the number
of samples (NS); sampling time (TS); prediction horizon (h); time interval (τ); embedding
dimension (K and L). The relationship between the process dynamics and each individual
calculation parameter can be determined by simulating the process for a range of values for
TD, τp, and P . The transfer entropy can then be calculated for each combination of process
dynamics for a range of values of the calculated parameters. In this way the response of the
transfer entropy to each process condition and calculated parameters can be analysed. An
analysis of variance (ANOVA) is performed to establish which factors have a significant effect
on the transfer entropy. Further analysis can then be performed for each significant factor. The
ANOVA results are presented in Appendix A.

7.4.1 Selecting the number of samples

The ANOVA presented in Appendix A showed that the number of samples (NS) was a signifi-
cant factor for accurate transfer entropy calculations. Limited interaction between NS and the
other factors was observed. Therefore the influence of NS on the transfer entropy alone can be
investigated. The general trend in Figure 7.2 was that higher levels of NS gave higher transfer
entropy values. This indicates that a larger NS gave more accurate transfer entropy results.
To confirm this the transfer entropy was calculated for a range of values of P , TD, τp, and NS

with more levels than the 4 levels included in the ANOVA. Figure 7.2 plots the mean transfer
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Figure 7.2: Mean transfer entropy for known connection (Tin → Tout) plotted against number of
samples. The optimal number of samples is the largest available.

entropy value for each NS level. The increasing trend indicates that the larger NS is the larger
the transfer entropy is. This indicates that a larger number of samples provides more accurate
transfer entropy values, since more samples will be included in the estimation of the PDFs. This
also illustrates how sensitive transfer entropy is to the optimal number of samples, with some
values below 500 samples showing negative transfer entropy.

A guideline for the minimum number of samples is useful, especially in an online context, where
it is necessary to know how many samples need to be collected for the analysis. In a scenario
where the oscillation did not persist for long enough to collect more than the minimum number of
samples, the analysis can still be performed. However, the results will then have to be analysed
with caution, and careful consideration must be given to any corrective action taken from the
results of this analysis. In an offline context the maximum number of samples available for
the analysis is limited to the number of samples that the oscillation persists for. Additionally,
transfer entropy is computationally expensive, therefore selecting a smaller number of samples
can reduce the analysis time. Figure 7.2 indicates a steeper drop in the mean transfer entropy
value when NS is below 500 samples.

Bauer et al. [2007a] investigated the minimum number of samples required to obtain a significant
transfer entropy value. The results indicated that the minimum number of samples should be
set to 2000 samples if possible, but could be as low as 400 samples. These results are consistent
with those observed in this investigation.

7.4.2 Selecting the sampling time

The ANOVA did not indicate that the sampling time (TS) significantly impacted the transfer
entropy. This is unexpected, since changing the sampling time changes the time scales of each of
the parameters. Additionally, altering the sampling time alters the shape of the reconstructed
oscillation trend. However, the general trend in Figure A.1a indicated that lower TS levels gave
higher transfer entropy values. To confirm this the transfer entropy was calculated for a range

Stellenbosch University  https://scholar.sun.ac.za



7.4. Establishing guidelines for transfer entropy application 99

0 0.5 1 1.5 2

T
S

-0.2

0

0.2

0.4

0.6

0.8

1

M
ea

n 
T

xy

Figure 7.3: Mean transfer entropy for known connection (Tin → Tout) plotted against sampling time.
The optimal sampling time is the smallest available.

of values of P , TD, τp, and TS with more levels than the 4 levels included in the ANOVA. Figure
7.3 plots the mean transfer entropy value for each TS level. The decreasing trend indicates
that the smallest sampling time results in the most accurate transfer entropy value. This result
is logically consistent, since the smallest sampling time provides the highest resolution for the
data. The sensitivity of transfer entropy to the sampling time is evident from this plot.

In some cases it may be desirable to increase the sampling time in order to reduce the number of
samples while still covering the same time span. There is no clear evidence of an inflection point
where the transfer entropy value became significantly lower in Figure 7.3. However, Shannon’s
sampling theorem [Shannon, 1948] can provide a guideline for the maximum allowable sampling
time. According to this theorem, the maximum sampling time before the reconstructed trend no
longer captures the oscillation is 0.5P . Barnett & Seth [2017] showed that the detection ability
of a causality analysis method decays exponentially as the sampling time increases beyond the
causal delay. Therefore the sampling time should ideally also be less than the time delay between
variables.

7.4.3 Selecting embedding parameters

The ANOVA results indicate that the embedding dimensions (K and L) significantly affected
the transfer entropy results, and have significant interaction with τ . The results are less sensi-
tive to the chosen K parameter. Since increasing these parameters greatly contributes to the
computational cost of transfer entropy, the range of values that can be implemented practically
is limited. Equation 2.5 requires estimation of joint PDFs. The dimensions of the PDFs that
need to be calculated are a function of K and L. Bauer et al. [2007a] suggested limiting the
embedding dimension to K = 0 and L = 2. This is a pragmatic solution to reducing the com-
plexity of the transfer entropy workflow. It is therefore suggested that K and L be fixed, and
τ and H can be used to capture the process dynamics accurately. Figure A.1b in the appendix
shows the mean transfer entropy values for the interaction of K and L. K = 1, L = 2 gives
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Figure 7.4: Effect of τ and P on transfer entropy for known connection (Tin → Tout), indicating
relationship between P and the optimal τ . Locations of the peaks are indicated by the red markers.

larger transfer entropy values than K = 0, L = 2. The largest PDF that needs to be calculated

is p(yi+H ,Y
(K)
i ,X

(L)
i ), which has a dimension of K +L+ 1. This means that for K = 1, L = 2,

a four-dimensional PDF is the largest that has to be constructed. Therefore K = 1, L = 2 can
be taken as the default values without impractically costly computations.

7.4.4 Selecting prediction horizon and time interval

Bauer et al. [2007a] suggested that the time interval (τ) and prediction horizon (h) should be
equal to each other, since they would give similar responses to the process dynamics. Therefore
in this study these parameters were kept equal. ANOVA results indicated that selection of τ
may be influenced by P , τp, and TD, since their interactions gave lower P-values.

Figure 7.4 displays transfer entropy plotted against P and τ . The dimensions of both x and y
axes are in minutes. The transfer entropy response surface shows repeating peaks whose position
is dependant on the value of P and τ . The shape of this surface reveals how sensitive transfer
entropy is to the selection of τ for different oscillation periods, and therefore illustrates the need
for considering these dynamics for optimal parameter selection. These repeating peaks indicate
aliasing, where the oscillatory trend is obscured at certain values of τ . The optimal time interval
value, τmax, can be taken as the location of the first peak. I.e. the first τ value that resulted in
a peak for each oscillation period.

Figure 7.5 plots τmax against P , for a single TD and τp. A strong linear relationship between
P on τmax is evident. A similar linear relationship was observed between TD and τmax. No
relationship was observed between τp and τ . Therefore τp was excluded from further analysis.

A three dimensional plot of the optimal time interval (τmax) against oscillation period (P ) and
time delay (TD) is displayed in Figure 7.6. The figure confirms the linear relationship between
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Figure 7.5: Linear relationship between optimal time interval (τmax in min) and oscillation period (P
in min). R2 = 0.82

Table 7.1: Guidelines for parameter selection for transfer entropy using fault and process conditions.

Parameter Suggested value Suggested range

Number of samples (NS) Maximum [500−NS,max]
Sampling time (TS) Minimum [Ts,min − 0.5P ]
Output embedding dimension (K) 1 [0− 3]
Input embedding dimension (L) 2 [1− 3]
Time interval (τ) (0.33P + 0.53TD + 0.66)/Ts [0− P/TS ]
Prediction horizon (h) h = τ h = τ

TD and τmax, and between P and τmax. The linear relationship fit to the curve is shown in
Equation 7.1, and plotted in Figure 7.6.

Ts ∗ τ̂max = 0.33P + 0.53TD + 0.66 (7.1)

Note that in Figure 7.6, the dimensions of all three axes are in minutes, with a constant sampling
time of 0.1 minutes. Therefore the left hand side of the equation incorporates the sampling time
so that the dimension of τ̂max is number of samples. This provides an empirical formula for
selection the time interval (τ) and prediction horizon (h) based on the time delay and oscillation
period of the trends being analysed using transfer entropy. The R2 value for this fit was 0.56.
Although this is a low value, the fit is adequate to provide guidelines for the selection of the
parameters. This will be tested in Section 7.5, where this formula will be used for parameter
selection.

The distance between the repeating peaks of the time interval in Figure 7.4 varied according to
the value of the oscillation period. Figure 7.7 plots the peak distance against oscillation period
(P ). The linear model fit to this response had a slope of 0.5. This suggests aliasing that can
be explained by Shannon’s sampling theorem. When the time interval (τ) is shifted by half a
period, the reconstruction of the data represents an oscillatory trend once again. If it was desired
to search multiple values for the optimal τ , this result can be used to limit the search space for
the optimal τ to one whole period, [0− P ], since the optimum τmax would be in that range. To
make this generalisable to any sampling time, this can be adjusted to make τ ’s dimensions in
number of samples: [0− P/Ts].

7.4.5 Final guidelines for parametrisation

The guidelines for parametrisation of transfer entropy established from the results of this section
are summarised in Table 7.1.
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Figure 7.8: Simplified process flow diagram of flotation circuit under consideration. Two banks of seven
flotation cells in series make up the circuit.

7.5 Demonstrating workflow on real case study

The workflow outlined in Figure 7.1, implemented with the guidelines for parametrisation out-
lined in Table 7.1, was applied to an industrial case study of a plant-wide oscillation in a mineral
concentrator plant flotation circuit. This case study was used in Chapter 4.

To provide context for this case study the flotation circuit operation and control is described
here. Flotation is used to separate valuable mineral particles from gangue particles in a concen-
trator process. This is achieved by selectively imposing hydrophobicity on the valuable mineral
particles, causing the valuable particles to attach to air bubbles and float to the top of the cell
[Wills, 2007] A simplified process flow diagram of the flotation circuit under consideration is
shown in Figure 7.8. This flotation circuit consists two parallel banks, each with seven flotation
cells in series. The concentrate from the first three cells of each bank are combined, and the
concentrate from the last four cells are combined. The outflow (tails) from each cell flows into
the subsequent cell. The final tails are combined and processed further in downstream units.

The following sections demonstrate the application of the developed workflow with the suggested
parametrisation strategy.

7.5.1 Detect fault

In this case study the oscillation was observed during a post-hoc inspection of plant data.
Oscillatory behaviour affecting a number of control loops were observed. The fault may also
have been detected online using conventional oscillation detection strategies, such as the spectral
envelope technique. This article focusses on the parametrisation of the diagnosis techniques
employed after the fault has been detected. Therefore automated fault detection strategies are
not discussed in further detail.

Figure 7.9 plots the levels (LI1 to LI7) and outflows (FC1 to FC7) from Bank 1 in the flotation
circuit, which all showed the oscillatory trends. From inspection it was observed that the oscilla-
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tion was transient. Before the oscillations appeared at 03:09:00 AM, and after they disappeared
at 04:40:00 AM, the levels were stable well controlled around their set-points. The oscillation
persisted for roughly 1H30MIN. All the measured variables showing oscillatory trends were lo-
calised to the flotation section of the plant. Therefore all measured variables in this section were
selected for further analysis. This included all level, outflow, and airflow measurements. This
amounted to 38 variables.

03:00 03:15 03:30 03:45 04:00 04:15 04:30 04:45 05:00

Time

LI7

LI6

LI5

LI4

LI3

LI2

LI1

(a) Bank 1 levels. Red lines indicates set-points.

03:00 03:15 03:30 03:45 04:00 04:15 04:30 04:45 05:00

Time

FC7

FC6

FC5

FC4

FC3

FC2

FC1

(b) Bank 1 outflows.

Figure 7.9: Circuit variables showing oscillatory behaviour. Vertical dashed lines indicate onset and
end of oscillations.

• Fault duration: 03:09:00 AM to 04:40:00 AM, duration of 1H30MIN

• Possible suspect variables: All level, outflow, and airflow measurements in the flotation
circuit.

7.5.2 Perform spectral analysis (optional)

Once the oscillation has been detected, additional information on the nature of the oscillation
may be discerned using spectral analysis. Using the fast-Fourier transform to find the peak
oscillation frequencies it was observed that a number of the selected trends displayed a common
oscillation frequency of 0.00215 Hz (a period of 465 s).To illustrate this, the power spectrum for
LI2 is plotted in Figure 7.10.

The variables that shared this oscillation period were the levels and outflows in the first bank
of the flotation circuit.

• Oscillatory variables: Variables with common oscillation period were all levels and
outflows in bank 1.

• Oscillation period: P = 465s.

7.5.3 Select data for transfer entropy

The suspect variables were identified in Section 7.5.2 as all the outflow and level variables in Bank
1. The outflows are the manipulated variables (MVs) for the levels, which are the controlled
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Figure 7.10: Oscillatory trend for LI2 with power spectra showing peak frequency corresponding to
oscillation.

variables (CVs). The oscillation should propagate in the same way through the MVs and CVs.
Therefore it was decided to analyse the outflows and levels separately to see if they showed
similar propagation paths through the flotation circuit. The sampling time of the data obtained
from the data historian was 10s. In Section 7.5.1 the duration of the oscillation was found to
be 1H30MIN, which is equal to 540 samples. This is very close to the minimum number of
samples suggested. Subsampling to decrease the number of samples is unnecessary. Therefore
the sampling time and the number of samples is kept the same.

• Sampling time: TS = 10s.

• Number of samples: NS = 540samples.

• Suspect variables: Levels and outflows in Bank 1.

7.5.4 Determine process dynamics (optional)

Suspect variables were narrowed down during the spectral analysis. For each pair of these
variables system identification was performed to fit a first order plus time delay model. This basic
model gave a rough estimate of the time constants of the time delays between the variables. The
System Identification Toolbox in MATLAB was used to determine the time delay estimates for
each pair of candidate variables. The function used evaluates an autoregressive exogenous (ARX)
model structure for the input and output variables specified[Sderstrm, 1989]. The function the
finds the time delay that provides the best fit for this model. The presence of a time delay
itself might indicate a causal connection. However, as discussed in Section 2.9, inference of a
causal connection requires both some indication of causal strength (e.g. in terms of uncertainty
reduction for transfer entropy) and the presence of a time delay.
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Table 7.3: The time delay (TD, in seconds) between level variables.

LI1 LI2 LI3 LI4 LI5 LI6 LI7

LI1 0 0 10 80 330 200 400
LI2 0 0 40 140 190 380 350
LI3 220 230 0 40 20 40 120
LI4 160 160 130 0 20 40 150
LI5 10 130 20 330 0 10 70
LI6 400 170 300 110 280 0 70
LI7 400 10 250 260 320 390 0

Table 7.4: The time delay (TD, in seconds) between outflow variables

FC1 FC2 FC3 FC4 FC5 FC6 FC7

FC1 0 0 10 180 240 10 320
FC2 400 0 0 20 10 190 10
FC3 240 240 0 50 40 10 20
FC4 140 250 0 0 0 10 120
FC5 120 130 270 50 0 0 50
FC6 300 200 90 0 230 0 330
FC7 320 30 120 0 260 290 0

• Time delay for levels: The time delay (TD, in seconds) between each pair of level
variables is shown in Table 7.3.

• Time delay for outflow: The time delay (TD, in seconds) between each pair of outflow
variables is shown in Table 7.4.

7.5.5 Select parameters for transfer entropy

The time delay and the oscillation period can be used to get parameters for transfer entropy,
using the relations obtained in Section 7.4, and presented in Table 7.1.

• Embedding dimension for input: K = 1.

• Embedding dimension for output: L = 2.

• Time interval: The time interval can be calculated from TD and P using Equation 7.1.
The time interval (τ , in number of samples) for each pair of level variables is shown in
Table 7.5. The time interval for each pair of outflow variables is shown in Table 7.6.

• Prediction horizon: H = τ .

7.5.6 Perform transfer entropy analysis

Once all the parameters have been selected for each pair of variables the transfer entropy analysis
can be performed. The propagation paths shown in Figure 7.11 were obtained. The propagation

Stellenbosch University  https://scholar.sun.ac.za



7.5. Demonstrating workflow on real case study 107

Table 7.5: The time interval (τ , in number of samples) between level variables

LI1 LI2 LI3 LI4 LI5 LI6 LI7

LI1 − 15 15 19 32 25 36
LI2 15 − 17 22 25 35 33
LI3 26 27 − 17 16 17 21
LI4 23 23 22 − 16 17 23
LI5 15 22 16 32 − 15 18
LI6 36 24 31 21 30 − 18
LI7 36 15 28 29 32 35 −

Table 7.6: The selected time interval (τ , in number of samples) between outflow variables

FC1 FC2 FC3 FC4 FC5 FC6 FC7

FC1 − 15 15 24 27 15 32
FC2 36 − 15 16 15 25 15
FC3 27 27 − 17 17 15 16
FC4 22 28 15 − 15 15 21
FC5 21 22 29 17 − 15 17
FC6 31 25 20 15 27 − 32
FC7 32 16 21 15 29 30 −

path for the level variables (Figure 7.11a) shows the oscillation propagating from the first cells
to the last cells in the circuit. The connection from Cell 5 to Cell 2 contradicts this flow path.
Figure 7.9a shows that the trend for LI5 is highly nonlinear, which may have resulted in spurious
connections. The connectivity obtained is sparse, with no connections to Cell 4 and Cell 7. The
propagation path for the outflow variables (Figure 7.11b) shows more direct connections from
Cell 1 to Cell 6 and Cell 7. The propagation paths do indicate an oscillation originating in the
first cells and propagating through to the last cells in the circuit. The two propagation paths
are consistent with each other. Some further analysis incorporating process knowledge may be
used to validate the propagation paths obtained. Further analysis is also necessary to discern
more details of the cause of the oscillation.
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Figure 7.11: Propagation paths for oscillations in the flotation circuit. Values displayed on edges
represent the transfer entropy value calculated.
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Table 7.7: Start times of oscillations, indicating sequence of propagation.

Variable Start time [hh:mm:ss]

LI1 03:10:00
LI2 03:11:00
LI3 03:11:50
LI4 03:12:10
LI5 03:12:20
LI6 03:13:10
LI7 03:13:00
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Figure 7.12: Cyclone pressure just upstream of flotation circuit showing sharp dip at oscillation start
at time 03:08:00.

An oscillation takes time to propagate through the process, due to the dynamics of the process
occurring in the cells. The sequence of the oscillation propagation may give further insight into
the propagation path. To establish the sequence in which the oscillations appear in the cells,
the trends for the levels were analysed to find local maxima corresponding to oscillation peaks.
The locations of the first peak for each trend were used to establish the sequence of appearance
of the oscillations. The first peak times are shown in Table 7.7. The first peaks are in mostly
sequential order from the first cell to the last cell. One exception is that LI7 appears to precede
LI6. However, since the difference is only one sample (with the sampling time at 10 seconds), it
is difficult to determine which was first. The sequential order of the oscillations from the first
cells to the last cells confirms the propagation path obtained from the transfer entropy results
shown in Figure 4.5.

Data-based diagnosis techniques have an inherent limitation in that they can only point to
variables associated with the root cause of the fault. Further analysis is needed to determine
what caused the oscillation to manifest in that variable. Considering the unit just upstream of
this flotation circuit, it was observed that the cyclone pressure decreased sharply just before the
onset of the oscillation, as shown in Figure 7.12. This sudden upset may have caused the levels
of the first cell (LI1) to deviate from their set-points.
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Both the supervisory and optimisation advanced process control (APC) and the multivariable
level controller usually present in the circuit [Muller et al., 2010] were switched off for the
duration of the oscillation. Only the base layer PID control, regulating the cell levels using
the outflows from the cells, was operational. This indicates that the regulatory control was
unable to correct for the deviation in LI1. Poor controller tuning may have caused the levels to
become unstable. The absence of the multivariable controller allowed the resulting oscillations
to propagate unhindered throughout the circuit. After the oscillations had persisted for some
time, the supervisory control level was enabled again to compensate for the oscillations by
gradually changing the set points of the levels. This compensation was ineffective at first, but
when the multivariable level controller was turned on again, the circuit quickly returned to
stable operation. This indicates that the multivariable controller is very effective at rejecting
oscillations.

To summarise the findings of this oscillation diagnosis: transfer entropy indicated that the os-
cillation originated in Cell 1. This was confirmed by observing the sequence in which the oscil-
lations appeared in each cell. A cyclone immediately upstream of the cells where the oscillation
originated showed a sharp decrease in pressure. This pressure drop caused a flow disruption to
the flotation banks, causing deviation of LI1 from its set points. Suboptimal controller tuning
may have resulted in the inability of the control to correct for these deviations, allowing the
oscillation to propagate through the circuit. Therefore the corrective action identified by this
analysis was to retune the base layer control.

7.6 Chapter conclusion

A systematic workflow for the application of transfer entropy for oscillation diagnosis was devel-
oped. This workflow exploited the relationships between the underlying process dynamics and
the parameters required for calculation of transfer entropy to establish guidelines for parameter
selection. The guidelines obtained from this investigation are summarised in Table 7.1. A sig-
nificant contribution from the investigation of these relationships was that a linear relationship
could be fit to predict the optimal time interval given the oscillation period and time delay. This
provides an empirical relationship for selecting the time interval based on process dynamics.

The workflow using the developed guidelines was applied to an oscillation diagnosis case study
from a minerals concentrator plant. The workflow provided a systematic approach to accurately
determining the fault propagation path. Although the workflow presented here focussed on
transfer entropy, other causality analysis techniques can be substituted in transfer entropy’s
place. The only caveat is that the parametrisation procedure would be different. Substituting
Granger causality, for example, would simply require that the AIC be used to select the model
order.

Now that the workflow for application of causality analysis has been laid out, the next component
required for application of causality analysis for fault diagnosis is to decide which method to
use. Chapter 8 presents a comparative analysis of Granger causality and transfer entropy, based
on the criteria outlined in Chapter 5. This comparison is used to provide guidelines for which
technique to select.
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a decision flow for the application of oscillation diagnosis. Manuscript accepted pending major
revisions for publication to Journal of Process Control.

Up to this point in the dissertation, a number of variations of causality analysis have been
introduced. Chapter 5 highlighted the desired characteristics of causality analysis techniques,
and pointed out that automated, or at least systematic application of the techniques can remove
ambiguity in the results. Chapter 7 presented a workflow for the application of transfer entropy
to address the need for a systematic application procedure. Although this workflow is catered
for transfer entropy, Granger causality could be substituted in its place. However, the decision
of which causality analysis technique to use has not been addressed.

Duan et al. [2014] demonstrated and compared different techniques for root cause diagnosis of
plant wide oscillations. Granger causality and transfer entropy were the data-based causality
analysis techniques they compared, and some of their advantages and disadvantages were listed.
They found that Granger causality is easier to implement, robust to data selection, has low
computational burden, and its application techniques are well developed. However, it is only
suitable for linear relationships between variables, and may be prone to model misspecification.
They also found that transfer entropy is robust to data selection, and suitable for both linear
and nonlinear relationships. However, it is sensitive to calculation parameter selection, difficult
to implement, and the computational burden is large.

Kuhnert [2013] provided guidelines for technique selection based on process characteristics. How-
ever, the guidelines were based on simulated experiments, and only the accuracy of the techniques
was considered. Investigation of other factors is important. This study and the one by Duan
et al. [2014] both show that the different methods have varying strengths and weaknesses, and
each may be uniquely suited to different applications.

A comparative analysis of different techniques can be used to provide guidelines for which tech-
nique to select. The point of departure for this comparative analysis is can be to compare
the two most popular techniques identified in Section 2.11, Granger causality and transfer en-
tropy. Their wide-spread application in literature means that these transfer entropy and Granger
causality are mature techniques. This chapter compares transfer entropy and Granger causality
based on their accuracy, precision, automatability, interpretability, computational complexity,
and applicability for different process characteristics. Based on this comparison, a decision flow
is presented, to aid engineers in deciding which technique to use and how to interpret the results.

The outline of this Chapter is as follows: in Section 8.2 the objectives of this chapter are
presented; in Section 8.3, the features of Granger causality and transfer entropy are compared;
in Section 8.4, the accuracy and precision of Granger causality and transfer entropy are tested
and compared using a simulated case study; in Section 8.5 the decision flow for application of
Granger causality or transfer entropy based on the findings of the paper are presented; in Section
8.6, the features and the presented decision flow are illustrated on an industrial case study of a
plant-wide oscillation; finally, in Section 8.7, the conclusions of the paper are presented.

8.2 Chapter objectives

The objectives of this chapter are:

I To compare the features of Granger causality and transfer entropy.

II To develop a decision flow to aid engineers in choosing between transfer entropy and
Granger causality.
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III To demonstrate the features of Granger causality and transfer entropy in am industrial
case study and illustrate the use of the decision flow.

8.3 Comparing the features of Granger causality and transfer
entropy

Deciding between the numerous causality analysis approaches can be difficult. Different lit-
erature sources may advocate different techniques. Each technique has its own strengths and
weaknesses, without clear guidelines for when they are appropriate. The desired characteris-
tics of causality analysis techniques were discussed in Chapter 5. In this section, the features of
Granger causality and transfer entropy are compared based on those characteristics, namely: ac-
curacy and precision; automatability; interpretability; computational complexity; applicability
for different process characteristics.

8.3.1 Accuracy and precision of causality analysis techniques

Causality analysis is considered accurate when the method was able to identify the correct root
cause of the fault. The method can be deemed useful if the corrective action suggested by the
root cause analysis successfully removes the fault.

Uncertainty in process measurements means that non-zero transfer entropy and Granger causal-
ity values will be calculated even when there is no causal relationship. As mentioned in Section
2.12.3, a hypothesis test is needed to determine the statistical significance of the values. How-
ever, this significance test is not infallible, and spurious connections may still be found. These
spurious connections make analysis of fault propagation paths difficult. Spurious connections
give a false representation of the propagation path of the fault. The reverse is also true, real
causal connections might be missed because of this uncertainty.

The validity of individual causal connections can be scrutinised to evaluate the method’s accu-
racy. Spurious and missing connections may also occur due to the limiting assumptions discussed
in Section 5.3.5. For example, if Granger causality was used to calculate causality in a process
with nonlinear behaviour, the linear regression model may not be able to capture the nonlinear
process dynamics and the causal connection may be missed. Non-stationarity in the time series
could cause spurious connections for both techniques. See Section 5.4.4 for a more detailed
discussion of nonlinearity and stationarity.

When the ground truth causality is known, one can quantify the missed connection rate, true
connection rate, and the false connection rate. Accuracy is defined by a high true connection
rate and a low false and missed connection rates. Precision can be defined by how consistently
the method finds the connections.

Section 8.4 evaluates the accuracy and precision of Granger causality and transfer entropy by
testing them on a simulated system.

8.3.2 Automatability of causality analysis techniques

Application of causality analysis techniques is complex, with numerous parameters to select. The
more automated the application procedure is, the less ambiguity there will be in the results.
Reduced ambiguity will inspire confidence that the results of the causality analysis reflect the
behaviour of the process.
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Granger causality is an easily automatable technique. The model order, k, in Equation 2.4, and
the α value for the F-test are the only hyper-parameters to select. The optimal k can be selected
as the one that minimises the Akaike information criteria (AIC) [Bressler & Seth, 2011].

Parameter selection for transfer entropy is more complicated. Equation 2.7 shows that four pa-
rameters need to be selected, K, L, h, and τ . The transfer entropy results are sensitive to these
parameters [Duan et al., 2014]. This was confirmed in Chapter 7. Parameter search procedures
are typically employed [Duan et al., 2013, Naghoosi et al., 2013], but are computationally expen-
sive and therefore difficult to implement. Many researchers use the default parameters suggested
by Bauer et al. [2007a]. Chapter 7 presented a systematic, automated workflow for application
of transfer entropy for oscillation diagnosis. This workflow presents guidelines for calculation
parameter selection based on process dynamics, namely the time delay between variables and
the oscillation frequency. Additionally, clear guidelines were given for each step in the appli-
cation procedure. This systematic workflow can also be modified to replace transfer entropy
with Granger causality. The workflow allows automatic selection of all hyper-parameters, k for
Granger causality, and τ , h, K, and L for transfer entropy. Therefore both Granger causality
and transfer entropy are automatable according to the definition given in Section 5.3.2.

8.3.3 Interpretability of causality analysis techniques

Fault diagnosis techniques are used by engineers to gain insight into abnormal behaviour oc-
curring within a process. This engineer has to interpret the causal map to see whether a clear
propagation path is manifested. It is important that the engineer can understand the information
presented simply, and understand the implications. For example, when a spurious connection
passes the significance test because of excessive noise in the signal, and is displayed on the causal
map, the engineer will need to use process knowledge and understanding of the causal statistic
to understand why that spurious connection was found.

This interpretation has two components: mathematical interpretation of the underlying causal
statistic; and visual interpretation of the causality maps.

Mathematical interpretation

For both Granger causality and transfer entropy, the causal statistics are not directly linked to
any physical engineering quantity. However, it is easier to reason about the Granger causality
since it is based on simple regression statistics. The significance test, the F-test, is also based
on a known distribution. The information theory used for transfer entropy is more complicated,
and interpretation of the values obtained is not straightforward. Furthermore, the significance
test based on Monte Carlo simulations used for transfer entropy is more difficult to interpret
than that based on a known distribution used for Granger causality.

Visual interpretation

The end result of the causality analysis is a causality map. When this causality map gives a clear
indication of the propagation path that is logically consistent with process knowledge, then the
variables at the start of the propagation path can be further investigated. When the suggested
propagation path is ambiguous it may be uncertain what the root cause was. There may be
more than one suggested propagation path in the causal map pointing to different root cause
variables. In the case where these different root cause variables are associated with the same
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unit in the plant, or the same controller, then it can be inferred that the root cause is closely
associated with that unit and can be investigated. When there are multiple root causes all
associated with different units, or sections of the plant, then the root cause is more ambiguous.
In this scenario it is possible that multiple faults are occurring simultaneously[Chiang et al.,
2015]. However, a simplifying assumption that only one fault occurs at any time is applied,
since the probability of occurrence of simultaneous independent faults is small, as suggested by
[Shiozaki et al., 1985].

All causal effects in a system are identifiable when the causal map is acyclic [Pearl, 2009].
Cyclical causal maps, where each node is reachable from any other node[Bang-Jensen, 2010],
show no clear start or end nodes, and therefore give no clear indication of where to further
investigate the fault.

Because this interpretation is complicated, the decision flow presented in Section 8.5 provides
steps for dealing with ambiguous root causes.

The visual interpretability of the causality maps for either Granger causality or transfer entropy
will be a function of the accuracy of the method. Large amounts of spurious connections will
make it difficult to interpret the causal map. The visual interpretability will also be affected
by the complexity of the system which the causal map represents. However, visualisation tools
described in Chapter 9 can be applied to the causality maps from either technique to aid with
visual interpretation.

8.3.4 Computational complexity of causality analysis

Transfer entropy is a computationally expensive technique. Duan [2014] derived the computa-
tional complexity for transfer entropy as O(N2(K +L)2), where K and L represent the embed-
ding dimensions chosen, and N represents the number of samples. In Chapter 7 the suggested
values were K = 1 and L = 2 to limit the computational complexity. These calculations are
repeated when the significance calculations are performed.

For Granger causality the core calculation is the least squares regression of the N ×Mk matrix,
where k is the model order, N is the number of samples, and M is the number of variables.
This distils to a O(M3k3N) problem for a specific model order, k. This is repeated for a
range of model orders that cover the time spans common in processes. For most chemical and
mineral processes, the unit residence times are at most of the order of a few minutes[Wills, 2007].
Therefore, at a sampling time of around 10s, which is common for data historians, the range of
model orders is typically from k = 1 : 30. The typical values for M depend on the size of the
plant being monitored and the problem being analysed. However, typical values are between 10
and 30 variables. The typical values for N range from a minimum of 500 samples [Bauer et al.,
2007a], to arbitrarily large numbers of samples. However, around 2000 samples is common.

To generalise the computational time required to perform the significance threshold calculations
for transfer entropy, the time taken taken for a single pair of variables was calculated while
varying the number of samples. The computational time as a function of the number of samples
could then be obtained. It must be noted that it was not attempted to optimise the transfer
entropy code used for this analysis, apart from the use of parallel computation. More mature
toolboxes for transfer entropy, such as JIDT [Lizier, 2014], may provide faster computation time.

Figure 8.1 shows the computational time required to calculate the significance threshold for
a single pair of variables, for 100 surrogates, as a function of the number of samples. The
computational time was found to be a power law function of the number of samples, CPUtime =
34 × N0.5. The relative transfer entropy method method was used (Equation 2.5), which is
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Figure 8.1: Computational time required to calculate transfer entropy significance for one pair of
variables as a function of number of samples. System used: 32 GB RAM, 3.33 GHz processor. The
computational time was found to be well approximated by CPUtime = 34×N0.5

symmetrical, and self pairs are ignored, so this has to be repeated (M2 −M)/2 times. The
calculation of the PDFs is a very parallel problem, and therefore it can be assumed that doubling
the amount of cores halves the computational time. This is a simplifying assumption that ignores
some of the inefficiencies that are introduced by splitting iterations among parallel workers.
Therefore, a rough estimate of the amount of time taken for the calculation of transfer entropy
is given by Equation 8.1.

CPUtime =
34×N0.5(M2 −M)×Ncores

2
(8.1)

The computational complexity for transfer entropy is higher than that for Granger causality. The
decision flow in Section 8.5 therefore incorporates a preliminary complexity analysis, to decide
whether the time it will take to compute transfer entropy is excessive or not. What amount of
time is considered excessive depends on the situation. Online, automated fault diagnosis would
require a solution within minutes. When the plant is experiencing an ongoing fault the engineer
needs to isolate the root cause as fast as possible to return the plant to normal operation. On
the other hand, when the analysis is being performed offline to gain more information about
fault conditions that happened some time in the past, the engineer may not mind waiting a few
hours for results.

8.3.5 Applicability for different process characteristics

The applicability of a causality analysis technique may be limited by the underlying assumptions
of the calculations it is based on.
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Granger causality incorporates linear regression, and may therefore be limited in its ability to
capture nonlinear behaviour in time series trends. See Section 5.4.4 for a more detailed discussion
of nonlinearity and stationarity. Transfer entropy is not limited by this linear model assumption.
Many chemical and mineral processes are known to contain nonlinear interactions. Applying
a nonlinearity identification technique may help decide whether Granger causality or transfer
entropy is appropriate for the system under consideration. However, nonlinear systems often
behave linearly over large-scale interactions [Bressler & Seth, 2011].

In industrial processes, control systems maintain process variables close to a desired operating
region where the system behaviour typically remains linear. The fault affecting the process may
have originated from nonlinear phenomena, such as valve stiction. In such cases the process
acts as a mechanical low pass filter as the oscillation propagates to different variables[Thornhill,
2005]. The low-pass process dynamics remove the higher harmonics in the trends and destroy
phase-coupling. This means that nonlinear behaviour is unlikely to be sustained in the process.

Although transfer entropy is not limited to linear systems, the joint PDFs need to be calculated
for stationary time series. This means that the autocorrelation, mean, and variance of the time
series are not a function of time [Girod, 2001]. Granger causality also assumes stationarity to
calculate the regression coefficients.

Kuhnert [2013] presented guidelines for technique selection based on process characteristics.
These guidelines were developed based on simulated experiments to determine which technique
gave the most accurate results for different process characteristics. They found that transfer
entropy was applicable for both linear and nonlinear systems, and applicable for systems with
long dead time and short dead time between variables. They also found that Granger causality
was only applicable for linear systems with short dead time between variables.

The fact that transfer entropy is applicable for nonlinear and linear systems, and that it is
applicable for systems with long and short dead time between variables indicates that transfer
entropy is more generally applicable than Granger causality.

8.4 Comparing the accuracy and precision of Granger causality
and transfer entropy in a simulated system

To compare the accuracy and precision of Granger causality and transfer entropy, their ability to
find true connections in a simulated process was tested. The causal maps obtained from Granger
causality and transfer entropy were compared to the true causal map to classify edges as true
connections, false connections, or indirect connections. Since the simulation added random noise
to the signals, repeated measurements could be taken. The repeated measurements allowed the
precision of each technique to be evaluated.

8.4.1 Description of simulated process case study

A simple process of two tanks in series with heat exchangers was simulated. Figure 8.2 shows a
diagram of the process. The tank levels are controlled by the flow of cold water into the tank
using PID controllers. The tank temperatures are controlled by the steam flow rate through the
heating coils using PID controllers. Random noise was added to the signals to simulate noise in
the process.

An oscillation was introduced in the cold water input temperature, T1in. Figure 8.3 shows the
oscillations in the signals from one of the repeated simulations. This oscillation would propagate
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through the process from T1in by first affecting the first tank’s temperature T1. The temperature
controller would then change the steam flow rate, F3, to compensate. The controller is unable to
fully reject the input disturbance, the second tank’s temperature, T2, would also be affected. The
second tank’s temperature controller would then change the steam flow rate, F4, to compensate.
The actual propagation path of the oscillation is known, and can therefore be used as ground
truth to compare the causal maps obtained from Granger causality and transfer entropy. This
true propagation path is shown in Figure 8.5a.

This simulation was repeated 1000 times. Only the random noise added to the signals was
altered between simulations, so the oscillation affecting the process remained the same.

8.4.2 Comparison of Granger causality and transfer entropy to ground truth
in simulated case study

Granger causality and transfer entropy were used to analyse the signals from the two tank
simulation to identify the propagation path of the oscillation. The resulting causality maps were
compared to the true propagation path derived from first principles knowledge of the process,
shown in Figure 8.5a. The edges in the causality maps were classified as true connections, false
connections, or indirect connections. Indirect connections are defined when a causal connection
is identified due to the influence of an intermediate variable. Accuracy metrics are defined as
follows:

Definition 7. True connection rate (TCR): the fraction of causal connections in the true prop-
agation path in the true propagation path that were detected using the data-based technique:

TCR =
Cdetected,true
Cknowledge

(8.2)

where Cdetected,true is the number of true causal connections found using the data-based tech-
nique, and Cknowledge is the number of connections in the true propagation path. This is the
opposite of the missing connection rate (MCR): MCR = 1− TCR.

Definition 8. Relative true connection rate (RTCR): the fraction of total edges in the causality
map that are true connections:

RTCR =
Cdetetcted,true
Cdetected

(8.3)

where Cdetected,true is the number of true causal connections found, and Cdetected is the total
number of detected connections. This is the opposite of the relative false connection rate (FCR):
FCR = 1−RTCR.

Table 8.1: Means and standard deviations of true connection rates and relative true connection rate
shown in Figure 8.4.

Transfer entropy Granger causality

TCR Mean 50% 62%
TCR Standard deviation 1% 14%
RTCR Mean 75% 70%
RTCR Standard deviation 16% 16%

Figure 8.4 plots the distributions of the true connection rate and relative true connection rate
for both Granger causality and transfer entropy for the 1000 repetitions. Table 8.1 shows the
means and standard deviations obtained.
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Figure 8.2: Diagram of simulated two tank process. Two tanks in series with heat exchangers. Tank
levels are controller by the flow of cold water into the tank, tank temperatures are controlled by the
steam flow rate through the heating coils. Random noise was added to the signals.
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Figure 8.3: Oscillations in signals in two tank process.
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Figure 8.4: Distributions of true connection rates and relative true connection rates for Granger causal-
ity and transfer entropy in the simulated two-tank process.
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Figure 8.5: Granger causality and transfer entropy results from repeated simulated experiments com-
pared to true propagation path. Results shown from minimum, median, and maximum true connection
rates.
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The means of the distributions indicate accuracy. Transfer entropy showed a higher mean RTCR,
but a lower mean TCR. This indicates that although it doesn’t find all the true connections,
the connections that it does find are more likely to be true connections. The variance of the
distributions give an indication of precision. The standard deviation for transfer entropy is very
low for the TCR, and the standard deviations for the two techniques are almost identical for
the RTCR. This indicates that transfer entropy is more precise than Granger causality.

Representative samples of the Granger causality and transfer entropy results are presented along
with the true propagation path in Figure 8.5.

Granger causality consistently found strong connections related to the control connections be-
tween F3 and T1, and F4 and T2. In these control loop, T1 and T2 are the controlled variables
(CV), and F3 and F4 are the manipulated variables (MV). This is because the introduction of the
oscillation to the process causes excessive controller action, strengthening the causal relationship
between its CV and MV. Transfer entropy also consistently found the control connection from
F4 to T2. Transfer entropy consistently found the connection from T1,in to T1. This connection
shows the propagation from the input temperature.

Granger causality found indirect connections often. This means that some of the low RTCRs
observed in Figure 8.4 are actually because indirect connections were not taken into account. For
this system, transfer entropy did not find any indirect connections. Indirect connections may
be considered to be misleading. Identifying all the direct connections along the propagation
path of the oscillation will give insight into the symptoms and the root cause of the oscillation.
However, indirect connections still provide this information at lower resolution, missing some
connections along the way.

8.4.3 Summary of simulated case study comparing Granger causality and
transfer entropy

Considering the relative true connection rates, transfer entropy was slightly more accurate. The
standard deviations also indicated that transfer entropy was more precise. These results must be
considered with caution. Simulated systems are useful for constructing controlled experiments
and repeated experiments, but they can never fully replicate the common cause variation and
complex interactions in real processes.

8.5 Decision flow for application of Granger causality or transfer
entropy

Section 8.3 compared the features of Granger causality and transfer entropy. Section 8.4 then
compared their accuracy and precision using simulated experiments. A decision flow was devel-
oped to aid users in deciding when to use Granger causality or transfer entropy, as well as to aid
in the interpretation of the causality maps obtained from these techniques. This decision flow
was developed from the comparisons in Sections 8.3 and 8.4, as well as from the experience of
the authors using causality analysis for fault diagnosis. This decision flow is presented in Figure
8.6.
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Figure 8.6: Decision flow for application of Granger causality or transfer entropy for fault diagnosis.
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The first step is to perform a computational complexity analysis that takes into account the
number of samples, the number of variables, and the computational resources available. Equation
8.1 can be used to estimate the calculation time required for transfer entropy. If the calculation
time is acceptable, transfer entropy is preferred, since it has been found to be more accurate
and precise and yields more visually interpretable causality maps, as demonstrated in Section
8.6. If the calculation time is unacceptably large, then Granger causality can be used. Granger
causality analysis can be performed and the accuracy can be evaluated from process knowledge.
If numerous spurious connections are observed then transfer entropy can be employed instead,
since transfer entropy is more accurate. If not, the propagation path can be interpreted.

Interpretation of causal maps is complicated. The interpretation of the propagation path starts
with determining whether the causal map is acyclic. An acyclic map has a definitive start node
and end nodes, giving a clear suggestion of the sequence of nodes in the propagation path. When
a cyclical map shows stronger connections for some of the edges it may still indicate important
connections along the propagation path. When an acyclic map shows a single root node, this
gives one possible root node that can be investigated further. Sometimes an acyclic map shows
multiple root nodes. However, if all these nodes are localised to the same unit in the plant, or
possibly to the same controller, this part of the plant can be investigated further. If there are
multiple root nodes that are not related to a specific unit or controller in the plant, the strength
of the connections may give an indication of which of the root nodes is most important. This
node can then be investigated further.

If no definitive root cause is obtained from following the propagation path interpretation decision
flow, then transfer entropy can be applied.

The same procedure is followed after performing the transfer entropy analysis. The causal map
accuracy is evaluated from process knowledge. If numerous spurious connections are found,
this time the resolution of the causal map can be decreased. This can be achieved separating
the causal map into smaller groups of variables. For example, the map can be split to just
contain controlled variables, or manipulated variables. This separation was applied in Chapter
4, and found to be effective. By reducing the resolution, the density of the graph, the number of
edges per node, may be reduced and a propagation path may be more visible. After resolution
reduction the evaluation can be performed again. If there are not numerous spurious connections,
the propagation path interpretation can be performed. If no definitive root cause is obtained
from following the propagation path interpretation decision flow, then the resolution reduction
can be performed again.

8.6 Illustrating the features of Granger causality and transfer
entropy on an industrial case study

To illustrate the features of Granger causality and transfer entropy discussed in Section 8.3, as
well as to demonstrate the decision flow presented in Section 8.5, both techniques were used to
analyse a plant wide oscillation in a mineral concentrator plant.

8.6.1 Case study description

A simplified flow diagram of the industrial process is shown in Figure 8.7. In the primary milling
section, ore rocks are ground up to liberate the valuable minerals from the gangue (non-valuable)
mineral. The ground up fines are sent to a sump, which is a surge tank where water is added to
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Figure 8.7: Simplified process flow diagram showing the primary milling circuit, the rougher flotation
section and the secondary milling section.

control the level. The slurry is then sent to a hydrocyclone for separation. Oversized particles
are recycled to the mill, while fine particles are sent to the flotation section. Flotation is used
to separate the valuable and gangue particles, by selectively imposing hydrophobicity on the
valuable mineral particles. This causes the valuable particles to attach to air bubbles and float
to the top of the cell [Wills, 2007]. The final tails are combined and sent to the secondary milling
circuit. The secondary milling circuit operates similarly to the primary milling circuit.

Oscillations were observed in the mass pull of the flotation circuit, which is an important key
performance indicator (KPI), and is included in the advanced process control (APC) strategy
of the flotation circuit. The mass pull is the proportion of the feed material reporting to the
concentrate [Wills, 2007]. The oscillation persisted for 12h35min. The period of the oscillation
in the mass pull signal was 69 min.

The root cause of the oscillation was uncertain from first inspection, because the variables used
to control the mass pull, namely the flotation cell levels and the air addition to the cells, did
not show abnormal trends. However, by analysing the frequency spectrum to find the peak
oscillation frequencies, it was observed that 27 of the monitored variables displayed this shared
oscillation frequency (see Appendix B). The time series trends of these variables are plotted
in Figure 8.8. These variables are spread throughout three sections of the plant: the primary
milling section; the flotation section; and the secondary milling section. Since the Primary Mill
circuit is the first processing unit in the plant, it appears that the oscillation originated within
that circuit. However, since the milling circuit contains a recycle stream, it is not apparent from
first inspection which unit or controller was associated with the start off the oscillation. This
makes it a useful case study for testing causality analysis techniques.

The workflow presented in Chapter 7 was followed to analyse this oscillation. This paper does
not focus on the application procedure, but Appendix B presents the details.

8.6.2 Transfer entropy results

The causal map obtained from transfer entropy is shown in Figure 8.9.

Following the decision flow in Figure 8.6, the first step after performing transfer entropy is
to evaluate the accuracy of the causal map by identifying whether there are spurious causal
connections. This step requires knowledge of the process. To augment the causal map with
process knowledge, the nodes in the causal map have been coloured according to which section
of the plant they are located in. Blue indicates primary milling section, green indicates the
flotation section, and yellow indicates the secondary milling section. The overall material flow
of the plant, as shown in Figure 8.7, is from primary milling to flotation to secondary milling.
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Figure 8.8: Trends for all variables showing oscillation at period of 69 minutes. This includes variables
from primary milling circuit, rougher flotation circuit, and secondary milling circuit.

The causal map should generally reflect this flow, showing nodes going from blue to green to
yellow, and not in the opposite direction. See 9.5 for a discussion about how to augment causal
maps with node and edge attributes.

In the causal map shown in Figure 8.9, the only spurious connection is the causal connection
from Cell 3’s velocity (FT3V elocity) to Sump 1’s outflow (SU1OutflowMV ). The flotation
cell, Cell 3, is downstream of Sump 1 in the process, and no controller interaction could account
for this connection. This spurious connection is not on the propagation path from the other root
nodes, Sump 1’s water addition setpoint (SU1WaterSP ) and Sump 1’s level (SU1LevelPV ).
Therefore the spurious connection can be ignored without influencing the interpretation of the
causal map.

The next step in the decision flow is to interpret the propagation paths in the causal map. The
first question is, ‘Is the graph acyclic?’. In this case the graph is acyclic, with visible start nodes,
Sump 1’s water addition setpoint (SU1WaterSP ) and Sump 1’s level (SU1LevelPV ), and end
node Sump 5’s density (SU5Density). There is a cyclical section of the graph, between Sump 1’s
water addition MV (SU1WaterMV ), Sump 1’s outflow setpoint (SU1OutflowSP ), and Sump
1’s density (DensitySU1). However, this cycle does not interfere with the main propagation
path between the root nodes Sump 1’s water addition setpoint (SU1WaterSP ) and Sump 1’s
level (SU1LevelPV ) and the end node Sump 5’s density (SU5Density).

The next question in the workflow is, ‘Is there a single root cause variable?’ The answer is
no. The causal map suggests three possible root cause variables: Sump 1’s water addition
setpoint (SU1WaterSP ), Cell 3’s velocity (FT3V elocity), and Sump 1’s level (SU1LevelPV ).
As described earlier, the connection from Cell 3’s velocity to Sump 1’s outflow is a spurious
connection, and can be excluded from further analysis. This leaves two root cause variables
The next question is, ‘Are all the root nodes localised to the same controller/unit?’ Sump 1’s
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Figure 8.9: Transfer entropy propagation paths for oscillations in the primary milling, flotation, and
secondary milling circuits. Values displayed on edges and edge width represent the transfer entropy value
calculated. Colours on nodes indicated the section of the plant where the variables are located.

water addition setpoint (SU1WaterSP ) and Sump 1’s level (SU1LevelPV ) are both associated
with Sump 1’s level controller. So the answer is yes. The decision flow suggests that Sump 1’s
variables should be investigate further as possible root cause variables.

Figure 8.10 shows the time series trends of the sump variables at the start of the oscillation.
The trends indicate that the sudden drop in the sump level occurred first. This caused the sump
level controller to compensate by varying the sump feed water. This sump water fluctuation
resulted in fluctuations in the sump density. This density variation propagated through the
flotation circuit to the secondary milling circuit. The causal map confirms this, showing Sump
5’s density (SU5Density) to be the end node. The variation in density throughout the flotation
circuit had a severe impact on flotation performance, since the hydrodynamic properties of the
contents of the flotation cells had changed. This is what caused the mass pull to oscillate,
event though most of the cell levels remained normal. The flotation circuit is equipped with
a multivariable level control strategy. This means that the level oscillation in the sump was
effectively rejected in the flotation section, and the cell levels did not oscillate. The cause of
the oscillation in the mass pull was therefore not clear. This illustrates the need for a causal
analysis tool such as transfer entropy to investigate such events.

In addition to the propagation paths from the primary milling section through to the sec-
ondary milling section, the direct causal connection from Sump 1’s level to Bank 2’s mass pull
( SU1LevelPV → MasspullB2) indicates that the oscillations in the sump level strongly con-
tributed to the oscillations in the mass pull. This direct connection may seem misleading, since
the actual propagation path would flow through a number of intermediate variables first before
affecting the mass pull. However, the direct connection still displays useful information about
where the oscillation originated.

Transfer entropy effectively isolated the root cause of a plant-wide oscillation to a single unit.
The causal map generated using transfer entropy is a useful visual tool for root cause analysis.
The causal map is easily interpretable, showing a clear propagation path with only one spurious
connection.
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Figure 8.10: Time series plots of sump variables at start of oscillation.

8.6.3 Granger causality results

The propagation path obtained for Granger causality is shown in Figure 8.11. The same work-
flow used for transfer entropy, described in Appendix B, was used. The only difference in the
application was that Granger causality was substituted in for transfer entropy for the causality
analysis procedure.

Following the decision flow in Figure 8.6, the first step after performing Granger causality is
to evaluate the accuracy of the causal map by identifying whether there are spurious causal
connections. As done with the transfer entropy, the nodes were coloured to reflect the plant
section. The cyclical nature of the graph does not reflect the material flow in the process.

In the causal map shown in Figure 8.11, there are multiple spurious connections. The connec-
tion from Sump 5’s density to Bank 1’s mass pull (SU5Density → MasspullB1) and Sump
5’s outflow setpoint to Cell 3’s velocity (SU5OutflowSP → FT3V elocity) are both spurious
since the secondary milling section is downstream of the flotation section, and no material
flow or control would create these causal connections. The connection from Cell 11’s velocity
to Sump 1’s level (FT11V elocity → SU1LevelPV ) is spurious, since the flotation section is
downstream of the primary milling section. The connection from Cell 3’s outflow to Cell 8’s
outflow (FT3Outflow → FT8Outflow) may be spurious, since these are variables from two
separate flotation banks that could not affect each other. In general the causal map has one
main propagation path, and all of these spurious connections are part of that path. this means
that these connections cannot be ignored without affecting the interpretation of the propagation
path. If the decision flow in Figure 8.6 were being followed, then the answer to the question
’Are there numerous spurious connections?’, would be yes. The decision flow then suggests that
the causality analysis be repeated with transfer entropy instead.

Although the decision flow suggests that Granger causality is no longer useful in this scenario,
it is still worth examining the causal map to compare the features to the transfer entropy
causal map. The next step in the decision flow is to interpret the propagation paths in the
causal map. The first question is, ‘Is the graph acyclic?’. In this case the graph is cyclic,
there is no clear start node or end node. The next question is, ‘Does one path show stronger
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Figure 8.11: Granger causality propagation paths for oscillations in the primary milling, flotation, and
secondary milling circuits.

connections?’. In this causal map there is a propagation path from Sump 1’s level to Sump
1’s outflow setpoint (SU1LevelPV → SU1WaterSP → SU1WaterMV → SU1OutflowSP )
with strongly weighted connections. This does indicate that Sump 1’s level controller is closely
associated with the root cause of the oscillation.

There is an interesting mutual causation loop between SU1LevelMV and SU1WaterPV . The
level MV is the flow out of the sump. A change in this MV would change the density within the
sump, and the density controller would change the inlet water, SU1WaterPV . Therefore this
loop is consistent with the process operation. This mutual causation would not be detected with
the transfer entropy method as it is applied in this dissertation, since the net transfer entropy
is calculated (see Equation 2.7). In some cases, this means that Granger causality may provide
a more accurate representation of the propagation path than transfer entropy will.

Careful interpretation of the causal map revealed some of the same information that the transfer
entropy analysis did. However, because of the numerous spurious connections and the cyclical
nature of the causality map the results were much harder to interpret than the transfer entropy
results.

8.6.4 Summarising the difference between Granger causality and transfer
entropy for the industrial case study

Now that both Granger causality and transfer entropy have been tested on the industrial case
study, the features discussed in Section 8.3 can be compared.

Accuracy

Both Granger causality and transfer entropy provided tools to accurately isolate the oscillation
to the primary mill sump. Data-based techniques for root cause analysis are limited to measured
variables. This means that both Granger causality and transfer entropy would not be able to
point directly to the underlying cause of the fault, but can direct the attention to measured
variables closely associated with it.
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Granger causality resulted in three causal connections that could be confidently identified as spu-
rious, and one that is probably spurious, based on process knowledge. Transfer entropy resulted
in only one spurious connection. Therefore, on the basis of the number of false connections,
transfer entropy was more accurate in this case study.

The Granger causality results demonstrated this method’s ability to detect mutual causation
between variables. This mutual causation would not be detected with the net transfer entropy
used in this dissertation. In some cases, this means that Granger causality may provide a more
accurate representation of the propagation path than transfer entropy will. However, in this
case study, this limitation did not have an effect on transfer entropy’s ability to show the overall
propagation path.

Automatability

Using the workflow in Chapter 7, the application procedure for transfer entropy and Granger
causality were both fully automated according to the automatability definition provided in 5.3.2.

Interpretability

Transfer entropy generated a causal map with a clear propagation path. Two possible root nodes
were identified, but since both were related to the same controller the propagation path was still
clear. Granger causality resulted in a cyclical causal map with no clear start and end nodes.
By examining connection strengths some useful information about the oscillation propagation
could be inferred. Therefore, transfer entropy gave a more visually interpretable causal map.

Computational complexity

The CPU time required for computation of each method was quantified. The computer used
was a computational server with 32 GB RAM and 3.33 GHz processor. For transfer entropy,
parallel computation was used in the computation of the PDFs, where 8 parallel workers were
used. As expected, transfer entropy was much more computationally expensive than Granger
causality. Granger causality only took 2.5 minutes. Transfer entropy took 27 hours. This
is prohibitively long for rapid analysis of the root cause. Of that time, the transfer entropy
calculation itself between all 27 variables only took 15 minutes. The significance testing using
Monte Carlo simulations of surrogate time series took the rest of the time.

Applicability for different process characteristics

In this case study some of the oscillations, for example in SU1LevelPV , showed nonlinear
behaviour. This may be why Granger causality showed more spurious connections than transfer
entropy. The time series trends of all the variables included in the analysis were stationary for
the period under observation, showing no change in the mean or autocorrelation over time.

8.7 Chapter conclusion

This paper presented a comparative analysis of Granger causality and transfer entropy used for
fault diagnosis in an industrial processes. The comparison was based on the following features:

Stellenbosch University  https://scholar.sun.ac.za



8.7. Chapter conclusion 131

accuracy, precision, automatability, interpretability, computational complexity, and applicability
for different process characteristics.

Transfer entropy was found to be more generalisable, and visually interpretable. However,
Granger causality is much less computationally expensive, and easier to interpret the meaning
of the values obtained. To directly address the the accuracy and precision of Granger causality
and transfer entropy, their ability to find true connections in a simulated process was tested.
The results indicated that transfer entropy showed higher accuracy and precision.

A decision flow was developed from these comparisons to aid users in deciding when to use
Granger causality or transfer entropy, as well as to aid in the interpretation of the causality
maps obtained from these techniques. This decision flow is presented in Figure 8.6.

The features of Granger causality and transfer entropy were illustrated on an industrial case
study of oscillations in a mineral processing plant. In this case study, the causal map obtained
from the transfer entropy analysis showed two root cause variables associated with the same
unit in the process. The transfer entropy results were able to provide useful information for
further analysis into the cause of the fault. Granger causality, on the other hand, showed a large
number of spurious connections, and gave no clear indication of the root cause.

Although the causal map obtained from transfer entropy provided useful information for root
cause analysis, the interpretation required careful reasoning. In scenarios where the causal
map is more complex, this interpretation will be even harder and more time consuming. To
aid engineers with the interpretation of causality maps for fault diagnosis, Chapter 9 presents
guidelines for their construction and interpretation.
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CHAPTER 9

Development of visual and algorithmic graph
interpretation tools for fault diagnosis
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9.1 Chapter introduction

Chapter 7 presented a systematic workflow for the application of transfer entropy that addressed
the numerous data selection and parameter selection steps required for fault diagnosis. Chapter
8 addressed the need to compare characteristics of different techniques and provide guidelines
for selection of techniques. Between those two chapters, the decision of which technique to use,
as well as the application procedure once a technique has been selected, are covered. The final
step in the causality analysis procedure that has not been fully addressed is the root cause
analysis once the results have been obtained. This root cause analysis requires interpretation of
the causal maps generated from causality analysis. The construction and interpretation of these
maps has been addressed superficially and demonstrated in previous chapters. However, it was
not the main focus of those chapters. In this chapter visualisation and algorithmic tools to aid
graph interpretation are developed and demonstrated.

This chapter is structured as follows: Section 9.2 presents the objective of this chapter; Section
9.3 investigates methods for setting the layout of causal maps; Section 9.4 presents the use of
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transitive reduction to prune shortcut connections from causal maps; Section 9.5 presents tools
for augmenting causal maps with node and edge attribute; Section 9.6 presents tools for assigning
the importance of nodes in the causal map; Section 9.7 presents a metric to define the complexity
of causal maps; Section 9.8 discusses tools to traverse causal maps to highlight propagation paths;
Section 9.9 outlines the recommended procedure for constructing and interpreting causal maps
based on the tools presented in this chapter; and finally, Section 9.10 presents the conclusions
of this chapter.

9.2 Chapter objectives

The objective of this chapter is to develop and demonstrate visualisation and algorithmic tools
to augment graph interpretation for fault diagnosis. This is to address Objective IV.

9.3 Graph layouts

Visual interpretation of causality maps can be aided by the layout of the nodes.

In many scenarios, a layout that reveals hierarchical structure may be desired. A layered layout
reveals such a hierarchical structure [Sugiyama et al., 1981]. In the layered algorithm the nodes
are arranged in a set of layers, so that each edge joins two nodes belonging to different layers.
In the layered structure the sequence of nodes on the propagation path may be visualised in
sequential order. Figure 9.1a shows the causality map for the plant wide oscillation case study
presented in Section 8.6 using the layered layout. In scenarios where the causality map has a
clear start and end node, this layout reveals this propagation path effectively. This is the case
in Figure 9.1a.

The force layout assigns attractive forces to the endpoints of edges, and repulsive forces to nodes.
The balance of repulsive and attractive forces means that nodes that two nodes that are not
connected by edges are pushed away from each other, since there is no attractive force between
them. This structure is useful for revealing the importance of nods, as with the circular layout.
A node with many edges associated will attract the nodes that it connected to, making them
cluster. These clusters can also reveal hierarchical structure, as with the layered layout. The
causality map for the plant-wide oscillation with the force layout is shown in Figure 9.1b. The
causal map reveals SU1WaterMV is an important node, with a large number of nodes clustered
around it.

Another layout is the circle layout. In the circle layout, the nodes are placed in a circle centred
around the origin. This layout is useful for visualising the importance of each node, by visualising
the amount of edges entering or leaving the node. This may reveal which node is a source node
that influences many other nodes, or which is a sink node that is influenced by many other
nodes. Figure 9.1c shows the plant-wide oscillation causality map with the circle layout. This
layout can be especially useful in scenarios where there is no clear start and end node, i.e. in
a cyclical graph. In such a graph it is useful to see which nodes are most important relative to
the others. The circle layout reveals this readily. A drawback of this layout is that it does not
reveal anything about the structure of the underlying process. This layout was used by Yuan &
Qin [2014], Zhang et al. [2015]. Duan et al. [2015] first used the circular layout to present the
results, and then constructed a layered map to better visualise the propagation paths.

Selection of the appropriate layout is dependent on the situation and the type of information
the engineer wants to glean from the causal map. The layout method is best for root cause
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identification in sparse causal maps with minimal cyclical loops. The circle method is best for
root cause identification in dense causal maps with cyclical connections. The force layout is
useful for identifying important causal structures within the process. Not much attention has
been paid to the layout of the causality maps in process fault diagnosis literature (see Section
2.12.4). The choice of layout is often seen as a matter of personal preference, or an ad-hoc choice
for what gives the most visually intuitive map in the specific scenario. This author’s personal
experience with the case studies applied is that the layered layout provides the most robust and
visually intuitive representation of the causal map.
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Figure 9.1: Different layouts of causality maps.
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9.4 Graph pruning using transitive reduction

Causality maps constructed from causality analysis results may be dense, and difficult to inter-
pret. The maps may often show indirect connections, where a causal connection is identified due
to the influence of an intermediate variable. Th presence of cycles in the graph can also make
it difficult to follow paths between nodes to interpret the overall propagation path. Transitive
reduction can be used as a visualisation tool to reduce the complexity of the graph and make it
easier to interpret. Section 9.7 presents some graph complexity metrics that will be used in this
section.

Figure 9.2a shows the original causality map obtained using transfer entropy. Figure 9.2 shows
the transitive reduction of that causality map. Figure 9.2 is much easier to interpret, but still
retains the important information about the oscillation propagation.

The graph density can be calculated using Equation 9.1. The graph density is discussed in
more detail in Section 9.7. However, the concept is used here to illustrate the improvement
in interpretability of the graph using transitive reduction. The original causality map has 14
nodes and 27 edges, so the graph density is D = 0.148. The reduced causality map has 14
nodes and 15 edges, so the graph density is D = 0.082. The reduced graph complexity indicates
that the reduced graph is easier to interpret. The results of the causality analysis for this
case study indicated that SU1LevelPV was a plausible root node. From Figure 9.2a it is
difficult to see the propagation path from SU1LevelPV to SU5Density. Once the transitive
reduction has been applied, in Figure 9.2, the propagation path of the oscillation is clear: from
SU1LevelPV → SU1WaterMV → SU1OutlfowMV → SU1LevelMV → SU5Density.

The original graph contained a cycle between SU1WaterMV , SU1OutflowSP , and SU1Density.
Because of this cycle the transitive reduction algorithm constructed new edges that were not
present in the original graph (see Figure 2.15 For example, the edge from FT3V elocity →
SU1WaterMV . This artificial construction of edges may be misleading when interpreting causal
maps. However, the presence of the cycles means that there was a path from FT3V elocity →
SU1WaterMV in the original graph. Despite the possible confusion caused by these artificial
edges, the transitive reduction can be used as a visualisation tool, to succinctly capture the
information about the propagation path of the fault.
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Figure 9.2: Transitive reduction for the primary milling oscillation.
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Figure 9.3: Causality map for plant wide oscillation visualising connection strength using edge width.
The edge widths used the connection strength (shown on the edge labels), scaled so that the strongest
connection has the thickest line, while the weakest connection has the thinnest line.

9.5 Assigning node and edge attributes

As discussed in Section 2.12.4, causality maps can be augmented by assigning additional at-
tributes to nodes and edges.

9.5.1 Assigning edge weights based on connection strength

The strength of the connections in a causality map gives an indication of the relative importance
of the connections. In scenarios where there are multiple possible propagation paths, the relative
connection strengths can give an indication of which propagation path is more likely to reveal
the true root cause. The connection strengths can be visualised by assigning them as edge
weights, and adjusting the line thickness of the edges to represent these edge weights.

Figure 9.3 shows the causality map for plant wide oscillation visualising connection strength
using edge width. The edge widths used the connection strength (shown on the edge labels),
scaled so that the strongest connection has the thickest line, while the weakest connection has
the thinnest line. The causality map shown is very dense and convoluted, but the edge widths
show that many strong connections originate from the SU1WaterSP node. This indicates that
this node is strongly associated with the root cause of the oscillation. Since the oscillation
originated in the Primary Milling Sump, this information is matches the root cause analysis
results in Chapter 8.
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9.5.2 Grouping nodes according to variable location

Process knowledge may also inform sensible groupings of variables so that causality analysis
does not have to be calculated over the entire space. This can greatly reduce computational
complexity. For example, in the case where two parallel streams exist, process knowledge would
be able to group the two streams independent of each other, since there would be no connections
between them. This means that the causalities don’t have to be calculated between variables of
different streams.

In the example presented in Chapter 4, transfer entropy was used to determine the propagation
path of oscillations in the rougher flotation section. A flow diagram of the process is shown in
Figure 4.3. This flotation circuit consists two parallel banks, each with seven flotation cells in
series. The concentrate from the first three cells of each bank are combined, and the concentrate
from the last four cells are combined. The outflow (tails) from each cell flows into the following
cell. Finally, the tails are combined and processed further in downstream units. PID feedback
loops are used for regulatory control of the cell levels and air addition rate [Muller et al., 2010].

Figure 9.4 shows the causality map for all the levels and variables in the flotation circuit Nodes
with cell numbers from 1 to 7 are from Bank 1, and those with cell numbers from 8 to 14 are from
Bank 2. However, the two banks are operated in parallel, with no mass flow or control interaction
between them. Therefore the causal connections from Bank 1’s nodes to Bank 2’s nodes are
spurious. For example, LevelFT001 to OutflowFT008. To reduce the graph complexity and
to reduce the number of spurious connections, the two banks can be treated separately. Figure
9.5 shows the causality map where each bank is treated separately. The separate graphs quickly
show that for both banks, the oscillation propagates from the cells at the start of the bank to
those at the end. This indicates a common cause just upstream of both banks. In Chapter 4, it
was shown that the cyclone pressure immediately upstream of these cells dropped, causing the
cell levels to fluctuate.

Separating the nodes also reduces the computational burden. Each bank has 14 measured
variables showing oscillations. If the entire bank were treated at once the number of pairs
of transfer entropy calculations required would be 282 = 784. Treating each bank separately
reduces that number to 2× 142 = 392.
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Figure 9.4: Causality map for both banks in flotation circuit. Graph density, D = 0.134.
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(a) Propagation path for Bank 1. Graph density, D = 0.13.
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(b) Propagation path for Bank 2. Graph density, D = 0.122.

Figure 9.5: Propagation paths for oscillations in the flotation circuit. Each bank treated separately
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Figure 9.6: Causality map coloured according to plant sections. Blue nodes represent variables in the
primary milling section. Green nodes represent variables in the rougher flotation section. Yellow nodes
indicate variables in the secondary milling section.

Causality maps can be coloured according to the location of the variable in the plant. In this
way the overall direction of the propagation path can be visualised, and sequential structure may
be revealed. The resolution of the analysis may dictate which colouring is most appropriate.
At a plant-wide resolution, different sections of the plant can be coloured differently. At a finer
resolution, when the fault is not on a plant-wide scale, but rather localised to a single section,
the nodes can be coloured according to different units. At the smallest resolution, the nodes can
be coloured according to the controller they are associated with.

Figure 9.6 shows a causality map coloured according to plant sections. Blue nodes represent
variables in the primary milling section. Green nodes represent variables in the rougher flotation
section. Yellow nodes indicate variables in the secondary milling section. This colouring of
nodes aids interpretation of the causality map. The colours demonstrate that the propagation
path starts with blue nodes and progresses towards the yellow nodes. This indicates that the
oscillation began in the primary milling section and propagated through to the secondary milling
circuit. The colours also indicate that the oscillations propagate from the blue nodes to the green
nodes, showing the propagation from the primary milling circuit to the rougher flotation section.
This shows that, even though the process flows from the primary milling circuit to the rougher
flotation section to the secondary milling circuit, the causality map doesn’t show this sequential
flow. Considering the type of variables in the rougher flotation section, the levels and masspulls
are affected by the levels in the primary milling sumps. These variables do not show direct
effects on the density in the secondary milling circuit. If density measurements were available
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in the rougher flotation section, the causality map might show a more sequential propagation
path that corresponded more directly to the process flow.

9.5.3 Grouping nodes according to variable categories

Nodes in the causality maps can also be grouped according to different variable categories. The
nodes can be grouped according to sensor type, e.g. flow measurement, density measurement,
or temperature measurement. In this way the effect of the fault propagation on the process may
be revealed. For example, it may illustrate how a change in level in a sump affects the density
of downstream units. Another possibility is to group nodes according to control categories, e.g.
CV, MV, or SP. The effect of the fault propagation on the plant control may be revealed using
this approach.

Consider again the causality map shown in Figure 9.5. The variables showing the oscillations
are the CVs and MVs of the level controllers for each cell. Figure 9.7 shows the causality maps
divided further into separate CV and MV causal maps. The resulting causality maps are much
easier to interpret.

The causality map showing the CVs for Bank 1 indicates that the oscillation started in Cell 2
and propagated through the Bank to Cell 7. The causality map for the MVs for Bank 1 shows
the same propagation path. Since the CV and MVs for each controller would clearly be linked,
it makes sense to separate them. In this scenario, the controller link between the levels and
outflows means that the oscillation will propagate through them in the same way.

There are other scenarios where the CVs and MVs may not display the same information.
For example, if the controller were able to attenuate the disturbance propagating through the
process, then the CVs would not necessarily show the propagation path clearly. This was the
case in the plant-wide oscillation case study, where the Sump level in the primary milling circuit
fluctuated, but this fluctuation did not propagate through to the flotation cell levels. In such
a scenario only plotting the CVs would not necessarily add more information about the fault
propagation path. A hierarchical approach, the entire process is considered first, and drilling
down to lower levels, is the best approach.
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  Level FT001

  Level FT002

  Level FT003

  Level FT004

  Level FT005

  Level FT006

  Level FT007

(a) Propagation path for Bank 1 levels. Graph
density, D = 0.143.

  Outflow FT001

  Outflow FT002

  Outflow FT003

  Outflow FT004

  Outflow FT005

  Outflow FT006

  Outflow FT007

(b) Propagation path for Bank 1 outflows.
Graph density, D = 0.071.

  Level FT008

  Level FT009
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  Level FT012

  Level FT013

  Level FT014

(c) Propagation path for Bank 2 levels. Graph
density, D = 0.12.

  Outflow FT008

  Outflow FT009

  Outflow FT010

  Outflow FT011

  Outflow FT012

  Outflow FT013

(d) Propagation path for Bank 2 outflows.
Graph density, D = 0.067.

Figure 9.7: Propagation paths for oscillations in the flotation circuit. CVs and MVs treated separately.
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Figure 9.8: Causality map for primary mill oscillation. The node showing the highest maxflow,
SU1LevelPV is highlighted to indicate the suggested root cause.

9.6 Assigning node importance

Interpretation of causality maps may be improved by assigning importance to the nodes and
edges. In this way the relative contributions of variables to the fault can be inferred.

Figure 9.8 shows the causality map for the milling oscillation case study from Chapter 8, and Ta-
ble 9.1 shows the inflows, outflows, and maxflows for this causality map. The node SU1LevelPV
shows the highest maxflow, and is highlighted in red in Figure 9.8 and in Table 9.1. Highlighting
this node augments the causal map so that the user’s eye is immediately drawn to the node with
the highest maxflow. In this case, the highlighted node corresponds to the results discussed in
Chapter 8, where it was inferred that the Primary Mill Discharge Sump’s level controller was
responsible for the oscillations.

9.7 Graph complexity metrics

Some metrics can be calculated to give an indication of graph complexity. Very complex causality
maps are difficult to interpret. Graph density can be used for this. A dense graph has a large
number of edges per node, while a sparse graph has a small number of edges per node. A dense
graph may be harder to interpret visually, since the large number of edges may be hard to follow.
This may obscure the propagation path. The graph density, D, for a directed graph is can be
calculated according to Equation 9.1[Gibbons, 1985].

D =
E

V (V − 1)
(9.1)
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Table 9.1: Inflow, outflow, and maxflow for the nodes in Figure 9.8. SU1LevelPV showed the highest
maxflow.

Node Inflow Outflow Maxflow

SU1 Level PV 0 3 3
SU1 Level MV 1 1 0
SU1 Water PV 1 1 0
SU1 Water SP 0 1 1
SU1 Water MV 4 4 0
SU1 Outflow SP 1 1 0
SU1 Outflow MV 1 2 1
SU1 Density 1 1 0
FT2 Outflow 1 0 -1
FT10 Outflow 1 0 -1
SU5 Density 2 0 -2
Masspull B1 1 0 -1
Masspull B2 1 0 -1
FT3 Velocity 0 1 1

where E represents the number of edges in the graph, and V represents the number of nodes
(or vertices) in the graph The maximum number of edges for a directed graph is V (V − 1), so
D = 1 for a fully connected graph.

9.8 Graph traversal

As discussed in Section 2.12.5, graph traversal techniques can be used to analyse propagation
paths of faults in causality maps. This can help in identification of the root cause of the fault, by
analysing the path from a suspected root node to another node downstream in the system. For
example, in the plant-wide oscillation case study, SU1LevelPV was identified as a possible root
cause. The maxflow also indicated that this was the most important root node. SU5Density
is the final node in the causality map. The shortest path from SU1LevelPV to SU5Density
can be determined. This path is highlighted in Figure 9.9. Highlighting the path obtained
using graph traversal quickly shows the propagation path from the Primary Mill through to the
Secondary Mill.

The depth-first search algorithm can also be used to highlight the influence of a root node on
the rest of the graph. Figure 9.10 shows the results of a depth-first search to determine all the
nodes that are reachable from SU1LevelPV , and the edges between them.
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Figure 9.9: Shortest path from SU1LevelPV to SU5Density
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Figure 9.10: All nodes reachable from SU1LevelPV , found using the depth-first search
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Figure 9.11: Procedure for interpretation of causal maps for fault diagnosis

9.9 Recommended causal map interpretation procedure

Various tools for constructing causal maps and interpreting the resulting causal maps have been
presented, and their usefulness demonstrated. Figure 9.11 now presents the recommended pro-
cedure for causal map construction and interpretation. The procedure begins with construction
of the causal map from the adjacency matrix derived from the causality analysis. Transitive
reduction is then applied as a graph pruning technique to simplify the graph. Graph nodes
are then coloured according to the plant section, and the layered layout is applied. All these
steps so far have been to construct the causal map in a way that best aids interpretation of
the map. The interpretation tools can now be applied. These tools are not presented as steps
to be completed in sequence, since there is no particular order to them. The graph complexity
metric, the maxflow metric for node importance, and graph traversal techniques are applied.
Combining all of this information, the root cause of the fault can be analysed. If a plausible
root cause is found, this variable can be investigated further. If not, the graph complexity can
be reduced by one of two methods: constructing separate causal maps for each process section;
or constructing separate causal maps for CVs and MVs. Then interpretation can be performed
again.

9.10 Chapter conclusion

The objective of this chapter was to demonstrate visualisation and algorithmic tools to aid
interpretation of causality maps for root cause analysis.

First, the construction of causal maps was discussed. Various graph layout techniques were
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presented, and the advantages of each were discussed. The layered technique presents the nodes
hierarchically, which presents the propagation paths of faults most clearly. The use of the transi-
tive reduction to remove shortcut nodes was suggested. Transitive reduction effectively reduced
the complexity of the graphs, and provided clearer indications of the propagation path of the
fault. Methods for grouping and augmenting causality maps based on the variable locations or
categories. Augmenting the causality maps with different colours for different variable groupings
aided interpretation of the graphs. Separating nodes according to different variable groupings
aided the interpretation of the maps by reducing the density of the graphs.

Secondly, methods for interpretation of causal maps were discussed. The maxflow method for
assigning node importance was presented. A graph complexity metric was presented, that was
shown to be useful for determining whether a causal map could be easily interpreted by a user.
Finally, graph traversal techniques, such as the depth-first search were presented, and it was
illustrated how these techniques are useful for analysing propagation paths in a process.

The recommended procedure for causal map interpretation based on these presented methods
was presented in Figure 9.11.

Now that this chapter has addressed the final component of causality analysis for fault diagnosis,
the overall conclusions of this dissertation can be presented in Chapter 10.
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10.1 Dissertation summary

This dissertation investigated, and improved on, existing causality analysis techniques for fault
diagnosis.

The objectives of this dissertation are repeated here as a reminder.

Objective I. To investigate the factors that affect performance of causality analysis techniques.

Objective II. To design a systematic workflow for application of causality analysis for fault
diagnosis.

Objective III. To design a tool to aid the decision of which causality analysis method to select.

Objective IV. To present tools for interpretation of causal maps for root cause analysis.

Figure 10.1 illustrates the components of causality analysis investigated in Chapter 2 that were
identified as needing improvement. The chapter where each of these improvements was addressed
is noted on the figure, as well as which objective covers each of these components.

10.2 Objective I conclusion

The first objective of this dissertation was to determine the factors that affect the performance
of causality analysis techniques.

153
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Figure 10.1: Overview of chapters addressing components of causality analysis based fault diagnosis.

Chapter 4 presented an example of causality analysis used for fault diagnosis of oscillations in a
minerals concentrator plant. This case study demonstrated the effectivity of causality analysis
for fault diagnosis. However, this case study demonstrated that the implementation of causality
analysis is complicated, with numerous steps where the optimal data selection, parameter selec-
tion, and interpretation of the results are ambiguous. The case study it also demonstrated the
need for careful consideration of process knowledge for meaningful interpretation of the results
from otherwise automated techniques.

To address Objective I, Chapter 5 defined the desired performance criteria of causality anal-
ysis techniques in terms of: general applicability; automatability; interpretability; accuracy;
precision; and computational complexity. Although some of these performance criteria are sub-
jective, such as interpretability, and some are quantifiable, such as accuracy, careful evaluation
of techniques based on these criteria can reveal the strengths and weaknesses of each approach.
The factors affecting the performance of causality analysis techniques were discussed. Identified
factors affecting the performance included: noise; fault types; process interactions; time series
characteristics; and parameter selection.

Once the performance criteria had been established, Chapter 6 investigated the impact of some
of the process characteristics on the performance of causality analysis techniques. The process
conditions investigated were: the effect of step and oscillatory perturbations; the impact of feed-
back control; and the impact of noise. The ability of Granger causality and transfer entropy to
accurately identify known causal connections in a simulated process influenced by these different

Stellenbosch University  https://scholar.sun.ac.za



10.3. Objective II conclusion 155

conditions was evaluated. For a wide range of process conditions the causality measures were
robust, giving significant values for a known causal connection, with some logically consistent
exceptions. For oscillatory conditions, high frequencies resemble noise, and therefore give lower
causality measures. The effect of low frequency oscillations is so gradual that the observed win-
dow used by the causality measures are too small to detect a causal relationship. Closed loop
operation attenuates slow acting oscillations and step perturbations, disguising causal relation-
ships.

Some points of comparison of Granger causality and transfer entropy were highlighted from this
investigation. Granger causality gave more consistent responses than transfer entropy for a wide
range of oscillatory conditions, indicating reliability. Transfer entropy was less affected by the
influence of the controller in detecting the causal connection. Transfer entropy appeared much
more sensitive to the influence of additional noise.

In Section 7.4, an analysis of variance was performed to quantify the impact of different process
conditions, and parameters on transfer entropy. The main purpose of this analysis was to
establish guidelines for parametrisation (in fulfilment of Objective II), however, it also revealed
the sensitivity of the optimal parameters for transfer entropy to different process conditions.

10.3 Objective II conclusion

The second objective of this dissertation was to develop a systematic workflow for the application
of causality analysis techniques for fault diagnosis.

To address Objective II, a systematic workflow for the application of transfer entropy for oscil-
lation diagnosis was developed in Chapter 7. This workflow exploited the relationships between
the underlying process dynamics and the parameters required for calculation of transfer entropy
to establish guidelines for parameter selection. A significant novel contribution from the inves-
tigation of these relationships was that a linear relationship could be fit to predict the optimal
time interval given the oscillation period and time delay. The workflow using the developed
guidelines was applied to an oscillation diagnosis case study from a minerals concentrator plant.
The workflow provided a systematic approach to accurately determining the fault propagation
path.

10.4 Objective III conclusion

The third objective of this dissertation was to develop a tool to aid the decision of which causality
analysis method to select.

Chapter 8 presented a comparative analysis of Granger causality and transfer entropy used for
fault diagnosis in industrial processes. The comparison was based on the desired performance
characteristics outlined in Chapter 5.

Transfer entropy was found to be more generalisable, and visually interpretable. However,
Granger causality was found to be easier to automate, much less computationally expensive,
and easier to interpret the meaning of the values obtained. To directly address the the accuracy
and precision of Granger causality and transfer entropy, their ability to find true connections in
a simulated process was tested. The results indicated that Granger causality was more accurate,
while transfer entropy showed higher precision.
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A decision flow was developed from these comparisons to aid users in deciding when to use
Granger causality or transfer entropy, as well as to aid in the interpretation of the causality
maps obtained from these techniques.

The features of Granger causality and transfer entropy were illustrated on an industrial case
study of oscillations in a mineral processing plant. In this case study, the causal map obtained
from the transfer entropy analysis showed two root cause variables associated with the same
unit in the process. The transfer entropy results were able to provide useful information for
further analysis into the cause of the fault. Granger causality, on the other hand, showed a large
number of spurious connections, and gave no clear indication of the root cause.

The developed guidelines provided useful information for selecting which causality analysis tech-
nique to use in specific scenarios. However, this investigation was limited to Granger causality
and transfer entropy. The reason for limiting the investigation to these two techniques was that
the literature review showed these two to be the most popular, and therefore the most indus-
trially mature techniques. However, other techniques may be useful in specific scenarios, and
these still have to be compared in the comprehensive way presented here.

10.5 Objective IV conclusion

The fourth objective of this dissertation was to present tools and develop guidelines for inter-
pretation of causal maps for root cause analysis.

Chapter 9 investigated visualisation and algorithmic tools to aid interpretation of causality maps
for root cause analysis.

First, the construction of causal maps was discussed. Various graph layout techniques were
presented, and the advantages of each were discussed. The layered technique presents the nodes
hierarchically, which presents the propagation paths of faults most clearly. The use of the
transitive reduction to remove shortcut nodes was suggested. Transitive reduction effectively
reduced the complexity of the graphs. Methods for grouping and augmenting causality maps
based on the variable locations or categories. Augmenting the causality maps with different
colours for different variable groupings aided interpretation of the graphs. Separating nodes
according to different variable groupings aided the interpretation of the maps by reducing the
density of the graphs.

Secondly, methods for interpretation of causal maps were discussed. The maxflow method for
assigning node importance was presented. A graph complexity metric was presented, that was
shown to be useful for determining whether a causal map could be easily interpreted by a user.
Finally, graph traversal techniques, such as the depth-first search were presented, and it was
illustrated how these techniques are useful for analysing propagation paths in a process.

A recommended procedure for causal map interpretation based on these presented methods was
presented. This procedure may be limited by the fact that it does not provide definite steps to
follow for the interpretation of causal maps. It focuses, instead, on presenting relevant and useful
tools for a user to apply their engineering reasoning. In future, more automated procedures for
this interpretation can be developed.

10.6 Fulfilment of overall project aim

The research hypothesis presented in Chapter 1 was:

Stellenbosch University  https://scholar.sun.ac.za



10.7. Appraisal of dissertation contributions 157

Performance of data-based causality analysis for fault diagnosis can be improved
and made more accessible to the process engineering industry by developing system-
atic procedures for application and interpretation of results.

The aim of the project was to investigate the limitations of the causality analysis procedures
currently available to process engineers as fault diagnosis tools and design an evaluate improve-
ments to these tools. All the objectives defined were addressed satisfactorily. A systematic
workflow for application of causality analysis techniques was developed and shown to be useful
for application to an real world case study of oscillations in a mineral processing concentrator
plant. The guidelines for choosing between Granger causality and transfer entropy provide a
useful tool for engineers to decide which method to use. The tools for interpretation of causality
analysis results presented provide useful aids for engineers.

10.7 Appraisal of dissertation contributions

Figure 10.1 illustrates the components of causality analysis investigated in Chapter 2 that were
identified as needing improvement. This serves as an illustration of the contributions of this
dissertation.

The novel contributions of this project are:

1. Application of causality analysis is complicated, with multiple decision-making steps that
could affect the results. In the literature of causality analysis for fault diagnosis, no
systematic framework addressing these numerous, complicated steps has been presented.
Chapter 7 provides a systematic workflow addressing all these steps.

2. The accuracy of causality analysis techniques is sensitive to data selection and parameter
selection. Chapter 7 provides an analysis of variance on the impact that process and fault
dynamics and calculation parameters have on transfer entropy. These results are used to
provide guidelines for the above-mentioned workflow. This approach of parametrisation
of causality analysis techniques based on process dynamics is novel, and is shown to be
effective.

3. The comparative analysis of Granger causality and transfer entropy based on all desired
performance criteria for causality analysis techniques presented in Chapter 8 is novel. This
comparison was used to provide useful guidelines for selection of which causality analysis
technique to use and how to interpret the results.

4. Construction and interpretation of causality maps is an important step for root cause anal-
ysis using these methods that has been neglected in fault diagnosis literature, with most
authors providing ad-hoc interpretations of results. Chapter 9, provides novel guidelines
for construction and interpretation of causality maps based on existing techniques.

10.8 Suggestions for future work

The objectives of this dissertation were successfully met. However, candid scrutiny of the results
did highlight areas that still require further work.

The interpretation of causal maps still requires further work. The tools and guidelines presented
in Chapter 9 present a good starting point to aid engineers in interpreting the results. However,

Stellenbosch University  https://scholar.sun.ac.za



158 Chapter 10. Conclusions

the interpretation still requires subjective interpretation in cases where the propagation paths
are ambiguous. Therefore, more rigorous automated graph interpretation techniques could be
applied. Specifically, tools exploiting connection strengths as an indication of likely propagation
paths could be utilised. The difficulty of this approach is that causality measures do not directly
translate to connections strength. In some cases the causality measure can be used to represent
relative connection strengths.

Time series signals are complex, with numerous drivers impacting their responses. These signals
can be decomposed into their constituent components using spectral decomposition techniques
such as Singular Spectrum Analysis (SSA). Applying causality analysis to each of the decom-
posed components may provide insight into which of the drivers are responsible for the structure
observed in the causal map. This can improve interpretation of the causal map. It could also
be used for fault diagnosis in the presence of multiple faults. For example, when multiple oscil-
lations are present in a process, SSA can be sued to decompose the signals into components for
each frequency of oscillation. A causal map could then be constructed for each oscillation.
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APPENDIX A

Analysis of variance for parametrisation
relationships

For the development of the workflow for application of transfer entropy in Chapter 7, an analysis
of variance (ANOVA) approach was used to screen the important factors and provide insight into
the relationships between process conditions and calculation parameters. The ANOVA included
process condition factors (namely the oscillation period, time delay, and residence time) and
calculation parameter factors (namely the number of samples, sampling time, time interval, and
embedding dimensions) for a total of 8 factors. Table A.1 displays the selected levels for each
factor included in the ANOVA.

A full factorial design was implemented with 5 repetitionsMead [2012]. Random process noise
is simulated, with different random seeds, so that repeated experiments can be performed for
this ANOVA. This came to a total of 46 × 2× 2× 5 = 81920 runs. Up to two-way interactions
were considered. Higher order interactions can be investigated in further analysis. The results
of the ANOVA are shown in Table A.2.

The responses of transfer entropy to individual factors can be observed by plotting their mean
values for each level of the factor. These plots are provided in Figure A.1.

Table A.1: Design of ranges for factors used in analysis of variance.

Factor Symbol Range Units

Oscillation period P [1 30] [min]
Time delay TD [0.2 6] [min]
Residence time τp [5 15] [min]
Number of samples NS [100 5000] [samples]
Sampling time TS [0.1 1] [min]
Time interval τ [1 100] [samples]
Embedding dimension for Y K [0 1] [samples]
Embedding dimension for X L [1 2] [samples]
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Table A.2: ANOVA results.

Factor Sum Sq. d.f. Mean Sq. F Prob> F

P 12149.6 3 4049.9 0.35 0.7868
TD 17449.9 3 5816.6 0.51 0.6772
τp 34546.2 3 11515.4 1 0.3895
NS 486061 3 162020.3 14.13 0
TS 8594.6 3 2864.9 0.25 0.8614
τ 187418.3 3 62472.8 5.45 0.001
K 12288.9 1 12288.9 1.07 0.3005
L 732757.5 1 732757.5 63.92 0
P ∗ TD 127569.8 9 14174.4 1.24 0.267
P ∗ τp 113951 9 12661.2 1.1 0.3554
P ∗NS 139078.9 9 15453.2 1.35 0.206
P ∗ TS 106449.5 9 11827.7 1.03 0.4113
P ∗ τ 140848.7 9 15649.9 1.37 0.1976
P ∗K 130.9 3 43.6 0 0.9997
P ∗ L 81383.2 3 27127.7 2.37 0.0688
TD ∗ τp 153206.9 9 17023 1.48 0.1468
TD ∗NS 73899.2 9 8211 0.72 0.6945
TD ∗ TS 101472.1 9 11274.7 0.98 0.4511
TD ∗ τ 127457.5 9 14161.9 1.24 0.2677
TD ∗K 29307.2 3 9769.1 0.85 0.4652
TD ∗ L 26381 3 8793.7 0.77 0.5123
τp ∗NS 91184.5 9 10131.6 0.88 0.5388
τp ∗ TS 90548.6 9 10061 0.88 0.5444
τp ∗ τ 89470.3 9 9941.1 0.87 0.5539
τp ∗K 23364.9 3 7788.3 0.68 0.5645
τp ∗ L 27834 3 9278 0.81 0.4884
NS ∗ TS 62216.4 9 6912.9 0.6 0.7956
NS ∗ τ 811191.2 9 90132.4 7.86 0
NS ∗K 243525.1 3 81175 7.08 0.0001
NS ∗ L 149386.7 3 49795.6 4.34 0.0046
TS ∗ τ 41204.6 9 4578.3 0.4 0.936
TS ∗K 18047.1 3 6015.7 0.52 0.6652
TS ∗ L 46448.8 3 15482.9 1.35 0.2559
τ ∗K 154236 3 51412 4.48 0.0038
τ ∗ L 464765.5 3 154921.8 13.51 0
K ∗ L 127557.8 1 127557.8 11.13 0.0009

Error 936881620.5 81727 11463.6

Total 942035003.8 81919
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Figure A.1: ANOVA results for different levels of each factor.
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APPENDIX B

Transfer entropy application procedure

Chapter 7 presented a systematic workflow for the application of transfer entropy for diagnosis of
plant-wide oscillations. This workflow was used to analyse the oscillations discussed in Chapter
8.

B.1 Detect fault

Oscillations were observed in the mass pull variable. These oscillations persisted for over 12
hours. To find the possible suspect variables one can look at upstream and downstream sections
to determine whether any of their KPIs showed oscillations. Upstream of the flotation circuit is
the milling circuit.

B.2 Perform spectral analysis

Once the oscillation has been detected, additional information on the nature of the oscillation
may be discerned using spectral analysis. Using the fast-Fourier transform to find the peak oscil-
lation frequencies it was observed that 27 of the selected trends displayed a common oscillation
period of 69 min.

• Oscillatory variables: The variables that shared this oscillation period are shown in
Figure 8.8. This includes variables from the primary milling circuit, flotation circuit, and
secondary milling circuit.

• Oscillation period: P = 69min.

B.3 Select data for transfer entropy

The suspect variables were identified in Section 7.5.2 included variables from the primary milling,
flotation, and secondary milling circuit.

• Sampling time: TS = 10s.

• Number of samples: NS = 4530 samples.
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• Suspect variables: 27 variables shown in Figure 8.8.

B.4 Determine process dynamics

Suspect variables were narrowed down during the spectral analysis. For each pair of these
variables, system identification was performed to fit a first order plus time delay model. This
basic model gave a rough estimate of the time constants of the time delays between the variables.
The System Identification Toolbox in MATLAB was used to determine the time delay estimates
(TD, in seconds) for each pair of candidate variables.

B.5 Select parameters for transfer entropy

The time delay and the oscillation period can be used to get parameters for transfer entropy.

τ̂max = 0.33P + 0.53TD + 0.66 (B.1)

• Embedding dimension for input: K = 1.

• Embedding dimension for output: L = 2.

• Time interval: The time interval can be calculated from TD and P using Equation 7.1.

• Prediction horison: H = τ .

B.6 Perform transfer entropy analysis

Once all the parameters have been selected for each pair of variables the transfer entropy analysis
can be performed. The causality map shown in Figure 8.9 was obtained.
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