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Summary

This thesis presents the design and implementation of an autonomous navigational sys-

tem and the automation of a practical demonstrator vehicle. It validates the proposed

navigation architecture using simple functional navigational modules on the said vehicle.

The proposed navigation architecture is a hierarchical structure, with a mission planner

at the top, followed by the route planner, the path planner and a vehicle controller with

the vehicle hardware at the base. A vehicle state estimator and mapping module runs in

parallel to provide feedback data.

The controls of an all terrain vehicle are electrically actuated and equipped with feedback

sensors to form a complete drive-by-wire solution. A steering controller and velocity

control state machine are designed and implemented on an existing on-board controller

that includes a six degrees-of-freedom kinematic state estimator.

A lidar scanner detects obstacles. The lidar data is mapped in real time to a local

three-dimensional occupancy grid using a Bayesian update process. Each lidar beam is

projected within the occupancy grid and the occupancy state of affected cells is updated.

A lidar simulation environment is created to test the mapping module before practical im-

plementation. For planning purposes, the three-dimensional occupancy grid is converted

to a two-dimensional drivability map.

The path planner is an adapted rapidly exploring random tree (RRT) planner, that as-

sumes Dubins car kinematics for the vehicle. The path planner optimises a cost function

based on path length and a risk factor that is derived from the drivability map.

A simple mission planner that accepts user-defined waypoints as objectives is imple-

mented. Practical tests verified the potential of the navigational structure implemented

in this thesis.

ii
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Opsomming

In hierdie tesis word die ontwerp en implementering van ’n outonome navigasiestelsel

weergegee, asook die outomatisering van ’n praktiese demonstrasievoertuig. Dit regverdig

die voorgestelde navigasie-argitektuur op die bogenoemde voertuig deur gebruik te maak

van eenvoudige, funksionele navigasie-modules.

Die voorgestelde navigasie-argitektuur is ’n hiërargiese struktuur, met die missie-beplan-

ner aan die bo-punt, gevolg deur die roetebeplanner, die padbeplanner en voertuigbe-

heerder, met die voertuighardeware as basisvlak. ’n Voertuigtoestandsafskatter en kar-

teringsmodule loop in parallel om terugvoer te voorsien.

Die kontroles van ’n vierwiel-motorfiets is elektries geaktueer en met terugvoersensors

toegerus om volledig rekenaarbeheerd te wees. ’n Stuur-beheerder en ’n snelheid-toe-

standmasjien is ontwerp en gëımplementeer op ’n bestaande aanboordverwerker wat ’n

kinematiese toestandsafskatter in ses grade van vryheid insluit.

’n Lidar-skandeerder registreer hindernisse. Die lidar-data word in reële tyd na ’n lokale

drie-dimensionele besettingsrooster geprojekteer deur middel van ’n Bayesiese opdat-

eringsproses. Elke lidar-straal word in die besettingsrooster geprojekteer en die beset-

tingstoestand van betrokke selle word opdateer. ’n Lidar-simulasie-omgewing is geskep

om die karteringsmodule te toets voor dit gëımplementeer word. Die drie-dimensionele

besettingsrooster word na ’n twee-dimensionele rybaarheidskaart verwerk vir beplannings-

doeleindes.

Die padbeplanner is ’n aangepaste spoedig-ontdekkende-lukrake-boom en neem Dubins-

kar kinematika vir die voertuig aan. Die padbeplanner optimeer ’n koste-funksie, gebaseer

op padlengte en ’n risiko-faktor, wat vanaf die rybaarheidskaart verkry word.

’n Eenvoudige missie-beplanner, wat via-punte as doelstellings neem, is gëımplementeer.

Praktiese toetsritte verifieer die potensiaal van die navigasiestruktuur, soos hier beskryf.

iii
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Chapter 1

Introduction

1.1 Motivation

Autonomous self navigating vehicles are a dream that have been pursued for a number

of decades. They require the amalgamation of a variety of disciplines: mechanics, control

systems, sensing and signal processing to name but a few - each of which faces its own

challenges with additional complexity when they interact.

Apart from the academic challenge (or the appeal to science fiction authors), autonomous

vehicles potentially have many advantages over vehicles that rely wholly, or in part, on

human control:

• Increased safety with faster reaction times and no limit on concentration span,

especially for dull or repetitive tasks.

• Incurring economic savings by optimising multiple, and often underlying, cost fac-

tors.

• Operation in areas not feasible for human presence, such as disaster relief, rescue

missions, war zones or exploration in areas that are dangerous.

• The predictable nature of a machine versus an employee.

The Autonomous Navigation (AutoNav) research group, formed at Stellenbosch Univer-

sity, has the aim to research and develop techniques required to create systems capable

of such autonomous navigation.

1
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CHAPTER 1. INTRODUCTION 2

1.2 Overview of Navigation

As a first attempt at self navigation, it is important to define the architecture of such a

system. Since navigation is traditionally a human task, initial systems will tend to mimic

the assumed human thought process and this is reflected in our choice of architecture. The

architecture defines the information flow from goal to execution. Some concepts described

are intentionally vague to prevent loss of generality of descriptions. This overview will

introduce the most notable terms in the context of this thesis.

The purpose of travelling in a vehicle is usually to reach some goal, which we defined

as the objectives of the mission. Achieving objectives is implemented in the mission

planner. The nature of the objectives to be reached can greatly influence the mission.

Mission planning is the top level of self navigation and its validity is best understood by

listing some examples of objectives:

• Transporting cargo (which may include passengers) from origin to destination.

• Patrolling an area continuously.

• Exploring or mapping an unknown area.

• Following, finding or evading another entity.

The output of the mission planner is locations or manoeuvres in space, commonly referred

to as waypoints, which are desirable in the fulfilment of the mission objectives. The

constraints on these waypoints, such as order, precision or time at which they must be

achieved, are largely determined by the nature of the mission. Changes to the objectives

implies replanning the mission.

Once these waypoints are defined, a route planner determines the connections between

waypoints, in accordance with the constraints imposed by the mission planner. In general

it cannot be assumed that all (or any) information is known in advance about the operating

environment. In other words, a complete and static map cannot be assumed. The level

of detail in the planned route should therefore match the level of confidence and detail in

the map.
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CHAPTER 1. INTRODUCTION 3

Path planning is the detailed planning step. It outputs the exact trajectory the vehicle

should follow. The path should be effective immediately and be complete up to some

defined horizon. No further refinement should be necessary before passing this on to the

vehicle controller. The path planner should therefore consider all vehicle, dynamic and

mission constraints. The planning horizon reflects the practical distance (along space,

time or some other metric) over which the map detail is considered complete.

Path planning investigates the direct interaction between the vehicle and its operating

environment. It evaluates possible conflict between the environment and the vehicle. If a

path involves probable conflict, a conflict resolution process finds an alternative path

with an acceptably low probability of conflict.

Execution of a path is handled by a vehicle controller. A typical controller consist of

a measurement system and a feedback control algorithm for actuators. Various sensors

provide input to the state estimator, which determines vehicle state (position, orienta-

tion, related velocities and possibly other states). Feedback control ensures stable and

accurate tracking of paths and manoeuvres.

All levels of planning require some representation of the operating environment, provided

by a mapping module. Information may be known before the mission commences, be

gathered as it progresses along the mission, or both. Mapping requires smart environ-

mental sensors, integration with the pose estimator and a convenient output to all levels

of planning.

This architecture is summarised in Figure 1.1. In a specific implementation of a mission,

it may well be possible that a certain module or level may be redundant. Or that the

complexity of interaction between adjacent modules becomes so interwoven, that it would

be best to integrate them. It is important to note that some adaptation of this architecture

will be required for specific cases.

1.3 Project Scope

The aim of this project is to implement the structure as set out in Section 1.2. Im-

plementation includes a practical demonstrator on a suitable vehicle. The scope of a

complete system far exceeds the capabilities of a single researcher, therefore this project
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Figure 1.1: Overview of General Navigation Architecture1

will focus on installing simple, but functional, modules, which may be expanded by future

researchers. This section describes the constraints of this thesis, with short motivations

for constraining the project.

1.3.1 Operating Environment

The first constraint is a decision between indoor or outdoor operation. Indoor environ-

ments are generally limited in space. Furthermore, indoor environments are typically well

structured, i.e. rooms and hallways is normally made up of flat surfaces, joined at perfect

right angles (walls, floors, ceilings) with a near-perfect driving surface. The few exceptions

include furniture and staircases. Outdoor environments can be chosen to be arbitrarily

complex, which is convenient for incrementally more challenging testing. A secondary as-

pect is the availability of Global Positioning System (GPS) position measurements when

operating outdoors.

The decision was made to use an outdoor terrestrial (ground based) vehicle to maintain

generality. This limits the operating space to the two-dimensional projection of the driving

surface onto a plane. The demonstration will be confined to a localised area within which

the earth’s curvature may be neglected.

1Derived from the architecture presented by Corné van Daalen internally to the AutoNav group.
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CHAPTER 1. INTRODUCTION 5

Furthermore, the terrain will be sufficiently level such that the ground may be assumed

drivable for the class of vehicle chosen i.e. no rugged or slippery terrain. Obstacle di-

mensions should be clearly distinguishable from the level surface and, by implication, a

collision will be deemed catastrophic and unacceptable.

The final environmental constraint is to define the environment to be static. That is, no

obstacles shall enter into, be removed from, or be allowed to move or change shape within

the environment whilst the vehicle is operating.

1.3.2 Mission Planner

It is not feasible to try and implement every type and variation of imaginable missions.

A representative mission is to simply drive from an initial location to a destination lo-

cation while avoiding collisions. By extension this enables navigation through multiple

waypoints and therefore more complex missions. Missions with changing waypoints could

be accommodated by completely replanning on every change.

1.3.3 Route planner

The route planner will not be loaded with any prior information about the environment.

This implies the maximum possible uncertainty and therefore no detailed route planning

can be carried out. The route planner will revert to connecting the waypoints with straight

lines and refer all planning tasks to the path planner.

1.3.4 Path Planner

To demonstrate practical obstacle avoidance, a functional path planner will be investi-

gated and implemented. It should make provision for an incomplete map being populated

as the mission progresses, but not for dynamic objects in the map.

As paths are calculated continuously, it is imperative that the path planner should execute

in real time. In addition, it should demonstrate the possibility of implementing optimality

within the solution.
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CHAPTER 1. INTRODUCTION 6

The specific vehicle determines the possible modes of locomotion with its associated kino-

dynamic constraints. These constraints are inherited by the path planner. It follows

that the path planner is very specific to vehicle class and therefore cannot be a general

solution. The most common vehicle is a four wheeled car with limited turning circle and

is the model to which the path planner shall be tailored.

1.3.5 Vehicle Controller

The vehicle controller executes the paths generated by the path planner. As described

in Section 1.3.4, the path planner is specific to a vehicle class and as such, the controller

cannot escape the same fate. To facilitate software reuse, the vehicle controller is split into

inner-loop actuator controllers and high-level path-tracking controllers. In this manner,

an upgrade of either the vehicle or path planner requires only partial rework.

1.3.6 Vehicle State Estimator

It will not be required to implement a Simultaneous Localisation and Mapping (SLAM)

system. SLAM is the process whereby the mapping and state estimation is combined, i.e.

the map consists of landmarks previously captured by sensors and the vehicle position

is inversely determined from recognising the known landmarks. SLAM is the subject of

parallel research within the AutoNav group and will not be covered here.

Localisation will be achieved via an available kinematic state estimator, which combines

an inertial measurement unit (IMU) and high precision differential GPS (DGPS) system.

The combined accuracy of the DGPS and update rate of the IMU dead reckoning is known

to be sufficient for control applications.

1.3.7 Mapping

To demonstrate self navigation, it is required that the vehicle be able to detect and react to

conflict within its surroundings. The system should be be able to reliably detect obstacles

as described in Section 1.3.1 to avoid collision.
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CHAPTER 1. INTRODUCTION 7

The known sensory systems are compared and the most suitable solution is implemented.

It requires determining a feasible representation of the mapped environment and process-

ing it for use with the planning algorithms. Since the sensor system will require feedback

from the vehicle estimator, it is classified as a smart sensor.

1.4 Summary of Scope

The outputs of this project are:

• An actuated vehicle, fit for autonomous self navigation

• An architectural framework for navigation

• A path planning algorithm for the specific vehicle

• A controller able to follow generated paths

• A smart sensor for obstacle detection

1.5 Contributions

This thesis contributed the following items to the autonomous navigation research effort

at Stellenbosch University:

• Validation of the proposed architectural framework

• A fully actuated drive-by-wire vehicle with an actuator controller and sensor board

• A three-dimensional occupancy grid mapping software module that can map lidar

data in real time, accompanied by a lidar simulation environment for design verifi-

cation

• An adapted RRT path planner, encapsulated in a networked interface for distributed

computing, that can be extended with little effort for various vehicle types

• A vehicle steering controller and velocity controller state machine, implemented on

the on-board controller
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CHAPTER 1. INTRODUCTION 8

• Simple mission planner that orchestrates data transfer between modules

1.6 Overview

The thesis starts with this introduction, which gives an overview of autonomous navigation

and the project scope. In Chapter 2 the design of the demonstration vehicle is discussed.

Vehicle selection, electrical actuation, feedback sensors, the control electronics and safety

systems are covered. The first part of Chapter 3 introduces common sensors that are

used to detect and map the vehicle environment and motivates the use of a scanning lidar

for this project. The second part investigates the characteristics of a scanning lidar and

discusses sensor mounting options for the best mapping results. Chapter 4 covers the

mapping of a three-dimensional environment using lidar. First common representations

used to map environments are considered and occupancy grids are chosen (based on the

works of [1, 2]) and expanded to three dimensions. The following two sections detail the

implementation and simulation of a real-time three-dimensional mapping process for lidar

data.

Chapter 5 develops a path planner for real-time navigation. General planning concepts

used to represent the planning problem (mainly from [3]) are introduced and application-

specific elements are dicussed. A sampling-based path planner is developed by adapting

the rapidly exploring dense tree algorithm to the specific planning problem, focusing on

efficient real-time execution (based on work by [3–6]). The path planner is then tested in

simulation. In Chapter 6 the vehicle controller is designed that should execute the paths

from the path planner (including work from [7]). The required state estimator sensors are

also noted. Chapter 7 describes the integration of the developed modules, the procedure

used for testing and the test results obtained from four practical tests.

The conclusion provided in Chapter 8 reflects on the achievements of this thesis as an

overall supplement to the summaries of the individual chapters. Recommendations for

immediate improvements and future work are also provided.
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Chapter 2

Vehicle Design

To support and verify the research of the AutoNav group, a physical test vehicle is re-

quired. This vehicle will be used to demonstrate the results of this project. It may also

be used as a test bed for future research. With the navigational architecture in place, it

should be simple to replace any module with a revised or experimental version.

This chapter starts with considerations taken into account during the choice of vehicle.

Next a description of the methodology used to electrically actuate the chosen vehicle is

provided, as are the sensors added to monitor the vehicle. It concludes with a description

of the vehicle-specific controller board that was designed.

2.1 Selection

In order for the vehicle to be a proper research tool, it should not be limiting in capabilities.

For the selection of vehicle, one should consider the following:

• Actuation should be simple for reliable and robust operation

• The constraints of the vehicle will become the constraints of the mission, route and

path planners, such as:

– Velocity and acceleration

– Turning circle

– Modes of locomotion e.g. forward and reverse capabilities

9
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CHAPTER 2. VEHICLE DESIGN 10

– Physical robustness over unpredictable terrain

• Budgetary constraints

For this purposes, an all terrain vehicle (ATV), colloquially known as a “quad bike”, was

chosen. The chosen model is a Kymco MXU 150 utility vehicle. Its key features include:

• 150cc Petrol which engine delivers adequate driving power

• Automatic continuously variable transmission (CVT) drivetrain which is easily ac-

tuated

• Front and rear utility racks which provides convenient mounting space

• Alternator and battery system which provides convenient electrical power

• Mechanical robustness

Figure 2.1: Picture of the ATV chosen for the demonstration vehicle

2.2 Servo Actuation

Actuation forces are delivered by geared DC electric motors with suitable gear ratios and

linkages to the stock vehicle mechanics. For safety and convenience, all controls are still

accessible via the original levers. This makes it possible for a test driver to override the

controller outputs, either to set up a test or to take over in the event of a failure. The

controls that are actuated are: steering, brakes, gear lever and throttle.
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CHAPTER 2. VEHICLE DESIGN 11

2.2.1 Actuator Selection

Electric DC motors are used to drive vehicle controls. Using electric actuators is conve-

nient as the vehicle already runs a 12 V power circuit and needs no additional systems,

which would be the case with hydraulic or pneumatic actuators. The electric power is

sourced from the stock alternator, supplemented by a 12 Volt lead-acid car battery to

buffer peak demand.

To select the DC motors, the required action forces and motions were characterised and

translated into electric specifications. The actuation system should be able to apply the

peak force required to move a control and deliver enough power to complete the motion

in the required time.

Linear forces were measured by attaching a force scale to the control and steadily in-

creasing the force until the control completed the action. The peak force required was

recorded. In order to measure torque, a crank lever was used and the applied force mea-

sured with the force scale. The range of motion is measured and the total energy required

to complete the action is computed using equations 2.2.1 and 2.2.2.

Linear: E = ∆s · F (2.2.1)

Rotary: E = ∆θ · τ, (2.2.2)

with the assumption that the force/torque is constant over the motion and ∆s/∆θ is the

range of motion. Using the peak value of force, the calculated energy represents an upper

limit. For motions where the required force changes significantly, the energy may be found

by integrating force over displacement. The measured values are shown in Table 2.1.

It is important to note that measured forces may be dependent on the operating condi-

tions. Optimal designs can be made for the characteristic conditions, but designs should

also be analysed for worst-case conditions to quantify the amount of performance degra-

dation. If the degradation is unacceptable, the design should be adapted. As an example,

the steering force depends on the friction between the wheels and the driving surface and

whether or not the wheels are rotating. In this case the characteristic force was measured

while slowly driving the vehicle over typical tarmac, but the design was verified to ensure

that the motor can produce the torque required to steer when the vehicle is stationary.
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CHAPTER 2. VEHICLE DESIGN 12

The time specifications for actuation motion were chosen by the designer to match the

purpose of control and determine the minimum output power requirements of the actu-

ators. Start-up time was neglected, as this is small with respect to the total time. The

chosen timing is shown in Table 2.1. An efficiency factor, η, is included to indicate the

losses incurred by gearing and linkages between the motors and the respective controls.

The motor output power is thus given by:

Po =
1

η
· E

∆t
(2.2.3)

Table 2.1: Actuator forces and time specifications

Control Force Range Energy Time Efficiency Output Power
[Unit] F [N] ∆s[m] E[J] ∆t[s] η Po[W]
Steering 85 0.65 55 2 0.75 37
Brake Cable 50-500 0.02 5.5 0.35 0.75 16
Gear Lever 160 2×0.025 2×4 2×1 1.0a 4
Throttle 5-25 0.025 0.4 0.2 1.0b 2

aUnity efficiency assumed for non time-critical control.
bUnity efficiency assumed for connection with negligible friction.

The DC motor model should be chosen according to output power specifications and

convenient form factor. As the gearbox ratio influences the efficiency, this may be an

iterative process. The required gear ratio (n : 1) to match the motor to the control can

be inferred from the motor output torque τo, the gearbox efficiency η and the required

torque τc(or force Fc and moment arm lc) of the applicable control:

n =
1

η
· τo
τc

=
1

η
· τo
Fc · lc

, (2.2.4)

where τo should be the output torque of the motor at the specified output power, Po, with

due regard for maximum ratings. The gearbox efficiency may be deliberately decreased

to add a factor of safety to the calculations.

2.2.2 Electrical Drives

Controlling electrical motors is achieved with relevant power electronic circuits. The

throttle actuator servo has a built-in power circuit and accepts positions command via a

pulse-coded signal. The remaining three electric motors are simple automotive parts and

require 12 V H-bridge drive circuits.
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The H-bridge driver’s current specifications were determined from the motor specifications

and output torque requirements. The electric motor constant, k, of each motor was

empirically characterised. Using the relationship of current to torque for DC motors,

τ = k · I, (2.2.5)

the peak currents were calculated. The driver-circuits output is controlled with a single

ended pulse width modulation (PWM) signal (approximately 20 kHz, biased at 50% duty

cycle), has an enable line and returns a bi-directional current sensing signal. For added

safety, the 12 V power supply to the motor drivers (as with all other circuits) has been

appropriately protected with fuses.

An energy budget ensures that there is enough electrical power available to power all the

output circuits. The alternator may charge the battery at its internally-governed rated

current and the actuators will draw current at varying operating cycles. For continuous

operation, the sum of average current drawn should not exceed the charging current. An

estimated energy budget is shown in Table 2.2 with the anticipated currents and operating

cycles. The estimate shows that there is approximately 1 A surplus current available to

power additional circuits. The sum of the active currents is the peak current that the

battery should be able to buffer and is used to select the battery.

Table 2.2: Example energy budget for currents drawn from the battery

Circuit Active Current Operating Cycle Average Current
I[A] Duty [%] Iavg[A]

Alternator -8 95 -7.6
Controller 2.5 100 2.5
Steering 15 15 2.25
Brakes 10 5 0.5
Gears 5 2 0.1
Throttle 0.75 50 0.375
Total 25.25 -0.925 a

aA negative value of current drawn indicates a surplus of energy.

2.2.3 Linking Actuators to Controls

In order to transfer the energy from the actuator to the control, the systems has to be

physically connected. Instead of redoing the stock mechanical levers on the vehicle, the
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actuators were designed to be additional to the original levers. This requires the least

amount of work and leaves the vehicle essentially intact.

Using simple mechanisms with the fewest linkage reduces friction which improves the

efficiency of energy transfer. As a practical advantage, simple systems are easily serviced

and finding replacement components for damaged parts are easier if they are “common”

parts. See Appendix E for photographs of the designs described below.

The steering shaft of is accessible from the front of the vehicle. The chosen motor with

worm gear assembly is mounted with its output shaft parallel to the steering shaft and

connected with a chain and a pair of cogs (adapted bicycle parts). The relative size of

these cogs were used to effect the exact gear ratio.

The ATV front and rear wheel brakes can be applied separately. The rear wheels have

a disc brake, known for precise and predictable braking and are the braking system of

choice. The cable was removed from the brake lever and rerouted to its actuator motor.

The chosen motor has an integrated worm gear assembly and the output torque is sufficient

to directly tension the cable using a short (30 mm) crank lever, since it requires very little

motion (see Table 2.1).

Similarly, the throttle cable was rerouted to its actuator motor. Again the motor also has

a built-in gearbox with sufficient torque to directly pull the cable. From the actuator, the

cable was extended to the original throttle lever, so that the test driver can operate the

vehicle when the controller is disabled.

The gear lever has three slots, namely Forward, Neutral and Reverse. The slots were

removed so that it may slide directly from one setting to the next. The chosen motor has

an integrated worm gear with enough output torque such that a simple crank-and-lever

connection to the gear lever is sufficient to push/pull the gear lever to the required setting.

The moment arm of the lever is calculated to deliver the required force over the required

distance.

2.2.4 Safeguarding

The experimental nature of the vehicle makes it susceptible to occasional malfunction.

A runaway vehicle can be dangerous and indicates the need for an emergency stopping
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mechanism. In case of a malfunction, the ability to override the steering and stop the

vehicle is sufficient. Table 2.3 lists the actuated controls and the physical safeguarding

applicable.

Table 2.3: Safeguards for vehicle actuators

Control Safeguard

Steering Shear pin fails when excessive force is applied
Brake Alternative method of braking – stock on ATV
Gear Lever Engine cuts out on accidental gear change – stock on

ATV
Throttle Original throttle lever operates in unison with actu-

ator; Installed an emergency cut-out switch on the
ignition

To allow a test driver to override the steering actuator, a shear pin is used to transfer the

torque from the cog to the steering shaft. The shearing force of the pin is calculated from

the maximum torque needed for the steering under normal usage and the moment arm

over which the pin acts. The dimensions of the pin are calculated from the shear pressure

associated with the material, so that it will give way when overloaded. It is noted that a

shear pin is a rudimentary solution and could be replaced by a more sophisticated system.

In terms of thrust, the test driver can only add additional braking or additional throttle.

In the event of a malfunction, the test driver can add additional braking and stop the

engine via the emergency cut-out switch.

To protect the vehicle gearbox, the lowest level controller checks that the vehicle is sta-

tionary and that brakes are applied (via a monitoring circuit on the brake light), before

allowing a gear shift operation. The ATV circuitry also cuts out the ignition if the gear

lever leaves neutral whilst the brakes are not active.

2.3 Sensors

To facilitate closed-loop control, all actuator motors are equipped with position feedback

potentiometers. These are sampled and digitised by the vehicle controller board. The

custom motor drivers include bi-directional current sensing, which is sampled by the

controller and implemented as hiccup-mode over-current protection. These may also be

used as torque feedback, as per equation 2.2.5.
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To facilitate dead reckoning, it is required to measure forward displacement of the vehicle.

A hall-effect rotation encoder connected to the transmission output provides accurate

encoding of the distance travelled via equation 2.3.1. To obtain velocity, the controller

simply computes the discreet derivative.

displacement = 2π(wheel radius)(drivetrain ratio)× counts

counts per revolution
(2.3.1)

Engine speed (RPM) is measured via a non-invasive tap on the electronic ignition system.

By timing the period between successive current pulses delivered to the spark plug every

revolution, the RPM is calculated using

RPM =
60 s

1 min
× 1

Trevolution
. (2.3.2)

To determine whether the clutch is engaged as well as the current ratio of the CVT

drivetrain, the ratio of RPM to wheel speed is calculated. At higher speeds, this ratio

should be factored into the velocity feedback controller as it changes the dynamics of the

vehicle. If the ratio is outside the bounds achievable by the CVT, it may be deduced that

the centrifugal clutch is disengaged and the appropriate response can be made.

Monitoring circuits have also been added to measure actuator battery voltage level and

determine whether or not the test driver has activated the brakes. Some additional

inputs and outputs are available to allow future expansion, such as remotely starting and

stopping the engine.

2.4 Actuator Controller

To modularise the architecture, the vehicle is equipped with a vehicle specific controller

board (shown in Figure 2.2). It presents a general interface to higher level controllers on

a standard controller area network (CAN-bus). Furthermore, it samples and converts the

sensor data, monitors vehicle status, such as battery level and test driver interference,

and enforces actuator limitations to prevent accidental damage.

The inner-loop controller takes servo-like position inputs for actuators and generates the

required control signals for the motor drivers. It accepts logic-based control signals for
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Figure 2.2: Photo of the actuator controller board, showing the input and output cabling.

gear shifts. The respective controllers reject any commands outside of the operating range

of their actuators and raise error flags. The true actuator position is returned to the high-

level controller, such that it may be used for monitoring or estimation algorithms.

The CAN-bus network has been implemented to synchronise with a high-level controller

that polls at a 50 Hz1 rate, using a digital phase-locked loop (DPLL). This ensures that

returned sensor data is sampled at a precise 20 ms sample period, irrespective of minor

congestion on the CAN-bus which influences polling frequency. A status flag is set when

the frequency and the phase are synchronised.

A serial interface (also avaiblable via USB) provides additional debugging functionality

via a PC user interface (shown in Appendix A). From the interface the actuators can be

directly commanded and position controllers tested with position reference inputs. Sensor

data can be be plotted and logged to investigate responses. The controller also keeps a

limited message/error log that can be downloaded.

1The use of a 50 Hz polling rate is dictated by the CAN-bus interface of existing hardware systems that
are available within the AutoNav group. This rate has proven to be sufficiently high to control various
vehicles with dynamics that are faster than that of the ATV and is thus suitable for this application.
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CHAPTER 2. VEHICLE DESIGN 18

2.5 Vehicle Summary

The result of this section is a practical demonstrator vehicle. It has been converted to be

fully drive-by-wire (steering, throttle, brakes, gear shift), whilst maintaining test driver

input capabilities. Mechanical safeguarding as well as an emergency cut-out switch were

added. The controller provides actuator, wheel odometry and engine tachometer sensor

feedback to higher level controllers for estimation, as well as some additional monitoring

services. The vehicle controller accepts position reference input commands for actuators

to separate actuator-specific dynamics from the higher level control.
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Chapter 3

Environment Sensor

To navigate in real time, the vehicle needs information about the layout of the operating

environment. If this information is not completely known at the start of the mission or

can change over time, the vehicle will have to explore the environment and update its

knowledge through environmental sensors.

This chapter briefly considers different types of sensors which may be used to map the

environment. After selecting a scanning lidar, ways to use this type of sensor to its full

potential are investigated.

3.1 Smart sensors

For the vehicle to be independent of external data sources, all environmental sensors need

to be carried on the vehicle. This implies that measurements are made relative to the

vehicle’s state and are only meaningful if interpreted as such.

To modularise sensors, the vehicle state is fed to the sensor system, so that it may in-

ternally pre-process the raw data with respect to the vehicle state and thus may hide

the underlying implementation. This type of sensor is referred to as a smart sensor, to

separate it from sensors which do not perform internal state-relative processing.

19
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3.2 Sensor Selection

There are a number of sensor technologies capable of detecting surroundings. The sensors

are most useful if they can provide information about the location and shape of a present

object, so that they may be included in a map. If the environment is not constrained

to be static, additional information may be necessary, but is beyond the scope of this

project. Known sensors that provide shape/location data are listed, described and then

compared below.

• Radar (radio detection and ranging)

• Sonar (sound navigation and ranging)

• Lidar (light detection and ranging)

• Computer vision

3.2.1 Radar

Radar emits electromagnetic (radio) waves and receives reflections off objects. The time-

of-flight (round-trip time of transmitted wave to reflect and return) is used to calculate

the distance to the object, given the speed of electromagnetic propagation. To have the

relative direction of the detected object, one has to focus the radiated energy into a beam

which can be steered in the direction of interest.

By choosing the proper frequency band, radar can be designed to operate very accurately

over a couple of meters or to detect targets tens or hundreds of kilometres away. Unfor-

tunately, forming a narrow beam with high angular resolution requires large antennae,

larger than what can be fitted to a vehicle.

Doppler radars can distinguish moving objects from stationary ones with high precision.

This enables the reliable detection of dynamic objects against a stationary background,

which greatly reduces the need for a high angular resolution.
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3.2.2 Sonar

Sonar emits sound waves and receives echoes off objects. The methods used to process the

echoes are similar to that of radar in Section 3.2.1, but because of the lower bandwidth,

is much more affordable on a portable scale.

The propagation of sound is heavily distorted by atmospheric disturbances and is therefore

not reliable over longer distances. Also the the slow speed of sound (relative to radio

waves) limits its applications to low speed or short range use.

3.2.3 Lidar

Lidar emits (laser) light, which is a particular portion of the electromagnetic spectrum

and therefore very similar to radar. It also uses the time-of-flight of the reflected signal

to determine distance. Since laser light can be focused into an almost arbitrarily narrow

beam, the angular resolution of a measurement may be selected. Lidar operation is

discussed in detail in Section 3.3.1 and is therefore not duplicated here.

3.2.4 Computer Vision

Computer vision is a system whereby the images from a digital camera system are pro-

cessed by a computer to extract the required information, commonly to mimic animal-like

image recognition. Common techniques include stereoscopic cameras, optical flow and

texture sectioning.

Computer vision shows great promise for use in autonomous navigation and SLAM. Cur-

rent techniques, however, require high computational loads and advanced processing and

implementation is therefore beyond the scope of this thesis. Computer vision is indeed a

subject of research for the AutoNav research group and will be added to the vehicle by

follow-up researchers.

3.2.5 Comparison

In Table 3.1 the sensors types are compared. Ideally a vehicle should combine many

sensor types to exploit the specific strengths of each sensor. Sonar and radar can be used
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Table 3.1: Comparison of sensors that provide distance and angular information of objects as
a means to map the environment.

Attribute Radar Sonar Lidar Computer
Vision

Distance resolution Excellent Good Excellent Good
Angular resolution Fair Poor Excellent Good
Application strength Large or

moving
targets

All short
range
obstacles

Profile
scanning

Sectioning

Application range 10 . . . 200 m 1 . . . 5 m 1 . . . 50 m 0 . . .infinity
Cost High Low Mid Low

to effectively identify obstacles, respectively of short and long range [7]. Their lack of fine

angular resolution makes it unsuitably to map the profile of a road surface.

As a midrange sensor, the angular resolution of lidar makes it possible to map the profile

of a road surface, with obstacles protruding from it. The accuracy is limited mainly by

the uncertainty of the sensor pose estimation. Computer vision hopes to provide the

entire spectrum of short and long range measurements, but is not yet available. As such,

a scanning lidar was chosen as primary environmental mapping sensor.

3.3 Lidar Mapping

The most widely used type of lidar device is a planar scanning sensor [7, 8], effectively

delivering two-dimensional data at high update rates (> 25Hz). Three-dimensional lidar

units are available, such as the Microsoft Kinect and MESA SwissRangerTM SR4000,

but those capable of outdoor (sunlit) operation with usable range are not yet affordable

for practical use. As such, the remainder of this chapter will be devoted to the two-

dimensional scanning lidar.

Firstly the capabilities and processing considerations of lidar data will be discussed, then

the influence of mounting on the usability of the retrieved data will be considered. In

Chapter 4 we define mapping techniques and verify these techniques using simulation.
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3.3.1 2D Lidar Capabilities

To understand mapping with a lidar, the operation and capabilities of a typical two-

dimensional scanning lidar (adapted from [9]) are discussed. The device outputs a mod-

ulated pulse of focused laser light (see Figure 3.1a). A receiver tuned to the same wave-

length of light detects and digitises the incident light intensity (Figure 3.1b). If an object

is present in the outgoing beam path, some portion of light is reflected from its surface

back towards the device. Since light has a finite, known speed of propagation, the incident

reflection will be delayed with respect to the outgoing pulse (Figure 3.1c). The length of

the delay represents twice the distance between the device and the reflecting surface.

Lidar Device Object

Outgoing light pulse

(a) Device generates outgoing pulse of light

Reflected light pulse Reflection

(b) Surface reflection causes an incident pulse of light

O
u
tg

o
in

g
 L

ig
h
t

Time

In
c
id

e
n
t 
L
ig

h
t Time−of−flight

(c) Time scale showing round trip time of incident pulse

Figure 3.1: Illustration of operating principle of a 2D scanning lidar.

By rotating the beam and taking measurements at convenient increments in rotation, a

disc-shaped area about the device can be scanned. This is typically achieved by using

a rotating mirror inside the device [9]. If the rotational increment (angular resolution)

is matched to the beam spread, an uninterrupted band can be scanned (see Figure 3.2).
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The acquired data is represented by an array of distances coupled to their rotation index.

A profile of the scan may be constructed in polar coordinates, with origin at the device

centre.

Figure 3.2: Illustration of scanning lidar beam spread and angular resolution.

Some important considerations include:

• A closer surface may obstruct the view of a surface behind it.

• A lidar detects only a surface, not the volume of an object.

• A physical device will have limited detection range.

• A surface with low remission values may not reflect a sufficient amount of light to

be detectable.

A single lidar detection has three regions to be interpreted, as depicted by Figure 3.3.

Firstly, the space between the sensor and the detected surface are known to be clear.

Secondly, there is a known surface at the detected distance, within the measurement

uncertainty of the device. And lastly, the area behind the surface is unknown, since its

view is blocked.

3.3.2 Lidar Mounting

The position and orientation that a scanning sensor is mounted on a vehicle greatly

influences the viewable environment profiles. Apart from static mounting, a scanner may

also be actuated using a pan/tilt unit (PTU) to direct the sensor to view a different area.

We discuss some of the possibilities and motivate our selection.

Static horizontal (bumper) mounting is the simplest method of mounting, as de-

picted in Figure 3.4a. It is very effective in structured environments where the obstacles
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0 Object surface

Physical spatial range

0 Detection measurement

CLEAR

SURFACE

UNKNOWN

Range measurement distance

Figure 3.3: Illustration depicting the three regions of interpretation for a lidar detection.

are known to protrude significantly higher than the sensor mount height. All detections

indicate obstacles and non-detections indicate clear area. It is unfortunately very sensitive

to pitch and yaw motions of the vehicle (Figure 3.4b). A small angular change is amplified

over distance. Pitching upwards may overlook a short obstacle and pitching downwards

may detect the driving surface as a phantom obstacle. There is also no way of assert-

ing the presence of a driving surface (Figure 3.4b bottom)and is therefore unacceptably

unreliable.

(a) Effective detection in a structured environment (b) Erroneous conditions due to pitch and lack
of surface scanning

Figure 3.4: Illustration of mounting lidar horizontally on a bumper.
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If one were to compensate for pitch and roll motions and include scanning of the driving

surface, it implies building a complete 3D representation of the environment. There is no

longer a need to rely on any guarantee about the “structuredness” of the environment.

When using sensor pose data, it becomes essential to include the statistical uncertainty

of the vehicle estimator in the measurement interpretation.

Having the sensor deliberately mounted pitched downwards ensures profile slices being

taken of the driving surface as per Figure 3.5. The particular slice will still be affected by

vehicle roll and pitch, but pitch and roll is measured by the vehicle estimator for mapping

and is not a cause of error. The main source of error will be the limited accuracy of the

vehicle estimator [7]. Again, the effect of angular error is amplified over distance.

There arises a trade-off between the accuracy of our map and our ability to look ahead

towards the horizon, given that the angular estimation is fixed. Looking further ahead

enhances our ability to plan ahead, but the detail is lost in estimation error (Figure 3.6a)

and visa versa (Figure 3.6b. One way to avoid striking a compromise is to use multiple

lidar devices and set them up for different viewing distances as in [7] (five lidar scanners),

but this a costly solution. It is desirable to achieve usable results using only a single lidar

device.

Figure 3.5: A downwards pitched scanner taking profile slices of the driving surface.

(a) Long look ahead mount (b) High accuracy mount

Figure 3.6: Illustration of mounting a lidar at different downward pitch angles, with measure-
ment uncertainty indicated.
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When using a fixed mount, mounting the lidar device in a elevated position has several

advantages as portrayed in Figure 3.7. Firstly, a higher mounting position desensitises

the viewing distance from unwanted pitch and roll motions (Figure 3.7a). Secondly, it

makes it less likely that driving surface deformation will intervene with viewing distance

(Figure 3.7b). And most importantly, it makes it possible to discern height as the vehicle

nears an obstacle (Figure 3.7c).

Large range change

Small range change

(a) Range sensitivity to equal pitch changes

Terrain obstucts view

Full view

(b) View obstruction by equal terrain

Partial height observed

Full height observed

(c) Height discretion at equal range

Figure 3.7: Illustrations of comparison between a fixed pitch roof mounted and fixed pitch
bumper mounted lidar.

It is possible to control the lidar orientation via a PTU mount. This gives us the option

to switch, in real time, between the high accuracy of short distance scanning and the
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longer distance of reduced accuracy scanning. Similar results are obtained as with using

multiple devices, but with the limitation of having the sensing bandwidth of a single

device. At the same time, having lower sensor bandwidth may be a benefit to processing

requirements.

Various different mounting and actuation strategies may be used, each with different

effects. This includes the ability to direct the sensor to scan areas previously missed or

where greater accuracy is required. It could also be used to stabilise unwanted pitch and

roll motions incurred by vehicle motions.

3.4 Sensor Summary

Of the various types of sensors, a scanning lidar was chosen based on its excellent range

and angular resolution. The scanning lidar can effectively detect obstacles and assert the

presence of a driving surface. Ideally the lidar should be used in conjunction with the

long range capabilities of radar and computer vision.

The choice was made to mount the lidar at a fixed downward pitch, as this facilitates

a profile scan of the driving surface. The precise pitch angle is a trade-off between the

desired accuracy and the viewing distance. Bumper mounting a lidar provides good

obstacle detection in a structured environment, but its shortcomings are unacceptable

for unstructured environments. It has been shown that mounting the device high on the

vehicle has some desirable effects. For practical construction reasons, the lidar will be

approximately 1.2 m above the driving surface.

It was noted that using multiple lidar devices or actively aiming the device(s) using a

PTU may provide considerable improvements, but is beyond the scope of this thesis.
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Mapping

It is necessary to reconstruct the environment from the acquired lidar data and store

it in a map which is usable for path planning. One way to achieve this, would be to

store all scanned profiles with their associated sensor pose information. Then, for every

planning query, all the data would have to be processed and checked for conflicts. This

could require infinite memory and processing, as the amount of gathered data would

continually increase over time, which is not a feasible solution.

The practical approach is to process the incoming data in real time, extract the required

information and store only that information in a map-like structure. Instead of storing

an increasing amount of data over time, the map data is updated as new information

becomes available.

For the reasons explained in Section 3.3, a full 3D mapping setup was opted for in order

to overcome the limitations of a 2D setup. Ultimately we want to be able to profile the

driving surface and distinguish obstacles in a manner suitable for path planning. In this

chapter known approaches to represent an environment are considered and a detailed

discussion of the implementation of the chosen 3D occupancy grid representation is given.

The final section describes the lidar simulation setup that was used as a development tool.

4.1 Map Representation

To model the 3D environment in which operation is desired, a representation of the real

world is needed that is both efficient to update and efficient to interpret. This section

29
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describes some known methods, working up towards three-dimensional occupancy grids.

4.1.1 Triangular Mesh Representation

As sensors mostly detect surfaces, it follows to represent the environment as a collection

of surfaces. From computer visualisation we know that a practical method to discretise an

arbitrary surface is to approximate the surface with a triangular mesh [3] (Figure 4.1). In

areas of high detail the mesh is refined and where there is little detail only a few vertices

are needed. This saves on storage space and computational expense [10].

Although a meshed representation is very general, updating it and using it as input to

a path planner can become very involved. A simple and convenient method is preferred

and therefore this topic is not pursued in this thesis.

Figure 4.1: Example of a triangular meshed surface

4.1.2 Grid-based Representation

Since the vehicle is to be bound to a driving surface, the representation in this thesis

may be constrained to a relatively flat surface. A surface with no discontinuities can be

approximated by a regular grid of heights, stored in a two-dimensional matrix. Heights

in the area between stored vertices may be interpolated as required.

This conveniently suits the desire to represent a smooth driving surface. Intuitively, if

a vertex within the grid protrudes significantly in height from its neighbours, it may be

considered an obstacle.
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As the sensors gather information about the environment, the relevant vertices in the

grid are updated with their heights. To allow for measurement uncertainty, the perceived

accuracy of the height estimation may be stored with the height. Any system of update

that accommodates uncertainty may be used, such as the popular Kalman filter.

There is, however, one pitfall that may arise when we sense a vertical surface. Consider

a pole protruding from the ground. If an observation of the pole were made near its top

(see Figure 4.2a), it may correctly be identified as an obstacle. If at a later time, many

new observations are made at the base of the pole (Figure 4.2b), with higher accuracy,

such that the vertices are updated with the height of the base observation, the process

may mistakenly erase the pole from the map.

Observation 2D Grid

(a) First observation recognises object

Observation 2D Grid

(b) Second observation mistakenly decreases height of object

Figure 4.2: Illustration of gridbased height profiling of a pole.

In the implementation of Probabilistic Terrain Analysis (PTA) gridbased maps in [11],

they overcome this dilemma by maintaining two heights per cell – the lowest and the

highest observed points. With this added information, they define three possible states

for a cell.

A cell is unknown if it does not contain both a minimum and a maximum height i.e. at

least two observations. A cell is drivable if the difference in height between minimum

and maximum does not exceed some defined threshold (uncertainty accounted for via a

Markov model). This implies a level surface. If the difference in height does exceed the

threshold, then the surface is assumed discontinuous and marked undrivable.
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The PTA method was implemented successfully, but the authors explicitly note that the

PTA method does not reconstruct a 3D model [11]. Instead, it uses a statistical test on

a per-cell basis to determine whether a cell is drivable.

It is noted that these surface-mapping techniques only use the surface data returned by

the lidar device. In Section 3.3.1 we state that lidar data can also observe a clear space,

which remains unused when mapping surfaces. This surface mapping assumes that,

1. if an obstacle-like surface exists, it will be observed in two distinct heights and

2. the absence of such distinct observations is sufficient to declare a cell drivable.

These conditions cannot be guaranteed, nor does the method of [11] indicate a means to

determine whether a cell has been sufficiently probed to be obstacle free. The successful

use of the PTA method in [11] was aided by the use of five lidar devices, increasing the

probability of observations. As this project only uses a single device, this is not a feasible

solution.

4.1.3 2D Occupancy Grid Representation

A popular method for classifying a 2D terrain for drivable and undrivable areas, is the oc-

cupancy grid (OG) [1]. It divides the map into a spatial lattice and maintains a stochastic

estimate of the occupancy state of each cell [1]. An example OG from [2] is shown in

Figure 4.3. When planning a path, the vehicle should not enter an occupied cell.

Bayesian estimation procedures allow the incremental updating of the OG using readings

from several sensors over multiple points of view [1]. In keeping with the terminology

of [1], each cell ,C, is described by a discrete random variable, s(C), with two states,

occupied and empty, denoted by OCC and EMP respectively. It is further said that the

two states are exclusive and exhaustive, such that P [s(C) = OCC]+P [s(C) = EMP] = 1.

They define a probability based sensor model for a range data sensor, p(r | z) which

relates the distribution of reading r to the true spatial range z. It may easily be updated to

include uncertainty in angular data, by expanding it to p(r | z, θ). To facilitate incremental

updating, Bayes’ theorem is used to estimate the cell occupancy state of cell C. Given
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Figure 4.3: A 2D occupancy grid example, created by a sonar robot scanning a room. The
white area indicates clear space and the grey unknown. The room and obstacles outline has
been overlayed.

an estimate of the state of a cell,

P [s(C) = OCC | {r}t]

where {r}t = {r1, . . . , rt}

and given a new observation, rt+1, the improved estimate is given by

P [s(C) = OCC | {r}t+1] =
p [rt+1 | s(C) = OCC] · P [s(C) = OCC | {r}t]∑

s(C) p [rt+1 | s(C)] · P [s(C) | {r}t]
. (4.1.1)

The Bayesian formulation requires a prior, which in this case is the estimate of the cell

for all previous readings, P [s(C) = OCC | {r}t]. The updated cell estimate replaces the

prior value and is stored with the cell. [1] obtains the distribution of sensor readings from

the sensor model, p[rt+1 | s(C)], using Kolmogoroff’s theorem. The process from sensor

reading to map is shown in Figure 4.4 (derived from [1]).

r

Sensor reading

p(r|z)

Sensor model

P [s(x)|r](x)

Bayesian estimation Map decision

Figure 4.4: Diagram of estimating the occupancy grid from range sensor data
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To distinguish occupied cells from free cells, [1] suggests using the maximum a posteriori

decision rule, where a cell is:

• occupied if P [s(C) = OCC] > P [s(C) = EMP],

• empty if P [s(C) = OCC] < P [s(C) = EMP] and

• unknown if P [s(C) = OCC] = P [s(C) = EMP].

The author of [1] also notes that the thresholding may be adjusted to include a band of

unknown area, or that many tasks may be performed directly on the OG, without the

need for explicit thresholding.

Occupancy grids are also a convenient method for combining different types of sensors.

The different sensors may each update the same grid using their respective sensor models,

or maintain separate grids, which can be overlayed for decision making.

It is further noted that OG makes explicit use of all three regions of a sensor, as per

Section 3.3.1. This is desirable, as we would like to exploit all the available information.

The original method of OG, as presented here, makes use of the inverse sensor model to

update the cells. As explained in [12], this inverse procedure creates some inconsistencies

in the obtained map. The authors of [12] derive a method that uses only forward sensor

models. Unfortunately, this is not an incremental approach. Incremental approaches are

convenient for planning algorithms which need the map as it is discovered.

4.1.4 3D Occupancy Grid

Naturally the methods of 2D OGs may be extended to three dimensions. Instead of each

cell representing a square of possible driving surface, each cell now represents a volume

cube of operating space. As for the 2D case, the occupancy state of each cell is estimated.

The driving surface can be thought of as a layer of perfectly stacked boxes and obstacles

as stacked piles on top of the surface layer (Figure 4.5). All the remaining space is filled

with ghost boxes.

A boundary between an empty and an occupied cell represents an object’s surface. Ex-

tracting this boundary over the driving surface can be used to profile the driving surface,

such as with the gridbased heights (Section 4.1.2).
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Figure 4.5: Example of 3D occupancy grid surface with obstacle. (Empty cells not drawn).

Fortunately, errors such as in Figure 4.2 can be excluded, since it is possible to check

the vertical dimension for “hovering” occupied cells. Since cells can indicate an unknown

state, it can be conveniently determided whether a cell has been observed or not, thus

overcoming the assumptions of Section 4.1.2.

4.1.5 Representation Summary

Due to the unstructured nature of an outdoor operating environment, it is inevitable that

the vehicle must profile the driving surface to account for (moderately) sloped surfaces.

The assumptions of pure surface-based modelling poses problems and does not guarantee

that all obstacles have been observed. As such, the OG representation was chosen, which

overcomes these problems.

The 3D OG can model an arbitrary environment and is the method of choice for this

thesis. It captures data from all three sensor regions, which enables the labelling of

space as empty, occupied or unknown, which can be used to guarantee empty space.

Bayes’ theorem provides a statistically sound method to incrementally update the OG as

data is gathered. If so desired, it would be possible to extract an approximated surface

representation from the OG and add to it the aforementioned guarantee.

4.2 Implementation of the 3D Occupancy Grid

This section gives a detailed explanation of the implementation of 3D occupancy grids

as used in this thesis. The goal is to make a practical mapping module, which could be
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used as a real-time on-board system. There are a number of design parameters which are

problem specific. The factors that influence the design choices are discussed and are used

as a guide to selecting appropriate parameters for the sensor model, 3D OG resolution

and mounting pitch.

4.2.1 Axis System

We define four axis systems, namely inertial axis, body axis, map axis and sensor axis,

denoted by subscripts I , B, M and S respectively. Although any axis system may be

transformed to any of the others and therefore seem redundant, it is used as a convenience

to concisely express certain relative quantities [13].

The inertial axis system (sometimes called the NED axis, short for North-East-Down axis)

is stationary with respect to the earth’s surface, with right-handed orthogonal axes la-

belled N , E and D (see Figure 4.6a). As the names suggest, N points due north, E east

and D “down” along the gravitational vector at that location. The origin may be chosen

anywhere on the earth surface, therefore the starting point of the vehicle mission is chosen

for convenience.

The body axis system is an axis system whose origin and orientation coincides with the

origin and orientation of the vehicle (see Figure 4.6b). Right-handed orthogonal axes are

labelled x, y and z, with the x-axis parallel to the vehicle longitudinal centreline, the

y-axis parallel to the rear axle and the remaining z-axis points down. The origin is tied

to the vehicle chassis and the specific location is chosen as the midpoint of the contact

points of the rear wheels when the vehicle is set on a flat, level surface.

Vehicle rotations are defined about these axes using the right-hand-rule. Positive roll, Φ,

is about the positive x-axis. Similarly pitch, Θ, is about y-axis and yaw, Ψ, about the

z-axis. In layman’s terms, yaw is a ‘right’, pitch is a ‘up’ and roll a ‘clockwise’ motion.

Since the order in which rotations are applied is not commutative, rotations are applied

successively in the order yaw-pitch-roll, each separately in body axes. Note that a vehicle,

positioned at its starting point, headed due north on a level surface shall have its body

axes coinciding with the inertial axes.

The map axis system is used to provide coordinates within the digitised environment

representation (see Figure 4.6c). The map shall be considered stationary, like the inertial
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system and have its axes’ orientation aligned to that of the inertial system. The origin,

however, need not coincide with the inertial axis system. When referencing real world

units, they are indicated by x, y and z, and when using logical indices, they are denoted

by i, j and k.

(a) Inertial axes (b) Vehicle body axes (c) Map axes (shown with NED)

Figure 4.6: The three axis system definitions.

The sensor axes is fixed to the origin of the lidar beams, similar to the manner in which

the body-axis system is fixed to the vehicle. The x-axis lies along the centre beam of the

device and the z-axis is perpendicular to the plane in which the device scans, pointing

“downwards”. The y-axis completes the orthogonal axis system.

Transformations between two axis systems may be performed on coordinates and vectors

using a direction cosine matrix (DCM), denoted by T, and appropriate translations of

coordinates. Subscripts in the form of Tfrom→to indicates the source and destination axis

systems.

4.2.2 Sensor Model

The OG requires a sensor model and this is in the form of a distribution function of

readings returned, given the real world spatial setup, p[r|z, θ]. Occupancy grids were

mainly developed for sonar sensors with wide angular and range uncertainty, in the order

of 12◦ and 1.2 m in [2], but can equally be applied to lidar devices with smaller uncertainty.

A SICK LMS-111 lidar was used with the key measurement specifications summarised in

Table 4.1. For each lidar beam, the device returns a range reading, r, and an angular index,

θi. From the combined beam divergence and angular increment, the angular uncertainty
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is appoximated to be 0.5◦ and all range measurements fall within ±30 mm. On the scale

of the operating environment, this sensor can almost be considered an ideal sensor.

Table 4.1: SICK LMS-111 lidar measurement specifications [9].

Description Specification
Maximum range 20 m
Range error ±30 mm
Maximum scanning angle 270◦

Angular resolution 0.25◦

Beam divergence (full angle) 0.86◦

Scanning frequency up to 50 Hz

The sensor model is mapped to the cells, as a distribution over the cells – a process

which is dependent on the vehicle state. This adds additional measurement error and we

augment the uncertainty of the sensor model with the uncertainty of the state estimate.

The available IMU, DGPS and estimator system is said to be accurate to 50mm in position

data [14] and 1◦ in angular data [15].

The combined distribution is a convolution of the lidar and estimator distributions. Since

neither distribution is accurately known and the process to characterise the distribution is

tedious and an empirical approximation at best, no formal attempt was made to formally

acquire such a distribution. Instead, a simple function is used that captures the essence

of uncertainty in angular and range data, assuming these effects to be independent.

The angular distribution, Γ(θ), is approximated by a triangular function that peaks at

unity on the lidar beam centre, decays linearly with divergence from beam centre and

settles at zero for an offset beyond σθ,

Γ(θdiv)sensor model =


∣∣∣1− θdiv

σθ

∣∣∣ for −σθ < θdiv < σθ

0 otherwise,

(4.2.1)

where θdiv is divergence from the actual beam centre. Note that the angular divergence

may equally represent an angle on a 2D plane or an angle in 3D space.

We approximate the range function, ∆(ρ), with a smooth transition inspired by [2], with

unity at the surface distance and a smooth falloff over a selectable distance, 2σρ,

∆(ρdiv)sensor model = 0.5− 0.5 tanh

(
ρdiv − 2σρ

σρ

)
, (4.2.2)
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where ρdiv is the divergence from the actual beam range.

Combining equations 4.2.1 and 4.2.2 into p[r|s(C) = OCC] needed for equation 4.1.1

results in

p[r | s(C) = OCC] =


0.5 + (∆(|ρ− r|)− 0.5)Γ(θdiv)) for 0 < ρ < r + σρ

and −σθ < θdiv < σθ

0.5 otherwise.

(4.2.3)

This function can be visualised as a 2D section through the projected lobe in Figure 4.7,

with σρ and σθ exaggerated to highlight their effect. In the Bayesian update of equa-

tion 4.1.1, all cells with p[r|s(C) = OCC] = 0.5 will be unaffected and are considered

outside the lobe.

(a) Sensor model as a 3D mesh.

0 r r+2σ
ρ

r−2σ
ρ

ρ

1

0.5

0

(b) Sensor model as a set of contours.

Figure 4.7: Two-dimensional sensor model for a beam. It depicts the distribution about the
beam axis with range reading r, p[r|s(C) = OCC].

For this sensor model, the two parameters, namely σρ and σθ, needs to be specified. As

a rough approximation, simply adding the approximate error bounds of the lidar device

to the error bounds of the estimator gives:

σρ = 30 mm + 50 mm

= 80 mm (4.2.4)

2σθ = 0.5◦ + 1.0◦

= 1.5◦ (4.2.5)
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4.2.3 Resolution of Occupancy Grid

The resolution of the OG is the volume unit used to represent the environment. The finer

the resolution, the more detail it is possible to capture. On the other hand, a fine grid

implies an estimation of more cells and will require more processing power. With a 3D

implementation, the computational requirements increase with O(n3). This leads to a

trade-off between processing speed and feature detail.

It is desrable to derive a minimum grid resolution that would render reasonable accuracy,

with the advantage of the reduced computational load. The two key factors to consider

are:

1. the minimum recognisable obstacle’s size

2. and the accuracy of the sensor.

It is noted that, for a terrestrial vehicle, a relatively small error in vertical measurement

can incorrectly classify terrain as drivable (e.g. driving up a curb 0.25 m high will cause

damage to most ordinary cars). Whereas the same measurement error, but horizontally

towards an obstacle, is small with respect to the average range measurement of obstacles

which may be several metres.

It would seem like there is a greater tolerance of horizontal errors. From this, it can be

deduced that having different grid resolutions for the vertical and the horizontal dimen-

sions, denoted by αxy and αz, may be appropriate. From the project scope (Section 1.3.1)

an obstacle is defined as an extrusion from the driving surface with minimum dimensions

∆hobs > 0.5 m and aobs > 0.5 m.

In the horizontal dimension, it is ensured that an obstacle will be represented in the 3D

OG by ensuring that at least one column of cells is entirely occupied (Figure 4.8a). This

is achieved by setting the horizontal resolution to half the minimum obstacle dimension,

αxy =
aobs

2

= 0.25 m/cell. (4.2.6)
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For argument’s sake, choosing a vertical grid resolution αz = 0.1 m/cell, leads to

∆hobs
cell units =

∆hobs
αz

=
0.5

0.1

= 5 cells. (4.2.7)

At best, extracting the height from the OG is accurate to one cell’s dimension. In the

worst case, if the driving surface appears one cell higher and the obstacle one cell shorter,

we are left with a mere three cell difference to distinguish the obstacle (Figure 4.8b).

From this we deduce that

αz = 0.1 m/cell (4.2.8)

is an acceptable resolution in height.
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Figure 4.8: Illustrations of horizontal and vertical grid resolution.

Before the parameters of equations 4.2.8 and 4.2.6 are accepted, a sanity check is done

against the accuracy of our measurements. Absolute positional estimate is within 50 mm,

which is within the confines of a single cell, that is, the lidar origin with respect to cell

indices is considered exactly known.

As mentioned before, angular error is multiplied by distance. With an angular accuracy

of 1.5◦, it is desirable to determine the maximum range at which an obstacle can be

discerned. Using the three cell discretion height as guideline, it indicates the maximum

usable range as

ρmax =
∆h3 cell

arctanσθ

=
0.3

arctan 1.5◦

≈ 11.4 m, (4.2.9)
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which is acceptable for a midrange application.

4.2.4 Mounting Pitch

Mounting pitch determines the range of the viewing horizon, which in turn affects the

accuracy of the 3D OG map. As stated in Section 4.2.3, the viewing horizon goal is ρ =

11.4 m. As stated in Section 3.3.2, the lidar will be mounted at a height of zSB = −1.2 m,

which is above the driving surface, with a fixed downwards pitch angle ΘS
B. The sensor

pitch angle as is determined to be

ΘS = arctan

(
zSB
ρmax

)
(4.2.10)

= arctan

(−1.2

11.4

)
= 6◦

Figure 3.7a shows that vehicle pitch, ΘV
I , has an influence on viewing distance. For the

mounting setup described here, the change in viewing distance is showed in Figure 4.9. It

is clear that small vehicle motions cause a considerable offset, especially for positive pitch

angles. Note also how an increased mounting height decreases the sensitivity (dashed

lines in Figure 3.7a).
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Figure 4.9: The influence of vehicle pitch on viewing distance for fixed sensor pitch.

The mounting also determines the maximum discernible height over distance, as portrayed

in Figure 3.7c. As the vehicle nears an obstacle, the discernible height increases. For the
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mounting setup described here, the full height of the minimum size obstacle is observable

at

ρrec =

∣∣zS∣∣− h
tan ΘS

I

(4.2.11)

=
1.2− 0.3

tan 6◦

= 8.5 m.

This calculation becomes irrelevant when a PTU can be used, but for the purpose of this

thesis, equation 4.2.11 is assumed to be the nominal usable distance at which obstacles

may be recognised.

4.2.5 Extent of Occupancy Grid

The extent of the occupancy grid determines the amount of memory required to hold

the cell estimates. The naive approach would be to make a grid that covers the entire

operating environment – the World for earthbound vehicles. The alternative is to confine

the grid to a local area.

From the scope definition of Section 1.3.2 it is deduced that the vehicle’s route will be

uni-directional and therefore, the vehicle will pass through an area once and not return.

Using memory to store global information that will not be used again is wasteful.

The extent of local map is defined to move along with the vehicle. For ease of digital

storage and indexing, the 3D OG is maintained as a square prism, such that the horizontal

sides are of equal length, with the vehicle near the centre of the grid.

The horizontal extent of the 3D OG should exceed the nominal viewing distance, so that

all relevant surface detections are inside the map. The vertical dimension may be limited

to the vertical space above the driving surface, up to the maximum height of the vehicle

and down to just below the driving surface, to include the presence of the driving surface.

The vehicle origin is bounded to the driving surface, therefore P V
z is the driving surface

height.

OGx = OGy = [−15 m, 15 m] relative to P V
xy (4.2.12)

OGz = [−1.0 m, 0.2 m] relative to P V
z (4.2.13)

Stellenbosch University  http://scholar.sun.ac.za 



CHAPTER 4. MAPPING 44

With the 3D OG extent and resolution known, the amount of digital storage required

to store the map cab be calculated. Assuming each state is stored in a double-precision

floating-point number of 8 bytes and substituting the the values of α and OG:

Number of Cells = (∆OGx/αxy) · (∆OGy/αxy) · (∆OGz/αz)

= 675× 28 cells

Storage = (Number of Cells) · (8 bytes)

∼= 1.3 MB (4.2.14)

4.2.6 Beam Projection and Indexing

To update map cells with range measurements, sensor beams are projected into the discre-

tised map, in order to determine each cell’s relation to the sensor model. Measurements

are made in the continuous real world, W , and map cells are a 3D matrix in computer

memory, M, to be updated. This is essentially a mapping W(x, y, z) 7→ M(i, j, k).

In W , a beam is measured from the lidar origin PS
I with orientation OS

I , and the device

returns a range and angular increment reading (rn, ψn) for each beam n. A scan with N

beams consists of
{
PS
I ,O

S
I , (r1, ψ1) . . . (rN , ψN)

}
.

As the 3D OG is defined in Cartesian coordinates, the sensor polar coordinates are con-

verted to vectors in the xy Cartesian plane of the sensor axis system.

rnS =


xn

yn

zn


S

=


rn cos(ψn)

rn sin(ψn)

0


S

(4.2.15)

In practice, PS
I and OS

I are not directly known in inertial axes. Instead, the mounting

setup fixes the device origin in body axes, PS
B and OS

B. The beam origin is the sensor

origin, and is transformed to the inertial axes via

PS
I = TB→IP

S
B + PV

I , (4.2.16)

where P = [x y z]T and TB→I is the DCM from OV
I . The beam tip is transformed to

inertial axes via nested transformations, from sensor axes, to body axes, to inertial axes:

rI = TB→I
(
TS→BrS + PS

B

)
+ PV

I , (4.2.17)
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where TS→B is the DCM from OS
B and r = [r1 r2 . . . rN ] is a row vector of the beam

vectors.

The OG method updates the estimate of each cell with the probabilistic evidence of each

reading. This implies that each and every cell has to be visited for each scan and updated

with respect to each beam, which is a computationally expensive process. As can be seen

from the sensor model (Section 4.2.2), the majority of cells fall outside the beam and

will remain unaffected by the update process and need not be included in the calculation

process.

To find the cells that are affected by a particular beam, it is necassary to know the extent

of the beam’s lobe in the sensor model. Updating only a subset of cells will significantly

decrease the number of calculations needed for the sensor model and Bayesian update, at

the cost of calculating the bounds of the lobe.

The sensor model’s lobe is conical with its base at the detected surface, but the beam cone

can be enclosed in a pyramid (see Figure 4.10). Since a pyramid has only straight edges,

they are much more efficient to project. This projection can be achieved by defining a

set of four rotation matrices, TBDv=1...4 , that describe the 3D rotations between each of

the pyramid edges and the beam. Finding the vertices uses the result of equation 4.2.17,

with one additional transformation:

vIv = TBDvrI (4.2.18)

Figure 4.10: Using an elongated pyramid to bound the beam deviation cone.
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If the base of the pyramid is defined to be a vertical plane, it is possible to exploit the fact

that vertices v1 and v2 have the same z value and likewise v3 and v4. Similarly, v1 and

v3 have the same (x, y) coordinate as does v2 and v4. Thus projecting only for v1 and

v4 generates all the necassary data and this can be used as optimisation. This concludes

beam projection in W(x, y, z).

The map origin, M0, is defined as the vertex in the map with the minimum coordinates

in W , such that all cell vertices have positive coordinates. Mapping a coordinate from

inertial axis is now a simple translation

PM = PI −M0I

and is applied to all beam projection geometry.

The next step is to identify all cells that are enclosed, or partially enclosed, by the beam

projection. The process can be broken down into three tiers, as set out in Algorithm 4.1.

Figure 4.11 visualises the three tiers, first calculating the x-range, then the y-range and

finally the z-range of indices. Each range is then transformed to indices. A coordinate

(x, y, z)M belongs to cell M(i, j, k), where i = bx/αxyc, j = by/αxyc and k = bz/αzc.

(a) Defining x-range (b) Defining y-range (c) Defining z-range

Figure 4.11: Projection of beam pyramid onto indexed cells. Note that the selected cells
completely encapsulate the beam pyramid. Projections on the xy-plane and xz-plane aid visu-
alisation.

4.2.7 Sensor Model Computation

Each cell is visited as returned by Algorithm 4.1 and needs its p[r | s(C) = OCC] calcu-

lated. The distribution is dependant on ρ and θdiv of the specific cell. In the formulation
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Algorithm 4.1 Compute i, j, k indices for a projected beam

1: Project beam into M(x, y, z). (equation 4.2.18)
2: Project pyramid onto xy-plane
{results in an isosceles triangle}

3: Use minimum and maximum x coordinate of projection as x-range
4: Convert x-range to i index range with αxy
{clip i indices to the extent of map}

5: for all i in range i-range do
6: Find the y-range of the projection corresponding to index i

{using the projected triangle}
7: Convert y-range to j index range with αxy

{clip j indices to the extent of map}
8: for all j in range j-range do
9: Find the z-range of the projection corresponding to indices i and j

10: Convert z-range to k index range with αz
{clip k indices to the extent of map}

11: for all k in range k-range do
12: Compute p[r|s(C) = OCC] for cell Cijk from sensor model
13: Compute P [s(C) = OCC|{r}t] with Bayes’ theorem
14: end for
15: end for
16: end for

of the Bayesian update, we assumed each cell as an independent state. As such, cells may

be visited in any ordering.

The centre of the cell may be used as representative location of the cell. Its coordinates

are calculated by adding 0.5 to indices (i, j, k) and multiplying each with its respective

resolution, α.

PCijk =
[
(i+ 0.5)αxy (j + 0.5)αxy (k + 0.5)αz

]T
(4.2.19)

Calculating distance ρ from the origin to the cell is achieved with simple euclidean dis-

tance:

ρijk =
∥∥PCijk −PS

∥∥ (4.2.20)

The angular deviation off the beam centre is calculated using vector algebra. Normalizing

both the vector representing the beam, r, and the vector from the sensor origin to cell’s

centre, (PCijk−PS), results in two unit vectors, nbeam centre and ncell centre. The magnitude

of the cross product of these two unit vectors is the sine of the angle between them.

Therefore:

θdiv = arcsin (‖nbeam centre × ncell centre‖) . (4.2.21)
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4.2.8 Bayesian Update

The new cell estimate for an indexed cell, C, can now be computed using Bayes’ theorem

as described in Section 4.1.3. Although the theorem makes provision for calculating the

joint probabilities of cells, [2] motivates why cells may be assumed independent. From

this assumption, they arrive at the following simplifying derivation:∑
s(C)

p[r|s(C) = s(C)]P [s(C) = s(C)] = p[r|s(C) = OCC]P [s(C) = OCC]

+ p[r|s(C) = EMP]P [s(C) = EMP],

but P [s(C) = EMP] = 1− P [s(C) = OCC],∑
s(C)

p[. . .]P [. . .] = p[r|s(C) = OCC]P [s(C) = OCC] (4.2.22)

+ (1− p[r|s(C) = OCC])(1− P [s(C) = OCC]).

Substitute equations 4.2.20 and 4.2.21 into equation 4.2.3 and in turn equation 4.2.3 into

4.2.22 to obtain the denominator for Bayes’ theorem. The numerator is the product of

equation 4.2.3 and the previous cell estimate (refer to equation 4.1.1). The initial cell

estimate (before any observations have occurred) is set to P [s(c) = OCC] = 0.5, to

indicate an unknown estimate.

4.2.9 Local Map Shifting

The extent of the OG was defined to move with the vehicle in Section 4.2.5, such that

when the vehicle moves, the extent of the map changes. For an observer fixed in the

map axes, it would seem like the contents of the map had shifted a distance equal to the

displacement of the vehicle, but in the opposite direction. A portion of the map will be

discarded and on the opposite side of the map, a new region of unknown space is included

in the map.

If the map extents were to change by an arbitrary distance, a problem arises when grids

before and after the movement are not aligned. For a map of discrete cells, the contents of

the map are fixed to the resolution of the grid, α. At each time step the grid contents are

resampled, which results in some mixing of cell content with its neighbours. After a few
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n = 0

n = 1

n = 2

n = 10

n = 20

Figure 4.12: Illustration of the effects of resampling. Using a one-dimensional image, the
original source is tracked for n iterations of worst-case resampling.

repetitions of resampling, serious degradation of fidelity occurs as depicted in Figure 4.12.

To remedy the resampling problem, the map is only shifted in integers of the map reso-

lution α. This removes the need to mix cells during resampling and retains full fidelity.

For the purpose of specifying the map extent,M0, using equations 4.2.12 and 4.2.13, the

vehicle position coordinates are quantised to the grid resolution using

P̂ V
xy = αxy ·

⌊
P V
xy

αxy

⌋

P̂ V
z = αz ·

⌊
P V
z

αz

⌋
. (4.2.23)

In practice, each time the map extent changes, the resampling operation is a batch memory

copy operation that moves the contents with an integer number of index changes. After

the shift, one or more edges of the map represent unknown environment, which were

not assigned during the shift. These cells are initialised with s(C) = 0.5 to indicate the

unknown state.

The copy operation can become computationally expensive if the size of the 3D OG

becomes large. In [16] the authors suggest that the memory may be left stationary

and instead, the indexing is changed to create an apparent shift. The indexing scheme

calculates the new index by adding the amount of shift to the original index and uses

modular maths to wrap indices outside the address space back into the addressable region:

î = (i+ ∆i) mod (number of elements). (4.2.24)
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The size of the OG used in this thesis does not warrant the use of this scheme, as the

batch copy process takes approximately two milliseconds on a standard desktop com-

puter1. For high resolution OG maps, this scheme may produce significant performance

enhancements, provided that the cost of calculating the indices does not outweigh the

benefits. This should be verified by using benchmarking.

The use of a local, shifting map also opens the possibility to maintain maps of different

resolutions. A low resolution OG may be defined for a larger region of the operating

world. When the local map shifts, instead of setting the cell state along the new edge to

the unknown value, the state from the corresponding global map may be used. Similarly,

the cells that are about to be discarded may be used to update the corresponding states

in the global map.

4.2.10 Implementation Summary

Through the definition of various axis systems, it was shown that convenient transfor-

mations exist to project sensor beam orientation into the discretised map. The use of a

bounding pyramid to approximate the beam spread cone can be used to acquire indices

to the affected cells.

It was shown that for the specific class of sensor, a high angular accuracy lidar, that the

sensor model significantly depends on the vehicle pose estimation accuracy. A simple

sensor model was derived and the necessary computations shown to find the required

range and angular deviation information. The Bayesian update formulation is completed

with the assumption that cells may be evaluated separately.

To reduce computation cost and memory requirements, the 3D OG was defined to be

localised to the vehicle position. Limiting resampling to integer shifts maintains the

fidelity of the 3D OG. For moderately sized grids, memory shifting is appropriate, but for

larger grids, using modular calculations on shifted indices may prove useful.

1Intel R© CoreTM2 Duo CPU, E8500 @ 3.16 GHz, 3 GB RAM
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4.3 Simulation

In order to develop, test and benchmark the 3D OG algorithms, a scanning lidar sim-

ulation was created. The algorithms for simulation and mapping were implemented in

MATLABTM for ease of visualisation during simulations. This section describes how the

input lidar datasets were created, discusses some observations made during the creation of

datasets and end with the execution of the mapping algorithm. The need for optimisation

is also motivated.

4.3.1 Computing Lidar Datasets

Having stored sets of precomputed lidar simulation data allows the running of several

mapping algorithms on the same dataset to compare results. A dataset consists of the

vehicle states for position and orientation, the lidar device mounting position and orienta-

tion, and the simulated lidar range measurements. Datasets are created at the maximum

rate and precision that the device offers and can be down sampled if required. The steps

to create a dataset are given in Algorithm 4.2. The subsections to follow describe how

to represent a simple ground truth environment, model vehicle motion over terrain and

project lidar beams to find their intersection with the environment surface.

The advantage of simulating lidar datasets over collecting datasets with the actual sensor

is that we have precise control over all parameters. The designer has an exact ground truth

model of the environment to compare with mapping results. The vehicle path can be set

exactly and the vehicle position and orientation data is not dependant on an estimator.

Simulating different mounting positions requires no mechanical effort. Visualising beams

within the simulation environment gives the designer insight that would otherwise be

difficult to obtain.

4.3.1.1 Environment Model

In Section 4.1.1 it is explained that using a triangular mesh is convenient for representing

surfaces. The MATLABTM plotting environment has convenience functions for plotting

surface height over a regularly spaced 2D grid of quadrilaterals, which the underlying im-

plementation then converts to a triangular mesh for visualisation. The model parameters
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Algorithm 4.2 Computing a simulated lidar dataset

1: Define an environment model with a meshed grid
2: Define the route as waypoints and connecting lines/curves
3: Interpolate vehicle positions, P V

I , along the route using simulation time

4: for all positions P V
I do

5: Calculate vehicle pose states (yaw, height, pitch and roll) and transformation
matrix TB−I

6: if lidar mounted on PTU then
7: Calculate sensor orientating and transformation matrix TS−B
8: else
9: Use fixed orientation and TS−B

10: end if

11: for all beams rn do
12: Project beam and find possible intersection with the model.
13: end for

14: Store the range data with vehicle and sensor data,{
PV
I ,O

V
I ,P

S
I ,O

S
I , (r1, ψ1) . . . (rN , ψN)

}
15: end for

are defined using the inertial axis system, so that the software components can be directly

transferred from simulation to implementation.

To create an environment, the grid surface is initialised with all vertices set to zero height.

To add an object, a group of adjacent vertices are set with an offset in the negative D-axis,

so that the group extrudes from the driving surface. A test model was created, based on

a parking lot, which includes large objects like cars, thin objects like lamp posts and tree

trunks, a kerb outlining parking bays and a vertical wall along one edge. A curved road

surface and a traffic cone were added to display certain effects. The meshed environment

can be seen in Figure 4.13.

4.3.1.2 Vehicle Motion

To simulate the movement of the vehicle, a route is defined by hand as waypoints in

the N -E axes, coupled to a time of arrival at each waypoint. The sections connecting

waypoints are specified as either straight lines, or arcs of a circle. During simulation, the

vehicle coordinates are determined by interpolating between the waypoints with time as

parameter. The vehicle exerts Dubins-car behaviour [17] when using the origin of the

vehicle body axis system as anchor point to trace the route and setting the vehicle yaw

(the xB-axis) tangent to the route curve. See Figure 4.14a.
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(a) Model representing a parking lot(colour scaled to
elevation)

(b) Enlarged portion of model to show
triangular mesh of a “car”

Figure 4.13: Triangular mesh model representing a parking lot

Calculating the remaining states (height, roll and pitch) requires the height of each wheel

to be known. The ATV has a solid rear axle, but independent front wheel suspension.

As such, the vehicle roll is dictated by the difference in height of the rear wheels (Fig-

ure 4.14d). The body axis origin is simply the midpoint between the rear wheel contact

points and defines the height. To determine pitch, the vehicle nose is assumed to be at

the average height of the front wheels. Vehicle pitch is determined from the difference

between nose and rear height.

Using the horizontal position and yaw heading, the horizontal coordinates of the wheels

can easily be projected using the wheelbase and trackwidth parameters (Figure 4.14b).

For the purpose of this projection, the vehicle is assumed to be perfectly level. The

height of the driving surface under each wheel, measured in the D-dimension, is bi-

linearly interpolated from the four corners of the quadrilateral that contains the wheel

coordinates (Figure 4.14c). Applying the appropriate trigonometry to relative heights

solves the vehicle states. For typical values of vehicle pitch and roll, the coupling between

pitch and roll is neglected.

4.3.1.3 Beam Projection and Surface Intersection

For the purpose of the simulation, the lidar beams are projected without beam divergence.

The projection angles of the lidar beams are transformed from the the sensor axis system,

via the vehicle body axes, to world coordinates. The transformation is identical to the

transformation used for the beam centre in Section 4.2.6 (equations 4.2.15-4.2.17) with

the beam length, rn, set to the maximum distance the lidar device can report.
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Figure 4.14: Illustrations for simulating the vehicle motion

The calculation of intersections between the beam and the model surface is an expensive

per-triangular-face operation. Since the model is meshed with a regularly spaced grid, we

can project the beam “shadow” onto the grid and only test the surfaces that the beam

passes over(Figure 4.15a). The beam is projected onto the N -E plane by discarding the

D coordinate. A quadrilateral is selected if the projection of beam intersects any of the

four sides of the grid surrounding it.

Starting at the quadrilateral closest to the beam origin and working towards the tip of

the beam, we test for intersections along the beam path and stop at the first encounter.

Each quadrilateral may be split into two triangles (in accordance with the MATLABTM

visualisation). The face of each of these triangles are extended to represent an infinite

plane (Figure 4.15b). If the intersection between the projected beam and this plane falls

within the triangle, the beam has hit an object.
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The point of intersection between a plane and a line can be calculated using vector algebra

[18]. The formulation uses two points on the line, for which the beam origin, PS
I , and tip,

rI , are used to construct a parametric line equation with parameter u (equation 4.3.2). A

point on the plane (any vertex), along with a vector normal to the plane, constructs the

plane. The normal, n, can be obtained by the cross product of two vectors in the plane,

for which the two sides of the triangle (equation 4.3.1) are used. The triangle vertices are

labelled v0, v1 and v2, with corresponding coordinates v0, v1 and v2.

n = (v1− v0)× (v2− v0) (4.3.1)

PI = PS
I + u · (rI −PS

I ) (4.3.2)

Solving the parameter uinter for the intersection is given by equation 4.3.3, which uses

two dot products. The result is substituted in equation 4.3.2 to obtain the point of

intersection, Pinter.

uinter =
n • (v0 −PS

I )

n • (rI −PS
I )

(4.3.3)

Pinter = PS
I + uinter · (rI −PS

I ). (4.3.4)

If Pinter lies within within the triangle face, the beam distance is calculated using the

euclidean distance from PS
I to Pinter. The test whether the point lies on the face can be

done in the N -E plane using simple relational tests between the point and the three sides

of the triangle, by discarding the D dimension of the vertices and the point of intersection

(Figure 4.15c). If the intersection is not within the face, the next triangle is tested. If

no intersection occurs over the length of the beam, or the edge of the model is reached,

maximum distance is reported.

4.3.1.4 Comparing Point Clouds

The simulation environment allows the visualisation of the beams of the lidar device and

the intersections within the environment model. The mapping algorithm can only map

objects that are in the view of the lidar. Using the simulation, it is possible to investigate

mounting strategies that ensure that critical obstacles will come into view in time to act

upon them.

Plotting the set of surface detections, also known as a point cloud, onto the environment

model shows the density of surface data collected. Colouring the point cloud with range
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Figure 4.15: Illustrations for calculating the point of beam intersection.

information for each point adds a visual indication of accuracy to the points. An evenly

spread point cloud minimises the amount of unknown area in the map. Also, the detection

distance of the points should be in the usable range to ensure adequate accuracy and

viewing horizon.

Although this type of investigation is not the primary focus of this thesis, some exper-

iments were done with various mounting strategies. Point clouds were created for the

following strategies:

• Fixed pitch slanted mount (as implemented)

• Higher and lower mounting positions

• Varying the pitch angle (emulating a PTU)

– Sinusoidal motion with time

– Triangular motion with time
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• Varying both the pitch and roll angles (sinusoidal, 90◦ out of phase)

• Mounting the device on its side and rotating (vertical profile scan)

The qualitative results are summarised in Table 4.2. A common factor is that the period-

icaly actuated strategies have to divide their scanning time between scanning the horizon

and scanning the nearby driving surface. A “sampling period” appears to arise in viewing

range equal to that of the actuation period, or alternatively stated, there are blind peri-

ods. If the vehicle drives at a steady pace, this results in periodic distribution of density

in the point cloud. It is foreseen that the path planner will avoid unknown areas in the

map and this therefore may result in unexpected planning behaviour. Of the periodic

strategies, the coupled pitch/roll strategy has the best all-round distribution, using only

a single input.

The greatest advantage of actuated mounts, are the ability to look far ahead for large

obstacles and scan the nearby profile for accurate terrain mapping. Secondly, actuated

mounts can increase point cloud density by “staring” at a surface while the vehicle is

stationary. This is particularly useful when there are too many “unknown” areas in the

map for practical path planning.

Table 4.2: Qualitative comparison of point clouds generated by using various mounting strate-
gies in simulation

Strategy Simple Short Mid Long Stare Remarks
Range Range Range

Fixed pitch *** * ** * no Only optimised for one range.
Weak side scan.

Varying
pitch

** ** ** ** ** Weak side scan. “Divided
attention”.

Vertical,
rotating

** *** ** * ** Long periods of blindness
while device is pointed
backwards, but
omni-directional.

Active
pitch/roll

* ** ** ** *** “Focused attention” in useful
range and direction.

Pitch/roll at
90◦ phase

** ** ** ** ** “Divided attention”, but
omni-directional.

For the purpose of this thesis, the advantage of an actuated device does not outweigh the

complexity and cost of a PTU mount. This is further supported by the relatively even
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Figure 4.16: Simulated point cloud over environment model. The vehicle position and beam
projections for the most recent time step are indicated. Points detected within the most usable
range (8.5 m < rn < 12 m)are indicated in red.

distribution of a fixed mount point cloud. It was found that setting the device mount as

high as practical achieved the best results. It is still apparent that moderately uneven

terrain causes roll and pitch actions that significantly influence the viewing distance. If

a PTU were to be added, it is suggested that the PTU is used to maintain the viewing

distance during normal driving conditions, with the benefit of “staring” when the vehicle

is stationary.

4.3.2 Execute Mapping Algorithm

4.3.2.1 Software Structure

The simulation is implemented in modules so that it can easily be ported to a format

suitable for real-time execution. The main program reads a dataset, initialises the map

parameters with an empty map and then starts to iterate the mapping algorithm over the

dataset. The main program also contains visualisation aids, showing the current position

and pose of the vehicle in the environment model as well as an overview of the OG along

with the drivability map for the 3D OG. Timekeeping markers are inserted to exclude the

visualisations from the benchmarking as shown in Algorithm 4.3.
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The 3D OG update algorithm is in function format and takes as its arguments the current

3D OG, the map extent, grid resolution and the sensor position, pose and range data with

associated angles. This function will update the 3D OG independent of whether the map

is local to the vehicle or bound in inertial space. A separate block of code is used to shift

the map contents for a local map and initialise the new cells to the unknown state. It

calculates the number of cells to shift the contents from the vehicle position data and

updates the map extent information.

Band-limited noise was added to the vehicle orientation data to simulate the effects of

sensor noise on the vehicle estimator. The 2σ bound was set at 1◦ in accordance with the

accuracy expected from the estimator.

Algorithm 4.3 Simulation Structure

1: Load lidar dataset
2: Initialise 3D OG grid memory and map extent parameters

3: for t = simulation time steps do
4: Sample from lidar dataset
5: Start timekeeping

6: if using a local map then
7: Shift map contents and update extent parameters
8: end if
9: Run 3D OG update function

10: Stop timekeeping
11: Display visualisation of model and 3D OG
12: end for

4.3.2.2 Optimising Execution Time

The execution of the 3D OG update function has to be fast enough for real-time imple-

mentation. A successful team in the 2007 Darpa Urban Challenge [8] suggests a 10 Hz

update rate as the minimum to allow sufficient time to respond to detections. From the

simulation timekeeping results, it was clear that the MATLABTM implementation of 3D

OG had to be optimised considerably to reach this goal.

The code was optimised to use batch computations for beams that use the same transforms

and precomputing data that is shared amongst different code blocks. Where appropriate,

calculating projections were reduced to 2D transforms, using T[2×2] instead of T[3×3], with

considerable speed gain.
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The final changes were to reduce the number of beams to include in the 3D OG. The

execution time is O(n) proportional to the number of beams projected. It was found that

the current implementation can project approximately 90 beams at the 10Hz rate2. The

simulated lidar device (SICK LMS100) has a 270◦ field of view (−135◦ . . . 135◦ relative

to ΨS) at a 0.25◦ angular increment, accounting for 1081 beams. Only the beams in the

range, −90◦ . . . 90◦ relative to ΨS scans forward and are considered useful. It was found

that subsampling the angular increment to 2◦, and thus retaining 91 beams, still gives

good results.

4.3.2.3 Findings

The simulation showed that a usable 3D OG map could be constructed in real time using

MATLABTM scripts. Representative results are shown with the environment model in

Figure 4.17. A simple search function is used along the z dimension to extract the bound-

ary of cleared volume and the boundary of the surface mapping. Through simulation,

important traits associated with the 3D OG method were identified.

The implementation of beam spread in the Bayesian update has difficulty mapping a sur-

face where the angle of incidence between the beam and the surface are small. The beam

tip is the only part of the beam that updates the 3D OG with the surface information,

s(C) = OCC. As the vehicle drives forward, the subsequent beams pass over the surface

with the length of the beam updating the 3D OG with s(C) = EMP (Figure 4.18). Beam

spread “bleeds” the EMP state into the cells representing the surface.

As many more beams pass over a surface than hitting it, some surface cells eventually

turn into empty cells. When the angle of incidence is perpendicular to the surface, this

does not happen. As a result, vertical obstacles are reliably detected, but mapping the

driving surface is somewhat degraded. Again, a higher mounting position would prove

advantageous to the angle of incidence.

It was found that narrowing the beam spread of the sensor model with respect to the

clear region of the beam lessened this effect. This is done so that less area of the driving

surface is updated with EMP observations. This effect warrants further investigation into

a refined sensor model.

2Executed on a desktop PC running Windows XP: 32-bit, 3.1 GHz CPU, 3 GB RAM.
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(a) Vehicle path and current position
indicated in the simulated environ-
ment.
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Figure 4.17: Simulation visualisations of mapping algorithm
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Figure 4.18: Illustration to show a surface cell being “EMP-tied” by successive beams. The
beam at t = n set the cell as OCC, but the following beams updates it with EMP.

Beam spread also causes a ridge in the mapped driving surface at the most recently

updated surface cells (visible in OGs of Figure 4.18 at OCC text). The slight elevation

is quickly levelled if subsequent beams passes over the area, as is the case when driving

forward. This is not uncommon to the occupancy grid method, but can cause some

surfaces to become ragged and erroneously be classified as undrivable.

4.4 Mapping Summary

A three-dimensional occupancy grid is the method chosen to map the lidar range data.

The OG method is preferred as it explicitly models the empty space discovered by the

lidar sensor. Surface mapping methods lack this property and can therefore not guarantee

the absence of obstacles where none have been mapped. This is important information if

the path planner is to generate safe paths.

The 3D OG is an incremental Bayesian estimation process that operates on stacked layers

of cells. Each cell is represented by a variable of statistical probability, stored in a 3D

matrix. Cells are updated with the information supplied by lidar scans. For this purpose, a
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representative sensor model was constructed for use in the Bayesian update, that includes

measurement noise.

Lidar beams are projected into the grid and cell estimates are updated, based on their

relation to the beam. The projection is achieved by transforming the beam orientations

from the sensor relative axis system to a earth fixed axis system, using the state infor-

mation provided by the vehicle. To aid real-time execution speed, only cells that are

intersected by a beam are updated. The conical beam shape is bounded within a pyramid

that is efficiently projected and used for cell indexing.

The mapping algorithm was tested using a custom-developed lidar simulation environ-

ment. The simulation accepts a user-supplied 3D map and a simple vehicle route. It

models vehicle motion over the terrain and returns virtual lidar range data. A visuali-

sation was added that displays the lidar beams on the 3D map to gain insight into the

spread of surface detections.

The simulation makes it possible to compare the mapping results with the artificial ground

truth map. In general, the mapping algorithm returns good results. It is noted, however,

that mapping a surface where the beams are incident nearly parallel to the surface, delivers

a poor representation of the surface. We therefore suggest that the 3D OG is used

primarily to map free space. Nevertheless, it was found that the mapping module is

adequate to extract a drivability map for use in the path planner, as it recognises vertical

obstacles with good reliability. A layer view of 3D OG is displayed in Appendix C, created

with actual lidar data.
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Path Planning

An automated vehicle on a mission may encounter obstructions on its route and will

have to navigate its way about these to avoid collision. In Section 1.2 path planning was

defined as the detailed planning step that outputs the exact trajectory that the vehicle

should follow to avoid conflict with its environment. For the purpose of path planning,

the availability of an environment model (map) and a vehicle controller is assumed.

This chapter starts with an overview of the fundamental planning concepts, such as the

configuration space, obstacles representation, planning constraints and the definition of

completeness in path planning. The next section describes the problem-specific elements,

namely the input map and the vehicle constraints. It is followed by the details of the sam-

ple based rapidly-exploring random tree (RRT) planner, tailored to the specific problem.

Finally some simulation results are presented.

5.1 Path Planning Concepts

The path planning problem aim is essentially to find a collision-free path from an initial

state to a goal state. This section will cover fundamental concepts of path planning

using terminology from [3]. It introduces the configuration space and how to represent

obstacles, defines planning constraints and explains the difference between continuous and

sample-based planning.

64
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5.1.1 Configuration Space

The vehicle operates in the infinite world, W , that is the three-dimensional space R3.

Some regions of the space W are occupied by obstacles, O. O is defined as the closed

set of points in space within, and including, the obstacle boundaries, such that O ⊂ W .

The vehicle is a closed set of points, V , that can reside in the remaining space, such that

V ∩ O = ∅. Expressing the collision-free space concisely is fundamental to planning.

To describe the set of points inW occupied by V , only the shape of V in R3 and a mapping

function, h : V → W is needed, that transforms each point in V to a point in W . Such

a function is termed a rigid-body transformation if 1) the distance between each pair of

points in V are preserved and 2) the relative orientation of points in V are preserved [3].

If it is possible to parameterise the rigid-body transformation, this parametrisation is

termed the configuration space, C, of V . In general a vehicle can translate along three

dimensions (R3) and rotate about three axes (S3)1. When the six parameters are com-

bined, however, they are more accurately described as C = R3 × RP3. Fortunately, for

the case of a terrestrial vehicle translation is bound to a driving surface2, the local area

of operation is a manifold in R3, which is homeomorphic to R2 and rotation is limited to

yaw, which is in S1. This implies the number of parameters were reduced to three (2D

translation and rotation) and the dimension of the C-space is three. Note that a single

configuration q ∈ C maps all the points of V to W and that C represents all the possible

configurations bounded to the driving surface.

5.1.1.1 Obstacle Region

Until now, the space inW that is occupied by obstacles, O, has not been considered. The

obstacle region, Cobs ⊆ C, is the set of all configurations, q ∈ C, for which the vehicle and

the obstacle sets intersect and are in conflict, expressed as

Cobs = {q ∈ C | V(q) ∩ O 6= ∅} . (5.1.1)

1Refer to [3], Part II, for an in-depth discussion of configuration spaces and set theory.
2We assume the driving surface never crosses over itself, as would be the case with a flyover or

underpass. For a crossed over case, constructing a manifold may still be possible using appropriate
identifications in the topological space.
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5.1.1.2 Free Space

Conversely, Cfree = C\Cobs, is the set of free space in C for which the configurations do

not cause conflict. By definition the obstacle and vehicle regions are closed sets, thus it

follows that Cobs is a closed set. The remaining configurations Cfree thus form an open

set. This implies that a configuration can come arbitrarily close to the boundary of the

free region without being in conflict with the obstacle region.

5.1.1.3 Path in C Space

An obstacle–free path is defined as the continuous trajectory, τ : [0, 1] → Cfree, such

that τ(0) = qI (the initial configuration) and τ(1) = qG (the goal configuration), with

qI ∈ Cfree and qG ∈ Cfree. [3]

5.1.2 Representing Obstacle Regions

The manner in which the obstacle regions are defined is important, as it has a great influ-

ence on whether certain planning algorithms are efficient or not. Although the set theory

used to formulate the configuration space results in concise expressions, in practice it is

impossible to list the uncountably infinite number of points in a continuous configuration

space. On the other hand, if the obstacle regions consists of a finite set of discrete con-

figurations, it would be possible. In general, obstacle regions can be constructed using

explicit or implicit representations.

5.1.2.1 Explicit Obstacle Regions (Geometric Modelling)

For explicit representations, the vehicle boundary, V , and obstacle boundary, O, are

modelled with semi-algebraic expressions in W . The boundaries of contact between the

two sets can be algebraically computed and used to find Cobs, the transformations that

result in conflict. This works well with low order C spaces and using polygonal expressions

for the regions. As the expressions for the boundaries and the order of the C spaces become

more complex, the expression for Cobs soon becomes inefficient.
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5.1.2.2 Implicit Obstacle Regions

To overcome the complexities of explicitly constructing the obstacle region, an implicit

obstacle representation is searched by probing the configuration for free paths, by means

of a sampling strategy. The implicit representation is in the form of a collision detection

module which, to the planning algorithm, acts as a “black box”. Separating planning from

collision detection makes the planning algorithm independent of the (geometric) modelling

used to test collision. When the number of primitive descriptors in the geometric model

becomes large, the sampling based strategies can solve problems that would have been

impractical using explicit strategies [3].

5.1.3 Planning Constraints

For many practical planning problems, the actor (vehicle in our case) cannot execute an

arbitrary locus in W . For a path to be a valid solution, the shape of the trajectory has

to conform to certain constraints. The most common constraints of practical systems

are kinematic constraints and dynamic constraints. These constraints may be applied

simultaneously, termed kinodynamic constraints.

5.1.3.1 Kinematic Constraints

Kinematic constraints limit the motions that a vehicle can perform, without considering

the force applied or the time needed to complete the motion. It may be presented as the

range of motion a body can achieve with respect to translation and rotation expressed in

geometric or algebraic form. The expression is often in the form of differential constraints

over space, limiting the curvature of the locus.

5.1.3.2 Dynamic Constraints

Dynamic constraints adds the dependence on time to the problem. Since practical objects

have inertia and the forces applied to incur motion have finite magnitude, motions are

subject to acceleration and deceleration. Motion under dynamic constraints are often

expressed as second (or higher) order differential constraints with respect to time.
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5.1.3.3 Holonomic

For many problems it is possible to integrate the kinematic and/or dynamic constraints

and obtain closed-form expressions for the locus over space. This category of constraints

is termed holonomic constraints. If the expression cannot be integrated in closed form, it

is termed non-holonomic.

5.1.4 Completeness

A planning algorithm is said to be complete if the following are true:

1. If a solution exists, it must find the solution in finite time;

2. If a solution does not exist, it must correctly report it.

There are two other classes of algorithms that can provide weaker guarantees of being

complete [3]. A deterministic algorithm that samples the search space densely is called

resolution complete, since it will find a solution in finite time if it exists, but keeps on

refining the resolution infinitely if there is no solution. A dense random sampling algo-

rithm is probabilistically complete, since the probability of finding the solution becomes

one with enough samples, but will also continue indefinitely in the absence of a solution.

5.1.5 Continuous and Sampled Planning

Sampling-based motion planning attempts to separate planning from the representation

of the conflict space, by using implicit representations. The general concept involves a

discrete motion planner that tests candidate paths for conflict using the collision detection

“black box”. The collision detection module reports individual queries as conflicted or

not.

Queries are sampled by the planning algorithm according to some search strategy. Since

samples are drawn from an infinite set, it would take an infinite number of queries to

probe the entire sample space and can at best be resolution complete or probabilistically

complete. This leads to the fact that the solution is an approximation based on the

resolution of the sampling strategy.
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Continuous motion planning solves the planning problem algebraically with the semi-

algebraic explicit representations of the conflict space and vehicle models. The resulting

solution is exact. The algebraic implementation will execute in finite time and also report

if no solution exists and is therefore complete.

Since sampling-based planning methods perform motion planning separately, it is of-

ten simple to include differential vehicle constraints, even of the non-holonomic class, in

the planner. Continuous planning methods solve the motion analytically and differen-

tial constraints add considerable complexity. Solving non-holonomic problems without

approximation in the continuous space remains a daunting problem.

5.2 Problem-Specific Elements

The practical path planner should execute in real time and generate paths suitable for the

chosen vehicle, using the information supplied by the mapping module. The restrictions

imposed by the vehicle are its differential kinodynamic constraints and its rigid body

design for V . The map is the local three-dimensional occupancy grid from Chapter 4.

This section starts with a discussion of the vehicle constraints for the automated ATV

and how they can be simplified. Then the 3D OG map is collapsed to a 2D map and used

to find the vehicle configuration space. The use of a sampling-based planner is motivated

and its implementation is detailed.

5.2.1 Vehicle Constraints

To understand the possible trajectories that the ATV can execute, the vehicle kinematics

are first studied in the absence of dynamics. After the kinematics have been defined, the

influence of dynamics on vehicle motion will be discussed.

5.2.1.1 Simple Car Kinematics

The ATV belongs to the class of vehicle described as a simple car [3]. It has four wheels

that roll (without skidding) on the driving surface, of which the two rear wheels are

mounted in parallel on a fixed axle and the front wheels are steered together (Figure 5.1).
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The steering angle, φ, is limited to a maximum deviation, |φ| ≤ φmax, from the vehicle

longitudinal axis. The rear wheel drive speed and the steering angle can be commanded.

The defining property for a simple car is that its wheels can rotate freely and may not skid

sideways. For a fixed steering angle, this constraint is satisfied when the vehicle drives

in a circle with constant radius. The geometric construction anchors the centre of the

turning circle at the intersection of the extended rear and front axles and is dependent on

the steering angle and the vehicle wheelbase, Lwb, such that ρ = Lwb/ tanφ. The vehicle

may also drive in a straight line (φ = 0).

The configuration space parameters for a simple car are indicated on Figure 5.1. The

origin of V is the centre of the rear axle and can be translated to (x, y) ∈ R2. The vehicle

longitudinal axis can rotate with θ ∈ S1, where S1 is any range that signifies one revolution

e.g. [−π/2, π/2] with the end-points identified. The constraints in the configuration space

can be expressed as velocity constraints over the C-space.

ρ

φ

θ

L
w
b

(x, y)

E

N

Figure 5.1: The simple car model. The configuration parameters, q(x, y, θ), and geometric
construction for the turn anchor point, as a function of φ, are indicated.

Although the simple car kinematics have been assumed for the ATV, the following prac-

tical matters are noted that may degrade the model:

• The simple car model assumes that no translation is possible perpendicular to a

wheel’s rolling direction, but tyres have finite stiffness that, even without wheel

slip, can cause a perpendicular velocity component while it rotates.
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• The ATV has a solid rear axle without a differential drive. During a turn, the inside

wheel has a shorter distance to travel than the outside wheel, but their rotational

speed is equal, forcing some wheel slip. Fortunately, when driving at speed, centrifu-

gal force causes some body roll and the resulting weight shift increases the frictional

force of the outside wheel, concentrating wheel slip on the inner rear wheel. The

simple car kinematics stay intact, based on the remaining three wheels.

• The ATV does not have a single front axle as with the simple car, but the steering

mechanism has been imposed with non-linear linkage that approximately aligns the

individual front axles to intersect the rear axle at the same anchor point.

• On a slippery surface, all the wheels could skid, in which case the kinematic con-

straints are wholly replaced by dynamic constraints. This situation is avoided.

5.2.1.2 Dynamics

The practical vehicle has two dynamic constraints, namely finite longitudinal acceleration

and finite angular slew rate on steering. Acceleration to displacement is a second order

differential constraint with respect to time. A maximum speed is also set. Steering angle

slew rate is a first order differential constraint with respect to time.3

5.2.1.3 Incorporating Constraints

Without dynamic constraints, the simple car can instantaneously change speed, or steering

angle. This implies that a simple car can change between a sharp left-hand turn and sharp

right-hand turn without any transitional phase. For the simple car, the forward speed does

not alter the turning radius. The steering command solely changes the turning radius. For

constant steering angles, the kinematics for the path results in simple geometric curves,

i.e. arcs of a circle or straight line segments, stringed together. For smooth transitions of

steering angle, the simple car is however non-holonomic and is avoided.

The steering slew rate causes smooth transitions and results in a non-holonomic car. The

simple geometric curves can be regained if the vehicle is restricted to only change steering
3This paragraph only describes dominant behaviour. In fact, both constraints (acceleration and

slew rate) have higher order dynamics than stated here, but those are significantly faster and small in
magnitude in comparison with the dominant behaviour. For the purpose of planning, the higher order
dynamics may be safely neglected.
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angles while it is stationary [17]. Since the vehicle cannot stop instantaneously, it would

have to decelerate to stop precisely at the end of the current segment, adjust its steering

angle and then start the next segment. This type of movement may be acceptable while

performing strictly confined operations, such as parking, but is not practical for normal

driving.

To simplify planning, we use simple geometric curves, but make the following adjustments

to the vehicle model:

1. The vehicle is restricted to its minimum speed, since at low speeds, the distance

travelled during the transitional phase is small relative to the distance of the seg-

ment. The lower the speed, the more closely the vehicle resembles a simple car.

2. During planning, a smaller value of φmax than the mechanical limit of the vehicle is

used as a safety margin. The vehicle controller is assumed to be able to correct for

minor deviations from the intended path, using the safety margin as headroom to

actuate.

The resulting plan will be a sub-optimal approximation, but the use of simple expressions

proves useful for implementation.

5.2.2 Obstacle Regions from 3D OG

Finding Cobs for the planning step is dependent on the shape of V , the possible configu-

rations and the obstacles, O, in W . In the current formulation, W and V are 3D spaces

and O is mapped in a 3D OG, but C is translation and rotation on a 2D plane. First the

3D space is collapsed to a 2D plane, and then some assumptions are made to obtain an

approximate Cobs.

5.2.2.1 Collapsing 3D to 2D

For a vehicle confined to a manifold homeomorphic to a 2D plane, only the conflict that

can occur while the vehicle is on the manifold need be considered. For the level operating

surface defined in Section 1.3.1, the vehicle pitch and roll angles, induced by the surface

deformation, are assumed negligible.
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The ATV dimensions can be bounded in a rectangular prism, fixed in the body axis

reference frame. The shape of the ATV fills most of the prism and therefore does not

warrant the use of more complex polyhedra. The prism projects as a simple rectangular

box onto the 2D plane that can translate and rotate when transformed through h : V →
W .

When collapsing the 3D OG onto the 2D plane, only cells covering the same z-dimension

as the vehicle bounding prism have to be considered for conflict. For each vertical column

of cells in the map, if any cell is in the occupied state (P [s(C) = OCC] > 0.5), the

corresponding cell in the 2D OG grid is marked undrivable:

s(Cij) =

OCC if ∃ s(Cijk) = OCC, k → VD

EMP otherwise

(5.2.1)

where Cij is the cell in the 2D OG, Cijk is a cell in the 3D OG and k → VD indicates the

range of indices for k that maps to the D-range of the vehicle bounding prism.

5.2.2.2 Calculate Obstacle Regions

For configurations with a fixed rotation, say θ = π
4
, the obstacle region for the remaining

two dimensions of C can be computed using the Minkowski difference [3],

Cobs = O 	 V (5.2.2)

where O is the occupied cells in the 2D OG and V the rectangular box. This is illustrated

in Figure 5.2, for a single occupied cell. It appears as though the obstacle has expanded

with dimensions of the vehicle.

Observe however, that the vehicle will be driving forwards during the mission, passing

obstacles at its sides, never at its nose or rear. As such, the longitudinal dimension of

the vehicle is neglected to obtain a line with the length equal to the width of the original

rectangle. Rotating the line through one revolution (θ over S) results in a circle that

contains all the points that the width of the vehicle can reach for any θ.

For the purpose of finding Cobs, the configuration space has been reduced to translation

of a circle in R2, that is simple to represent and compute using the Minkowski difference

(example shown in Figure 5.3). Adding a safety margin to the radius of the circle ensures
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θ = π/3

Cfree = C\Cobs

W , C

O
VCobs

y

x

(a) Minkowski difference at θ = 60◦

θ = π/6

Cfree = C\Cobs

W , C

O V

Cobs

y

x

(b) Minkowski difference at θ = 30◦

Figure 5.2: Minkowski difference between a square obstacle and a rectangular bounding box
shown at discreet values for rotation.

that the vehicle maintains some additional clearance from obstacles in the face of multi-

ple approximations. To overspecify the obstacle region results in suboptimal paths (by

excluding valid solutions), but is preferred to collision.

Cfree = C\Cobs

W , C

O

VCobs

y

x

(a) Minkowski difference with bounding
rectangle width. θ adjusted for “passing”
O

Cfree = C\Cobs

W , C

O

VCobs

y

x

(b) Identical Minkowski difference with cir-
cle. Obtained independent of θ

Figure 5.3: Minkowski difference for a translating circle and a square obstacle.

For this simplified Cobs, the planner is not allowed to drive up to an obstacle and stop

just before it, since the vehicle length has been neglected. This can happen if the goal

configuration is close to an obstacle or if the vehicle stops to change direction (reverse).

For this reason, the vehicle is additionally limited to forward motion and it is specified
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that the user supplied qG will have sufficient clearance on all sides. A simple car limited

to forward motion is termed a Dubins car [3].

5.2.3 Motivation for a Sampled Planner

With approximations, the vehicle kinodynamics can be made holonomic, which makes

them eligible for continuous planning. Since approximations lead to suboptimal solutions,

it would be preferred to utilise accurate vehicle models in future work. This may not be

possible for continuous planning. Also, changing the vehicle model requires a complete

redesign of the continuous planner, since it relies on algebraic models. This implies that

it would be hard to reuse the planner on different vehicles.

The sampling-based strategy puts the vehicle model in a “black box” that can be easily

swapped when a different vehicle is used. Some knowledge of the system can be included

in the motion planning phase to improve the computation time of solutions, but it is not

a requirement. The possibility of extending the sampling based strategies to any planning

problem makes it the preferred choice.

Since the occupancy grid map already encodes samples of the configuration space it is

well suited to sampled path planning. It will also be shown that the occupancy grid

can be used as a risk function for the sampled planner. On the other hand, continuous

planning methods are order dependent on the number of semi-algebraic primitives in the

map representation. Converting the occupancy grid cells into algebraic primitives creates

thousands of primitives, which will likely degrade the performance of continuous planners.

5.3 Adapted RRT Planner

The sampling based strategy is preferred, as it allows kinematic and dynamic constraints

to be incorporated efficiently. In this presentation of the RRT, approximations are used

to optimise some of the computations for a real-time implementation, but approximations

are not essential to make the algorithm applicable to the problem.
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5.3.1 Standard RRT Planner

The RRT is a specific implementation of rapidly-exploring dense trees (RDT) [3]. The

idea is to rapidly explore the configuration space by incrementally connecting paths to

sampled configurations in C and inserting them into a tree-like structure, called the search

graph, G. The graph consists of vertices and connecting edges. This approach yields good

results as a search algorithm and the standard implementation requires no parameter

tuning. The only requirement is a dense sampling strategy that will cover the search

space.

5.3.1.1 RRT Algorithm

The basic algorithm for growing a tree consists of the steps in Algorithm 5.1. It does

not account for obstacles, nor does it try to connect the goal, it simply covers the search

space. The tree starts with only the initial configuration. In line 3, a new configuration is

returned by the sampler, α(i), and inserted as vertex into the tree. If the sample α(i) is

drawn at random, as opposed to drawn from an infinite sequence of deterministic samples,

the RDT is labelled an RRT.

The nearest function selects the configuration, qn, from all the configurations already

included in the tree, that is the q ∈ G nearest to α(i). In line 6 the configurations along

the path that connects qn to α(i), are inserted in the tree as an edge. If the qn lies on an

edge, qn is converted to a vertex that splits its former edge into two smaller parts, before

it is connected. The nearest function requires that there is a suitable metric for the

given search space. For each iteration i, the metric is applied to every vertex and edge

already in the search graph with respect to α(i).

Algorithm 5.1 Standard RDT (without obstacles)

1: Initialise G with q0
2: for i = 1 to k do
3: Sample a vertex, α(i)
4: qn ← nearest(S(G), α(i))
5: Insert α(i) in G
6: Insert an edge from qn to α(i) in G
7: end for
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5.3.1.2 RRT as Planner

The RRT functions as a path planner with some small additions. To accommodate

obstacles, in lines 5 and 6, the path is tested for conflict before it is inserted in the tree.

If it is in conflict, only the portion of the edge, starting at qn, up to but not including

the first point of conflict4, is inserted. The use of the nearest function is motivated by

the assumption that a shorter path will be less likely to contain a point of conflict than

a longer path [5].

To connect the goal configuration, qG, a modification is made to line 3. After every

number of iterations, say every 100th i, instead of sampling from α, qG is substituted.

If the goal can be connected to qn = nearest(G, qG) without conflict, a solution has

been found and the algorithm terminated. If not, the algorithm continues as normal

for 99 more iterations and then connecting the goal is retried. Sampling qG regularly

directs the search to expand towards the goal, and makes the search “focused”, instead of

wandering over all the space. Sampling qG too often can prevent the tree from exploring

Cfree properly and delays solving a “difficult” route [3].

5.3.2 RRT with Differential Constraints

The power of the RRT lies with the ability to cope with differential constraints. Up to

now, it has been assumed that, given two configurations, they can be simply connected

since there were no constraints. This connection ignores the presence of obstacles and is

termed a local planning method (LPM) [3].

5.3.2.1 Kinodynamic Constraints in State Space

The dynamic state of the vehicle can be described using state space methods from control

theory. For most systems, the state, x, consists of the configuration, q ∈ C, of the system

and all the relevant time derivatives that drive the rate of change in the configuration,

such as velocities, q̇, or accelerations, q̈. The set of all states forms the state space,

x ∈ X, with x = {q, q̇, . . .}. For dynamic systems, the search space is the state space.

4With Cfree an open set, q can come arbitrarily close to the edge of Cobs [3]. How close is determined
by the resolution of the practical conflict detection.
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As with configuration spaces, a conflict region, Xobs, exists and the remaining space is

Xfree = X\Xobs.

Connecting two states under differential constraints implies solving the boundary value

problem (BVP) that describes the constraints. If a solution to the BVP exists, it is used

as the LPM. The straight edge in line 6 of Algorithm 5.1 is replaced by the trajectory

returned by the LPM. The trajectory is then tested to be in Xfree before it is inserted

into G. Constructing an LPM is possible for the holonomic version of the Dubins car and

is discussed in Section 5.3.2.3.

If an analytical solution for the LPM does not exist, or it is very expensive to calculate,

numerical methods are used to approximate the trajectory. The most general method

to obtain candidate trajectories, is to simulate various inputs to the system over various

periods of time and select the trajectory which delivers the approximate final state [4].

It becomes difficult to guarantee that the state space is covered densely, since α(i) will

not be inserted in G if the trajectory does not precisely includes α(i). We avoided using

the dynamic model of the ATV with the simplifications of Section 5.2.1.3, but note that

methods exist to include the dynamics in future work.

5.3.2.2 Cost Function as Metric

Differential constraints adds complexity to the selection of the “nearest” state from G
with respect to α(i). It is desirable that the nearest function expresses the efficiency

of connecting two states. It is therefore common to use a cost function to find the state

to which the connection will have the lowest cost. A cost function accumulates cost over

its path. The most common cost function accumulates a fixed cost per unit distance

travelled, therefore penalising the path length.

It is possible to give different weights to different sources of cost, for instance, if travelling

in a particular dimension requires more energy than in another, increasing the weight of

that dimension minimises its use. This may result in a sense of optimal paths, as the

planner will attempt to connect the path with the lowest cost first.

It is important that the cost function can be calculated efficiently, as it is calculated for

every vertex and every edge in G at each iteration i. For this reason, the cost function
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is often an approximation of the actual cost. Problems arise when the cost function

underestimates the actual cost and care should be taken when an approximation method

is used.

Computing the cost between an edge and α(i) may not be possible, as the edge can be a

non-holonomic trajectory returned by a system simulator. A possible approach is to insert

vertices along the trajectory at some sampling resolution and use these in the nearest

function. This increases the number of primitives in G and emphasises the need for an

efficient nearest implementation.

5.3.2.3 Shortest Path LPM and Cost Function for the Dubins Car

In order for the RRT to execute in real time, it is imperative that the LPM and nearest

function be as efficient as possible. This section constructs a shortest path LPM for the

Dubins car. The shortest path consists of basic geometric shapes, namely arcs of a circle

and straight lines, that have trivial analytical path lengths. The computational cost of

the construction is therefore shared between the LPM and nearest function.

Without regard for dynamics, the search space is simply the configuration space, C =

R2×S. A sample, α(i), is drawn from R2 to represent the next candidate vertex translation

[5]. The rotation is left unspecified and acts as a target region to the LPM. The query to

solve is thus an initial configuration, q1 = (x1, y1, θ1), and target region, q2 = (x2, y2)× S.

The geometric construction for computing the shortest path from q1 to q2 is shown in

Figure 5.4. The problem is first transformed, such that q1 lies on the origin (now q̃1) and

θ is aligned with the x-axis [5]. If q̃2 lies in the half plane, y < 0, it is mirrored about the

x-axis, since the construction is symmetrical for left- and right-hand turns. The shortest

path solution is based on two manoeuvres, first an arc at the minimum turning radius, ρ,

followed by a straight line or another arc segment, that precisely connects the goal. The

authors of [5] label the area within the turning circle D+
ρ (shaded area in Figure 5.4) and

then compute the minimum path length

Lρ(q1, q2) =

f(q̃2) for q̃2 /∈ D+
ρ

g(q̃2) otherwise,

(5.3.1)
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where

f(q̃2) = ρ ·
(
θc(q̃2)− arccos

ρ

dc(q̃2)

)
+
√
d2c(q̃2)− ρ2 (5.3.2)

g(q̃2) = ρ ·
(

2π − α(q̃2) + arcsin
x

df (q̃2)
+ arcsin

ρ sin(α(q̃2))

df (q̃2)

)
(5.3.3)

with

dc(q̃2) =
√
x2 + (y − ρ)2) (5.3.4)

θc(q̃2) = arctan2(x, ρ− y), θc(q̃2) ∈ [0, 2π] (5.3.5)

df (q̃2) =
√
x2 + (y + ρ)2 (5.3.6)

α(q̃2) = arccos
5ρ2 − df (q̃2)2

4ρ2
. (5.3.7)

The two terms in equation 5.3.2 is the path length of a curved segment followed by a

straight segment that reaches target configurations outside the turning circle, D+
ρ . When

the target configuration lies within the turning circle, the shortest path is two curved

segments with path length given by equation 5.3.3.

5.3.2.4 Conflict Detection on OG

The conflict detection algorithm is used to test each sampled configuration and path

generated by the LPM for conflict, before it is inserted into G. The region of conflict,

Cobs ∈ R2, is obtained obtained as a 2D OG, using the theory from Section 5.2.2. The

region is stored in a 2D drivability map that uses the same cell-structure as the 2D OG.

The drivability map can be probed for a single configuration in constant, timeO(1). The

configuration translation, (x, y), is converted to the discrete indices, (i, j), that provide

direct access into the map. To test a trajectory, the trajectory is traced over the grid and

each cell crossed is probed. This process is O(n) dependent on grid resolution. For non-

holonomic trajectories, the trajectory is sampled and assumed piecewise-linear between

samples.

5.3.3 Implementation

The RRT for planning the vehicle path is shown in Algorithm 5.2. The tree is initialised

and the obstacle region computed. Line 4 selects the next configuration that will be
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ρ

Figure 5.4: Geometric constructions for the Dubins car optimal paths

connected to G. The sampling strategy (line 4) will be expanded in Section 5.3.3.3,

Algorithm 5.3.

The path lengths from all vertices in G to the candidate vertex are calculated. This

implies that the LPM is computed for all vertices. The trajectory in Cfree with lowest

cost is inserted into G. In contrast to the unconstrained RRT, only trajectories without

any conflict are considered for insertion in the tree. This is explained in Section 5.3.3.1.

If no such trajectories exist, line 11 resets to the sampling algorithm.

The conflict-free trajectory is inserted in the tree. If the inserted vertex was sampled from

the goal configuration, the path is complete and returned. The solution path consists of

all the edges leading up to the final vertex, and therefore the tree is traversed in reverse

order to extract the path.
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Algorithm 5.2 RRT for Dubins Car on 2D OG

1: Initialise G with qI
2: Calculate Cobs from the 2D OG and store as drivability map
3: repeat
4: q2← candidate vertex, sampled from Cfree
5: for all q1 ∈ G do
6: Compute L(q2) for LPM from q1 to q2
7: Test the Dubins LPM trajectory for conflict in drivability map
8: end for
9: qn ← nearest(G, q2), such that the trajectory lies in Cfree

10: if qn = ∅ then
11: Return to line 4 and acquire a new sample
12: end if

13: Insert vertex q2 in G
14: Insert edge from qn to q2 in G
15: if q2 ∈ qG then
16: return solution
17: end if
18: until terminated

5.3.3.1 Optimal Path

The standard RRT planner does not attempt to find optimal paths, instead its focus is

on quickly exploring the search space for a feasible path. Selecting the nearest vertex

from the tree shortens the new trajectory, which in turns makes it less likely to cross an

obstacle region. It does not imply that the total path length, following the edges in the

tree up to the current vertex, is the shortest path.

If the nearest function is altered to select the vertex, qn, such that the total cost to

reach the new state is minimised, a sense of optimality has been created. The cost to

reach a vertex, C(q), is the cost of executing all the edges leading up to it, and is stored

with the vertex. To calculate the cost of a new vertex, the cost stored at the previous

vertex and the cost of the new edge are summed:

C(q2) = C(q1) + Lρ(q1, q2). (5.3.8)

This formulation can cause the standard RRT planner to lose completeness (recall Sec-

tion 5.1.4), as it will not insert an edge that makes the necessary detour around obstacles.

The shortest edge to a state “behind” an obstacle will always pass through the obstacle

region and will therefore be truncated. This is circumvented in the adapted RRT, as it
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only considers conflict-free paths in the nearest function, hence a detour edge may be

inserted if it is conflict-free.

The author of [3] notes the region of inevitable conflict. This is the set of states, for which

the configuration is not in conflict, but due to differential constraints, all trajectories

originating from it will inevitably cause a conflict. This area typically surrounds the

existing obstacle region. [3] therefore discourages inserting partial trajectories up to the

border of Cobs, as in Section 5.3.1.2, which will likely result in inevitable conflict.

5.3.3.2 Risk as Additional Cost

The optimal planning strategy in Section 5.3.3.1 can be used to avoid high risk regions, by

attaching a cost penalty to risk. A risk region is defined as the configuration space in close

proximity to the obstacle region, or configurations spanning under mapped area (where

P [s(Cijk) = OCC] = (0, 0.5]). The state variable of the drivability map is extended from

the boolean OCC/EMP representation, to the range R(Cij) = [0, 1], where R(Cij) = 0 is

risk free (P [s(Cijk) = OCC] = 0) and R(Cij) = 1 is maximum risk (P [s(Cijk) = OCC] ≥
0.5).

The risk for a particular cell is chosen as the maximum risk within its area of proximity.

The risk associated with a risk source, R(RS), is scaled with proximity, decreasing with

distance between the cell and the source,

R(Cij) =

max(1− 1
σR
‖Cxy −RSxy‖) ·R(RS) for ‖Cxy −RSxy‖ ≤ σR

0 otherwise,

(5.3.9)

where the subscript xy indicates 2D position and σR the range deemed proximal. An

example of a 2D OG with associated drivability map is shown in Figure 5.5.

Figure 5.5: Risk conscience drivability map. The yard map base is shown on the left and the
drivability map on the right. Red = high risk, White = risk free and Black = Cobs.
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To include the risk of an edge in the cost function, cost has to be accumulated when

executing an edge. It was chosen to accumulate risk over unit distance travelled through

the risk region. Thus the longer the distance a trajectory remains in a risk region, the

greater the cost of the trajectory and the less likely that it will be inserted into the tree.

The computation is included in the conflict detection module, as it already probes the

drivability map for Cobs.

The weight of risk (wR) versus path length (wL) in the planner cost function determines

the distance of detours that will be taken to avoid risk. Since the risk is bound on the

interval [0, 1] and accumulated over unit length, the weights adjust the ratio of detour

path length to risk path length. Equation 5.3.8 is now extended to

C(q2) = C(q1) + wR ·R(q1, q2) + wL · Lρ(q1, q2). (5.3.10)

5.3.3.3 Sampling Sequence

For a real-time reactive path planner, the planning algorithm will be rerun constantly

to react on new information added to the drivability map. This implies that the RRT

planner will calculate a completely new path each time the RRT is executed, even if no

changes occurred. During execution, it may seem like the vehicle is driving erratically as

it switches from one random tree to the next at each run. It would be preferable if the

vehicle could remain on the same path, unless that path becomes obstructed.

The solution path from the previous RRT can be used as waypoints that guide the current

tree expansion to include a similar solution [6]. When the tree is initialised, the first n

candidate samples to be inserted are the n vertices of the previous solution path, excluding

the goal. If there were updates to the drivability map, this step automatically re-checks

for conflict and calculates the updated cost of reaching the vertices.

To promote the search for more optimal paths, the search space is explored for a set

amount of time, before the goal state is sampled. During this time, many randomly

selected states are added to the tree that may or may not be connectible to the goal. The

waypoints from the previous solution improve the likelihood of connecting states near the

previous solution, inserting many paths similar to it.

When the goal is eventually sampled, there may be many alternatives to connect from.

Only if such a path has lower cost (closer to optimal), will the vehicle switch its path.
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If the goal is sampled, but not yet reachable, the exploration process is continued as per

the standard RRT planner, resampling the goal every number of samples. The complete

sampling strategy is shown in Algorithm 5.3.

Algorithm 5.3 Sampling Strategy for the Adapted RRT

1: waypoint list ← vertices from previous solution path
2: Start timer: EXP TIME← Texploration period

3: i← 0
4: for sample request do
5: increment i
6: if i ≤ number of waypoints then
7: q2 ← waypoint list[i].q
8: else if i is a multiple of goal sampling period and EXP TIME expired then
9: q2 ← qG

10: else
11: q2 ← uniform pseudorandom sample over R2

12: end if
13: if q2 ∈ Cobs then
14: return to line 6
15: end if
16: return q2
17: end for

5.3.3.4 Sampling Space Extent

In Section 1.2 it is explained that path planning is limited to the practical range over

which the map is considered complete. Planning beyond this distance is futile, since the

information is not trustworthy and likely to change. It is desirable to plan within the

viewing range of the environment sensor.

The planner is restricted to exploration within a radius of the vehicle considered the

viewing horizon. This is accomplished by including the space outside of the viewing

horizon in Cobs. As such, the conflict detection module will reject all LPM trajectories

that leave the viewing horizon. Similarly, the sampling strategy (Algorithm 5.3) only

creates pseudorandom candidate configurations in Cfree.

An exception is made when attempting to connect the goal, when all space outside the

viewing horizon is considered part of Cfree. This is necessary, since the goal need not lie

within the viewing horizon and the drivability map may contain false obstacles beyond

the viewing horizon.
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From the findings in Section 4.3.2.3, it is known that the map contains some artefacts

at the most recent profile scanline, due to beamspread in the Bayesian update process.

These may erroneously appear as obstacles, which is nominally at a distance of 11.4 m

(equation 4.2.9). Also note, the nominal reliable detection distance, ρrec = 8.5 m ahead

(equation 4.2.11). From this, ρrec was chosen as the appropriate planning horizon.

5.3.3.5 RRT Completeness

An important factor that defines the success of the RRT algorithm is whether or not it

is complete. Recall that a complete algorithm will find a solution if it exists. A sampled

algorithm is resolution complete if it will tend to cover the entire configuration space given

infinite time. The standard RRT is resolution complete and although planning problems

with very narrow passes can take long to solve, they will be solved.

The planning algorithm presented here is not complete, since it does not ensure that the

rotational dimension of the configuration space is sampled densely. This was sacrificed

for a simpler LPM and to limit the sample space to two dimensions. For the kinematic

constraints in limited space, many configurations are unreachable and considerable time

will be wasted on attempts to connect them. The current LPM connects to a target region

(any θ), which improves the likelihood of inserting edges and expanding the tree quickly.

Despite its shortcomings, it was used successfully in [5].

5.4 Simulation

The planner as designed is implemented in MATLABTM , where the planning process can

be simulated with visual confirmation. For release as a practical path planning module,

the planner is encapsulated in a internet protocol (TCP/IP) host interface. The mission

planner uploads a planning query and the planner returns the solution path. In this

section the interface presented to the mission planner is shown and the findings from

simulation results are reflected upon.
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5.4.1 Interface

The planner interface is shown in Figure 5.6. The planner is compiled with the minimum

vehicle turning radius as constraint, the vehicle width and distance deemed proximal for

the risk region, the planning horizon distance and the cost function weights. The map grid

resolution and extents and the periods for search space exploration and failure time-out

are set during initialisation.

For each replanning iteration, the planner receives the vehicle configuration (qI), the goal

coordinates (qG), the updated 2D OG and its extent in NE-axis. The waypoints that

guide the next iteration are maintained internally by the planner. When a solution is

found, the planner returns the list of vertices that forms the solution path, in the form of

configurations, τ = {q1, q2, . . . , qG}. These are passed to the vehicle controller.

Path Planner Module

T
C
P
/
IP

H
o
st

In
te
rf
a
ce

qI

qG

2D OG

OG param

τ = {q1, q2, . . . , qG}

α, size(map), Texplore/timeout

ρ
ρrec
wR

wL

ρR
vehicle width
waypoint list[]

Figure 5.6: Block diagram of path planner interface

The path planner host follows the implementation in Algorithm 5.4.

5.4.2 Findings

The adapted RRT finds feasible solutions in a variety of obstacle scenes (see Appendix D

for an example). The use of waypoints significantly improved the execution time of

successive queries, which in turn results in more time to find more optimal solutions. It

was found that the optimisation tends to insert intermediate vertices on the path, that
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Algorithm 5.4 Path planner host

1: Initialise internal variables
2: Accept connection {αxy, Map dimensions and Texploration time}
3: loop
4: Receive planning request {qI , qG, 2D OG and extents}
5: Transform to map axis system
6: Compute drivability map {Cobs and risk region}
7: Run RRT Planner {Algorithm 5.2}
8: Trim redundant vertices from solution path
9: Transform to NE-axis system

10: waypoint list← solution path
11: return waypoint list
12: end loop

only account for minute cost improvements. In practice, these would make little difference

to the path the vehicle drives. After a few iterations, the number of vertices can grow

substantially and are often clustered together. In line 8 of Algorithm 5.4 the list of vertices

is scrutinised for very short edges and these are removed.

Since the vehicle has been constrained to forward driving, it is simple to construct obstacle

scenes that can cause the vehicle to become trapped in a dead end without sufficient free

space to turn around (Figure 5.7). Including reverse motion in the path planner will

therefore greatly enhance its usability.

qG

(a) Enter a corridor. Dead end outside viewing
horizon.

qG

(b) Dead end within viewing range.
Trapped.

Figure 5.7: A dead end obstacle region traps the vehicle if it cannot drive in reverse

The path planner viewing horizon is confined to the near vicinity of the vehicle. This

has the effect that the path planner “forgets” obstacles that leave its vicinity. When

the vehicle has been forced to take a wide detour (Figure 5.8a), the original obstacle

leaves its viewing horizon (Figure 5.8b). On a significant detour, the path planner may

attempt to return to the original course, only to rediscover the same obstacle and take the
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same detour path (Figure 5.8c), creating an infinite loop. A proper route planner should

recognise this situation on a global map and reroute.

qG

(a) Evade obstacles visible in
viewing horizon

qG

(b) Original obstacles no longer
visible. Turn back

qG

(c) Rediscover obstacles. Close
infinite loop

Figure 5.8: Obstacles that extend beyond the path planner view cause infinite loops. This can
be dealt with in the route planner, which considers the global map.

The simulation of the path planner in MATLABTM returns usable paths, with a median

execution time of 20 ms for the RRT planner on a set of typical scenes that was constructed

for simulations. With Texploration = 100 ms, the paths generated are smooth and maintain a

good relation with respect to the risk area, even in cluttered environments. The practical

system has some additional overhead and returns a path in approximately 250− 500 ms.

The vehicle keeps on moving during the computation time and thus the planned path may

be outdated by the time the solution is returned. To account for the delay, the vehicle

position is propagated with the expected computation time and this position is set as

the initial configuration in the path planner. In this way, when the path is returned, the

vehicle is approximately at the origin of the path.

5.5 Path Planning Summary

An RRT sampling based planning strategy was chosen to cope with vehicle kinematic

constraints. It is explained that if the speed of vehicle is limited, the vehicle can be

approximated as a Dubins car, for which there exists optimal shortest-path holonomic

trajectories. If the vehicle is assumed to be driving forward, some simplifications can
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be made in the calculation of the obstacle region, which lowers the dimension of the

configuration space. In this case rotation can be neglected. It is remarked that these

assumptions are not required for the RRT planner, but are used here to improve execution

time.

The standard RRT planner has been adapted to effectively find near optimal solution

paths. Included in the cost function is path distance and an associated risk factor. Regions

of risk are defined about obstacles and where the map is not yet properly discovered. This

makes good use of information provided by the mapping module. This has the effect that

paths will generally avoid these regions, but can still pass through them if essential to the

solution.

The RRT planner module was tested in simulation. It was found that most solutions

can be obtained in well under 0.5 s, which is satisfactory for a real-time system. It is

noted that a planner with a local planning search space can easily become trapped in

compound obstacle regions due to the kinematic constraints. Future work should include

reverse driving manoeuvres, implementing the dynamic constraints and interfacing to a

route planner.
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Vehicle Controller

The vehicle controller orchestrates the actuators on the vehicle to follow the safe path

generated by the path planner. In its simplest form, the vehicle controller is responsible

for tracking the path and velocity references it receives from the mission controller, using

the actuator systems on the vehicle.

6.1 Architectural Relation

The vehicle controller is subordinate to the mission planner (Figure 6.1). The mission

planner can give the vehicle logical commands to start and stop driving. The vehicle

reports its state estimation information to the mission planner at regular intervals. To

start following a path, the mission planner relays the waypoints generated by the path

planner to the vehicle controller and signals the controller that it may start. Velocity

reference values are added to the waypoints.

It is required that the path starts at the current location of the vehicle and is constrained to

the abilities of the vehicle. The vehicle controller can correct for minor differences between

the reference and vehicle constraints, provided that it has some actuator headroom.

91
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Path Planner Vehicle Controller

Estimator Controllers
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Figure 6.1: Block diagram of the relation between the mission planner and the vehicle controller
and path planner

6.2 Vehicle State Estimator

In order for the vehicle to know its whereabouts in relation to the reference path, the

on-board controller includes a kinematic state estimator that updates at 50 Hz. The

estimator system takes measurements from a variety of sensors and applies a real-time

extended Kalman filter (EKF) that combines the data to obtain a least-squares best

estimate of the current vehicle state. The sensors available to the state estimator are

listed in Table 6.1. The estimated vehicle state vector is

x =
[
PN PE PD VN VE VD Ψ Θ Φ

]T
, (6.2.1)

consisting of three positions, three velocities and three angles in the inertial axis system.

Table 6.1: Estimator sensors and descriptions

Sensor Description of measurement
3-axis Accelerometer Acceleration in body axis. Requires correction for gravitational

vector.
3-axis Gyroscope Accurate angular velocities about body axis.
3-axis Magnetometer Approximate orientation, relative to earth’s magnetic field.
DGPS Accurate NED position. Velocity in each dimension. Maxi-

mum 10 Hz update rate.
Wheel encoder Forward speed in body axes. Subject to wheel slip.
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6.3 Velocity Controller

The vehicle has three controls that are required to control velocity, namely throttle, gear

lever and brakes. The different controls have to be used in unison to achieve and maintain

the desired velocity. To ensure the correct use of the controls, a finite state machine is

implemented to orchestrate the process. Although only forward driving is used in this

thesis, reverse is easily included in the state machine. The state machine selects the

appropriate feedback controller, based on the vehicle state.

6.3.1 Velocity Controller State Machine

OFF STARTING IDLE
GEAR CHANGE TRANSITION

NORMAL
DRIVING

PARK START
ENGINE STOP

STOPR

STOPF

STARTR

STARTF DRIVEF

HALTF

DRIVER

HALTR

Figure 6.2: Velocity controller finite state machine for bi-directional driving. Group descrip-
tions are indicated below the relevant states.

A mission begins and ends with the vehicle in the PARK state. To begin, the engine

is started and if successful, enters the STOP state, idling in neutral. From here the

procedure is split into two symmetric branches for forward driving and reverse driving

(add suffix “-F”/“-R” to state names respectively). When the vehicle receives a forward

velocity reference, it issues the forward gear change command and waits in the STOPF

state. Upon completion of the gear change, the parking brakes are relaxed and the throttle

controlled to pull away using the STARTF state.

The STARTF state controls the transitional phase, defined as a speed envelope, when

the centrifugal clutch is not fully engaged. If the vehicle speed exceeds the transitional

envelope, normal driving continues in the DRIVEF sate. It will re-enter STARTF if the

speed falls back within the transitional evelope. The STARTF state may also be used to

drive at reference speeds below the minimum speed for the clutch to engage.
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When a zero velocity reference (or reverse) is received while driving, the HALTF state

brings the vehicle to a stop, and when it is stationary, enters the STOPF state and sets

the brake. From here it may initiate the symmetric sequence for driving in reverse, or

be commanded to PARK and switch off. Passing through STOP issues the neutral gear

change command. If during any time the engine should cut out, a zero velocity reference

is assumed which brings the vehicle to STOPF, STOP and then PARK.

6.3.2 Velocity Feedback Controllers

From the state machine it can be seen that there are three driving states per direction,

each requiring a different control strategy. Since the forward and reverse gears of the ATV

have slightly different gear ratios, the forward controller gains will need to be adjusted

for use in reverse.

During normal driving, the clutch is fully engaged and the system model is simply throttle

input which results in a torque to the drive wheels, accelerating the vehicle inertia. The

engine can provide adequate acceleration force and limited deceleration. On a steep

descent, or if the velocity reference is quickly decreased, some additional braking may be

required. The brakes are activated based on a maximum velocity error margin and when

the throttle saturates at the closed position.

In the transitional START phase, the engine is not directly connected to the drive wheels.

The amount of torque transferred, via the centrifugal clutch to the drive wheels, is a non-

linear function of the engine RPM. It is approximately linear after the clutch makes

contact at a minimum RPM. An outer-loop controller with velocity feedback commands

acceleration force and uses the inverse torque function to calculate the RPM reference.

The inner-loop controller with direct RPM feedback tracks this reference.

A minimum RPM reference keeps the clutch in contact at all times to avoid large non-

linearities. To track slow velocity reference commands, the brakes are kept in contact,

since their response time is much quicker than the engine RPM controller. Prolonged use

of the START state will cause unnecessary wear of the clutch and is therefore timed out.

To stop the vehicle during the HALT state, the throttle is completely closed and maximum

safe braking force is applied. This prevents the minimum RPM reference command of the

START state during deceleration in the transitional speed envelope.
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Unit Delay

z

1

Subsystem: Controller

RPM Error Actuator

SaturationRPM Reference

simin

RPM Output

simout

Quantizer 2

Quantizer 1

Linear Engine Model

Gz.num {1}(z)

Gz.den {1}(z)

Backlash

Figure 6.3: An example of a controller simulation model for RPM controller

The discrete controllers are designed using the MATLABTM control toolbox. The actuator

to output dynamics of the vehicle are logged while providing input that attempts to

excite the relevant modes of the drivetrain. A non-linear model is derived by fitting the

appropriate order model to the logged data [19]. The model is linearised at the nominal

operating points and stabilised in a root-locus analysis design. The discrete controller

design is simulated with the non-linear model (Figure 6.3) before it is implemented on

the on-board controller.

6.4 Steering Controller

To drive along the path returned by the path planner, the vehicle controller has to steer

appropriately to remain on track. This controller is burdened with task of following

trajectories that were created using approximate vehicle constraints.

This controller is implemented using the cross-track error, x, indicated in Figure 6.4,

and the difference in heading between the path and vehicle, ψ, to set the steering angle

reference command

φ = ψ + arctan

(
kx

U

)
, (6.4.1)

where k is a positive gain and U the vehicle speed [7].

x

φ

ψ

Figure 6.4: Construction for steering controller, based on cross-track error and heading
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The first term sets the steering angle reference parallel to the path trajectory. The second

term turns the reference towards the path as a function of cross-track error. The arctan

function saturates at ±90◦ when x becomes large, which relates to the wheels pointing

straight at the path when the vehicle is far off track. The authors of [7] have proved

that equation 6.4.1 results in convergence with exponential decay for a continuous ideal

car with small cross-track error. The gain, k, adjusts the rate of convergence and the

inclusion of drive speed, U , makes the rate of convergence independent of speed.

The minimum turning radius limits the value of k. Setting k too high generates a theoret-

ical trajectory where the cuvature exceeds the turning radius and results in overshoot. A

ballpark figure can be obtained by substituting typical values for φ, x and ψ, based on the

turning radius, and a given U in equation 6.4.1 and solving k. The curves in Figure 6.5a

are created with U = 2 m/s and k = 1.5 for ρ = 3 m.

Some adjustments are needed for a practical controller. The discrete controller has finite

response time and the steering actuator has inertia and a maximum slew rate which

detracts from the stability of the control law. In [7] it is suggested to add some damping

to the error signal. For the same k and U as before, damping was added to x and the

resulting dynamic trajectories are shown in Figure 6.5b.

The coefficients of the damping filter can be computed by modelling slew rate as an appro-

priately slow pole and choosing stable closed-loop poles on the resulting root locus given

a fixed gain. This approximation works well with small errors. Simulation is used tune

the parameters to wider range of initial errors. It is noted that without proper damping,

the dynamic system easily becomes unstable. The filter coefficients are dependent on k

and therefore sensitive to velocity. The coefficients were designed for the minimum ATV

velocity.

6.4.1 Steering Control Simulation

The discrete control law is tuned using a simulation that models the kinodynamic effects

of the steering actuator system, including slew rate and saturation. The simulation is

used to validate the amount of headroom the path planner should leave for the vehicle

steering controller.
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(a) Trajectories of a continuous controller
without slew rate. Stable for all cross-track
errors. Note that the front wheels are fully
turned at the first instant, compared to (b).
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(b) Trajectories of a discrete controller with
limited slewrate. x is critically damped with
a finite impulse response filter for small x.
Note that the front wheels turns over time.

Figure 6.5: Typical steering controller trajectories for various starting conditions

The path planner outputs a set of waypoints that consists of NE coordinates and heading,

Ψ. The cross-track reference line is generated by expanding each waypoint into a line

segment that passes through the waypoint at the given heading. The steering controller

selects the next segment as its reference when it passes the current waypoint. Figure 6.6

shows consecutive waypoints and their extensions, the ideal Dubins car path that connects

them and the true path resulting from the steering controller.

 

 

Waypoint

Dubins path

Reference extension

Next WP boundary

Simulated path

(a) Simulated path at nominal design speed
displays good tracking

(b) Simluated path at 130% of design speed
displays initial overshoot

Figure 6.6: Simulated path over waypoints that are extended into reference paths.

It is noted that the slew rate of the steering system results in initial overshoot. Through

trial and error in simulation, it was found that setting the planner radius to 4 m, with

waypoints around the bends at intervals between 15◦ and 30◦ apart, gives good tracking

at the minimum design speed.
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Increasing the speed results in considerably more overshoot, as expected (Figure 6.6b)

and proves that the simple path planner is only valid at low speeds. An experimental

simulation was conducted where the next waypoint is selected as reference, some distance

before the current waypoint is reached. This early selection allows the controller to “look

ahead” to compensate for slew rate, but only delivered minor improvements.

The use of simple waypoints to represent curves is motivated with the following formula-

tion:

1. Each of the sections in the path resembles the curves in Figure 6.5.

2. Assume a successful steering controller passes each waypoint with negligible cross-

track and heading errors,

3. thus a waypoint can be seen as the initial condition for the steering controller in

terms of the following section.

4. If the initial condition (the previous waypoint) for a section lies on a true trajectory

that eliminates cross-track error before it reaches the waypoint, the assumption in

line 2 holds.

The condition in line 4 is satisfied within the path planner constraints. The formulation

holds and proves that the simple waypoints provide an adequate representation of the

path.

6.5 Vehicle Controller Summary

The vehicle controller receives a list of waypoints from the mission planner. Each waypoint

consist of 2D coordinates, a reference heading and a velocity. It is the task of the steering

controller to track the path indicated by the waypoints. The velocity controller maintains

the reference speed for the current waypoint.

The velocity controller consists of a state machine and feedback controllers. The state

machine schedules the gear shifts and throttle and brake feedback controllers. There are

parked states, gear changing states and driving states. The three driving states separates

the low speed, normal driving speed and stopping situations to apply the relevant feedback

controller.
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The steering controller is based a non-linear feedback function of cross-track and heading

error. The feedback function guarantees stability for unconstrained systems and expo-

nential error decay when the error is small. Damping the cross-track error compensates

for the dynamic constraints of the test vehicle. The simulation of the steering controller

displays good tracking under the design conditions for speed and path curvature. For

increased speed, the reference path should reflect the vehicle dynamic constraints or else

considerable overshoot can occur due to the limited actuator response time.
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Practical Testing

The simulated systems were integrated into a real-time navigation and control system.

The mission goal is to drive through each waypoint in a fixed list of user-defined waypoints,

while evading simple obstacles. This chapter first describes the integrated structure and

then the test scenarios used to validate the navigation system. This is followed by a

discussion of the test drive results.

7.1 System Structure

The integrated system structure is shown in Figure 7.1. The top-most level is the combined

mission planner and route planner. Directly below the mission planner is the path planner,

mapping functions and vehicle controller. All the subsystems act as service providers

to the mission planner, i.e. information is requested by the mission planner and the

subsystems respond to commands.

7.1.1 Mission Planner

The mission planner is implemented as a MATLABTM m-script. For these simple tests, no

actual planning is performed in the mission planner or route planner. The mission planner

is used to initialise the subsystems and coordinate data transfer between these systems.

When all the systems are ready, it waits for user confirmation to start the mission. During

100
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Mission Planner

Route Planner

Set user waypoints
as goal.

Mapping Functions

·Shift OG map
·Update OG map

TCP/IP Client

TCP/IP Host

Serial Port TCP/IP Driver

Path Planner Host

·RRT Function

·Waypoints

LidarOBC
·Estimator

Vehicle controller

·Velocity

·Steering

Actuator

Controller

Figure 7.1: Hierarchy of modules used during testing

execution, it monitors the mission progress of the route planner and stops the mission

when it has been completed.

7.1.2 Route Planner

The route planner is integrated into the mission planner and feeds the current waypoint

from the user waypoint list to the path planner as an intermediate goal state. The next

waypoint from the list is selected when the current waypoint is reached. This condition

is relaxed to a radius around the waypoint to allow a tolerance for cross-track errors

and to allow planning ahead for the next waypoint. When the last waypoint is reached,

the reference speed is set to zero, which will bring the vehicle to a halt. For all other

waypoints, a constant speed is set that is equal to the minimum vehicle operating speed.

7.1.3 Mapping Functions

The mapping functions are called directly from the mission planner script. The vari-

able storage space for mapping is defined in the mission planner scope to simplify data

Stellenbosch University  http://scholar.sun.ac.za 



CHAPTER 7. PRACTICAL TESTING 102

transfers between modules. The mission planner receives the vehicle state from the ve-

hicle controller and requests a new scan from the lidar device. The lidar connects using

an ethernet interface. A driver function that connects the TCP/IP network and parses

the incoming data into MATLABTM variables were written in C and compiled to the

MATLABTM executable “mex” format. The 3D OG is first shifted to remain local to the

vehicle position and then updated using the (sub-sampled) lidar scan data.

Only when a new path planning request is submitted, is the 3D OG collapsed to a 2D

drivability map. For efficiency, this is performed only on the portion of the map that is

relevant to the path planner viewing horizon. The mapping algorithm is computationally

intense and uses all the available computational power that MATLABTM can source and

therefore dictates the loop frequency of the mission planner.

7.1.4 Path Planner Host

The path planner host is also implemented as a MATLABTM m-script. It receives initial

parameters and planning requests via a TCP/IP host interface, shown in Section 5.4.1.

Both sides of the interface (host and client) are written in C and compiled to the “mex”

format. When the host receives a request, it runs the RRT planner m-function on the

local 2D OG and returns the solution path on the TCP/IP interface. It also keeps a local

copy of the waypoints for the next iteration.

The custom interface between mission planner and path planner, based on a standard

computer network, allows these processes to execute in parallel, in separate MATLABTM

sessions. These sessions may either be on separate networked computers, or on the same

computer if it has multiple processing cores. This allows the path planner and mapping

functions to execute at their respective maximum rates.

7.1.5 Vehicle Controller

The vehicle controller is implemented on the standard on-board controller (OBC) available

in the AutoNav group and connected to the mission planner via a serial connection. The

mission planner can issue various commands to the vehicle controller that starts and stops
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a mission and uploads the most recently computed set of waypoints. The mission planner

receives the vehicle state and can poll some general status information from the vehicle.

The OBC is built around a 16-bit microcontroller (dsPIC30F6014A from Microchip). The

design includes various peripherals to interface with the IMU, DGPS, actuator controller,

mission planner and also a ground station. The OBC is accompanied by skeleton firmware

that reads data from the various sensors and executes the EKF to obtain the vehicle state

estimate. The OBC logs all data to a digital memory card. The vehicle controllers in

Chapter 6 were integrated into the OBC framework.

7.2 Test Setup

Testing was carried out in a controlled environment to ensure safety and maintain the

integrity of the tests. The ability of the vehicle controller to follow a reference path was

tested first and then the complete system was tested.

7.2.1 Steering Controller Test

To test the steering controller independently, the vehicle controller is initialised with a

fixed set of waypoints using a mission planner emulator (see Appendix B). The path was

chosen to illustrate the ability of the vehicle to follow both a straight segment as well as

a curved segment. The reference path and waypoints are shown in Figure 7.2a and the

actual ground track obtained is shown in Figure 7.2b.

Unfortunately, the differential GPS was not available during this test. The lower accuracy

of ordinary GPS causes false cross-track errors (note the irregular curve in Figure 7.2b)

which, combined with the high frequency gain of the damping filter, causes large unwanted

steering commands. It was decided to remove the damping filter from the cross-track error

and instead use yaw rate (which is unaffected by GPS errors) to damp the controller with

a response similar to the original controller.

The steering controller test also showed that the vehicle turning radius is slightly wider

than was designed for. This is attributed to the solid rear axle (refer to Section 5.2.1.1).
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The lack of actuator headroom will likely cause some tracking errors on curved paths,

unless the curve radius constraint is relaxed.
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(a) Waypoint set to track
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(b) Actual GPS track

Figure 7.2: Vehicle steering controller test path and track

7.2.2 Integrated Test

The complete system was tested using two simple sets of user-defined waypoints, shown

in Figure 7.3. The first set has three waypoints, 10 m apart in a straight line with

no obstacles, and serves to verify the mission planner and its cooperation with all the

subsystems. The second set is a single waypoint, but with an obstacle placed deliberately

on the path connecting the starting position and goal position, to force the vehicle to

display evasive action. Unfortunately, the size of the test space limited the scale of testing

that was possible.

7.2.3 Velocity Controller

For safety reasons, the velocity controller was not tested during the navigation tests.

Although all the required actuators were functional, the engine remained switched off

and the vehicle was pushed by hand during tests. Since the brake actuator was active it

maintained the reference velocity as set by the mission planner, despite attempts to push

the vehicle faster. This also stopped the vehicle when the goal was reached.
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(a) Waypoint set one
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(b) Waypoint set two

Figure 7.3: User-defined waypoints that were used to test the integrated system

If the engine is not turned on, the velocity controller state machine is not able to leave

the PARK state. The state machine was forced to advance permanently to the STARTF

state, which is appropriate for the speeds used during testing.

It was also found that the presence of a safety driver near the antenna of the GPS system

significantly reduced its reception quality and caused loss of differential accuracy.

7.3 Integrated Test Results

Four test runs were made using the test setup described in Section 7.2.2. Test One has no

obstacles and the remaining three tests were conducted with a single obstacle. The tests

were conducted on the lawn nearby the research labs. Although seemingly even, the lawn

has considerable irregularities, which causes pitch and roll angles of up to two degrees

and 25 cm of elevation difference.

7.3.1 Test One – No Obstacles

The ground track is shown in Figure 7.4a and it is clear that the vehicle did indeed reach

all three waypoints. Keep in mind that the next waypoint is selected as soon as the vehicle

enters the radius around the current waypoint. Between the first and the second waypoint,

the vehicle swerved 1.2 m to the right, which may seem strange given that there are no
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(a) Test One: The route waypoints and
the radius about them are indicated on the
route.
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(b) Test Two: The goal area and approx-
imate obstacle area are indicated on the
track.
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(c) Test Three: The late change in evasive
direction caused a collision.
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(d) Test Four: The goal area and approx-
imate obstacle area are indicated on the
track.

Figure 7.4: Ground tracks from practical test drives
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obstacles. The reader is however reminded that considerable priority has been given in

the RRT to follow “safe” (well mapped) paths. Should the motion of the vehicle over

irregular terrain (see Section 3.3.2) cause an uneven distribution of scanned profiles, the

path planner will actively avoid the under-mapped areas. The vehicle continued normally

and stopped at the set radius from the final waypoint, as intended.

7.3.2 Test Two – Single Obstacle

The ground track is shown in Figure 7.4b and the vehicle successfully avoided the obstacle

and made its way to the goal. The vehicle starts off heading straight towards the goal.

When the obstacle comes within the planning horizon, the vehicle takes a smooth evasive

action to the right of the obstacle with ample clearance from it and heads towards the

goal.

7.3.3 Test Three – Single Obstacle (Collision)

The ground track is shown in Figure 7.4c and the vehicle was unable to avoid the obstacle

and make its way to the goal. The vehicle starts off heading straight towards the goal and

at 7.6 mNorth chose a path taking an evasive action towards the right of the obstacle. At

9.7 mNorth the path planner switched to an evasive action passing on the left. Due to

the slew rate of the actuator, the steering controller was unable to track the two sudden

changes in direction and overshot the planned path by more than 1.2 m, causing a collision

with the edge of the obstacle.

It is clear that ignoring non-holonomic constraints can have severe effects on the validity

of the planned paths. It should also be noted that the method used to propagate the

vehicle state in the mission planner ignored the dynamic effects of the steering system.

This causes discrepancies between the actual vehicle state and the state used for path

planning, especially during sudden direction changes.

During the last 4 m leading up to the collision, the path planner was unable to find

valid solution paths, since the vehicle had already entered the area of inevitable collision.

Normally the vehicle would enter an emergency stopping mode in this situation, but this

feature was disabled to simplify manual testing procedures.
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7.3.4 Test Four – Single Obstacle

The ground track is shown in Figure 7.4b and shows that the vehicle successfully avoided

the obstacle and made its way to the goal. The vehicle starts off headung straight towards

the goal. When the obstacle comes within the planning horizon, the vehicle takes a smooth

evasive action to the left of the obstacle with ample clearance and heads towards the goal.

After passing the obstacle, it makes another deviation towards a “safe” area, similar to

that of Test One. This is attributed to the fact that the area directly behind the obstacle

was occluded from the sensor view on approach of the obstacle. This area is less likely to

be mapped as well as the area towards the sides and is therefore avoided as expected.

7.3.5 General Observations

The accuracy of the estimation system is limited by the accuracy of the measurements.

Due to time constraints and various technical issues, only a limited calibration of IMU

sensors were performed. For instance it is not possible to fully calibrate the magnetometer

on the vehicle, as it is only possible to rotate the vehicle about the yaw axis. Furthermore,

zeroing the sensors biases requires the vehicle to be orientated perfectly level - a state

which is difficult to ensure during field tests. The uneven nature of the testing terrain,

coupled with slight attitude estimation errors, can easily cause some of the higher portions

of terrain to be erroneously classified as obstacle regions.

The steering actuation motor often failed during the preparations for testing, due to

problems with its brushes not making proper contact, which were aggravated by the

generated heat from high control currents. For this reason the current limit was lowered

considerably for the final tests, which slows its dynamic response time. These dynamics

were not modelled in the steering controller and decreases the steering controller stability.

The system was reset before each test. This implies that there is no prior mapped data

available to the path planner. It is therefore not allowed to start a test with an obstacle

closer to the vehicle than the viewing horizon of the lidar, since it had no opportunity

to map such objects. To overcome this, it is possible to to enable the mapping module

and manually driving a few metres as a means to initialise the map, before enabling the

automatic vehicle controllers.
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7.4 Tests Summary

Practical navigation tests were performed in a controlled environment. The tests were

set up to show the feasibility of the complete system and to investigate the integrated

interaction between the different navigational modules. For safety reasons and to simplify

the testing procedure the velocity controller were overridden and the vehicle pushed by

hand.

Three of the four tests showed successful automatic navigation. Successful navigation

testifies that all the subsystems function satisfactory. The failed test is attributed to

approximations made during the design process, namely neglecting the steering slewrate

and dynamics in the path planner and the mission planner, which proved to be inadequate.

With the current framework created during this thesis, it should be simple to derive more

accurate models.
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Chapter 8

Conclusion and Recommendations

8.1 Conclusion

This thesis presented the groundwork that was laid to enable and demonstrate au-

tonomous navigation of a terrestrial vehicle and demonstrated the integrated system with

practical tests. All the necessary systems for a full demonstration were designed. This

required:

• Actuating the selected vehicle (ATV) with electric actuators and designing appro-

priate controller hardware

• Investigating the capabilities of a scanning lidar for optimum 3D mapping potential

• Creating a visual simulation for a lidar device that scans within a virtual 3D envi-

ronment and outputs lidar datasets

• Applying the occupancy grid method on a three-dimensional grid, paying special

attention to efficiently projecting multiple lidar beams into a local 3D OG in real

time

• Developing a path planner based on the RRT, using the simple car kinematic model

for computational efficiency

• Designing a vehicle controller for path following and setting up the velocity controller

state machine specific to the vehicle

110
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• Integrating the mapping module, path planner and vehicle controller with a basic

mission/route planner for real time execution during practical tests.

The all terrain vehicle is fully actuated (steering, throttle, brakes, gear shift) and the

actuator board provides inner-loop feedback control for position reference commands.

The additional sensors (wheel-speed and tachometer) provides convenient and accurate

data to high-level controllers. With safety features designed into all critical components,

this vehicle is a valuable, ready-to-use test bed for future research.

The 3D OG mapping software performed well in simulation and in practical tests using

a single lidar device. It is capable of mapping three dimensional obstacles reliably in real

time. For best results, the use of an accurate state estimator, especially with respect to

attitude, is a crucial requirement. The simple threshold for obstacle regions, based on

height relative to the vehicle, works well while driving on even surfaces, but does make

some false detections when applied to uneven terrain. The mapping process is therefore

ready for most on-road situations and with intelligent thresholding, should work over

moderately uneven terrain. It is, however, not well suited to mapping the driving surface,

as the surface tends to contain ridges as a result of successive profile scans.

The RRT path planning method showed promise for use as a real-time path planner. Even

when neglecting prominent vehicle steering dynamics, the path planner was able to create

usable trajectories. It is clear however, that reliable path planning will only be achieved

with proper regard for vehicle dynamics, including those of the vehicle controller. The

RRT method does make provision for complex vehicle dynamics and is therefore still the

author’s method of choice.

It is the author’s opinion that this project was successful at automating a terrestrial

vehicle and implementing the complete framework for automated navigation. Areas of

focus were: vehicle actuation, lidar mapping, path planning and the vehicle controller.

The system reliability can easily be improved with the recommendations listed in the next

section. With the framework in place, future research can focus on singular aspects, e.g.

improving the path planner, and then test the upgraded component in the system.
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8.2 Recommendations

Section 8.2.1 gives the recommendations for initial improvements, based on the results

given in this thesis. It is followed by Section 8.2.2 which provides suggestions for future

work.

8.2.1 Necessary Improvements

Vehicle:

• Replacing the relatively cheap steering actuator (automotive wiper motor) with a

more reliable/powerful actuator will remedy many steering-related issues.

Lidar Mapping:

• Measuring the actual lidar sensor model may improve the mapping accuracy, espe-

cially with regard to ridges in the driving surface.

• The use of a plane-detection algorithm to identify the driving surface in the 3D OG

and using this plane as reference to threshold obstacles, should improve obstacle

detection on inclined terrain.

Path Planner:

• Extend the RRT planner to use the full dynamic steering model or a higher order

approximation thereof, to obtain plans that are guaranteed to be executable by the

vehicle.

• Use a more accurate model to predict the vehicle configuration to use as the initial

configuration during planning – include the vehicle controller and actuator dynam-

ics, based on the current reference trajectories.

8.2.2 Future Work

Suggestions for improving the vehicle:

• Replacing the shear-pin with a non-destructive override will ease testing and benefit

safety.
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• Provision has been made on the actuator board for an analogue input which could

be used as input for a test-driver steering override.

• Provision has been made for an electronic cut-out relay, which should be fitted.

• Provision has been made for another hall-effect sensor to provide precise feedback

of throttle position – the RC servo displays considerable hysteresis, which can then

be suitably compensated for.

Suggestions for improving the lidar mapping:

• Porting the mapping implementation to a more efficient programming language

can result in significant performance increase. The mapping algorithm can exploit

multi-threaded computing to project multiple beams simultaneously and use GPU

computing to accelerate the matrix multiplication to project beams. The perfor-

mance boost can be used to map at a higher rate or to refine the grid/angular

resolution.

• For missions that revisit the same area, implement a global map that initialises the

local map.

• Further investigation into actuated mountings as per Section 4.3.1.4.

Suggestions for improving the Path planner:

• Including velocity (as well as forward and reverse driving) in the sample space will

prevent the vehicle from becoming trapped.

• Adding another weight to the cost function, based on actuator motion, will result

in “smoother” driving behaviour.

Suggestions for improving the vehicle controller:

• Consider using algebraic expressions for curved trajectories, instead of multiple

waypoints. These algebraic expressions should honour the actuator dynamics.

• Use gain scheduling for the steering controller to remain stable at variable velocity.

• Replace the simple PID velocity controller with full-state feedback control for precise

control over dynamic responses.
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Suggestions for improving the estimator data:

• Mounting the IMU and GPS sensor set with the lidar will measure the lidar sensor

position directly, reduce electromagnetic interference originating from the vehicle

electronics and provide an open view of the sky for the DGPS antenna.

8.3 Final Words

This document describes the successful automation of a terrestrial vehicle (see Appendix E

for photos of the vehicle) and the design and implementation of functional navigation

modules for a complete terrestrial navigation system. The navigation demonstrations

illustrates the appropriateness of the proposed architecture. This concludes the descrip-

tion of the framework which can be used for further research on the topic of autonomous

navigation.
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Appendix A

Actuator Controller PC Interface

The actuator controller interface shown below is an interactive MATLABTM graphical

user interface (GUI) that is used to test the actuator controller via a serial interface. It

can poll (or request a stream of) all the sensor data and command the actuators or set

position references for the controllers.

Figure A.1: Actuator controller PC interface
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Appendix B

Mission Planner Emulator

The mission planner emulator shown below is an interactive MATLABTM graphical user

interface (GUI) that is used to test the vehicle controller. It polls the status and estimator

information at regular intervals and uploads a predetermined set of waypoints, mimicking

the interface of the mission planner with respect to the vehicle controller.

Figure B.1: Mission planner emulator

120

Stellenbosch University  http://scholar.sun.ac.za 



Appendix C

Inside View of 3D OG

The series of images in Figure C.2 provides a view of the data captured in a 3D OG during

a practical test. The map was created in the parking area shown in Figure C.1. Each

image represents a horizontal layer of cells in the 3D OG. The vertical height (as a Down

coordinate in the inertial axis system) is indicated with each image. Green indicates

unmapped area, red indicates occupied cells and blue indicates empty cells, with the

approximate vehicle trajectory indicated in cyan. The vehicle was driven in a north-

westerly direction. A surface extracted from the occupied cells is shown in Figure C.3.

Additional notes:

• The reader is encouraged to match large items from the photo to the series of images.

E.g. the three cars to the left on the photo, visible at the lower-right corner in c-k.

Also the elevated kerbs visible in l-n.

• The occupied cells in images p-s is the driving surface – the curvature of the road

and gutters (image s) is clearly distinguishable.

• The most recent scan creates a “ridge” in the driving surface, (line of occupied cells

at the top-left boundary of cleared area, visible in j-o).

• The slanted angle of the sensor implies a slanted boundary of mapped area – compare

the upper-left edge of the empty area (blue) between images a-h.

• DGPS was unavailable for this test, therefore reduced estimator accuracy can be

assumed.
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Figure C.1: A photo taken from the starting location of the vehicle. The approximate path
and final location of the vehicle is indicated.
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Figure C.2: This series of images show the occupancy state of cells in each horizontal layer in
the 3D OG.The approximate path followed up to this point is shown. Axes are in metres with
the vertical axis being distance North and the horizontal axis being distance East.
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Figure C.3: Surface extracted from 3D OG. colour scaled with height. Note the groups of cars
divided by a kerb (on the left) and the trees on the kerb (to the right).
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Appendix D

Path Planner Trajectories

The images in Figure D.1, Figure D.2 and Figure D.3 shows three alternative paths com-

puted for the same simulated planning problem. The series of images show the position of

the vehicle at different points in time and the path computed at that particular time-step.

The track up to the particular time-step is shown in green and the computed waypoints

are shown as blue dots. The planner viewing horizon is the radius about the vehicle that

is included in the path planner obstacle detection computation and is indicated by the

red circle. Any obstacles outside of the viewing horizon are ignored. Images are taken at

every fifth time-step, as indicated in the title of each image, along with the computation

time of that path.

Note the following:

• When applied to the same planning problem, the randomised path planner will

generate different trajectories each time, as portrayed by these three paths.

• The planned trajectories maintain a minimum clearance from obstacles, based on

the vehicle width (see time-steps 21 and 26 in Figure D.2).

• When possible within vehicle constraints, the cost-based planner will maintain ad-

ditional clearance from obstacles, as evident from Figure D.1 and Figure D.3. Refer

to Section 5.3.3.2 on page 83 for the risk conscience map.

• The planner can only optimise paths within the planning horizon, which may result

in globally sub-optimal paths, such as Figure D.2.
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APPENDIX D. PATH PLANNER TRAJECTORIES 126

• This simulation assumes the mapping process is ideal and the map is therefore

known up to the planning horizon. It also ignores the effect that closer objects

would normally obstruct the view of objects behind them.

Planning step 1, in 0.166s Planning step 6, in 0.142s

Planning step 11, in 0.136s Planning step 16, in 0.143s

Planning step 21, in 0.131s

Figure D.1: The first series of images showing the successive path planner trajectories as the
simulated vehicle moves along the path.
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Planning step 1, in 0.163s Planning step 6, in 0.168s

Planning step 11, in 0.123s Planning step 16, in 0.132s

Planning step 21, in 0.150s Planning step 26, in 0.128s

Figure D.2: The second series of images showing the successive path planner trajectories as
the simulated vehicle moves along the path.
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Planning step 1, in 0.149s Planning step 6, in 0.158s

Planning step 11, in 0.132s Planning step 16, in 0.129s

Planning step 21, in 0.132s Planning step 26, in 0.139s

Figure D.3: The third series of images showing the successive path planner trajectories as the
simulated vehicle moves along the path.
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Appendix E

Photos of Vehicle Hardware
The most notable vehicle hardware is shown in Figure E.1. Actuators that are difficult

to distinguish are outlined in red. The approximate mounting locations are indicated.

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�

A
A
A
A
A
A
A

HH
HH

���
����

�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�

@
@@

Wheel Encoder

Gear Actuator
Steering Actuator

Brake Actuator
Throttle Actuator

Emergency Stop Switch
Controller
Electronics

Battery & Fusebox

Lidar

Figure E.1: Photos of the most notable hardware added and their location on the vehicle.
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