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Heat transfer to MHD oscillatory dusty fluid flow
in a channel filled with a porous medium
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Abstract. In this paper, we examine the combined effects of thermal radiation,
buoyancy force and magnetic field on oscillatory flow of a conducting optically
thin dusty fluid through a vertical channel filled with a saturated porous medium.
The governing partial differential equations are obtained and solved analytically by
variable separable method. Numerical results depicting the effects of various embed-
ded parameters like radiation number, Hartmann number and Grashof number on
dusty fluid velocity profiles, temperature profiles, Nusselt number and skin friction
coefficient are presented graphically and discussed qualitatively.
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1. Introduction

Dusty fluid flows has its importance in many applications like wastewater treatment, power plant
piping, combustion and petroleum transport. Fluid flow under the influence of magnetic field and
heat transfer occurs in magneto-hydrodynamics accelerators, pumps and generators. This type of
fluid has uses in nuclear reactors, plasma studies, geothermal energy extraction, and the boundary
layer control in the field of aerodynamics. The flow of fluids through porous media has become
an important topic because of recovery of crude oil from pores of reservoir rocks. Several authors
have examined this type of problem theoretically in various ways. Saffman (1962) proposed
equations of motion for binary mixture of fluid and dust particles. Kulshretha & Puri (1981)
studied wave structure in oscillatory Couette flow of a dusty gas. Han et al (1991) analyzed the
heat transfer in a pipe carrying two-phase gas-particle suspension.
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Meanwhile, thermal radiation is a characteristic of any flow system at temperatures above
the absolute zero and can strongly interact with convection in many situations of engineering
interest. The differential approximation for radiative transfer in a non-grey gas near equilib-
rium was analyzed by Cogley et al (1968). Bestman & Adjepong (1988) studied the unsteady
hydromagnetic free-convection flow with radiative heat transfer in a rotating fluid. Forced
convection-radiation interaction with heat transfer in boundary layer flow over a flat plate sub-
merged in a porous medium was studied by Mansour (1997). Raptis (1998) examined the effect
of radiation on free convection flow through a porous medium. The effect of radiative heat
transfer on arbitrary shaped axisymmetric enclosures with gases media was studied by Nune
et al (1998). El-Hakiem (2000) investigated MHD oscillatory flow on free convection-radiation
through a porous medium with constant suction velocity. Non-gray thermal radiation effects
on the sound wave propagation in gas-particle two-phase medium have been analyzed by Park
& Baek (2002). Raptis et al (2004) investigated the effect of thermal radiation on MHD flow.
Unsteady MHD free convection flow of a compressible fluid past a moving vertical plate in
the presence of radiative heat transfer was discussed by Mbeledogu ef al (2007). Makinde &
Ogulu (2008) studied the effect of thermal radiation on heat and mass transfer flow of a variable
viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Unsteady
oscillatory flow and heat transfer in a horizontal composite porous medium was investigated by
Umavathi et al (2009). Cookey et al (2010) contributed to MHD oscillatory Couette flow of a
radiating viscous fluid in a porous medium with periodic wall temperature. Makinde & Chinyoka
(2010a) discussed MHD transient flows and heat transfer of dusty fluid in a channel with vari-
able physical properties and Navier slip condition. A numerical investigation of transient heat
transfer to hydromagnetic channel flow with radiative heat and convective cooling has been car-
ried out by Makinde & Chinyoka (2010b). Gireesha et al (2010) analyzed unsteady flow and
heat transfer of a dusty fluid through a rectangular channel under the influence of pulsatile pres-
sure gradient and uniform magnetic field. Prakash ez al (2011) investigated MHD free convective
flow of a viscoelastic (Kuvshinski type) dusty gas through a porous medium induced by the
motion of a semi-infinite flat plate under the influence of radiative heat transfer.

In this present paper, we extend the study of Makinde & Mhone (2005) on heat transfer char-
acteristics of MHD oscillatory flow in a channel filled with porous medium by introducing the
fluid as binary mixture of fluid and suspended particles. In the following sections, the problem
is formulated, analyzed and solved. Pertinent results are presented graphically and discussed
quantitatively.

2. Mathematical formulation

Consider the dusty fluid flow of a conducting optically thin fluid in a channel filled with saturated
porous medium under the influence of an externally applied homogeneous magnetic field and
radiative heat transfer as shown in figure 1. It is assumed that the fluid has small electrical
conductivity. Take a Cartesian coordinate system (x, y) where x lies along the centre of the
channel, y is the distance measured in the normal direction.

The dust particles are solid, spherical, non-conducting equal in size and uniformly distributed
in the flow region and their number density Ny is constant throughout the motion. The tem-
perature between the particles is uniform throughout the motion. The interactions between the
particles and chemical reaction have not been considered. The magnetic Reynolds number is
taken to be very small so that induced magnetic field is negligible and the Hall effects have been
neglected. This means that the flow region has uniform temperature, uniform applied magnetic
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Figure 1. Schematic diagram of the problem.

field. The dust particles are uniformly distributed and transported within the fluid such that the
continuity equation is satisfied. Then, assuming a Boussinesq incompressible fluid model, the
equations governing the motion and energy balance are as follows:
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with initial and boundary conditions,
u(y,0) =up(y,0)=0,T(,0) =Ty, @
u(a, 1) =upa, 1) =0,T(a,1) =T, = To+ (Ty — Tp)e"”", (5)
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where u, u, are the velocities of fluid and dust particles in the x- direction, ¢ is time, w is the fre-
quency of oscillation, 7 is the fluid temperature, T is the fluid initial temperature, Ty is the left
wall temperature, T, is the right wall temperature, P is the fluid pressure, g is the gravitational
force, ¢ is the radiative heat flux, § is the coefficient of volume expansion due to temperature,
Ko (= 6mpu D) is the Stokes constant, D is the average radius of dust particles, ¢, is the specific
heat at constant pressure, k is the thermal conductivity, K is the porous medium permeability
coefficient, o, is the conductivity of the fluid, p is the fluid density, v is the kinematic viscos-
ity, By is the electromagnetic induction (u. Hp), . 1s the magnetic permeability and Hy is the
intensity of magnetic field.
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The fluid is assumed to be optically thin with a relatively low density and the radiative heat
flux is given by Cogley et al (1968),
a
L 421y - T), ™)
dy
where « is the mean radiation absorption coefficient. The following dimensionless variables and
parameters are introduced:
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where U is the flow mean velocity.
The dimensionless governing equations together with the appropriate boundary conditions
(omitting the bars) can be written as
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with initial and boundary conditions given as

u(y,0) =u,(y,0)=0,0(y,0) =1, (12)
u(l, 1) =up(1,1) =0,6(1,1) = €', (13)
u(0,1) = u,(0,1) = 0,6(0,1) =0, (14)

where s is porous medium shape factor parameter, Da is the Darcy number, Gr is the Grashof
number, H is the Hartmann number, / is the particle concentration parameter, M is the particle
mass parameter, N is the radiation parameter, Re is the flow Reynolds number and Pr is the
Prandtl number.

3. Method of solution

In order to solve the Egs. (9), (10) and (11) for pure oscillatory flow, let

P

3= A u(y, 1) = ug()e'  up(y, 1) = upo(y)e'™, 0(y, 1) = p(»)e'”,  (15)
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where A is constant oscillation amplitude for pressure gradient. Substituting the values from
Eq. (15) into Egs. (9)—-(14), we obtain

d?ug
o7 maug = —x — Gré (16)
ug
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e,
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with

uo=upp=0,00=1,ony =1, (19)
uo=upp=0,00 =0, ony =0, (20)

where m| = VN2 — iwRe Pr and m% = [52 + H? +iwRe + m]
On solving Eq. (18) with boundary condition (19) and (20), we obtain the temperature for

fluid as
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Using Eq. (16) together with (19)—(20), we obtain the solution for the dusty fluid velocity as
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From Eq. (17), dust particles velocity is obtained as
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Other quantities of interest in the study are the skin friction C s and the Nusselt number Nu at
channel walls. For dusty fluid the skin friction is given as

P G
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where 7y = pvdu/dy at y = a is the fluid shear stress at the right wall. For dusty particles the
skin friction is given as

atg,  duy elot Gr
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where 77, = pvdu, /0y at y = a is the dusty particles and the shear stress at the right wall. The
Nusselt number across the channel’s wall is given by

aqy a0
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where g,, = —kdT /0y at y = a is the heat flux at the right wall.

4. Results and discussion

The problem of heat transfer to MHD oscillatory dusty fluid flow in a vertical channel filled with
porous medium has been studied. In order to understand the physical situation of the problem and
the manifestations of the various material parameters entering in the problem, we have presented
graphically in figures 2—6 the numerical values of the velocity profiles, temperature profiles, skin
friction coefficient and Nusselt number for dusty fluid as well as dust particles using the software
“MATLAB 7.0”. The plots for the temperature and velocity profiles are in dimensionless form;
hence, the units are not attached. However, it is noteworthy that dimensional unit for the velocity
is m/s while that of temperature is °C. For the purposes of our numerical computation, we have
used the following parameter values Re = 1,3,4,5; N =0,0.5,1,1.5,2,3; Gr=0, 1, 2, 3;
H=0,1,2,3;s =0,1,2,3; M =0.5; . =0.5; w = 1. The Prandtl number is taken as Pr = 0.71
which physically corresponds to the atmospheric environment (air) at 20°C fixed for the velocity
and temperature profiles. Figure 2a depicts the effect of radiation parameter on temperature field.
It is clear that the dusty fluid temperature increases with increasing values of radiation parameter.
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Figure 2. (a) Temperature profiles with increasing N. (b) Nusselt number with increasing N.
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This rise in temperature may be attributed to internal radiative heat generation within the flow
system. Moreover, maximum dusty fluid temperature seems to occur within the centerline region
of the channel (i.e. y = 0.5). This may be attributed to the combined effects of thermal buoyancy,
thermal radiation and minimum velocity gradient experienced in this region. In figure 2b, it is
observed that an increase in radiation parameter decreases the Nusselt number due to a decrease
in the temperature gradient at the channel walls.

Figures 3 and 4 illustrate the dusty fluid and dust particles velocity profiles across the channel.
It is noteworthy that the velocity profiles are parabolic in nature with zero values at the walls
satisfying the prescribed boundary condition. Generally, maximum fluid and particles velocities
are observed within the centerline region of the channel. This may be attributed to the com-
bined effects of thermal buoyancy and minimum velocity gradient experienced in this region. An
increase in the radiation parameter causes a general increase in the dusty fluid velocity as shown
in figure 3a. This may be attributed to the fact that the fluid becomes lighter and flow faster
with high temperature due to radiative heat generation. Similar trend of an increase in dusty
fluid velocity is observed in figure 3b with increasing values of Grashof number due to buoy-
ancy force. In figure 3c, it is observed that the fluid velocity profiles decrease with an increase
in Hartmann number due to a rise in magnetic field intensity. This observation is in agreement
with the earlier results of Makinde & Chinyoka (2010a, b). The transversely imposed magnetic
field on the conducting dusty fluid produced a Lorentz force which acts as a resistance to the
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Figure 3. (a) Velocity profiles with increasing N. (b) Velocity profiles with increasing Gr. (¢) Velocity
profiles with increasing H. (d) Velocity profiles with increasing s.
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Figure 4. (a) Particles velocity profiles with increasing N. (b) Particles velocity profiles with increasing
Gr. (c) Particles velocity profiles with increasing H. (d) Particles velocity profiles with increasing s.

flow, consequently, the velocity decreases. Figure 3d also shows a decrease in the dusty fluid
velocity profiles with an increase in porous medium shape factor parameter. This is expected,
since as the parameter s increases, the porous medium permeability decreases, consequently,
the velocity profiles decrease. Figure 4a and 4b shows that the dust particles velocity increases
with increasing values of radiation parameter and Grashof number while the trend is opposite in
figure 4c and 4d with a decrease in the dust particles velocity profiles as both Hartmann number
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Figure 5. (a) Fluid skin friction with increasing N. (b) Fluid skin friction with increasing Re and H.
(¢) Fluid skin friction with increasing s and Gr.
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Figure 6. (a) Particles skin friction with increasing N. (b) Particles skin friction with increasing Re and
H. (c¢) Particles skin friction with increasing Gr and s.

and porous medium shape factor parameters increases. This can be explained based on the fact
that the dust particles are transported within the fluid and a rise in the fluid velocity will invari-
ably cause a rise in the particles velocity while a decrease in the fluid velocity will decrease the
particle velocity as well. Moreover, it is interesting to note that the velocity of the dusty fluid
seems to be a bit higher generally than that of the dust particles.

The effects of parameter variation of the skin friction coefficient are demonstrated in
figures 5 and 6. The skin friction coefficient at the right wall increases with an increase in the
radiation parameter N as shown in figure 5a. This can be attributed to a rise in the velocity
gradient of the dusty fluid at the channel walls. In figure 5b, it is observed that the skin fric-
tion coefficient produced by the dusty fluid decreases with increasing Reynolds number and
Hartmann number due to a fall in the velocity gradient at the channel walls. Similar trend of a
decrease in skin friction coefficient is noticed in figure 5¢ with increasing porous medium shape
factor resulting from a combined decrease in porous medium permeability and velocity gradient.
Moreover, an increase in buoyancy force represented by Grashof number increases the skin fric-
tion coefficient. Figure 6a—6¢ describes the effects on parameter increase on dust particles skin
friction coefficient. It is observed that the dust particles skin friction increases with an increase
in radiation parameter and Grashof number but decreases with an increase in Reynolds number,
Hartmann number and porous medium shape factor parameter.

5. Conclusion

The combined effects of buoyancy force, magnetic field and thermal radiation on heat transfer to
hydromagnetic oscillatory flow of dusty fluid in a vertical channel filled with porous medium are
analytically investigated. Variable separable method is employed to tackle the model problem.
Our results can be summarized as follows:

e The dusty fluid temperature increases while the Nusselt number decreases with increasing
values of N.

e The dusty fluid and dust particles velocities increase with N and Gr but decrease with H
and s.

e The skin friction coefficient increases with N and Gr but decreases with H, s and Re for
both dusty fluid and dust particles.

The results obtained in this paper will be useful in recovery of crude oil from pores of reservoir
rocks, waste water treatment, in juice purification in sugar industry, etc.
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