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SUMMARY

Influential data cases when the C-p criterion is used for variable selection in multiple

linear regression

by

Daniël Wilhelm Uys

Degree:

Department:

Doctor of Philosophy

Statistics and Actuarial Science

Faculty: Science

University: Stellenbosch

Promoter: Prof. S.J. Steel

In this dissertation we study the influence of data cases when the Cp criterion of Mallows (1973)

is used for variable selection in multiple linear regression. The influence is investigated in

terms of the predictive power and the predictor variables included in the resulting model when

variable selection is applied. In particular, we focus on the importance of identifying and

dealing with these so called selection influential data cases before model selection and fitting

are performed. For this purpose we develop two new selection influence measures, both based

on the Cp criterion. The first measure is specifically developed to identify individual selection

influential data cases, whereas the second identifies subsets of selection influential data cases.

The success with which these influence measures identify selection influential data cases, is

evaluated in example data sets and in simulation. All results are derived in the coordinate free

context, with special application in multiple linear regression.
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OPSOMMING

Invloedryke waarnemings as die C-p kriterium vir veranderlike seleksie in meervoudige

lineêre regressie gebruik word

deur

Daniël Wilhelm Uys

Graad: Doktor in Wysbegeerte

Departement: Statistiek en Aktuariële Wetenskap

Fakulteit: Natuurwetenskappe

Universitelte Stellen bosch

Promotor: Prof. S.J. Steel

In hierdie proefskrif ondersoek ons die invloed van waarnemings as die Cp kriterium van Mal-

lows (1973) vir veranderlike seleksie in meervoudige lineêre regressie gebruik word. Die

invloed van waarnemings op die voorspellingskrag en die onafhanklike veranderlikes wat in-

gesluit word in die finale geselekteerde model, word ondersoek. In besonder fokus ons op

die belangrikheid van identifisering van en handeling met sogenaamde seleksie invloedryke

waarnemings voordat model seleksie en passing gedoen word. Vir hierdie doel word twee

nuwe invloedsmaatstawwe, albei gebaseer op die Cp kriterium, ontwikkel. Die eerste maatstaf

is spesifiek ontwikkelom die invloed van individuele waarnemings te meet, terwyl die tweede

die invloed van deelversamelings van waarnemings op die seleksie proses meet. Die suk-

ses waarmee hierdie invloedsmaatstawwe seleksie invloedryke waarnemings identifiseer word

beoordeel in voorbeeld datastelle en in simulasie. Alle resultate word afgelei binne die koërdi-

naatvrye konteks, met spesiale toepassing in meervoudige lineêre regressie.
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TERMINOLOGY AND NOTATION

Matrix and vector algebra are applied throughout the dissertation. Many results are also ex-

pressed in terms ofprojections of vectors on linear subspaces. In this regard we introduce here

some terminology and notation conventions which frequently arise. We also mention several

standard results from linear algebra.

The vector space of all n-dimensional real vectors will be denoted by R", Let

a = [ I] and b = [ i ]
be column vectors in R" and let M be a linear subspace of R", The dimension of M is denoted

by dim (M). Also, let A be an ti x dim(M) basis matrix for M (i.e., M is spanned by the

linearly independent column vectors of A). The following standard notation will be used.

The transpose of A is denoted by A', and that of a by a'.

The inner or dot product, denoted by (a, b), of a and b is calculated as
n

a'b = b'a = L aibi.
i=l

Iiall = y'(a,a) = J2::~=lar denotes the Euclidean length ofa in R",

The linear subspace which is the orthogonal complement of M, written as M j_, is the set of

all vectors in R" orthogonal to M. Hence, (a, b) = 0 for all a E Mand b E u-. The

dimension of u+ is dim(Mj_) = ti - dim(M).

Let L be a linear subspace contained in M, i.e. LcM. The linear subspace M mod

L, denoted by MIL, is then the set of all vectors in M that are orthogonal to L. The

dimension of MIL is dim(M I L) = dim(M) - dim(L).

x
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The orthogonal projection of a onto M, Mj_ and MIL is denoted by PMa, PM.La and

PMILa respectively. In particular, since A is a basis matrix for M, the projection of a onto

M is given by PMa = A(A'A)-lA'a, where PM = A(A'A)-IA'. The matrix PM is

symmetric and idempotent and is referred to as the projection or hat matrix with respect to

M. Note also that
dim(M)( )

P ~ a.a,
Ma = 8 11~112 a.,

where aI, a2' ...,adim(M)are the column vectors of A. Similar expressions can be found for

PM.La and PM1La.

The square matrix In denotes the n x n identity matrix, and 1 the vector of any size with all

elements equal to 1.

o is used for the null matrix or null vector of any size.

For any scalar c, c+ = max {O,c} denotes its truncated value at o.

Nm(J-l, :E) denotes the m-variate normal distribution with m x 1mean vector JL and m x m

variance-covariance matrix :E.

The chi-squared distribution with n degrees of freedom and non-centrality parameter A is

denoted by X~(A) if A > 0 and by X~ if A = o.

Xl
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CHAPTER 1

INTRODUCTION

"The presence of outliers can have a profound effect on model selection, parameter estimation

and prediction for a wide range of models." Glendinning (2001)

In this dissertation we study the influence of data cases when variable selection is applied in

multiple linear regression. The study therefore involves the simultaneous consideration of the

following three well established statistical topics: influential data cases, variable selection and

multiple linear regression. Thus, to start with in the first chapter, we give a short overview

of these topics. Section 1.1 briefly touches on regression analysis, with specific focus on the

multiple linear regression model. In Section 1.2 we discuss the selection of variables in multiple

linear regression. Section 1.3 considers some aspects of influential data cases. In this section

we pay special attention to existing literature on the influence of data cases ifvariable selection

is applied in multiple linear regression. Finally, in Section 1.4 we briefly discuss the intention

and restrictions ofthe dissertation. Section 1.4 also gives an outline of the subsequent chapters

of the dissertation.

1.1 Regression analysis

Regression analysis is one of the most widely used statistical techniques for fitting models

to data (Atkinson and Riani, 2000, p.l). lts frequent use and many applications in various

disciplines have made regression analysis well documented in the statistical literature. Neter

et al. (1990), Ryan (1997) and Draper and Smith (1998) provide recent and comprehensive

discussions of regression analysis and its applications.

Regression analysis is a statistical technique used to investigate the possible relationship be-

tween quantitative variables. This relationship is postulated between a single response variable

on the one hand and a set of predictor variables on the other, and is described by means of a re-

gression model. Since the postulated relationship between the response variable and the set of
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1 INTRODUCTION

predictor variables in a regression analysis is of a statistical nature, the regression model used

to describe this relationship is probabilistic. Such a probabilistic model, and therefore also a

regression model, includes two components: a deterministic and a random component. The de-

terministic component consists of a mathematical function, which describes the way in which

the expected response varies as a function of the set of predictor variables. The random com-

ponent accounts for deviation of the response from its expected value. This deviation is in part

attributable to incomplete or incorrect specification of the set of predictor variables, i.e. the

response variable is influenced by other factors than those represented in the set of predictor

variables.

A regression model that gives a satisfactory description of the relationship between the response

variable and the set of predictor variables can be considered, in a certain sense, to be the final

product of a regression analysis. Such a regression model can be utilized to evaluate the strength

of the relationship between the response variable and the individual predictor variables, and to

predict the response variable at given values of the predictor variables.

Of importance, for the purpose of this dissertation, is the case where the expected value of the

response variable is modeled as a linear function of more than one numerical (as opposed to

categorical) predictor variable. We therefore give a short overview of this so-called multiple

linear regression model and its assumptions.

1.1.1 The multiple linear regression model and its assumptions

Consider a random response variable Y (also called the dependent variable), and a set of m

predictor variables, denoted by Xl, ... , Xm. These predictor variables, also referred to as in-

dependent variables, explanatory variables or regressors, are assumed non-random and their

values determined beforehand. In cases where one or more of the regressors are in fact ran-

dom, we view our analysis as being conditional on given values of these variables. One of the

simplest ways of describing the dependence of Y on Xl, ... , Xm is by means of a multiple linear

regression model. This posits the expected value ofY to be a linear function of Xl, ... , Xm.

2
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1 INTRODUCTION

Mathematically the model is written as

m

Y = /30 + L/3jXj + E.

j=l
(1.1)

In (1.1), /31, ... , 13m are unknown parameters, referred to as regression coefficients. The regres-

sion coefficient /3j reflects the importance of the jth predictor variable in determining the value

of the response. The unknown parameter /30 is known as the intercept and by setting its value

equal to zero, the regression model to be fit is forced through the origin. Note that Y is linear

in terms of the regression coefficients and consequently the model in (1.1) is referred to as the

multiple linear regression model. The random or error component, E, accounts for deviation of

Y from the deterministic component, /30+ 2:.:;:1 /3jXj. This deviation is caused either by the

randomness of Y itself, or by factors influencing Y which are not included in the set of m pre-

dictor variables, or both. It is assumed that E is a continuous random variable with E(E) = 0

and Var(é) = a2 > O. Frequently, it is also assumed that E is normally distributed. This

then implies that Y is also continuous, distributed normally with E(Y) = /30 + 2:.:7=l/3jXj
and Var(Y) = a2• Under the assumption that E is normally distributed, (1.1) is known as the

normal multiple linear regression model.

Suppose now that the multiple linear regression model in (1.1) gives a satisfactory description

of the relationship between Y and the set of m predictor variables. In order to utilize this

regression model to predict Y at a set of given values of Xl, ... , Xm, or to identify among the

m predictor variables those significantly influencing Y, the unknown regression coefficients

in (1.1) need to be estimated. For this purpose a regression sample is required, where each

sample element includes an observation of Y and a corresponding set of predetermined values

of Xl, ... , ;Cm. Suppose a random regression sample of ti such cases, where ti exceeds m, is

available. Let Yi denote the ith random sample element ofY, and XiI, ... , Xim the corresponding

ith set of predetermined values of the m predictor variables. From (1.1) we can write

m

Yi = /30 +L /3jXij + Ei,

j=l
i = 1, ...,n, (1.2)

where Ei denotes the ith random error variable.,

3
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I INTRODUCTION

It is convenient to express (1.2) as follows in matrix notation:

Y = X/3+e:. (1.3)

In (1.3), Y = [Yl, Y2, ... , Yn]' is an ti x 1 random response vector, and /3 = [,80' ,81' ... , ,8m]' is

an (m + 1) x 1 vector containing the intercept parameter ,80 and the m regression coefficients.

The matrix X (also referred to as the design matrix) in (1.3) is an ti x (m + 1) matrix of

predetermined values of the m predictor variables, i.e.

1 Xll X12 Xlj Xlm

1 X2l X22 X2j X2m

X= 1 = [l,xl,X2, ... ,xm]· (l.4)
XiI Xi2 Xij Xim

1 Xnl Xn2 Xnj ... Xnm

The first column of X contains elements all equal to 1 in order to provide for the intercept

parameter (:lo. For all i = 1, ... , ti and all j = 1, ... ,m, the element in the ith row and jth column

of X, Xij' represents the ith predetermined value of the jth predictor variable, Xj. We assume

that the set of m predictor variables in X does not exclude important ones with a significant

influence on the response variable, but that it may include redundant ones which will hopefully

be omitted from the final regression model when a variable selection technique is applied. We

further assume that the columns of X are linearly independent, implying that X is of full rank

m + 1, and that X'X is a positive definite matrix.

In (1.3), e: = [El,E2, ... ,En]' is an ti X 1 vector of random error variables. We assume these

random error variables to be independently normally distributed with E(Ei) = 0 and Var(Ei) =

CJ2> O. This implies that the random response vector, Y, is a vector of independently normally

distributed random variables, i.e. Y f"V Nn(X/3,CJ2In). The assumption that e: f"V Nn(O, CJ2In)

is not valid in all practical applications of multiple linear regression. In such cases, assuming

e: differently distributed will be appropriate. Carroll and Ruppert (1988) provide techniques,

such as transformation and weighting, to deal with situations where the normality assumption is

violated. Many other non-parametric procedures (see for example Hastie and Tibshirani, 1990),

robust procedures (see for example Rousseeuw and Leroy, 1987) and asymptotic procedures

(see for example Arnold, 1981, Chapter 10) have also been developed in this regard. These

4
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I INTRODUCTION

procedures will not be considered here since our main focus will be on identification of selection

influential data cases, under the classical assumption that e f'V Nn(O, (J"2In).

In general, we assume that the regression sample is of reasonable size, in particular that n > m.

We also assume that the sample is acquired with sufficient accuracy, so that it is unnecessary to

provide for measurement errors in (1.3).

Finally, note that the multiple linear regression model, Y = X{3 + e, can be viewed as a special

case of the standard normal linear model given by

(1.5)

where Jl, = [PI' P2' ... , PnJ', an n x 1 unknown parameter vector is assumed to belong to M, a

known (m + 1)-dimensional linear subspace of R". In order to see this, let the linear subspace

M be spanned by the column vectors, I, Xl' X2, ... , Xm, of the the design matrix X in (1.4).

Therefore, X, an n x (m + 1) matrix of full rank m + 1, is a basis matrix for M. Since

X is a basis matrix for M, the vector Jl, E M can be expressed in the form J.-L = X{3 in

exactly one way, where {3 E Rm+l is also a unique vector containing the intercept parameter

(30' and regression coefficients (31' ... , (3m. Since X is a basis matrix, the linear subspace M

is coordinatized, so that (1.3), obtained from (1.5) by selecting Jl, = X{3, is referred to as the

coordinatized version of the standard normal linear model. See Arnold (1981, Chapter 4) for

more details in this regard.

By not committing oneself to a specific basis for the linear subspace M, but rather working

within the coordinate free framework implied by (1.5), all the results which are derived gain

in generality. Although the focus in this dissertation is on variable selection in multiple linear

regression, some results will therefore be applicable within a wider linear model context than

merely the multiple linear regression model.

There are other arguments in favour of using the coordinate free approach (see Arnold, 1981,

p. 55). For example, contrary to the case in multiple linear regression, a natural basis matrix

for the subspace M does not always exist. If, for example, the analysis of variance problem

is considered in terms of the standard linear model, there is often no natural basis matrix for

5
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I INTRODUCTION

M. In such cases it is appealing to use the coordinate free version of the linear model. In

the remainder of our work we will move between the coordinate free linear model, and the

so-called coordinatized version. The latter case will be characterized by the assumption of a

specific basis for M, usually summarised in a design matrix X. In any case, even if results are

derived by using a coordinate free approach, application of these results in the multiple linear

regression model will always be indicated.

Assume now that IL = X{3. In order to estimate IL from the available regression sample, we

only need to estimate the vector {3, since the elements of X are predetermined values of the m

predictor variables. In the next section we consider estimation of the vector {3 and the error

variance, a2.

1.1.2 Estimating the parameters in the multiple linear regression model

Suppose a regression sample of size ti is available for estimating the parameters of the multiple

linear regression model. The method of least squares is popularly used to estimate {3,entailing

minimization of II Y - X{3 112 with respect to {3. Using standard calculus, we obtain the m + 1

so-called normal equations

X'X~=X'Y,

where ~ is the {3minimising II Y - X{3 112 . From these normal equations, the least squares

estimator, (3 = [~O'~l'..',~m]', of j3 follows as

(1.6)

and under the assumptions of the normal multiple linear regression model, it is easy to show that

~ is normally distributed with E(~) = {3,and variance-covariance matrix equal to (J"2(X'X)-I.

The least squares estimator of E(Y) = X{3 = IL follows from (1.6) as

fi(M) - [jil (M), ji2(M), ... , jin(M)]'

[Y1(M), Y2(M), ... , Yn(M)]'

- X{3

- X(X'X)-lX'Y. (1.7)

6
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1 INTRODUCTION

For reasons which will become clear later, the notation in (1.7) emphasises the dependence of

the estimators on the subspace M.

Note that, since X is a basis matrix for the linear subspace M, the orthogonal projection of Y

on M is given by

(1.8)

which equals the right-hand side of(1.7). The matrix PM = X(X'Xr1X', is referred to as the

projection matrix with respect to M, It is an n x ti symmetric, idempotent matrix. Note that

PMY belongs, as does J-L, to the linear subspace M. Provided, once again, that the assumptions

of the normal multiple linear regression model are satisfied, the least squares estimator in (1.7)

is normally distributed with E (j1( M)) = Xj3 = J-L and variance-covariance matrix given by

a2 PM. The estimator PMY has the attractive property of being the minimax estimator of J-L

with respect to squared error loss, since maxE IIPM Y - J-L112:::; maxE II~(Y) - J-L112for any
~ ~

estimator ~(Y) of J-L. The corresponding minimax risk is given by

(1.9)

PMY in (1.8) is also, if geometrically interpreted, the closest point in M to Y, and therefore

minimizes the squared distance between Y and M.

Turning to estimation of the error variance, a2, we find that it is unbiasedly estimated by

IIY - PMYI12
n- (m+ 1)
IIPM.L YI12

ti - (m + 1)

2:7=1 (Ii - }Ij(M) r
n - (m + 1)

where M .; is the orthogonal complement of M. Also note that 2:~1 (Ii - }Ij (M) r is the

error sum of squares. The standard result, (j2 "-' n-(~+l)X~-(m+1) is easily established.

~2a

(1.10)

7
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I INTRODUCTION

Maximum likelihood estimators can also be derived for {3, jJ, and a2. Under the assumption

that e V" Nn(O, a2In), the log-likelihood function for the multiple linear regression model is

2 n n 2 1 II {3112InL(Y,X,{3,a)=-"2ln27r-"2lna -2a2 Y-X . (l.11)

Maximizing (l.11) partially with respect to each of the f3j, we obtain the same estimator of {3,
and consequently of jJ" as the least squares estimators in (l.6) and (1.7). If (1.11) is maximized

with respect to a2, the maximum likelihood estimator for a2 is found to be

-2a =
n

which is a biased estimator. These least squares and maximum likelihood estimators of {3,jJ,

and a2, and their properties, are discussed further in Arnold (1981, Chapter 5 and 6).

1.2 Variable selection in multiple linear regression

In multiple linear regression the value of the jth regression coefficient, f3j, reflects the impor-

tance of the jth predictor variable, i.e. it reflects the influence that the jth predictor variable,

Xj, has on the response variable. In other words, if f3j is zero (or close to zero) this typically

implies that the influence of Xj on Y is small, or omissible, so that Xj is in a certain sense re-

dundant in the regression analysis. A value of f3 j significantly away from zero, on the other

hand, indicates that Xj has a substantial influence on Y. Therefore, certain predictor variables

are more important than others in determining the value of the response, and this is reflected

in the values of the f3j's. The predictor variables with corresponding regression coefficients

equal to zero (or close to zero) should be omitted from the regression model, whereas impor-

tant ones should be retained. Since the regression coefficients are unknown, a decision on the

inclusion or exclusion of predictor variables from the regression model is therefore a rather un-

certain matter. The process of deciding which predictor variables to include in the regression

model, and which to exclude, is known as variable selection.

Variable selection is often one of the first steps in a multiple linear regression analysis, and it

is not surprising that a vast literature on the subject is available. Many different procedures

or techniques for selecting variables have therefore been developed through the years. These

8
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I INTRODUCTION

techniques are broadly divided into four categories, namely: step-wise techniques (see Miller,

2002), Bayesian techniques (an extensive list of references are given in Burnham and Anderson,

1998, p.127), cross-validation selection techniques (see Liu et aL, 1999) and all possible subsets

techniques (see Snyman, 1994, Chapters 2 and 3). Murtaugh (1998) evaluates the performance

of several of these selection techniques. Our attention in this dissertation is however restricted

to a selection technique based on the all possible subsets approach.

Selection of a subset of predictor variables to be included in the regression model affects esti-

mation of {3 and JL. Firstly, consider the effect of variable selection on estimation of {3. In the

full model, i.e. if the full set of m predictor variables is included in the regression model, {3 is

unbiasedly estimated by its least squares estimator in (1.6). In a reduced model, i.e. if a subset

of predictor variables is selected for inclusion in the regression model, the least squares estima-

tor of (3 is obtained as in (1.6), but now, together with the vector 1to provide for the intercept,

the selected predictor variables comprise the column vectors of the design matrix. Hocking

(1974) shows that the variances of the estimated regression coefficients in the full model are

always larger than the corresponding variances of the estimated regression coefficients in a re-

duced model. However, the estimators of the regression coefficients in the reduced model are

biased, unless the regression coefficients corresponding to the omitted predictor variables are

zero, or the subset of retained variables is orthogonal to the subset of omitted variables. Hock-

ing (1974) also shows that, if the regression coefficients of the omitted variables are smaller

than the standard deviations of their corresponding estimators, then the variances of the unbi-

ased estimated regression coefficients in the full model are larger than the corresponding mean

squared errors of the biased estimated regression coefficients in the reduced model.

Secondly, the effect of variable selection on estimation of JL is very similar. The unbiased

estimator of JL, obtained from the full model, is given in (1.7). Again, in the reduced model

the elements of JL are biasedly estimated, but with smaller variance than when the full model is

used. AI~o, if the regression coefficients of the omitted variables are smaller than the standard

deviations of their corresponding estimated regression coefficients, then the variances of the

unbiased estimators of the elements in JL, in the full model, are larger than the corresponding

mean squared errors of the biased estimators of these elements in the reduced model (see also

9
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Hocking, 1974, in this regard). Failure to omit such predictor variables (i.e., those whose

regression coefficients are smaller than the standard deviations of their estimated regression

coefficients), therefore leads to a loss of precision in estimation of the elements of J-L.

It is clear from the preceding discussion that, although f3 and J-L are usually biasedly estimated

when only a subset of predictor variables is included in the regression model, their correspond-

ing elements may frequently be estimated with greater precision. More accurate estimation

of f3 and J-L is therefore an important reason for applying variable selection in multiple linear

regression. However, there are other reasons as well. The cost involved, for example, in obtain-

ing values of certain predictor variables may be high. It may therefore be preferable to exclude

these costly variables from the regression model. Many other economical and also practical

reasons for reducing the initial set of m predictor variables to a smaller, more manageable, sub-

set are given in Linhart and Zucchini (1986, pp. 2,111) and Miller (2002). Our main concern,

however, is estimation of f3 and J-L. Note that once an appropriate estimator of f3 is obtained the

estimator of J-L is fully described. Hence, our focus will be on increasing the accuracy of esti-

mation of J-L by applying variable selection in multiple linear regression. We elaborate on this

point in the next paragraph.

It was indicated earlier that the least squares estimator, PMY, of J-L has certain desirable prop-

erties. Among others, it estimates J-L unbiasedly. Now consider afixed subspace L of M with

dim(L) = 1+1 < m + 1. In a multiple linear regression context, a subset of the columns of

X forms a basis for L. If J-L actually belongs to L, then PLY will also estimate J-L unbiasedly.

Moreover, in terms of mean squared error, PLY will then be a better estimator of JL than PMY

since

(I + 1)a2 (provided J-L EL)

< (m + 1)a2

E IIPMY - J-L112 .

Typically J-L will of course not belong to L, and then it becomes more difficult to choose between

the two estimators, PLY and PMY. In this more frequently occurring case, the mean squared
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error of PLY becomes

E IIPL(Y - J.L) - P£l_J.L112

E IIPL(Y - J.L)112+ IIPUJ.L112

dim(L)0"2 + IIPLj_J.L112

(l + 1)0"2 + IIPuJ.L112.

The final term in this expression, IIPUJ.L112,is the squared bias resulting from the fact that

PL Y E L, while J.L ~ L. It is clear that in this case PLY will be a better estimator of J.L than

PM Y, if and only if

(1.12)

This condition has the following interpretation: PLY will be a better estimator of J.L than PM Y

if and only if the squared bias resulting from the fact that J.L ~ L, is less than the increase in

variance when we move from PL Y to PM Y. This is a classic illustration of the bias versus

variance trade-off.

In a multiple linear regression context, the fixed linear subspace L of M with dim( L) = l + 1

is spanned by the vector 1and a subset of the columns xj ,...,Xm of X. The subspace L is

therefore associated with a particular subset of predictor variables. This subset of predictor

variables, together with the vector 1, form the column vectors of the design matrix associated

with L. Let this n x (l+ 1) matrix be denoted by XL' The condition in (1.12) will be satisfied if

the values of the regression coefficients corresponding to those predictor variables not included

in XL, are zero (or close to zero).

The column vectors of XL form a basis for the linear subspace L. The least squares estimator

of J.Lthat corresponds with L, i.e.

PLY [111(L), 112(L), , I1n(L)]'

- [Yl(L), 92(L), , Yn(L)]'

is obtained from (1.7), with XL replacing X, i.e.

PLY = XL(X~XL)-lx~ Y.
11
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Note that in obtaining the estimator PLY, fewer regression coefficients need to be estimated

than in obtaining the estimator PMY. This implies that the total variance associated with PLY

is smaller than the total variance associated with PMY.

The all possible subsets approach to variable selection in multiple linear regression considers

the family of all linear subspaces L in M. Let L denote this family oflinear subspaces in M,

spanned by subsets of the column vectors of X = [1,Xl' X2, ... , xml. Using the all possible

subsets approach, our aim is to identify a member of L, or equivalently, a linear subspace L in

M, that satisfies the condition in (1.12). However, this condition may be satisfied by several

subspaces in M. Therefore, the linear subspace L, among those not violating (1.12), whose

corresponding least squares estimator, PLY, estimates J-L most accurately should be identified.

This implies that accurate estimation of J-L depends on whether an appropriate linear subspace

LEL is selected. Note that the bias versus variance trade-off phenomenon when J-L is estimated

by PLY, rather than by its traditional estimator, PMY, is referred to by Burnham and Anderson

(1998, p.23) within the context of the principle of parsimony. Application of this principle, in

an all possible subsets approach, leads to parsimonious, and accurate estimation of J-L.

In practical applications of variable selection, it is impossible to verify condition (1.12) since

J-L and a2 are unknown parameters. Consequently, the selection of a linear subspace has to be

based on the available regression sample. A frequently implemented approach is therefore to

use the sample data to estimate

for every LEL. Let L L(Y) denote the subspace having the minimal estimated mean

squared error, i.e.

E IIP-;;: J-L11
2
= min {E Ilpi¥= J-L1I

2
} .LEL

~
Then L is the data-dependent subspace of choice, hopefully providing parsimonious and accu-

rate estimators of the unknown quantities in the model. Note that in a multiple linear regression

context we can write L = span{l, Xj : j E lz}, where JL C {I, 2, ... ,m} is the subset of in-

dices corresponding to the column vectors of X that, together with the vector 1, span L. The

least squares estimator of J-L corresponding to L is given by PLY' This estimator has the at-
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Stellenbosch University http://scholar.sun.ac.za



I INTRODUCTION

tractive property that Pz Y E L, thereby reflecting our belief that Jl- E L. Also, we may

write

PzY =~ol +L ~jXj,

JEJL

(1.14)

the implication being that ~j = 0 for all j ~ h. Selecting L therefore describes the esti-

mator of Jl- completely, and simultaneously identifies those predictor variables thought to have

a significant influence on the response. Note that, although the condition in (1.12) does not

necessarily hold for the data-dependently selected subspace L, the motivation to estimate Jl- by

PzY, rather than by PMY, is still valid in these practical applications of variable selection.

Thus, by selecting L, a parsimonious and hopefully more accurate estimator of Jl- is obtained.

Finally, we show that accurate estimation of Jl- amounts to accurate response prediction. Sup-

pose a future observation Y*, with the same structure as Y, needs to be predicted. Let

Y* = Jl- + e*, where e* V'\ Nn(O, a21), independently of e. The corresponding predictive

risk when ~(Y) is used as a predictor for Y* is given by E II~(Y) - Y*112. Snyman (1994,

p.1-6) shows that

E II~(Y) - Y*112 = na2 + E II~(Y) - Jl-112. ( 1.15)

Since na2 in (1.15) does not depend on u, it is clear that finding a low risk when predicting a

new observation implies a low mean squared error when ~(Y) is used as estimator for u,

1.3 Influential data cases

Studying the influence of individual or small groups of data cases on the results of an analysis

of a data set is an important area in statistics. The influence which data cases have on the

results of a statistical analysis is often quantified in terms of an influence measure, calculated

from the data set at hand. Various such influence measures, with applications in different

statistical fields, have been developed through the years. For example, influence measures for

data cases in a discriminant analysis can be found in Fung (1992,1994,1995), and Steel and

Louw (2001). Also, in time series analysis, contributions appear in Pefia et al. (2001, Chapter

6), and Baragona et al. (2001).

13
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The literature on measures of influence in multiple linear regression is comprehensive, and

we only briefly refer to some contributions. Cook's distance (Cook, 1977) is, for example, a

well-established measure to evaluate the influence of individual data cases in multiple linear

regression. Belsley, Kuh and Welsch (1980) also provide an extensive discussion of influence

measures for individual data cases in a regression analysis. Atkinson (1994), on the other hand,

consider robust influence measures for subsets of data cases. These influence measures were

mainly developed to detect effects such as masking and swamping in multiple linear regression

(see also Van Vuuren (1998), Barrett and Gray (1997), Rancel and Sierra (2000), and Wisnowski

et al. (2001) in this regard). Another contribution is that of Li, Martin and Morris (2001), who

proposed a graphical technique for detecting influential cases in regression analysis.

Studying the influence of individual data cases on the results of a statistical analysis gives us a

deeper understanding of the underlying structure of the relationships amongst the variables rep-

resented in the data. Frequently, a first step in this study entails using an appropriate influence

measure to identify data cases having a significant influence on the results of the analysis. Such

identified data cases are considered influential and are often referred to as outliers in the statisti-

cal literature. Once influential data cases have been identified, they can be dealt with in several

different ways. Probably the best-known practice is to omit these cases from the data set where

after the statistical analysis is repeated on the remaining data cases. Allocating weights to the

data cases, in such a manner that influential cases are down-weighted, thereby decreasing their

influence on the results of the analysis, is another frequently used procedure to deal with influ-

ential cases. Note that allocation of zero-weights to certain data cases is equivalent to omitting

such cases from the data set. Many statistical techniques have also been robustified in an at-

tempt to deal with influential data cases. An important reference in the area of robust regression

techniques is the book by Rousseeuw and Leroy (1987).

In this dissertation we restrict our attention to the influence of data cases on a multiple linear

regression analysis when an initial variable selection technique is applied to the data. An

important question to us is therefore: when is a data case considered selection influential? An

attractive answer seems to be to regard a data case as selection influential if its omission from

the data set leads to a different set of predictor variables being included in the selected model, or,
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if the same set of predictor variables is still selected, the fitted model differing significantly from

the model fitted to the complete data set. In particular, suppose a variable selection technique

is applied to the complete data set. Once a regression model has been selected, a single data

case is omitted from the data set. The same variable selection technique is now applied to

the retained data cases, i.e. the reduced data set. If the subset of predictor variables included

in the selected model obtained from the complete data set differs from the subset of predictor

variables included in the selected model obtained from the reduced data set, the particular data

case is obviously selection influential. However, if the same set of variables is selected in

both cases, but subsequent results obtained from the two fitted models, for example response

predictions, are substantially different, then the omitted data case will also be deemed selection

influential. Note that subsequent results obtained from the two models may vary dramatically

even though the subsets of predictor variables included in the two models are identical. This

may occur as a result of significant differences between the estimated regression coefficients of

the corresponding predictor variables in the two fitted models.

Arguing along the same lines, a subset of data cases will be considered selection influential if

the subset meets either of the criteria mentioned above for an individual data case to be deemed

selection influential. Selection influence measures are measures that can be used to identify

such individual and subsets of selection influential data cases. It is essential that these selection

influence measures explicitly take an initial variable selection step into account. If this is not

done the influence measures are conditional, i.e. given a specific set of predictors in the model.

Non-selection influence measures may then just as well be used to identify influential data

cases. It is therefore important that selection influence measures are defined unconditionally.

In this regard, Léger and Altman (1993) proposed a selection influence measure, based on an

unconditional selection version of Cook's distance. Their proposal is discussed in greater detail

later in this section.

Generally, the influence which data cases have on the selection process and the subsequent

results of the regression analysis could be regarded as either positive or negative. Omitting for

example certain data cases from the data set may lead to a model with greater predictive power.

These cases have a negative influence and should therefore rather be omitted from the data set
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before variable selection is performed. On the other hand, the retention of certain data cases

in the data set may cause the "appropriate" variables to be selected, and may also improve the

fit of the model. The influence of such cases could be considered positive, and these cases

should obviously be retained. Finally, the influence of data cases may be negative if only a

specific subset of predictor variables is considered, while the influence of the same data cases

may change to positive once the full set of predictor variables is considered.

Making matters even more complex is the fact that the identification of selection influential

cases clearly depends on the specific variable selection technique being used. This implies that

data cases may be considered selection influential if, for example, the Cp criterion (see Mallows,

1973) is used for variable selection, but not necessarily if another selection technique is applied.

What can be done once specific data cases have been identified as selection influential? One

possible solution is to use a robustified variable selection technique. Since classical variable

selection criteria are typically based on least squares estimation, they are bound to be more

sensitive to outlying cases in the data than selection techniques based on more robust norms.

(Ronchetti (1997) shows the extreme sensitivity of many classical model selection techniques.)

Most robustified variable selection techniques are therefore not based on projection type least

squares estimators, but rather on more robust estimators which try to minimize the effect of

influential cases on the results of the analysis. We refer briefly to some of these robust variable

selection techniques in the next paragraph.

Ronchetti and Staudte (1994) use a simple artificial setting to illustrate the sensitivity of the

Cp criterion to individual outlying cases. In an attempt to diminish this sensitivity the authors

develop a robust version of this criterion. The robust version is obtained by using M-estimation

rather than the usual least squares estimation to estimate the parameters in the model under

consideration. Weights are defined for each of the cases in the data set, so that the robust version

of the Cp criterion is based on a weighted sum of squared residuals. Sommer and Staudte

(1995) build on the results presented by Ronchetti and Staudte by again replacing least squares

estimation by M-estimation, but now a weight function differing from the one in the 1994-paper

is used. J .east squares estimation is also replaced by suitable M-estimation in a robust version

of variable selection based on a cross-validation argument proposed by Ronchetti, Field and
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Blanchard (1997), and in a robust version of variable selection based on the so-called Wald test

by Sommer and Huggins (1996). Burman and Nolan (1995) present a general Akaike-type

criterion, which is applicable not only to least squares modelling, but also to models estimated

by using a wide variety of other loss functions. Lastly, a generalisation of the Kullback-Leibler

distance is used in the definition of Akaike's model selection criterion by Shi and Tsai (1998).

Based on this generalisation, they propose three new robust versions of the Akaike criterion.

Although satisfactory results seem to be obtained when robust selection techniques are applied

in multiple linear regression, these techniques will not be considered here. In this dissertation,

selection influence measures will be developed for identifying selection influential data cases

when a multiple linear regression analysis is preceded by variable selection. Once these cases

have been identified, they will be omitted from the data set and the regression analysis, including

the initial selection step, will be repeated. A two-step approach to clean the data before a final

variable selection step, is therefore followed. The final regression model obtained by using

this approach will hopefully now include those predictor variables with genuinely important

influence on the response variable. As a result, it is to be hoped that more accurate response

predictions should also be provided by this model.

We conclude this section by a short overview of some of the existing contributions on selection

influential data cases in a multiple linear regression context.

Weisberg (1981) shows how Mallows' Cp criterion can be written as a sum of n terms. This is

done within a regression context, with each term in the sum corresponding to one of the n data

cases. The break-up for a particular model, corresponding to a given linear subspace LcM,

is given by

where

(j2 is the least squares estimator in (1.10) of a2

Vii is the ith diagonal element of PL = XL(X~XL)-l X~ (i.e. the leverage of the ith case in

the reduced regression model)

Yi (M) is the ith predicted value obtained from PMY in (1.8)
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Yi(L) is the ith predicted value obtained from PLY in (1.13)

Uii is the ith diagonal element ofX(X'X)-lX' (i.e. the leverage of the ith case in the full

regression model)

Weisberg states that the size of the ith Cp-term, Cpi, of a given reduced model should be eval-

uated in terms of Vii. The application of this proposal is illustrated in an example. In the

example specific points which seem to be influential with respect to specific models are identi-

fied. Weisberg stops short, however, of recommending what, if anything, should be done about

such points. In Chapter 2 of this dissertation we return to this aspect and give a detailed dis-

cussion of the expansion of the Cp criterion as the sum of ti terms. We also show how this

break-up can be done within a coordinate free context, thereby enhancing its applicability.

Ahn and Park (1987) also consider the Cp statistic in the form derived by Weisberg (1981). Dif-

ferent possibilities regarding the manner in which individual terms in this representation of Cp

can be weighted, are investigated. The intention is to down-weight influential cases. Such

weighting of the individual cases gives rise to a new variable selection criterion, a so-called

weighted Cp criterion. Their proposed procedure therefore considers variable selection and de-

tection of influential data cases simultaneously. Following the application of their proposed

ideas in an illustrative example, Ahn and Park conclude with interesting reasons why their inte-

grated approach of combining variable selection and identification of influential cases is desir-

able above the two-step approach to clean the data before variable selection is undertaken. One

of these reasons is that the two-step approach identifies data cases as influential, conditional on

the model containing all predictor variables, i.e. the full model. A data case may therefore

seem influential as a result of extreme values in predictors that "do not really matter", i.e. pre-

dictors that do not show a significant relationship with the response variable and will typically

not be selected.

Chatterjee and Hadi (1988) investigate the effect of simultaneously omitting a variable and an

observation from the data set. This effect is measured in terms of changes in the least squares

regression coefficients, the residual sum of squares, the fitted values, and the predicted value

of the omitted observation. The authors state that a study of the statistic which they propose

can enable one to identify situations in which a single data case is responsible for retaining or
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eliminating a specific variable. The example illustrating the application of their statistic clearly

shows how influential a single data case can be with respect to the retention or elimination of a

given variable.

Peixoto and Lamotte (1989) propose a procedure where a dummy variable is added for each

observation in the data set, and variable selection is then performed. The dummy variables

which are selected identify outliers in the data. Simultaneously, important predictor variables

are identified, taking the influence of possible outliers into account. The intention with the pa-

per is therefore to investigate the use of variable selection to identify predictors and outliers

simultaneously. It emerges from an extensive discussion of an example in the paper that re-

maining problems with the proposed technique are specification of the number of outliers in

the data, and specification of the number of predictor variables that should be included in the

model. Answers to these questions are still open problems.

Léger and Altman (1993) propose the following steps to identify selection influential data cases:

Choose a variable selection technique to be applied (for example Cp selection)

Apply the chosen selection technique to the full data set, select variables and find the vector

of fitted values

Repeat the previous selection step, but now with the ith case omitted

Calculate a standardised distance between the two vectors of fitted values to measure the

influence of the omitted case.

A so-called unconditional influence measure (referred to as Cook's unconditional distance) is

obtained if the variable selection is repeated after a data case was omitted from the data set.

This is in contrast to a so-called conditional measure (referred to as Cook's conditional dis-

tance) when all calculations use the same model, i.e. the model selected from the full data set.

The unconditional influence measure is preferable as stated in the final paragraph of the paper:

"Variable selection in regression is one of the most used statistical techniques. Although the

estimation aspect of this technique has been studied extensively, assessment of influence has al-

ways been done conditionally on the selected model due to the difficulty of incorporating the

selection process. As shown here, assessment of influence can be done satisfactorily, and use

of unconditional Cook's distance helps in understanding the data and in choosing the model."
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In Chapter 40fthis dissertation we also propose an unconditional measure for identifying indi-

vidual influential data cases.

Kim and Park (1995) propose graphical techniques which can be used to show the joint effect of

deleting predictors and removing data cases from a regression model. The following situations

are considered:

where an observation is deleted after a variable has been deleted

where a variable is deleted after an observation has been omitted

where multiple observations are removed after deleting multiple variables

where multiple variables are deleted after multiple observations have been omitted.

The graphical displays for the above situations clarify the interrelationship among variables and

data cases, and thus give a better understanding of the roles of variables and observations in a

regression model.

Gupta and Hang (1996) initially develop new measures of influence of individual data points

when no variable selection is done. These measures focus on the change in the residuals when

an observation is omitted from the data set. The authors continue by applying a selection

technique which was proposed by them in a 1988 paper. They show how this criterion can be

applied while taking the potential effect of an individual data point into account.

Hoeting, Raftery and Madigan (1996) point out that the model which is selected can depend

upon the order in which variable selection and outlier identification are carried out. A method

is thus proposed where variable selection and identification of outliers are combined. In this

regard a Bayesian approach is proposed to simultaneously select variables and identify outliers.

They state that this approach can identify multiple outliers, and that is also successful in dealing

with masking effects. The authors use equal prior probabilities for all possible models, and

a variance-inflation model to provide for outliers. They express a preference for complete

Bayesian model averaging, but state that it is also possible to evaluate the adequacy of any given

model in terms of its posterior probability. Outliers are identified based on so-called outlier

posterior probability. This is defined for a given observation to be the sum of the posterior

model probability across models in which the observation was classified as an outlier. The
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paper also contains a section on Bayesian model averaging via simultaneous variable selection

and outlier identification. In this section of the paper, a Markov Chain Monte Carlo technique

which can be used to approximate the model averaging process is described.

Kim and Hwang (2000) derive an expression for the Cp criterion when k data cases are omitted,

in terms of quantities calculated from the fit of the full model and the model under consideration,

using all the data. It is clear from the two examples that they examine that omitting certain data

cases sometimes changes the selected model and sometimes not.

1.4 Intention, restrictions and outline of the dissertation

The main concern of this dissertation is identification of selection influential data cases when

variable selection is applied in multiple linear regression. Once such cases have been iden-

tified, these cases are omitted from the data set, and the selection process is repeated on the

reduced data set. By using such an approach, we hopefully identify those predictor variables

with a significant influence on the response variable. Reducing the initial set of predictor vari-

ables to a smaller, more manageable subset in this way, hopefully also results in accurate, yet

parsimonious estimation of u,

We narrow our field of study by making the following additional assumptions:

The variable selection technique applied to the normal multiple linear regression model,

throughout the dissertation, is the all possible subsets approach based on the Cp criterion of

Mallows (1973, 1995).

We assume that no subjective considerations, such as professional judgement, is involved

when applying this selection technique to any data set.

The design matrix X in the multiple linear regression model, which is of full column rank

m + 1 < n, is assumed to contain all important and possibly some redundant predictor

variables.

Also, although we do consider the case where X is orthogonal, our attention will primarily

be focused on the non-orthogonal case.

Whenever the error variance, a2, is assumed to be known, its value equals 1, without loss of
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generality. If a2 is assumed unknown, it is unbiasedly estimated by

!!PM.L Yll2
n-(m+l)

~2a

provided m + 1 < n.

The layout of the remaining text of the dissertation is as follows:

Chapter 2 mainly focuses on Mallows' Cp statistic. Theoretical developments based on

this selection technique are presented using the coordinate free approach. These results are

also specifically applied to variable selection within a multiple linear regression context.

In Chapter 3 we consider the influence of data cases when variable selection is applied in

multiple linear regression. The effect of such selection influential data cases in a multiple

linear regression analysis is illustrated by means of example- and simulated data sets.

Chapter 4 and Chapter 5 are devoted to the identification of selection influential cases. In

Chapter 4 we propose an influence measure for detecting single selection influential data

cases, whereas in Chapter 5 the identification of a subset of selection influential data cases

is considered. An influence measure is also derived for this purpose. The performance of

this measure is illustrated by means of example data sets and simulation.

In Chapter 6 we conclude with a discussion of the contribution made in this dissertation.

Some limitations of the dissertation and some promising future research options are also

pointed out.

Finally, the following Appendices appear at the end of the dissertation:

Appendix A provides some results regarding the coordinate free approach to linear model

selection. These results are applied in the main text.

In Appendix B we list the three example data sets which are utilised for illustration purposes

in the main text.

Appendix C provides some of the FORTRAN programs used to do the numerical

computations which are reported on in the dissertation.
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CHAPTER 2

LINEAR MODEL SELECTION AND ESTIMATION

2.1 Introduction

In this chapter we deal with the problems of linear model selection and the estimation of the

parameters of the selected model. Section 2.2 deals with these problems in the broader frame-

work of the coordinate free approach introduced in Section l.I. In Section 2.3 we apply the

coordinate free approach to the Cp subspace selection criterion introduced by Mallows (1973).

Special attention is given to the fact that the Cp criterion is an unbiased estimator of the mean

squared error of PLY as an estimator of J-L, i.e. E IIPLY - J-L112. This section also deals with

expanding this mean squared error of PLY as the sum of n terms, whereafter estimation of

the individual terms in this expansion is considered. Lastly, the results of Section 2.3 are spe-

cialised within a multiple linear regression context in Section 2.4.

2.2 A coordinate free approach to linear model selection

In this section we utilise a coordinate free approach to investigate problems which arise during

linear model selection and subsequent parameter estimation. Discussing these problems in a

coordinate free context offers the advantage that the results which are obtained can be applied

in a wider sense to many special cases of the linear model. The scope of the results is therefore

broadened, and not restricted to variable selection in multiple linear regression only.

Consider therefore again the coordinate free formulation of the standard normal linear model,

VIZ.

where Y is the n-component response vector, J-L = E(Y), and e represents the normally dis-

tributed error term. It is assumed that J-L belongs to a known linear subspace M of Rn, where

dim(M) = m + 1. We write dim(M) = m + 1, rather than dim(M) = m, to make explicit the

consistent inclusion of an intercept term in the multiple linear regression models which are dis-
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cussed later. Our objective is to estimate {L accurately, or to predict a future observation of the

response vector accurately. These objectives are equivalent, as argued for example by Snyman

(1994, p.2-1). We focus in our discussion on the problem of accurate estimation of {L. The

least squares estimator, PMY, of {L has several desirable properties, including that of estimat-

ing {L unbiasedly. The mean squared error, or the expected squared error of estimation (ESEE),

of PMY is given by

(2.1)

If nothing more could be assumed about {L, it would be hard to propose any other estimator than

PMY. The principle of parsimony, however, suggests that one should aspire to use the simplest

possible model that satisfactory explains the data. In the light of this principle we therefore

search for a lower-dimensional subspace L of M, where the projection of the data vector onto L

estimates {L accurately. Let £., denote the family of all possible such subspaces L of M. Also,

denote the dimension of such a typical subspace L by I + 1. The problem of estimating {L

within this extended context, entails first of all using the data to select a member of E believed

to contain {L, and then estimating {L accordingly. Selecting a specific linear subspace L, which

is presumed to contain {L, amounts to selecting a particular linear model. The terms linear

model and linear subspace will therefore be used interchangeably.

Since the data are used to select the subspace thought to contain {L, the selected subspace will

be denoted by L, or by L (Y). After having identified L, we wish to estimate {L accordingly by

using an estimator which belongs to L. The projection estimator, PiY, meets this requirement,
~

since PiY E L. Note that PiY is the ordinary least squares estimator of {L with respect to

the subspace L in the sense that PiY is the vector in L which is closest (in a least squared

sense) to the response vector Y. Although other estimators of {L may be used after L has

been identified, for example a Stein estimator shrinking Y towards L, we will only consider

projection type estimators in this dissertation. Note also therefore that once a linear subspace
~
L has been selected, the corresponding estimator, PiY, of JL is fully determined.

How should one proceed to identify L? Consider a data-independent subspace L of M. The

corresponding estimator of {L is PLY, with ESEE

E IIPL Y - {L112 = (I + 1)0'2 + IIPU{L11
2

.
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The first term on the right-hand side of (2.2) is a variance term, while the second term reflects

the bias which we incur if we estimate J.L by PLY rather than PMY. Of course, the bias will be

zero if J.L EL. Obviously we would like to estimate J.L by a PLY for which (2.2) is small. The

attractive idea of using that L for which (2.2) is a minimum is impractical since the right-hand

side of (2.2) contains unknown quantities. However, these quantities can be estimated, and this
~

possibility gives rise to the following frequently used strategy for identifying L: estimate the

ESEE of every member L of L, and take L to be the subspace with minimum estimated ESEE.

Since M is also considered to be a member of E, it is hoped that the ESEE of the estimator

Pi Y which is identified in this way will be less than that of the non-selection estimator PMY.

We refer to this strategy for identifying L as an all possible subspace approach.

An all possible subspace approach to model selection can therefore be implemented by esti-

mating the right-hand side of (2.2) for every L, and then selecting that L having the minimum

estimated mean squared error. It should be noted that other strategies can also be used in an all

possible subspace approach, for example taking L to be the subspace which minimises a differ-

ent (estimated) measure of error (and not necessarily the estimated ESEE of PLY)' Also, when

applying an all possible subspace approach in terms of estimated ESEE it is strictly speaking

not required to consider all L E E for possible selection. Snyman (1994, Section 2.3) argues

that only those subspaces which, for a given dimension, are nearest to the observation vector

Y, need to be considered. Hence, if we let L(Y, l) denote the (l + I)-dimensional subspace

characterised by

!!Pi(v,l)YII
2

= max {IIPL YI12
: L e i: and dim(L) = l + I} (l = 0,1, ... ,m),

then L(Y) will be selected from L(Y,O), L(Y,I), ..., L(Y,m). This argument considerably

reduces the number of models which need be considered: from 2m to m + 1. The interested

reader is referred to Section 2.3 ofSnyman (1994) for more details in this regard.

Numerous other methods, besides an all possible subspace approach, have been proposed in the

literature for the purpose of model selection. Many of these methods are based on sequences of

hypothesis tests (see Miller, 2002), while others follow a Bayesian approach (see Burnham and

Anderson, 1998, p.127). In this dissertation our attention will be restricted to a single selection
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method, based on an all possible subspace approach, known as Cp selection.

2.3 A coordinate free approach to Mallows' Cp criterion

Proposed by C.L. Mallows (Mallows, 1973), Cp selection is well known, very commonly used

in practice and thoroughly investigated over the years (see Spjotvoll (1977), Mallows (1995) and

Chiu (2000) in this regard). Itwas indicated in the previous section that an all possible subspace

approach to model selection requires estimation of the ESEE of PLY for each subspace L. The

Cp criterion is obtained if these ESEE's are estimated unbiasedly. An unbiased estimator of

(2.2) is obtained as follows. Since

an unbiased estimator of 11P£l-JL112 in (2.2) is given by IIP£-L YI12 - (n - dim(L)) &2, where &2

is the unbiased estimator of CJ2 defined in (1.10). For a fixed subspace L, an unbiased estimator

of the ESEE in (2.2) is therefore given by

The estimator in (2.3) is referred to as Mallows' Cp criterion for the subspace L, and will

be denoted by Cp(Y, L). Note that IIPLL YI12 = IIY - PL YI12 in (2.3) is the residual sum

of squares associated with the linear subspace L. In the statistical literature Mallows' Cp is

frequently expressed relative to &2, viz.

Cp(Y,L)
~2
CJ

(2.4)

Since division by &2 only has a scaling effect, and since &2 is the same for all subspaces,

choosing an L for which (2.3) is a minimum, will result in the same L for which (2.4) is a

minimum. Although the form of Cp in (2.4) is generally more familiar, both (2.3) and (2.4) are

important in later discussions.

Since the formulation ofthe standard linear model assumes that JL E M, it follows that P£-LJL =

PMILJL. The ESEE in (2.2) can therefore also be written as
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which is estimated unbiasedly by

lipMIL YI12 + (2(l + 1) - dim(M)) &2

lipMIL YI12 + (2(l + 1) - (m + 1)) &2. (2.5)

The estimators in (2.3) and (2.5) are equal, since

Cp(Y, L) - IIP£l- YI12 + (2(l + 1) - n) &2

_ lipMIL YI12 + IIPMj_ YI12 + (2(l + 1) - n) &2

_ lipMIL YI12 + (2(l + 1) - (m + 1)) &2,

where the last equality follows from the definition of &2 in (1.10). The symbol Cp(Y, L) will

be used to refer to the form (2.5) of the Cp criterion.

Applying Cp in a practical situation entails calculating the criterion in (2.3) or (2.5) for all linear

subspaces L E L, and then selecting the subspace with the minimum criterion value. The mean

squared errors of the estimators corresponding to all L in M therefore have to be estimated.

The selected subspace clearly depends on the data, and this is reflected in the symbols which

are used to denote the selected subspace, viz. Lor L (Y). The corresponding estimator of J-L is

denoted by Pi Y or by Pi(Y) Y.

What can be said about the ESEE of Pi(Y) Y? Since L(Y) is data-dependent, its ESEE is

not estimated unbiasedly by the minimum value of the Cp criterion. In fact, the minimum

value of the Cp criterion underestimates the ESEE of Pi(y) Y. This follows quite easily, since

min {Cp(Y , L) : L E .e} ::; Cp(Y , L) for all L E L, and for each Y, implies that

E[min{Cp(Y,L): L E .e}] < min{E[Cp(Y,L)]: L E.e}

min{E IIPL Y - J-L112: L E .e}

< I:E IIPL Y - J-L112P {L(Y) = L}
LEe

E Ilpz(y)y - J-L11
2

.

Breiman (1992, Section 2.1) shows a similar result for a specific example in a regression context.

Mallows (1995, p. 362) states in this regard that using the estimator corresponding to the data-

27

Stellenbosch University http://scholar.sun.ac.za



2 LINEAR MODEL SELECTION AND ESTIMATION

dependent minimum criterion value, can result in a much larger ESEE than when PMY is used

to estimate 1-".

We proceed to derive the mean squared error (MSE) of the Cp criterion as an estimator of (2.2)

using its form in (2.5). For a fixed linear subspace L, (2.5) is an unbiased estimator of the

ESEE in (2.2). Therefore, using the result in Lemma A.4 in Appendix A, and the fact that
(n-m-l)&2 v2 . J:". Il h

a2 rv A.n-m-l' lt 10 ows t at

MSE {Cp(Y, L)} Var {Cp(Y, L)}

Var {IIPM1L YI12 + (2(l + 1) - (m + 1)) (j2}

Var (liPMIL Y112) + (2(l + 1) - (m + 1))2 Var ((j2)

4a211PMILI-"I12 + 2a4(m - l) + (2(l + 1) - (m + 1))2 ~a4 1)n- m+

4,,211FMIL1'112 + 2,,' ((m _ I) + (2(1: ~ (~(: ~ 1))2) .

Note finally that when L = M we use PMY to estimate 1-". The ESEE in (2.1) is unbiasedly

estimated by Cp(Y, M) = (j2 (m + 1) with

4 (m + 1)2
MSE {Cp(Y, M)} = 2a ( )"n- m+ 1

2.3.1 Expansion and estimation of E IIPLY - I-"112as the sum of n terms

One of our objectives is to identify, in the sample of size n, data cases that are influential when

the Cp criterion is used for subspace selection. Since the Cp criterion for a given subspace

L estimates the ESEE corresponding to this subspace, a first step in quantifying the selection

influence of the individual cases in the data set is to express E IIPL Y -1-"112 as the sum ofn

terms. Once this has been achieved, the individual terms can be estimated, thereby obtaining

the contribution of each data case to the total estimated ESEE. To accomplish such an expan-

sion, consider the random vector Z defined by aZ = Y - 1-". Since Y '" Nn (1-", a2In), it

readily follows that Z '" Nn (0, In). We therefore obtain the following expansion for the ESEE
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corresponding to a given subspace L:

E 11(/PLZ+ PUl, - J.L112

E II(/PLZ + PUl, - (PLJl,+PLj_J.L)112

(/2E IIPLZI12 + IIPLj_J.L112 . (2.6)

The expression in (2.6) is now used to expand the ESEE as a sum ofn terms. Let UIl U2l "'l Un

be the standard orthonormal basis fer R", The first term in (2.6) may be written as:

n

(/2E IIPLZl12 = (/2 LE (Uil PLZ)2

i=l

i=l

n

(/2 L IIPLUil12 .
i=l

(2.7)

Similarly, the second term in (2.6) becomes

n

IIPLj_J.L112 = L (J.L,PLj_ Ui)2 .
i=l

(2.8)

Combining (2.7) and (2.8) we arrive at the following expansion of the ESEE as a sum of n

terms:

n n

(/2 L IIPLUil12 +L (J.L, Pu Ui)2
i=l i=l

n

L {(/21IPLUiI12 + (J.L, PLj_ Ui)2}
i=l

(2.9)

n

E IIPLy - J.L112= LE [lli(L) - JLil2.
i=l
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Now, E [lli(L) - lLi]2 is the mean squared error oflli(L) as an estimator of lLi' and we see that

E [(PLY' Ui) - (1-£, Ui)]2

E [(PLY, Ui) - E (PLY, Ui) + E (PLY, Ui) - (1-£, Ui)]2

Var [(PLY, Ui)] + [E (PLY' Ui) - (1-£, Ui)]2

a211PLuil12 + (I-£,PLLUi)2.

This is exactly the ith term in (2.9). We can therefore view (2.9) as an expansion of the ESEE of

PLY = [Ill (L), 112(L), ... , Iln (L)]' as the sum of the mean squared errors of III (L), 112(L), ... , Iln (L)

as estimators of ILl' 1L2' ... , ILn respectively.

We now consider estimation of the individual terms of the ESEE. Consider the ith term in (2.9),

given by

(2.10)

We start by estimating the first term on the right-hand side of (2.1 0). Since liPLui 112is known,

the first term, a2 IIPLUi 112,can be estimated unbiasedly by (;2 IIPLUi 112,where (;2 is the unbiased

estimator of a2 defined in (1.10). Since E (Y,PLLUi)2 = (I-£,PUUi)2 + a211PLLui112, an

unbiased estimator of the second term, (1-£, Pu Ui) 2, on the right-hand side of (2.1 0) is given by

(Y, PLL Ui)2 - (;21IPLL ui112. The ith term in (2.10) is therefore unbiasedly estimated by

(2.11 )

The symbol Cp(Y, L, i) is used to denote the right-hand side of (2.11), since the sum over i of

the right-hand side of (2.11) can be shown to equal the Cp criterion in (2.3). To see this, the

following result is required:

n

L (PLUi' Ui) = dim(L).
i=l

(2.12)
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To establish (2.12), let VI, V2, ... , VI+1 be an orthonormal basis for the subspace L. Then,

n t,("~)(Vj, Ui) Vj, Ui)
n dim(L)

L L (Vj, Ui)2
i=l j=l

dim(L) n

L L (Vj, Ui)2

L (PLUi, Ui)
i=l

j=l i=l
dim(L)

L IIVjl12
j=l

dim(L).

It now follows that

n n

L {0=211PLUi112 + (Y,PUUi)2 - 0=211PuUi112} (2.l3)LCp(Y,L,i)
i=l i=l

n

0=2L [(PLUi, Ui) - (PL.L Ui, Ui)] + IIPL.L YI12
i=l

0=2 [(I + 1) - (n - (I + 1))] + IlPu YI12

0=2(2(1 + 1) - n) + IIPu YI12

Cp(Y, L).

Summarising: For a given subspace L we can write the ESEE of the corresponding estimator,

PLY, as in (2.9):

n

E IIPL Y - 11-112=L {(j21IPLUiI12 + (11-, Pu Ui)2} .
i=l

The ith term is this sum is estimated unbiasedly by Cp(Y, L, i) in (2.11), and the sum over i of

the Cp(Y, L, i)-values is simply Cp(Y, L) of(2.3).

We now tum to the alternative form of the Cp criterion given in (2.5), viz. Cp(Y, L). We will

show that results similar to those established above, are also valid for Cp(Y, L). Note firstly

that since 11- EMit follows that PL.L11- =PMILI1-. The ESEE in (2.6) can therefore also be
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expressed as

E IIPLY - 11112 E II(jPLZ - P£-l_1l112

E II(jPLZ - PMILIll1
2

_ (j2E IIPLZI12 + IIpM1LIll12 (2.14)

SO that an equivalent form of (2.9) is

n n

E IIPLY -1l112 = (j2L IIPLUil12+L (Il, PMILUi)2
i=l i=l

n

L {(j21IPLUiI12 + (Il, PM1LUi)2} . (2.l5)
i=l

The ith term of the ESEE in (2.l5) is now unbiasedly estimated by

It should be noted that Cp(Y, L, i) can be written in two other equivalent forms. Firstly, since

(PM Y+PMj_ Y, PM1LUi)2

(PMY, PMILUi)2

it follows that

Similarly, since

(PMIL Y, PM1LUi/

(PMIL Y, PM1LUi + PMj_Ui)2

- (PMIL Y, PLj_Ui)2

(PL Y +PMIL Y, PLj_Ui)2

(PM Y, PLj_Ui)2

it also follows that
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Taking the sum over i of the proposed estimator in (2.16) or, equivalently, (2.17) or (2.18) again

yields the Cp criterion given in (2.5):

n

LCp(y,L,i)
i=l

nL {(j21IPLuiI12 + (Y, PM1LUi)2 - (j21IPMILUiI12}
i=l

(2.19)

n

(j2 L ((PLUi, Ui) - (PMUi - PLUi, Ui)) + lipMIL YI1
2

i=l
n

- (j2L (2 (PLUi, Ui) - (PMUi, Ui)) + lipMIL YI1
2

i=l
O'2(2(l + 1) - (m + 1)) + lipMIL YI12 (using (2.12»

c,(Y, L).

Note that (2.13) and (2.19) are expansions of Mallows' Cp criterion as the sum of ti terms,

given within the coordinate free framework. The respective ith cases of these expansions, i.e.

Cp(Y,L,i) in (2.11) and Cp(Y,L,i) in (2.16) or (2.17) or (2.18), are unbiased estimators of

the ith term of the expansion of the ESEE in (2.9). Note that this ith term of the expansion of

the ESEE in (2.9) is identical to the ith term of the expansion of the ESEE in (2.15), since

E(/1i(L) - fLi)2 - (J211PLui112 + (J.L, Pu Ui)2

(J211PLUi112 + (PL.LJ.L, Ui)2

(J211PLUi112 + (PM1LJ.L, Ui) 2

(J211PLUi1l2 + (J.L, PM1LUi)2 . (2.20)

In the previous section, two unbiased estimators of the ith term in the expansion (2.9) or (2.15)

were introduced, viz. Cp(Y,L,i) in (2.11) and Cp(Y,L,i) in (2.16). We now compare these

two unbiased estimators in terms of their respective variances in order to determine which esti-

mator is relatively more efficient.
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Consider first the case where it can be assumed that the value of a2 is known. Then, Cp(Y, L, i) =

a211PLuil12+ (Y, P£l- Ui)2 - a211P£l- ui112,and hence

Var {Cp(Y, L, i)} Var {(Y, PL.LUi)2 + a211PLuil12 - a21IPL.LUiI12}

Var {(Y, PL.LUi)2}

E {(Y, PL.LUi)2 - (J-L,P£l- Ui)2 - a211P£l- ui112}2

E {11(Y, L, i) - ,(J-L, L, i)} 2

Var {1l (Y, L, i)}

where

(2.21)

and

(2.22)

Similarly,

Var {Cp(Y, L,i)} Var {(y, PMILUi)2}

Var {12(Y, L, i)}

where

(2.23)

Hence, the objective of comparing the variances of Cp(Y, L, i) and Cp(Y, L, i) can be accom-

plished by comparing the variances of1l (Y, L, i) and 12(Y' L, i). For notational convenience,

let ,(J-L, L, i) in (2.22) be denoted by -y. Also, let 11 (Y, L, i) in (2.21) and 12(Y' L, i) in (2.23)

respectively be denoted by 11 and 12. The difference between the variances of1l and 12 can

be written as

E(1l _,)2 - E(12 _ ,)2

E (1D- E (1~). (2.24)

Since Y f"V Nn(J-L,a2In), it follows that (Y, PMILUi) f"V N ((J-L, PM1LUi) , IIpM1LUi 11
2 (2).

Hence, (Y, PMILUi) = (J-L,PMILUi) + IlpMILUil1 a Z, where Z is a standard normal random
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variable. It is well known that

E (z2r) = (2r - 1)(2r - 3) ... (3)(1) for r = 1,2,3, ....

Hence, taking r = 2 we find E (Z4) = 3. Combining this with the well known results E (Z) =

E (Z3) = 0, E (Z2) = 1, and the expression above for (Y, PM1LUi), we find that

Using (2.25), E (9D can be expressed as

E { (Y, PMILUi)2 _ a211PMILUi112}
2

E {(y, PM1LUi)4 + a411PMILUil14 - 2a211PMILUil12 (Y, PMILUi/}

(I-L, PMILUi)4 + 6a2 (I-L, PMILUi)21IPMILUiI12 + 3a411PMILUil14 + a411PMILUil14

-2a211PMILUi112 {(JL, PMILUi)2 + a211PMILUi112}

(I-L, PM1LUi)4 + 4a2 (I-L, PMILUi)21IPMILUiI12 + 2a411PMILUi114. (2.26)

Similarly if we write E (Y, Pu Ui)4 as in (2.25) and use the fact that (I-L, Pu Ui)2 = (I-L, PM1LUi)2,

we find that

E {(Y, Pu Ui)2 - a211Pu ui112} 2

(I-L, PLl. Ui) 4+ 4a2 (I-L, Pu Ui)211Pu Ui 112+ 2a411PLl. Ui 114

(I-L, PM1LUi) 4+ 4a2 (I-L, PM1LUi) 211pLl.Ui 112+ 2a411PLl.Ui 114.

Therefore, it follows that

E (9i) - E (9D 4a2 (JL,PMILUi)2 {IIPLl.UiI12 -IIPMILUiI12}

+2a4 {IIPLl.UiI14 -IIPMILUiI14}. (2.27)

Note that, since PM1LUi = PMUi - PLUi, it follows that Ui = PLUi + P£l-Ui = PMUi -

PM1LUi + PLl. Ui. Therefore, it is clear that
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and consequently

IIPMj_UiI12 + IIpMILUil12

> IIPMILUiI12.

Combined with (2.27) this implies that E (1i) - E (1D ~ O. Assuming therefore that (J2 is

known, it follows from (2.24) that Var(1l) ~ Var(12), and therefore

(2.28)

We now briefly discuss a special case, illustrating the magnitude of the difference between

Var (11) and Var (12)' We consider the case where (J2 is known, and we use simulation to

approximate Var (11) and Var (12)' In this numerical evaluation the vectors

10 10 10 10

ml =P,O]' and m2 = lO,el' (2.29)

inn20are chosen as basis vectors for the two-dimensional linear subspace M = span {ml, m-]:

Note that ml and m, are linearly independent. Also, for any a, (3 E n the vector

Consider now the linear subspace L = span {m2}' which is contained in M. The following

results will be helpful in later calculations. For a vector x = [Xl, ... , X20]' it follows that

(2.30)

and therefore

(2.31)

Also,

(2.32)

(2.33)
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so that

(2.34)

For given values of a and 13, the vector J.L is known and the parameter ,(J.L, L, i) in (2.22) can

easily be obtained. This is done most simply by calculating the squared difference between

the ith element of J.L and the ith element of PLJ.L, i.e. ,(J.L, L, i) = [(J.L, Ui) - (PLJ.L, Ui)f
Note that PLJ.L is calculated using the result in (2.30). With the value of (J2 known, a random

vector ê is simulated from an N20 (O,(J2I20)-distribution. Consequently, the response vector,

Y = J.L + e, can be obtained. The estimator 11 (Y, L, i) in (2.21) can now also be calculated,

where its first term, (Y, PLl. Ui)2, is obtained using again the result in (2.30). The second term,

(J211PLl.Ui112= (J2 (l-IIPLUiln, of this estimator is acquired from the result in (2.31). In a

similar way, 12(Y, L, i) in (2.23) is obtained using the results in (2.33) and (2.34).

In the simulation study we choose 13 = 1, while the value of a is chosen to vary from -30 to

30 in steps of 1. For each of these a-values a different J.L vector is obtained. By repeatedly

simulating error vectors, e rv N20 (O,(J2I20), ten-thousand response vectors, Y = J.L + e, are

obtained for a given J.L vector. Using these response vectors, the corresponding estimators,

1l(Y, L,i) and 12(Y,L,i), are calculated for each of the i = 1, ... ,20 cases of the parameter

,(J.L, L, i). Since very similar results are calculated for all i = 1, ... , 10, we only present

the simulation results for i = 1. We do not comment on simulation results for values of

i = 11, ... , 20, since the parameter of interest for these cases equals zero. For a particular J.L

vector, the respective variances of1l (Y, L, 1) and 12(Y' L, 1) are approximated by

",10000 (~ (Y L 1)· - ( L 1))2
Var{~(YL1)}~L..,;J=1 'I , , J 'J.L, ,'I " 10000

(2.35)

and
",10000 (~ (Y L 1) (L 1))2Var {~ (Y LI)} ::: L..,;J=l '2 , , J -, J.L, ,'2 , , 10000 (2.36)

Program Cl in Appendix C was used to obtain the approximated variances in (2.35) and (2.36).

In Figure 2.1, the ratio of the approximate variances in (2.35) and (2.36) is plotted for different

values of J.L = orn, + 13m2, where 13 = 1 and a = -30(1)30. These ratios are shown for
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values of a which equal: 20,10,5,2,1.5,1,0.5 and 0.2. In Figure 2.1 the "outside" plotted

curve, which is symmetrical around a = 0, corresponds to a = 20, while the most "inner"

symmetrical curve corresponds to a = 0.2.

Since the plotted ratios in Figure 2.1 are consistently greater than 1, the simulation results

confirm the general analytical result in (2.28). Specifically, for a-values far from zero (i.e.

large negative and positive values), Var {1l (Y, L, I)} is approximately ten times larger than

Var {12(Y' L, I)}, irrespective of the value of a. Depending on the value of a, the difference

between the two variances grows dramatically as a moves nearer to zero.
,--- -- ---------------------- ---- --- ---,

80 -

100

40 -

20 -

o~~~~~~~~~~~~~~~~~~~~~~~~~
-30 -27 -24 -21 -13 -15 -12 ·9 -6 ·3 0 3 6 9 12 15 13 21 24 27 30

a

F· 21· PI t fVar{')\(y,L,l)} c. diff I f 2·f .igure .. 0 0 Var{92(Y,L,1)} lor 1 erent va ues 0 a 1 a IS

incremented from -30 to 30 in steps of 1

Finally, for a given linear subspace L, Var (:::Yl) can be expressed as E (:::yi) - "(2. From (2.27)

it thus follows that

E (1D - "(2 + 4a2 (J.L, PM1LUi}2 {IIPL.LUiI12 -IIPMILUiI12}

+20.4 {IIPL.L uil14 - IIPMILUiI14}

Var (12) + 4a2 (J.L, PM1LUi) 2 {IIPu Ui 112- IlpMILUi 11
2
}

+2a4 {IIPL.L uil14 - IIPMILUiI14} .
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Analytically, the ratio of the two variances can therefore be expressed as

Var (11)
Var (12)

40-2 (JL, PM1LUi/ {IIPL.L uil12 - IIPMILUiI12} + 20-4 {IIPu uil14 - IIPMILUiI14}
1+ (_)Var "12

40-2 (JL, PM1LUi)2 {IIPL.L uil12 - IIPMILUiI12} + 20-4 {1!Pu uil14 - IlpMILUi 114}
1+ 2 2 4

40-2 (JL, PM1LUi) IlpMILUil1 + 20-411PMILUili
(2.37)

where the last step follows from (2.26). Consider now the particular case where JL = LOm, +
10 10

1m2 = (lo, .~.,10,Q', and a = 1. For i = 1 the ratio in (2.37) becomes

Var (91)
Var (12)

4(100) {I - O.l} + 2 {I - 0.01}
1 + 4(100) {O.l} + 2 {0.01}
10.045.

The simulated value for this particular case is equallO.292. The difference, 110.292 - 10.0451 =
0.047, illustrates the magnitude of the simulation error. In a similar way, ~ari21\ = 100 for thear 1'2

case where JL = Om. + 1m2 and 0- = 1, with a corresponding simulated value of 100.698.

We now move to the case where the value of 0-2 is unknown. The estimators in (2.21) and

(2.23) are no longer useful, and are replaced by

and

12(Y' L, i) = (Y, PMILUi)2 - (j211PMILUi112

respectively. In these expressions, 0-2is estimated unbiasedly by (j2 = It(~:!~2.Steps similar

to those required to derive (2.26), give

{
2 2 2}2E (Y, PMILUi) - (j IIpM1LUili

E {o PMILUi)4 + (j411PMILUi114 - 211PMILUil12 (j2 (Y, PM1LUi)2}

(JL, PM1LUi)4 + 60-2 (JL, PMILUi)21IPMILUiI12 + 30-411PMILUil14

+ IIPMILUil14 (2: : -:nm) 0-4 - 211PMILUil12 E {(j2 (Y, PM1LUi/}
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since E (0:4) = a4 e!~~m). We can now write (Y,PMILUi)2 = (PMIL Y, Ui)2, and since

PMIL Y and PM.LYare independent random vectors, we conclude that (;2 and (Y, PNIILUi)2

are independently distributed. The final term in the expression above therefore becomes

211PMILUil12E ((;2) E ((y, PMILUi)2)

211PMILUil12a2 ((IL, PM1LUi)2 + a211PMILUi112),

and we finally see that

However, if we try to find E (::y~)wp. run into difficulties at the final step. It is found that

E {(Y, PL.LUi)4 + (;411Pu uil14 - 2(;21IPL.L uil12 (Y, Pu Ui)2}

E ((Y, Pu Ui)4 + (;41IPL.L ui114) - 211PL.Luil12E ((;2 (Y, Pu Ui)2) .

The argument used in the derivation of E (9D is now no longer valid, since (;2 and (Y, PL.LUi)2

are not independent. The term E ((;2 (Y, PL.LUi)2) can therefore not be simplified. The

implication is that no analytical progress can be made when we try to prove that E (9i) -

E (9D ~ O. Numerical evaluation of Var (91) and Var (92) by simulation was therefore

considered. The results were very similar to the results obtained from the simulation study

for the case where a2 is known. Without going into a detailed discussion, we would like to

emphasize that in all cases considered in the simulation study it was found that Var (9D >
Var (9D.

In the previous section, two estimators of "((IL, L, i) = (IL, PL.LUi)2 = (/-L, PM1LUi/ were

considered: 91 (Y, L, i) in (2.21)and 92(Y' L, i) in (2.23). It is clear that "((IL, L, i) can never

be negative. The same is obviously not true for 91 (Y, L, i) or 92(Y' L, i). A natural idea

that now suggests itself is to consider truncated versions of9l (Y, L, i) and 92 (Y, L, i), thereby

eliminating the unsatisfactory situation which may otherwise arise whereby a quantity which

we know to be non-negative is estimated to be negative. This leads to two further estimators of
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,(JL, L, i), viz.

1{(Y, L, i) max {O, (Y, PLl_Ui)2 - (;2 II PLl_Ui 11
2}

max{0,1l(Y,L,i)} (2.38)

and

1t(Y, L, i) max {O, (Y, PMILUi)2 - (;21IPMILUiI12}

max {O,12(Y' L, i)} (2.39)

For notational brevity we once again denote the truncated estimators in (2.38) and (2.39) by 1{

and 1t respectively. It is clear that Var (1-;-) ~ Var (11)' with a similar result holding for 1t
and 12' An interesting question concerns the magnitude of the reduction in variance obtainable

by replacing 11 or 12 by their respective truncated versions. It does not seem possible to answer

this question analytically, and we therefore investigate a special case by means of simulation.

We consider the same situation as in the previous section, i.e. a two-dimensional linear space

M spanned by the vectors ml and m2 in (2.29). The subspace L of M is spanned by m-, and

the problem is to estimate ,(JL, L, i). We wish to investigate the following questions:

(i) How does Var (1{) compare to Var (1l)?

(ii) How does Var (1t) compare to Var (12)?

(iii) How does Var (1{) compare to Var (1t)?

Using simulation to answer these questions, entails the following. Consider a fixed set of

parameter values, i.e. values of 0:, (3 (and therefore JL), and (J. Calculate, from these parameter

values. Now generate a large number of observation vectors Y from the appropriate normal

distribution, and calculate the four estimators, viz. 11' 1{, 12 and 1t for each observation.

(Note that in calculating these estimators, the value of (J2 is unbiasedly estimated by (;2 =
IIY~~~2YI12).This gives a large number of realisations of each of the four estimators, and we

can therefore approximate the variances of these estimators as in (2.35) or (2.36).
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The results which were obtained in this way, for the same a-values as in Figure 2.1, are sum-

marised in Figures 2.2, 2.3 and 2.4. In Figure 2.2, we graph a simulation approximation

of Var 2+~y,L,1~}. Firstly, consider small a-values presented by the most inner symmetricalVar 1'1 Y,L,l

curves around a = O. It is clear that the variance of 91 (Y, L, 1) and the variance of its trun-

cated version are identical for a-values far from zero. However, the truncated version shows up

to a 30% reduction in variance for a-values in the vicinity of zero. If larger a-values are con-

sidered, which are presented by the outside symmetrical curves, we see that the performance of

::yi (Y, L, 1) is in general better than that of91 (Y, L, 1) for a wider range of a-values.
--------

1.35 ,------------------------------,

1.3

1.25

1.1

I Var{f,(Y. L,I)}
'Va7{.9,+{Y,LJ)} 1.15

0.95 -L-~~~-_~~ __ -~ -- __ ~-~----J

-30 -27 -24 -21 -Il -ti -12 -9 -6 -3 3 6 9 12 15 Il 21 24 27 30

a
~--------------------------------~

Figure 2.2: Plot of Var 2+(y,L,1)} for different values of a2 if a isVar 1'1 Y,L,l

incremented from -30 to 30 in steps of 1

Next, in Figure 2.3 we depict our simulation approximation of ;a:rNt~~',~',~)/}. Once again it

is seen that Var {9t(Y, L, I)} is smaller than Var {92(Y' L, I)} only for a-values near zero.

The range of a-values for which Var {9t (Y, L, I)} ~ Var {92(Y' L, I)} becomes larger as

a increases, but this range is smaller than in Figure 2.2.

F· Il F' 24 h Var "Yt(Y,L,l) .ma y, igure . sows ~+( i}' We see that the results which are obtained are veryVar 1'2 Y,L,l

similar to those in Figure 2.1, where the ratios of the variances of the non-truncated estimators

are considered. Once again the variance of9t(Y, L, 1) is approximately 10 times larger than
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that of;:Yi(Y, L, 1) for a-values far from zero. These ratios become much larger for a-values

near zero.

1.35 .------------------------------,

·30 ·27 ·24 ·21 .'Il ·15 ·12 ·9 ·6 ·3 6 9 12 15 'Il 21 24 27 30

a

Figure 2.3: Plot of Var \~Y,L,l)} for different values of (J'2 if a is
Var 1'2 Y,L,l)

incremented from -30 to 30 in steps of 1
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Recall that ;::Yland ;::Y2are estimators of (J-L, Pp Ui) 2 = (J-L, PMILUi) 2, and that (J-L, Pp Ui) 2 =

(J-L, PMILUi)2 appears in the ith term of the expansion of the ESEE corresponding to the sub-

space L (see (2.9)). This ith term is estimated unbiasedly by Cp(Y, L, i) in (2.11) and Cp(Y, L, i)

in (2.16). Truncating Y, and ;::Y2therefore leads to truncated versions of Cp(Y, L, i) and

Cp(Y ,L, i). In particular, the truncated version of Cp(Y ,L, i) is given by

while the truncated version of Cp(Y, L, i) is given by

These truncated estimators are improvements ofCp(Y, L, i) and Cp(Y, L, i) respectively when

our objective is to estimate the ith term in (2.9). Note also that this term is simply estimated

by (j211PLUi112 if truncation is applied. Naturally, the truncated versions of Cp(Y, L, i) and

Cp(Y, L, i) also lead to truncated versions of the Cp criterion. In particular, (2.13) becomes

n

C:(Y, L) =L [(j21IPLUiI12 +max {O, (Y, Pp Ui)2 - (j21IPL.L ui112} ] .
i=l

(2.40)

while the modified version (2.19) of the Cp criterion becomes

n

C:(Y, L) =L [(j21IPLUiI12 +max {o, (Y, PMILUi/ - (j2I1PMILUiI12}] .
i=l

(2.41)

Snyman (1994, p.2-5) also argues along these lines by proposing that the Cp criterion in (2.3)

and (2.5) be truncated at zero. The motivation for this follows from the fact that the Cp criterion

gives an unbiased estimate of the non-negative ESEE for a fixed linear subspace L. Accord-

ing to Snyman these truncated estimators also produce smaller mean squared errors than the

estimators in (2.3) and (2.5). Note that the proposed truncated Cp criteria in (2.40) and (2.41)

differ from those proposed by Snyman, since in (2.40) and (2.41) the estimators of the ith cases

in the expansion of Cp are truncated if they are less than zero. Taking therefore the sum over

all these estimators (where some are now truncated) provides Cp criteria different from those

proposed by Snyman.
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2.4 Variable selection and estimation in multiple linear regression

In this section we apply the coordinate free concepts, developed previously, to variable selection

in multiple linear regression. In multiple linear regression the columns of the design matrix,

X = [1, xj , X2, ... , xmJ, form a natural basis for the (m + 1) dimensional linear subspace M. In

a regression context it is therefore more convenient to work within the coordinatized framework.

The normal multiple linear regression model, as a special case of the coordinatized form of the

standard normal linear model, is given by

Y = J-L + ê = X{3 + e. (2.42)

In (2.42), estimation of J-L E M entails estimation of the parameter vector {3= [,BO,,BI' ... , ,Bm]'·

For this purpose the least squares estimator of {3,as defined in (1.6), is frequently used. Since

the column vectors of X are predetermined, the estimator of J-L, X{3 in (1.7), is fully described

once (3 has been estimated.

When provision is made for variable selection in multiple linear regression we additionally

assume that J-L possibly belongs to an unknown member of the family of linear subspaces con-

tained in M. Denote this family by .c and let L denote such a typical linear subspace with

dim( L) = l + 1. The subspace L is spanned by the vector 1 and a subset of l predictor vari-

ables, i.e. L = span{l, Xj : j E h} c M, where Ji. C {I, 2, ... ,m}. Let XL be the

rt x (l + 1) matrix with column vectors 1 and Xj' j E JL. Then the least squares estimators

of ,Bo and the regression coefficients corresponding to the variables spanning L are given by

~L = (X~XL)-IX~ Y. The corresponding estimator of J-L follows as XL{3L'

In this dissertation we apply the Cp criterion, which for a given L (i.e., a given subset ofpredic-

tor variables) unbiasedly estimates the ESEE, as variable selection technique. For a particular

data set we therefore determine the estimated ESEE for every possible subset of predictor vari-

ables and then select the subset having the minimum estimated mean squared error.

As was previously done in the coordinate free formulation we now apply our results on the

expansion of the ESEE and the Cp criterion to multiple linear regression.
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2.4.1 Expansion and estimation of the ESEE as the sum of n terms within a multiple

linear regression context

In this section we express the ESEE as the sum of n terms when variables are selected in a

multiple linear regression context. As was done in the coordinate free setup we also estimate

the individual terms in the expansion of the ESEE. Consider therefore again the coordinate free

expansion of the ESEE in (2.9), viz.

n

E IIPL y - JLI12 = L {a211PLui112 + (JL, PL.LUi)2} ,

i=1

(2.43)

where Ui, i = 1, ... ,n, form the standard orthonormal basis for Ir. Recall that the vectors 1

and Xj, j E JL, form a basis for the linear subspace L, and that the matrix XL has these vectors

as columns. The projection matrix, PL, can therefore be expressed as PL = XL(X~XL)-1 X~.

This is an n x n idempotent and symmetric matrix. The left-hand side of (2.43) becomes

E IIPL y - JLI12

E IIXL(X~XL)-1X~ Y - X,a112
E {[XL(X~XL)-1X~ Y - X,aJ' [XL(X~XL)-1X~ Y - x,aJ}.

Regarding the right-hand side of (2.43), note first that

(2.44)

and this is the ith diagonal element of PL, i.e. the ith diagonal element of XL(X~XL)-1 X~.

We will denote this scalar by Vii, i.e.

(2.45)

Let Jf denote the complement of JL, i.e. Jf contains the indices of the predictor variables not

represented in XL. The second term in the summation on the right-hand side of (2.43) now
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becomes

(/1-, Pu- Ui)2 (X{3, PL.i Ui)2

/ ,Bol +L ,BjXj + L ,BjXj, PL.i Ui)2
\ JEJL jEJf

/ ,Bol + L ,BjXj, Pu- Ui)2
\ jEJf

= [,Bo (l,Pu- Ui) + L ,Bj (Xj, PL.i Ui)]2
jEJf

SO that the ESEE can be written as

n

E IIPLY - /1-112 = L {a2vii+ (X{3, PL.i Ui)2}
i=l

Since (X{3, PL.i Ui)2 = (X{3, PM1LUi/, an equivalent form of (2.46) is given by

An unbiased estimator of

[
,Bo (l,PL.i Ui) + L a, (Xj, PL.i Ui)]2

jEJf

[
,Bo (l,PMILUi) +L e, (Xj, PMILUi)]2

jEJf
(2.48)

in (2.46) and (2.47) is given by

where 0:2 is an unbiased estimator of a2• The ith term in (2.46) and (2.47) is therefore unbias-
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edly estimated by

êivii + (Y, PLJ...Ui)2 - (i IIPLJ...uil12

(j2Vii + ((Y, Ui) - (PLY' Ui))2 - (j2 (11ui112-IIPLUiI12)
(j2Vii + (Yi - Yi(L) r-(j2(1 - Vii) (2.49)

where Yi is the ith component of Y, and Yi (L) is the ith predicted value, i.e. the ith component

of PLY as given in (1.13). Taking the sum over i in (2.49) and applying the result in (2.12) we

obtain

n t {(j2Vii + (Yi - Yi(L)r - (j2(1_ Vii)}
1.=1
n 2 n

L (Yi - Yi(L)) + L(j2 (2Vii -1)
i=l i=l

LCp(Y,L,i)
i=l

RSSL + (j2 (2(l + 1) - n) (2.50)

where RS SLis the residual sum of squares associated with the subset of predictor variables

which spans the linear subspace L. Note that (2.50) is an expression for the Cp criterion for

which the coordinate free counterpart is given in (2.3).

By simply replacing f30 and f3j, j E Jf, in (2.46) or (2.47) by their corresponding least squares

estimators obtained from 73 = [~o,~1' ... , ~m r in (1.6), it follows that

E [~o (l,Pu Ui) +L ~j (Xj, Pu Ui)]2
jEJf

[E (~o(l,Pu Ui)) + L E (~j (Xj, Pu Ui) )]2
jEJf

+Var [~o(l,PUUi) + L ~j (Xj,PLJ...Ui)]
jEJf

(a., (3)2 + Var (~, 73)
- (~, (3)2 + 0'2a~ (X'Xr1 a, (2.51)

48

Stellenbosch University http://scholar.sun.ac.za



2 LINEAR MODEL SELECTION AND ESTIMATION

I

where a, = [I, ail, ai2, .", aim] with

0, if} E Jc

Note that Var \ a., 73) = a2a~ (x'x) " a, in (2.51) can be written as

Var / ,Bol +L ,BjXj, PL.l. Ui)
\ jEJf

Var (PMIL Y, PL.l.Ui)
Var (PMIL Y, PM1LUi)

a211PMILUil12
a2 (11PMUi112- IIPLUiln
a2 (u·· - V·)'ll 'lt (2.52)

where u.; is the ith diagonal element of PM = X(X'X)-l X'. Also note that \ a., (3)2 in (2.51)

can be written as

/ ,Bol +L ,BjXj + L ,BjXj, Pu Ui)2
\ JEh jEJf

- (PMY,PL.l.Ui)2

(Y, PMILUi)2 .

If0=2 estimates a2 unbiasedly, it follows that (2.48) is unbiasedly estimated by

which implies that the ith term in (2.46) and (2.47) is unbiasedly estimated by

Cp(Y,L,i) - 0=2Vii+(Y,PMILUi)2_(j2(Uii-Vii)

0=2Vii+ (Yi(M) - Yi(L)f - 0=2(Uii - Vii), (2.53)

where Yi(N1) is the ith predicted value obtained from PM Y = X(X'X)-l X'Y. Taking the

sum over i in (2.53) and applying the result in (2.12) we obtain the form of the Cp criterion for
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which the coordinate free counterpart is given in (2.5), viz.

n

LCp(y,L,i)
i=l

~t,{O"V;;+ (Y;(M) - Y;(L))' - 0" (U;; - v;;) }

t (~(M) - ~(L)r +ta2
(2Vii - Uii)

i=l i=l

(2.54)

t (~(M) - ~(L))2 +a2 (2(l + 1) - (m+ 1).
i=l

Weisberg (1981) also gives the expansion in (2.54) for the Cp criterion.

Finally in this section we consider the expansion of the ESEE and estimation of its individual

terms for the special case when the vector 1and the set of predictor variables, xj ,X2' ... , Xm,

are mutually orthogonal. If the linear transformation, (jZ = Y - J-L, where (jZ rv Nn(Op2In),

is applied to Y, it follows from (2.14) that the ESEE can once again be expressed as

(2.55)

for the subset of mutually orthogonal predictor variables which spans the linear subspace L.

Let uI, U2, ... , Un again denote the standard orthonormal basis for R". Then

[

(PLZ, UI) ] [(Z' PLUI) ](PLZ, U2) (Z, PLU2)
PLZ = . = . .. .. .

(PLZ, Un) (Z, PLUn)

(2.56)

Since the predictor variables Xj, j E JL, form an orthogonal basis for L, the projection of u, on

L can be written as

The inner product of PLUi and Z is therefore given by

(2.57)
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From (2.56) and (2.57) it thus follows that

n

IIPLZl12 = L (PLUi, Z)2
i=l

(2.58)

Taking the expected value of (2.58) it follows that

(2.59)

Since the subset of predictor vectors in Jf is orthogonal to the subset of predictor variables

which are associated with L, and (/-L,Xj) = (,Bol + r:.7:=l,Bkxk,Xj) =,Bj IIXjI12, it followsina
similar way that

i=l

t L ,B;X;j+ L L,Bj,Bk (tXijXik)
i=l jEJf jEh kEh i=l

j#
n

- L L ,B;X;j.
i=l jEJf

(2.60)
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If (2.59) and (2.60) are substituted in (2.55), the ESEE is therefore expressed as the sum of n

terms as follows:

E IIPL Y _p,112 =t {CJ2 L X;j 2 + L /3;X;j} .
i=l jEh Ilx] II jEJf

The ith term of(2.61) is unbiasedly estimated by

~2 '"""' X;j '"""' 2 (~2 ~2 1 )CJ L --2 + L Xij /3j - CJ --2 .

jEh IIXjII jEJf IIXjII

(2.61 )

2 2
This follows since CJ2LjEh 11:;112 is unbiasedly estimated by (;2 LjEh 11:;112 and

L /3;X;j + L x;jVar (~j)
jUf jEJf

L /3;X;j + L X;j Var \~, uj)
jUf jEJf
L X;j (/3; + CJ2U~(X'X)-lUj) .
jEJf

(2.62)

Since x- ,X2, ... , Xm are mutually orthogonal it follows that

X'X = [:[ ] [Xl X, ... Xm 1 = diag (IIxIII' , Ilx,ll' , ..., Ilxmll') .

The jth diagonal element of (X'X)-l is therefore IIx~1I2.Consequently, the final expression in

(2.62) equals
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CHAPTER 3

SELECTION INFLUENTIAL DATA CASES

3.1 Introduction

Consider a multiple linear regression setting, and suppose that variable selection has to be done.

What do we mean in this context by a selection influential data case? In Section 1.3 of Chapter

1, a data case is defined as selection influential if the set of variables that is selected from the

full data set (i.e., the data set containing all the data cases) differs from the set of variables

selected from the reduced data set (i.e., the data set without the case under consideration), or

alternatively, given that the set of "elected variables remains unchanged, if the fitted model

changes significantly upon omission of the data case being considered. From this definition it

is clear that variable selection has to be repeated on the reduced data set if we wish to determine

whether a given data case is selection influential. In fact, identifying data cases whose omission

leads to a change in the set of selected variables is quite simple. Once variable selection has

been performed on the full data set, the following simple steps can be performed to establish

which of the data cases is selection influential in the sense of changing the set of selected

variables if they are omitted:

omit a data case to obtain a reduced data set

apply the same variable selection technique that was used to obtain the set of predictor

variables from the full data set, to the reduced data set

compare the set of selected variables obtained from the reduced data set with the set of

selected variables obtained from the full data set

whenever these two sets of selected variables differ, the data case in question is deemed

selection influential.

In Section 3.2 we apply these steps to three example data sets, thereby illustrating the effect

that omitting an individual data case may have on the variable selection process. Attention

is restricted to identifying selection influential cases whose omission causes the set of selected
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predictor variables to change. Data cases whose omission does not change the set of selected

variables, but does lead to significant changes in the fit of the identified model, are not consid-

ered in this section. In Section 3.3, however, we study the effect of both types of selection

influential data cases in a limited simulation study.

An interesting question is whether one can use a traditional influence measure, proposed in a

non-selection context, to identify data cases whose omission changes the set of selected vari-

ables. Possibly the best known such traditional measure of influence was proposed by Cook

(1977). Cook's influence measure (or Cook's distance) was proposed to identify data cases

having a significant influence on the set of predicted values obtained from a multiple linear re-

gression model. Calculating Cook's distance for a given data case is based on the well known

idea in multiple linear regression of studying the influence of individual cases by separately

omitting them from the data, and repeating the analysis on the reduced data set. This is then

followed by a comparison of the results obtained from the two analyses, i.e. the analysis based

on the full data set, and the analysis based on the reduced data set. In the case of Cook's

distance, the prediction vector is recalculated after a data case has been omitted. More specifi-

cally, if PMY (-i) denotes the prediction vector calculated on the data set without case i, Cook's

distance for case i is defined by

IlpMy - PMY(_i)112D = ~--------~~~
l (m + 1)0:2 '

In (3.1), 0:2 is the estimate of the error variance obtained from the full data set. It is important

i = 1, ... ,n. (3.1)

to note that PMY (-i) in (3.1) contains a prediction for case i, although this particular case is not

used in fitting a model to Y (-i).

In order to use Cook's distance to decide whether a given data case should be deemed influential,

consider the following (1 - a) x 100% confidence region for the unknown vector I-" (equal to

X{3 in the multiple linear regression case), viz. the set of all points I-" such that

IIPMY - 1-"11
2 < Po

(m + 1)0:2 = m+l,n-m-l,et,

where FmH,n-m-l,et is the (1 - a)th-percentile of the central F-distribution with (m + 1) and

(n - m - 1) degrees of freedom. This is of course a valid (1 - a) x 100% confidence region

for I-" only if the random error variable e in (1.3) follows an Nn(O, (j2In) distribution. Although
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Di in (3.1) does not follow an F-distribution, an observed value of Di close to Fm+1,n-m-l,a

implies that the removal of the ith case moves the least squares estimate, PM Y, of J.L to the

edge of a (1 - a) x 100% confidence region for J.L. In this regard, Weisberg (1985) argues

that observed values of Di larger than 1, typically correspond to movement to the edge of a

50% confidence region and beyond. In view of these considerations, it seems to have become

cornmon practice to identify data cases with observed values of Di larger than 1 as influential

according to Cook's distance.

In each of the following examples, Cook's distance is calculated for all the data cases in order

to investigate whether this measure succeeds in identifying selection influential cases. We will

see that although this does indeed happen in some cases, i.e. data cases deemed to be influential

when judged in terms of Cook's distance are also found to be selection influential, there are

other instances where cases which are strongly selection influential do not give particularly

large values for Cook's distance. It therefore seems that selection influential data points can not

always be identified by making use of traditional measures of influence. This is not unexpected,

especially in high dimensional cases. A data case which is selection influential because of its

nature in lower dimensional space, may not always be deemed influential when viewed in terms

of all its coordinates. Since a measure such as Cook's distance evaluates data cases in terms of

all their coordinates, it is understandable that not all selection influential cases will be identified

by such a measure.

3.2 Illustrative examples

3.2.1 The Hald data

In our first example, we consider the much analysed cement hardening data of Hald given by

Draper and Smith (1998). The data set has 4 predictor variables with 13 observations. Each

predictor variable represents the amount of a specific chemical substance used in cement to

manufacture clinkers. A complete description of these variables, together with the data set, is

given in Table B.1 of Appendix B.
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The full regression model includes an intercept term and is given by

where we assume that e V" N(O, (J2). The full model error variance estimate, defined in (1.10),

is (j2 = 5.983. Least squares estimation of {30 and the four regression coefficients results in the

following estimated regression model:

~
Y = 62.405 + 1.551xl + 0.510x2 + 0.I02x3 - 0.144x4.

Since an intercept term is included in the regression model, there are "L-t=o (~) = 16 possible

regression models considered for selection. The corresponding 16 linear subspaces contained

in the linear space M are spanned by the vector 1, together with an appropriate subset of the

vectors formed by the observations on the predictor variables. Note that M itself is spanned

by the vector 1and the vectors corresponding to all four the predictor variables. Applying Cp

selection to the full data set yields a minimum Cp criterion of 2.678, with predictor variables

1 and 2 being selected. In order to demonstrate the effect that individual data cases have on

the variable selection process, each of the 13 data cases is omitted one at a time. The selection

process is then repeated on the reduced data sets with only 12 data cases. The minimum value

of the Cp criterion, and the corresponding predictor variables which are selected on each of the

13 reduced data sets, are given in Table 3.1.

Program C2 in Appendix C was utilised for calculating the respective minimum Cp criteria

and selected variables from the full and reduced data sets. Also shown in Table 3.1 is Cook's

distance for each of the 13 data cases. Program C3 in Appendix C was utilised for this purpose.

As stated previously, predictor variables 1 and 2 are selected on the full data set. From Table

3.1 it is clear that, except for cases 3, 6 and 8, the separate omission of all other data cases

also results in predictor variables 1 and 2 being selected. However, omitting case 3 results in

variables 1, 3 and 4 being selected, whereas the separate omission of both cases 6 and 8 results

in variables 1, 2 and 3 being selected. Since omitting anyone of data cases 3, 6 and 8 leads to

a different model being selected than the model selected from the full data set, these cases are

identified as selection influential. Note that although these cases can at this stage be judged to

be selection influential, it is still uncertain whether their influence on subsequent analysis, such
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as response prediction, is beneficial or detrimental.

uata case
omitted Cp criterion Selected variables Cook's distance
case 1 3.125 1,2 0.000002
case 2 3.429 1,2 0.057225
case3 2.964 1,3,4 0.300863
case 4 3.072 1,2 0.059270
case 5 3.325 1,2 0.001821
caseS 1.061 1,2,3 0.083369
case 7 3.234 1,2 0.064285
caseS 1.172 1,2,3 0.393533
case 9 3.000 1,2 0.037532
case 10 2.989 1,2 0.020677
case 11 1.496 1,2 0.170840
case 12 3.523 1,2 0.015322
case 13 1.898 1,2 0.110239

Table 3.1: The Cp criterion, selected variables and Cook's distance calculated for each of the

data cases of the Hald data

It is important to bear in mind that a restricted definition of the term "selection influential" is

applied when only those data cases whose omission leads to a change in the model which is

selected, are deemed selection influential. It may easily happen that omission of a given data

case leaves the set of predictor variables unchanged, but that the two fitted models in question

differ to such an extent that subsequent analyses from the two models, for example, prediction

of future cases, give significantly different results. Clearly, such data cases should also be

classified as selection influential. It is obviously not as easy to identify selection influential

cases of the latter type as it is to identify cases whose omission causes the set of selected

variables to change. At this point, however, our objective is not to identify selection influential

cases of this type. A selection influence measure capable of identifying such cases is developed

in Section 4.2. Our objective for the moment is merely to illustrate the effect that separate

omission of data cases such as cases 3, 6 and 8 of the Hald data, can have on the subset of

predictor variables which is selected.

Row does Cook's distance fare in identifying the selection influential data cases in the Hald

data? From Table 3.1 we see that the largest Cook's distance of nearly 0.4 is obtained if case

8 is omitted. Since FS,8,O.836 ::::::0.4, it implies that omitting case 8 move PM Y to the edge
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of a (1 - 0.836) x 100% = 16.4% confidence region, which is a relatively small movement.

Since the data case corresponding to the largest Cook's distance is therefore not deemed to be

influential, the same judgement will be applicable to all the other observations in the Hald data.

It is therefore clear that for this particular data set, Cook's distance does not identify selection

influential data cases, such as cases 3, 6 and 8, as influential. This is not always the situation,

as will be seen in the next example.

3.2.2 The fuel data

We further illustrate the effect that individual observations has on the variable selection process

by using the fuel data of Weisberg (1985, p.35-36, and 126). This data set contains observations

for each of the 50 states in the USA. There are 4 predictor variables. The response variable is

the 1972 fuel consumption (in gallons per capita). The complete data set, with a description of

the predictor variables, is given in Table B.2 of Appendix B.

The full model is

where we assume that E V" N(O, 0-2). The estimate of the error variance obtained from the full

model is (j2 = 7452.009. When an intercept term is included in the regression model, there are

16 possible models to be considered for selection. The full estimated regression model is given

by

Y = 235.534 - 8.171xl + 1l.886x2 - 68.788x3 + 2.868x4.

Predictor variables 2 and 3 are selected on the full data set with minimum Cp = 2.517. Table 3.2

shows the value of the minimum Cp criterion and the corresponding selected variables obtained

from each of the reduced data sets resulting when a single data case is omitted from the full

data set. Cook's distance in (3.1) is also calculated for each of the data cases and presented

in Table 3.2. From Table 3.2 it is clear that, except for the reduced data sets obtained if cases

40, 49 and 50 are respectively omitted, the selection process on all the other reduced data sets

also results in predictor variables 2 and 3 being selected. Cases 40, 49 and 50 are therefore

definitely identified as selection influential. Also of interest in this data set is the fact that the
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value of the Cp criterion corresponding to these three reduced data sets is negative. This of

course contradicts the fact that the Cp criterion is an estimate of the ESEE in (2.2), which is

always non-negative.

For the fuel data, Cook's distance exceeds the value 1 for case 50. As argued earlier, this is

a widely used, albeit somewhat arbitrary criterion for deciding whether a given data case is

influential in terms of Cook's distance. Evidently, case 50 should be regarded as influential. It

is also clear that the Cook distances obtained for cases 40 and 49 are relatively larger than the

rest, suggesting that cases 40 and 49 may potentially be influential. Note that cases 40, 49 and

50 are exactly those identified as being selection influential. We therefore conclude that in the

case of the fuel data, the data cases identified by Cook's distance as influential, are exactly the

cases identified as selection influential by the leave-one-out strategy and repeated application

of Cp selection.
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case
omitted Cp criterion Selected variables Cook's distance
case 3.431 2,3 58
case 2 2.968 2,3 0.0036505
case 3 3.1~7 2,3 0.0022111
case 4 2.876 2,3 0.0104932
case 5 1.471 2,3 0.0253789
case 6 3.243 2,3 0.0013565
case 7 3.497 2,3 0.0112335
case 8 3.420 2,3 0.0005405
case 9 3.220 2,3 0.0047663
case 10 3.339 2,3 0.0033309
case 11 2.937 2,3 0.0039010
case 12 3.495 2,3 0.0022333
case 13 3.486 2,3 0.0007867
case 14 3.315 2,3 0.0024369
case 15 3.187 2,3 0.0046100
case 16 3.225 2,3 0.0014734
case 17 3.441 2,3 0.0001039
case 18 0.763 2,3 0.0377199
case 19 0.592 2,3 0.1248168
case 20 3.009 2,3 0.0159463
case 21 3.483 2,3 0.0016878
case 22 3.443 2,3 0.0000626
case 23 3.510 2,3 0.0019533
case 24 3.311 2,3 0.0049361
case 25 2.870 2,3 0.0040405
case 26 3.495 2,3 0.0000001
case 27 3.427 2,3 0.0010035
case 28 3.470 2,3 0.0000911
case 29 3.514 2,3 0.0000230
case 30 3.503 2,3 0.0013168
case 31 3.467 2,3 0.0001371
case 32 3.491 2,3 0.0020462
case 33 2.341 2,3 0.0327127
case 34 3.454 2,3 0.0013042
case 35 3.337 2,3 0.0028581
case 36 3.362 2,3 0.0050388
case 37 3.073 2,3 0.0000004
case 38 2.487 2,3 0.0067815

2.506 0.0244878

case 41 3.272 2,3 0.0023620
case 42 2.309 2,3 0.0172968
case 43 3.455 2,3 0.0006214
case 44 3.035 2,3 0.0152122
case 45 0.090 2,3 0.1696183
case 46 3.179 2,3 0.0024320
case 47 3.425 2,3 0.0008320
case 48 3.418 2,3 0.0051837

Table 3.2: The Cp criterion, selected variables and Cook's distance calculated for each of the

data cases of the fuel data
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,
3.2.3 The evaporation data

In our final example, we show the effect of individual selection influential observations by

applying the Cp criterion to the evaporation data given by Freund (1979). This data set is also

analysed by Becker et al. (1988) and Snyman (1994). Ten independent predictor variables are

measured on 46 consecutive days, together with the amount of evaporation from the soil, which

represents the response.

The complete data set, with a description of the predictor variables, is given in Table B.3 of

Appendix B. Nine of the 10 predictor variables fall into three groups of three highly correlated

variables each so that the full model can be written as

369

Y = f30 +L f3jXj +L f3jXj +L f3jXj + f3lOxlO + C
j=l j=4 j=7

where we once again assume that e "'"'N(O, a2). The estimated error variance, calculated from

the full model, is (j2 = 42.351. If we assume that it may happen that no predictor variables

are selected (i.e., the model contains only the intercept term), there are 210 possible models

to be considered for selection. Calculating the Cp criterion for the complete data set yields a

minimum value of3.759, with variables 1,3,6,8 and 9 being selected. The least squares estimate

of (3 is given by

/3 = [-54.075 2.232 0.205 -0.743 0.501 0.304 0.092 1.110 0.751 -0.556 0.009]'.

As in the previous two illustrative examples, we once again apply Cp selection to the reduced

data sets obtained by omitting case i, i = 1, ... ,46, from the full data set. The resulting

minimum Cp values and the corresponding selected predictor variables for these reduced sets,

are presented in Table 3.3. The highlighted cases in the first column of Table 3.3 are the

cases which, if separately omitted, results in other predictor variables being selected on the

corresponding reduced data set than predictor variables 1,3,6,8 and 9, the variables that are

selected if the full data set is used. These highlighted cases are therefore considered selection

influential, since omission of anyone of these cases causes a change in the subset of selected

predictor variables.
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Cook's distance calculated for each of the 46 observations of the evaporation data indicates

that none of the observations should be classified as influential (since none of these Cook's

distances exceed the value 1). Nevertheless, we highlight distances in Table 3.3 which are

relatively larger (i.e., distances larger than 0.2) than the other distances, thereby identifying

potentially influential cases. The cases corresponding to these relatively larger Cook's distances

are however not always selection influential in the sense that a different subset of predictor

variables is selected. Consider foi example data case 2. If this case is omitted, the subset

of predictor variables selected on the corresponding reduced data set is identical to the subset

selected on the complete data set. Data case 2 is therefore not selection influential in the sense

that a different subset of predictor variables is selected when this case is omitted from the full

data set. However, its Cook's distance ofO.294 is relatively large. On the other hand, some data

cases, for example case 18, which is definitely selection influential in the sense that a different

subset of predictor variables is selected, has a very small Cook's distance. It is therefore clear

that for the evaporation data, Cook's distance is definitely not always successful in identifying

selection influential data cases.
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a a case
omitted Cp criterion Selected variables Cook's distance

case 1 4.656 1,3,6,8,9 0.004795
case 2 -1.131 1,3,6,8,9 (i).2'9~'88r
case 3 3.539 1,3,6,8,9 0.026810
case 4 4.759 1,3,6,8,9 0.000022
case 5 3.926 1,3,6,8,9 0.047007
case 6 3.878 1,3,6,9 0.029748
case 7 4.631 1,3,6,8,9 0.001364
case 8 -0.408 1,3,6,9,10 0.126389
case 9 4.736 1,3,6,8,9 0.002053
éase10 4.585 1,3,6,9,10 0.002574
case 11 4.756 1,3,6,8,9 0.004128
case 12 4.481 1,3,6,8,9 0.000561
case 13 4.625 1,3,6,8,9 0.006815
case 14 4.743 1,3,6,8,9 0.000605
case 15 4.757 1,3,6,8,9 0.000585
case 16 4.549 1,3,6,8,9 0.000769
case 17 4.756 1,3,6,8,9 0.000441
case 18 4.573 1,3,6,9 0.000238
case 19 4.742 1,3,6,8,9 0.004860
case 20 4.744 1,3,6,8,9 0.002742
case 21 2.654 1,3,6,8,9 0.063002
CaSê22 2.974 1,,3i~;:~,1p 0.049839
case 23 4.629 1,3,6,8,9 0.000421
cáse2,4 1.722 1;3,6;,9 0.059969
case 25 4.756 1,3,6,8,9 0.000003
:~~se26 3.714 1,3,5,i.8,~ 0.063056
}ci$ê 27 4.266 f,3,§,9,1Q 0.006986
case 28 4.756 1,3,6,8,9 0.000186
c~s~2~ 4.667 1!3;(:),~)10 0.003374
case 30 4.750 1,3,6,8,9 0.000919

c~:f~·~1 3.067 r,3i~t8,9,: 0;4~i'l·Q1.0~,::,':?:l roW"~'. - j;{'-~ ,f;"

0;4$.~'5.03cáse32 3.148 1i~i.~!9"l~"
'cá~e~3 -3.262 1.;~!9,~,1Sf 0.180341
case 34 4.759 1,3,6,8,9 0.006716
case 35 4.759 1,3,6,8,9 0.000001
case 36 4.520 1,3,6,8,9 0,004725
case 37 1.624 1,3,6,8,9 0.061130
case 38 2.640 1,3,6,8,9 0.087699

4.002 1,3,6,8,9 0.012991
2.210 0.038762
-5.461
4.018 0.011932
4.759 0.000053
4.755 0.000916
4.756 0.002249
4.252 0.006726

Table 3.3: The Cp criterion, selected variables and Cook's distance calculated for each of the

data cases of the evaporation data
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3.3 Simulation study

The three illustrative examples in the previous section confirm the possibility of selection influ-

ential data cases being present in a data set. From these examples we also learn that traditional

influence measures, such as Cook's distance, are not always helpful in identifying selection in-

fluential data cases. An explanation for this must be sought in the fact that traditional measures

of influence are calculated using the full set of predictor variables. Selection influential data

cases are frequently influential only with respect to a subset of the predictor variables, and will

typically not be identified as influential by the traditional influence measures. When investi-

gating the influence of data cases if variable selection is applied in multiple linear regression,

it is therefore important to consider the influence of such cases in lower dimensional spaces as

well, and not only their influence on the regression model fitted to the complete set of predictor

variables.

We earlier defined a data case to be selection influential if the set of variables that is selected

from the full data set (i.e., the data set containing all the data cases) differs from the set of

variables selected from the reduced data set (i.e., the data set without the case under consider-

ation), or alternatively, given that the set of selected variables remains unchanged, if the fitted

model changes significantly upon omission of the data case being considered. In our analysis

of the three example data sets we focused on the first aspect of this definition, and we did not

attempt to investigate the extent to which selection influential data cases may influence subse-

quent post-selection analyses ofthe data. In this section we therefore report on a simulation

study that was undertaken to conduct such a deeper investigation into the effects of selection

influential data cases.

The primary aim of the simulation study of this section was to study in detail the effect that

inclusion of a selection influential data case has on the set of variables that is selected, as well

as the effect on the predicted values obtained from the selected model. Note that in this process

we focus on selection influential data cases that are included in the data set before variable

selection is done, rather than on the effect that exclusion of selection influential data cases may

have on the results of our analysis. Also, we do not try to investigate procedures that may be

used to identify selection influential points; we merely investigate the results if such a case is
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deliberately inserted into a data set.

How would one go about deliberately inserting a selection influential data case into a data set?

Consider the following illustrative example. A multivariate data set of 20 observations is first

of all simulated from a N5(O, 15) distribution. This multivariate data set will constitute the

observations of 5 uncorrelated predictor variables, Xl, X2, X3, X4 and X5' Twenty additional

values are also simulated from a N(O, 1) distribution. These values, denoted by Êl, Ê2' ... , Ê20,

constitute realisations of the random component of the multiple linear regression model. We

now let (30 = 1 and (31 = (32 = 3, (33 = (34 = (35 = O. Using (1.l), we can now calculate the

ith value of the response variable, Yi, i = 1,2, ... ,20, viz.

Yi (30 + (31Xil + (32Xi2 + (33Xi3 + (34Xi4 + (35Xi5 + Êi

1+ 3Xil + 3Xi2 + Ê.;.

The resulting regression sample includes observations on the response variable and each of the

5 predictor variables for each of the 20 data cases. These data will be referred to as the ordinary

data set. If Cp selection is applied to this data set it results in predictor variables Xl and X2

being selected. This is not surprising, since the corresponding regression coefficients of these

predictors are large.

Consider now the linear relationship between Y and the predictor variable Xl' The scatter plot

and least squares regression line for (li, XiI), where i = 1, ... , 20 are shown in Figure 3.1. The

coefficient of determination, r2, for this fitted regression line implies that 65% of the variation

in Y is explained by variation in Xl'

We now weaken the linear relationship between Y and Xl by replacing the largest value of

Xl by its smallest (i.e., for our example we replace 2.18 by -2.87). All other data cases

in the regression sample are kept unchanged. For the case where the value of Xl has been

changed, the corresponding Y-value, which equals 6.47, and the values of X2, X3, X4 and X5 are

left unchanged. The change in the regression sample therefore only affects the largest value of
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Figure 3.1: Scatter plot of Y and Xl. A least squares regression line is fitted to the data.
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Figure 3.2: Scatter plot ofY and Xl, where the largest value of Xl has been replaced by its

smallest. A least squares regression line is also fiited to this data.

If a least squares regression line is fitted to Y and the "new" Xl, only 31% of the variation in Y

is explained by variation in Xl' The change in xl-values therefore definitely causes the linear

relationship between Y and Xl to deteriorate. The scatter plot and least squares regression line

ofY and the "new" Xl, are shown in Figure 3.2. Clearly, if we study this scatter plot, the "new"

data point, with coordinates (-2.87; 6.47) will arouse suspicion and certainly be looked upon

as an outlier. However, since its influence is evident only if the linear relationship between Xl
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and the response is considered, it will probably not be regarded stray if seen in the context of

the complete multivariate regression sample.

The complete regression sample that includes the data case with altered xl-value will be referred

to as the modified data set. If Cp selection is applied to the modified data set, predictors Xl, x2

and X5 are selected. The data case that had its Xl-value changed can therefore definitely be

identified as selection influential, since we now select a set of predictor variables that differs

from the set that was selected before. Note that application of variable selection to a modified

data set will not always lead to a change in the subset of variables that is selected. This will

depend on the magnitude of the change, and on the configuration of the other data points in the

multivariate data set. We will therefore refer to a data point that has had one of its coordinates

adjusted in the manner described above as possibly selection influential.

There are of course many different ways to insert a potentially selection influential data point

into a data set. The method that we described above replaces the largest value of an important

predictor (i.e., a predictor with a large absolute regression coefficient value) by its correspond-

ing smallest value. Clearly, replacing the smallest value of an important predictor by its largest

value will also cause the linear relationship between this predictor and the response to weaken.

We could also alter a value of a predictor in such a way that the linear relationship between the

response and that predictor is strengthened rather that weakened. It would also be possible to

weaken or strengthen the linear relationship between the response and a subset of the predictor

variables by altering values of the predictors in the subset under consideration. Another possi-

bility would be to change a value of the response variable. For example, we could replace the

largest response observation with the smallest, or the other way round. This will typically tend

to weaken the linear relationship between the response and each of the individual important pre-

dictors. In our limited simulation study we restricted attention to the method that replaces the

largest observed value of an important predictor by its corresponding smallest value to weaken

the linear relationship between the response variable and the predictor concerned. We also

looked only at cases where a single possibly selection influential data point is inserted into the

data. Itwould of course be possible to extend this to situations where more than one such point

are inserted.
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Our objective in the simulation study is to investigate the effect of a single possibly selection

influential data case that is inserted into a data set. We measure this effect in terms of the subset

of predictors that is selected, and in terms of the predicted response values that are obtained

from the fitted model. Possibly selection influential data points are inserted into data sets by

using the method described above, i.e. by replacing the largest observed value of an important

predictor by its corresponding smallest value, thereby obtaining the so-called modified data

set. Throughout the discussion we focus on variable selection based on the Cp criterion. The

effect referred to above is measured hy comparing two post-selection fitted models: the model

obtained by doing variable selection and model fitting on the ordinary data set, and the model

obtained similarly from the modified data set.

Consider firstly a comparison of the two selected and fitted models in terms of the selected

predictors. In as simulation study the values of the regression coefficients are of course known.

It is therefore possible to identify a so-called "correct" model, i.e. the model that contains all the

predictors with significantly non-zero regression coefficients, and none of the predictors with

regression coefficients (close to) zero. A desirable property of a variable selection technique

is that it should select this "correct" model with high probability. The term "probability of

correct selection" (PCS) will be used in this regard. The PCS of a selection technique is

therefore the probability, under repeated sampling from the underlying distribution, of selecting

all the predictors with significantly non-zero regression coefficients, but none of the predictors

with regression coefficients (close to) zero. In our simulation we approximate the PCS by the

empirical proportion of times that the "correct" model is selected. This is done for selection

on the ordinary data set, as well as for selection on the modified data. A comparison of the

two empirical proportions reveals the extent to which the PCS is influenced by the insertion of

possibly selection influential data points.

Consider secondly a comparison of the two selected and fitted models in terms of their respec-

tive average prediction errors (APEs). Let Y* denote a new (future) n-component response

vector that has to be predicted. It is assumed that Y* is obtained from the same mechanism

(distribution) that yielded the ordinary regression sample. Note in particular that none of the
~

components ofY* has therefore been altered in any way. Let Y* denote a prediction ofY* ob-
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tained by utilising a fitted multiple linear regression model. In our context, Y* will either be

the prediction obtained from the model fitted to the ordinary data set, or the prediction obtained

from the model fitted to the modified data set. The APE oCY* is simply E II y* _ Y* 11

2
. This

unknown quantity can be approximated in our simulation by replacing the expectation by an

empirical average over a sufficiently large number of simulation repetitions. We do this for Y*

obtained from the ordinary data set, and for Y* obtained from the modified data set. A com-

parison of the two empirical averages provides information regarding the influence on APE of

the possibly selection influential case inserted into the modified data set.

3.3.1 Design of the simulation study

As stated in the previous section, the objective of the simulation study is to investigate the

effect on the pes and the APE of a post-selection fitted multiple linear regression model if a

possibly selection influential data point is inserted into the data set. It is assumed throughout

that variable selection is done using the Cp criterion. The stated objective is achieved by

comparing two simulation estimates of the pes, and two simulation estimates of the APE. The

first member of the set of two estimated PeS-values is obtained from ordinary, unchanged data

sets, while the second member is obtained from the corresponding modified data sets. A similar

procedure is followed to obtain the two estimated APE-values. Different combinations of the

following factors are employed in the simulation study:

The sample size of the simulated data set. The following sample sizes were used in the

study: n = 20,50, and 100.

The number of predictor variables in the simulated data set. For n = 20, we used m = 5,

and for n = 50 and n = 100, we used m = 5 and m = 10.

The correlation amongst the predictor variables (in this regard we study equi-correlated

cases, i.e. cases where the same correlation is assumed to hold for any pair of predictor

variables). The common value of the correlation between any two predictors was varied

over 0 (the orthogonal regressor case), 0.5 and 0.9.

The sample data sets are simulated at fixed, predetermined values of the regression

coefficients. Two different configurations were used in this regard. In the first case, we
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set 131= 132 = ... = 13m = s, and then increment the common value s from 0 in steps of

0.1 up to 1.5, and thereafter in steps ofO.25 up to 3. In the second regression coefficient

configuration we also start by setting 131= 132 = ... = 13m = 0, but thereafter only a subset

of the 13-values are incremented. In particular, for simulated data sets containing m = 5

predictors we increment the common value of 131and 132 from 0 in steps of 0.1 up to 1.5,

and thereafter in steps of 0.25 up to 3. For the cases where we had m = 10 predictors, the

values of 131,132,133,134 and 135 are incremented in the same manner.

It shou Id finally be noted that we consistently used 130 = 1 as intercept parameter in the

regression models, and that the error variance was, without loss of generality, kept constant

at (}2 = 1.

Although there are of course many other combinations of the factors listed above that could be

investigated in a simulation study, it is hoped that the cases actually covered in our study do

provide an indication of the variation in the effect that a possibly selection influential data case

may have on the pes and the APE of a fitted multiple linear regression model.

Consider now a given combination of the factors listed above, i.e. given values of the sample

size n, the number of predictor variables m, the correlation p amongst the predictor variables,

and a given configuration of 13-values. The steps followed in the actual simulation study may

be summarised as followed.

Step 1: Generate n observations from an m-variate normal distribution with mean vector 0 and

covariance matrix ~, where the diagonal elements of:E all equal 1, and the off-diagonal ele-

ments all equal p. These values constitute observations on the m predictor variables Xl, X2, ... , Xm,

and they make up the so-called ordinary data set. Create an exact replicate of this data set,

and then replace the largest value of predictor variable Xl by its corresponding smallest value,

thereby obtaining the so-called modified data set.

Step 2: Generate ti observations from an Nn(O, In) distribution. These represent observations

of the error term in the regression model.

Step 3: Use expression (1.1) to calculate n values of the response variable Y. In this calculation
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the simulated values of the predictor variables, the simulated values ofthe error variable, and the

relevant values of the regression coefficients are used. The n-component vector that is thereby

obtained represents the response in both the ordinary and the modified data sets.

Step 4: Apply Cp variable selection to the ordinary and the modified data sets, thereby obtaining

two selected, fitted models.

Step 5: Determine whether the "correct" model was selected on the ordinary data set. If so,

put PCS( ordinary, i) = 1, otherwise put PCS( ordinary, i) = O. Here, i is used to index the

simulation repetitions. Proceed similarly for the modified data set, putting PCS(modified, i)

= 1 or 0 depending on whether the "correct" model was selected or not on the modified data

set.

Step 6: Generate new values of the predictor variables and of the error term as described above,

and use these to calculate a new response vector Y*. Utilise the estimated regression coeffi-

cients from the model fitted to the ordinary data set, together with the newly generated values
~

of the predictor variables, to calculate a prediction Y*( ordinary) for Y*.

Calculate APE( ordinary, i) = II Y* - Y* 11

2
. Repeat these steps for the model obtained from

the modified data set, thereby obtaining APE(modified, i). Note that the unchanged values of

the newly generated predictor variables are used to calculate APE(modified, i).

Step 7: Repeat steps two to six, 200 times, and calculate the average, over i, of the PCS( ordinary,

i), PCS(modified, i), APE (ordinary, i) and APE(modified, i) values.

Step 8: Repeat steps one to seven, 50 times, and average the quantities obtained in step 7 over

these 50 repetitions.

We include Program C4 in Appendix C as an example of the programs used for obtaining the

simulated results. In particular, Program C4 was utilised to obtain the simulated APE and

PCS for selected models from data sets of size n = 20 with m = 5 uncorrelated predictors.

The ,8-configuration in this specific case is,81 = ,82 = ... = ,85 = 0(0.1)1.5 and thereafter

,81= ,82= ... = ,85= 1.5(0.25)3.
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The simulation results are plotted in Figures 3.3 to 3.10. Figures 3.3 to 3.6 deal with the

APE, while Figures 3.7 to 3.10 represent the PeS-results. The cases where we use m = 5

predictor variables are dealt with in Figures 3.3, 3.4, 3.7 and 3.8 (these are the plots presented

in landscape format), whereas the results for the cases where we use m = 10 predictors are

represented in Figures 3.5, 3.6, 3.9 and 3.10 (these are the plots presented in portrait format).

Consider for example the results depicted in Figure 3.3. The ,8-configuration in this case

is,81 = ,82 = ... = ,85 = 0(0.1)1.5 and thereafter zi, = ,82 = ... = ,85 = 1.5(0.25)3.

The solid lines represent the APE of the models selected with Cp from the ordinary simulated

data sets, whereas the dotted lines indicate the APE of the models selected with Cp from the

corresponding modified data sets. Moving horizontally across the landscape formatted page

containing Figure 3.3, the first row of plots represents results obtained for simulated data sets

of sizes 20, 50 and 100 respectively, with the equicorrelation parameter p = O. The second

and third rows of plots are organised similarly, but with p = 0.5 and p = 0.9 respectively. The

layout in Figure 3.4 is similar to that of Figure 3.3, but now we deal with the ,8-configuration

having ri, = ,82 = 0(0.1)5, followed by ,81 = ,82 = 1.5(0.25)3, with,83 = ,84 = ,85 = 0

throughout.

Figures 3.5 to 3.10 are organised similarly. In each case a clear indication is provided of the

sample size ti, the number of predictor variables m, the correlation p amongst the predictor

variables, and the configuration of ,8-values.

The results represented in Figures 3.3 to 3.10 are interpreted in the next section.
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Figure 3.5: The APE of models selected from simulated data sets with m = 10 predictors;

f30 = 1, f31 = f32 = ... = f310 = 0(0.1)1.5 and f31 = f32 = ... = f310 = 1.5(0.25)3

LEGEND: --: ordinary data set and - - -: modified data set

75

Stellenbosch University http://scholar.sun.ac.za



3 SELECTION INFLUENTIAL DATA CASES

SAM PLE SIZE: 50; CORRELATION: 0

1.8.-----------------:--,

1.6 .
wc.. 1.4«

1.2 . ~_.=-- .. _.. _.._._.. _.. _

0.00 O.~ O.~ 0.00 1.~ 1.~ 2.~ 3.00

BETA VALUES

SAMPLE SIZE: 50; CORRELATION: 0.5

1.2

.'

w
~ 1.4·

BETA VALUES

SAM PLE SIZE: 50; CORRELATION: 0.9

1.8

1.6 .
w

1.4c..« ..'
1.2

0.00 0.30 0.60 0.90 1.20 1.50 2.25 3.00

BETA VALUES

------- ----

SAMPLE SIZE: 100; CORRELATION: 0

1.8.,----------------,

1.6
w

1.4c..«
1.2 . ----1 .

0.00 0.30 0.60 0.90 1.20 1.50 2.25 3.00

BETA VALUES

SAMPLE SIZE: 100; CORRELATION: 0.5

1.8.------------------,

1.6 .

1.4 .

1.2 .

.'

.. -_ ..------~.~~._._.._._.-_._-------

I I

0.00 0.30 0.60 0.90 1.20 1.50 2.25 3.00

BETA VALUES

__ --...J l_

SAMPLE SIZE: 100; CORRELATION: 0.9

1.8.-----------------,

I I
Wc.. 1.4, « .'

1.6

1.2 .-_ ..

0.00 0.30 0.60 0.90 1.20 1.50 2.25 3.00 I

BETA VALUES
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Figure 3.8: The pes for models selected from simulated data sets with m = 5 predictors;

f30 = 1, f3l = f32 = 0(0.1)1.5 and f3l = f32 = 1.5(0.25)3 and f33 = f34 = f35 = 0

LEGEND: --: ordinary data set and - - -: modified data set
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Figure 3.9: The pes for models selected from simulated data sets with m = 10 predictors;

{Jo = 1, {Jl = {J2 = ... = {J1Q = 0(0.1)1.5 and {Jl = {J2 = ... = {J1Q = 1.5(0.25)3

LEGEND: --: ordinary data set and - - -: modified data set

79

Stellenbosch University http://scholar.sun.ac.za



3 SELECTION INFLUENTIAL DATA CASES

SAMPLESIZE: 50; CORRELATION: 0

0.5 .,.----------------,
0.4·

Cl) 0.3·
o
a. 0.2·

0.1 .

o ~~------------~
0.00 O.W O.~ 0.00 1.m 1.~ 2.~ 3.00

BETA VALUES

SAMPLE SIZE: 100; CORRELATION: 0

0.5 -r----------------,

0.4 ICl) 0.3
~ 0.2

0.1
o .L..._.L....~---~-----------'

.. ".. . ...

I I

I
0.00 o.w o.~ 0.00 1.m 1.~ 2.~ 3.00

BETA VALUES

SAMPLE SIZE: 50; CORRELATION:0.5 SAMPLE SIZE: 100; CORRELATION: 0.5

0.5 0.5·
I I0.4 .

I
0.4 . .. .~.- ..-. -_ .----.

0.3
.- - .. _-

-; I 0.3·Cl) ," ... --. " , I en
0 ~ I 0a. 0.2

I I a. 0.2·.
0.1 . " 0.1I
0 I 0
0.00 0.30 0.60 0.90 1.20 1.50 2.25 3.00 0.00 0.30 0.60 0.90 1.20 1.50 2.25 3.00

BETA VALUES BETA VALUES

----------1 ,.
SAM PLE SIZE: 50; CORRELATION: 0.9

0.5
0.4

Cl) 0.3·
0a. 0.2·

0.1 .

o·
0.00 0.30

.-

o.~ 0.00 1.m 1.~ 2.~ 3.00

BETA VALUES

SAMPLESIZE: 100; CORRELATION: 0.9

I I 0.5
0.4 .

Cl) 0.3
0a. 0.2 .

0.1 .

o·
0.00 0.30 o.~ QOO 1~ 1.~ 2.~ 3.00

I

I

_j

-- -. - .. -, , '

."

BETA VALUES

Figure 3.10: The pes for models selected from simulated data sets with m = 10 predictors;

/30 = 1, /31 = /32 = ... = /35 = 0(0.1)1.5 and /31 = /32 = ... = /35 = 1.5(0.25)3 and

/36 = /37 = ... = /310 = 0

LEGEND: --: ordinary data set and - - -: modified data set
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3.3.2 Discussion of tbe results of tbe simulation study

Consider first the simulation results for the APE of the models obtained by applying selection

to the ordinary and to the modified data sets. These results are plotted in Figures 3.3 to 3.6.

Recall that the solid lines show the APE of the models selected from the ordinary data sets,

whereas the dotted lines represent the APE of the models selected from the modified data sets.

The first noticeable feature of the APEs in Figures 3.3 to 3.6 is that the APEs of the models

selected from the modified data sets increase as the values ofthe non-zero regression coefficients

increase, whereas the APEs ofthe models selected from the ordinary data sets reach a maximum

before stabilizing at a constant that varies with factors such as the sample size n, the number

of predictor variables m, the correlation p amongst the predictor variables, and the particular

configuration of ,B-values. It is evident that the presence of a possibly selection influential

data point causes the APE of a selected model to deteriorate quite severely. How can this be

explained? Recall that the modified data set is obtained from the ordinary data set by replacing

the largest value of predictor by its smallest value. The general effect of this is to weaken the

linear relationship between the response variable Y and Xl' This may cause Xl to be wrongly

excluded from a selected model in which it should be included, or, in cases where Xl is in fact

selected, it may worsen the fit of the resulting model. In both cases the APE of the selected

model will deteriorate. Recall also that Xl is one of the predictor variables with a non-zero

regression coefficient. Therefore, as we move towards the right on any of the graphs in Figures

3.3 to 3.6, the regression coefficient of Xl increases, i.e. Xl becomes more important as an

explanatory variable for the response. This implies that omission of Xl from the selected model,

or a poor fit of the model with respect to Xl, will tend to have more serious consequences, and

this is clearly reflected in Figures 3.3 to 3.6.

Consider now an unimportant predictor, i.e. a predictor with zero regression coefficient. What

would happen if the largest value of such a predictor was replaced by its corresponding smallest

observation? The effect would be much less severe than in cases involving important predic-

tors. Clearly, as the non-zero regression coefficients increase, it becomes less likely for an

unimportant variable to be selected, or, even in cases where such a variable is selected, its con-

tribution to the fitted model will be small. Under these circumstances one therefore expects the

81

Stellenbosch University http://scholar.sun.ac.za



3 SELECTION INFLUENTIAL DATA CASES

behaviour of the APEs of the models selected from the modified data sets to remain very similar

to that of the APEs of the models selected from the ordinary data sets.

What can be said about the influence of the sample size n, and the correlation p amongst the

predictor variables, on the APEs? It is clear from Figures 3.3 to 3.6 that in all cases the APE

decreases as the sample size increases. This is true for the models selected from the ordinary

data sets, as well as the models selected from the modified data sets. It is also clear that the

APEs of the models selected from the modified data sets tend to increase more rapidly, with

increasing non-zero regression coefficients, as the correlation amongst the predictors increases.

We now tum to a consideration of the simulation results for the PCS, shown in Figures 3.7

to 3.10. Once again it is clear that the PCS-values for the models selected from the ordinary

data sets (the solid lines in these figures) differ from those for the models selected from the

modified data sets (the dotted lines in these figures), the difference in some cases being quite

large. Consider first in this regard Figures 3.7 and 3.9. These figures show the PCS for

the cases where all the predictors are important, i.e. the cases where all m the ,B-values are

increased from 0 up to 3. It is clear that in all cases the "correct" model (i.e. the model

containing all the predictors) is eventually selected with probability 1. However, the PCS for

the models selected from the ordinary data sets approaches 1 more quickly than does the PCS

for the models selected from the modified data sets, especially for small sample sizes. It is also

clear that at a fixed sample size both sets ofPCS-values approach the limit of 1 more slowly if

the correlation amongst the predictors increases.

Figures 3.8 and 3.10 deal with the cases where only some of the regression coefficients are in-

creased: two out of five in Figure 3.8, and five out often in Figure 3.10. Now the PCS of the

models selected from the ordinary data sets no longer increases to 1 as the non-zero regression

coefficients become larger. In Figure 3.8 the limiting PCS-value seems to be approximately

0.6, and in Figure 3.10 it is approximately 0.4. An explanation for this must be sought in the

fact that at least one of the unimportant predictors is frequently selected together with the im-

portant ones, leading to an "incorrect" model being selected. For the models selected from the

modified data sets, the situation is still worse. As the values of the non-zero regression coeffi-

cients become larger, the PCS-values of these models decrease to O.
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This has two causes: firstly, as in the case of the models selected from the ordinary data sets,

unimportant variables are frequently selected; secondly, because of the presence of a possibly

selection influential data case, one of the important predictors, viz. Xl, is frequently wrongly

omitted from the selected model. We see that once again a larger sample size has a positive in-

fluence on the PeS-values, but that a larger correlation amongst the predictors has a detrimental

effect.
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CHAPTER 4

IDENTIFICATION OF SINGLE SELECTION INFLUENTIAL DATA

CASES

4.1 Introduction

In Section 3.2 of Chapter 3 we showed, by means of illustrative examples, that a traditional

influence measure, such as Cook's distance, is not always successful in identifying selection

influential cases if variable selection is applied in multiple linear regression. This is not sur-

prising since traditional influence measures evaluate data cases in terms of all their coordinates.

No variable selection is therefore involved when such a measure is utilised for identifying in-

fluential data cases. Our concern, however, is to measure the influence of data cases if variable

selection is applied in multiple linear regression. In the statistical literature such measures, re-

ferred to as selection influence measures of data cases, have been developed. Contributions

include that of Weisberg (1981), Ahn and Park (1987), Chatterjee and Hadi (1988), Peixoto and

Lamotte (1989), Léger and Altman (1993), Kim and Park (1995), Gupta and Huang (1996),

Hoeting, Raftery and Madigan (1996), and Kim and Hwang (2000). These contributions were

discussed in Section 1.3 of Chapter 1. Of importance in all these selection influence measures

is to ensure that the measure explicitly takes an initial variable selection step into account. If

this approach is not followed the influence measure is effectively calculated conditionally on

a predetermined subset of predictors. Léger and Altman (1993) illustrate this aspect very el-

egantly when they distinguish between a conditional and unconditional selection version of

Cook's distance. We briefly explain the difference between the two versions.

In (3.1), Cook's distance for the ith case in a data set is defined to be

i = 1, ... ,n. (4.1)

Since both PMY and PMY(-i) depend on M it is clear that no variable selection is involved

in (4.1). We now indicate how a conditional selection version of (4.1) may be defined. Let
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L L(Y) denote the data-dependent selected linear subspace obtained by applying a variable
~

selection technique to an available regression sample. The subspace L, spanned by the vector 1

together with the Zvectors of observations corresponding to the selected variables, is of dimen-

sion Z+ 1. The least squares estimator of J-L, corresponding to L, is given by PI,Y, defined in

(1.14). This estimator is calculated from the full data set, i.e. the data set containing all the ob-

servations. Let PI,Y(-i) denote the least squares estimator of J-L calculated from the complete

data set excluding data case i. Note that the same subspace, viz. L identified from the com-

plete data set, is used to calculate both PI,Y and PI,Y (-i). Also, similar to PMY (-i) in (4.1),

PI,Y (-i) contains a prediction for case i, although this case is not used in calculating the esti-

mated parameters (~-coefficients) implicit in PI,Y(-i). The conditional Cook's distance for the

ith case, denoted by Di, is now defined as

IlpI, Y - PI,Y(-i) 11
2

Df = -'-'---=--;----:=--_:_--'--"'-

(z+ 1) !Tl
(4.2)

where !Tl denotes the least squares estimator of the error variance, based on the corresponding
~

predictors spanning L.

Léger and Altman (1993) obtain a so-called unconditional selection version of Cook's distance

for data case i by arguing that it is necessary to repeat variable selection using the data set

without case i. This yields a linear subspace L*, with L* possibly different from L. The least

squares estimator of J-L based on L* is denoted by PI,- Y(-i). The unconditional Cook's distance

for case i, denoted by Dr, is now defined by

(4.3)

where !T2, instead Of!Tl as in (4.2), is used to estimate the error variance, (72. The differences

between these two selection versions of Cook's distance are discussed by Léger and Altman

(1993). They conclude that the unconditional version is preferable since it explicitly takes the

selection effect into account.

We now argue along the same lines to propose a simple and easy to implement influence mea-

sure for identifying individual selection influential data cases in Section 4.2. In Section 4.3 this

new influence measure is applied to the three example data sets introduced in Chapter 3.
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4.2 A new selection influence measure

It is standard statistical practice in multiple linear regression to measure the influence of a single

data case in an analysis as follows: analyse the complete data set, and calculate a (summary)

measure, say M; repeat the analysis after omitting the case under consideration, and calculate

M(-i); quantify the influence of case i in terms ofa function, f(M, M(-i»)' of Mand M(-i)'

The measure of selection influence that we propose is also based on a leave-one-out strategy.

The following questions need to be resolved in this regard:

What is meant by an analysis of the complete or the reduced data set?

What measure, M, should be used?

How should we define the function f(.)?

Regarding the first question, in a variable selection context an analysis of the data set entails ap-

plying a given variable selection technique, and fitting the model corresponding to the predictor
~

variables that form a basis for the selected linear subspace L, to the data. Consequently, if we

wish to study the influence of a single data case in such an analysis, it is necessary to apply the

selection technique under consideration to the full data set and again to the reduced data set.

This is of course in line with the unconditional approach recommended by Léger and Altman

(1993). Turning to the second question, different choices of M can be made, depending on

the aspect of the fitted model which is of interest. In variable selection the number of selected

variables and the lack of fit of the corresponding model are typically of interest. These quanti-

ties are combined in selection criterion such as Akaike's information criteria (see Akaike, 1973

and 1974) and in model selection using the adjusted coefficient of multiple determination (see

Draper and Smith, 1998). The same is found in Mallows' Cp criterion, where for a fixed sub-

space L, the lack of fit component (i.e, the scaled residual sum of squares, IIY - PLY" 2 j(j2

in (2.4)) is combined with the number of variables (i.e. the value of [ given in the last term,

(2([ + 1) - n), of (2.4)). It therefore seems sensible to take M simply equal to the criterion

employed in the selection method. This implies that f (.)has to based on the difference in the

value of the selection criterion before and after omitting case i. This difference, M - M(-i),

can then divided by M in order to calculate the relative change in the selection criterion. The
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proposed selection influence measure for the ith case is therefore given by

M - M(-i)
f (M, M(-i)) = M ' (4.4)

where M denoted the selection criterion under consideration. Note that (4.4) can be calculated

for all selection criteria where the particular criterion is a combination of some sort of goodness-

of-fit measure and a penalty function (such a penalty function usually includes the number of

predictors of the particular selected model as one of its components, (see Kundu and Murali,

1996, in this regard)). However, since we restrict our attention in this dissertation solely to

Mallows' Cp procedure as variable selection technique, the selection influence measure in (4.4)

becomes

f (o, (y,i) /&2, c, (y (-i) , i * ) /(2)

cp (y,i) /&2 - cp (Y(-i),i*) /&2

o, (v, i) /&2

cp (y,i) - cp (Y(-i), i*)
c, (y,i)

(4.5)

The value of o, (y,i) /&2 in (4.5) is acquired from the full data set, viz.

[v - P, yl12 A

~/ +2(l+I)-n,
CJ

(4.6)

where i;with dim( i) = i + 1, denotes the data dependent linear subspace for which (4.6) is a

minimum. In a similar way is Cp (y( -i)' i.* ) /&2 in (4.5) calculated on the full data set with

case i omitted, i.e.

Cp (y (-i) ,i * )
~2
CJ

(4.7)

Note that calculation of c, (y (-i), i.* ) /&2 requires the omission of data case i before finding

L*, which is the linear subspace for which (4.7) is a minimum. It is clear that the subspace

i * will for some data cases be equal to i; and for other cases be different from L. As already

illustrated by the example data sets in Chapter 3, t.* typically equals L for the majority of

data cases. Also note that in the calculation of Cp (y (-i), i.*) /&2, the estimator for the error
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variance is obtained from the full data set. The use of this error variance estimator is supported

by considerations given by Léger and Altman (1993) for using êi in the denominator of the

unconditional Cook's distance in (4.3).

The proposed influence measure in (4.5) is large ifthe relative difference between c, (y,L) /(i
and Cp (y (-i), L* ) /&2 is large. If this is true for an omitted data case i, the particular case

is considered selection influential. Note that negative values of Cp (v, L) /&2 in (4.5) may

occur. These negative values may cause misrepresentation of the relative difference between

c, (y,L) /&2 and c, (y(-i), L * ) /&2, i.e. the relative differences for certain data cases may

now be incorrectly larger than others if, for example c, (y,L) - c, (y (-i), L *) in the numer-

ator, and c, (y,L) in the denominator of (4.5) are negative. We overcome this difficulty and

ensure that (4.5) is always positive by omitting the subtraction of n in (4.6) and (n - 1) in (4.7).

Calculating the influence measure in this way ensures that large values of (4.5) corresponds

with significant relativ~ changes between c, (y,L) /&2 and c, (y(-i), L * ) /&2.

In the next section we illustrate the proposed influence measure by applying it to the three

example data sets that were introduced in Chapter 3.

4.3 Illustrative examples

4.3.1 The Hald data

Reconsider the Hald data from Chapter 3, which consisting of four predictor variables and 13

observations. Applying Cp to the full data set, without subtracting the term ti in (4.6), results

in a criterion value of 15.678, with predictor variables 1 and 2 being selected. The Cp criterion

in (4.7), once again without subtracting the term (n - 1), is also calculated for each of the

reduced data sets obtained by omitting a single observation. For completeness we again list

the corresponding predictor variables, as in Table 3.1, selected on each of these reduced data

sets in Table 4.1. Also reported in Table 4.1 for each of the reduced data sets are the values of

the proposed influence measure, Cook's conditional distance in (4.2), and Cook's unconditional

distance in (4.3), and an estimated average prediction error. Program C5 in Appendix C was

used to calculate Cook's unconditional distance for the Hald data. The manner in which the
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entries in the last column of Table 4.1 were obtained, is explained below.

From Table 4.1 it is clear that the three influence measures attain maximum values when differ-

ent data cases are omitted. Our proposed influence measure is a maximum if case 6 is omitted,

whereas Cook's conditional and unconditional distances are maxima if cases 10 and 8 are re-

spectively omitted. In our discussion in Section 3.2.1 data cases 6 and 8 were identified as

selection influential, since their separate omission lead to a change in the selected model. In or-

der to obtain an indication of whether it would be beneficial in the sense of improved response

prediction to leave out cases 6 or 8, we calculate estimates of the expected squared prediction

error for the full data set and for each of the 13 reduced data sets. An explanation of how these

values, shown in the last column of Table 4.1, are obtained, follows in the next paragraph.

\JOOK'S \JOOK'S

Data case Selected Influence conditional unconditional Average
omitted variables measure distance distance prediction error
case 1 1,2 0.0353 0.05 0.06 12.2
case 2 1,2 0.0159 0.02 0.03 12.2
case 3 1,3,4 0.0456 0.02 0.84 12.3
case 4 1,2 0.0387 0.05 0.06 14.2
case 5 1,2 0.0226 0.01 0.01 13.0

1\ S:3si:!'6 1,2,3 0.1670 'ii 0.11 0.64 9.5
case 7 1,2 0.0283 0.07 0.08 12.4

lW" cas,e8 1,2,3 0.1599 0.08 1.83 7.3
case 9 1,2 0.0432 0.04 0.05 11.5

lê:: ~~S;~,1!O 1,2 0.0440 2< Ui 0.28 12.8
case 11 1,2 0.1392 0.14 0.16 11.5
case 12 1,2 0.0099 0.01 0.01 12.6
case 13 1,2 0.1136 0.13 0.16 10.2

Table 4.1: The selected variables, proposed selection influence measure, Cook's conditional

and unconditional distance, and the estimated average prediction error for each of the reduced

data sets of the Hald data

Firstly, consider the full data set. Randomly select 100f the 13 cases to form a training data

set of 10cases and a test data set of 3 cases, Apply the Cp criterion to the training data set

and use the selected model to calculate predictions for the 3 cases of the test data set. From

these, calculate the average squared prediction error for the test data set. Random selection

of a training data set and calculation of the average squared prediction error for the test data

set, based on the selected model from the training data set, is repeated 20000 times. Record is
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kept of the 20000 average prediction errors. Their average is calculated in order to obtain an

estimate of the expected squared prediction error. For the full data set this value equals 10.53.

The process explained above is then repeated for each reduced data set, now selecting only 9

cases for the training data set and again 3 cases for the test data set. The resulting values are

shown in the last column of Table 4.1.

We observe the following: The values of the estimated expected squared prediction error for

the reduced data sets, when cases 6 and 8 are respectively omitted, are significantly smaller than

10.53. In fact, the smallest value of this measure is obtained if data case 8 is omitted. Note

that case 8 is identified by Cook's unconditional selection influence measure as potentially

the most selection influential point in the data set. The values obtained for the estimated

expected squared prediction error therefore seem to substantiate this pronouncement. Note

that in this example the new selection influence proposed in (4.5), and Cook's unconditional

selection influence distance, do not agree as to the most prominent selection influential case.

We see, however, that the value of measure (4.5) is quite large for data case 8 (0.1599 compared

to 0.1670 for data case 6). In our next illustrative example we do find these two measures

agreeing as to the most prominent selection influential data case.

4.3.2 The fuel data

Recall that the fuel data, introduced in Chapter 3 consist of 50 observations on a response

and each of four predictor variables. Applying Cp selection in this instance to the full data

set results in variables 2 and 3 being selected. The corresponding minimum value of the Cp

criterion equals 52.517. We calculate the influence measure in (4.5) as before: for each i, omit

data case i, and repeat Cp selection to obtain a sequence of selected subspaces. In each case,

calculate the quantity in (4.7), and combine this with the value 52.517 to find the measure in

(4.5) for each value of i, i = 1,2, ... ,50. The resulting values of (4.5) are shown in Table 4.2,

together with the variables that are selected in each case, the values of Cook's conditional and

unconditional selection distances, and the estimated expected squared prediction errors.

It is clear from Table 4.2 that all three influence measures (the measure proposed in (4.5),
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Cook's conditional selection distance in (4.2), and Cook's unconditional distance in (4.3)) are

relatively large for cases 40, 49 and 50. In fact, measure (4.5) and Cook's unconditional

selection distance both reach a maximum at case 50. We repeated the calculations described in

the previous example to obtain estimated expected squared prediction errors. For the full data

set this estimate equals 9850.24. This value was obtained by performing 20000 repetitions,

at each repetition randomly dividing the 50 observations into 40 training observations and 10

test observations. The estimated expected squared prediction errors for each of the reduced

data sets were calculated similarly, now using 39 observations in the training data sets and 10

observations in the test data sets. The resulting values are shown in the last column of Table

4.2. We observe a sharp reduction in the estimated expected squared prediction error from

9850.24 for the full data set to only 6012.5 for the reduced data set missing observation 50.

The estimated expected squared prediction errors for the reduced data sets without observations

40 and 49 are also significantly smaller than that of the full data set, but not as low as that of the

reduced data set missing observation 50.

Closer inspection of the third and sixth columns of Table 4.2 reveals a strong correspondence

between the values of the selection influence measure (4.5) and the estimated expected squared

prediction errors. This is reflected in the correlation coefficient of -0.9716 between these two

sets of numbers. Note that the sign of the correlation coefficient suggests that omission of a

data case that is deemed to be selection influential according to measure (4.5) generally leads

to a reduction in the estimated expected squared prediction error. The correlation between the

unconditional Cook's selection distance and the estimated expected squared prediction error is

-0.9657, almost as strong as that between measure (4.5) and the estimated expected squared

prediction error. Finally, the correlation between the values of measure (4.5) and the uncondi-

tional Cook's selection distances is 0.9276, confirming a strong positive relationship between

these two measures for this example.

The proposed influence measure shows that the maximum relative difference between c, (y,L)
and c, (y(-i), L*) is obtained if data case 50 is omitted. Cook's unconditional selection dis-

tance confirms the implication that case 50 is selection influential. The low value obtained for

the average prediction error when case 50 is omitted supplies strong evidence that omitting this
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case before doing variable selection improves the predictive power of the resulting model. The

following question arises: How should one judge the significance of a value of the proposed in-

fluence measure? In other words, should one recommend to a practitioner analysing this data

set, to omit case 50 before doing variable selection? We attempt to answer this question by

comparing the influence measure of data case 50 with the largest influence measures obtained

in a large number of bootstrap samples.

The bootstrap method, proposed by Efron and Tibshirani (1993), is applied within a regres-

sion context in either one of two ways. The one technique involves the sampling of "pairs".

A bootstrap data set is obtained by selecting response observations, together with their cor-

responding m-dimensional independent observation vectors, randomly from the original data

set. The selection is done with replacement, and repeated until n "pairs", each of the form

(}'i; XiI, Xi2, ... , Xim), for i = 1, ... ,n, have been obtained. The other technique, and the one

we apply to the fuel data set in order to judge the significance of the corresponding influence

measure if data case 50 is omitted, involves random selection of residuals. Appropriately, this

technique is known as residual bootstrapping and is applied for a regression sample of size n,

in the following way: Determine the vector of residuals, of the form r = Y - P!vIY, once

a linear regression model has been fitted to the complete data set. Random selection of ti of

these residuals with replacement yields a bootstrap vector of residuals, denoted by rb. If we

calculate rb+ P!vI Y a new bootstrap response vector, denoted by Yb, is obtained. This newly

formed bootstrap vector and the original set of unchanged predictor variable values constitute

the bootstrap sample.

Consider now 10000 of these bootstrap samples, each of size 50 for the fuel data. The proposed

influence measure in (4.5) is calculated for every single omitted data case in each of the 10000

bootstrap samples. By keeping record of the largest value of (4.5) in every bootstrap sample,

we are provided with a set of values to which we can compare the largest influence measure (i.e.

if data case 50 is omitted) of the fuel data set. The distribution of these 10000 largest bootstrap

influence measures is shown in Figure 4.1.
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00 s 00 s
Data case Selected Influence conditional unconditional Average
omitted variables measure distance distance prediction error
case 1 2,3 0.0016 0.00169 0.00175 10138.1
case 2 2,3 0.0105 0.00400 0.00414 10012.7
case 3 2,3 0.0070 0.00386 0.00399 10028.1
case 4 2,3 0.0122 0.01194 0.01234 10394.8
case 5 2,3 0.0389 0.01716 0.01774 10152.9
case 6 2,3 0.0052 0.00856 0.00884 10104.9
case 7 2,3 0.0004 0.00146 0.00151 10272.8
case 8 2,3 0.0018 0.00225 0.00233 10240.8
case 9 2,3 0.0056 0.00324 0.00335 9966.7
case 10 2,3 0.0034 0.00152 0.00157 101·06.5
case 11 2,3 0.0110 0.00599 0.00619 10086.7
case 12 2,3 0.0004 0.00063 0.00065 10288.4
case 13 2,3 0.0006 0.00039 0.00040 10230.5
case 14 2,3 0.0038 0.00158 0.00164 10237.8
case 15 2,3 0.0063 0.00317 0.00328 10098.8
case 16 2,3 0.0056 0.00209 0.00216 10010.3
case 17 2,3 0.0015 0.00051 0.00053 10066.1
case 18 2,3 0.0524 0.03876 0.04006 9537.0
case 19 2,3 0.0557 0.19215 0.19863 9625.1
case 20 2,3 0.0097 0.01626 0.01681 10051.1
case 21 2,3 0.0006 0.00089 0.00092 10250.7
case 22 2,3 0.0014 0.00134 0.00138 10276.3
case 23 2,3 0.0001 0.00016 0.00016 10215.2
case 24 2,3 0.0039 0.00255 0.00263 10228.6
case 25 2,3 0.0123 0.00606 0.00626 10037.9
case 26 2,3 0.0004 0.00030 0.00031 10219.8
case 27 2,3 0.0017 0.00191 0.00197 10088.2
case 28 2,3 0.0009 0.00050 0.00051 10157.2
case 29 2,3 0.0001 0.00002 0.00002 10097.2
case 30 2,3 0.0003 0.00037 0.00038 10296.7
case 31 2,3 0.0010 0.00096 0.00100 10086.6
case 32 2,3 0.0005 0.00077 0.00080 10260.0
case 33 2,3 0.0224 0.04700 0.04859 9911.4
case 34 2,3 0.0012 0.00155 0.00160 10104.9
case 35 2,3 0.0034 0.00553 0.00571 10246.1
case 36 2,3 0.0029 0.00313 0.00324 10106.4
case 37 2,3 0.0085 0.00340 0.00351 10145.4
case 38 2,3 0.0196 0.01067 0.01103 9957.6
case 39 2,3 0.0192 0.03887 0.04019 9951.4
qI~!~z:4t" . 2,3,4 ,!JO;8;7.5$3 7977.2
case 41 2,3 0.0047 0.00329 0.00340 10198.4
case 42 2,3 0.0230 0.01741 0.01800 9858.6
case 43 2,3 0.0012 0.00055 0.00056 10365.2
case 44 2,3 0.0092 0.00918 0.00949 9997:8
case 4S 2,3 0.16267 9429.6
case 46 2,3 0.00258 10048.5
case 47 2,3 0.00119 10290.6
case 48 2,3 0.00184 10140.8

2,3,4 '8$3'0;7
1,2,3 .·§;b!J£~:6.

Table 4.2: The selected variables, proposed selection influence measure, Cook's conditional

and unconditional distance, and the estimated average prediction error for each of the reduced

data sets of the fuel data
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The proposed influence measure, if data case 50 is omitted, equals 0.2658. We evaluate this

value in terms of the clearly positively skewed distribution of largest bootstrap influence mea-

sures in Figure 4.1. The vertical line drawn in the class interval (0.26-; 0.29) on the histogram

in Figure 4.1 shows the position ofO.2658 in the distribution. The proportion of bootstrap influ-

ence measures that are smaller than 0.2658, equals 0.8824. This implies that the value 0.2658

lies close to the 90th percentile of the bootstrap distribution. Providing this information to any

practitioner who analyses the fuel data, will surely be helpful in the decision of whether case

50 has to be omitted before subsequent analysis is performed.

It is important to bear in mind that the proposed influence measure only identifies individual

possibly selection influential data cases. If it is, for example, decided to reject case 50 from the

fuel data set, the influence measure should be recalculated on the n - 1 remaining observations

to identify other possibly selection influential data cases. In Chapter 5 we propose a method

for identifying more than one selection influential case simultaneously.

0.05

0.2

>.uc:
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::J
tr
<Il.:::
<Il
.~ 0.1cu
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0::

LI 0 '__0-.0-5_~-_0__.-0-80.11 0.14 0.17 0.2 0.23 0.26 0.29 0.32 0.35 0.38 0.41 0.44 0.47 0.5 0.53

Upper linits of class intervals (class width = 0.03)

- --~

Figure 4.1: Histogram of largest proposed influence measures obtained in 10000 bootstrap

samples of the fuel data
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4.3.3 The evaporation data

The influence measure proposed in (4.5) was also applied to the evaporation data introduced

in Chapter 3. Recall that ten independent predictor variables are measured on 46 consecu-

tive days. Variable selection on the full data set yields the Cp criterion in (4.6) which equals

c, (y,L) j(j2 + 46 = 49.579, with variables 1,3,6,8 and 9 being selected. Table 4.3 shows

the following for each of the reduced data sets: the selected variables; values of the proposed

influence measure; Cook's conditional and unconditional distances, and the estimated expected

squared prediction errors. Random selection of 37 cases from the full data set in order to con-

stitute a training data set, and using the model selected from this set to determine the average

prediction error for the remaining 9 cases, resulted in an estimated expected squared prediction

error of 7i. 78, in 20000 repetitions. The estimated values for the reduced data sets are based

on 20000 repetitions, each time using 36 cases in the training data set and 9 cases in the test

data set. As for the previous two examples, these values are also listed in Table 4.3.

The largest influence measures are obtained when case 41 is omitted, followed by case 33. The

reduced data sets when cases 41 and 33 are respectively omitted also give the smallest values for

the estimated average squared prediction error. The strong correspondence between the pro-

posed influence measure and the estimated average squared prediction error for all 46 reduced

data sets is reflected in a correlation coefficient of -0.9712. Note that Cook's unconditional

distance is a maximum if a different case (i.e. case 40) is omitted. A correlation coefficient

of only -0.4532 is obtained when the relationship between Cook's unconditional selection dis-

tance and the estimated expected squared prediction error is considered. Finally, as expected,

the weak relationship between the proposed influence measure and Cook's unconditional dis-

tance is reflected in a correlation coefficient of 0.5022.

Omission of case 41 yields the largest value of measure (4.5) for the evaporation data. The

low value obtained for the estimated average prediction error when case 41 is omitted provides

strong evidence that omitting this case before doing variable selection improves the predictive

power of the resulting model. Even stronger evidence is acquired when the value of the in-

fluence measure, if data case 41 is omitted, is compared with the largest influence measures

obtained from 10000 bootstrap samples of the evaporation data.

95

Stellenbosch University http://scholar.sun.ac.za



4 IDENTIFICATION OF SINGLE SELECTION INFLUENTIAL DATA CASES

Data case Selected Influence conditional unco nd itlo naI Average
omitted variables measure distance distance prediction error
case 13 0.004761 77.
case 2 1,3,6,8,9 0.118377 0.464169 0.500764 63.2
case 3 1,3,6,8,9 0.024529 0.044216 0.047702 74.7
case 4 1,3,6,8,9 0.000001 0.000001 0.000001 75.9
case 5 1,3,6,8,9 0.016745 0.017850 0.019257 75.7
case 6 1,3,6,9 0.017722 0.035181 0.435609 75.8
case 7 1,3,6,8,9 0.002581 0.004219 0.004551 76.4
case 8 1,3,6,9,10 0.103856 0.122133 0.711800 63.0
case 9 1,3,6,8,9 0.000423 0.000425 0.000458 76.0
case 10 1,3,6,9,10 0.003505 0.000656 0.569935 76.1
case 11 1,3,6,8,9 0.000075 0.000072 0.000077 75.5
case 12 1,3,6,8,9 0.005596 0.003556 0.003836 74.9
case 13 1,3,6,8,9 0.002701 0.003464 0.003737 76.0
case 14 1,3,6,8,9 0.000332 0.000259 0.000280 76.1
case 15 1,3,6,8,9 0.000051 0.000049 0.000053 77.5
case 16 1,3,6,8,9 0.004226 0.002995 0.003231 74.9
case 17 1,3,6,8,9 0.000060 0.000049 0.000053 75.9
case 18 1,3,6,9 0.003754 0.002727 0.388582 75.7
case 19 1,3,6,8,9 0.000343 0.000346 0.000374 77.1
case 20 1,3,6,8,9 0.000313 0.000427 0.000461 77.5
case 21 1,3,6,8,9 0.042305 0.036039 0.038880 72.9
case 22 1,3,6,9,10 0.035879 0.015650 0.614829 74.8
case 23 1,3,6,8,9 0.002618 0.001122 0.001210 75.3
case 24 1,3,6,9 0.061039 0.049505 0.421704 72.6
case 25 1,3,6,8,9 0.000060 0.000034 0.000037 76.1
case 26 1,3,5,7,8,9 0.021005 0.018032 0.522548 73.6
case 27 1,3,6,9,10 0.009917 0.004282 0.548482 76.4
case 28 1,3,6,8,9 0.000070 0.000033 0.000035 75.2
case 29 1,3,6,9,10 0.001863 0.000178 0.543130 75.5
case 30 1,3,6,8,9 0.000192 0.000292 0.000315 76.1
case 31 1,3,4,8,9 0.034015 0.001401 1.346172 72.6
case 32 1,3,6,9,10 0.032391 0.070408 0.861339 74.1
q,a,se>'3i3 1,3,6,9,10 0.046721 0.834903 61.9
case 34 1,3,6,8,9 0.000009 0.000010 0.000011 76.6
case 35 1,3,6,8,9 0.000001 0.000001 0.000001 76.6
case 36 1,3,6,8,9 0.004813 0.006332 0.006831 75.6
case 37 1,3,6,8,9 0.063002 0.081253 0.087659 70.4
case 38 1,3,6,8,9 0.042600 0.130336 0.140611 70.9
case 39 1,3,6,8,9 0.015217 0.012991 0.014015 75.1

6,9,10 0.051232 0.022216 73.1
1,3,6,9 0.379901 0.776770

case 42 1,3,6,8,9 0.014908 0.015983 0.017243 75.0
case 43 1,3,6,8,9 0.000002 0.000001 0.000001 76.3
case 44 1,3,6,8,9 0.000089 0.000033 0.000036 75.5
case 45 1,3,6,8,9 0.000076 0.000037 0.000040 75.1
case 46 1,3,6,9,10 0.010194 0.004262 0.546985 74.7

Table 4.3: The selected variables, proposed selection influence measure, Cook's conditional

and unconditional distance, and the estimated average prediction error for each of the reduced

data sets of the evaporation data
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The histogram in Figure 4.2 shows the distribution of these values. The vertical line shows the

value of the influence measure if data case 41 is omitted, which equals 0.2054. This value lies

above the 97th percentile of the distribution, since 97.7% of the bootstrap influence measures

are smaller than 0.2054. Evaluating therefore the influence measure for case 41 in terms of

the distribution in Figure 4.2 will clearly suggest to any practitioner that omitting case 41, and

thereby using only variables 1, 3, 6 and 9 in the final regression model, is appropriate.
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Upper limits of class intervals (class width = 0.01)

Figure 4.2: Histogram of largest proposed influence measures obtained in 10000 bootstrap

samples of the evaporation data

Remark: After analysing the three example data sets, we come to the following conclusion:

The proposed influence measure can easily be calculated for any multivariate regression sample

that needs to be analysed. Once the influence measure has been obtained, a decision has to be

taken on whether to omit the data case with the largest influence measure, before selection is

repeated on the reduced data set. The magnitude by which the estimated average prediction

error decreases, if calculated for the complete and reduced data set, provides us with a good

indication of whether the data case should be omitted. The illustrated bootstrap approach can

also be utilised to judge the significance of the largest proposed influence measure. We strongly
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recommend that both these aspects (i.e., the estimated average prediction error and the bootstrap

distribution) should be taken into consideration before the data case with the largest influence

measure is merely excluded from the regression sample. •
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CHAPTER 5

IDENTIFICATION OF MULTIPLE SELECTION INFLUENTIAL DATA

CASES

5.1 Introduction

In Chapter 4 we proposed an influence measure which can be used in multiple linear regression

to identify single selection influential data cases. We also illustrated that in certain situations

it will be beneficial in terms of the average prediction error of the resulting model to omit such

a data case before variable selection is applied. In this chapter we develop a procedure which

can be used for simultaneous identification of more than one selection influential data case.

In order to explain the general argument underlying this proposed influence measure, consider

once again the expansion of the mean squared error of PLY as an estimator of JL, as the sum of

n terms, viz.

n

i=l
nL {a211PLUi112 + (JL, PM1LUi)2} .
i=l

(5.1 )

Consider an unbiased estimator of this quantity, viz.

(5.2)

where the index j refers to a given subspace L. If t denotes the total number of possible sub-

spaces (models) that can be considered for selection, we have t = 2m - 1, with m denoting the

total number of predictors in a multiple linear regression setup. Ifwe use Cp variable selection,

we effectively identify the subspace Z for which (5.2) is a minimum. We can therefore think

of the in values Dj,i' i = 1,2, ... , n; L E L, as the basic data that have to be used in the vari-

able selection process. Now consider the t x n matrix D with (j, i)th element equal to Dj,i'

Note that the row index, j, in this matrix refers to the different subspaces or models, and that

the column index, i, refers to the different points in the data set. For a given value of j we have
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5 IDENTIFICATION OF MULTIPLE SELECTION INFLUENTIAL DATACASES

a given subspace L, and the sum over i, i.e. the sum over the different columns, of the entries

in the jth row gives us the quantity in (5.2).

How can we use the information summarised in the matrix D to identify potentially selection

influential data cases? In general one's feeling is that if dj,i, the (j, i)th observed value of

Dj,i in matrix D, is very large or very small, it would signify that the observation i may be

selection influential with respect to the subspace (or model) corresponding to j. If dj,i is very

large compared to the other entries in the ith column, it would mean that observation i plays a

significant role in preventing the subspace corresponding to j from being selected (remember

that we select the subspace having the smallest row total). In such a case omitting observation

i may easily cause the selected subspace to change. Similarly, if dj,i is very small compared

to the other entries in the ith column, it would mean that observation i plays a significant role

in promotmg the selection of the subspace corresponding to j. Once again we may find that

omitting observation i under such circumstances may cause the selected subspace to change.

Viewed in this light our problem is therefore to decide whether any observed value of Dj,i in

the matrix D can be regarded as being extreme (i.e. very large or very small). The crucial

question now is: how can such a decision be made?

It has be admitted that the question posed in the final sentence of the previous paragraph has

many possible answers. Our answer to this question is to make use of the underlying distribu-

tion of Dj,i, the random variable yielding the observed value dj,i. Using our knowledge of this

distribution we intend to calculate or estimate the p-value defined by

(5.3)

If the calculated or estimated p-value is very small, it would signify that dj,i is probably a sig-

nificantly large observation. Similarly, if the calculated or estimated p-value is very large, it

would signify that dj,i is probably a significantly small observation. In both cases our conclu-

sion would be that observation i is probably selection influential with respect to subspace L. In

Sections 5.2 and 5.3 we proceed to a more detailed exposition of this approach. Section 5.2

deals with the case where a2 is known, and we consider p-values based on the underlying dis-

tributions of1\ (Y, L, i) in (2.21), and 12(Y' L, i) in (2.23). In Section 5.3 we apply the above

argument in the situation where a2 is unknown, and we consider p-values based on the under-
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5 IDENTIFICATION OF MULTIPLE SELECTION INFLUENTIAL DATA CASES

lying distributions of Cp(Y, L, i) in (2.11) and Cp(Y, L, i) in (2.16). In this section, we also

consider the p-values based on the underlying distribution of the random variables obtained if

Cp(Y, L, i) and Cp(Y, L, i) are expressed relative to the unbiased estimator of a2, i.e. the ran-

dom variables cpC;dL,i) and ëpC;dL,i). We shall see that it is not possible to derive the underlying
a a

distribution of all these random variables. However, the distribution of the random variables

considered in Section 5.2 and the distributions of those that can be derived in Section 5.3 tum

out to be non-central chi-squared distributions. Of importance in the non-central chi-squared

distribution, before the actual p-values can be determined, is estimation of the non-centrality

parameter. This aspect is considered in Section 5.4. We finally apply the proposed influence

measure to example data sets in Section 5.5, and evaluate its effectivity by means of simulation

in Section 5.6.

5.2 The case where a2 is known

We consider first the case where the value of a2 is assumed known. This simplifies the develop-

ment of our procedure, and is not an unrealistic assumption when the error degrees of freedom

in a multiple linear regression is large. Since the value of a2 is known, the unknown quantity

in the ESEE in (5.1), for a given subspace L, is simply

n n n

L (J.£, Pu Ui)2 =L \J.£, PM1LUi)2 =L 'Y(J.£, L, i).
i=l i=l i=l

This quantity is estimated unbiasedly by

n n

i=l i=l

where

and

are the two unbiased estimators of "Y(J.£, L, i), respectively introduced in (2.21) and (2.23) of

Section 2.3.2 of Chapter 2. Firstly, consider the estimator in (2.21). If11 (y, L, i) denotes the
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observed value of11 (Y, L, i), the p-value in (5.3) becomes

P {Dj,i > dj,i}

P {a211PLui112 + 11 (Y, L, i) > a211PLuil12 + 11 (y, L, i)}

P{11(Y,L,i) > 11(y,L,i)}. (5.4)

How can this p-value in (5.4) be calculated? For notational simplicity, let L be the jth linear

subspace of all 2.:::;:1(7) -1 = 2m-1possible linear subspaces containing at least one predictor

as basis vector. Since Y ,.....,N'; (IL, a2In) it follows that

(5.5)

It now follows that for the ith case and the jth linear subspace L, the random variable

IT.._ (Y,PU-Ui)2
Vi) - 2

a21IPL.LUill
follows a non-central chi-squared distribution with 1 degree of freedom, non-centrality parame-

(5.6)

ter

A2 _ (IL,PL.LUi)2
lij - a211PL.L uil12 (5.7)

and probability density function (pdf)

00 (lA2)8 1(1+28)-1 _lv
_1>.2.. L 2 lij V2 e 2[v. (v) = e 2 h) V > 0

ij 8=0 s! rO(1+2s))2!(1+28)' .

In short we write Vij ,.....,X~2(Aiij). The p-value that corresponds with the ith data case and the

(5.8)

jth linear subspace L is now calculated as follows:
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Expression (5.9) cannot be used directly to calculate the required p-value, since the pdf Iv; (v)

depends on the unknown vector J-L through the non-centrality parameter J..iij. Later on we

will discuss estimation of the non-centrality parameter, our intention then being to calculate the

required p-value from (5.9) with J..iij replaced by its estimated value.

Remark: An interesting question that arises is whether an alternative form of the p-value may

not be more informative. Consider in this regard the sum of the n estimators of the n parame-

ters, ,(J-L, L, i), i = 1, ... ,n, in the jth linear subspace L, viz.
n

1l(Y,L) = L:1l(Y,L,i).
i=l

For all i = 1, ... ,n, the following inequality holds:

Is it possible to use this additional information when we attempt to identify selection influential

data cases in the linear subspace L? Consider in this regard the following conditional p-value:

(5.10)

where 1l(y,L) = 2.::7=11l(y,L,i) is the observed value of1l (Y,L). In order to calculate

(5.10), we have to consider the distribution of1l(Y,L,i) conditional on 91 (Y,L). This

conditional distribution involves the joint pdf of

11 (Y, L, 1) ,11 (Y, L, 2), ... ,11 (Y, L, n) .

These random variables are not in general independent.

dom variables (Y,PLl_Ui) and (Y,PUUk), for i =I- k.

Consider in this regard the ran-

Recall that (Y, Pu Ui) follows a

N ((J-L, PLl_Ui) , a2 IIPu Ui In distribution. Hence, using the result in Lemma A.4 in Appen-

dix A, the covariance between (Y, PLl_Ui) and (Y, Pu Uk) can be written as

a2 (PLl_Ui, PLl_Uk)

a2 (PU Ui, Uk)

- a2
(Ui - PLUi, Uk)

a2 {(Ui, Uk) - (PLUi, Uk)}

a2 (PLUi, Uk) .
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In general, a2 (PLUi, Uk) does not equal zero, showing that (Y, P£l- Ui) and (Y, Pu Uk), for

i -=1= k, are not in general independent. This makes it very difficult to determine the joint pdf

of1l (Y, L, 1),11 (Y, L, 2), ... ,11 (Y, L, n). We conclude that calculation of the conditional

probability in (5.10) is infeasible. •

The p-value in (5.4) is based on the unbiased estimator 11 (Y, L, i) of "((JL, L, i). Similar

p-values can also be obtained from the unbiased estimator 12 (Y, L, i) of "((JL, L, i). Again ap-

plying the general argument in Section 5.1, using now 12 (Y, L, i), the random variable yielding

the observed value 12(Y' L, i), as estimator of "((JL, L, i), the p-value in (5.3) becomes

P {Dj,i > dj,i}

P {a211PLui112+ 12(Y' L, i) > a21IPLuil12 + 1dY, L, i)}

P {12(Y, L, i) > 12(Y' L, i)}

- P (y, PMILUi)2 > (y, PMILUi)2)

(
- _) _ (y, PM1LUi)2

P Vij > Vij ,where Vij = 2
a211PMILUili

100

Iv)v)dv
tJ

(5.11)

In (5.11) 1\I)v) is the pdfofthe random variable

- (Y, PM1LUi)2
Vij = 2'

a211PMILUili

that follows a non-central chi-squared distribution with 1 degree of freedom and non-centrality

(5.12)

parameter

(5.13)

The probability density function of Vij is given by

(5.14)

Should the p-value in (5.9) or the p-value in (5.11) be used in order to decide if the ith data case

is selection influential in the linear subspace L? In order to answer this question we should bear
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in mind that in determining either of these p-values, the corresponding non-centrality parameter

of Vij in (5.7) and of Vij in (5.13) have to be estimated. Once the non-centrality parameters

have been estimated we shall be in a better position to decide which one of the two p-values is

more appropriate for the purpose of identifying selection influential data cases in the subspace

L. Estimation of these non-centrality parameters receives thorough attention in Section 5.4 of

this chapter. In the next section we first consider the case where a2 is unknown.

5.3 The case where a2 is unknown

5.3.1 P-values based on the distribution of Cp(Y, L, i)

Identification of selection influential data cases when a2 is unknown, can also be based on the

p-value approach. As in the previous section we first consider v, (Y, L, i) as an estimator of

'Y(/-L, L, z). Since the value of a2 is unknown.Y, (Y, L, i) is now defined by

(5.15)

where a2 is estimated by its least squares estimator,

~2 IIY - PM YI12 IIPM_]_YI12a - - __:.:_--=.:.: _ _..:..:...~
- n - (m + 1) - n - (m + 1)

given in (1.10). If the term r;211PLUi112 is added tO::Yl(Y,L,i), we obtain the expression in

(2.11), which is the ith term in the expansion of the Cp criterion as the sum ofn terms, i.e.

r;211PLUi112 +::Yl (Y, L, i)

r;211PLUi112 + (Y, Pu Ui)2 - r;21IPL_]_ uil12 .

Consider now the distribution of Cp(Y, L, i). Let

denote the ith observed value of the random variable Cp(Y, L, i), where 82 is the observed value

ofr;2.

We can again argue that for the jth linear subspace L, the corresponding ith data case is selection

influential if the value of Cp(Y, L, i) is very large or very small. Therefore, the correspond-
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ing ith data case is considered selection influential with respect to the linear subspace L if a

significantly large or small value is obtained for a p-value in (5.3) which is now of the form

P {Dj,i > dj,i}

P{Cp(Y,L,i) > Cp(y,L,i)}

P{o:211PLUi112 + (Y, PLl-Ui)2 - (j21IPLl-UiI12 > s211PLUil12 + 's, PUUi)2
-s211P£-l_UiI12 }

P { (Y , Pu Ui) 2 + (j2 (2 IIPLUi 112- 1) > 's, P LJ- Ui) 2

+s2(21IPLUiI12 - I)}. (5.16)

How can we calculate the p-value in (5.16)? Note that the random variable Cp(Y, L, i) is the

sum of two functions oftwo different random variables. The first, (Y, PLj_Ui) 2 = (Pu Y, Ui) 2,

is a function of Pu Y, and the second, (j2 (211PLUi112 - 1) = IlpMj_Yl~~~t)uiIl2-1), is a func-

tion of PMl- Y. Since L is a linear subspace of M, the random variables PLl- Y = Y - PLY and

PMl- Y = Y - PM Yare not independent. This has the implication that the two functions of

these random variables, (Y, Pu Ui) 2 and (j2 (211 PL Ui 112- 1), are also not independent. Due to

this dependence of (Y, PLj_Ui)2 and (j2 (211PLUi112 - 1) it is difficult to write (5.16) in a form

that is suitable for calculations. Better progress is possible with p-values based on the distribu-

tion Of(j211PLUi112 + (Y, PMILUi)2 - (j21IPMILUiI12. Such p-values are discussed in the next

section.

5.3.2 P-values based on the distribution of Cp(Y, L, i)

The same difficulties mentioned in the previous paragraph are not experienced if

is considered as an estimator of (/-L, PLl- Ui)2. If the term (j211PLUi112 is added to 12 (Y, L, i),

we obtain the expression in (2.16), which is the ith term in the expansion of the Cp criterion as

the sum of n terms, i.e.

106

Stellenbosch University http://scholar.sun.ac.za



5 IDENTIFICATION OF MULTIPLE SELECTION INFLUENTIAL DATA CASES

The corresponding p-value based on the sampling distribution of Cp(Y, L, i) is of the form

p{Cp(y,L,i) > Cp(y,L,i)} (5.17)

P{0=211PLUi112 + (Y, PM1LUi)2 - 0=211PMILUil12 > s211PLUil12 + (y, PM1LUi)2

-s211PMILUi112 }

P{ (Y, PM1LUi)2 + 0=2(211PLUi112- liPMUiin> (y, PMILUi)2

+s2 (211PLUi112- IIPMUiI12)}

where Cp(y, L, i) in (5.17) is the observed value of the random variable Cp(Y, L, i).

Remark: Note that (5.17) is again a specialisation of the general argument proposed for the
- -

influence measure in Section 5.l, here Cp(Y, L, i) = Dj,i and Cp(y, L, i) = dj,i. •
For notational simplicity we let

(Y, PM1LUi/ + 0=2(211PLUi112- IIPMUiI12)

x., + Wij

(5.18)

where Xij = (Y, PM1LUi)2, and Wij = 0=2(211PLUi112-IIPMUiI12), and where the index j

again refers to a particular linear subspace L contained in M. In this notation the p-value in

(5.17) becomes

(5.19)

where rij is the observed value of Rij. The distribution of Rij is required to determine the

p-value in (5.l7) or (5.19). In order to obtain this distribution, recall that in (5.l2) it is stated

that

·h,2 (I-L,PM1LUi)2 d b bili d . ti . f () F h ith d dhWIt /\2ij = II 112'an pro a ihty ensity unction V.. v. or t e zt ata case an t e
,,2 PM1LUi ']

jth linear subspace L, we therefore have

(5.20)
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This transformation from {v : fv) v) > O] onto {x : fx., (x) > O}, yields the probability

density function of Xij as

(5.21)

The result that

T = (n - (m + 1)) 0:2 2
a2 rv Xn-(m+l) (5.22)

where X2 is the central chi-squared distribution and n - (m + 1) its degrees of freedom, can

easily be established. The pdf ofT is given by

d(n-(m+l))-le-~t
fT(t) = t > O.r O(n - (m + 1))) 2~(n-(m+l»)'

A transformation from {t : fT (t) > O}onto {w : [w., (w) > O},where

a2 (211PLUi112 - IIPMUiI12)
Wij = (n _ (m + 1)) T,

(5.23)

(5.24)

yields the probability density function of Wij as

fw.(w) = (n - (m + 1)]fT (w(n - (m + 1])) .
'J a211PMILUili a211PMILUili

Note that the transformations in (5.20) and (5.24) were chosen such that their sum yields the

(5.25)

random variable in (5.18), i.e.

Consider also a transformation from {w : [w., (w) > O} onto {s : f s (s) > O} by letting

S = Wij. Then Rij = Xij + S, and the joint pdf of Rij and S is given by

(5.26)

for -00 < r < 00 and s > O. Ifwe now assume that Xij and "'ij are independently distributed

(the validity of this assumption is established below), the joint probability density function of
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Xij and Wij in (5.26) can be written as

(5.27)

The marginal probability density function of Rij follows as

fRij(r) =100

fxij(r + S)fWij(s)ds.

By using the marginal probability density function of Rij, the p-value in (5.17) and (5.19) can

be written as

P(Rij > rij) =100

fR;j(r)dr
rtj100100

fxij(r + S)fWij(s)dsdr
',J

f fW'j(sJ (f fx.j(r + SJdr) ds.

Setting r + s = u it follows that

Finally, by setting II ti 112= v, the p-value in (5.17) and (5.19) becomes
a2 PM1LUi

P (Rij> rij) =100

fwij(s) (Joo

rij+s fVij (v) dV) ds.
(T21IPM,LuiI12

It should be noted that the value of 0'2 in (5.28) is unknown. We therefore have to replace 0'2

(5.28)

by an estimate, (;2, before (5.28) can be used to calculate an estimated p-value.

Recall that the expression for P (Rij > rij) above is based on the assumption that Xij and

Wij are independent random variables. We now verify that this assumption indeed holds.

Note that Xij = (Y, PM1LUi)2 = (PMIL Y, Ui)2 is a function of PMIL Y, and that Wij =
~2 (211p '112-liP '112) - IlpM.L vI1

2
(21IPLuiIl2-IIPMuiln· ~ ti fP Y It' ffi-a LU, MU, - n-(m+l) IS a rune Ion 0 M.L. IS su

cient therefore to show that PMIL Y is independent of PM.L Y, since this would imply that any

function of PMIL Y is independent of any function of PM.L Y. Thus, in our situation, the in-
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dependence of PMILY and PM1. Y will yield independence of x., and Wij. Since PMILY

and PMl_Yare both normal random vectors, independence will follow if we can show that

E (PMIL Y) (PM1. Y)' = E (PMIL Y) [E (PM1. Y)]', since then the variance-covariance matrix

of these two random vectors will be the null matrix. For this purpose, let

V I, V 2' , Vn be an orthonormal basis for Rn

VI, V2, , VI be an orthonormal basis for L, and

Vl, V2, , Vl>.VI+l, ... , Vm be an orthonormal basis for M, with m < ti.

It now follows that

m n

i=l+l j=m+l

m n

i=l+l j=m+l
m n

i=l+l j=m+l

(.t Vi (Vi, J-L)) (. t vj (Vj, J-L))
t=l+l J=m+l

E (PMIL Y) E (PM 1.Y)' .

This shows the independence of PMILY and PM1. Y, implying therefore also independence of

x., and Wij.

The independence of PMILY and PM1. Y also implies that ~j and T are independently dis-
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tributed, since Vij is a function of PMIL Y, and T is a function of PMJ.. Y. The distribution

of

F = Vij/l = (Y, PMILUi):
T/(n - (m + 1)) O'211PMILUili

will thus be a non-central F distribution with degrees of freedom 1 and (n - (m + 1)) and

non-centrality parameter A~ij as given in (5.13). In short we write

5.3.3 P-values based on the distribution of CpC:dL,i)
a

In Section 5.3.1 we investigated the possibility of calculating p-values using the distribution of

Cp(Y, L, n. In this section we briefly discuss p-values based on the distribution ofCp(Y, L, i),

expressed relative to 0'2. Consider therefore the random variable

IIPLUil12 + (Y, P_:2J..Ui)2 - IIPLJ.. uil12
a

(211PLUi112 - 1)+ (Y, P_:
2
J..Ui)2

a
(5.29)

This random variable is an estimator of the ith term of the ESEE expressed relative to a2, viz.

E [/1i(L) - l1il2

a2 (5.30)

Let 82 denote the observed value ofO'2• Since (211PLUi112 - 1) in (5.29) is independent of the

data, the general p-value in (5.3), where Dj,i now estimates (5.30), becomes

(5.31)

where (y,PLJ..u,)2 is an observation of the random variable (y,p~J..u,)2 In Section 5.3.1, where
S a

p-values based on the distribution of Cp(Y, L, i) were discussed, it was pointed out that (Y, PLJ.. Ui) 2

and 0'2 are not independently distributed. Because of this dependence progress with the p-value

in (5.31) is very difficult. We therefore rather consider p-values based on the distribution of

Cp(Y, L, i)/O'2 in the next section.
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5.3.4 P-values based on the distribution of CpC:dL,i)
a

Consider again the ith term of the ESEE expressed relative to (j2, as given in (5.30). We now

estimate (J.L,P:~LUi)2 in (5.30) unbiasedly by

(Y, P~~LUi/ -IIPMILUiI12
.

a

This leads to the ith term in the expansion of the c, criterion, expressed relative to (j2, being

(5.32)

Note that (211PLUi112 - IIPMUiI12) is independent of the data. We therefore consider the distri-
( )2 ( )2. Y,PM LUi •• y,PM LUi •

bution of <7 I , WhIChISdenoted by Sij. Let Sij = 81 be an observation of Sij.

The p-value in (5.3), where (5.30) is estimated by (211PLUi112 - liPMUi In +Sij, now becomes

(5.33)

onto {u : Ju (u) > O}, yields the following probability density function for U:

Ju(u) = (11, - (m + 1))JT(u(11, - (m + 1)).

Since Vij and U are independent we can easily condition on U. Consequently the p-value in
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(5.33) becomes

P(Sij > Sij) = P (Vij > sijU)

Eu {p (Vij > U sijlU = u) }

Eu { P (Vij > USij) }

Eu {1: Iv,,(V)dV}
f {1: Iv.,(V)d,}U(U)dU
roo {lOO fV)V)dV} (n - (m + l))fT(u(n - (m + l))du.
Jo uS'J

(5.34)

The integral in (5.34) can be calculated using numerical integration. A significantly large or

small answer will once again indicate that the corresponding ith case is selection influential

with respect to the linear subspace L. The quality of the conclusions drawn in this regard from

(5.34) will again strongly depend on estimation of the non-centrality parameter A~ij of the non-

central chi-squared random variable Vij. This aspect should be investigated before (5.34) is

used for the identification of selection influential data cases.

Remark: We conclude this section by showing how the p-value in (5.34) can be refined by

using an unbiased estimator of -4 in the estimation of E[Pi(L~-J.ld2 . In order to obtain sucha a

an unbiased estimator of ;2' reconsider the random variable T given in (5.22) which follows a

chi-squared distribution with E(T) = n - (m + 1) and

E (~) = E (( n _ (;~ 1))a2 )

1 roo t(~(n-(m+l))-l)-le-~tdt
r (~(n - (m + 1))) 2~(n-(m+l)) Jo
r (~(n - (m + 1)) - 1) 2~(n-(m+l))-1

r O(n - (m + 1))) 2~(n-(m+l))

r O(n - (m + 1)) - 1)
2f O(n - (m + 1)))

1
n-(m+l)-2'
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If we now consider

E (~) = n - (m + 1) E (~) = ( n (" (m +)1) )~,
(; (72 T n - m + 1 - 2 (7

it is clear that an unbiased estimator of ;2 is given by

(
n - (m + 1) - 2) _!_.

n - (m + 1) (;2
(5.35)

To determine the refined p-value we now consider the distribution of the random variable Sij =
(n-(m+l)-2)(y,PMILUi)2 . h b d I f- - (n-(m+l)-2)(y,PMILUi)2 Arzui I

(n-(m+l))i7 WIt an 0 serve va ue 0 Sij - (n-(m+l))s2 . gumg a ong

the same lines as above, the p-value can be determined from

P(Sij > Sij)

100{1:fv,,(V)dV} (n - (m + l))fr(v(n - (m + l))du. (5.36)

•
5.4 Estimation of the non-centrality parameter

5.4.1 The case where (72 is known

In the previous section we developed a method to identify multiple selection influential data

points by using a p-value approach. In particular, for the case where (72 is known, we can either

use the p-value in (5.9) based on the non-central chi-squared distribution of Vij in (5.6) or the

p-value in (5.11) based on the non-central chi-squared distribution ofVij in (5.12). Determining

either of these p-values requires estimation of the corresponding non-centrality parameter of the
-

relevant non-central chi-squared distribution. These non-centrality parameters of Vij and Vij

are respectively given in (5.7) and (5.13) as

Ai .. = (JL, Pu Ui): _ "( (JL, L, i) 2
lJ (721IPL.LUill (721IPL.LUill

and

A~ij = \JL,PM1LUi): = "((J.L,L,i) 2.

(721IPMILUill (721IPMILUill

114

Stellenbosch University http://scholar.sun.ac.za



5 IDENTIFICATION OF MULTIPLE SELECTION INFLUENTIAL DATA CASES

Should we now use the p-value based on the distribution of Vij or the p-value based on the

distribution of ~j in an attempt to identify selection influential data cases? To answer this

question we should consider estimation of the non-centrality parameters of the non-central chi-

squared distributions of Vij and ~j. The accuracy with which these non-centrality parameters

are estimated will naturally affect the accuracy of estimation of the p-values. Here we will

measure the accuracy in terms of the variances of unbiased estimators of Aiij and A~ij' The

estimated p-value corresponding to the smallest variance non-centrality parameter estimator

will be preferred in the identification of selection influential data cases.

For notational convenience let the non-centrality parameter of the ith case and the jth linear

subspace L, Aiij, be denoted by Ai. In a similar way, let A~ij be denoted by A~. Estimation

of either Ai or A~ only involves the estimation of (/-L, PLl- Ui) 2 = \/-L, PMIL Ui) 2 = "((/-L, L, i),
since the respective terms in the denominators of the two non-centrality parameters are known.

In (2.21) and (2.23) of Chapter 2, we presented 1l(Y,L,i) and 12(Y,L,i) as two unbiased

estimators of"( (/-L, L, i). As previously, for notational convenience, let "( (/-L, L, i) be denoted

by 't, 11(Y, L, i) by 1'1 and 12(Y' L, i) by 12' Also in Section 2.3.2 of Chapter 2 we showed

analytically, and by means of a limited simulation study, for the case where a2 is known, that

12 is a relatively more efficient estimator of y, than 11' i.e.

For this reason we prefer to use 12 as an unbiased estimator of"( when estimating either )'1 or

).2 unbiasedly. The unbiased estimators of Al and A2 are therefore given by

(5.37)

and

(5.38)

Consider now the variances of these two estimators:
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and

(
~2) Var (92) Var (92)Var A2 = 2 - 4 •

(a2//PMILUi//2) a41/PMILUil/

Belsley, Kuh and Welsch (1980, p. 66) show that

This implies that

and consequently that

Var (:\~) ~ Var (:\~) . (5.39)

Since the non-centrality parameter Ai of the non-central chi-squared random variable Vij in

(5.6) is estimated with smaller variance than the non-centrality parameter A~ of non-central chi-

squared random variable Vij in (5.12), we utilise the p-value in (5.9), based on the distribution

of Vij, rather than the p-value in (5.11) based on the distribution of Vij, to identify selection

influential data cases.

Remark: As a matter of interest, note that if I in Ai is unbiasedly estimated by 91 rather than

92' the inequality in (5.39) does not always hold. To see this let

be the corresponding unbiased estimator of Ai with

Var (:\2) = Var (91) = Var (91)
3 (a21IPuUiI12)2 a41IPL.LUil(

Since Var (92) ~ Var (91) and I/PMILUil/2 ~ IIPuUiIl2, it follows that

Var (92) <
(~ ) _ 1Var Il -

(5.40)

and
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If we assume now that

it follows that

Var(1\) < Var(92)

0-411Pu-ui114 = 0-411PMILUil14

and hence

V ar (:\~) ~ V ar (:\~) .

However, on the other hand, if we assume that

it follows in a similar way that

V ar (:\~) ~ Var (:\~) .

~2 ~2 Ve)
The relative sizes of the variances of A3 and A2 therefore depends on which of v:~(9~)
IlpM,Luil14 < . I
II ,114 = lIS c oser to 1.
PLj_ Ut

< lor

We also used simulation to investigate the relative sizes of V ar (:\~) and V ar (:\~), and found

in almost every case that V ar (:\~) is smaller than Var (:\~). For example, consider again the

numerical evaluation ofVar (91) and Var (92) in Section 2.3.2 of Chapter 2. The vectors

10 10 10 10

ml = lO,O]' and m2 = lO,O]'
were chosen as basis vectors for the two-dimensional linear subspace M = span {ml, m.}.

We also defined the linear subspace L = span {m2}. Vectors of the form

were obtained for j3 = 1 and a-values which varied from -30 to 30 in steps of size 1. The

variances of91 (Y, L, 1) and 92(Y' L, 1), as estimators ,(Y, L, 1), were then approximated by

repeatedly simulating error vectors e I'V N20(O, 0-2120)and computing Y = JL + e. Remember

that V ar (:\~) ~ Var (:\~) if and only if ::IIII::~ :ii111144~ ~ :~~~:~. From Figure 2.1 in Chapter 2
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. Var('Yi(y,L,l)) dl f h Iit is apparent that the ratio of the approximated vanances, (~2( )' regar ess 0 t eva ueVar 1'2 Y,L,l)

of a, is more or less equal to 10 for large positive and negative a-values. For a-values close to

zero the ratio increases to a value which approximately equals 100 for a = 1. Using (2.31) and

(2.34) it follows that

Consequently 1111PLj_ui11114 = 100 which, except when a = 0 for some of the a-values, is largerPM1Lu,
than var~2~(y,L,1)~. It therefore seems reasonable to conclude here that IIIPM,Luillr < Var('Y2)

Var 1'2(Y,L,1) PLj_Ui Var('Yj)'

which implies that V ar (:\~) < V ar (:\~).

Also in a multiple linear regression context, it becomes very clear why V ar (:\~) is usually

smaller than Var (:\~) . From (2.45) and (2.52) in Section 2.4.1, we know that IIPLj_ Ui 112 = l-
Vii and IIpM1LUi 112= Uii - Vii, where Vii is the ith diagonal element of PL = XL(X~XL)-l X~,

and Uii is the ith diagonal element of PM = X(X'X)-lX'. We found in practical applications

of multiple linear regression analysis that values obtained for Uii were significantly smaller

than 1. Since Vii ~ Uii, this implies that Vii is even smaller, which consequently results in

a very small value for Ui'_~::i. Also for subsets which contain a large number of predictor

variables, values of Uii and Vii are close to each other. Especially for these cases, values for

Ui'_~::iis extremely small. We found in most of the regression applications that these values of

Ui'_~::iwere usually smaller than ~:~~~~~,which implies that Var (:\~) is usually smaller than

Var (:\~). •

Our estimator of choice for Ai is, however its unbiased estimator :\~ in (5.37). Note how-

ever that the non-centrality parameter Ai is always positive. However, Ai may be negatively

estimated by its unbiased estimator,

(Y, PM1LUi)2 - a211PMILUil12
a21lPuuil12

(Y, PMILUi)2 IIpMILUil12
a211PLj_ui112 IIPLj_uiI12 '
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given in (5.37). In order to prevent this, the estimator is truncated at 0, i.e. we rather use

(5.41)

Although C>:~)+ is a biased estimator of Ai, its mean squared error will be smaller than the
~2

mean squared error of the unbiased estimator Al of Ai. Saxena and Alam (1982) also suggest

this type of truncated estimator when estimating the non-centrality parameter of the non-central

chi-squared distribution. Shao and Strawderman (1995) propose further minor modifications

to this type of estimator. Venter and Steel (1990) show that in estimating the non-centrality

parameter, its truncated form and also various empirical Bayes estimators perform much better

than the unbiased estimator.

In a simulation study reported in Section 5.6 of this chapter, we illustrate how the p-value in

(5.9), can be utilised for identifying selection influential data cases. In this simulation study

we estimate the corresponding non-centrality parameter of the chi-squared distribution of Vij in

(5.6), by the truncated estimator in (5.41).

5.4.2 The case where (J2 is unknown

We now turn to estimation of the non-centrality parameter for the case were (J2 is unknown.

For this case, as pointed out earlier, no progress is made in deriving p-values based on the dis-

tribution of Cp(Y, L, i) or the distribution of Cp(~2L,i), due to the dependence of (Y, PL.L Ui)2

and (j2. A p-value based on the distribution of Cp(Y, L, i) was also presented, but its useful-

ness for identifying selection influential data cases is hampered by the fact that (J2 need to be

estimated in the lower bound of one of the integrals in (5.28). This leaves us with the p-value

based on the distribution of cpC'~l,i),which was derived in (5.34), for the identification of se-
a

lection intluential data cases. A modified version, where ;2 is unbiasedly estimated, appears

in (5.36). Computation of either (5.34) or (5.36) entails integration of the probability density

function of the random variable Vij which follows a non-central chi-squared distribution with

1 degree of freedom and non-centrality parameter

A~= ' 2'(J21IPMILUill
If'Y and ;2 in the above non-centrality parameter are unbiasedly estimated by respectively 12
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in (2.23) of Chapter 2 and (n:~7~~1)2)~ in (5.35), we obtain an unbiased estimator of A~.

Note that this estimator can also be truncated at zero, thereby eliminating the unsatisfactory

situation which may arise whereby a quantity which we know to be non-negative is estimated to

be negative. In Section 5.5 that follows we identify selection influential data cases by applying

the p-value approach to the same example data sets introduced earlier.

5.5 Illustrative examples

In practical regression samples the value of the error variance, a2, is unknown. If our objective

is to utilise a p-value approach to identify selection influential data cases, we have to consider

the p-values in (5.34) and (5.36) for this purpose. Making, for example, use of the p-value in

(5.34), we have to determine a probability of the form

for each of the data cases and for every linear subspace L of M. In obtaining these p-values we

have to estimate, for each data case and every linear subspace, the corresponding non-centrality

parameter

of the non-central chi-squared random variable \!ij in (5.12). In Section 5.4.2 we showed how

A~ij can be estimated unbiasedly. Note however that the unbiased estimator of A~ij is not

computable when the linear subspace L equals M, since then

Consequently, we cannot use this approach to determine whether a data case is selection in-

fluential if the regression model is fitted to the complete set of predictor variables. A more

serious problem also arose when we tried to use (5.34) or (5.36) to identify selection influen-

tial data points in example data sets. We found that the majority of p-values obtained for other

subspaces than M, equalled either 0 or 1, thereby implying that the majority of cases in the cor-

responding data set are selection influential. A possible reason for these inconclusive results is

poor estimation of the corresponding A~ij required to calculate the p-values for these cases in
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the particular subspaces of M. Recall from Section 5.4.1 that, for the case where a2 is known,

the variance of the estimator ~~ij of A~ij tends to be large due to the presence of IIPMILuil12 in

the denominator of the estimator. This also applies if we consider estimation of A~ij for the

case where a2 is unknown. The p-value in (5.34) is therefore often unsuccessful in identifying

selection influential data cases. The same applies for the p-value in (5.36).

How should we then proceed to identify selection influential cases in a data set where a2 in

unknown? A fairly naive approach, that seems to give good results in the examples that were

investigated, is to assume that the estimate of a2, obtained from the regression sample, is in fact

the known value of the parameter. In particular, this procedure entails the following:

For a data set under consideration, a2 is merely estimated by its unbiased estimator in

(1.10). The obtained estimated value is now assumed to be the known value of a2.

The p-value in (5.9) is utilised for identifying selection influential cases in the data set.

~2
Note that the non-centrality parameter associated with the p-value in (5.9) is AI' which is esti-

mated by the truncated estimator in (5.41), as if (72 is known. Estimation of a non-centrality

parameter that includes the term lipMIL Ui 112in the denominator, is thus specifically avoided.

We found that the method described above produces satisfactory results if applied to practical

data sets. In the next section we apply this method to the three example data sets already

introduced in Sections 3.2 and 4.3.

5.5.1 The Hald data

Consider again the Hald data which include 4 predictors and 13 observations. The full model

variance estimate is;;2 = 5.983. This estimate is now assumed to be the known value of a2. We

now utilise the p-value in (5.9) in an attempt to identify selection influential data cases. For each

of the 13 observations, we calculate (5.9) for all subspaces L in M = span {I, Xl' X2, X3, x4}.

There are 24 - 1 = 15 such linear subspaces containing at least 1 predictor variable. Each

of these subspaces L, with dim( L) = l + 1, is spanned by the vector 1and a corresponding

subset of l predictors, i.e. L = span {I, Xj : j E JL} c M, where JL C {I, 2, 3, 4}. The

corresponding non-centrality parameter needed to obtain these p-values, is estimated by (5.41).
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These p-values for all linear subspaces L of M (thus 15 for each of the 13 data cases) are shown

in Table 5.1. Program C6 in Appendix C was utilised for calculating the p-values and average

p-values of the Hald data.

How should we now proceed in order to identify selection influential data cases? Consider the

p-value calculated for the ith data case and the linear subspace L, viz.

If a significantly large or small value is obtained for the p-value, the corresponding ith data case

is identified selection influential within the linear subspace L. In order to determine if a case is

selection influential in all linear subspaces containing a given jth predictor variable as a basis

vector, we calculate the average of all p-values for those subspaces that include predictor Xj

as a basis vector. The ith data case is considered selection influential if any of its m average

p-values is significantly large or small.

The 4 average p-values, for each of the 13 data cases of the Hald data, are also shown in Table

5.1. We observe that the average p-values for data case 6 are significantly smaller than the

average p-values obtained for other data cases. At a 10% significance level, data case 6 will

be regarded as selection influential. No other data cases are deemed selection influential at this

significance level. Note, as a matter of interest, that data case 6 was also identified as selection

influential by the new influence measure proposed in Chapter 4.
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Observation
Model 1 2 3 4 5 6 7

1 0.486 0.746 0.718 0.222 0.569 0.044 0.731
2 0.792 0.748 0.718 0.776 0.505 0.045 0.241
3 0.492 0.737 0.731 0.221 0.528 0.045 0.731
4 0.475 0.750 0.732 0.772 0.417 0.045 0.241

1,2 0.491 0.618 0.509 0.436 0.589 0.079 0.505
1,3 0.490 0.752 0.720 0.221 0.445 0.044 0.732
1,4 0.461 0.418 0.303 0.257 0.414 0.101 0.604
2,3 0.482 0.747 0.773 0.830 0.531 0.044 0.229
2,4 0.490 0.751 0.723 0.776 0.745 0.045 0.241
3,4 0.475 0.775 0.204 0.992 0.519 0.053 0.228

1,2,3 0.936 0.434 0.560 0.449 0.930 0.084 0.450
1,2,4 0.971 0.491 0.406 0.397 0.896 0.090 0.464
1,3,4 0.786 0.581 0.216 0.313 0.793 0.100 0.502
2,3,4 0.613 0.961 0.176 0.240 0.860 0.115 0.465

1,2,3,4 0.998 0.449 0.294 0.400 0.898 0.086 0.457

Variable
1 0.702 0.561 0.466 0.337 0.692 0.079 0.555
2 0.722 0.650 0.520 0.538 0.744 0.074 0.381
3 0.659 0.680 0.459 0.458 0.688 0.072 0.474
4 0.659 0.647 0.382 0.518 0.693 0:079 0.400

Observation
Model 8 9 10 11 12 13

1 0.071 0.261 0.541 0.852 0.330 0.832
2 0.069 0.712 0.437 0.788 0.318 0.438
3 0.059 0.255 0.423 0.214 0.332 0.834
4 0.076 0.714 0.434 0.790 0.319 0.890

1,2 0.341 0.410 0.429 0.147 0.694 0.182
1,3 0.058 0.259 0.569 0.842 0.330 0.834
1,4 0.054 0.774 0.532 0.960 0.438 0.782
2,3 0.993 0.909 0.428 0.150 0.389 0.133
2,4 0.062 0.716 0.434 0.812 0.318 0.890
3,4 0.913 0.837 0.415 0.147 0.493 0.138

1,2,3 0.090 0.485 0.874 0.329 0.700 0.257
1,2,4 0.118 0.556 0.806 0.298 0.629 0.291
1,3,4 0.125 0.704 0.726 0.222 0.511 0.401
2,3,4 0.318 0.898 0.393 0.147 0.358 0.615

1,2,3,4 0.091 0.502 0.833 0.283 0.643 0.261

Variable
1 0.119 0.494 0.664 0.491 0.534 0.480
2 0.260 0.649 0.579 0.369 0.506 0.383
3 0.331 0;606 0.583 0.292 0.469 0.434
4 0.220 0.713 0.572 0.457 0.464 0.533

Table 5.1: Individual p-values and average p-values calculated for the 13 data cases of the Hald

data
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5.5.2 The fuel data

The p-value in (5.9) was also calculated for the fuel data with 4 predictors and 50 observations.

We assume that the full model error variance estimate (j2 = 7452.009 is the known value of

(f2. The different subspaces L for which (5.9) needs to be calculated, for each of the 50 data

cases, are the same as for the Hald data. For each of the 50 observations the average of the

corresponding p-values of the subspaces including Xj, where j = 1,2,3,4 are also calculated.

Note that 8 of these subspaces include predictor variable x j. The calculated p-values in (5.9)

and the 4 average p-values for each of the 50 data cases are shown in Table 5.2.

The average p-values obtained for cases 40 and 50 are extremely small. These cases will

therefore be considered as selection influential. Other average p-values which are also relatively

small or large are highlighted. These are for cases 18, 19, 29 (large average p-values for X2, X3

and X4) and 45. Note that case 50 (which is here one of the subset of selection influential data

cases) was also identified as selection influential by the influence measure proposed in (4.5).

Recall from a previous analysis of the fuel data in Section 4.3.2 that predictors 2 and 3 were se-

lected if Cp selection is applied to the full data set. Omitting cases 40 and 50 simultaneously

before Cp selection is applied to the reduced data, which now only consist of 48 cases, results

in predictors 1,2 and 3 being selected. In order to obtain an indication of whether it would be

beneficial in the sense of improved response prediction to leave out cases 40 and 50 simultane-

ously, we calculate an estimate of the expected squared prediction error for the reduced data set

of 48 cases. This is done in a similar way as in Section 4.3.2, where estimates of the expected

squared prediction error were calculated for the full data set and for each of the reduced data

sets, where only one observation was omitted at a time. For the reduced data set with cases

40 and 50 omitted, we randomly select 38 cases to form the training data set. The remaining

10 observations constitute the test data set. Recall from Section 4.3.2 that the selected model

obtained by applying Cp to the training data set is used to calculate the average squared pre-

diction error for the test data set. In 20000 such repetitions (i.e. each time randomly select

a training data set and calculate the average squared prediction error for the test data set), we

obtain an estimate of 4457.881 for the expected squared prediction error. This estimate is sig-

nificantly smaller than the estimate obtained for the full data set (i.e. 9850.24). This estimate
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is also smaller than the respective estimates of the expected squared prediction error of the re-

duced data sets when case 40 and case 50 are individually omitted. As presented in the last

column of Table 4.2, for case 40 the estimate was 7977.2, and for case 50 it was 6012.5. Based

on these estimates of the respective average squared prediction error, we therefore recommend

that cases 40 and 50 be omitted from the fuel data set, and that the selected model, obtained

by applying Cp to the corresponding reduced data set, be utilised for prediction of future data

cases.
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Observation
Model 1 2 3 4 5 6 7 8 9 10

1 0.8553 0.9867 0.7400 0.2300 0.1126 0.6621 0.3405 0.4461 0.3126 0.3249
2 0.8125 0.5548 0.7910 0.2538 0.1299 0.4173 0.3512 0.4549 0.4719 0.5306
3 0.5235 0.4989 0.6956 0.2400 0.1095 0.5279 0.3363 0.5413 0.3049 0.4778
4 0.7956 0.6597 0.9916 0.2314 0.1126 0.4228 0.3433 0.4428 0.2778 0.3662

1,2 0.7072 0.6938 0.9588 0.2480 0.1346 0.4475 0.3461 0.4615 0.4848 0.4623
1,3 0.7829 0.9096 0.8837 0.2383 0.1188 0.7327 0.3341 0.6295 0.3456 0.3652
1,4 0.8766 0.9554 0.7642 0.2308 0.1089 0.6511 0.3407 0.4428 0.3299 0.3345
2,3 0.7718 0.4637 0.5470 0.4236 0.1527 0.6007 0.8891 0.75fJ3 0.5861 0.6749
2,4 0.7071 0.6836 0.9261 0.2786 0.1m 0.4246 0.3382 0.4851 0.3981 0.4464
3,4 0.5515 0.5721 0.7765 0.2469 0.1176 0.5829 0.3400 0.5825 0.2905 0.4294

1,2,3 0.0023 0.5877 0.6001 0.3922 0.1627 0.8746 0.8496 0.7002 0.6013 0.5931
1,2,4 0.6755 0.7435 0.9964 0.2661 0.1673 0.4478 0.3396 0.4823 0.4196 0.4304
1,3,4 0.7572 0.8693 0.9131 0.2360 0.1122 0.7402 0.3385 0.5982 0.3752 0.3831
2,3,4 0.8997 0.5750 0.6595 0.5111 0.2201 0.7358 0.6509 0.8748 0.4928 0.5736

1,2,3,4 0.9514 0.6307 0.7254 0.4612 0.2048 0.8765 0.6840 0.8656 0.5229 0.5499

Variable
1 0.8135 0.7971 0.8351 0.2879 0.1403 0.6791 0.4466 0.5895 0.4240 0.4304
2 0.8034 0.6166 0.7868 0.3543 0.1687 0.6031 0.5fJ31 0.6463 0.4972 0.5327
3 0.7675 0.6384 0.7364 0.3437 0.1498 0.7089 0.5528 0.7047 0.4399 0.5059
4 0.7768 0.7112 0.8441 0.3078 0.1526 0.6102 0.4219 0.5968 0.3883 0.4392

Observation
Model 11 12 13 14 15 16 17 18 19 20

1 0.8282 0.4046 0.4813 0.3631 0.m8 0.6167 0.0009 0.1531 0.0529 0.7083
2 0.5308 0.5594 0.5602 0.6781 0.5500 0.6024 0.7422 0.0565 0.1472 0.5054
3 0.8836 0.5301 0.8434 0.4387 0.9813 0.4762 0.7502 0.1992 0.0540 0.7132
4 0.9472 0.4140 0.5684 0.4434 0.8991 0.5576 0.7836 0.0915 0.0540 0.7173

1,2 0.5156 0.5261 0.5183 0.5940 0.5191 0.6565 0.8069 0.0008 0.1319 0.6542
1,3 0.7611 0.5199 0.6646 0.3478 0.7947 0.6044 0.9471 0.3632 0.0531 0.7082
1,4 0.8132 0.4289 0.4855 0.3647 0.8005 0.5704 0.8680 0.1616 0.0529 0.7094
2,3 0.4464 0.8817 0.8607 0.6534 0.5667 0.5898 0.7834 0.0970 0.0872 0.4761
2,4 0.5422 0.4382 0.5264 0.6421 0.4700 0.7638 0.8459 0.0556 0.1692 0.4739
3,4 0.8946 0.4564 0.8084 0.4235 0.9276 0.5404 0.8145 0.1896 0.0539 0.7144

1,2,3 0.4328 0.9275 0.7895 0.5692 0.5251 0.6439 0.8536 0.1215 0.0785 0.6244
1,2,4 0.5300 0.4488 0.5105 0.5995 0.4677 0.7577 0.8619 0.0577 0.1529 0.5568
1,3,4 0.7422 0.6254 0.6756 0.3493 0.8278 0.5521 0.0078 0.3904 0.0531 0.7094
2,3,4 0.4560 0.7862 0.8054 0.6189 0.4770 0.7481 0.8912 0.0895 0.0978 0.4458

1,2,3,4 0.4446 0.8410 0.7751 0.5743 0.4745 0.7417 0.0085 0.1029 0.0881 0.5306

Variable
1 0.6335 0.5003 0.6126 0.4702 0.6478 0.6429 0.8818 0.1764 010829 0.6502
2 0.4873 0.6761 0.6683 0.6162 0.5074 0.6880 0.8367 ;(i)j08É)2 0.1191 0.5334
3 0.6327 0.6960 0.m8 0.4969 0.6968 0.6121 0.8570 0.1942 f/);Q707 0.6153
4 0.6713 0.5548 0.6444 0.5019 0.6680 0.6540 0.8602 0.1424 E}:02 0.6072

Table 5.2: Individual p-values and average p-values calculated for data cases 1 to 20 of the fuel

data
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Observation
Model 21 22 23 24 25 26 ZT 28 29 30

1 0.6545 0.8241 0.6478 0.8003 0.3557 0.6642 0.8474 0.5723 0.8008 0.9195
2 0.7200 0.5251 0.7119 0.6744 0.3268 0.7841 0.7664 0.6002 0.9:82 0.5664
3 0.6075 0.9296 0.6270 0.8354 0.3134 0.6899 0.6372 0.6871 0.9m 0.6008
4 0.6264 0.8165 0.6092 0.8493 0.2936 0.9634 0.9509 0.5982 0.9909 0.7260

1,2 0.7115 0.5482 0.7824 0.5567 0.3623 0.6722 0.7482 0.6100 0.8688 0.5049
1.3 0.6234 0.7949 0.8008 0.7979 0.4532 0.9003 0.7268 0.7276 0.9016 0.7700
1,4 0.6491 0.7622 0.6449 0.7904 0.3463 0.6527 0.8415 0.5510 0.8456 0.9022
2,3 0.8545 0.7873 0.9361 0.6497 0.4236 0.8828 0.7639 0.8295 0.9593 0.0038
2,4 0.6280 0.5963 0.7786 0.6424 0.3686 0.7f£J7 0.7638 0.6979 0.9272 0.5417
3,4 0.6117 0.8237 0.6392 0.8442 0.3337 0.7016 0.6384 0.7552 0.9648 0.6124

1,2,3 0.8457 0.8551 0.8052 0.5309 0.4895 0.9676 0.7925 0.8381 0.9182 0.7917
1,2,4 0.6441 0.5961 0.8109 0.5765 0.3834 0.6963 0.7533 0.6768 0.8001 0.5111
1,3,4 0.6209 0.8623 0.7972 0.7764 0.4352 0.8799 0.7330 0.6003 0.8830 0.7834
2,3,4 0.7514 0.9548 0.8163 0.6183 0.4977 0.9112 0.7681 0.9615 0.9783 0.8001

1,2,3,4 0.7717 0.9551 0.7652 0.5495 0.5228 0.9979 0.7850 0.9320 0.9474 0.8036

Variable
1 0.6901 0.7747 0.7578 0.6733 0.4186 0.8039 0.7785 0.6006 0.8904 0.7484
2 0.7409 0.7272 0.8008 0.5998 0.4218 0.8340 0.7677 0.7691 O,9257 0.6865
3 0.7109 0.8703 0.7744 0.7003 0.4336 0.8664 0.7306 0.8014 0:944,2 0.7680
4 0.6629 0.7959 0.7'32.7 0.7059 0.3976 0.8203 0.7792 0.7316 0.9294 0.7183

Observation
Model 31 32 33 34 35 36 37 38 39 40

1 0.8078 0.6519 0.9180 0.5522 0.4379 0.7ro:> 0.8078 0.2198 0.7714 0.0C05
2 0.5552 0.6817 0.9736 0.4315 0.9131 0.9663 0.4886 0.2157 0.7229 O.CX:Xl7
3 0.7rfJJ 0.4620 0.4710 0.9462 0.3596 0.7535 0.5407 0.2200 0.8115 0.0C05
4 0.9591 0.8004 0.9855 0.5119 0.4121 0.7194 0.6479 0.1917 0.7716 0.0C05

1,2 0.6129 O.73f£J 0.9940 0.4395 0.9239 0.9612 0.6'32.4 0.2313 0.8962 0.0007
1,3 0.5989 0.4054 0.5642 0.9905 0.3636 0.9335 0.6486 0.2979 0.7810 0.0C05
1,4 0.8157 0.6559 0.9100 0.5665 0.4300 0.7752 0.9383 0.2194 0.7717 0.0C05
2,3 0.8227 0.87'32. 0.2782 0.8021 0.6717 0.6953 0.5358 0.3104 0.3147 orcos
2,4 0.5771 0.6958 0.9441 0.4205 0.8458 0.9472 0.7464 0.2247 0.7901 0.0000
3,4 0.6851 0.4526 0.4486 0.9146 0.3614 0.7700 0.7377 0.2254 0.8025 0.0C05

1,2,3 0.9353 0.7531 0.3073 0.8340 0.6588 0.6137 0.7723 0.3488 0.4230 0.0009
1,2,4 0.6083 0.7262 0.9735 0.4273 0.8673 0.9218 0.8297 0.2'32.6 0.8796 0.0000
1,3,4 0.6020 0.4058 0.5908 0.9627 0.3627 0.9218 0.7855 0.2976 0.7823 0.0C05
2,3,4 0.8681 0.8389 0.2545 0.7517 0.75)2 0.6032 0.9014 0.3'32.8 0.3550 0.0007

1,2,3,4 0.9273 0.7712 0.2760 0.7839 0.T2ff2 0.5770 0.9983 0.3514 0.4101 0.0007

Variable
1 0.7385 0.6382 0.6917 0.6946 0.5956 0.8105 0.8016 0.2748 0.7144 0.0000
2 0.7384 0.7f£J5 0.6251 0.6113 0.7939 0.7857 0.7381 ozas 0.5m:J 0;0007
3 0.7682 0.6203 0.3988 0.87'32. 0.5310 0.7336 0.7400 0.2000 0.5850 O.GXD3
4 0.7553 0.6695 0.6729 0.6674 0.5937 0.7795 0.8231 0.2594 0.6954 0;{j)003

Table 5.2 (continued): Individual p-values and average p-values calculated for data cases 21 to

40 of the fuel data
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Cllservation
IVbdeI 41 42 43 44 45 46 if! 48 49 50

1 0.9536 0.2104 0.6461 0.0093 ocen 0.8553 0.8539 0.4200 0.0044- 0.0001
2 0.5500 0.1520 0.-,g;)2 0.m3 0.3394 0.4739 0.7006 0.3988 0.3103 0.CXX)2
3 0.8285 0.2003 0.5105 0.9:~)1 0.0331 0.5537 0.7235 0.9336 0.95.'Il 0.1r03
4 0.8723 0.1532 0.4007 0.7611 0.()32) 0.&>44 0.7140 0.4851 0.0012 0.CY228

1,2 0.5327 0.1622 0.8449 0.3531 0.4627 0.5003 0.7511 0.3749 0.3453 0.0001
1,3 O.~ 0.4181 0.6424 0.8200 OJJ2fj7 0.0038 0.8521 0.7454 0.8942 0.0004
1,4 0.9:n5 0.22.39 0.6700 0.9400 O.CXXX) 0.0024 0.8004 0.4500 0.9931 0.0001
2,3 0.6210 0.2718 0.0043 0.4874 0.0642 0.fr03 0.7619 0.7535 0.0195 0.0010
2,4 0.5763 0.1473 0.7384 0.2673 0.2541 O.fOO) 0.8258 0.3432 ozss 0.0003
3,4 0.8189 ozrs 0.4917 0.9779 0.0326 0.5815 0.7007 0.8320 0.9374 0.1623

1,2,3 0.5800 0.3164 0.8546 0.5834 0.0070 0.7045 0.7258 0.0073 0.0220 0.0001
1,2,4 0.5548 0.153) 0.7al3 0.29&> 0.3431 cseo 0.7938 0.3443 0.2654 0.0001
1,3,4 0.9947 0.4532 0.6814 oaeo 0.0288 0.0020 0.8838 0.8115 0.9078 0.0001
2,3,4 0.6384 0.2427 0.7400 0.3001 0.0463 0.00Ee 0.r0:x3 0.5958 0.Q1~ 0.0016

1,2,3,4 0.6134 0.2722 0.7915 0.4651 0.0556 0.6827 0.7009 O.a:m 0.0148 0.0001

Variable
1 0.7674 0.2700 0.7400 0.6571 0.1417 0.7794 0.8135 0.5576 0.5546 0.0001
2 0.5857 0.2147 0.7946 0.3936 0.2005 oseo 0.7700 0.5136 0.1521 0.0004
3 0.7$3 0.3123 0.0004 0.6832 0.0471 0.7001 0.7700 0.7462 0.4702 0.0333
4 0.7400 0.2378 0.6757 0.6146 0.1074 0.0029 0.7969 0.5589 0.5437 0.0234

Table 5.2 (continued): Individual p-values and average p-values calculated for data cases 41 to

50 of the fuel data

5.5.3 The evaporation data

Finally, consider the evaporation data with 10 predictors and 46 observations. The full model

error variance estimate (;2 = 42.351 is assumed to be the known value of a2 if the p-value in

(5.9) is calculated for each of the 46 cases and 210 - 1 = 1023 linear subspaces spanned by the

vector 1and at least one predictor variable. As for the Hald and fuel data, the non-centrality

parameter, associated with the p-value in (5.9), is estimated by the truncated estimator in (5.41).

For each observation the averages of all those p-values for those subspaces that include Xj,

where j = 1, 2, ... , 10, as basis vector, are also calculated. The 10 average p-values for each of

the 46 cases are shown in Table 5.3.

We observe that the average p-values calculated for cases 33 and 41 are extremely small. Ac-

cording to the proposed p-value approach, these two cases will certainly be deemed selection
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influential. Other average p-values which are relatively small are also highlighted in Table

5.3. Such cases are 2, 8 and 24 which may also be regarded as selection influential if a higher

significance level is considered.

We also consider estimation of the expected squared prediction error for the reduced data set

where observations 33 and 41 are omitted simultaneously. The estimation is done in a similar

way as in Section 4.3.3, but now dividing the 44 observations into 35 training observations and

9 test observations in each of the 20000 repetitions. The resulting estimated expected squared

prediction error for this reduced data set is 46.189, which is relatively smaller than the estimated

expected squared prediction error for the full data set (i.e. 71.78), and also for the respective

estimated values of the respective reduced data sets when observations 33 and 41 are omitted

individually. From Table 4.3 these estimates equal 61.9 if case 33 is omitted and 55.6 if case

41 is omitted. We suggest that the selected model (which includes predictors 1,3,6,9 and 10)

obtained if C; is applied to the reduced data set (i.e. where both cases 33 and 41 are omitted)

be utilised for prediction of future observations.
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Observation
Variable 1 2 3 4 5 6 7 8 9 10

1 0.6791 0.3887 0.3766 0.7534 0.4017 0.5609 0.8187 0.0709 0.6776 0.7542
2 0.6629 0.3472 0.4398 0.7302 0.5546 0.5301 0.7899 0.0063 0.6828 0.7501
3 0.6483 0.3595 0.4595 0.7408 0.4484 0.5281 0.7816 0.1078 0.6497 0.7294
4 0.6470 0.3839 0.4344 0.6967 0.4794 0.4867 0.7948 0.1499 0.6558 0.7536
5 0.6236 0.3796 0.4597 0.7278 0.5020 0.5237 0.8006 0.1096 0.6289 0.7633
6 0.6280 0.3777 0.3756 0.6803 0.4594 0.4760 0.8054 0.1129 0.7064 0.7374
7 0.6320 0.3739 0.4523 0.7332 0.4984 0.5410 0.7821 0.1306 0.6402 0.7536
8 0.6465 0.2500 0.4936 0.7432 0.5237 0.4747 0.8049 0.0384 0.6498 0.7564
9 0.6147 0.0464 0.5809 0.8218 0.6851 0.3964 0.8024 0.0256 0.6160 0.7617
10 0.6929 0.3756 0.5146 0.7387 0.5206 0.5937 0.7982 0.1218 0.6841 0.7489

Observation
Variable 11 12 13 14 15 16 17 18 19 20

1 0.7479 0.6113 0.7519 0.6398 0.7429 0.5637 0.8016 0.7238 0.6357 0.7405
2 0.7497 0.6375 0.7447 0.6153 0.7440 0.5582 0.7939 0.6985 0.6071 0.7532
3 0.7549 0.6400 0.7648 0.6588 0.7467 0.5622 0.7759 0.6850 0.6285 0.7397
4 0.7525 0.6476 0.7654 0.6330 0.7427 0.5755 0.7912 0.7126 0.6105 0.7578
5 0.7545 0.6579 0.7470 0.6392 0.7537 0.5523 0.8077 0.6965 0.5737 0.7333
6 0.7704 0.6391 0.7692 0.6649 0.7680 0.5791 0.7844 0.7034 0.7236 0.7782
7 0.7509 0.6461 0.7422 0.6286 0.7382 0.5487 0.7825 0.7071 0.5947 0.7615
8 0.7521 0.6633 0.7530 0.6334 0.7641 0.5605 0.8045 0.7079 0.5963 0.7575
9 0.7976 0.7700 0.7558 0.6718 0.8809 0.5951 0.8430 0.7162 0.5645 0.7837
10 0.7576 0.7249 0.8186 0.6652 0.7612 0.6119 0.7981 0.7647 0.6686 0.7559

Observation
Variable 21 22 23 24 25 26 27 28 29 30

1 0.4725 0.2064 0.7307 0.1672 0.8003 0.6048 0.5813 0.8118 0.6995 0.7123
2 0.3700 0.2110 0.6817 0.1540 0.7120 0.6431 0.5597 0.8094 0.6000 0.7144
3 0.4504 0.1801 0.6945 0.1361 0.7378 0.6498 0.5407 0.8138 0.6248 0.7136
4 0.4542 0.1702 0.6596 0.1055 0.6970 0.6762 0.5470 0.8076 0.5898 0.7168
5 0.4765 0.1668 0.6918 0.1249 0.7241 0.6340 0.5366 0.7753 0.6058 0.7170
6 0.3395 0.1809 0.6198 0.0985 0.7430 0.6671 0.6178 0.8204 0.6186 0.7202
7 0.4956 0.1703 0.7021 0.1251 0.7187 0.6190 0.5415 0.8131 0.6302 0.7313
8 0.4896 0.1502 0.7035 0.1097 0.7104 0.6158 0.4616 0.8101 0.6002 0.7122
9 0.4227 0.1342 0.7467 0.1058 0.7079 0.4208 0.3914 0.8345 0.6520 0.7812
10 0.5811 0.1359 0.7648 0.1400 0.7444 0.6675 0.5058 0.8174 0.4979 0.7378

Observation
Variable 31 32 33 34 35 36 37 38 39 40

1 0.4985 0.1968 0:0074 0.7808 0.7893 0.7874 0.4241 0.5108 0.4379 0.1760
2 0.4856 0.2872 0:oow2 0.7625 0.7865 0.7730 0.3287 0.4364 0.4409 0.1581
3 0.4690 0.2724 a,ooi8 0.7469 0.7879 0.7791 0.3904 0.4812 0.4487 0.1765
4 0.3071 0.2788 ().0074 0.7789 0.8093 0.7810 0.4323 0.4723 0.4488 0.1598
5 0.4648 0.3163 6:0013 0.7589 0.7842 0.7860 0.3868 0.4770 0.5041 0.1590
6 0.5741 0.4072 0;0009 0.7465 0.8068 0.7912 0.3283 0.4280 0.4534 0.1603
7 0.4387 0.3176 0.0009 0.7921 0.7803 0.7877 0.3872 0.4731 0.4856 0.1603
8 0.4800 0.3184 0:0073 0.7717 0.7755 0.7597 0.4286 0.5600 0.5215 0.1673
9 0.4070 0.4528 0:0075 0.7957 0.8144 0.8127 0.1976 0.4348 0.6471 0.1727
10 0.4710 0.2268 '0:0002 0.7496 0.7831 0.8060 0.4096 0.5239 0.5611 0.1502

Table 5.3: Average p-values calculated for data cases 1 to 40 of the evaporation data
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Observation
Variable 41 42 43 44 45 46

1 0.0063 0.7173 0.8355 0.8385 0.7358 0.5730
2 0.0078 0.7469 0.8244 0.8380 0.6555 0.4747
3 0.0077 0.6524 0.8492 0.8369 0.7059 0.5087
4 0.0082 0.7528 0.8436 0.8584 0.6894 0.5039
5 0.0069 0.7246 0.8337 0.8400 0.6810 0.5052
6 0.0060 0.6576 0.8571 0.8560 0.7580 0.4918
7 0.0089 0.7266 0.8481 0.8103 0.7084 0.5332
8 0.0091 0.7247 0.8507 0.8469 0.6858 0.5072
9 0.0098 0.7655 0.8764 0.8667 0.7313 0.5350
10 0.0099 0.7521 0.8318 0.8287 0.6099 0.4453

Table 5.3 (continued): Average p-values calculated for data cases 41 to 46 of the evaporation

data

5.6 Simulation study

The simulation study described in Section 3.3 of Chapter 3 illustrates the effect that inclusion

of a possibly selection influential data case into a data set may have on the properties of the

resulting multiple linear regression model. This effect was studied in terms of the APE (average

prediction error) and the PCS (probability of correct selection) of the model selected by means

of the Cp criterion. The APE and the PCS of the model selected and fitted on an ordinary data

set (i.e., a data set not containing a deliberately inserted possibly selection influential data case)

were compared to the respective same quantities for a model selected and fitted on a modified

data set (i.e., a data set into which a possibly selection influential data case had been inserted).

It became clear that the presence of possibly selection influential cases in a data set has negative

consequences: the APE tends to increase, and the PCS tends to decrease. The impact that

factors such as the sample size, the number of predictor variables, and the correlation amongst

the predictor variables have on the effect of a possibly selection influential data case, was also

investigated.

A possibly selection influential data case included in a data set is deemed to be definitely selec-

tion influential if this data case complies with the definition of a selection influential data case.

This would be the case ifits omission from the modified data set leads to a different set ofvari-

abIes being selected, or, given that the same set of predictors is selected, if there is a significant
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change in the fit of the selected model. Note that the deliberately inserted possibly selection

influential data case is obviously not the only case in the modified data set that may tum out

to be selection influential. Any other individual "ordinary" data case may of course also tum

out to be selection influential. Furthermore, any subset of data cases that mayor may not in-

clude the possibly selection influential case, may tum out to be selection influential. This is of

course also true for the ordinary data set. The fact that the ordinary data set does not include a

deliberately inserted possibly selection influential case, does not guarantee that no individual or

groups of selection influential data cases will be found in this set. It should also be noted that

a procedure designed to identify selection influential data cases is subject to two kinds of error:

it may wrongly identify a non-selection influential case as being influential, or it may wrongly

classify a case that is in fact selection influential, as being not so.

The simulation study described in this section was undertaken to investigate the performance

of a procedure for identifying selection influential data cases based on the p-value defined in

(5.9). More specifically, four sets of APE values and PCS values were generated and compared.

The first two sets are simply the values obtained in the simulation study described in Chapter

3. The third and fourth sets were generated as follows. Consider a typical ordinary data set,

and its modified version containing a possibly selection influential data case, as simulated in

Chapter 3. The p-value approach, based on the p-value defined in (5.9), is applied to these

data sets in order to identify selection influential cases. We discuss below the cut-off point for

the calculated p-values that was used to decide whether a given case is selection influential or

not. Note that this p-value is based on the assumption that the value of the error variance, a2,

is known. We comment in more detail on this assumption below. The cases in the modified

data set identified as selection influential are omitted, and similarly for the ordinary data set.

Variable selection using the Cp criterion is now applied to the modified and to the ordinary data

sets after omission of the cases that were identified as selection influential. The APE and the

pes of the resulting models are approximated by simulation as already described in Chapter 3.

The four sets of APE and PCS values compared in the simulation study can therefore be sum-

marised as follows.

(a) A set obtained for ordinary data sets, i.e. data sets not containing deliberately inserted
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possibly selection influential data cases, and without any attempt being made to identify and

omit such cases.

(b) A set obtained for modified data sets, i.e. data sets that do contain deliberately inserted

possibly selection influential data cases. Once again, no attempt is made to identify and omit

such cases.

(c) A set obtained for ordinary data sets, but now we do apply the p-value approach in an attempt

to identify and omit selection influential data cases.

(d) A set obtained for modified data sets, but once again we do apply the p-value approach in

an attempt to identify and omit selection influential data cases.

The first two sets of APE and PCS values were already compared in Chapter 3, illustrating

the effect that the presence of selection influential data cases may have. The third and fourth

sets of APE and PCS values enable us to investigate the effect that application of our proposed

procedure for dealing with selection influential data cases may have. The third set of values

shows the effect if this procedure is applied to a data set that actually does not contain any

selection influential cases, and the fourth set shows the effect if the data set does indeed contain

such cases.

In order to identify selection influential cases in a data set by applying the p-value in (5.9),

we proceed in a similar manner as for the example data sets in Section 5.5. This entails the

following:

Consider the ith data case in the simulated data set of size n, There are m predictor

variables, and the vectors 1, xl' X2' ... , Xm form a basis for the (m + 1)-dimensional linear

space M. There are 2m - 1possible linear subspaces of that includes at least 1 predictor

variable. Each of these subspaces L of M, with dim(L) = l + 1, is spanned by the

vector 1 and a subset of l predictor variables, i.e. L = span {I, xj : j E JL} C M, where

JL C {I, 2, ... ,m}. The p-value in (5.9) is calculated for each combination of a subspace L

of M and a data case i.

In order to decide if a given data case is selection influential, we calculate m average
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p-values. The jth of these average p-values is obtained by calculating the average of all

the p-values (for the ith data case) for those subspaces that include predictor Xj as a basis

vector. The ith data case is deemed selection influential if at least one of its m average

p-values is significantly large or significantly small.

We reproduce the results of the simulation study conducted in Chapter 3 in Figures 5.1 to

5.8. Recall that these results show the APE and the PCS of the selected models if Cp variable

selection is applied to a large number of simulated ordinary and their corresponding modified

data sets. As in the simulation study of Chapter 3, several factors that were felt could have

an influence on the APE and PCS were varied over several levels. For ease of reference these

factors are once again listed below.

The sample size of the simulated data set. The following sample sizes were used in the

study: n = 20,50, and 100.

The number of predictor variables in the simulated data set. For n = 20, we used m = 5,

and for ti = 50 and ti = 100, we used m = 5 and m = 10.

The correlation amongst the predictor variables (in this regard we study equi-correlated

cases, i.e. cases where the same correlation is assumed to hold for any pair of predictor

variables). The common value of the correlation between any two predictors was varied

over ° (the orthogonal regressor case), 0.5 and 0.9.

The sample data sets are simulated at fixed, predetermined values of the regression

coefficients. Two different configurations were used in this regard. In the first case, we

set 131 = 132 = ...= 13m = s, and then increment the common value s from ° in steps of

0.1 up to 1.5, and thereafter in steps of 0.25 up to 3. In the second regression coefficient

configuration we also start by setting 131 = 132 = ...= 13m = 0, but thereafter only a subset

of the f3-values are incremented. In particular, for simulated data sets containing m = 5

predictors we increment the common value of 131 and 132 from ° in steps of 0.1 up to 1.5,

and thereafter in steps of 0.25 up to 3. For the cases where we had m = 10 predictors, the

values of 131,132,133,134 and 135 are incremented in the same manner.

It should finally be noted that we consistently used 130 = 1 as intercept parameter in the

regression models.
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Figures 5.1 to 5.4 show the APE of the selected models if Cp variable selection is applied to

the ordinary data sets (represented by a solid black line), and their corresponding modified data

sets (represented by a dotted black line). The PCS if Cp variable selection is applied to the

ordinary data sets (solid black line) and their corresponding modified data sets (dotted black

line) is shown in Figures 5.5 to 5.8. Also shown in these figures are the APE and the PCS of

the models selected from the ordinary (the solid red lines) and the corresponding modified (the

dotted red lines) data sets if the p-value approach based on (5.9) is first used to screen these

data sets for selection influential pcints, and any points identified as such are removed before

selecting and fitting a model. In this regard it must be pointed out that a data case was deemed

selection influential, and omitted from the data set before a model was selected and fitted, if

at least one of its m average p-values (described above) was less than 0.01 or larger than 0.99.

Other cut-off points (0.025 and 0.975, as well as 0.05 and 0.95) were also used, but the resulting

procedures were found to perform worse, and the results are therefore not included here.

Finally, before moving on to a discussion ofthe results, we comment on the fact that the value of

the error variance, (J2, is assumed known throughout the simulation study. This is a reasonable

assumption in multiple linear regression if the degrees of freedom available for estimation of

(J2 is large. In small sample cases this assumption may not always be reasonable. However, as

we saw earlier, the procedure that we investigate in our simulation study performs quite well

in example data sets (where the value of (J2 is of course unknown) if we treat the estimated

value of (J2 as if it were the known value of this parameter. Since we do not currently have a

fully satisfactory way of otherwise dealing with the case where the value of (J2 is unknown, we

restricted our simulation study to the limited situation of a known value for the error variance.
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Figure 5.1: The APE of models selected from simulated data sets with m= 5 predictors;
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/30 = 1, /31 = /32 = ... = /310 = 0(0.1)1.5 and /31 = /32 = ... = /310 = 1.5(0.25)3
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5.6.1 Discussion of the simulation results

Firstly, consider the APEs plotted in Figures 5.1 to 5.4. Recall that the four APEs shown in

each of these figures correspond to models selected and fitted from the following data sets:

(a) Ordinary data sets, i.e. data sets not containing deliberately inserted possibly selection

influential data cases, and without any attempt being made to identify and omit such cases. The

corresponding APE is shown as a solid black line.

(b) Modified data sets, i.e. data sets that do contain deliberately inserted possibly selection

influential data cases. Once again, no attempt is made to identify and omit such cases. The

corresponding APE is shown as a dotted black line.

(c) Ordinary data sets, but now we do apply the p-value approach in an attempt to identify and

omit selection influential data cases. The corresponding APE is shown as a solid red line.

(d) Modified data sets, but once again we do apply the p-value approach in an attempt to identify

and omit selection influential data cases. The corresponding APE is shown as a dotted red line.

We note first of all that the solid black line and the solid red line virtually coincide in all the

cases. The only slight exceptions are the small sample cases (n = 20). This implies that

application of the p-value approach in cases where it is not really required, i.e. in situations

where the ordinary data set contains no deliberately inserted possibly selection influential data

cases, does not lead to a dramatic increase in the APE of the resulting model. In general,

therefore, it seems that the price paid in terms of increased APE if the p-value approach is

applied to a data set that typically does not contain selection influential data cases, is fairly

small.

Comparing the two dotted lines, we observe that the dotted red line is almost always signifi-

cantly below the dotted black line. This is especially the case when the sample size is fairly

large, or even in small sample cases when the correlation amongst the predictor variables is

large. The only exceptions occur when the sample size is small (n = 20), especially when the

predictor variables are (close to) being uncorrelated, or for the uncorrelated cases shown in Fig-
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ure 5.3. The general conclusion to be drawn from these results is that application of the p-value

approach to identify selection influential data cases, followed by omission of these cases before

model selection and fitting are done, pays off in terms of reduced APE if the data set does in-

deed contain selection influential cases. This payoff is especially significant in large sample

cases when there is a fairy high correlation amongst the predictor variables.

It is interesting to observe that in several cases the dotted red line comes very close to the two

solid lines. This is true for large sample sizes, and high correlation amongst the predictor

variables. The implication is that in such situations the p-value approach applied to data sets

containing selection influential data cases fares almost as well as the p-value approach applied

to ordinary data sets.

Consider secondly the PCSs plotted in Figures 5.5 to 5.8. In the cases where all the regression

coefficients are increased from 0 to 3 (shown in Figure 5.5 for m = 5 and in Figure 5.7 for

m = 10). the two solid lines are virtually indistinguishable, irrespective of sample size and

the correlation amongst the predictor variables. In these cases we also have the dotted red

line almost always above the dotted black line, confirming the value in terms of increased PCS

of first applying the p-value approach before selecting and fitting a regression model to data.

The situation becomes much more complicated if only some of the regression coefficients are

moved away from zero (shown in Figure 5.6, where two out ofm = 5 regression coefficients are

increased, and in Figure 5.8, where five out of m = 10 coefficients are increased). Although it

is difficult to discern general patterns in these figures, it does seem as if the p-value approach is

especially worthwhile in the cases where the correlation amongst the predictor variables is large.

In these cases the dotted red line is generally above the dotted black line, in some instances even

exceeding the solid red line. The behaviour in the uncorrelated cases in Figure 5.8 is somewhat

difficult to explain. It should, however, be noted that all the PCS values in this case are fairly

small.

All in all the APE and PCS graphs suggest that the proposed p-value approach for identifying

and eliminating selection influential cases in a data set is worthwhile.
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CHAPTER 6

CONCLUDING REMARKS

6.1 Looking back

In this dissertation we first of all studied the influence of data cases if variable selection is done

in multiple linear regression by using the Cp criterion. This influence was investigated in terms

of the average prediction error (APE) of the resulting model, and in terms of the probability

of correct selection (PCS) when variable selection is applied. A definition was developed of

the concept of a selection influential data case. A simulation study revealed that the presence

of potentially selection influential data cases in a data set leads to an increase in the APE of

the resulting model, while the PCS is reduced. These findings emphasize the importance of

identifying and dealing with (possibly by omitting them) selection influential data cases before

model selection and fitting are performed. Attention was therefore devoted to the problem of

identifying selection influential data cases. Two new measures were developed for this purpose.

The first new measure is based on a leave-one-out strategy. This measure simply quantifies the

relative change in the selection criterion (the Cp criterion in our study) if a data case is omitted

from the full data set. Important in this regard is the fact that variable selection is repeated on

the reduced data set before the measure is calculated. This leads to a so-called unconditional

measure of selection influence (see Leger and Altman, 1993, for arguments in favour of such

an approach). A bootstrap procedure was proposed and applied in example data sets as an aid

for deciding whether a given value of the maximum relative change in the Cp criterion (over

all data cases omitted one at a time) should be interpreted as a significant indication of the

corresponding data case being selection influential. The new measure was applied in several

example data sets, and it seems that it succeeds in identifying individual points that should be

considered for omission because of their undue influence on the selection criterion.

The second new measure of selection influence that was developed and investigated in the dis-

sertation is based on a p-value approach. The general idea behind this measure is as follows.

146

Stellenbosch University http://scholar.sun.ac.za



6 CONCLUDING REMARKS

The basic problem in variable selection may be viewed as one of using the available data to

identify a single linear subspace L from a family of subspaces E. In the process a correspond-

ing subset of the predictor variables in the multiple linear regression setup is identified. A

commonly used strategy to achieve this end is to define a measure of (estimation) error, and to

calculate an estimate of this error for each of the available subspaces. The selected subspace is

then simply the subspace with smallest estimated (estimation) error. In our study we used the

expected squared error of estimation (ESEE) as a measure of error. The ESEE corresponding

to a given linear subspace is defined by
n nE IIPL y - JLI12 = L (]'211PLUi112 + (JL, PL.L Ui)2 = LE (lLi(L) - J-Li)2 .
i=l i=l

The Cp criterion for the subspace L is an unbiased estimate of the ESEE above. We showed

in the dissertation how this criterion may be written as a sum of n terms in a coordinate free

context, where the ith term in this sum represents the contribution of the ith data case to the

criterion value. It can now be argued that the ith data case is selection influential with respect

to a given linear subspace if the contribution of this case to the value ofthe selection criterion for

the particular subspace is very large or very small. To decide whether this contribution is indeed

very large or very small, we proposed using a p-value based on the underlying distribution of

the calculated contribution. This approach was developed in some detail, applied to example

data sets, and investigated in a simulation study. It seems from the results that the measure has

merit in terms of identifying selection influential data cases.

6.2 Looking forward

There are several interesting and challenging problems for further research. Firstly, utilizing

the p-value approach described briefly in the previous section to identify selection influential

data cases, involves estimation of a non-centrality parameter of a non-central chi-squared distri-

bution. More specifically, in order to calculate the p-value for the ith data case and the jth linear

subspace L,we need to estimate the non-centrality parameter. This was achieved satisfactorily

if we could assume the value of (]'2 to be known. Incorporating the estimated non-centrality

parameter into the p-value approach for identifying selection influential data cases could there-

fore be done successfully in these cases. However, estimating the non-centrality parameter if

we could not assume the value of (]'2 to be known, proved more difficult. In fact, incorporating
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an estimate of the non-centrality parameter for these cases into the p-value approach, proved to

be a problem that we could not resolve satisfactorily. This is therefore an area that is open to

further research.

Secondly, another more basic problem that deserves further attention can be described as fol-

lows. Let t denote the total number of possible subspaces (models) that can be considered for

selection in a particular application. In a multiple linear regression setup we have t = 2m - 1,

with m denoting the total number of predictor variables. If we use Cp variable selection, we

effectively identify the subspace L for which the estimated ESEE defined above is a minimum.

Let Dj,i be the contribution of the ith data case to the value of the Cp criterion for the jth

subspace, i = 1,2, ... ,n; j = 1,2, ... , t. We can think of the tn values Dj,i, i = 1,2, ... ,n;

j = 1,2, ... , t, as the basic data that have to be used in the variable selection process. Now con-

sider the t x n matrix D with (j, i)th element equal to Dj,i. Note that the row index, j, in this

matrix refers to the different subspaces or models, and that the column index, i, refers to the

different points in the data set. For a given value of j we have a given subspace L, and the sum

over i, i.e. the sum over the different columns, of the entries in the jth row gives the value of

the selection criterion for this subspace. A basic question that may now be considered is: how

can we use the information summarised in the matrix D to identify potentially selection influ-

ential data cases? In general one would feel that if dj,i, the (j, i)th observed value of Dj,i in the

matrix D, is very large or very small, it would signify that observation i may be selection influ-

ential with respect to the subspace (or model) corresponding to j. If dj,i is very large compared

to the other entries in the ith column, it would mean that observation i plays a significant role

in preventing the subspace corresponding to j from being selected (remember that we select the

subspace having the smallest row total). In such a case omitting observation i may easily cause

the selected subspace to change. Similarly, if dj,i is very small compared to the other entries

in the ith column, it would mean that observation i plays a significant role in promoting the se-

lection of the subspace corresponding to j. Once again we may find that omitting observation

i under such circumstances may cause the selected subspace to change. Viewed in this light

our problem is therefore to decide whether any observed value, dj,i, of Dj,i in the matrix D can

be regarded as being extreme (i.e. very large or very small). The crucial question now is: how

can such a decision be made? In our discussion we utilised a p-value approach to answer this
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question. Other approaches are certainly possible, and should be investigated.

Finally, there are several other more minor questions that deserve further research.

(a) Should data cases that have been identified as selection influential, be omitted from the data

set, or should these cases rather be down-weighted before a model is selected and fitted?

(b) What can be said about identification of selection influential data points when the error term

in a multiple linear regression model is not normally distributed?

(c) In the dissertation attention was restricted to variable selection making use of the Cp crite-

rion. This choice can be justified from the fact that in practical applications the Cp criterion

is frequently used for variable selection. There are of course many other selection criteria that

can be used, and investigating selection influence for these other criteria will be a worthwhile

exercise.

(d) Using the p-value approach to decide whether data points are selection influential requires

comparing calculated (or estimated) p-values to a given significance level. Specifying the latter

is a problem that deserves further attention. For example, should we take into account the

fact that nm p-values are compared to the significance level, and adjust the p-value for this

multiplicity of comparisons? One possibility would be to use a Bonferroni type of adjustment,

but this requires further investigation.
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APPENDIX A

THE COORDINATE FREE APPROACH

In the multiple linear regression model

y = Jl, + ê = X{3 + s,

where I-L is assumed to belong to the known (m + 1)-dimensional linear subspace M of R",

the design matrix X, of full rank (m + 1), is a basis matrix for M. The linear subspace M is

therefore coordinatized by X. Ifwe do not commit ourselves to a specific basis for M, results

derived in the coordinate free linear subspace M, gain in generality. Other reasons why the

coordinate free approach, also referred to as the vector space approach, is more appealing are

listed in Arnold (1981, p.55). Also in this regard Snyman (1994, p.A-1) stated the following:

"By using the vector space approach we win more freedom for the representation of linear

models and related statistics. This approach promotes elegant, concise and simple arguments

with the added benefit of direct geometric interpretability (important statistics can often be

expressed as projections on a particular subspace or as lengths of such projections)."

In this Appendix we present some of the definitions and lemmas which are used in order to

obtain the coordinate free results in the main text. Other standard results which are often

encountered in coordinate free theory are also given. The proofs of these lemmas are omitted,

and can be found in Arnold (1981, Chapter 2) or linear algebra textbooks.

i) Definition A.1

(a) Let R" be the vector space, containing all n-dimensional vectors. Also let

VI, V2, , Vp ERn. Then u is a linear combination of the Vi if there exist

al, a2, , ap E n: such that u = alvl + ...+ apvp'

(b) Let V be a set, VeRn. Then V is a linear subspace if V is closed under the

operation of taking linear combinations, that is, for all VI, V2, ... , Vp E V, and for all

al, a2, ... , ap E Rl, u = alvl + ...+ apvp E V.

150

Stellenbosch University http://scholar.sun.ac.za



THE COORDINATE FREE APPROACH

(c) Let v I, V2' ... , v p E V, where V is a linear subspace. The following results hold:

I. The Vi span V if every v c: V can be written as a linear combination of the Vi·

II. The Vi are linearly independent if alvl + ... + apvp = 0 implies that

al = ... = ap = o.
III. The Vi are a basis for V if they are linearly independent and they span V.

IV. If, in addition to (c), Ilvill = 1 and (Vi, Vj) = 0 for i =1= j, then the Vi are an

orthonormal basis for V.

v. The n x p matrix X is a basis matrix for V if the columns of X form a basis for V.

Yl. The n x p matrix X is an orthonormal basis matrix for V if the columns of X form

a orthonormal basis for V.

ii) Lemma A.I

(a) Let V be a linear subspace of R", Then the following are true:

I. V has an orthonormal basis.

II. Any two bases for V have the same number of vectors. This number is called the

dimension ofV, denoted by dim(V).

III. If VI, V2' ... ,Vp E V form a basis of V, then every vector in V can be written in

exactly one way as a linear combination of the Vi.

IV. IfV has dimensionp and VI, V2, ... , Vp E Vand the Vi are linearly independent,

then the Vi form a basis for V.

(b) Let X be a basis matrix for the p-dimensionallinear subspace VeRn. Then:

I. X is an n x p matrix of rank p and X'X is invertible.

II. The vector V E V if and only ifv =Xb for some vector unique vector b E RP.

iii) Definition A.2

Let W c V be linear subspaces of R",

(a) The orthogonal complement of V, written as V l_, is the set of all vectors orthogonal to

V.

(b) The set of all vectors in V that are orthogonal to W is denoted by V nW l_ = V IW.
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iv) Lemma A.2

Consider the linear subspaces W eVe R", Then:

(a) dim(V_L) = ti - dim(V) and dim(V lW) = dim(V) - dim(W).

(b) If the dimension ofW equals the dimension ofV, then V = W.

v) Definition A.3

Let V be a linear subspace of R", with orthonormal basis VI, V2, ... ,Vp E V. For any

y ERn:

(a) The orthogonal projection ofy onto V is defined as Pvy = 2:~=1(y, Vi) v..
(b) The orthogonal projection ofy onto V is a vector V such that V E Vand y - V E V_L.

vi) Lemma A.3

(a) Let X be a basis matrix for the p-dimensionallinear subspace VERn. The

projection of y onto V is given by PvY = X(X'X)-IX'y with squared norm

IIPvyl12 = y'X(X'X)-IX'y.

(b) Let X = [x I , x2, ... , xp] be an orthonormal basis matrix for the linear subspace v c ïc'.

Then X'X = lp, PvY = XX'y = 2:~=1's,Xi) Xi and IIPvyl12 = IIX'yI12.

(c) Consider the linear subspaces W eVe R", Also, let x, y be any vectors in R" and

a, b any real constants. Then:

I. Po = P~, Pv Po = Py, dim(V) = rank(Pv) = tr(Pv).

II. X E V if and only if PyX = x, and X is orthogonal to V, written as X .L V, if and

only if PyX = o.
III. X = PyX + PV.LX and Pv1wx =Pvx-Pwx =Pv.LX + PW.Lx.

IV. tPo x ;y) = (x,PVy).

V. From the Pythagoras identity Ilax + byl12= a211xl12+ b211yl12+ 2ab (x, y) follows

identities such as

(i) IIxl12= IIPvxl12+ IIPv.LxI12

(ii) IIPvlwxl12 = IIPvxl12 - IIPwxl12 = IIPw.LxI12- IIPv.LxI12.
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vii) Lemma A.4

(a) Let Y : ti x 1be a random vector from a multivariate normal distribution Nn(J.L, :E).

1. If a is a fixed vector in R", then the linear function a'Y = (a, Y) '" N (a' J.L,a':Ea) .

II. If A is a constant q x nmatrix of rank q, where q ~ n, then AY '" Nq(AJ.L, A:EA').

III. If:E is nonsingular, then (Y - J.L)':E-1(y - J.L) '" X;.

(b) Let a, b be any fixed vectors in R" and let Y : n xl", Nn(J.L, 0-2In). Then:

1. a'Y = (a, Y) '" N(a'J.L, Ilal120-2).

II. Cov ((a, Y) , (b,Y)) = (a, b) 0-2.

(c) Let V be some linear subspace of R" and Y : n xl", Nn(J.L, 0-2In). Then:

I. Pv Y '" Nn(PvJ.L, 0-2Pv).
IIP\rYI12 "'X,2 (IIPvJ.L1I2)II. a2 dim(V) a2 .

III. E IIPv Yl12 = 0-2 dim(V) + IIPVJ.L112 .

lY. Var IIPv YI12 = 20-2 dim(V) + 40-211PvJ.L112 .
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EXAMPLE DATA SETS

i) The Hald data (Draper and Smith, 1998)

The Hald data are given in Table B.l. The description of the columns are as follows:

Column I: Observation number

The response variable:

Y: The heat evolved in calories per gram of cement

The four predictor variables are:

xl: The amount of tricalcium aliminate

x2: The amount oftricalcium silicate

x3: The amount oftetracalcium alumino ferrite

x4: The amount of dicalcium silicate

Observation Y x1 x2 x3 x4
1 78.5 7 26 6 60
2 74.3 1 29 15 52
3 104.3 11 56 8 20
4 87.6 11 31 8 47
5 95.9 7 52 6 33
6 109.2 11 55 9 22
7 102.7 3 71 17 6
8 72.5 1 31 22 44
9 93.1 2 54 18 22
10 115.9 21 47 4 26
11 83.8 1 40 23 34
12 113.3 11 66 9 12
13 109.4 10 68 8 12

Table B.l: The Hald data; 13 observations; Y response; 4 predictor variables
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ii) The fuel data (Weisberg, 1985)

The fuel data are given in Table B.2. The description of the columns are as follows:

Column I: Observation number

The response variable:

Y: The 1972 fuel consumption (in gallons per capita)

The four predictor variables are:

xl: The amount of tax on a gallon of fuel (in cents)

x2: The percentage of the population with a driver's license

x3: The average income (in thousands of dollars)

x4: The total length ofroads (in thousands of miles)
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Observation Y x1 x2 x3 x4
1 541 9 52.5 3.571 1.976
2 524 9 57.2 4.092 1.25
3 561 9 58 3.865 1.586
4 414 7.5 52.9 4.87 2.351
5 410 8 54.4 4.399 0.431
6 457 10 57.1 5.342 1.333
7 344 8 45.1 5.319 11.868
8 467 8 55.3 5.126 2.138
9 464 8 52.9 4.447 8.577
10 498 7 55.2 4.512 8.507
11 580 8 53 4.391 5.939
12 471 7.5 52.5 5.126 14.186
13 525 7 57.4 4.817 6.93
14 508 7 54.5 4.207 6.58
15 566 7 60.8 4.332 8.159
16 635 7 58.6 4.318 10.34
17 603 7 57.2 4.206 8.508
18 714 7 54 3.718 4.725
19 865 7 72.4 4.716 5.915
20 640 8.5 67.7 4.341 6.01
21 649 7 66.3 4.593 7.834
22 540 8 60.2 4.983 0.602
23 464 9 51.1 4.897 2.449
24 547 9 51.7 4.258 4.686
25 460 8.5 55.1 4.574 2.619
26 566 9 54.4 3.721 4.746
27 577 8 54.8 3.448 5.399
28 631 7.5 57.9 3.846 9.061
29 574 8 56.3 4.188 5.975
30 534 9 49.3 3.601 4.65
31 571 7 51.8 3.64 6.905
32 554 7 51.3 3.333 6.594
33 577 8 57.8 3.063 6.524
34 628 7.5 54.7 3.357 4.121
35 487 8 48.7 3.528 3.495
36 644 6.58 62.9 3.802 7.834
37 640 5 56.6 4.045 17.782
38 704 7 58.6 3.897 6.385
39 648 8.5 66.3 3.635 3.274
40 968 7 67.2 4.345 3.905
41 587 7 62.6 4.449 4.639
42 699 7 56.3 3.656 3.985
43 632 7 60.3 4.3 3.635
44 591 7 50.8 3.745 2.611
45 782 6 67.2 5.215 2.302
46 510 9 57.1 4.476 3.942
47 610 7 62.3 4.296 4.083
48 524 7 59.3 5.002 9.794
49 551 8 45.2 5.162 3.246
50 345 5 64.8 4.995 0.602

Table B.2: The Fuel data; Observations 1 to 50; Y response; 4 predictor variables
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iii) The evaporation data (Freund, 1979)

The evaporation data is given in Table B.3. The description of the columns are as follows:

Column I: Observation number

Column 2: Month

Column 3: Day

Theresponse variable:

Y: The amount of evaporation from the soil

The ten predictor variables are:

xl: The maximum daily soil temperature

x2: The minimum daily soil temperature

x3: The integrated area under the soil temperature curve

x4: The maximum daily air temperature

x5: The minimum daily air temperature

x6: The integrated area under the daily temperature curve

x7: The maximum daily relative humidity

x8: The minimum daily relative humidity

x9: The integrated area under the daily humidity curve

xlO: The total wind measured in miles per day
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Obsvervation Month Day Y x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
1 6 6 30 84 65 147 85 59 151 95 40 398 273
2 6 7 34 84 65 149 86 61 159 94 28 345 140
3 6 8 33 79 66 142 83 64 152 94 41 388 318
4 6 9 26 81 67 147 83 65 158 94 50 406 282
5 6 10 41 84 68 167 88 69 180 93 46 379 311
6 6 11 4 74 66 131 77 67 147 96 73 478 446
7 6 12 5 73 66 131 78 69 159 96 72 462 294
8 6 13 20 75 67 134 84 68 159 95 70 464 313
9 6 14 31 84 68 161 89 71 195 95 63 430 455
10 6 15 38 86 72 169 91 76 206 93 56 406 604
11 6 16 43 88 73 178 91 76 208 94 55 393 610
12 6 17 47 90 74 187 94 76 211 94 51 385 520
13 6 18 45 88 72 171 94 75 211 96 54 405 663
14 6 19 45 88 72 171 92 70 201 95 51 392 467
15 6 20 11 81 69 154 87 68 167 95 61 448 184
16 6 21 10 79 68 149 83 68 162 95 59 436 177
17 6 22 30 84 69 160 87 66 173 95 42 392 173
18 6 23 29 84 70 160 87 68 177 94 44 392 76
19 6 24 23 84 70 168 88 70 169 95 48 398 72
20 6 25 16 77 67 147 83 66 170 97 60 431 183
21 6 26 37 87 67 166 92 67 196 96 44 379 76
22 6 27 50 89 69 171 92 72 199 94 48 393 230
23 6 28 36 89 72 180 94 72 204 95 48 394 193
24 6 29 54 93 72 186 92 73 201 94 47 386 400
25 6 30 44 93 74 188 93 72 206 95 47 389 339
26 7 1 41 94 75 199 94 72 208 96 45 370 172
27 7 2 45 93 74 193 95 73 214 95 50 396 238
28 7 3 42 93 74 196 95 70 210 96 45 380 118
29 7 4 50 96 75 198 95 71 207 93 40 365 93
30 7 5 48 95 76 202 95 69 202 93 39 357 269
31 7 6 17 84 73 173 96 69 173 94 58 418 128
32 7 7 20 91 71 170 91 69 168 94 44 420 423
33 7 8 15 88 72 179 89 70 189 93 50 399 415
34 7 9 42 89 72 179 95 71 210 98 46 389 300
35 7 10 44 91 72 182 96 73 208 95 43 384 193
36 7 11 41 92 74 196 97 75 215 96 46 389 195
37 7 12 49 94 75 192 96 69 198 95 36 380 215
38 7 13 53 96 75 195 95 67 196 97 24 354 185
39 7 14 53 93 76 198 94 75 211 93 43 364 466
40 7 15 21 88 74 188 92 73 198 95 52 405 399
41 7 16 1 88 74 178 90 74 197 95 61 447 232
42 7 17 44 91 72 175 94 70 205 94 42 380 275
43 7 18 44 92 72 190 95 71 209 96 44 379 166
44 7 19 46 92 73 189 96 72 208 93 42 372 189
45 7 20 47 94 75 194 95 71 208 93 43 373 164
46 7 21 50 96 76 202 96 71 208 94 40 368 139

Table B.3: The Evaporation data; Observations 1 to 46; Month; Day; Y response; 10

predictor variables
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APPENDIX C

FORTRAN PROGRAMS

C PROGRAMC1
C THIS PROGRAM GIVES AS OUTPUT THE VALUES OF THE APPROXIMATED
C VARIANCES IN (2.36) AND (2.37).
C THE VALUE OF SIGMA IS ASSUMED TO BE KNOWN

USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER (NN=20,NMC=1 0000,MUTEL=61)
DIMENSION l(NN),Y(NN),AMU(NN),UM(NN,NN),PARAM(NN),PMY(NN),UV(NN)
DIMENSION BERAMER 1(NN),BERAMER2(NN),PROJ(NN),VERH 1(MUTEL)
DIMENSION SOMVAR1(NN),SOMVAR2(NN),PROJMU(NN),VERH2(MUTEL)

CHARACTER*70 FILEOUT

C CREATE AN OUTPUT FILE
FILEOUT='C:\OUTPUT.TXT

C SET UP THE VALUES OF MU
NN2=NN/2

C SIGMA EQUALS ONE
SIGMA=1.0DO
DO 600 11=1,MUTEL
DO 151=1,NN
IF (I.LE.NN2) AMU(I)=1.0DO*II-31.0DO
IF (I.GT.NN2) AMU(I)=1.0DO

15 CONTINUE

C SET UP THE VALUES OF THE U-VECTORS
DO 20 1=1,NN
DO 19 J=1,NN
UM(I,J)=O.ODO

19 CONTINUE
UM(I,I)=1.0DO

20 CONTINUE

C DETERMINE THE PARAMETER WHICH HAS TO BE ESTIMATED
CALL PL(AMU,PROJMU)
DO 30 1=1,NN
DO 28 J=1,NN
UV(J)=UM(I,J)

28 CONTINUE
CALL PL(UV,PROJ)
ANTW=O.ODO
DO 29 L=1,NN
ANTW=ANTW+PROJ(L)*PROJ(L)

29 CONTINUE
PARAM(I)=«AMU(I)-PROJMU(I))**2.0DO)

30 CONTINUE
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DO 31 1=1,NN
SOMVAR1(1)=0.ODO
SOMVAR2(1)=0.ODO

31 CONTINUE

C START THE LOOP FOR GENERATING NEW ERRORS
DO 500 11I=1,NMC

C DETERMINE THE Y-VALUES
CALL DRNNOR(NN,Z)
DO 90 1=1,NN
Y(I)=AMU(I)+SIGMA*Z(I)

90 CONTINUE

C DETERMINE THE VALUES OF THE TWO ESTIMATORS
001001=1,1
DO 96 J=1,NN
UV(J)=UM(I,J;

96 CONTINUE
CALL PL(UV,PROJ)
ANTW=O.ODO
DO 97 L=1,NN
ANTW=ANTW+PROJ(L)*PROJ(L)

97 CONTINUE
SOM=O.ODO
DO 98 K=1,NN
SOM=SOM+Y(K)*PROJ(K)

98 CONTINUE
BERAMER 1(I )=((Y(I )-SOM)**2.0DO)-(SIGMA *SIGMA)*(1.0DO-ANTW)

CALL PML(UV,PROJ)
SOM1=0.ODO
SOM2=0.ODO
DO 99 K=1,NN
SOM 1=SOM1 +PROJ(K)*PROJ(K)
SOM2=SOM2+PROJ(K)*Y(K)

99 CONTINUE
BERAMER2(1 )=(SOM2**2.0DO)-SOM1*(SIGMA*SIGMA)

100 CONTINUE

DO 110 1=1,NN
SOMVAR1 (1)=SOMVAR1 (1)+(BERAMER1 (1)-PARAM(I»**2.0DO
SOMVAR2(1)=SOMVAR2(1)+(BERAMER2(1)-PARAM(I»**2.0DO

110 CONTINUE

500 CONTINUE

DO 510 1=1,NN
SOMVAR1(1)=SOMVAR1(1)/NMC
SOMVAR2(1)=SOMVAR2(1)/NMC

510 CONTINUE

VERH 1(II)=SOMVAR 1(1 )/SOMVAR2(1)
600 CONTINUE

OPEN(1,FILE=FILEOUT)
DO 900 1=1,MUTEL
WRITE(1:) I,VERH1(1)

900 CONTINUE
CLOSE(1)

1000 STOP
END
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C SUBROUTINE FOR CALCULA TlNG THE PROJECTION OF A VECTOR (X) ON M
SUBROUTINE PM(X,PMX)
USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER (NN=20,NMC=1 000)
DIMENSION X(NN),PMX(NN)
NN2=NN/2
SOM=O.ODO
DO 10 1=1,NN2
SOM=SOM+ X(I)

10 CONTINUE
GEM1=SOM/NN2
SOM=O.ODO
DO 20 I=NN2+1,NN
SOM=SOM+X(I)

20 CONTINUE
GEM2=SOM/NN2
DO 30 1=1,NN
IF (I.LE.NN2) PMX(I)=GEM1
IF (I.GT.NN2) PMX(I)=GEM2

30 CONTINUE
RETURN
END

C SUBROUTINE FOR CALCULA TING THE PROJECTION OF A VECTOR (X) ON L
SUBROUTINE PL(X,PLX)
USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER (NN=20,NMC=1 000)
DIMENSION X(NN),PLX(NN)
NN2=NN/2
SOM=O.ODO
DO 10 I=NN2+1,NN
SOM=SOM+X(I)

10 CONTINUE
GEM 1=SOM/NN2
DO 20 1=1,NN
IF (I.LE.NN2) PLX(I)=O.ODO
IF (I.GT.NN2) PLX(I)=GEM1

20 CONTINUE
RETURN
END

C SUBROUTINE FOR CALCULATING THE PROJECTION OF A VECTOR (X) ON MIL
SUBROUTINE PML(X,PMLX)
USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER (NN=20,NMC=1000)
DIMENSION X(NN),PP1 (NN),PP2(NN),PMLX(NN)
CALL PM(X,PP1)
CALL PL(X,PP2)
DO 10 1=1,NN
PMLX(I)=PP1(1)-PP2(1)

10 CONTINUE
RETURN
END
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C PROGRAMC2
C THIS PROGRAM GIVES AS OUTPUT THE Cp CRITERION AND SELECTED VARIABLES IN TABLE 3.1 FOR

THE HALO DATA.
C THE Cp SELECTION CRITERION IS APPLIED TO THE COMPLETE DATA SET.
C THE ith DATA CASE IS THEN OMITTED FROM THE DATA SET AND Cp IS CALCULATED FOR EACH OF
C THE REDUCED DATA SET.
C NOTE THAT IN CALCULATING Cp FOR THE REDUCED DATA SETS, THE ERROR VARIANCE IS OBTAINED
C FROM THE COMPLETE DATA SET

USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER(IP=4,NN=13,IPP1 =IP+1 ,N=NN-1)

PARAMETER(NVAR1 =IPP1 ,LDCOV1 =NVAR1 ,NOBS1=NN,ICRIT1 =3,NBEST1 =1 ,NGOOD1 =1 0,IPRINT1 =0,
&LDCOEF1 =NBEST1*IP ,NSIZE1 =IP ,LlNDVAR1 =NGOOD1*NSIZE1*(NSIZE1 +1 )/2,NTBEST1 =NBEST1 )

DIMENSION CRIT1 (NGOOD1*NSIZE1 ),COEF1 (LDCOEF1 ,5)
DIMENSION ICRITX1 (NSIZE1 +1 ),IVARX1 (NSIZE1 +1 ),INDVAR1 (LlNDVAR1)
DIMENSION ICOEFX 1(NTBEST1 +1)
DIMENSION COV(IPP1 ,IPP1)
DIMENSION XMEAN(IPP1)
DIMENSION INCD(1, 1)

DIMENSION XY(NN,IPP1 ),XY1 (N,IPP1 ),X(NN,IP),XX(N,P),Y(NN)
DIMENSION B(O: lP), IRYW(NN),CPWEG 1(NN),AKRIT(NN ),KIESB(NN,IP)

CHARACTER*70 FILEIN
CHARACTER"70 FILEOUT

C THE HALO DATA ARE USED AS INPUT FILE
FILEIN='C:\HALD.TXT'
FILEOUT='C:\OUTPUT.TXT'

C READ THE DATA INTO XY
OPEN(1,FILE=FILEIN)
DO 1 1=1,NN
READ(1:) XY(I,IPP1 ),(XY(I,J),J=1 ,lP)
CONTINUE
CLOSE(1 )

C THE VALUES OF THE PREDICTORS ARE PLACED IN X
DO 3 J=1,IP
DO 21=1,NN
X(I,J)=XY(I,J)

2 CONTINUE
3 CONTINUE

C THE VALUES OF THE RESPONSE ARE PLACED IN Y
DO 51=1,NN
Y(I)=XY(I,IPP1 )

5 CONTINUE

NOBS=NN
LDX=NN
NIND=IP
INTCEP=1
CALL DRLSE(NOBS,Y,NIND,X,LDX,INTCEP,B,SST,SSE)
SIG=SSE/(NN-IP-1 )
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C THE Cp CRITERION IS APPLIED TO THE FULL DATA SET
IDO=O
NROW=NN
NVAR=IPP1
LDX=NN
IFRQ=O
IWT=O
MOPT=O
ICOPT=1
LDCOV=IPP1
LDINCD=1

CALL DCORVC(IDO,NROW,NVAR,XY,LDX,IFRQ,IWT,MOPT,ICOPT,XMEAN,COV,
&LDCOV,INCD,LDINCD,NOBS,NMISS,SUMWT)

CALL DRBEST(NVAR1 ,COV,LDCOV1 ,NOBS1 ,ICRIT1 ,NBEST1 ,NGOOD1,
&IPRINT1 ,ICRITX1 ,CRIT1 ,IVARX1 ,INDVAR1 ,ICOEFX1 ,COEF1 ,LDCOEF1)

IMIN=1
AMIN=CRIT1(1)
DO 10 1=2,IP
IF (CRIT1 (ICRITX1 (I)).LT.AMIN) THEN
AMIN=CRIT1 (ICRITX1 (I))
IMIN=I
ENDIF

10 CONTINUE
IB=IVARX1(IMIN)

C THE MATRIX XX, THAT CONTAINS THE SELECTED COLUMNS OF XV, IS SET UP
C NOTE THAT IMIN = THE NUMBER OF PREDICTORS SELECTED

DO 20 J=1 ,IMIN
ITT=INDVAR1 (IB+J-1 )
DO 151=1,NN
XX(I,J)=X(I,ITT)

15 CONTINUE
20 CONTINUE

NOBS=NN
NIND=IMIN
LDX=NN
INTCEP=1
CALL DRLSE(NOBS,Y,NIND,XX,LDX,INTCEP,B,SST,SSE)
CPVOL=SSE/SIG+(2*(IMIN+1 )-NN)

C WRITE THE Cp CRITERION CALCULA TED ON THE COMPLETE DATA SET ON THE SCREEN
WRITE(6,*) CPVOL

C THE LOOP THAT OMITS THE ith DATA CASE IS STARTED
DO 50 1I=1,NN
NWEG=1
IRYW(1)=1I

C SUBROUTINE THAT OMITS THE ith DATA CASE IS CALLED
CALL WEGLAAT(NWEG,IRYW,XY,XY1)

C SUBROUTINE THAT CALCULA TES THE Cp CRITERION FOR THE REDUCED DATA SET IS CALLED
CALL WAARWEG(II,XY1 ,SIG,CPWEG,KIESB)
CPWEG1(1I)=CPWEG

50 CONTINUE
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OPEN(1,FILE=FILEOUT)
DO 950 1=1,NN
WRITE(1 ,96e) I,CPWEG1 (1),(KIESB(I,J),J=1 ,lP)

950 CONTINUE
CLOSE(1)

960 FORMAT(12,2X,F20.6,2X,1 0(12, 1X))

1000 STOP
END

C SUBROUTINE THAT OMITS THE ith DATA CASE
SUBROUTINE WEGLAA T(NWEG,IRYW,XY,XY1)
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER (IP=4,NN=13,IPP1 =IP+1 ,N=NN-1)
DIMENSION XY(NN,IPP1 ),XY1 (N,IPP1 ),IRYW(NN)
ITEL=O
DO 100 1=1,NN
11=0
DO 5 J=1 ,NWEG
IF (IRYW(J).EQ.I) 11=1

5 CONTINUE
IF (1I.EQ.1) GOTO 100
ITEL = ITEL +1
DO 10 J=1,IPP1
XY1 (ITEL,J)=XY(I,J)

10 CONTINUE
100 CONTINUE

RETURN
END

C SUBROUTINE THAT CALCULA TES THE Cp CRITERION FOR THE REDUCED DATA SET
SUBROUTINE WAARWEG(II,XY1 ,SIG,ANT,KIESB)
USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER(IP=4,NN=13,IPP1 =IP+1 ,N=NN-1)
PARAMETER(NVAR1=IPP1,LDCOV1=NVAR1,NOBS1=NN,ICRIT1=3,NBEST1=1,NGOOD1=10,IPRINT1=0,
&LDCOEF1 =NBEST1 *IP ,NSllE1 =IP,L1NDVAR1 =NGOOD1 *NSllE1 *(NSllE1 +1 )/2,NTBEST1 =NBEST1)

DIMENSION CRIT1 (NGOOD1 *NSllE1 ),COEF1 (LDCOEF1 ,5)
DIMENSION ICRITX1 (NSllE1 +1 ),IVARX1 (NSllE1 +1 ),INDVAR1 (L1NDVAR1)
DIMENSION ICOEFX1 (NTBEST1 +1)
DIMENSION COV(IPP1 ,IPP1)
DIMENSION XMEAN(IPP1)
DIMENSION INCD(1, 1)

DIMENSION Y1 (N),X1 (N,IP),X2(N,IP),XY1 (N,IPP1)
DIMENSION B(O:IP),KIESB(NN,IP)

DO 61=1,N
DO 4 J=1,IP
X1(I,J)=XY1 (I,J)

4 CONTINUE
Y1 (1)=XY1 (1,IPP1)

6 CONTINUE
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C THE Cp CR/TER/ON /S APPLIED TO THE REDUCED DATA SET
IDO=O
NROW=N
NVAR=IPP1
LDX=N
IFRO=O
IWT=O
MOPT=O
ICOPT=1
LDCOV=IPP1
LDINCO=1

CALL DCORVC(IOO,N ROW, NVAR,XY1 ,LOX, IFRO,IWT,MOPT, ICOPT,XMEAN, COV,
&LDCOV,INCO,LDINCD,NOBS,NMISS,SUMWT)

CALL DRBEST(NVAR1 ,COV,LDCOV1 ,NOBS1 ,ICRIT1 ,NBEST1 ,NG0001,
&IPRINT1 ,ICRITX1 ,CRIT1 ,IVARX1 ,INDVAR1 ,ICOEFX1 ,COEF1 ,LDCOEF1)

IMIN=1
AMIN=CRIT1 (1)
DO 10 1=2,IP
IF (CRIT1 (ICRITX1 (I)).L T.AMIN) THEN
AMIN=CRIT1 (ICRITX1 (I))
IMIN=I
ENOIF

10 CONTINUE
IB=IVARX1(IMIN)

DO 20 J=1,IMIN
ITT=INOVAR1(IB+J-1 )
KIESB(II,J)=ITT
DO 15 1=1,N
X2(I,J)=X1 (I,ITT)

15 CONTINUE
20 CONTINUE

NOBS=N
NIND=IMIN
LDX=N
INTCEP=1
CALL DRLSE(NOBS,Y1 ,NINO,X2,LDX,INTCEP,B,SST,SSE)
ANT=SSE/SIG+(2*(IMIN+1 )-N)

RETURN
END
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C PROGRAMC3
C THIS PROGRAM GIVES AS OUTPUT THE COOK DISTANCES IN TABLE 3.1 FOR THE HALO DATA

USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER(IP=4,NN=13,IPP1 =IP+1)
DIMENSION XY(NN,IPP1 ),Y(NN),X(NN,IP),X1 (NN,IPP1 ),X1Y(NN,IPP1 ),XY1 (NN-1 ,IPP1)
DIMENSION YKAP(NN),YKAP1 (NN)
DIMENSION B(IPP1 ),IRYW(NN),D(NN),DU(NN)

CHARACTER'70 FILEIN
CHARACTER'70 FILEOUT

FILEIN='C:\HALD.TXT'
FILEOUT='C:\OUTPUT.TXT'

OPEN(1,FILE=FILEIN)
DO 51=1,NN
READ(1:) XY(I,IPP1 ),(XY(I,J),J=1 ,lP)

5 CONTINUE
CLOSE(1)

DO 61=1,NN
Y(I)=XY(I,IPP1 )

6 CONTINUE

DO 8 1=1,NN
DO 7 J=1,IP
X(I,J)=XY(I,J)

7 CONTINUE
8 CONTINUE

C CALCULA TE THE MSE OF THE MODEL FITTED TO THE FULL DATA SET
NOBS=NN
NIND=IP
LDX=NN
INTCEP=1
CALL DRLSE(NOBS,Y,NIND,X,LDX,INTCEP,B,SST,SSE)
GSKF=SSE/(NN-IP-1 )

C CALCULATE THE PREDICTED VALUES FROM THE MODEL FITTED TO THE FULL DATA SET
DO 351=1,NN
YKAP(I)=B(1 )

35 CONTINUE

DO 451=1,NN
DO 40 J=1,IP
YKAP(I)=YKAP(I)+(B(J+1 )'X(I,J))

40 CONTINUE
45 CONTINUE

C THE LOOP THAT OMITS THE ith DATA CASE IS STARTED
DO 50 1I=1,NN
0(11)=0.000
NWEG=1
IRYW(1)=1I

C SUBROUTINE THAT OMITS THE ith DATA CASE IS CALLED
CALL WEGLAAT(NWEG,NN,IRYW,XY,XY1)
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C SUBROUTINE THAT CALCULA TES THE PREDICTED VALUES OF THE MODEL FITTED TO THE
C REDUCED DATA SET IS CALLED

CALL WAARWEG(XY1,XY,II,YKAP1)

C CALCULATE THE SQUARED DIFFERENCES BETWEEN THE TWO SETS OF PREDICTED VALUES
DO 461=1,NN
D(II)=D(II)+((YKAP(I)- YKAP1 (I))*(YKAP(I)- YKAP1 (I)))

46 CONTINUE

C CALCULA TE COOK'S DISTANCE
DU(II)=D(II)/(GSKF*(IP+1 ))

50 CONTINUE

OPENt 1,FILE=FILEOUT)
DO 950 1=1,NN
WRITE(1,960) I,DU(I)

950 CONTINUE
CLOSE(1)

960 FORMAT(12,2X,F12.8)
1000 STOP

END

C SUBROUTINE THAT OMITS THE ith DATA CASE
SUBROUTINE WEGLAAT(NWEG,N,IRYW,XX,X1)
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER (IP=4,NN=13,IPP1 =IP+1)
DIMENSION XX(NN,IPP1 ),X1(NN-1,IPP1 ),IRYW(NN)

ITEL=O
DO 100 1=1,N
11=0
DO 5 J=1,NWEG
IF (IRYW(J).EQ.I) 11=1

5 CONTINUE
IF (II.EQ.1) GOTO 100
ITEL=ITEL+1
DO 10 J=1,IPP1
X1(ITEL,J)=XX(I,J)

10 CONTINUE
100 CONTINUE

RETURN
END

C SUBROUTINE THAT CALCULA TES THE PREDICTED VALUES OF THE MODEL FITTED TO
C THE REDUCED DATA SET

SUBROUTINE WAARWEG(XY1,XY,II,YKAP1)
USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER(IP=4,NN=13,IPP1 =IP+1,N=NN-1)
DIMENSION Y1(N),X3(1,IP),YKAP1 (NN),XY(NN,IPP1 ),XY1(N,IPP1 ),B(IPP1)

DO 61=1,N
Y1(1)=XY1(I,IPP1)

6 CONTINUE

DO 21 J=1,IP
X3(1,J)=XY(II,J)

21 CONTINUE
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C CALCULA TE THE ESTIMATED COEFFICIENTS OF THE MODEL FITTED TO THE REDUCED DATA SET
NOBS=N
NIND=IP
LDX=N
INTCEP=1
CALL DRLSE(NOBS,Y1,NIND,XY1,LDX,INTCEP,B,SST,SSE)

C CALCULA TE THE PREDICTED VALUES
DO 251=1,NN
YKAP1(1)=B(1)

25 CONTINUE

IF (ILEQ.1) THEN
DO 28 J=1,IP
YKAP1 (1)=YKAP1 (1)+X3(1,J)*B(J+1)

28 CONTINUE
DO 321=1,N
DO 30 J=1,IP
YKAP1 (1+1)=YKAP1 (1+1)+XY1(I,J)*B(J+1)

30 CONTINUE
32 CONTINUE

ENDIF

IF (ILEQ.NN) THEN
DO 561=1,N
DO 54 J=1,IP
YKAP1 (1)=YKAP1(1)+XY1(I,J)*B(J+1)

54 CONTINUE
56 CONTINUE

DO 58 J=1,IP
YKAP1 (NN)=YKAP1 (NN)+X3(1,J)*B(J+1)

58 CONTINUE
ENDIF

IF ((ILNE.1 ).AND.(ILNE.NN» THEN
DO 621=1,11-1
DO 60 J=1,IP
YKAP1 (1)=YKAP1(1)+XY(I,J)*B(J+1)

60 CONTINUE
62 CONTINUE

DO 64 J=1,IP
YKAP1 (1I)=YKAP1(1I)+X3(1,J)*B(J+1)

64 CONTINUE

DO 70 1=1I+1,NN
DO 65 J=1,IP
YKAP1 (1)=YKAP1(1)+XY(I,J)*B(J+1)

65 CONTINUE
70 CONTINUE

ENDIF

RETURN
END
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C PROGRAMC4
C THIS PROGRAM GIVES AS OUTPUT THE APEs AND PCS-VALUES OF THE SELECTED MODELS IF Cp IS
C APPLIED TO THE ORDINARY AND THEIR CORRESPONDING MODIFIED DATA SETS. THE APEs OF
C THE SELECTED MODELS FOR THIS SPECIFIC SIMULA TION PROGRAM ARE PLOTTED IN TOP LEFT
C CORNER (LANDSCAPE FORMAT) OF FIGURE 3.3. THE CORRESPONDING PCS-RESUL TS ARE PLOTTED
C IN THE TOP LEFT CORNER (LANDSCAPE FORMAT) OF FIGURE 3.7

USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (IP=5,NN=20,IPP1 =IP+1 ,NMOD=2**IP ,NMC1=50,NMC2=200)
PARAMETER (XVARIANSIE=1.0DO,FOUTVARIANSIE=1.0DO,NUMBETAS=21)
PARAMETER (XRHO=0.ODO,IXINVLOED=1 ,NBNIENUL=5)

DIMENSION XM(NN,IP),Y(NN),XM 1(NN,IP),YN(NN),XMI(NN,IP),XMI1 (NN,IP)
DIMENSION SIGMAM(lP,IP),SIGINV(IP,IP),RSIG(IP,IP),Z(NN)
DIMENSION APEG(O:NUMBETAS),APEI(O:NUMBETAS)
DIMENSION PCSG(O:NUMBETAS),PCSI(O:NUMBETAS)
DIMENSION B(O:IP),BKAP(O:IP),KIESB(IP)

CHARACTER*70 FILEIN
CHARACTER*70 FILEOUT

FILEOUT='C:\OUTPUT.TXT'

C THE VALUE OF BETA 11S SET EQUAL TO 1
B(O)=1.0DO
ZSIG=DSQRT(FOUTV ARIANSIE)

C PREPARE THE SETUP FOR GENERATING THE DESIGN MATRICES
DO 3 1=1,IP
DO 2 J=1,IP
SIGMAM(I,J)=XRHO

2 CONTINUE
SIGMAM(I,I)=XVARIANSIE

3 CONTINUE
TOL=1.0D2*DMACH(4 )
CALL DCHFAC(IP,SIGMAM,IP,TOL,IRANK,RSIG,IP)

C CERTAIN SIMULATION COUNTERS ARE INITIALISED
DO 51=0,NUMBETAS
APEG(I)=O.ODO
APEI(I)=O.ODO
PCSG(I)=O.ODO
PCSI(I)=O.ODO

5 CONTINUE

C THE FOLLOWING LOOP IS REPEATED FOk DIFFERENT DESIGN MATRICES
DO 800 IX=1,NMC1

C GENERATE A NEW DESIGN MATRIX AND DETERMINE THE MAXIMUM AND
C MINIMUM VALUES OF THE FIRST PREDICTOR

CALL DRNMVN(NN,IP,RSIG,IP,XM,NN)
AMIN=XM(1,IXINVLOED)
AMAX=XM(1,IXINVLOED)
NMIN=1
NMAX=1
DO 81=2,NN
IF (XM(I,IXINVLOED).LE.AMIN) THEN

AMIN=XM(I,IXINVLOED)
NMIN=I

ENDIF
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IF (XM(I,IXINVLOED).GE.AMAX) THEN
AMAX=XM(I,IXINVLOED)
NMAX=I

ENDIF
8 CONTINUE

C INCLUDE A POSSIBL Y SELECTION INFLUENTIAL DATA CASE IN THE DESIGN MA TRIX
DO 121=1,NN
D011J=1,IP
XMI(I,J)=XM(I,J)

11 CONTINUE
12 CONTINUE

XMI(NMAX,IXINVLOED)=AMIN

C THE LOOP THAT INCREMENTS THE BETA VALUES IS STARTED.
C NOTE THAT THE BETA COEFFICIENT CONFIGURA TlON WHERE ALL THE BETA-VALUES
C ARE INCREMENTED IS USED

DO 500 IB=O,NUMBETAS

IF (IB.LE.1!l) THEN
DO 13 J=1 ,NBNIENUL
B(J)=0.1DO*IB

13 CONTINUE
ENDIF
IF (IB.GT.15) THEN

DO 14 J=1 ,NBNIENUL
B(J)=1.5DO+0.25DO*(IB-15)

14 CONTINUE
ENDIF

IF (NBNIENUL.L T.IP) THEN
DO 16 J=NBNIENUL +1,lP
B(J)=O.ODO

16 CONTINUE
ENDIF

C DETERMINE VALUES OF THE RESPONSE VARIABLE
DO 400 IFOUT=1 ,NMC2
CALL DRNNOR(NN,Z)
DO 20 1=1,NN
Y(I)=B(O)+ZSIG*Z(I)
DO 19 J=1,IP
Y(I)=Y(I)+B(J)*XM(I,J)

19 CONTINUE
20 CONTINUE

C THE SUBROUTINE THAT APPLIES Cp TO TI IE ORDINARY DATA SET IS CALLED
CALL ALLEMODELLE(XM,Y,NVAR,KIESB)

DO 30 1=1,NN
DO 29 J=1,NVAR
XM1(I,J)=XM(I,KIESB(J))

29 CONTINUE
30 CONTINUE

NOBS=NN
NIND=NVAR
LDX=NN
INTCEP=1
CALL DRLSE(NOBS,Y,NIND,XM1 ,LDX,INTCEP,BKAP,SST,SSE)
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C GENERATE A NEW VECTOR OF Y-VALUES
CALL DRNNOR(NN,Z)
DO 33 1==1,NN
YN(I)==B(O)+ZSIG*Z(I)
DO 32 J==1,IP
YN(I)==YN(I)+B(J)*XM(I,J)

32 CONTINUE
33 CONTINUE

C DETERMINE THE SUM OF THE APEs OF THE SELECTED MODELS
C FROM THE ORDINARY DATA SETS

S=O.ODO
DO 40 1==1,NN
YKAP==BKAP(O)
DO 35 J==1,NVAR
YKAP==YKAP+XM1 (I,J)*BKAP(J)

35 CONTINUE
S=S+(YKAP-YN(I))**2.0DO

40 CONTINUE
APEG(IB)==APEG(IB)+S

C DETERMINE THE SUM OF THE PCS-VALUES IF Cp IS APPLIED TO
C THE ORDINARY DATA SETS

IKIES==1
IF (NVAR.NE.NBNIENUL) IKIES==O
DO 45 J==1,NVAR
IF (KIESB(J).NE.J) IKIES==O

45 CONTINUE
IF (IKIES.EQ.1) PCSG(IB)==PCSG(IB)+1.0DO

C THE SUBROUTINE THATAPPLIES Cp TO THE MODIFIED
C DATA SETS IS CALLED

CALL ALLEMODELLE(XM I,Y, NVAR,KI ESB)

DO 50 1==1,NN
DO 49 J==1,NVAR
XMI1(I,J)==XMI(I,KIESB(J))
XM1 (I,J)==XM(I,KIESB(J))

49 CONTINUE
50 CONTINUE

NOBS==NN
NIND==NVAR
LDX==NN
INTCEP==1
CALL DRLSE(NOBS,Y,NIND,XMI1,LDX,INTCf:P,BKAP,SST,SSE)

C DETERMINE THE SUM OF THE APEs OF THE SELECTED MODELS FROM THE
C MODIFIED DATA SETS

S==O.ODO
DO 60 1==1,NN
YKAP==BKAP(O)
DO 55 J==1,NVAR
YKAP==YKAP+XM1 (I,J)*BKAP(J)

55 CONTINUE
S=S+(YKAP-YN(I))**2.0DO

60 CONTINUE
APEI(IB)==APEI(IB)+S

171

Stellenbosch University http://scholar.sun.ac.za



PROGRAM C4.xls

C DETERMINE THE SUM OF PCS-VALUES IF Cp IS APPLIED TO THE
C MODIFIED DATA SETS

IKIES=1
IF (NVAR.NE.NBNIENUL) IKIES=O
DO 65 J=1,NVAR
IF (KIESB(J).NE.J) IKIES=O

65 CONTINUE
IF (IKIES.EQ.1) PCSI(IB)=PCSI(IB)+1.0DO

400 CONTINUE
500 CONTINUE
800 CONTINUE

C CALCULA TE THE APE AND PCS OF THE SELELCTED MODELS FROM THE
C ORDINARY AND MODIFIED DATA SETS

DO 850 I=O,NUMBETAS
APEG(I)=APEG(I)/(NMC1*NMC2*NN)
APEI(I)=APEI(I)/(NMC1*NMC2*NN)
PCSG(I)=PCSG(I)/(NMC1*NMC2)
PCSI(I)=PCSI(I)/(NMC1*NMC2)

850 CONTINUE

OPEN(1,FILE=FILEOUT)
DO 920 I=O,NUMBETAS
WRITE(1 ,975) APEG(I),APEI(I),PCSG(I),PCSI(I)

920 CONTINUE
620 CONTINUE

CLOSE(1)

975 FORMAT(F9.6,2X,F9.6,2X, F9.6,2X,F9.6)

1000 STOP
END

C SUBROUTINE THAT APPLIES THE Cp CRITERION
SUBROUTIN E ALLEMODELLE(XM ,Y,NVAR, KIESB)
USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (IP=5,NN=20,IPP1 =IP+1 ,NMOD=2**IP,NMC1 =100,NMC2=1 00)

PARAMETER(NVAR1 =IPP1 ,LDCOV1=NVAR1 ,NOBS1=NN,
&ICRIT1 =3,NBEST1 =1,NGOOD1 =IP,IPRINT1 =0,LDCOEF1 =NBEST1*IP,
&NSIZE1 =IP,LlNDVAR1 =NGOOD1*NSIZE1*(NSIZE1 +1)/2,NTBEST1 =NBEST1)

DIMENSION XM(NN,IP),Y(NN),XY(NN,IPP1)
DIMENSION KIESB(IP)

DIMENSION CRIT1 (NGOOD1*NSIZE1 ),COEF1 (LDCOEF1 ,5)
DIMENSION ICRITX1 (NSIZE1 +1),IVARX1 (NSIZE1 +1),INDVAR1(LlNDVAR1)
DIMENSION ICOEFX1 (NTBEST1 +1)
DIMENSION COV(IPP1 ,IPP1 ),XMEAN(IPP1)
DIMENSION INCD(1, 1)

DO 51=1,NN
XY(I,IPP1 )=Y(I)
DO 4 J=1,IP
XY(I,J)=XM(I,J)

4 CONTINUE
5 CONTINUE
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IDO=O
NROW=NN
NVAR=IPP1
LDX=NN
IFRQ=O
IWT=O
MOPT=O
ICOPT=1
LDCOV=IPP1
LDINCD=1

CALL DCORVC(IDO,NROW,NVAR,XY,LDX,IFRQ,IWT,MOPT,ICOPT,XMEAN,
&COV,LDCOV,INCD,LDINCD,NOBS,NMISS,SUMWT)

CALL DRBEST(NVAR1 ,COV,LDCOV1 ,NOBS1 ,ICRIT1 ,NBEST1 ,NGOOD1,
&IPRINT1 ,ICRITX1 ,CRIT1 ,IVARX1 ,INDVAR1 ,ICOEFX1 ,COEF1 ,LDCOEF1)

IMIN=1
AMIN=CRIT1(1 )
DO 121=2,IP
IF (CRIT1(ICRITX1(1)).LT.AMIN) THEN

AMIN=CRIT1 (ICRITX1 (I))
IMIN=I

ENDIF
12 CONTINUE

NVAR=IMIN
IBES=IVARX1 (IMIN)

DO 15 J=1,IP
KIESB(J)=O

15 CONTINUE
DO 20 J=1 ,IMIN
KIESB(J)=INDVAR1 (IBES+J-1)

20 CONTINUE

RETURN
END
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C PROGRAMC$
C THIS PROGRAM GIVES AS OUTOUT COOK'S UNCONDITIONAL DISTANCE IN TABLE 4. 1 FOR THE HALO DATA

USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER(IP=4,NN=13,IPP1=IP+1 )

PARAMETER(NVAR1=IPP1,LDCOV1=NVAR1,NOBS1=NN,ICRIT1=3,NBEST1=1,NGOOD1=10,IPRINT1=O,+
LDCOEF1=NBEST1·IP,NSIZE1=IP,LlNDVAR1=NGOOD1·NSIZE1·(NSIZE1+1)/2,NTBEST1=NBEST1)

DIMENSION CRIT1 (NGOOD1·NSIZE1 ),COEF1 (LDCOEF1,5)
DIMENSION ICRITX1(NSIZE1+1),IVARX1(NSIZE1+1),INDVAR1(LlNDVAR1)
DIMENSION ICOEFX1(NTBEST1+1)
DIMENSION COV(IPP1,IPP1)
DIMENSION XMEAN(IPP1)
DIMENSION INCD(1,1)

DIMENSION XY(NN,IPP1), Y(NN),X(NN,IP),X1 (NN,IPP1 ),XY1 (NN-1,IPP1)
DIMENSION YKAP(NN),YKAP1(NN)
DIMENSION B(IPP1 ),IRYW(NN),D(NN),DU(NN)

CHARACTER*70 FILEIN
CHARACTER*70 FILEOUT

FILEIN='C:\HALD.TXT'
FILEOUT='C:\OUTPUT.TXT'

OPEN(1, FILE=FILEIN)
DO 51=1,NN
READ(1:) XY(I,IPP1 ),(XY(I,J),J=1,IP)

5 CONTINUE
CLOSE(1)

D061=1,NN
Y(I)=XY(I,IPP1 )

6 CONTINUE

DO 8 1=1,NN
DO 7 J=1,IP
X(I,J)=XY(I,J)

7 CONTINUE
8 CONTINUE

C CALCULA TE THE MSE OF THE MODEL FITTED TO THE FULL DATA SET
NOBS=NN
NIND=IP
LDX=NN
INTCEP=1
CALL DRLSE(NOBS,Y,NIND,X,LDX,INTCEP,B,SST,SSE)
GSKF=SSE/(NN-IP-1 )

C Cp IS APPLIED TO THE FULL DA TA SET
IDO=O
NROW=NN
NVAR=IPP1
LDX=NN
IFRQ=O
IWT=O
MOPT=O
ICOPT=1
LDCOV=IPP1
LDINCD=1

CALL DCORVC(IDO,NROW,NVAR,XY,LDX,IFRQ,IWT,MOPT,ICOPT,XMEAN,COV,+
LDCOV,INCD,LDINCD,NOBS,NMISS,SUMWT)

CALL DRBEST(NVAR1,COV,LDCOV1,NOBS1,ICRIT1,NBEST1,NGOOD1,+
IPRINT1, ICRITX 1,CRIT1 ,IVARX 1, INDVAR1, ICOEFX 1,COEF1 ,LDCOEF1)
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IMIN=l
AMIN=CRIT1(1 )
DO 10 1=2,IP
IF (CRIT1(ICRITX1(1».LT.AMIN) THEN

AMIN=CRITl (ICRITXl (I»
IMIN=I
ENDIF

10 CONTINUE
IB=IVARX1(IMIN)

C THE COLUMNS OF X1 CONTAIN THE PREDICTORS SELECTED FROM THE FULL DATA SET
DO 20 J=l,IMIN
ITT=INDVAR1(IB+J-l)
DO 151=1,NN
Xl(I,J)=XY(I,ITT)

15 CONTINUE
20 CONTINUE

C CALCULA TE THE ESTIMA TED REGRESSION COEFFICIENTS
NOBS=NN
NIND=IMIN
LDX=NN
INTCEP=l
CALL DRLSE(NOBS,Y,NIND,X1 ,LDX,INTCEP,B,SST,SSE)
IVERB=IMIN

C CALCULA TE THE PREDICTED VALUES
DO 351=1,NN
YKAP(I)=B(l )

35 CONTINUE

DO 451=1,NN
D040J=1,IMIN
YKAP(I)=YKAP(I)+(B(J+1 )OX1(I,J»

40 CONTINUE
45 CONTINUE

C THE LOOP THAT OMITS THE ith DATA CASE IS STARTED
DO 50 II=l,NN
0(11)=0.000
NWEG=l
IRYW(l)=11

C SUBROUTINE THAT OMITS THE ith DATA CASE IS CALLED
CALL WEGlAAT(NWEG,NN,IRYW,XY,XY1)

C SUBROUTINE THA T APPLIES Cp TO THE REDUCED DA TA SET IS CALLED. THIS SUBROUTINE ALSO
C CALCULA TES THE PREDICTED VALUES

CALL WAARWEG(XY1,XY,II,YKAP1)

C CALCULA TES THE SUM OF THE SQUARED DIFFERENCES BETWEEN THE TWO SETS OF PREDICTED VALUES
DO 461=1,NN
0(11)=0(11)+«YKAP(I)- YKAP1(I))*(YKAP(I)-YKAP1(I»)

46 CONTINUE

C CALCULATE COOK'S UNCONDITIONAL DISTANCE
DU(II)=D(II)/(GSKF*(IVERB+1 »

50 CONTINUE

OPEN(l,FILE=FILEOUT)
DO 950 l=l,NN
WRITE(l ,960) I,DU(I)

950 CONTINUE
CLOSE(l)

960 FORMAT(12,2X,F12.8)
1000 STOP

END
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C SUBROUTINE THA T OMITS THE ith DA TA CASE
SUBROUTINE WEGLAA T(NWEG,N, IRYW,XX,Xl)
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER (IP=4,NN=13,IPPl =IP+l)
DIMENSION XX(NN,IPPl ),Xl (NN-l ,IPPl ),IRYW(NN)
ITEL=O
DO 100 l=l,N
11=0
D05J=1,NWEG
IF (IRYW(J).EQ.I) 11=1

5 CONTINUE
IF (II.EQ.l) GOTO 100
ITEL=ITEL + 1
DO 10 J=l,IPPl
Xl (ITEL,J)=XX(I,J)

10 CONTINUE
100 CONTINUE

RETURN
END

C SUBROUTINE THA T APPLIES Cp TO THE REDUCED DA TA SET
SUBROUTINE WAARWEG(XY1,XY,II,YKAP1)
USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-l)
PARAMETER(IP=4,NN=13,IPP1=IP+l ,N=NN-l)

PARAMETER(NVAR1=IPP1,LDCOV1=NVAR1,NOBS1=N,ICRIT1=3,NBEST1=1,NGOOD1=10,IPRINT1=0,+
LDCOEFl =NBEST1'IP,NSllE 1=IP,LlNDVAR 1=NGOOD1'NSllE l'(NSllEl +1 )/2,NTBESTl =NBEST1)

DIMENSION CRIT1 (NGOOD1'NSllEl ),COEFl (LDCOEFl ,5)
DIMENSION ICRITX1(NSllEl+1),IVARX1(NSllEl+1),INDVAR1(LlNDVAR1)
DIMENSION ICOEFX1(NTBEST1+1)
DIMENSION COV(IPP1,IPP1)
DIMENSION XMEAN(IPP1)
DIMENSION INCD(l,l)

DIMENSION Yl (N),X2(N,IP),X3(1 ,IP),YKAPl (NN), YKAP(NN)
DIMENSION XY(NN,IPPl ),XYl (N,IPPl ),B(IPP1)

D061=1,N
Yl (1)=XYl (1,IPP1)

6 CONTINUE

C Cp IS APPLIED TO THE REDUCED DATA SET
IDO=O
NROW=N
NVAR=IPPl
LDX=N
IFRQ=O
IWT=O
MOPT=O
ICOPT=l
LDCOV=IPPl
LDINCD=l

CALL DCORVC(IDO,NROW,NVAR,XY1,LDX,IFRQ,IWT,MOPT,ICOPT,XMEAN,COV,+
LDCOV,INCD,LDINCD,NOBS,NMISS,SUMWT)

CALL DRBEST(NVAR1,COV,LDCOV1,NOBS1,ICRIT1,NBEST1,NGOOD1,+
IPRINT1,ICRITX1,CRIT1,IVARX1,INDVAR1,ICOEFX1,COEF1,LDCOEF1)

IMIN=l
AMIN=CRIT1 (1)
DO 10 1=2,IP
IF (CRITl (ICRITXl (I)).L T.AMIN) THEN

AMIN=CRITl (ICRITXl (I))
IMIN=I

ENDIF
10 CONTINUE

IB=IVARX1(IMIN)
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DO 20 J=1,IMIN
ITI=INDVAR1 (IB+J-1)
DO 151=1,N
X2(I,J)=XY1(1,ITI)

15 CONTINUE
20 CONTINUE

DO 21 J=1,IMIN
ITI=INDVAR1 (IB+J-1)
X3(1,J)=XY(II,ITI)

21 CONTINUE

NOBS=N
NIND=IMIN
LDX=N
INTCEP=1
CALL DRLSE(NOBS,Y1 ,NIND,X2,LDX,INTCEP,B,SST,SSE)

C CALCULATE THE PREDICTED VALUES FORM THE MODEL FITTED TO THE REDUCED DATA SET
D0251=1,NN
YKAP1(1)=B(1)

25 CONTINUE

IF (II.EO.1) THEN
DO 28 J=1,IMIN
YKAP1(1)=YKAP1(1)+X3(1,J)'B(J+1)

28 CONTINUE
DO 321=1,N
DO 30 J=1,IMIN
YKAP1(1+1)=YKAP1(1+1)+X2(I,J)*B(J+1)

30 CONTINUE
32 CONTINUE

ENDIF

IF (II.EO.NN) THEN
DO 561=1,N
DO 54 J=1,IMIN
YKAP1(1)=YKAP1(1)+X2(I,J)*B(J+1)

54 CONTINUE
56 CONTINUE

DO 58 J=1,IMIN
YKAP1(NN)=YKAP1 (NN)+X3(1,J)*B(J+1)

58 CONTINUE
ENDIF

IF ((II.NE.1).AND.(II.NE.NN)) THEN
D0621=1,1I-1
DO 60 J=1,IMIN
YKAP1(1)=YKAP1(1)+X2(I,J)*B(J+1)

60 CONTINUE
62 CONTINUE

DO 64 J=1,IMIN
YKAP1(1I)=YKAP1(1I)+X3(1,J)*B(J+1)

64 CONTINUE

DO 70 1=11+1,NN
DO 65 J=1,IMIN
YKAP1(1)=YKAP1(1)+X2(1-1,J)'B(J+1)

65 CONTINUE
70 CONTINUE

ENDIF

RETURN
END
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C PROGRAMC6
C THIS PROGRAM GIVES AS OUTPUT THE P-VALUES AND AVERAGE P-VALUES IN TABLE 5.1 FOR
C THE HALO DATA.
C THE ERROR VARIANCE IS ESTIMATED FORM THE MODEL FITTED TO THE FULL DATA SET.
C THIS ESTIMA TE IS ASSUMED TO BE THE KNOWN VALUE OF THE ERROR VARIANCE.

USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (IP=4,NN=13,IPP1 =IP+1 ,IPP2=IP+2,KOMB=10,NMOD=(2"IP)-1)
DIMENSION XY(NN,IPP1 ),XX(NN,IP),XX1 (NN,IPP1 ),Y(NN),XTX(IPP1 ,IPP1 ),XTXI(IPP1 ,IPP1 ),XXTXI(NN,IPP1)
DIMENSION B(O:IP),XXTXIX(NN,NN),UW(NN),YKAP(NN),CP(NMOD,NN),ALAMDA(NMOD,NN)
DIMENSION HAKIE(NMOD,NN),PWAARDES(NMOD,NN),PSOM(IP,NN),MODEL(NMOD,IPP2)

CHARACTER'70 FILEIN
CHARACTER'70 FILEOUT

FILEIN='C:\HALD.TXT'
FILEOUT='C:\OUTPUT.TXT'

C READ THE DA TA INTO XY
OPEN(1,FILE=FILEIN)
DO 1 1=1,NI'J
READ(1:) XY(I,IPP1 ),(XY(I,J),J=1 ,lP)
CONTINUE
CLOSE(1)

C THE VALUES OF THE PREDICTORS ARE PLACED IN XX
DO 3 J=1,IP
DO 21=1,NN
XX(I,J)=XY(I,J)

2 CONTINUE
3 CONTINUE

C THE RESPONSE VALUES ARE PLACED IN Y
DO 51=1,NN
Y(I)=XY(I,IPP1 )

5 CONTINUE
C CALCULATE THE MEAN SQUARED ERROR OF THE MODEL FITTED TO THE FULL DATA SET

NOBS=NN
NIND=IP
LDX=NN
INTCEP=1
CALL DRLSEINOBS,Y,NIND,XX,LDX,INTCEP,B,SST,SSE)
SIGMA=SSE/(NN-IPP1 )

C CALCULA TE THE DIAGONAL ELEMENTS OF THE PROJECTION MATRIX THAT CORRESPONDS TO
THE COMPLETE SET OF PREDICTORS
DO 10 1=1,NN
XX1(1,1)=1.0DO
DO 8 J=1,IP
XX1(I,J+1)=XX(I,J)

8 CONTINUE
10 CONTINUE

CALL DMXTXF(NN,NIND+1 ,XX1 ,NN,NIND+1 ,XTX,IPP1)
CALL DLlNDS(NIND+1 ,XTX,IPP1 ,XTXI,IPP1)
DO 151=1,NN
DO 14 J=1 ,NIND+1
S=O.ODO
DO 13 K=1,NIND+1
S=S+XX1 (I,K)*XTXI(K,J)

13 CONTINUE
XXTXI(I,J)=S

14 CONTINUE
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15 CONTINUE
DO 181=1,NN
DO 17 J=1,NN
S=O.ODO
DO 16 K=1,NIND+1
S=S+XXTXI(I,K)*XX1 (J,K)

16 CONTINUE
XXTXIX(I,J)=S

17 CONTINUE
18 CONTINUE

DO 251=1,NN
UW(I)=XXTXIX(I,I)
YKAP(I)=B(O)
DO 20 J=1 ,NINO
YKAP(I)=YKAP(I)+XX(I,J)*B(J)

20 CONTINUE
25 CONTINUE

C THE SUBROUTINE THAT CALCULA TES THE OBSERVED VALUE AND ESTIMATED NON-CENTRAL/TY
C PARAMETER FOR THE ith CASE AND EVERY L/NEAR SUBSPACE IS CALLED

CALL ALLEMODELLE(NN,XX,Y,UW,YKAP,SIGMA,CP,ALAMDA,HAKIE)

DO 50 1=1,NMOD
DO 40 J=1,NN

C THE NON-CENTRAL/TY PARAMETER IS TRUNCATED
ALAMDA(I,J)=ALAMDA(I,J)
IF (ALAMDA(I,J).L T.O.ODO) THEN
ALAMDA(I,J)=O.ODO
ENDIF

C CALCULATE THE P-VALUES
DF=1.0DO
PWAARDES(I,J)=1.0DO-DCSNDF(HAKIE(I,J),DF,ALAMDA(I,J))

40 CONTINUE
50 CONTINUE

C THE SUBROUTINE WHICH CALCULA TES ALL POSSIBLE SUBSETS OF PREDICTORS IS CALLED
CALL MODELINDEKS(MODEL)

C CALCULATE THE AVERAGE P-VALUES
DO 342 1=1,NN
DO 341 J=1,IP
PSOM(J,I)=O.ODO
DO 340 K=1 ,NMOD
DO 339 L=3,IPP2
IF (MODEL(K,L).EQ.J) THEN
PSOM(J,I)=PSOM(J,I)+PWAARDES(K,I)
ENDIF

339 CONTINUE
340 CONTINUE
341 CONTINUE
342 CONTINUE

DO 360 1=1,NN
DO 350 J=1 ,lP
PSOM(J,I)=PSOM(J,I)/((2**IP)/2)

350 CONTINUE
360 CONTINUE

OPEN(1,FILE=FILEOUT)
DO 600 NTELMOD=1 ,NMOD
WRITE(1 ,605) NTELMOD,(PWAARDES(NTELMOD,I),1=1 ,NN)

600 CONTINUE
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WRITE(1,*)
DO 601 J=1,IP
WRITE(1 ,605) J,(PSOM(J,I),1=1 ,NN)

601 CONTINUE

CLOSE(1)
605 FORMAT(12,2X,50(F12.6,2X))

1000 STOP
END

C THE SUBROUTINE WHICH CALCULATES THE OBSERVED VALUE AND ESTIMATED NON-CENTRAL/TY
C PARAMETER FOR THE ith CASE AND EVERY L/NEAR SUBSPACE
C RANDOM VARIABLE

SUBROUTINE ALLEMODELLE(N,X,Y,UW,YKAP,SIGMA,CP,ALAMDA,HAKIE)
USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (IP=4,NN=13,IPP1 =IP+1 ,KOMB=10,NMOD=(2**IP)-1)
DIMENSION X(NN,IP),XX(NN,IP),Y(NN),B(0:IP),XX1 (NN,IPP1)
DIMENSION XTX(IPP1 ,IPP1 ),XTXI(IPP1 ,IPP1 ),XXTXI(NN,IPP1)
DIMENSION XXTXIX(NN,NN),VW(NN),UW(NN),YKAP(NN),RW(NN),CP(NMOD,NN)
DIMENSION ALAMDA(NMOD,NN),HAKIE(NMOD,NN),YKAP1(NN)

C CONSIDER THE MODELS THAT INCLUDE 1 PREDICTOR VARIABLE
NTELMOD"-'O

DO 30 J1=1,IP
NTELMOD=NTELMOD+1
DO 10 1=1,N
XX1 (I, 1)=1.000
XX1 (1,2)=X(I,J1)
XX(I,1 )=X(I,J1)

10 CONTINUE

NIND=1
NOBS=N
LDX=NN
INTCEP=1
CALL DRLSE(NOBS,Y,NIND,XX,LDX,INTCEP,B,SST,SSE)

CALL DMXTXF(N,NIND+1 ,XX1 ,NN,NIND+1 ,XTX,IPP1)
CALL DLlNDS(NIND+1 ,XTX,IPP1 ,XTXI,IPP1)
D0151=1,N
DO 14 J=1 ,NIND+1
S=O.ODO
DO 13 K=1 ,NIND+1
S=S+ XX 1(I ,K)*XTXI(K,J)

13 CONTINUE
XXTXI(I,J)=S

14 CONTINUE
15 CONTINUE

DO 181=1,N
DO 17 J=1,N
S=O.ODO
DO 16 K=1,NIND+1
S=S+XXTXI(I,K)*XX1 (J,K)

16 CONTINUE
XXTXIX(I,J)=S

17 CONTINUE
18 CONTINUE

DO 251=1,N
VW(I)=XXTXIX(I,I)
YKAP1 (I)=B(O)
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DO 24 J=1 ,NINO
YKAP1 (1)=YKAP1 (I)+XX(I,J)*B(J)

24 CONTINUE
CP(NTELMOD,I)=(((YKAP1 (1)-Y(I))**2)/SIGMA)+VW(I)-(1.0DO-VW(I))
ALAMDA(NTELMOD,I )=(YKAP1 (1)-YKAP(I ))**2-(SIGMA *(UW(I)-VW(I)))
ALAMDA(NTELMOD,I)=ALAMDA(NTELMOD,I)/(SIGMA*(1.0DO-VW(I)))
HAKIE(NTELMOD,I)=((YKAP1 (1)-Y(I))**2)/(SIGMA*(1.0DO-VW(I)))

25 CONTINUE
30 CONTINUE

C CONSIDER THE MODELS THAT INCLUDE 2 PREDICTOR VARIABLES
NTELMOD=NTELMOD+ 1

DO 60 J1 =1 ,IP-1
DO 59 J2=J1 +1 ,lP

DO 351=1,N
XX1 (1,2)=X(I,J1)
XX1 (1,3)=X(I,J2)
XX(I,1 )=X(I,J1)
XX(I,2)=X(I,J2)

35 CONTINUE

NIND=2
NOBS=N
LDX=NN
INTCEP=1
CALL DRLSE(NOBS,Y,NIND,XX,LDX,INTCEP,B,SST,SSE)

CALL DMXTXF(N,NIND+1 ,XX1 ,NN,NIND+1 ,XTX.lPP1)
CALL DLlNDS(NIND+1 ,XTX,IPP1 ,XTXI,IPP1)
DO 40 1=1,N
DO 39 J=1 ,NIND+1
S=O.ODO
DO 38 K=1 ,NIND+1
S=S+XX1 (I,K)*XTXI(K,J)

38 CONTINUE
XXTXI(I,J)=S

39 CONTINUE
40 CONTINUE

DO 441=1,N
DO 43 J=1,N
S=O.ODO
DO 42 K=1 ,NIND+1
S=S+XXTXI(I,K)*XX1 (J,K)

42 CONTINUE
XXTXIX(I,J)=S

43 CONTINUE
44 CONTINUE

DO 50 1=1,N
VW(I)=XXTXIX(I,I)
YKAP1 (I)=B(O)
DO 49 J=1 ,NINO
YKAP1 (1)=YKAP1 (I)+XX(I,J)*B(J)

49 CONTINUE
CP(NTELMOD,I)=(((YKAP1 (1)-Y(I))**2)/SIGMA)+VW(I)-(1.0DO-VW(I))
ALAMDA(NTELMOD,I)=(YKAP1(1)-YKAP(I))**2-(SIGMA*(UW(I)-VW(I)))
ALAMDA(NTELMOD, I)=ALAMDA(NTELMOD, I)/(SIGMA *(1.0DO-VW(I)))
HAKIE(NTELMOD, 1)=((YKAP1 (1)-Y(I))**2)/(SIGMA *( 1.0DO-VW(I)))

50 CONTINUE
59 CONTINUE
60 CONTINUE
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C CONSIDER THE MODELS THAT INCLUDE 3 PREDICTOR VARIABLES
NTELMOD=NTELMOD+1
DO 90 J1=1,IP-2
DO 89 J2=J1+1 ,IP-1
DO 88 J3=J2+1 ,lP

DO 651=1,N
XX1 (1,2)=X(I,J1)
XX1 (1,3)=X(I,J2)
XX1 (1,4)=X(I,J3)
XX(I,1 )=X(I,J1)
XX(I,2)=X(I,J2)
XX(I,3)=X(I,J3)

65 CONTINUE

NIND=3
NOB8=N
LDX=NN
INTCEP=1
CALL DRL8E(NOB8,Y,NIND,XX,LDX,INTCEP,B,88T,88E)

CALL DMXTXF(N,NIND+1 ,XX1 ,NN,NIND+1 ,XTX,IPP1)
CALL DLlND8(NIND+1 ,XTX,IPP1 ,XTXI,IPP1)

DO 70 1=1,N
DO 69 J=1 ,NIND+1
8=0.000
DO 68 K=1 ,NIND+1
8=8+ XX1 (I,K)*XTXI(K,J)

68 CONTINUE
XXTXI(I,J)=8

69 CONTINUE
70 CONTINUE

DO 781=1,N
DO 77 J=1,N
8=0.000
DO 76 K=1 ,NIND+1
8=8+XXTXI(I,K)*XX1 (J,K)

76 CONTINUE
XXTXIX(I,J)=8

77 CONTINUE
78 CONTINUE

DO 861=1,N
VW(I)=XXTXIX(I,I)
YKAP1 (I)=B(O)
DO 84 J=1 ,NINO
YKAP1 (1)=YKAP1 (I)+XX(I,J)*B(J)

84 CONTINUE
CP(NTELMOD,I)=(((YKAP1(1)-Y(I))**2)/8IGMA)+VW(I)-(1.0DO-VW(I))
ALAMDA(NTELMOD,I)=(YKAP1(1)-YKAP(I))**2-(8IGMA*(UW(I)-VW(l)))
ALAMDA(NTELMOD,I)=ALAMDA(NTELMOD,I)/(8IGMA*(1.0DO-VW(l)))
HAKIE(NTELMOD,I)=((YKAP1 (1)-Y(I))**2)/(8IGlvlA *(1.0DO-VW(I)))

86 CONTINUE
88 CONTINUE
89 CONTINUE
90 CONTINUE

C CONSIDER THE MODEL THAT INCLUDES ALL 4 PREDICTOR VARIABLES
NTELMOD=NTELMOD+1

DO 921=1,N
XX1(1,2)=X(I,1)
XX1 (1,3)=X(I,2)

182

Stellenbosch University http://scholar.sun.ac.za



PROGRAM C6.xls

XX1 (1,4)=X(I,3)
XX1 (1,5)=X(I,4)
XX(I,1 )=X(I, 1)
XX(I,2)=X(I,2)
XX(I,3)=X(I,3)
XX(I,4)=X(I,4)

92 CONTINUE

NIND=4
NOBS=N
LDX=NN
INTCEP=1
CALL DRLSE(NOBS,Y,NIND,XX,LDX,INTCEP,B,SST,SSE)

CALL DMXTXF(N,NIND+1 ,XX1 ,NN,NIND+1 ,XTX,IPP1)
CALL DLlNDS(NIND+1 ,XTX,IPP1 ,XTXI,IPP1)

DO 100 1=1,N
DO 99 J=1 ,NIND+1
S=O.ODO
DO 98 K=1 ,NIND+1
S=S+XX1 (I,K)·XTXI(K,J)

98 CONTINUE
XXTXI(I,J)=S

99 CONTINUE
100 CONTINUE

D01081=1,N
DO 107 J=1,N
S=O.ODO
DO 106 K=1,NIND+1
S=S+XXTXI(I,K)·XX1 (J,K)

106 CONTINUE
XXTXIX(I,J)=S

107 CONTINUE
108 CONTINUE

DO 1161=1,N
VW(I)=XXTXIX(I,I)
YKAP1 (I)=B(O)
DO 112 J=1 ,NINO
YKAP1 (1)=YKAP1 (I)+XX(I,J)·B(J)

112 CONTINUE
CP(NTELMOD,I)=(((YKAP1 (1)-Y(I) )··2)/SIGMA)+VW(I)-( 1.0DO-VW(l))
ALAMDA(NTELMOD,I)=(YKAP1(1)-YKAP(I))··2-(SIGMA·(UW(I)-VW(I)))
ALAMDA(NTELMOD, I)=ALAMDA(NTELMOD,I )/(SIGMA ·(1.0DO-VW(1 )))
HAKIE(NTELMOD, 1)=((YKAP1 (1)-Y(IW·2)/(SIGMA *(1.0DO-VW(I)))

116 CONTINUE

117 CONTINUE
118 CONTINUE
119 CONTINUE
120 CONTINUE

RETURN
END

C THE SUBROUTINE THAT CALCULA TES ALL POSSIBLE SUBSETS OF PREDICTORS
SUBROUTINE MODELINDEKS(MODEL)
USE MSIMSL
IMPLICIT DOUBLE PRECISION (A-H,O-Z)
PARAMETER (IP=4,NN=13,IPP1 =IP+1 ,NMOD=(2·*IP)-1 ,IPP2=IP+2)
DIMENSION MODEL(NMOD,IPP2)
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C CONSIDER THE MODELS THAT INCLUDE 1 PREDICTOR VARIABLE
NTELMOD=O
NIND=1
DO 30 J1=1,IP
NTELMOD=NTELMOD+1
MODEL(NTELMOD,1 )=NTELMOD
MODEL(NTELMOD,2)=NIND
MODEL(NTELMOD,3)=J1

30 CONTINUE

C CONSIDER THE MODELS THAT INCLUDE 2 PREDICTOR VARIABLES
NIND=2
DO 60 J1 =1 ,IP-1
DO 59 J2=J1 +1 ,lP
NTELMOD=NTELMOD+1
MODEL(NTELMOD,1 )=NTELMOD
MODEL(NTELMOD,2)=NIND
MODEL(NTELMOD,3)=J1
MODEL(NTELMOD,4 )=J2

59 CONTINUE
60 CONTINUE

C CONSIDER THE MODELS THAT INCLUDE 3 PREDICTOR VARIABLES
NIND=3
DO 90 J1 =1 ,IP-2
DO 89 J2=Jh1,IP-1
DO 88 J3=J2+1 ,lP
NTELMOD=NTELMOD+1
MODEL(NTELMOD,1 )=NTELMOD
MODEL(NTELMOD,2)=NIND
MODEL(NTELMOD,3)=J1
MODEL(NTELMOD,4 )=J2
MODEL(NTELMOD,5)=J3

88 CONTINUE
89 CONTINUE
90 CONTINUE

C CONSIDER THE MODEL THAT INCLUDES ALL 4 PREDICTOR VARIABLES
NTELMOD=NTELMOD+1
NIND=4
MODEL(NTELMOD,1 )=NTELMOD
MODEL(NTELMOD,2)=NIND
MODEL(NTELMOD,3)=1
MODEL(NTELMOD,4 )=2
MODEL(NTELMOD,5)=3
MODEL(NTELMOD,6)=4

RETURN
END
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