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Abstract

Investigation into Road Rumble in a Light Utility Vehicle

A.D. Wade

Department of Mechanical Engineering
Stellenbosch University

Private Bag X1, 7602 Matieland, South Africa

Thesis: MScEng (Mech)

April 2005

Vehicle Noise, Vibration and Harshness (NVH) is now a more important
component of the vehicle design process than ever. Road noise is one of the
key criteria used by potential buyers (albeit subconsciously) to choose what
they perceive as the best vehicle.

Road rumble is a key concern for vehicle manufacturers. Light Utility
Vehicles (LUVs) are especially sensitive to a low frequency booming noise
due to the fundamental acoustic mode that exists in the vehicle cabin. An
investigation into this booming noise in an LUV is documented. The noise
is identified and quantified after which the source of the noise in the vehicle
cabin is identified using NVH techniques such as Acoustic Modal Analysis
(AMA), Experimental Modal Analysis (EMA) and Transfer Path Analysis
(TPA). The cabin’s fundamental acoustic mode lay at 100 Hz. Finally the
source of the vibrations in the vehicle leading to the booming noise in the
cabin is identified, along with its transfer path to the cabin.

Solutions for the specific vehicle’s booming noise are proposed, two of
which are tested with some success. Solutions to the problems associated
with the fundamental acoustic mode of LUVs are also proposed and dis-
cussed.
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Uittreksel

Ondersoek van Padgeraas in ’n Ligtevragvoertuig

(“Investigation into Road Rumble in a Light Utility Vehicle”)

A.D. Wade

Departement Meganiese Ingenieurswese
Universiteit Stellenbosch

Privaatsak X1, 7602 Matieland, Suid Afrika

Tesis: MScIng (Meg)

April 2005

Die vibrasie en geraas van voertuie is nou ’n meer belangrike komponent
van die voertuig se ontwerpsproses as ooit tevore. Padgeraas is een van die
hoof kriteria wat onbewustelik potensiële kopers se besluit beïnvloed om die
beste voertuig te kies.

Padgeraas is van groot belang vir die voertuigfabrikant. Ligtevragvoer-
tuie (“bakkies”) is veral sensitief vir lae frekwensie geraas as gevolg van die
fundamentele akoestiese modus wat in die voertuig kajuit bestaan. ’n On-
dersoek na hierdie dreuning in ’n bakkie is onderneem. Die geraas word
geïndentifiseer en gekwantifiseer, waarna die bron van die geraas in die voer-
tuig se kajuit geïndentifiseer word deur van tegnieke soos Akoestiese Modale
Analiese, Eksperimentele Modale Analiese en Transmissiepad Analiese ge-
bruik te maak. Die kajuit se fundamentele akoestiese modus kom by 100 Hz
na vore. Ten slotte word die bron van die vibrasies in die voertuig wat tot die
dreuning in die kajuit lei, geïndentifiseer, asook die pad van oordrag.

Oplossings vir die betrokke voertuig se geraas word voorgestel, waarvan
twee getoets is met beperkte sukses. Oplossings vir die probleme verbonde
aan die fundamentele akoestiese modus van bakkies word ook voorgestel en
bespreek.
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Chapter 1

Introduction

During the development of a Light Utility Vehicle (LUV) (Figure 1.1) a low
frequency road rumble was identified by the motor manufacturing company
as a Noise, Vibration and Harshness (NVH) area that needed attention. A
number of solutions were proposed and tested but only the stiffening of the
load box in some areas was implemented in production and the vehicle was
launched with this issue still unresolved.

In South Africa road noise is of particular concern as road surfaces are
especially rough. Road noise inside a vehicle’s passenger compartment is
caused by many sources. Probably most obvious is tyre rumble generated
by contact of the tyres with the road surface. Other causes of especially low
frequency noise are the vehicle’s engine and power train and structural vi-
bration (caused by vibration of the suspension or vehicle body).

Road noise is transmitted through the vehicle into the vehicle cabin via
two distinct paths: through the air (air-borne noise) and through the vehi-

Figure 1.1: Schematic of an LUV
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CHAPTER 1. INTRODUCTION 2

cle’s bodywork (structure-borne noise). These paths are primarily dictated
by the frequency of the noise. According to Lilley & Weber (2003) 85 % of
the noise entering the vehicle cabin at frequencies lower than 500 Hz enters
through structure-borne paths. This changes to approximately 80 % contri-
bution through air-borne paths for frequencies of over 1000 Hz.

Low frequency road rumble is a low frequency “booming” noise gener-
ated by the interaction between the vehicle and the road surface. In simpler
terms, the wheels and suspension assembly vibrate when the vehicle travels
on (especially rough) roads, causing a booming noise in the cabin. It can be
both discomforting and irritating for drivers and passengers when travelling
in a vehicle (Anon, 2003). As a result, vehicle manufacturers are spending
increasing amounts of time improving the Sound Quality (SQ) experienced
by the drivers and passengers.

A vehicle manufacturer’s main aim is to sell vehicles at a profit. To accom-
plish this, prospective buyers must be convinced that their vehicle is superior
to the competition’s vehicle. SQ and NVH are playing increasingly impor-
tant roles (albeit sometimes subconsciously) in the buyer’s decision making
process (van der Auweraer et al., 1997). Consequently, the subjective quality
of sounds is a topic of increasing importance in the automotive industry and
is becoming a commonly incorporated phase of the design process.

The automotive industry is becoming increasingly competitive. Motor
manufacturers bring out many versions of a standard vehicle and there are
consequently many manufacturers vying for their segment of the market. In
South Africa there are three LUV manufacturers. Any edge that one manu-
facturer can obtain over another can therefore result in significant differences
in sales figures. Consequently, when a manufacturer notices a noise problem
in their LUV model, the problem must be solved as quickly as possible.

LUVs have a fundamental noise problem. When noise is generated in a
cavity, the acoustic mode with the lowest frequency is generated along the
longest path in the cavity. In saloon vehicles, this is generally not a problem
as the longest path (from the driver’s footwell to the rear window, shown in
Figure 1.2) generates a fundamental mode with its node situated close to the
driver’s ear. The driver therefore does not hear this fundamental frequency
very clearly. In an LUV however, the longest path stretches from the driver’s
footwell to the top corner of the cabin — just behind the driver’s head (as seen
in Figure 1.3). The mode’s amplitude is therefore at its maximum near the
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Figure 1.2: Fundamental frequency in a saloon car

Figure 1.3: Fundamental frequency in an LUV

driver’s ear. This is the fundamental problem that an LUV has with booming
noise in the cabin and to remove it, the components in the vehicle that excite
the fundamental mode must be identified and modified.

This report documents an investigation into an LUV’s booming noise
problem. A literature survey giving an overview of the field of vehicle NVH
and specific methods used in the field is presented in Chapter 2. A selection
of case studies is also included as well as some of the latest developments in
NVH testing.
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The investigation into the vehicle’s booming noise is then documented
in Chapter 3, starting with an analysis of the actual noise that pinpoints the
characteristics of the noise that are of concern. Once the booming noise had
been fully understood, the vehicle was then analysed to determine the source
of the booming noise inside the cabin.

In Chapter 4 the source of the vibrations in the vehicle that lead to the
booming noise in the cabin was sought and located. A cheap post-production
“fix” was attempted on the vehicle with limited success.

Potential solutions to the booming noise in the vehicle as well as for the
acoustic mode in LUVs in general are presented and discussed in Chapter 5.



Chapter 2

Literature Survey

Vehicle vibration and noise play a large role in determining a driver’s attitude
towards a vehicle (van der Auweraer et al., 1997; Anon, 2003). Dehandschut-
ter & Sas (1998) therefore state that Noise, Vibration and Harshness (NVH),
which leads to the reduction in noise levels inside the vehicle cabin, is a cru-
cial aspect in vehicle design.

The field of NVH is extremely large and there exist many different tech-
niques and methods to analyse and solve noise related problems in vehi-
cles. A survey was undertaken firstly to gain a general overview of the field
of NVH and then to focus in on a few of the NVH techniques currently
employed. These techniques included Sound Quality diagnosis, Correla-
tion Analysis, Experimental Modal Analysis (EMA), Transfer Path Analysis
(TPA), Acoustic Modal Analysis (AMA) and Statistical Energy Analysis (SEA).

2.1 Booming noise in vehicles

Vibrations in a vehicle are caused by myriad sources. Some of the more
obvious sources are the interaction between the road surface and the vehi-
cle’s suspension system, engine vibration, tyre rolling vibrations and aero-
dynamic forces. All of these vibrations generate noise. The noise heard in
the vehicle cabin can be generated in a number of ways. It is commonly ac-
cepted that noise with a frequency of over 1000 Hz is primarily transmitted
via air-borne paths while noise with a frequency of under 500 Hz is primar-
ily structure-borne (Lilley and Weber, 2003). The noise commonly referred
to as “booming noise” is a low frequency noise — certainly below 500 Hz

5
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— and is therefore almost entirely structure-borne. It has also widely been
seen that this booming noise is especially present when a resonant frequency
of a panel in the cabin coincides with one of the cabin’s acoustic resonant
frequencies (van der Auweraer et al., 1997; Lee et al., 2000; Matsuyama and
Maruyama, 1998). A definition for “booming noise” in vehicles can therefore
be constructed as follows:

“Booming noise in a vehicle is the low frequency noise heard when a structure-
borne vibration enters the vehicle cabin and creates noise at the same frequency as
one of the cabin’s acoustic modes, exciting that mode and amplifying the noise.”

2.2 Sound Quality

When looking to solve a noise problem in a vehicle, the noise must first be as-
sessed to determine which components of the noise are unpleasant. Van der
Auweraer et al. (1997) suggests that this should be performed by replaying
the sound either to professionals (if diagnosis is the objective) or to a general
panel of listeners (if a description of quality is the objective). These results
are then used as a point of departure for the rest of the analysis.

Once the noise has been rated subjectively, an objective Sound Quality
(SQ) diagnosis is performed to understand why a sound possesses a certain
quality. This involves analysis by means of signal processing (using tech-
niques such as spectrum analysis) to determine the signal’s characteristics,
monitoring the effect of a modification of the noise’s signal and synthesising
sounds that contain certain characteristics from the noise’s signal for para-
metric analysis. Van der Auweraer et al. (1997) shows (using filters) that a
significant drop in noise level over a narrow frequency range is almost in-
discernible, while a smaller drop in noise level over a wider frequency range
is clearly audible. It is therefore more desirable to slightly reduce the noise
level in a vehicle over a large frequency range than to dramatically reduce
the noise level over a very small frequency range.

When evaluating a vehicle’s SQ performance, so-called SQ metrics are
used which rate the quality of a certain aspect of the sound. The most com-
monly used metrics are loudness, sharpness and fluctuation strength and
roughness (Fastl, 1997).

The human ear does not hear all sounds with the same sound pressure
content as equally loud; it depends heavily on the frequency content of the
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sound. For this reason, the “loudness” of a measured sound cannot be de-
termined using a simple Sound Pressure Level (SPL) measurement. Instead,
the frequency content must be adjusted to account for the variation in the
ear’s sensitivity. This has led to the development of a number of weight-
ing scales, most notably the A-weighting scale, which is described in more
detail in Appendix B. The sound’s loudness can then be more accurately rep-
resented once the linearly measured sound has been weighted.

Due to the non-linear response of the human ear to sound pressures of
different frequencies, the “sharpness” of the sound also plays a major role in
evaluating the quality of a measured sound. Higher frequencies are usually
experienced as more irritating and annoying than lower frequencies, leading
to the measure of the sound’s sharpness. It is often more desirable for a sound
to have a low sharpness value, leading to a technique known as “masking”.
Using this technique, noise is added to the original noise in an effort to make
the sound more pleasing. A lower frequency noise can be added to the orig-
inal sound to lower its sharpness. This would only be attempted if the more
desirable option of removing the higher frequency noise is not possible.

An interesting phenomenon that arises out of “masking” is that the re-
moval of one sound could bring another, more irritating sound to the fore
that was being “masked” by the former. This phenomenon is very difficult
to foresee when improving a sound’s quality and would only be discovered
once the dominating sound has been removed.

The fluctuation strength or roughness of a sound refers to the amount
a sound’s intensity or frequency fluctuates. The definition of fluctuation
strength and roughness are the same, however fluctuation strength is de-
fined below 20 Hz and roughness above 20 Hz. The reasoning behind this
metric is that a sound that fluctuates around its main frequency or intensity
will be more noticeable and consequently more irritating to the human ear.
A common example of fluctuation strength is the “beating” frequency heard
when two similar frequencies superimpose to create a beating sound. This is
often heard when a guitar string is slightly out of tune and the (supposedly)
same note is produced by a true string and the false string. Apart from the
dissonance created, a throbbing sound with a beat frequency of about 1 Hz is
also heard. This beat frequency can become quite noticeable and irritating.
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2.3 Tools used to analyse NVH problems in vehicles

Once the noise’s signal is understood, the problem must be physically under-
stood by identifying the vehicle components that generate, transmit and in-
tensify the vibrations that cause the identified problematic noise in the cabin.
Correlation Analysis considers the relationship between the noise and partic-
ular vehicle components. This involves comparing the critical components of
the signal to components in the vehicle. These can be vibrations (bodywork),
wind noise, noise from the tyres rolling on the road surface, engine noise or
a number of other factors. This can range from a simple visual or intuitive
comparison to an in-depth coherence study of the signals. This technique
is often applied subconsciously when a particular sound is “recognised” to
come from a certain source.

The following techniques, often employed in NVH studies, have very
mathematical foundations and as a result give fairly objective results.

2.3.1 Experimental Modal Analysis

Experimental Modal Analysis (EMA) is one of the most widely used tech-
niques in NVH today, probably due to its wide applicability, simplicity and
easily interpretable results. It has been used in many studies, from deter-
mining the natural modes of a thin disk (Wassermann and Springer, 2001),
to identifying the fundamental modes of an SUV (Hwang et al., 1997), to the
analysis of a violin octet (Bissinger, 2003). While the more basic and tradi-
tional method of accelerometers will be used for measurements, more ad-
vanced methods are being introduced into the field of NVH. One of these,
holographic modal or holo-modal analysis, where the component is analysed
using laser sensors, is described in more detail in Section 2.5.1.

2.3.2 The principle of reciprocity

While not a technique by itself, the principle of reciprocity is an extremely
useful tool in analysing a vehicle’s NVH properties. It has mainly been used
in TPA (Matsuyama and Maruyama, 1998; van der Linden and Fun, 1993)
and Panel Contribution Analysis (PCA) (Hendricx et al., 1997). The principle
of reciprocity reduces to “if a certain vibration causes a certain resultant vi-
bration, then exciting the resultant vibration must cause the initial vibration”
i.e. the system behaves in a reciprocal manner. This sounds logical but is only
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possible if the system is linear. “The basic requirement for reciprocity is linearity”
(van der Linden and Fun, 1993). Fortunately, as shown by van der Linden
& Fun (1993), the deviation of peak values between direct and reciprocally
measured transfer functions in vehicles is less than 3 dB between 30 Hz and
500 Hz. This has also been verified by Matsuyama & Maruyama (1998). It is
therefore acceptable to use reciprocal measurements when calculating trans-
fer functions in vehicles.

When measuring noise in a vehicle’s cabin by exciting points on the ve-
hicle, it is often extremely difficult and impractical to attach the excitation
equipment to the required components, due to a lack of space around the
components. This is where reciprocal measurements become invaluable. In-
stead of vibrating say the left rear suspension and measuring the noise inside
the cabin, noise can be generated inside the cabin and the resulting vibrations
measured on the suspension. Instead of attaching a shaker to the suspension
(or using a modal hammer) all that is required is an accelerometer. Another
advantage is that more than one measurement can be made at once; notion-
ally all components could be measured in one fell swoop if the equipment
is available. Reducing the number of experiments, apart from saving time
and effort, improves the consistency of the data as the transfer functions are
calculated relative to only a small number of different excitations as opposed
to every transfer function being calculated from an independent excitation
(van der Linden and Fun, 1993).

The sound source in the cabin must be of a certain quality for reciprocal
measurements to be effective. According to van der Linden & Fun (1993)
there are three requirements that need to be fulfilled when choosing a sound
source. Firstly the sound source should “approximate a point source with
omnidirectional radiation”. The source should also produce high levels of
acoustic output at low frequencies and its effective volume velocity (the ve-
locity at which the sound source pumps the air) must be accurately mea-
sured. Other authors have not seen the need for the first requirement and
have obtained good results using a simple loudspeaker as a sound source
(Matsuyama and Maruyama, 1998; Maruyama et al., 1999). The third require-
ment can be met by using either a microphone placed next to the sound
source, or a small, light accelerometer attached to the sound source (Hen-
dricx et al., 1997). The latter is usually more practical and accurate.
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2.3.3 Transfer Path Analysis

Transfer Path Analysis (TPA) is a fairly well-established technique (Wyckaert
and van der Auweraer, 1995; Plunt, 1998). It is used by the NVH engineer to
determine which components of the vehicle are most responsible for trans-
mitting vibrations from the source to the cabin.

Structure-borne noise generation involves three elements: the source, the
transfer path and the receiver (Dehandschutter and Sas, 1998). While the
source can very rarely be changed (a tyre must be in contact with the ground
and suspension must oscillate on a rough road) the transfer path — if known
— can be modified so that less vibration, and consequently noise1 is trans-
ferred to the cabin.

TPA is a partial pressure technique. The partial contribution as a func-
tion of frequency or engine revolutions per minute (rpm) of each transmis-
sion path to the cabin’s total sound pressure is measured to identify the most
dominant path (van der Auweraer et al., 1997). The total cabin sound pres-
sure is calculated as follows (Lee et al., 2000)

P = ∑ Pi = ∑ Fi · (P/Fi) (2.3.1)

where P = total cabin sound pressure;

Pi = cabin sound pressure transferred through i’th path;

Fi = applied force at i’th path;

P/Fi = mechano-acoustic transfer function for i’th path.

The applied force can be calculated either directly or indirectly (van der Lin-
den and Fun, 1993).

The direct method is an estimation based on the stiffness of the vehicles
mountings. These could be the bushings, hydraulic mounts, a coupling, a
joint or a bearing. The force is then calculated using the following equation

fbody
−−→

=
1

ω2 · [K]
(

ẍ−→ex − ẍ−→body

)
(2.3.2)

where fbody
−−→

= estimated force vector on the body side of the mounting
(N);

1“noise” here meaning the specifically identified problem noise
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ω = frequency (rad/s);

[K] = mounting stiffness matrix (N/m);

ẍ−→ex = operational acceleration vector at the excited side of the
mounting (m/s2);

ẍ−→body = operational acceleration vector at the body side of the
mounting (m/s2).

The disadvantage of this method is obviously the reliance on the stiffness
matrix [K]. This is not always readily available. In addition to this, “sufficient
deformation of the mounts” is required for reliable data (van der Linden and
Fun, 1993).

The indirect method estimates the force based on the accelerance of the
supporting structure i.e. the chassis, body or cabin as follows

fbody
−−→

= [H]−1 · ẍ−→body (2.3.3)

where [H] is the accelerance matrix (ms−2/N) which is the transfer function
matrix between forces and accelerations at all attachments in all directions.
The accelerance matrix is usually measured with hammer impact measure-
ments.

If a road test is performed, multiple incoherent sets of data are measured,
making the task of separating each set into coherent sets more complex. The
data measured during the test cannot be simply added as a complex sum
to yield the total contributions; the data must be separated into several sets
of coherent contributions, on which regular TPA is then performed. Once
the partial pressure contributions of each transfer path have been calculated,
they can be summed using the ordinary rms equation

Prms =
√

P1
2 + P2

2 + P3
2 + . . . + Pn

2 (2.3.4)

where Pi is the partial pressure for transfer path i of n transfer paths. This
is because phase relationships only exist between signals coherent with one
phenomenon and not between incoherent phenomena (Hendricx and Van-
denbroeck, 1993). In simple terms this means that since there is no phase
relationship between the sound pressure inside the cabin caused by, say, the
right front wheel shaking and that caused by the drive train vibrating, the
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resultant sound pressures can be summed using the ordinary rms equation
(Equation 2.3.4).

During a laboratory test, this is not a concern as each potential source can
be individually excited, resulting in a coherent set of measurements for each
experiment. Conventional rms sums can then be used to compare the partial
pressures due to excitation at each source.

2.3.4 Acoustic Modal Analysis

Acoustic Modal Analysis (AMA) concerns the investigation of the cabin’s
acoustic properties. This investigation can either be performed analytically
or acoustically. Both methods are often used for correlation.

Experimental AMA

Experimental AMA has been performed for many years now. There are a
variety of methods, although the two most commonly used methods are the
“paired microphone” and “single microphone” methods.

The paired microphone method (described in detail by Knittel & Oswald
(1987)) uses a finite-difference method to approximate the acoustic particle
acceleration. The governing equation is Newton’s Second Law (for example
in the x-direction)

ρ
∂υ(x, t)

∂t
= −∂p(x, t)

∂x
(2.3.5)

and is solved for the particle acceleration using two microphones and a finite
difference approximation i.e. substituting (p1 − p2) for ∂p and the micro-
phone spacing ∆r for ∂x. Assuming the microphone spacing and the density
remain constant2, Equation 2.3.5 can be simplified as

ρ
∂υ(x, t)

∂t
= k(p2 − p1) (2.3.6)

where k is a constant ((ρ · ∆r)−1).
This method is then implemented by inserting paired microphones — a

distance ∆r apart — in the acoustic cavity being excited by a noise source
and measuring the acoustic particle accelerations in each direction. Particle

2The incompressible flow approximation is true for flows with a velocity of less than
Ma 0.3 (about 100 m · s−1) (White, 1999) which is well within this application’s limits.
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acceleration Frequency Response Functions (FRFs) are then obtained using
either a third microphone mounted near the noise source or an accelerometer
mounted on the noise source.

The main advantage of this method is that standard Fast Fourier Trans-
form (FFT) equipment can be used to perform the measurements (this method
was developed in the late 1980’s) and that highly accurate measurements are
possible.

The main disadvantages of this method are the reliance on an accurately
determined finite difference for the pressure (p2 − p1) and the large number
of phase-matched microphones required. Multiple experiments could be per-
formed, moving a single set of phase-matched microphones to each measure-
ment location for each experiment, but this would result in furiously many
experiments and consequently a greater chance of measurement errors.

Another experimental technique that has proved quite accurate (Hwang
et al., 1997) and much simpler to implement requires only one microphone
per measurement. The acoustic cavity is simply divided into a three-dimen-
sional grid, excited using white noise with the required bandwidth and the
acoustic pressure measured using a single microphone in each direction at
each node. The source’s acceleration is measured using an accelerometer
placed on the source. The FRFs are then measured by averaging a num-
ber of measurements. This is the most common method for performing an
experimental AMA.

The advantage of this method is that only one microphone is required for
each measurement so numerous nodes can be measured simultaneously.

Analytical AMA

Analytical AMA has been used by many NVH engineers. As a result there
are many techniques and as many software packages that use this technique.
Most Finite Element Analysis (FEA) software packages have some acoustic
analysis capabilities ranging from a rather simplified “rigid boundary” ap-
proach to highly complex “fluid boundaries”, acoustic barriers and fluid
couplings (MSC, 2001). The level of complexity of the analysis depends on
the software available, the accuracy required, the time available and the level
of expertise of the user. If the only AMA being performed on the vehicle is
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analytical, a high level of accuracy is preferred as there will be no experimen-
tal data available to correlate the analytical results with.

Primary acoustic mode shapes of a rectangular box, and their correspond-
ing frequencies can be approximated using the equation

f (nx, ny, nz) =
c
2

√(
nx

lx

)2

+
(

ny

ly

)2

+
(

nz

lz

)2

(2.3.7)

where c is the speed of sound in air, nx,y,z are the mode orders in each direc-
tion (0, 1, 2, . . . ) and lx,y,z define the cabin dimensions (Hwang et al., 1997).

Acoustic modes have been determined analytically and experimentally
by Hwang et al. (1997) and then compared to the cabin noise. Correlations
were successfully found at some of the frequencies.

Structural and (analytical) acoustic modal analyses were also performed
by van der Auweraer et al. (1997). They showed coincident structural and
acoustic modes between the rear suspension and cabin of the vehicle. This,
together with a contribution analysis for the rear suspension to the overall
noise in the cabin, gave a clear indication that the rear suspension was largely
responsible for the interior noise at the targeted frequency.

2.3.5 Operational Modal Analysis

Operational Modal Analysis is used to obtain data more realistically than
laboratory experiments can yield. Basically, the vehicle is instrumented with
many accelerometers and microphones and driven on a suitable track. A
number of signals are used as reference signals (typically the microphones at
the driver’s and passengers’ ears) and the phases of all the measured data are
matched to these reference signals. By decomposing these signals into signals
coherent with each reference signal (in much the same way as is done in TPA),
structural and acoustic modes can be calculated from the resulting transfer
functions (Deweer and Dierckx, 2000; Wyckaert and van der Auweraer, 1995;
Lee et al., 2000).

2.3.6 Panel Contribution Analysis

Panel Contribution Analysis (PCA) is essentially a variant of TPA. In TPA
the paths along which the vibrations travel are analysed to identify the path
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contributing most to the cabin noise at the targeted frequencies. In PCA the
panels in the cabin are analysed to identify the panel contributing most to the
cabin noise at the targeted frequencies. A detailed description of this method
can be found in Hendricx et al. (1997).

The mathematical background to PCA is very similar to that of TPA. The
total interior noise in a vehicle can be described as a linear sum of partial
pressure contributions (Hendricx et al., 1997):

P = ∑ Pi = ∑ Qi · (Pi/Qi) (2.3.8)

where P = total cabin sound pressure;

Pi = cabin sound pressure contribution of body panel i;

Qi = volume velocity of body panel i;

Pi/Qi = acoustic FRF between the interior microphone and body
panel i.

There are consequently two unknowns for each body panel’s sound pressure
contribution (Pi): the volume velocity of the panel and the acoustic FRF be-
tween the interior microphone and the body panel. In practice the volume
velocity of the body panel is difficult to measure so the volume acceleration
Q̇i of each panel is measured instead. The acoustic FRF then becomes Pi/Q̇i.

The volume acceleration of the panels in the cabin is measured using ac-
celerometers. Each panel is divided into subpanels and an accelerometer is
fixed to the centre of the subpanel to measure the normal accelerations of the
subpanel. Only accelerations coherent with cabin interior noise should be
considered. These coherent accelerations are calculated by normalising the
crosspowers between the target microphone and each of the accelerations as
shown in Equation 2.3.9

ẍ⊥|p = Gẍp /
√

Gpp (2.3.9)

where ẍ⊥|p = normal acceleration of subpanel coherent with target micro-
phone pressure p;

ẍ⊥ = measured normal acceleration of subpanel;

p = measured sound pressure at target microphone;

Gẍp = crosspower between Ẍ⊥ and target microphone;

Gpp = autopower of measured pressure.
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The main assumption of the method is that the measurements by the ac-
celerometers are representative of each subpanel in its entirety; this leads
to measurement errors. Hendricx et al. (1997) states that the allowable size of
each subpanel depends on the frequency band of interest. Two requirements
are that each subpanel should be

1. smaller than half of the structure’s mechanical wavelength;

2. smaller than half of the acoustical wavelength.

The length of a 300 Hz sound wave is more than 1 m so the latter requirement
is easily met. The first requirement is more complex as a full vehicle modal
analysis is required to calculate the structure’s mechanical wavelength. Both
Hendricx et al. (1997) and Lee et al. (2000) assumed the wavelength to be
sufficiently long with no ill effects.

The volume acceleration of each panel Q̇i is then calculated by multiply-
ing each panel’s measured normal acceleration ẍi with its surface area Si

Q̇i = ẍi · Si (2.3.10)

The acoustic FRF is most easily measured using reciprocal measurements
(Hendricx et al., 1997). The cabin is therefore excited using a sound source at,
say, the driver’s ear and the pressure responses are measured very close to
the different panels. The volume acceleration of the sound source is mea-
sured in the same way as for the panels, and serves as reference for the
acoustic FRF calculation. The response pressures of the panels are measured
by microphones that are placed in exactly the same position as the accelerom-
eters were for the volume velocity measurement.

Once the acoustical contributions of all the panels have been determined,
they can be added together and compared to the total measured interior
noise. This will validate the panel contribution calculations as the correspon-
dence should be quite good. A very important point to note is that even if
the contribution of one specific panel dominates the contributions at a certain
frequency, it is not necessarily the main acoustic radiator. The total interior
noise is a vector sum of the acoustical contributions of the surrounding pan-
els at that particular frequency (Hendricx et al., 1997; Lee et al., 2000). This is
shown in Figure 2.1. This figure shows that while one panel can easily create
a lot of noise, it might be balanced by another panel (the firewall balances
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Figure 2.1: Vector diagram of noise contributions of different panels (Hendricx et al.,
1997)

the rear window), or the sum of a number of panels. In this case, one panel
acts as a noise source and the other as a noise absorber. Likewise panels such
as the roof and windscreen in Figure 2.1 can work together to amplify each
other’s noise. Hendricx et al. (1997) advise detailed analyses to better under-
stand the vehicle’s dynamics before jumping to conclusions. Lee et al. (2000)
combined the results of PCA with TPA, EMA and AMA before deciding on
the greatest contributing panels.

2.3.7 Statistical Energy Analysis

Statistical Energy Analysis (SEA) is a method used to analyse systems with
many modes where it does not make sense to analyse each mode separately.
SEA groups all the modes into subsystems and statistically determines their
interaction. This is particularly useful when the tested object — in this case
the vehicle body — has many closely-spaced modes.

SEA is documented to work well for frequencies above 200 Hz (Parrett
et al., 1997) but not for any frequencies lower than that (Hepburger et al.,



CHAPTER 2. LITERATURE SURVEY 18

2002). DeJong (1985) states that a vehicle passenger compartment would not
yield good results using SEA as the frequencies of the first modes are too low.

2.4 Some success stories

Generally, a paper is not published unless there is some success. This sec-
tion is aimed more at highlighting some of the more typical combinations of
methods that have been employed to solve real vehicle NVH problems.

Van der Auweraer et al. (1997) dealt with a vehicle having a booming
noise at around 100 Hz. A TPA was performed, which identified the rear axle
mounts as noise propagating paths. A multi-reference operational analysis
was then performed using a large amount of microphones in the cabin and
accelerometers on the suspension. An acoustic mode at 75 Hz and a large rear
suspension displacement at 80 Hz were identified. An EMA on the rear sus-
pension and an AMA in the cabin showed both a structural and an acoustic
mode at 80 Hz. Since the cabin structure could not be redesigned, a modi-
fied suspension design (stiffening of a beam) was recommended to reduce
the cabin noise.

Van der Linden & Varet (1996) applied a type of PCA to a booming noise
problem in a diesel van. Second order engine noise dominated at the pas-
senger’s ear at around 1400 rpm and 2600 rpm under full load. FRFs were
calculated between the cabin panels and the passenger’s inner ear. An AMA
was also performed on the cavity. The wind shield proved to be the domi-
nant source of the noise at 1500 rpm. A modification lowered its first resonant
mode, meaning that it caused more noise at 1100 rpm. This was acceptable
as it is less common for a vehicle to be under full load at 1100 rpm than at
1500 rpm. The noise at 2400 rpm posed more of a problem. The cabin’s lat-
eral acoustic mode was excited at the noise’s frequency and the cabin floor
could not be easily modified so instead two smaller panels were “tuned” so
that their first bending modes moved to 90 Hz. They were near the pressure
maxima and could therefore act as efficient panel absorbers (as described at
the end of Section 2.3.6). A reduction of about 6 dB was achieved around
90 Hz as a result of this modification.

Matsuyama & Maruyama (1998) analysed a 4 cylinder minivan to reduce
the booming noise inside the cabin due to second order engine noise. The
cabin structure was excited using both direct structural excitation and recip-
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rocal excitation using sound sources. Both methods showed that the vehicle’s
B pillar deformed much more than any other components and was accord-
ingly stiffened. This resulted in a 10 dB improvement in the 90 Hz booming
noise at the driver’s ear. An AMA test also showed the cabin to have an
acoustic mode at 90 Hz which would have aggravated the problem.

2.5 Latest developments in NVH and vibration
analysis

2.5.1 Holographic modal analysis

One of the most significant recent advances in EMA is holographic modal (or
holo-modal) analysis (Anon, 2003). In conventional EMA, a panel is instru-
mented with a number of accelerometers which are connected to some sort
of data capturing device. This method has a number of drawbacks, including
mass loading of the panel (especially significant for thin, lightweight panels)
and poor resolution; there is only information for a point where there is an
accelerometer. With holo-modal analysis, the test panel is illuminated by a
laser beam. The reflected light is then measured and a model is generated
of the vibrating panel. This means that there is no mass loading of the panel
and that the resolution can be as high as required, with computing power
and memory being the only restrictions. It therefore makes modal analysis
of especially complex structures much simpler and more accurate. The main
disadvantage of this method is obviously its price; many companies would
not be able to afford the holo-modal testing equipment.

This method was developed by BMW, LMS International, Dr Steinbichler
and the Free University of Brussels.

2.5.2 A Wave Based Method for analytical AMA

A new approach to analytical AMA has been developed by Hepburger et al.
(2002) at the Acoustic Competence Centre G.m.b.H. . An analysis tool was
developed using the Wave Based Method after seeing the inaccuracies in the
Finite Element Method for frequencies above about 100 Hz and in Statistical
Energy Analysis below about 400 Hz. The Finite Element Method becomes
inaccurate as a result of the increased number of elements required to de-
scribe the short wavelength behaviour at higher frequencies.
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Tests showed the Wave Based Model to be more accurate than the Finite
Element Method and to use far less computing time in calculating a test cav-
ity’s acoustic properties in the 0 Hz to 500 Hz range.



Chapter 3

Noise Source Identification

As mentioned in Chapter 1, low frequency road rumble is a low frequency
“booming” noise generated by the interaction between the vehicle and the
road surface. In simpler terms, the wheels and suspension assembly vibrate
when the vehicle travels on (especially rough) roads, causing a booming
noise in the cabin.

When investigating an apparent noise problem in a vehicle, the first thing
that must be done is to identify exactly what the problem noise’s character-
istics are. For this project that meant identifying the so-called booming noise
and then quantifying this noise in engineering terms. The noise’s intensity
and especially its frequency content were of particular import. To these ends,
a series of tests were performed on the vehicle.

3.1 Run-up test

As mentioned in Section 2.1, a low frequency rumble is generally transmit-
ted via the vehicle’s bodywork. The Noise, Vibration and Harshness (NVH)
engineer does not know though whether the noise is generated by the vehi-
cle’s interaction with the road, by the engine’s vibrations or by a combination
of the two, although he does hope that it is not the latter. To determine the
cause of the vibrations in the vehicle that lead to the rumble, a run-up test
was performed.

The test was carried out on a straight, well-bitumenised road of near-
constant slope. The vehicle accelerated from the top of the slope from rest
to over 80 km/h and was instrumented with accelerometers on the hubs of

21
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Figure 3.1: The binaural recording head inside the vehicle cabin

three of the four wheels (to measure the vibration input to the vehicle) as well
as on the panels surrounding the cabin. Two microphones were placed inside
the vehicle: one at the driver’s left (inner) ear and one on the right hand side
of the passenger’s seat. The test was repeated with a binaural recording head
placed on the passenger’s seat (Figure 3.1). The specific equipment used for
the test is detailed in Appendix A.1.

The engine was left to idle at less than 1000 rpm and it was assumed
that its vibratory contributions were constant and negligible. This therefore
meant that if the low frequency “booming” noise were to be identified during
this test, the rumble would have been caused by the road-induced vibration
of the vehicle and not by the engine’s vibrations. The noise could then be
classified as “road rumble”. Any transient changes in the noise level would
also only be attributable to the road-induced vibration as the engine vibra-
tions remained constant during the test.
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Figure 3.2: SPL plot of the passenger’s inner ear microphone

The Sound Pressure Level (SPL) for both microphones was determined,
first using the linear decibel (dB) scale and then using the A-weighted decibel
(dB(A))1 scale. Figure 3.2 shows the dB and dB(A) SPLs for the passenger’s
inner ear. The dB(A) levels are significantly lower than the dB levels due to
the signal’s high low frequency content that the A-weighting process sup-
presses. A marked increase of 5 dB can be seen in the A-weighted signal
from 25 km/h to 30 km/h. It must be remembered that on the decibel scale,
an increase of 3 dB is considered to be “just perceptible”, 5 dB is clearly per-
ceptible and 10 dB is perceived to be twice as loud as the original level. The
linear scale on the other hand showed two distinct “bumps” in the signal:
from 15 km/h to 20 km/h and from 30 km/h to 35 km/h.

Since the noise signal contained so much low frequency data, it was not
clear whether the A-weighted signal was a legitimate measure of what the
driver would have heard. It was therefore decided to investigate further

1The A-weighted dB scale is a theoretical measure of the perceived loudness of a noise. It
is a weighting function that amplifies certain frequencies and attenuates others. It is especially
severe on noise below 100 Hz. It has been adopted in many national and international codes
and standards (van Niekerk, 2002). A description and plot of the weighting table is included
in Appendix B.
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Figure 3.3: Campbell diagram in linear Pa2/Hz of the passenger’s inner ear micro-
phone

whether the linear signal or the A-weighted signal was the most legitimate
method to represent the noise that the human ear would have “heard”.

The noise data was converted from the time to the frequency domain
to analyse the frequency content of the noise. Normal Frequency Response
Function (FRF) plots were of little use to analyse a run-up test of this nature
as there was no time reference to compare the frequencies to. For this reason
Campbell diagrams were plotted. These plots use Power Spectral Densities
(PSDs) to show the intensity of the different frequencies of the noise as a
function of frequency and time. The time axis was then replaced by the ve-
hicle’s speed as this made the data interpretation easier. Figure 3.3 shows a
Campbell diagram of the passenger’s inner ear microphone. The data was
not A-weighted. The engine’s second order vibration can be clearly seen at
31 Hz as well as noticeable noise between 80 Hz and 110 Hz in the 30 km/h
to 40 km/h region. These large low frequency components were very likely
the reason for the high linear dB levels in Figure 3.2.

The data were once again A-weighted to obtain “perceived” noise lev-
els. The A-weighted Campbell diagram in Figure 3.4 shows the effect of
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Figure 3.4: Campbell diagram in A-weighted Pa2/Hz of the passenger’s inner ear
microphone

A-weighting on low frequency noise. All noise below 80 Hz is effectively
removed, and the 80 Hz to 110 Hz region is more dominant than in the lin-
ear dB plot. Another area of noise around 100 Hz that is more obvious after
A-weighting is between 20 km/h and 25 km/h.

Campbell diagrams give the data analyser a quick view of how a signal’s
frequency content changes with time but are not very useful for in-depth data
analysis. To determine exactly what the contribution of each frequency band
was to the overall interior noise, a frequency-based “Contribution analy-
sis” (van der Linden and Varet, 1996; van der Auweraer et al., 1997) was
performed on the noise data. The noise signal was divided into frequency
bands, namely 10 Hz to 50 Hz, 50 Hz to 150 Hz, 150 Hz to 300 Hz and 300 Hz
to 500 Hz and the contribution of each frequency band (in dB and dB(A)) was
calculated. The results are plotted in Figures 3.5 and 3.6.

In Figure 3.5, the 10 Hz to 50 Hz and 50 Hz to 150 Hz frequency bands
clearly dominate the signal, and are consequently the cause of the “bumps”
in the total SPL between 15 km/h and 21 km/h and between 31 km/h and
37 km/h. There is also a marked rise in the contribution of the 50 Hz to
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Figure 3.5: Frequency band contribution in dB of the passenger’s inner ear micro-
phone

150 Hz frequency band between 25 km/h and 31 km/h.
Once the signal is A-weighted, the frequency band contributions change

significantly, as seen in Figure 3.6. Due to the strong penalising of low fre-
quencies by the A-weighting method, the 10 Hz to 50 Hz frequency band now
contributes much less to the total SPL. Up to about 45 km/h, the 50 Hz to
150 Hz frequency band contributes for all but 5 dB of the total recorded noise.
The sharp rise between 25 km/h and 31 km/h in this second frequency band
heavily influences the overall sound level. The higher frequency bands sim-
ply increase almost linearly with increasing speed.

The obvious question arising from these two figures was which one was
to be trusted? The A-weighting method is used widely in industry so could
not be ignored, but the directly measured sound levels showed a very big
contribution from very low frequencies and could therefore not be totally ig-
nored either. A meeting was held with employees of the vehicle’s manufac-
turing company that participated in the development of the vehicle, where
this concern was raised and the two SPL plots presented.
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Figure 3.6: Frequency band contribution in dB(A) of the passenger’s inner ear mi-
crophone

Two speed ranges and two contributing frequency bands were identified
from Figures 3.5 and 3.6: 15 km/h to 21 km/h due to the 10 Hz to 50 Hz fre-
quency band and 21 km/h to 35 km/h due to the 50 Hz to 150 Hz frequency
band. An audio test was performed where the measured sound data was
played to the employees, as well as the vehicle’s test driver, followed by a
filtered version of the sound data where only the 10 to 50 Hz and then the
50 Hz to 150 Hz frequencies were played. All parties unanimously agreed
that the 50 Hz to 150 Hz frequency range was the problematic frequency and
was perceived to contribute most to the overall noise level.

This showed that despite the high levels of low frequency noise, the A-
weighting scale was legitimate as the frequency content of the noise per-
ceived by a listening panel was more similar to the A-weighted version of
the noise than the actual recorded version.
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3.2 Acoustic Modal Analysis

The vehicle cabin was then analysed using Acoustic Modal Analysis (AMA)
to determine its resonant frequencies. Experimental AMA was first per-
formed, followed by analytical AMA.

3.2.1 Experimental Acoustic Modal Analysis

The vehicle cabin was instrumented with a binaural recording head on the
driver’s seat and a microphone at the passenger’s inner ear. None of the mi-
crophones were directional. The cabin was excited using white noise with a
maximum frequency of 500 Hz played by a 10 in dual-cone speaker located
in the driver’s footwell. The sound input into the cabin was measured by
attaching an accelerometer to the speaker’s inner cone. Coherence levels of
almost unity were achieved for frequencies above 60 Hz. As the first acoustic
mode was expected around 100 Hz, the coherence was excellent. Hendricx
et al. (1997), among others, also used this speaker-accelerometer setup suc-
cessfully. The speaker was placed on a soft sponge to minimise direct vibra-
tion inputs into the cabin’s floor panels.

The resulting FRFs for the driver’s inner and outer ears (Figure 3.7) showed
an acoustic resonance at about 100 Hz which was in the same range as the
identified booming noise. The coherence levels were very good above 60 Hz.

3.2.2 Analytical Acoustic Modal Analysis

Analytical AMA was performed using a Finite Element software package
(MSC.Nastran 2004) with MSC.Patran as pre- and post processor. The cabin
interior was modelled using rigid boundaries and non-absorbent materials.
The entire cavity was then filled with a fluid material having air’s properties
at 25 ◦C and 1 atmosphere (101,3 kPa). The mesh size was refined until no
noticeable difference in results between one mesh size and a finer one could
be seen.

Concerns were raised regarding the legitimacy of the rigid boundary,
non-absorbent material assumptions. The model was therefore analysed for
three scenarios: firstly the entire cabin with all interior objects, secondly with
the steering wheel removed, and lastly with the steering wheel and the seats
removed. The results for the entire cabin and for the cabin with the steering



CHAPTER 3. NOISE SOURCE IDENTIFICATION 29

Figure 3.7: FRF for the driver inner and outer ear microphones during the experi-
mental AMA test

Figure 3.8: Predicted fundamental mode of the vehicle’s cabin using analytical AMA
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wheel removed were very similar as was expected, however the frequen-
cies changed dramatically once the seats were removed. The natural modes
predicted by the software for the entire (unaltered) cabin matched the exper-
imental data’s results best.

The results of the analytical analysis showed the first mode to be a lon-
gitudinal mode, running from the cabin footwells to the top back corner of
the cabin (behind the driver’s head) at 103 Hz, as seen in Figure 3.8. The
asymmetrical mode shape in the two footwells is due to the asymmetrical
dash panel configuration; the driver’s dash panel, together with the steer-
ing wheel, protrudes much further into the cabin than the passenger’s dash
panel.

The analytical modes were very similar to the experimental results. Con-
sidering the simplifications made in the construction of the analytical model,
the fundamental mode’s frequency—as well as those of further modes—
corresponded very well to the experimental data, as shown in Table 3.1.

Table 3.1: Comparison of cabin’s experimental and analytical acoustic modes

Frequency [Hz]
Mode Experimental Analytical

1 100.00 103.77
2 112.00 107.75
3 135.00 144.47
4 144.00 153.56

3.3 Experimental Modal Analysis

The noise analysis in Section 3.1 showed the “booming” noise to have a fre-
quency range from about 80 Hz to 110 Hz. The cabin’s acoustic mode found
during the AMA had accounted for the noise around 100 Hz but did not ac-
count satisfactorily for the noise below that frequency. It was postulated that
one of the cabin’s panels could be resonating near 90 Hz, accounting for much
of the residual recorded noise. Experimental Modal Analysis (EMA) was per-
formed to determine whether or not this was the case.

EMA was only carried out on one of the vehicle cabin’s panels as fortu-
nately the first panel tested yielded the required results. This panel (named
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Figure 3.9: FRF for an accelerometer on the Back Panel

the “Back Panel”) was located at the end of the load box and directly behind
the seats. It was chosen as it was the largest cabin panel and therefore the
most likely to have modes at or below 100 Hz.

The panel was instrumented with seven accelerometers, six in a grid of 2
rows and the seventh at the point where the panel was excited by a modal
hammer. FRFs were calculated between the force input by the hammer and
the resulting accelerations measured by the accelerometers.

The FRF between the accelerometer on the bottom row in the middle of
the panel and the force input by the hammer is shown in Figure 3.9. The
dominating mode at about 90 Hz is obvious. Another noticeable property
of the mode is its damped nature; the amplitude from 80 Hz to 100 Hz does
not change significantly, with a slight increase at 90 Hz. This means that any
acoustic amplification would occur over a wide (20 Hz) frequency range, fit-
ting in well with the results of the Run-up test described in Section 3.1. The
slight bump in the FRF at 100 Hz is due to the panel coupling with the cabin’s
100 Hz fundamental acoustic mode.

The experimental mode was then visualised using a “structural dynam-
ics” software package (SD Tools v5.1). The mode was seen to be a “speaker”
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Figure 3.10: FRFs between vibration at the front and rear right wheels and the
driver’s inner ear

mode2, convincing proof that the panel excited the acoustics well over the
mode’s wide frequency range.

3.4 Transfer Path Analysis

During the Run-up test (Section 3.1) the vehicle was excited by two phenom-
ena. These were firstly the vibrational input at the wheels due to the tyre
/ road surface interaction and secondly the rotation of the four wheels, the
front drive shafts and other components. These two phenomena needed to
be separated and the contribution measured of each one to the interior noise.
A Transfer Path Analysis (TPA) test was carried out on the vehicle to deter-
mine how effectively the vibrational input at the wheels coupled with the
interior cabin noise.

The cabin interior was instrumented with a binaural recording head on
the driver’s seat and microphones at the passenger’s inner ear and footwell.

2A “speaker” mode is a mode where the panel vibrates such that all points on the panel
move in phase with each other. When vibrating in this manner, the panel will cause a large
displacement of the air around it, consequently becoming an excellent noise source.
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A shaker was used to excite each wheel in turn, after which FRFs were calcu-
lated between the force input at each wheel and the resulting sound pressure
measured by the microphones.

The FRFs showed that the front and rear wheels – as well as the right
and left side wheels – contributed to the interior noise at different frequen-
cies. Figure 3.10 shows the FRFs between vibration input at the right front
and right rear wheels, and the interior noise at the driver’s inner ear. The
difference between the two FRFs around the “booming” frequencies of 85 Hz
to 105 Hz is clearly seen. The right front wheel creates much more noise
from 90 Hz to 130 Hz than the right rear wheel, while the rear wheel shows
a definite resonance at 85 Hz. It was speculated that the vibration at the rear
wheels excited the fundamental mode of the back panel tested in Section 3.3
whereas the front wheels, being closer and more directly connected to the
cabin, excited the fundamental acoustic mode of the cabin around 100 Hz.

3.5 Reciprocal test

Data from the accelerometers on the wheels recorded during the Run-up test
showed that all the wheels vibrated unusually in the same speed and fre-
quency ranges as the “booming” noise. The vibrations on the front right hub
matched the interior booming noise’s frequency signature better than the rear
wheels. This is shown in Figure 3.11 where the sound pressure levels for the
passenger’s inner ear are plotted in light green and the vibrations levels on
the front wheel hub are superimposed in colour. Comparing Figure 3.11 to
Figure 3.3 (on page 24) the same “thumbprint” is seen between 80 Hz and
110 Hz and 25 km/h and 40 km/h. For this to have happened, something
connected to the wheel could have been vibrating which in turn excited the
noise in the cabin, the noise in the cabin could have been exciting something
connected to the wheel, or a mixture of the two scenarios was possible. The
rear wheels showed increased vibration in the same region, but only from
about 100 Hz to 110 Hz.

To determine whether the noise in the cabin was exciting something con-
nected to the wheels or whether it was the other way round, a test was
performed using the principle of reciprocity. A speaker was placed at the
driver’s inner ear and accelerometers were attached to the four wheel hubs.
The calculated FRFs showed that, while there was a good response at the
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Figure 3.11: Campbell diagram of the vibration level of the front right wheel hub
during the Run-up test (in full colour), overlaying the sound pressure at the passen-
ger inner ear (in green)

wheels for noise at 100 Hz, there was very little measured by the accelerom-
eters for any lower frequencies. The high response around 100 Hz can be
clearly seen in Figure 3.12, the FRF between the noise input in the cabin
and the resultant acceleration at the front left and right wheel hubs. The
inability of the noise inside the cabin to excite the wheel hubs at frequencies
lower than 100 Hz meant that any vibration measured on the wheel hubs
below 100 Hz could not have been due to noise inside the cabin. It was pos-
sible though for noise in the cabin to excite the rear wheels in the manner
that was recorded since there were only vibrations recorded between 100 Hz
and 110 Hz. This was the region where noise inside the cabin excited the
accelerometers attached to all four wheels.

3.6 Conclusion

The noise in the vehicle that had been identified by the vehicle manufacturer
as the “problem noise” was identified as a low frequency road rumble in
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Figure 3.12: FRF for the front left and right wheel hubs due to reciprocal excitation

the frequency range of 80 Hz to 110 Hz between 25 km/h and 40 km/h. This
“booming” noise was caused by bodywork vibrations and not by engine vi-
brations.

Two phenomena were found to be most responsible for converting vibra-
tions in the bodywork into the booming noise in the cabin. These were the
cabin’s primary acoustic mode at 100 Hz and a “speaker” mode of a large
panel in the cabin behind the driver and passenger’s seats (the so-called
“Back Panel”) at around 90 Hz.

Further testing showed firstly that vibrational excitation at the wheels
was not exclusively responsible for the vibrations in the bodywork that lead
to the booming noise. It also showed that the vibrations measured on the
front right wheel hub showed the same “thumbprint” of vibration from 80 Hz
to 105 Hz and from 25 km/h to 40 km/h, and that these vibrations on the
hub could not have been generated in a reciprocal manner by the noise in the
cabin. In other words the noise in the cabin could not have excited the wheel
hub by exciting the vehicle’s body work and subsequently the wheel hub at
any frequencies below 100 Hz.

An in-depth investigation would be needed into the sources of the vibra-
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tion in the bodywork that caused the boom, as well as into the contribution
of the Back Panel’s noise to the cabin’s booming noise. This work is detailed
in Chapter 4, “Problem Identification”.



Chapter 4

Problem Identification

The identification of noise in a vehicle cabin can be simplified into finding
the “sources” that generate the vibrations in the vehicle, the “amplifiers” that
amplify these vibrations, and the “speakers” that convert the vibrations into
the identified problem sound. The problem identification stage of the project
therefore dealt with finding firstly the speakers in the vehicle and secondly
the amplifiers and vibration source.

4.1 Back Panel tests

The main speaker was identified during the Vehicle Analysis (Section 3.3) as
the panel directly behind the driver’s seat at the front of the load box (the
“Back Panel”). This panel’s “speaker” mode at around 92 Hz together with
the cabin’s primary acoustic mode at 100 Hz was seen to generate and am-
plify the noise in the cabin in the booming frequency range.

Two tests were performed to see whether modifications of the Back Panel
would lead to a reduction in the booming noise in the cabin. In the first test
sandbags were pushed against the Back Panel to stop any vibration of the
panel. In the second test, commercial “sound deadening pads” were affixed
to the panel to see what effect a more practical fix would have on the booming
noise.

4.1.1 Sandbag test

The vehicle was tested under the same conditions and on the same road as for
the Run-up test in Section 3.1 except this time with sandbags in the vehicle’s

37
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Figure 4.1: SPL levels at the passenger inner ear during the Sandbag test

load box pushed up against the Back Panel. The sound pressure inside the
cabin was recorded using a binaural recording head on the passenger’s seat.

Figure 4.1 shows a definite difference in the Sound Pressure Level (SPL)
at the passenger’s ear compared to the unmodified vehicle. The increase at
20 km/h and especially the dramatic, non-linear increase between 26 km/h
and 32 km/h was reduced while the overall SPL increase was more linear
with speed. The overall SPL remained much the same with only a 2 dB im-
provement recorded above 40 km/h. A normal human ear would not notice
this difference. The test driver remarked on an improvement in the booming
noise at low speeds. This is seen in Figure 4.1 where the 50 Hz to 150 Hz fre-
quency band, which has much the same shape as the total SPL line, is more
linear below 40 km/h and remains about 3 dB below the original level until
70 km/h. This difference is considered to be “just perceptible” (van Niekerk,
2002) to the human ear. It must be noted though that the sandbags only par-
tially modified the dynamics of the panel. A total redesign of the panel could
result in a greater reduction than was possible in this test.

Changing the design of this panel could therefore improve the SPL inside
the vehicle, especially in the booming frequency band of 50 Hz to 150 Hz but
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would not eliminate the problem. The primary acoustic mode of the cabin
at 100 Hz would still contribute enough to the noise levels for the boom to
be significant. Fixing the so-called “speaker” was therefore not sufficient to
remove the booming problem from the vehicle, although it could reduce the
booming noise in the cabin by a noticeable amount.

4.1.2 Sound deadening pads test

For this test, the entire inside surface of the Back Panel was covered with
commercial sound deadening pads. The pads were 550 mm long by 190 mm
wide by 1,5 mm thick and weighed 250 g each. In total, 6 pads were affixed
to the Back Panel, adding 1,5 kg to the weight of the panel. The pads were
made of a dense, pliable material: adhesive applied to one side and a matt
finish to the other.

The vehicle was tested in precisely the same conditions as during the
Run-up test. Since the test was performed after the drive shafts were re-
moved and replaced for the tests described hereafter in Section 4.2, a run was
first performed without the sound deadening pads to get a new reference
value for the unmodified vehicle. The test with the pads affixed was then
performed directly afterwards.

The pads “deaden” the sound primarily by adding mass to the structure
(about 1,5 kg of material was added to the panel) which lowers the natural
frequency of the structure, since the natural frequency of the structure

ωn ∝

√
k
m

(4.1.1)

where k and m are the stiffness and mass of the structure respectively. New-
ton’s famous equation (simplified for constant mass systems)

F = m · a (4.1.2)

dictates that if the force input into the structure remains the same and the
mass of the structure is increased, the level of acceleration must decrease. The
natural frequency of the structure should therefore decrease, along with the
levels of acceleration. Less acceleration means less air is excited by the panel,
which means less noise heard by the occupants in the cabin. It remained
to be seen whether the accelerations could be attenuated enough to make a
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Figure 4.2: SPL levels at the passenger inner ear during the sound deadening pads
test

noticeable difference to the noise level in the cabin.
After the test, little difference in the sound levels was noticed both by the

test driver and when looking at the test data in Figure 4.2. The noise levels
remain much the same over the entire speed range. The added mass there-
fore could not make enough difference to the dynamics of the Back Panel to
reduce the interior noise by any noticeable amount.

This test showed conclusively that such a post-production “fix” would
have no effect on the interior cabin noise.

4.2 Drive shaft assembly tests

During the Run-up test (Section 3.1) it was seen that the front wheel vi-
brated unusually and showed the same vibration “thumbprint” as the ve-
hicle’s booming noise (shown in Figure 3.11 on page 34). This showed that
something vibrated enough between 25 km/h and 40 km/h to generate vi-
brations in the body of the vehicle and excite the speaker.

The Transfer Path Analysis (TPA) test (Section 3.4) showed that the front
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wheels contributed more directly to the cabin sound pressure from 90 Hz
to 130 Hz than the rear wheels. It was also seen that the right front wheel
contributed more than the left front wheel. Since the only difference between
the left and right front sides of the vehicle’s wheel and suspension assembly
was the drive shaft assembly, it was decided to investigate the influence the
right side drive shaft assembly had on the interior noise.

This influence was tested using two tests: an Experimental Modal Analysis
(EMA) of the right drive shaft assembly and an operational test of the vehicle
with both left and right side drive shaft assemblies removed.

4.2.1 EMA of the right drive shaft assembly

Before an operational test could be conducted on the drive shafts, a basic
EMA of especially the right drive shaft assembly was conducted to give some
insight into their vibrational characteristics.

It is important to note that the drive shaft assemblies are not symmetrical.
The left side drive shaft connects the wheel bearing directly to the gearbox,
with Constant Velocity (CV) joints at either end. The CV joint at the wheel
hub is a ball joint, while the CV joint at the gearbox is a tripod joint. Since
the engine is mounted transversely in the engine bay, the gearbox does not
lie in the centre of the vehicle but instead closer to the left front wheel. There
is consequently an “Extension Shaft” that connects the standard length drive
shaft on the right hand side to the gearbox. This shaft is connected to the
standard right drive shaft via a tripod CV joint. It is supported next to this
CV joint in a bearing that is mounted in a bracket and bolted to the engine
housing. The standard drive shaft will be referred to as the “Outer Shaft”.

The right side drive shaft assembly was instrumented with six accelerom-
eters: three on the Extension Shaft and three on the Outer Shaft. The shafts
were excited using a shaker connected to the Outer Shaft next to the wheel
hub, directly below one of the accelerometers. A random signal with a band-
width of 200 Hz was used as input and measured using a force transducer.
Frequency Response Functions (FRFs) were calculated between the force in-
put at the shaker and the acceleration responses at the six accelerometers.

The FRFs showed the right hand side drive shafts to have a significant
mode at about 83 Hz. Figure 4.3 shows the FRFs of the six accelerometers.
The mode at 83 Hz is clearly visible. It is quite a damped mode (as expected
since there are two CV joints and a bearing connected to the shafts) which
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Figure 4.3: FRFs for the right hand side drive shaft assembly

means that there is almost as much vibration in the shaft at the frequencies
close to the resonant frequency as there is at that frequency. It would there-
fore result in a broad excitation of connected components if it were to be
excited. Note also the different FRF shapes for the two shafts.

It was important to know the shape of the resonant mode at 83 Hz so
the FRFs were imported into a structural dynamics software package. The
mode shape was shown to be a rigid body mode, as expected. What was not
expected was that the entire shaft assembly (i.e. both the Extension and the
Outer shafts) moved with all points in phase. The point that experienced the
greatest displacement was at the bracket that connected the Extension Shaft
to the engine housing i.e. at the midpoint of the shaft assembly, as seen in
Figure 4.4. The displacement at the hub is also large. This meant that a large
amount of energy would enter into the vehicle chassis at around 83 Hz if the
shaft assembly were to be excited at that frequency.
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Figure 4.4: Schematic diagram of the right hand side drive shaft assembly, showing
the first mode shape

4.2.2 Operational test

The TPA test in Section 3.4 showed no conclusive proof that the vibration
inputs at the wheels were solely responsible for the booming noise in the
cabin. The only other sources of excitation during the Run-up test were the
rotating elements in the vehicle. These were the wheels, the front drive shaft
assemblies, the front differential and the final drive gears and shaft. There
was no feasible way to test these components under operating conditions in
the laboratory so instead the vehicle was tested under the same conditions as
the Run-up test, with its drive shafts and CV joints removed.

Accelerometers were placed on the front left and right wheel hubs as well
as on the Back Panel (the panel identified as the “speaker” in Section 3.3).
The binaural recording head was once again put on the passenger’s seat to
record the interior SPL. All testing conditions, including the stretch of road
used, were the same as for the Run-up test.

A marked decrease in road rumble was noticed both by the test driver
and afterwards during the data processing. Figure 4.5 shows the SPL levels
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Figure 4.5: SPL plot for the vehicle with and without drive shafts

as recorded by the binaural head’s inner ear microphone for the vehicle with
and without drive shafts. It also shows the SPL of the 50 Hz to 150 Hz fre-
quency band for the same conditions. The new SPL line is much smoother,
increases much more linearly with speed (especially above 15 km/h) and is
about 7 dB lower in the critical speed range of 30 km/h to 35 km/h. Keep-
ing in mind that a difference of 5 dB is clearly discernable and a reduction of
10 dB sounds half as loud, this is a major improvement.

The Campbell diagram in Figure 4.6 shows the noise intensity for the test
across the 0 Hz to 150 Hz frequency range. The original levels from the Run-
up test are plotted in green with the levels for the vehicle without drive shafts
superimposed in full colour. Both of the noise levels are A-weighted. It is
clear that the 92 Hz noise was all but removed and the 100 Hz noise was sig-
nificantly reduced. The “thumbprint” of noise around 20 km/h also disap-
peared.

The data showed conclusively that the drive shafts contributed greatly to
the booming noise in the vehicle at all speeds, but noticeably from 20 km/h
to 40 km/h. The most noticeable difference in sound pressure levels was in
the 80 Hz to 100 Hz range.
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Figure 4.6: Campbell diagram for the vehicle without drive shafts (in full colour),
overlaying the sound pressure for the vehicle with drive shafts (in green)

4.2.3 Vibration transmission test

The drive shaft assembly’s EMA test in Section 4.2.1 showed that the CV
joint and bearing experienced high levels of vibration around 83 Hz. What
was not known was the level of vibration experienced by the engine due
to this excitation. A vibration transmission test was therefore carried out to
determine the magnitude and nature of the displacement of the engine when
the right drive shaft assembly was excited at 83 Hz.

The drive shaft assembly was instrumented identically as it was for its
EMA test. Accelerometers were also placed on the engine in four positions
and on the bracket fastening the Extension Shaft to the engine. The assembly
was again excited using a random signal with a bandwidth of 200 Hz.

The engine was shown to vibrate very little (more than 10 times less than
the drive shafts at 83 Hz) although the engine’s FRFs did show a resonance
at 83 Hz. The engine also vibrated exactly 180 ◦ out of phase with the shafts,
meaning that when the shafts moved upwards, the engine moved down-
wards and vice versa. An investigation showed the bearing on the Extension
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Shaft to be mounted inside a compliant rubber housing inside the bracket.
This explained the dramatically reduced amount of vibration in the engine
compared to that in the shafts. It also explained why the engine could move
out of phase with the shafts at 83 Hz.

The results of this test gave no conclusive indication as to the transfer
path used by the vibrations to get into the vehicle’s bodywork. There was
no reason to conclude that the right drive shaft assembly was not at least
partially responsible for the vibration excitation in the vehicle that lead to
the booming noise in the cabin between 25 km/h and 40 km/h.

4.3 Operational Transfer Path Analysis

One reason put forward as to the lack of conclusive results in Section 4.2.3
was that the drive shafts were being excited by a shaker, and not due to ro-
tational excitation. It was seen in Section 3.4 that vibrational excitation at
the wheel hubs was not sufficient to excite the booming noise in the cabin
as much as it was during an operational test. Another operational test was
therefore conducted to measure the amount of vibration experienced by the
front wheel hubs, the engine, the front suspension and the bracket fastening
the right drive shaft assembly to the engine. The necessary equipment (laser
sensors) was not available to measure the vibration levels on the drive shafts
while rotating.

This test was in essence a simplified TPA test. The contributions of the
vibrations through specific identified paths from the drive shafts to the vehi-
cle’s body were compared. The identified paths were:

1. from the drive shafts, through the wheel bearing, through the wheel
hub, through the suspension, to the vehicle body;

2. from the drive shafts, through the drive shaft bearing and bracket, through
the engine, through the engine mounts, to the vehicle body.

Since the engine would again idle during the operational test, measure-
ments were first made of the vibrations at the accelerometers’ locations for
the engine idling while the vehicle was at rest. Any additional vibrations
would then be as a result of the vehicle’s motion while travelling down the
road.
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Figure 4.7: Campbell diagram of the vibration level of the right wishbone’s outer
swivel connection (in full colour), overlaying the sound pressure at the passenger
inner ear (in green)

The idling engine’s second order of 31 Hz dominated the measurements
by the accelerometers on the engine; the engine’s idling speed is around
950 rpm. A smaller resonance was seen at 12 Hz. This frequency was al-
ready identified by the vehicle manufacturing company and as a result the
engine mounts had been optimised for this frequency. No other noticeable
resonances as a result of the engine’s vibrations while idling were recorded.

The data from the test confirmed that the left and right hubs experi-
enced vibrations between 20 km/h and 40 km/h and between 80 Hz and
105 Hz that matched the booming noise’s frequency pattern. In addition it
was shown that the left and right suspension wishbones also experienced this
vibration; the right side’s vibration was at all times greater than the left side’s
vibration. Figures 4.7 and 4.8 show the Campbell diagrams for the vibrations
in the right suspension wishbone at its outer and inner swivel joints respec-
tively. The excited region in question can be clearly seen. The vibrations are
once again superimposed over the A-weighted noise signal measured at the
passenger’s inner ear. The areas in ellipses are discussed later in this section.
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Figure 4.8: Campbell diagram of the vibration level of the right wishbone’s inner
swivel connection (in full colour), overlaying the sound pressure at the passenger
inner ear (in green)

An accelerometer placed next to the point where the right wishbone was
bolted to the vehicle chassis, showed the transmission of the vibrations from
the suspension to the chassis. Figure 4.9 shows the vibrations measured at
this point and the repetition of the vibration “thumbprint” between 20 km/h
and 40 km/h and between 80 Hz and 105 Hz. The levels of vibration are less
in the chassis than in the suspension, but only slightly. The vibrational ampli-
tudes in the chassis were in the order of 1× 10−3 m/s2 whereas amplitudes at
the wishbone’s inner joint were in the order of 1× 10−2 m/s2. Note that the
units in a Campbell plot for accelerations are those used for the Power Spec-
tral Densities that form the contours ((m/s2)2/Hz) and not in m/s2. The
reason for this good vibrational transfer can be largely attributed to the stiff
bushings used by the motor manufacturing company to give the vehicle a
more “sporty” feel.

The next task was to find whether there was a panel in the vehicle cabin
responsible for exciting the 100 Hz acoustic mode. The Back Panel, already
identified in Section 3.3 as the main cabin speaker for noise around 92 Hz,
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Figure 4.9: Campbell diagram of the vibration of the vehicle chassis near the right
wishbone

Figure 4.10: Campbell diagram of the vibration level of the driver’s footwell floor
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was the most likely culprit. With a natural, damped “speaker” mode at
92 Hz that still vibrated almost as much at 100 Hz, it was very likely that
it was excited by the vibrations in the chassis floor and resonated around
92 Hz, generating a large part of the booming noise due to its own speaker-
like properties and by exciting the acoustic mode in the cabin. Concerns
were raised that modifications to the Back Panel—even effectively damping
out all movement in the panel in Subsection 4.1.1—did not make a marked
difference to the interior SPL. It was therefore decided to search for another
resonating panel.

Since the right wishbone was bolted to the chassis close to the cabin floor,
accelerometers were placed on the cabin’s left and right floor panels. Very lit-
tle correlation was found between the vibrations around 100 Hz in the chassis
floor and the cabin floor (Figure 4.10). This may be due to the fact that the
velocity of the air in a standing wave is a minimum at its ends; the floor
panel is situated close to the end of the wave. High levels of vibration were
instead seen around 120 Hz especially from 40 km/h. During the EMA of
the right drive shaft assembly the right tyre was found to have a resonance
at 117 Hz. This resonance may have been a source of these vibrations. The
windscreen was also seen during the Run-up test to have the “thumbprint”
of vibration around 100 Hz but was not seen as a modifiable vehicle com-
ponent. It seemed therefore that rather than one identifiable panel vibrating
and generating the booming noise, many panels in the cabin vibrated with
varying intensities and, together with the cabin’s acoustic mode, caused the
interior booming noise.

It was confirmed therefore that the vibrations in the drive shafts around
80 Hz to 100 Hz caused the vibrations in the vehicle’s bodywork that led to
the booming noise. What was not known was the mechanism that excited
the drive shafts at these frequencies.

4.3.1 Constant Velocity joint investigation

The only transiently changing characteristic of the drive shafts was the ro-
tational speed. Since the Outer Shafts had CV joints at both ends, it was
necessary to investigate the possible role that the rotation of the CV joints
could have on the vibrations in the drive shaft assemblies. Biermann (2004)
explains that drive shaft assemblies with CV joints will usually show sensi-
tivity to the rotational orders that match the types of CV joints used. This
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vehicle’s drive shaft assemblies, as described in Subsection 4.2.1 (page 41),
have ball CV joints on the gearbox sides of the Outer Shafts and tripod CV
joints on the wheel sides of the Outer Shafts. Due to the so-called “plunging”
forces inside the CV joints, the joints are sensitive to orders that are multi-
ples of the number of balls in the joint. Tripod joints are therefore sensitive
to every third order (the third, sixth, ninth, and so on) and ball joints are
sensitive to every sixth order (the sixth, twelfth, eighteenth and so on).

When overlaying the vibration measurements on the wishbone with the
wheel’s twelfth and eighteenth orders (which are the ball joint’s second and
third orders and the tripod joint’s fourth and sixth orders) it is quite clear
what the source of the vibration around 100 Hz is. Both Figure 4.7 and Fig-
ure 4.8 show these twelfth and eighteenth orders, as well as the areas that
are of specific concern. In Figure 4.7 it can be seen that the ball joint’s sec-
ond order, together with the tripod joint’s fourth order, excite the drive shaft
assembly at 45 km/h to 52 km/h (blue ellipse). However, these vibrations
don’t transmit to the inner joint very well, as seen in Figure 4.8. The vibra-
tions that do transmit well are those due to the third order of the ball joint and
sixth order of the tripod joint exciting the drive shaft assembly at 30 km/h to
40 km/h, shown in the red ellipses in both figures. A general area of excita-
tion is seen in Figure 4.7 in the sector described by the two wheel order lines,
suggesting that the drive shafts are generally excited at the two wheel orders
by the two CV joints’ resonances at all speeds but only cause a resonance
around their first mode shown in Section 4.2.1 to be from 80 Hz to 100 Hz.
The tripod joint’s fifth order (relating to the wheel’s fifteenth order) is also
shown in the figures and correlates with higher levels of vibration at 100 Hz,
although it is not as pronounced as when the two CV joints’ orders coincide.

4.4 Conclusion

The identified source of the vibrations that lead to the booming noise in the
cabin was identified as the drive shaft assemblies, with the right side assem-
bly contributing more than the left. These vibrations were caused by the
wheel’s rotational speed coinciding with the rotational orders of the ball and
tripod CV joints. The vibrations were then shown to enter the cabin through
the suspension wishbone, which was bolted onto the vehicle’s chassis. While
not exclusively tested, the Back Panel was deemed to be the panel most re-
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sponsible for creating the booming noise in the cabin from 80 Hz to 105 Hz.
The acoustic mode in the cabin at 100 Hz amplified all the noise generated by
the Back Panel around that frequency.

It was also seen that a post-production “fix” of affixing “sound deadening
pads” to the Back Panel would not improve the overall SPL by an amount
noticeable by the human ear. A redesign of the Back Panel would only result,
at best, in a 3 dB reduction in the booming noise.

The cabin noise—in particular the booming noise—could only be notice-
ably reduced by reducing the vibrations at the source (the drive shafts), by
modifying the main vibrational transfer path through the suspension wish-
bones, or by modifying the cabin to shift its acoustic mode of 100 Hz.

These possible solutions are discussed in more detail in Chapter 5, “Pro-
posed Solutions”.



Chapter 5

Potential Solutions

This chapter discusses possible measures to reduce the booming noise in the
tested vehicle, as well as in Light Utility Vehicles (LUVs) in general. Since
none of these concepts were tested, they remain potential solutions.

The chapter deals first with potential solutions for the tested vehicle, and
moves on to potential solutions to the booming caused by the fundamental
acoustic mode in LUVs.

5.1 Vibration attenuation at the source

The most effective solution to a Noise, Vibration and Harshness (NVH) prob-
lem is to modify the source of the vibration. This is not always achievable but
the possibility must be investigated and only abandoned if found to be im-
practical or even impossible.

The source of the vibrations in the vehicle was found in Section 4.2 to
be the natural frequency of the drive shaft assemblies—especially the right
side assembly—when excited by the rotational orders of the ball and tripod
Constant Velocity (CV) joints. To reduce the vibrations at the source, either
the drive shaft assemblies or the CV joints would need to be modified.

5.1.1 Right drive shaft assembly modification

Since the right drive shaft assembly was seen to contribute more to the in-
ternal cabin noise, the initial focus would be on modifying its structure. A
modification of the assembly would be concentrated on shifting the mode
at 83 Hz away from the resonant frequency of the Back Panel and the fun-
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Figure 5.1: Right drive shaft bearing housing and bracket

damental acoustic mode of the cabin. Shifting the frequency up would just
move it closer to the Back Panel and cabin’s modes, so the assembly’s mode
should rather be shifted down. It must be remembered that the mode shown
in Figure 4.3 on page 42 is very damped so to reduce the vibrations in the
drive shaft assembly, the mode would have to be moved down by at least
10 Hz but preferably by 20 Hz. If the frequency were to be raised, it would
have to be by at least 20 Hz. If it is raised by less than that, the mode would
then just coincide even better with the acoustic mode of the cabin and the
speaker mode of the Back Panel.

The main reason for the high levels of vibration at the 83 Hz mode was
found to be the compliant rubber in which the bearing at the end of the Ex-
tension Shaft was housed (see Figure 5.1 and Figure 4.4 on page 43). By stiff-
ening this rubber mounting, the vibration levels in the shaft would decrease,
resulting in less vibration making its way into the vehicle’s bodywork via the
suspension. Since a great deal of the motion of this mode occurs at the bear-
ing, it is a very effective place to change the stiffness of the right drive shaft
assembly.
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It was seen in Subsection 4.2.3 that very little of the vibration in the right
drive shaft assembly made its way into the engine. This meant that a re-
design of the bracket that fastened the Extension Shaft to the engine would
not reduce the booming noise in the vehicle, as the engine was not part of a
transfer path of the vibrations.

5.1.2 General drive shaft assembly modification

To ensure symmetry in the vehicle, any other modifications on the right drive
shaft assembly would have to be repeated on the left drive shaft assembly as
well. This would include modifying the Outer Shafts (the standard drive
shafts) or the CV joints on both sides.

It is unlikely that the CV joints could be modified as they are standard
parts and moreover the ball and tripod joints will always be sensitive to the
twelfth and eighteenth wheel orders, the orders that cause the vibrations in
the CV joints that excite the 83 Hz mode. Modifying the joints by using dif-
ferent ball configurations or similar techniques may just lead to vibration
problems at other speeds.

Modifying the Outer Shafts would probably make very little or no differ-
ence to the vibrations in the drive shafts. The mode at 83 Hz does not depend
on the Outer Shafts’ properties as much as it does on the compliance of the
rubber bearing housing. Figure 4.4 shows that the Outer Shaft does not bend
at 83 Hz. The weight of the shaft could be increased to lower the frequency
of the mode, since more mass means a lower natural frequency (see Equa-
tion 4.1.1 on page 39) but it is not likely that this would make enough of a
difference to the mode to result in less vibrations entering the vehicle body-
work via the wheel hub and suspension.

5.2 Transfer path modification

The main vibrational transfer paths were identified in Section 4.3. They ran
from the drive shaft assemblies, through the wheel bearings, wheel hubs and
wishbones to the vehicle chassis. The right side drive shaft assembly vibrated
more from 80 Hz to 100 Hz than the left side assembly and was therefore
identified as the principle transfer path. Once again, modifications would
have to be made to both the left and right sides of the path to ensure a sym-
metrical suspension setup. Recalling Figure 3.11 on page 34, the right wheel



CHAPTER 5. POTENTIAL SOLUTIONS 56

hub showed the same vibrational thumbprint as the thumbprint of the noise
at the passenger’s (and driver’s) inner ear. If the vibrations at the wheel hub
were to be isolated from the vehicle’s bodywork, the booming noise in the
cabin would be dramatically reduced.

The most readily modifiable components in the transfer path are the bush-
ings used in the wishbone suspension setup. The motor manufacturing com-
pany admitted to using bushings that were harder than usual to assist in
giving the vehicle “sporty” handling. Using softer bushings would decrease
the amount of vibration transferred from the wheel hub to the wishbone and
from the wishbone to the vehicle chassis. This should then reduce the boom-
ing noise in the cabin significantly.

Any other modifications of the transfer path would involve redesigns of
vehicle components, a measure that is prohibitively expensive. It would also
be extremely difficult to redesign for example the wishbones so that all fre-
quencies between 80 Hz and 110 Hz are not transmitted from the outer to the
inner swivel joints while still fulfilling its suspension role.

5.3 Vehicle cabin modification

It was seen in Section 4.3 that, other than the Back Panel, there was no panel
that could be identified as a major contributor to the booming noise in the
cabin. The Back Panel’s damped mode at 92 Hz certainly contributed to the
booming noise, however there was only a small reduction in the booming
noise (only 3 dBA) when the panel was packed with sandbags. If the Back
Panel were to be redesigned, a larger reduction could be possible as the sand-
bags only partially changed the dynamics of the panel. There was no noted
difference in the cabin’s Sound Pressure Level (SPL) when the panel was cov-
ered in commercial sound deadening pads. Since the other large panels in the
cabin (the left and right floor panels) showed no excessive vibration around
100 Hz, it was assumed that many of the panels contributed together to ex-
cite the cabin’s acoustic mode at 100 Hz. This would mean that the only way
to directly reduce the booming noise in the cabin by modifying the vehicle
cabin, would be to redesign the Back Panel. The reduction in interior noise
could be even higher than the 3 dBA achieved during the sandbag test.
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5.4 The LUV’s fundamental acoustic mode

As discussed in Section 2.1, the fundamental acoustic mode in the cabin of a
Light Utility Vehicle (LUV) can contribute significantly to acoustic booming.
It is therefore a general problem that needs to be addressed along with a
specific vehicle’s NVH problem areas.

A number of concepts to improve or modify an LUV’s fundamental mode
are described below along with their advantages, disadvantages and possible
cost implications to the vehicle manufacturing company.

The human ear, as described in Appendix B, does not hear all frequencies
equally well; it is especially insensitive to low frequencies. For this reason it
does not make much sense to change the acoustic mode to a higher frequency,
even if the sound intensity is slightly less, as the human ear will hear the
higher frequency better than the lower frequency. It is more advantageous to
lower the acoustic mode’s frequency where the human ear is less sensitive to
noise.

5.4.1 Cabin modification

The most obvious way to lower the fundamental acoustic mode is to enlarge
the acoustic cavity, i.e. to enlarge the vehicle’s cabin. The sound’s frequency
is directly related to its wavelength so any extra length in the cabin would
lower the resonant frequency. Unfortunately, this would mean changing the
vehicle’s entire design, something that the vehicle’s manufacturing company
would most probably never do. The issue of cabin size can only be addressed
very early in the design phase of the vehicle, not as a design modification
once production has begun. The cost of changing the cabin’s size makes this
solution impractical.

Another means of lowering the frequency is to lengthen the wavelength
of the fundamental mode by changing the acoustic boundaries of the cabin.
This technique has been applied in the field of speakers, especially low fre-
quency speakers (“sub-woofers”). The length of the sound wave is increased
by “folding” the speaker cone into a spiral, thereby yielding a long wave-
length in a compact speaker box (Cerwin-Vega, 2004). The concept for the
vehicle would then be to design a cavity inside the cabin that increases the
wavelength of the fundamental mode, thereby lowering its frequency. This
concept is feasible if space is allowed for it at either end of the cabin. The
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top rear corner of the cabin would be the best position for such a cavity, so
notionally a cavity with a “folded sound path” could be created behind the
cabin. It also remains to be seen if the concept can be applied to lengthen the
fundamental mode’s wavelength in an LUV.

5.4.2 Sound absorption

Another concept is to absorb the sound waves more effectively in the cabin.
The best absorption occurs where the air speed of the mode’s sound wave
is the greatest, which is at the centre of the wave: at the node. The best
potential sound absorbers—the seats—are already installed; they must just
be designed for maximum sound absorption. This includes using cloth seat
covers (instead of polyester, plastic or leather) and using open cell rather
than closed cell foam for the seat padding. It is well known that vehicles
with leather seats have more NVH problems than the same vehicles with
cloth seats. It is quite feasible to then improve the vehicle’s overall NVH
performance, and not just at the fundamental acoustic mode’s frequency, by
using better acoustically designed seats. The tested LUV had polyester seat
covers with closed cell foam. It is therefore quite possible that the booming
noise would be reduced by simply changing the seat covers and the type of
foam used in the seats.

5.4.3 Active control

The Helmholtz resonator has been used for many years to cancel out a noise
at a certain frequency. However there are disadvantages to using Helmholtz
resonators in vehicles. First of all, the targeted frequency is inversely pro-
portional to the square root of the resonator’s cavity volume, resulting in ex-
tremely large cavities for low frequencies (Kashani and Orzechowski, 2001).
Secondly, the resonator must dissipate enough energy for the mode to be
noticeably damped. This requires a certain amount of friction in the flow
at the neck of the resonator, something that is not always possible. Finally,
the resonator can only be tuned to a single frequency, which makes its effec-
tiveness questionable considering the amount of space it requires to operate
effectively.

This problem lead to the concept of active control of the interior noise.
The two active noise control methods currently in use are Active Noise Con-
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trol (using a microphone and speaker setup) and Active Structural Acoustic
Control (ASAC) (using a control actuator attached to the vehicle’s body-
work). Dehandschutter & Sas (1998) recommend that for frequencies below
300 Hz to 400 Hz ASAC should be the method of active control as most noise
at such low frequencies is transmitted through the vehicle’s bodywork. Such
a system could be installed at the points where the suspension components
are bolted to the chassis. This would cancel the vibrations in the cabin that
cause the booming noise while not affecting the ride quality of the vehicle by
modifying the suspension.

This type of active control however is for control of general road-induced
noise and not of a known frequency. Knowing the frequency of the acoustic
mode, and the conditions under which the mode is best excited, a much
more basic active control system can be installed that very simply targets
the acoustic mode’s frequency. The cabin’s acoustic mode should be easy to
target and cancel as it is a simple, stable, low frequency sound wave. The
active control system concept does not change the properties of the vehicle;
it is very much a “fix” that can be installed in the vehicle if required. This
means that it is a cheap modification, the only associated cost being that of
the active control system itself.

A slightly more complex active noise control system was developed by
Kashani & Orzechowski (2001), based on the dynamics of a Helmholtz res-
onator. By incorporating the system into the vehicle’s sound system, all that
was required was a microphone and a cheap operational amplifier. It was
found that the position of the speaker did not affect the level of damping of
the targeted acoustic mode. Significant damping of the booming frequency
was achieved using this system. The system was then enhanced by including
a vibroacoustic element in the control system. Accelerometers were affixed
to the main roof panels and the measurements entered into the control loop
to the control speaker. Some damping of the roof’s first bending mode was
achieved. This concept could be applied to LUVs in general and specifically
to the tested vehicle. Active control could be applied to the acoustic mode
at 100 Hz using the vehicle’s current sound system, and to the Back Panel’s
92 Hz mode using a vibroacoustic system in parallel to the basic system. This
would be a more expensive but probably more effective control system than
the one described in the previous paragraph. It is also possible to use a panel
(such as the roof) as a speaker rather than a speaker connected to the vehicle’s
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sound system to cancel out the targeted noise.

5.5 Conclusion

There are a number of possible ways to reduce the booming noise in the ve-
hicle cabin. Only the option of modifying the Back Panel was tested, with
limited success. The final choice as to which concept should be tested and
possibly implemented is strongly dependant on economics. The vehicle man-
ufacturing company has to decide whether the added NVH value of the mod-
ification would justify its price.

The most promising modification appears to be the softening of the sus-
pension bushings. This could have absolutely no cost implications as the
modification requires a simple replacement of the bushing and not any phys-
ical modification to the vehicle’s structure. Unfortunately the bushing were
specifically chosen to improve the vehicle’s handling and softer bushings
would probably affect this. The company therefore would need to decide
whether sporty handling with booming or less sporty handling with less
booming would result in increased vehicle sales and act according to that.

Active control of the acoustics in the cabin would probably be effective
but most likely too expensive to even contemplate implementing on a rela-
tively low-cost vehicle.



Chapter 6

Conclusions and
Recommendations

This report documented an investigation into a low frequency road rumble or
“booming” noise in a Light Utility Vehicle (LUV). A literature survey cover-
ing the field of modern vehicle Noise, Vibration and Harshness (NVH) was
presented documenting all of the techniques used in the project as well as
others that are commonly used but were either not applicable to the project’s
requirements (such as low frequency analysis) or that required equipment
that was not available.

This was followed by an investigation into the booming noise in the vehi-
cle that specified—in engineering terms—the characteristics of the booming
noise (Chapter 3). It was found that:

• the booming noise manifested in the frequency range of about 80 Hz
to 105 Hz at speeds of between 25 km/h and 40 km/h, after which it
decreased only to increase again from 60 km/h;

• the two principal components of the booming noise lay at around 90 Hz
and 100 Hz;

• the fundamental acoustic mode in the cabin lay at 100 Hz with the max-
imum pressure of the wave situated behind the driver and passenger’s
headrests.
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The reasons for the noise in the cabin were then identified using a num-
ber of NVH tools, such as Experimental Modal Analysis (EMA) and Transfer
Path Analysis (TPA). It was found that:

• the Back Panel (a panel situated at the end of the load bed directly be-
hind the driver and passenger’s seats) had a natural mode at 92 Hz that
was a major source of cabin noise at that frequency;

• the amplification caused by the cabin’s acoustic mode remained the
greatest contributor to the internal cabin booming noise;

• no other panels contributed significantly to the booming noise.

The source of the vibrations in the vehicle that led to the generation of the
booming noise in the cabin was then identified. It was found that:

• the drive shaft assemblies were excited by the coinciding natural rota-
tional orders of the ball and tripod Constant Velocity (CV) joints;

• the most problematic occurrence was in the right drive shaft assembly
when the ball joint’s third and the tripod joint’s sixth rotational orders
coincided with a natural resonance in the drive shaft assembly at 83 Hz;

• this coincidence occurred at about 28 km/h.

The damped nature of this resonance resulted in high vibrational excitations
being transferred to the wheel hub over a frequency range from 70 Hz to
90 Hz. The high compliance of a rubber mounting housing the bearing in
the middle of the drive shaft assembly was largely responsible for the large
amounts of vibration of the mode. The vibrational transfer path was identi-
fied as running from the drive shaft assembly through the wheel bearing to
the wheel hub, and then through the wishbones to the chassis floor. No panel
was identified as being exclusively responsible for converting the vibrations
into the cabin booming noise. The Back Panel only accounted for some of the
noise. It was put forward that the noise from the Back Panel, together with
general vibration of the cabin’s other panels was enough to be amplified by
the acoustic mode and create the booming noise.

Potential solutions to the booming noise were proposed, with one of the
solutions (a modification of the Back Panel) tested with a degree of success.
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It is recommended that the proposed solutions be further investigated
and tested. The most promising solutions are:

• the modification of the bushings on the left and right wishbones, as
described in Section 5.2;

• the redesign or modification of the Back Panel;

• the concept of lengthening the fundamental acoustic wavelength in the
cabin as described in Section 5.4.1.

The first two solutions are the most promising from the vehicle manufactur-
ing company’s point of view whereas the third is the most interesting and
innovative from an academic perspective.

The work performed during this project contributed in strengthening the
NVH expertise at Stellenbosch University. The main contributions were:

• software that calculates the A-weighted Sound Pressure Level (SPL) of
a signal as a function of road speed;

• software that calculates 3 dimensional Power Spectral Densities (PSDs)
of a signal as functions of frequency and road speed and plots the Wa-
terfall or Campbell plot thereof;

• experience in using the previously unused software package SD Tools
to extract experimental mode shapes and general modal information;

• Acoustic Modal Analysis (AMA) expertise and experience, both exper-
imental and analytical (with the use of MSC.Nastran);

• TPA expertise and experience;

• EMA expertise and experience.
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Appendix A

Test figures

A.1 Run-up test

Selected Campbell diagrams from the Run-up are included for reference pur-
poses. The diagrams are for the Back Panel, the windscreen and the right rear
wheel hub. Note the scale of each Campbell diagram has been adjusted for
clarity and that the scale is that for a Power Spectral Density (PSD), namely
(m/s2)2/Hz.
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Figure A.1: Campbell diagram of the vibration level of the right rear wheel hub
during the Run-up test

Figure A.2: Campbell diagram of the vibration level of the Back Panel during the
Run-up test
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Figure A.3: Campbell diagram of the vibration level of the windscreen during the
Run-up test
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A.2 Experimental Modal Analysis

A.2.1 EMA of the Back Panel

The Back Panel was instrumented with seven accelerometers forming a grid
on the panel. The panel was then excited using a modal hammer. The concept
of a “speaker” mode can be clearly seen in Figure A.4, generated using SD
Tools v5.1.

Figure A.4: The “speaker” mode shape of the Back Panel at 90 Hz
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A.3 Drive shaft assembly tests

A.3.1 Experimental Modal Analysis

The right drive shaft assembly was instrumented with six accelerometers:
three on each shaft (at the ends and middle of each shaft). Frequency Re-
sponse Functions (FRFs) were calculated, after which SD Tools was used to
calculate curve fits for each FRF. The curve fit along with the calculated FRF
for the accelerometer closest to the wheel hub (i.e. on the outer most point of
the Outer Shaft) is shown in Figure A.5. SD Tools v5.1 uses a modified circle
fitting method to determine the system’s poles, after which an optimisation
script is run to optimise the frequency and damping values of the poles. For
more information visit http://www.sdtools.com/sdt/index.html.

Figure A.5: FRF for the Outer Shaft’s outer-most accelerometer showing the calcu-
lated curve fit
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A.4 Operational Transfer Path Analysis

The operational Transfer Path Analysis (TPA) test was actually conducted in
two stages. In the first stage the engine and suspension members were in-
strumented. Once it was clear that the vibrations did not enter the vehicle
via the engine, another test was conducted with accelerometers again on the
suspension members and wheel hubs, but also on the chassis floor and on
the cabin’s left and right floor panels. All testing was performed symmetri-
cally. In other words all accelerometer locations on the right hand side of the
vehicle were mirrored as closely as possible on the left hand side.

The measurements for the left side measurements are included here for
comparison to the measurements of the right hand side on pages 47 to 49.
Note once again that the units are (m/s2)2/Hz and not m/s2 and that scales
have been adjusted for clarity. The same areas of vibration are seen in both
these plots and the plots of the right side measurements, however the ampli-
tudes are much smaller than those on the right hand side.

Figure A.6: Campbell diagram of the vibration level of the left wishbone’s inner
swivel connection
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Figure A.7: Campbell diagram of the vibration level of the left wishbone’s outer
swivel connection
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Figure A.8: Campbell diagram of the vibration level of the vehicle chassis near the
left wishbone

Figure A.9: Campbell diagram of the vibration level of the driver’s footwell floor



Appendix B

The A-weighting scale

The human ear does not hear all frequencies equally loudly. Low frequen-
cies are not heard very well, while frequencies between 1 kHz and 5 kHz are
actually perceived to be louder than they are. The A-weighting scale weighs
the frequency content of noise signals in such a way as to account for the sen-
sitivity of an average human ear to those frequencies. The values in Table B.1
are taken from Irwin & Graf (1979).

Figure B.1: Plot of the A-weighting scale
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Table B.1: The A-weighting table

Frequency [Hz] Weighting [dB]

10 −70.4
12.5 −63.4
16 −56.7
20 −50.5
25 −44.7
31.5 −39.4
40 −34.6
50 −30.2
63 −26.2
80 −22.5

100 −19.1
125 −16.1
160 −13.4
200 −10.9
250 −8.6
315 −6.6
400 −4.8
500 −3.2
630 −1.9
800 −0.8

1000 0.0
1250 0.6
1600 1.0
2000 1.2
2500 1.3
3150 1.2
4000 1.0
5000 0.5
6300 −0.1
8000 −1.1

10000 −2.5
12500 −4.3
16000 −6.6
20000 −9.3
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