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SUMMARY

The Bayesian approach to decision-making is considered in this thesis for reliability/survival

models pertaining to a Weibull class of distributions. A generalised right censored sampling

scheme has been assumed and implemented. The Jeffreys' prior for the inverse mean lifetime

and the survival function of the exponential model were derived. The consequent posterior dis-

tributions of these two parameters were obtained using this non-informative prior. In addition

to the Jeffreys' prior, the natural conjugate prior was considered as a prior for the parame-

ter of the exponential model and the consequent posterior distribution was derived. In many

reliability problems, overestimating a certain parameter of interest is more detrimental than un-

derestimating it and hence, the LINEX loss function was used to estimate the parameters and

their consequent risk measures. Moreover, the same analogous derivations have been carried

out relative to the commonly-used symmetrical squared error loss function. The risk function,

the posterior risk and the integrated risk of the estimators were obtained and are regarded in

this thesis as the risk measures. The performance of the estimators have been compared rel-

ative to these risk measures. For the Jeffreys' prior under the squared error loss function, the

comparison resulted in crossing-over risk functions and hence, none of these estimators are

completely admissible. However, relative to the LINEX loss function, it was found that a cor-

rect Bayesian estimator outperforms an incorrectly chosen alternative. On the other hand for

the conjugate prior, crossing-over of the risk functions of the estimators were evident as a result.

In comparing the performance of the Bayesian estimators, whenever closed-form expressions

of the risk measures do not exist, numerical techniques such as Monte Carlo procedures were

used. In similar fashion were the posterior risks and integrated risks used in the performance

compansons.

The Weibull pdf, with its scale and shape parameter, was also considered as a reliability model.

The Jeffreys' prior and the consequent posterior distribution of the scale parameter of the

Weibull model have also been derived when the shape parameter is known. In this case, the
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estimation process of the scale parameter is analogous to the exponential model. For the case

when both parameters of the Weibull model are unknown, the Jeffreys' and the reference priors

have been derived and the computational difficulty of the posterior analysis has been outlined.

The Jeffreys' prior for the survival function of the Weibull model has also been derived, when

the shape parameter is known. In all cases, two forms of the scalar estimation error have been
t:.

used to compare as much risk measures as possible. The performance of the estimators were

compared for acceptability in a decision-making framework. This can be seen as a type of

procedure that addresses robustness of an estimator relative to a chosen loss function.

iii
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OPSOMMING

Die Bayes-benadering tot besluitneming is in hierdie tesis beskou vir betroubaarheids- / oorle-

wingsmodelle wat behoort tot 'n Weibull klas van verdelings. 'n Veralgemene regs gesen-

soreerde steekproefnemingsplan is aanvaar en geïmplementeer. Die Jeffreyse prior vir die

inverse van die gemiddelde leeftyd en die oorlewingsfunksie is afgelei vir die eksponensiële

model. Die gevolglike aposteriori-verdeling van hierdie twee parameters is afgelei, indien hi-

erdie nie-inligtingge-wende apriori gebruik word. Addisioneel tot die Jeffreyse prior, is die

natuurlike toegevoegde prior beskou vir die parameter van die eksponensiële model en ooreen-

stemmende aposteriori-verdeling is afgelei. In baie betroubaarheidsprobleme het die oorberam-

ing van 'n parameter meer ernstige nagevolge as die onderberaming daarvan en omgekeerd

en gevolglik is die LINEX verliesfunksie gebruik om die parameters te beraam tesame met

ooreenstemmende risiko maatstawwe. Soortgelyke afleidings is gedoen vir hierdie algemene

simmetriese kwadratiese verliesfunksie. Die risiko funksie, die aposteriori-risiko en die inte-

greerde risiko van die beramers is verkry en word in hierdie tesis beskou as die risiko maat-

stawwe. Die gedrag van die beramers is vergelyk relatief tot hierdie risiko maatstawwe. Die

vergelyking vir die Jeffreyse prior onder kwadratiese verliesfunksie het op oorkruisbare risiko

funksies uitgevloei en gevolglik is geeneen van hierdie beramers volkome toelaatbaar nie. Re-

latief tot die LINEX verliesfunksie is egter gevind dat die korrekte Bayes-beramer beter vaar

as die alternatiewe beramer. Aan die ander kant is gevind dat oorkruisbare risiko funksies van

die beramers verkry word vir die toegevoegde apriori-verdeling. Met hierdie gedragsvergelyk-

ings van die beramers word numeriese tegnieke toegepas, soos die Monte Carlo prosedures,

indien die maatstawwe nie in geslote vorm gevind kan word nie. Op soortgelyke wyse is die

aposteriori-risiko en die integreerde risiko's gebruik in die gedragsvergelykings.

Die Weibull waarskynlikheidsverdeling, met skaal- en vormingsparameter, is ook beskou as 'n

betroubaarheidsmodel. Die Jeffreyse prior en die gevolglike aposteriori-verdeling van die skaal-

parameter van die Weibull model is afgelei, indien die vormingsparameter bekend is. In hierdie
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geval is die beramingsproses van die skaalparameter analoog aan die afleidings van die ekspo-

nensiële model. Indien beide parameters van die Weibull modelonbekend is, is die Jeffreyse

prior en die verwysingsprior afgelei en is daarop gewys wat die berekeningskomplikasies is

van 'n aposteriori-analise. Die Jeffreyse prior vir die oorlewingsfunksie van die Weibull model

is ook afgelei, indien die vormingsparameter bekend is. In al die gevalle is twee vorms van

die skalaar beramingsfoute gebruik in die vergelykings, sodat soveel as moontlik risiko maat-

stawwe vergelyk kan word. Die gedrag van die beramers is vergelyk vir aanvaarbaarheid binne

die besluitnemingsraamwerk. Hierdie kan gesien word as 'n prosedure om die robuustheid van

'n beramer relatief tot 'n gekose verliesfunksie aan te spreek.
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TERMINOLOGY AND NOTATION

The various symbols, notations and abbreviations used throughout the thesis are defined and

explained below. Note that some of the symbols might have been used to represent different

notions in different parts of the thesis, for instance, e has been used throughout to represent the

parameter(s) of interest, be it a scalar or a vector in either the exponential or Weibull models.

pdf
e
e
S(t)
h(t)
:F
X
'D
f(xl·)
£(datal·)
7r(e),7r(el·)
p(eldata)
E[.]
Epost[']
varpost(. )
L(.)
Ls(.)
LINEX
LL(.) ~
~1 = e - e
~2 = f-1~ ()e
eSi
()Li

RL,s(il, e)
R(il, e)

probability density function
parameter( s)
parameter space for e
the survival function or reliability function at time t
the hazard rate or failure rate at time t
family of distributions
sample space for the data (observations)
decision or estimation space
pdf of the variable X
likelihood function of the data
prior distribution of the parameter e
posterior distribution of the parameter(s) of interest e, given the data
expected value
expectation with respect to the posterior distribution
variance with respect to the posterior distribution
loss function
squared error loss function
linear exponential
LINEX loss function
type I scalar estimation error
type II scalar estimation error
estimator of e
Bayesian estimator of e under the squared error loss function when using ~i

Bayesian estimator of e under the LINEX loss function when using ~i

risk function relative to (L=LINEX loss function, S= squared error loss function)~
risk function of some estimator e relative to some loss function

viii
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R(ê, e)min
Rf'S (ê)
r(ê)
rs,L(ê)
r(.)
Q(a,(3)
U[a,b]
Tw

the minimum value of the risk function of the estimator 7J for some e~
posterior risk of the estimator e relative to S or L using ~i

integrated risk of the estimator 7J relative to any loss function
integrated risk of the estimator 7J relative to S or L
gamma function
gamma pdf with parameters a and (3
uniform distribution between a and b
indicator function for argument w
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CHAPTER 1

INTRODUCTION

In various fields where decision-making is involved, such as reliability studies in industrial set-

tings i.e., reliability engineering, biomedical studies, etc., risk analysis is a fundamental stage.

Most often, not all observations regarding the above areas of study are fully measured due to

time, limited budget or any natural phenomenon for that matter. Hence, censored (type I or

type II) or truncated lifetimes are considered despite the fact that they create analytical difficul-

ties in making inferences. Furthermore, these inconveniences also dictate some analysts to use

nonparametrie procedures (Kvam et al., 1999).

However, it is not unusual to assume parametric models which are believed to represent many

settings in the reliability study. The focus of this thesis lies in the Bayesian approach to decision-

making process, mainly risk analysis using the parametric models pertaining to the Weibull class

of distributions.

In general, there are two schools of thoughts in statistical inference namely, the Bayesian ap-

proach and the traditional or frequentist approach which is solely based on sampling. In the

sequel, the terms Bayesian and frequentist will be used for convenience purposes.

A frequentist seeks estimates or decisions of certain parameter(s) based only on the model

obtained from the observable data, i.e. sampling. A Bayesian, on the other hand, seeks a

decision that is based on the information prior to collecting the data and then combining this

with the information obtained after data collection. Bayes' theorem is the link between the two

sources of information for the Bayesian analyst, updating the total information.

Using only current products or observed data to perform statistically sufficient tests and the
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1 INTRODUCTION

desired inferences are often impractical. Hence, a need arises to use past experiences or knowl-

edge to incorporate in the conclusions from currently available data. By applying classical

statistical theory, past experiences are set as assumptions and do not involve any risk analysis if

not in the inferences. Therefore, one has to carry out the experiment a number of times, which

makes testing or inferences a very lengthy task, as no prior knowledge has been used as part of

the decision-making process. In the Bayesian paradigm, however, the prior knowledge is sum-

marised in such a way that an appropriate prior distribution is chosen to incorporate the past

experience in the risk analysis.

1.10VERVIEW OF THE DECISION-MAKING PROCESS

In the Bayesian approach to the decision-making process, the analyst summarises the prior in-

formation, which may be based on personal beliefs or the client's belief, past experience, etc.

and usually represented it in the form of a so-called prior distribution. The information ob-

tained after data collection is summarised in the form of the likelihood. The Bayes' theorem

plays as a liaison between these two sources of information updating it into the posterior dis-

tribution. A certain loss function is chosen based on some criteria and then used along with

the posterior distribution in Bayesian inference. More often, the choice of an appropriate loss

function pertaining the problem at hand is a process that needs a decision. The loss functions,

once chosen, are used to obtain the Bayesian estimators and their corresponding risk measures.

These risk measures could be either the risk function also referred to as frequentist risk, the pos-

terior risk or integrated risk. At the risk analyses stage, the risk measures are used to compare

the performance of the various Bayesian estimators, thereby choosing an alternative that results

in minimum risk. It should be noted that in the sequel, if an estimator that is obtained relative

to a certain loss function is used to evaluate the risk relative to another loss function, such an

estimator is identified as a "wrongly chosen alternative" or a "wrong estimator". However, an

estimator corresponding to the same loss function under consideration is regarded as the "cor-

rect estimator" or the "correct Bayesian estimator". The final stage in this case is then to make

inferences and draw conclusions from the estimators or any other predictive values or hypoth-

esis tests. The flow chart given in figure 1 briefly demonstrates the decision-making process in

the two schools of thoughts.

2
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Priori
knowledge, past
experience,
client's belief,
etc.

Likelihood
function, I [dat a Iii)

Prior
distribution,
7r(B I.)

Risk
analyses

Inferences and
conclusions

Figure 1: An overview of the decision-making process.

1.2 OUTLINE OF THE THESIS

The remainder of the thesis is schemed as follows. In chapter 2, the general concepts of a

decision-making process is presented with the main focus being the Bayesian perspective. The

reliability models of the Weibull class of distributions, their survival functions, likelihood and

the failure rates are also discussed. In chapter 3, some Bayesian computational techniques,

which are often used in Bayesian analyses or other analyses are discussed. The Bayesian analy-

sis of the one-parameter exponential model regarding the parameter (j and the survival function

is performed in chapter 4. Both the squared error loss and the LINEX loss functions (Varian,

1975) have been used. The two loss functions are used relative to two types of the estimation

error in order for a decision-maker to have a bit of flexibility in choosing from as many al-

ternatives as possible. In these analyses, both the Jeffreys' prior and the conjugate prior have

been assumed as the prior distributions of the unknown parameter (j, while only the Jeffreys'

prior has been used for the survival function. Chapter 5 presents the two-parameter Weibull

model, considering both the scale and shape parameters, as well as the survival functions. Here,

3
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I INTRODUCTION

two situations have been considered: treating only the scale parameter to be unknown and sec-

ondly the more general case, where both scale and shape parameters are treated to be unknown.

Chapter 6 concludes the thesis.

4
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CHAPTER 2

DECISION-MAKING PROCESS

2.1 INTRODUCTION

In many dimensions of everyday life, human beings need to make crucial decisions, which

quite often involve making choices among alternatives. Many examples of these choices exist

and all these lie in the sphere of decision-making. In many cases, however, decisions are made

without a thorough study or an analysis of consequences, which really form the base of any

decision-making process. In this chapter, the basic concepts of the decision-making process

will be discussed, the main focus being the Bayesian approach.

The concept of statistical decision theory was first introduced by Wald (1950) and is now com-

monly applied by various professionals of different fields in solving real problems. Some of

these professionals include operational analysts, statisticians, computer scientists, chemical en-

gineers, economists, epidemiologists and many more.

Decision-making or statistical inference is aimed at seeking a procedure or decision rule that

is cost effective, either for the analyst or for the client. The decision reached is normally ex-

pected to meet, as much as possible, some degree of satisfaction for the decision-maker and/or

the client. Cost effectiveness here means that the decision should have the least risk (or min-

imum risk) possible and thus bestows the utmost or optimal satisfaction. In obtaining a cost

effective and optimal alternative, the analyst requires a summary of information, thoughts or

ideas, which can be represented in mathematical functional forms or models. These models are

normally indexed by parameters, which can be known or unknown, depending on the situation.

The parameter space will be indicated bye. The space of all decisions or in terms of a model,

the space of all possible estimators for the parameters, is indicated by 'D. Collecting data from

5
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2 DECISION-MAKING PROCESS

random samples will aid one to obtain effective estimators/decisions for the unknown parame-

ters and the space of all possible samples relative to the model is indicated by X. Consequently,

a decision-making process involves these three spaces: e, 1) and X.

The information summarised in a model can normally be obtained from two sources when using

the Bayesian approach, firstly from experts in the field, prior to collecting the data and secondly,

from the likelihood after collecting the data. Bayesian analysis is a statistical approach which

combines the information from these two sources and as a result aposterior model is obtained.

The posterior model is therefore an updated probabilistic model of all the information relevant

to the parameters of interest (Jeffrey, 1997). Estimators or decisions obtained when using the

posterior distribution should lead to a minimum expected loss over a certain distribution of the

parameter of interest (Rice, 1995). The concept of the probability models, the priors, the loss

functions, the risk measures and the relative comparisons of the estimators, will be explained in

subsequent sections.

In section 2.2, the commonly used reliability models of the Weibull (named after the Swedish

engineer Waloddi Weibull (1887-1979)) class of distributions are discussed. Two broad cate-

gories of prior distributions, which focus on the non-informative and the conjugate priors, are

discussed in section 2.3. The concept of posterior analysis is presented in section 2.4. Section

2.5 discusses the concept ofloss functions, which is incorporated in the estimation procedure of

the decision-making process. In section 2.6, the different risk measures are explained and the

criteria for estimation in applied Bayesian decision theory is discussed. The concepts of admis-

sibility and inadmissibility and some background studies on the admissibility of estimators are

given in section 2.7 and section 2.8 concludes the chapter.

2.2 RELIABILITY MODELS OF THE WEIBULL CLASS OF DISTRIBUTIONS

The Weibull class of distributions is part of a broader class, namely the exponential family of

models. The Weibull class of distributions are the only type of models that will be considered

in this thesis.

Suppose a non-negative monotonically increasing function of x, g(x), is defined, such that g(x)

is zero when x is zero and diverges to infinity as x tends to infinity. Given such a function, the

6
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2 DECISION-MAKINGPROCESS

cumulative probability function can be defined as

F(x) = 1- exp[-g(x)]. (2.1)

Clearly, (2.1) is zero, if x is zero and tends to unity, as x tends to infinity. Hence, a proper pdf

can now be defined. The first derivative of (2.1) yields the corresponding pdf, given by

f(x) = d~~X) = g'(x) exp[-g(x)]. (2.2)

The failure rate or hazard rate (also known as the occurrence rate or intensity) of (2.2), denoted

by h(x), is given as
f(x) ,

h(x) = 1_ F(x) = 9 (x). (2.3)

The relationships (2.1) and (2.2) allow one to define any pdf on the non-negative real line with

specified hazard rate of the form (2.3).

The hazard rate dictates in many cases the form of the pdf. Often, a flexible hazard rate is

needed to successfully describe the information from a sample. Monotonically increasing and

decreasing hazard rates are very popular choices and the hazard rate of the Weibull class of

distributions satisfies this criteria. The hazard rate for the Weibull class of distributions is

A, e > 0, (2.4)

where A and e are the shape and scale parameters, respectively. The corresponding g( x) of (2.4)

IS

g(x) = (ex)>'.

Using (2.2) and (2.4), the corresponding pdf for the Weibull class is given by

(2.5)

Other representations of (2.5) exist, which will be defined in a later section. Information from

a random sample is summarised in the likelihood function, assuming these underlying models

of the Weibull class of distributions. The sampling scheme considered for this thesis is where

n components or objects are observed and only r lifetimes, Xl < X2 < ... < x-, are fully

measured, while the remainder, (n - r), are censored. These (n - r) censored lifetimes will

be ordered separately and denoted by Xr+l < Xr+2 < ... < Xn. This scheme is known as

generalised right censoring (Dellaportas and Wright, 1991) and when a fully observed sample

7
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2 DECISION-MAKING PROCESS

is considered, r is chosen to be equal to n. The likelihood function in the case of a generalised

right censored sample is
r n

e(datal,\' B) = TIf(Xil)., B) TI (1 - F(Xil)., B)).
i=l i=r+l

(2.6)

The Weibull class of distributions is widely used in many types of analyses due to its mathemat-

ical tractability and also its applicability in reflecting many real world problems of repairable

components (Ananda and Ravindra, 1998). The hazard rate in (2.4) portrays the growth of the

components under study when). > 1 or a decay in a situation when). < 1. For). = 1 (exponen-

tial pdf), a constant hazard rate is described and when). = 2 (Rayleigh pdf) a linear increasing

hazard is described. These choices of), makes the Weibull class a very popular model to use and

will be the focus of this thesis. The next sections explain in detail the pdfs that arise from the

Weibull class, as well as some of the important parameters to be estimated from these models.

2.2.1 Exponential model

A constant hazard rate models a component's failure time to the lack of memory principle.

Whenever a failure occurs and is repaired, the subsequent observed lifetime is independent of

what was observed before failure. The one parameter exponential model has a constant hazard

rate and is a special type of the Weibull class (2.5), with the shape parameter). = 1. The

exponential model to be considered in this thesis, is given by

f(xIB) = B exp[-Bx], x, B > O. (2.7)

The survival function, the other important parameter to be estimated, i.e. the probability that a

certain component stays under operation at least up to a specified time x, is

S(x) Pr(X > x) = 1- F(x)

- exp[-Bx], x, B > O. (2.8)

Function (2.8) converges to 0 as x increases to infinity, which means that no component stays

in operation for eternity.

The hazard rate of(2.7) is constant and equal to the inverse of the mean of the distribution, i.e.

h(x) = B. (2.9)

8
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2 DECISION-MAKING PROCESS

Using (2.6) and (2.7), the likelihood function for the generalised right censored sample is

f(dataIO) cx or exp[-TO], (2.10)

where
r n n

T = LXi + LXj = LXi.
i=l j=r+l i=l

However, if there is no right censoring, r = ti.

2.2.2 Weibull model

The Weibull model represents many reliability problems and consequently, it is widely used by

many Bayesian analysts (Dellaportas and Wright, 1991; Martz and Waller, 1982). Mainly two

ways of representation for the Weibull model exist by changing the functional form of the scale

parameter. The two representations are

(2.11)

and

A, 0> o. (2.12)

The corresponding survival function of (2.11) is

S(X) = exp[-xAO]

and that of(2.12) is

S(X) = exp[-(Ox)A].

The hazard rate of the Weibull model was defined in (2.4) and the hazard rate corresponding to

the model (2.12) is given by

Under the generalised right censored sampling scheme (2.6), the likelihood for model (2.11) is

defined as

(2.13)

with

9
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2 DECISION-MAKING PROCESS

and similarly for (2.12).

Remark 2.1 The two models (2.11) and (2.12) can also be represented by substituting ()with

~,respectively. The consequent survival functions, hazard rates and likelihood functions can

easily be transformed for this choice of the parameter. These two representations of the Weibull

model are needed in later work to obtain results in closed-form.

Remark 2.2 As stated earlier, when>. = 2 in the Weibull model, it reduces to the Rayleigh

distribution. Lord Rayleigh (1919) derived and used this distribution in a problem of acoustics.

If Xl and X2 are both normally distributed variables with mean zero and variance equal to

(72, then Y = y'X; +Xi (distance from the origin to (Xl, X0 in 2-dimensional Euclidian

space) will be a variate from the Rayleigh distribution with parameter () = ~. The Rayleigh

distribution has been Widely used in life testing problems and clinical studies dealing with

cancer patients (Gross and Clark, 1975; Lee, 1980; Mostert et al., 1998).

2.3 PRIOR INFORMATION

In the previous sections, the concept of the decision-making process and the models of the

Weibull class of distributions have been discussed. The models are mathematical representations

used to depict the summary of the information about the components under consideration. It

has been pointed out that the information involved in a decision-making process has in essence

two sources, the prior and the likelihood. In this section, the concept of prior information

will be discussed, with special attention to non-informative and conjugate priors. The prior

encapsulates the knowledge about the parameter of interest (a scalar or vector depending on

the particular problem), which the analyst or client has summarised before collecting the data

(Jeffrey, 1997). The information might be from past experience, the analyst's and/or the client's

belief or presumptions or in the worst case, due to lack of information.

In most practical problems, the analyst knows beforehand certain information about the pa-

rameter of interest (Zellner, 1980) and that he/she would probably have an idea what values

to choose for the parameter(s) through an appropriate pdf. It might also be possible to have
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knowledge, obtained prior to collecting the data about the parameter and the likelihood to attain

certain value(s) in the subset ofthe parameter space (Bhattacharya, 1967). The prior knowledge

is often represented in the form of a pdf, or a prior distribution. The choice of the prior dis-

tribution is often made subjectively, yet in a way that satisfies the specified prior summary and

on the grounds of convenience both for the analyst and/or the client. On the other hand, prior

distributions must meet some basic tests of credibility, for instance, they should not contradict

and disallow the information from observed data (Box and Tiao, 1973). Uncertainty of the exis-

tence of any prior information should evolve in approximations of the choice of priors. A prior

distribution can be either proper or improper, depending on whether it integrates to unity or not.

Furthermore, it might be informative, conveying the information or non-informative, convey-

ing ignorance (Jeffrey, 1997). The important point is, to choose the closest approximation that

best represents reality. In the Bayesian paradigm, incorporating the prior distribution is advan-

tageous, since it uncovers the assumptions of the underlying problem by recapping the form

of a distribution, which might be hidden in the classical approach. Whenever possible, prior

distributions should be specific and should reflect the situation under consideration, otherwise

they fail to comply with reality and do not meet the satisfaction of the client and/or the ana-

lyst himlherself(Jeffrey, 1997). These two widely used types of priors will be discussed in the

subsequent sections.

2.3.1 Non-informative priors

Even though in many statistical analyses enough information might be obtained from elicitation,

yet in many others, analysts might also fall short of obtaining information about the parame-

ter in their study (Zellner, 1980). An important point to rise here is, what should Bayesian

analysts do about this lack of information. If no prior knowledge is available for the experi-

ment, the Bayesian is obliged to perform the analysis under total or partial ignorance (Ghosal,

1997). There were times when Bayesian analysts had to subjectively choose a prior under the

name of subjective priors. This method of choosing priors subjectively on the belief of the

analyst, however, exposed this method to severe critics. Subsequently, tremendous work has

been done in the past decades to find ways of obtaining non-subjective priors (Zellner, 1980).

The quest of finding non-informative priors dates back to the time of Laplace and Bayes when
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they based their research under name the of inverse probability, instead of non-informative pri-

ors. The use of non-informative priors in Bayesian analysis often leads to procedures with

approximate frequentist validity. Thus, while retaining the Bayesian flavour on the one hand,

non-informative priors allow for some reconciliation between the two conflicting paradigms of

statistics and therefore provide mutual justification. Many Bayesians also use different names

for non-informative priors, such as conventional, default, flat, formal, neutral, non-subjective,

objective and reference priors (Bernardo, 1997). Even though non-informative priors are most

often improper, there exist priors that are proper, e.g., the Beta (~, ~) is a Jeffreys' prior for

data from a binomial distribution. Very little is known about non-informative priors in infi-

nite dimensional problems (Ghosal, 1997). Gradually though, the concept of non-informative

priors found a respected place in the statistical literature. The tremendous work of Jeffreys

(1946,1961) in obtaining non-informative priors, particularly the Jeffreys' prior, has played a

distinguishable role. The introduction of the Jeffreys' prior has boosted the confidence of the

Bayesian community and supplemented the credibility when choosing non-informative priors.

This is due to the derivation of priors directly from the distribution of the data (Robert, 2001).

The Jeffreys' non-informative prior is based on the Fisher information matrix. Under some reg-

ularity conditions and for any pdf, say !(xI8), with parameter(s) 8 E Rm (m ~ 1), the Fisher

information matrix, with ilh element, is obtained from

J. ·(8)= -E [82
{10g[!(xI8)]}] (2.14)

tJ () 88
i
88

j
.

The expectation in (2.14) is taken with respect to the data. From (2.14), the Jeffreys' non-

informative prior is given by
1

7r(8) cx (det[I(8)])"2. (2.15)

The choice of the prior based on 1(8) is justified by the fact that it is an indication of amount of

information obtained directly from the data (Robert, 2001).

Although the Jeffreys' prior is useful in many Bayesian analyses, it is not very effective in

multi-parameter models (Robert, 2001). Due to this shortcoming, the reference prior was in-

troduced by Bernardo (1979). The reference prior is basically a modification of the Jeffreys'

prior, where in the latter, the prior distribution merely depends on the data and in the former the

prior depends both on the data and the inferences to be done (Robert, 2001). In a one parameter
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model, the reference prior and Jeffreys' prior are identical. The idea, in any experiment, is to

maximise the information obtained from prior knowledge, as well as the information expected

to be revealed when collecting the data. The more prior knowledge about the parameter(s) of

interest is available, the less information is expected from the data (Berger and Bernardo, 1989).

It is important to note that the information to be obtained from the observations overweighs the

prior knowledge, especially in the presence of 'vague' information. Therefore, the need of the

reference prior stems to alleviate the ambiguity that may arise from vague prior knowledge and

is aimed at maximising the missing information about the parameter of interest (Bernardo and

Ramon, 1998).

In order to lay the ground for procedures to obtain the reference prior, it is important that the

summary of information be amassed in a mathematical model. Suppose that in an experiment,

the underlying distribution of the data is given by j(xIO) and the prior knowledge is summarised

by 7r( 0). The summary of the information about the parameter(s) 0 to be expected from the

experiment, is given by

fO{j,7r} = J J j(xIO)7r(O) log [p(;~;)ta)l dOdx. (2.16)

xe
The prior distribution, 7r(O), that maximises (2.16) is the desired reference prior (Berger and

Bernard, 1989). The expected information of (2.16) is non-negative as well as invariant under

one-to-one transformation of 0, even when any sufficient statistic of the data is used (Bernardo

and Ramon, 1998). Repeating a certain experiment infinitely many times would disclose the

missing information. Hence, the definition in (2.16) is often used for a sequence of k indepen-

dent replications of the experiment under consideration. The corresponding information that

the sequence of experiments would provide, is given by

fO{j(k),7r} = J J j(ZkIO)7r(O) log [p~(I;))]dOdzk, (2.17)

xe
where Zk = (Xl, X2, ... , Xk) is the sequence of independent replications of the experiment. In

this case, the limit of the sequence of priors, 7rk (0) as k ---+ 00, which maximises the missing

information (2.17) in the domain of strictly positive priors, is the reference prior. The following

simple procedure can be used to obtain the reference prior.

Suppose two parameters 0 and), in a model, j(xl>" 0), where 0 is the parameter of interest and
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>. is a nuisance parameter (known or assumed a certain value). The corresponding expected

Fisher information matrix can be partitioned and represented as

The reference prior is obtained with the following steps (Berger and Bernardo, 1989).

Step 1: Let 7r(01)') be the usual reference prior for 0 given >.,which is given by

1

7r(01)') cx: (det[Il1(>', 0)])2,

where

I (>' 0) = -E [8
2
{10g[f(xl>"0)]}]

11 , () 802 .

Step 2: A sequence of subsets of the parameter space are chosen, such that ~1 C ~2 C ~3'"

and Ui~i =8. Suppose the reference prior in step 1has a finite mass on ni,.\ = {O : (>.,0) E ~i}

for all >..Normalise 7r(01)') on each ni,.\ and obtain

where 10 is an indicator function on nand

Step 3: Find the marginal reference prior for>. with respect to 7ri(OI>'). This is given by

assuming that the integral exists.

Step 4: Assuming that the limit exists, the reference prior for the joint parameters, (>., 0), is now

defined as

(2.18)
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2.3.2 Conjugate priors

The conjugate priors are sometimes referred to as the priors closed under sampling due to

Wetherill (1961). A given family of distributions, say F, are said to be a conjugate family

if for a given likelihood function and for any prior distribution in the family F, the posterior

distribution also belongs to that same family. Hence, a conjugate prior is one, when combined

with the likelihood function and its parametric form leads to a posterior distribution that has

a form that allows analytical inspection i.e., it is represented in a recognisable form of some

known distribution (Jeffrey, 1997). The concept of a conjugate prior was introduced by Bernard

(1954) and thoroughly studied by Raiffa and Schlaifer (1961). Before the recent advances of

developing techniques for the derivation of the prior distributions, researchers had difficulty in

obtaining a conjugate prior which suits the assumed likelihood. Nowadays, many analysts rather

choose to obtain suitable priors befitting their prior beliefs using numerical techniques (Jeffrey,

1997). The main interest of conjugacy lies when F is as small as possible and parameterised,

in which case the posterior distribution is merely an updated prior distribution of the parameter

(Robert,2001).

Suppose there is a family of pdfs of the parameter e, then two conditions, which are sufficient

for the existence of a conjugate family, are:

1. For any sample size n, the joint distribution of the sample Xl, X2, ... , Xn conditioned on e,
is proportional to one of the pdfs in the family.

11. The family is closed under multiplication, i.e. a family of distributions is said to be closed

under multiplication provided that for any two distributions of the parameter e, say !(el'YI)

and !(eI12)' then

where 1'1,1'2 and 1'3 are called hyperparameters.

Prior elicitation plays the most crucial role in Bayesian inference. Historical data from past

similar studies can be very helpful in interpreting the result for a current study. The power

prior is defined to be the likelihood function based on historical data, raised to a power, 1',

where 0 ~ I' ~ 1. The parameter 1', therefore, controls the influence of the historical data. In
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this case, the power prior has very often the form of the conjugate prior, due to the nature and

likelihood of the problem and data.

2.4 POSTERIOR ANALYSIS

The Bayesian paradigm, as discussed in the above sections, is based on specifying a probability

model for the data, given the unknown parameter( s), e. This leads to defining a likelihood

function f( datale) and assuming e is a random variable with prior distribution denoted by 7r( e).

Inference concerning e is then based on the posterior distribution, which is obtained via Bayes'

theorem (Bayes, 1958)

p(eldata) cx f(datale)7r(e). (2.19)

Using (2.19) with the appropriate normalising constant, the posterior distribution is given by

p(eldata) = f(datale)7r(e) . (2.20)

~f(datale)7r(e)de
8

The denominator in (2.20) is called the marginal of data or prior predictive distribution.

Apart from using it in inference, the posterior distribution has two other main focuses:

1. Obtaining the Bayesian point estimator that minimises the posterior expected loss.

Provided that the conditions of differentiation inside the integration are met, the Bayesian
--estimator is obtained by solving for e in

d~ (IL(O, O)p(O Idata) dO) ~ O.

11. Another major aspect within the Bayesian paradigm is prediction of a new observation.

(2.21)

The posterior predictive distribution of a future lifetime of a component z given the data,

IS

p(zldata) = ~ f(zle)p(eldata)de, (2.22)

e
where f(zle) denotes the sampling density of zand p(eldata) is the posterior distribution

ofe.

The posterior predictive distribution (2.22) is the posterior expectation of f(zle) and sampling
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from (2.22) is easily accomplished via numerical techniques, such as Gibbs sampling.

2.5 LOSS FUNCTIONS

The notion ofthe decision-making process, the reliability models and the prior information were

discussed in the previous sections. In this section, the concept of loss functions, which handles

the measurement or performance of estimators will be discussed. Once the analyst selects an

appropriate prior distribution, the need arises to select a suitable loss function to ensure that an

optimal estimator is made. A loss function in this context is a function of the form

L(ii, ())= p(())t(ê, ()), (2.23)

where p( ()) is any non-negative function that reflects the relative seriousness of a given error

for different values of the parameter and "( is a non-negative function of the error satisfying

"((0) = O. The loss function ofthe form (2.23) measures or quantifies the loss or penalty incurred

when the estimate of (), (), is used, i.e. it evaluates the severity of the consequence of making

a certain decision about the parameter. A systematic development of point estimation of a

parameter can be achieved by introducing an appropriate loss function, which best suits to the

decision-making problem. Various types of loss functions are commonly used in the estimation

and prediction procedures of statistical inference. In practice, the choice of an appropriate

loss function that best represents a certain scenario under consideration is not an easy task,

especially when the parameter space is infinitely large. Quantifying a qualitative consequence

of any decision further aggravates the situation.

Statisticians are often confined to use classical or canonical loss functions which are acceptable

for various reasons, amongst others, for their simplicity and mathematical tractability. Some

of the classical loss functions most often used are the squared error loss (also referred to as

quadratic loss), the weighted quadratic loss, the absolute error loss (Laplace, 1773) or multi-

linear function and the 0-1 loss function (used in hypothesis testing). The linear-exponential

loss function (Varian, 1975) is widely used in many Bayesian analyses, since its introduction.

The choice of a loss function is sometimes criticised and it is as difficult as choosing the prior

distribution of a parameter. The squared error loss and LINEX loss functions will be discussed

in the following sections.
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2.5.1 Squared error loss function

The squared error loss (Gauss, 1810) is one of the most predominantly used loss functions in

statistical decision problems. This loss function is one of the many symmetrical loss functions,

which equally penalise overestimation and underestimation of a certain parameter with the same

magnitude (Varian, 1975). Mathematically, this implies that L(f:.) = L( -f:.), where f:. is the

scalar estimation error incurred. The squared error loss function is given by
~ ~ 2

Ls(e, e) = k(e - e) , (2.24)

where k is any positive constant.

A more general form of (2.24) is

where w(e) is any positive function of e. The estimation error in (2.24) is of the form (type I)
~

f:.1 = e - e.

Remark 2.3 Another form of the estimation error which will be considered in this thesis is

f:.2 = ~- 1 (called type II estimation error). The type I estimation error can also be generally

represented by f:.1 = ip(e) - cp(e) and the type II estimation error by f:.2 = ~~:~- 1, where

ip(e) is the estimator of the one-to-one function oft), cp(e), (Mostert et al., 1999).

The Bayesian estimator relative to squared error loss function defined in terms of the type I

estimation error is obtained by using (2.21) and consequently solving for êSI in

dtsl (Epast [k(êsl - e)2]) = 0

to obtain

(2.25)

An analogous result of (2.25) can be obtained when using

~ 2
kEpost[eSI - el
k (êSI - Epost[()lr + kvarpost(e). (2.26)
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The minimum of (2.26) is obtained when (iSl = Epost[O] and the minimum expected posterior

loss is a scalar multiple of the posterior variance (when k = 1 in (2.26) the minimum expected

posterior loss is equal to the variance of the posterior distribution).

Considering the type II estimation error, the Bayesian estimator under the squared error loss is
~

obtained when solving Os in

2 [ 2J 2- ---3 Epost 0 + ~2 Epost [0] = 0
0S2 0S2

to obtain

(2.27)

The loss function given in (2.24) has been widely used in statistical analyses due to its mathe-

matical tractability (Singh et al., 2004). The squared error loss has also been used in reliability

problems over the years. The literature has been surging and all of the references are far too

enormous to list here, amongst them are: El-Sayyad (1967) to obtain an unbiased estimator of

the parameter of the exponential model; Basu and Ebrahimi (1991) in their study of the reli-

ability exponential model and the comparison of the performance of Bayes point estimators;

Samaniego and Reneau (1994) in the context of exponential families, under the conjugate pri-

ors, to compare Bayesian and classical estimators; Mostert et al. (1999) in the estimation of

Bayesian estimators for the Rayleigh model; Chaturvedi et al. (2000) in analysis of distur-

bances variance in the linear regression models; Mostert et al. (1998) in the analysis of cancer

survival times using the Weibull model; Farsipour and Asgharzadeh (2002) in an admissibil-

ity study of an estimator of the linear combination of the common mean of two populations

from a normal distribution; Singh et al. (2004) in obtaining the Bayesian estimators of the

exponentiated- Weibull distribution.

The squared error loss function has many important properties and some of them are:

~ The penalty incurred due to estimation in (2.24) does not depend on the sign, but on the

magnitude of the error. This incurring same penalty for underestimation and overestimation

of equal magnitude is sometimes considered as a drawback.

~ The estimate that minimises the expected loss is obtained by calculating the posterior mean

in the Bayesian context.
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... Loss functions that are strictly convex result in Bayesian estimators that are unique. Clearly,

the squared error loss is strictly convex, since the second derivative of (2.24) yields 2k > 0,

hence, any Bayesian estimator with respect to the squared error loss is unique.

... The squared error loss avoids the concept of randomised estimators, i.e. estimators with an

infinite Bayes risk. This is due to the property that the Bayesian estimator under the squared

error loss, is the posterior mean .

... The squared error loss function can also be used as an approximation of more complex

symmetric loss functions, via Taylor series expansions (Robert, 2001).

2.5.2 LINEX loss function

Many real world problems exist where symmetric loss functions would not be plausible to use.

In fact, it has been noted by Bhattacharya et al. (2002) that in the study of hydrology, reliability

engineering and pharmaceuticals, the use of asymmetric loss functions are believed to be more

appropriate than symmetric loss functions. Nonetheless, in many problems of point estimation

of location parameters, the symmetric loss functions are the most widely used. The assumption

of symmetrical loss functions, however, in many instances compromised the reality and hence,

might have led to erroneous conclusions. Therefore, the use of asymmetric loss functions is

necessitated, since in reality when one predicts a given parameter of interest, overestimation

may be more severe than underestimation or vice versa (Parsian and Farsipour, 1993). As a

consequence, overestimating the survival function of an item might be much more severe than

underestimating it. This in turn implies that underestimating the hazard rate results in a more

serious consequence than an overestimating of the hazard rate. Therefore, if the reliability is

overestimated, a system may fail prior to its predicted failure time causing serious consequences

(Basu and Ebrahimi, 1991). Another example that can be mentioned was the disaster of a space

shuttle, where it was believed that its failure rate was underestimated and thus failed prior

to the time predicted (Feynman, 1987). Underestimating the peak of the water level in dam

construction might also be disastrous than overestimation (Zellner, 1986). More references of

such examples are in Pandy et al. (1996) and Singh et al. (2004). These examples justify that

there are situations where the symmetric loss function will not be appropriate. To alleviate the

problem of using unsuitable symmetric loss functions which do not represent the problem, many
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authors used asymmetric linear loss functions, namely, Ferguson (1967); Zellner and Geisel

(1968); Aitchison and Dunsmore (1975); Berger (1985) and many others. Unlike many of

these authors, Varian (1975) introduced the asymmetric LINEX loss function, whose modified

functional form is given as

LL(/:l) = exp[a/:l] - a/:l- 1, a =I O. (2.28)

Remark 2.4 A generalform of(2.28) is defined as

LL(/:l) = b{exp[a/:l]- c/:l- I},

where a and c are nonzero constants and b is positive.

The sign of the shape parameter in (2.28) reflects the direction of the asymmetry and its mag-

nitude reflects the degree of asymmetry. Varian introduced the loss function (2.28) in the study

of an appraisal of single-family homes in a real estate assessment. The problem stems from an

assessor in need of estimating the current market value of a house taking into consideration cer-

tain characteristics like, total living area, number of bedrooms, etc. The motivation for the use

of (2.28) was on the basis of a natural imbalance in the consequences of overestimation and

underestimation of the same magnitude (Bhattacharya et al., 2002). Overestimation was more

severe than underestimation in this particular problem, since an underestimation of the house,

means that the loss incurred is equal to the amount of the underestimate. If, however, the house

is overestimated the owner might appeal and reverse the decision. In this case, the loss will be

two-fold, both the amount of the over assessment and the cost involved in running the case and

the appeal procedures to reverse the decision made. The LINEX loss function is well used in

the field of Bayesian analyses, amongst them are: Zellner (1986); Parsian (1990b); Kuo and

Dey (1990); Basu and Ebrahimi (1991); Parsian and Farsipour (1993); Pandy et al. (1996); Zou

(1997); Mostert et al. (1998); Mostert et al. (1999); Chaturvedi, et al. (2000); Bhattacharya et

al. (2002); Farsipour and Asgharzadeh (2002); Jaheen (2003); Singh et al. (2004) and many

others.

The Bayesian estimator relative to the LINEX loss function defined in terms of the type I esti-
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mation error is obtained by minimising the expected loss given by

Differentiating the expected loss (2.29) and solving for eLl as

d ( ~ ~ )~ exp[aeL1]Epost[exp[-ae]] - aeL1 + aEpost[e]- 1 = 0
deLl

to obtain
~ 1
eLl = --log[Epost[exp[-ae]]]a

provided that Epost[exp[-ae]] exists and is finite.

(2.30)

Considering the type II estimation error of the expected posterior loss is given by

Epost [exp [a (ê:2 - 1)]- a (ê:2 - 1) - 1]
- exp[-a]Epost [exp [::e ]]_ ~a Epost[e] + a - 1. (2.31)

eL2 eL2
Differentiating (2.31) and equating to zero yields the Bayesian estimator. Hence, the Bayesian

estimator under the LINEX loss function is obtained from

Epost [e exp [;:J] = exp[a]Epost[e]. (2.32)

The various forms of Bayesian estimators will be used in the subsequent chapters. Some im-

portant properties of the LINEX loss function are:

... The minimum of(2.28) is zero and is obtained when ~ = O.

... The second derivative of (2.28) is a2 exp[a~] > 0, hence, it is a strictly convex function,

therefore, the Bayesian estimator obtained under (2.28) is unique .

... Using the Taylor series expansion about zero (also called Maclaurin's expansion) and for

small ]a], the LINEX loss function reduces to the squared error loss function of the form

1LL(~) ~ _a2~22 .
... The LINEX loss function is flexible, since the parameter can be chosen in such a way to

provide a variety of asymmetric effects, which best explain a given scenario under consid-

eration. The choice of the parameter a is important and if there is no idea what value of a
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to choose, an alternative approach can be followed to construct actually a weighted LINEX

loss function, with different values of a (Mostert et al., 1999) .

.... If the type I estimation error is large positive i.e. highly overestimated, the exponential term

of (2.28) dominates the linear term and hence (2.28) increases rapidly. The reverse effect is

obtained for a negative estimation error.

Figure 2: The LINEX loss function for different values of a

Figure 2 depicts the behaviour of the LINEX loss function for different values of a. For instance,

when a = 2, the value of the LINEX loss function increases faster when A > 0 than when

.6. < 0, and the opposite is true when a is negative.

Remark 2.5 The LINEX loss function preserves the same property of resembling the squared

error loss when lal is small even when using the type II estimation error. Parsian and Farsipour

(1993) recommended that under the LINEX loss function, the type II estimation error is better in

the estimation of a scale parameter, while for a location parameter, the type I estimation error

is more suitable.
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2.6 RISK MEASURES

The quantification of uncertainty associated with risk estimates is an important part in the area

of risk assessment (Nayak and Kundu, 2001). Risk analysis has been used as a tool of mea sur-

ing the efficiency and productivity in many problems and is considered as an important safety

management strategy (Aven and Porn, 1998). Risk measurement has been applied as one of the

most important issues in financial and insurance industries (Siu and Yang, 1999). Since risk is

applied in various fields referring to many different things, be it with human beings or assets and

financial interests or in decision-making, the interpretation also varies accordingly. Risk can be

defined as an exposure to uncertainty (Holton, 1997), but since many different people might

have different views of explaining uncertainty, the concept of risk might also vary. In general,

there are two schools of thoughts in risk analysis, namely, the classical and the Bayesian ap-

proach (Aven and Kvalóy, 2002). The concept of risk measures is required in order to assess

the goodness or performance of the estimators which are used in decisions.

In many problems of risk assessment, analysts employ the concept of subjectively choosing

priors to incorporate some prior information, yet without exclusively adopting the Bayesian

paradigm (Aven and Kvalóy, 2002). Even though many engineers, physical scientists or analysts

are trained in the classical approach to risk analysis, in practice, they often use a mixture of both

classical and the Bayesian approaches (Aven and Porn, 1998). It has already been mentioned

that the idea of Bayesian inference is to obtain an optimal estimator and therefore it is important

to measure the risk incurred under these optimal estimators.

In this section the three types of risk measures namely, the risk function ( also called frequentist

risk), the posterior risk (also called expected posterior loss) and the integrated risk are defined

and explained. Furthermore, the criteria for estimation in applied decision theory will be high-

lighted.

2.6.1 Risk function

In most problems of inference, the parameter for which an inference is sought, is unknown,

hence, the need for inference. It is often difficult and even impossible to uniformly minimise
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~
the loss function in terms of B for B (Robert, 2001). The term uniformly minimising refers

to the exercise of obtaining the minimum risk over all allowable ranges of the decision space,

which may be the same as the parameter space. In such situations, an important aspect of the

estimation is comparing the losses of the estimators made. The frequentist approach to risk

analysis is therefore a crucial comparison criterion. The risk function (or sometimes refer to

only as risk) is obtained as the expectation of the loss function with respect to the distribution

of the statistic, i.e. the expectation is over the data space, X.

Suppose that the distribution of the data conditioned on the parameter B, is given by the pdf

f(xIB) and ê is any estimator, then the risk function is

R(ê, B) = Ex [L(ê, B)] = J uë,B)f(xIB)dx.
x

(2.33)

Once the expectation is obtained, the analyst seeks a decision that minimises (2.33).

2.6.2 Posterior risk

In contrast to the risk function where the expectation is taken with respect to the likelihood,

the posterior risk is obtained as the average of the loss function with respect to the posterior

distribution of the parameter(s). For a given estimator ê, a given posterior distribution p( Bldata)

and any loss function L(ê, B), the posterior expected loss is

Rf:~((j) = Epost [L(ê, B)] = J L(ê,B)p(Bldata)dB. (2.34)
e

Clearly, (2.34) is a function ofthe observed data and measures the average loss incurred over the

whole parameter space, when an estimator is obtained. This means that (2.34) gives the average

loss accrued over the parameter space e for every estimator ê. Therefore, if the decision space

is an infinitely large set, obtaining the posterior risk for all possible decisions is not simple, but

the Bayesian always seeks the estimator for which (2.34) is minimised.

2.6.3 Integrated risk

The integrated risk, which is obtained by averaging the risk function over the domain of B, with

respect to the prior distribution, is another risk measure to be considered. Using (2.33) and the
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prior distribution of the parameter, 7r(B), the integrated risk is given by

r(O) = JR(O,B)7r(B)dB.
e

(2.35)

This means that the integrated risk is obtained by first obtaining the risk function in terms of the

Bayesian estimator and then averaging with respect to the prior distribution.

An alternative way of expressing (2.35) is

r(O) = J J L(e, B)f(xIB)dx 7r(B)dB.
ex

(2.36)

.-..
The value of the risk evaluated in (2.35), when the Bayesian estimator is used for B, is called

the Bayes risk (Robert, 2001). This Bayes risk evaluated at any Bayesian estimator B will

henceforth be denoted as re (0).

2.6.4 Criteria for estimation in applied Bayesian decision theory

It has been already mentioned that in the Bayesian paradigm of decision theory, an estimator of

the parameter is obtained based on the prior knowledge and loss function under consideration.

One way of obtaining an estimator of the parameter is by minimising the expected loss with

respect to the assumed distribution (prior to data collection), i.e. the estimator that minimises

the risk function. This minimum value of the risk function is also called the Expected Value

of Perfect Information (EVP!). On the other hand, the optimal estimator, called the Bayesian

estimator minimises the posterior risk, i.e. after data collection. For this reason, it is more

convenient to take the average with respect to the marginal distribution of the data to obtain

the Bayes risk. The Bayes risk depends on the sample size and therefore helps to obtain the

average value of a certain sample size, n. This means that one can make a pre-posterior analysis

to obtain the EVPI and if the Bayes risk is obtained then the average value of a sample size n

can be deduced by

(2.37)

The expression in (2.37) is called the Expected Value of Sample Information (EVS!), since it

portrays the value of sampling. The EVSI also depicts the maximum value one should pay,

when choosing a sample of size n in order to acquire as much information as possible, thereby
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reducing uncertainty.

In sampling, there is a cost attributed to sampling, since data collection in any procedure de-

mands time or financial expenses. If the cost of sampling of the random variables, Xl, X2, ... , Xn

is given by C(Xl, X2, ... , Xn), then the difference of the expected cost of sampling and EVSI is

ENGS(n) = E[C(Xl,X2, ... ,Xn)]- EVSI

where ENGS(n) is the Expected Net Gain in Sampling a sample of size ti. If ENGS(n) is

positive, then it is worth taking a sample. ENGS(n) is usually a concave function whose

maximum is attained at no, which is the optimal sample size, at which point one would gain the

most out of sampling (Raiffa and Schlaifer, 2000).

In posterior analysis, an alternative way of measurement criterion, is the highest posterior den-

sity interval with credibility (1 - a), 0 :s; a :s; 1, denoted by Itr~a). This gives the interval

estimation of the parameter, where Pr[e E Itr~a)]= (1 - a) and the probability of any point

inside Itr~a) is larger than any point outside it. Most often, however, point estimators are used,

instead of highest posterior densities.

The aforementioned terms playa crucial role in measuring the cost of estimation, thereby ren-

dering an idea whether or not it is appropriate to sample. Moreover, the optimal sample size

yielding a minimum cost, can subsequently be obtained.

2.7 ADMISSIBILITY AND INADMISSIBILITY

In the preceding section the different risk measures were discussed. Itwas pointed out that these

risk measures are helpful tools for quantifying the performance of the estimators and compari-

son for acceptability. This notion of acceptability of estimators lies in the area of admissibility

and inadmissibility, which will be explained in this section.

In many decision problems involving risk measures, the analyst might be encountered with a sit-

uation of choosing decisions/estimators from crossing-over alternatives. Suppose for instance,

there are two estimators el and e2 and two values of the parameter el and e2• If the risk func-

tion is the tool used for comparison and R(iJ2, el) > R(êl, el), while R(ê2, e2) < R(êl, e2),
-"

then the scenario renders crossing-over risk functions. In situations like this, the estimator el
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~
is superior when the value of the parameter (j is equal to (jl, while (j2 is superior when (j is

equal to (j2. This means that none of the two estimators is uniformly superior. In general, if

R(ê2, (j) < R(el, (j) for all (j provided strict inequality holds for at least one value of (j, it is said
~

that (j2 is superior. An estimator, (j, is said to be admissible, if there exists no estimator that is
~

superior than (j (Kotz and Johnson, 1982). This means that a certain procedure (be it a point es-

timator, an interval of the estimator, a sample design, etc.) is said to be an admissible procedure

if and only if there does not exist another procedure that uniformly performs at least as well as

the procedure under consideration. The term uniformly is important and applies to the whole

decision space 1), which in this case, is equal to e. Equivalently, this means that an estimator

êl is said to be inadmissible, if there exists another estimator ê2, such that R(êl, (j) ~ R(ê2, (j)
~ ~

for all (j, where strict inequality holds for at least one (j, i.e. (jl is inadmissible if (j2 is superior

to it (Kotz and Johnson, 1983). An estimator which is not inadmissible, is admissible and the

latter is acceptable in decision-making.

The concept of admissibility is applied not only to compare the performance of estimators, but

also to compare preferences among possible priors as well as loss functions (Rice, 1995). It is

also applied for various fields of statistics carrying correspondingly suitable interpretations for

instance, the interpretation of admissibility in point estimation is not the same as that of admis-

sibility in sample design. Nonetheless, in all procedures where the term admissibility is applied,

it carries a similar criterion in such a way that the definition stated above is preserved within

that procedure. Therefore, various classes of admissibility might be employed depending on

the type of statistical inference. If the interest is to compare only point estimators, the admissi-

bility of point estimators is applied. If the statistician is interested to collectively estimate and

compare confidence intervals of estimators, then, there is a corresponding interpretation of the

concept of admissibility. Similarly, there are admissibility of confidence sets, hypothesis tests,

sampling designs, etc. (Kotz and Johnson, 1982).

2.7.1 Background on admissibility of estimators

In this section a brief background is given on the admissibility of estimators. In most of these

references, the aforementioned risk measured were used for comparison purposes.
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Farsipour and Asgharzadeh (2002) provided the inadmissibility criterion of the common mean

of two normally distributed populations using the linear combination given by aIX +a2Y +a3,

where al, a2 and a3 are known scalars. Both the squared error loss and LINEX loss functions

were used in the study. It has been pointed out that the common mean of the two independent

univariate normal populations is applied in the application of experimental design, clinical trials

and many others. The Best Linear Risk Unbiased Equivariant Estimator (BLRUE) were proved

to be admissible when both the aforementioned loss functions were used. The inadmissibility

conditions of this linear combination depends on the magnitude and sign of the coefficients of

the two sample means.

Zellner (1986) proved that the usual sample mean, X, is inadmissible when estimating the nor-

mal mean with known variance under the LINEX loss function, since it is dominated by X - ~~ ,

where (J2, a and n are the variance, LINEX shape parameter and sample size, respectively. Par-

sian (1990b) proved that X - a;: is the unique minimax and hence an admissible estimator.

Rojo (1987) also studied the admissibility and inadmissibility of the linear estimator given by

eX + d, where e and d are known constants. Rojo generalised the result of Zellner using the

natural conjugate prior, the normal distribution. Later, Bolfarine (1989) considered the esti-

mation problems of the finite population total under the LINEX loss function and presented

the Bayesian estimators of the parameter and discussed the admissibility of some of these es-

timators. The admissibility of the Pitman estimator under squared error loss for the variance

of normal distribution with known mean was proved by Hodges and Lehmann (1951) and Gir-

shick and Savage (1951). The same Pitman estimator with unknown mean was proved to be

inadmissible by Stein (1964). Kuo and Dey (1990) studied an estimation of the mean of the

Poisson distribution under the LINEX loss function. Necessary and sufficient conditions of

inadmissibility were provided and the mean of the Poisson distribution was proved to be inad-

missible under the LINEX loss function. Basu and Ebrahimi (1991) studied the admissibility

of the Bayesian estimators obtained under the squared error ( ês) and the Bayesian estima-

tor obtained under LINEX loss functions (êL). Comparing the risk functions of the these two

Bayesian estimators under the LINEX loss function, it was proved that risk function ofêL uni-

formly dominates the risk function ofês. In the case of the squared error loss, however, none

of the two risk functions dominates the other uniformly.
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2.7.2 Types of admissibility

Special types of admissibility exist and are discussed in this section. Depending on whether a

condition is more or less stringent or binding, an admissible estimator can be called strongly

or weakly admissible, whereby the former being the more stringent case. Another special type

of admissibility is the so called e=admissibility. This measures the extent of how much any

decision rule or procedure (an estimator for example) is short of being admissible. Suppose
~

decision about a point estimator is made under the risk function, an estimator el is said to be

s+admissible if there is no other estimator ê2 such that R(e, ê2) < R(e, êl) - e, for all e E e,
where e > O. At times it might be of importance to find an c-admissible estimator in case

admissibility conditions are not easily obtainable.

Uniform admissibility is another type of admissibility which is particularly applied to survey

sampling theory. Depending on the constraints underlying sampling theory, i.e., cost and time,

a sampling strategy is admissible in a given boundary of time and cost in such a way that the

whole population be assessed with probability 1. This means that there should not be any

other strategy that would outperform in satisfying the constraints of sample size, time or cost

and should not exceed a certain threshold or limit. In some fields, there is a situation where

joint admissibility is applied. Suppose for instance an estimator êl is obtained under a certain

sampling design say, PI, then the joint admissibility of (êl,pI) is uniformly admissible if êl is
an admissible estimator as well as PIbe admissible within the class of sampling designs (Kotz

and Johnson, 1982).

2.7.3 Sufficient conditions for admissibility

Certain conditions must be met in order for an estimator, a prior or a loss function to be admis-

sible. The same are true for the conditions of inadmissibility. There are proved propositions

that are stated to be sufficient for the admissibility of estimators. Some of these propositions

are listed here without proof and for further details see Robert (2001).

... If a unique minimax estimator exists, then it will be admissible. It is important to explain the

concept of minimaxity, a term predominantly used in game theory. Suppose for convenience
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purposes, the risk function is used as a performance measure. The idea of minimax rule is

first to maximise the risk function with respect to the parameter and then for the maximised

risk, find the decision which yields the minimum risk (Morris, 1994). This minimax rule has

a weakness in the sense that it is a very conservative procedure that places all its emphasis

on guarding against the worst possible cases.

~ If the prior distribution of the parameter is strictly positive on the parameter space with a

finite posterior risk and the risk function is continuous for every estimator of (), then the

Bayesian estimator is admissible.

~ If the Bayesian estimator associated with the prior is unique, then it is admissible.

~ If the Bayesian estimator associated with a (proper or improper) prior is such that the pos-

terior risk is finite, then the estimator is admissible.

2.8 CONCLUSION

A decision-making process requires selecting a cost effective or an optimal action amongst

alternatives. In the Bayesian paradigm in particular, the decision process incorporates the prior

knowledge about the parameter(s) of interest, with the information obtained after collecting

data. At the heart of this is Bayes' theorem, that plays an important role in consolidating

the information from the two sources, updating it in the form of the posterior distribution.

Some commonly used reliability models were discussed under the Weibull class of distributions.

Two types of priors, the non-informative and conjugate priors were considered. The optimal

estimators are derived by using loss functions, which are used to quantify the error incurred

after obtaining an estimator of an unknown parameter. The performance of these estimators

are measured with risk measures to determine the admissibility or inadmissibility thereof. An

important point is the criterion of estimation which highlights whether sampling is appropriate

or not. In the case where sampling is plausible, a far more appealing point is the fact that

optimal sample size can also be obtained.

Itwas clear that when using risk measures in many practical problems, it is difficult to obtain

the closed-form expressions of the of posterior moments. The main reason is due to censoring

or indefinite multi-dimensional regions for the integrals. This problem is often encountered in

finding the integrated risk, since it requires the integration over both regions of the parameter
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and the data. To this end, various numerical techniques of integration are employed by many

Bayesian analysts and other researchers. Discussion of some of these techniques will be given

in chapter 3.
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CHAPTER3

BAYESIAN COMPUTATION

3.1 INTRODUCTION

In the Bayesian paradigm, once the analyst chooses the loss function and prior distribution of

the parameter( s) of interest, inferences about the parameter( s) or prediction of new observations

are of importance. To this end, a user of the Bayesian paradigm in statistical inference should

be able to compute posterior moments, marginal posterior densities, or other characteristics

of the posterior distribution. Given the likelihood function and the prior distribution of the

parameter(s), a Bayesian analyst is usually interested in computing a posterior moment of the

form

Epost[g(Oldata)] = ~ J g(Oldata)7f(O)£(dataIO)dO,
e

(3.1)

where

K = J 7f(O)£(dataIO)dO,
e

and 7f( 0) is the prior distribution of the parameter(s), g( Oldata) is any function of interest of

the parameter(s) conditional on the data and £(dataIO) is the likelihood function. In the case of

multi-parameter posterior analyses, another point of interest for the Bayesian could be to obtain

the marginal posterior densities of the individual parameters. Suppose for instance, 0 E nm
and can be partitioned as 0 = (01, O2), where 01 E nj and O2 E nm-j, the marginal posterior

density for 01 is given by

p(Olldata) = J P(Ol, 02Idata)d02,
8

(3.2)

where P(Ol, 02ldata) is the joint posterior density of 0 (01 and O2may be scalars or vectors).

The starting point for all subsequent inferences is often the joint posterior density.
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As mentioned in chapter 2, quite often, performing the integration of Kin (3.1), i.e. the normal-

ising constant of the posterior distribution, has computational difficulties (Chib, 1995). Conse-

quently, any analysis involving the posterior distribution, such as posterior moments, posterior

quantiles, Bayesian point estimators, marginal posterior densities, or probability intervals, etc.,

may not be analytically tractable. This has contributed to the use of some classical loss func-

tions, which lead to explicit solutions of Bayesian estimators. As a consequence, to avoid

computational complexity or difficulty, inappropriate loss functions or prior distributions are

chosen, since they lead to mathematically tractable solutions, yet without reflecting the reality

(Robert, 2001). Another resort for the Bayesian practitioner, may be to tum back to the classi-

cal approach, leaving the beauty of the Bayesian approach behind. However, these constraints

are no longer justified, as a result of the diverse computational tools, which have sprouted out

over the years.

This chapter, therefore, discusses some of the approximation techniques needed for the apparent

computational difficulties. In section 3.2, techniques to obtain posterior moments are discussed

and in section 3.3 techniques to obtain marginal posterior densities are discussed. Section 3.4

concludes the chapter.

3.2 POSTERIOR MOMENTS

The implementation of the Bayesian paradigm requires the computation of the posterior mo-

ments. In general, a user of the Bayesian method in practice needs to evaluate various charac-

teristics of the posterior and predictive distributions, especially in terms of means and variances.

However, unless the conjugate priors are used, these tasks are most often not easily performed

(Tierney and Kadane, 1986). The main contributing factor is that exact analytical solutions for

the integral in (3.1) is impossible. Appropriate approximation techniques are therefore needed

and some of them are discussed in the subsequent sections.

3.2.1 Tierney and Kadane approximation

Tierney and Kadane (1986) introduced a method of approximating the ratio of two integrals.

Their approximation is based on the Laplace's method, which is generally used to solve integrals
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of the form

1= J f(B) exp[-nh(B)]dB, (3.3)
e

where -nh( B) is a function having a maximum at some point B (in statistical applications, n is

taken as the sample size). Therefore, applying Taylor series expansion for the functions hand

f about B, (3.3) yields

I '" ==:"! [1(0) + / (0) (e - 0) + J'~\ê)(e - 0)2]

X exp [- 21~h~(:iI2-1]de. (3.4)

It can be noted that the last term of the integrand in (3.4) is proportional to a normal distribution

with mean'O and variance [nh" ('0)]-1. It can be easily seen that (3.4) is afirst order Laplace's

approximation and reduces to
1

I';::j ( 27r ) '2 f('O) exp[-nh('O)] [1 + /' (~)Var(B)] ,
nh" (B) 2f(B)

where var(B) = [nh" ('0)]-1 = O(~) (order of ~ which entails the computational complexity or

(3.5)

accuracy).

Further simplification of (3.5) yields

1= exp[-nh('O)f('O) ( ~/7r ) ~ [1+ 0 (1-)] .
nh (B) n

An analogous result to (3.5) in an m-dimensional space is given by

m _1 - "...,.,
I ';::j (27r)2 (det [nH;I]) 2 f(B) exp[-nh(B)],

where H;1 is the inverse of the Hessian matrix of hat 'O.The Hessian matrix of h is a matrix

whose ilh element is given by (a~2!:oj) .

Tierney and Kadane (1986) devised their method of approximation for any positive function

g(Bldata) of a real or vector-valued parameter based on this Laplace's method. It has been

pointed out that the computational complexity of the method is minimal when compared to that

of others, such as Lindley (1980), Mosteller and Wallace (1964). The method of Tierney and

Kadane requires only the computation of the first and second derivatives of the posterior and
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J iI((J) exp[-nh((J)]d(J

Epost[g((Jldata)] = J8 ,
!2((J) exp[-nh((J)]d(J

8
where iI= g, !2 = 1 and, exp[-nh((J)] = n((J)e(datal(J). Hence, the modal approximation of

(3.6)

3 BAYESIAN COMPUTATION

is feasible for any problem where maximum likelihood estimators can be derived. In order to

obtain the approximate posterior mean and variance of g, the logarithm is taken for both the

numerator and denominator of(3.1). In order to apply the Laplace's approximation, (3.1) can

be rewritten as

(3.6) is given as

Epost[g((Jldata)] = g(ë) [1+ 0 (~)] ~ g(ë),

where e is the mode of the posterior distribution. Setting I, = !2 = 1 in (3.6) yields an

alternative second order approximation, but in this case the log-posterior is the ratio of

-nhn((J) = 10g[g((Jldata)] - nhd

and

-nhd((J) = 10g[n((J)] + 10g[e(datal(J)].

Substituting these two expressions in (3.6) results

J exp[ -nhn]d(J

Epost[g((Jldata)] = J8 .
exp] -nhd]d(J

8

Suppose en and ed are the posterior modes of b« and hd respectively, a~ = [h~ (en) r1 and

a~ = [h~ (ed)] -1 .Applying Laplace's method of approximation to (3.7), yields

(3.7)

Epost[g( (JIdata )]

J exp [nhn (en) - n(B2-:.an)2] se
8J exp [nhd (ed) - n(B2-:'~d)2] d(J
8

- an exp [n [hn (en) - b« (ed)]] .
ad

(3.8)

The result in (3.8) can be rewritten as

Epost[g((Jldata)] = g(e) [1+ 0 (~)] .
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Analogous to the result in (3.8), the multiparameter equivalent is

where On and Od in this case are values that maximise b; and he respectively and Hhn
1 and

Hh
d

1 are the negative of the inverse of the Hessian matrices of h« (On) and hd(Od) respectively.

Tierney and Kadane also provided the computational complexity and accuracy of the Laplace's

approximation. Both the first and second order approximations require only the first and second

derivatives, where in the latter case, the differentiation is done for the log-posterior. In situations

when n is considered as the sample size, the accuracy of Laplace's method increases with
. .
mcreasmg n.

Laplace's method of approximation can also be used for a function, g(O), that is not strictly pos-

itive. The trick in such situations is to add a large positive constant, c , thus apply Laplace's

method and then subtract c from the final result. As an alternative, Laplace's method can be

applied to the moment generating functions, whose integrand is always positive, where differ-

entiation is applied to the result at the end (Tierney et al., 1989).

In general, the Laplace's method provides a quick computational procedure since it does not

require iterative algorithms. It needs only the first and second differentials. Another important

aspect of the Laplace's method is the fact that it does not depend on random numbers, hence

it gives deterministic results consistent for different analysts. It also reduces the computational

complexity in robust studies.

3.2.2 Numerical methods

Many numerical methods of integration evolved over the past years. Some of these techniques

have been used by Bayesian statisticians in posterior analyses. Due to the computational com-

plexity, the use of numerical methods in approximation is restricted mainly to small number of

parameters. Simpson's rule is one of the basic techniques of numerical integration. Simpson's
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method for one parameter is given by

bJ j(e)de = ~(f(eO) +4j(e1) +2j(e2) +...+2j(e2n-2) +4j(e2n-1) +2j(e2n)) + lin, (3.10)
a

where h = b"2na, the length of the sub-interval obtained by dividing the interval [a, bl into 2n

intervals of equal length and lin is the approximation error, which is given by

(b - a)5 j(4)(~)
lin = - 180(2n )4 ,a < ~< b.

Simpson's rule depends on two conditions, firstly, the allowable range of the parameter must

be finite and secondly, the function of interest must be differentiable. Most often, however, this

might not be the case with problems involving Bayesian analysis. The polynomial quadrature

is another important numerical approximation. This technique is mainly applied to approximate

integrals of distributions resembling the normal distribution (Naylor and Smith, 1982). Given a

pdf, j (e), which is defined over the whole real line, the approximation is given by
00

J exp [- e
2
] j(e)de ~ Ëud(ei),

2 t=l
(3.11)

-00

where Ui = n2~~~~~!c£)12 is the ith coefficient for the Gauss-Hermite quadrature and ei is the

ith root of the polynomial equation of Hermite Hi; (e). If j is symmetrical around the origin,
00

(3.11) is given as J exp [- 0;] j(e)de ~ !i:iud(Bi). Hence, this latter case might be helpful
o

to approximate the expectation of functions of the form exp [- 0;] defined only in the non-

negative real line.

3.2.3 Monte Carlo procedures

The numerical methods, such as polynomial quadrature and others, are known to be inappro-

priate as the dimension of the parameter space increases. The rule of thumb is that numerical

methods should not be applied for higher dimensions (m 2: 5), where m is the dimension of

the parameter space. In such situations, alternative approximation techniques are needed.

The Monte Carlo procedure was introduced by Metropolis and Vlam (1949) and Von Neumann

(1951). It has an advantage, especially when one is interested in obtaining the expectation of
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a function of interest with respect to a proper pdf. The key point in utilising the Monte Carlo

procedure, is generating a sequence of independent random variates from a given pdf. The

Monte Carlo sampling procedure involves the following steps for the expectation of a function

g(Oldata) after guaranteeing the simulation of random variates.

Step 1: Generate O(i) for 0 from the posterior distribution p( Oldata).

Step 2: Calculate g(O(i)ldata).

Step 3: Repeat steps 1 and 2 for i= 1, ... , k (k sufficiently large).

Step 4: The expectation of g is given as the limit of the arithmetic mean of step 2 as k tends to

infinity, i.e.

1 k .
Epost[g(Oldata)] ~ g(Oldata) = lim -k""' g(O(t)ldata).

k->oo ~
i=l

(3.12)

According to the law of large numbers, g(Oldata) -+ Epost[g(Oldata)] with probability 1, as

k -+ 00 (Geweke, 1989). Moreover, once the random variates are simulated, any other charac-

teristic of the function, such as the mode, the median, the variance, etc., can be easily obtained.

Using (3.12), the standard error of the approximation is given by

k 1L [(gO(i) Idata) - g( 0 Idata) r
i=l

k(k - 1)
(3.13)

It can be observed from (3.13) that the error is inversely proportional to the number of gener-

ated random variables, k. Hence, the fact that the accuracy of the approximation is entirely at

the hand, it means the more the number of iterations, the better. Monte Carlo procedures are

commonly used in the physical sciences and other fields for solving problems that are analyt-

ically impractical to tackle (Yang, 2002). The most important ingredient in applying Monte

Carlo is the issue of a good randomness. The sequence of random variates generated must ex-

hibit a uniform distribution in a certain interval. As a matter of fact, there are some algorithms,

called pseudo-random number generators, which ensure this requirement of randomness. One

example of these generators is the linear congruencial method (Lehmer, 1949).
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3.3 MARGINAL POSTERIOR DENSITIES

In many situations, inference in the Bayesian paradigm involves the evaluation of the ratio of

two integrals. Given the likelihood function and the prior distribution of the parameters, the

principal for all subsequent inferences starts from the joint posterior density for the parameters

of interest conditioned on the data (Bernardo, 1997). From section 2.4, it is clear that the denom-

inator of the posterior distribution involves integration over the domain of (). Moreover, there

might arise a need to obtain the univariate or bivariate marginal posterior densities for compo-

nents of (), which require additional computations. Therefore, obtaining both the normalising

constant of the posterior and the components of the marginal densities require successive in-

tegrations. If the joint distribution and the conditional marginal distributions are obtained, the

unconditional marginal distributions can also obtained directly. However, these integrations

might be onerous or in the worst case, the conditional marginal distributions might not be an-

alytically obtainable, especially for a multi-dimensional parameter space. In such situations,

efficient approximation techniques are indispensable. Some of these approximation techniques

will thus be explained in the subsequent sections.

3.3.1 Tierney, Kass and Kadane approximation

In Bayesian analysis with multi-dimensional parameters, an important aspect of the posterior

analysis is to obtain marginal posterior densities of the parameter(s) of interest. The method

devised by Tierney and Kadane in section 3.2 can also be used to obtain these marginal posterior

densities. The Laplace's approximation can also be used to obtain the marginal posterior density

of partitioned parameter(s).

The joint posterior distribution in (3.2) can be represented as

where c is a constant. The application of Laplace's approximation involves the finding ofpos-

terior modes that maximise the product of the prior and the likelihood, as well as the negative

of the inverse of the Hessian matrices evaluated at the mode. The usual Laplace's approxima-

tion can then be applied for (3.2) to give the respective approximate marginal posterior density
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of 01. A similar approach is applied for the marginal posterior density of O2. Likewise, if 0 has

more than two components, the marginal posterior densities of the individual parameters can

be obtained by partitioning the parameter space into just two components (Tierney and Kadane,

1986; Tierney et al., 1989).

3.3.2 Markov Chain Monte Carlo

In many problems within the Bayesian paradigm, the analyses of posterior moments, or mar-

ginal posterior densities or risks in many reliability studies, are mathematically intractable and

complicated. Hence, there are situations where closed-forms of the marginal posterior densi-

ties are not obtainable. Therefore, techniques to alleviate the difficulty of obtaining posterior

moments in stochastic processes are necessary. To this end, the Markov Chain Monte Carlo

(MCMC) methods have been widely used for simulating these processes (Metropolis et al.

1953; Hastings, 1970). MCMC algorithms have broad applications in all areas of statistics with

the main focus being in Bayesian applications (Geman and Geman, 1984; Gelfand and Smith,

1990). The advent of MCMC methods to simulate posterior moments or posterior distributions

have, therefore, revolutionised the application of Bayesian statistics (Chib, 1995).

Unlike the simple Monte Carlo simulation, which directly generates independent data from

the distribution, MCMC methods generate iteratively from the conditional distributions, where

every subsequent draw depends on the previous generated data. Several Markov chain methods

of sampling from the posterior distribution are available and some of the latest methods are

discussed in Robert (2001). Some of these are discussed in the subsequent sections.

3.3.2.1 Gibbs sampler

The Gibbs sampler is one of the commonly used MCMC techniques of sampling. It is a com-

puter intensive tool of iteratively generating random variates from a certain posterior distribu-

tion, without obtaining the density itself. Gibbs sampler is used to solve problems occurring

in multi-dimensional numerical integration over awkwardly defined regions (Kuo and Smith,

1992). This method is often used in multi-parameter distributions, when their conditional coun-

terparts are given and is a popular statistical technique both in applied and theoretical work
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(Casella and George, 1992). The Gibbs sampler found its popularity with the pioneering paper

of Geman and Geman (1984), who applied image-processing models in their study and later

by Tanner and Wong (1987) and Gelfand and Smith (1990). The application of Gibbs sam-

pler is common in Bayesian models when generating posterior distributions. On the other hand,

non-Bayesians apply Gibbs sampling in the calculation of likelihoods and characteristics of the

likelihood estimators.

To illustrate the Gibbs sampler, suppose the joint posterior density of the parameters Ol, ... , Om

is given by P(OI, ... , Omldata). Suppose one is interested in the marginal posterior density of

anyone of the parameters. More often than not, calculation of this integral is complicated and

even sometimes analytically or numerically unobtainable. There are mainly two approaches of

handling this one of which is a direct approximation, as discussed in section 3.3.1 and the other

is to generate successive random variates from the marginal density of the parameter of interest.

The latter alternative is what is called the Gibbs sampler. Considering the marginal posterior

density of Oi, p( OiIdata), the Gibbs sampler effectively generates sequences of random variates

(sample) Oil, Oi2, ... , Oin from p(Oildata). The efficiency of the Gibbs sampler depends on the

rate of convergence. The usefulness of the Gibbs sampler increases greatly as the complexity

of the problem increases, since in such situations analytical or numerical methods do not help.

The Gibbs sampling goes through the following steps:

Step 1: Start with initial values (guesses) of the parameters of interest. Suppose a model has

three unknown parameters, (Ol, O2, (3), with their respective initial values denoted by oiO), o~O)

and o~O).

Step 2: Given the posterior distribution, p(Oldata), generate random variates in sequence from

the full conditional posterior distributions as follows:

O(j+l) from p (Oldata O(j+!) o(j))2 2, I '3

O(j+l) from p (Oldata O(j+!) O(j+l))3 3, I '2 .
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Step 3: Repeat step 2 for j = 1, ... , k, where k is sufficiently large. This means that the Gibbs

sequence is obtained:

Once this sequence is obtained, the first J triplets of O~J), O~J) and O~J) should be discarded to

avoid dependence on the initial values.

Step 4: After obtaining the Gibbs sequence, a vital point is to check the chain for convergence

and to ensure it is safe to terminate the process. This convergence depends on the number of it-

erations, i.e. as k -t 00, the sequences generated in (3.14) will effectively reflect a sample from

the joint distribution (Casella and George, 1992). It is therefore, very important to know what

value of k gives a reasonable approximation of the sampling. An alternative way of employing

the Gibbs sampler has been suggested by Gelfand and Smith (1990), which requires generating

a large number of independent Gibbs sequences of length k and using the final realisation from

each sequence.

3.3.2.2 Slice sampler

It has been illustrated that the Gibbs sampler is implemented in a hierarchical structure where

one parameter is generated from the conditional distribution. This hierarchical algorithm of

implementation might lead to the perception that Gibbs sampler would not be applied in unidi-

mensional problems. However, the general implementation of the Gibbs sampler applies to any

number of dimensions, which is actually the strength of the technique. The generality of the

Gibbs sampler is exposed in the particular version called slice sampler (Wakefield et al., 1991;

Damien et aI., 1999). The foundation ofthe slice sampler stems from the following results. Any

posterior distribution (any distribution for that matter) of the parameter(s) can be written as a

product of k positive functions (not necessarily pdfs), i.e.,

k

p(Oldata) = IIwi(Oldata), (3.15)
i=I

where w~s are positive functions. Equation (3.15) can be rewritten as

k

p(Oldata) = J IIIo,;;;w;,;;;w;(oldata)dwldw2 ...dwk
e ~=l

(3.16)
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where I is the indicator function which attains 1 for 0 ~ ui, ~ wi(Oldata) and 0, otherwise.

Therefore, to sample from p(Oldata), using the slice sampler needs the following steps.

Step 1: Write the posterior distribution in the form of (3.16).

Step 2: At iteration t, simulate

(Hl) .
Wi rv U[O,Wi(O(tlldata)]' Z = 1, ... , k

and

lI(t+l) rv U A(HI) - {t. .(tld t ) >- (Hl). - 1 2 k}
(7 A(t+ll, - "'. w~ '" a a s-: Wi ,Z - , , ... , .

Step 3: Repeat step 2 for t infinitely large.

The w~s are auxiliary variables (also referred to as latent variables), which are chosen based

on convenience. The main problem in utilising the slice sampler lies in choosing these auxil-

iary variables in order to construct the slice A (Hl). Once the construction for these slices are

guaranteed, the slice sampler can then be applied for any distribution, be it unidimensional

or multidimensional. Incorporating these auxiliary variables is mainly used in sampling from

non-standard densities, which arise in the context of Bayesian analysis of non-conjugate and

hierarchical models (Damien et al., 1999). The Gibbs sampler has an extremely important

application in many fields, since it can be used to generate random variates from a given dis-

tribution, possibly non-normalised ones. Even though there are other methods such as adaptive

rejection sampling for log-concave densities, the method of introducing auxiliary variables is

preferred for its simplicity and generality (Wakefield et al., 1991).

3.4 CONCLUSION

Different approximation techniques have been used in many problems where analytical proce-

dures are not appropriate. It should be noted that all these techniques have conditions under

which they are suitable to apply. In general, the use of approximation techniques have simpli-

fied the work of many analysts and kindled the interest towards statistical inferences.
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Ingeneral, the approximation techniques play an important role in the implementation of Bayesian

methods for arbitrary forms oflikelihood, prior specification and sample size. Due to the advent

of these techniques, researchers got the liberty of not being confined in the analytical methods

of solving problems concerning pdfs. Approximation techniques also avoid the use of simple

and yet inappropriate loss functions or prior distributions for the parameter(s). The advantage

of approximation techniques becomes vivid in situations when analytical computations are not

helpful, hence, often with increasing dimensions of the parameter space. It should be noted,

however, that some of the approximation techniques are restricted to fewer dimensions of the

parameter space. Numerical techniques may lead to some approximation errors. Moreover,

these techniques sometimes call for an enormous amount of computing time and can become

very costly. In a lot of situations the error term depends on the number of variates generated,

which is a big advantage. Therefore, reducing the approximation error remains entirely in the

hand of the analyst.
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CHAPTER 4

THE EXPONENTIAL MODEL

4.1 INTRODUCTION

The decision-making process within the Bayesian paradigm was discussed in chapter 2. It was

clear that there are situations where closed-form expressions for elements in decision-making

do not exist and alternative procedures have to be applied, which were discussed in chapter 3.

It was stated that the univariate exponential distribution is a well-known and a commonly used

model in reliability theory. The literature is surging with papers regarding the exponential

model, both in the classical and Bayesian perspectives. Some, amongst many of the papers

relevant to the exponential model, are listed in this section. Enis and Geisser (1971) used the

exponential model in a Bayesian approach to predict the probability, Pr(Y < X) (given the

available data), where X and Yare two future observations. Sinha and Guttman (1976) pro-

vided a Bayesian analysis of the reliability function for a non-truncated exponential distribution,

using both an improper and the inverted gamma as prior distributions of the parameter. The

Bayes risk of both the Bayesian and non-Bayesian estimators were calculated for comparisons.

Basu and Ebrahimi (1991) carried out a Bayesian analysis for the exponential life testing model.

Bayesian estimators were derived by using the non-informative priors of quasi-density and the

inverted gamma pdf, which is a natural conjugate prior of the parameter of this model. Both

the risk function and the Bayes risk were derived for comparison purposes, where the LINEX

and the squared error loss functions were used. Basu and Ebrahimi (1992) also performed a

Bayesian approach to the estimation of a parametric model under an asymmetric loss function

as well as the reliability estimation of complex systems. Bhattacharya et al. (2002) assessed the

comparative analysis of the performance of the Bayesian and classical point estimators of the
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parameter of the univariate exponential family relative to the LINEX loss function, using the

Bayes risk and a fixed prior distribution. Trader (1985) provided a Bayesian inference for the

left truncated exponential family of distributions, when its parameters have a truncated normal

distribution. Shalaby (1993) performed a Bayesian analysis of the doubly truncated exponen-

tial model, whereby a comparison of the minimum posterior risk of the Bayesian estimator to

the minimum risk of the Best Linear Unbiased Estimator (BLUE) was done. Many real world

problems such as gunnery, bombing accuracy and life testing are said to exhibit a model of a

doubly truncated exponential. The functional form for this doubly truncated distribution, the

reliability function and the characteristic functions are given in Shalaby (1993).

The components related to the decision-making process within the Bayesian paradigm for the

exponential model are discussed in this chapter. The remainder of the chapter is structured as

follows. In section 4.2 the Jeffreys' prior is derived and the posterior distribution of the pa-

rameter of the exponential distribution is subsequently derived using the Jeffreys' prior. The

Bayesian estimators relative to the squared error loss and the LINEX loss functions are also de-

rived. The risk measures and the admissibility of the estimators are also discussed. Section 4.3

is devoted to the analogous derivation of the posterior distribution and the Bayesian estimators

when using the natural conjugate distribution as the prior distribution for the parameter. Section

4.4 deals with the derivation of the Jeffreys' prior as well as the subsequent posterior distribu-

tion and the Bayesian estimators for the survival function of the exponential model. Section 4.5

concludes the chapter.

4.2 POSTERIOR ANALYSIS USING THE NON-INFORMATIVE PRIOR

In this section, the posterior analysis using the non-informative prior, mainly the Jeffreys' prior,

is considered. Firstly, the Jeffreys' prior for the parameter of the exponential model and conse-

quently the posterior distribution are derived.

Applying (2.14) to the exponential model (2.7) yields,

I (0) = _E [82 {log [f (xIO)])] _ 1
2
,

11 () 802 0
Hence, using (2.15), the Jeffreys' prior for the parameter of the exponential model is given by

1
7r(O) cx (j' (4.1)
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The Jeffreys' prior is of the same form as the mean of the exponential distribution, i.e., E[x] =
I
O'

. Given the Jeffreys' prior, the posterior distribution of the parameter () is obtained using (2.10)

and (4.1) in (2.20) to obtain

p(()ldata) cx e: exp[-T()],

with normalising constant ~~)' which is 9 (r, T).

(4.2)

4.2.1 Bayesian estimators using the Jeffreys' prior

The main objective is to obtain the various Bayesian estimators and compare their performances

relative to the squared error loss and the LINEX loss functions. Hence, the various Bayesian

estimators of the parameter () are derived relative to both these loss functions.

Remark 4.6 The two forms of the estimation error, ~l = ê - ()(type 1) and ~2 = ~- 1 (type

/1), will be considered since there are situations where ~l is more appropriate than ~2 or vice

versa.

From (2.25), the Bayesian estimator relative to the squared error loss defined in terms of type I

estimation error is the posterior mean. Therefore, the mean of the posterior (4.2) is given by

-- r
()Sl = Epost[()] = T'

Similarly, using (2.27) and (4.2), the Bayesian estimator is given by

-- r+l
() S2 = ----y-.

(4.3)

(4.4)

In the same way, when the type I estimation error is considered, using (2.30) and (4.2), the

Bayesian estimator relative to the LINEX loss function is obtained as

-- 1
(hl = --log[Epost[exp[-aB]]]a

_~ 1 [100

TrBr-1 exp[-[T + aWl d()]
a og r(r)

o

r1 [T + a]~ og -r . (4.5)
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The Bayesian estimator relative to the LINEX loss function defined with the type II estimation

error is obtained by using (2.32) and (4.2) from

Epost [Bexp [;~ll= ; exp[a].

The left hand side of (4.6) is given by

(4.6)

(4.7)

~
Solving for B£2 in

yields

rTr r
r-l-I = T exp[a]

(T-~)(h2
(4.8)

where

z = 1- exp [- r: 1] .
4.2.2 Risk measures and admissibility

Once the Bayesian estimators are derived, their respective risk measures have to be evaluated in

order to be used for the performance comparisons. Since the non-informative prior considered

here is improper, the integrated risk is not obtainable in this situation. Hence, in the subsequent

sections, only the risk functions and the posterior risks for the Bayesian estimators will be

derived and implemented in comparisons.

4.2.2.1 Risk functions

The risk function is one of the measures predominantly used to compare the performance of

estimators for the parameter(s) of interest. In this section, the risk functions of the various

Bayesian estimators are derived and consequently employed for performance comparisons.

Given the likelihood function (2.10), the pdf of the sufficient statistic, T, is given by

q(TJB) cx: BT exp[-BT], (4.9)

which is a Q(r, B).
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~
Applying (2.33) relative to (2.24) and using (4.3) and (4.9), the risk function of 0SI is

00

RS(eS1,0) = J (; - 0) 2 q(TIO)dT
o

(r + 2)02

(r - l)(r - 2)'
r > 2. (4.10)

An analogous computation of the risk function of the estimator BLI, relative to the squared error

loss function, is given by

Both risk functions (4.10) and (4.11) are functions of the parameter O. Furthermore, it can be

noted from (4.10) that for any value of 0, Rs(Bs1' 0) ~ ~02, where equality holds if r = 3.

Hence, if (4.11) is greater than ~02, then BSI dominates BLI, i.e., any choice of the estimator
~oLI in this scenario will result in a higher penalty.

The integral in (4.11) is not easily obtainable, one of the approximation techniques discussed

in chapter 3 can be applied. However, since the ultimate goal here is to compare the two risk

functions, a Monte Carlo simulation is carried out for the difference of the two risk functions,

(4.10) and (4.11)

Rs(Bs1'0) - Rs(BL1' 0)

Z {G _0)2 - GIOg [T;a]_ 0)}(T10)dT
00_ J {~20l [T + a]_ r

2
l 2 [T + a]} (TIO)dT (4r - r

2
)02 (4.12)a og T a2 og T q + (r - l)(r - 2)'

o

which can be written as
00Jg(TIO)q(TIO)dT + g(O).
o

The Monte Carlo procedure is implemented for the integrand above. A sample of 10000 ran-

domly generated variates from Q(r, 0) is used to simulate (4.12). It should be noted that the

parameters a and 0 are arbitrarily chosen, although from the Bayesian perspective, 0 is sup-

posed to be unknown or generated from an assumed prior distribution. Another point worth
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noting is, some of the 10000 randomly generated random variates were discarded when a < 0,

due to the constraint that T + a > O. Table 4.1 summarises the results.

Table 4.1: The difference ofthe risk functions relative to Ls using ~l.

(r,B)
a (3,1) (3, 10) (10,1) (10,10) (100,3)
1 2.03 152.83 0.04 -81.14 -7.00
8 2.26 152.34 0.08 -81.23 -7.02
10 2.22 152.23 0.07 -81.25 -7.03
-1 -1.11 153.05 -0.06 -81.11 -7.00
-8 2.32 153.66 -2.05 -80.99 -6.97

Clearly, the table shows that the risk functions of the two estimators are crossing-over. Hence,

none of the estimators is admissible nor uniformly superior than the other, relative to the risk
~

function measure. One might also use the estimator BL2' while using the squared error loss func-

tion defined in terms of the type I estimation error. Therefore, the corresponding risk function

of the estimator (4.8) is given by
00

Rs(êL2, B) = J (êL2 - B)2q(TIB)dT
o
[a2 - 2a(r - 2)z + (r - l)(r - 2)Z2] B2

- (r - l)(r - 2)Z2 r>2 (4.13)

which is once again a function of the parameter B. It can be observed that even though (4.13)

is differentiable with respect to B, a stationary point cannot be obtained within the allowable

range. Hence, the minimum of (4.13) is not obtainable. Comparison of (4.10) and (4.13) is

done by using the ratio of the two risk functions. First, rewrite (4.10) and (4.13) as

Rs(ês1, B)(r - l)(r - 2) 2
B2 = r +

and
Rs(êL2, B)(r - l)(r - 2) a2 - 2a(r - 2)z + (r - l)(r - 2)z2

B2 Z2
The ratio is given by

(r + 2)Z2
a2 - 2a(r - 2)z + (r - l)(r - 2)z2'

For various values of the parameters, it was found that none of the two risk functions is uni-

formly larger than the other. Consider for instance, a = 1 and r = 3, which yields a ratio of

0.373, in which case the correct estimator is superior to 'OL2. On the other hand, choosing the
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~
LINEX parameter as a = -3, changes the ratio to 1.301, which implies that ()L2 is superior to

the correct Bayesian estimator. Furthermore, from the fact that RS(OSl' ()) ~ ~()2 for any (), the
~

correct Bayesian estimator is superior to ()L2, if the following condition is satisfied:

[a2 - 2a(r - 2)z + (r - l)(r - 2)Z2] ()2 5()2~----~--~--~--~--~~-- > -
(r - l)(r - 2)z2 2 '

which (dividing both sides by by ()2) reduces to

2a2 - 4a(r - 2)z - 3(r - l)(r - 2)z2 > O.

In general, none of the two estimators dominates the other uniformly relative to the squared

error loss function. This is analogous to the result obtained by Basu and Ebrahimi (1991) for

another reparameterised exponential model.

Similarly, considering the type IIestimation error, the risk function of the Bayesian estimator
~
()S2, is obtained using (2.24), (4.4) and (4.9), yielding

Rs(iis,> 0) ~ 7 (rr:1- 1)' q(TIO)dT
o
1

r+l
(4.14)

Suppose now, one uses the estimator êL2 in place ofês2, using (4.8), the risk function is

Rs(ih,> 0) ~ 7 ('~T - 1)'q(TIO)dT
o
r(r + 1)z2 2rz--'-------::-'--- - + 1.

a2 a
(4.15)

It is evident that both functions (4.14) and (4.15) are independent of ().The risk function relative

to the LINEX loss function is derived in similar fashion. Using (2.28), (4.5) and (4.9), the risk

function is given by

00

exp[-a()]! { (T; a) r -log [T; ar} q(TI())dT+ a() - 1. (4.16)
o
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Applying the binomial theorem to (T;rr, (4.16) can be rewritten as

RL{'ih"o) = exp[-aO] { [t.G) Z (;)' q(T10)dT] - Z log [T; ar q(T10)dT}

+ae - 1

[_ eJ {~(r) akr(r - k)ek r(aeY-l arer /00T-1 [-eTJdT}
exp a ~ k r(r) + r(r) + r(r) exp

k-O 0
00

- exp[-aeJ/ log [T; ar q(Tle)dT + ae - 1.
o

~
Similarly, the risk function corresponding to the estimator eSl is obtained by using (2.28), (4.3)

and (4.9)
00

RL(ês1, e) - / LL (; - e) q(Tle)dT
o
00

- / (exp[a(;-e)] -a(;-e) -l)q(Tle)dT
o

00

- exp[-aeJ/ exp [;] q(Tle)dT - ra:el + ae -1. (4.17)
o

The Monte Carlo procedure is employed with 10000 randomly generated variates to determine

whether the difference of the two risk functions (4.16) and (4.17) varies in sign or not. Hence,

the difference is

RL(êLl, e) - RL(ês1, e)

{ exp[-aO] Z [(Tf'l" - exp [-;:11 - r log[Tf'l } q(TIO)dT + ra~rl· (4.18)

Since the values of the parameters are randomly chosen, some of the combinations resulted a

negative risk function and hence are not valid for the comparison. Table 4.2 shows some of the

results for which the simulation was done. Some of the values of the parameters chosen, whose

risk function values are negative, have also been included.
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Table 4.2: The difference of the risk functions relative to LL using D.I.

(r,B)
a (3,1) (3, 10) (10,10) (100,1)
1 -3.96E + 47 RL(Bs1, B) < 0 both negative RL(BL1, B) < 0
8 -7.19E + 106 RL(Bs1, B) < 0 RL(Bs1, B) < 0 RL(BL1, B) < 0
10 -1.51E + 163 RL(Bs1, B) < 0 RL(Bs1, B) < 0 RL(BL1, B) < 0
-1 RL(BL1, B) < 0 -128.32 -70.05 RL(BL1, B) < 0
-8 -2.08E + 02 -3.34E + 33 -8.93E + 32 RL(BL1, B) < 0

-10 -1.44E + 03 -1.83E + 42 -5.31E + 41 RL(BLb B) < 0

It is evident that the correct Bayesian estimator dominates the other alternative, irrespective of

the sign of the LINEX parameter.

Using (2.28) and (4.8) relative to the type II estimation error, the risk function is

00

RL('OL2, B) = J LL ('0:2 - 1) q(TIB)dT
o

exp[-a] (_l_)T _ rz + a - 1.
1-z

(4.19)

Similarly, using (4.4), the risk function of the estimator 'Os2, relative to the LINEX loss function

IS

00J LL ('0:2 - 1) q(TIB)dT
o

(
r + l)T ar

= exp[-a] ---+a-1,
r+1-a r+1

r + 1 > a. (4.20)

In order to compare the performance ofthe two estimators relative to the risk function measure,

consider the difference between (4.19) and (4.20)

RL('OL2, B) - RL('Os2, B)

_ exp[-a] (_l_)T _ rz _ exp[-a] ( r + 1 )T + .rs.
1-z r+1-a r+1

{ [
a]} (a-r-1) ( r+1 )T(r + 1) exp --- + r - exp[-a]
r+1 r+1 r+1-a

(4.21 )

It can be easily observed that in (4.21), only the leading summand is positive. A numerical com-

putation for various values of a and r shows that the expression (4.21) is negative irrespective of
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the sign of the LINEX parameter. It should be noted that the constraint r + 1 > a is required in

order to satisfy a positive expected loss. Table 4.3 summarises the differences in risk functions

for different choices of rand a.

Table 4.3: The difference of the risk functions relative to LLusing .6.2.

r
a 3 10 100 1000
1 -6.81E - 03 -9.86E - 04 -1.22E - 05 -1.25E - 07

1.5 -3.98E - 02 -5.19E - 03 -6.20E - 05 -6.31E - 07
2 -1.57E - 01 -1.73E - 02 -1.97E - 04 -2.00E - 06
3 -2.05E + 00 -LOlE - 01 -1.01E - 03 -1.01E - 05

-1 -5.66E - 03 -9.26E - 04 -1.21E - 05 -1.25E - 07
-1.5 -2.90E - 02 -4.71E - 03 -6.13E - 05 -6.31E - 07
-2 -9.45E - 02 -1.50E - 02 -1.94E - 04 -1.99E - 06

~ ~
It is evident that B L2 outperforms BS2 relative to the LINEX loss function.

Consider now the estimator êSI to evaluate the risk function with respect to the LINEX loss

function. The consequent risk function is obtained, using (4.3), as

- 7 (expHB~ - 1)]- a (B~ - 1) - 1) q(TIB)dT
o

exp[-a] (_r_)r _ 1, r> a.
r-a

(4.22)

~ ~
The performance of BSI and BL2 relative to the LINEX loss function when considering the type

II estimation error is evaluated as well. Hence, using (4.19) and (4.22), the difference is

RL(êL2, B) - RL(ês1, B)

- exp[-a] [(1~ z) r - (r ~ a) r]_ r z + a

(r+ 1) exp [__ a_]_ exp[-a] (_r_)r + a - r.
r+1 r-a

(4.23)

A numerical computation for various values of r and a shows that the expression (4.23) is

always negative. Table 4.4 summarises these results for different values of r and a.
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~ ~
Table 4.4: Difference of the risk functions of OsI and OL2relative to LL.

r
a 3 10 100 1000
1 -1.26E - 01 -1.l0E - 02 -1.l2E - 04 -1.l2E - 06

1.5 -5.36E - 01 -3.56E - 02 -3.45E - 04 -3.45E - 06
2 -2.23E + 00 -8.9lE - 02 -8.06E - 04 -8.0lE - 06

2.5 -1.6lE + 01 -1.94E - 01 -1.60E - 03 -1.58E - 05
-1 -1.07E - 02 -1.l5E - 03 -1.24E - 05 -1.25E - 07

-1.5 -7.94E - 03 -7.2lE - 04 -7.06E - 06 -7.03E - 08
-2 -1.l5E - 03 -1.67E - 05 -2.l6E - Og -1.28E - 13
-3 -4.27E - 02 -8.0lE - 03 -1.09E - 04 -1.l2E - 06

4.2.2.2 Posterior risks

The posterior risk is obtained as the expectation ofthe loss function with respect to the posterior
~

distribution of the parameter. For convenience purposes, the posterior risk of any estimator 0

will first be derived. The relevant posterior risks of the different Bayesian estimators can then
~

be obtained by replacing 0 with the consequent estimator.

Using (2.24) (with k = 1), (2.34) and (4.2) the posterior risk ofB is given by

00

Rf(B) = Epost [Ls(B, 0)] = ;:) J (B - 0)20r-1 exp[-OT]dO
o

t 2rB r(r + 1)- -T+ T2 .

From (4.24), the posterior risk of the Bayesian estimator in (4.3) relative to the squared error

(4.24)

loss function is given as
S~ r

Rl (OSI) = T2'

which is equivalent to the variance of the posterior distribution.

(4.25)

~
Consider the situation when one uses another estimator say for instance, 0LI, to evaluate the

posterior risk relative to the squared error loss function where in fact, the correct Bayesian

estimator is 0SI. Consequently, the risk incurred due to the wrongly chosen estimator is obtained

by substituting (4.5) in (4.24) to obtain

R%(ih,) ~ E"".,,[Ls(OLj, 8)] ~ (~IOg [T; al) 2 _ !~log [T; al + r(r; 1). (4.26)
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It is also of importance to compare the two estimators relative to the LINEX loss function.

Using (2.28) and (4.2), with the type I estimation error, the general form of the posterior risk is

grven as

Rf(ê)

00

t: J ~ ~- r(r) [exp[a(B - B)] - a(B - B) - l]er-1 exp[-TB]dB
o~ ( T)r ~ ar

exp[aB] T + a - aB + T - 1. (4.27)

Substituting the results of (4.5) and (4.3) in (4.27) give

and

L ~ [ar] ( T )rR (BSI) = exp - -- - 1
1 T Tr+a '

(4.29)

respectively.

Remark 4. 7 Evaluating the posterior risk o/ê SI relative to the LINEX loss function is needed

in the decision-making process, when there is a possibility that another estimator can be chosen

incorrectly.

An analogous derivation of the above results of the posterior risks is done when the loss func-

tions are defined in terms of the type II estimation error. Moreover, there are situations when

one of the two forms of error leads to a simpler posterior analysis than the other, or vice versa.

Ingeneral, relative to the squared error loss function when using the type II estimation error the
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posterior risk is given by
00

R~((j) = Epost [Ls(ê,(n] = ~~)j Ls (~-1)or-l exp[-TO] dO
o

_ Tr JOO (~ _ 1)2 «:' exp[-TO]dO
I'(r) 0

o

r(r + 1) _ 2: + 1.
T2t TO

(4.30)

~
Substituting the estimator (4.4) in (4.30) yields the posterior risk corresponding to OS2

s ~ 1
R2 (OS2) = --1·r+

(4.31)

~ ~
Suppose once again the case when one uses the estimator 0L2 instead of 0S2 to obtain the

minimum posterior risk relative to the squared error loss function, the corresponding posterior

risk is

RS(LJ ) = r(r + 1)z2 _ 2rz 1
2 uL2 2 + .a a

(4.32)

In a similar procedure, the posterior risk relative to the LINEX loss function using the type II

estimation error, is obtained from (2.28) and (4.2) as

Rf;(ii) ~ Epe,' [LL(B, 0)] ~ r~JLL (; - 1) 0,-1 exp[-TO]dO
o

00 00

- r~~)exp[-a]jor-lexp [- (T- i) oj dO - ijor+1-1exP[-TO]do+a-1
o 0

( ~)rTO ar
exp[-a] ~ --=+a-1.

TO - a TO
(4.33)

~ ~
Replacing 0 with (4.8) in (4.33), the posterior risk corresponding to 0L2 is

L ~ ( 1 )rR2 (OL2) = exp[-a] -- - rz + a - 1.1-z
(4.34)

~ ~
Analogously, replacing 0 with (4.4) in (4.33) yields the posterior risk corresponding to OS2

L ~ ( r + l)r arR2 (OS2) = exp[-a] - -- + a - 1,
r+1-a r+1 r + 1> a. (4.35)

Table 4.5 summarises the Bayesian estimators and their respective posterior risks.
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Table 4.5: Bayesian estimators and their posterior risks

Estimator Rr Rf'~ ê"" _ 2rê + r(r+l) ~ ( T r ~B T T2 exp[aB] T+a - aB + !!;f_ - 1
BSI = ~ r exp [~] (TIJr - 1T2

BLI = ~log [Tia] (~ ~og ria])"" - ;;; log [Tia] ~ - dog [Tia]
+r r-l-I

7'2
Estimator Rg R!;
~

r(r:~) _ ~ + 1 exp[-a] ( --tL) - ~ + a-IB
T20 TO TO-a TO

B - r+l 1 exp[-a] (__tlL r - ...!!!:... + a-IS2-T r+l r+l-a r+l
BL2 = #z

r(r+llz~ _ 2rz + 1 exp[-a] (l~zr - rz + a-Ia2 a

BSI = ~ 1. exp[-a] (r:J
r

- 1r

Performance comparison of the estimators is carried out by using the relevant posterior risks.

Comparison could also be made relative to the estimation errors. For instance, if (4.25) and
~

(4.31) are used, then BSI is superior to BS2 if

(4.36)

i.e.

In a situation where (4.36) is satisfied, the type I estimation error results in a smaller posterior

risk relative to the squared error loss, the reverse is true otherwise. The difference between the

posterior risks of (4.26) and (4.25), yields

(
~ log [T + a]) 2_ 2r2 log [T + a] + r(r + 1) _ I:
a T aT T T2 T2

G log [T ; a ]) 2 _ ~~ log [T; a] + ~

- G log [T; a]- ;)' ~ 0, (4.37)

where equality holds when the two estimators are equal. From (4.37), it can be concluded
~ ~

that the Bayesian estimator BSI is superior to BLI irrespective of the value of the parameters. It
~

means that the wrongly chosen estimator, BLI, leads to a greater penalty or risk.

Similarly, the same estimators can also be compared relative to the LINEX loss function. It can
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be easily observed that

exp [; - rlog [T; a]] = exp [;] (T: a) r

Hence, using (4.28), (4.29) and (4.38), the following result is obtained:

(4.38)

(4.39)

This follows from

that

exp[x] > 1+ x,

Replacing x with Rf(êLI) in (4.40) it is obvious that

x # o.

(4.41)
~ ~

Therefore, (4.41) implies that (jLI is superior to (jSI. This also implies that under the LINEX

loss function, the wrongly chosen alternative, say êSI, results in incurring a greater risk.

The same comparison of the performance of the estimators is done using (4.31) and (4.32),

where the difference is given by

S(~(j ) RS(~(j ) _ r(r + 1)z2 2rz r
R2 L2 - 2 S2 - 2 - - + -+ 1·a a r

(4.42)

Dividing (4.42) by r yields
(r+1)z22z 1"":"__--::--'--- - + --

a2 a r + l '
which can be rewritten as

(:. - _1_) ((r + 1):'- 1) . (4.43)
a r+ 1 a

It can be easily observed that the two factors in (4.43) have the same sign, implying that (4.42)

is non-negative. Therefore, when type II estimation error is considered, the correct Bayesian

estimator, êS2, is superior to the estimator obtained under the LINEX loss function.

Similarly, the performance of the same estimators can also be compared relative to the LINEX

loss function. Using the posterior risks in (4.34) and (4.35), the difference is given by

R~(ês2) - R~(êL2) = exp[-a] [( r + 1 )r _ (_l_)r] + rz _~.
r+1-a 1-z r+1

Table 4.6 summarises (4.44), for different values of r and a.

(4.44)
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Table 4.6: Difference of the posterior risks relative LL using .6.2.

r
a 1 2 7 20

0.001 1.55E - 14 9.14E - 15 2.18E - 15 3.19E - 15
0.1 1.59E - 06 9.37E - 07 1.72E - 07 2.70E - 08
1 2.27E - 02 1.15E - 02 1.83E - 03 2.77E - 04

1.5 1.98E - 01 7.29E - 02 9.81E - 03 1.43E - 03
-0.1 1.54E - 06 9.16E - 07 1.70E - 07 2.70E - 08
-1 1.47E - 02 8.86E - 03 1.68E - 03 2.68E - 04

It is evident that the correct Bayesian estimator dominates the wrongly chosen alternative. This

is, however expected, since by definition the Bayesian estimator minimises the expected poste-

rior loss. It is also evident that for a small absolute value of the LINEX parameter, the variation

is negligible and hence both estimators perform almost equally, lending credibility to the prop-

erty of the LINEX loss function discussed in chapter 2.

4.3 POSTERIOR ANALYSIS USING THE CONJUGATE PRIOR

In this section, the derivation of the posterior distribution, the Bayesian estimators and the

risk measures are derived using the conjugate prior of the exponential model. The gamma

distribution is a conjugate family of the sequence of random variables Xl, X2, ... , Xn, whose

pdfis of the form (2.7).

Remark 4.8 Analogously, the inverted gamma distribution is a conjugate family for a se-

quence of random variables following the reparameterised form of the exponential distribution

i.e. replacing 0 by ~ in (2.7).

Suppose now the parameter of the exponential model (2.7) is assumed to be gamma distributed

e ~ 0, a, 13 > O. (4.45)

Using (2.10), (2.19) and (4.45), the corresponding posterior distribution is

(T + f3r+a or+a-l exp[-(T + (3)0]
p(Oldata) = r(r + a)

which is Q(r + a, T + (3).

(4.46)
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4.3.1 Bayesian estimators using the conjugate prior

The general expressions of the Bayesian estimators relative to any arbitrary posterior distribu-

tion were derived in chapter 2. In this section, those expressions will be used in deriving the

individual Bayesian estimators relative to the posterior distribution (4.46). The two forms of the

estimation errors will interchangeably be used in defining the loss functions.

Using (2.25) and (4.46), the Bayesian estimator relative to the squared error loss function, which

is the mean of the posterior, is given as

" r+o:
eSI = Epost[e] = T + (3. (4.47)

Relative to the type II estimation error, the corresponding Bayesian estimator is obtained using

(2.27) and (4.46)
7J _ Epost[e2] _ r + 0: + 1
S2 - Epost[e] - T + (3 . (4.48)

The Bayesian estimator relative to the LINEX loss function when using the type I estimation

error IS

1
--log[Epost[exp[-ae]]]
a

- ar(r
1
+a) log [Z (T + (3)"+·0*-1 exp [- (T + (3 + a) 0]dO]

r + 0: I [T + {3+ al (4.49)
a og T + (3 .

Analogous to (4.49), when the type II estimation error is considered, the Bayesian estimator is

(4.50)

where

ZI = 1- exp [- a l.r+o:+l

4.3.2 Risk measures and admissibility

The risk functions, the posterior risks and the integrated risks will be derived in this section. In

contrast to the non-informative scenario, the integrated risks can be obtained, since the prior is

62

Stellenbosch University http://scholar.sun.ac.za



4 THE EXPONENTIALMODEL

well defined here.

4.3.2.1 Risk functions

Since the likelihood is unchanged the distribution of the statistic T, is the same as in (4.9) .
.....

Therefore, using (2.24), (4.9) and (4.47), the risk function ofes1 is given as

00 2

Rs(ês1, e) = J (;: ~ - e) q(Tle)dT
o

Z [(;: ~)' - 2~:a/ 1 q(T10)clT+ 0'. (4.51)

.....
The risk function of eLI relative to the squared error loss function is also obtained using (4.49)

and is given by

..... Joo (r + a [T + f3 + a] ) 2RS(eL1, e) = -a-log T + f3 - e q(Tle)dT.
o

Monte Carlo simulation can be applied to establish the trend of the of the risk functions of the

(4.52)

two estimators relative to the squared error loss function. The difference is given by

Rs(êLl, e) - Rs(ês1, e)

Z {(':aIOg [T;!;a])' + 2~:~)e}q(T10)dT

- Z {2(r: a)O log [T;!;a]_ (;:~) }(T1O)dT

Similarly, the Monte Carlo procedures are implemented by generating 10000 variates from a

9 (r, e) for selected values of a, a and f3. Table 4.7 summarises the results.

Table 4.7: Difference of the risk functions relative to Ls using ~1.

(r, e, a, f3)
a (1,0.5,0.01,0.5) (2,1,0.5,1) (3,2,2,3) (4,3,4,10)

0.01 -0.021 -0.0068 -0.00033 -5.85E - 05
0.5 -1.139 -0.184 -0.032 -3.35E - 03

-0.01 0.0336 0.0057 0.00068 6.80E - 05
-0.5 8.98 0.55 4.12 0.0049
-1 3.00 0.889 0.056 0.0049
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It is clear that crossing-over risk functions exist in some of the allowable ranges. Hence, none

of the two estimators is uniformly superior. However, it is worth mentioning that for various

values of the parameters, the difference attains positive when the LINEX parameter is negative.

Itmight be the case that the correct Bayesian estimator outperforms the other alternative, when

a < 0 and should be further investigated.

~
The corresponding risk function of (jS2 relative to the squared error loss function, which is

defined in terms of the type II estimation error, is obtained using (2.24), (4.9) and (4.48)

where Tl = r+!+l' It is evident that (4.53) increases when anyone of the parameters increases,

because of its polynomial property. Furthermore, the minimum of the (4.53) could not be

obtained since there is no stationary point (a point where the first derivative with respect to
~

(j vanishes). The risk function of (jL2 relative to the squared error loss function can also be

obtained using (4.50) as follows

200 00

- Z~~ J (T + 13)2 q (TI(j) dT + 2~1 J (T + 13) q(TI(j)dT + 1
o 0

zr(j2 [r
2 + r f3r 132] 2z1(j (r 13)- --;;,z ~+2 e+ +---;- e+ +1. (4.54)

The expressions (4.53) and (4.54) are non-negative for any values ofthe parameters. To compare
~ ~

the performance of the two estimators (jL2 and (jS2 1 relative to the squared error loss function,

the difference is

RS(iJL21 (j) - RS(iJS21 (j)

{ Z~ _ ( 1 1)2} (r2 + r + 2rf3(j + f32(j2) + [2Z1 - 2 1] (r + f3(j)
a r+a+ a r+a+

- {7 - r+!+l} [(7 + r+!+1) (r2 + r + 2rf3(j + f32(j2) + 2(r + f3(j)] . (4.55)
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The expression in the second product is non-negative, hence, the sign of(4.55) depends on the

sign of the expression
Zl 1
a r+a+1

It can be observed that this expression is always negative when a > 0 and always positive when

a < O.

Therefore, relative to the squared error loss function, the correct estimator outperforms the

other alternative if the LINEX parameter is negative and vice versa when the LINEX parameter

is positive. Table 4.8 summarises the results of the difference for various chosen values of a, r,

(j, a and,B.

Table 4.8: Difference of the risk functions relative to Ls using .6.2,

(r,(j,a,,B)
a (1,0.5,0.01,0.5) (2,1,0.5,1) (3,2,2,3) (4,3,4,10)

-0.01 0.006 0.005 0.006 0.020
-0.1 0.064 0.051 0.064 0.202
-1 0.798 0.575 0.694 2.135

0.01 -0.006 -0.005 -0.006 -0.020
0.5 -0.280 -0.235 -0.307 -0.976
1 -0.504 -0.442 -0.590 -1.897

It is evident that none of the two risk functions is uniformly greater than the other. Hence, none

of the two estimators outperforms the other uniformly relative to the squared error loss function.

It also illustrates that the deviation of the two risk functions is negative whenever a > 0 and

positive when a < O.

Similar procedures are applied when using the LINEX loss function. Hence, using (4.49), the

corresponding risk function is given by

00 [ 1T + ,B+ a r+a T + ,B+ af expl-aB] ( T + (3) - (r + a) log [ T + (3 1 q(TIB)dT

+a(j - I, (4.56)

which is not easily integrable and some of the Bayesian computation techniques discussed in
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......
chapter 3 can be implemented. The risk function corresponding to BSI relative to the LINEX

loss function is obtained using (4.47)
00

RL(ês1, B) = J LL (;:; - B) q(TIB)dT
o

[exPI-aBl Z exp [a~: ;)]- a~: ;)] q(TIB)dT + aB- L (4.57)

At this stage, the performance of the two estimators might be compared using (4.56) and (4.57)

by either approximating separately using the Monte Carlo procedure or by taking the difference

and then using Monte Carlo procedures. In the latter case, care must be taken to verify that the

two expressions must be non-negative, otherwise, the notion of a risk is not satisfied. In this

case, the difference was taken in the range, where the two expressions attain a positive value,

hence

RL(êL1, B) - RL(ês1, B)
00J (LL (r : a log [T; !;a] - B) - LL (; : ; - B) ) q(TIB)dT
o

00

J {(r + a [T + (3 + a] r + a) }+exp[-aB] -a-log T + {3 - T + (3 q(TIB)dT.
o

Using the Monte Carlo procedures, the expectation is obtained by generating random variates,

(4.58)

T, from the Q(r, B). Table 4.9 summarises the results.

Table 4.9: Difference of the risk functions relative LL using .6.1.

(r,B,a,{3)
a (1,0.01,1,2) (2,0.5, 3, 1) (3,2,10,3)

-0.001 2.44E - 10 2.05E - 09 6.66E -11
-0.1 2.43E - 04 1.58E - 03 -2.65E - 05
-1 0.264 1.41 3.73E - 02

0.01 -2.44E - 07 -2.85E - 06 -7.95E - 08
1 -0.268 -13.48 -0.127

100 -7.70E + 42 -2.62E + 161 -9421.03

Table 4.9 shows that crossing-over risk functions are obtained relative to the LINEX loss func-
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r+a+1

- zd3 (exp [-a + zd3(J+ ar ]- 1) ,
r+a+1

(4.60)
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tion. Therefore, none of the two estimators dominates the other uniformly. It can also be noted

that this is irrespective of the sign of the LINEX parameter .

.....
The risk function of the Bayesian estimator (JL2 relative to the LINEX loss function is obtained

using (4.50) and is given by

00 00

exp] -a] J exp[zI(J (T + j))]q(TI(J)dT - J ZI(J (T + jJ) q(TI(J)dT + a - 1
o 0

exp[-a + ZIj)(J] (_1_)r - ZIj)(J - rZI + a - 1. (4.59)
1- ZI

Sometimes, the performance of estimators might be compared using the minimum risk. The

minimum risk incurred by choosing êL2 relative to the LINEX loss function is obtained by

partially differentiating (4.59) with respect to (J.Therefore,

since ZIj) =1= 0, (4.60) is zero only if

exp [-a + ZIj)(J + ar ] - 1 = 0,
r+a+1

which implies that
ar

-a + ZIj)(J + = 0,
r+a+1

(4.61)

hence,

(J= _1 (a _ ar )
ZIj) r + a + 1 .

Substituting this in (4.59), gives the corresponding minimum risk function

exp [-a + ZIj) (~ (a - ar )) + ar ]
~~ r+a+1 r+a+1

-ZIj) (_1 (a _ ar )) - rZI + a - 1
ZIj) r + a + 1

ar
---- - rZI = -rlog[1- ZI]- rZI·
r+a+1

(4.62)
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oRL(7i52,0) [ af30 1 ( r+a+l)T af3_ __.:__ __.:_= exp -a + ----
00 r + a + 1 r + a + 1 - a r + a + 1

It can be observed easily that (4.64) reduces to zero only if

exp [-a + af30 1 ( r + a + 1 ) T- 1 = 0,
r+a+l r+a+l-a

af3
(4.64)

4 THE EXPONENTIAL MODEL

The risk function of the estimator 7i52 relative to the LINEX loss function is obtained by using

(4.48) and is given by

(4.63)

where (r + a + 1 > a), since (4.63) must be non-negative. The minimum of (4.63) is obtained

in a similar fashion as before. Hence, partially differentiating (4.63) with respect to 0

r+a+l

which implies that

[
af30 1 (r+a+l-a)Texp = exp ar+a+l [J r+a+l

Solving 0 yields

Or + a + 1 ( 1 [r + a + 1- a] )= a+ T og .
af3 r + a + 1

The corresponding minimum risk is given by

ar 1 [r + a + 1- al- -r og
r+a+l r+a+l

r 10g[1 - ZIJ - r 10g[1 + 10g[1 - ZIJ],

(4.65)

...... ......
where it attains a positive value. The comparison of the performance of 052 and 0L2 can now be

carried out in terms of the minimum risks (4.62) and (4.65)

(4.66)

Table 4.10 summarises the results of the difference of the minimum of two risk functions for

various r, a and a.
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4 THE EXPONENTIAL MODEL

Table 4.10: Difference of the minimum risks relative to LL using ~2.

(r, a)
a (3,0.001) (4,0.5) (5,2) (7,8) (30000,300000)

-0.001 -2.34E - 11 -1.20E - 11 -4.88E -12 -8.55E -13 6.66E - 12
-0.1 -2.32E - 05 -1.19E - 05 -4.86E - 06 -8.52E - 07 0
-3 -5.29E - 01 -2.79E - 01 -1.l7E - 01 -2.16E - 02 -1.33E -11

0.001 2.34E - 11 1.20E - 11 4.88E -12 8.54E -13 -3.33E - 12
0.1 2.37E - 05 1.2lE - 05 4.91E - 06 8.57E - 07 -3.33E - 12
3 2.33E - 14 1.20E - 14 5.00E - 15 7.77E - 16 0

Table 4.10 shows that relative to the LINEX loss function, when defined in terms of type II

estimation error, none of the two estimators dominates the other uniformly, irrespective of the

sign of the LINEX parameter. It should also be noted that, the numerical computation was

executed for more parameters, than given in the table. In this situation, an important idea is to

investigate the sensitivity of the value of the LINEX parameter by changing the number of fully

measured components, r. In general, from the pair-wise comparisons of the estimators, it could

be observed that more often the correct estimator outperforms a wrongly chosen alternative.

However, there are situations where none is superior than the other, i.e. crossing-over risks are

obtained. For this reason, a further investigation on the sufficient or necessary conditions of

admissibility or inadmissibility might always be an important idea. The risk function of the
~

estimator (jSI can also be obtained relative to the LINEX loss function, when defined in terms

of the type II estimation error. Using (4.47), the corresponding risk function is given by

MiisbO) = 7 (exp Hê:, -1)]- a (ê:, - 1)-1) q(TIO)dT
o

00

exp [-a + af3(j] J exp [ a(jT ] q(TI(j)dT - .st: - _!!j}_ + a - 1
r+a r+a r+a r+a

o

exp [-a + af3(j] ( r + a ) r _ __!!!!_ _ af3(j + a _ 1. (4.67)
r+a r+a-a r+a r+a

Hence, partially differentiating (4.67) yields

8RL(ês1, (j) = exp [-a + af3(j] ( r + a )r _!!j}_ _ _!!j}_
8(j r + a r + a - a r + a r + a'

which by equating to zero and solving for (j gives the point at which the minimum is attained,

namely
(j = r + a ( 1 [r + a - a] )

f3
a + r og .a r+a
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Substituting this in (4.67) yields the corresponding minimum risk

...... ar [r + a - a]RL(OSl, O)min = --- - rlog .
r+a r+a

(4.68)

4 THE EXPONENTIAL MODEL

The performance ofêsl and êL2 can now be compared in terms of the minimum risks numeri-

cally using (4.62) and (4.68)

RL(êsl, O)min - RL(êL2, O)min

_ -r ( a + _a + log [r + a - a]_ 1 + exp [_ a ]) .
r+a+l r+a r+a r+a+l

Choosing values for the unknowns r, a and a and calculating the differences in minimum risks

yield the summary in table 4.11.

...... ......
Table 4.11: Difference of the risk functions of 0SI and 0L2 relative to L L.

(r, a)
a (3,0.001) (4,0.5) (5,2) (7,8) (30000,3000)

-0.001 7.28E - 08 3.26E - 08 1.20E - 08 1.88E - 09 0
-0.1 6.85E - 04 3.08E - 04 1.13E - 04 1.79E - 05 1.33E - 11
-3 -1.80E - 01 -9.64E - 02 -4.05E - 02 -7.36E - 03 -3.76E - 09

0.001 7.29E - 08 3.27E - 08 1.20E - 08 1.88E - 09 -3.33E -12
0.1 7.74E - 04 3.45E - 04 1.26E - 04 1.98E - 05 6.66E -12
3 2.04E + 01 1.23E + 00 3.44E - 01 4.63E - 02 1.88E - 08

Table 4.11 shows that over the allowable range of the parameters, none of the estimators domi-

nates the other uniformly. If the LINEX parameter is positive, more often the correct estimator

outperforms the other alternative except when r is extremely large.

4.3.2.2 Posterior risks

The same procedure will be employed as in section 4.2. First, the general expression of the
......

posterior risk for any estimator 0 will be derived and then the respective posterior risks. Using
......

(2.24), (2.34) and (4.46), the posterior risk of any estimator 0 is given by

00

Rf(ê) = Epost [Ls(ê, 0)] = (~(~!):;a J (ê - O)20r+a-l exp[-(T + f3W]dO
o

......02 2(r + a)ê (r + a)(r + a + 1)- + ...:..__---'--'-----,;---'-
T + f3 (T + (3)2

(4.69)
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RS(7J ) = (r+a log [T+.B+a]) 2 _ 2(r+a) log [T+.B+a] + (r+a)(r+a+1)
1 LI a T+f3 a(T+f3) T+f3 (T+f3)2' (4.71)

4 THE EXPONENTIAL MODEL

.......
Substituting (4.47) in (4.69), the posterior risk of the Bayesian estimator OSl is given by

RS(ê ) _ r + a
1 SI - (T+f3)2' (4.70)

which is equivalent to the variance of the posterior distribution. Considering the situation when

one uses the estimator êLI for ê in (4.69), the consequent posterior risk is

Similarly, the posterior risks relative to the LINEX loss function are obtained. Using (2.28) and
.......

(4.46), the posterior risk of any estimator 0 is

L ....... [....... ] (T + f3f+ajoo....... + 1Rl (0) = Epost LL(O,O) = r(r + a) LL(O - O)er a- exp[- (T + 13) O]dO
o

_ [_ .......0] ( T + 13 )r+a - .......0 a(r + a) _ 1
exp a T+f3+a a + T+f3 . (4.72)

.......
Using (4.49), the respective posterior risk of 0LI is given by

RL (ê ) - a (r + a) _ ( ) 1 [T + 13 + al
1 LI - T + 13 r + a og T + 13 .

If the estimator (4.47) is used in (4.72), the respective posterior risk is given by

(4.73)

RL(7J ) = ex [a(r + a)] ( T + 13 )r+a _ 1.
1 SI P T + 13 T + 13 + a

(4.74)

An alternative approach is to derive the posterior risks using the type II estimation error. Hence,
.......

using (4.46) and (4.48), the respective posterior risk of any estimator 0, is given by

....... (T + er= joo (0 ) 2Epost[Ls(O,o)] = r(r+a) :0-1 Or+a-1exp[-(T+f3)O]dO
o

(r + a)(r + a: 1) _ 2(r + a~ + 1. (4.75)
(T + 13)2 7J (T + 13) 0

.......
Substituting (4.48) in (4.75), the posterior risk of the Bayesian estimator OS2 is given by

S....... 1
R2 (OS2) = 1r+a+

(4.76)
.......

If the estimator OL2 is used, the posterior risk is obtained by substituting (4.50) in (4.75) to

obtain

RS( .......O ) _ (r + a)(r + a + l)zr _ 2rz1
2 L2 - 2 + 1.a a

(4.77)
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4 THE EXPONENTIAL MODEL

The same derivation of the posterior risk is performed relative to the LINEX loss function.
---Hence, using (2.28) and (4.46), the posterior risk of any given estimator, (), is given by

00

L(---()) [ (---)] (T + (3f+CXj (() ) r+cx-l [( (3)()] ()R2 = Epost L L (), () = r(r + a) L L (j - 1 () exp - T + d
o

00

(T + (3f+cx exp[_a]j()r+cx-l exp [- (T + (3 - ~) ()J d()
r(r+a) ()

o
00

-ij ()r+cx-l exp[-(T + (3)()]d()+ a - 1

o

_ exp[-a] ( (T+~ê )r+cx _ a(r+a~+a_1.
(T + (3) () - a (T + (3) ()

(4.78)

---Substituting ()L2 from (4.50) in (4.78), gives the consequent posterior risk, which is equivalent

to

(
1 )r+cx

R~(êL2) = exp[-a] -- - (r + a)zl + a - 1.
1-Zl

---The posterior risk corresponding to ()S2 relative to the LINEX loss function is obtained in similar

(4.79)

fashion by substituting (4.48) in (4.78) to obtain

L --- ( r + a + 1 ) r+cx (r + a )R2 (()S2) = exp[-a] - a + a - 1.
r+a+1-a r+a+1

Similarly, substituting the estimator given by (4.47) in (4.78), the posterior risk is

(4.80)

r + a> a. (4.81)

A summary of the estimators and their posterior risks haven been provided in table 4.12.
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4 THE EXPONENTIAL MODEL

Table 4.12: Summary of estimators and their respective posterior risks

Estimator Rf Rt
~ ~2 _ 2(r+a)ê + (r+a)(r+a+1) ~ (__B_fL r+a ~0 0 T+(3 (T+(3)2 exp[-aO] T+(3+a - aO

+a(r+a) _ 1
T+B

O-.!±Q. r+a exp [~] (T~ar - 1SI - T+(3 (T+{:J)2

jj = r+a log [T+,8+a ] (r+a log [T+,8+a ] ) ~ _ 2(r+a)2 a(r+a) _ (r+a)log [T+,8+a]LI a T+(3 a T+(3 a(T+(3) T+(3 T+(3
X log fT+,8+O: 1 + (r+a)(r+a+1)

T+(3 (T+(3)2
Estimator R~ R~
~ (r+a)(r+a+1) _ 2(r+a2 + 1 ( (T (3Jê ) r-j-a0 exp[-a] +

(T+(3)2ê2 (T+(3)B (T+(3)B-a
_ a(r+a2 + _ 1

(T+(3)O a
o - ill _1_ exp[-a] ( r+a+1 r+a
S2 - T r+a+1 r+a+1-a

-a ( r+a -) + a-Ir+a+1~ (r+a)(r+a+1)zr _ 2rZl + 1 ( r+a
OL2 = _E:.._ exp[-a] l~ZlTz a2 a

-(r + a)zl + a-I
o r+a 1 exp[-a] (___!,±£_ r+a

- 1SI = T_±jj_ r±_a r+a-a

Once the posterior risks of all the estimators are obtained, comparison of the performance of

the estimators is carried out in order for a decision with minimum risk to be made. Hence, a

pair-wise comparison of the estimators is performed obtaining the differences of the posterior

risks. Using (4.70) and (4.71)

S ~ S ~
Rl (OLl) - Rl (OSl)

_ (r+aIO [T+f3+a])2 _ 2(r+a)210 [T+f3+a] + (r+a)(r+a+l)
agT + 13 a (T + (3) g T + 13 (T + (3)2
r+a

(T + (3)2'

which simplifies to

(
r+al [T+f3+a]_ r+a)2 ~O

a og T + 13 T + 13 ~.
Therefore, from (4.82), it can be easily observed that with respect to the squared error loss func-

(4.82)

~ ~
tion, 0SI always performs better than the wrongly chosen estimator, 0LI. Hence, if a decision-

~
maker chooses 0LI, instead, a greater risk will be incurred.

The performance comparison of the estimators is also done when the type II estimation error is
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(r + a)(r + a + l)z; 2rzl 1....:..._-~----:---~ - -- - + 1
a2 a r + a + 1

(r+a)(r+a+1)z; 2(r+a)zl r+a
_:__-__;__:.----::-----'---=- - + ----

a2 a r + a + i ' (4.83)

4 THE EXPONENTIALMODEL

used. Hence from (4.76) and (4.77), the difference is

and dividing by (r + a) reduces to

(
Zl _ 1 ) ((r + a + l)ZI _ 1) .
a r+a+1 a

(4.84)

It can be easily shown that the two factors of the expression (4.84) have the same sign. Hence,
--(4.83) is non-negative which in tum implies that the Bayesian estimator OS2 is always superior

to êL2 relative to the squared error loss function. It is, therefore, inevitable for one to incur

a greater risk, if a wrong estimator is used in the decision-making process, under the squared

error loss function.

Similar comparisons can be performed when using the LINEX loss function. Hence using

(4.74) and (4.73), the difference is

L-- L--Rl (OSI) - Rl (OLl)

_ exp [a(r + a)] ( T+f3 )r+a _ a(r + a) + (r + a) log [T+f3+a] _ 1. (4.85)
T + f3 T+f3+a T + f3 T+f3

The same techniques used in (4.39)-(4.41), yield

L-- [L--]Rl (OSI) = exp Rl (OLI) - 1,

implying that (4.85) is non-negative and entails that Rf(êsl) is uniformly greater than Rf(êLI).

Similarly, if the LINEX loss function is defined in terms of the type II estimation error, the

performance of the two estimators can be compared, using (4.79) and (4.80)

L-- L--R2 (OS2) - R2 (OL2)

exp[~al {(":~~t~.r+"~C~z!f"} + (r+ a)z! ~ aC::: 1) .(4.86)

Various values ofr, a and a are used to evaluate (4.86) and the results are given in table 4.13.
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Table 4.13: Difference of the posterior risks relative to LL using ~2.

(r, a)
a (3,2) (4,4) (5,8) (7,12)

-0.001 3.20E - 15 3.06E - 15 3.59E -15 3.55E -15
-0.1 2.88E - 07 1.37E - 07 5.91E - 08 2.96E - 08
-1 2.82E - 03 1.35E - 03 5.86E - 04 2.94E - 04
-2 4.64E - 02 2.20E - 02 9.48E - 03 4.75E - 03

0.01 2.90E - 11 1.37E - 11 5.92E - 12 2.97E -12
0.5 1.88E - 04 8.78E - 05 3.76E - 05 1.88E - 0
1 3.18E - 03 1.46E - 03 6.15E - 04 3.05E - 04

10 1.75E - 02 7.75E - 03 3.21E - 03 1.57E - 03

Table 4.13 shows that the two posterior risk evaluated at the correct Bayesian estimator domi-

nates the other uniformly.

In most of the situations, the pair-wise comparisons of the performance of the various estimators

entails that the correct estimators perform better than the other alternatives. However, some

crossing-over risk functions are obtained. Therefore, a decision-maker who is encountered with

these scenarios need to study meticulously the consequences of every choice.

4.3.2.3 Integrated risks

The integrated risk is the expectation of the risk function with respect to the prior distribution

under consideration. In this section, given the conjugate prior in (4.9), the integrated risk for

every risk function is defined, but not all have been obtained in closed-form. The two ways of

defining the integrated risk, (2.35) and (2.36) will be interchangeably used depending on the

situation.

Using (4.46) and (4.51), the integrated risk relative to the squared error loss function defined in

terms of the type I estimation resulted in expressions that are not in closed-form solutions. The

comparisons can, however, be made if the type II estimation error is considered.

Using (4.53) and (4.54), the integrated risk of the estimators (JS2 and (JL2 relative to the squared
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error loss function are
00

rs(BS2) = J [3r21]2 + 3r1]2 + 4r1]2(3() + r?(32()2 + 2ro.1]2 + 2o.1]2(3() + 21]2(3() + 1] 7r(()lo., (3)d()
o
3r21]2 + 3r1]2 + 4ro.1]2 + 1]2(0.2 + a) + 2r1]2o. + 20.21]2 + 20.21]2 + 1 (4.87)

and

7 [:~[r' + r + 2fiBr + fi'B'] + 2:1 (r + fiB) + 1]"(Blo, fi)dB
o
z2 2z-1 [r2 + r + 2o.2r + (0.2 + a)] + _1 (r + a) + 1, (4.88)
a a

~ ~
respectively. The estimators ()S2 and ()L2 can now be compared. Hence, the difference of the

two expression yields

The expression (4.89) can further be rewritten as

{
Zl 1}
~-r+o.+1 x

[(
Zl + 1 ) (r2+r+2ro.+(32(o.2+o.))+2(r+o.)].
a r+o.+1

(4.90)

Whether the expression (4.90) is negative or positive depends again on the sign of the leading

factor (as in the case of the risk functions mentioned before), since the second product is always

non-negative. Hence, the correct Bayesian estimator, 7iS2, outperforms 7iL2 with respect to the

Bayes risk, if a < 0, otherwise 7iL2 is superior to 7iS2. Therefore, within the allowable range of
~

the hyperparameters of gamma distribution and for a negative LINEX parameter, ()S2 uniformly

dominates the other relative to the Bayes risk when evaluated relative to the squared error loss

function. This was confirmed using numerical computation for various parameters. The table

provided below is a sample of the results obtained from EXCEL sheet computation. The table

also illustrates for these particular values of the parameters, where a > 0, the wrong alternative

is superior to the correct Bayesian estimator while the correct estimator outperforms the other

when a < 0. Table 4.14 summarises the result for various values of r, a, a and (3.
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Table 4.14: Difference of the integrated risk relative to Ls using D.2'

(r,0:,(32
a (2,0.5,1) (3,2,3) (4,4,10) (7,13,25) (100,0.001,0.01)

-0.00001 3.21E - 06 4.07E - 06 2.84E - 05 1.23E - 04 9.79E - 08
-0.01 3.21E - 03 4.08E - 03 2.84E - 02 1.23E - 01 1.00E - 04
-200 1.48E + 46 1.97E + 26 1.04E + 18 5.34E + 08 9.03E + 00

0.5 -1.48E - 01 -1.94E - 01 -1.37E + 00 -6.07E + 00 -4.98E - 03
1 -2.73E - 01 -3.70E - 01 -2.66E + 00 -1.20E + 01 -9.94E - 03

100 -1.12E + 00 -2.44E + 00 -2.53E + 01 -2.47E + 02 -6.03E - 01
1000 -1.12E + 00 -2.44E + 00 -2.55E + 01 -2.58E + 02 -9.99E - 01

The integrated risks of these estimators relative to the LINEX loss function is also another point
~ ~

of interest. Hence, from (4.59) and (4.63) these integrated risks of 0L2 and 0S2 are
00

rL((JL2) = J [exp[-a + Zl(30]- Zl(30 - rZl + a - 1]7f(010:, (3)dO
o

(
1 )r+a

exp[-a] -- - (r + O:)Zl+ a-I
1- Zl

(4.91)

and

JOO[exp [-a+ a(30 ] ( r+o:+ 1 )r 7f(Olo:,(3)dO]
r+0:+1 r+0:+1-a

o

JOO[ar a(30 ]- ( ) - + a-I 7f(010:, (3)dO
r+0:+1 r+0:+1

o

( )
r+a ( )r+0:+1 ar+o: 1exp -a - + a-

[ ] r+0:+1-a (r+0:+1)
(4.92)

respectively, which are also the same as (4.79) and (4.80) respectively and it was already shown

the two posterior risks cross-over each other.

4.4 THE SURVIVAL FUNCTION

The reliability of a system is expressed by means of the survival function. Hence, estimating

the survival of a system or a component in a system has attained a crucial place in the reliability

study for improvement of productivity or other related areas. The Jeffrey's prior of the survival

function of the exponential model and the corresponding posterior distribution have been de-

rived in the next section. Furthermore, Bayesian estimators have also been derived relative to

the squared and LINEX loss functions.
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4.4.1 The Jeffreys' prior and posterior analysis

Suppose now, using (2.8), the survival function of the exponential model at any time point t, is

given by

S(t) = exp[-Ot] = u.

Hence, solving for 0 and substituting the result, the corresponding exponential model in terms

of the survival function is given by

f(xlv) = (-l~g[v]) exp [~log[v]]. (4.93)

Therefore, for a sequence of lifetimes, the corresponding likelihood function in terms of the

survival function v, is given by

£(datalv) cx (( -l~g[v])) r exp [- t~i109[V[]

_ ( (-l~g[v]) ) r vt,

with
n

T= I>i.
i=l

The Jeffreys' prior for the survival function, v,can be obtained from (4.93) as follows. Suppose

x
log [f(xlv)] = log [(-log[v])] -log[t] + -log[v] _ K.

t

Now,
etc 1 x
-= +-ov v log[v] tv

and
02K (1 + log[v]) x
ov2 v2Iog2[v] - tv2'

Hence,
I (0) = -E [o2{log[f (xiv)])] = (1+ log[v]) E [_!_]
11 o ~ 2 21 2[] + 1/ t 2 'uV V og V v

the latter expression is given by

00

E [_!_] = J_!_ (-log[v]) [~ 1 []] d
1/ 2 2 exp og v x.tv tv t t

o
Letting

xu = -( -log[v])
t
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results in
00

e; [t:2] V2(_ ~Og[V])J u exp] -u]du
o

1
-

V2( -log[v]) .
Therefore, the Fisher information matrix is given by

In(B) = (1+ log[v]) _ 1 _ 1
v210g2[v] v210g[v] v2( -10g[v])2'

from which the Jeffreys' prior for the survival function is given by

1
7r(v) cx v( -log[v])·

The corresponding posterior distribution of v is obtained as

(4.94)

p(vldata) cx (-10g[v]r-1vt-1. (4.95)

The normalising constant in (4.95) (using transformation u = -log[v]) is equal to
1 00J (-10g[v])r-1vt-1dv = Jur-1 exp[-uw]du = r~:),
o 0

where
T

w=-.
t

Hence, the posterior (4.95) becomes

( Id )
_ (_10g[v])r-1vw_1wr

p v ata - I'(r] (4.96)

It can be easily shown that

Epost [Vk] = (k: w) r (4.97)

Once the posterior distribution of the survival function, v, is obtained, it is now possible to

obtain the Bayesian estimators based on the results given in chapter 2. Hence, using (4.97)

where k = 1, the Bayesian estimator relative to the squared error loss function, when defined

in terms of the type I estimation error, is

VS1 = (1:w)r
The corresponding Bayesian estimator relative to the squared error loss function, when it is

defined in terms of the type II estimation error, is

__ _ Epost[v2] _ (1+ w)r
VS2 - - --

Epost[v] 2 + w
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Similarly, using (2.30) and (4.96), the Bayesian estimator relative to the LINEX loss function,

when it is defined in terms of the type Iestimation error, is

VLl = _! 10g[Epost[exp[-av]].
a

(4.98)

Now, using the Taylor series expansion about zero for exp] -av] and applying the result in

(4.97), (4.98) reduces to

VLl ~ -!log [f>-a)i (~)rl.
a i=O Z+w

The Bayesian estimator relative to the LINEX loss function, when defined in terms of the type

II estimation error is not obtainable.

4.4.2 Posterior risk

The posterior risk relative to the squared error loss function when the type I estimation error is

used, is always equal to the variance of the posterior whenever it exists. Hence in this case, it is

given by

Rf(vSl) Epost [v2] - E;ost[v]

- (2~Wr - c~wr
in the range where it attains non-negative. The risk functions, however, do not exist.

4.5 CONCLUSION

The Jeffreys' prior () and the survival functions v of the exponential model, as well as their

respective posterior distributions were derived. Furthermore, the conjugate prior distribution

was used in the derivation of the posterior and subsequent analyses. The Bayesian estimators

of the parameter and the survival function of the exponential model were derived, relative to

the squared error loss and the LINEX loss functions. Moreover, two forms of the estimation

error were used in defining the loss functions. Risk measures were obtained to establish the

robustness of estimators used under different loss functions.

Relative to the squared error loss function, none of the estimators uniformly dominates the

other with respect to the risk function. There are, however, situations where the correct es-
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4 THE EXPONENTIAL MODEL

timator dominates the other and vice versa. In such situations, some sufficient conditions of

inadmissibility or admissibility might be of importance.

Relative to the LINEX loss function, however, it was observed that the correct estimators are

superior to the other alternatives, with respect to the risk function, when the Jeffreys' prior

is considered. However, when the conjugate prior is considered, there are situations where

none of the estimators uniformly dominates the other. Furthermore, even though not proved
~

analytically, for different values considered, the correct estimator (JL2 performed better than
~
(JSI. From the numerical computations performed, it could also be observed that more often,

a wrongly chosen alternative leads to a greater risk and this is quite plausible, since at a risk

analysis stage, one expects to use the same estimator that is obtained relative to the loss function

under consideration.

Similar pair-wise performance comparisons were done using posterior risks. In all these com-

parisons, it was shown that the correct Bayesian estimator outperforms the alternative.

81

Stellenbosch University http://scholar.sun.ac.za



CHAPTER 5

THE WEIBULL MODEL

5.1 INTRODUCTION

In the previous chapter, the Bayesian analyses of the univariate exponential model was per-

formed. It is known that the exponential distribution is a special case of the two-parameter

Weibull distribution, where the shape parameter is taken as unity. In this chapter, the same

analyses are done for a general Weibull model. Two situations are considered where, only the

scale parameter is unknown and secondly, where both the scale and shape parameters are un-

known.

In many practical problems of reliability, such as in electrical components and complex mecha-

nisms, the Weibull distribution is known to sufficiently represent a lifetime distribution (Soland,

1969). The Weibull model is useful mainly in situations where components change stochasti-

cally and data is observed from repairable systems (Ananda & Ravindra, 1998). Quite often,

the parameters underlying the Weibull model cannot be known beforehand especially when in-

sufficient data is available. A Bayesian approach can ease this problem at hand. Many authors

performed a Bayesian analysis where the shape parameter is known. Yao and William (2002)

described the life-test plan for type II censored data. In their analysis, a conjugate prior was used.

Evans and Nigm (1980) also performed an approximate Bayesian approach to obtain predictive

bounds for failure times. They devised methods of approximating the remaining components

of a sample, whose lifetimes follow a two parameter Weibull pdf and the predictive bounds of

a similar, but unused component. Dellaportas and Wright (1991) also carried out a numerical

approach of evaluating a posterior expectation using the Weibull pdf.

The remainder of the chapter is schemed as follows. In section 5.2, the Jeffreys' prior for the
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5 THE WEIBULL MODEL

scale parameter is derived treating the shape parameter as known. The Bayesian estimators

and their respective risk measures are also derived. Section 5.3 is devoted to the analogous

derivation of the Jeffreys' prior, as well as the reference prior for the Weibull model when both

parameters are unknown. Moreover, the computational difficulties of the posterior analysis for

the general case of the Weibull model is also discussed. Section 5.4 deals with the derivation

of the Jeffreys' prior of the survival function where the shape parameter is treated as a nuisance

parameter, as well as in the case when it is the parameter of interest. Section 5.5 concludes the

chapter.

5.2 SCALE PARAMETER UNKNOWN

In many practical reliability problems, the Weibull model with only the scale parameter un-

known is employed for analysis (Soland, 1968). The shape parameter is often considered as

less important and thus may be approximated and treated as known. Another reason for assum-

ing a known shape parameter is, since in some reliability analyses, the shape parameter might

be known from previous test experience or sometimes, decision-makers might as a matter of

policy, treat it as a constant.

Given its wide application in the reliability theory, the posterior analysis of the Weibull model

with only the scale parameter unknown is considered in this chapter. The two functional forms

of the Weibull model are considered to derive the Bayesian estimators, posterior distribution,

risk measures and thereby used for performance evaluations.

The first stage in the posterior analysis is to derive the Jeffreys' prior for the parameter(s) of

interest. In this case, the scale parameter e, is considered as the parameter of interest while the

shape parameter is treated as a nuisance parameter or known. Therefore, the Jeffrey's prior with

A known, using (2.11) and (2.14) is obtained from

I (e) = -E [82{10g[f(X, Ale)]}] = -E [-_!_]_ 1
2
.

11 e 8e2 o e2 e

Similarly, the Jeffreys' prior for the Weibull model of the form (2.12), is derived from
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Since
00

E [x>'] = J (ex)>' AX>.-l exp [-(ex)>'] dx = el>.'
o

(5.2)

(5.2) is equal to
A e>'-2 1

III (e) = - e2 - A(A - 1)7 cx e2'
Therefore, using (2.15), the Jeffreys' prior for both Weibull models, (2.11) and (2.12) with A

known, is given by
1

71'(eIA) cx (j' (5.3)

Hence, using the corresponding likelihood functions of (2.11), the posterior distribution under

the Jeffreys' prior, is given by

p( eldata) cx «:' exp] - Te], (5.4)

with a normalising constant of l(~), which is Q(r, T).

Since A is known, the one-to-one transformation of '"'(= e>' results in an equivalent Weibull

model of (2.12), which is given by

A, '"'(> o. (5.5)

Therefore, the corresponding Jeffreys' prior is given by

1
71'bIA) = -,

'"'(

which by using the corresponding likelihood function, yields the posterior distribution

( Id )
_ Tr'"'(r-1exp[-T'"'(l

p '"'( ata - I'(r ) , (5.6)

where
n

T= I:>;.
i=l

In both cases, the two Weibull models yield equivalent posterior distribution when A is known.

It should also be noted that when A is known, estimating e>' and e and consequently their risk

measures, it gives the same results. It can be easily observed that since A is regarded as a

constant, the posterior distribution (4.2) and (5.4), as well as (5.6) are equivalent, except the

form of the statistic, T. As a matter of fact, every subsequent analysis regarding the Bayesian

estimators and their risk measures are equivalent. Therefore, any risk measure obtained in

chapter 4 can analogously be used for comparisons of performance using the Weibull model. It
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was mentioned in chapter 2 that when the shape parameter A = 2, the Weibull model reduces

to the Rayleigh pdf. Hence, the analysis using the Rayleigh model can be done by adjusting

the consequent term of the statistic T. Similarly, if data pertaining a Rayleigh pdf is observed,

a one-to-one transformation of, = rP reduces to (5.6).

5.3 SHAPE AND SCALE PARAMETERS UNKNOWN

In this section, the analysis is extended to the case where both the scale and shape parameters are

unknown. The analysis of the two-parameter unknown Weibull model is computationally com-

plicated, both in classical and Bayesian approaches, since there is no simple sufficient statistic

for the two parameters. In fact, inferences and predictions are not obtainable in closed-form and

hence a numerical procedure is usually necessary. To alleviate the mathematical complexity in

the Bayesian analysis, Soland (1969) introduced a method by discretising the shape parame-

ter, while keeping a continuous prior distribution for the shape parameter. Soland (1968) also

presents a complete Bayesian analysis of prior, posterior and pre-posterior distributions. Some

of the papers on the Bayesian analysis of the two-parameter Weibull model are cited by Della-

portas and Wright (1991). Due to the constraints mentioned in the previous section, the Jeffreys'

prior and the reference prior are derived and no further analysis is carried out.

5.3.1 Posterior analysis using the Jeffreys' prior

Consider the Weibull model (2.11) and the Fisher information matrix given by (2.14). The

logarithm of the pdfis

log[f(xl\ e)] = 10g[A]+ log[e] + A log[x] -log[x] - ex>' = K. (5.7)

From (5.7), the elements of the Fisher information matrix are obtained from

In -
1

- e2'
-x>' log [x]

1 >. 2- A2 - ex (log[xD .

Hence, applying (2.14) for every element yields,
00

- E[I12] = - E[hl] = J x>' log [x] AeX>.-l exp [-ex>'] dx.
o

(5.8)
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Letting

the integral (5.8) reduces to

- E[h,[ ~ :07u log[u]exp] -u]du - lO~~0]7u exp[ -u]du
o 0

Il log[O]
>"0 - >J)'

where
00

Il = Julog[u] exp[-u]du.
o

Similarly,

00

- ;2 + OJ x>' (log[x])2>"OX>'-l exp [-OX>'] dx,
o

and with the same substitution as above, simplifies to

00

~ + ~JU(log[U]-log[0])2 exp[-u]du
>.. >..

o

- :' + :' (Zu'log' [u] exp] -U]) x

:' (-210g[0]{u log[u] exp[-u]du + log'[O]{ uexP[-U]dU)

;2 + ;2 (/2 - 2,1Iog[0] + log2[0]) , (5.9)

where
00

12 = J u2Iog2[u] exp[-u].
o

From (5.8) and (5.9), the Fisher information matrix is given as

I = - E [ III h2] - [ b X7i - lOf~9l 1
hl h2 - X7i - lOf~9l ~ (1+ 12 - 2log[Oh1 + log2[0]) ,
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from which the Jeffreys' prior is

1 1
7r(A, (}) <X (det[I(\ (})])2 = A(). (5.10)

This implies that when A and () are assumed to be independent, the individual non-informative

priors could be the reciprocal of the parameters, i.e., ± and ~, respectively. Using (5.10), the

joint posterior pdf of A and () is given as

(5.11)

From (5.11), the posterior distribution is given by
r

(A(}t-1(i!!lX;-1) exp[-T(}]
p(A, (}Idata) = 00 00 (5.12)

J J (A(})r-l(i~lX;-l) exp[- T(}]d(}dA
o 0

The Jeffreys' prior for the Weibull model of the form (2.12) is as follows. Given

and

log[f(xl\ (})] = log [A]+ A log[(}]+ A log[x] - log[x] - (}>'x>' K.

The elements are

The elements of the Fisher information matrix are now obtained as

and when

yields
00

~ + A(A - 1)JUAU~_!_U±-1 exp[-u]du
(}2 (}2 U ± A()

o
A A(A - 1) A2

(}2 + (}2 = (}2·
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Similarly,

1-(j + E [>'O>'-lx>'log[x] + O>'-lX>' + >'O>'-llog[O]x>']
1 1 x

-(j + BE [(Ox)>'] + (jE [(Ox)>' log [Oxl]
00

- ~ E [(Ox)>'log[Oxl] = ~ J (Ox)>'log[Ox]>'(Ox)>'x-l exp [-(Ox)>'] dx,
o

using the same substitution as above, with
00

'1'1 = J ulog[u] exp[-u]du,
o

yields

Lastly,

-E[I22]
00- :2 + J (Ox )>'10g2[OX]>'O>'xx-l exp [-(Ox)>'] dx,
o

using the same substitution as before yields
00

-E[I22] = ~ + ~JUlog2[u] exp[-u]du>. >.
o

with
00

'1'3 = J ulog2[u] exp[-u]du.
o

Therefore, the corresponding Fisher information matrix is given by

JJ.. 11{J3 '
from which Jeffreys' prior is

1 1
7r(>.,O) cx: (det[I(>.,O)])2 = (j'

The posterior distribution corresponding to the Jeffreys' prior (5.13) is given as

p(>., Oldata) cx: >.r-lor>.-l (§lX;-l) exp[-TO>'],

(5.13)
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with normalising equivalent to

Ar-lor>.-l (§l X;-l ) exp] - TO>']
p(\ Oldata) = -00-00----'------'--------J J Ar-lor>.-l C§lX;-l) exp[-TO>']dOdA

o 0

(5.14)

It can be observed from (5.10) and (5.13) that the two Jeffreys' priors are not equivalent. This

difference stems from the fact that the two Weibull models have different forms of likelihood

functions. The integrals (5.12) and (5.14) cannot be obtained explicitly in closed-form, since

in both cases the statistic T depends on the parameter A as well. This problem persists even

when the Jeffreys' prior (5.10) is considered, assuming A and 0 to be independent. Hence,

one of the computer intensive Bayesian computational techniques discussed in chapter 3 might

be employed to obtain the denominator in (5.12) and (5.14). The method devised by Soland

(1969) is another alternative to handle this problem of obtaining the posterior distribution and

consequent posterior moments of interest.

5.3.2 Posterior analysis using the referenceprior

As was pointed out in chapter 2, that the reference prior can be obtained by utilising the Jeffreys'

prior (5.3). The reference prior for the Weibull model in (2.12) will be derived, according to the

steps mentioned in chapter 2.

Consider the sequence of subsets given by !J.l C !J.2 C !J.3 ... where Ui!J.i =8 are the rectangles,

whose width are given by the pair of numbers (bli, b2i) and corresponding length of (ali, a2i).

For this embedded subsets, if i -t 00, then ali and bli -t 0 while a2i and b2i -t 00.

Step 1: The first step has already been performed, which assigns an usual reference prior, that

is obtained by assuming A to be known (in this case, the Jeffreys' prior).

Step 2: Choosing the appropriate rectangles on the parameter space of the two parameters, A

and 0, the prior 7r(OIA) = !has finite mass on
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for any X.Normalising 7r(BI>')on each of the ni,A yields

tt; (BI>') - Ki(>.)7r(BI>')lni,>. (B)

Ki(>') (~ ) 1ni,>.(B),

where In;,>.(B) is an indicator function on n and

Step 3: The marginal reference prior for B, with respect to 7ri(BI>'), is obtained by

[
1 [ det [1(>',B)]] ]

7ri(>')= exp "2J.>.7ri(BI>') x log det[ln(>.,B)] dB . (5.15)

First obtaining

(5.16)- B(log[a2i] - log [ali]) .
Substitute (5.16) in (5.15) yields the corresponding marginal reference prior for B, which is

given by

cx: exp [~aJ2i 1 log [l+,:rrI l] ae
2 ali B(log[a2i] - log[ali]) ~

exp [2(log[a2i] ~ log [ali]) log [1+ ~2 -,~] (lOg[a2i]-lOg[ali])]

[11 [1+ 13 - I~]]- exp "2 og >.2

Jl +,3 -,~
x

Step 4: Using (2.18) and letting >'0= 1, the corresponding reference prior is

[(1 [ ] 1 [ ]) Yl+"Y3-"Yf] 17r(>.,B) = lim og a2i - og ali A x _
i=roo ] [ Yl+"Y3-"Yf B(log[a2i - log ali]) 1

1
>.B'
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which is equivalent to the Jeffreys' prior obtained for the Weibull model given in (2.11). The

reference prior for the Weibull model of the form (2.11) is however not obtainable.

5.4 THE SURVIVAL FUNCTION OF THE WEIBULL MODEL

Many problems of reliability improvement, such as the space shuttle reaction control system

are modelled as a two-parameter Weibull pdf. This model can be used in situations where there

are two explanatory parameters dictating a system or when one parameter mainly determines

the system, while the second is considered a nuisance parameter.

In this section, the Jeffreys' prior for the survival function of the Weibull model has been derived

for shape parameter known and for both parameters unknown. It should be noted that when the

shape parameter is known, the Bayesian estimators of the survival function will be similar to

the derivations of chapter 4.

In a similar fashion, for the Weibull model, (2.11), the survival function at any point t, is given
as

S(t) = exp [-tAB]

equating it to v, results in

0= (-l~~[V]).

The corresponding Weibull model in terms of v is give as

(5.17)

The Jeffreys' prior for the survival function can now be obtained using the reparameterised

Weibull model (5.17). Rewriting (5.17) yields

log [f(x, Alv)] = log [A] + log[( -log[v])] - A log[t] + A log [x] -log[x] - (~) A (-log[v]) = K.

Differentiating K twice with respect to the parameter of interest v, gives

8K = 1 + (~)A ~ and 82K = _ 1+ log[v] _ (~)A _!_
8v v log[v] t V 8v2 (v 10g[v])2 t v2•

The elements of the Fisher information matrix are

I (B)= -E [82{log [f(x, A1v)]}] = 1+ log[v] E [(~)A _!_]
11 o 8 2 21 2[] + v t 2'V V og V V

(5.18)
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but

Letting

reduces to
1

v2( -log[v])
Therefore, substituting this into (5.18) results in the appropriate element for the Fisher informa-

tion matrix
Iu () = (1+ log[v]) _ 1 _ 1

() v210g2[v] v2(log[v]) v2( -log[v])2'
Hence, using (2.15) provides the appropriate Jeffreys' prior for the survival function v, which

is given by
1

7r(vl..\) cx: v(-log[v])
and is the same as the prior of the survival function in the case of the exponential model. It

can also be noted by substituting the survival function for the Weibull model given by (2.12)

reduces the same Weibull model as (5.17), which implies that the Jeffreys' prior in the second

model and the subsequent analyses are all equivalent.

The theory is now extended to the case where both ..\and v are unknown. As before, K is now

rewritten as

log [f(xl..\, v)] = log[..\]+ log[( -log[v])] - ..\log[t] +..\ log[x]-log[x] + (~) A log[v]. (5.20)

The elements for the Fisher information matrix are

Iu -
1

v2( -log[v])2'

121= -E [~ (~) A log [~J]

If

u = (~) A (-log[v]),
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then (5.21) reduces to

/12 = 14
'\V( -log[v])'

where
00 00

14 = J uexp[-u]log[u]du - J uexp[-u]log[( -log[u])]du

o 0
and

The Fisher information matrix is therefore

/ = [V2(_~~g[V])2 AV(-"'iOg[V]) 1
AV( _ log[v]) ~

Hence, using (2.15), the corresponding Jeffreys' prior is

1
7r('\,v) cx v'\(-log[v])" (5.22)

The posteriors using both Jeffreys' and reference priors cannot be expressed in closed-form

and hence explicit expressions of point estimators and their corresponding risk measures are

complicated.

5.5 CONCLUSION

The two-parameter Weibull model is one of the widely applied models in the Bayesian para-

digm to decision-making. The two commonly used Weibull model representations have been

considered in this chapter. The Jeffreys' prior for the scale parameter of the Weibull model is

the same as Jeffreys' prior of the parameter of the exponential model obtained in chapter 4. The

Bayesian estimators and their corresponding posterior risks and risk functions for the Weibull

model in this case correspond to that of the exponential model, by simply adjusting the statistic

T.

The posterior distribution of the two-parameter Weibull model, when using the Jeffreys' prior

is not explicitly obtainable in its closed-form mainly due to the fact that T depends on the

unknown shape parameter. Moreover, there are no continuous joint pdfs, which are closed

under sampling that can be considered as a conjugate. An alternative option is to use numerical

techniques to simulate the relevant posterior distributions and hence, the risk measures.
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CHAPTER 6

CONCLUSION

The Bayesian approach to decision-making process requires a choice of the prior distribution,

that reflects the state of nature for the parameter(s) of interest. The Jeffreys' prior has been

widely used in Bayesian analyses, especially for vague information about one parameter. In

problems with more than one parameter however, the general reference prior is preferable. In-

creasing the number of the parameter(s) in a model, on the other hand, complicates the deriva-

tion of the reference prior. If a more mathematically amenable analysis is required, under

certain conditions, the conjugate priors can be used as alternative. In general, the choice of an

appropriate prior, that reflects the true state of nature, is by itself a decision-making process.

The objective in this thesis was to obtain various alternative Bayesian estimators, using the

squared error loss and LINEX loss functions and compare their performance. The choice of
>

these two loss functions stems from the fact that they are widely used many analyses within the

Bayesian paradigm. Practically speaking, there are problems pertaining to either symmetrical

or asymmetrical loss functions. Two different forms of the scalar estimation error were used,

to define the loss functions. Defining the loss functions with different forms of the estimation

error gives a decision-maker flexibility to choose among many alternatives. However, when

their risk measures are of the crossing-over type, it might be onerous to choose the best among

alternatives.

In decision-making, sometimes one might use a certain estimator, which is obtained relative to

an "incorrect loss function", where in fact another more appropriate loss function can be used to

measure the penalty or risk. The performance of the estimators were compared for acceptability

in a decision-making framework. This can be seen as type of procedure that addresses the
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robustness of an estimator relative to a chosen loss function.

Relative to the risk function measure under the squared error loss function, the correct and

wrongly chosen estimators are of a crossing-over type. Therefore, under the squared error loss

function, both estimators can be inadmissible. Relative to the LINEX loss function, however,

the LINEX estimator outperforms the other alternative, when the Jeffreys' prior is considered.

Nonetheless, when the conjugate prior is considered, the risk functions are of a crossing-over

type, portraying the fact that none of the estimators are uniformly dominating.

The sensitivity of the deviation with respect to the LINEX parameter might be an important

point worth analysing, even though the choice of the LINEX parameter is often made subjec-

tively.

It can be easily noticed that the performance of the estimators depends both on the model

choice, the prior and the loss function. Thus, it can in general be recommended that one should

use the appropriate loss functions reflecting the specific situation. If that is not the case, a

choice of other loss functions might be at the cost of incurring a greater risk. Even though there

are crossing-over of risks, when pair-wise comparisons were made, in most cases the wrongly

chosen alternative results in a greater risk. In addition to this, an appropriate prior distribution

should also be incorporated in the analysis, reflecting the reality as much as possible. A further

analytical study in the behavior of the posterior risks, risk functions and integrated risks is

important to establish the sufficient or necessary conditions of inadmissibility or admissibility.

In general, care must be taken especially when many alternatives of estimators are available.

The challenge for the decision-maker escalates, when confronted with a scenario where the

correct estimator results in a greater risk, especially for crossing-over risk measures. Moreover,

in all situations, a decision-maker must foresee all possible scenarios, needless to mention,

however, that the decision made at the end, should not contradict the reality.
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