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Abstract

Advances in Random Forests with Application to
Classification

A. Pretorius

Thesis: MComm (Mathematical Statistics)
December 2016

Since their introduction, random forests have successfully been employed in a
vast array of application areas. Fairly recently, a number of algorithms that
adhere to Leo Breiman’s definition of a random forest have been proposed in
the literature. Breiman’s popular random forest algorithm (Forest-RI), and re-
lated ensemble classification algorithms which followed, form the focus of this
study. A review of random forest algorithms that were developed since the
introduction of Forest-RI is given. This includes a novel taxonomy of random
forest classification algorithms, which is based on their sources of randomi-
sation, and on deterministic modifications. Also, a visual conceptualisation
of contributions to random forest algorithms in the literature is provided by
means of multidimensional scaling.

Towards an analysis of advances in random forest algorithms, decomposition of
the expected prediction error into bias and variance components is considered.
In classification, such decompositions are not as straightforward as in the case
of using squared-error loss for regression. Hence various definitions of bias and
variance for classification can be found in the literature. Using a particular
bias-variance decomposition, an empirical study of ensemble learners, includ-
ing bagging, boosting and Forest-RI, is presented. From the empirical results
and insights into the way in which certain mechanisms of random forests affect
bias and variance, a novel random forest framework, viz. oblique random ro-
tation forests, is proposed. Although not entirely satisfactory, the framework
serves as an example of a heuristic approach towards novel proposals based on
bias-variance analyses, instead of an ad hoc approach, as is often found in the
literature.

The analysis of comparative studies regarding advances in random forest algo-
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ABSTRACT iii

rithms is also considered. It is of interest to critically evaluate the conclusions
that can be drawn from these studies, and to infer whether novel random forest
algorithms are found to significantly outperform Forest-RI. For this purpose,
a meta-analysis is conducted in which an evaluation is given of the state of re-
search on random forests based on all (34) papers that could be found in which
a novel random forest algorithm was proposed and compared to already exist-
ing random forest algorithms. Using the reported performances in each paper,
a novel two-step procedure is proposed, which allows for multiple algorithms
to be compared over multiple data sets, and across different papers. The meta-
analysis results indicate weighted voting strategies and variable weighting in
high-dimensional settings to provide significantly improved performances over
the performance of Breiman’s popular Forest-RI algorithm.
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Uittreksel

Ontwikkelings rakende ‘random forests’ met klassifikasie
as toepassing

A. Pretorius

Tesis: MComm (Wiskundige Statistiek)
Desember 2016

Sedert hulle bekendstelling is random forests met groot sukses in ’n wye ver-
skeidenheid toepassings geïmplementeer. ’n Aantal algoritmes wat aan Leo
Breiman se definisie van ’n random forest voldoen, is redelik onlangs in die
literatuur voorgestel. Breiman se gewilde random forest (Forest-RI) algoritme
en verwante ensemble klassifikasie algoritmes wat daaruit ontwikkel is, vorm
die fokus van die studie. ’n Oorsig van nuut ontwikkelde random forest algo-
ritmes wat sedert die bekendstellig van Forest-RI voorgestel is, word gegee.
Dit sluit ’n nuwe kategoriseringsraamwerk van random forest algoritmes in,
wat gebaseer is op hulle bron van ewekansigheid, asook op hulle tipe determi-
nistiese wysigings. Met behulp van meerdimensionele skalering word ’n visuele
voorstelling van bydraes in die literatuur ten opsigte van random forest algo-
ritmes ook gegee.

Met die oog op ’n analise van ontwikkelings rondom random forest algorit-
mes, word die opdeling van die verwagte vooruitskattingsfout in ’n sydigheid-
en variansie komponent beskou. In vergelyking met regressie wanneer die
gekwadreerde-fout verliesfunksie gebruik word, is hierdie opdeling in klassi-
fikasie minder voor-die-hand-liggend. Derhalwe kom verskeie definisies van
sydigheid en variansie vir klassifikasie in die literatuur voor. Deur gebruik te
maak van ’n spesifieke sydigheid-variansie opdeling word ’n empiriese studie
van ensemble algoritmes, ingesluit bagging, boosting en Forest-RI, uitgevoer.
Uit die empiriese resultate en insigte rakende die manier waarop sekere me-
ganismes van random forests sydigheid en variansie beinvloed, word ’n nuwe
random forest raamwerk voorgestel, nl. oblique random rotation forests. Hoe-
wel nie in geheel bevredigend nie, dien die raamwerk as ’n voorbeeld van ’n
heuristiese benadering tot nuwe voorstelle gebaseer op sydigheid-variansie ana-
lises in plaas van ’n ad hoc benadering, soos wat dikwels gevind word in die
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UITTREKSEL v

literatuur.

Verder word vergelykende studies met betrekking tot random forests geanali-
seer. Hier is dit van belang om gevolgtrekkings wat uit vergelykende studies
gemaak is, krities te evalueer, en om te verifieer of nuwe random forest algorit-
mes betekenisvol verbeter op Forest-RI. Met bogaande doelwitte in gedagte is
’n meta-analise uitgevoer waarin die stand van random forest navorsing geëva-
lueer is. Die analise is gebaseer op al (34) artikels waarin ’n nuwe random forest
algoritme voorgestel is en vergelyk word met reeds bestaande random forest al-
goritmes. Deur gebruik te maak van die gerapporteerde prestasie-maatstawwe
in elke artikel, is ’n nuwe prosedure voorgestel waarvolgens ’n aantal algorit-
mes oor ’n aantal datastelle en oor verskillende artikels vergelyk kan word. Die
resultate van die meta-analise toon aan dat geweegde stem-strategieë en die
weging van veranderlikes in hoë-dimensionele data ’n betekenisvolle verbete-
ring lewer op die akkuraatheid van Breiman se gewilde Forest-RI algoritme.
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Frequently used notation

Inputs (predictors)
X: Random input variable, could either be a scalar or an N × 1 vector.
x: Observed value of the random input variable X, either a scalar or an

N × 1 vector depending on the nature of X.
X: Random p × 1 vector of inputs, i.e. XT = [X1, ..., Xp]. Note the

difference between X and X: the former refers to a single input
variable whereas the latter refers to an observation, i.e. a data point
in p-dimensional space.

x: Observed p×1 vector of inputs, i.e. xT = [x1, ..., xp], i.e. an observed
data point in p-dimensional space.

Outputs (responses)
Y : Quantitative output variable (in regression).
y: Observed value of the output variable Y , where usually y ∈ IR.
C: Qualitative output variable (in classification).
c: Observed value (group or class) of the quantitative output variable

C, where usually c ∈ {1, ..., K}, a set consisting of K possible classes.

Data
Ω: A generic data set consisting of N observations of input-output pairs

where there are p input variables and a single output variable.
ΩTR: Random training data represented as a set {(Xi, Ci), i = 1, ..., N}.
Ωtr: A particular (observed) training data set {(xi, ci), i = 1, ..., N}.
ΩTE: Random test data (unseen by a learning algorithm), represented by

the set {(X0i, C0i), i = 1, ..., N0}.
Ωte: A particular (observed) test data set {(x0i, c0i), i = 1, ..., N0}.
Ω∗: A bootstrap data set (size N) obtained from sampling with replace-

ment from Ωtr.

xvii
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FREQUENTLY USED NOTATION xviii

Functions
g(·), f(·), t(·): Estimated functions mapping inputs to outputs (sometimes

abbreviated as g or f). In the case of regression, f(x) will be used
to indicate that the inputs are mapped to a numerical quantity. In
classification, g(x) will indicate that the inputs are mapped to a
categorical quantity. The function t will be used specifically for tree
based classification algorithms.

gB(·), fB(·): The Bayes (model) function, which is the theoretically optimal
function producible by a learning algorithm.

gΩtr(·): An estimated function obtained from a learning algorithm which
was trained on a particular training set Ωtr.

ḡΩTR
(·), or ḡ(·): The majority vote classifier defined at a point x by

ḡ(x) = arg maxkEΩTR

{
I(g(x) = k)

}
,

where I(·) is the indicator function which is equal to 1 when the
argument is true and equal to 0 otherwise.

Probability
P (X): The probability distribution of the random variable X.
P (X,C): The joint distribution of X and C.
P (X = x), or P (x): The probability that the random variable X takes on

the value x.
P (C = k|X = x), or P (k|x): The conditional probability that the random

variable C takes on the qualitative value k given that the random
vector X has taken on the realisation x.

P̂ (C = k|X = x), or P̂ (k|x): The estimated conditional (posterior) prob-
ability that the random variable C takes on the qualitative value k
given that the random vector X has taken on the realisation x, as
estimated by a classification algorithm trained on Ωtr.

PΩtr(·): Response class probability distribution as estimated by a learning
algorithm on a particular training set Ωtr.

PΩTR
(·): Response class probability distribution as estimated by repeated
sampling from ΩTR, in other words, the probability distribution as
estimated by the majority vote model.
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Chapter 1

Introduction

Statistical learning theory has contributed extensively to the development of
highly accurate and interpretable supervised classification and regression mod-
els. In particular, random forests have been shown to perform extremely well
when compared to other models, and can provide highly accurate predictions
using minimal tuning time (Caruana and Niculescu-Mizil, 2006). The areas
of application for random forests stretch across a wide range of academic and
industry domains such as Ecology (Cutler et al., 2007), Medicine (Klassen
et al., 2008), Astronomy (Gao et al., 2009), Business (Larivière and van Den
Poel, 2005), Bioinformatics (Boulesteix et al., 2012), Transport Planning (Za-
klouta et al., 2011), and more recently the domain of Expert Systems (Braida
et al., 2015). Furthermore, recent novel proposals have been demonstrated to
sometimes remarkably outperform current state-of-the-art random forest al-
gorithms as well as other popular supervised learning approaches (Rodriguez
et al., 2006; Menze et al., 2011; Seyedhosseini and Tasdizen, 2015). The pop-
ularity and widespread use of random forests, as well as ongoing attention
to novel random forest proposals in the literature indicate the impact and
influence of random forest algorithms.

1.1 Motivation and Thesis Objectives
The aim of this study is an investigation of both the earlier and more recent
random forest algorithms in a supervised classification setting. More specifi-
cally, a study with regard to their construction, properties pertaining to bias
and variance, as well as with regard to their performance in various artificial
and real world scenarios, is of interest.

1.1.1 Motivation

The novelty of recent random forest proposals leads to a number of research
questions and avenues that could possibly lead to contributions in this field.

1
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CHAPTER 1. INTRODUCTION 2

First, there is scope for a comprehensive review and proper conceptualisation
of novel random forest proposals in the literature. In order to facilitate a good
overview and understanding of the various proposals, integration of develop-
ments into a conceptual framework seems needed.

A second research question relates to which of the developments in random
forest algorithms lead to significant improvements in terms of accuracy. In
order to recommend some proposals above others, an investigation of compar-
ative studies for random forest algorithms is required. Such an investigation
involves a critical evaluation of the validity of reported results, and may in
turn lead to a framework for best practices in comparative studies involving
novel classification algorithms. For example, appropriate experimental design
and methodology pertaining to comparative studies based on simulation and
benchmark data sets may create a framework in which novel proposals can be
evaluated. Moreover, a study of possible bias-variance decompositions in clas-
sification may facilitate a deeper level of comparison amongst algorithms. In
the current literature, aspects pertaining to the bias and variance associated
with random forests are yet to be fully explored.

Many random forest proposals in the literature seem to be fairly ad hoc.
Hence a third research question is whether a heuristic motivation for novel
random forest proposals may follow from an analysis of comparative studies.

1.1.2 Thesis Objectives

The objectives of this study may be summarised as follows: To gain and facili-
tate a comprehensive understanding of random forests; to obtain and illustrate
insights into their design, and into their bias and variance characteristics; and
to summarise and further analyse their comparative performances. These main
objectives may be expanded upon as follows:

• To provide a review of classification trees, ensemble classifiers and the
history and development of the earlier random forest contributions;

• To provide a review of more recent random forest algorithms that were
proposed with a view to potentially improve upon the performance of
earlier contributions;

• To propose a framework in order to conceptualise, structure and integrate
the more recent proposals;

• To study possible bias-variance decompositions in classification in order
to facilitate a deeper level of comparison amongst ensemble learners and
amongst random forest algorithms;

• To investigate the use of an appropriate bias-variance decomposition in
an empirical comparison of ensemble learners, and also of random forest
algorithms;
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CHAPTER 1. INTRODUCTION 3

• To investigate the possibility of using insights gained from the above
empirical study to motivate a novel random forest proposal;

• To conduct a meta-analysis of reported results in comparative studies
on random forest algorithms, and following this analysis, to recommend
best practices in order to provide a framework in which novel algorithms
can more easily be compared;

• To use insights gained from empirical investigations and from the meta-
analysis to recommend some recent random forest algorithms above oth-
ers.

Finally with regard to the objectives of this study, an important overall ob-
jective of the work presented here is that it should be as transparent and
reproducible as possible. This aspect is further discussed in the next section.

1.2 Data, Code and Reproducibility
Given a scientific article or dissertation that reports findings from an analysis,
Peng (2015) partitions the reproducibility of results into three levels, as shown
in Figure 1.1.

Figure 1.1: Levels of replication.

The “Gold Standard” refers to perfect replication. This means that all the nec-
essary resources in terms of measurement mechanisms, computational hard-
ware and software as well as the steps taken in the analysis are available to
such an extent that an exact copy of the original study can be conducted. At
the other end of the spectrum lies a study that allows no replication at all.
Here only the information regarding the findings provided in the thesis are
given.

Reproducible research lies somewhere in the middle. The idea is to make
available all of the data, code and associated documentation in such a way
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CHAPTER 1. INTRODUCTION 4

that a researcher will be able to reproduce the study. This accessibility is cru-
cial since typically the journey for the reader of scientific research starts at the
opposite end to that of the author, as depicted in Figure 1.2 (Peng, 2015).

Figure 1.2: Research Pipeline.

The author moves from left to right in Figure 1.2, first collecting the data, pro-
cessing it and then obtaining results through computational analysis. Between
each step are code segments that perform tasks to either transform raw data
into tidy data, or tidy data into results. Finally, all the findings are summa-
rized and condensed into an article or thesis consisting of figures, tables and/or
numerical summaries. In contrast, the reader who is interested in reproducing
the research starts from the right and moves to the left. Without access to
data and code, a reader must decipher what the author did, given only the in-
formation presented in the report. Therefore, the goal of reproducible research
is to essentially give the reader the ability to start from the same position as
the author, while at the same time adding the missing pieces between each
transformation in the form of code. Therefore, in order to consider research
reproducible from the perspective of the reader, four things are required:

1. The collected data.

2. Processing and analytic code.

3. Data and code documentation.

4. Public access to a distribution platform.

In this regard, all of the relevant data, processing and analytic code as well
as related documentation for this thesis can be found at the following public
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CHAPTER 1. INTRODUCTION 5

on-line repository:

• https://github.com/arnupretorius/MastersThesisCode.

This includes the data collected and used for the meta-analysis conducted in
Chapter 7. For quick reference, the code is also provided in Appendix D.

An R package, which provides for the implementation of the novel random
forest framework presented in the thesis, can be downloaded and sourced from
within R using the following commands:

R Code 1.1: Random Rotation Forest R Package
1 # download and load random ro t a t i on f o r e s t s package
2 i f ( " dev too l s " %in% i n s t a l l e d . packages ( ) [ , "Package" ] == FALSE) {
3 i n s t a l l . packages ( " dev too l s " )
4 }
5 l i b r a r y ( dev too l s )
6
7 # Github p r o f i l e : Arnu Pre to r i u s
8 i n s t a l l_github ( " a rnupr e to r i u s /RRotF" )
9 l i b r a r y (RRotF)

For more details on the internal functions and code used in the package, the
reader is referred to Appendix D.1.

In order to sketch the background to this study, in the remainder of this
chapter, the most important concepts pertaining to random forest algorithms
for classification are discussed.

1.3 Important Concepts and Terminology
One of the uses for data is to gain insight into the inner workings of a system
or phenomenon. Another possibly more common use is to obtain accurate pre-
dictions. This task usually takes the form of using a set of inputs X1, ..., Xp to
predict an unknown output value Y . An approach often considered when faced
with such a setting is supervised learning. The basic idea of supervised learning
is to monitor the system of interest over a period of time and to collect data
of both the inputs and the corresponding outputs. Once the data have been
collected, both the recorded input and output values can be used to extract
a set of rules. Through these rules knowledge of the input values facilitates
prediction of the corresponding output values. The above rule extraction is
typically performed by a predefined algorithm known as a learning algorithm.
The algorithm is “trained” using a data set at hand in order to approximate
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CHAPTER 1. INTRODUCTION 6

the unknown mechanism governing the system of interest. It is for this reason
that the recorded data consisting of input-output pairs is named the training
data. The architecture of a learning algorithm often depends on the nature
of the output value of interest. The main distinction is between quantitative
outputs Y which lead to the development of regression algorithms and qual-
itative outputs C which lead to the development of classification algorithms.
In this study the focus will be on classification.

1.3.1 Supervised Learning for Classification

In classification the output C takes on values k ∈ {1, ..., K} representing dif-
ferent groups or classes to which inputs of the system may belong. Most
of the examples and theory in this text will focus on the (common) case in
which K = 2, however some of the theory will cover the case where K ≥ 3.
Mostly, it is possible to intuitively extrapolate ideas from binary classification
to multi-class classification. For the time being, without loss of generality, let
C ∈ {0, 1}. The aim of classification is to assign an observed input x, which
is not part of the training data, to the correct output category C. In prac-
tice, a given input to a system often does not belong to a unique class. As a
consequence, classification often involves the estimation of class probabilities.
For example in binary classification, suppose x ∈ IRp, then x belongs to Class
1 with probability P (C = 1|x) = 1 − P (C = 0|x). In this thesis the goal
of classification is to find a classifier g(x), via a learning algorithm using the
training data, capable of estimating these probabilities such that x is correctly
classified.

1.3.2 Expected Loss and the Bayes Classifier

Naturally, misclassification of a point x by a classifier g(x) will have associ-
ated with it some form of cost or loss. Suppose `k is the loss incurred for
misclassifying x as belonging to class k, k ∈ {0, 1}. Then the expected loss is

E
[
L(C, g(x))

]
= `0I(g(x) = 0)P (C = 1|x) + `1I(g(x) = 1)P (C = 0|x),

(1.3.1)

where I(·) is the indicator function which assumes a value 1 if its argument is
true and 0 otherwise, while L(·, ·) is a loss function. If `0 = `1 = 1, the loss
function becomes L0-1(C, g(x)) = I(g(x) 6= C), which is known as the 0-1 loss
with an expected value

E
[
L0-1(C, g(x))

]
= I(g(x) 6= 1)P (C = 1|x) + I(g(x) 6= 0)P (C = 0|x).

(1.3.2)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 7

Note that (1.3.2) implies that if P (C = 1|x) > 0.5, the expected loss incurred
for misclassifying x as belonging to Class 1 is P (C = 0|x) = 1 − P (C =
1|x) < P (C = 1|x), the loss for the opposite mistake. The optimal classifier
which will minimise the expected loss in this situation will therefore be a rule
classifying to the most probable class,

gB(x) = I

(
P (C = 1|x) ≥ `1

`0 + `1

=
1

2

)
, (1.3.3)

called the Bayes classifier. It is important to realise that even the optimal
(Bayes) classifier will rarely achieve perfect classification due to the intrinsic
probabilistic nature underlying observable systems. In addition, although it is
often the case that `0 = `1, it is also not uncommon that `0 6= `1. Asymmetry
related to the two types of misclassification departs from the 0-1 loss framework
and classification by way of the most probable class. However (1.3.3) still holds,
and the threshold will simply be adjusted appropriately (away from 0.5). In
this text most of the examples and theory will be for the case where `0 = `1,
and the loss function under study is the 0-1 loss.

1.3.3 Generalisation Error

A related quantity to that of expected loss is the generalisation or test er-
ror of a classifier which depends on a particular training set. Let the set of
input-output pairs forming a training set (of size N) be denoted by Ωtr =
{(xi, ci), i = 1, ..., N}. The generalisation error associated with g(x) is then

Err∗ = E
[
L(C, g(x))

∣∣Ωtr]. (1.3.4)

One is typically more interested in obtaining an estimate of (1.3.4) than ob-
taining an estimate of the expected loss in (1.3.2). This is because the gen-
eralisation error more closely resembles the error that is made in practice.
The expectation in (1.3.2) is taken over all possible training data sets, which
is clearly a quantity further from reality. Furthermore, it makes sense to be
more interested in the question: “given a particular training data set, how
accurate will a trained classifier be in the future?”, than: “given training data
taken repeatedly from the system, how accurate on average will a trained clas-
sifier be in the future?” Hence supervised learning for classification seeks to
find a function g(x) by way of a learning algorithm trained using a particu-
lar training set Ωtr having an associated generalisation which is as small as
possible.
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1.3.4 Trees for Classification

Suppose two input variables X1 and X2 are believed to be related to a qualita-
tive binary output variable C ∈ {+,−}. The two-dimensional input space, de-
picting the locations of training data points, is presented in Figure 1.3 (Fuchs,
2014).

Figure 1.3: Input space for a binary classification problem.

In binary classification, the objective is to use these points to learn a rule ca-
pable of separating as well as possible the positive cases illustrated by the red
plus signs in Figure 1.3 from the negative cases presented in green. (In the
domain of medicine, the colouring makes sense: the positive class may indi-
cate that a patient has a certain disease, while the negative class indicates the
disease to be absent). A simple strategy is to a find an appropriate straight
line to separate the two classes using a linear combination of the inputs. That
is, one may use β̂0 + β̂T1 x, where β̂0 and β̂1 are estimated coefficient vectors
(respective “weights” for each input). This is the approach taken by popular
linear classifiers such as linear and logistic regression. For example, in linear
regression each class is modelled separately and a hyperplane (strictly an affine
set) {x : (β̂0+ − β̂0−) + (β̂+ − β̂−)Tx = 0} defines a linear decision boundary
between each class (Hastie et al., 2009). Estimated class probabilities are then
produced as a function of the distance to the decision boundary and subse-
quently used for prediction. However for this data example, Figure 1.4 shows
the difficulty of obtaining good separation using a simple linear combination
of the inputs (Fuchs, 2014).

A common way in which linear classifiers amend this situation is by augmenting
the input space with higher orders of the original inputs and/or with inter-
action terms and by then constructing a linear separating hyperplane in this
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Figure 1.4: Class separation using linear combinations of the input variables:
Each panel shows a different linear combination of the input variables to create
a boundary that attempts to separate the two classes from each other.

augmented space. Once the decision boundary is projected onto the original
input space it will be non-linear and better able to separate the two classes.
Examples of popular classifiers in this framework include flexible discriminant
analysis and support vector machines. But consider as alternative the follow-
ing strategy: take the input space and split it into two rectangular regions
achieving a reasonable degree of separation. Next, treat each partition as the
original input space and split those into two smaller rectangular regions. Con-
tinue in this way until each region only contains points belonging to a single
class. These steps are illustrated on the left side of each panel in Figure 1.5
where the input space is split into regions A,B, ..., L (Fuchs, 2014).

The right side of each panel is an isomorphic representation of each recursive
binary partitioning. Each picture resembles the shape of an upside down tree.
Therefore the name given to this type of classifier is a classification tree. (A
more formal treatment of classification trees is given in Chapter 2.) Each of
the eleven numbered circles in the tree in the bottom right panel of Figure
1.5 is called a node. Circle 1 at the top of the tree is called the root node,
while all other circles represent internal nodes of the tree. Each node repre-
sents a rule specified by both a variable and a split-point, mapping out the
recursive partitions made in order to obtain each region. The regions A, ..., L
are called the terminal nodes of the tree. For each of these terminal regions,
P (C = +|x0) = 1 − P (C = −|x0) can be estimated using the proportion of
positive training data observations in that region.

At prediction time, a new unseen observation x0 is “dropped” from the root
at the top of the tree. Based on which rules are satisfied, x0 then follows a
specific path down to a terminal node as shown in Figure 1.6 (Fuchs, 2014).
Suppose that in this way x0 ends up in the terminal node F . With symmetric
loss x0 is assigned to the positive class if P̂ (C = +|x) associated with the
terminal node F is larger than P̂ (C = −|x), and vice versa.
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Figure 1.5: Stage by stage construction of a binary classification tree: Moving
from the top left to the bottom right, each panel shows a partitioned region
and corresponding tree representation during different stages of constructing a
classification tree.

Note that in Figure 1.6, for any terminal node in the tree

max{P̂ (C = +|x), P̂ (C = −|x)} = 1.

This means the tree is fully grown, containing only pure terminal nodes in
which all training data observations belong to the same class.

1.3.5 Training Error and the Bias-Variance Trade-off

The training error of a classifier, viz.

Ērr =
1

N

N∑
i=1

L(ci, g(xi)) (1.3.5)
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Figure 1.6: Prediction using a classification tree.

measures the average misclassification loss over the training set. An approach
towards constructing a classifier g might be to find g that minimises Ērr. For
fully grown trees, the training error Ērr is always equal to zero (trees need
not be fully grown — see Section 2.4). However, this by no means guarantees
that the tree classifier will generalise well to data presented to it in the future.

The drawback of the maximum sized tree is that the measure of variability
dependent on the locations of the sampled training points, i.e. the variance
of the classifier, will be high. In other words, it can be imagined that if a
new round of data recording took place from the same system under study,
the layout of the partitioned space might change considerably from the one
presented in Figure 1.5. This is in contrast with a simple linear separating
boundary that might only change slightly when new data is sampled. Less
complex approaches such as linear regression are “rigid” in this sense and have
low variance. However, they rely heavily on the rather strict assumption that
the separating hyperplane appropriate for the data is a (p−1)-dimensional flat
surface. If this assumption is incorrect, the incurring high bias will cause the
performance of linear classifiers to suffer. Trees, on the other hand, are more
complex, with few assumptions regarding the shape of the decision bound-
ary. Therefore trees generally have higher variance and lower bias than linear
classifiers. This trade-off based on model complexity is referred to as the bias-
variance trade-off. In fact, using LSE(Y, f) = (Y − f)2, it can be shown that
for any quantitative response (which include probability estimates) the ex-
pected loss at a point can be decomposed into an additive formula containing
three terms: irreducible (Bayes) error, bias and variance. More detail in this
regard is provided in Section 5.1. Nothing can be done about the irreducible
error stemming from the nature of a system or phenomenon. The ideal is an
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algorithm designed to balance the trade-off between bias and variance in an
optimal way. The bias-variance decomposition is more complicated for 0-1
loss. This is discussed in Chapter 5.

1.3.6 Beyond a Single Tree

Much of the recent success in the development of statistical learning algorithms
have gone the way of using multiple classification trees as base learners, com-
bined in clever ways to produce a better performing ensemble classifier. To
loosely motivate this approach, from a bias-variance perspective, consider the
following general argument (Hastie et al., 2009). Let X1, ..., XB be identically
distributed variables, not necessarily independent, with V ar(Xi) = σ2 and
Cov(Xi, Xj) = ρσ2,∀i, j, i 6= j. Also let X̄ = 1

B

∑B
i=1Xi. Then V ar(X̄) may

be written as

V ar(X̄) = V ar

(
1

B

B∑
i=1

Xi

)

=
1

B2

B∑
i=1

V ar(Xi) +
1

B2

B∑
i=1

B∑
j=1

i6=j

Cov(Xi, Xj)

=
1

B2

B∑
i=1

σ2 +
1

B2

B∑
i=1

B∑
j=1

i6=j

ρσ2

=
1

B
σ2 +

1

B2
(B2ρσ2 −Bρσ2)

= ρσ2 +
1− ρ
B

σ2. (1.3.6)

By increasing B, the second term in (1.3.6) can be made arbitrarily small.
Hence from (1.3.6) it is clear that, taking the average over a large number of
random variables reduces the variance of X̄. The above serves to motivate
aggregation. However, the first term remains unaffected by the size of B and
only interacts with the magnitude of the correlation between the variables.
Proceeding one step further, many proposals have been made that in addition
to aggregation, induce some degree of artificial randomness into the algorithm.
This can actually have an effect of reducing the correlation ρ and thus further
reduce the variance.

Random forests was the catch-all name proposed for these types of algorithms,
but the title has since been slightly reserved to refer to only a well known spe-
cial case (Breiman, 2001a). As mentioned before, it is the investigation of
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these randomised tree ensemble classifiers and later developments that fol-
lowed, which form the main focus of this study.

1.4 Outline
In this section an outline of the thesis is presented. Figure 1.7 provides a
display of the organisation of each chapter in relation to the remainder of the
thesis. This may be used as a quick reference and “road map” throughout the
text.

Figure 1.7: Thesis outline.

In Chapter 2, classification trees are discussed in more detail. As previously
mentioned, trees form the foundation for many ensemble learning algorithms,
serving as base learners which are combined to create powerful classifiers that
exploit the wisdom of crowds. The construction of ensemble classifiers are
then discussed in Chapter 3, with specific emphasis on boosting and bag-
ging. In Chapter 4, an introduction to random forests as random ensemble
learning algorithms that exclusively use trees as base classifiers, is given. The
most popular random forest algorithm (viz. Breiman’s Forest-RI ) is discussed,

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 1. INTRODUCTION 14

along with important aspects such as the generalisation error of a random for-
est classifier, overfitting in random forests, out-of-bag error estimation, and
interpretation. Towards a deeper understanding and comparison of ensemble
classifiers, Chapter 5 is devoted to a study of bias and variance in random
forests. The differences between regression and classification are emphasised,
leading to a discussion of the Friedman effect in classification, and of various
bias-variance decompositions that may be found in the literature. The bias
and variance (and their respective effects) of ensemble classifiers are investi-
gated by means of a simulation study. This allows a comparison of a single
classification tree with bagging, Forest-RI, and boosting. A novel taxonomy of
random forest algorithms based on possible traits pertaining to an algorithm’s
deterministic modifications and/or sources of randomisation is given in Chap-
ter 6. Four sources of randomisation are identified and discussed. Possible
deterministic modifications are also divided into four categories and discussed.
A visual perspective of later contributions in the random forests literature is
provided by means of multi-dimensional scaling. This is followed by an em-
pirical investigation of bias and variance (and their respective effects) in the
case of several random forest algorithms, viz. Forest-RI, extremely randomised
forests, rotation forests and oblique random forests. The focus in Chapter 7
is on a meta-analysis of all results reported in research on random forests. An
evaluation of the selection of performance measures, of performance estima-
tion, of methods to compare algorithms, and of the reproducibility of research
is discussed. The two main outcomes of the meta-analysis are the following.
The results facilitate recommendation of some random forest algorithms above
others, leading to the proposal of a novel random forest framework. Also, a
novel two-step procedure is proposed for comparing a novel algorithm to estab-
lished algorithms. This is then used to evaluate the proposed random forest
framework. Finally, a summary of main findings and some concluding remarks
are given in Chapter 8.
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Chapter 2

Classification Trees

In this chapter, classification trees are discussed. A revisit to the
two ways of representing a binary classification tree together with
more formal terminology is presented in Section 2.2. An approach
towards finding the regions of the partitioned input space is outlined
in Section 2.3. This is followed by a discussion of the way in which
the optimal tree size is typically determined in Section 2.4. Finally,
Section 2.5 provides an example of fitting a classification tree to
simulated data, with concluding remarks given in Section 2.6.

2.1 Introduction
Classification trees have been used in many different domains, including Medi-
cine (Nair et al., 2002), Ecology (Vayssières et al., 2000; Smith et al., 1997),
Clinical Psychology (Ostrander et al., 1998), and the study of natural lan-
guage (Kuhn and De Mori, 1995). James et al. (2013) provide the following
advantages of classification trees over other classification approaches:

• They are very easy to explain.

• They can be seen as more closely mirroring human decision-making than
other classification approaches.

• They can be displayed graphically for easy interpretation.

However, as mentioned in Section 1.3, a disadvantage of trees is that they
have high variance. Therefore, although they are easy to interpret, it should
be borne in mind that these interpretations stem from an unstable source.
As a consequence, any conclusions that are drawn must be done with caution
(Hastie et al., 2009).

15
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CHAPTER 2. CLASSIFICATION TREES 16

The basic algorithm for a classification tree consists of the following steps
(James et al., 2013):

1. Partition the input space intoM non-overlapping regions, R1, R2, ..., RM .

2. Predict the response of every observation falling in Region Rm as the
response of the majority class in Rm.

Through the above algorithm, the original input space which is typically het-
erogeneous with respect to the training output values, is divided into more
homogeneous regions. The underlying rationale is that prediction is simpli-
fied in settings where the observed output values vary less. The resulting
regions R1, R2, ... in a sense define “local” neighbourhoods, each containing
points with certain input values. Subsequently, new unseen observations are
associated with a local neighbourhood and classified using knowledge of the
class distribution within that neighbourhood.

2.2 Tree Representation and Terminology
Consider two continuous input variables X1 and X2 and a two-dimensional
input space defined by their joint values. An illustration of a possible recursive
binary partitioning of such a space is given in Figure 2.1.

X2

X1

s1

s2

s3

s4

R1

R2

R3

R4 R5

X1 ≤ s1

<< Yes No >>

X2 ≤ s2 X2 ≤ s3

R1 R2 R3X1 ≤ s4

R4 R5

Figure 2.1: Recursive binary partitioning: The left panel shows a partition of
a two-dimensional input space and the right panel displays the corresponding
tree obtained from recursive partitioning.
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As seen before, each of the regions R1, ..., R5 plays a dual role: each region
represents a rectangular subspace of the original input space, as well as a ter-
minal node of the corresponding tree. In this text both will be denoted by
Rm(j, s) (the context will distinguish between a subspace or a node), where
the arguments j = {j1, j2, ...} and s = {s1, s2, ...} signify the specific region
Rm to depend on a vector of variable indices and corresponding split-points
on those variables. A partitioning boundary is given by a pair (j, s), where j
indicates the variable on which to split and where s denotes the value at which
to split the variable Xj. The above notation is needed to annotate rules such
as “X1 ≤ s1” at each internal node. If a rule is satisfied at a particular node,
the next rule is tested at the left node a level further down the tree, referred
to as the left child node of the current node. Otherwise, the rule at the right
child node is tested. A sequence of such rules ultimately defines a region.

Note that the representation provided in the left panel of Figure 2.1 is re-
stricted to at most three dimensions. In contrast, the tree diagram depicted
in the right panel can be visualised and interpreted even for large dimensions
of the input space. Therefore, even though the terminology presented here is
largely interchangeable, the fact that the latter representation is more com-
monly adopted, the discussion will be more often phrased in this setting (i.e.
referring to nodes as opposed to hyper-rectangular subspaces).

Suppose the response C can take on values k ∈ {1, ..., K} and a classifica-
tion tree is fit to the training set Ωtr = {(xi, ci), i = 1, ..., N}. The proportion
of observations belonging to class k inside node m is

P̂m(k) =
1

Nm

∑
xi∈Rm

I(ci = k), (2.2.1)

where Nm is the total number of observations belonging to node m. An im-
portant property of a node is its impurity, which is the degree to which a node
deviates from representing a homogeneous region. Node impurity can be com-
puted in different ways. Popular measures include:

• Misclassification rate: 1
Nm

∑
xi∈Rm

I(ci 6= k) = 1− P̂m(k),

• Gini index:
∑K

k=1 P̂m(k)(1− P̂m(k)),

• Deviance: −
∑K

k=1 P̂m(k)log(P̂m(k)).

The misclassification rate is less sensitive to changes in node probabilities and is
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not everywhere differentiable, therefore the Gini index and Deviance measures
are more regularly used (Hastie et al., 2009).

2.3 The CART Algorithm
Classification and Regression Trees (CART ) is a well known tree induction al-
gorithm by means of recursive binary partitioning proposed by Breiman et al.
(1984). The first step in binary partitioning is to divide the input space into
two non-overlapping regions. This is achieved by iteratively splitting over the
range of different values for each input variable and selecting the optimal vari-
able and split-point based on the sum over node impurities for both subregions.
The subregions obtained from this split are then in turn partitioned into two
non-overlapping regions. The above procedure is repeated until some stopping
criterion is reached (more details are given in Section 2.4).

There is a sequential dependency implicit in the algorithm: each partitioning
is dependent on the current state of the partitioned space. Since it is infeasible
to consider all possible combinations of variable and split-point pairs, CART
only selects the optimal partition given the current sequence of splits that have
already taken place. In other words, CART is said to take a greedy approach
towards finding homogeneous subregions (James et al., 2013).

Concretely, suppose a data set consists of N observations and p input vari-
ables X1, ..., Xp, together with a categorical response C form the training set
Ωtr = {(xi, ci), i = 1, 2, ..., N}. Starting with the entire input space, consider
a split variable Xj and a split-point s defining the two subregions

R1(j, s) = {X : Xj ≤ s} and R2(j, s) = {X : Xj > s}. (2.3.1)

The optimal variable and split-point is found by solving

min
j,s

{ 2∑
m=1

Qm(j, s)

}
, (2.3.2)

where Qm, denotes the impurity of node m, and m = 1, 2. Repetition of
the above procedure on each subregion produces the tree. A new observa-
tion in node m is then classified as belonging to class k̂ ∈ {1, ..., K}, where
k̂ = arg maxkP̂m(k).

It is important to note that classification trees need not always use orthog-
onal splits to partition the input space. Oblique classification trees can be
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constructed using a multivariate model to describe the split boundary at
each tree node (Heath et al., 1993). Furthermore, CART is not the only
approach to tree induction. One of the earliest proposed strategies, called
Automatic Interaction Detection (AID) was used to analyse survey data (Mor-
gan and Sonquist, 1963). Another proposal is CHAID, which builds on AID
employs a strategy based on subdividing cross-tabulations of the predictors
and the response using χ2 tests for significance (Kass, 1980). Furthermore,
Quinlan (1986) introduced the ID3 tree, with subsequent improvements C4.5
and C5.0 (Quinlan, 1993). The later algorithm has become quite similar to
CART (Hastie et al., 2009). More recently, Hothorn et al. (2006) proposed a
conditional inference framework aimed at relieving bias at splits. A bias can
exist, for example, when a predictor has a very large range of values over which
the algorithm can search compared to other variables, and is therefore split on
more often. The approach has a CHAID-like flavour where statistical tests for
significance are incorporated at each split.

2.4 Pruning the Tree
To fully grow a classification tree, the binary partitioning strategy presented
in Section 2.3 can be continued until every terminal node of the tree only con-
tains observations belonging to a single class. However, this corresponds to
the most complex version of the tree, which from a bias-variance perspective
corresponds to the tree with the highest variance. The maximum-sized tree
is said to “fit the training data too closely”, or to overfit the data if higher
classification accuracy on future observations can be achieved using a smaller
tree. It is unlikely that the maximum-sized tree classifier will generalise well
to new unseen observations.

In this regard it is important to have an appropriate strategy for selecting
the optimal size of a tree. A simple approach is to specify a threshold for the
sum of node impurities, and to stop splitting once the decrease in impurity is
negligible (Hastie et al., 2009). Stopping early in this way is rather myopic
in the sense that a suboptimal split during the initial stages of the procedure
might lead to an extremely beneficial split later on, which will not be found.
An alternative to stopping early by way of an impurity threshold, is to stop
early by specifying a maximum terminal node size. Thus the tree is split until
all nodes have at most (say) ten observations irrespective of the class distri-
bution within each node. Specifying the maximum terminal node size to be
high implies (shallow) small trees with fewer terminal nodes (small M), while
specifying it to be low implies (deep) large trees with many terminal nodes
(large M). The problem is that this simply substitutes the issue of finding an
appropriate value for M with the issue of finding an appropriate value for the
maximum node size.
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The strategy which is by far the most generally used in practice is cost-
complexity pruning. The basic idea underlying tree pruning is to start with a
fully grown tree and then to “prune” off some branches in order to obtain a
tree of the right size. More specifically, let t0 represent a fully grown tree. Also
let t ⊆ t0 denote any subtree of t0, or t0 itself. Then for a specified param-
eter value α ≥ 0, pruning proceeds by minimising the cost-complexity criterion

ςα(t) =
Mt∑
m=1

NmQm(t) + αMt, (2.4.1)

where Mt is the number of terminal nodes of t and Qm(t) is the impurity of
node m belonging to tree t. Note that in (2.4.1), α interacts with the number
of terminal nodes. Hence large values of α translate to a heavy penalty on
trees with many terminal nodes, whereas a small value of α allows for larger
trees to be selected. In this way α controls the bias-variance trade-off, causing
it to be an important tuning parameter in trees.

Let tα denote the tree minimising (2.4.1) for a specified α, then tα can be
found using the concept of a weakest link. The weakest link of a tree is the
internal node resulting in a split having the lowest decrease in the sum of node
impurities compared to all other node splits. To produce a finite sequence
of different sized trees, starting with the full tree the current weakest link is
removed. The procedure is continued for each successive weakest link. It can
be showed that tα lies within this sequence and that this solution is in fact
unique (Breiman et al., 1984).

The optimal value for α can be found using a k-fold cross-validated grid search.1
For a specific value of α, k-fold cross-validation (CV) splits the training data
into k equally sized folds. Letting each fold in turn act as unseen data (called a
validation set), the remaining folds act as the training data used to fit the tree
t0 and to find tα. Next, the tα from every turn is used to obtain an estimate of
the average misclassification error over the validation sets. By specifying a grid
of values for α and performing k-fold CV, the optimal value for α is selected
as the one corresponding to the minimum average CV misclassification error.

2.5 A Simulated Data Example
For the purpose of further exploring the properties of trees, in this section a
classification tree is fit to simulated data. Following Hastie et al. (2009), the

1The k here does not refer to a class for the output, but to the number of folds used in
k-fold cross-validation.
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simulated data were created by first generating ten meansmb1, ...,mb10 from a
bivariate normal distributionN((1, 0)T , I), where I is the identity matrix. Sim-
ilarly, an additional ten meansmo1, ...,mo10 were generated from N((0, 1)T , I).
A hundred observations from the blue class were generated as follows: for each
observation, a mean mb was selected at random from {mbi, i = 1, ..., 10},
and an observation was drawn from N(mb, I/5). The above data sampling
mechanism leads to a mixture of Gaussian clusters for the blue class (Hastie
et al., 2009). A similar procedure was then followed for the orange class (i.e.
samplingmo from {moj, j = 1, ..., 10}, and an observation from N(mo, I/5)).
Figure 2.2 displays a plot of the simulated data together with the correspond-
ing Bayes decision boundary.

-2

-1

0

1

2

-2 0 2

X1

X
2

Bayes decision boundary: Mixture data

Figure 2.2: Simulated mixture data: The dashed purple line represents the
Bayes decision boundary.

The boundary is non-linear and rather “smooth”, as opposed to having sharp
edges. It is clear from Figure 2.2 that even the optimal (Bayes) boundary does
require perfect separation of the training data to achieve good generalisation
error. The decision boundary of a classification tree is presented in the left
panel of Figure 2.3.

An additional test set (new unseen data) of 10,000 observations were used to
estimate the test error of the fitted tree. The tree decision boundary approx-
imation of the Bayes boundary is quite rigid, which is to be expected using
only orthogonal splits. The Bayes error rate on the test set is 21.5%, whereas
the classification tree achieved an error rate of 26.2%. The corresponding tree
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Training error: 0.215 

Test error: 0.262 

Bayes error: 0.215
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Tree decision boundary: Bayes Tree

X2 < 0.73

X1 >= 2.2

 >= 0.73

 < 2.2

0 0 1

Figure 2.3: Classification tree fitted to the mixture data: The decision bound-
ary is represented by the solid brown line in the left panel.

diagram showing the rules to obtain the decision boundary is displayed in the
right panel of Figure 2.3. Any data point having a value lower than 0.73 for
X2 is classified as blue, otherwise the value of X1 is inspected. Observations
with X1 values higher than 2.2 are again classified to the blue class, otherwise
they are classified to the orange class.

In Section 1.3.4 it was mentioned that trees generally have high variance.
In other words, trees are fairly sensitive to changes in the data. In contrast,
linear models such as logistic regression tend to be more stable. To illustrate
this, Figure 2.4 shows the decision boundary for fully grown as well as opti-
mally pruned trees compared to logistic regression in the case of three training
data sets sampled as described in the beginning of this section. The top row
of Figure 2.4 corresponds to fully grown trees, the middle row to pruned trees
and the bottom row to logistic regression. From left to right the columns of
2.4 represent the different training data sets. As previously alluded to, the
slope of the decision boundary of the logistic regression model in the bottom
row of Figure 2.4 changes only slightly as changes in the data are observed. In
contrast, both fully grown and pruned trees (in the top and middle rows) have
a high level of variability with respect to the shape of their respective decision
boundaries across the training data samples. However, with the former being
much more variable than the latter, it is clear that cost-complexity pruning
helps to alleviate some of the variance.
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Figure 2.4: Changes in decision boundary as a result of changes in the data:
top row: fully grown classification trees ; middle row: optimally pruned classi-
fication trees ; bottom row: logistic regression classifier.

2.6 Concluding Remarks
In this chapter classification trees were discussed using the CART approach
of recursive binary partitioning of the input space. A tree is constructed by
recursively splitting the input space into two regions based on a search over
different split-points for each variable and by finding the optimal variable and
split-point pair based on the sum of child node impurities.

The size of the tree controls the bias-variance trade-off. In order to avoid
overfitting, a possible strategy is to start with fully grown trees and to then
find the optimal tree size using cost-complexity pruning.
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However, both maximum-sized and pruned trees tend to suffer more from
variance than from bias. Furthermore, by using orthogonal splits the decision
boundary of a tree is limited in its ability to approximate the Bayes boundary
due to its rigidity.

Although limiting the performance of a single tree, the aforementioned as-
pects cannot merely be circumvented by combining multiple tree classifiers,
but can even serve to improve the performance of the ensemble as a whole. In
the next chapter, ensemble learning is discussed together with the characteris-
tics that make trees ideal candidates for ensemble learning algorithms. In this
regard, the road map forward is presented in Figure 2.5.

Figure 2.5: Road map to Chapter 3: Using classification trees as base learners
to create ensemble classification algorithms.
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Chapter 3

Ensemble Learning for
Classification

The focus of this chapter is the idea of combining several models
to create an ensemble classifier. Ensemble learning can be subdi-
vided into deterministic ensembles and non-deterministic ensem-
bles. The former subdivision is discussed in Section 3.2 with an
example, namely boosting. Non-deterministic ensembles and an
example known as bagging are the topic of Section 3.3. Finally,
Section 3.4 discusses the appropriateness of trees as base learn-
ers for an ensemble with Section 3.5 providing some concluding
remarks regarding ensemble learning.

3.1 Introduction
The idea of ensemble learning for classification is to combine multiple classi-
fiers (base learners) in a clever way in order to create a more powerful ensemble
classification algorithm. Each approach towards creating such an ensemble can
be motivated as either attempting to reduce the bias or the variance of the
final classifier, or to reduce both the bias and variance. For example, since a
common aspect of ensemble classifiers is aggregation, many of them result in
an appreciable reduction in variance (as loosely motivated in 1.3.6). Ensemble
methods are occasionally referred to as dictionary methods since they involve
creating linear combinations of a set of base learners selected from a large
“dictionary”. A generic ensemble classification algorithm is given in Algorithm
1 (Friedman and Popescu, 2008). The relevant notation pertaining to the al-
gorithm is as follows:

• b(x,Θ): a base learner characterised by the argument Θ. For exam-
ple, in classification trees Θ represents the terminal nodes, i.e. Θ =

25
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{Rm, jm, sm,m = 1, ...,M}, the terminal nodes of the tree with their
corresponding splitting variables and split-points.

• Sb(η): the bth sample (taken with or without replacement) of size η · N
from the training data, where η ∈ (0, 1].

• ν: a memory parameter, controlling the amount of past information that
is incorporated at each step, where ν ∈ [0, 1].

Algorithm 1 Ensemble Learning for Classification

1. Let Ωtr = {(xi, ci), i = 1, ..., N}, where C can take on values k ∈
{1, ..., K} and initialise g0(x) = 0.

2. For b = 1 to B:

a) Sample Sb(η) from Ωtr.

b) Find Θb = arg minΘ

∑
xi∈Sb(η) L(ci, g

ν
b−1(xi) + b(xi,Θ)).

c) Set gb(x) = b(x,Θb).

d) Update gνb (x) = gνb−1(x) + ν · b(x,Θb).

3. Let g∗b (x) = gb(x) if ν = 0. Otherwise let g∗b (x) = gνb (x). The ensemble
classifier is

ḡEL(x) = arg maxk
B∑
b=1

I(g∗b (x) = k).

At each step b = 1, ..., B, ensemble learning proceeds by finding the base
learner characterised by the argument Θ that minimises the loss over all the
points in the sample Sb(η). The next addition to the ensemble is then either
just the current base learner, or a fraction of all the base learners that have
been fitted up until the current step. It is important to clarify that the ad-
dition operator for classification acts on the estimated posterior probabilities
P̂Sb(η)(C = k|x), where k ∈ {1, ..., K}. At Step 3 each member of the ensemble
casts a vote for a class k = arg maxkP̂Sb(η)(k), and the final classifier is the
majority vote of all the members. The size of the fraction ν essentially controls
the amount by which the algorithm avoids base learners at the current step
that are similar to those that have come before. For example, if ν is large
(for example ν = 1), the base learner most likely to be selected (line 2(a)) at
Step b is one that does not contain the information that is already contained

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 3. ENSEMBLE LEARNING FOR CLASSIFICATION 27

in gνb−1(x). In contrast, note that if ν = 0 it implies that gνb (x) = 0 for all
b = 1, ..., B. Therefore at each step, the fitted base learner is found completely
independent of all other previous base learners.

Implicit in Algorithm 1 is a mechanism for adjusting the extent to which the
ensemble learner is obtained in a deterministic way. Roughly speaking in this
text an ensemble is said to be a deterministic ensemble if no randomness is
induced during the creation of the ensemble. In other words, if the algorithm
were to be run twice on the same training data, the two resulting determin-
istic classifiers will produce the same predictions. On the opposite side lies a
non-deterministic or random ensemble, which has randomness introduced at
some stage of the ensemble creation process.

3.2 Deterministic Ensembles
Deterministic ensembles are devoid of any sources of randomness. At each
stage the same training data is used and the base learner is fitted using an
adaptive but deterministic strategy. An adaptive step is crucial for the success
of the ensemble, since otherwise the same classifier is produced at each step
and no new information is obtained. In Algorithm 1 this translates to an
implicit adaptive strategy within the fitted base learner b(x,Θ), as well as to
restrictions on the parameter η and on the sampling strategy. Specifically, to
obtain the same sample size it must be that η = 1 and that the sampling is
performed without replacement. A prime example of a classifier built from a
deterministic ensemble of base learners is boosting.

3.2.1 Boosting

Boosting is a powerful learning technique that uses deterministic ensemble
learning to produce highly accurate prediction models. The base learners in
boosting are often “weak” classifiers characterised by their prediction accuracy
being slightly better than random guessing. An example of a weak classifier
is a classification tree with a single split at the root node, referred to as a
stump. Using stumps as base learners, the original proposal for a boosted
model (called AdaBoost, short for adaptive boosting), constructs a sequence of
classifiers trained on data that are iteratively “adapted” (Freund and Schapire,
1995). The adaptive step at each iteration causes the current stump to be
fitted to focus more on the observations that were misclassified by the stump
in the previous iteration. The final prediction model then takes the form of a
weighted sum of the above adapted weak learners.

In more detail, consider the training set Ωtr = {(xi, ci), i = 1, ..., N}, where
the output C ∈ {−1,+1} and where each observation receives an initial weight
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wi = 1/N . The first step of the AdaBoost procedure is to obtain a classifier
t(x,Θ) by fitting a stump to the weighted data1 (Hastie et al., 2009). Here b
indexes the current number of iterations starting at b = 1 and ending at some
specified total number of boosting iterations B. The contribution from the bth
fitted stump towards the final classifier is based on a weighted version of the
training error and is computed as

αb = log

(
1− Errorb
Errorb

)
, (3.2.1)

where the weighted training error is

Errorb =

∑N
i=1wiI(t(xi,Θb) 6= ci)∑N

i=1 wi
. (3.2.2)

The relationship between αb and Errorb is given in the left panel of Figure
3.1.
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Figure 3.1: Improving the accuracy of trees with the AdaBoost algorithm.

It is clear that each weak learner’s contribution to the final classifier is a
monotone decreasing function of the weighted training error. Therefore fitted
stumps that perform well on the training data play a bigger part in determining
the final ensemble classifier. In the second step of AdaBoost the observation

1The weights have an effect on the construction of the tree through weighting the im-
purity measures computed when searching for an optimal split.
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weights are updated as follows:

wbi = wb−1
i · eαbI(t(xi,Θb)6=ci), (3.2.3)

where I(t(xi,Θb) 6= ci) is an indicator function ensuring that only the weights
of the misclassified observations are increased by a factor eαb . The right panel
of Figure 3.1 shows that there is a negative relationship between the increase
in observation weight and classification error. This might seem counter intu-
itive. However consider a classifier with a training error rate of 0.5. In this
case the error is more likely to be attributed to a poor classifier than to the
data being intrinsically difficult to classify. Hence each observation receives
only a slight increase in weight. On the other hand, if a classifier obtained an
error rate close to zero, with for example only one or two misclassified points,
it makes intuitive sense to force the classifier in the next iteration to concen-
trate more on correctly classifying these few points. This is done by increasing
the weights of these few misclassified points by a large factor. After B iter-
ations of the aforementioned steps, the final AdaBoost classifier takes the form

ḡada(x) = sign

[ B∑
b=1

αbt(x,Θb)

]
. (3.2.4)

In Figure 3.2 AdaBoost is compared to a single tree stump and to a fully grown
tree in terms of their test error on simulated data (in this text referred to as
the elemStat data).2

From Figure 3.2 it is seen that a single stump achieved an error rate only
slightly better than random guessing, whereas the maximum sized tree achieved
an error rate just below 30%. In stark contrast AdaBoost managed to reach a
test error rate as low as 10% after only 100 iterations and kept improving to
a test error of about 5% at 600 iterations.

With the aim of showing AdaBoost to be a special case of a larger boost-
ing family, as well as pointing out its connection with the ensemble learning
framework presented in Section 3.1, the procedure is examined from an al-
ternative view point. In general, boosting can be described as a method for
function estimation (Friedman, 2001). In this framework boosting estimates
the population minimiser of a specified convex loss function within a function

2The simulated data is from independent variables X1, ..., X10 ∼ N(0, 1) with Y = 1 if∑10
j=1X

2
j > χ2

10(0.5) = 9.34, otherwise Y = −1 (Hastie et al., 2009). The classes have equal
sizes, with 2000 observations used for training and 10, 000 for testing.
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Figure 3.2: Test Error rates on elemStat data for a stump, for a fully grown
tree and for AdaBoost.

space constrained by the chosen base learner. This is known as functional gra-
dient boosting. In more detail, consider the problem of estimating the function

ḡ∗boost(x) = arg min
g(x)

E
[
L(ci, g(x))

]
, (3.2.5)

where L(·, ·) is a convex and differentiable loss function with respect to g(x).
A well known approach towards finding a parameter vector minimising a con-
vex function is called steepest descent. Starting with an initial guess, steepest
descent aims to take small “steps” in the direction of the negative gradient.
Here each step updates the estimate of the parameters by adding a fraction of
the negative gradient evaluated at the current estimate. Since the function is
convex, each step will ensure that the new estimate is an improvement over the
last. The procedure is continued until a negligible change in the slope indicates
a global optimum to have been reached. The notation g(x) in (3.2.5) refers
to a function that needs to estimated and not a numeric parameter vector.
The clever idea that underlines functional gradient boosting is to use a base
learner to approximate the negative gradient computed at each step. More
specifically, the negative gradient components at step b are

ui = − ∂

∂f
L(c, g(x)), i = 1, ..., N, (3.2.6)

each evaluated at the current estimate gb−1(xi). An approximation of the
negative gradient is obtained by fitting a base learner b(x,Θb) to the set
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{(xi, ui), i = 1, ..., N}. The update is then of the form

gb(x) = gb−1(x) + ν · b(x,Θb), (3.2.7)

where in the boosting literature, 0 < ν ≤ 1 is called the step-length factor or
the learning rate (Bühlmann and Hothorn, 2007). After a specified number of
steps (B), the final classifier is

ḡboost(x) = arg maxk
B∑
b=1

I(gb(x) = k). (3.2.8)

Note that the classifier in (3.2.8) is constrained to the function class of the
chosen base learner.

Functional gradient boosting allows for several different boosting algorithms
to be constructed by simply specifying a different loss function and/or base
learner. For example, selecting stumps as base learners and using exponential
loss results in the AdaBoost procedure. In the regression setting, using the
squared-error loss LSE(y, f(x)) = (y− f(x))2, results in the negative gradient
at each step to be twice the current residuals ui = 2(yi−fb−1(xi)), i = 1, ..., N .
From here the base learner is fit to the residuals and the update takes the usual
form fb(x) = fb−1(x) + ν · b(x,Θb). The final estimate is then given as the
average over of the members of the ensemble, and not a majority vote. The
above procedure is known as L2Boosting. Hence by simply changing the loss
function, different boosting algorithms for both regression and classification
can be constructed.

Finally, any gradient boosting approach can be viewed as a special case of
the ensemble framework in Algorithm 1. Specifying a loss function, sampling
without replacement with η = 1 and obtaining base learners by way of the
negative gradient fully defines a specific boosting procedure.3

3.3 Random Ensembles
There are two options regarding the introduction of randomness into an ensem-
ble learning procedure. The first is to choose a sample strategy such that the
sample drawn at each step is either a sample of size N taken with replacement,
or a sample drawn without replacement where η < 1. This means that at each

3Stochastic gradient boosting is a form of boosting that removes the restrictions men-
tioned here. However this of course still remains a special case of Algorithm 1.
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step, the sample used to fit the base learner will be different from previous
samples. In addition, a second source of randomness implicit in the ensem-
ble creation can stem from the way in which the base learner is constructed.
Therefore, random ensembles are created via Algorithm 1 by either:

1. Selecting a deterministic base learner with η = 1 and sampling with
replacement;

2. Selecting a deterministic base learner with η < 1 and sampling with or
without replacement;

3. Selecting a randomised base learner with η = 1 and sampling with re-
placement;

4. Selecting a randomised base learner with η < 1 and sampling with or
without replacement.

An example of a random ensemble learning algorithm is bagging.

3.3.1 Bagging

In an attempt to reduce the variance of a model and thereby to potentially
improve its accuracy, Breiman (1996a) developed a procedure to combine mul-
tiple base learners using bootstrap aggregation, or “bagging”. Bagging essen-
tially fits many base learners by using bootstrap samples of the training data
to produce a large number of model estimates. A prediction for a new case is
then simply the average of all the outputs produced by the base learners, or
in the case of classification, the majority vote.

In more detail, consider the training set Ωtr = {(xi, ci, i = 1, 2, ..., N} and
some learning algorithm to construct a classifier g(x). A set {Ω∗1,Ω∗2, ...,Ω∗B}
can be generated using bootstrap sampling. Subsequently, the set of classifiers
{gΩ∗1

(x), gΩ∗2
(x), ..., gΩ∗B

(x)} can each be trained on a bootstrap replicate. Now
suppose x can be classified as belonging to one of K classes and let

P̂bag(k|x) =
B∑
b=1

I(gΩ∗b
(x) = k). (3.3.1)

Then bagging classifies x to the class for which P̂bag(k|x) is a maximum, where
k = 1, ..., K, and the corresponding aggregated (majority vote) classifier is

ḡbag(x) = arg maxkP̂bag(k|x). (3.3.2)
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To illustrate the effect of bagging classification trees on the obtained decision
boundary, a bagged model consisting of 100 trees is fitted to the mixture data
and shown in the top right panel of Figure 3.3.
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Figure 3.3: Top: AdaBoost compared to bagging using 100 classification trees
fitted to the mixture data: the decision boundary is represented by the solid
brown line. Bottom: A random sample of three classification trees from the
bagged ensemble

This boundary is compared to the boundary produced by AdaBoost (also using
100 trees) as shown in the left panel. Both algorithms result in a departure
from the axis-parallel decision rules produced by a single classification tree.
This is of course induced by the aggregation of decision rules from several
trees. (Strictly speaking the decision boundary produced by both procedures
is still axis-parallel, however it is much more finely grained.) Boosting achieves
a test error rate of 25.7%, whereas bagging achieves a test error rate of 25.2%,
which constitutes an average improvement of less than one percent (0.7%) for
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a single tree. Although in this example the accuracy of the ensemble learners
are not remarkably higher than that of a single tree, the situation is likely to
change given a more complex data set (refer to Figure 3.2).

Interestingly, the boosted classifier obtained an error rate of 50% on the train-
ing data, yet the test error as well as the shape of the decision boundary is
reasonable. A possible explanation for this pertains to the previously discussed
view of boosting as a functional gradient descent algorithm. Boosting has as
main objective the minimisation of a convex loss function and not minimising
the training error. This might explain why, even though the training error
remained high, the test error did not suffer.

The bottom panel of Figure 3.3 shows three randomly drawn classification
trees from the ensemble used to create the bagged classifier. Each tree is
different, although the tree growing algorithm used to create each tree is in-
trinsically deterministic given a particular data set. This illustrates the effect
of bootstrap sampling and its ability to create diversity among base learners.

The bagging algorithm presented above is (along with boosting) another ex-
ample of a special case of Algorithm 1. Besides the addition of randomness
in bagging, boosting and bagging differ fundamentally in the sense that bag-
ging constructs base learners independently at each step (i.e. ν = 0), whereas
boosting is an iterative procedure that aims to learn from previous iterations
(ν > 0). Therefore, bagging implements Algorithm 1 where sampling is done
with replacement, with η = 1 and ν = 0.

3.4 Trees: Popular Base Learners for
Ensembles

Both boosting and bagging as examples of ensemble learners use trees as base
learners for constructing the ensemble, although there are no formal restric-
tions regarding this choice. Furthermore, this is not an arbitrary selection
specific to this text, but the preferred base learner at the inception of each
algorithm. The following question arises: why are trees good base learners?

The answer can be divided into two parts. Certain characteristics of a tree
advocate its use in terms of being a good individual learner, while other char-
acteristics are important to enable good performance of the ensemble. Starting
with the former, trees have the following properties that render them attractive
at the level of an individual base learner (Hastie et al., 2009):

• Natural handling of both quantitative and qualitative data types.
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• Natural handling of missing values.

• Robustness to outliers.

• Insensitivity to monotone transformations of the input variables.

• Ability to handle large data sets (large N).

• Implicit variable selection, enabling one to deal with many irrelevant
input variables.

This is an impressive list. However, although trees have low bias, they suffer
from high variance and as a consequence typically have poor generalisation
performance.

It is this high variance that render trees appropriate base learners for en-
sembles. In the case of deterministic ensembles, starting out with already low
biased trees, the variance can be reduced (sometimes dramatically) through
aggregation. It is however in random ensembles that the instability of trees
really come into play. By being very sensitive to changes in the data as well
as to algorithmically induced randomness, trees are capable of producing a
diverse ensemble of base learners. The diversity serves as a way to decorrelate
the set of trees from each other, such that the variance of the ensemble is
reduced even further. In fact, “memoryless” random ensembles where the base
learner is restricted to be some sort of tree has become such an active area of
research, that this algorithm class has received its own name, random forests
(RFs).

3.5 Concluding Remarks
A way of improving classification procedures is offered through aggregation of
single classifiers into an ensemble learner. In this way a substantial reduction
in variance generally leads to improved generalisation.

Furthermore, a general ensemble framework allows for the construction of
several different ensemble classification procedures through the choice of an
appropriate loss function, base learner, type of sampling procedure and the
degree of dependence between iterations. However, with respect to determin-
ism there exists a dichotomy within the ensemble framework. Deterministic
ensembles are invariable across multiple runs and work through adaptation,
whereas random ensembles change from one run to the next due to different
sources of artificially induced randomness.

Random ensembles use trees as base learners, which are highly sensitive to
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changes in the data and to randomness injected through the design of an al-
gorithm. The effect is base learners that tend to be less correlated and which
facilitates a further reduction in variance. This is the approach followed by
random forests.

In the next chapter, random forests are discussed within this general framework
of ensemble learning algorithms that make use of independently constructed
randomised trees as base learners. The road map forward is presented in Fig-
ure 3.4.

Figure 3.4: Road map to Chapter 4: Random forests as ensemble learning
algorithms using independently constructed randomised trees as base learners.
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Chapter 4

Random Forests

Random forests reside under the umbrella of random ensemble clas-
sifiers, however they exclusively use trees as base learners. In this
chapter, a general perspective on random forests is given in Section
4.1, with early developments discussed in Section 4.2. The gener-
alisation error of a random forest and its resistance to overfitting
is explored in Sections 4.3 and 4.4 respectively. A popular exam-
ple of a random forest is Breiman’s Forest-RI which is the focus of
Section 4.5, with the use of out-of-bag samples for error estimates
and variable importance discussed in Section 4.6. Finally in this
chapter, concluding remarks are given in Section 4.7.

4.1 Introduction
In his seminal paper on random forests, Breiman (2001a) pointed out the
common element in most tree based random ensemble learning algorithms.
Specifically, for the bth tree to be constructed, each algorithm generates a ran-
dom vector Θb, independent and identically distributed from the past random
vectors Θ1, ...,Θb−1, and produces a classifier t(x,Θb). After a large number
of trees have been constructed in this way, a majority vote is used to classify
a new observation. Breiman dubbed all the procedures characterised by the
aforementioned steps “random forests” and provided the following formal def-
inition (notation slightly changed).

Definition 1.1 A random forest is a classifier consisting of a collec-
tion of tree-structured classifiers {t(x,Θb), b = 1, ..., B} where the
{Θb} are independent identically distributed random vectors and
each tree casts a unit vote for the most popular class at input x.

37
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The caveat in Definition 1.1 is that it requires the argument vector Θb to be
independently distributed, hence in addition to the base learner restriction,
random forests have no memory parameter (i.e. ν = 0) when cast in the
ensemble learning framework. The restriction might not feel justified, however
in the case of an algorithm such as stochastic gradient boosting (a version
of boosting with random sampling), the definition will ensure that this type
of boosting still resides under the boosting umbrella and not under that of
random forests.

4.2 Early Developments
Even prior to the bagging proposal, in a paper by Ho (1995) called “Random
Decision Forests”, a method was proposed to address the poor generalisation
performances of classification trees which are grown to arbitrary levels of com-
plexity. The proposed method uses classification trees with splits on linear
combinations of the input variables and constructs multiple trees using only
a random subset of the input variables for each tree. Using a classifier based
on the aggregation of the posterior probability estimates from each tree, the
complementary generalisations from the trees are utilised to produce a more
powerful classifier.

In more detail, suppose B trees are constructed, each tree only using a random
subset of the input variables and let Rb(x) denote the terminal node assigned
to x by tree tb, b = 1, ..., B. The posterior probability that x belongs to the
class k, where k = 1, ..., K, is given by

P (k|Rb(x)) =
P (k,Rb(x))∑K
l=1 P (l, Rb(x))

. (4.2.1)

This probability can be estimated as the fraction of the observations in Rb(x)
that are assigned to class k. Then using the obtained probability estimates
from all the trees gives the aggregated estimated posterior probability as

P̂RS(k|x) =
1

B

B∑
b=1

P̂ (k|Rb(x)), (4.2.2)

where P̂ (k|Rb(x)) is the estimated posterior probability of k given x for the
bth tree. The aggregated classifier is then t̄RS(x) = arg maxkP̂RS(k|x).

Ho (1995) provides a geometric interpretation of the classifier t̄RS(x). Each
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terminal node can be seen as defining some neighbourhood around the obser-
vations assigned to that node, inside a random subspace of the input variables.
Aggregating the posterior probabilities for a given observation x over all the
neighbourhoods may then be viewed as an approximation of the posterior
probabilities in the entire input space.

Independently, Amit and Geman (1997) also proposed a method to estimate
posterior probabilities using random subspaces of the input variable space and
aggregating over the different subspace specific probabilities. Their aim in the
paper was to improve the performance of a classifier in recognising a handwrit-
ten digit. In their proposal, an observation is classified by taking the mode
of the posterior distribution over “shape” classes. However, the fundamental
difference between their approach and that by Ho (1995), is that Amit and
Geman (1997) considered a new random subspace at each node split while
constructing a classification tree instead of selecting a single random subspace
for the entire tree construction. The classifier produced in this way is essen-
tially identical to the one in (4.2.2), but with different posterior probability
estimates P̂ (k|Rb(x)), b = 1, ..., B used in the aggregation. It was this paper
that Breiman would later mention as having been influential in his thinking
when writing his paper on random forests (Breiman, 2001a).

In a later paper by Ho (1998), a comparison was made between his random
subspace method proposed earlier (Ho, 1995) and constructing classification
trees using training set resampling methods such as the bootstrap. This was
in an attempt to find the best method to construct a tree based classifier that
maintains high accuracy on the training set while monotonically decreasing the
generalisation error as it grows in complexity. Another approach is the one
proposed by Dietterich (1998), which is closely related to a proposal by Kwok
and Carter (1990). The idea is to replace the optimal variable and split point
with a random selection among the top 20 ranked variables and corresponding
split points at each node when growing trees (the top 20 might include the
same variable more than once, but with a different split point).

4.3 Generalisation Error of a Random Forest
Following Breiman (2001a), in this section a derivation of the upper bound
for the generalisation error of a random forest is presented. First, define the
margin function of a random forest obtained from a training set to be

1

B

B∑
b=1

I(t(X,Θb) = c)−max
c6=k

1

B

B∑
b=1

I(t(X,Θb) = k), (4.3.1)

where {t(X,Θb), b = 1, ..., B} denotes an ensemble of classification trees. The
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margin can be seen as a measure of confidence in the classification, since it
represents the amount by which the average number of votes for the correct
class exceeds the average number of votes for the most likely class other than
the correct class. A larger margin increases the confidence in an observation
being classified to the correct class and a smaller margin reduces this confi-
dence. Note that a classifier unable to classify to the correct class more often
than any other class will have a negative margin. From the Strong Law of
Large Numbers, as the number of trees increases, for almost surely the margin
converges to

mg(X,C) = PΘ(t(X,Θ) = C)−max
C 6=k

PΘ(t(X,Θ) = k). (4.3.2)

(A proof of 4.3.2 is presented in Section 4.4). Breiman (2001a) defines the
strength of a set of tree classifiers {t(x,Θ)} as

S = EX,C
[
mg(X,C)

]
. (4.3.3)

The generalisation error of a random forest is then given by

Err∗ = PX,C(mg(X,C) < 0), (4.3.4)

which is simply the probability of a negative margin. Restricting the deriva-
tion to the case where S is greater than zero, it is possible to write

Err∗ = PX,C(mg(X,C)− EX,C
[
mg(X,C)

]
+ EX,C

[
mg(X,C)

]
< 0)

= PX,C(S −mg(X,C) ≥ S)

= PX,C
(
(mg(X,C)− S)2 ≥ S2

)
= PX,C

(√
(mg(X,C)− S)2 ≥

√
S2
)

= PX,C
(
|mg(X,C)− S| ≥ S

)
,

since S ≥ 0 implies |S| = S. Next consider a random variable Z with
E(Z) = µ > 0, Chebychev’s inequality states that for any α > 0,

P (|Z − µ| ≥ α) ≤ V ar(Z)

α2
. (4.3.5)
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Plugging Z = mg(X,C) and µ = α = S into (4.3.5), the following upper
bound for the generalisation error is obtained:

Err∗ ≤
V ar

[
mg(X,C)

]
S2

. (4.3.6)

To gain more insight into the variance of the margin let

¬C = arg max
C 6=k

PΘ(t(X,Θ) = k) (4.3.7)

such that

V ar
[
mg(X,C)

]
= V ar

[
PΘ(t(X,Θ) = C)− PΘ(t(X,Θ) = ¬C

]
= V ar

{
EΘ

[
I(t(X,Θ) = C)− I(t(X,Θ) = ¬C

]}
.

Breiman (2001a) denotes I(t(X,Θ) = C) − I(t(X,Θ) = ¬C), the so-called
raw margin function, by rmg(X,C,Θ). The raw margin can be interpreted
as the margin computed over some finite data sample and the margin is then
simply the expected value of the raw margin. Hence,

V ar
[
mg(X,C)

]
= V ar

{
EΘ

[
rmg(X,C,Θ)

]}
. (4.3.8)

Moreover, consider two independent and identically distributed random vec-
tors Θ and Θ′, then

mg(X,C)2 = EΘ,Θ′
[
rmg(X,C,Θ)rmg(X,C,Θ′)

]
, (4.3.9)

which is a result of the identity that for any function h, it holds that

EΘ

[
h(Θ)

]2
= EΘ,Θ′

[
h(Θ)h(Θ′)

]
. (4.3.10)

To simplify notation, let mg(X,C), rmg(X,C,Θ) and rmg(X,C,Θ′) simply
be written as mg, rmg(Θ) and rmg(Θ′) respectively. Using (4.3.9), it is now
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possible to denote the variance of the margin by

V ar(mg) = EX,C(mg2)−
[
EX,C(mg)

]2
= EX,C

{
EΘ,Θ′

[
rmg(Θ)rmg(Θ′)

]}
− EX,C

{
EΘ

[
rmg(Θ)

]}2

.

Applying the identity in (4.3.10) to the second term in the last line, and swap-
ping expectations yield

V ar(mg) = EΘ,Θ′

{
EX,C

[
rmg(Θ)rmg(Θ′)

]}
− EΘ,Θ′

{
EX,C

[
rmg(Θ)

]
EX,C

[
rmg(Θ′)

]}
= EΘ,Θ′

{
EX,C

[
rmg(Θ)rmg(Θ′)

]
− EX,C

[
rmg(Θ)

]
EX,C

[
rmg(Θ′)

]}
= EΘ,Θ′

{
covX,C

[
rmg(Θ), rmg(Θ′)

]}
.

Therefore,

V ar(mg) = EΘ,Θ′

{
ρX,C

[
rmg(Θ), rmg(Θ′)

]
σ
[
rmg(Θ))σ(rmg(Θ′)

]}
,

where ρ(·, ·) is the correlation function and σ(·) is the standard deviation.
Holding Θ,Θ′ fixed, the mean value of the correlation between rmg(Θ) and
rmg(Θ′) is given by

ρ̄ =

EΘ,Θ′

{
ρX,C

[
rmg(Θ), rmg(Θ′)

]
σ
[
rmg(Θ))σ(rmg(Θ′)

]}
EΘ,Θ′

{
σ
[
rmg(Θ)

]
σ
[
rmg(Θ′)

]}
= EΘ,Θ′

{
ρX,C

[
rmg(Θ), rmg(Θ′)

]}
.

Therefore,

V ar(mg) = ρ̄EΘ,Θ′

{
σ
[
rmg(Θ)

]
σ
[
rmg(Θ′)

]}
= ρ̄EΘ

{
σ
[
rmg(Θ)

]}2

≤ ρ̄EΘ

{
V ar

[
rmg(Θ)

]}
, (4.3.11)
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since for any random variable X, V ar(X) ≥ 0 implies that E(X)2 ≤ E(X2).
Furthermore,

EΘ

{
V ar

[
rmg(Θ)

]}
= EΘ

{
EX,C

[
rmg(Θ)2

]
− EX,C

[
rmg(Θ)

]2}
= EΘ

{
EX,C

[
rmg(Θ)2

]}
− EΘ(mg2)

≤ EΘ

{
EX,C

[
rmg(Θ)2

]}
− EΘ(mg)2.

With the maximum value of the raw margin equal to 1, it follows that

EΘ

{
V ar

[
rmg(Θ)

]}
≤ 1− S2. (4.3.12)

Finally, combining (4.3.6), (4.3.11) and (4.3.12) leads to the following upper
bound for the generalisation error for a random forest:

Err∗ ≤ ρ̄(1− S2)

S2
. (4.3.13)

This shows that the two components that bound the generalisation error are
the correlation between the classification trees and the strength of each tree in
the random forest with respect to its raw margin function. For an ensemble, the
decrease in correlation results in a reduction in variance. Although Breiman
(2001a) notes that the bound is likely to be quite loose, it helps to somewhat
more rigorously illuminate the inner workings of random forests.

4.4 Random Forests and Overfitting
Breiman (2001a) claims that random forests are impervious to overfitting and
provides the following proof to back his assertion. Consider a fixed training
set and a fixed vector Θ characterising the splitting structure of a tree classi-
fier. The set {x|t(x,Θ) = k} for some class k ∈ {1, ..., K} represents a union
of hyper-rectangles, the neighbourhoods created in p-dimensional space as a
result of binary partitioning. Since trees cannot be grown to infinite depth, for
any tree classifier t(x,Θ), there exists only a finite number L of such unions
of neighbourhood regions, denoted here by S1, ..., SL. Define the function

ξ(Θ) = l · I
(
{x|t(x,Θ) = k} = Sl

)
, (4.4.1)
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where l ∈ {1, ..., L}. The function in (4.4.1) maps the particular structure of
a tree (given a fixed training set) via l ∈ {1, ..., L} to S1, ..., SL. Suppose B
trees are grown using bootstrap resampling and let bl be the average number
of times that ξ(Θb) = l, where l = 1, ..., L and b = 1, ..., B. Then

1

B

B∑
b=1

I
(
tΩ∗b (x,Θb) = k

)
=

L∑
l=1

bl · I(x ∈ Sl).

Furthermore by the Law of Large Numbers,

bl =
1

B

B∑
b=1

I(ξ(Θb) = l) →
a.s.

PΘ(ξ(Θ) = k). (4.4.2)

Note that for any given ensemble based on Θ1,Θ2, ...ΘB there exists a set E of
zero probability containing all the unions of sets for which (4.4.2) did not con-
verge for some value l. Therefore Breiman (2001a) concludes that outside of E,

1

B

B∑
b=1

I
(
tΩ∗b (x,Θb) = k

)
→
a.s.

∑
l

PΘ(ξ(Θ) = k) · I(x ∈ Sl) = PΘ(t(x,Θ) = k).

The above provides a guarantee that the ensemble approaches a limiting value
of the generalisation error as more trees are added. However, Hastie et al.
(2009) suggest that there is some confusion between this limiting value, condi-
tional on the training data, and the complexity of the resulting model. They
state that adding more trees does not cause the random forest to overfit in
the sense that it is estimating PΘ(t(x,Θ) = k) for each class, but rather that
the limit itself specific to t(x,Θ) can overfit the data. In fact, Segal (2004)
noted that most of the benchmark datasets from the UCI repository used for
performance comparisons of random forests were resistant to overfitting, even
to single maximum-sized grown trees. By expanding the range of datasets to
include ones on which fully grown trees do overfit, Segal was able to show
(at least in a regression setting) that random forests can indeed overfit. A
suggested remedy is to use pruned trees instead of the more commonly used
fully grown trees. However, overfitting still remains a rare occurrence. This
is especially the case in classification problems. Hence it is suggested that
having to deal with the extra tuning parameter associated with tree pruning
(the α in cost-complexity pruning), is not worth the small potential gains in
performance (Hastie et al., 2009).
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Figure 4.1: Ten-fold cross-validation errors per additional 10 trees for a random
forest fit to the mixture data.

In Figure 4.1, ten-fold cross-validation is used to select the optimal ensem-
ble size for a random forest (specifically Forest-RI discussed in the following
section) fit to the elemStat data. The purple vertical line indicates the appro-
priate number of trees to be 120 as opposed to the maximum of 500. However,
the prevailing trend seems to suggest that the performance of the random
forest does not suffer much as more trees are added.

4.5 Breiman’s Forest-RI
In addition to providing a general definition, Breiman (2001a) also proposed
his own version of a random forest, viz. Forest-RI.1 The Forest-RI algorithm
for classification is a combination of bagging classification trees while using
the random subspace method of Ho (1995), but following the node specific im-
plementation of Amit and Geman (1997) when constructing each tree. When
the tree is grown on a bootstrapped training set, only ζ < p of the input
variables are selected at random as candidates for splitting at each node. The
idea of this modification to bagging (essentially inducing more randomness into
the procedure) is to reduce the correlation between each tree in the ensemble
while having only a negligible increase in the variance of each individual tree.
Therefore, Forest-RI improves on the performance of bagging by reducing ρ̄ in
(4.3.13). The Forest-RI algorithm is given in Algorithm 2 (Hastie et al., 2009).

1RI is an abbreviation for “Random Input”.
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Algorithm 2 Forest-RI

1. For b = 1 to B:

a) Draw a bootstrap sample Ω∗b of size N from Ωtr.

b) Grow a randomised tree tΩ∗b (x,Θb) to the boostrapped data, by
recursively repeating the following steps for each terminal node of
the tree, until each node contains at most Nmin observations.

i. Select ζ variables at random from the p input variables.
ii. Pick the best variable on which to split, and the best corre-

sponding split-point among the ζ chosen variables.
iii. Split the node into two child nodes.

2. Output the ensemble of trees {tΩ∗b (x,Θb), b = 1, ..., B}. The random
forest classification for an input x is given by the majority vote

t̄FRI(x) = arg maxk
B∑
b=1

I(tΩ∗b (x,Θb) = k).

Training error: 0 

Test error: 0.252 

Bayes error: 0.215

-2

-1

0

1

2

-2 0 2

X1

X
2

Forest-RI decision boundary: Bayes Forest-RI

0.14

0.16

0.18

0 100 200 300 400 500

Number of trees

T
e

s
t 

E
rr

o
r

elemStat Data Fit: Bagging Forest-RI

Figure 4.2: A Forest-RI fit to the mixture data: The decision boundary is
represented by the solid brown line.

The decision boundary of a Forest-RI using 100 trees fit to the mixture data
is shown in the left panel of Figure 4.2. Since the data consist of only two
input variables, the subset size of randomly selected variables as candidates
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for splitting at each node (the tuning parameter ζ) was set equal to one.2
The boundary is highly non-linear due to the randomised trees used in the
algorithm with the training error reduced all the way to zero. When it comes to
the test error, Forest-RI has the same performance as bagging on the mixture
data. However, the right panel of Figure 4.2 gives the test error curves for
bagging and Forest-RI fit to the elemStat data. Presented with this richer
data set, Forest-RI indeed outperforms bagging for any ensemble size selected.
Also, on average over ensemble size (average errors are represented by dashed
lines), Forest-RI performs the best.

4.6 More Detail Regarding Random Forests
An interesting aspect of a random forest using bootstrap sampling is that
when each tree is fit, there exists a sample of observations that were not
used in the construction of the tree. Specifically, if each observation has an
equal probability 1/N of being sampled, the probability of an observation not
being in the bootstrap sample is (1− 1/N)N . For large N , this probability is
approximately equal to 36.8%. In other words, each time a tree is fit in the
sequence to create the ensemble, roughly a third of the data will not be used.
This collection of unused observations is referred as the out-of-bag (OOB)
sample.

4.6.1 Out-of-Bag (OOB) Error Estimates

The proposal of using out-of-bag observations to obtain estimates of the gen-
eralisation error of a bagged classifier stemmed from work done by Tibshi-
rani (1996) and Wolpert and Macready (1999). Given a training set Ωtr,
out-of-bag error estimates can be obtained by first constructing the classifiers
{gΩ∗b

(x), b = 1, ..., B} using bootstrap resampling from the training set. Now,
considering the ith observation and by only using the classifiers in which this
observation was in the out-of-bag set, approximately B/3 votes for the class
to which it belongs can be collected (James et al., 2013). Using the usual
majority vote method gives a single out-of-bag prediction. In a similar fash-
ion, an out-of-bag prediction can be obtained for all the observations in the
training set and from these, an out-of-bag error estimate is given by the mis-
classification rates associated with these predictions. Concretely, the estimate
is defined as

ĒrrOOB =
1

N

N∑
i=1

1

|E−i|
∑
b∈E−i

L(ci, gΩ∗b
(xi)),

2If ζ = p, Forest-RI is equivalent to bagging.
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where E−i is the set of indices corresponding to the models that did not use
observation i to train and |E−i| is the number of indices inside this set. How-
ever, sampling with replacement also means that

P (observation i ∈ Ω∗b) = 1− (1− 1/N)N ≈ 0.632 (4.6.1)

for large N . Now suppose only B = 3 bootstrap datasets are constructed, then
(4.6.1) implies that roughly (0.632)3 ≈ 1/4 of the observations from the origi-
nal training set will be used by all of the models for training. Therefore, either
B should be chosen to be sufficiently large, meaning |C−i| > 0,∀i = 1, ..., N ,
or observations for which |E−i| = 0 should be omitted in the computation.

A useful consequence of this estimate is that unlike the usual setting (which
requires that cross-validation be performed explicitly), implicit to a random
forest is a validation step in parallel with the model fit. In fact, the training
phase can be conducted in such a way that the number of trees used in the
random forest can be increased until some point is reached where the out-of-
bag error has stabilised (Hastie et al., 2009). Furthermore, Breiman (1996b)
argued that the need for an independent test set becomes unnecessary when
the out-of-bag error estimate is available. To illustrate the similarity between
the two estimates, Figure 4.3 shows the out-of-bag error compared with the
test error of a Forest-RI fit to the elemStat data.
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Figure 4.3: OOB error computed on the Spam training data, compared to the
test error.
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The two error curves in Figure 4.3 are fairly similar. Hence it seems reasonable
to use the OOB error to select the optimal ensemble size. Both curves show
that far fewer than 500 trees are required to obtain a stable estimate, from
which point any additional trees result in a negligible reduction in misclassifi-
cation error. This is an illustration of how the parameters for a random forest
can be tuned using only the internal OOB estimates of the model during the
fitting process. Compared to the test error, the OOB estimate is biased up-
wards, but in practice may still be a useful upper bound. In the next section
another useful aspect of out-of-bag samples is discussed. In particular, Sec-
tion 4.6.2 describes the use of out-of-bag samples in determining the relative
importance of input variables in terms of their association with the response.

4.6.2 Interpretability of Random Forests

Random forests can use out-of-bag samples to measure the importance of each
input variable. This is a feature of random forests that was already included
in Breiman’s original paper (Breiman, 2001a), but which has more recently
also been investigated by Strobl et al. (2008) and Genuer et al. (2010). Algo-
rithm 3 provides the necessary steps to compute variable importance (Breiman,
2001a).

Algorithm 3 A variable importance algorithm for Random Forests

1. For the bth tree, where b = 1, ..., B:

a) Drop the out-of-bag sample down the tree and store the prediction
accuracy.

b) For each input variable Xj, j = 1, ..., p, randomly permute the val-
ues for Xj in the out-of-bag sample and recompute and store the
prediction accuracy.

2. Over all trees {tΩ∗b (x,Θb), b = 1, ..., B}, compute the average decrease
in accuracy that resulted from randomly permuting the values of each
of X1, X2, ..., Xp. These quantities are then considered to measure the
importance of each input variable.

The importance of a specific variable is computed as the average decrease in
prediction accuracy across all trees when the values of that variable is per-
muted. The input variable which causes the largest decrease in accuracy after
being permuted is considered to be the most important.
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As a running example, in order to facilitate explanation of the interpretability
of random forests, the well known spam data set (donated to the UCI machine
learning repository by George Forman from Hewlett-Packard labs) pertaining
to text classification is used. The spam data set consists of 4601 e-mails char-
acterised by 57 predictors which are the observed percentages of the occurrence
of certain words, characters and punctuation as well as specific characteristics,
such as the number of capital letters used within an e-mail. The task is to use
these data as input to a classifier in order to predict whether an e-mail is spam
(junk) or nonspam (relevant and important to the recipient). The variable
importance measures for the spam data are displayed in Figure 4.4.
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Figure 4.4: Variable importance for the spam data.

From Figure 4.4, the word remove is deemed most important with the percent-
age of exclamation marks and the occurrence of the word hp in close second
and third place overall. Given the source of the data, it is interesting to note
the importance of hp (short for Hewlett-Packard) and of the word george (the
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name of the donor). For each, it is presumably the presence of the word in the
e-mail that is indicative of the e-mail not being spam.

In order to further verify the above speculations, consider the matrix scat-
terplot in Figure 4.5, showing the top 3 (top row) and bottom 3 (bottom row)
predictors with respect to their overall importance ranks as shown in Figure
4.4. The x-axis in each panel corresponds to the percentage occurrence of
the particular word in an e-mail. The y-axis provides the respective posterior
probabilities for each observation given x.
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Figure 4.5: Spam data variable exploration plot: The top row corresponds to
the three most important variables and the bottom row the three least important
variables.

Considering the centre panel in the top row of Figure 4.5, it is indeed clear
that the variable hp is useful in classifying spam since none of the spam e-
mails contain this abbreviation. On the other hand, in the case of remove and
charExclamation, the presence of the word in an e-mail is a very good indicator
that the particular e-mail is spam. In contrast, the words num3d, parts and
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table shown in the bottom row of Figure 4.5, provide very little distinction
between the two classes.

In a paper addressed to the statistical community, Breiman (2001b) advocated
what he referred to as the algorithmic modeling culture. Here the statistician
should refrain from assuming that the data were generated from some stochas-
tic model and rather estimate a functional relationship between the predictors
and the response using an algorithm (such as a random forest). In this camp,
the emphasis is placed on prediction accuracy, with the argument being that
a highly accurate model should be more similar to the true unknown function
that is of interest, and therefore that conclusions drawn from it should be more
reliable. The main drawback is that the unknown function is replaced with a
complex (but often very accurate) “black box”, which is difficult to interpret.
In fact, commenting on the paper, Cox and Efron expressed serious reserva-
tions regarding the abandonment of the data modeling approach - largely due
to its simplicity and relative success in providing useful information. Breiman,
well aware of this, recalls being told by biostatistician friends that, “Doctors
can interpret logistic regression” and that faced with a choice between high ac-
curacy and interpretability, they will opt for the latter. This is where Breiman
advocates variable importance derived from random forests as having the best
of both worlds, viz. a high level of interpretability and high prediction ac-
curacy. But can variable importance really replace interpretation from say, a
logistic regression model and when might it be more appropriate to abandon
the one approach for the other?

To illuminate aspects of the two cultures, a logistic regression model was fit to
the spam data. Table 4.1 shows only the significant predictors where the sig-
nificance level was chosen as α = 0.05. The list of variables in Table 4.1 seems
to largely overlap with the more important variables identified in Figure 4.4.
Moreover, it is interesting to note that the correlation between the rankings of
the variables derived from using variable importance and from using p-values
is 0.625. This suggests that performing variable selection based on cut-offs of
either value could provide similar variable subsets, however this might change
if variables are sequentially deleted. For more details on variable selection us-
ing random forests see Genuer et al. (2010).

Interpreting the logistic model, a percentage increase of 1% in the occurrence
of the word free in an e-mail accounts for an increase in the odds of spam
of e1.091 = 2.977, or roughly an increase of e1.091

1+e1.091 = 74.9% in probability.
This is the type of information that cannot be ascertained through variable
importance measures. One could imagine many other scenarios where it may
be important to have an estimate of the effect on a given outcome if a certain
variable is changed.
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Table 4.1: Significant predictors from the logistic regression fit to the spam
data.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.079 0.227 -9.177 0
charDollar 7.658 1.167 6.563 0
remove 3.454 0.609 5.675 0
free 1.091 0.208 5.255 0
our 0.801 0.162 4.957 0
hp -2.172 0.453 -4.794 0
edu -1.598 0.374 -4.270 0
re -0.883 0.216 -4.078 0
num000 2.661 0.666 3.994 0.0001
capitalTotal 0.001 0.0004 3.726 0.0002
technology 1.419 0.428 3.313 0.001
george -5.463 1.886 -2.896 0.004
hpl -2.351 0.843 -2.789 0.005
your 0.195 0.070 2.781 0.005
telnet -7.851 2.854 -2.751 0.006
charExclamation 0.318 0.118 2.697 0.007
capitalLong 0.011 0.004 2.560 0.010
business 0.832 0.328 2.538 0.011
meeting -2.970 1.292 -2.300 0.022
num85 -4.110 1.831 -2.245 0.025
internet 0.465 0.208 2.242 0.025
conference -3.838 1.714 -2.240 0.025
over 0.582 0.261 2.226 0.026
charSemicolon -1.063 0.482 -2.208 0.027
cs -63.139 28.695 -2.200 0.028
capitalAve 0.159 0.072 2.196 0.028
pm -1.189 0.551 -2.157 0.031
receive -0.981 0.458 -2.145 0.032
you 0.101 0.047 2.143 0.032

A “black box” alternative is the partial dependence plot (Hastie et al., 2009).
Consider XS a subvector consisting of r < p input variables from XT =
(X1, ..., Xp) where S ⊂ {1, 2, ..., p}. Let C = Sc, which implies that S ∪ C =
{1, ..., p}, and P (k|x) = P (k|xS,xC). Then the partial dependence of P (k|x)
on XS is

PS(k|xS) = ExC

[
P (k|xS,xC)

]
. (4.6.2)

The expectation in (4.6.2) can be estimated by

P̂S(k|xS) =
1

N

N∑
i=1

P̂ (k|xS, xCi), (4.6.3)

where xCi, i = 1, ..., N , are the values of xC in the training data. In practical
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terms, the partial dependence is computed by estimating the posterior prob-
ability for each fixed value of XS, using the training set. This quantifies the
change in probability as a function of change in XS.

The partial dependence of the posterior probability estimate for a spam e-
mail on the variables free and george is given in Figure 4.6. In terms of the
direction of the effect of each variable, these plots are in agreement with the
logistic regression output in Table 4.1. An increase in the occurrence of the
word free increases the probability of spam, and vice versa for the word george.
In addition, both approaches indicate the change in class probability to taper
off. This can be seen in Figure 4.6 and in the case of logistic regression stems
from the logistic sigmoid function. However, two different pictures are being
sketched.
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Figure 4.6: Random forest partial dependence plot: Left: Partial dependence
for the word “free”. Right: Partial dependence for the word “george”.

For example, on the one hand, logistic regression is saying that if enough
(roughly an increase of 5% in this case) occurrences of the word free is ob-
served in an e-mail, the probability of spam will be very close to 1. On the
other hand, the partial dependence hints at a limiting effect situated around
only 55% for spam. So at this point, which approach better reflects the truth
is left to the realm of the subjective. Even so, the algorithmic argument still
begs the question of whether there is a price to pay for interpreting coefficients
obtained from a less accurate model. Table 4.2 provides the confusion matrices
for both the Forest-RI and logistic regression fit to the spam data.
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Table 4.2: Model confusion matrices (logistic regression abbreviated as LR).

Forest-RI : True Class
Nonspam Spam

Predicted Class Nonspam 58.4% 3.6%
Spam 2.2% 35.8%

LR: True Class
Nonspam Spam

Predicted Class Nonspam 57.3% 4.7%
Spam 3.3% 34.7%

Forest-RI outperforms the logistic classifier in terms of overall prediction ac-
curacy. However, in the case of spam detection there exists asymmetric costs
in misclassification. In particular, a higher price is paid for false positives.
Classifying an e-mail as spam when in fact it is not, is far more damaging than
letting a spam e-mail slip through detection. In Table 4.2 it is seen that the
logistic regression classifier has a false positive rate which is 1.1% worse than
that of Forest-RI. This does not sound like much, but consider the following:
according to technology market research, in 2015 approximately 205 billion
e-mails were sent every day (The Radicati Group, 2015). This means that if
conclusions are drawn from the logistic model, they are based on a classifier
that would potentially mislabel legitimate e-mail as spam roughly 2.3 billion
times more than the Forest-RI model, every day. An objection might be that
the classification threshold can simply be adjusted to account for a poor false
positive rate, therefore the ROC curves for both models are depicted in Figure
4.7. The ROC curves show that for low values of the false positive rate, there
is no threshold for which the logistic regression model will outperform the ran-
dom forest. Although this is only one example, the accuracy-interpretability
trade-off tends to hold in general (James et al., 2013).
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Figure 4.7: ROC curves for a random forest and logistic regression fit to the
spam data.
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In the end, Breiman (2001b) seems to be saying that if less accuracy trans-
lates to unreliable conclusions, shouldn’t accuracy (which algorithmic models
excel at) always be the top priority, even when interpretation is the main goal?

Another by-product of a random forest classifier is a proximity plot (Breiman,
2001a). These plots are constructed by first forming an N × N symmetric
proximity matrix. This is obtained by recording, for each tree in the sequence,
the pairwise number of out-of-bag observations falling into the same terminal
node for each tree in the sequence. The next step is to use multidimensional
scaling (MDS) to obtain the best two-dimensional approximation of the full
N -dimensional proximity space.3 The main idea of the proximity plot is to
give a visual perspective on “distances” between observations based on the
number of times that observations share the same terminal node. In order
to gain a clearer understanding of the inner workings of these plots, the left
panel of Figure 4.8 compares the positions of points on a proximity plot to
the corresponding positions in the input space in the right panel for a random
forest fit on the mixture data.
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Figure 4.8: Random forest proximity plots: a comparison of a proximity plot
with RF decision boundary.

In Figure 4.8, the numbered labels indicate the locations of specific points.
The proximity plot has an upside down “V” shape, with each side roughly cor-
responding to one of the classes. According to Hastie et al. (2009), the main
takeaway message from these plots are that points that lie at the tips of the

3MDS is described in more detail in Section 6.5.
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“V” are often found to lie safely inside their respective class neighbourhoods,
whereas points closer to the intersection tend to lie near the decision boundary.
However, this is clearly not always the case, as can be observed with the point
labelled 2. Hastie et al. (2009) also comment on the usefulness of proximity
plots, stating that their shapes are highly invariable across different data sets,
which reduces their explanatory power. Furthermore, proximity plots seem to
be regularly omitted from discussions on random forests and aspects pertain-
ing to the algorithm class (Siroky et al., 2009; Boulesteix et al., 2012; Ziegler
and König, 2014).

In contrast, Xu et al. (2012) describe a method for performing missing value im-
putation using random forest proximity weighted averages or using a weighted
majority vote if the missing value is categorical. In addition, they compare
traditional Euclidean MDS to proximity plots on prostate cancer micro-array
data and conclude that proximity plots provide greater visual structure. No
formal analysis is given, but the authors seem convinced that proximity plots
are of real use and form an integral part of the random forest toolkit.

4.7 Concluding Remarks
Random forests are memoryless non-deterministic ensemble classifiers that ex-
clusively use trees as base learners. Their generalisation error is bounded by
the strength of each tree in the ensemble, as well as by the correlation between
trees, where by increasing the former, and reducing the latter, an improved
classifier can be obtained. Furthermore, it has been argued that random forests
are resistant to overfitting. A popular random forest is Breiman’s Forest-RI,
which modifies bagging by using trees as base learners where at each node split,
only a subset of the input variables are selected as candidates for splitting.

By sampling with replacement, random forests can have at each step of the
ensemble creation an out-of-bag sample that is not used to construct the cur-
rent tree. These samples can be used to obtain estimates of the test error, as
well as for selecting the optimal ensemble size, thereby obviating the need for
cross-validation. Furthermore, implicit to random forests is a toolkit which
facilitates model interpretation, including variable importance, partial depen-
dence and proximity plots.

Towards a deeper understanding of random forests in terms of bias and vari-
ance, the next chapter investigates the bias-variance trade-off in the context
of random forests using a particular bias-variance decomposition for classifica-
tion. The road map forward is presented in Figure 4.9 below.
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Figure 4.9: Road map to Chapter 5: An investigation of bias and variance in
random forests.
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Chapter 5

Bias and Variance in Random
Forests

It has already been argued that in random forests, classification per-
formance is improved by a further reduction in variance compared
to that achieved by aggregation. The extent to which random forests
affect bias is less clear, therefore a bias-variance analysis of ran-
dom forests is of interest. In Section 5.1 a brief overview is provided
of key bias and variance concepts, as well as of the bias-variance
decomposition in regression. A related discussion on probability es-
timation (essentially a regression task) is given in Section 5.2. In
Section 5.3 the difficulty of defining bias and variance for classi-
fication is discussed. This is followed in Section 5.4 by a review
of several proposed bias-variance definitions in the case of 0-1 loss,
and a generalisation of bias and variance in the case of symmet-
ric loss. Section 5.5 is concerned with the effect of randomisation
and aggregation on the bias and variance of an ensemble. Finally
in this chapter, Section 5.6 presents an empirical investigation of
bias and variance in random forests, with concluding remarks in
Section 5.7.

5.1 Introduction
To refresh and expand on some of the key concepts of bias and variance, a tem-
porary switch is made from classification to the regression setting. Suppose
the true distribution of a quantitative response Y given a pointX = x is given
by P (Y |x). Using the training data Ωtr, this distribution can be estimated.
Let PΩtr(Y |x) denote this estimate. Figure 5.1 provides an illustration of a
possible relationship between P (Y |x) and PΩtr(Y |x) (Geurts, 2002).

In more detail, using the additive error model Y = fB(x) + ε, where E(ε) = 0,

59
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P(Y|x) PΩtr
(Y|x)

IrreducibleError

Variance

Bias

fB(x) f(x)

P

Y

Figure 5.1: Bias and variance in regression.

V ar(ε) = σ2
ε , and squared-error loss LSE(Y, f(x)) = (Y −f(x))2, the following

decomposition of the expected prediction error of an estimated function f at
a point X = x can be derived:1

ErrSE(x) = E[(Y − f(x))2]

= E[(fB(x) + ε− f(x))2]

= E[(fB(x)− f(x))2 + 2ε(fB(x)− f(x)) + ε2]

= E[(fB(x)− f(x))2] + 2E[ε(fB(x)− f(x))] + E(ε2). (5.1.1)

The function fB(x) represents the model that obtains the Bayes error rate, i.e.
fB(x) = argminaE[(Y − a)2|x] = E(Y |x). Since the model error ε is assumed
to be independent from the data generating process and E(ε) = 0, the second
term in equation (5.1.1) becomes

2E[ε(fB(x)− f(x))] = 2E(ε)E[(fB(x)− f(x))] = 0.

Furthermore,

σ2
ε = E(ε2)− E(ε)2 = E(ε2)

and therefore (5.1.1) simplifies to

ErrSE(x) = E[(fB(x)− f(x))2] + σ2
ε . (5.1.2)

1The original decomposition is attributed to Geman et al. (1992), but can be found in
various texts such as Hastie et al. (2009) and James et al. (2013).
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The first term in (5.1.2) represents the reducible part of the generalisation
error, while σ2

ε is the so-called irreducible error. Adding and subtracting the
expectation of the estimated regression function atX = x, the reducible error
may be further decomposed:

E[(fB(x)− f(x))2] = E[(fB(x)− E(f(x)) + E(f(x))− f(x))2]

= E[(fB(x)− E(f(x)))2

+ 2(fB(x)− E(f(x)))(E(f(x))− f(x))

+ (E(f(x))− f(x))2],

where E[(E(f(x))− f(x)] = E(f(x))− E(f(x)) = 0. Finally, letting f̄(x) =
E(f(x)), the expected prediction error of f can be decomposed into three
parts, viz.

ErrSE(x) = σ2
ε + (fB(x)− f̄(x))2 + E[(f̄(x)− f(x))2]

= Irreducible Error +Bias2 + V ariance. (5.1.3)

In general, as the complexity of f increases, the squared bias decreases, and
vice versa for the variance. As soon as the increase in variance from a more
complex model starts to dominate the decrease in bias, the expected prediction
error of the model will increase. On the other hand, if the bias is large and an
increase in variance is associated with a larger decrease in bias, the use of a
more complicated model is justified. Figure 5.2 shows the bias-variance trade-
off for two opposite scenarios, where either bias or variance is the dominating
factor affecting prediction performance (Geurts, 2002).

P(y|x)

PΩtr
(y|x)

Large bias

Small variance

fB(x) f(x)

P

Y

P(y|x)

PΩtr
(y|x)

Small bias

Large variance

fB(x)f(x)

P

Y

Figure 5.2: Bias and variance of an estimated distribution: Left: Large bias
and small variance. Right: Small bias and large variance.

In the left panel of Figure 5.2 the estimates from the fitted model do not vary
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much around the average f̄ , which means that the variance in (5.1.3) is small.
However, f̄ is far from the expected value of the true distribution of fB, which
results in the (squared) bias in (5.1.3) to be large and to increase the expected
prediction error. The opposite scenario is shown in the right panel of Figure
5.2, where the average of the estimated model is very close to the expected
value of the true distribution. But unfortunately, the model estimates vary a
lot around their mean, causing the expected prediction error to increase. It is
clear that both low bias and low variance are required for optimal prediction
performance. However note that even in the case of f̄ = fB and a zero variance
for f , the expected prediction error would still not be equal to zero. This is
due to the irreducible variance of the true distribution.

5.2 A Probability Estimate Perspective
Since estimating probabilities can be seen as a regression task, the remarks
made in the previous section regarding bias and variance also hold in this
context. However, when the probability estimates are ultimately used to per-
form classification (for example by using a decision threshold), the situation
becomes more complicated. Refer in this regard to Friedman (1997) and the
fact that the mean and the variance of an estimated model affects classification
error differently than in the case of squared prediction error in regression.

In more detail, let the loss associated with a binary classification problem
be symmetric. For example, if `0 = `1(= 1 say), then the appropriate decision
threshold is equal to 1/2 (as was shown in Section 1.3). Therefore, as is com-
monly done, given a function p̂(x) = P̂ (C = 1|x) estimated from the training
data Ωtr, the associated classifier can be constructed as

gΩtr(x) = I

(
p̂(x) ≥ 1

2

)
. (5.2.1)

The expected loss is E[L(C, gΩtr(x))] = P (gΩtr(x) 6= C), where C ∈ {0, 1}.
Since the optimal classifier is the Bayes classifier gB(x), the performance of
g(x) depends on how often it agrees with gB(x), or equivalently P (ḡΩTR

(x) =
gB(x)|x). Here ΩTR does not symbolise a specific training set, but denotes
the estimated distribution over repeated sampling from the data generating
process. Therefore, ḡΩTR

(x) = arg maxkEΩTR

{
I(g(x) = k)

}
is the majority

vote classifier taken over multiple training data sets. However, for the time be-
ing when referring to P (ḡΩTR

(x)|x) and similar expressions, the subscript ΩTR

and the dependence on x will be dropped for convenience. Let PΩTR
denote

the distribution of probabilities produced by p̂(x) over repeated sampling, then
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P (ḡ(x) = gB(x)) = I

(
p <

1

2

)∫ 1/2

−∞
PΩTR

dp̂+ I

(
p ≥ 1

2

)∫ ∞
1/2

PΩTR
dp̂,

(5.2.2)

where p = P (C = 1|x) represents the true probability. The expression given
in (5.2.2) is the proportion of the distribution PΩTR

that lies on the correct side
of the decision threshold. What is of interest is how the mean and variance
of PΩTR

affect the prediction performance through (5.2.2). The exact form
of PΩTR

is unknown. Friedman (1997) proceeds by approximating PΩTR
by a

normal distribution.2 That is:

PΩTR
≈ 1√

2πV ar(p̂)
e−

(p̂−E(p̂))2

2V ar(p̂) . (5.2.3)

Plugging (5.2.3) into (5.2.2), P (ḡ(x) = gB(x)) becomes

I

(
p <

1

2

)∫ 1/2

−∞

1√
2πV ar(p̂)

e
− (p̂−E(p̂))2

2V ar(p̂) dp̂+ I

(
p ≥ 1

2

)∫ ∞
1/2

1√
2πV ar(p̂)

e
− (p̂−E(p̂))2

2V ar(p̂) dp̂.

(5.2.4)

Using the substitution rule with u = p̂−E(p̂)√
V ar(p̂)

gives du = 1/
√
V ar(p̂)dp̂. The

integral boundaries change to u = 1/2−E(p̂)√
V ar(p̂)

when p̂ = 1/2, to u = ∞ when

p̂ =∞, and to u = −∞ when p̂ = −∞. Resubstituting the above into (5.2.4),
(5.2.2) changes to

I

(
p <

1

2

)∫ 1/2−E(p̂)√
V ar(p̂)

−∞

1√
2π
e−

u2

2 du+ I

(
p ≥ 1

2

)∫ ∞
1/2−E(p̂)√

V ar(p̂)

1√
2π
e−

u2

2 du. (5.2.5)

Furthermore, due to the symmetry of the normal distribution centred at zero,
an integral over the range (−∞,−a] is equal to the integral over [a,∞) for any

2Friedman (1997) justifies the approximation by pointing out that many classification
algorithms tend to compute an average over outcomes which should in theory be more
normally distributed. However, Geurts (2002) notes that the normality assumption will not
always be satisfied. For example, a classification tree where all terminal nodes are pure
nodes will have a probability distribution that is condensed at either zero or one. Even so,
both authors are still of the opinion that the qualitative insights gained from the derivation
hold in general.
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a ∈ IR. More specifically, with a = E(p̂)−1/2√
V ar(p̂)

,

∫ 1/2−E(p̂)√
V ar(p̂)

−∞

1√
2π
e−

u2

2 du =

∫ ∞
E(p̂)−1/2√

V ar(p̂)

1√
2π
e−

u2

2 du. (5.2.6)

Finally, combining (5.2.5) and (5.2.6), (5.2.2) can be written as

P (ḡ(x) = gB(x)) = Φ̄

[
sign(1/2− p) · E(p̂)− 1/2√

V ar(p̂)

]
, (5.2.7)

where Φ̄(z) =
∫∞
z

1√
2π
e−

z2

2 dz and where if z ≥ 0, sign(z) = 1, otherwise
sign(z) = −1.

The conclusions drawn from (5.2.7) are as follows:

• if sign(1/2− p) = −1 and E(p̂) > 1/2, which implies f to on average lie
on the correct side of the decision threshold, P (ḡ(x) = gB(x)) increases
as V ar(p̂) decreases;

• if sign(1/2− p) = −1 and E(p̂) < 1/2, which implies f to on average lie
on the wrong side of the decision threshold, interestingly by increasing
V ar(p̂), P (ḡ(x) = gB(x)) can also be increased.

To aid in better understanding the implications of (5.2.7), the left panel of
Figure 5.3 illustrates a scenario where the expectation of PΩTR

lies on the
correct side of the decision threshold (Geurts, 2002). The probability of ḡ(x)
agreeing with the Bayes classifier at a point x is shown as the area under the
distribution coloured in red. By decreasing the variance of PΩTR

as shown
in the right panel of Figure 5.3, the area associated with P (ḡ(x) = gB(x))
increases in size. Note that this means that as long as the expectation is on
the correct side, perfect classification can be achieved simply by sufficiently
reducing the variance of p̂. Theoretically, this is possible irrespective of the
bias of the probability estimates.

The more interesting scenario, where the expectation of PΩTR
lies on the wrong

side of the decision threshold, is shown in Figure 5.4. In this case, by increasing
the variance of probability estimates, a greater proportion of the distribution
PΩTR

will fall on the correct side of the decision threshold. Therefore, in such
a setting the focus must be on reducing the bias, whilst however also trying
to increase the variance as much as possible.
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P P

0.0 0.5 1.0 0.0 0.5 1.0

Decrease Variance

Decision threshold Decision threshold

E(PΩTR
)E(PΩTR
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Var(PΩTR
)

Var(PΩTR
)

P(g(x) = gB(x)) P(g(x) = gB(x))

Figure 5.3: The effect of decreasing the variance of probability estimates on
classification when p > 0.5 and E(PΩTR

) > 0.5.

P P

0.0 0.5 1.0 0.0 0.5 1.0

Increase Variance

Decision threshold Decision threshold

E(PΩTR
) E(PΩTR

)

Var(PΩTR
)

Var(PΩTR
)

P(g(x) = gB(x))

P(g(x) = gB(x))

Figure 5.4: The effect of increasing the variance of probability estimates on
classification when p > 0.5 and E(PΩTR

) < 0.5.

The phenomenon outlined above has become widely discussed in the literature
on bias and variance in classification and is now known as the Friedman effect.
However not everyone accepts its validity, with probably the most substantial
critique of the Friedman effect provided byWolpert (1997). Nevertheless, many
authors (including Wolpert) regard it as a significant contribution towards
better understanding bias and variance in classification.

5.3 Bias and Variance of a Classifier
The focus in the previous section was on how bias and variance associated
with probability estimates affect classification performance. But what about
the notion of bias and variance directly applied to the task of assigning an
observation to a specific class, or in other words applied to a classifier g(x)?
In analogue with the regression case, the following could serve as possible def-
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initions for the irreducible error, bias and variance of g(x) at a point x for 0-1
loss (Geurts, 2002):

• The irreducible error is defined in terms of misclassification error rate of
the Bayes classifier:

σ0−1(x) = 1− P (gB(x)). (5.3.1)

• Bias is defined in terms of disagreement with the Bayes classifier:

Bias0−1(x) = I(ḡ(x) 6= gB(x)). (5.3.2)

• Variance is defined in terms of the probability of x being assigned to the
class predicted by ḡ(x) taken over multiple training sets sampled from
ΩTR:

V ar0−1(x) = 1− PΩTR
(ḡ(x)). (5.3.3)

In (5.3.2) the bias is zero if ḡ(x) = gB(x), and equal to one otherwise. Fur-
thermore, in (5.3.3), V ar0−1(x) = 0 if over all of the sampled training sets,
g(x) assigns x to the same class. At the other end, the variance reaches a
maximum when PΩTR

(ḡ(x)) = 1
K

(= 0.5 in the binary case). This corresponds
to the highest degree of uncertainty among the classifiers over the sampled
training sets. Therefore, the above definitions seem reasonable, but unfortu-
nately they do not yield an additive decomposition as in the regression case.
That is,

Err0−1(x) 6= σ0−1(x) +Bias0−1(x) + V ar0−1(x). (5.3.4)

As an example, Figure 5.5 shows the true distribution for an observation x
over three possible classes, accompanied by estimated class distributions ob-
tained from two different classifiers g1 and g2, fit to training sets repeatedly
sampled from ΩTR (James, 2003). For this scenario σ0−1(x) = 0.4.

Both ḡ1(x) and ḡ2(x) have a bias equal to one at x, by classifying to the
second class when the Bayes classifier in fact assigns x to the first. However,
the variance of ḡ1(x), viz. V ar1

0−1(x) = 1 − 0.7 = 0.3, is less than the vari-
ance of ḡ2(x), viz. V ar2

0−1(x) = 1 − 0.5 = 0.5. To illustrate (5.3.4), note
that the expected classification error for the two approaches is Errl0−1(x) =
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P(C|x) PΩTR

1 PΩTR

2

Figure 5.5: Class distributions for a three class classification task: Left: The
true distribution. Middle: Class distribution over training set samples for
the first classifier. Right: Class distribution over training set samples for the
second classifier.

1−
∑3

k=1 P (k|x) · PΩTR
(ḡl(x) = k|x), where l = 1, 2. Hence,

Err1
0−1(x) = 1− 0.6(0.1)− 0.3(0.7)− 0.1(0.2) = 0.71 and

Err2
0−1(x) = 1− 0.6(0.2)− 0.3(0.5)− 0.1(0.3) = 0.7.

However, for classifier g1, σ1
0−1(x) +Bias1

0−1(x) +V ar1
0−1(x) = 0.4 + 1 + 0.3 =

1.7 6= 0.71 = Err1
0−1(x). Similarly, σ2

0−1(x) + Bias2
0−1(x) + V ar2

0−1(x) =
0.4 + 1 + 0.5 = 1.9 6= 0.7 = Err2

0−1(x). Furthermore, using the above defini-
tions for bias and variance, the Friedman effect is again observed. Given that
both algorithms disagree with the Bayes classifier, ḡ2 achieves a lower expected
error by having a variance greater than that of ḡ1. However, some authors be-
lieve that the counter-intuitive nature of the effect is due to an inappropriate
set of definitions for bias and variance. In fact, a general disagreement among
authors regarding bias and variance in classification has led to many differ-
ent proposed definitions. These include Dietterich and Kong (1995), Breiman
(1996a), Kohavi and Wolpert (1996), Tibshirani (1996), James and Hastie
(1997), Heskes (1998), Breiman (2000) and Domingos (2000). Each new pair
of definitions is based on certain requirements seen as fitting to each concept
(such as that the variance should always be positive), with each author favour-
ing a different set of desired properties for bias and variance. Furthermore,
among most of the proposals is an interest in finding an additive decomposi-
tion specifically for the expected 0-1 loss analogous to that found for squared
error loss in regression. A brief exposition of the proposed definitions for bias
and variance that may be found in the literature, is given below.3

3For clarity regarding the summary, suppose C ∈ {1, 2, ...,K} then P (2) is the true
probability of the second class. The quantity PΩTR(2) is the probability of the second class
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• Kong and Dietterich (1995):

BiasKD(x) = I(ḡ(x) 6= gB(x))

V arKD(x) = 1− PΩTR
(gB(x))− I(ḡ(x) 6= gB(x)).

The bias is identical to (5.3.2), which is equal to one when g disagrees
with the Bayes classifier, and zero otherwise. The variance can be seen
as the expected error minus the bias. Note that 1 − PΩTR

(gB(x)) ≤ 1
which implies that the variance can be negative for biased observations.

• Breiman (1996a):

BiasB96(x) = I(ḡ(x) 6= gB(x)) · [P (gB(x))−
∑
k

P (k) · PΩTR
(k)]

V arB96(x) = I(ḡ(x) = gB(x)) · [P (gB(x))−
∑
k

P (k) · PΩTR
(k)].

Breiman’s definitions ensure that both bias and variance are always non-
negative, since maxΩTR

(
∑

k P (k) · PΩTR
(k)) = maxk(P (k)) = P (gB(x)).

Furthermore, the variance of a constant model is zero. To see this, con-
sider a classifier that provides identical predictions over all the training
sets at a point x. Then either the point is biased, which means that
the variance is zero, or the point is unbiased and PΩTR

(k) = 1 (where
k = gB(x)), leading to V arB96(x) = 0. The latter scenario also guaran-
tees that the Bayes classifier will always have a bias and variance equal
to zero. Unfortunately the definitions attribute all the reducible error
either entirely to bias or entirely to variance. Recalling insights from the
Friedman effect, this might make sense for unbiased points. However for
biased points it makes more sense to attribute the reducible error to a
mixture of both bias and variance.

• Kohavi and Wolpert (1996):

BiasKW (x) =
1

2

∑
k

[P (k)− PΩTR
(k)]2

V arKW (x) =
1

2
[1−

∑
k

PΩTR
(k)2].

as estimated by an average over multiple training sets. Furthermore, PΩTR(gB(x)) represents
the probability of the class predicted by the Bayes classifier given the distribution obtained
by averaging over multiple training sets. Finally, P (ḡ(x)) is the true probability of the class
predicted by ḡ at a point x. A similar summary can be found in Appendix A of Geurts
(2002).
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The bias is defined in terms of a difference in probability distributions.
However, a decrease in this bias does not necessarily translate into a
reduction of the expected error. Also, consider a classifier for which
PΩTR

(k) = 1, where k = gB(x), then the expected error would be equal
to the Bayes error rate. But although the variance is zero for such a
classifier, the above definitions would assign a positive bias given that
the Bayes error rate is not equal to zero.

• Tibshirani (1996):

BiasT (x) = P (gB(x))− P (ḡ(x))

V arT (x) = 1− PΩTR
(ḡ(x)).

Since max{P (g(x))} = P (gB(x)), the bias is always non-negative and
equal to zero in the case of the Bayes classifier. However, even though
the variance is also non-negative, it is not always equal to zero in the case
of the Bayes classifier. This is because the irreducible error is included
in the definition of the variance.

• Heskes (1998):

BiasH(x) =
∑
c

P (c)(PΩTR
(ḡ(x))− PΩTR

(k))

V arH(x) = 1− PΩTR
(ḡ(x)).

Heskes’ definitions for bias and variance for classification stem from a
more general argument based on the Kullback-Leibler divergence (Kull-
back and Leibler, 1951). The divergence measures the difference between
two densities, however strictly it is not a distance function since it is not
symmetric. Using the limit of a log-likelihood error decomposition the
above definitions are obtained. Unfortunately, Heskes (1998) notes that
by taking the limit, natural interpretations of the associated quantities
are lost.

• Breiman (2000):

BiasB00(x) = [P (gB(x))− P (ḡ(x))] · PΩTR
(ḡ(x))

V arB00(x) =
∑
k 6=ḡ(x)

[P (gB(x))− P (k))] · PΩTR
(k).

In a paper discussing the idea of increasing accuracy by randomising the
response variable when performing prediction, Breiman (2000) derives a
second set of definitions for bias and variance. Again the bias is zero when
g(x) agrees with the Bayes classifier, and positive otherwise. In addition,
the variance is always non-negative and zero for the constant model given
that the prediction is unbiased. That is, PΩTR

(ḡ(x) = k) = 1, where k =
gB(x). However, if the constant model is biased, PΩTR

(ḡ(x) = k) = 1,
where k 6= gB(x) and the variance will be positive.
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• Domingos (2000):

BiasD(x) = I(ḡ(x) 6= gB(x))

V arD(x) = c2 · [1− PΩTR
(ḡ(x))],

where c2 = 1 if ḡ is unbiased at x, otherwise c2 = − PΩTR
(gB(x))

1−PΩTR
(ḡ(x))

. Note
that the definitions are identical to those given in (5.3.2) and (5.3.3), ex-
cept for the added weighting. Domingos (2000) attempts to obtain a uni-
fied decomposition such that both the errors associated with regression
and classification are additively decomposable (for example, in regression
c2 = 1, with bias and variance defined as usual). Unfortunately in the
classification setting, the weights themselves are functions of bias and
variance, which results in a multiplicative relationship. In fact, Fried-
man (1997) suggested that the effect he observed when analysing bias
and variance was due to the relationship between these quantities and
the generalisation error of a model being multiplicative and not additive,
as is the case in regression.

Arguably the most convincing explanation for the reason why so many different
sets of definitions and attempts at finding an appropriate general decomposi-
tion exist, is given by James and Hastie (1997) and James (2003). The key
observation is that the bias and variance of a model each play two different
roles:

1. Inherent measure: The bias measures the disagreement between the aver-
age model and the Bayes model, and the variance measures the variation
of the estimate around its mean.

2. Effect measure: The bias measures the proportion of the generalisation
error attributed to the disagreement between the average model and the
Bayes model (the effect of bias on error), and the variance measures the
proportion of the generalisation error attributed to the variability of the
estimated model (the effect of variance on error).

James (2003) notes that in regression these two roles are indistinguishable. In
other words, the inherent measures of bias and of variance are equal to their
respective effects on the generalisation error. However, this is not the case in
general, and more specifically, it is not the case for the expected 0-1 loss.
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5.4 A Generalisation of Bias and Variance for
Symmetric Loss

Reconsider the squared error decomposition given in (5.1.3), which can be
rewritten as4

ErrSE(x) = Irreducible Error +Bias2 + V ariance (5.4.1)
= E[LSE(Y, fB)] + LSE(f̄ , fB) + E[LSE(f, f̄)]

= E[(Y − fB)2] + (f̄ − fB)2 + E[(f − f̄)2]

= E[(Y − fB)2] + E[(Y − f̄)2 − (Y − fB)2]

+ E[(Y − f)2 − (Y − f̄)2]

since

E[(Y − f̄)2 − (Y − fB)2] = E[Y 2 − 2Y f̄ + f̄ 2 − Y 2 + 2Y fB − f 2
B]

= −2E(Y )f̄ + f̄ 2 + 2E(Y )fB − f 2
B

= f̄ 2 − 2fB f̄ + f 2
B

= (f̄ − fB)2

and

E[(Y − f)2 − (Y − f̄)2] = E[Y 2 − 2Y f + f 2 − Y 2 + 2Y f̄ − f̄ 2]

= −2E(Y )E(f) + E(f 2) + 2E(Y )f̄ − f̄ 2

= −2fB f̄ + E(f 2) + 2fB f̄ − f̄ 2

= V ar(f) + E(f)2 − f̄ 2

= E[(f − f̄)2].

Finally, (5.1.3) becomes

ErrSE(x) = σ2
ε + E[LSE(Y, f̄)− LSE(Y, fB)]

+ E[LSE(Y, f)− LSE(Y, f̄)]. (5.4.2)

The second term in (5.4.2) measures the effect on generalisation error from the
4Here the argument x is omitted for convenience, in other words f(x) is simply written

as f .
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expected difference in loss between the average model and the Bayes classifier.
The third term measures the effect on generalisation error from the expected
difference in loss between the specific estimate f and the average model. How-
ever, the decomposition given in (5.4.2) is not restricted to squared error loss
and is valid for any symmetric loss function. Therefore, for an estimate h of a
response S (numeric or categorical) at x, with

σ(x) = E[L(S, hB)] (5.4.3)
SE(x) = E[L(S, h̄)− L(S, hB)] (5.4.4)

V E(x) = E[L(S, ĥ)− L(S, h̄)], (5.4.5)

where hB is the Bayes model, h̄ is the average model and L(·, ·) is any sym-
metric loss, a general decomposition is given as

Err(x) = σ(x) + SE(x) + V E(x). (5.4.6)

James (2003) refer to SE(x) and V E(x) as the systematic effect and the vari-
ance effect respectively. In regression with squared error loss, the systematic
and variance effects are indistinguishable from bias and variance. However, in
classification the situation is not the same.

Consider the expected 0-1 loss, E[L0−1(C, g)] = P (g 6= C), then the analo-
gous decomposition of (5.4.1) is

Irreducible Error +Bias+ V ariance

= E[L0−1(C, gB)] + L0−1(gB, ḡ) + E[L0−1(g, ḡ)]

= P (gB 6= C) + I(ḡ 6= gB) + PΩTR
(ḡ 6= g)

6= P (gB 6= C) + [P (ḡ 6= C)− P (gB 6= C)] + [P (g 6= C)− P (ḡ 6= C)]

= σ0−1(x) + E[L0−1(C, g)− L0−1(C, gB)] + E[L0−1(C, g)− L0−1(C, ḡ)]

= σ0−1(x) + SE0−1(x) + V E0−1(x)

= Irreducible Error + Systematic effect + Variance effect

Therefore, in classification the effect of bias and variance on generalisation
error is not equal to the inherent measures of bias and variance. To see this
more clearly, consider the distributions given in Figure 5.6 (James, 2003). The
associated quantities for the first classifier are as follows:
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Err1
0−1(x) = 1− 0.6(0.3) + 0.3(0.5) + 0.1(0.2) = 0.65

σ1
0−1(x) = P (gB 6= C) = 0.4

Bias1
0−1(x) = I(ḡ 6= gB) = 1

V ar1
0−1(x) = PΩTR

(g 6= ḡ) = 0.5

SE1
0−1(x) = P (ḡ 6= C)− P (gB 6= C) = 0.7− 0.4 = 0.3

V E1
0−1(x) = P (g 6= C)− P (ḡ 6= C) = 0.65− 0.7 = −0.05.

P

C

0.6

0.3

0.1

0.3

0.5

0.2 0.2

0.5

0.3

1 2 3 1 2 3 1 2 3

P(C|x) PΩTR

1 PΩTR

2

Figure 5.6: Class distributions for a three class classification task with both
estimated distributions having equal variance. The true distribution is given
on the left.

It follows that

Err1
0−1(x) = 0.65 = 0.4 + 0.3− 0.05 = σ1

0−1(x) + SE1
0−1(x) + V E1

0−1(x)

while

σ1
0−1(x) +Bias1

0−1(x) + V ar1
0−1(x) = 0.4 + 1 + 0.5 = 1.9 6= Err1

0−1(x).

Note the minus sign of the variance effect, meaning that the effect on gener-
alisation error of the variance is actually improving classification performance
(another example of the Friedman effect). Furthermore, it is interesting given
V ar1

0−1(x) = V ar2
0−1(x) = 0.5, to find

V E1
0−1(x) = −0.05 < V E2

0−1(x) = 0.7− 0.7 = 0.

Therefore, even with equal variance, the first classifier has a greater effect on
generalisation error as a result of variation. This makes sense because the vari-
ation around the average model for the first classifier is more concentrated at
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the first class (the class chosen by the Bayes model) than the second classifier
and is more likely to agree with the Bayes classifier by chance.

The following relationships between bias and the systematic effect, and be-
tween variance and the variance effect are given in James (2003) and proven
here. This is done for 0-1 loss, but hold for any convex loss function.

• The bias is identical to the systematic effect if the Bayes error rate is
zero.

PROOF: If x is a biased point and the Bayes error rate is zero, then

Bias1
0−1(x) = I(ḡ 6= gB) = 1 = P (ḡ 6= C)− P (gB 6= C)

= 1− 0 = SE1
0−1(x),

and similarly, the two quantities are equal for unbiased points.

• The systematic effect will be zero if the bias is equal to zero.

PROOF: If the bias is zero, it implies that P (ḡ 6= C) = P (gB 6= C)
such that

SE1
0−1(x) = P (ḡ 6= C)− P (gB 6= C) = 0.

• The variance effect will be zero if the variance is equal to zero.

PROOF: If the variance is zero, the model is the constant model so
that P (g = k) = P (ḡ = k) = 1 for some class k ∈ C, independent of the
training data. Therefore, P (g 6= C) = P (ḡ 6= C) and

V E1
0−1(x) = P (g 6= C)− P (ḡ 6= C) = 0.

Although the above relationships exist, there is no guarantee that they will
hold when the Bayes error rate, bias or variance are in fact non-zero. It is
interesting however that James (2003) finds the median correlation between
the bias and the systematic effect to be as high as 96.6% in his simulation
study conducted on six different data sets. In addition, the median correlation
between variance and the variance effect is found to be 81.1%. Therefore,
James (2003) remarks that although these quantities are not always strictly
related, bias and variance seem to be good predictors of the their respective
effects on generalisation error.
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5.5 The Effects of Randomisation and
Aggregation

Thus far in this chapter, the conversation has been very general, but in this
section the focus is returned to random forests. Consider a single randomised
tree classifier for which the expected 0-1 loss at a point x = x is given by

ErrT0−1(x) = 1−
∑
k

PΩTR
(t̄(x,Θ) = k|x)P (k|x), (5.5.1)

where t̄(x) = arg maxkEΩTR
[I(t(x,Θ) = k)] is the majority vote over multi-

ple training sets. Randomisation of a single tree classifier is likely to increase
both the bias and variance, but with the former less severely affected (Geurts
et al., 2006). It can be argued that the systematic effect will also increase,
however the variance effect might change in either direction depending on the
similarity between the estimated distribution and the truth. Now consider a
random forest majority vote classifier defined as

t̄RF (x,Θ) = arg maxkEΩTR

{
I(arg maxlEΘ[I(t(x,Θ) = l)]) = k)

}
, (5.5.2)

where an additional expectation is taken over Θ, representing the independent
and identically distributed random vectors characterising each randomised
tree. The expected 0-1 loss for a random forest is

ErrRF0−1(x) = 1−
∑
k

PΩTR
(t̄RF (x,Θ) = k|x)P (k|x), (5.5.3)

which is similar to expression (5.5.1). However, for (5.5.3) it is possible to par-
tition the error between biased and unbiased points over the random vector
Θ. In more detail, let the set BΘ = {x|t̄(x,Θ) 6= gB(x)} be the set of biased
points and Bc

Θ represent the set of unbiased points. Then the expected loss
for a random forest can be written as5

ErrRF0−1(x) = 1−
[ ∫

x∈BΘ

∑
k

PΩTR
(t̄(x,Θ) = k|x)P (k|x)dΘ

+

∫
x∈Bc

Θ

PΩTR
(t̄(x,Θ) = gB(x))dΘ

]
. (5.5.4)

5The presented argument is similar to one found in Breiman (1996a).
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Therefore, if most points are unbiased, or in other words if Bc
Θ is large,

ErrRF0−1(x) ≈ 1− PΩTR
(t̄(x,Θ) = gB(x))

= 1−max
{∑

k

PΩTR
(t̄(x,Θ) = k|x)P (k|x)

}
= min(ErrT0−1(x)). (5.5.5)

From the above, if the majority of points are unbiased, a random forest will
reach a nearly optimal error rate. Conversely, if Bc

Θ is small, it could be the
case that

∑
k

PΩTR
(t̄RF (x,Θ) = k|x)P (k|x) <

∑
k

PΩTR
(t̄(x,Θ) = k|x)P (k|x), (5.5.6)

causing a random forest model to perform worse than a single tree. Unfortu-
nately, the inner workings of randomisation and aggregation relating bias and
variance and their respective effects to generalisation error remain difficult to
discern theoretically.6 Based on insights from regression arguments Geurts
(2002) provides an illustration of the likely effects of randomisation and aggre-
gation on bias and variance similar to Figure 5.7 below.

Figure 5.7: The likely effects on bias and variance from randomisation and
aggregation.

6An avenue of interest in this regard is the following. Theorem 6 found in Domingos
(2000) (and proved) states that: The margin of a learner on an example x can be expressed as
mg(X,C) = ±[2Bias0−1(x)− 1][2V ar0−1(x)− 1], with positive sign if gB = C and negative
otherwise. The starting point for Breiman’s proof for the generalisation performance of a
random forest is in fact the margin, Err∗ ≤ V ar(mg)/E(mg)2. Hence an attempt was made
at finding a satisfactory expression connecting Err∗ to bias and variance, unfortunately to
no avail.
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Combining Figure 5.7 with remarks from James (2003), the following is spec-
ulated:

• The classification performance of a single tree depends on the nature of
its systematic and variance effects. In turn these quantities have empir-
ically been found to be highly correlated with bias and variance.

• Adding a source of randomisation to a single tree will likely cause the
bias and the variance to increase. The systematic effect will likely also in-
crease, but the direction of the variance effect is less clear. The additional
randomness could prove beneficial for biased points, but detrimental for
unbiased points.

• Adding an aggregation step where an ensemble of randomised trees are
used to construct a random forest will decrease the variance, whereas the
bias will be less affected. The systematic effect is also likely to remain
similar to that of a single randomised tree, however the variance effect
might decrease or increase, depending on the nature of the bias. If most
points are unbiased, the variance effect will reduce the generalisation
error. The opposite is true in the case of most points being biased.

5.6 An Empirical Investigation
The difficulties of a theoretical analysis of bias and variance for random forests
naturally leave as an alternative an empirical investigation. In this section,
bias and variance and their respective effects are estimated on simulated data
sets. A comparison is conducted between a single classification tree, bagging,
Forest-RI and boosting.

5.6.1 Data sets

In total 16 different simulated data sets were used in the empirical investiga-
tion. The first set of four simulated data sets consists of observations drawn
from a multivariate normal distribution. Each data set has p = 15 input vari-
ables with the pairwise correlation between all variables configured as follows:
ρ = 0.9 (highly correlated), ρ = 0.5 (fairly correlated), ρ = 0.1 (weakly cor-
related) and ρ = 0 (uncorrelated). All the input variables are associated with
the response, which is coded as C = 1, if 1/(1 + e−

∑15
j=1Xj) > 0.5, or as C = 0

otherwise.7

The second set of simulated data sets are generated using the following simu-
lation setup: let X1, ..., Xp ∼ U [0, 1] and C = 1 if q + (1 − 2q) · I(

∑J
l=1 Xl >

7The data were generated using the pensim R package.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 5. BIAS AND VARIANCE IN RANDOM FORESTS 78

J/2) > 0.5, otherwise let C = 0. Here J < p and 0 < q < 1 (Mease and Wyner,
2008). This implies that the response C only depends on X1, X2, ...XJ . The
remaining p− J variables are noise. With p = 30 and q = 0.158, four configu-
rations were chosen: J = 2 (mostly noise), J = 5 (fairly noisy), J = 15 (half
signal/half noise) and J = 20 (mostly signal).

In addition to the above eight simulated data sets, eight popular data sets
where selected from among the machine learning benchmark problems pro-
vided in the mlbench R package (Leisch and Dimitriadou, 2010). Some of
these problems were also used in Breiman (1996a) and Breiman (2000). Fig-
ure 5.8 provides an illustration of the simulated data in two dimensions, with
a description of each simulation configuration given as follows:

• 2dnormals : A classification task with six classes, each generated from a
two-dimensional normal distribution with unit standard deviation around
a circle with radius

√
6.

• Twonorm: A binary classification task with 20 inputs where the data
simulated for the first class are drawn from a multivariate normal, N

(
µ1 =

(µ1, ..., µ20), I
)
, with mean components µ1 = ... = µ20 = 2/(20)

1
2 and co-

variance matrix I, the identity matrix. The data for the second class are
drawn from N

(
µ2 = (−µ1, ...,−µ20), I

)
.

• Threenorm: A binary classification task with 20 inputs where the data
simulated for the first class are drawn either from N

(
µ1, I

)
or from

N
(
µ2, I

)
with equal probability. The data for the second class are

drawn from N
(
(µ1,−µ2, µ3..., µ19,−µ20), I

)
, i.e. a normal distribution

with means that alternate in sign.

• Ringnorm: A binary classification task with 20 input variables where the
data simulated for the first class are drawn from N

(
0, 4I

)
. The data for

the second class are drawn from N
(
µ1/2, I

)
.

• Circle: A binary classification task with 20 inputs where X1, ..., X20 ∼
U(0, 1). The data simulated for class one form a p-dimensional ball inside
the hypercube, with the data for the second class filling the remainder
of the cube. The size of the centre ball is such that both classes have a
prior probability equal to 1/2.

• Cassini : A multi-class classification task where there are three classes
and where each input is uniformly distributed in two-dimensional space.
One class forms a circle in the middle, with the other two wrapping
around the circle from above and below.

8The parameter q controls the Bayes error rate and the choice is rather arbitrary. For
example, Mease and Wyner (2008) decided on q = 0.1 for some of their experiments and on
q = 0.2 for others.
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Figure 5.8: A two-dimensional representation of the simulated data from the
machine learning benchmark problems found in the mlbench R package.
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• Cuboids : A multi-class classification task where there are four classes and
where each input is uniformly distributed in three-dimensional space.
Each class occupies a cube-like shape.

• XOR: A binary classification task in two-dimensional space, representing
the exclusive OR problem (true if one of two arguments is true, and false
otherwise).

5.6.2 Experimental design

To approximate the necessary probabilities (expectations over indicator func-
tions), the first step was to simulate 100 different training sets of size 400 and to
fit a model to each training set. For each model fitted, predictions were made
on a test set of size 1000. Using the known data generating mechanism to ob-
tain the Bayes classifier, together with the predictions from each fit, the bias,
variance, systematic and variance effects could be computed. More specifically,
let Ω1, ...,ΩD denote the D = 100 training sets and let Ωte = {(x0i, c0i), i =
1, ..., N0} be the test set. Further, let ḡ(x) = arg maxk 1

D

∑D
d=1 I(ĝd(x) = k).

Then,

B̂ias =
1

N0

N0∑
i=1

I(ḡ(x0i) 6= gB(x0i)),

̂V ariance =
1

D

D∑
d=1

1

N0

N0∑
i=1

I(gΩd
(x0i) 6= ḡ(x0i)),

ŜE =
1

N0

N0∑
i=1

I(ḡ(x0i) 6= C0i)−
1

N0

N0∑
i=1

I(gB(x0i) 6= C0i),

V̂ E =
1

D

D∑
d=1

1

N0

N0∑
i=1

I(gΩd
(x0i) 6= C0i)−

1

N0

N0∑
i=1

I(ḡ(x0i) 6= C0i).

It is typically the case that the tuning parameters of an algorithm heavily
affects its bias and variance (James et al., 2013). Therefore, before each fit
ten-fold cross-validation was performed to find the optimal tuning parameters
for each algorithm among a pre-specified grid of available parameters. The
pre-specified grids were chosen as follows:

• Trees: The cost-complexity parameter was chosen from cp =
{0.1, 0.2, ..., 0.9, 1.0}.
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• Bagging: The number of unpruned trees were specified as B = 200.9
Note that this means that bagging had no tuning parameters.

• Forest-RI: The number of unpruned trees were taken as B = 200,
with the subset size of randomly selected variables selected from ξ =
{1, 3, 5, ..., p− 1}.

• Boosting: The number of trees were B = 200, tree interaction depth
was either one or six, and the step-length factor ν = {0.01, 0.05, 0.1}.10
For binary classification, the exponential loss was used, and in the case
of multi-class problems, the multinomial loss.

The ensemble size was selected after observing that substantial gains in perfor-
mance are rarely made beyond B = 200 for moderately sized data sets (refer
to Figures 3.2, 4.1, 4.2 and 4.3).

5.6.3 Results

The results pertaining to the first eight simulated data sets are given in Table
5.1, with the results for the mlbench problems provided in Table 5.2. In each
table, the values in bold represent the minimum achieved for a particular
quantity among the algorithms. The following conclusions are drawn:

• Single tree vs. ensemble: For each data set randomisation and aggrega-
tion succeeded in drastically reducing the variance as well as the vari-
ance effect. Interestingly, the bias and systematic effect was either also
reduced or remained equal to that of a single tree. Therefore, the em-
pirical findings are fairly in line with the speculations made in Section
5.5.

• Bagging vs. Forest-RI : For the majority of data sets, the additional
randomisation at each node of a tree in Forest-RI resulted in a further
reduction of the variance and of the variance effect when compared to
bagging. Interestingly, bagging on the other hand managed to reduce the
bias and systematic effect substantially in many of the data sets. This is
the most evident in the case of data simulated from multivariate normal
distributions (Sim 1 to Sim 4 and Sim 10). A possible explanation is that
the distribution of the mean of several random variables approximates a
normal distribution, and that this is exactly what bagging is modelling
using trees.

9According to Hastie et al. (2009), tree depth in random forests has a small effect on
prediction performance. The trees where grown until each node had a maximum size of five.

10Hastie et al. (2009) note that trees with a depth of between four and eight perform
well in boosting. They recommend setting tree depth equal to six. Since stumps are also a
popular choice in boosting, an interaction depth of one was included in the grid.
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Table 5.1: Estimated bias, variance, systematic effect and variance effect on
simulated data. Values in bold indicate row-wise minima.

Name Data Quantity Tree Bagging Forest-RI Boosting

Sim 1
mvnorm
p = 15,
ρ = 0.9

Error 0.105 0.044 0.038 0.043
Bayes Error 0.028 0.028 0.028 0.028
Systematic Effect 0.015 0.003 0.004 0.005
Variance Effect 0.062 0.013 0.006 0.010
Bias 0.025 0.005 0.006 0.007
Variance 0.097 0.028 0.018 0.026

Sim 2
mvnorm
p = 15,
ρ = 0.5

Error 0.233 0.075 0.061 0.068
Bayes Error 0.040 0.040 0.040 0.040
Systematic Effect 0.034 0.009 0.010 0.013
Variance Effect 0.159 0.026 0.011 0.015
Bias 0.060 0.013 0.022 0.033
Variance 0.224 0.056 0.034 0.043

Sim 3
mvnorm
p = 15,
ρ = 0.1

Error 0.368 0.152 0.129 0.130
Bayes Error 0.078 0.078 0.078 0.078
Systematic Effect 0.064 0.011 0.014 0.026
Variance Effect 0.226 0.063 0.037 0.026
Bias 0.098 0.027 0.028 0.040
Variance 0.355 0.120 0.085 0.084

Sim 4
mvnorm
p = 15,
ρ = 0

Error 0.427 0.239 0.216 0.200
Bayes Error 0.141 0.141 0.141 0.141
Systematic Effect 0.074 0 0 0.004
Variance Effect 0.212 0.101 0.077 0.055
Bias 0.168 0.031 0.044 0.060
Variance 0.405 0.197 0.163 0.136

Sim 5

Mease-
Wyner
(2008)
p = 30,
J = 2

Error 0.295 0.212 0.214 0.212
Bayes Error 0.147 0.147 0.147 0.147
Systematic Effect 0.050 0.002 0.008 0.017
Variance Effect 0.098 0.063 0.059 0.048
Bias 0.072 0.002 0.008 0.021
Variance 0.202 0.094 0.096 0.092

Sim 6

Mease-
Wyner
(2008)
p = 30,
J = 5

Error 0.390 0.275 0.272 0.259
Bayes Error 0.143 0.143 0.143 0.143
Systematic Effect 0.075 0.021 0.017 0.021
Variance Effect 0.172 0.111 0.112 0.095
Bias 0.095 0.029 0.029 0.037
Variance 0.338 0.184 0.179 0.159

Sim 7

Mease-
Wyner
(2008)
p = 30,
J = 15

Error 0.452 0.308 0.304 0.284
Bayes Error 0.136 0.136 0.136 0.136
Systematic Effect 0.117 0.034 0.015 0.020
Variance Effect 0.199 0.138 0.153 0.128
Bias 0.155 0.046 0.029 0.028
Variance 0.424 0.233 0.228 0.201

Sim 8

Mease-
Wyner
(2008)
p = 30,
J = 20

Error 0.455 0.318 0.308 0.290
Bayes Error 0.134 0.134 0.134 0.134
Systematic Effect 0.171 0.043 0.034 0.023
Variance Effect 0.150 0.141 0.140 0.133
Bias 0.237 0.059 0.046 0.031
Variance 0.421 0.248 0.236 0.212
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Table 5.2: Estimated bias, variance, systematic effect and variance effect for
mlbench problems. Values in bold indicate row-wise minima.

Name Data Quantity Tree Bagging Forest-RI Boosting

Sim 9

2d
Norms
p = 2,
K = 6

Error 0.420 0.301 0.292 0.273
Bayes Error 0.243 0.243 0.243 0.243
Systematic Effect 0.076 0.004 0.005 0.002
Variance Effect 0.101 0.054 0.044 0.028
Bias 0.157 0.019 0.019 0.019
Variance 0.290 0.158 0.138 0.099

Sim 10

Two-
norm
p = 20,
K = 2

Error 0.319 0.057 0.033 0.040
Bayes Error 0.024 0.024 0.024 0.024
Systematic Effect 0.025 0 0.003 0.004
Variance Effect 0.270 0.033 0.006 0.012
Bias 0.037 0.008 0.011 0.014
Variance 0.314 0.047 0.018 0.025

Sim 11

Three-
norm
p = 20,
K = 2

Error 0.392 0.177 0.157 0.167
Bayes Error 0.085 0.085 0.085 0.085
Systematic Effect 0.092 0.039 0.037 0.048
Variance Effect 0.215 0.053 0.035 0.034
Bias 0.132 0.077 0.075 0.088
Variance 0.368 0.127 0.094 0.102

Sim 12

Ring-
norm
p = 20,
K = 2

Error 0.300 0.087 0.042 0.051
Bayes Error 0.018 0.018 0.018 0.018
Systematic Effect 0.161 0.013 0.007 0.019
Variance Effect 0.121 0.056 0.017 0.014
Bias 0.177 0.023 0.021 0.029
Variance 0.256 0.077 0.030 0.034

Sim 13
Circle
p = 20,
K = 2

Error 0.171 0.168 0.168 0.140
Bayes Error 0 0 0 0
Systematic Effect 0.171 0.171 0.171 0.152
Variance Effect 0 −0.003 −0.003 -0.012
Bias 0.171 0.171 0.171 0.152
Variance 0 0.007 0.004 0.046

Sim 14
Cassini
p = 2,
K = 3

Error 0.003 0.003 0.002 0.004
Bayes Error 0 0 0 0
Systematic Effect 0.001 0.001 0 0.001
Variance Effect 0.002 0.002 0.002 0.003
Bias 0.001 0.001 0 0.001
Variance 0.003 0.003 0.002 0.003

Sim 15
Cuboids
p = 3,
K = 4

Error 0.074 0.0001 0 0.0002
Bayes Error 0 0 0 0
Systematic Effect 0 0 0 0
Variance Effect 0.074 0.0001 0 0.0002
Bias 0 0 0 0
Variance 0.074 0.0001 0 0.0002

Sim 16
XOR
p = 2,
K = 2

Error 0.059 0.007 0.009 0.008
Bayes Error 0 0 0 0
Systematic Effect 0.002 0 0 0
Variance Effect 0.057 0.007 0.009 0.008
Bias 0.002 0 0 0
Variance 0.059 0.007 0.009 0.008
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• Forest-RI vs. boosting : The adaptation strategy employed by the boost-
ing algorithm had a significant effect on variance. This is especially
evident in the presence of noise (Sim 5 to Sim 8). In turn, the reduction
in variance lead to a substantial reduction in the variance effect over and
above that achieved by Forest-RI on several of the data sets.

• Negative variance effects : For all of the algorithms, the circle data set
resulted in most, if not all of the reducible error being attributed to the
systematic effect, with a bias identical in magnitude. However, bagging
and Forest-RI managed to obtain a variance very close to zero as well as a
small negative variance effect. Boosting had the largest variance among
the algorithms, but also the largest negative variance effect (equal to
−0.012) — a possible demonstration of the Friedman effect.

• Inherent and effect measure correlation: As was observed by James
(2003), bias and variance seem to be highly correlated with their respec-
tive effects on generalisation error. The median correlation between bias
and the systematic effect in the empirical study was 93.93%, while the
median correlation between the variance and variance effect was 95.61%.

In summary, Table 5.3 provides a win/tie analysis of the results. For each mea-
sure represented in the rows of Table 5.3, the number of wins/ties achieved by
each algorithm are tallied. For example, the 8/0 entry for Forest-RI indicates
that it managed to outperform the other approaches eight times (out of 16) in
terms of misclassification error and never had an error rate that was equal to
another algorithm.

Table 5.3: Win/Tie analysis of bias, variance, systematic effect and variance
effect. An asterisk indicates a significant p-value with α = 0.05.

Quantity (Tree) Bagging Forest-RI Boosting p-val
Error 0/0 1/1 8/0 6/1 0.001∗

Systematic Effect 0/1 5/3 4/4 3/2 0.311
Variance Effect 0/1 1/1 3/2 10/0 0.0004∗

Bias 0/1 6/4 3/4 3/3 0.154
Variance 1/0 1/0 7/0 7/0 0.004∗

Total 1/3 14/9 25/10 29/4

The final column in Table 5.3 display p-values obtained through a statistical
comparison test. The null hypothesis is that there is no difference between
bagging, Forest-RI and boosting in terms of their performances, as measured
by the corresponding quantity.11 The test used in this scenario was the Fried-

11The ensemble methods were clearly superior to classification trees. Therefore, trees
were omitted when these tests were conducted.
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man aligned ranks test (the reader is referred to Section 7.2, where the topic
of statistical comparisons of algorithms is discussed in much greater detail).

Given that the null hypothesis was rejected, Table 5.4 provides three addi-
tional p-values per quantity from pairwise comparisons, obtained using the
Shaffer static test. The null hypothesis is that there is no difference between
a particular pair of algorithms. The pairs are displayed in the following order:
(1) bagging vs. Forest-RI; (2) bagging vs. boosting; and (3) Forest-RI vs.
boosting.

Table 5.4: Adjusted p-values from the Shaffer static post-hoc test used for
pairwise comparisons. An asterisk indicates a significant p-value with α = 0.05.

Quantity 1 2 3
Error 0.003∗ 0∗ 0.181
Systematic Effect N/A
Variance Effect 0.009∗ 0∗ 0.033∗

Bias N/A
Variance 0.004∗ 0∗ 0.344

From Tables 5.3 and 5.4 it is seen that bagging was the best performer in
terms of bias as measured by wins/ties. This also translated into the best
performance with respect to the systematic effect. However, in the case of
both quantities, the difference was statistically not significant. Forest-RI and
boosting were tied for the top position in terms of variance, with no significant
difference detected between the two algorithms. With respect to the variance
effect however, boosting significantly outperformed both bagging and Forest-
RI. Despite this, Forest-RI managed to achieve the lowest error rate on the
highest number of simulation configurations. Although not significantly differ-
ent from boosting, this might suggest that Forest-RI performs well not because
it exclusively reduces either the bias/systematic effect or the variance/variance
effect. Rather, Forest-RI seems to be successful in reducing both these quan-
tities simultaneously.

5.6.4 Tuning Parameter Variability

To illustrate the necessity of parameter tuning, Figure 5.9 shows the variation
in the selection of the optimal subset size of randomly selected inputs at each
node for Forest-RI over 100 training sets. The left side of each panel in Figure
5.9 shows the selected subset sizes, while the right sides are bar plots displaying
the frequency of the variable subset sizes selected among the pre-specified
parameter grid.
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Sim 3: mvnorm, p=15, corr=0.1; [ SD =  1.94  ]
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Sim 4: mvnorm, p=15, corr=0; [ SD =  2.52  ]
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Sim 6: Mease (2008), p=30, J=5; [ SD =  6.69  ]
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Figure 5.9: Variation in the selection of the optimal subset size of randomly
selected input variables at each node for Forest-RI over 100 training sets dis-
played for the first eight simulation configurations.
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For each of the first eight simulation configurations, the overall variability is
quite high. However, even as the correlation between inputs decrease ( in Sim
1 to Sim 4), the most commonly selected subset size remains equal to one.
This might be expected when all the variables are highly correlated, since se-
lecting any one of the variables should provide a similar amount of information
at each data split. In contrast, when all of the variables are uncorrelated, it
might intuitively be expected that larger subsets would perform better than
smaller ones. This is however not the case here.

In Sim 5 to Sim 8, it is shown how the optimal parameters are affected by the
amount of noise. As noise decreases, the distribution of subset sizes changes
from being skewed to the left (larger subsets preferred) to being skewed to the
right (smaller subsets preferred). This makes sense: if only a small number
of inputs are associated with the response, then larger subsets are required to
ensure these relevant inputs to be included at node splits. On the other hand,
if there is little noise and most input variables are useful for splitting, large
subsets become unnecessary and might reduce the diversity of the ensemble.

5.7 Concluding Remarks
In regression using squared-error loss, the generalisation error can be decom-
posed into three parts: the irreducible error, (squared) bias and variance. The
latter two quantities are dependent on the estimated model, which if reduced,
improves the generalisation error. However, in classification the situation be-
comes more complicated and finding an analogous decomposition for 0-1 loss
is more difficult. The reason is that in regression the quantities measured
as bias and variance are indistinguishable from their effects on generalisation
error. But with estimated probabilities that are ultimately used for classifi-
cation, the bias and variance can differ from their respective effects based on
the similarity between the estimated distribution and the truth. Therefore,
an attempt at generalising bias and variance for any symmetric loss function
results in two sets of definitions: one for the inherent measure of bias and
variance, and the other for their effects. In regression the two sets are equal,
however in classification they are not.

Towards a deeper understanding of random forests, the interest is in how
randomisation and aggregation affect these quantities in a classification set-
ting. The already complicated nature of bias and variance, coupled with the
complexity of random forests makes it difficult to provide a theoretical anal-
ysis, but at least empirically these effects can be studied. Using 16 different
simulated data sets it was found that randomisation and aggregation tend to
decrease both the variance and the variance effect. Furthermore, the bias and
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systematic effect either remain unchanged, or are also reduced.

In the next chapter, the discussion becomes less general as an overview is
given of specific random forest algorithms that have been proposed in the lit-
erature. The updated road map is presented in Figure 5.10.

Figure 5.10: Road map to Chapter 6: An overview of different random forest
algorithms.

Stellenbosch University  https://scholar.sun.ac.za



Chapter 6

Random Forest Algorithms

Several different random forest algorithms have been proposed in the
literature. Briefly these can be categorised in terms of the sources of
randomisation and deterministic modifications used, in this regard
a taxonomy of random forests is presented in Section 6.1. Ran-
dom forests that introduce different sources of randomisation is the
topic of Section 6.2, with deterministic modifications found in the
literature discussed in Section 6.3. Furthermore, some interesting
and unique algorithms related to random forests are described in
Section 6.4, with a visual perspective on the various approaches
presented in Section 6.5. Towards an evaluation of the random
forest algorithms found in the literature, a bias-variance analysis
on a selection of algorithms is discussed in Section 6.6. The analy-
sis leads to a novel random forest framework, which is proposed in
Section 6.7. This is followed by concluding remarks in Section 6.8.

6.1 Introduction
Within Breiman’s definition of a random forest, several different approaches
exist (Breiman, 2001a). The most apparent distinction between the different
approaches is the way in which the independent identically distributed random
vectors {Θb} are obtained. Implicitly, this represents the construction of each
tree or its source of randomisation. Furthermore, in addition to the nature of
{Θb}, different random forest algorithms may be obtained by either preprocess-
ing sampled training data, optimising the ensemble size of the forest and/or
changing the ensemble voting scheme. In a similar, but extended fashion to
Tripoliti et al. (2013), random forests can be categorised by their possession
of a unique combination of traits from among those presented in Figure 6.1.
In other words, a random forest can be specified by choosing its sources of
randomness (Category R) as well as by deciding on some deterministic modi-
fications pertaining to preprocessing, tree construction, ensemble combination

89
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and/or “smoothing”1 (Categories A to D).

Figure 6.1: Properties of a random forest.

For example, to arrive at Breiman’s Forest-RI, the sources of randomisation
are bootstrap sampling and variable subsampling, whereas deterministic mod-
ifications (usually) entail using the Gini index as node impurity measure and
the use of orthogonal splits. The above categorisation does not discriminate
between all random forests: two approaches may share the same sources of ran-
domness and deterministic modifications (for example using weighted voting),
but differ one level deeper (such as having different weighting strategies in the
voting step). An attempt was made to distinguish between algorithms at an
additional level. Such a taxonomy however no longer succeeded in clarifying
similarities and differences amongst algorithms. Hence the categorisation as
presented in Figure 6.1 is kept to provide at least some idea of where a specific
random forest lies within the cosmos that is Breiman’s definition.

The following sections contain a brief overview of the literature concerning
proposals of different random forests. Proposals will be presented based on
the categories discussed in Section 6.1. Since typically the design of a random
forest stretches over different categories, initial introductions will be confined
to the category having the most discriminatory power between the algorithm
and other random forests.

1Smoothing is discussed in more detail in Section 6.3.4.
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6.2 Randomisation Sources
As discussed in Section 4.2, among the first approaches to inject randomness
into the construction of an ensemble of trees was proposed by Kwok and Carter
(1990) and Dietterich (1998). The idea was to randomly select splits from a
ranked list (R.3). In Kwok and Carter (1990), the list includes only the top
three splits, whereas in Dietterich (1998) the top twenty splits are used. Ho
(1995) produced randomised trees by selecting only a subset of the available
input variables before constructing each tree (R.2). Shortly after, Breiman
(1996a) proposed bagging, which uses any base learner and which randomises
via bootstrap sampling (R.1). Note that bagging defines a larger class of algo-
rithms, where in a sense many random forests using bootstrap sampling can
simply be redefined as bagging using randomised trees as base learners. Con-
versely, according to Breiman’s definition, bagging any type of tree learner is
a random forest.

Probably the most widely used strategy to inject randomness into a tree en-
semble is to select a subset of inputs at each node when computing an optimal
split. This was first explored by Amit and Geman (1997) on a character recog-
nition problem, and subsequently by Ho (1998). Breiman (2001a) was the first
to essentially “bag” this type of randomised tree — which became the popular
Forest-RI algorithm (R.1 and R.2). Since then, many proposals have settled on
this configuration of randomisation (bootstrap sampling combined with vari-
able subsampling) and have subsequently focused on improving the algorithm
by way of deterministic modifications.

In Cutler and Zhao (2001), the authors introduced the idea of creating a so-
called perfect random tree ensemble (PERT). At each step, using a bootstrap
sample and starting at the root node, the procedure selects two observations
at random. If these are from different classes, the node is split on a randomly
chosen input variable using a linear combination of the two points, where the
respective weights are α ∼ U [0, 1], and 1−α. The procedure is continued in a
recursive manner until within a node, two observations belonging to different
classes cannot be found within ten tries. The node is then declared terminal.
The above procedure is unique in the sense that there are three sources of ran-
domisation, viz. data sampling, variable subsampling and random split-points
(R.1, R.2 and R.3). In a similar fashion, but without the use of data sampling,
Geurts et al. (2006) proposed extremely randomised trees, where both a subset
of input variables and a split-point are selected randomly at each node (R.2
and R.3). The difference is that extremely randomised trees allow more than
a single variable to be randomly selected. Among these, the best variable and
split-point pair is obtained using a node impurity measure (even if split-points
are chosen at random). Restricting the variable subset size to one in extremely
randomised trees is almost identical to PERT.
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Using Minimum Message Length (MML) to perform oblique splits, Tan and
Dowe (2006) grow a large tree and from it create subtrees using randomly
chosen branches (R.4). The subtrees constitute the ensemble, where the size
of the ensemble is specified a priori. Bader-El-Den and Gaber (2012) build a
Forest-RI, treating the ensemble as the population from which trees are ran-
domly sampled. Using a genetic algorithm with accuracy as fitness function,
a new ensemble “evolves” from the original sample of randomised trees. The
above approach is called Genetic Algorithm based Random Forests (GARF).

Introducing a form of meta-randomisation, Bernard et al. (2009) proposed
the Forest-RK, which at each node not only selects a random subset of inputs
(R.2), but also randomly chooses the size of this subset (one level deeper).

In summary, randomisation in a random forest can stem from either data
sampling (R.1), variable subsampling (R.2), split-point selection (R.3) and/or
ensemble compilation (R.4). However, as shown with Forest-RK, additional
randomisation strategies may be added to the aforementioned list. In a rather
ad hoc way, it is a simple task to conceive of many other sources of randomi-
sation in a random forest. Among many, these could include:

• Randomising node impurity measures at each node (or for each tree);

• Randomising between orthogonal and oblique splits at each node (or for
each tree);

• Randomising between different types of multivariate models for oblique
splitting at each node (or for each tree);

• Randomising between methods used for rotating the input matrix for
each tree;

• Or any combination of the above mentioned approaches with those al-
ready mentioned.

The question is whether any of the proposed additions are sensible. From a
variance reduction stand-point, it can be argued that the increase in randomi-
sation will further reduce the correlation between the trees, in turn further
reducing the variance of the ensemble. However, it remains unclear what the
effect will be on the bias of the ensemble. Intuitively, it might be reasonable
to suggest that by randomly combining approaches one can average out par-
ticular weaknesses related to certain randomisation strategies, but the same
would probably hold true for their strengths.
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6.3 Deterministic Modifications
As previously mentioned, many proposals in the literature are unique — not
in terms of their design for injecting randomisation into the ensemble creation
procedure, but instead by the way they deterministically modify some aspect
of the algorithm. These modifications can affect different stages of the en-
semble, viz. (A) pre-construction (before trees are fit to the data), (B) tree
construction (modifying the tree fit to the data), (C) ensemble creation (af-
fecting the compilation of the ensemble) and (D) smoothing. In this context,
smoothing refers to the act of influencing the randomisation such that the
sampling probabilities are “smoothed” into a shape different from uniformity.
For example, instead of variable subsampling with equal probability, sampling
is done using a pre-specified probability distribution.

6.3.1 Category A: Pre-construction

Rodriguez et al. (2006) build a rotation forest where each tree is presented with
a rotated version of the training data (A.1). The first step in the procedure is
to create S disjoint subsets of the inputs. Next, for each subset s = 1, ..., S,
only the observations belonging to a random subset of classes are selected.
Therefore, the original training data matrix is subsampled both in terms of
the input variables (p) and in terms of the observations (N). Subsequently, a
bootstrap sample of 75% of the observations is drawn and principal component
analysis (PCA) is applied to this submatrix. The PCA coefficients for each
input variable subset is then placed inside a “rotation” matrix,

R =


a11, a12, · · · , a1M1 0 · · · 0

0 a21, a22, · · · , a2M2 · · · 0
...

... . . . ...
...

0 0 · · · aN1, aN2, · · · , aNMS

 ,

(6.3.1)

where M1, ...,MS denote the respective sizes of the subsets. The matrix Ra

is formed by rearranging the columns of R such that they correspond to the
order of the original training set, which is then rotated using Ra. Finally, to
build a rotation forest of size B, each tree tb is trained using a rotated version
of the training set obtained using the above steps. Rodriguez et al. (2006)
use ordinary classification trees as base learners, although the algorithm does
not specifically require classification trees. Therefore technically, it can be ex-
tended to form a rotation ensemble framework able to be implemented using
many different base learners. Related to rotation forests, Zhang and Sugan-
than (2014) combine several rotated versions of the inputs into an augmented
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set. Each rotation is presented to the root node, and the rotation correspond-
ing to the best split is selected. This rotation is then used at all other node
splits in the tree. Blaser and Fryzlewicz (2015) generalise the concept of en-
sembles constructed from base learners fit on rotated versions of the training
data using QR decomposition.

Another preprocessed random forest is the one proposed by Genuer et al.
(2010) which involves two stages. In the first stage a Forest-RI is fit and is
used to rank variables based on the Forest-RI variable importance measures.
In the second stage, a sequence of Forest-RI models are constructed by starting
with the most important variable and only adding an additional variable to the
final ensemble if the gain in accuracy exceeds a specified threshold. The pur-
pose is to select the optimal set of variables from the sequence corresponding
to the most accurate random forest (A.2).

6.3.2 Category B: Tree Construction

In an attempt to improve the Forest-RI algorithm, Robnik-Šikonja (2004) in-
vestigated the use of multiple impurity measures for splitting. By using a
different impurity for every fifth of a constructed tree, the aim was to increase
the diversity between trees in the ensemble in order to improve the final clas-
sifier (B.2).

Das et al. (2009) trained a conditional inference forest to identify the fac-
tors related to the severity of automobile accidents. Their method manages to
supplant an impurity measure approach for determining the best split at each
node of the tree (B.1), by using appropriate test statistics instead. For more
detail, the reader is referred to Hothorn et al. (2006) in which a conditional
inference framework for unbiased binary partitioning was developed.

Both Ho (1995, 1998) and Breiman (2001a) included versions of their ran-
dom forests using oblique (non-orthogonal) splitting rules (B.3). Lemmond
et al. (2008) proposed a discriminant random forest which uses linear discrim-
inant analysis (LDA) to perform splits. In line with the above, Menze et al.
(2011) compare the use of LDA with other models such as ridge regression and
random linear combinations of the inputs for node splitting.

6.3.3 Category C: Ensemble Creation

Latinne et al. (2001) investigate selecting the optimal number of trees in a
random forest model during the construction of the ensemble (C.2). This is
done by training (say) 50 trees and adding 10 more, then using the McNemar
test of significance to test if the accuracy is improved by using 60 trees instead
of the initial 50 trees. If the accuracy is not significantly improved, the optimal
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ensemble size is 50. Otherwise the procedure is repeated, adding another 10
trees to the ensemble. In a similar way, Bernard et al. (2009) explore using
sequential forward or backward selection to find an optimal size for a random
forest ensemble. Fawagreh et al. (2015) use clustering to identify groups of
trees that are similar to each other and “prune” a random forest by removing
redundant trees. This approach differs from the previous two procedures in
the sense that the entire forest has to be constructed before the procedure can
be implemented.

In addition to using multiple node impurity measures, Robnik-Šikonja (2004)
also explored the use of weighted voting (C.1). At test time, the idea is to
compute similarities between training observations and each test observation
by means of the random forest proximity measure (as discussed in Section 4.8).
Using only the training observations similar to the current test point, the mar-
gin as given in (4.3.1) is computed for trees where the training points are
out-of-bag. Trees with negative margins are discarded and the weighted vote
is taken as the votes of the remaining trees for the current test point, weighted
by their average margin on the out-of-bag training points. Related to this ap-
proach is dynamic integration introduced by Tsymbal et al. (2006). Dynamic
integration starts by computing similarities between training observations us-
ing a technique such as k-nearest neighbours or random forest proximities.
Subsequently, “local” error rates for each neighbourhood consisting of similar
training observations are obtained for each tree. At test time, dynamic inte-
gration allows for three different strategies: dynamic selection (DS), dynamic
voting (DV) and dynamic selection and voting (DSV). For a test point DS
only selects the tree with the smallest error on similar training observations;
DV uses weighted voting where the weights are proportional to the error on
each tree for similar training observations; and DSV selects trees with error
rates below a specified threshold and then performs weighted voting. Bostrom
(2007) compares different approaches to estimating class probabilities and their
associated accuracies when used for prediction. These strategies include av-
erage vote, relative class frequency, Laplace estimate and an approach called
the m-estimate. Each estimate is essentially a weighted voting strategy using
probabilities instead of class labels.

6.3.4 Category D: Smoothing

Since the advent of Breiman’s Forest-RI its use has gained popularity in many
domains. This is especially the case in high-dimensional settings such as in the
genomic sciences (Lee et al., 2005; Díaz-Uriarte and De Andres, 2006; Caruana
et al., 2008; Boulesteix et al., 2012; Klassen et al., 2008). The performance
of Forest-RI is however far from optimal in high-dimensional data scenarios.
The detrimental effect of a large number of noise variables is illustrated in the
following simulation setup. Let X1, ..., Xp ∼ U [0, 1] and C = 1, if q + (1 −
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2q) · I(X1 + X2 > 1) > 0.5, where q = 0.15 (the Bayes error rate), otherwise
C = 0 (Mease and Wyner, 2008). Therefore, the response C only depends on
X1 and X2 and all the remaining p − 2 variables are noise. Figure 6.2 shows
the performance of Forest-RI as a function of the number of noise variables in
the simulated data set.
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Figure 6.2: Performance of Forest-RI as a function of noise.

As the number of noise variables increases, the performance of Forest-RI de-
teriorates. The reason for this phenomenon is that computing splits at each
node using only a subset of the inputs can lead to splits based solely on noise.
In fact, the probability that at least one of the two relevant input variables
are selected at a node is depicted at the top of each boxplot in Figure 6.2.2
When 1, 000 noise variables are present, the probability of selecting at least
one of the two relevant inputs is as low as 6%. The idea of addressing the
problem illustrated in the aforementioned scenario by deterministically modi-
fying the Forest-RI algorithm is shared by many random forest proposals for
high-dimensional data.

Amaratunga et al. (2008) propose the enriched random forest which uses
weighted sampling of the input variables at each node (D.1). Using a two-
sample t-test to test for group mean effects between each variable and the
response, a p-value can be obtained for each input. However, performing mul-
tiple tests means that the p-value vector is suspect if directly used as a weight
vector. In addition, in genomic science the number of observations are often
very few, putting in question the power associated with each hypothesis test.

2This is calculated as (2
1)(

p−2
ζ−1)+(2

2)(
p−2
ζ−2)

(pζ)
, where ζ is the size of the subset of randomly

selected variables, chosen to be equal to b√pc. The function bac, takes the floor of the
argument a, i.e. it removes the decimals from a given number.
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Therefore, instead of weighting the inputs using p-values, Amaratunga et al.
(2008) use q-values, which preserve the relative ordering of the p-values, but
adjust for false positives (Storey and Tibshirani, 2003). The q-value associated
with the ith smallest p-value (denoted pv(i)) is computed as

q(i) = mink≥1

[
min(pv(i) · (p/k), 1)

]
. (6.3.2)

Once the weights are obtained, the Forest-RI algorithm is used with the only
modification being that at each node a subset of variables is selected by means
of weighted sampling. Similarly, Xu et al. (2012) adjust the Forest-RI al-
gorithm for high-dimensional data using a weighted sampling strategy called
weighted subspace random forests. Here the inputs are discretised (keeping
categorical variables as is, and “chopping up” real valued inputs), then for
each variable a two-way contingency table is formed with the response. Using
these tables, it is possible to compute weights for each variable based on their
association with the response using either a χ2-statistic measure or informa-
tion gain ratio. Ye et al. (2013) proposed stratified random forests which work
by dividing the inputs into two groups, a group consisting of inputs strongly
associated with the response and a group of unrelated inputs. In broad terms,
any method can be used to compute weights for each variable. For example,
Ye et al. (2013) use the weights from an LDA projection along the input space
direction with the most variation. Once these weights are computed, the set
of inputs is split into the two groups using a pre-specified threshold. There-
after the algorithm is identical to Forest-RI, except that at each node split,
variables are sampled in equal proportion from each group using weighted
sampling. Nguyen et al. (2015) build on this approach with an addition to the
algorithm that attempts to make node splits less biased.

Influenced by Friedman and Popescu (2008), Deng and Runger (2012) pro-
posed a regularised random forest which attempts to address the issue facing
Forest-RI in high-dimensions via a tree regularisation framework (D.2). Sup-
pose Q(X) represents the node impurity measure computed when splitting a
node using X and initialise Q(X) = 0. Furthermore, consider the empty set of
inputs J , from which candidates can be selected for splitting at each node. The
basic idea behind the regularisation framework is to populate J until |J | = ζ
by only allowing new input variables into the set if

λ ·Q(Xl) > maxj(Q(Xj)), (6.3.3)

where λ ∈ (0, 1], Xj ∈ J and Xl /∈ J . Placing a penalty on new inputs en-
tering the set J , the parameter λ acts as a regularisation parameter. Note
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that during ensemble construction, regularised random forests keep track of
the set of variables J across different trees. Hence the procedure has mem-
ory. Strictly speaking, a regularised random forest is therefore not a random
forest according to Breiman’s definition. Furthermore, in the algorithm if
λ ·Q(Xw) = λ ·Q(Xl) > maxj(Q(Xj)) for w 6= l and Xw, Xl /∈ J , then one of
the two variables is selected at random. This aspect of the algorithm can cause
an issue for the framework in the setting for which it was intended. During par-
titioning of the input space, as nodes contain fewer and fewer observations the
possible number of unique impurity measure values computable at each node
decreases (Deng and Runger, 2013). This means that in a high-dimensional
setting, many inputs will share identical impurities and the selection proce-
dure to populate the set J will end up mimicking random sampling. Deng and
Runger (2013) refer to this issue as the node sparsity issue. To amend this,
Deng and Runger (2013) came up with a strategy using random forest vari-
able importance measures to “guide” the selection procedure. The algorithm
is called guided regularised random forests. In this approach, for the jth input
the regularisation parameter λ in (6.3.3) is replaced with a weighted average

λj = αV impj + (1− α)λ, (6.3.4)

where α ∈ [0, 1] and V impj is the variable importance of the jth variable
computed from a Forest-RI. Therefore, Xl will enter the set J if λl ·Q(Xl) >
maxj(Q(Xj)), V impl > maxw(V impw)3 and |J | < ζ. This means that ties
among impurity measures are broken based on pre-calculated importance mea-
sures. However, Deng (2013) notes that this may cause the trees in the forest
to become highly correlated, thereby potentially reducing the performance of
the ensemble due to an increase in variance. For this reason Deng (2013)
proposed the guided random forest which replaces regularisation with variable
importance weighted sampling. Concretely, (6.3.4) is replaced with

λj = 1− α + α
V impj
V imp∗

, (6.3.5)

where V imp∗ = max(V imp1, ..., V impp) computed from a Forest-RI.

In summary, many of the presented proposals create novel random forest al-
gorithms by deterministically modifying Breiman’s Forest-RI. These modifi-
cations target different aspects of a random forest, such as pre-construction
(A.1, A.2), tree-construction (B.1, B.2, B.3), the ensemble (C.1, C.2) and/or
smoothing (D.1, D.2). Similar to sources of randomisation it is easily possible

3Here w indexes the set of inputs that is not in J and does not contain Xl.
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to conceive of novel random forest algorithms that combine the approaches
from the different categories. For example, by:

• Combining rotations with oblique trees;

• Combining trees built with multiple impurity measures with weighted
voting;

• Combining dynamic integration with regularisation;

• Or by using a combination of rotation, oblique trees, weighted voting
and regularisation.

The above list can be expanded4, but again as with ad hoc randomisation
proposals, the theoretical justifications for these proposed algorithms remain
unclear.

6.4 Other Related Approaches
In this section, some of the more exotic proposals related to random forests are
briefly discussed. Some of these fit within Breiman’s definition of a random
forest, but the majority are only related in a superficial sense.

Boinee et al. (2008) proposed meta random forests which is a strategy based
on bagging and boosting using random forests as base learners. In the case of
bagging random forests, the only difference between this approach and a very
large random forest is that there are two layers of bootstrap sampling, one
externally for the bagging procedure and the next within each random forest
base learner. The boosting approach follows the AdaBoost algorithm using
exponential loss and random forests as base learners. Each approach is clearly
computationally much more intensive than the original proposals which use
single trees as base learners.

A more sensible approach attempting to combine boosting with random forests
is RotBoost proposed by Zhang and Zhang (2008). The idea is to combine ro-
tation forests with the AdaBoost algorithm. The modification is fairly simple:
before fitting a tree as base learner in AdaBoost, one rotates the data using
a rotation matrix which is obtained as proposed by Rodriguez et al. (2006).
The motivation for the approach is to attempt to simultaneously reduce both
the bias (through boosting) and the variance (through random rotations) of

4For an empirical investigation of some of these random forest combinations, see Tripoliti
et al. (2013).
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the classifier.

An interesting approach developed by Welbl (2014) recasts random forests
as an ensemble of artificial neural networks.5 The basic idea is that the nodes
and branches of a randomised tree can be represented as a neural network with
two hidden layers, and that an ensemble can be obtained using many of these
tree network representations. With the recent successes and excitement sur-
rounding neural networks and deep learning (a form of representation learning
which uses neural networks with many hidden layers), it might be interesting
to further investigate this connection (Goodfellow et al., 2016).

A disjunction normal random forest as proposed by Seyedhosseini and Tas-
dizen (2015) is a particularly unique strategy. As a starting point, consider
the tree representation for binary classification given in Figure 6.3. The func-
tion φm(x,Θ) ∈ {0, 1} acts as the derived split rule at the mth node. For an
observation x, if φm(x,Θ) = 0, the observation moves down the left branch at
Nodem, otherwise it moves down the right branch. To clarify, suppose the rule
X2 > a, a ∈ IR, applies at Node 3 (say), then φ3(x,Θ) = I(x2 > a). Seyedhos-
seini and Tasdizen (2015) show that any such binary tree can be reformulated
as a disjunction of conjunctions.6

Node 1

<< if φ1(x,Θ) = 0, if φ1(x,Θ) = 1 >>

Node 2 Node 3

− + (1) −Node 4

+ (2) −

Figure 6.3: Binary tree representation.

5For more details regarding neural networks see for example Gurney (1997).
6A disjunction is a function consisting of OR operators and is true if either argument is

true. A conjunction consists of AND operators and is true only if both arguments are true.
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Let ∨ denote a disjunction (the OR operator) and ∧ denote a conjunction (the
AND operator). Any binary classification tree can then be reformulated as

t(x,Θ) =
M+

∨
i=1

[
∧

m∈RPi

φm(x,Θ) · ∧
m∈LPi

¬φm(x,Θ)

]
, (6.4.1)

where ¬φm(x,Θ) = 1 if φm(x,Θ) = 0, and vice versa. Here M+ is the number
of terminal nodes in the tree associated with the “+” class and RPm indexes the
internal nodes at which an observation is required to follow the right branch
during the journey from the root if it is to reach the ith positive terminal node.
Similarly, LPm indexes the internal nodes at which an observation is required
to follow the left branch on its way down to a positive terminal node. For
example, in Figure 6.3, M+ = 2, RP1 = {2}, LP1 = {1}, RP2 = {1} and
LP2 = {3, 4}. In other words, to reach the first positive terminal node +(1),
an observation would have to follow the left branch at Node 1 and then follow
the right branch at Node 2. To reach +(2), the right branch should be followed
at Node 1, and the left branch followed at both Node 3 and Node 4. The tree
in Figure 6.3 can now be reformulated as

t(x,Θ) =
[
¬φ1(x,Θ) ∧ φ2(x,Θ)

]
∨
[
φ1(x,Θ) ∧ ¬φ3(x,Θ) ∧ ¬φ4(x,Θ)

]
,

(6.4.2)

where x is classified as belonging to class “+” if t(x,Θ) = 1. Otherwise x
is classified to the class “−”. The form presented in (6.4.2) is also known as
the disjunctive normal form of a tree, which is from where the algorithm de-
rives its name. Note that since φm(x,Θ) ∈ {0, 1}, the AND operator can
be replaced with simple multiplication. In addition, OR(w, z) can be writ-
ten as ¬AND(¬w,¬z) with w, z ∈ {0, 1}7, which in turn is equivalent to
1− (1− w) · (1− z). Using these expressions, (6.4.2) becomes

t(x,Θ) = 1−
M+∏
i=1

{
1−

∏
m∈RPi

φm(x,Θ)
∏

m∈LPi

[
1− φm(x,Θ)

]}
(6.4.3)

= 1−
M+∏
i=1

(1− hi(x,Θ)). (6.4.4)

Furthermore, any rule X > a can be written as b+X > 0, where in Seyedhos-
seini and Tasdizen (2015), b = −a is called the bias. Fitting a classification

7If w = 1, z = 0 ⇒ ¬[(¬1) ∧ (¬0)] = ¬(0 ∧ 1) = ¬0 = 1. Similarly, with w = 0, z =
1,¬[(¬0) ∧ (¬1)] = 1. If w = z = 1 ⇒ ¬[(¬1) ∧ (¬1)] = ¬(0 ∧ 0) = ¬0 = 1. Finally,
w = z = 0⇒ ¬[(¬0) ∧ (¬0)] = ¬(1 ∧ 1) = ¬1 = 0 which is equivalent to the OR operator.
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tree is essentially equivalent to learning a set Θ = {θ1, ...,θM}, where each
θm = [bm, X]T , X ∈ {X1, ..., Xp} is a vector consisting of a split variable X
and a bias term bm associated with Node m. The key idea to the approach is
to estimate these parameter vectors corresponding to discrete splitting rules
derived from a fitted tree using the logistic sigmoid function given in Figure
6.4, and to recast the tree into a continuous function.

1/(1+exp(−b−X))

0.00

0.25

0.50

0.75

1.00

−b
x

φ̂(
x,

Θ
)

Figure 6.4: Logistic sigmoid function used to approximate a tree node splitting
rule.

Concretely, a discrete splitting rule can be approximated using

φ̂(x,Θ) =
1

1 + e−b−X
. (6.4.5)

As shown in Figure 6.4, X = −b implies that b + X = 0 (the split rule
decision threshold) and φ̂(x,Θ) = 0.5, which corresponds to the highest de-
gree of uncertainty regarding the branch an observation should take from the
current node. In contrast, if X � −b it means that b + X � 0, which
corresponds to φ̂(x,Θ) ≈ 1 and a high degree of certainty that an observa-
tion should move from the current node down the right branch.8 Finally, if
X � −b ⇒ b + X � 0 ⇒ φ̂(x,Θ) ≈ 0, which corresponds to a high degree
of certainty that an observation should follow the left branch down. Once an
estimate has been obtained for each node, all of the bias terms can be updated
using gradient descent (as discussed in Section 3.2.1).

8The notation a � b, means that a is much larger than b. Similarly, a � b indicates
that a is much smaller than b.
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To obtain the gradient, suppose Ωtr = {(xi, ci), i = 1, ..., N}, with ci ∈ {0, 1}
and let t̂(x,Θ) denote (6.4.4) with φ(x,Θ) replaced by (6.4.5). Using squared
error loss, the negative gradient component corresponding to a bias term at
Node m for a training observation (x, c) is given by9

um = −∂(c− t̂(x,Θ))2

∂bm
= 2x(c− t̂(x,Θ))

×
[ ∑
l|m∈RPl

(∏
r 6=l

(1− hr(x,Θ))hl(x,Θ)(1− φ̂m(x,Θ))

)

−
∑

l|m∈LPl

(∏
r 6=l

(1− hr(x,Θ))hl(x,Θ)φ̂m(x,Θ)

)]
, (6.4.6)

where x represents the observed value corresponding to the selected variable
on which the mth node is split. The update for bm with step length ν is then

bnewm = boldm + ν · um. (6.4.7)

Seyedhosseini and Tasdizen (2015) motivate their approach by stating that
instead of learning each parameter vector separately as is the case with bi-
nary trees, the algorithm can learn all the parameter vectors simultaneously
using gradient descent. This in turn translates into smoother decision bound-
aries and better generalisation performance. From this point, it is relatively
straightforward to build a disjunctive normal random forest. To create a new
ensemble, the above approach is followed for each tree obtained from a random
forest such as a Forest-RI. The final classifier may then be obtained as

t̄DNRF (x) = I

[ B∑
b=1

I(t̂(x,Θ) > 0.5) >
B

2

]
.

6.5 A Visual Perspective
The previous sections in this chapter briefly outlined some of the different
types of random forests and related methods that have been proposed in the
literature. However, it still remains difficult to develop a bird’s eye view of the
jungle that comprises all of these techniques. This section attempts a further
step towards such an overall view. The following approach was taken: for each
method, the various characteristics with respect to the categories presented
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Table 6.1: The variables describing each random forest algorithm.

Category Variable Type Range
author categorical NA
year numeric 1988 - 2015

R.1 r_data numeric {0, 1}
R.2 r_subsample_var numeric {0, 1}
R.3 r_split_points numeric {0, 1}
R.4 r_ensemble numeric {0, 1}
A.1 a1_rotation numeric {0, 1}
A.2 a2_var_select numeric {0, 1}
B.1 b1_single_impurity numeric {0, 1}
B.2 b2_multiple_impurity numeric {0, 1}

B.3 b3a_oblique numeric {0, 1}
b3b_axis numeric {0, 1}

C.1 c1_weighted_vote numeric {0, 1}
C.2 c2_tree_subset_selection numeric {0, 1}
D.1 d1_var_weights numeric {0, 1}

D.2 d2a_regularisation numeric {0, 1}
d2b_memory numeric {0, 1}

in Section 6.1 were recorded into a data frame. The variables describing each
method are presented in Table 6.1.

Using this data frame, a distance matrix was computed containing the dis-
tances between each random forest in terms of their characteristics. This
matrix represents the full “trait space”, which can be reduced to a best two-
dimensional approximation by way of multidimensional scaling (MDS). Briefly,
MDS approximates dissimilarities (in this case Euclidean distances) by preserv-
ing as much as possible the original dissimilarity measurements between points
in a higher-dimensional space when projected down into a lower-dimensional
space. This is done by projecting the points onto the space comprised of the
dimensions corresponding to the two largest eigen values obtained from a spec-
tral decomposition of the full doubly centred dissimilarity matrix. The reader
may refer to Cox and Cox (2000) for more detail.

Figure 6.5 shows the resulting MDS plot. Each approach is represented by a
point labelled according to the author(s) who proposed it. The further two
points (random forests) are from each other, the more dissimilar they are in
terms of the categories discussed earlier. Every algorithm is represented using
a two-way colour code. The colour of the author and year corresponds to a
certain combination of randomisation sources, while the colour of the diamond
symbol next to each author resembles the algorithm’s combination of deter-
ministic modifications. The latter is given in the legend at the top right of
Figure 6.5.

9The full derivation is given in Appendix A of Seyedhosseini and Tasdizen (2015).
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Figure 6.5: Trait based comparison of random forest proposals by way of a
best two-dimensional MDS approximation of the full trait space.

Some of the more interesting aspects of the display are briefly discussed below:

• Most of the random forests share the same sources of randomisation,
viz. data sampling and variable subsampling (R.1 and R.2). This was of
course first proposed by Breiman (2001a);

• The display seems to present a reasonable picture regarding algorithm
dissimilarity: many of the early developments (Kwok and Carter, 1990;
Amit and Geman, 1997; Ho, 1998; Dietterich, 1998; Breiman, 2001a) are
found “close” to each other, whereas more esoteric and scenario specific
proposals are spread further out.

• Proposals which are only related to random forests (Boinee et al., 2008;
Zhang and Zhang, 2008; Welbl, 2014; Seyedhosseini and Tasdizen, 2015)
are clearly distinguished occupying the top left corner of the display.

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 6. RANDOM FOREST ALGORITHMS 106

For example, the RotBoost algorithm that combines data rotation with
boosting is situated in a fairly isolated position at the top left of the dis-
play. It is also interesting to note that disjunctive normal random forests
(Seyedhosseini and Tasdizen, 2015) and meta random forests (Boinee
et al., 2008) share the same location.

• In the high-dimensional setting (Amaratunga et al., 2008; Xu et al.,
2012; Ye et al., 2013; Deng, 2013; Nguyen et al., 2015), the granularity
of the categorisation fails to discriminate between algorithms since all of
the approaches share the same sources of randomisation (R.1 and R.2)
and deterministic modifications (belonging to categories B and D) and
differ only one level deeper (in terms of different strategies for performing
weighted variable subsampling).

Zooming in, Figure 6.6 shows the decision boundaries for some of the proposals
fit to the mixture data. Moving from left to right, top to bottom, the decision
boundaries belong to the following random forests: extremely randomised trees
(Geurts et al., 2006), rotation forests (Rodriguez et al., 2006), oblique random
forests (Menze et al., 2011), weighted subspace random forests (WSRF) (Xu
et al., 2012) and regularised random forests (RRF) (Deng and Runger, 2012)
with λ = 0.1 and λ = 0.6 respectively.

Aspects of interest are the following:

• The additional randomisation (selecting the split-point at random) in
extremely randomised trees produces a very “wiggly” decision boundary.
This is presumably because the split direction changes more often than
if the split-point was not selected at random;

• In the rotation forest, less randomisation combined with rotation pro-
duces a fairly smooth non-axis aligned decision boundary;

• Using logistic regression to perform node splitting, among all of the ap-
proaches the oblique random forest visually best approximates the Bayes
decision boundary. Moreover, the fit achieves a test error that is on av-
erage (excluding regularised random forests with λ = 0.1) roughly 10%
better than all the other approaches on the mixture data;

• Both WSRF and RRF are intended for high-dimensional settings which
is clearly not the case for the mixture data only consisting of two input
variables. However, at the core of both approaches is the Forest-RI
algorithm. Hence it is not surprising that in this lower dimensional
setting, the resulting decision boundaries (middle right and bottom right
panel of Figure 6.6) closely resemble that of Forest-RI as seen in the left
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Figure 6.6: Random forest decision boundaries: top left: extremely randomised
forest ; top right: rotation random forest ; middle left: oblique random forest
with logistic regression splits ; middle right: weighted subspace random forest ;
bottom left: regularised random forest (λ = 0.1); bottom right: regularised
random forest (λ = 0.6)
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panel of Figure 4.2. The RRF with λ = 0.1 in the bottom left panel of
Figure 6.6 heavily restricts additional input variables to enter the set J .
In this case, once X2 entered the set, X1 was unable to produce splits
that were appreciably better than those of X2 given the imposed penalty.
Therefore, all the subsequent splits were also orthogonal to the X2 axis.
The ideal would be to visualise the exact decision boundary for these
algorithms in higher-dimensional settings, but unfortunately this is not
feasible.

To better illustrate the effect of a random forest for high-dimensions, Figure
6.7 compares the performance of WSRF with Forest-RI for the same simu-
lated scenarios as were presented in Figure 6.2. Here the WSRF is seen to
deal better with the increase in noise due to its weighted variable subsampling
strategy which puts higher sampling probabilities on variables more associated
with the response.
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Figure 6.7: Comparing the performance of Forest-RI with WSRF as a function
of noise.

6.6 Analysing Bias, Variance and their Effects
Similar to Section 5.6, the purpose of this section is to analyse the bias and
the variance along with their respective effects, for a subset of the aforemen-
tioned random forest algorithms on simulated data sets. The subset consists
of Forest-RI, extremely randomised forests (ERF), rotation forests (RotF) and
oblique random forests using logistic splits (ORF-log). Boosting was also in-
cluded in the analysis. The rationale of this particular selection of random
forests is that it represents a broad mixture of categories, viz. (R.1 + R.2),
(R.1 + R.2 + R.3), (R.1 + A.1) and (R.1 + R.2 + B.3), using only a small
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selection of algorithms.

The simulated data in the analysis include: Sim 1 to Sim 4 (including dif-
ferent degrees of correlation between the input variables), Sim 5 to Sim 8
(including different signal to noise ratios) and Sim 9 to Sim 11 (including dif-
ferent data clusterings). The data sets Sim 12 to Sim 16 were omitted since
the implementation of oblique random forests in R (found in the obliqueRF
package), only supports binary classification tasks. Furthermore, the rather
artificial scenarios, viz Circle and XOR, where also not included.

In order to find the optimal tuning parameters for each algorithm among a
pre-specified grid of available parameters, ten-fold cross-validation was per-
formed before each fit. The pre-specified grids were chosen as follows:

• Forest-RI and ORF-log: The number of trees were taken as B = 200,
with the subset size of randomly selected variables selected from ξ =
{1, b√pc, bp/2c}.

• ERF: The number of trees were taken as B = 200, with the subset size
of randomly selected variables also selected from ξ = {1, b√pc, bp/2c}.
Furthermore, the number of randomly selected split points were selected
from s = {1, 5, 10, bN/2c}.

• RotF: The number of trees were taken as B = 200, with the number of
variable subsets selected from K = {bp/2c, bp/3c, bp/4c}.

• Boosting: The number of trees were B = 200, tree interaction depth
was either one or six, and the step-length factor ν = {0.01, 0.05, 0.1}.
The exponential loss was used.

The above specifications of possible parameter values differ in some respects
to those in Section 5.6. The grid of subset sizes (ξ) was reduced due to the
extensive training time required by oblique random forests. The new grid is
motivated as follows: a subset size equal to one was seen to be a popular
selection in Figure 5.9 for Sim 1 to Sim 4. Furthermore, based on suggestions
from Breiman (2001a), both Menze et al. (2011) and Geurts et al. (2006) use
ξ = b√pc. Finally, as was observed in Sim 5 to Sim 8 in Figure 5.9, when
dealing with noisy data, larger subsets are often required. Therefore, ξ = bp/2c
was also included into grid. With regard to split points, Geurts et al. (2006)
fixed s to be equal to one. Since values of s closer to N will result in ERF
being very similar to Forest-RI, additional small values were chosen such as
five and ten, with exception to bN/2c. In RotF, Rodriguez et al. (2006) fix the
value for K at bp/3c in their experiments. The values bp/2c and bp/4c were
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added to the grid, thereby expanding the range of K. The values for B and
ν, along with the interaction depth in boosting were identical to those used in
Section 5.6.

Table 6.2: Estimated bias, variance, systematic and variance effects for random
forest algorithms. Values in bold indicate row-wise minima.

Name Data Quantity Forest-RI ERF RotF ORF-log Boosting

Sim 1
mvnorm
p = 15,
ρ = 0.9

Error 0.036 0.036 0.034 0.035 0.043
Bayes Error 0.028 0.028 0.028 0.028 0.028
Systematic Effect 0.003 0.001 0 0.003 0.005
Variance Effect 0.005 0.007 0.006 0.004 0.010
Bias 0.005 0.003 0.002 0.005 0.007
Variance 0.016 0.017 0.014 0.012 0.026

Sim 2
mvnorm
p = 15,
ρ = 0.5

Error 0.060 0.058 0.050 0.055 0.068
Bayes Error 0.040 0.040 0.040 0.040 0.040
Systematic Effect 0.010 0.006 0.004 0.009 0.013
Variance Effect 0.010 0.012 0.006 0.006 0.015
Bias 0.024 0.012 0.006 0.015 0.033
Variance 0.032 0.032 0.019 0.022 0.043

Sim 3
mvnorm
p = 15,
ρ = 0.1

Error 0.126 0.120 0.109 0.107 0.130
Bayes Error 0.078 0.078 0.078 0.078 0.078
Systematic Effect 0.021 0.009 0.011 0.014 0.026
Variance Effect 0.027 0.033 0.020 0.015 0.026
Bias 0.029 0.015 0.015 0.024 0.040
Variance 0.080 0.076 0.057 0.050 0.084

Sim 4
mvnorm
p = 15,
ρ = 0

Error 0.214 0.209 0.167 0.176 0.200
Bayes Error 0.141 0.141 0.141 0.141 0.141
Systematic Effect 0.004 0 0 0.009 0.004
Variance Effect 0.069 0.068 0.028 0.026 0.055
Bias 0.044 0.026 0.026 0.053 0.060
Variance 0.159 0.159 0.094 0.100 0.136

Sim 5

Mease
(2008)
p = 30,
J = 2

Error 0.213 0.201 0.197 0.245 0.212
Bayes Error 0.147 0.147 0.147 0.147 0.147
Systematic Effect 0.006 0.009 0.008 0.041 0.017
Variance Effect 0.060 0.045 0.042 0.057 0.048
Bias 0.006 0.009 0.008 0.065 0.021
Variance 0.095 0.076 0.071 0.130 0.092

Sim 6

Mease
(2008)
p = 30,
J = 5

Error 0.272 0.264 0.244 0.272 0.259
Bayes Error 0.143 0.143 0.143 0.143 0.143
Systematic Effect 0.015 0.017 0.008 0.082 0.021
Variance Effect 0.114 0.104 0.093 0.047 0.095
Bias 0.029 0.029 0.020 0.110 0.037
Variance 0.181 0.170 0.141 0.156 0.159

Sim 7

Mease
(2008)
p = 30,
J = 15

Error 0.302 0.301 0.260 0.262 0.284
Bayes Error 0.136 0.136 0.136 0.136 0.136
Systematic Effect 0.031 0.024 0.014 0.057 0.020
Variance Effect 0.135 0.141 0.110 0.069 0.128
Bias 0.037 0.040 0.022 0.083 0.028
Variance 0.226 0.225 0.170 0.158 0.201

Sim 8

Mease
(2008)
p = 30,
J = 20

Error 0.310 0.306 0.266 0.273 0.290
Bayes Error 0.134 0.134 0.134 0.134 0.134
Systematic Effect 0.033 0.035 0.020 0.083 0.023
Variance Effect 0.143 0.137 0.112 0.056 0.133
Bias 0.049 0.047 0.028 0.109 0.031
Variance 0.240 0.235 0.180 0.168 0.212
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Table 6.3: Estimated bias, variance, systematic and variance effects for random
forest algorithms. Values in bold indicate row-wise minima.

Name Data Quantity Forest-RI ERF RotF ORF-log Boosting

Sim 9

Two
-norm
p = 20,
K = 2

Error 0.032 0.030 0.029 0.029 0.040
Bayes Error 0.024 0.024 0.024 0.024 0.024
Systematic Effect 0.001 0.003 0.001 0.003 0.004
Variance Effect 0.007 0.003 0.004 0.002 0.012
Bias 0.013 0.007 0.007 0.011 0.014
Variance 0.016 0.016 0.015 0.011 0.025

Sim 10

Three
-norm
p = 20,
K = 2

Error 0.156 0.146 0.145 0.154 0.167
Bayes Error 0.085 0.085 0.085 0.085 0.085
Systematic Effect 0.041 0.036 0.040 0.055 0.048
Variance Effect 0.030 0.025 0.020 0.014 0.034
Bias 0.079 0.070 0.078 0.091 0.088
Variance 0.090 0.084 0.068 0.062 0.102

Sim 11

Ring
-norm
p = 20,
K = 2

Error 0.041 0.034 0.059 0.051 0.051
Bayes Error 0.018 0.018 0.018 0.018 0.018
Systematic Effect 0.008 0.008 0.012 0.017 0.019
Variance Effect 0.015 0.008 0.029 0.016 0.014
Bias 0.022 0.018 0.026 0.029 0.029
Variance 0.029 0.021 0.044 0.032 0.034

The results from Sim 1 to Sim 8 are reported in Table 6.2, whereas the results
for Sim 9 to Sim 11 are provided in Table 6.3. The two main findings in the
analysis are the following:

• Rotation forests seem to be the most effective at reducing the bias and
the systematic effect, while maintaining a competitive level of variance
and variance effect. This is an interesting result given that the decision
boundary for rotation forests on the mixture data (depicted in the top
right panel of Figure 6.6), was relatively smooth. This is typically asso-
ciated with higher bias and lower variance. Presumably, the larger input
spaces (consisting of 15, 20 or 30 inputs) in Sim 1 to Sim 11 allowed im-
proved data rotations that were able to closely fit each individual training
set without paying too high a price in terms of an increase in variance.

• Oblique random forests using logistic splits seem to be the most effective
at reducing the variance and the variance effect, but at a cost to bias and
the systematic effect (especially in noisy settings). A possible explanation
for this behaviour is that by enlarging the set of possible split directions
at each node10, a more diverse set of trees can be constructed, leading to
a reduction in variance and the variance effect. However, oblique trees
also tend to be more shallow than trees using orthogonal splits (Menze

10Since any multivariate model can still perform an orthogonal split at a node, the set of
all possible splits for an oblique random forests is larger than that of a random forest using
ordinary classification trees.
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et al., 2011). In the presence of noise, these shallow trees could possibly
incur an increase in bias which affects the overall bias of the ensemble.

Wins/ties are presented in Table 6.4, along with the corresponding p-values
obtained from statistical comparisons. Boosting was omitted from the com-
parisons since it did not achieve a single “win” for any quantity in any of the
data sets. To test the hypothesis that there is no difference between all of the
algorithms, the Friedman aligned ranks test was used.

Table 6.4: Win/Tie analysis of bias, variance, systematic and variance effects
for random forests. An asterisk indicates a significant p-value with α = 0.05.
Algorithm(s) in parentheses are not included in statistical comparison tests.

Quantity (Boosting) Forest-RI ERF RotF ORF-log p-val
Error 0/0 0/0 1/0 8/1 1/1 0.0213∗

Systematic Effect 0/0 0/0 2/2 7/0 0/0 0∗

Variance Effect 0/0 0/0 1/0 1/1 8/1 0.0046∗

Bias 0/0 1/0 2/3 4/3 0/0 0.0001∗

Variance 0/0 0/0 1/0 4/0 6/0 0.0014∗

Total 0/0 2/2 7/5 25/4 15/2

Given that the aforementioned hypothesis was rejected, pairwise comparisons
were conducted using the Shaffer static test. These are presented in Table 6.5
in the following order: (1) Forest-RI vs. ERF; (2) Forest-RI vs. RotF; (3)
Forest-RI vs. ORF-log; (4) ERF vs. RotF; (5) ERF vs. ORF-log; (6) RotF
vs. ORF-log.

Table 6.5: Adjusted p-values from the Shaffer static post-hoc test used for
pairwise comparisons. An asterisk indicates a significant p-value with α = 0.05.

Quantity 1 2 3 4 5 6
Error 0.08 0∗ 0.12 0.17 0.87 0.17
Systematic Effect 0.48 0.17 0.14 0.47 0.02∗ 0∗

Variance Effect 0.81 0.17 0.02∗ 0.81 0.08 0.81
Bias 0.25 0.04∗ 0.36 0.48 0.01∗ 0∗

Variance 0.69 0∗ 0∗ 0.08 0.03∗ 0.75

From Table 6.5 the following conclusion are drawn. Pairwise, RotF signifi-
cantly outperformed Forest-RI in terms of error rate, bias and variance. How-
ever, the systematic and variance effects did not differ significantly between
the two algorithms. Furthermore, it is interesting to note that the bias and
the systematic effect of both ERF and RotF was significantly lower than those
of ORF-log. While ORF-log outperformed ERF in terms of variance and the
variance effect, the difference between ORF-log and RotF was not statistically
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significant. This could explain why ultimately, as measured by tallied wins,
RotF was able to succeed in more simulation configurations than ORF-log.

6.7 A Novel Framework: Oblique Random
Rotation Forests

The bias-variance analysis presented in Section 5.6 as well as in Section 6.6,
could serve as a way by which sensible (as opposed to ad hoc) proposals for
novel random forest algorithms could be made. Based on observations made
in the previous section, the following random rotation ensemble framework is
proposed: rotation forests using randomised oblique trees as base learners. The
rationale is simple: by combining rotations with oblique splitting, the hope is
that the bias and variance, and their respective effects will simultaneously be
reduced. In this section an empirical investigation of the above proposal is dis-
cussed. Specifically, the focus of the analysis was to estimate the bias, variance
and their respective effects for oblique random rotation forests using logistic
regression (ORRotF-log) for splitting at each node. The pre-specified param-
eter grid was taken as a combination of the grids for RotF and ORF-log, viz.
B = 200, ξ = {1, b√pc, bp/2c} and K = {bp/2c, bp/3c, bp/4c}. For detailed
results, the reader is referred to Appendix A.

Table 6.6 provides a win/tie analysis of the results. The Friedman aligned
ranks test was used to test the hypothesis that there is no difference between
all the algorithms. The p-values from this test are reported in the final column.
The test of no difference between the algorithms was rejected in the case of all
of the measured quantities.

Table 6.6: Win/Tie analysis of bias, variance, systematic and variance effects
for random forests, including random rotation forests. An asterisk indicates a
significant p-value with α = 0.05.

Quantity Forest-RI ERF RotF ORF-log ORRotF-log p-val
Error 0/0 1/0 7/2 0/1 1/2 0.0304∗

Systematic Effect 1/2 2/2 5/2 0/0 0/1 0∗

Variance Effect 0/0 1/0 1/0 2/1 6/1 0.0002∗

Bias 1/0 2/3 5/3 0/0 0/0 0∗

Variance 0/0 1/0 2/0 0/0 8/0 0.0017∗

Total 2/2 7/5 20/7 2/2 15/4

Regarding pairwise comparisons, only ORRotF-log was compared with the re-
maining algorithms using the Finner test (see Section 7.2 for more details).
The comparisons in Table 6.7 are therefore reported in the following order: (1)
Forest-RI vs. ORRotF-log; (2) ERF vs. ORRotF-log; (3) RotF vs. ORRotF-
log; (4) ORF-log vs. ORRotF-log.
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Table 6.7: Adjusted p-values from the Finner test for comparing a control. An
asterisk indicates a significant p-value with α = 0.05.

Quantity 1 2 3 4
Error 0.17 0.42 0.29 0.76
Systematic Effect 0.01∗ 0∗ 0∗ 0.71
Variance Effect 0∗ 0∗ 0.02∗ 0.52
Bias 0.02∗ 0∗ 0∗ 0.83
Variance 0∗ 0.01∗ 0.84 0.74

From Table 6.7 it is seen that in terms of bias and the systematic effect,
ORRotF-log was significantly outperformed by Forest-RI, ERF and RotF. On
the other hand, ORRotF-log outperformed Forest-RI, ERF and RotF in terms
of the variance effect, and Forest-RI and ERF in terms of variance. Further-
more, no significant difference was detected between ORF-log and ORRotF-
log. This suggests that the addition of oblique splitting rules to rotation forests
resulted in the variance and the variance effect reduction observed in ORF-log
to dominate the mechanisms decreasing the bias in RotF. Unfortunately, the
overall result is not favourable: the combination of the two approaches failed
to materialise into a complementary reduction in both bias and variance, and
their respective effects.

6.8 Concluding Remarks
The design of a random forest consists of two main components, viz. sources
of randomisation and deterministic modifications. The former can stem from
data sampling, variable subsampling, random split-point selection and/or non-
deterministic ensemble compilation. The latter focuses on some aspect of the
algorithm such as preprocessing of the data, tree construction, ensemble cre-
ation and “smoothing”.

Since the early developments of random forests, many proposals followed, at-
tempting to improve performance by affecting one or both of the two compo-
nents. Most of these novel additions can be applied in any classification setting.
In addition, many proposals have focused exclusively on the high-dimensional
setting. Furthermore, algorithms have been developed that closely resemble a
random forest, but which are only superficially related.

Analysing the bias, variance and their respective effects for a subset of random
forests revealed rotations to be effective at reducing the bias and the system-
atic effect, and oblique splitting rules to be effective at reducing the variance
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and variance effect. Using these insights, a novel oblique random rotation for-
est framework which combines the two approaches, served as an example of a
heuristically developed proposal, rather than a simple ad hoc combination of
previously explored mechanisms. Although not entirely satisfactory, oblique
random rotation forests using logistic regression splits represent only a spe-
cial case of the framework. Other splits could also be investigated — possibly
yielding better results.

Ultimately however, the main interest in classification algorithms lie with their
performance on real world problems. In the next chapter, random forest al-
gorithms are compared on real world benchmark data sets by means of a
meta-analysis. In this regard, the road map forward is presented in Figure 6.8.

Figure 6.8: Road map to Chapter 7: A comparative study of random forest
algorithms by means of a meta-analysis.
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Chapter 7

Comparing Random Forests

What is of prime interest concerning the many random forest pro-
posals found in the literature is how the different algorithms com-
pare in terms of their classification performance on real world prob-
lems. To be able to compare the different proposals, a meta-analysis
is conducted where the reported results from many papers are col-
lected and analysed. The rationale for this approach is discussed in
Section 7.1. However, to conduct a proper comparison, statistical
hypothesis tests specific to the scenario of comparing multiple algo-
rithms over multiple data sets have to be used. This is introduced
in Section 7.2. An evaluation of some aspects of current random
forests research is given in Section 7.3. In Section 7.4 a compari-
son of the different proposals is carried out and discussed. This is
followed by concluding remarks in Section 7.5.

7.1 Introduction
As discussed in the previous chapter, many different random forest algorithms
have been proposed in the literature. A logical extension of the discussion in
Chapter 6 is an attempt at answering the question: which algorithm is best for
real world applications? However, what is meant by “best” is highly dependent
on the context of the problem at hand. In some cases, minimisation of the clas-
sification error is what constitutes an appropriate metric for measuring which
algorithm is best. In other cases, a mixture of accuracy and interpretability
may be viewed a better choice. Since the latter case is more susceptible to
subjective opinion, the focus in this text will be on performance metrics solely
associated with a quantitative measurement, removed from qualitative inter-
pretations. This by no means implies that the author is of the opinion that the
interpretability of an applied approach is not important. The ability of a clas-
sification algorithm to expose meaningful relationships between the response
and inputs is often a crucial property. It however remains difficult to measure
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differences in the level of interpretability provided by different classification
algorithms objectively. Therefore this aspect is not further explored here.

One of the problems with a comparison between the different random forests
presented earlier, is that access is required to the software as well as to the
programmed algorithms used in the literature. Unfortunately, to fulfil this
requirement turns out to be nearly impossible. Only a few authors (or open-
source community contributors) create statistical packages or libraries that
allow the general public access to different algorithms after publication. Ta-
ble 7.1 lists the packages that implement some of the proposals in Chapter 6.
These packages are available in the R language, which is probably the most
popular statistical programming language at the moment.

Table 7.1: Available software for random forests in the R programming lan-
guage.

Proposal R package

Breiman (1996) ipred
Breiman (2001) randomForest
Rodriquez et al. (2006) caret
Geurts et al. (2006) extraTrees
Das et al. (2009) party
Menze et al. (2011) obliqueRF
Deng and Runger (2012) RRF
Xu et al. (2012) wsrf
Deng and Runger (2013) RRF
Deng (2013) RRF
Other (27 out of 37) proposals unavailable

As can be seen in Table 7.1, the majority of proposals related to random forests
are unavailable. Furthermore, other statistical software such as SAS, SPSS,
WEKA and Python’s scikit-learn machine learning library are either worse
with respect to algorithm availability, or have a near complete overlap with
the types of random forests already implemented in R. It is true that some of
the proposals can easily be obtained by tweaking aspects of an algorithm that
has already been programmed (such as sampling without replacement in the
randomForest package to obtain the approach proposed by Ho (1998)), but
for others this is not so easy (such as the dynamic integration proposed by
Tsymbal et al. (2006)). Another option is to actually program these proposals
from scratch, which is certainly possible but would be a highly time consuming
and difficult undertaking.

An alternative approach and the one taken in this text, is to perform a compar-
ison by way of a meta-analysis. This is done by amalgamating the comparisons
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found in various papers in order to be able to compare all of the different ap-
proaches with each other, and not just a subset of approaches based on the
availability of the code needed to implement them. The data set for the meta-
analysis was collected from all 34 papers associated with research on random
forests from 2001 to 2015 that could be found in the literature (the full list
of papers is provided in Appendix B.1). Each observation in the data set in-
cluded a specific algorithm’s performance on a particular benchmark data set
as recorded by a specific paper. In addition to performance, other aspects per-
taining to the experimental design were also included, adding up to 19 different
variables characterising each of the 4295 observations collected. Examples of
these variables include the sizes of training and test data sets, the approach
used to estimate the generalisation performance of each algorithm, and the
method that was used to compare the different algorithms. More details re-
garding the meta-analysis data set can be found in Appendix B.2.

The immediate concern here is the degree to which results from different pa-
pers are commensurable (owing to different data subsetting, algorithm tuning,
data sets used, and various other aspects of experimental design particular to a
paper). This issue is dealt with in the following section, where it is shown not
to be detrimental in a meta-analysis. More specifically, statistical comparisons
between algorithms across different papers can be made given that the same
data sets are used, and that certain reliability assumptions are met.

7.2 Statistical Comparisons over Multiple Data
Sets

At the outset it is useful to clarify the distinction between a classifier and an
algorithm. A classifier is a function that has been estimated using the training
data, and which can then be used to classify future observations. An algorithm
refers to the set of steps that characterises the way in which a classifier is to be
obtained using the training data. For example, two Forest-RI models fit to the
training data with different tuning parameter values are considered to be two
different classifiers, although they make use of the same algorithm. Therefore,
to be clear, the purpose of the proposed meta-analysis is to compare multiple
random forest algorithms over multiple data sets. To contrast this with other
approaches, Figure 7.1 shows different possible scenarios commonly found in
research regarding comparisons of classification algorithms (Dietterich, 1998).

However, before comparing different algorithms it is important to consider
what exactly should be measured to compare them. As already mentioned,
the study will focus on measurements that can be represented as numeric
quantities. This however still leaves many available options from which to
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Figure 7.1: Comparison scenarios: The green blocks correspond to the scenario
associated with the meta-analysis in this text.

choose. Furthermore, once one (or several) measures have been selected, it is
almost always the case that this quantity can only be estimated from the data.
Therefore, it is also important to decide exactly how to estimate the perfor-
mance measure of choice. Finally, once selected performance measures have
been estimated for each algorithm, differences between them can be evaluated
using various statistical tests. Therefore, the following sections contain a brief
discussion of different performance measures (Section 7.2.1), ways in which
these performance measures can be estimated (Section 7.2.2), and how having
estimated these measures, statistical tests can be performed to compare the
algorithms (Section 7.2.3).

7.2.1 Algorithm Performance Measures

In binary classification most of the commonly used performance measures can
be derived from a confusion matrix, as shown in Table 7.2. This is a 2×2 matrix
where the cells contain a tally of the agreement or disagreement between the
class labels predicted by an algorithm, and the true class labels.

Probably the most commonly used performance measure is classification er-
ror, i.e. Err = FP+FN

N
, or equivalently classification accuracy, viz. 1−Err =

TP+TN
N

. However, some researchers have questioned the use of accuracy as an
appropriate measure of algorithm performance (Provost et al., 1998). Specifi-
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Table 7.2: A confusion matrix for binary classification.

Actual

Predicted
g = 1 g = 0

c = 1

TP
(True
Positive)

FN
(False
Negative)

c = 0

FP
(False
Positive)

TN
(True
Negative)

P N

cally, consider the following two points:

• Accuracy implicitly assumes symmetric loss (which is in many situations
not the case);

• Maximising accuracy on a given data set assumes that the observed
class distribution is in fact the true class distribution (which could also
be false, especially if the training data set is small).

The counterargument to these remarks attempts to justify the use of accuracy
as follows: an algorithm that is the most accurate (using symmetric loss and
the above assumption regarding the observed class distribution), will also be
the algorithm minimising asymmetric loss and/or the loss under a different
class distribution. Note that the discussion is with regard to algorithms, and
not classifiers. But Provost et al. (1998) state that the above justification is
unreasonable since it is rare to have the knowledge necessary to redefine the
loss associated with each class or its representation in order to suit accuracy
as performance measure.

Instead balanced measures are preferred, such as an ROC curve where the
trade-off between sensitivity = TP

TP+FN
(true positive rate) and 1−specificity =

1− TN
FP+TN

(false positive rate), is displayed for a grid of classification thresh-
olds corresponding to different losses associated with each class. In fact, using
ROC curves, Provost et al. (1998) show that on several data sets, a single
algorithm rarely dominates over the entire range of classification thresholds.
This was also observed by Bradley (1997). These observations once again put
into question the use of accuracy as performance measure. However, graphical
methods such as ROC curves can become difficult to interpret when many
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algorithms have to be compared across many data sets.

Alternatively, the so-called area-under-the-curve (AUC) measure can be used.
The AUC is computed as the area below the ROC curve and reduces the
graphical information into a single numeric quantity. Unfortunately, the AUC
has a major drawback: it treats the loss associated with each class differently,
depending on the algorithm used. This property is inherent in the way that the
AUC is defined. For more details, see Hand (2009), Hand (2010) and Hand and
Anagnostopoulos (2013). Therefore, instead of using the AUC, Hand (2009)
proposed the H-measure. This measure is based on a Bayesian approach. It
specifies a beta prior distribution over the relative losses associated with each
class, where the losses are independent of the employed algorithm. As with
any prior, the parameters of the distribution can be set to incorporate expert
knowledge regarding the problem. Alternatively, Hand and Anagnostopoulos
(2014) recommend β(TP+FN

N
+ 1, FP+TN

N
+ 1) as default choice.

Ultimately, the selection of an appropriate measure is highly dependent on
the problem at hand and on what exactly is of interest to be measured. This
complicates a comparison of algorithms over several benchmark data sets since
each set essentially puts forward a different problem to be solved. Therefore, if
feasible, it is typically a good idea to make use of several performance measures
in a comparative study. Table 7.3 provides a list of algorithm performance
measures, together with typical scenarios where each measure is considered
appropriate (Santafe et al., 2015).

Table 7.3: Algorithm performance measures for binary classification.

Performance measure Calculation Appropriate scenario

Error Err = FP+FN
N

Balanced data
Accuracy Acc = TP+TN

N
Balanced data

Sensitivity s = TP
TP+FN

Skew data
Specificity sp = TN

FP+TN
Skew data

Precision p = TP
TP+FP

Skew data
Kappa κ = Acc−Pe

1−Pe
Skew data

F-score Fξ = (ξ2+1)p·s
ξ2p+s

Skew data
H-measure Based on segments of ROC Balanced data/skew data

The kappa statistic, κ = Acc−Pe

1−Pe
, where Pe = (TP+FN

N
· TP+FP

N
) + (TN+FP

N
·

TN+FN
N

) can be seen as an adjusted accuracy rate. It measures the agreement
between an algorithm and the truth while correcting for agreement that is
observed by chance. The F-score, Fξ = (ξ2+1)p·s

ξ2p+s
, where ξ is a tuning param-

eter, is useful for skewed data. More specifically, the F-score can be used to
measure the performance of an algorithm at correctly classifying observations
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belonging to a minority class. Importantly, note that any binary classification
measure can be turned into a measure for multiclass classification by using
either the one-versus-all (Rifkin and Klautau, 2004) or the one-versus-one
(Allwein et al., 2000) approach. Hence the above remarks extend beyond the
context of binary classification. Lastly, even after employing all of the measures
mentioned in this section, an algorithm’s computational efficiency, scalability,
robustness, stability and level of interpretability remain unmeasured. These
are all factors that should be borne in mind when drawing conclusions from a
comparison.

7.2.2 Estimating Algorithm Performance

Among the most common ways of estimating the performance of an algorithm
is the use of resampling methods. Two popular choices are the bootstrap and
k-fold cross-validation. However, in any form of estimation, the bias-variance
trade-off has to be taken into consideration.

In both approaches a high bias can be remedied using various bias-correction
methods. For the bootstrap, Efron (1983) prosed the bias-corrected .632 boot-
strap, which is a weighted average between the ordinary leave-one-out estimate
and the training error. The drawback with this estimate is that in situations
where the data is closely fitted, the contribution to the error will shift towards
that of the leave-one-out estimate since the training error will tend towards
zero. By down-weighting the error, the estimate will be too optimistic. To
address this problem, Efron and Tibshirani (1997) introduced the .632+ boot-
strap which involves incorporating into the estimate a measure of the amount
of overfitting taking place. In cross-validation, the number of folds (the value
for k) largely controls the bias-variance trade-off. Large values for k reduce the
bias (by increasing the training set size used at each step), but increases the
variance (with small test sets and averaging being more sensitive to changes in
the data). In addition, proposals have been made to facilitate bias-correction in
cross-validation using bias estimation methods similar to the jackknife (Efron
and Efron, 1982). Approaches of this kind can be found in Burman (1989) and
Fushiki (2011).

In terms of variance, both resampling methods produce a final estimate by
averaging over the estimates obtained at each sampling step. This in turn
reduces the variance of the estimation procedure. Extending this idea and in
an attempt to further reduce the variance, it is possible to repeatedly per-
form a resampling method (such as ten runs of k-fold cross-validation), and to
then average over the obtained result from each run. Furthermore, in cross-
validation the value k can be adjusted to reduce the variance, but at a price of
increased bias. A particularly interesting approach to reducing variance is that
of bolstered estimation (Braga-Neto and Dougherty, 2004). This approach in-
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volves placing densities around data points (identical for every point, but this
can differ per class) and weighting misclassification error for a point by only
using the proportion of its density that is on the wrong side of the decision
boundary. Therefore, if an observation lies close to the decision boundary,
only a part of its density will be counted — even if it lies on the wrong side.
This renders the estimation approach more robust in terms of the obtained
decision boundary, and less sensitive to changes in the data, which in turn
aids in reducing the variance.

A fundamental problem with resampling methods occurs when a data set is
small. This is often the case in certain fields, such as for example in genomics.
In small data settings, further splitting at each step results in high variance.
To capture this additional uncertainty, Isaksson et al. (2008) advise the use of
confidence intervals, claiming resampling estimates to be unreliable. However,
Kohavi (1995) studied both the bootstrap and cross-validation on moderately
sized benchmark data sets and recommend ten-fold cross-validation as an ap-
propriate accuracy estimation method.

7.2.3 Comparing Classification Algorithms

Suppose two algorithms are to be compared. The estimated performances
from the algorithms can be treated as random variables P1 and P2. Associated
with each of these random variables is an unknown probability distribution
and therefore the true difference between the densities of P1 and P2 are also
unknown. Formally, suppose H0 denotes the null hypothesis which states that
there is no difference between the performances of the two algorithms. Fur-
thermore, let H1 denote the alternative hypothesis stating that there is indeed
a difference. Assuming that H0 is true, a test statistic can be computed which
attempts to convert as much of the information contained within the differ-
ences in the observed values from the two algorithms into a quantity that is
associated with some known distribution. Using knowledge of this distribu-
tion it is possible (in some restricted sense) to ascertain whether one of the two
algorithms is superior or not. This is usually done by computing a p-value,
the probability of actually observing what was observed under the assumption
that H0 is true (using the derived distribution). If this probability is low, the
researcher can choose to reject H0, since the evidence from the observed data
then questions the initial assumption of no difference.

There is a very important, but subtle point that needs to be made here. The
described p-value is dependent on not only the chosen test statistic, but also on
the observed values from the experiment. It does not contain any information
regarding the likelihood that H0 is actually true or not. The p-value is only
capable of providing information about the probability of a realisation of what
was observed from the experiment under the derived distribution. Therefore,

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. COMPARING RANDOM FORESTS 124

to reject the null hypothesis is ultimately up to the researcher who trusts that
the experimental design providing the observed values as well as the employed
test statistic are appropriate, and that the only conclusion left to be made
is that the initial assumption (of no difference) was incorrect (Santafe et al.,
2015).

A hypothesis test in which multiple algorithms are compared, is known as
an omnibus test1. In an omnibus test, H0 is simply taken as the statement of
no difference between all the approaches whereas H1 states that at least one of
the algorithms has a performance that is significantly different from the rest.
Concretely, suppose a test has to be conducted where L algorithms were fit to
D data sets. Let pld be the performance of algorithm l ∈ L on data set d ∈ D.
The purpose of the test is to ascertain whether there is a significant difference
between the algorithms based on the values pld. As is typical for any hypoth-
esis test, a decision threshold or significance level (α), is specified to decide
when the obtained p-value is sufficiently small — indicating that the evidence
against H0 is strong enough to reject it. Figure 7.2 shows common comparison
scenarios, together with appropriate statistical tests for each scenario (Santafe
et al., 2015).

Figure 7.2: Omnibus statistical tests for comparing multiple classification algo-
rithms over multiple data sets: the orange block represents the tests appropriate
in the meta-analysis.

Among all of the omnibus tests an ANOVA (Fisher, 1955) is the only para-
metric test that relies on the following assumptions: observations (pld) are

1The definition of omnibus is “comprising of several items”.
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sampled from a normal distribution, and the associated random variables (Pld)
have equal variance. Both these assumptions are unlikely to hold when com-
paring different algorithms over a range of benchmark problems. Therefore it
is advised to refrain from using an ANOVA in these situations (Demšar, 2006).
Instead, non-parametric tests are preferred (Demšar, 2006; Garcia and Her-
rera, 2008; García et al., 2010). In this regard, the following non-parametric
omnibus tests are discussed.

• Friedman (Friedman, 1937): The Friedman test starts by ranking each
algorithm based on performance, where ties are treated by assigning an
average rank to the algorithms concerned. Let rld be the rank of al-
gorithm l on data set d, then R̄l· = 1

D

∑D
d=1 rld is the average rank of

algorithm l over all the data sets d ∈ D. Under H0, stating no differ-
ence, i.e. R̄1· = ... = R̄L·, the test statistic

χ2
F =

12D

L(L+ 1)

( L∑
l=1

R̄2
l· −

L(L+ 1)2

4

)

has a χ2 distribution with L − 1 degrees of freedom for large enough
L(> 5) and D(> 10). However, Iman and Davenport (1980) have crit-
icised the test based on empirically observing the inaccuracy of the χ2

approximation. Hence they proposed a modified statistic.

• Iman-Davenport extension (Iman and Davenport, 1980): The exten-
sion uses the same ranking scheme as the Friedman test, but modifies
the statistic as follows:

FID =
(D − 1)χ2

F

D(L− 1)− χ2
F

which is distributed according to an F distribution with (L − 1) and
(L− 1)(D − 1) degrees of freedom.

• Friedman aligned ranks (Hodges et al., 1962): When the number
of algorithms being tested is small, it might be of interest to incorpo-
rate the information regarding the difference in rank between the algo-
rithms. The Friedman aligned rank test ranks each algorithm based on
pald = pld − p̄d, where p̄d = 1

L

∑L
l=1 pld is the average performance on the

dth data set. Then the sum of ranks is computed over the algorithms,
i.e. Rl· =

∑D
d=1 rld, and over the data sets, i.e. R·d =

∑L
l=1 rld. Finally,

the test statistic is obtained as follows:
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FAR =
(L− 1)

[∑L
l=1R

2
l· − (LD2/4)(LD + 1)2

][
LD(LD + 1)(2LD + 1)

]
/6− (1/L)

∑D
d=1 R

2
·d

which follows a χ2 distribution with L− 1 degrees of freedom.

• Quade (Quade, 1979): Some data sets may pose a more difficult chal-
lenge than others. The Quade test is an interesting approach where
comparisons are made over data sets that are weighted based on the ob-
served performances from the algorithms. The test starts by computing
the ranks rld and performances pld. The difference between the best and
worst performing algorithms on each data set is thereafter obtained as
p∗d = maxl(pld) − minl(pld). Let R̃·1, ..., R̃·D represent the ranked data
sets according to the previously calculated differences. The weighted
rank for algorithm l is then R̃l· =

∑D
d=1 R̃·d

(
rld − (L + 1)/2

)
. The test

statistic is

FQ =
(D − 1)B

A−B
,

where A = D(D+1)(2D+1)L(L+1)(L−1)/72 and B = (1/D)
∑L

l=1 R̃
2
l·.

The FQ statistic follows an F distribution with (L−1) and (L−1)(D−1)
degrees of freedom.

Following an experimental framework proposed by Demšar (2006), García et al.
(2010) conducted an analysis of the different tests in terms of their power,
which is the probability of rejecting H0 when it is indeed false. From their re-
sults, it was observed that the Friedman aligned ranks test and the Quade test
had higher power and outperformed the Friedman and Iman-Davenport exten-
sion tests when the number of algorithms compared was small (< 5). However,
when the number of algorithms increased, the power of the Iman-Davenport
extension also increased, while the performance of the Friedman aligned ranks
test dropped. The Quade test performed the best in terms of power, but was
found to be very sensitive to changes in the selected benchmark data sets. As
a result, recommendations of García et al. (2010) are as follows:

− To use the Friedman aligned ranks test or the Quade test in cases where
the number of algorithms being compared is small;

− The Quade test can also be used when the number of algorithms is large,
however the researcher must be aware of its sensitivity towards the choice
of data sets. Therefore, the appropriateness of the selection and possible
effects should be considered carefully;
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− In situations where the number of algorithms compared is large (≥ 5),
the Iman-Davenport test is a good alternative — because of its simplicity,
increased power, and insensitivity to changes in data sets used.

Importantly, note that at this stage, none of the tests provide any information
regarding which of the algorithms’ performances differ significantly. Once a
significant difference is detected, pairs of algorithms still need to be compared.
The test statistics for pairwise comparisons between algorithms l1 and l2 in
the different omnibus tests are given in Table 7.4.

Table 7.4: Pairwise comparisons in omnibus tests between Algorithms l1 and
l2 (statistics follow a standard normal distribution).

Friedman/Iman-Davenport Friedman aligned ranks Quade

ZF =
R̄l1·−R̄l2·√

L(L+1)
6D

ZAR =
(Rl1·−Rl2·)/D√

L(LD+1)
6

ZQ =
Tl1·−Tl2·√

L(L+1)(2D+1)(L−1)
18D(D+1)

, where

Tq· =
∑D

d=1Qd··rqd
D(D+1)/2

with q = l1, l2.

When performing multiple comparisons (between all pairs of algorithms), a sig-
nificant difference might be detected simply by chance. Concretely, the Type
I error associated with a test is the probability of rejecting H0 when in fact
it is true. This is closely linked to the significance level (α), where essentially
the specified threshold is the maximum probability of a Type I error that a
researcher is willing to accept. When conducting multiple tests, it is not suffi-
cient to control the Type I error for each comparison separately, since such an
error might arise simply by chance. For example, with a single pairwise com-
parison, the probability of not making a Type I error is 1−α. If L algorithms
are compared, this amounts to

(
L
2

)
comparisons. The probability of making

at least one Type I error is then 1 − (1 − α)(
L
2). This means that if only five

algorithms are compared, this probability is 40%, which is much larger than
5%. Therefore, post-hoc tests aim to adjust α (or equivalently the p-values
obtained from pairwise comparisons in Table 7.4) to control the family-wise
error, which is the probability that at least one Type I error is made among
multiple tests. Figure 7.3 shows different post-hoc tests for either comparing
a novel algorithm (a control) against all others, or for conducting all pairwise
comparisons (Santafe et al., 2015).

When comparing a novel competitor, the above type of adjustments to the
significance level can be done in a single step, in two steps, or through a more
complicated multiple step-up or step-down procedure. Let H0l denote the null
hypothesis associated with the lth comparison, and let pvl denote the p-value.
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Figure 7.3: Post-hoc tests for comparing multiple classification algorithms over
multiple data sets: the purple blocks represent tests appropriate for the meta-
analysis.

Then each post-hoc test makes the following adjustment to α in multiple com-
parisons:

• Comparing a novel competitor and all pairwise comparisons

* One-step
− Bonferroni-Dunn (Dunn, 1959): ∀l reject H0l if pvl < α/(L−

1).
* Two-step
− Li (Li, 2008): Step 1. Reject H0l∀l, if pvL−1 < α, where the p-

values are ordered in ascending order (pvL−1 being the largest).
Otherwise, do not reject H0(L−1) and proceed to Step 2. Reject
H0l∀l = 1, ..., L− 2 if pvl <

(1−pvL−1)α

1−α .
* Step-down: with ordered p-values, reject H01, ..., H0l∗ where
− Holm (Holm, 1979): l∗ = min{l : pvl > α/(L− l + 1)}.
− Holland (Holland and Copenhaver, 1987): l∗ = min{l : pvl >

1− (1− α)1/(L−l)}.
− Finner (Finner, 1993): l∗ = min{l : pvl > 1− (1− α)l/(L−1)}.

* Step-up: with ordered p-values
− Hochberg (Hochberg, 1988): Reject H0(l∗+1), ..., H0(L−1) where
l∗ = max{l : pvl > α/(L− l)}.

− Rom (Rom, 1990): RejectH0(l∗+1), ..., H0(L−1) where l∗ = max{l :
pvl > αRl } and αR(L−1) = α, αR(L−2) = α/2,

αR(L−j) =

( j−1∑
l=1

αl −
j−2∑
l=1

(
j

l

)
· (αR(L−1)−l)

j−l
)
/j,
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with j = 3, ..., L− 1.
− Hommel (Hommel, 1988): ∀l reject H0l, if pvl < α/l∗ where
l∗ = max{l : p(L−1)−l+m > mα/l,∀m = 1, ..., l}.

• All pairwise comparisons

– Nemenyi (Nemenyi, 1962): ∀l ∈ {1, ..., L − 1} reject H0l if pvl <
α

L(L−1)/2
.

– Shaffer’s static (Shaffer, 1986): Using logical rules it can be deter-
mined which hypotheses may automatically be rejected, given that
others have already been rejected. More specifically, let tl be the
maximum number of hypotheses H0l′ , l

′ ∈ {l, ..., L−1}, that can be
true given that any l − 1 of the hypotheses have already been re-
jected. Then reject H01, ..., H0(l∗−1), where l∗ = min{l : pvl > α/tl}.

– Shaffer’s dynamic (Shaffer, 1986): The value t∗l is computed
sequentially (using ordered p-values), representing the maximum
number of hypotheses that can be true, given that previously tested
hypotheses in the sequence have already been rejected. Then reject
H01, ..., H0(l∗−1), where l∗ = min{l : pvl > α/t∗l }.

– Bergmann-Hommel (Bergmann and Hommel, 1988): The proce-
dure is based on finding all combinations of possible hypotheses (ex-
haustive sets) that could be true for the different comparisons. By
forming the union of these sets, the acceptance set A is constructed,
where every hypothesis not in A is rejected. The procedure is com-
putationally intensive and the most complicated compared to the
other post-hoc tests. For a more detailed exposition, together with
illustrative examples, see Garcia and Herrera (2008).

As was the case with the omnibus tests, Garcia and Herrera (2008) and García
et al. (2010) analysed the post-hoc tests in terms of their power. The following
recommendations follow from their respective studies:

− The Bonferroni-Dunn and Nemenyi tests are the simplest to implement.
However, both of these tests have little power;

− García et al. (2010) found that the Holm, Hochberg, Hommel, Holland
and Rom tests have similar power, with the trend being that the more
complicated tests (such as Rom and Hommel) are slightly more powerful;

− The simpler Finner test managed to outperform the others, with excep-
tion of the Li test in some cases. However, the Li test was found to be
sensitive to changes in the selection of algorithms compared. Therefore
the Finner test is preferred;
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− In terms of pairwise comparisons, Garcia and Herrera (2008) found the
Bergmann-Hommel test to perform the best, however they acknowledge
the complexity of the test in terms of both implementation and expla-
nation. It is also computationally intensive;

− Garcia and Herrera (2008) recommend the use of the Shaffer static test
for all pairwise comparisons because of its simplicity and the benefit of
additional information from logically related hypotheses.

Therefore in summary, to compare multiple classification algorithms over mul-
tiple data sets, the first step is to perform an omnibus test. The recommended
omnibus test (given L is large, i.e. L ≥ 5) is the Iman-Davenport test. If the
associated null hypothesis is rejected, an all pairwise post-hoc test is performed
in order to compare all the algorithms on a pairwise basis. The Shaffer static
test is the recommended pairwise post-hoc test, since it is a simple test with
high power.

7.3 An Evaluation of Random Forest
Comparative Studies

In this section, as part of the meta-analysis, the existing research on random
forests is evaluated with regard to the recommended experimental design and
methodology for comparative studies discussed in the previous section.

7.3.1 An Evaluation of Performance Measure Selection

It has already been mentioned that misclassification error and classification
accuracy are considered inappropriate performance measures, unless the data
set on which the performance is recorded, is well balanced (Provost et al.,
1998). Since in practice the latter case is likely to occur less frequently, al-
ternative measures are mostly preferred. However, all of the collected papers
in the meta-analysis mainly made use of classification error or accuracy. To
be fair, this observation is not unique to research on random forests. Demšar
(2006) studied 157 papers that were accepted to the International Conference
on Machine Learning from 1999 to 2003. Focusing on comparative studies, on
average 75.8% of the papers included accuracy as performance measure, while
66.6% of the papers made use of accuracy exclusively.
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7.3.2 An Evaluation of Performance Estimation

In Figure 7.4, boxplots of the error rates reported for Forest-RI in the meta-
analysis papers are shown for the ten most popular data sets.2
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Figure 7.4: Reported error rates for Forest-RI for the ten most popular data
sets in the meta-analysis papers.

The picture presented is one of a fair amount of variability, given that the same
algorithm was used on the same data set in each case. Presumably much of the
variation is due to differences in parameter tuning. Gross outliers are observed
in the breast cancer and glass data sets and could possibly be attributed to
human error during the reporting of results.

To investigate the variability of the error rates reported for Forest-RI in a
more rigorous manner, the following strategy was used. The first step was to
consider all combinations of ten data sets selected from the top fifteen most
popular data sets in the meta-analysis papers. Thereafter, the combination of
ten data sets corresponding to the largest number of papers that reported error
rates for Forest-RI was found. This resulted in the data set combination that
included the sonar, glass, pima, vehicle, ionosphere, letters, german credit,
votes, waveform and vowel data sets that were found in four different papers
(Breiman, 2001a; Cutler and Zhao, 2001; Robnik-Šikonja, 2004; Rodriguez
et al., 2006), each of which reported an error rate for Forest-RI for each data
set. The reported Forest-RI performance (in each paper) was treated as the
performance of a “unique” algorithm, and a comparison was made using an

2Details regarding benchmark data sets mentioned in this section can be found in Ap-
pendix B.3.
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omnibus test. Therefore, the null hypothesis was that there is no difference in
the reported error rates for the Forest-RI’s across different papers.

The Iman-Davenport test resulted in a p-value equal to 0.0407, which with
an α = 0.05, rejected the null hypothesis. However, only four “algorithms”
were compared. Hence the Friedman aligned ranks test was also conducted
and resulted in a p-value = 0.0217 (more evidence against H0). Lastly, Figure
7.4 pointed towards possible intrinsic differences in the difficulty presented be-
tween data sets, so the Quade test (which attempts to take these differences
into account) was also used. This yielded a p-value equal to 0.0431. Thus, ir-
respective of which omnibus test was used, a statistically significant difference
was detected in the reported error rates for Forest-RI on the same collection
of data sets across the four different papers.

7.3.3 An Evaluation of Comparison Methods

In Figure 7.5, the methods used to compare the various algorithms in the pa-
pers included in the meta-analysis are depicted.
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Figure 7.5: Methods used to compare different algorithms over multiple data
sets in the papers considered for the meta-analysis.

The most common method (which is used in 56% of the papers) is simple diff,
where differences in performance are simply taken at face value. The algorithm
outperforming the rest is declared to be the best, without testing statistical
significance. After simple diff, the paired t-test is also popular. Although the
paired t-test does at least provide some measure of statistical significance, it
does not control the family-wise error. Therefore, from a paired t-test, a state-
ment such as that Algorithm A outperformed Algorithm B in all data sets and
in all comparisons considered, is erroneous. Such statements can however be
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found in many papers.3

To ascertain to what extent the conclusions from random forest compara-
tive studies would change if statistical tests where performed, the following
experiment was performed. Using the reported accuracy from each paper, an
appropriate omnibus test (Iman-Davenport) was conducted. All of the statis-
tical tests were performed using the R package scmamp (Calvo and Santafé,
2015). The results are shown in Figure 7.6.
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Figure 7.6: Omnibus and post-hoc test p-values from each paper considered
for the meta-analysis. All p-values were computed using the reported accuracy
from each paper.

Each dark green bar represents the p-value obtained from the omnibus test
corresponding to a particular paper (the authors and paper titles are omitted,
instead numbers are used to represent each paper). The dashed red line rep-
resents the significance level α = 0.05. In Figure 7.6 it is seen that in fact
six papers report results leading to no significant difference to be detected
between any of the algorithms compared. Therefore in cases where the null
hypothesis was rejected by the omnibus test, a post-hoc test (the Finner test to
compare a control) was conducted, comparing (per paper) Forest-RI with all
other algorithms in the paper. The five light blue bars in Figure 7.6 represent
papers for which none of the compared algorithms were found to be signifi-
cantly different from Forest-RI, with a pairwise p-value for every comparison
to the control (Forest-RI) greater than 0.05. This means that in total, roughly
a third (11/34 = 32.4%) of the results from papers on random forests research

3In fact, even if the scenario is appropriate for using the t-test, Dietterich (1998) instead
recommends using the McNemar test since it has higher power.
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considered in the meta-analysis show no significant difference over and above
Breiman’s Forest-RI proposal.

While Breiman (2001a) was partly motivated to propose Forest-RI as a way
to improve bagging trees in order to be competitive with AdaBoost (Freund
and Schapire, 1995), the p-value for Breiman’s own paper (Breiman, 2001a),
using the Iman-Davenport test is 0.014 (which would not have rejected the null
hypothesis at α = 0.01). Furthermore, when performing the Finner post-hoc
test for a pairwise comparison between a control (Forest-RI) and the other
two algorithms in the paper, viz. AdaBoost and Forest-RC, the obtained
p-values were 0.746 and 0.0457 respectively. This means that although Forest-
RI outperformed Forest-RC, no statistically significant difference was actually
observed with regard to AdaBoost. However, Forest-RI is clearly a useful con-
tribution, for which the above remarks illustrate that improved performance
on benchmark data sets should not be the only criterion employed when novel
algorithms are being compared.

7.3.4 An Evaluation of Reproducibility

It has been alluded to in Chapter 1 that an increasingly important aspect of
modern research is reproducibility (Peng, 2011). Research can be made re-
producible by sharing the data and the associated code used to perform the
analysis. Most of the benchmark data sets used in random forests research is
easily obtainable via the UCI machine learning repository (Blake and Merz,
1998). This is an essential step towards increasing the number of reproducible
comparative studies. However, as already discussed, the software and algo-
rithm implementations are not always made available. To somewhat gauge
the impact of actually having access to an implementation of a particular al-
gorithm, Figure 7.7 shows the top (eleven) most popular algorithms (in terms
of the number of papers in which the algorithm was compared) for the papers
considered in the meta-analysis.

The number of times that an algorithm appears in the literature is of course
dependent on when it was proposed, and/or on how substantial the proposal
was, given the state of the field at that particular time and thereafter. How-
ever, it is interesting to note that the top five and in total seven out of the
eleven most popular algorithms have an R package directly associated with
it. The availability of software/code to implement algorithms seems to play
a pertinent role in determining which algorithms are included in subsequent
comparative studies. The main issue with this is that biases might exist at the
outset of comparative studies, stemming purely from software availability.
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Figure 7.7: Popularity of algorithms in the meta-analysis papers, colour coded
according to the availability of an implementation in R.

7.4 Comparing Classification Performance
In Section 7.1, the following question was posed: to what extent can it be
established that a certain random forest is superior to others in terms of clas-
sification performance? This section is devoted to an attempt at answering the
above question using the data collected in the meta-analysis. Before the re-
sults are presented, further comments and justifications for the meta-analysis
are given with respect to the insights gained in the previous section.

• Performance Measures: Using data collected from academic papers
imposes some restrictions on the way a comparison can be conducted.
This means that the performance measure in the comparison is restricted
to be classification accuracy (or equivalently, error) since this is the most
commonly used performance measure in all of the papers considered.

• Performance Estimation: In the meta-analysis the performance of
each algorithm will be averaged across the different papers in which the
algorithm appeared, therefore reducing some of the variability resulting
from different experimental designs. For example, the performance of
Forest-RI on a particular data set will be averaged across all the papers
that tested Forest-RI on that data set.

• Comparison Methods: As discussed in the previous section, more
appropriate comparisons by means of omnibus and post-hoc statistical
tests based on the reported accuracy rates are feasible in a meta-analysis.

• Reproducibility: In the meta-analysis, by using results in papers, an
implementation of each algorithm is not required. This effectively re-
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moves the bias that could exist when only a subset of algorithms are
compared due to software being unavailable.

Following Demšar (2006), the only assumption in the meta-analysis, made to
ensure that performance measures are commensurable, is that they are “re-
liable”. Here, reliability refers to use of an appropriate estimation method,
which includes a sufficient number of repetitions and/or resampling. In ad-
dition, it is preferable that across different papers, the data are split in an
identical fashion. However, since each researcher is ultimately attempting to
estimate the same quantity (the generalisation performance), a violation of
this assumption is not seen as detrimental to the analysis. The various es-
timation methods and whether they were deemed reliable or not, is given in
Figure 7.8. On the x-axis a label of “15 runs 70/30” (say) refers to the number
of estimation runs, as well as the training and test split proportion, i.e. 70% of
the data were used for training and the remaining 30% were used for testing.
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Figure 7.8: Performance estimation method used in the papers considered in
the meta-analysis.

The most common approach in Figure 7.8 is ten-fold cross-validation, as was
recommended by Kohavi (1995). Furthermore, most papers employ many
runs of cross-validation, or of testing using a pre-specified train and test split
proportion. However, six papers were deemed to use “unreliable” estimation
methods. This was as a result of either too little detail given in the paper,
or of the number of repetitions/folds not being sufficient. These papers were
removed from the comparison. Furthermore, the ability to compare algorithms
across different papers is dependent on the same data set being used for both
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algorithms when their generalisation errors were estimated. In total, 134 al-
gorithms (of which 94 are different random forests) were fitted to 201 different
data sets. The question is, how does one compare all of these algorithms if the
degree to which every algorithm overlaps the others is not always satisfactory?

A possible approach is to search over all combinations of
(

201
D

)
data sets for

different subset sizes of D (say 10, 20 and 30), and to find the combination
corresponding to the largest number of random forests that indeed overlap.
However, the number of combinations is extremely large and even if this ap-
proach was computationally feasible, it would inevitably yield only a subset
of random forests to be compared. Therefore, an alternative approach was
considered.

The idea was to follow a two step procedure which firsts ranks the algorithms,
and then performs a pairwise comparison between the top five algorithms. In
the first step, a rank similar to the one in the Friedman test is computed for
each algorithm. However, the rank is adjusted to take into account the issue
of non-overlapping algorithms and data sets in the following ways:

1. The first adjustment involves dividing the rank for Algorithm l on data
set d by the total number of algorithms Ld that are compared on data set
d. The rationale behind this is that an algorithm ranked 2nd (say) on data
set d when compared to only two other algorithms should be considered
less superior in comparison to an algorithm also ranked 2nd compared
to (say) twenty other algorithms on another data set d′. Therefore,
multiplication by the weights cd = 1/Ld, d = 1, ..., D is referred to as the
competition factor adjustment which adjusts the ranks according to the
number of algorithms compared on each data set.

2. The second adjustment is to calculate a so-called estimation spread fac-
tor. This is defined as esl =

DC
l

D
∈ (0, 1], where DC

l is the size of the
complement of the collection of data sets over which the generalisation
performance of Algorithm l was estimated. Here the rationale is that
if Algorithm l is tested on more data sets, its average rank should bear
more weight.

Concretely, the rank for Algorithm l, adjusted for competition and estimation
spread, is computed as

R̄a
l· =

esl
Dl

Dl∑
d=1

cdrld, (7.4.1)

Stellenbosch University  https://scholar.sun.ac.za



CHAPTER 7. COMPARING RANDOM FORESTS 138

where Dl is the size of the collection of data sets over which the generalisation
performance of Algorithm l was estimated, and rld is the rank of Algorithm l on
data set d. Since the above adjustments result in numeric quantities that are
not as representative as traditional ranks, i.e. (1, 2, 3...), the adjusted ranks
are normalised to fall within the range [1, L]. Figure 7.9 displays the adjusted
ranks for the all-round (not specific to high dimensional settings) algorithms.
Due to the fact that many papers focus exclusively on the high-dimensional
setting, these papers were analysed separately.
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Figure 7.9: The adjusted ranks for all-round algorithms.

From Figure 7.9, the top five algorithms were rf (Forest-RI), rf-me-wv3, rf-
wv3, optimal-rf and optimal-rk-rf-me. The top position went to Forest-RI,
which is largely due to the algorithm’s high estimation spread factor. The lat-
ter four algorithms are all modifications and/or combinations of modifications
of Forest-RI, as proposed by Tripoliti et al. (2013). These contributions were
very briefly discussed in Chapter 6. Specifically, me refers to adding the step
of using a mixture of node impurity measures as was done in Robnik-Šikonja
(2004); rk adds the step of randomly selecting the subset size ξ ∈ {1, ..., p}
at each node; and wv3 implies adding a weighted voting strategy using the
value difference metric. The reader is referred to Wilson and Martinez (1997)
and Payne and Edwards (1998) for more detail. Lastly, the optimal refers to
adding a “search” step, where each time a tree is added to the ensemble, the
algorithm checks whether the accuracy increases, or whether the correlation
between the trees decreases. If this is not the case, it searches for the opti-
mal combination of trees among all the trees that have been constructed thus
far. The optimal combination of trees is the one associated with the largest
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increase in accuracy, or with the largest decrease in correlation.

The next step in the comparison procedure was to compare the top five algo-
rithms (identified in the previous step) on the largest possible overlap of data
sets. This was done using appropriate statistical tests. The top left panel of
Figure 7.10 provides an estimated kernel density plot based on the reported
accuracy of each algorithm on the overlapping data collection. The largest pos-
sible overlap of data sets was found to consist of 24 data sets.4 The densities
alone already hinted at a possible association between the algorithms. Little
difference was seen between rf-me-wv3 and rf-wv3, and between optimal-rf and
optimal-rk-rf-me. However, differences were indeed perceived between the two
previously mentioned groups and between Forest-RI and the other algorithms.
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Figure 7.10: Results from comparing the top five all-round algorithms: Top
left: Kernel (Gaussian) density estimates of accuracies. Top right: Adjusted p-
value matrix using the Shaffer static approach. Bottom: Pairwise comparisons
plot.

An Iman-Davenport omnibus test was performed and resulted in a p-value
4These included the alzheimers, balance, breast, ecoli, glass, hays-roth, hepatitis, iono-

sphere, iris, mammo-mass, musk, parkinsons, pima, post-opt, sonar, spectf heart, survival,
ta-eval, vehicle, votes, waveform, wdbc, wine and zoo data sets.
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equal to 3.08× 10−13 ≈ 0. Therefore, the null hypothesis that there is no dif-
ference between the top five algorithms can be rejected. Following the omnibus
test, the Shaffer static post-hoc test was conducted. The adjusted p-values for
pairwise comparisons are given in matrix form in the top right of Figure 7.10.
Each cell represents a pairwise comparison, with the value in each cell corre-
sponding to the adjusted p-value. For example, the top left cell is the pairwise
comparison between rf-wv3 and rf with an adjusted p-value of practically zero.
For ease of reading, the bottom of Figure 7.10 provides a quicker way to
discern the pairwise relationship between the algorithms. It summarises the
information in the matrix of adjusted p-values in the following way. Each block
represents an algorithm, and a connection between two blocks symbolises no
statistically significant difference between the two algorithms at a significance
level of 0.05. The value in each block is the average rank of the algorithm as
computed by the Friedman method (with the highest ranking algorithm shown
in green).

From the bottom panel in Figure 7.10, it is clear that Forest-RI performed
significantly worse than the other four algorithms. However, no significant
difference was detected between the algorithms optimal-rf, optimal-rk-rf-me
and rf-wv3. In addition, no significant difference was observed between rf-wv3
and rf-me-wv3. It is tempting to form a “chain” argument here, which states
that there is no difference between optimal-rf, optimal-rk-rf-me and rf-me-wv3,
linked by rf-wv3. Demšar (2006) warns against such a conclusion by saying
that having an algorithm belong to two different groups is considered “statisti-
cal nonsense”. This is because implicit within a comparison is the distribution
obtained from the difference in the observed data. Therefore, to conclude that
rf-wv3 belongs to both groups is equivalent to concluding that rf-wv3 belongs
to two different distributions at the same time. Instead, the correct statement
regarding rf-wv3 is that the experimental data is not sufficient to reach any
conclusion regarding group membership of rf-wv3 (Demšar, 2006).

Papers focusing on the high-dimensional setting were also analysed using the
above two step procedure. That is, the adjusted ranks were computed and the
top five algorithms were compared over a collection of maximum overlapping
data sets. The results are summarised in Figure 7.11.

The top five high-dimensional algorithms were found to be rf, xrf, svm-linear,
shrunkCent.l and grf-rf. The algorithm xrf is the modification to Forest-RI
with input variable weighting, as proposed by Nguyen et al. (2015). Svm-
linear denotes a support vector machine with a linear kernel, while shrunk-
Cent.l denotes a nearest shrunken centroid method5, proposed by Tibshirani

5Shrunken centroid methods are essentially regularised versions of LDA, see Hastie et al.
(2009) for details.
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Figure 7.11: Results from comparing the top five high-dimensional algorithms:
Top left: Adjusted ranks. Top right: Kernel (Gaussian) density estimates
of accuracies. Bottom left: Adjusted p-value matrix using the Shaffer static
approach. Bottom right: Pairwise comparisons plot.

et al. (2002) and used in Díaz-Uriarte and De Andres (2006). Lastly, the algo-
rithm grf-rf is the guided random forest which uses variable importance scores
as weights for input variables subsampled at each node (Deng and Runger,
2013). The overlapping collection of data sets (9 in total) on which the top five
algorithms could be compared, included adenocarcinoma, brain, breast.2.class,
breast.3.class, colon, leukemia, lymphoma, nci60, prostate and srbct. The esti-
mated densities presented in the top right of Figure 7.11 show little difference
between the algorithms, with xrf perhaps being the exception.

An Iman-Davenport test was performed and resulted in a p-value equal to
0.0014. Therefore, the null hypothesis that there is no difference between
the top five high-dimensional algorithms can be rejected. The bottom left
of Figure 7.11 provides the adjusted p-value matrix for pairwise comparisons
from a Shaffer static test, with the accompanied summary given in the bottom
right. No statistically significant pairwise differences were detected between
xrf, svm-linear, shrunkCent.l and grf-rf. The only algorithm that did not differ
from Forest-RI was grf-rf. However, as was the case with rf-wv3, there is not
sufficient evidence to reach a conclusion about the group membership of grf-rf.
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7.4.1 Comparing Oblique Random Rotation Forests

In this section, the performance of oblique random rotation forests is com-
pared using 12 data sets from the UCI machine learning repository.6 The
generalisation performance of each algorithm was estimated as follows. Using
a 70%/30% split, the data set was randomly divided into training and test
data. Using only the training data, ten-fold cross-validation was performed
in order to find the optimal tuning parameter values amongst a pre-specified
grid. Following this tuning step, the entire training set was then used to train
a classifier using the obtained parameter values. The performance of the al-
gorithm was estimated using the test data. This procedure was repeated ten
times, with the pre-specified parameter grids identical to those in Section 6.6.
The results are given in Table 7.5 in the form of tallied wins/ties for each per-
formance measure estimated. The final column provides the omnibus p-values
from a Friedman aligned ranks test, which was conducted for each performance
measure. More detailed results for each data set can be found in Appendix C.

Table 7.5: Win/Tie analysis of benchmark performances for random forests.

Measure Forest-RI RotF ORF-log ORRotF-log p-val
Accuracy 5/1 1/1 0/1 4/1 0.4779
Sensitivity 2/3 0/2 4/4 2/4 0.2480
Specificity 3/1 3/2 2/2 0/3 0.3892
Precision 4/1 2/2 1/2 1/3 0.4173
Kappa 5/1 1/1 0/1 4/1 0.7975
F-score 4/1 2/0 1/1 4/1 0.8437
H-measure 5/0 4/1 0/1 2/1 0.6996
Total 28/8 13/9 8/11 17/14

In Table 7.5, the Friedman aligned ranks test failed to reject the null hypothe-
sis of no difference for all of the performance measures considered. Therefore,
although the tallied wins/ties favoured Forest-RI (with ORRotF-log in sec-
ond place), no statistically significant differences were detected between the
performances of the algorithms compared.

7.5 Concluding Remarks
A meta-analysis of all (34) 2001 to 2015 papers that could be found in which
a novel random forest algorithm was proposed and compared to already ex-
isting random forests was conducted. By evaluating random forest compar-
ative studies and how they adhere to appropriate experimental design and

6The data sets used in the comparison were adult, bank, bank note, breast cancer, ger-
man credit, pima, popfailure, saheart, sonar, spam, votes and wdbc. For more details, cf.
Appendix C.
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methodology as is recommended in the literature, false discoveries along with
general concerns were identified. These include concerns regarding the per-
formance measures used in a comparison, the way in which these measures
were estimated, and the methodology used to compare multiple algorithms
over multiple data sets. In fact, even though it has been argued that classifica-
tion accuracy (or equivalently error) is an inappropriate performance measure,
unless the data set on which the performance is measured is well balanced,
all of the collected papers in the meta-analysis used accuracy or error as the
main measure for comparing algorithms. Furthermore, statistically significant
differences were detected between different papers where the same algorithm
was tested on the same data set, indicating the degree to which experimental
design can influence results. Finally, it is shown that in almost a third of the
results from random forest research papers, no significant improvement over
the performance of Forest-RI is actually found when comparison are made us-
ing appropriate statistical tests.

Using the reported accuracies in each paper, the random forest algorithms
found in the literature could be compared. This was done using a novel two
step procedure. The first step computed an adjusted rank for each algorithm,
with the second step performing appropriate statistical comparisons between
the top five ranked algorithms. A particular weighted voting strategy, the so-
called value difference metric showed considerable promise for improving the
performance of Forest-RI. However, Wilson and Martinez (1997) comment on
the high computational requirements of this distance metric. As an example,
Figure 7.12 shows the time taken to make predictions as a function of the num-
ber of test observations (left panel), and the number of input variables (right
panel), for a naive R implementation of rf-wv3, when compared to Forest-RI.
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Figure 7.12: Prediction time comparisons between Forest-RI and rf-wv3. Left:
Prediction time as a function of the number of test observations. Right: Pre-
diction time for twenty test observations for different sizes of the input space.

The time differences in Figure 7.12 are stark, even for a small number of ob-
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servations and/or input variables. In this regard, a recurring message seems to
be that, although classification performance can be measured using several dif-
ferent performance measures, estimated appropriately and compared following
the recommended statistical comparison methodology, it ultimately only serves
as an evaluation of one aspect of an algorithm. Classification performance can
however initiate interest, but an algorithm’s computational efficiency, scalabil-
ity, robustness, stability and level of interpretability remain important for its
overall success and widespread adoption.

In high-dimensional scenarios, variable weighting strategies proved success-
ful in improving the performance of Forest-RI. However, compared to other
approaches, such as support vector machines and shrunken nearest neighbours
methods, no statistically significant differences were detected.

Finally, oblique random rotation forests using logistic regression splits showed
no statistically significant improvement over Forest-RI, rotation forests, or
oblique random forests using logistic regression splits, when compared on 12
benchmark data sets. However, as previously mentioned, the framework allows
for different oblique splitting rules to be applied at each node, of which logistic
regression is only a special case. Therefore, other rules remain to be compared
and could potentially fair better.

In the next and final chapter, a summary of the findings in the text is provided,
along with suggestions for future work.
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Chapter 8

Conclusion

This thesis set out to investigate random forests for classification. More specif-
ically, three main focal points were of interest, viz. to provide an overview of
earlier and later contributions and to conceptualise their connections, to anal-
yse the relative performances of the most important random forest algorithms,
and if possible, to investigate heuristically motivated novel random forest pro-
posals. In this final chapter of the thesis, a summary is provided, along with
thoughts and interpretations of important aspects of the text. Subsequently,
some suggestions are made regarding areas of potential interest in future re-
search on random forests for classification.

8.1 Summary
In Chapter 2, classification trees were discussed, together with the CART
algorithm for recursive binary partitioning. Trees were shown to be sensitive
to changes in the data, which in turn caused them to have high variance. As a
way of mitigating the shortcomings of single tree classifiers, ensemble learning
schemes were discussed in Chapter 3. In order to create diverse ensembles
and thereby reducing variance, an ensemble learning algorithm can either rely
on deterministic adaptation strategies, or on different ways of inducing ran-
domness into the base classifiers. Random forests, which are discussed in
Chapter 4, are ensemble learning algorithms that exclusively make use of
independently constructed randomised trees as base learners. Their generali-
sation error is bounded by the strength of each tree in the ensemble, as well as
by the correlation between the trees. By increasing the former, and reducing
the latter, an improved ensemble classifier can be obtained.

An investigation of random forests from a bias-variance perspective for classi-
fication followed in Chapter 5. A decomposition of the expected prediction
error into bias and variance components is useful when investigating the ac-
curacy of a predictor. However, in classification such decompositions are not
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as straightforward as is the case for squared-error loss in regression. Hence
various definitions of bias and variance for classification were discussed. By
means of an empirical study of bias and variance, and their respective effects
on generalisation performance, it was found that the mechanisms employed
by random forests, viz. randomisation and aggregation, tend to decrease both
the variance and its effect. Furthermore, the bias and systematic effect either
remained unchanged, or were also reduced.

Chapter 6 provided an overview of the literature regarding novel random
forest proposals. A taxonomy of the most important contributions was con-
structed, by way of which each random forest can be characterised in terms
of its source(s) of randomisation and in terms of deterministic modifications
used. Using this framework, new modifications and/or combinations of pre-
viously explored mechanisms can relatively easily be conceptualised. For the
purpose of constructing novel algorithms, the use of bias-variance analyses
was proposed as a way to find potentially useful combinations of random for-
est mechanisms. Following the bias-variance analysis approach, based on the
complementary performances of rotation forests and oblique random forests,
oblique random rotation forests were proposed. Using logistic regression to
obtain the splits, the accuracy of this novel proposal was however not entirely
satisfactory.

In Chapter 7, a meta-analysis of research on random forests was conducted,
followed by a comparative study based on the reported results from each pa-
per. A comparison of multiple algorithms over multiple data sets require sound
experimental design and appropriate methodology. By way of a meta-analysis
of all the papers that could be found in which a novel random forest algorithm
was proposed and compared to already existing random forest algorithms, an
evaluation of the state of random forests research was performed. The results
revealed comparative studies to predominantly use accuracy to measure algo-
rithm performance. This is despite the fact that the setting in which accuracy
is appropriate does not always hold. Furthermore, statistically significant dif-
ferences were detected between different papers in which the same algorithm
was evaluated on the same data set. This points to a possible need for stan-
dardisation of experimental designs for comparative studies in classification
contexts. It was also shown that no significant improvements over the perfor-
mance of Forest-RI can actually be found in almost a third of the results from
random forests research papers when comparisons are made using appropriate
statistical tests.

Using the reported accuracies in each paper, the different random forests could
be compared. The approach taken in the text was a two step procedure. In the
first step, an adjusted rank was computed for each algorithm, where the rank
according to the Friedman method was adjusted for the level of competition
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and estimation spread. Once the algorithms were ranked, the top five were
compared using appropriate statistical tests. The results showed the value
difference metric weighted voting strategy to be particularly useful, however
it comes at a high price in terms of computation. In the high-dimensional set-
ting, variable weighting proved useful for Forest-RI, but did not significantly
outperform all the other approaches. Finally, oblique random rotation forests
using logistic regression splits showed no statistically significant improvement
over Forest-RI, rotation forests, or oblique random forests using logistic regres-
sion splits, when compared on 12 benchmark data sets.

Ultimately however, even if classification performance can be measured us-
ing several different performance measures, estimated appropriately and com-
pared following the recommended statistical comparison methodology, it only
serves as an evaluation of one aspect of an algorithm. Impressive classification
performance can surely initiate interest in a particular approach, but an al-
gorithm’s computational efficiency, scalability, robustness, stability and level
of interpretability remain important for its widespread adoption and overall
success.

8.2 Avenues for Further Research
The more heuristic-based approach of using a bias-variance analysis to find
sensible suggestions for novel classification algorithms, proposed in this thesis,
is not limited to random forests. This approach can be applied in the context
of any class of algorithms. Also the two-step procedure used to compare al-
gorithms is completely general purpose, given that the papers considered in
a meta-analysis all report performances using the same performance measure.
Therefore both these analyses can be ported to research on other learning al-
gorithms for classification.

Furthermore, it seems that more insight into research on random forests can
still be gained by means of additional mining of the meta-analysis data set,
which is publicly available (cf. Section 1.2).

Finally, the proposed framework for oblique random rotation forests can fur-
ther be explored. In this regard, investigation of different rules for node split-
ting, and the effect that splitting rules have on variable importance measures
and on proximity plots may be of interest. With such further evaluations in
mind, the RRotF package in R has been made available. For more detail the
reader is referred to Section 1.2 and Appendix D.1.
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Appendix A

Bias-Variance Analysis of Oblique
Random Rotation Forests

The results for the bias-variance analysis of oblique random rotation forests
are given in Table A.1.

Table A.1: Estimated bias, variance, systematic and variance effects for oblique
random rotation forests.

Name s Data sp Quantity Forest-RI ERF RotF ORF-log ORRotF-log

Sim 1 mvnorm
p = 15,
ρ = 0.9

Error 0.036 0.036 0.034 0.035 0.035
Bayes Error 0.028 0.028 0.028 0.028 0.028
Systematic Effect 0.003 0.001 0 0.003 0.003
Variance Effect 0.005 0.007 0.006 0.004 0.004
Bias 0.005 0.003 0.002 0.005 0.005
Variance 0.016 0.017 0.014 0.012 0.011

Sim 2 mvnorm
p = 15,
ρ = 0.5

Error 0.060 0.058 0.050 0.055 0.052
Bayes Error 0.040 0.040 0.040 0.040 0.040
Systematic Effect 0.010 0.006 0.004 0.009 0.008
Variance Effect 0.010 0.012 0.006 0.006 0.004
Bias 0.024 0.012 0.006 0.015 0.010
Variance 0.032 0.032 0.019 0.022 0.018

Sim 3 mvnorm
p = 15,
ρ = 0.1

Error 0.126 0.120 0.109 0.107 0.103
Bayes Error 0.078 0.078 0.078 0.078 0.078
Systematic Effect 0.021 0.009 0.011 0.014 0.013
Variance Effect 0.027 0.033 0.020 0.015 0.012
Bias 0.029 0.015 0.015 0.024 0.025
Variance 0.080 0.076 0.057 0.050 0.044

Sim 4 mvnorm
p = 15,
ρ = 0

Error 0.214 0.209 0.167 0.176 0.167
Bayes Error 0.141 0.141 0.141 0.141 0.141
Systematic Effect 0.004 0 0 0.009 0
Variance Effect 0.069 0.068 0.028 0.026 0.032
Bias 0.044 0.026 0.026 0.053 0.040
Variance 0.159 0.159 0.094 0.100 0.090
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Name s Data sp Quantity Forest-RI ERF RotF ORF-log ORRotF-log

Sim 5

Mease-
Wyner
(2008)
p = 30,
J = 2

Error 0.213 0.201 0.197 0.245 0.252
Bayes Error 0.147 0.147 0.147 0.147 0.147
Systematic Effect 0.006 0.009 0.008 0.041 0.056
Variance Effect 0.060 0.045 0.042 0.057 0.049
Bias 0.006 0.009 0.008 0.065 0.082
Variance 0.095 0.076 0.071 0.130 0.138

Sim 6

Mease-
Wyner
(2008)
p = 30,
J = 5

Error 0.272 0.264 0.244 0.272 0.270
Bayes Error 0.143 0.143 0.143 0.143 0.143
Systematic Effect 0.015 0.017 0.008 0.082 0.081
Variance Effect 0.114 0.104 0.093 0.047 0.046
Bias 0.029 0.029 0.020 0.110 0.109
Variance 0.181 0.170 0.141 0.156 0.156

Sim 7

Mease-
Wyner
(2008)
p = 30,
J = 15

Error 0.302 0.301 0.260 0.262 0.261
Bayes Error 0.136 0.136 0.136 0.136 0.136
Systematic Effect 0.031 0.024 0.014 0.057 0.059
Variance Effect 0.135 0.141 0.110 0.069 0.066
Bias 0.037 0.040 0.022 0.083 0.077
Variance 0.226 0.225 0.170 0.158 0.156

Sim 8

Mease-
Wyner
(2008)
p = 30,
J = 20

Error 0.310 0.306 0.266 0.273 0.270
Bayes Error 0.134 0.134 0.134 0.134 0.134
Systematic Effect 0.033 0.035 0.020 0.083 0.077
Variance Effect 0.143 0.137 0.112 0.056 0.059
Bias 0.049 0.047 0.028 0.109 0.099
Variance 0.240 0.235 0.180 0.168 0.166

Sim 9

Two
-norm
p = 20,
K = 2

Error 0.032 0.030 0.029 0.029 0.029
Bayes Error 0.024 0.024 0.024 0.024 0.024
Systematic Effect 0.001 0.003 0.001 0.003 0.005
Variance Effect 0.007 0.003 0.004 0.002 -0.0005
Bias 0.013 0.007 0.007 0.011 0.011
Variance 0.016 0.016 0.015 0.011 0.010

Sim 10
Three
-norm
p = 20,
K = 2

Error 0.156 0.146 0.145 0.154 0.156
Bayes Error 0.085 0.085 0.085 0.085 0.085
Systematic Effect 0.041 0.036 0.040 0.055 0.058
Variance Effect 0.030 0.025 0.020 0.014 0.013
Bias 0.079 0.070 0.078 0.091 0.100
Variance 0.090 0.084 0.068 0.062 0.061

Sim 11
Ring
-norm
p = 20,
K = 2

Error 0.041 0.034 0.059 0.051 0.049
Bayes Error 0.018 0.018 0.018 0.018 0.018
Systematic Effect 0.008 0.008 0.012 0.017 0.019
Variance Effect 0.015 0.008 0.029 0.016 0.012
Bias 0.022 0.018 0.026 0.029 0.031
Variance 0.029 0.021 0.044 0.032 0.029

Stellenbosch University  https://scholar.sun.ac.za



Appendix B

Meta-Analysis

This section contains the details of the data collected for the meta-analysis
conducted in Chapter 7.

B.1 Papers Considered
Table B.1 provides the list of papers from which reported results were collected
and analysed.

Table B.1: Papers considered in the meta-analysis.

Author(s) Paper title

Breiman (2001a) Random Forest
Latinne et al. (2001) Limiting the Number of Trees in Random Forests
Cutler and Zhao (2001) PERT - Perfect Random Tree Ensembles
Robnik-Šikonja (2004) Improving Random Forests
Geurts et al. (2006) Extremely Randomized Trees
Rodriguez et al. (2006) Rotation Forest
Tsymbal et al. (2006) Dynamic Integration with Random Forests
Lin and Jeon (2006) Random Forests and Adaptive Nearest Neighbors
Tan and Dowe (2006) Decision Forests with Oblique Decision Trees
Díaz-Uriarte and De Andres (2006) Gene Selection and Classification of Microarray Data using Random Forests
Hu et al. (2006) Maximum Diversified Multiple Decision Tree Algorithm for Microarray Data
Bostrom (2007) Estimating Class Probabilities in Random Forests
Amaratunga et al. (2008) Enriched Random Forests
Boinee et al. (2008) Meta Random Forests
Zhang and Zhang (2008) RotBoost: A technique for Combining Rotation Forest and AdaBoost
Bernard et al. (2009) On the Selection of Decision Trees in Random Forests
Saffari et al. (2009) On-line Random Forests
Menze et al. (2011) On Oblique Random Forests
Kim et al. (2011) A Weight-adjusted Voting Algorithm for Ensembles of Classifiers
Deng and Runger (2012) Feature Selection via Regularised Trees
Genuer et al. (2010) Variable Selection using Random Forests
Xu et al. (2012) Classifying Very High-dimensional Data with Random Forests Built from Small Subspaces
Bader-El-Den and Gaber (2012) GARF: Towards Self-optimised Random Forests
Deng and Runger (2013) Gene Selection with Guided Regularised Random Forest
Deng (2013) Guided Random Forest in the RRF package
Tripoliti et al. (2013) Modifications of the Construction and Voting mechanisms of the Random Forest Algorithm
Ye et al. (2013) Stratified Sampling for Feature Subspace Selection in Random Forests for High-dimensional Data
Deng (2014) Interpreting Tree Ensembles with inTrees
Zhang and Suganthan (2014) Random Forests with Ensemble of Feature Spaces
Fawagreh et al. (2015) On Extreme Pruning of Random Forest Ensembles
Welbl (2014) Casting Random Forests as Artificial Neural Networks (and Profiting from it)
Nguyen et al. (2015) Unbiased Feature Selection in Learning Random Forests for High-dimensional Data
Blaser and Fryzlewicz (2015) Random Rotation Ensembles
Seyedhosseini and Tasdizen (2015) Disjunctive Normal Random Forests
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B.2 Meta-Analysis Data Set
Table B.2 gives a description of each variable in the data set compiled from
reported results of random forest comparison studies used in the meta-analysis.

Table B.2: Variables in the meta-analysis data set.

Variable Description

paper_title Title of the paper.
author Author(s) of the paper.
year Year the paper was published.
journal Journal the paper appeared in.
dataset Data set name.
dataset_size Total size of the data set.
num_inputs Number of input variables.
classes Number of classes for the response.
train_size Size of the training set.
test_size Size of the test set size.
method Algorithm used to make predictions.
situation Focus of the paper, high-dimensional setting or all-round.
error Reported error rate for the algorithm on the data set.
error_sd Reported standard deviation of the error.
tuning Method used to tune the algorithm.
ntree Ensemble size, if the method is an ensemble method.
mtry Variable subsample size, if a Random Forests is used.
evaluation Method used to estimate generalisation performance.
comparison Method used to compare algorithms.

B.3 Benchmark Data Sets
Table B.3 provides the characteristics of popular benchmark data sets from
the UCI machine learning repository.

Table B.3: Characteristics of popular benchmark data sets from the UCI ma-
chine learning repository.

Dataset Size Number of inputs Classes

adenocarcinoma 76 9868 2
alzheimers 108 14 2
balance 625 4 3
brain 42 5597 5
breast 106 10 6
breast.2.class 78 4869 2
breast.3.class 96 4869 3
colon 62 2000 2
ecoli 336 8 8
german credit 1000 20 2
glass 214 10 7
hays-roth 160 5 3
hepatitis 155 19 2
ionosphere 351 34 2
iris 150 4 3
letters 20000 16 26
leukemia 38 3051 2
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Dataset Size Number of inputs Classes

lymphoma 62 4026 3
mammo-mass 961 5 2
musk 6598 168 2
nci60 61 5244 8
parkinsons 197 23 2
pima 768 8 2
post-opt 90 8 3
prostate 102 6033 2
sonar 208 60 2
spect heart 267 22 2
srbct 63 2308 4
survival 306 3 2
ta-eval 151 5 3
vehicle 946 18 4
votes 435 16 2
vowel 990 10 11
waveform 5000 40 3
wdbc 569 30 2
wine 178 13 3
zoo 101 16 7

B.4 Detail Regarding Algorithms
In Table B.4, a list is provided of all the algorithms in the meta-analysis, as
well as the corresponding paper in which the algorithm appeared.

Table B.4: A list of algorithms in the meta-analysis, along with the paper in
which each algorithm appeared.

Algorithm Appeared In

adaboost Breiman (2001a)
adaboost Lin and Jeon (2006)
adaboost Tan and Dowe (2006)
adaboost Cutler and Zhao (2001)
adaboost Menze et al. (2011)
adaboost Bader-el-den and Gaber (2012)
adaboost Hu et al. (2006)
adaboost Zhang and Zhang (2008)
adamenn Lin and Jeon (2006)
ann Seyedhosseini and Tasdizen (2015)
ann Welbl (2014)
ann-rf-relaxed Welbl (2014)
ann-rf-sparse Welbl (2014)
ann-rf-vote Welbl (2014)
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Algorithm Appeared In

bag-rs Latinne et al. (2001)
baggedRF Boinee et al. (2008)
bagging Geurts et al. (2006)
bagging Rodriguez et al. (2006)
bagging Latinne et al. (2001)
bagging Hu et al. (2006)
bagging Kim et al. (2011)
bagging Zhang and Zhang (2008)
bagging-prune Rodriguez et al. (2006)
boostedRF Boinee et al. (2008)
boosting Rodriguez et al. (2006)
boosting Seyedhosseini and Tasdizen (2015)
boosting Kim et al. (2011)
boosting-prune Rodriguez et al. (2006)
CFS-select Deng and Runger (2012)
club-drf Fawagreh et al. (2014)
clustering-rf Tripoliti et al. (2013)
cs4 Hu et al. (2006)
dann Lin and Jeon (2006)
dlda Diaz-Uriarte and Andres (2006)
dndt Seyedhosseini and Tasdizen (2015)
dnrf Seyedhosseini and Tasdizen (2015)
enrichRF(chi) Ye et al. (2013)
enrichRF(Ct) Amaratunga et al. (2008)
enrichRF(lda) Ye et al. (2013)
enrichRF(t) Amaratunga et al. (2008)
enrichRFcv(Ct) Amaratunga et al. (2008)
enrichRFcv(t) Amaratunga et al. (2008)
erf Geurts et al. (2006)
erf Ye et al. (2013)
erf Blaser and Fryzlewicz (2015)
erf-boot Geurts et al. (2006)
FCBF-select Deng and Runger (2012)
garf Bader-el-den and Gaber (2012)
gd-MCboost Seyedhosseini and Tasdizen (2015)
grf Deng (2013)
grf-rf Deng (2013)
grrf Deng (2013)
grrf Nguyen et al. (2015)
grrf-rf Deng (2013)
grrf(0.1)-rf Deng and Runger (2013)
grrf(0.2)-rf Deng and Runger (2013)
inTreeStel Deng (2014)
knn Geurts et al. (2006)
knn Diaz-Uriarte and Andres (2006)
knn Menze et al. (2011)
lasso-rf Deng and Runger (2013)
lasso-rf Nguyen et al. (2015)
lda-rf Zhang and Suganthan (2014)
logitboost Lin and Jeon (2006)
mdmt Hu et al. (2006)
mml-rf Tan and Dowe (2006)
mod-sbs-rf Tripoliti et al. (2013)
mod-sfs-rf Tripoliti et al. (2013)
multiBoost Zhang and Zhang (2008)
nnVarSel Diaz-Uriarte and Andres (2006)
no info Diaz-Uriarte and Andres (2006)

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX B. META-ANALYSIS 155

Algorithm Appeared In

online-adaboost Saffari et al. (2009)
online-logitboost Saffari et al. (2009)
online-rf Saffari et al. (2009)
online-savage Saffari et al. (2009)
optimal-rf Tripoliti et al. (2013)
optimal-rf-me Tripoliti et al. (2013)
optimal-rk-rf Tripoliti et al. (2013)
optimal-rk-rf-me Tripoliti et al. (2013)
orf-lda Menze et al. (2011)
orf-log Seyedhosseini and Tasdizen (2015)
orf-ridge Menze et al. (2011)
orf-ridge Seyedhosseini and Tasdizen (2015)
orf-rnd Breiman (2001a)
orf-rnd Lin and Jeon (2006)
orf-rnd Menze et al. (2011)
orf-rnd Ye et al. (2013)
orf-rnd-k4 Lin and Jeon (2006)
orf-svm Seyedhosseini and Tasdizen (2015)
pca-rf Zhang and Suganthan (2014)
pert Cutler and Zhao (2001)
rboost-select Deng and Runger (2012)
rf Breiman (2001a)
rf Geurts et al. (2006)
rf Deng and Runger (2012)
rf Deng and Runger (2013)
rf Rodriguez et al. (2006)
rf Fawagreh et al. (2014)
rf Genuer et al. (2012)
rf Xu et al. (2012)
rf Latinne et al. (2001)
rf Robnik-Sikonja (2004)
rf Tsymbal et al. (2006)
rf Tan and Dowe (2006)
rf Cutler and Zhao (2001)
rf Diaz-Uriarte and Andres (2006)
rf Amaratunga et al. (2008)
rf Saffari et al. (2009)
rf Boinee et al. (2008)
rf Menze et al. (2011)
rf Bader-el-den and Gaber (2012)
rf Deng (2013)
rf Tripoliti et al. (2013)
rf Bostrom (2007)
rf Hu et al. (2006)
rf Ye et al. (2013)
rf Bernard et al. (2008)
rf Zhang and Suganthan (2014)
rf Nguyen et al. (2015)
rf Blaser and Fryzlewicz (2015)
rf Seyedhosseini and Tasdizen (2015)
rf Welbl (2014)
rf Kim et al. (2011)
rf-5est Robnik-Sikonja (2004)
rf-cs Xu et al. (2012)
rf-DVSheom Tsymbal et al. (2006)
rf-DVSheomw Tsymbal et al. (2006)
rf-DVSrf Tsymbal et al. (2006)
rf-DVSrfw Tsymbal et al. (2006)
rf-ensemble Zhang and Suganthan (2014)
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Algorithm Appeared In

rf-igr Xu et al. (2012)
rf-lp Bostrom (2007)
rf-m1 Bostrom (2007)
rf-m2 Bostrom (2007)
rf-me Tripoliti et al. (2013)
rf-me-wv1 Tripoliti et al. (2013)
rf-me-wv3 Tripoliti et al. (2013)
rf-mk Bostrom (2007)
rf-probVote Bostrom (2007)
rf-pvalFilter Amaratunga et al. (2008)
rf-rcp-k1 Lin and Jeon (2006)
rf-rcp-k4 Lin and Jeon (2006)
rf-reliefF Tripoliti et al. (2013)
rf-rnd Menze et al. (2011)
rf-wv Robnik-Sikonja (2004)
rf-wv-5est Robnik-Sikonja (2004)
rf-wv1 Tripoliti et al. (2013)
rf-wv2 Tripoliti et al. (2013)
rf-wv3 Tripoliti et al. (2013)
rf-wv4 Tripoliti et al. (2013)
rf-wv5 Tripoliti et al. (2013)
rf-wv6 Tripoliti et al. (2013)
rk-rf Tripoliti et al. (2013)
rk-rf-me Tripoliti et al. (2013)
rk-rf-me-wv1 Tripoliti et al. (2013)
rk-rf-wv1 Tripoliti et al. (2013)
rotationForest Rodriguez et al. (2006)
rotationForest Tripoliti et al. (2013)
rotationForest Seyedhosseini and Tasdizen (2015)
rotationForest Zhang and Zhang (2008)
rotationForest-prune Rodriguez et al. (2006)
RotBoost Zhang and Zhang (2008)
rr-erf Blaser and Fryzlewicz (2015)
rr-rf Blaser and Fryzlewicz (2015)
rrf Deng and Runger (2012)
rrf(0.9)-rf Deng and Runger (2013)
rrf(1)-rf Deng and Runger (2013)
rs Geurts et al. (2006)
rs Latinne et al. (2001)
sbs-rf Tripoliti et al. (2013)
sbs-rf Bernard et al. (2008)
sfs-rf Tripoliti et al. (2013)
sfs-rf Bernard et al. (2008)
shrunkCent.l Diaz-Uriarte and Andres (2006)
shrunkCent.s Diaz-Uriarte and Andres (2006)
soft tree Seyedhosseini and Tasdizen (2015)
space part Seyedhosseini and Tasdizen (2015)
srf Ye et al. (2013)
srf(chi) Ye et al. (2013)
srf(lda) Ye et al. (2013)
svm Bader-el-den and Gaber (2012)
svm-linear Diaz-Uriarte and Andres (2006)
svm-radial Menze et al. (2011)
svm-radial Seyedhosseini and Tasdizen (2015)
tree Geurts et al. (2006)
tree Rodriguez et al. (2006)
tree Seyedhosseini and Tasdizen (2015)
tree-c4.5 Latinne et al. (2001)
tree-c4.5 Bader-el-den and Gaber (2012)
tree-c4.5 Hu et al. (2006)
tree-cart Menze et al. (2011)
tree-cart Deng (2014)
tree-cart Kim et al. (2011)
tree-cart Zhang and Zhang (2008)
tree-prune Rodriguez et al. (2006)
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Algorithm Appeared In

varSelRF Deng and Runger (2013)
varSelRF Genuer et al. (2012)
varSelRF Nguyen et al. (2015)
varSelRF.se0 Diaz-Uriarte and Andres (2006)
varSelRF.se1 Diaz-Uriarte and Andres (2006)
varSelRFboot Amaratunga et al. (2008)
varSelRFcv Amaratunga et al. (2008)
wave Kim et al. (2011)
wsrf Nguyen et al. (2015)
xrf Nguyen et al. (2015)
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Appendix C

Benchmark Comparison of
Oblique Random Rotation Forests

Table C.1 provides the results for the comparison study of oblique random
rotation forests. Performances computed using the hmeasure R package.

Table C.1: Results of oblique random rotation forest comparison study

Data set PerfMeasure Forest-RI RotF ORF-log ORRotF-log

Adult
N = 32561,
p=14

Accuracy 0.865 0.844 0.847 0.849
Sensitivity 0.628 0.513 0.725 0.612
Specificity 0.940 0.950 0.886 0.924
Precision 0.770 0.764 0.668 0.719
Kappa 0.607 0.521 0.594 0.565
F-score 0.692 0.614 0.696 0.661
H-measure 0.524 0.477 0.521 0.510

Bank
N = 45211,
p=16

Accuracy 0.905 0.900 0.786 0.903
Sensitivity 0.409 0.376 0.830 0.356
Specificity 0.970 0.970 0.780 0.976
Precision 0.647 0.623 0.333 0.663
Kappa 0.454 0.418 0.370 0.415
F-score 0.501 0.469 0.476 0.463
H-measure 0.594 0.466 0.449 0.550

Bank
Note
N = 1372,
p=4

Accuracy 0.993 0.998 1 1
Sensitivity 1 1 1 1
Specificity 0.987 0.996 1 1
Precision 0.984 0.995 1 1
Kappa 0.985 0.995 1 1
F-score 0.992 0.997 1 1
H-measure 0.995 1 1 1

Breast
Cancer
N=683,
p=9

Accuracy 0.956 0.975 0.980 0.985
Sensitivity 0.958 0.972 0.972 0.986
Specificity 0.955 0.977 0.985 0.985
Precision 0.919 0.958 0.972 0.972
Kappa 0.904 0.946 0.957 0.968
F-score 0.938 0.965 0.972 0.979
H-measure 0.922 0.932 0.959 0.963
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Data set PerfMeasure Forest-RI RotF ORF-log ORRotF-log

Ger-
man
Credit
N=1000,
p=61

Accuracy 0.717 0.747 0.730 0.737
Sensitivity 0.475 0.938 0.971 0.962
Specificity 0.847 0.300 0.167 0.211
Precision 0.623 0.758 0.731 0.740
Kappa 0.341 0.283 0.177 0.216
F-score 0.539 0.838 0.834 0.836
H-measure 0.271 0.279 0.264 0.259

Pima
N=768,
p=8

Accuracy 0.787 0.752 0.735 0.730
Sensitivity 0.933 0.612 0.700 0.662
Specificity 0.444 0.827 0.753 0.767
Precision 0.797 0.653 0.602 0.602
Kappa 0.427 0.446 0.437 0.419
F-score 0.860 0.632 0.647 0.631
H-measure 0.322 0.393 0.318 0.324

Pop
Failure
N=540,
p=20

Accuracy 0.950 0.938 0.919 0.944
Sensitivity 1 1 1 1
Specificity 0.385 0.231 0 0.308
Precision 0.949 0.937 0.919 0.943
Kappa 0.535 0.355 0 0.450
F-score 0.974 0.967 0.958 0.970
H-measure 0.641 0.696 0.594 0.658

SA-
heart
N=462,
p=9

Accuracy 0.725 0.768 0.775 0.783
Sensitivity 0.542 0.458 0.542 0.542
Specificity 0.822 0.933 0.900 0.911
Precision 0.619 0.786 0.743 0.765
Kappa 0.375 0.434 0.471 0.486
F-score 0.578 0.579 0.627 0.634
H-measure 0.312 0.417 0.365 0.368

Sonar
N=208,
p=60

Accuracy 0.790 0.790 0.742 0.726
Sensitivity 0.690 0.690 0.793 0.759
Specificity 0.879 0.879 0.697 0.697
Precision 0.833 0.833 0.697 0.688
Kappa 0.574 0.574 0.486 0.453
F-score 0.755 0.755 0.742 0.721
H-measure 0.692 0.532 0.547 0.521

Spam
N=4601,
p=57

Accuracy 0.949 0.931 0.939 0.951
Sensitivity 0.908 0.875 0.871 0.910
Specificity 0.975 0.968 0.983 0.977
Precision 0.959 0.946 0.971 0.963
Kappa 0.891 0.854 0.870 0.896
F-score 0.933 0.909 0.918 0.936
H-measure 0.873 0.811 0.850 0.871

Votes
N=232,
p=16

Accuracy 0.986 0.942 0.928 0.928
Sensitivity 1 0.969 0.938 0.938
Specificity 0.973 0.919 0.919 0.919
Precision 0.970 0.912 0.909 0.909
Kappa 0.971 0.884 0.855 0.855
F-score 0.985 0.939 0.923 0.923
H-measure 0.957 0.830 0.856 0.861

wdbc
N=569,
p=31

Accuracy 0.959 0.971 0.971 0.976
Sensitivity 0.937 0.952 0.968 0.968
Specificity 0.972 0.981 0.972 0.981
Precision 0.952 0.968 0.953 0.968
Kappa 0.911 0.937 0.937 0.950
F-score 0.944 0.960 0.961 0.968
H-measure 0.925 0.912 0.944 0.956
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Appendix D

Source Code

D.1 Chapter 1 Code: Random Rotation Forest
R Package

R Code D.1: Source Code: Random Rotation Forest R Package
1 ##############################################
2 # Chapter 1 : Random Rotation Forest R package
3 ##############################################
4
5 # Check f o r miss ing packages and i n s t a l l i f mis s ing
6 l i s t . o f . packages <− c ( " dev too l s " , " ca r e t " , " randomForest" , "obliqueRF" )
7 new . packages <− l i s t . o f . packages [ ! ( l i s t . o f . packages %in% i n s t a l l e d . packages ( )

[ , "Package" ] ) ]
8 i f ( l ength (new . packages ) ) i n s t a l l . packages (new . packages )
9

10 # load r equ i r ed packages
11 load <− l app ly ( l i s t . o f . packages , r equ i r e , cha rac t e r . only = TRUE)
12
13 # download and load random ro t a t i on f o r e s t s package
14 i f ( "RRotF" %in% i n s t a l l e d . packages ( ) [ , "Package" ] == FALSE) {
15 l i b r a r y ( dev too l s )
16 # Github p r o f i l e : Arnu Pre to r i u s
17 i n s t a l l_github ( " a rnupre to r iu s /RRotF" )
18 }
19 l i b r a r y (RRotF)
20
21 ################################
22 # Random Rotation Forest (RRotF)
23 ################################
24 # The RRotF func t i on ex t en s i v e l y makes use o f code from the Rotat ionForest
25 # R package .
26 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 RRotF <− f unc t i on (x , y , K = round ( nco l ( x ) / 3 , 0) , L = 10 , mtry=f l o o r ( sq r t ( nco l

( x ) ) ) , model=" log " , . . . ) {
28
29 r e qu i r e ( randomForest )
30 r e qu i r e ( obliqueRF )
31 x <− data . frame ( sapply (x , as . numeric ) )
32 y <− f a c t o r ( as . numeric ( y )−1)
33 whi le ( nco l ( x )%%K != 0) {
34 K <− K − 1
35 }
36 M <− round ( nco l ( x ) /K)

160
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37 pred i c t ed <− l i s t ( )
38 f i t <− numeric ( )
39 Ri <− l i s t ( )
40 Ria <− l i s t ( )
41 f i t <− l i s t ( )
42 pred i c t ed <− matrix (NA, nrow = nrow (x ) , nco l = L)
43 subse t s <− l i s t ( )
44 Se l e c t edC la s s <− l i s t ( )
45 IndependentsClassSubset <− l i s t ( )
46 IndependentsClassSubsetBoot <− l i s t ( )
47 pcdata <− l i s t ( )
48 l oad ing s <− l i s t ( )
49 f o r ( i in 1 :L) {
50 Independents <− x [ , sample ( 1 : nco l ( x ) , nco l ( x ) ) ]
51 n <− 0
52 subse t s [ [ i ] ] <− l i s t ( )
53 Se l e c t edC la s s [ [ i ] ] <− l i s t ( )
54 IndependentsClassSubset [ [ i ] ] <− l i s t ( )
55 IndependentsClassSubsetBoot [ [ i ] ] <− l i s t ( )
56 pcdata [ [ i ] ] <− l i s t ( )
57 l oad ing s [ [ i ] ] <− l i s t ( )
58 f o r ( j in seq (1 , K) ) {
59 n <− n + M
60 subse t s [ [ i ] ] [ [ j ] ] <−
61 data . frame ( Independents [ , (n−(M − 1) ) : n ] , y )
62 Se l e c t edC la s s [ [ i ] ] [ [ j ] ] <− as . i n t e g e r ( sample ( l e v e l s ( as .

f a c t o r ( y ) ) , 1) )
63 IndependentsClassSubset [ [ i ] ] [ [ j ] ] <−
64 subse t s [ [ i ] ] [ [ j ] ] [ s ubs e t s [ [ i ] ] [ [ j ] ] $y == Se l e c t edC la s s [ [ i

] ] [ [ j ] ] , ]
65 IndependentsClassSubsetBoot [ [ i ] ] [ [ j ] ] <−
66 IndependentsClassSubset [ [ i ] ] [ [ j ] ] [ sample ( 1 : dim(

IndependentsClassSubset [ [ i ] ] [ [ j ] ] ) [ 1 ] ,
67 round (0 . 75 ∗ nrow ( IndependentsClassSubset [ [ i ] ] [ [ j ] ] ) ) ,

r ep l a c e = TRUE) , ]
68 pcdata [ [ i ] ] [ [ j ] ] <−
69 princomp ( IndependentsClassSubsetBoot [ [ i ] ] [ [ j ] ] [ , ! colnames

( IndependentsClassSubsetBoot [ [ i ] ] [ [ j ] ] ) %in% "y" ] )
70 l oad ing s [ [ i ] ] [ [ j ] ] <− pcdata [ [ i ] ] [ [ j ] ] $ l oad ing s [ , ]
71 colnames ( l oad ing s [ [ i ] ] [ [ j ] ] ) <− dimnames ( l oad ing s [ [ i ] ] [ [ j ] ] )

[ [ 1 ] ]
72 l oad ing s [ [ i ] ] [ [ j ] ] <− data . frame (dimnames ( l oad ing s [ [ i ] ] [ [ j

] ] ) [ [ 1 ] ] ,
73 l oad ing s [ [ i ] ] [ [ j ] ] )
74 colnames ( l oad ing s [ [ i ] ] [ [ j ] ] ) [ 1 ] <− "rowID"
75 }
76 Ri [ [ i ] ] <− Reduce ( func t i on (x , y ) merge (x , y , by = "rowID" ,
77 a l l = TRUE) , l oad ing s [ [ i ] ] )
78 Ri [ [ i ] ] [ i s . na (Ri [ [ i ] ] ) ] <− 0
79 Ria [ [ i ] ] <− Ri [ [ i ] ] [ o rder (match (Ri [ [ i ] ] $rowID , colnames (x ) ) ) ,
80 order (match ( colnames (Ri [ [ i ] ] ) , colnames (x ) ) ) ]
81 rownames ( Ria [ [ i ] ] ) <− Ria [ [ i ] ] $rowID
82 Ria [ [ i ] ] $rowID <− NULL
83 f i n a l x <− data . frame ( as . matrix ( x ) %∗% as . matrix ( Ria [ [ i ] ] ) )
84 f i n a l <− data . frame ( f i n a l x , y )
85 i f (model==" r f " ) {
86 f i t [ [ i ] ] <− randomForest ( y ~ . , data = f i n a l , mtry=mtry ,

n t r ee=1,
87 . . . )
88 } e l s e i f (model %in% c ( " r i dge " , " p l s " , " l og " , "svm" , "rnd" ) ) {
89 capture . output ( f i t [ [ i ] ] <− obliqueRF (x = as . matrix ( f i n a l x ) ,

y=as . numeric ( y ) , mtry=mtry , n t r ee=1,
90 t r a i n i n g_method=model ,

verbose = FALSE,
. . . ) )

91 } e l s e {
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92 stop ( "Argument ’model ’ not a va l i d model type . " )
93 }
94 }
95 r e s <− l i s t ( models = f i t , l o ad ing s = Ria , columnnames = colnames (x ) , mod

=model )
96 c l a s s ( r e s ) <− "RRotF"
97 r e s
98 }
99

100 # pr ed i c t i o n func t i on
101 p r ed i c t .RRotF <− f unc t i on ( object , newdata , type=" c l a s s " ) {
102 i f ( c l a s s ( ob j e c t ) != "RRotF" ) {
103 stop ( "Object must be o f c l a s s ’RRotF ’ " )
104 }
105 newdata <− data . frame ( sapply ( newdata , as . numeric ) )
106 i f ( ! i d e n t i c a l ( colnames ( newdata ) , ob j e c t $columnnames ) )
107 stop ( "Var iab le names and/ or order o f v a r i a b l e s in newdata i s not

i d e n t i c a l to t r a i n i n g s e t . P lease check i f v a r i a b l e s are
exac t l y the same in both s e t s . " )

108 pred i c t ed <− matrix (NA, nrow = nrow ( newdata ) , nco l = length ( ob j e c t $
models ) )

109 f o r ( i in 1 : l ength ( ob j e c t $models ) ) {
110 f i n a l <− data . frame ( as . matrix ( newdata ) %∗% as . matrix ( ob j e c t $

l oad ing s [ [ i ] ] ) )
111 pred i c t ed [ , i ] <− p r ed i c t ( ob j e c t $models [ [ i ] ] , f i n a l ,
112 type = "prob" ) [ , 2 ]
113 }
114 i f ( type==" c l a s s " ) {
115 i f e l s e ( rowMeans ( p r ed i c t ed ) > 0 . 5 , 1 , 0)
116 }
117 e l s e i f ( type=="prob" ) {
118 rowMeans ( p r ed i c t ed )
119 } e l s e {
120 stop ( "Argument ’ type ’ must be e i t h e r ’ c l a s s ’ or ’ prob ’ " )
121 }
122 }
123
124 # parameter tuning func t i on
125 findOptimalTuning <− f unc t i on (x , y , k=10, paraGrid , ve rbose t=TRUE, . . . ) {
126 CVerrorVec <− NULL
127 ncon f i g <− nrow ( paraGrid )
128 f o r ( i in 1 : ncon f i g ) {
129 i f ( ve rbose t ) {
130 p r in t ( paste ( "para c on f i g " , i , " out o f " , ncon f i g ) )
131 }
132 K <− paraGrid [ i , 1 ]
133 L <− paraGrid [ i , 2 ]
134 mtry <− paraGrid [ i , 3 ]
135 CVerrorVec [ i ] <− kFoldRun (x=x , y=y , k=k , K=K, L=L , mtry=mtry , . . . )

[ [ 1 ] ]
136 }
137 optParaIndex <− which ( CVerrorVec == min(CVerrorVec ) ) [ 1 ]
138 l i s t ( optTuneVals=paraGrid [ optParaIndex , ] , tuneValErrors=data . frame (

paraGrid , CVerrorVec ) )
139 }
140
141 # k−f o l d c r o s s v a l i d a t i o n func t i on
142 kFoldRun <− f unc t i on (x , y , k=10, seed=1, verbose=TRUE, . . . ) {
143 # Test p r epa ra t i on s
144 l i b r a r y ( ca r e t )
145 f o l dEr r o r <− NULL
146 CVError <− NULL
147
148 # cr ea t e f o l d s
149 s e t . seed ( seed )
150 f o l d s <− c r ea t eFo ld s (y , k=k , l i s t = FALSE)
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151
152 # perform k−f o l d CV
153 f o r ( i in 1 : k ) {
154 i f ( verbose ) {
155 p r in t ( paste ( " f o l d : " , i ) )
156 }
157 t ra inFo ld s <− f o l d s != i
158 model <− RRotF(x=x [ t ra inFo lds , ] , y=y [ t r a inFo ld s ] , . . . )
159 preds <− p r ed i c t .RRotF(model , x [ ! t ra inFo lds , ] )
160 f o l dEr r o r [ i ] <− mean( preds != as . numeric ( f a c t o r ( y [ ! t r a i nFo ld s ] ) )

−1)
161 }
162 CVError <− mean( f o l dEr r o r )
163 re turn ( l i s t ( avgCVError=CVError , perFoldError=fo l dEr r o r ) )
164 }
165 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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D.2 Chapter 2 Code: Classification Trees

R Code D.2: Source Code: Classification Trees
1 #################################
2 # CHAPTER 2 : C l a s s i f i c a t i o n Trees
3 #################################
4
5 # Check f o r miss ing packages and i n s t a l l i f mis s ing
6 l i s t . o f . packages <− c ( " latex2exp " , "MASS" , " c l a s s " , " ca r e t " ,
7 " ggp lot2 " , " l a t t i c e " , " rpar t " , " rpar t . p l o t " )
8 new . packages <− l i s t . o f . packages [ ! ( l i s t . o f . packages %in% i n s t a l l e d . packages ( )

[ , "Package" ] ) ]
9 i f ( l ength (new . packages ) ) i n s t a l l . packages (new . packages )

10
11 # load r equ i r ed packages
12 load <− l app ly ( l i s t . o f . packages , r equ i r e , cha rac t e r . only = TRUE)
13
14 ##############################################
15 # Figure 2 . 1 : Recurs ive binary p a r t i t i o n i n g
16 ##############################################
17 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 # cr ea t e empty p lo t
19 par (mar=c (0 , 0 , 0 , 0 ) )
20 p l o t ( 0 : 2 2 , 0 : 22 , type="n" , xlab="" , ylab="" ,
21 xlim=c (0 , 22) , yl im=c (−1 , 22) ,
22 main="" , axes=FALSE)
23
24 # draw pa r t i t i o n ed input space
25 # draw box
26 l i n e s ( c (1 , 1 ) , c (1 , 20) )
27 l i n e s ( c (1 , 10 ) , c (1 , 1) )
28 l i n e s ( c (1 , 10 ) , c (20 , 20) )
29 l i n e s ( c (10 ,10) , c (1 , 20) )
30 # draw pa r t i t i o n s
31 l i n e s ( c (3 , 3 ) , c (1 , 20 ) )
32 l i n e s ( c (1 , 3 ) , c ( 5 , 5 ) , c o l="brown" )
33 l i n e s ( c (3 , 3 ) , c ( 5 , 1 ) , c o l="brown" )
34 l i n e s ( c (3 , 10 ) , c (14 , 14) )
35 l i n e s ( c (3 , 7 ) , c (14 ,14) , c o l="brown" )
36 l i n e s ( c (7 , 7 ) , c (1 , 14) , c o l="brown" )
37 l i n e s ( c (3 , 3 ) , c (14 ,20) , c o l="brown" )
38
39 # generate random po in t s
40 s e t . seed (1 )
41 # R1
42 po in t s ( r un i f (4 , min=1.5 , max=2.5) , r un i f (4 , min = 1 . 5 , max = 4 . 5 ) , c o l=" blue " )
43 po in t s ( r un i f (1 , min=1.5 , max=2.5) , r un i f (1 , min = 1 . 5 , max = 4 . 5 ) , c o l="orange

" , pch=2)
44 # R2
45 po in t s ( r un i f (12 , min=1.5 , max=2.5) , r u n i f (12 , min = 5 . 5 , max = 19 . 5 ) , c o l="

orange " , pch=2)
46 po in t s ( r un i f (3 , min=1.5 , max=2.5) , r un i f (3 , min = 5 . 5 , max = 19 . 5 ) , c o l="blue "

)
47 # R3
48 po in t s ( r un i f (17 , min=3.5 , max=9.5) , r u n i f (17 , min = 14 .5 , max = 19 . 5 ) , c o l="

blue " )
49 po in t s ( r un i f ( 1 . 5 , min=3.5 , max=9.5) , r un i f (1 , min = 14 .5 , max = 19 . 5 ) , c o l="

orange " , pch=2)
50 # R4
51 po in t s ( r un i f (30 , min=3.5 , max=6.5) , r u n i f (30 , min = 1 . 5 , max = 13 . 5 ) , c o l="

orange " , pch=2)
52 po in t s ( r un i f (5 , min=3.5 , max=6.5) , r un i f (5 , min = 1 . 5 , max = 13 . 5 ) , c o l="blue "

)
53 # R5
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54 po in t s ( r un i f (9 , min=7.5 , max=9.5) , r un i f (9 , min = 1 . 5 , max = 13 . 5 ) , c o l="blue "
)

55 po in t s ( r un i f (2 , min=7.5 , max=9.5) , r un i f (2 , min = 1 . 5 , max = 13 . 5 ) , c o l="
orange " , pch=2)

56
57 # add text
58 # ax i s
59 text (0 , 10 . 5 , TeX( "$X_2$" ) )
60 text ( 5 . 5 , −1, TeX( "$X_1$" ) )
61 # s p l i t po in t s
62 text (3 , −0.1 , TeX( "$ s_1$" ) )
63 text ( 0 . 6 , 5 , TeX( "$ s_2$" ) )
64 text ( 1 0 . 4 , 14 , TeX( "$ s_3$" ) )
65 text (7 , −0.1 , TeX( "$ s_4$" ) )
66 # reg i on s
67 text (2 , 2 . 5 , TeX( "$R_1$" ) , c o l="blue " , cex=1.5)
68 text (2 , 12 , TeX( "$R_2$" ) , c o l="darkorange " , cex=1.5)
69 text ( 6 . 5 , 17 , TeX( "$R_3$" ) , c o l="blue " , cex=1.5)
70 text (5 , 7 . 5 , TeX( "$R_4$" ) , c o l="darkorange " , cex=1.5)
71 text ( 8 . 5 , 7 . 5 , TeX( "$R_5$" ) , c o l=" blue " , cex=1.5)
72 # cr ea t e t r e e
73 text ( 1 6 . 5 , 20 , TeX( "$X_1 \\ l eq s_1$" ) )
74 text ( 1 5 . 5 , 18 . 5 , "<< Yes" , c o l=" green " )
75 text ( 1 7 . 5 , 18 . 5 , "No >>" , c o l=" red " )
76 l i n e s ( c ( 1 6 . 5 , 16 . 5 ) , c ( 1 8 . 5 , 1 9 . 5 ) )
77 l i n e s ( c (14 , 19) , c (19 , 19) )
78 # s p l i t s
79 l i n e s ( c (14 , 14) , c (19 , 16) )
80 l i n e s ( c (19 , 19) , c (19 , 16) )
81 # i n t e r n a l nodes
82 text (14 , 15 , TeX( "$X_2 \\ l eq s_2$" ) )
83 text (19 , 15 , TeX( "$X_2 \\ l eq s_3$" ) )
84 l i n e s ( c (14 , 14) , c ( 1 3 . 5 , 14 . 5 ) )
85 l i n e s ( c (13 , 15) , c (14 , 14) )
86 l i n e s ( c (19 , 19) , c ( 1 3 . 5 , 14 . 5 ) )
87 l i n e s ( c (18 , 20) , c (14 , 14) )
88 # s p l i t i n t e r n a l node 1
89 l i n e s ( c (13 , 13) , c (14 , 9) )
90 l i n e s ( c (15 , 15) , c (14 , 9) )
91 # s p l i t i n t e r n a l node 2
92 l i n e s ( c (18 , 18) , c (14 , 9) )
93 l i n e s ( c (20 , 20) , c (14 , 9) )
94 # root nodes 1 , 2 , 3
95 text (13 , 8 , TeX( "$R_1$" ) , c o l=" blue " , cex=1.5)
96 text (15 , 8 , TeX( "$R_2$" ) , c o l="darkorange " , cex=1.5)
97 text (20 , 8 , TeX( "$R_3$" ) , c o l=" blue " , cex=1.5)
98 # i n t e r n a l node 3
99 text (18 , 8 , TeX( "$X_1 \\ l eq s_4$" ) )

100 l i n e s ( c (18 , 18) , c ( 6 . 5 , 7 . 5 ) )
101 l i n e s ( c (17 , 19) , c (7 , 7) )
102 l i n e s ( c (17 , 17) , c (7 , 3) )
103 l i n e s ( c (19 , 19) , c (7 , 3) )
104 # root node 4 and 5
105 text (17 , 2 , TeX( "$R_4$" ) , c o l="darkorange " , cex=1.5)
106 text (19 , 2 , TeX( "$R_5$" ) , c o l=" blue " , cex=1.5)
107
108 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
109 #####################################
110 # Figure 2 . 2 : Simulated mixture data
111 #####################################
112 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
113 # Generate t r a i n i n g data
114 s e t . seed (1 )
115 mBlue <− mvrnorm(n=10, mu = c (1 , 0 ) , Sigma = diag (1 , 2 , 2 ) )
116 mOrange <− mvrnorm(n=10, mu = c (0 , 1 ) , Sigma = diag (1 , 2 , 2 ) )
117 B <− matrix (0 , nrow=100 , nco l=2)
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118 O <− matrix (0 , nrow=100 , nco l=2)
119
120 f o r ( i in 1 : 100 ) {
121 sample1 = sample ( 1 : 1 0 , 1)
122 sample2 = sample ( 1 : 1 0 , 1)
123 meanB = mBlue [ sample1 , ]
124 meanO = mOrange [ sample2 , ]
125 B[ i , ] = mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
126 O[ i , ] = mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
127 }
128
129 Btrain <− cbind (B[ 1 : 1 0 0 , ] , matrix (0 ,100 ,1 ) )
130 Otrain <− cbind (O[ 1 : 1 0 0 , ] , matrix (1 , 100 ,1 ) )
131 data t ra in <− rbind ( Btrain , Otrain )
132 Xtrain <− data t ra in [ , 1 : 2 ]
133 Ytrain <− data t ra in [ , 3 ]
134 t r a i n <− data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] )
135
136 # cr ea t e d e c i s i o n boundary p l o t t i n g g r id
137 x1min <− min( Xtrain [ , 1 ] )
138 x1max <− max( Xtrain [ , 1 ] )
139 x2min <− min( Xtrain [ , 2 ] )
140 x2max <− max( Xtrain [ , 2 ] )
141 x1seq <− seq ( from=x1min , to=x1max , l ength=100)
142 x2seq <− seq ( from=x2min , to=x2max , l ength=100)
143 plotGr id <− data . frame ( as . matrix ( expand . g r id ( x1seq , x2seq ) ) )
144 colnames ( p lotGr id ) <− colnames ( t r a i n ) [ 2 : 3 ]
145
146 # cr ea t e t e s t s e t
147 B <− matrix (0 , nrow=5000 , nco l=2)
148 O <− matrix (0 , nrow=5000 , nco l=2)
149 f o r ( i in 1 :5000) {
150 sample1 <− sample ( 1 : 1 0 , 1)
151 sample2 <− sample ( 1 : 1 0 , 1)
152 meanB <− mBlue [ sample1 , ]
153 meanO <− mOrange [ sample2 , ]
154 B[ i , ] <− mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
155 O[ i , ] <− mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
156 }
157
158 Btest <− cbind (B[ 1 : 5 0 0 0 , ] , matrix (0 ,5000 ,1 ) )
159 Otest <− cbind (O[ 1 : 5 0 0 0 , ] , matrix (1 ,5000 ,1 ) )
160 da ta t e s t <− rbind ( Btest , Otest )
161 Xtest <− da ta t e s t [ , 1 : 2 ]
162 Ytest <− da ta t e s t [ , 3 ]
163 t e s t <− data . frame (y=f a c t o r ( Ytest ) , X1=Xtest [ , 1 ] , X2=Xtest [ , 2 ] )
164
165 # p lo t data
166 c o l o r <− i f e l s e ( t r a i n $y == 0 , " blue " , " darkorange " )
167 # Bayes d e c i s i o n boundary
168 p <− f unc t i on (x ) {
169 s <− s q r t (1 / 5)
170 p0 <− mean(dnorm(x [ 1 ] , mBlue [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mBlue [ , 2 ] , s ) )
171 p1 <− mean(dnorm(x [ 1 ] , mOrange [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mOrange [ , 2 ] , s ) )
172 p1/ ( p0+p1 )
173 }
174
175 bayes ru l e <− apply ( plotGrid , 1 , p )
176 bayesPr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length (

x1seq ) ) ,
177 z=as . vec to r ( baye s ru l e ) )
178 gd <− expand . g r id (x=x1seq , y=x2seq )
179 bayesPlot <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] )

, aes ( x=X1 , y=X2) ) +
180 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z ) , breaks=c ( 0 , . 5 ) , c o l="

purple " ,
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181 l i n e t yp e=2)+
182 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
183 c o l=i f e l s e ( bayesru le <0.5 , " skyblue " , " orange " ) )+
184 theme_bw( )+
185 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
186 g g t i t l e ( "Bayes d e c i s i o n boundary : Mixture data" )
187 bayesPlot
188 bayesProbs <− apply ( t e s t [ , 2 : 3 ] , 1 , p )
189 bayesError <− sum( as . numeric ( t e s t $y != f a c t o r ( i f e l s e ( bayesProbs >0.5 , 1 , 0) ) ) ) /

nrow ( t e s t )
190 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
191 ############################################################
192 # Figure 2 . 3 : C l a s s i f i c a t i o n t r e e f i t t e d to the mixture data
193 ############################################################
194 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
195 # f i t a c l a s s i f i c a t i o n t r e e to the data
196 t r e e . f i t <− t r a i n (y~ . , data=tra in , method=" rpar t " )
197
198 # p lo t f i t
199 prp ( t r e e . f i t $ f ina lModel , type=3, var l en=0, f a c l e n =0, f a l l e n . l e av e s=TRUE, box .

c o l=c ( " orange " , " blue " ) )
200
201 # compute t r a i n i n g and t e s t e r r o r
202 t reeTra in ingPreds <− p r ed i c t ( t r e e . f i t )
203 t r e eTra in ingEr ro r <− sum( as . numeric ( t r a i n $y != treeTra in ingPreds ) ) /nrow ( t r a i n )
204
205 # Compute t e s t e r r o r
206 treeTestPreds <− p r ed i c t ( t r e e . f i t , t e s t )
207 t r eeTes tEr ro r <− sum( as . numeric ( t e s t $y != treeTestPreds ) ) /nrow ( t e s t )
208
209 # cons t ruc t d e c i s i o n boundary p l o t
210 treeProbs <− p r ed i c t ( t r e e . f i t , p lotGrid , type="prob" ) [ , 2 ]
211 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
212 z=as . vec to r ( t reeProbs ) )
213 gd <− expand . g r id (x=x1seq , y=x2seq )
214 g t r e e <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) ,

aes ( x=X1 , y=X2) ) +
215 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
216 c o l=i f e l s e ( treeProbs <0.5 , " skyblue " , " orange " ) ) +
217 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
218 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+
219 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )

, breaks=c ( 0 , . 5 ) ) +
220 theme_bw( )+
221 theme ( legend . p o s i t i o n="top" )+
222 s c a l e_co l o r_manual (name="Tree d e c i s i o n boundary : " , va lue s=c ( " purple " , "

brown" ) ,
223 l a b e l s = c ( ’ Bayes ’ , ’ Tree ’ ) )+
224 s c a l e_l i n e t yp e_manual (name = ’ Tree d e c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
225 l a b e l s = c ( ’ Bayes ’ , ’ Tree ’ ) )+
226 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
227 l a b e l = paste ( "Train ing e r r o r : " , round ( t reeTra in ingError , 3) ,
228 "\nTest e r r o r : " , round ( treeTestError , 3 ) ,
229 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)
230 g t r e e
231 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
232 #############################################################################
233 # Figure 2 . 4 : Changes in d e c i s i o n boundary as a r e s u l t o f changes in the data
234 #############################################################################
235 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
236 f o r ( i in 1 : 3 ) {
237 # Generate t r a i n i n g data
238 s e t . seed ( i +2)
239 mBlue <− mvrnorm(n=10, mu = c (1 , 0 ) , Sigma = diag (1 , 2 , 2 ) )
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240 mOrange <− mvrnorm(n=10, mu = c (0 , 1 ) , Sigma = diag (1 , 2 , 2 ) )
241 B <− matrix (0 , nrow=100 , nco l=2)
242 O <− matrix (0 , nrow=100 , nco l=2)
243
244 f o r ( i in 1 : 100 ) {
245 sample1 = sample ( 1 : 1 0 , 1)
246 sample2 = sample ( 1 : 1 0 , 1)
247 meanB = mBlue [ sample1 , ]
248 meanO = mOrange [ sample2 , ]
249 B[ i , ] = mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
250 O[ i , ] = mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
251 }
252
253 Btrain <− cbind (B[ 1 : 1 0 0 , ] , matrix (0 ,100 ,1 ) )
254 Otrain <− cbind (O[ 1 : 1 0 0 , ] , matrix (1 , 100 ,1 ) )
255 data t ra in <− rbind ( Btrain , Otrain )
256 Xtrain <− data t ra in [ , 1 : 2 ]
257 Ytrain <− data t ra in [ , 3 ]
258 trainTemp <− data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] )
259
260 # cr ea t e d e c i s i o n boundary p l o t t i n g g r id
261 x1min <− min( Xtrain [ , 1 ] )
262 x1max <− max( Xtrain [ , 1 ] )
263 x2min <− min( Xtrain [ , 2 ] )
264 x2max <− max( Xtrain [ , 2 ] )
265 x1seq <− seq ( from=x1min , to=x1max , l ength=100)
266 x2seq <− seq ( from=x2min , to=x2max , l ength=100)
267 plotGr id <− data . frame ( as . matrix ( expand . g r id ( x1seq , x2seq ) ) )
268 colnames ( p lotGr id ) <− colnames ( trainTemp ) [ 2 : 3 ]
269
270 # cr ea t e t e s t s e t
271 B <− matrix (0 , nrow=5000 , nco l=2)
272 O <− matrix (0 , nrow=5000 , nco l=2)
273 f o r ( i in 1 :5000) {
274 sample1 <− sample ( 1 : 1 0 , 1)
275 sample2 <− sample ( 1 : 1 0 , 1)
276 meanB <− mBlue [ sample1 , ]
277 meanO <− mOrange [ sample2 , ]
278 B[ i , ] <− mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
279 O[ i , ] <− mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
280 }
281
282 Btest <− cbind (B[ 1 : 5 0 0 0 , ] , matrix (0 ,5000 ,1 ) )
283 Otest <− cbind (O[ 1 : 5 0 0 0 , ] , matrix (1 ,5000 ,1 ) )
284 da ta t e s t <− rbind ( Btest , Otest )
285 Xtest <− data t e s t [ , 1 : 2 ]
286 Ytest <− data t e s t [ , 3 ]
287 testTemp <− data . frame (y=f a c t o r ( Ytest ) , X1=Xtest [ , 1 ] , X2=Xtest [ , 2 ] )
288
289 # Compute Bayes r e l a t e d quan t i t i e s
290 c o l o r <− i f e l s e ( trainTemp$y == 0 , " blue " , " darkorange " )
291 # Bayes d e c i s i o n boundary
292 p <− f unc t i on (x ) {
293 s <− s q r t (1 / 5)
294 p0 <− mean(dnorm(x [ 1 ] , mBlue [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mBlue [ , 2 ] , s ) )
295 p1 <− mean(dnorm(x [ 1 ] , mOrange [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mOrange [ , 2 ] ,

s ) )
296 p1/ ( p0+p1 )
297 }
298
299 bayes ru l e <− apply ( plotGrid , 1 , p )
300 bayesPr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=

length ( x1seq ) ) ,
301 z=as . vec to r ( baye s ru l e ) )
302 gd <− expand . g r id (x=x1seq , y=x2seq )
303 bayesProbs <− apply ( testTemp [ , 2 : 3 ] , 1 , p )
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304 bayesError <− sum( as . numeric ( testTemp$y != f a c t o r ( i f e l s e ( bayesProbs >0.5 ,
1 , 0) ) ) ) /nrow ( testTemp )

305
306 # Fit f u l l y grown t r e e
307 contr <− rpar t . c on t r o l ( m in sp l i t = 2 , minbucket = 1 , cp = 0 , maxdepth =

30)
308 t r e e . f i t <− rpar t ( y~ . , data=trainTemp , c on t r o l=contr )
309
310 # cons t ruc t d e c i s i o n boundary p l o t f o r t r e e
311 treeProbs <− p r ed i c t ( t r e e . f i t , p lotGrid , type="prob" ) [ , 2 ]
312 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length (

x1seq ) ) ,
313 z=as . vec to r ( t reeProbs ) )
314 gd <− expand . g r id (x=x1seq , y=x2seq )
315 g t r e e <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain

[ , 2 ] ) , aes ( x=X1 , y=X2) ) +
316 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
317 co l=i f e l s e ( treeProbs <0.5 , " skyblue " , " orange " ) ) +
318 geom_point ( s i z e = 3 , pch = trainTemp$y , c o l=co l o r ) +
319 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" ,

l i n e t yp e="dashed" ) , breaks=c ( 0 , . 5 ) )+
320 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e="

s o l i d " ) , breaks=c ( 0 , . 5 ) ) +
321 theme_bw( )+
322 theme ( legend . p o s i t i o n="none" )+
323 s c a l e_co l o r_manual (name=" t r e e d e c i s i o n boundary : " , va lue s=c ( " purple

" , "brown" ) ,
324 l a b e l s = c ( ’ Bayes ’ , ’ Tree ’ ) )+
325 s c a l e_l i n e t yp e_manual (name = ’ t r e e d e c i s i o n boundary : ’ , va lue s = c

( "dashed" , " s o l i d " ) ,
326 l a b e l s = c ( ’ Bayes ’ , ’ Tree ’ ) )
327 p r i n t ( g t r e e )
328
329 # Fit f u l l y grown treePrune
330 treePrune . f i t <− t r a i n (y~ . , data=trainTemp , method=" rpar t " )
331
332 # cons t ruc t d e c i s i o n boundary p l o t f o r treePrune
333 treePruneProbs <− p r ed i c t ( treePrune . f i t , p lotGrid , type="prob" ) [ , 2 ]
334 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length (

x1seq ) ) ,
335 z=as . vec to r ( treePruneProbs ) )
336 gd <− expand . g r id (x=x1seq , y=x2seq )
337 gtreePrune <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=

Xtrain [ , 2 ] ) , aes ( x=X1 , y=X2) ) +
338 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
339 co l=i f e l s e ( treePruneProbs <0.5 , " skyblue " , " orange " ) ) +
340 geom_point ( s i z e = 3 , pch = trainTemp$y , c o l=co l o r ) +
341 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" ,

l i n e t yp e="dashed" ) , breaks=c ( 0 , . 5 ) )+
342 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e="

s o l i d " ) , breaks=c ( 0 , . 5 ) ) +
343 theme_bw( )+
344 theme ( legend . p o s i t i o n="none" )+
345 s c a l e_co l o r_manual (name=" treePrune d e c i s i o n boundary : " , va lue s=c ( "

purple " , "brown" ) ,
346 l a b e l s = c ( ’ Bayes ’ , ’ t reePrune ’ ) )+
347 s c a l e_l i n e t yp e_manual (name = ’ treePrune d e c i s i o n boundary : ’ ,

va lue s = c ( "dashed" , " s o l i d " ) ,
348 l a b e l s = c ( ’ Bayes ’ , ’ t reePrune ’ ) )
349 p r i n t ( gtreePrune )
350
351 # Fit l o g i s t i c r e g r e s s i o n model
352 l r . f i t <− glm (y ~ . , f ami ly=binomial ( l i n k=’ l o g i t ’ ) , data=trainTemp )
353
354 # cons t ruc t d e c i s i o n boundary p l o t f o r LR
355 LRProbs <− p r ed i c t ( l r . f i t , plotGrid , type=" response " )
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356 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length (
x1seq ) ) ,

357 z=as . vec to r (LRProbs ) )
358 gd <− expand . g r id (x=x1seq , y=x2seq )
359 gLR <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] )

, aes ( x=X1 , y=X2) ) +
360 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
361 co l=i f e l s e (LRProbs<0.5 , " skyblue " , " orange " ) ) +
362 geom_point ( s i z e = 3 , pch = trainTemp$y , c o l=co l o r ) +
363 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" ,

l i n e t yp e="dashed" ) , breaks=c ( 0 , . 5 ) )+
364 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e="

s o l i d " ) , breaks=c ( 0 , . 5 ) ) +
365 theme_bw( )+
366 theme ( legend . p o s i t i o n="none" )+
367 s c a l e_co l o r_manual (name="LR de c i s i o n boundary : " , va lue s=c ( " purple " ,

"brown" ) ,
368 l a b e l s = c ( ’ Bayes ’ , ’LR ’ ) )+
369 s c a l e_l i n e t yp e_manual (name = ’LR de c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
370 l a b e l s = c ( ’ Bayes ’ , ’LR ’ ) )
371 p r i n t (gLR)
372 }
373 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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D.3 Chapter 3 Code: Ensemble Learning for
Classification

R Code D.3: Source Code: Ensemble Learning for Classification
1 #################################################
2 # CHAPTER 3 : Ensemble Learning f o r C l a s s i f i c a t i o n
3 #################################################
4
5 # Check f o r miss ing packages and i n s t a l l i f mis s ing
6 l i s t . o f . packages <− c ( " ggp lot2 " , " gr idExtra " , " rpar t " , " ca r e t " ,
7 "MASS" , " c l a s s " , " reshape2 " , " rpar t . p l o t " , "gbm" ,
8 " s u r v i v a l " , " s p l i n e s " , " p a r a l l e l " , " p ly r " , " l a t t i c e " ,
9 " ip red " )

10 new . packages <− l i s t . o f . packages [ ! ( l i s t . o f . packages %in% i n s t a l l e d . packages ( )
[ , "Package" ] ) ]

11 i f ( l ength (new . packages ) ) i n s t a l l . packages (new . packages )
12
13 # load r equ i r ed packages
14 load <− l app ly ( l i s t . o f . packages , r equ i r e , cha rac t e r . only = TRUE)
15
16 #########################################################################
17 # Figure 3 . 1 : Improving the accuracy o f t r e e s with the AdaBoost a lgor i thm
18 #########################################################################
19 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 # p lo t con t r i bu t i on curve
21 Err <− seq ( 0 . 5 , 0 . 01 , l en=100)
22 alpha <− l og ((1−Err ) /Err )
23 contr ibut ionData <− data . frame ( Err=Err , alpha=alpha )
24 weightUpdateData <− data . frame ( Err=Err , weight=exp ( alpha ) /sum( exp ( alpha ) ) )
25 p1 <− ggp lot ( contr ibut ionData , aes ( Err , alpha ) ) + geom_l i n e ( c o l o r="blue " ) +
26 geom_point ( c o l o r="blue " )+
27 xlab ( exp r e s s i on ( paste ( "Error " [ b ] ) ) ) + ylab ( exp r e s s i on ( paste ( alpha [ b ] ) ) )+
28 theme_bw( )
29
30 p2 <− ggp lot ( weightUpdateData , aes ( Err , weight ) ) + geom_l i n e ( c o l o r=" purple " )+
31 geom_point ( c o l o r=" purple " )+
32 xlab ( exp r e s s i on ( paste ( "Error " [ b ] ) ) ) + ylab ( " M i s c l a s s i f i e d obse rvat i on

weight " )+
33 theme_bw( )
34 g r id . arrange (p1 , p2 , nco l=2)
35 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36 ##########################################################################
37 # Figure 3 . 2 : Test Error r a t e s on elemStat data f o r a stump , a f u l l y grown
38 # t r e e and f o r AdaBoost .
39 ##########################################################################
40 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 # Simulate elemStat data
42 s e t . seed (3 )
43 X <− NULL
44 f o r ( i in 1 : 10 ) {
45 X <− cbind (X, rnorm (12000) )
46 }
47 y <− f a c t o r ( apply (X, 1 , f unc t i on (x ) { i f e l s e (sum(x^2) > 9 .34 , 1 , −1)}) )
48 t r a i nHa s t i e <− data . frame (y=y [ 1 : 2 0 0 0 ] , x=X[ 1 : 2 0 00 , ] )
49 colnames ( t r a i nHa s t i e ) <− c ( "y" , paste ( "X" , 1 : 10 , sep="" ) )
50 t e s tHa s t i e <− data . frame (y=y [ 2 001 : 1 2 000 ] , x=X[2001 : 12000 , ] )
51 colnames ( t e s tHa s t i e ) <− c ( "y" , paste ( "X" , 1 : 10 , sep="" ) )
52
53 # Fit t r e e stump
54 f i t <− rpar t ( y~ . , data=tra inHas t i e , c on t r o l=rpar t . c on t r o l (maxdepth=1) )
55
56 # Test e r r o r o f t r e e stump
57 preds <− p r ed i c t ( f i t , t e s tHas t i e , type=" c l a s s " )
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58 errorStump <− sum( as . numeric ( preds != t e s tHa s t i e $y ) ) / l ength ( t e s tHa s t i e $y )
59
60 # Fit f u l l t r e e
61 f i t <− rpar t ( y~ . , data=t r a i nHa s t i e )
62
63 # Test e r r o r o f f u l l t r e e
64 preds <− p r ed i c t ( f i t , t e s tHas t i e , type=" c l a s s " )
65 e r r o rFu l lTr e e <− sum( as . numeric ( preds != t e s tHa s t i e $y ) ) / l ength ( t e s tHa s t i e $y )
66
67 # Fit adaBoost model
68 tra inErrorVec <− NULL
69 tes tErrorVec <− NULL
70 expLoss <− NULL
71 minPlus <− f unc t i on (x ) {
72 x <− as . numeric ( x )
73 x <− x−1
74 x [ x == 0 ] <− −1
75 re turn (x )
76 }
77 f i tCon t r o l <− t r a inCont ro l (method = "none" )
78 M <− 600
79 f o r ( i in 1 :M) {
80 f i t <− t r a i n (y~ . , data = tra inHas t i e , method = "gbm" , d i s t r i b u t i o n="

adaboost " , t rCont ro l = f i tCon t r o l , verbose = FALSE,
81 tuneGrid = data . frame ( i n t e r a c t i o n . depth = 1 ,
82 n . t r e e s = i ,
83 shr inkage = 1 ,
84 n . minobsinnode = 20) )
85 predsTest <− p r ed i c t ( f i t , t e s tHa s t i e )
86 predsTrain <− p r ed i c t ( f i t , t r a i nHa s t i e )
87 expLoss [ i ] <− mean( exp (minPlus ( t r a i nHa s t i e $y ) ∗ p r ed i c t ( f i t $ f ina lModel ,

t r a i nHa s t i e [ , −1 ] , n . t r e e s=i ) ) )
88 tra inErrorVec [ i ] <− sum( as . numeric ( predsTrain != t r a i nHa s t i e $y ) ) / l ength (

t r a i nHa s t i e $y )
89 tes tErrorVec [ i ] <− sum( as . numeric ( predsTest != t e s tHa s t i e $y ) ) / l ength (

t e s tHa s t i e $y )
90 }
91
92 # Plot e r r o r s
93 TestErrors <− data . frame (x=1:M, y=testErrorVec )
94 Tra inErrors <− data . frame (x=1:M, t r=tra inErrorVec , exp l=expLoss )
95 ggp lot ( TestErrors , aes ( x=x , y=y) ) + geom_l i n e ( c o l o r=" red " ) +
96 geom_h l i n e ( y i n t e r c ep t=er ro rFu l lTree , l i n e t yp e="dashed" , c o l o r="orange " ,

show . legend = TRUE, s i z e =1.2)+
97 geom_h l i n e ( y i n t e r c ep t=errorStump , l i n e t yp e="dashed" , c o l o r=" green " , show

. legend = TRUE, s i z e =1.2)+
98 ylab ( "Test e r r o r " ) + xlab ( "Number o f boos t ing i t e r a t i o n s " )+
99 theme_bw( ) +

100 annotate ( " text " , x = 150 , y = 0 .425 , l a b e l = "Stump" )+
101 annotate ( " text " , x = 300 , y = 0 .25 , l a b e l = "Tree" )+
102 annotate ( " text " , x = 450 , y = 0 .12 , l a b e l = "Boost ing " )
103 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 ########################################################################
105 # Figure 3 . 3 : Top : AdaBoost compared to bagging us ing 100 c l a s s i f i c a t i o n
106 # t r e e s f i t t e d to the mixture data . Bottom : A random sample o f th ree
107 # c l a s s i f i c a t i o n t r e e s from the bagged ensemble
108 ########################################################################
109 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
110 # Generate t r a i n i n g data
111 s e t . seed (1 )
112 mBlue <− mvrnorm(n=10, mu = c (1 , 0 ) , Sigma = diag (1 , 2 , 2 ) )
113 mOrange <− mvrnorm(n=10, mu = c (0 , 1 ) , Sigma = diag (1 , 2 , 2 ) )
114 B <− matrix (0 , nrow=100 , nco l=2)
115 O <− matrix (0 , nrow=100 , nco l=2)
116
117 f o r ( i in 1 : 100 ) {
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118 sample1 = sample ( 1 : 1 0 , 1)
119 sample2 = sample ( 1 : 1 0 , 1)
120 meanB = mBlue [ sample1 , ]
121 meanO = mOrange [ sample2 , ]
122 B[ i , ] = mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
123 O[ i , ] = mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
124 }
125
126 Btrain <− cbind (B[ 1 : 1 0 0 , ] , matrix (0 ,100 ,1 ) )
127 Otrain <− cbind (O[ 1 : 1 0 0 , ] , matrix (1 , 100 ,1 ) )
128 data t ra in <− rbind ( Btrain , Otrain )
129 Xtrain <− data t ra in [ , 1 : 2 ]
130 Ytrain <− data t ra in [ , 3 ]
131 t r a i n <− data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] )
132
133 # cr ea t e d e c i s i o n boundary p l o t t i n g g r id
134 x1min <− min( Xtrain [ , 1 ] )
135 x1max <− max( Xtrain [ , 1 ] )
136 x2min <− min( Xtrain [ , 2 ] )
137 x2max <− max( Xtrain [ , 2 ] )
138 x1seq <− seq ( from=x1min , to=x1max , l ength=100)
139 x2seq <− seq ( from=x2min , to=x2max , l ength=100)
140 plotGr id <− data . frame ( as . matrix ( expand . g r id ( x1seq , x2seq ) ) )
141 colnames ( p lotGr id ) <− colnames ( t r a i n ) [ 2 : 3 ]
142
143 # cr ea t e t e s t s e t
144 B <− matrix (0 , nrow=5000 , nco l=2)
145 O <− matrix (0 , nrow=5000 , nco l=2)
146 f o r ( i in 1 :5000) {
147 sample1 <− sample ( 1 : 1 0 , 1)
148 sample2 <− sample ( 1 : 1 0 , 1)
149 meanB <− mBlue [ sample1 , ]
150 meanO <− mOrange [ sample2 , ]
151 B[ i , ] <− mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
152 O[ i , ] <− mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
153 }
154
155 Btest <− cbind (B[ 1 : 5 0 0 0 , ] , matrix (0 ,5000 ,1 ) )
156 Otest <− cbind (O[ 1 : 5 0 0 0 , ] , matrix (1 ,5000 ,1 ) )
157 da ta t e s t <− rbind ( Btest , Otest )
158 Xtest <− da ta t e s t [ , 1 : 2 ]
159 Ytest <− da ta t e s t [ , 3 ]
160 t e s t <− data . frame (y=f a c t o r ( Ytest ) , X1=Xtest [ , 1 ] , X2=Xtest [ , 2 ] )
161
162 # f i t boosted model
163 boost . f i t <− t r a i n (y~ . , data = tra in , method = "gbm" , d i s t r i b u t i o n="adaboost " )
164 # compute t r a i n i n g and t e s t e r r o r
165 boostTrainPreds <− p r ed i c t ( boost . f i t )
166 boostTra in ingError <− sum( as . numeric ( t r a i n $y != boostTrainPreds ) ) /nrow ( t r a i n )
167
168 # Compute t e s t e r r o r
169 boostTestPreds <− p r ed i c t ( boost . f i t , t e s t )
170 boostTestError <− sum( as . numeric ( t e s t $y != boostTestPreds ) ) /nrow ( t e s t )
171
172 # cons t ruc t d e c i s i o n boundary p l o t
173 c o l o r <− i f e l s e ( t r a i n $y == 0 , " blue " , " darkorange " )
174 # Bayes d e c i s i o n boundary
175 p <− f unc t i on (x ) {
176 s <− s q r t (1 / 5)
177 p0 <− mean(dnorm(x [ 1 ] , mBlue [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mBlue [ , 2 ] , s ) )
178 p1 <− mean(dnorm(x [ 1 ] , mOrange [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mOrange [ , 2 ] , s ) )
179 p1/ ( p0+p1 )
180 }
181 bayes ru l e <− apply ( plotGrid , 1 , p )
182 bayesPr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length (

x1seq ) ) ,
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183 z=as . vec to r ( baye s ru l e ) )
184 bayesProbs <− apply ( t e s t [ , 2 : 3 ] , 1 , p )
185 bayesError <− sum( as . numeric ( t e s t $y != f a c t o r ( i f e l s e ( bayesProbs >0.5 , 1 , 0) ) ) ) /

nrow ( t e s t )
186 # boost ing p r o b a b i l i t i e s
187 boostProbs <− p r ed i c t ( boost . f i t , p lotGrid , type="prob" ) [ , 2 ]
188 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
189 z=as . vec to r ( boostProbs ) )
190 gd <− expand . g r id (x=x1seq , y=x2seq )
191 gboost <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) ,

aes ( x=X1 , y=X2) ) +
192 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
193 c o l=i f e l s e ( boostProbs <0.5 , " skyblue " , " orange " ) ) +
194 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
195 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+
196 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )

, breaks=c ( 0 , . 5 ) ) +
197 theme_bw( ) +
198 theme ( legend . p o s i t i o n="top" )+
199 s c a l e_co l o r_manual (name="AdaBoost d e c i s i o n boundary : " , va lue s=c ( " purple " ,

"brown" ) ,
200 l a b e l s = c ( ’ Bayes ’ , ’ AdaBoost ’ ) )+
201 s c a l e_l i n e t yp e_manual (name = ’AdaBoost d e c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
202 l a b e l s = c ( ’ Bayes ’ , ’ AdaBoost ’ ) )+
203 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
204 l a b e l = paste ( "Train ing e r r o r : " ,
205 round ( boostTra in ingError , 3) ,
206 "\nTest e r r o r : " , round ( boostTestError , 3 ) ,
207 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)
208 gboost
209
210 # f i t bagging to the data
211 s e t . seed (11)
212 bagging . f i t <− t r a i n (y~ . , data=tra in , method=" treebag " ,
213 nbagg=100 , c on t r o l=
214 rpar t . c on t r o l ( m in sp l i t =2, cp=0.044444 , xval=0) )
215
216 # p lo t three randomly s e l e c t e d t r e e s from the bagging model
217 s e t . seed (6 )
218 t r ee Index <− sample ( 1 : 100 , 3)
219 t1 <− bagging . f i t $ f ina lMode l $mtrees [ [ t r e e Index [ 1 ] ] ] $ bt r ee
220 t2 <− bagging . f i t $ f ina lMode l $mtrees [ [ t r e e Index [ 2 ] ] ] $ bt r ee
221 t3 <− bagging . f i t $ f ina lMode l $mtrees [ [ t r e e Index [ 3 ] ] ] $ bt r ee
222 prp ( t1 , type=3, var l en=0, f a c l e n =0, f a l l e n . l e av e s=TRUE, box . c o l=i f e l s e ( t1 $

frame$ yval == 1 , " blue " , " orange " ) )
223 prp ( t2 , type=3, var l en=0, f a c l e n =0, f a l l e n . l e av e s=TRUE, box . c o l=i f e l s e ( t2 $

frame$ yval == 1 , " blue " , " orange " ) )
224 prp ( t3 , type=3, var l en=0, f a c l e n =0, f a l l e n . l e av e s=TRUE, box . c o l=i f e l s e ( t3 $

frame$ yval == 1 , " blue " , " orange " ) )
225
226 # compute t r a i n i n g and t e s t e r r o r
227 baggingPreds <− p r ed i c t ( bagging . f i t )
228 bagg ingTra in ingError <− sum( as . numeric ( t r a i n $y != baggingPreds ) ) /nrow ( t e s t )
229
230 # Compute t e s t e r r o r
231 baggingTestPreds <− p r ed i c t ( bagging . f i t , t e s t )
232 baggingTestError <− sum( as . numeric ( t e s t $y != baggingTestPreds ) ) /nrow ( t e s t )
233
234 # cons t ruc t d e c i s i o n boundary p l o t
235 baggingProbs <− p r ed i c t ( bagging . f i t , p lotGrid , type="prob" ) [ , 2 ]
236 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
237 z=as . vec to r ( baggingProbs ) )
238 gd <− expand . g r id (x=x1seq , y=x2seq )
239 gbagging <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) ,
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aes ( x=X1 , y=X2) ) +
240 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
241 c o l=i f e l s e ( baggingProbs <0.5 , " skyblue " , " orange " ) ) +
242 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
243 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+
244 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )

, breaks=c ( 0 , . 5 ) ) +
245 theme_bw( )+
246 theme ( legend . p o s i t i o n="top" )+
247 s c a l e_co l o r_manual (name="Bagging d e c i s i o n boundary : " , va lue s=c ( " purple " ,

"brown" ) ,
248 l a b e l s = c ( ’ Bayes ’ , ’ Bagging ’ ) )+
249 s c a l e_l i n e t yp e_manual (name = ’ Bagging d e c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
250 l a b e l s = c ( ’ Bayes ’ , ’ Bagging ’ ) )+
251 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
252 l a b e l = paste ( "Train ing e r r o r : " ,
253 round ( baggingTrain ingError , 3) ,
254 "\nTest e r r o r : " , round ( baggingTestError , 3 ) ,
255 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)
256 gbagging
257 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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D.4 Chapter 4 Code: Random Forests

R Code D.4: Source Code: Random Forests
1 ###########################
2 # CHAPTER 4 : Random Fores t s
3 ###########################
4
5 # Check f o r miss ing packages and i n s t a l l i f mis s ing
6 l i s t . o f . packages <− c ( " gr idExtra " , " ggp lot2 " , " ca r e t " , " reshape2 " , " kern lab " ,

" randomForest" ,
7 "randomForestSRC" , "ggRandomForests" , " la tex2exp " , "ROCR

" , " l a t t i c e " ,
8 " g r id " , "MASS" , " ip red " , " p ly r " , " e1071" )
9 new . packages <− l i s t . o f . packages [ ! ( l i s t . o f . packages %in% i n s t a l l e d . packages ( )

[ , "Package" ] ) ]
10 i f ( l ength (new . packages ) ) i n s t a l l . packages (new . packages )
11
12 # load r equ i r ed packages
13 load <− l app ly ( l i s t . o f . packages , r equ i r e , cha rac t e r . only = TRUE)
14
15 ###########################################################################
16 # Figure 4 . 1 : 10− f o l d cros s−va l i d a t i o n e r r o r s per add i t i ona l 10 t r e e s f o r a
17 # random f o r e s t f i t on the mixture data .
18 ###########################################################################
19 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 # Simulate data
21 s e t . seed (3 )
22 X <− NULL
23 f o r ( i in 1 : 10 ) {
24 X <− cbind (X, rnorm (12000) )
25 }
26 y <− f a c t o r ( apply (X, 1 , f unc t i on (x ) { i f e l s e (sum(x^2) > 9 .34 , 1 , −1)}) )
27 t r a i nHa s t i e <− data . frame (y=y [ 1 : 2 0 0 0 ] , x=X[ 1 : 2 0 00 , ] )
28 colnames ( t r a i nHa s t i e ) <− c ( "y" , paste ( "X" , 1 : 10 , sep="" ) )
29 t e s tHa s t i e <− data . frame (y=y [ 2 001 : 1 2 000 ] , x=X[2001 : 12000 , ] )
30 colnames ( t e s tHa s t i e ) <− c ( "y" , paste ( "X" , 1 : 10 , sep="" ) )
31
32 # l e a rn i ng curve mixture data with standard e r r o r bars
33 tuneControl <− data . frame (mtry=1)
34 f i tCon t r o l <− t r a inCont ro l (method="cv" , number=10)
35 overError <− NULL
36 overSD <− NULL
37 f o r ( i in 1 : 50 ) {
38 r f . f i t <− t r a i n (y~ . , data=tra inHas t i e , method=" r f " , t rContro l=f i tCon t r o l

,
39 tuneGrid=tuneControl , n t r ee=i ∗ 10)
40 overError [ i ] <− 1− r f . f i t $ r e s u l t [ 2 ]
41 overSD [ i ] <− r f . f i t $ r e s u l t [ 4 ]
42 }
43
44 # p lo t e r r o r s with SD f o r RF f i t to the mixture data
45 f r a c t i o n <− 1 :50 ∗10
46 errorRF . f i t <− un l i s t ( overError )
47 sdRF . f i t <− un l i s t ( overSD )
48 RF. f i t e r r o r <− data . frame (x=f r a c t i on , y=errorRF . f i t )
49 RF. f i t s dP l u s <− data . frame (x=f r a c t i on , y=errorRF . f i t+sdRF . f i t )
50 RF. f i t sdMin <− data . frame (x=f r a c t i on , y=errorRF . f i t −sdRF . f i t )
51 RFPlot <− ggp lot ( data=RF. f i t e r r o r , aes (x , y ) ) + geom_l i n e ( c o l o r="orange " , s i z e

=1) +
52 geom_er ro rba r ( aes (ymax=errorRF . f i t+sdRF . f i t , ymin=errorRF . f i t −sdRF . f i t ) ,

width=5, c o l="blue " )+
53 geom_point ( c o l="orange " , s i z e =4) + xlab ( "Number o f t r e e s " ) + ylab ( "Error

( ten−f o l d CV) " ) +
54 g g t i t l e ( "Random Forest Learning : e lemStat data" )+
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55 theme_bw( )+
56 geom_v l i n e ( x i n t e r c ep t=which ( errorRF . f i t == min( errorRF . f i t ) ) ∗ 10 , c o l="

purple " , l i n e t yp e="dashed" )
57 RFPlot
58 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59 ###########################################################################
60 # Figure 4 . 2 : A Forest−RI f i t t e d to the mixture data : The d e c i s i o n boundary
61 # i s r ep re s en ted by the s o l i d brown l i n e .
62 ###########################################################################
63 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
64 # Generate t r a i n i n g data
65 s e t . seed (1 )
66 mBlue <− mvrnorm(n=10, mu = c (1 , 0 ) , Sigma = diag (1 , 2 , 2 ) )
67 mOrange <− mvrnorm(n=10, mu = c (0 , 1 ) , Sigma = diag (1 , 2 , 2 ) )
68 B <− matrix (0 , nrow=100 , nco l=2)
69 O <− matrix (0 , nrow=100 , nco l=2)
70
71 f o r ( i in 1 : 100 ) {
72 sample1 = sample ( 1 : 1 0 , 1)
73 sample2 = sample ( 1 : 1 0 , 1)
74 meanB = mBlue [ sample1 , ]
75 meanO = mOrange [ sample2 , ]
76 B[ i , ] = mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
77 O[ i , ] = mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
78 }
79
80 Btrain <− cbind (B[ 1 : 1 0 0 , ] , matrix (0 ,100 ,1 ) )
81 Otrain <− cbind (O[ 1 : 1 0 0 , ] , matrix (1 , 100 ,1 ) )
82 data t ra in <− rbind ( Btrain , Otrain )
83 Xtrain <− data t ra in [ , 1 : 2 ]
84 Ytrain <− data t ra in [ , 3 ]
85 t r a i n <− data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] )
86
87 # cr ea t e d e c i s i o n boundary p l o t t i n g g r id
88 x1min <− min( Xtrain [ , 1 ] )
89 x1max <− max( Xtrain [ , 1 ] )
90 x2min <− min( Xtrain [ , 2 ] )
91 x2max <− max( Xtrain [ , 2 ] )
92 x1seq <− seq ( from=x1min , to=x1max , l ength=100)
93 x2seq <− seq ( from=x2min , to=x2max , l ength=100)
94 plotGr id <− data . frame ( as . matrix ( expand . g r id ( x1seq , x2seq ) ) )
95 colnames ( p lotGr id ) <− colnames ( t r a i n ) [ 2 : 3 ]
96
97 # cr ea t e t e s t s e t
98 B <− matrix (0 , nrow=5000 , nco l=2)
99 O <− matrix (0 , nrow=5000 , nco l=2)

100 f o r ( i in 1 :5000) {
101 sample1 <− sample ( 1 : 1 0 , 1)
102 sample2 <− sample ( 1 : 1 0 , 1)
103 meanB <− mBlue [ sample1 , ]
104 meanO <− mOrange [ sample2 , ]
105 B[ i , ] <− mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
106 O[ i , ] <− mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
107 }
108
109 Btest <− cbind (B[ 1 : 5 0 0 0 , ] , matrix (0 ,5000 ,1 ) )
110 Otest <− cbind (O[ 1 : 5 0 0 0 , ] , matrix (1 ,5000 ,1 ) )
111 da ta t e s t <− rbind ( Btest , Otest )
112 Xtest <− da ta t e s t [ , 1 : 2 ]
113 Ytest <− da ta t e s t [ , 3 ]
114 t e s t <− data . frame (y=f a c t o r ( Ytest ) , X1=Xtest [ , 1 ] , X2=Xtest [ , 2 ] )
115
116 # cons t ruc t d e c i s i o n boundary p l o t
117 c o l o r <− i f e l s e ( t r a i n $y == 0 , " blue " , " darkorange " )
118 # Bayes d e c i s i o n boundary
119 p <− f unc t i on (x ) {
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120 s <− s q r t (1 / 5)
121 p0 <− mean(dnorm(x [ 1 ] , mBlue [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mBlue [ , 2 ] , s ) )
122 p1 <− mean(dnorm(x [ 1 ] , mOrange [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mOrange [ , 2 ] , s ) )
123 p1/ ( p0+p1 )
124 }
125 bayes ru l e <− apply ( plotGrid , 1 , p )
126 bayesPr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length (

x1seq ) ) ,
127 z=as . vec to r ( baye s ru l e ) )
128 bayesProbs <− apply ( t e s t [ , 2 : 3 ] , 1 , p )
129 bayesError <− sum( as . numeric ( t e s t $y != f a c t o r ( i f e l s e ( bayesProbs >0.5 , 1 , 0) ) ) ) /

nrow ( t e s t )
130
131 # f i t a random f o r e s t to the data
132 f i tCon t r o l <− t r a inCont ro l (method="none" )
133 tuneControl <− data . frame (mtry=1)
134 s e t . seed (13)
135 r f . f i t <− t r a i n (y~ . , data=tra in , method=" r f " , t rCont ro l=f i tCon t r o l ,
136 tuneGrid=tuneControl , n t r ee =100 , proximity=TRUE)
137 r fProx <− r f . f i t
138
139 # compute t r a i n i n g and t e s t e r r o r
140 r fTra inPreds <− p r ed i c t ( r f . f i t )
141 r fTra in ingEr ro r <− sum( as . numeric ( t r a i n $y != r fTra inPreds ) ) /nrow ( t r a i n )
142
143 # Compute t e s t e r r o r
144 r fTestPreds <− p r ed i c t ( r f . f i t , t e s t )
145 r fTe s tEr ro r <− sum( as . numeric ( t e s t $y != r fTestPreds ) ) /nrow ( t e s t )
146
147 # cons t ruc t d e c i s i o n boundary p l o t
148 r fProbs <− p r ed i c t ( r f . f i t , p lotGrid , type="prob" ) [ , 2 ]
149 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
150 z=as . vec to r ( r fProbs ) )
151 gd <− expand . g r id (x=x1seq , y=x2seq )
152 g r f <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) , aes (

x=X1 , y=X2) ) +
153 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
154 c o l=i f e l s e ( r fProbs <0.5 , " skyblue " , " orange " ) ) +
155 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
156 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+
157 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )

, breaks=c ( 0 , . 5 ) ) +
158 theme_bw( ) +
159 theme ( legend . p o s i t i o n="top" )+
160 s c a l e_co l o r_manual (name="Forest−RI d e c i s i o n boundary : " , va lue s=c ( " purple "

, "brown" ) ,
161 l a b e l s = c ( ’ Bayes ’ , ’ Forest−RI ’ ) )+
162 s c a l e_l i n e t yp e_manual (name = ’ Forest−RI d e c i s i o n boundary : ’ , va lue s = c (

"dashed" , " s o l i d " ) ,
163 l a b e l s = c ( ’ Bayes ’ , ’ Forest−RI ’ ) )+
164 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
165 l a b e l = paste ( "Train ing e r r o r : " , round ( r fTra in ingError , 3) ,
166 "\nTest e r r o r : " , round ( r fTestError , 3 ) ,
167 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)
168 g r f
169
170 # Simulate elemStat data
171 s e t . seed (3 )
172 X <− NULL
173 f o r ( i in 1 : 10 ) {
174 X <− cbind (X, rnorm (12000) )
175 }
176 y <− f a c t o r ( apply (X, 1 , f unc t i on (x ) { i f e l s e (sum(x^2) > 9 .34 , 1 , −1)}) )
177 t r a i nHa s t i e <− data . frame (y=y [ 1 : 2 0 0 0 ] , x=X[ 1 : 2 0 00 , ] )
178 colnames ( t r a i nHa s t i e ) <− c ( "y" , paste ( "X" , 1 : 10 , sep="" ) )
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179 t e s tHa s t i e <− data . frame (y=y [ 2 001 : 1 2 000 ] , x=X[2001 : 12000 , ] )
180 colnames ( t e s tHa s t i e ) <− c ( "y" , paste ( "X" , 1 : 10 , sep="" ) )
181
182 # t r e e s l e a rn i ng curves f o r bagging
183 M <− 50
184 tra inErrorBag <− NULL
185 testErrorBag <− NULL
186 f o r ( i in 1 :M) {
187 f i t <− t r a i n (y~ . , data = tra inHas t i e , method = " treebag " , t rContro l =

f i tCon t r o l , verbose = FALSE, nbagg=i ∗ 10)
188 predsTest <− p r ed i c t ( f i t , t e s tHa s t i e )
189 predsTrain <− p r ed i c t ( f i t , t r a i nHa s t i e )
190 tra inErrorBag [ i ] <− sum( as . numeric ( predsTrain != t r a i nHa s t i e $y ) ) / l ength (

t r a i nHa s t i e $y )
191 testErrorBag [ i ] <− sum( as . numeric ( predsTest != t e s tHa s t i e $y ) ) / l ength (

t e s tHa s t i e $y )
192 }
193
194 # t r e e s l e a rn i ng curves f o r random f o r e s t
195 trainErrorRF <− NULL
196 testErrorRF <− NULL
197 f o r ( i in 1 :M) {
198 f i t <− t r a i n (y~ . , data = tra inHas t i e , method = " r f " , t rCont ro l =

f i tCon t r o l , verbose = FALSE,
199 tuneGrid = data . frame (mtry=3) , n t r ee=i ∗ 10)
200 predsTest <− p r ed i c t ( f i t , t e s tHa s t i e )
201 predsTrain <− p r ed i c t ( f i t , t r a i nHa s t i e )
202 trainErrorRF [ i ] <− sum( as . numeric ( predsTrain != t r a i nHa s t i e $y ) ) / l ength (

t r a i nHa s t i e $y )
203 testErrorRF [ i ] <− sum( as . numeric ( predsTest != t e s tHa s t i e $y ) ) / l ength (

t e s tHa s t i e $y )
204 }
205
206 # Plot e r r o r curves
207 e r r o r s <− data . frame (x=seq ( from=10, to=500 , by=10) , teBag=testErrorBag , teRF=

testErrorRF )
208 mel <− melt ( e r r o r s , id . var="x" )
209 ggp lot (mel , aes ( x=x , y=value , c o l=va r i ab l e ) ) + geom_l i n e ( ) +
210 geom_point ( )+
211 geom_h l i n e ( y i n t e r c ep t=mean( testErrorBag ) , c o l=" green " , l i n e t yp e="dashed"

)+
212 geom_h l i n e ( y i n t e r c ep t=mean( testErrorRF ) , c o l="orange " , l i n e t yp e="dashed"

)+
213 theme_bw( )+
214 theme ( legend . p o s i t i o n="top" )+
215 xlab ( "Number o f t r e e s " ) + ylab ( "Test Error " ) +
216 s c a l e_co lou r_manual (name = ’ elemStat Data Fit : ’ , va lue s=c ( " green " , "

orange " ) , l a b e l s = c ( "Bagging" , "Forest−RI" ) )
217 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
218 ###########################################################################
219 # Figure 4 . 3 : OOB e r r o r computed on the Spam t r a i n i n g data , compared to the
220 # t e s t e r r o r .
221 ###########################################################################
222 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
223 # t r e e s l e a rn i ng curves f o r random f o r e s t
224 M <− 50
225 trainErrorRF <− NULL
226 testErrorRF <− NULL
227 f o r ( i in 1 :M) {
228 f i t <− t r a i n (y~ . , data = tra inHas t i e , method = " r f " , t rCont ro l =

f i tCon t r o l , verbose = FALSE,
229 tuneGrid = data . frame (mtry=3) , n t r ee=i ∗ 10)
230 predsTest <− p r ed i c t ( f i t , t e s tHa s t i e )
231 predsTrain <− p r ed i c t ( f i t , t r a i nHa s t i e )
232 trainErrorRF [ i ] <− sum( as . numeric ( predsTrain != t r a i nHa s t i e $y ) ) / l ength (

t r a i nHa s t i e $y )
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233 testErrorRF [ i ] <− sum( as . numeric ( predsTest != t e s tHa s t i e $y ) ) / l ength (
t e s tHa s t i e $y )

234 }
235
236 # Compute out o f bag e r r o r r a t e s f o r spam data and p lo t with t e s t e r r o r ra t e
237 f i tCon t r o l <− t r a inCont ro l (method="none" )
238 r f . f i t <− t r a i n (y~ . , data = tra inHas t i e , method = " r f " , t rCont ro l = f i tCon t r o l

, verbose = FALSE,
239 tuneGrid = data . frame (mtry=3) , n t r ee =500)
240 OOBErrorRF <− r f . f i t $ f ina lMode l $ e r r . r a t e [ seq ( from=10, to=500 , by=10) , 1 ]
241 OOBTesterrors <− data . frame (x=seq ( from=10, to=500 , by=10) , teRF=testErrorRF ,

oobRF=OOBErrorRF)
242 mel <− melt ( OOBTesterrors , id . var="x" )
243 ggp lot (mel , aes ( x=x , y=value , c o l=va r i ab l e ) ) + geom_l i n e ( ) +
244 theme_bw( )+
245 geom_point ( )+
246 theme ( legend . p o s i t i o n="top" )+
247 geom_h l i n e ( y i n t e r c ep t=mean( testErrorRF ) , c o l=" red " , l i n e t yp e="dashed" )+
248 geom_h l i n e ( y i n t e r c ep t=mean(OOBErrorRF) , c o l="blue " , l i n e t yp e="dashed" )+
249 xlab ( "Number o f t r e e s " ) + ylab ( "Error " ) +
250 s c a l e_co lou r_manual (name = ’OOB vs Test e lemStat Data : ’ , va lue s=c ( " red " ,

" blue " ) , l a b e l s = c ( "Test Error " , "OOB Error " ) )
251 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
252 ###################################################
253 # Figure 4 . 4 : Var iab le importance f o r the spam data
254 ###################################################
255 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
256 # load data
257 data ( spam)
258 spamData <− data . frame (y=spam$type , spam [ , −58 ] )
259
260 # s p l i t i n to t r a i n i n g and t e s t
261 s e t . seed (3 )
262 t ra in Index <− c r ea t eDataPar t i t i on ( spamData$y , p=0.6 , l i s t=FALSE)
263 spamTrain <− spamData [ t ra inIndex , ]
264 spamTest <− spamData[− t ra inIndex , ]
265
266 # RF va r i ab l e importance
267 s e t . seed (123)
268 r f <− r f s r c ( y~ . , data=spamTrain , importance="TRUE" )
269
270 # compute p r ed i c t i o n e r r o r
271 r fPreds <− p r ed i c t ( r f , spamTest , type="prob" )
272 r fC la s sPred s <− r fPreds $ c l a s s
273 r fM i s c l a s sE r r o r <− mean( r fC la s sPreds != spamTest$y )
274
275 # compute va r i ab l e importance
276 vimp <− gg_vimp( r f , which . outcome=" a l l " )
277 p l o t ( vimp ) + theme_bw( ) +theme ( legend . p o s i t i o n="none" )
278 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
279 ##########################################################################
280 # Figure 4 . 5 : Spam data va r i ab l e exp l o r a t i on p l o t : The top two rows
281 # correspond to the e i gh t most important v a r i a b l e s and the bottom two rows
282 # the l e a s t important .
283 ##########################################################################
284 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
285 # p lo t va r i a b l e r e l a t i o n s h i p s
286 y l ab e l <− TeX( "$\\hat{P}(spam |\\ unde r l i n e {x}) $" )
287 gg_v <− gg_va r i ab l e ( r f )
288 xvar <− vimp$ vars [ c ( 1 : 3 , 55 : 57 ) ]
289 p l o t ( gg_v , xvar=xvar , panel=TRUE) + s c a l e_co lour_manual ( va lue s = c ( " skyblue " ,

" red " ) ) +
290 theme_bw( )+theme ( legend . p o s i t i o n="bottom" , legend . t i t l e=element_blank ( ) )

+ ylab ( y l ab e l )
291 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
292 ###########################################################################
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293 # Table 4 . 1 : S i g n i f i c a n t p r e d i c t o r s from the l o g i s t i c r e g r e s s i o n f i t to the
294 # spam data .
295 ###########################################################################
296 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
297 # f i t t i n g a l o g i s t i c r e g r e s s i o n model to the spam data
298 lrSpam <− glm (y ~ . , f ami ly=binomial ( l i n k=’ l o g i t ’ ) , data=spamTrain )
299
300 # Compute p r ed i c t i o n e r r o r
301 l rPredsProbs <− p r ed i c t ( lrSpam , spamTest , type=’ re sponse ’ )
302 l rPreds <− i f e l s e ( l rPredsProbs > 0 . 5 , "spam" , "nonspam" )
303 LRmisClas i f i cError <− mean( l rPreds != spamTest$y )
304
305 # f i nd s i g n i f i c a n t v a r i a b l e s
306 modCoefs <− summary( lrSpam ) $ c o e f f i c i e n t s
307 s igVarIndex <− which (modCoefs [ , 4 ] < 0 . 05 )
308 s igVar <− modCoefs [ s igVarIndex , ]
309 sigVarOrd <− round ( s igVar [ order ( s igVar [ , 4 ] ) , ] , 4)
310 sigVarOrd
311 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
312 #####################################################
313 # In text : Rank c o r r e l a t i o n between VIMP and p−va lue s
314 #####################################################
315 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
316 # rank c o r r e l a t i o n s based on p−value f o r a l l p r e d i c t o r s
317 vimpVars <− vimp$ vars
318 l rVar s <− sapply ( rownames (modCoefs [ order (modCoefs [ , 4 ] ) , ] ) [−1] , f unc t i on (x )

which ( vimpVars == x) )
319 rankCor re l a t i on <− cor ( 1 : 5 7 , l rVars , method="spearman" )
320 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
321 #############################################################################
322 # Figure 4 . 6 : Random Forest p a r t i a l dependence p l o t : Le f t : Pa r t i a l dependence
323 # f o r the word " f r e e " . Right : Pa r t i a l dependence f o r the word " george " .
324 #############################################################################
325 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
326 # r f p a r t i a l dependence p l o t s
327 pa r t i a lF r e e <− p lo t . v a r i a b l e ( r f , xvar . names=" f r e e " , p a r t i a l=TRUE)
328 par t i a lGeorge <− p lo t . v a r i a b l e ( r f , xvar . names=" george " , p a r t i a l=TRUE)
329 freeData <− gg_pa r t i a l ( p a r t i a lF r e e )
330 georgeData <− gg_pa r t i a l ( pa r t i a lGeorge )
331 fp lo tDat <− data . frame (y = 1− f reeData $yhat , x=freeData $ f r e e )
332 gplotDat <− data . frame (y = 1−georgeData$yhat , x=georgeData$ george )
333 parFree <− ggp lot ( fp lotDat , aes ( x=x , y=y) ) + geom_l i n e ( ) + geom_point ( c o l="

darkgreen " , s i z e =3)+
334 theme_bw( )+
335 ylab (TeX( "$\\hat{P}(spam |\\ unde r l i n e {x}) $" ) ) + xlab ( "Percentage o f the

word ’ f r e e ’ in emai l " ) +
336 geom_rug ( s i d e s="b" , c o l="blue " )
337 parGeorge <− ggp lot ( gplotDat , aes ( x=x , y=y) ) + geom_l i n e ( ) + geom_point ( c o l="

darkgreen " , s i z e =3)+
338 theme_bw( )+
339 ylab (TeX( "$\\hat{P}(spam |\\ unde r l i n e {x}) $" ) ) + xlab ( "Percentage o f the

word ’ george ’ in emai l " ) +
340 geom_rug ( s i d e s="b" , c o l="blue " )
341 g r id . arrange ( parFree , parGeorge , nco l=2)
342 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
343 #############################################################################
344 # Table 4 . 2 : Model con fus i on matr i ce s ( l o g i s t i c r e g r e s s i o n abbrev iated as LR)
345 #############################################################################
346 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
347 # he lpe r func t i on to compute p r o b a b i l i t i e s from odds
348 computeProb <− f unc t i on ( co e f ) {
349 odds <− exp ( co e f )
350 prob <− odds/(1+odds )
351 re turn ( prob )
352 }
353
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354 # compare con fus i on matr i ce s o f the two models
355 rfConfMat <− confus ionMatr ix ( r fC las sPreds , spamTest$y , dnn=c ( "Pred ic ted " , "

Actual " ) ) [ [ 2 ] ]
356 lrConfMat <− confus ionMatr ix ( l rPreds , spamTest$y , dnn=c ( "Pred ic ted " , "Actual " )

) [ [ 2 ] ]
357 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
358 ##########################################################################
359 # Figure 4 . 7 : ROC curve f o r a Random Forest and l o g i s t i c r e g r e s s i o n f i t to
360 # the spam data .
361 ##########################################################################
362 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
363 # compare us ing ROC curves
364 # ca l c u l a t i n g the va lue s f o r ROC curve
365 pred <− p r ed i c t i o n ( p r e d i c t i o n s=data . frame ( r f=1−r fPreds $ pr ed i c t ed [ , 1 ] , l r=

lrPredsProbs ) , l a b e l s=data . frame ( r f=as . numeric ( spamTest$y ) , l r=as . numeric (
spamTest$y ) ) )

366 pe r f <− performance ( pred , " tpr " , " fp r " )
367
368 # p l o t t i n g the ROC curve
369 p l o t ( per f , c o l o r i z e=TRUE, main="ROC spam data : RF vs Lo g i s t i c r e g r e s s i o n " )
370 text ( 0 . 0 1 , 0 . 92 , "RF" )
371 text ( 0 . 1 5 , 0 . 8 , " L o g i s t i c r e g r e s s i o n " )
372 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
373 ########################################################################
374 # Figure 4 . 8 : Random Forest proximity p l o t s : a comparison o f a proximity
375 # p lo t with RF de c i s i o n boundary .
376 ########################################################################
377 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
378 # proximity p l o t s
379 n r f <− r fProx $ f ina lMode l
380 mdsPoints <− MDSplot ( nrf , f a c=t r a i n $y ) $ po in t s
381 l ab e lPo i n t s <− mdsPoints [ c (4 , 74 , 87 , 116 , 155 , 186) , ]
382 gr fProx1 <− ggp lot ( data . frame (x=mdsPoints [ , 1 ] , y=mdsPoints [ , 2 ] , r e sponse=t r a i n

$y ) , aes ( x=x , y=y , c o l=response ) )+
383 geom_point ( )+xlab ( "Dimension 1" ) + ylab ( "Dimension 2" ) +
384 theme_bw( ) +
385 theme ( legend . p o s i t i o n="none" )+
386 s c a l e_co lou r_manual (name="Proximity Plot " , va lue s=c ( " blue " , " orange " , "

purple " ) ) +
387 geom_l ab e l ( data=data . frame (x=l ab e lPo i n t s [ , 1 ] , y=l ab e lPo i n t s [ , 2 ] , l a b e l=

paste ( 1 : 6 ) ) , aes ( x=x , y=y , l a b e l=l a b e l ) , c o l="darkgreen " , s i z e =5)+
388 g g t i t l e ( "Proximity Plot " )
389
390 # de c i s i o n boundary with 2 dimensions
391 l ab e lPo in t s 2 <− t r a i n [ c (4 , 74 , 87 , 116 , 155 , 186) , 2 : 3 ]
392 proxRF <− nr f
393 r fProbs <− p r ed i c t (proxRF , newdata=plotGrid , type="prob" ) [ , 2 ]
394 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
395 z=as . vec to r ( r fProbs ) )
396 gd <− expand . g r id (x=x1seq , y=x2seq )
397 grfProx2 <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , x1=Xtrain [ , 1 ] , x2=Xtrain [ , 2 ] ) ,

aes ( x=x1 , y=x2 ) ) +
398 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
399 c o l=i f e l s e ( r fProbs <0.5 , " skyblue " , " orange " ) ) +
400 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
401 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " ) , breaks=c ( 0 , . 5 ) )

+
402 theme_bw( )+
403 theme ( legend . p o s i t i o n="none" )+
404 s c a l e_co l o r_manual (name="Forest−RI d e c i s i o n boundary : " , va lue s=c ( "brown" )

,
405 l a b e l s = c ( ’ ’ ) )+ xlab ( "X1" ) + ylab ( "X2" )+
406 geom_l ab e l ( data=data . frame (x=labe lPo in t s 2 [ , 1 ] , y=l abe lPo in t s 2 [ , 2 ] , l a b e l=

paste ( 1 : 6 ) ) , aes ( x=x , y=y , l a b e l=l a b e l ) , c o l="darkgreen " , s i z e =5)+
407 g g t i t l e ( "Forest−RI Dec i s i on Boundary" )
408
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409 # compare proximity p l o t with d e c i s i o n boundary
410 g r id . arrange ( grfProx1 , grfProx2 , nco l=2)
411 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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D.5 Chapter 5 Code: Bias and Variance in
Random Forests

R Code D.5: Source Code: Bias and Variance in Random Forests
1 ################################################
2 # CHAPTER 5 : BIAS AND VARIANCE IN RANDOM FORESTS
3 ################################################
4
5 # Check f o r miss ing packages and i n s t a l l i f mis s ing
6 l i s t . o f . packages <− c ( " latex2exp " , "mlbench" , " ggp lot2 " , " ca r e t " , "doSNOW" , "

l a t t i c e " ,
7 " gr idExtra " , " g r id " , " s t a r g a z e r " , " ip red " , "gbm" , "

randomForest" ,
8 " rpar t " )
9 new . packages <− l i s t . o f . packages [ ! ( l i s t . o f . packages %in% i n s t a l l e d . packages ( )

[ , "Package" ] ) ]
10 i f ( l ength (new . packages ) ) i n s t a l l . packages (new . packages )
11
12 # load r equ i r ed packages
13 load <− l app ly ( l i s t . o f . packages , r equ i r e , cha rac t e r . only = TRUE)
14
15 #############################################
16 # Figure 5 . 1 : Bias and var iance in r e g r e s s i o n
17 # ###########################################
18 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 # Sp e c i f i y means and standard dev i a t i on
20 dmar <− par ( ) $mar
21 par (mar=c (0 , 0 , 0 , 0 ) )
22 mean1=65; sd1=15
23 lb1=80; ub1=120
24 mean2=100; sd2=25
25 lb2=80; ub2=120
26
27 # s imulate data
28 x1 <− seq (−4 ,4 , l ength=100)∗ sd1 + mean1
29 hx1 <− dnorm(x1 , mean1 , sd1 )
30 x2 <− seq (−4 ,4 , l ength=100)∗ sd2 + mean2
31 hx2 <− dnorm(x2 , mean2 , sd2 )
32
33 # cr ea t e empty p lo t
34 p l o t ( x1 , hx1 , type="n" , xlab="" , ylab="" ,
35 xlim=c (0 , 200) , yl im=c (−0.003 , 0 . 04 ) ,
36 main="" , axes=FALSE)
37
38 # Draw d i s t r i b u t i o n s
39 l i n e s ( x1 , hx1 )
40 l i n e s ( x2 , hx2 )
41
42 # make arrows and mean l i n e s
43 arrows (0 , 0 , 0 , 0 . 04 , xpd = TRUE, l ength = 0 . 1 )
44 arrows (0 , 0 , 200 , 0 , xpd = TRUE, l ength = 0 . 1 )
45 arrows (mean1−sd1 , max( hx1 ) , mean1+sd1 , max( hx1 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
46 arrows (mean2−sd2 , max( hx2 ) , mean2+sd2 , max( hx2 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
47 arrows (mean1 , 0 . 029 , mean2 , 0 . 029 , l ength = 0 .05 , code=3, c o l="darkgreen " )
48 l i n e s ( c (mean1 , mean1) , c (0 , 0 . 035 ) , l t y =2, c o l="blue " )
49 l i n e s ( c (mean2 , mean2) , c (0 , 0 . 035 ) , l t y =2, c o l="blue " )
50
51 # add text to the p l o t
52 proby <− TeX( "$P(Y|\\ unde r l i n e {x}) $" )
53 probtry <− TeX( "$P_{\\Omega_{ t r }}(Y|\\ unde r l i n e {x}) $" )
54 bayes <− TeX( "$ I r r e d u c i b l e Error $" )
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55 var <− TeX( "$Variance $" )
56 b ia s <− TeX( "$Bias $" )
57 bayesModel <− TeX( "$ f_B(\\ unde r l i n e {x}) $" )
58 avgModel <− TeX( "$\\bar{ f }(\\ unde r l i n e {x}) $" )
59 text (30 , 0 . 005 , proby , cex=0.8)
60 text (150 , 0 . 005 , probtry , cex =0.8)
61 text (35 , max( hx1 ) , bayes , cex =0.8)
62 text (135 , max( hx2 ) , var , cex =0.8)
63 text ( (mean1+mean2) / 2 , 0 . 032 , b ias , cex =0.8)
64 text (mean1 , −0.0029 , bayesModel , cex =0.8)
65 text (mean2 , −0.0029 , avgModel , cex =0.8)
66 text (−6 , 0 . 038 , "P" )
67 text (190 , −0.0025 , "Y" )
68 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69 #########################################################################
70 # Figure 5 . 2 : Bias and var iance o f an est imated d i s t r i b u t i o n : Le f t : Large
71 # b ia s and smal l va r iance . Right : Small b i a s and l a r g e var iance .
72 #########################################################################
73 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 # Large bias , smal l va r i ance
75 # Spec i f y means and standard dev i a t i on s
76 mean1=85; sd1=15
77 lb1=80; ub1=120
78 mean2=140; sd2=5
79 lb2=80; ub2=120
80
81 # s imulate data
82 x1 <− seq (−4 ,4 , l ength=100)∗ sd1 + mean1
83 hx1 <− dnorm(x1 , mean1 , sd1 )
84 x2 <− seq (−4 ,4 , l ength=100)∗ sd2 + mean2
85 hx2 <− dnorm(x2 , mean2 , sd2 )
86
87 # cr ea t e empty p lo t
88 p l o t ( x1 , hx1 , type="n" , xlab="" , ylab="" ,
89 xlim=c (0 , 200) , yl im=c (−0.003 , 0 . 08 ) ,
90 main="" , axes=FALSE)
91
92 # draw d i s t r i b u t i o n s
93 l i n e s ( x1 , hx1 )
94 l i n e s ( x2 , hx2 )
95 arrows (0 , 0 , 0 , 0 . 08 , xpd = TRUE, l ength = 0 . 1 )
96 arrows (0 , 0 , 200 , 0 , xpd = TRUE, l ength = 0 . 1 )
97 arrows (mean2−sd2 , max( hx2 ) , mean2+sd2 , max( hx2 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
98 arrows (mean1−sd1 , max( hx1 ) , mean1+sd1 , max( hx1 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
99 arrows (mean1 , 0 . 5 ∗max( hx2 ) , mean2 , 0 . 5 ∗max( hx2 ) , l ength = 0 .05 , code=3, c o l="

darkgreen " )
100 l i n e s ( c (mean1 , mean1) , c (0 , 0 . 08 ) , l t y =2, c o l="blue " )
101 l i n e s ( c (mean2 , mean2) , c (0 , 0 . 08 ) , l t y =2, c o l="blue " )
102
103 # add text to the p l o t
104 proby <− TeX( "$P(y |\\ unde r l i n e {x}) $" )
105 probtry <− TeX( "$P_{\\Omega_{ t r }}(y |\\ unde r l i n e {x}) $" )
106 bayesModel <− TeX( "$ f_B(\\ unde r l i n e {x}) $" )
107 avgModel <− TeX( "$\\bar{ f }(\\ unde r l i n e {x}) $" )
108 text (65 , 0 . 02 , proby , cex=0.9)
109 text (165 , 0 . 005 , probtry , cex=0.9)
110 text ( (mean1+mean2) / 2 , 0 . 5 ∗max( hx2 ) +0.003 , "Large b i a s " , cex =0.9)
111 text (mean2+sd2+17, max( hx2 ) , "Small var i ance " , cex =0.9)
112 text (mean1 , −0.0029 , bayesModel , cex =0.9)
113 text (mean2 , −0.0029 , avgModel , cex =0.9)
114 text (−5 , 0 . 078 , "P" )
115 text (190 , −0.0025 , "Y" )
116 # Small b ias , l a r g e var i ance
117 # sp e c i f y means and standard dev i a t i on s

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. SOURCE CODE 186

118 mean1=85; sd1=15
119 lb1=80; ub1=120
120 mean2=90; sd2=25
121 lb2=80; ub2=120
122
123 # s imulate data
124 x1 <− seq (−4 ,4 , l ength=100)∗ sd1 + mean1
125 hx1 <− dnorm(x1 , mean1 , sd1 )
126 x2 <− seq (−3 ,4 , l ength=100)∗ sd2 + mean2
127 hx2 <− dnorm(x2 , mean2 , sd2 )
128
129 # cr ea t e empty p lo t
130 p l o t ( x1 , hx1 , type="n" , xlab="" , ylab="" ,
131 xlim=c (0 , 200) , yl im=c (−0.003 , 0 . 08 ) ,
132 main="" , axes=FALSE)
133
134 # draw d i s t r i b u t i o n s
135 l i n e s ( x1 , hx1 )
136 l i n e s ( x2 , hx2 )
137 arrows (0 , 0 , 0 , 0 . 08 , xpd = TRUE, l ength = 0 . 1 )
138 arrows (0 , 0 , 200 , 0 , xpd = TRUE, l ength = 0 . 1 )
139 arrows (mean1−sd1 , max( hx1 ) , mean1+sd1 , max( hx1 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
140 arrows (mean2−sd2 , max( hx2 ) , mean2+sd2 , max( hx2 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
141 arrows (mean1 , 0 . 05 , mean2 , 0 . 05 , l ength = 0 .05 , code=3, c o l="darkgreen " )
142 l i n e s ( c (mean1 , mean1) , c (0 , 0 . 08 ) , l t y =2, c o l="blue " )
143 l i n e s ( c (mean2 , mean2) , c (0 , 0 . 08 ) , l t y =2, c o l="blue " )
144
145 # add text
146 proby <− TeX( "$P(y |\\ unde r l i n e {x}) $" )
147 probtry <− TeX( "$P_{\\Omega_{ t r }}(y |\\ unde r l i n e {x}) $" )
148 bayesModel <− TeX( "$ f_B(\\ unde r l i n e {x}) $" )
149 avgModel <− TeX( "$\\bar{ f }(\\ unde r l i n e {x}) $" )
150 text (65 , 0 . 02 , proby , cex=0.9)
151 text (140 , 0 . 007 , probtry , cex=0.9)
152 text (mean2+15, 0 . 05 , "Small b i a s " , cex =0.9)
153 text (mean2+sd2+18, max( hx2 ) , "Large var iance " , cex=0.9)
154 text (mean1−2, −0.0029 , bayesModel , cex =0.9)
155 text (mean2+2, −0.0029 , avgModel , cex =0.9)
156 text (−4 , 0 . 078 , "P" )
157 text (190 , −0.0025 , "Y" )
158 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
159 ############################################################################
160 # Figure 5 . 3 : The e f f e c t o f de c r ea s ing the var iance o f p r obab i l i t y e s t imate s
161 # on c l a s s i f i c a t i o n when f > 0 .5 and E(PÎ©T R ) > 0 . 5 .
162 ############################################################################
163 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
164 # sp e c i f y means and standard dev i a t i on s
165 mean1=720; sd1=15
166 lb1 =700; ub1=720
167 mean2=220; sd2=40
168 lb2 =200; ub2=220
169
170 # s imulate data
171 x1 <− seq (−4 ,4 , l ength=100)∗ sd1 + mean1
172 hx1 <− dnorm(x1 , mean1 , sd1 )
173 x2 <− seq (−4 ,4 , l ength=100)∗ sd2 + mean2
174 hx2 <− dnorm(x2 , mean2 , sd2 )
175
176 # cr ea t e empty p lo t
177 p l o t ( c ( x1 , x2 ) , c ( hx1 , hx2 ) , type="n" , xlab="" , ylab="" ,
178 xlim=c (0 , 900) , yl im=c (−0.003 , 0 . 04 ) ,
179 main="" , axes=FALSE)
180
181 # draw d i s t r i b u t i o n s
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182 l i n e s ( x1 , hx1 )
183 l i n e s ( x2 , hx2 )
184 # draw p r ob ab i l i t a r ea s
185 i <− x1 >= lb1
186 polygon ( c ( lb1 , x1 [ i ] , ub1 ) , c (0 , hx1 [ i ] , 0 ) , c o l=" red " )
187 j <− x2 >= lb2
188 polygon ( c ( lb2 , x2 [ j ] , ub2 ) , c (0 , hx2 [ j ] , 0 ) , c o l=" red " )
189
190 # make arrows and d e c i s i o n boundary/mean l i n e s
191 arrows (0 , 0 , 0 , 0 . 04 , xpd = TRUE, l ength = 0 . 05 )
192 arrows (500 , 0 , 500 , 0 . 04 , xpd = TRUE, l ength = 0 . 05 )
193 arrows (0 , 0 , 400 , 0 , xpd = TRUE, l ength = 0 .05 )
194 arrows (500 , 0 , 900 , 0 , xpd = TRUE, l ength = 0 . 05 )
195 arrows (350 , 0 . 02 , 490 , 0 . 02 , xpd = TRUE, l ength = 0 . 2 , lwd=2, c o l=" purple " )
196 arrows (mean1−sd1 , max( hx1 ) , mean1+sd1 , max( hx1 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
197 arrows (310 , 0 . 01 , 250 , 0 . 003 , l ength = 0 .05 )
198 arrows (mean2−sd2 , max( hx2 ) , mean2+sd2 , max( hx2 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
199 arrows (820 , 0 . 01 , 740 , 0 . 003 , l ength = 0 .05 )
200 l i n e s ( c (200 ,200) , c (0 , 0 . 035 ) , l t y =2, c o l=" green " )
201 l i n e s ( c (700 , 700) , c (0 , 0 . 035 ) , l t y =2, c o l=" green " )
202 l i n e s ( c (mean1 , mean1) , c (0 , 0 . 03 ) , l t y =2, c o l="blue " )
203 l i n e s ( c (mean2 , mean2) , c (0 , 0 . 03 ) , l t y =2, c o l="blue " )
204
205 # add text
206 text (−10 , 0 . 038 , "P" )
207 text (490 , 0 . 038 , "P" )
208 text (0 , −0.002 , " 0 .0 " , cex =0.8)
209 text (200 , −0.002 , " 0 .5 " , cex =0.8)
210 text (400 , −0.002 , " 1 .0 " , cex =0.8)
211 text (500 , −0.002 , " 0 .0 " , cex =0.8)
212 text (700 , −0.002 , " 0 .5 " , cex =0.8)
213 text (900 , −0.002 , " 1 .0 " , cex =0.8)
214 text (415 , 0 . 025 , "Decrease Variance " , cex = 0 . 8 )
215 text (200 , 0 . 037 , "Dec i s i on th r e sho ld " , cex=0.7)
216 text (700 , 0 . 037 , "Dec i s i on th r e sho ld " , cex=0.7)
217 text (mean1+5, 0 . 032 , TeX( "$E(P_{\\Omega_{TR}}) $" ) , cex =0.8)
218 text (mean2+5, 0 . 032 , TeX( "$E(P_{\\Omega_{TR}}) $" ) , cex =0.8)
219 text (mean1+sd1+45, max( hx1 ) , TeX( "$Var (P_{\\Omega_{TR}}) $" ) , cex =0.8)
220 text (mean2−sd2−45, max( hx2 ) , TeX( "$Var (P_{\\Omega_{TR}}) $" ) , cex =0.8)
221 text (310 , 0 . 012 , TeX( "$P(\\ bar{g }(\\ unde r l i n e {x}) = g_B(\\ unde r l i n e {x}) ) $" ) ,

cex =0.8)
222 text (820 , 0 . 012 , TeX( "$P(\\ bar{g }(\\ unde r l i n e {x}) = g_B(\\ unde r l i n e {x}) ) $" ) ,

cex =0.8)
223 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
224 ############################################################################
225 # Figure 5 . 4 : The e f f e c t o f i n c r e a s i n g the var iance o f p r obab i l i t y e s t imate s
226 # on c l a s s i f i c a t i o n when f > 0 .5 and E(PÎ©T R ) < 0 . 5 .
227 ############################################################################
228 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
229 # sp e c i f y means and standard dev i a t i on s
230 mean1=180; sd1=15
231 lb1 =200; ub1=220
232 mean2=680; sd2=40
233 lb2 =700; ub2=720
234
235 # s imulate data
236 x1 <− seq (−4 ,4 , l ength=100)∗ sd1 + mean1
237 hx1 <− dnorm(x1 , mean1 , sd1 )
238 x2 <− seq (−4 ,4 , l ength=100)∗ sd2 + mean2
239 hx2 <− dnorm(x2 , mean2 , sd2 )
240
241 # cr ea t e empty p lo t
242 p l o t ( c ( x1 , x2 ) , c ( hx1 , hx2 ) , type="n" , xlab="" , ylab="" ,
243 xlim=c (0 , 900) , yl im=c (−0.003 , 0 . 04 ) ,
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244 main="" , axes=FALSE)
245
246 # draw d i s t r i b u t i o n s
247 l i n e s ( x1 , hx1 )
248 l i n e s ( x2 , hx2 )
249 # draw p r ob ab i l i t a r ea s
250 i <− x1 >= lb1
251 polygon ( c ( lb1 , x1 [ i ] , ub1 ) , c (0 , hx1 [ i ] , 0 ) , c o l=" red " )
252 j <− x2 >= lb2
253 polygon ( c ( lb2 , x2 [ j ] , ub2 ) , c (0 , hx2 [ j ] , 0 ) , c o l=" red " )
254
255 # make arrows and d e c i s i o n boundary , mean l i n e s
256 arrows (0 , 0 , 0 , 0 . 04 , xpd = TRUE, l ength = 0 . 05 )
257 arrows (500 , 0 , 500 , 0 . 04 , xpd = TRUE, l ength = 0 . 05 )
258 arrows (0 , 0 , 400 , 0 , xpd = TRUE, l ength = 0 .05 )
259 arrows (500 , 0 , 900 , 0 , xpd = TRUE, l ength = 0 . 05 )
260 arrows (350 , 0 . 02 , 490 , 0 . 02 , xpd = TRUE, l ength = 0 . 2 , lwd=2, c o l=" purple " )
261 arrows (mean1−sd1 , max( hx1 ) , mean1+sd1 , max( hx1 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
262 arrows (260 , 0 . 01 , 208 , 0 . 003 , l ength = 0 .05 )
263 arrows (mean2−sd2 , max( hx2 ) , mean2+sd2 , max( hx2 ) , l ength = 0 .05 , code=3, c o l="

darkorange " )
264 arrows (800 , 0 . 005 , 720 , 0 . 003 , l ength = 0 .05 )
265 l i n e s ( c (200 ,200) , c (0 , 0 . 035 ) , l t y =2, c o l=" green " )
266 l i n e s ( c (700 , 700) , c (0 , 0 . 035 ) , l t y =2, c o l=" green " )
267 l i n e s ( c (180 , 180) , c (0 , 0 . 0 3 ) , l t y =2, c o l="blue " )
268 l i n e s ( c (680 , 680) , c (0 , 0 . 0 3 ) , l t y =2, c o l="blue " )
269
270 # add text
271 text (−10 , 0 . 038 , "P" )
272 text (490 , 0 . 038 , "P" )
273 text (0 , −0.002 , " 0 .0 " , cex =0.8)
274 text (200 , −0.002 , " 0 .5 " , cex =0.8)
275 text (400 , −0.002 , " 1 .0 " , cex =0.8)
276 text (500 , −0.002 , " 0 .0 " , cex =0.8)
277 text (700 , −0.002 , " 0 .5 " , cex =0.8)
278 text (900 , −0.002 , " 1 .0 " , cex =0.8)
279 text (415 , 0 . 025 , " In c r e a s e Variance " , cex=0.8)
280 text (200 , 0 . 037 , "Dec i s i on th r e sho ld " , cex=0.7)
281 text (700 , 0 . 037 , "Dec i s i on th r e sho ld " , cex=0.7)
282 text (179 , 0 . 032 , TeX( "$E(P_{\\Omega_{TR}}) $" ) , cex =0.8)
283 text (679 , 0 . 032 , TeX( "$E(P_{\\Omega_{TR}}) $" ) , cex =0.8)
284 text (mean1−sd1−45, max( hx1 ) , TeX( "$Var (P_{\\Omega_{TR}}) $" ) , cex =0.8)
285 text (mean2+sd2+45, max( hx2 ) , TeX( "$Var (P_{\\Omega_{TR}}) $" ) , cex =0.8)
286 text (270 , 0 . 012 , TeX( "$P(\\ bar{g }(\\ unde r l i n e {x}) = g_B(\\ unde r l i n e {x}) ) $" ) ,

cex =0.8)
287 text (800 , 0 . 006 , TeX( "$P(\\ bar{g }(\\ unde r l i n e {x}) = g_B(\\ unde r l i n e {x}) ) $" ) ,

cex =0.8)
288 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
289 ###########################################################################
290 # Figure 5 . 5 : Class d i s t r i b u t i o n s f o r a three c l a s s c l a s s i f i c a t i o n task :
291 # Lef t : The true d i s t r i b u t i o n . Middle : Class d i s t r i b u t i o n over t r a i n i n g s e t
292 # samples f o r the f i r s t c l a s s i f i e r . Right : Class d i s t r i b u t i o n over t r a i n i n g
293 # se t samples f o r the second c l a s s i f i e r .
294 ###########################################################################
295 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
296 # cr ea t e empty p lo t
297 p l o t ( 1 : 1 2 , 1 : 12 , type="n" , xlab="" , ylab="" ,
298 xlim=c (0 , 12) , yl im=c (−0.04 , 1) ,
299 main="" , axes=FALSE)
300
301 # add arrows
302 arrows (0 , 0 , 0 , 1 , xpd = TRUE, l ength = 0 . 1 )
303 arrows (0 , 0 , 12 , 0 , xpd = TRUE, l ength = 0 . 1 )
304 # f i r s t d i s t r i b u t i o n
305 l i n e s ( c (0 , 1 ) , c ( 0 . 6 , 0 . 6 ) , c o l="darkgreen " )
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306 l i n e s ( c (1 , 1 ) , c ( 0 . 6 , 0) , c o l="darkgreen " )
307 l i n e s ( c (1 , 2 ) , c ( 0 . 3 , 0 . 3 ) , c o l="darkorange " )
308 l i n e s ( c (2 , 2 ) , c ( 0 . 3 , 0) , c o l="darkorange " )
309 l i n e s ( c (2 , 3 ) , c ( 0 . 1 , 0 . 1 ) , c o l=" skyblue " )
310 l i n e s ( c (3 , 3 ) , c ( 0 . 1 , 0) , c o l=" skyblue " )
311 # second d i s t
312 l i n e s ( c (4 , 4 ) , c (0 , 0 . 1 ) , c o l="darkgreen " )
313 l i n e s ( c (4 , 5 ) , c ( 0 . 1 , 0 . 1 ) , c o l="darkgreen " )
314 l i n e s ( c (5 , 5 ) , c (0 , 0 . 7 ) , c o l="darkorange " )
315 l i n e s ( c (5 , 6 ) , c ( 0 . 7 , 0 . 7 ) , c o l="darkorange " )
316 l i n e s ( c (6 , 6 ) , c ( 0 . 7 , 0) , c o l="darkorange " )
317 l i n e s ( c (6 , 7 ) , c ( 0 . 2 , 0 . 2 ) , c o l=" skyblue " )
318 l i n e s ( c (7 , 7 ) , c ( 0 . 2 , 0) , c o l=" skyblue " )
319 # th i rd d i s t
320 l i n e s ( c (8 , 8 ) , c (0 , 0 . 2 ) , c o l="darkgreen " )
321 l i n e s ( c (8 , 9 ) , c ( 0 . 2 , 0 . 2 ) , c o l="darkgreen " )
322 l i n e s ( c (9 , 9 ) , c (0 , 0 . 5 ) , c o l="darkorange " )
323 l i n e s ( c (9 , 10 ) , c ( 0 . 5 , 0 . 5 ) , c o l="darkorange " )
324 l i n e s ( c (10 ,10) , c ( 0 . 5 , 0) , c o l="darkorange " )
325 l i n e s ( c (10 ,11) , c ( 0 . 3 , 0 . 3 ) , c o l=" skyblue " )
326 l i n e s ( c (11 ,11) , c ( 0 . 3 , 0) , c o l=" skyblue " )
327 # place t ex t
328 text (−0.17 , 0 . 95 , "P" )
329 text ( 1 1 . 6 , −0.03 , "C" )
330 text ( 0 . 5 , 0 . 65 , " 0 .6 " )
331 text ( 1 . 5 , 0 . 35 , " 0 .3 " )
332 text ( 2 . 5 , 0 . 15 , " 0 .1 " )
333 text ( 4 . 5 , 0 . 15 , " 0 .1 " )
334 text ( 5 . 5 , 0 . 75 , " 0 .7 " )
335 text ( 6 . 5 , 0 . 25 , " 0 .2 " )
336 text ( 8 . 5 , 0 . 25 , " 0 .2 " )
337 text ( 9 . 5 , 0 . 55 , " 0 .5 " )
338 text ( 1 0 . 5 , 0 . 35 , " 0 .3 " )
339 #c l a s s e s
340 text ( 0 . 5 , −0.03 , "1" )
341 text ( 1 . 5 , −0.03 , "2" )
342 text ( 2 . 5 , −0.03 , "3" )
343 text ( 4 . 5 , −0.03 , "1" )
344 text ( 5 . 5 , −0.03 , "2" )
345 text ( 6 . 5 , −0.03 , "3" )
346 text ( 8 . 5 , −0.03 , "1" )
347 text ( 9 . 5 , −0.03 , "2" )
348 text ( 1 0 . 5 , −0.03 , "3" )
349 # math text
350 text ( 1 . 5 , 0 . 85 , TeX( "$P(C|\\ unde r l i n e {x}) $" ) )
351 text ( 5 . 5 , 0 . 85 , TeX( "$P^1_{\\Omega_{TR}}$" ) )
352 text ( 9 . 5 , 0 . 85 , TeX( "$P^2_{\\Omega_{TR}}$" ) )
353 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
354 ############################################################################
355 # Figure 5 . 6 : Class d i s t r i b u t i o n s f o r a three c l a s s c l a s s i f i c a t i o n task with
356 # both est imated d i s t r i b u t i o n s having equal var i ance . The true d i s t r i b u t i o n
357 # i s g iven on the l e f t .
358 ############################################################################
359 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
360 # cr ea t e empty p lo t
361 p l o t ( 1 : 1 2 , 1 : 12 , type="n" , xlab="" , ylab="" ,
362 xlim=c (0 , 12) , yl im=c (−0.04 , 1) ,
363 main="" , axes=FALSE)
364
365 # add arrows
366 arrows (0 , 0 , 0 , 1 , xpd = TRUE, l ength = 0 . 1 )
367 arrows (0 , 0 , 12 , 0 , xpd = TRUE, l ength = 0 . 1 )
368 # f i r s t d i s t r i b u t i o n
369 l i n e s ( c (0 , 1 ) , c ( 0 . 6 , 0 . 6 ) , c o l="darkgreen " )
370 l i n e s ( c (1 , 1 ) , c ( 0 . 6 , 0) , c o l="darkgreen " )
371 l i n e s ( c (1 , 2 ) , c ( 0 . 3 , 0 . 3 ) , c o l="darkorange " )
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372 l i n e s ( c (2 , 2 ) , c ( 0 . 3 , 0) , c o l="darkorange " )
373 l i n e s ( c (2 , 3 ) , c ( 0 . 1 , 0 . 1 ) , c o l=" skyblue " )
374 l i n e s ( c (3 , 3 ) , c ( 0 . 1 , 0) , c o l=" skyblue " )
375 # second d i s t
376 l i n e s ( c (4 , 4 ) , c (0 , 0 . 3 ) , c o l="darkgreen " )
377 l i n e s ( c (4 , 5 ) , c ( 0 . 3 , 0 . 3 ) , c o l="darkgreen " )
378 l i n e s ( c (5 , 5 ) , c (0 , 0 . 5 ) , c o l="darkorange " )
379 l i n e s ( c (5 , 6 ) , c ( 0 . 5 , 0 . 5 ) , c o l="darkorange " )
380 l i n e s ( c (6 , 6 ) , c ( 0 . 5 , 0) , c o l="darkorange " )
381 l i n e s ( c (6 , 7 ) , c ( 0 . 2 , 0 . 2 ) , c o l=" skyblue " )
382 l i n e s ( c (7 , 7 ) , c ( 0 . 2 , 0) , c o l=" skyblue " )
383 # th i rd d i s t
384 l i n e s ( c (8 , 8 ) , c (0 , 0 . 2 ) , c o l="darkgreen " )
385 l i n e s ( c (8 , 9 ) , c ( 0 . 2 , 0 . 2 ) , c o l="darkgreen " )
386 l i n e s ( c (9 , 9 ) , c (0 , 0 . 5 ) , c o l="darkorange " )
387 l i n e s ( c (9 , 10 ) , c ( 0 . 5 , 0 . 5 ) , c o l="darkorange " )
388 l i n e s ( c (10 ,10) , c ( 0 . 5 , 0) , c o l="darkorange " )
389 l i n e s ( c (10 ,11) , c ( 0 . 3 , 0 . 3 ) , c o l=" skyblue " )
390 l i n e s ( c (11 ,11) , c ( 0 . 3 , 0) , c o l=" skyblue " )
391 # place t ex t
392 text (−0.17 , 0 . 95 , "P" )
393 text ( 1 1 . 6 , −0.03 , "C" )
394 text ( 0 . 5 , 0 . 65 , " 0 .6 " )
395 text ( 1 . 5 , 0 . 35 , " 0 .3 " )
396 text ( 2 . 5 , 0 . 15 , " 0 .1 " )
397 text ( 4 . 5 , 0 . 35 , " 0 .3 " )
398 text ( 5 . 5 , 0 . 55 , " 0 .5 " )
399 text ( 6 . 5 , 0 . 25 , " 0 .2 " )
400 text ( 8 . 5 , 0 . 25 , " 0 .2 " )
401 text ( 9 . 5 , 0 . 55 , " 0 .5 " )
402 text ( 1 0 . 5 , 0 . 35 , " 0 .3 " )
403 #c l a s s e s
404 text ( 0 . 5 , −0.03 , "1" )
405 text ( 1 . 5 , −0.03 , "2" )
406 text ( 2 . 5 , −0.03 , "3" )
407 text ( 4 . 5 , −0.03 , "1" )
408 text ( 5 . 5 , −0.03 , "2" )
409 text ( 6 . 5 , −0.03 , "3" )
410 text ( 8 . 5 , −0.03 , "1" )
411 text ( 9 . 5 , −0.03 , "2" )
412 text ( 1 0 . 5 , −0.03 , "3" )
413 # math text
414 text ( 1 . 5 , 0 . 75 , TeX( "$P(C|\\ unde r l i n e {x}) $" ) )
415 text ( 5 . 5 , 0 . 75 , TeX( "$P^1_{\\Omega_{TR}}$" ) )
416 text ( 9 . 5 , 0 . 75 , TeX( "$P^2_{\\Omega_{TR}}$" ) )
417 par (mar=dmar)
418 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
419 #########################################################################
420 # Figure 5 . 8 : A two−dimens iona l r ep r e s en t a t i on o f the s imulated data from
421 # the machine l e a rn i ng benchmark problems found in the mlbench R package .
422 #########################################################################
423 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
424 # 2dnormals : 2d example o f data d i s t r i b u t i o n
425 example <− mlbench . 2 dnormals (400 , c l =6)
426 example <− as . data . frame ( example )
427 ggp lot ( example , aes ( x=x . 1 , y=x . 2 , c o l=c l a s s e s ) ) + geom_point ( s i z e =2) +
428 theme_bw( ) + xlab ( "X1" ) + ylab ( "X2" ) + g g t i t l e ( "2dnormals " ) +
429 theme ( legend . p o s i t i o n="none" )
430
431 # Twonorm : 2d example o f data d i s t r i b u t i o n
432 example <− mlbench . twonorm (400 , d=2)
433 example <− as . data . frame ( example )
434 ggp lot ( example , aes ( x=x . 1 , y=x . 2 , c o l=c l a s s e s ) ) + geom_point ( s i z e =2) +
435 theme_bw( ) + xlab ( "X1" ) + ylab ( "X2" ) + g g t i t l e ( "Twonorm" ) +
436 theme ( legend . p o s i t i o n="none" )
437
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438 # Threenorm : 2d example o f data d i s t r i b u t i o n
439 example <− mlbench . threenorm (400 , d=2)
440 example <− as . data . frame ( example )
441 ggp lot ( example , aes ( x=x . 1 , y=x . 2 , c o l=c l a s s e s ) ) + geom_point ( s i z e =2) +
442 theme_bw( ) + xlab ( "X1" ) + ylab ( "X2" ) + g g t i t l e ( "Threenorm" ) +
443 theme ( legend . p o s i t i o n="none" )
444
445 # Ringnorm : 2d example o f data d i s t r i b u t i o n
446 example <− mlbench . ringnorm (400 , d=2)
447 example <− as . data . frame ( example )
448 ggp lot ( example , aes ( x=x . 1 , y=x . 2 , c o l=c l a s s e s ) ) + geom_point ( s i z e =2) +
449 theme_bw( ) + xlab ( "X1" ) + ylab ( "X2" ) + g g t i t l e ( "Ringnorm" ) +
450 theme ( legend . p o s i t i o n="none" )
451
452 # C i r c l e : 2d example o f data d i s t r i b u t i o n
453 example <− mlbench . c i r c l e (400 , d=2)
454 example <− as . data . frame ( example )
455 ggp lot ( example , aes ( x=x . 1 , y=x . 2 , c o l=c l a s s e s ) ) + geom_point ( s i z e =2) +
456 theme_bw( ) + xlab ( "X1" ) + ylab ( "X2" ) + g g t i t l e ( " C i r c l e " ) +
457 theme ( legend . p o s i t i o n="none" )
458
459 # Cas s in i : 2d example o f data d i s t r i b u t i o n
460 example <− mlbench . c a s s i n i (400)
461 example <− as . data . frame ( example )
462 ggp lot ( example , aes ( x=x . 1 , y=x . 2 , c o l=c l a s s e s ) ) + geom_point ( s i z e =2) +
463 theme_bw( ) + xlab ( "X1" ) + ylab ( "X2" ) + g g t i t l e ( " Cas s in i " ) +
464 theme ( legend . p o s i t i o n="none" )
465
466 # Cuboids : 2d example o f data d i s t r i b u t i o n
467 example <− mlbench . cuboids (400)
468 example <− as . data . frame ( example )
469 ggp lot ( example , aes ( x=x . 1 , y=x . 2 , c o l=c l a s s e s ) ) + geom_point ( s i z e =2) +
470 theme_bw( ) + xlab ( "X1" ) + ylab ( "X2" ) + g g t i t l e ( "Cuboids" ) +
471 theme ( legend . p o s i t i o n="none" )
472
473 # XOR: 2d example o f data d i s t r i b u t i o n
474 example <− mlbench . xor (400 , d=2)
475 example <− as . data . frame ( example )
476 ggp lot ( example , aes ( x=x . 1 , y=x . 2 , c o l=c l a s s e s ) ) + geom_point ( s i z e =2) +
477 theme_bw( ) + xlab ( "X1" ) + ylab ( "X2" ) + g g t i t l e ( "XOR" ) +
478 theme ( legend . p o s i t i o n="none" )
479 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
480 ############################################################################
481 # Table 5 . 1 : Estimated bias , var iance , sy s temat i c e f f e c t and var iance e f f e c t
482 # on s imulated data .
483 ############################################################################
484 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
485 majVote <− f unc t i on (x ) {names ( which .max( t ab l e ( x ) ) ) }
486 nTrain <− 400
487 nTest <− 1000
488 Models <− f a c t o r ( rep ( c ( "Tree" , "Bagging" , "Forest−RI" , "Boost ing " ) , each=6) ,

l e v e l=c ( "Tree" , "Bagging" , "Forest−RI" , "Boost ing " ) )
489
490 # performs computations in p a r a l l e l
491 c l <− makeCluster (3 , type="SOCK" )
492 registerDoSNOW( c l )
493
494 # MAIN EXPERIMENT FUNCTIONS
495 runBiasVarSimulat ion <− f unc t i on ( t r a i n i ngSe t s , simTest , BayesPreds ) {
496
497 l o s s <− i f e l s e ( l ength ( l e v e l s ( simTest $ c l a s s e s ) ) > 2 , "mult inomial " , "

adaboost " )
498
499 # parameter tuning s e t t i n g s
500 f i tCon t r o l <− t r a inCont ro l (method = "cv" , number = 10)
501 treeparaGr id <− expand . g r id ( cp=seq ( 0 . 1 , 1 , by=0.1) )
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502 r fparaGr id <− expand . g r id (mtry=seq (1 , nco l ( simTest )−2, by=2) )
503 gbmparaGrid <− expand . g r id (n . t r e e s =200 , i n t e r a c t i o n . depth=c (1 , 6) ,

shr inkage=c ( 0 . 0 1 , 0 . 05 , 0 . 1 ) ,
504 n . minobsinnode=10)
505 # boost ing model
506 sim . Boost <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s , simTest=

simTest ,
507 method="gbm" , paraGrid = gbmparaGrid ,

tContro l=f i tCon t r o l ,
508 BayesPreds=BayesPreds , d i s t r i b u t i o n=

l o s s , verbose=FALSE)
509 # s i n g l e t r e e model
510 sim . Tree <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s , simTest=

simTest ,
511 method=" rpar t " , paraGrid = treeparaGrid ,

tContro l=f i tCon t r o l , BayesPreds=
BayesPreds )

512 # bagging model
513 sim . Bag <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s , simTest=

simTest ,
514 method=" treebag " , paraGrid=NULL, tContro l

=t ra inCont ro l (method="none" ) ,
515 BayesPreds=BayesPreds , nbagg=200)
516 # random f o r e s t model
517 sim .RF <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s , simTest=simTest

,
518 method=" r f " , paraGrid = rfparaGrid ,

tContro l=f i tCon t r o l ,
519 BayesPreds=BayesPreds , n t r ee =200)
520
521 l i s t ( r e s u l t s=rbind ( sim . Tree$ r e s u l t s , sim . Bag$ r e s u l t s , sim .RF$ r e s u l t s , sim .

Boost$ r e s u l t s ) ,
522 tuneValues=l i s t ( sim . Tree$ tuneValues , sim . Bag$ tuneValues , sim .RF$

tuneValues , sim . Boost$ tuneValues ) )
523 }
524
525
526 simulateBiasVarDecomp <− f unc t i on ( t r a i n i ngSe t s , simTest , method , paraGrid ,

tControl , BayesPreds , . . . ) {
527 tuneVals <− paraGrid [ 1 , ]
528 numOfExp <− 100
529
530 # t r a i n models and make p r ed i c t i o n s
531 BVpreds <− matrix (0 , nrow=numOfExp , nco l=nTest )
532 var .T <− NULL
533 var <− NULL
534 b ia s <− NULL
535 VE <− NULL
536 SE <− NULL
537 mi s c l a s sEr ro r <− NULL
538 C <− as . numeric ( simTest $ c l a s s e s )
539
540 # t r a i n models
541 f o r ( j in 1 : numOfExp) {
542 Model <− t r a i n ( c l a s s e s ~ . , data=t r a i n i n gS e t s [ [ j ] ] , method=method ,
543 tuneGrid=paraGrid , t rCont ro l=tControl , . . . )
544 tuneVals <− rbind ( tuneVals , Model$bestTune )
545 BVpreds [ j , ] <− as . numeric ( p r ed i c t (Model , simTest ) )
546 p r i n t ( paste ( "Method : " , method , " , I t e r : " , j , " out o f " , numOfExp) )
547 }
548
549 # James (2003) decomposit ion e s t imate s
550 Bay e sC l a s s i f i e r <− BayesPreds
551 ma jVot eC la s s i f i e r <− apply (BVpreds , 2 , f unc t i on (x )majVote (x ) )
552 var .T <− mean( Bay e sC l a s s i f i e r != C)
553 var <− mean( apply (BVpreds , 1 , f unc t i on (x ) mean(x != ma jVot eC la s s i f i e r ) ) )
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554 b ia s <− mean( ma jVot eC la s s i f i e r != Bay e sC l a s s i f i e r )
555 VE <− mean( apply (BVpreds , 1 , f unc t i on (x ) mean(x != C) ) − mean(

ma jVot eC la s s i f i e r != C) )
556 SE <− mean( ma jVot eC la s s i f i e r != C) − mean( Bay e sC l a s s i f i e r != C)
557 meanError <− mean( apply (BVpreds , 1 , f unc t i on (x ) { mean(x != C) }) )
558
559 # p lo t b i a s and var iance and sys temat i c e f f e c t and var iance e f f e c t
560 vb <− c (meanError , var .T, SE , VE, bias , var )
561 bar <− f a c t o r ( c ( 1 , 2 , 3 , 4 , 5 , 6 ) )
562 type <− c ( "Error " , "Bayes Error " , " Systematic E f f e c t " , "Variance E f f e c t " ,

"Bias " , "Variance " )
563 model <− rep (method , 6)
564 biasVarPlotData <− data . frame (vb=vb , Decomposition=type , bar=bar , model=

model )
565 l i s t ( r e s u l t s=biasVarPlotData , tuneValues=tuneVals [ −1 , ] )
566 }
567
568 #######################
569 # Designed s c en a r i o s #
570 #######################
571 # load data gene ra t i on l i b r a r y
572 l i b r a r y ( pensim )
573 # s imulate data func t i on from "pensim" package
574 simData <− f unc t i on ( nvars = c (100 , 100 , 100 , 100 , 600) , co r s = c ( 0 . 8 , 0 , 0 . 8 ,

0 , 0) ,
575 a s s o c i a t i o n s = c ( 0 . 5 , 0 . 5 , 0 . 3 , 0 . 3 , 0) , f i r s t o n l y = c (

TRUE, FALSE, TRUE, FALSE, FALSE) ,
576 nsamples = 100 , c en so r ing = "none" ,
577 labe lswapprob = 0 , re sponse = " t imetoevent " , basehaz =

0 . 2 ,
578 l o g i s t i c i n t e r c e p t = 0)
579 {
580 l i b r a r y (MASS)
581 i f ( labe lswapprob < 0)
582 stop ( " labelswapprob cannot be negat ive " )
583 i f ( labe lswapprob > 0 & response == " t imetoevent " )
584 stop ( " labelswapprob i s only implemented f o r binary response " )
585 i f ( ! c l a s s ( nvars ) %in% c ( "numeric " , " i n t e g e r " ) )
586 stop ( " nvars must be a numeric vec to r " )
587 i f ( ! c l a s s ( co r s ) %in% c ( "numeric " , " i n t e g e r " ) )
588 stop ( " co r s must be a numeric vec to r " )
589 i f ( c l a s s ( f i r s t o n l y ) != " l o g i c a l " )
590 stop ( " f i r s t o n l y must be a l o g i c a l vec to r " )
591 i f ( ! c l a s s ( a s s o c i a t i o n s ) %in% c ( "numeric " , " i n t e g e r " ) )
592 stop ( " a s s o c i a t i o n s must be a numeric vec to r " )
593 i f ( l ength ( nvars ) != length ( co r s ) | l ength ( nvars ) != length ( f i r s t o n l y ) |
594 l ength ( nvars ) != length ( a s s o c i a t i o n s ) )
595 stop ( "nvars , cors , f i r s t o n l y , and a s s o c i a t i o n s must a l l have the

same length . " )
596 x . out <− matrix (0 , nco l = sum( nvars ) , nrow = nsamples )
597 d e f i n e c o r s <− data . frame ( s t a r t = c (1 , cumsum( nvars [− l ength ( nvars ) ] ) + 1)

, end = cumsum( nvars ) , c o r s = cors , a s s o c i a t i o n s = a s s o c i a t i o n s ,
598 num = nvars , f i r s t o n l y = f i r s t o n l y , row . names =

l e t t e r s [ 1 : l ength ( nvars ) ] )
599 Sigma <− matrix (0 , nco l = sum( nvars ) , nrow = sum( nvars ) )
600 wts <− rep (0 , sum( nvars ) )
601 f o r ( i in 1 : nrow ( d e f i n e c o r s ) ) {
602 th i s r ange <− d e f i n e c o r s [ i , " s t a r t " ] : d e f i n e c o r s [ i , "end" ]
603 Sigma [ th i s range , th i s r ange ] <− d e f i n e c o r s [ i , " co r s " ]
604 diag ( Sigma ) <− 1
605 x . out [ , t h i s r ange ] <− mvrnorm(n = nsamples , mu = rep (0 , nvars [ i ] ) ,

Sigma = Sigma [ th i s range , th i s r ange ] )
606 i f ( d e f i n e c o r s [ i , " f i r s t o n l y " ] ) {
607 wts [ d e f i n e c o r s [ i , " s t a r t " ] ] <− d e f i n e c o r s [ i , " a s s o c i a t i o n s " ]
608 }
609 e l s e {
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610 wts [ d e f i n e c o r s [ i , " s t a r t " ] : d e f i n e c o r s [ i , "end" ] ] <−
d e f i n e c o r s [ i , " a s s o c i a t i o n s " ]

611 }
612 varnames <− paste ( l e t t e r s [ i ] , 1 : nvars [ i ] , sep = " . " )
613 names ( wts ) [ d e f i n e c o r s [ i , " s t a r t " ] : d e f i n e c o r s [ i , "end" ] ] <−

varnames
614 }
615 names ( wts ) <− make . unique ( names ( wts ) )
616 dimnames ( Sigma ) <− l i s t ( colnames = names ( wts ) , rownames = names ( wts ) )
617 colnames (x . out ) <− names ( wts )
618 betaX <− x . out %∗% wts
619 x . out <− data . frame (x . out )
620 i f ( i d e n t i c a l ( response , " t imetoevent " ) ) {
621 h = basehaz ∗ exp ( betaX [ , 1 ] )
622 x . out$ time <− rexp ( l ength (h) , h )
623 x . out$ cens <− 1
624 i f ( c l a s s ( c en so r ing ) == "numeric " | c l a s s ( c en so r ing ) ==
625 " i n t e g e r " ) {
626 i f ( l ength ( c enso r ing ) == 2) {
627 censt imes <− r un i f ( l ength (h) , min = censo r ing [ 1 ] ,
628 max = censo r ing [ 2 ] )
629 }
630 e l s e i f ( l ength ( c enso r ing ) == 1) {
631 censt imes <− rep ( censor ing , l ength (h) )
632 }
633 x . out$ cens [ x . out$ time > censt imes ] <− 0
634 x . out$ time [ x . out$ time > censt imes ] <− censt imes [ x . out$ time >

censt imes ]
635 }
636 }
637 e l s e i f ( i d e n t i c a l ( response , " binary " ) ) {
638 p <− 1/ (1 + exp(−(betaX + l o g i s t i c i n t e r c e p t ) ) )
639 x . out$outcome <− i f e l s e (p > run i f ( l ength (p) ) , 1 , 0)
640 i f ( labe lswapprob > 0) {
641 do . swap <− r un i f ( l ength (p) ) < labelswapprob
642 new . outcome <− x . out$outcome
643 new . outcome [ x . out$outcome == 1 & do . swap ] <− 0
644 new . outcome [ x . out$outcome == 0 & do . swap ] <− 1
645 x . out$outcome <− new . outcome
646 }
647 x . out$outcome <− f a c t o r ( x . out$outcome )
648 }
649 e l s e stop ( " response must be e i t h e r t imetoevent or binary " )
650 re turn ( l i s t ( summary = de f i n e co r s , a s s o c i a t i o n s = wts , covar iance = Sigma

,
651 data = x . out , probs=p) )
652 }
653 ###################
654 # SETUP 1 : co r r =0.9
655 ###################
656 # s imluat ing t r a i n i n g data s e t s
657 t r a i n i n gS e t s <− l i s t ( )
658 f o r ( i in 1 : 100 ) {
659 s e t . seed ( i +1)
660 t r a i n <− simData ( nvars=c (15) , co r s=c ( 0 . 9 ) , a s s o c i a t i o n s=c (1) ,
661 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
662 t r a i n <− t r a i n $data
663 t r a i n $ c l a s s e s <− t r a i n $outcome
664 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
665 }
666
667 # s imulate t e s t data s e t
668 s e t . seed (1 )
669 t e s t <− simData ( nvars=c (15) , co r s=c ( 0 . 9 ) , a s s o c i a t i o n s=c (1) ,
670 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
671 testData <− t e s t $data
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672 testData $ c l a s s e s <− testData $outcome
673 simTest <− testData [ ,−16]
674
675 # run s imu la t i on and p lo t data
676 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
677 se tup1Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
678 se tup1Resu l t s $ r e s u l t s $model <− Models
679 saveRDS( setup1Resu l ts , " se tup1Resu l t s . rda" )
680 ggp lot ( data=setup1Resu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
681 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
682 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
683 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
684 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

" Scenar io 1" )
685 ###################
686 # SETUP 2 : co r r =0.5
687 ###################
688 # s imluat ing t r a i n i n g data s e t s
689 t r a i n i n gS e t s <− l i s t ( )
690 f o r ( i in 1 : 100 ) {
691 s e t . seed ( i +1)
692 t r a i n <− simData ( nvars=c (15) , co r s=c ( 0 . 5 ) , a s s o c i a t i o n s=c (1) ,
693 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
694 t r a i n <− t r a i n $data
695 t r a i n $ c l a s s e s <− t r a i n $outcome
696 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
697 }
698
699 # s imulate t e s t data s e t
700 s e t . seed (1 )
701 t e s t <− simData ( nvars=c (15) , co r s=c ( 0 . 5 ) , a s s o c i a t i o n s=c (1) ,
702 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
703 testData <− t e s t $data
704 testData $ c l a s s e s <− testData $outcome
705 simTest <− testData [ ,−16]
706
707 # run s imu la t i on and p lo t data
708 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
709 se tup2Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
710 se tup2Resu l t s $ r e s u l t s $model <− Models
711 saveRDS( setup2Resu l ts , " se tup2Resu l t s . rda" )
712 ggp lot ( data=setup2Resu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
713 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
714 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
715 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
716 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

" Scenar io 2" )
717 ###################
718 # SETUP 3 : co r r =0.1
719 ###################
720 # s imluat ing t r a i n i n g data s e t s
721 t r a i n i n gS e t s <− l i s t ( )
722 f o r ( i in 1 : 100 ) {
723 s e t . seed ( i +1)
724 t r a i n <− simData ( nvars=c (15) , co r s=c ( 0 . 1 ) , a s s o c i a t i o n s=c (1) ,
725 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
726 t r a i n <− t r a i n $data
727 t r a i n $ c l a s s e s <− t r a i n $outcome
728 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
729 }
730
731 # s imulate t e s t data s e t
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732 s e t . seed (1 )
733 t e s t <− simData ( nvars=c (15) , co r s=c ( 0 . 1 ) , a s s o c i a t i o n s=c (1) ,
734 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
735 testData <− t e s t $data
736 testData $ c l a s s e s <− testData $outcome
737 simTest <− testData [ ,−16]
738
739 # run s imu la t i on and p lo t data
740 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
741 se tup3Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
742 se tup3Resu l t s $ r e s u l t s $model <− Models
743 saveRDS( setup3Resu l ts , " se tup3Resu l t s . rda" )
744 ggp lot ( data=setup3Resu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
745 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
746 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
747 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
748 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

" Scenar io 3" )
749 #################
750 # SETUP 4 : co r r=0
751 #################
752 # s imluat ing t r a i n i n g data s e t s
753 t r a i n i n gS e t s <− l i s t ( )
754 f o r ( i in 1 : 100 ) {
755 s e t . seed ( i +1)
756 t r a i n <− simData ( nvars=c (15) , co r s=c (0 ) , a s s o c i a t i o n s=c (1 ) ,
757 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
758 t r a i n <− t r a i n $data
759 t r a i n $ c l a s s e s <− t r a i n $outcome
760 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
761 }
762
763 # s imulate t e s t data s e t
764 s e t . seed (1 )
765 t e s t <− simData ( nvars=c (15) , co r s=c (0 ) , a s s o c i a t i o n s=c (1 ) ,
766 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
767 testData <− t e s t $data
768 testData $ c l a s s e s <− testData $outcome
769 simTest <− testData [ ,−16]
770
771 # run s imu la t i on and p lo t data
772 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
773 se tup4Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
774 se tup4Resu l t s $ r e s u l t s $model <− Models
775 saveRDS( setup4Resu l ts , " se tup4Resu l t s . rda" )
776 ggp lot ( data=setup4Resu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
777 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
778 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
779 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
780 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

" Scenar io 4" )
781
782 # Mease et a l . data s c e na r i o s
783 # s imulate data func t i on
784 generateMeasedata <− f unc t i on ( nTrain=400 , nTest=1000 , Ndata=100 , J=2,

s e edSta r t =1, q = 0 . 15 ) {
785
786 trainingSetsHD <− l i s t ( )
787 # s imulate data
788 f o r ( i t e r in 1 : Ndata ) {
789 s e t . seed ( i t e r +1)
790 p <− 30
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791 Xtrain<−matrix (0 , nTrain , p)
792 f o r ( i in 1 : p ) {
793 Xtrain [ , i ]<−r un i f ( nTrain )
794 }
795 y t ra in<−rep (0 , nTrain )
796 f o r ( i in 1 : nTrain ) {
797 y t ra in [ i ]<−1∗ ( r un i f (1 )<(q+(1−2∗q ) ∗1∗ (sum( ( Xtrain [ i , 1 : J ] ) )>(J

/ 2) ) ) )
798 }
799 # t r a i n i n g data
800 trainingSetsHD [ [ i t e r ] ] <− data . frame ( c l a s s e s=f a c t o r ( y t r a in ) ,

Xtrain )
801 }
802 s e t . seed (1 )
803 Xtest<−matrix (0 , nTest , p )
804 f o r ( i in 1 : p) {
805 Xtest [ , i ]<−r un i f ( nTest )
806 }
807 y t e s t<−rep (0 , nTest )
808 f o r ( i in 1 : nTest ) {
809 y t e s t [ i ]<−1∗ ( r un i f (1 )<(q+(1−2∗q ) ∗1∗ (sum( ( Xtest [ i , 1 : J ] ) )>(J/ 2) ) ) )
810 }
811 # t r a i n i n g s e t s and t e s t s e t data
812 test ingSetsHD <− data . frame ( c l a s s e s=f a c t o r ( y t e s t ) , Xtest )
813 l i s t ( tra iningSetsHD=trainingSetsHD , test ingSetsHD=test ingSetsHD )
814 }
815
816 ################
817 # Setup 5 : J = 2
818 ################
819 # s imluat ing t r a i n i n g data s e t s
820 q <− 0 .15
821 J <− 2
822 simData1 <− generateMeasedata ( J=2)
823 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
824 simTest <− simData1 [ [ 2 ] ]
825 # run s imu la t i on and p lo t data
826 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −1 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(q

+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
827 se tup5Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
828 se tup5Resu l t s $ r e s u l t s $model <− Models
829 saveRDS( setup5Resu l ts , " se tup5Resu l t s . rda" )
830 ggp lot ( data=setup5Resu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
831 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
832 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
833 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
834 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

" Scenar io 5" )
835
836 ################
837 # Setup 6 : J = 5
838 ################
839 J <− 5
840 # s imluat ing t r a i n i n g data s e t s
841 simData1 <− generateMeasedata ( J=5)
842 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
843 simTest <− simData1 [ [ 2 ] ]
844 # run s imu la t i on and p lo t data
845 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −1 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(q

+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
846 se tup6Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
847 se tup6Resu l t s $ r e s u l t s $model <− Models
848 saveRDS( setup6Resu l ts , " se tup6Resu l t s . rda" )
849 ggp lot ( data=setup6Resu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +
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geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
850 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
851 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
852 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
853 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

" Scenar io 6" )
854
855 #################
856 # Setup 7 : J = 15
857 #################
858 J <− 15
859 # s imluat ing t r a i n i n g data s e t s
860 simData1 <− generateMeasedata ( J=15)
861 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
862 simTest <− simData1 [ [ 2 ] ]
863 # run s imu la t i on and p lo t data
864 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −1 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(q

+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
865 se tup7Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
866 se tup7Resu l t s $ r e s u l t s $model <− Models
867 saveRDS( setup7Resu l ts , " se tup7Resu l t s . rda" )
868 ggp lot ( data=setup7Resu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
869 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
870 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
871 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
872 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

" Scenar io 7" )
873
874 #################
875 # Setup 8 : J = 20
876 #################
877 J <− 20
878 # s imluat ing t r a i n i n g data s e t s
879 simData1 <− generateMeasedata ( J=20)
880 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
881 simTest <− simData1 [ [ 2 ] ]
882 # run s imu la t i on and p lo t data
883 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −1 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(q

+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
884 se tup8Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
885 se tup8Resu l t s $ r e s u l t s $model <− Models
886 saveRDS( setup8Resu l ts , " se tup8Resu l t s . rda" )
887 ggp lot ( data=setup8Resu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
888 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
889 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
890 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
891 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

" Scenar io 8" )
892
893 # MLBENCH DATA
894 ###########################
895 # 2dnormals s imu la t i on data
896 ###########################
897 # s imluat ing t r a i n i n g data s e t s
898 t r a i n i n gS e t s <− l i s t ( )
899 f o r ( i in 1 : 100 ) {
900 s e t . seed ( i +1)
901 t r a i n <− mlbench . 2 dnormals (400 , c l =6)
902 t r a i n <− as . data . frame ( t r a i n )
903 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
904 }
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905
906 # s imulate t e s t data s e t
907 s e t . seed (1 )
908 t e s t <− mlbench . 2 dnormals (1000 , c l =6)
909 testFrame <− as . data . frame ( t e s t )
910 simTest <− testFrame
911
912 # run s imu la t i on and p lo t data
913 dnormalsResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s ( t e s t

) )
914 dnormalsResults $ r e s u l t s $model <− Models
915 saveRDS( dnormalsResults , "2dnormalsResultsTune . rda" )
916 ggp lot ( data=dnormalsResults $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " ) +
917 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
918 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
919 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
920 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

"2dnormals (2 , 6) " )
921
922 #########################
923 # twonorm s imu la t i on data
924 #########################
925 # s imluat ing t r a i n i n g data s e t s
926 t r a i n i n gS e t s <− l i s t ( )
927 f o r ( i in 1 : 100 ) {
928 s e t . seed ( i +1)
929 t r a i n <− mlbench . twonorm (400 , d=20)
930 t r a i n <− as . data . frame ( t r a i n )
931 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
932 }
933
934 # s imulate t e s t data s e t
935 s e t . seed (1 )
936 t e s t <− mlbench . twonorm (1000 , d=20)
937 testFrame <− as . data . frame ( t e s t )
938 simTest <− testFrame
939
940 # run s imu la t i on and p lo t data
941 twonormResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s ( t e s t )

)
942 twonormResults $ r e s u l t s $model <− Models
943 saveRDS( twonormResults , " twonormResultsTune . rda" )
944 ggp lot ( data=twonormResults $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " ) +
945 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
946 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t . x=

element_blank ( ) ) +
947 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
948 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e ( "

Twonorm (20 , 2) " )
949
950 ###########################
951 # threenorm s imu la t i on data
952 ###########################
953 # s imluat ing t r a i n i n g data s e t s
954 t r a i n i n gS e t s <− l i s t ( )
955 f o r ( i in 1 : 100 ) {
956 s e t . seed ( i +1)
957 t r a i n <− mlbench . threenorm (400 , d=20)
958 t r a i n <− as . data . frame ( t r a i n )
959 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
960 }
961
962 # s imulate t e s t data s e t
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963 s e t . seed (1 )
964 t e s t <− mlbench . threenorm (1000 , d=20)
965 testFrame <− as . data . frame ( t e s t )
966 simTest <− testFrame
967
968 # run s imu la t i on and p lo t data
969 threenormResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s (

t e s t ) )
970 threenormResults $ r e s u l t s $model <− Models
971 saveRDS( threenormResults , " threenormResultsTune . rda" )
972 ggp lot ( data=threenormResults $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " ) +
973 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
974 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t . x=

element_blank ( ) ) +
975 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
976 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e ( "

Threenorm (20 , 2) " )
977
978 ##########################
979 # ringnorm s imu la t i on data
980 ##########################
981 # s imluat ing t r a i n i n g data s e t s
982 t r a i n i n gS e t s <− l i s t ( )
983 f o r ( i in 1 : 100 ) {
984 s e t . seed ( i +1)
985 t r a i n <− mlbench . ringnorm (400 , d=20)
986 t r a i n <− as . data . frame ( t r a i n )
987 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
988 }
989
990 # s imulate t e s t data s e t
991 s e t . seed (1 )
992 t e s t <− mlbench . ringnorm (1000 , d=20)
993 testFrame <− as . data . frame ( t e s t )
994 simTest <− testFrame
995
996 # run s imu la t i on and p lo t data
997 r ingnormResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s ( t e s t

) )
998 r ingnormResults $ r e s u l t s $model <− Models
999 saveRDS( ringnormResults , " ringnormResultsTune . rda" )

1000 ggp lot ( data=ringnormResults $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +
geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +

1001 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
1002 theme ( legend . p o s i t i o n = "none" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t . x=

element_blank ( ) ) +
1003 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
1004 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e ( "

Ringnorm (20 , 2) " )
1005
1006 ########################
1007 # c i r c l e s imu la t i on data
1008 ########################
1009 # s imluat ing t r a i n i n g data s e t s
1010 t r a i n i n gS e t s <− l i s t ( )
1011 f o r ( i in 1 : 100 ) {
1012 s e t . seed ( i +1)
1013 t r a i n <− mlbench . c i r c l e (400 , d=20)
1014 t r a i n <− as . data . frame ( t r a i n )
1015 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
1016 }
1017
1018 # s imulate t e s t data s e t
1019 s e t . seed (1 )
1020 t e s t <− mlbench . c i r c l e (1000 , d=20)
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1021 testFrame <− as . data . frame ( t e s t )
1022 simTest <− testFrame
1023
1024 # run s imu la t i on and p lo t data
1025 c i r c l eR e s u l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s ( t e s t ) )
1026 c i r c l eR e s u l t s $ r e s u l t s $model <− Models
1027 saveRDS( c i r c l eR e s u l t s , " c i r c l eRe su l t sTune . rda" )
1028 ggp lot ( data=c i r c l eR e s u l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n = " i d e n t i t y " ) +
1029 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
1030 theme ( legend . p o s i t i o n = "bottom" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
1031 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
1032 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e ( "

C i r c l e (20 , 2) " )
1033
1034 #########################
1035 # c a s s i n i s imu la t i on data
1036 #########################
1037 # s imluat ing t r a i n i n g data s e t s
1038 t r a i n i n gS e t s <− l i s t ( )
1039 f o r ( i in 1 : 100 ) {
1040 s e t . seed ( i +1)
1041 t r a i n <− mlbench . c a s s i n i (400)
1042 t r a i n <− as . data . frame ( t r a i n )
1043 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
1044 }
1045
1046 # s imulate t e s t data s e t
1047 s e t . seed (1 )
1048 t e s t <− mlbench . c a s s i n i (1000)
1049 testFrame <− as . data . frame ( t e s t )
1050 simTest <− testFrame
1051
1052 # run s imu la t i on and p lo t data
1053 c a s s i n iR e s u l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s ( t e s t )

)
1054 c a s s i n iR e s u l t s $ r e s u l t s $model <− Models
1055 saveRDS( c a s s i n iRe su l t s , " ca s s in iResu l t sTune . rda" )
1056 ggp lot ( data=c a s s i n iR e s u l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
1057 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
1058 theme ( legend . p o s i t i o n = "bottom" , ax i s . t i c k s . x=element_blank ( ) , ax i s .

t ex t . x=element_blank ( ) ) +
1059 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
1060 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e (

" Cas s in i (2 , 3) " )
1061
1062 #########################
1063 # cuboids s imu la t i on data
1064 #########################
1065 # s imluat ing t r a i n i n g data s e t s
1066 t r a i n i n gS e t s <− l i s t ( )
1067 f o r ( i in 1 : 100 ) {
1068 s e t . seed ( i +1)
1069 t r a i n <− mlbench . cuboids (400)
1070 t r a i n <− as . data . frame ( t r a i n )
1071 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ 1 : 4 0 0 , ]
1072 }
1073
1074 # s imulate t e s t data s e t
1075 s e t . seed (1 )
1076 t e s t <− mlbench . cuboids (1000)
1077 testFrame <− as . data . frame ( t e s t )
1078 simTest <− testFrame [ 1 : 1 0 0 0 , ]
1079
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1080 # run s imu la t i on and p lo t data
1081 cubo idsResu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s ( t e s t )

[ 1 : 1 0 0 0 ] )
1082 cubo idsResu l t s $ r e s u l t s $model <− Models
1083 saveRDS( cubo idsResu l t s , " cuboidsResultsTune . rda" )
1084 ggp lot ( data=cubo idsResu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) +

geom_bar ( s t a t=" i d e n t i t y " , p o s i t i o n=" i d e n t i t y " ) +
1085 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
1086 theme ( legend . p o s i t i o n = "bottom" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
1087 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
1088 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e ( "

Cuboids (3 , 4) " )
1089
1090 #####################
1091 # xor s imu la t i on data
1092 #####################
1093 # s imluat ing t r a i n i n g data s e t s
1094 t r a i n i n gS e t s <− l i s t ( )
1095 f o r ( i in 1 : 100 ) {
1096 s e t . seed ( i +1)
1097 t r a i n <− mlbench . xor (400 , d=2)
1098 t r a i n <− as . data . frame ( t r a i n )
1099 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
1100 }
1101
1102 # s imulate t e s t data s e t
1103 s e t . seed (1 )
1104 t e s t <− mlbench . xor (1000 , d=2)
1105 testFrame <− as . data . frame ( t e s t )
1106 simTest <− testFrame
1107
1108 # run s imu la t i on and p lo t data
1109 xorResu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s ( t e s t ) )
1110 xorResu l t s $ r e s u l t s $model <− Models
1111 saveRDS( xorResults , " xorResultsTune . rda" )
1112 ggp lot ( data=xorResu l t s $ r e s u l t s , aes ( x=bar , y=vb , f i l l =Decomposition ) ) + geom_

bar ( s t a t=" i d e n t i t y " , p o s i t i o n = " i d e n t i t y " ) +
1113 theme_bw( ) + ylab ( "Error /Bias+Variance " ) + xlab ( "" ) +
1114 theme ( legend . p o s i t i o n = "bottom" , ax i s . t i c k s . x=element_blank ( ) , ax i s . t ex t .

x=element_blank ( ) ) +
1115 gu ides ( f i l l = guide_legend ( t i t l e = "Decomposition : " ) )+
1116 geom_h l i n e ( y i n t e r c ep t = 0 , c o l=" red " ) + f a c e t_gr id ( . ~ model ) + g g t i t l e ( "

XOR (2 , 2) " )
1117
1118 #################################
1119 # cr ea t e s imu la t i on r e s u l t s t ab l e
1120 #################################
1121 re s1 <− readRDS( " se tup1Resu l t s . rda" )
1122 r e s2 <− readRDS( " se tup2Resu l t s . rda" )
1123 r e s3 <− readRDS( " se tup3Resu l t s . rda" )
1124 r e s4 <− readRDS( " se tup4Resu l t s . rda" )
1125 r e s5 <− readRDS( " se tup5Resu l t s . rda" )
1126 r e s6 <− readRDS( " se tup6Resu l t s . rda" )
1127 r e s7 <− readRDS( " se tup7Resu l t s . rda" )
1128 r e s8 <− readRDS( " se tup8Resu l t s . rda" )
1129 r e s9 <− readRDS( "2dnormalsResultsTune . rda" )
1130 re s10 <− readRDS( "twonormResultsTune . rda" )
1131 re s11 <− readRDS( " threenormResultsTune . rda" )
1132 re s12 <− readRDS( " ringnormResultsTune . rda" )
1133 re s13 <− readRDS( " c i r c l eRe su l t sTune . rda" )
1134 re s14 <− readRDS( " cas s in iResu l t sTune . rda" )
1135 re s15 <− readRDS( " cuboidsResultsTune . rda" )
1136 re s16 <− readRDS( "xorResultsTune . rda" )
1137 r e s L i s t <− l i s t ( res1 , res2 , res3 , res4 , res5 , res6 , res7 , res8 , res9 , res10 ,

res11 ,
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1138 res12 , res13 , res14 , res15 , r e s16 )
1139 t ab l eF ina l <− NULL
1140 f o r ( k in 1 : l ength ( r e s L i s t ) ) {
1141 r e s <− r e s L i s t [ [ k ] ]
1142 sp l i tDa t <− s p l i t ( r e s $ r e s u l t s , r e s $ r e s u l t s $model )
1143 cname <− unique ( r e s $ r e s u l t s $model )
1144 rname <− unique ( r e s $ r e s u l t s $Decomposition )
1145 tableFrame <− matrix (0 , nrow=length ( rname ) , nco l=length ( cname ) )
1146 f o r ( i in 1 : l ength ( sp l i tDa t ) ) {
1147 tableFrame [ , i ] <− sp l i tDa t [ [ i ] ] $vb
1148 }
1149 rownames ( tableFrame ) <− paste (k , rname )
1150 colnames ( tableFrame ) <− cname
1151 t ab l eF ina l <− rbind ( tab l eF ina l , tableFrame )
1152 }
1153 t ab l eF ina l <− as . data . frame ( t ab l eF ina l )
1154
1155 # perform s t a t i s t i c a l t e s t s
1156 n <− nrow ( t ab l eF ina l )
1157 er rorTab le <− t ab l eF ina l [ seq (1 , n , by=6) , ]
1158 SEtable <− t ab l eF ina l [ seq (3 , n , by=6) , ]
1159 VEtable <− t ab l eF ina l [ seq (4 , n , by=6) , ]
1160 biasTable <− t ab l eF ina l [ seq (5 , n , by=6) , ]
1161 varTable <− t ab l eF ina l [ seq (6 , n , by=6) , ]
1162 compTableList <− l i s t ( errorTable , SEtable , VEtable , biasTable , varTable )
1163 compPVals <− l i s t ( )
1164
1165 # compute omnibus p−va l s
1166 l i b r a r y (scmamp)
1167 f o r ( i in 1 : l ength ( compTableList ) ) {
1168 compPVals [ [ i ] ] <− fr iedmanAlignedRanksTest ( compTableList [ [ i ] ] [ , − 1 ] )
1169 }
1170
1171 # compute post−hoc p−va l s
1172 postPVals <− l i s t ( )
1173 f o r ( i in 1 : l ength ( compTableList ) ) {
1174 postPVals [ [ i ] ] <− postHocTest ( compTableList [ [ i ] ] [ , − 1 ] , t e s t=" a l i gned

ranks " ,
1175 c o r r e c t=" s h a f f e r " )
1176 }
1177
1178 # cr ea t e l a t e x tab l e
1179 s t a r g a z e r ( tab l eF ina l , summary = FALSE)
1180 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1181 ####################################################################
1182 # In text : Co r r e l a t i on between bias , sy s t emat i c e f f e c t , var i ance and
1183 # var iance e f f e c t
1184 ####################################################################
1185 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1186 # compute bias , var iance , sy s t emat i c e f f e c t and var iance e f f e c t c o r r e l a t i o n s
1187 SEIndex <− seq (3 , 96 , by=6)
1188 VEIndex <− seq (4 , 96 , by=6)
1189 b ias Index <− seq (5 , 96 , by=6)
1190 varIndex <− seq (6 , 96 , by=6)
1191 t reeCors <− c ( cor ( t ab l eF ina l [ b iasIndex , 1 ] , t ab l eF ina l [ SEIndex , 1 ] ) ,
1192 cor ( t ab l eF ina l [ varIndex , 1 ] , t ab l eF ina l [ VEIndex , 1 ] ) )
1193 baggingCors <− c ( cor ( t ab l eF ina l [ b iasIndex , 2 ] , t ab l eF ina l [ SEIndex , 2 ] ) ,
1194 cor ( t ab l eF ina l [ varIndex , 2 ] , t ab l eF ina l [ VEIndex , 2 ] ) )
1195 RFCors <− c ( cor ( t ab l eF ina l [ b iasIndex , 3 ] , t ab l eF ina l [ SEIndex , 3 ] ) ,
1196 cor ( t ab l eF ina l [ varIndex , 3 ] , t ab l eF ina l [ VEIndex , 3 ] ) )
1197 boost ingCors <− c ( cor ( t ab l eF ina l [ b iasIndex , 4 ] , t ab l eF ina l [ SEIndex , 4 ] ) ,
1198 cor ( t ab l eF ina l [ varIndex , 4 ] , t ab l eF ina l [ VEIndex , 4 ] ) )
1199
1200 # compute median c o r r e l a t i o n over the d i f f e r e n t a lgor i thms
1201 biasSECor <− median ( c ( t reeCors [ 1 ] , baggingCors [ 1 ] , RFCors [ 1 ] , boost ingCors [ 1 ] )

)
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1202 varVECor <− median ( c ( t reeCors [ 2 ] , baggingCors [ 2 ] , RFCors [ 2 ] , boost ingCors [ 2 ] ) )
1203 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1204 ##########################################################################
1205 # Figure 5 . 9 : Var ia t ion in the s e l e c t i o n o f the optimal subset s i z e o f
1206 # randomly s e l e c t e d input v a r i a b l e s at each node f o r Forest−RI over 100
1207 # t r a i n i n g s e t s d is− played f o r the f i r s t e i gh t s imu la t i on c on f i g u r a t i o n s .
1208 ##########################################################################
1209 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1210 # p lo t parameter histogram f o r each data s e t and compute the standard

dev i a t i on
1211 # Sim 1
1212 # p lo t l i n e and bar p l o t
1213 tuneVals1 <− r e s1 $ tuneValues [ [ 3 ] ]
1214 sd1 <− round ( sd ( tuneVals1 ) , 2)
1215 barData1 <− summary( f a c t o r ( tuneVals1 , l e v e l s=so r t ( unique ( tuneVals1 ) ) ) )
1216 g1 <− ggp lot ( data . frame (mtry=tuneVals1 ) , aes ( x=1:100 , y=mtry ) ) + geom_l i n e ( c o l

="darkorange " ) + geom_point ( ) +
1217 theme_bw( ) + ylab ( "Var iab le subsample s i z e " ) + xlab ( "Train ing s e t " )
1218 g2 <− ggp lot ( data . frame (x=f a c t o r ( as . numeric ( names ( barData1 ) ) ) , y=barData1 ) ,

aes ( x=x , y=y) ) + geom_bar ( s t a t=" i d e n t i t y " , f i l l =" skyblue " ) +
1219 theme_bw( ) + xlab ( "Var iab le subsample s i z e " ) + ylab ( "Frequency" )
1220 g r id . arrange ( g1 , g2 , nco l=2, top = textGrob ( l a b e l = paste ( "Sim 1 : mvnorm , p=15,

co r r =0.9 ; [ SD = " , sd1 , " ] " ) ) )
1221 # Sim 2
1222 # p lo t l i n e and bar p l o t
1223 tuneVals2 <− r e s2 $ tuneValues [ [ 3 ] ]
1224 sd2 <− round ( sd ( tuneVals2 ) , 2)
1225 barData2 <− summary( f a c t o r ( tuneVals2 , l e v e l s=so r t ( unique ( tuneVals2 ) ) ) )
1226 g1 <− ggp lot ( data . frame (mtry=tuneVals2 ) , aes ( x=1:100 , y=mtry ) ) + geom_l i n e ( c o l

="darkorange " ) + geom_point ( ) +
1227 theme_bw( ) + ylab ( "Var iab le subsample s i z e " ) + xlab ( "Train ing s e t " )
1228 g2 <− ggp lot ( data . frame (x=f a c t o r ( as . numeric ( names ( barData2 ) ) ) , y=barData2 ) ,

aes ( x=x , y=y) ) + geom_bar ( s t a t=" i d e n t i t y " , f i l l =" skyblue " ) +
1229 theme_bw( ) + xlab ( "Var iab le subsample s i z e " ) + ylab ( "Frequency" )
1230 g r id . arrange ( g1 , g2 , nco l=2, top = textGrob ( l a b e l = paste ( "Sim 2 : mvnorm , p=15,

co r r =0.5 ; [ SD = " , sd2 , " ] " ) ) )
1231 # Sim 3
1232 # p lo t l i n e and bar p l o t
1233 tuneVals3 <− r e s3 $ tuneValues [ [ 3 ] ]
1234 sd3 <− round ( sd ( tuneVals3 ) , 2)
1235 barData3 <− summary( f a c t o r ( tuneVals3 , l e v e l s=so r t ( unique ( tuneVals3 ) ) ) )
1236 g1 <− ggp lot ( data . frame (mtry=tuneVals3 ) , aes ( x=1:100 , y=mtry ) ) + geom_l i n e ( c o l

="darkorange " ) + geom_point ( ) +
1237 theme_bw( ) + ylab ( "Var iab le subsample s i z e " ) + xlab ( "Train ing s e t " )
1238 g2 <− ggp lot ( data . frame (x=f a c t o r ( as . numeric ( names ( barData3 ) ) ) , y=barData3 ) ,

aes ( x=x , y=y) ) + geom_bar ( s t a t=" i d e n t i t y " , f i l l =" skyblue " ) +
1239 theme_bw( ) + xlab ( "Var iab le subsample s i z e " ) + ylab ( "Frequency" )
1240 g r id . arrange ( g1 , g2 , nco l=2, top = textGrob ( l a b e l = paste ( "Sim 3 : mvnorm , p=15,

co r r =0.1 ; [ SD = " , sd3 , " ] " ) ) )
1241 # Sim 4
1242 # p lo t l i n e and bar p l o t
1243 tuneVals4 <− r e s4 $ tuneValues [ [ 3 ] ]
1244 sd4 <− round ( sd ( tuneVals4 ) , 2)
1245 barData4 <− summary( f a c t o r ( tuneVals4 , l e v e l s=so r t ( unique ( tuneVals4 ) ) ) )
1246 g1 <− ggp lot ( data . frame (mtry=tuneVals4 ) , aes ( x=1:100 , y=mtry ) ) + geom_l i n e ( c o l

="darkorange " ) + geom_point ( ) +
1247 theme_bw( ) + ylab ( "Var iab le subsample s i z e " ) + xlab ( "Train ing s e t " )
1248 g2 <− ggp lot ( data . frame (x=f a c t o r ( as . numeric ( names ( barData4 ) ) ) , y=barData4 ) ,

aes ( x=x , y=y) ) + geom_bar ( s t a t=" i d e n t i t y " , f i l l =" skyblue " ) +
1249 theme_bw( ) + xlab ( "Var iab le subsample s i z e " ) + ylab ( "Frequency" )
1250 g r id . arrange ( g1 , g2 , nco l=2, top = textGrob ( l a b e l = paste ( "Sim 4 : mvnorm , p=15,

co r r =0; [ SD = " , sd4 , " ] " ) ) )
1251 # Sim 5
1252 # p lo t l i n e and bar p l o t
1253 tuneVals5 <− r e s5 $ tuneValues [ [ 3 ] ]
1254 sd5 <− round ( sd ( tuneVals5 ) , 2)
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1255 barData5 <− summary( f a c t o r ( tuneVals5 , l e v e l s=so r t ( unique ( tuneVals5 ) ) ) )
1256 g1 <− ggp lot ( data . frame (mtry=tuneVals5 ) , aes ( x=1:100 , y=mtry ) ) + geom_l i n e ( c o l

="darkorange " ) + geom_point ( ) +
1257 theme_bw( ) + ylab ( "Var iab le subsample s i z e " ) + xlab ( "Train ing s e t " )
1258 g2 <− ggp lot ( data . frame (x=f a c t o r ( as . numeric ( names ( barData5 ) ) ) , y=barData5 ) ,

aes ( x=x , y=y) ) + geom_bar ( s t a t=" i d e n t i t y " , f i l l =" skyblue " ) +
1259 theme_bw( ) + xlab ( "Var iab le subsample s i z e " ) + ylab ( "Frequency" )
1260 g r id . arrange ( g1 , g2 , nco l=2, top = textGrob ( l a b e l = paste ( "Sim 5 : Mease (2008) ,

p=30, J=2; [ SD = " , sd5 , " ] " ) ) )
1261 # Sim 6
1262 # p lo t l i n e and bar p l o t
1263 tuneVals6 <− r e s6 $ tuneValues [ [ 3 ] ]
1264 sd6 <− round ( sd ( tuneVals6 ) , 2)
1265 barData6 <− summary( f a c t o r ( tuneVals6 , l e v e l s=so r t ( unique ( tuneVals6 ) ) ) )
1266 g1 <− ggp lot ( data . frame (mtry=tuneVals6 ) , aes ( x=1:100 , y=mtry ) ) + geom_l i n e ( c o l

="darkorange " ) + geom_point ( ) +
1267 theme_bw( ) + ylab ( "Var iab le subsample s i z e " ) + xlab ( "Train ing s e t " )
1268 g2 <− ggp lot ( data . frame (x=f a c t o r ( as . numeric ( names ( barData6 ) ) ) , y=barData6 ) ,

aes ( x=x , y=y) ) + geom_bar ( s t a t=" i d e n t i t y " , f i l l =" skyblue " ) +
1269 theme_bw( ) + xlab ( "Var iab le subsample s i z e " ) + ylab ( "Frequency" )
1270 g r id . arrange ( g1 , g2 , nco l=2, top = textGrob ( l a b e l = paste ( "Sim 6 : Mease (2008) ,

p=30, J=5; [ SD = " , sd6 , " ] " ) ) )
1271 # Sim 7
1272 # p lo t l i n e and bar p l o t
1273 tuneVals7 <− r e s7 $ tuneValues [ [ 3 ] ]
1274 sd7 <− round ( sd ( tuneVals7 ) , 2)
1275 barData7 <− summary( f a c t o r ( tuneVals7 , l e v e l s=so r t ( unique ( tuneVals7 ) ) ) )
1276 g1 <− ggp lot ( data . frame (mtry=tuneVals7 ) , aes ( x=1:100 , y=mtry ) ) + geom_l i n e ( c o l

="darkorange " ) + geom_point ( ) +
1277 theme_bw( ) + ylab ( "Var iab le subsample s i z e " ) + xlab ( "Train ing s e t " )
1278 g2 <− ggp lot ( data . frame (x=f a c t o r ( as . numeric ( names ( barData7 ) ) ) , y=barData7 ) ,

aes ( x=x , y=y) ) + geom_bar ( s t a t=" i d e n t i t y " , f i l l =" skyblue " ) +
1279 theme_bw( ) + xlab ( "Var iab le subsample s i z e " ) + ylab ( "Frequency" )
1280 g r id . arrange ( g1 , g2 , nco l=2, top = textGrob ( l a b e l = paste ( "Sim 7 : Mease (2008) ,

p=30, J=15; [ SD = " , sd7 , " ] " ) ) )
1281 # Sim 8
1282 # p lo t l i n e and bar p l o t
1283 tuneVals8 <− r e s8 $ tuneValues [ [ 3 ] ]
1284 sd8 <− round ( sd ( tuneVals8 ) , 2)
1285 barData8 <− summary( f a c t o r ( tuneVals8 , l e v e l s=so r t ( unique ( tuneVals8 ) ) ) )
1286 g1 <− ggp lot ( data . frame (mtry=tuneVals8 ) , aes ( x=1:100 , y=mtry ) ) + geom_l i n e ( c o l

="darkorange " ) + geom_point ( ) +
1287 theme_bw( ) + ylab ( "Var iab le subsample s i z e " ) + xlab ( "Train ing s e t " )
1288 g2 <− ggp lot ( data . frame (x=f a c t o r ( as . numeric ( names ( barData8 ) ) ) , y=barData8 ) ,

aes ( x=x , y=y) ) + geom_bar ( s t a t=" i d e n t i t y " , f i l l =" skyblue " ) +
1289 theme_bw( ) + xlab ( "Var iab le subsample s i z e " ) + ylab ( "Frequency" )
1290 g r id . arrange ( g1 , g2 , nco l=2, top = textGrob ( l a b e l = paste ( "Sim 8 : Mease (2008) ,

p=30, J=20; [ SD = " , sd8 , " ] " ) ) )
1291 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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D.6 Chapter 6 Code: Random Forest
Algorithms

R Code D.6: Source Code: Random Forest Algorithms
1 #####################################
2 # CHAPTER 6 : Random Forest Algorithms
3 #####################################
4
5 # Check f o r miss ing packages and i n s t a l l i f mis s ing
6 l i s t . o f . packages <− c ( " latex2exp " , "mlbench" , " ggp lot2 " , " ca r e t " , "doSNOW" , "

l a t t i c e " ,
7 "obliqueRF" , "MASS" , "pensim" , " s t a r ga z e r " , " e1071" , "

mda" ,
8 " c l a s s " , " p l s " , "ROCR" , "snow" , " gp l o t s " , " extraTrees " ,

"RRF" ,
9 "wsr f " , " r o t a t i onFo r e s t " , " randomForest" )

10 new . packages <− l i s t . o f . packages [ ! ( l i s t . o f . packages %in% i n s t a l l e d . packages ( )
[ , "Package" ] ) ]

11 i f ( l ength (new . packages ) ) i n s t a l l . packages (new . packages )
12
13 # load r equ i r ed packages
14 load <− l app ly ( l i s t . o f . packages , r equ i r e , cha rac t e r . only = TRUE)
15
16 # download and load random ro t a t i on f o r e s t s package
17 i f ( "RRotF" %in% i n s t a l l e d . packages ( ) [ , "Package" ] == FALSE) {
18 l i b r a r y ( dev too l s )
19 i n s t a l l_github ( " a rnupre to r iu s /RRotF" )
20 }
21 l i b r a r y (RRotF)
22
23 ############################################################################
24 # Figure 6 . 2 : Performance o f Forest−RI as a func t i on o f no i s e /
25 # Figure 6 . 7 : Comparing the performance o f Forest−RI with WSRF as a func t i on
26 # of no i s e .
27 ############################################################################
28 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 # perform s imu la t i on
30 # i t e r a t e d 50 t imes
31 # Some o f the code i s taken from http : //www. davemease . com/ cont ra ryev idence /

code1 . txt
32 SimErrorsRF <− l i s t ( s e t1=NULL, s e t2=NULL, s e t3=NULL, s e t4=NULL, s e t5=NULL)
33 SimErrorsWSRF <− l i s t ( s e t1=NULL, s e t2=NULL, s e t3=NULL, s e t4=NULL, s e t5=NULL)
34 vars <− c (12 , 52 , 102 , 202 , 1002)
35 J <− 2
36 q <− 0 .15
37 nTrain <− 400
38 nTest <− 1000
39 f o r ( v in 1 : l ength ( vars ) ) {
40 f o r ( i t e r in 1 : 50 ) {
41 s e t . seed ( i t e r )
42 p <− vars [ v ]
43 Xtrain<−matrix (0 , nTrain , p)
44 Xtest<−matrix (0 , nTest , p )
45 f o r ( i in 1 : p ) {
46 Xtrain [ , i ]<−r un i f ( nTrain )
47 Xtest [ , i ]<−r un i f ( nTest )
48 }
49 y t ra in<−rep (0 , nTrain )
50 f o r ( i in 1 : nTrain ) {
51 y t ra in [ i ]<−1∗ ( r un i f (1 )<(q+(1−2∗q ) ∗1∗ (sum( ( Xtrain [ i , 1 : J ] ) )>(J

/ 2) ) ) )
52 }
53 y t e s t<−rep (0 , nTest )
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54 f o r ( i in 1 : nTest ) {
55 y t e s t [ i ]<−1∗ ( r un i f (1 )<(q+(1−2∗q ) ∗1∗ (sum( ( Xtest [ i , 1 : J ] ) )>(J/

2) ) ) )
56 }
57 # t r a i n i n g data
58 t r a i n <− data . frame (y=f a c t o r ( y t r a in ) , Xtrain )
59 # t e s t data
60 t e s t <− data . frame (y=f a c t o r ( y t e s t ) , Xtest )
61 # Compute e r r o r s o f r f models
62 f i tCon t r o l <− t r a inCont ro l (method="none" )
63 tuneControl <− data . frame (mtry=f l o o r ( sq r t ( vars [ v ] ) ) )
64 r f . f i t <− t r a i n (y~ . , data=tra in , method=" r f " , t rCont ro l=f i tCon t r o l

,
65 tuneGrid=tuneControl , n t r ee =100)
66 wsr f . f i t <− t r a i n (y~ . , data=tra in , method="wsr f " , t rCont ro l=

f i tCon t r o l ,
67 tuneGrid=tuneControl , n t r ee =100)
68 SimErrorsRF [ [ v ] ] [ i t e r ] <− mean( t e s t $y != pr ed i c t ( r f . f i t , t e s t

[ , −1 ] ) )
69 SimErrorsWSRF [ [ v ] ] [ i t e r ] <− mean( t e s t $y != pr ed i c t ( wsr f . f i t , t e s t

[ , −1 ] ) )
70 }
71 }
72 # p lo t r e s u l t s
73 resu l tsRF <− data . frame ( s e t=rep ( c ( " s e t1 " , " s e t2 " , " s e t3 " , " s e t4 " , " s e t5 " ) ,

each=50) ,
74 e r r o r=c ( SimErrorsRF [ [ 1 ] ] , SimErrorsRF [ [ 2 ] ] , SimErrorsRF

[ [ 3 ] ] , SimErrorsRF [ [ 4 ] ] , SimErrorsRF [ [ 5 ] ] ) )
75 resultsWSRF <− data . frame ( s e t=rep ( c ( " s e t1 " , " s e t2 " , " s e t3 " , " s e t4 " , " s e t5 " ) ,

each=50) ,
76 e r r o r=c (SimErrorsWSRF [ [ 1 ] ] , SimErrorsWSRF [ [ 2 ] ] ,

SimErrorsWSRF [ [ 3 ] ] ,
77 SimErrorsWSRF [ [ 4 ] ] , SimErrorsWSRF [ [ 5 ] ] ) )
78 # comupte r e l e van t v a r i a b l e s sampling p r o b a b i l i t i e s
79 subSampleProbs <− sapply ( vars , f unc t i on (x ) {
80 mtry <− f l o o r ( s q r t ( x ) )
81 round ( (2 ∗ choose (x−2, mtry−1) + choose (x−2, mtry−2) ) / choose (x , mtry ) , 2)
82 } )
83 # p lo t boxp lot s f o r random f o r e s t ( f o r e s t−RI)
84 ggp lot ( resultsRF , aes ( y=error , x=s e t ) ) + s t a t_boxplot (geom =’ e r r o rba r ’ , width

=0.5) +
85 geom_boxplot ( notch = TRUE, f i l l ="darkgreen " , o u t l i e r . c o l o r = " red " ) +
86 geom_h l i n e ( y i n t e r c ep t = q , l i n e t yp e="dashed" , c o l=" purple " ) +
87 s c a l e_x_d i s c r e t e ( l a b e l s=c ( " (2 , 10) " , " (2 , 50) " , " (2 , 100) " , " (2 , 200) " ,

" (2 , 1000) " ) )+
88 theme_bw( ) + xlab ( "Number o f ( r e l evant , no i s e ) v a r i a b l e s " ) + ylim (0 ,

0 . 75 ) +
89 ylab ( "Test M i s c l a s s i f i c a t i o n Error " ) + annotate ( " text " , x=1, y=0.15+q ,

l a b e l=subSampleProbs [ 1 ] )+
90 annotate ( " text " , x=2, y=0.19+q , l a b e l=subSampleProbs [ 2 ] )+
91 annotate ( " text " , x=3, y=0.23+q , l a b e l=subSampleProbs [ 3 ] )+
92 annotate ( " text " , x=4, y=0.28+q , l a b e l=subSampleProbs [ 4 ] )+
93 annotate ( " text " , x=5, y=0.37+q , l a b e l=subSampleProbs [ 5 ] )+
94 annotate ( " text " , x=3, y=0.1 , l a b e l="Bayes Error " )
95 # p lo t boxp lot s f o r WSRF
96 resultsWSRF <− data . frame ( s e t=rep ( c ( " s e t1 " , " s e t2 " , " s e t3 " , " s e t4 " , " s e t5 " , "

s e t6 " , " s e t7 " , " s e t8 " , " s e t9 " , " se t99 " ) , each=50) ,
97 e r r o r=c ( SimErrorsRF [ [ 1 ] ] , SimErrorsWSRF [ [ 1 ] ] ,

SimErrorsRF [ [ 2 ] ] ,
98 SimErrorsWSRF [ [ 2 ] ] , SimErrorsRF [ [ 3 ] ] ,

SimErrorsWSRF [ [ 3 ] ] ,
99 SimErrorsRF [ [ 4 ] ] , SimErrorsWSRF [ [ 4 ] ] ,

100 SimErrorsRF [ [ 5 ] ] , SimErrorsWSRF [ [ 5 ] ] ) ,
101 grp=rep ( rep ( c ( "Forest−RI" , "WSRF" ) , each=50) ,5 ) )
102 ggp lot ( resultsWSRF , aes ( y=error , x=set , f i l l =grp ) ) + s t a t_boxplot (geom =’

e r r o rba r ’ , width=0.5)+
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103 geom_boxplot ( notch = TRUE, o u t l i e r . c o l o r = " red " ) +
104 geom_h l i n e ( y i n t e r c ep t = q , l i n e t yp e="dashed" , c o l=" purple " ) +
105 xlab ( "Number o f ( r e l evant , no i s e ) v a r i a b l e s " ) + ylim (0 , 0 . 75 ) +
106 ylab ( "Test M i s c l a s s i f i c a t i o n Error " ) +
107 s c a l e_x_d i s c r e t e ( l a b e l s=rep ( c ( " (2 , 10) " , " (2 , 50) " , " (2 , 100) " , " (2 ,

200) " , " (2 , 1000) " ) , each=2) )+
108 s c a l e_ f i l l _manual (name="Model" , l a b e l s=c ( "Forest−RI" , "WSRF" ) , va lue s=c (

" darkgreen " , " blue " ) )+
109 theme_bw( )+
110 theme ( legend . p o s i t i o n=c ( 0 . 1 , 0 . 6 ) )+
111 annotate ( " text " , x=5.5 , y=0.1 , l a b e l="Bayes Error " )
112 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
113 ########################################
114 # Figure 6 . 3 : Binary t r e e r ep r e s en t a t i on
115 ########################################
116 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
117 # cr ea t e empty p lo t
118 dmar <− par ( ) $mar
119 par (mar=c (0 , 0 , 0 , 0 ) )
120 p l o t ( 11 : 22 , 11 :22 , type="n" , xlab="" , ylab="" ,
121 xlim=c (11 , 22) , yl im=c (1 , 22) ,
122 main="" , axes=FALSE)
123 # cr ea t e t r e e
124 text ( 1 6 . 5 , 20 , TeX( "Node 1" ) , c o l="darkgreen " )
125 text ( 1 5 . 5 , 17 . 5 , TeX( "<< i f $\\ phi_1(\\ unde r l i n e {x} , \\Theta ) = 0 , $" ) )
126 text ( 1 7 . 5 , 17 . 5 , TeX( " i f $\\ phi_1(\\ unde r l i n e {x} , \\Theta ) = 1$ >>" ) )
127 l i n e s ( c ( 1 6 . 5 , 16 . 5 ) , c ( 1 8 . 5 , 1 9 . 5 ) )
128 l i n e s ( c (14 , 19) , c (19 , 19) )
129 # s p l i t s
130 l i n e s ( c (14 , 14) , c (19 , 16) )
131 l i n e s ( c (19 , 19) , c (19 , 16) )
132 # i n t e r n a l nodes
133 text (14 , 15 , TeX( "Node 2" ) , c o l="darkgreen " )
134 text (19 , 15 , TeX( "Node 3" ) , c o l="darkgreen " )
135 l i n e s ( c (14 , 14) , c ( 1 3 . 5 , 14 . 5 ) )
136 l i n e s ( c (13 , 15) , c (14 , 14) )
137 l i n e s ( c (19 , 19) , c ( 1 3 . 5 , 14 . 5 ) )
138 l i n e s ( c (18 , 20) , c (14 , 14) )
139 # s p l i t i n t e r n a l node 1
140 l i n e s ( c (13 , 13) , c (14 , 9) )
141 l i n e s ( c (15 , 15) , c (14 , 9) )
142 # s p l i t i n t e r n a l node 2
143 l i n e s ( c (18 , 18) , c (14 , 9) )
144 l i n e s ( c (20 , 20) , c (14 , 9) )
145 # root nodes 1 , 2 , 3
146 text (13 , 8 , TeX( "$−$" ) , c o l=" blue " , cex=1.5)
147 text (15 , 8 , TeX( "$+_{(1) }$" ) , c o l="darkorange " , cex=1.5)
148 text (20 , 8 , TeX( "$−$" ) , c o l=" blue " , cex=1.5)
149 # i n t e r n a l node 3
150 text (18 , 8 , TeX( "Node 4" ) , c o l="darkgreen " )
151 l i n e s ( c (18 , 18) , c ( 6 . 5 , 7 . 5 ) )
152 l i n e s ( c (17 , 19) , c (7 , 7) )
153 l i n e s ( c (17 , 17) , c (7 , 3) )
154 l i n e s ( c (19 , 19) , c (7 , 3) )
155 # root node 4 and 5
156 text (17 , 2 , TeX( "$+_{(2) }$" ) , c o l="darkorange " , cex=1.5)
157 text (19 , 2 , TeX( "$−$" ) , c o l=" blue " , cex=1.5)
158 par (mar=dmar)
159 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
160 #######################################################################
161 # Figure 6 . 4 : L o g i s t i c s igmoid func t i on used to approximate a t r e e node
162 # s p l i t t i n g ru l e .
163 #######################################################################
164 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
165 x <− seq ( from=−10, to=10, by=0.01)
166 y <− 1/(1+exp(−x ) )
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167 s i g <− data . frame (x=x , y=y)
168 ggp lot ( s ig , aes ( x=x , y=y) ) + geom_l i n e ( ) + theme_bw( )+
169 geom_v l i n e ( x i n t e r c ep t = 0 , c o l="orange " )+
170 geom_h l i n e ( y i n t e r c ep t = 0 . 5 , c o l=" purple " , l i n e t yp e="dashed" )+
171 s c a l e_x_d i s c r e t e ( l im i t s=c (0 ) , l a b e l s=c ( "−b" ) )+
172 ylab (TeX( "$\\hat {\\ phi }(\\ unde r l i n e {x} , \\Theta ) $" ) )+
173 annotate ( " text " , x=−4.7 , y=0.25 , l a b e l="1/(1+exp(−b−X) ) " )
174 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
175 ##################################################################
176 # Table 6 . 1 : The v a r i a b l e s d e s c r i b i n g each random f o r e s t a lgor i thm
177 ##################################################################
178 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
179 # make mds p lo t o f va r i an t s
180 # read in data
181 data <− read . csv ( "RFvariantsData . csv " )
182 tab le f rame <− data . frame ( " va r i ab l e "=colnames ( data ) [−1] , " type "=c ( " c a t e g o r i c a l "

, rep ( "numeric " , 17) ) ,
183 " range "=c ( "NA" , "1988 − 2015" , rep ( " {0 , 1}" , 16) ) )
184 s t a r g a z e r ( table f rame , summary = FALSE)
185 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
186 ###########################################################################
187 # Figure 6 . 5 : Tra i t based comparison o f random f o r e s t p roposa l s by way o f a
188 # best two−dimens iona l MDS approximation o f the f u l l t r a i t space .
189 ###########################################################################
190 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
191 # Compute group c o l o r s
192 # source s o f randomness
193 g c o l s <− NULL
194 f o r ( i in 1 : nrow ( data ) ) {
195 i f ( data [ i , ] $ r_data == 0
196 && data [ i , ] $ r_subsample_var == 0 && data [ i , ] $ r_s p l i t_po in t s == 0
197 && data [ i , ] $ r_vot ing == 0 && data [ i , ] $ r_ensemble == 0) {
198 g c o l s [ i ] <− "navy"
199 } e l s e i f ( data [ i , ] $ r_data == 1
200 && data [ i , ] $ r_subsample_var == 0 && data [ i , ] $ r_s p l i t_po in t s ==

0
201 && data [ i , ] $ r_vot ing == 0 && data [ i , ] $ r_ensemble == 0) {
202 g c o l s [ i ] <− " blue "
203 } e l s e i f ( data [ i , ] $ r_data == 1
204 && data [ i , ] $ r_subsample_var == 1 && data [ i , ] $ r_s p l i t_po in t s ==

0
205 && data [ i , ] $ r_vot ing == 0 && data [ i , ] $ r_ensemble == 0) {
206 g c o l s [ i ] <− " orange "
207 } e l s e i f ( data [ i , ] $ r_data == 1
208 && data [ i , ] $ r_subsample_var == 1 && data [ i , ] $ r_s p l i t_po in t s ==

1
209 && data [ i , ] $ r_vot ing == 0 && data [ i , ] $ r_ensemble == 0) {
210 g c o l s [ i ] <− " tan"
211 } e l s e i f ( data [ i , ] $ r_data == 0
212 && data [ i , ] $ r_subsample_var == 1 && data [ i , ] $ r_s p l i t_po in t s ==

0
213 && data [ i , ] $ r_vot ing == 0 && data [ i , ] $ r_ensemble == 0) {
214 g c o l s [ i ] <− " darkgreen "
215 } e l s e i f ( data [ i , ] $ r_data == 0
216 && data [ i , ] $ r_subsample_var == 1 && data [ i , ] $ r_s p l i t_po in t s ==

1
217 && data [ i , ] $ r_vot ing == 0 && data [ i , ] $ r_ensemble == 0) {
218 g c o l s [ i ] <− "tomato4"
219 } e l s e i f ( data [ i , ] $ r_data == 0
220 && data [ i , ] $ r_subsample_var == 0 && data [ i , ] $ r_s p l i t_po in t s ==

1
221 && data [ i , ] $ r_vot ing == 0 && data [ i , ] $ r_ensemble == 0) {
222 g c o l s [ i ] <− " red "
223 } e l s e i f ( data [ i , ] $ r_data == 0
224 && data [ i , ] $ r_subsample_var == 0 && data [ i , ] $ r_s p l i t_po in t s ==

0
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225 && data [ i , ] $ r_vot ing == 0 && data [ i , ] $ r_ensemble == 1) {
226 g c o l s [ i ] <− " purple "
227 } e l s e i f ( data [ i , ] $ r_data == 1
228 && data [ i , ] $ r_subsample_var == 1 && data [ i , ] $ r_s p l i t_po in t s ==

0
229 && data [ i , ] $ r_vot ing == 0 && data [ i , ] $ r_ensemble == 1) {
230 g c o l s [ i ] <− " green "
231 }
232 }
233
234 c o l s <− c ( " f o r e s t g r e e n " , " darkred " , " gold4 " , " skyblue " ,
235 " orange3 " , "magenta" , " r oya lb lu e " , " seagreen " ,
236 " red3 " , "peru" , " v i o l e t " , " ye l low4 " ,
237 " spr inggreen3 " , "tomato2" , " skyblue3 " , " s i enna2 " ,
238 "plum4" )
239 c c o l s <− NULL
240 f o r ( i in 1 : nrow ( data ) ) {
241 i f (sum( data [ i , 9 : 1 0 ] ) > 0 && sum( data [ i , 1 1 : 1 9 ] ) == 0) {
242 c c o l s [ i ] <− c o l s [ 1 ]
243 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) == 0 && sum( data [ i , 1 1 : 1 4 ] ) > 0 && sum( data [ i

, 1 5 : 1 9 ] ) == 0) {
244 c c o l s [ i ] <− c o l s [ 2 ]
245 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) == 0 && sum( data [ i , 1 1 : 1 4 ] ) == 0 && sum( data

[ i , 1 5 : 1 6 ] ) > 0 && sum( data [ i , 1 7 : 1 9 ] ) == 0) {
246 c c o l s [ i ] <− c o l s [ 3 ]
247 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) == 0 && sum( data [ i , 1 1 : 1 4 ] ) == 0 && sum( data

[ i , 1 5 : 1 6 ] ) == 0 && sum( data [ i , 1 7 : 1 9 ] ) > 0) {
248 c c o l s [ i ] <− c o l s [ 4 ]
249 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) > 0 && sum( data [ i , 1 1 : 1 4 ] ) > 0 && sum( data [ i

, 1 5 : 1 6 ] ) == 0 && sum( data [ i , 1 7 : 1 9 ] ) == 0) {
250 c c o l s [ i ] <− c o l s [ 5 ]
251 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) > 0 && sum( data [ i , 1 1 : 1 4 ] ) == 0 && sum( data [

i , 1 5 : 1 6 ] ) > 0 && sum( data [ i , 1 7 : 1 9 ] ) == 0) {
252 c c o l s [ i ] <− c o l s [ 6 ]
253 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) > 0 && sum( data [ i , 1 1 : 1 4 ] ) == 0 && sum( data [

i , 1 5 : 1 6 ] ) == 0 && sum( data [ i , 1 7 : 1 9 ] ) > 0) {
254 c c o l s [ i ] <− c o l s [ 7 ]
255 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) == 0 && sum( data [ i , 1 1 : 1 4 ] ) > 0 && sum( data [

i , 1 5 : 1 6 ] ) > 0 && sum( data [ i , 1 7 : 1 9 ] ) == 0) {
256 c c o l s [ i ] <− c o l s [ 8 ]
257 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) == 0 && sum( data [ i , 1 1 : 1 4 ] ) == 0 && sum( data

[ i , 1 5 : 1 6 ] ) > 0 && sum( data [ i , 1 7 : 1 9 ] ) > 0) {
258 c c o l s [ i ] <− c o l s [ 9 ]
259 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) == 0 && sum( data [ i , 1 1 : 1 4 ] ) > 0 && sum( data [

i , 1 5 : 1 6 ] ) == 0 && sum( data [ i , 1 7 : 1 9 ] ) > 0) {
260 c c o l s [ i ] <− c o l s [ 1 0 ]
261 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) > 0 && sum( data [ i , 1 1 : 1 4 ] ) > 0 && sum( data [ i

, 1 5 : 1 6 ] ) > 0 && sum( data [ i , 1 7 : 1 9 ] ) == 0) {
262 c c o l s [ i ] <− c o l s [ 1 1 ]
263 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) > 0 && sum( data [ i , 1 1 : 1 4 ] ) > 0 && sum( data [ i

, 1 5 : 1 6 ] ) == 0 && sum( data [ i , 1 7 : 1 9 ] ) > 0) {
264 c c o l s [ i ] <− c o l s [ 1 2 ]
265 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) > 0 && sum( data [ i , 1 1 : 1 4 ] ) == 0 && sum( data [

i , 1 5 : 1 6 ] ) > 0 && sum( data [ i , 1 7 : 1 9 ] ) > 0) {
266 c c o l s [ i ] <− c o l s [ 1 3 ]
267 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) == 0 && sum( data [ i , 1 1 : 1 4 ] ) > 0 && sum( data [

i , 1 5 : 1 6 ] ) > 0 && sum( data [ i , 1 7 : 1 9 ] ) > 0) {
268 c c o l s [ i ] <− c o l s [ 1 4 ]
269 } e l s e i f (sum( data [ i , 9 : 1 0 ] ) > 0 && sum( data [ i , 1 1 : 1 4 ] ) > 0 && sum( data [ i

, 1 5 : 1 6 ] ) > 0 && sum( data [ i , 1 7 : 1 9 ] ) > 0) {
270 c c o l s [ i ] <− c o l s [ 1 5 ]
271 }
272 }
273
274 # use MDS to obta in optimal 2d approx space
275 num_data <− data [ ,− c (1 , 2 , 3 ) ]
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276 p <− cmdscale ( d i s t (num_data ) )
277
278 # p lo t d i sp l ay
279 par (mar=c (1 , 1 , 1 , 1 ) )
280 p l o t ( x=p [ , 1 ] , y=p [ , 2 ] , xl im=c (−1.5 , 3) , yl im=c (−1 ,1.2) , xaxt="n" , yaxt="n" ,
281 xlab="" , ylab="" , c o l=cco l s , pch=18)
282 text (p [ 1 , 1 ] , p [ 1 , 2 ] , paste ( data$ author [ 1 ] , data$ year [ 1 ] ) , pos=1, cex =0.6 , c o l

= g co l s [ 1 ] )
283 text (p [ 2 , 1 ] , p [ 2 , 2 ] , paste ( data$ author [ 2 ] , data$ year [ 2 ] ) , pos=1, cex =0.6 , c o l

= g co l s [ 2 ] )
284 text (p [ 3 , 1 ] , p [ 3 , 2 ] , paste ( data$ author [ 3 ] , data$ year [ 3 ] ) , pos=3, cex =0.6 , c o l

= g co l s [ 3 ] , o f f s e t =0.8)
285 text (p [ 4 , 1 ] , p [ 4 , 2 ] , paste ( data$ author [ 4 ] , data$ year [ 4 ] ) , pos=1, cex =0.6 , c o l

= g co l s [ 4 ] )
286 text (p [ 5 , 1 ] , p [ 5 , 2 ] , paste ( data$ author [ 5 ] , data$ year [ 5 ] ) , pos=4, cex =0.6 , c o l

= g co l s [ 5 ] )
287 text (p [ 6 , 1 ] , p [ 6 , 2 ] , paste ( data$ author [ 6 ] , data$ year [ 6 ] ) , pos=3, cex =0.6 , c o l

= g co l s [ 6 ] )
288 text (p [ 7 , 1 ] , p [ 7 , 2 ] , paste ( data$ author [ 7 ] , data$ year [ 7 ] ) , pos=3, cex =0.6 , c o l

= g co l s [ 7 ] )
289 text (p [ 8 , 1 ] , p [ 8 , 2 ] , paste ( data$ author [ 8 ] , data$ year [ 8 ] ) , pos=4, cex =0.6 , c o l

= g co l s [ 8 ] )
290 text (p [ 9 , 1 ] , p [ 9 , 2 ] , paste ( data$ author [ 9 ] , data$ year [ 9 ] ) , pos=4, cex =0.6 , c o l

= g co l s [ 9 ] )
291 text (p [ 1 0 , 1 ] , p [ 1 0 , 2 ] , paste ( data$ author [ 1 0 ] , data$ year [ 1 0 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 1 0 ] )
292 text (p [ 1 1 , 1 ] , p [ 1 1 , 2 ] , paste ( data$ author [ 1 1 ] , data$ year [ 1 1 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 1 1 ] )
293 text (p [ 1 2 , 1 ] , p [ 1 2 , 2 ] , paste ( data$ author [ 1 2 ] , data$ year [ 1 2 ] ) , pos=3, cex =0.6 ,

c o l = gco l s [ 1 2 ] )
294 text (p [ 1 3 , 1 ] , p [ 1 3 , 2 ] , paste ( data$ author [ 1 3 ] , data$ year [ 1 3 ] ) , pos=4, cex =0.6 ,

c o l = gco l s [ 1 3 ] )
295 text (p [ 1 4 , 1 ] , p [ 1 4 , 2 ] , paste ( data$ author [ 1 4 ] , data$ year [ 1 4 ] ) , pos=4, cex =0.6 ,

c o l = gco l s [ 1 4 ] )
296 text (p [ 1 5 , 1 ] , p [ 1 5 , 2 ] , paste ( data$ author [ 1 5 ] , data$ year [ 1 5 ] ) , pos=1, cex =0.6 ,

c o l = gco l s [ 1 5 ] )
297 text (p [ 1 6 , 1 ] , p [ 1 6 , 2 ] , paste ( data$ author [ 1 6 ] , data$ year [ 1 6 ] ) , pos=1, cex =0.6 ,

c o l = gco l s [ 1 6 ] )
298 text (p [ 1 7 , 1 ] , p [ 1 7 , 2 ] , paste ( data$ author [ 1 7 ] , data$ year [ 1 7 ] ) , pos=1, cex =0.6 ,

c o l = gco l s [ 1 7 ] )
299 text (p [ 1 8 , 1 ] , p [ 1 8 , 2 ] , paste ( data$ author [ 1 8 ] , data$ year [ 1 8 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 1 8 ] )
300 text (p [ 1 9 , 1 ] , p [ 1 9 , 2 ] , paste ( data$ author [ 1 9 ] , data$ year [ 1 9 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 1 9 ] )
301 text (p [ 2 0 , 1 ] , p [ 2 0 , 2 ] , paste ( data$ author [ 2 0 ] , data$ year [ 2 0 ] ) , pos=4, cex =0.6 ,

c o l = gco l s [ 2 0 ] )
302 text (p [ 2 1 , 1 ] , p [ 2 1 , 2 ] , paste ( data$ author [ 2 1 ] , data$ year [ 2 1 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 2 1 ] )
303 text (p [ 2 2 , 1 ] , p [ 2 2 , 2 ] , paste ( data$ author [ 2 2 ] , data$ year [ 2 2 ] ) , pos=4, cex =0.6 ,

c o l = gco l s [ 2 2 ] )
304 text (p [ 2 3 , 1 ] , p [ 2 3 , 2 ] , paste ( data$ author [ 2 3 ] , data$ year [ 2 3 ] ) , pos=3, cex =0.6 ,

c o l = gco l s [ 2 3 ] )
305 text (p [ 2 4 , 1 ] , p [ 2 4 , 2 ] , paste ( data$ author [ 2 4 ] , data$ year [ 2 4 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 2 4 ] )
306 text (p [ 2 5 , 1 ] , p [ 2 5 , 2 ] , paste ( data$ author [ 2 5 ] , data$ year [ 2 5 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 2 5 ] )
307 text (p [ 2 6 , 1 ] , p [ 2 6 , 2 ] , paste ( data$ author [ 2 6 ] , data$ year [ 2 6 ] ) , pos=3, cex =0.6 ,

c o l = gco l s [ 2 6 ] )
308 text (p [ 2 7 , 1 ] , p [ 2 7 , 2 ] , paste ( data$ author [ 2 7 ] , data$ year [ 2 7 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 2 7 ] )
309 text (p [ 2 8 , 1 ] , p [ 2 8 , 2 ] , paste ( data$ author [ 2 8 ] , data$ year [ 2 8 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 2 8 ] )
310 text (p [ 2 9 , 1 ] , p [ 2 9 , 2 ] , paste ( data$ author [ 2 9 ] , data$ year [ 2 9 ] ) , pos=2, cex =0.6 ,

c o l = gco l s [ 2 9 ] )
311 text (p [ 3 0 , 1 ] , p [ 3 0 , 2 ] , paste ( data$ author [ 3 0 ] , data$ year [ 3 0 ] ) , pos=4, cex =0.6 ,

c o l = gco l s [ 3 0 ] )
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312 text (p [ 3 1 , 1 ] , p [ 3 1 , 2 ] , paste ( data$ author [ 3 1 ] , data$ year [ 3 1 ] ) , pos=3, cex =0.6 ,
c o l = gco l s [ 3 1 ] , o f f s e t = 1)

313 text (p [ 3 2 , 1 ] , p [ 3 2 , 2 ] , paste ( data$ author [ 3 2 ] , data$ year [ 3 2 ] ) , pos=1, cex =0.6 ,
c o l = gco l s [ 3 2 ] )

314 text (p [ 3 3 , 1 ] , p [ 3 3 , 2 ] , paste ( data$ author [ 3 3 ] , data$ year [ 3 3 ] ) , pos=1, cex =0.6 ,
c o l = gco l s [ 3 3 ] , o f f s e t = 1)

315 text (p [ 3 4 , 1 ] , p [ 3 4 , 2 ] , paste ( data$ author [ 3 4 ] , data$ year [ 3 4 ] ) , pos=4, cex =0.6 ,
c o l = gco l s [ 3 4 ] )

316 text (p [ 3 5 , 1 ] , p [ 3 5 , 2 ] , paste ( data$ author [ 3 5 ] , data$ year [ 3 5 ] ) , pos=1, cex =0.6 ,
c o l = gco l s [ 3 5 ] )

317 text (p [ 3 6 , 1 ] , p [ 3 6 , 2 ] , paste ( data$ author [ 3 6 ] , data$ year [ 3 6 ] ) , pos=2, cex =0.6 ,
c o l = gco l s [ 3 6 ] )

318 text (p [ 3 7 , 1 ] , p [ 3 7 , 2 ] , paste ( data$ author [ 3 7 ] , data$ year [ 3 7 ] ) , pos=1, cex =0.6 ,
c o l = gco l s [ 3 7 ] )

319 # add custom legend
320 text ( 2 . 5 , 1+0.2 , "Randomisation Sources " , cex =0.6)
321 text ( 2 . 3 , 0 .94+0.2 , "auth+year : " , c o l="blue " , cex=0.6)
322 text ( 2 . 3 , 0 .89+0.2 , "auth+year : " , c o l="orange " , cex=0.6)
323 text ( 2 . 3 , 0 .84+0.2 , "auth+year : " , c o l="tan" , cex=0.6)
324 text ( 2 . 3 , 0 .79+0.2 , "auth+year : " , c o l=" green " , cex=0.6)
325 text ( 2 . 3 , 0 .74+0.2 , "auth+year : " , c o l="darkgreen " , cex=0.6)
326 text ( 2 . 3 , 0 .69+0.2 , "auth+year : " , c o l="tomato4" , cex=0.6)
327 text ( 2 . 3 , 0 .64+0.2 , "auth+year : " , c o l=" red " , cex=0.6)
328 text ( 2 . 3 , 0 .59+0.2 , "auth+year : " , c o l=" purple " , cex =0.6)
329 # add c a t e g o r i e s
330 text ( 2 . 7 8 , 0 .94+0.2 , "R. 1 " , cex=0.6)
331 text ( 2 . 7 8 , 0 .89+0.2 , "R. 1 , R. 2 " , cex=0.6)
332 text ( 2 . 7 8 , 0 .84+0.2 , "R. 1 , R. 2 , R. 3 " , cex=0.6)
333 text ( 2 . 7 8 , 0 .79+0.2 , "R. 1 , R. 2 , R. 4 " , cex=0.6)
334 text ( 2 . 7 8 , 0 .74+0.2 , "R. 2 " , cex=0.6)
335 text ( 2 . 7 8 , 0 .69+0.2 , "R. 2 , R. 3 " , cex=0.6)
336 text ( 2 . 7 8 , 0 .64+0.2 , "R. 3 " , cex=0.6)
337 text ( 2 . 7 8 , 0 .59+0.2 , "R. 4 " , cex=0.6)
338 # add d e t e rm i n i s t i c mod i f i c a t i on s
339 text ( 2 . 5 3 , 0 . 5 , " De t e rm in i s t i c Mod i f i c a t i on s " , cex =0.6)
340 pco l s <− c ( " orange3 " , " v i o l e t " , " skyblue3 " , " darkred " ,
341 " seagreen " , "peru" , "tomato2" )
342 xpo int s <− rep ( 2 . 2 , 7)
343 ypo int s <− c ( 0 . 4 4 , 0 . 39 , 0 . 34 , 0 . 29 , 0 . 24 , 0 . 19 , 0 . 1 4 )
344 po in t s ( xpoints , ypoints , c o l=pco l s , pch=18)
345 # add c a t e g o r i e s DM
346 text ( 2 . 5 , 0 . 44 , "A, B" , cex=0.6)
347 text ( 2 . 5 , 0 . 39 , "A, B, C" , cex=0.6)
348 text ( 2 . 5 , 0 . 34 , "A, B, C, D" , cex=0.6)
349 text ( 2 . 5 , 0 . 29 , "B" , cex=0.6)
350 text ( 2 . 5 , 0 . 24 , "B, C" , cex=0.6)
351 text ( 2 . 5 , 0 . 19 , "B, D" , cex=0.6)
352 text ( 2 . 5 , 0 . 14 , "B, C, D" , cex=0.6)
353 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
354 ############################################################################
355 # Figure 6 . 6 : Random f o r e s t d e c i s i o n boundar ies : top l e f t : extremely
356 # randomised f o r e s t ; top r i gh t : r o t a t i on random f o r e s t ; middle l e f t : ob l i que
357 # random f o r e s t with l o g i s t i c r e g r e s s i o n s p l i t s ; middle r i g h t : weighted
358 # subspace random f o r e s t ; bottom l e f t : r e g u l a r i s e d random f o r e s t ( Î» = 0 . 1 ) ;
359 # bottom r i gh t : r e g u l a r i s e d random f o r e s t ( Î» = 0 . 6 ) .
360 ############################################################################
361 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
362 # Generate t r a i n i n g data
363 s e t . seed (1 )
364 mBlue <− mvrnorm(n=10, mu = c (1 , 0 ) , Sigma = diag (1 , 2 , 2 ) )
365 mOrange <− mvrnorm(n=10, mu = c (0 , 1 ) , Sigma = diag (1 , 2 , 2 ) )
366 B <− matrix (0 , nrow=100 , nco l=2)
367 O <− matrix (0 , nrow=100 , nco l=2)
368
369 f o r ( i in 1 : 100 ) {
370 sample1 = sample ( 1 : 1 0 , 1)
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371 sample2 = sample ( 1 : 1 0 , 1)
372 meanB = mBlue [ sample1 , ]
373 meanO = mOrange [ sample2 , ]
374 B[ i , ] = mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
375 O[ i , ] = mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
376 }
377
378 Btrain <− cbind (B[ 1 : 1 0 0 , ] , matrix (0 ,100 ,1 ) )
379 Otrain <− cbind (O[ 1 : 1 0 0 , ] , matrix (1 , 100 ,1 ) )
380 data t ra in <− rbind ( Btrain , Otrain )
381 Xtrain <− data t ra in [ , 1 : 2 ]
382 Ytrain <− data t ra in [ , 3 ]
383 t r a i n <− data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] )
384
385 # cr ea t e d e c i s i o n boundary p l o t t i n g g r id
386 x1min <− min( Xtrain [ , 1 ] )
387 x1max <− max( Xtrain [ , 1 ] )
388 x2min <− min( Xtrain [ , 2 ] )
389 x2max <− max( Xtrain [ , 2 ] )
390 x1seq <− seq ( from=x1min , to=x1max , l ength=100)
391 x2seq <− seq ( from=x2min , to=x2max , l ength=100)
392 plotGr id <− data . frame ( as . matrix ( expand . g r id ( x1seq , x2seq ) ) )
393 colnames ( p lotGr id ) <− colnames ( t r a i n ) [ 2 : 3 ]
394
395 # cr ea t e t e s t s e t
396 B <− matrix (0 , nrow=5000 , nco l=2)
397 O <− matrix (0 , nrow=5000 , nco l=2)
398 f o r ( i in 1 :5000) {
399 sample1 <− sample ( 1 : 1 0 , 1)
400 sample2 <− sample ( 1 : 1 0 , 1)
401 meanB <− mBlue [ sample1 , ]
402 meanO <− mOrange [ sample2 , ]
403 B[ i , ] <− mvrnorm(1 ,mu=meanB , Sigma=diag (1 / 5 ,2 ,2 ) )
404 O[ i , ] <− mvrnorm(1 ,mu=meanO, Sigma=diag (1 / 5 ,2 ,2 ) )
405 }
406
407 Btest <− cbind (B[ 1 : 5 0 0 0 , ] , matrix (0 ,5000 ,1 ) )
408 Otest <− cbind (O[ 1 : 5 0 0 0 , ] , matrix (1 ,5000 ,1 ) )
409 da ta t e s t <− rbind ( Btest , Otest )
410 Xtest <− da ta t e s t [ , 1 : 2 ]
411 Ytest <− da ta t e s t [ , 3 ]
412 t e s t <− data . frame (y=f a c t o r ( Ytest ) , X1=Xtest [ , 1 ] , X2=Xtest [ , 2 ] )
413
414 # p lo t data
415 c o l o r <− i f e l s e ( t r a i n $y == 0 , " blue " , " darkorange " )
416 # Bayes d e c i s i o n boundary
417 p <− f unc t i on (x ) {
418 s <− s q r t (1 / 5)
419 p0 <− mean(dnorm(x [ 1 ] , mBlue [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mBlue [ , 2 ] , s ) )
420 p1 <− mean(dnorm(x [ 1 ] , mOrange [ , 1 ] , s ) ∗ dnorm(x [ 2 ] , mOrange [ , 2 ] , s ) )
421 p1/ ( p0+p1 )
422 }
423
424 bayes ru l e <− apply ( plotGrid , 1 , p )
425 bayesPr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length (

x1seq ) ) ,
426 z=as . vec to r ( baye s ru l e ) )
427 bayesProbs <− apply ( t e s t [ , 2 : 3 ] , 1 , p )
428 bayesError <− sum( as . numeric ( t e s t $y != f a c t o r ( i f e l s e ( bayesProbs >0.5 , 1 , 0) ) ) ) /

nrow ( t e s t )
429
430 # Extremely randomised t r e e s
431 f i tCon t r o l <− t r a inCont ro l (method="none" )
432 tuneControl <− data . frame (mtry=1, numRandomCuts=1)
433 s e t . seed (13)
434 e r f . f i t <− t r a i n (y~ . , data=tra in , method=" extraTrees " , t rContro l=f i tCon t r o l ,
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435 tuneGrid=tuneControl , n t r ee =100)
436
437 # compute t r a i n i n g and t e s t e r r o r
438 er fTra inPreds <− p r ed i c t ( e r f . f i t , newdata=t r a i n [ , −1 ] )
439 e r fTra in ingEr ro r <− sum( as . numeric ( t r a i n $y != er fTra inPreds ) ) /nrow ( t r a i n )
440
441 # Compute t e s t e r r o r
442 er fTes tPreds <− p r ed i c t ( e r f . f i t , t e s t )
443 e r fTe s tEr ro r <− sum( as . numeric ( t e s t $y != er fTes tPreds ) ) /nrow ( t e s t )
444
445 # cons t ruc t d e c i s i o n boundary p l o t
446 er fProbs <− p r ed i c t ( e r f . f i t , p lotGrid , type="prob" ) [ , 2 ]
447 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
448 z=as . vec to r ( e r fProbs ) )
449 gd <− expand . g r id (x=x1seq , y=x2seq )
450 g e r f <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) , aes

( x=X1 , y=X2) ) +
451 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
452 c o l=i f e l s e ( er fProbs <0.5 , " skyblue " , " orange " ) ) +
453 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
454 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+
455 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )

, breaks=c ( 0 , . 5 ) ) +
456 theme_bw( ) +
457 theme ( legend . p o s i t i o n="none" )+
458 s c a l e_co l o r_manual (name="ERF de c i s i o n boundary : " , va lue s=c ( " purple " , "

brown" ) ,
459 l a b e l s = c ( ’ Bayes ’ , ’ERF ’ ) )+
460 s c a l e_l i n e t yp e_manual (name = ’ERF de c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
461 l a b e l s = c ( ’ Bayes ’ , ’ERF ’ ) )+
462 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
463 l a b e l = paste ( "Train ing e r r o r : " , round ( e r fTra in ingErro r , 3) ,
464 "\nTest e r r o r : " , round ( er fTes tError , 3 ) ,
465 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)+
466 g g t i t l e ( "Extremely Randomised Forest " )
467 g e r f
468 # Rotation f o r e s t
469 f i tCon t r o l <− t r a inCont ro l (method="none" )
470 tuneControl <− data . frame (K=1, L=10)
471 s e t . seed (13)
472 r o t r f . f i t <− t r a i n (y~ . , data=tra in , method=" ro t a t i onFo r e s t " , t rCont ro l=

f i tCon t r o l ,
473 tuneGrid=tuneControl )
474
475 # compute t r a i n i n g and t e s t e r r o r
476 ro t r fTra inPreds <− p r ed i c t ( r o t r f . f i t , newdata=t r a i n [ , −1 ] )
477 r o t r fT ra i n i ngEr r o r <− sum( as . numeric ( t r a i n $y != rot r fTra inPreds ) ) /nrow ( t r a i n )
478
479 # Compute t e s t e r r o r
480 ro t r fTe s tPreds <− p r ed i c t ( r o t r f . f i t , t e s t )
481 r o t r fTe s tE r r o r <− sum( as . numeric ( t e s t $y != ro t r fTe s tPreds ) ) /nrow ( t e s t )
482
483 # cons t ruc t d e c i s i o n boundary p l o t
484 ro t r fP rob s <− p r ed i c t ( r o t r f . f i t , p lotGrid , type="prob" ) [ , 2 ]
485 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
486 z=as . vec to r ( r o t r fP rob s ) )
487 gd <− expand . g r id (x=x1seq , y=x2seq )
488 g r o t r f <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) ,

aes ( x=X1 , y=X2) ) +
489 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
490 c o l=i f e l s e ( rot r fProbs <0.5 , " skyblue " , " orange " ) ) +
491 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
492 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+
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493 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )
, breaks=c ( 0 , . 5 ) ) +

494 theme_bw( ) +
495 theme ( legend . p o s i t i o n="none" )+
496 s c a l e_co l o r_manual (name="RotRF de c i s i o n boundary : " , va lue s=c ( " purple " , "

brown" ) ,
497 l a b e l s = c ( ’ Bayes ’ , ’RotRF ’ ) )+
498 s c a l e_l i n e t yp e_manual (name = ’RotRF de c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
499 l a b e l s = c ( ’ Bayes ’ , ’RotRF ’ ) )+
500 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
501 l a b e l = paste ( "Train ing e r r o r : " , round ( ro t r fTra in ingEr ro r , 3) ,
502 "\nTest e r r o r : " , round ( ro t r fTes tEr ro r , 3 ) ,
503 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)+
504 g g t i t l e ( "Rotation Random Forest " )
505 g r o t r f
506
507 # Oblique RF − l o g i s t i c e r e g r e s s i o n s p l i t s
508 s e t . seed (13)
509 o r f . f i t <− obliqueRF (y=as . numeric ( t r a i n $y ) , x=as . matrix ( t r a i n [ , 2 : 3 ] ) ,
510 mtry=2, t r a i n i n g_method=" log " , n t r ee =100)
511
512 # compute t r a i n i n g and t e s t e r r o r
513 or fTra inPreds <− p r ed i c t ( o r f . f i t , newdata=t r a i n [ , −1 ] )
514 o r fTra in ingEr ro r <− sum( as . numeric ( as . numeric ( t r a i n $y ) != as . numeric (

or fTra inPreds ) ) ) /nrow ( t r a i n )
515
516 # Compute t e s t e r r o r
517 or fTestPreds <− p r ed i c t ( o r f . f i t , t e s t [ , −1 ] )
518 or fTes tEr ro r <− sum( as . numeric ( as . numeric ( t e s t $y ) != as . numeric ( or fTestPreds ) )

) /nrow ( t e s t )
519
520 # cons t ruc t d e c i s i o n boundary p l o t
521 or fProbs <− p r ed i c t ( o r f . f i t , p lotGrid , type="prob" ) [ , 2 ]
522 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
523 z=as . vec to r ( or fProbs ) )
524 gd <− expand . g r id (x=x1seq , y=x2seq )
525 go r f <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) , aes

( x=X1 , y=X2) ) +
526 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
527 c o l=i f e l s e ( orfProbs <0.5 , " skyblue " , " orange " ) ) +
528 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
529 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+
530 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )

, breaks=c ( 0 , . 5 ) ) +
531 theme_bw( ) +
532 theme ( legend . p o s i t i o n="none" )+
533 s c a l e_co l o r_manual (name="ORF−l og d e c i s i o n boundary : " , va lue s=c ( " purple " ,

"brown" ) ,
534 l a b e l s = c ( ’ Bayes ’ , ’ORF−l og ’ ) )+
535 s c a l e_l i n e t yp e_manual (name = ’ORF−l og d e c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
536 l a b e l s = c ( ’ Bayes ’ , ’ORF−l og ’ ) )+
537 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
538 l a b e l = paste ( "Train ing e r r o r : " , round ( or fTra in ingError , 3) ,
539 "\nTest e r r o r : " , round ( or fTestError , 3 ) ,
540 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)+
541 g g t i t l e ( "Oblique Random Forest − l o g i s t i c r e g r e s s i o n s p l i t s " )
542 go r f
543
544 # weighted subspace random f o r e s t s
545 f i tCon t r o l <− t r a inCont ro l (method="none" )
546 tuneControl <− data . frame (mtry=2)
547 s e t . seed (13)
548 wsr f . f i t <− t r a i n (y~ . , data=tra in , method="wsr f " , t rCont ro l=f i tCon t r o l ,
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549 tuneGrid=tuneControl )
550
551 # compute t r a i n i n g and t e s t e r r o r
552 wsrfTrainPreds <− p r ed i c t ( wsr f . f i t , newdata=t r a i n [ , −1 ] )
553 wsr fTra in ingError <− sum( as . numeric ( t r a i n $y != wsrfTrainPreds ) ) /nrow ( t r a i n )
554
555 # Compute t e s t e r r o r
556 wsr fTestPreds <− p r ed i c t ( wsr f . f i t , t e s t )
557 wsr fTestError <− sum( as . numeric ( t e s t $y != wsrfTestPreds ) ) /nrow ( t e s t )
558
559 # cons t ruc t d e c i s i o n boundary p l o t
560 wsrfProbs <− p r ed i c t ( wsr f . f i t , plotGrid , type="prob" ) [ , 2 ]
561 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
562 z=as . vec to r ( wsrfProbs ) )
563 gd <− expand . g r id (x=x1seq , y=x2seq )
564 gwsr f <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) ,

aes ( x=X1 , y=X2) ) +
565 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
566 c o l=i f e l s e ( wsrfProbs <0.5 , " skyblue " , " orange " ) ) +
567 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
568 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+
569 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )

, breaks=c ( 0 , . 5 ) ) +
570 theme_bw( ) +
571 theme ( legend . p o s i t i o n="none" )+
572 s c a l e_co l o r_manual (name="WSRF de c i s i o n boundary : " , va lue s=c ( " purple " , "

brown" ) ,
573 l a b e l s = c ( ’ Bayes ’ , ’WSRF’ ) )+
574 s c a l e_l i n e t yp e_manual (name = ’WSRF de c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
575 l a b e l s = c ( ’ Bayes ’ , ’WSRF’ ) )+
576 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
577 l a b e l = paste ( "Train ing e r r o r : " , round ( wsr fTra in ingError , 3) ,
578 "\nTest e r r o r : " , round ( wsrfTestError , 3 ) ,
579 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)+
580 g g t i t l e ( "Weighted Subspace Random Forest " )
581 gwsr f
582
583 # r e gu l a r i s e d random f o r e s t s ( 0 . 1 )
584 f i tCon t r o l <− t r a inCont ro l (method="none" )
585 tuneControl <− data . frame (mtry=2, coefReg =0.1)
586 s e t . seed (13)
587 r r f . f i t <− t r a i n (y~ . , data=tra in , method="RRFglobal" , t rCont ro l=f i tCon t r o l ,
588 tuneGrid=tuneControl )
589
590 # compute t r a i n i n g and t e s t e r r o r
591 r r fTra inPreds <− p r ed i c t ( r r f . f i t , newdata=t r a i n [ , −1 ] )
592 r r fT ra in i ngEr ro r <− sum( as . numeric ( t r a i n $y != rr fTra inPreds ) ) /nrow ( t r a i n )
593
594 # Compute t e s t e r r o r
595 r r fTes tPreds <− p r ed i c t ( r r f . f i t , t e s t )
596 r r fTe s tEr ro r <− sum( as . numeric ( t e s t $y != rr fTes tPreds ) ) /nrow ( t e s t )
597
598 # cons t ruc t d e c i s i o n boundary p l o t
599 r r fProbs <− p r ed i c t ( r r f . f i t , plotGrid , type="prob" ) [ , 2 ]
600 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
601 z=as . vec to r ( r r fProbs ) )
602 gd <− expand . g r id (x=x1seq , y=x2seq )
603 g r r f <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) , aes

( x=X1 , y=X2) ) +
604 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
605 c o l=i f e l s e ( r r fProbs <0.5 , " skyblue " , " orange " ) ) +
606 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
607 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. SOURCE CODE 217

608 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )
, breaks=c ( 0 , . 5 ) ) +

609 theme_bw( ) +
610 theme ( legend . p o s i t i o n="none" )+
611 s c a l e_co l o r_manual (name="RRF de c i s i o n boundary : " , va lue s=c ( " purple " , "

brown" ) ,
612 l a b e l s = c ( ’ Bayes ’ , ’RRF’ ) )+
613 s c a l e_l i n e t yp e_manual (name = ’RRF de c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
614 l a b e l s = c ( ’ Bayes ’ , ’RRF’ ) )+
615 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
616 l a b e l = paste ( "Train ing e r r o r : " , round ( r r fTra in ingEr ro r , 3) ,
617 "\nTest e r r o r : " , round ( r r fTes tEr ro r , 3 ) ,
618 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)+
619 g g t i t l e (TeX( "Regu la r i s ed Random Forest ( $\\ lambda = 0 .1 $ ) " ) )
620 g r r f
621
622 # r e gu l a r i s e d random f o r e s t s ( 0 . 6 )
623 f i tCon t r o l <− t r a inCont ro l (method="none" )
624 tuneControl <− data . frame (mtry=2, coefReg =0.6)
625 s e t . seed (13)
626 r r f . f i t <− t r a i n (y~ . , data=tra in , method="RRFglobal" , t rCont ro l=f i tCon t r o l ,
627 tuneGrid=tuneControl )
628
629 # compute t r a i n i n g and t e s t e r r o r
630 r r fTra inPreds <− p r ed i c t ( r r f . f i t , newdata=t r a i n [ , −1 ] )
631 r r fT ra in i ngEr ro r <− sum( as . numeric ( t r a i n $y != rr fTra inPreds ) ) /nrow ( t r a i n )
632
633 # Compute t e s t e r r o r
634 r r fTes tPreds <− p r ed i c t ( r r f . f i t , t e s t )
635 r r fTe s tEr ro r <− sum( as . numeric ( t e s t $y != rr fTes tPreds ) ) /nrow ( t e s t )
636
637 # cons t ruc t d e c i s i o n boundary p l o t
638 r r fProbs <− p r ed i c t ( r r f . f i t , plotGrid , type="prob" ) [ , 2 ]
639 pr<−data . frame (x=rep ( x1seq , l ength ( x2seq ) ) , y=rep ( x2seq , each=length ( x1seq ) ) ,
640 z=as . vec to r ( r r fProbs ) )
641 gd <− expand . g r id (x=x1seq , y=x2seq )
642 g r r f <− ggp lot ( data . frame (y=f a c t o r ( Ytrain ) , X1=Xtrain [ , 1 ] , X2=Xtrain [ , 2 ] ) , aes

( x=X1 , y=X2) ) +
643 geom_point ( data=data . frame ( gd ) , aes ( x=x , y=y) , pch=" . " , cex =1.2 ,
644 c o l=i f e l s e ( r r fProbs <0.5 , " skyblue " , " orange " ) ) +
645 geom_point ( s i z e = 3 , pch = t r a i n $y , c o l=co l o r ) +
646 geom_contour ( data=bayesPr , aes ( x=x , y=y , z=z , c o l="brown" , l i n e t yp e="

dashed" ) , breaks=c ( 0 , . 5 ) )+
647 geom_contour ( data=pr , aes ( x=x , y=y , z=z , c o l=" purple " , l i n e t yp e=" s o l i d " )

, breaks=c ( 0 , . 5 ) ) +
648 theme_bw( ) +
649 theme ( legend . p o s i t i o n="none" )+
650 s c a l e_co l o r_manual (name="RRF de c i s i o n boundary : " , va lue s=c ( " purple " , "

brown" ) ,
651 l a b e l s = c ( ’ Bayes ’ , ’RRF’ ) )+
652 s c a l e_l i n e t yp e_manual (name = ’RRF de c i s i o n boundary : ’ , va lue s = c ( "

dashed" , " s o l i d " ) ,
653 l a b e l s = c ( ’ Bayes ’ , ’RRF’ ) )+
654 annotate ( " text " , x = 2 . 2 , y = −1.6 , s i z e =3,
655 l a b e l = paste ( "Train ing e r r o r : " , round ( r r fTra in ingEr ro r , 3) ,
656 "\nTest e r r o r : " , round ( r r fTes tEr ro r , 3 ) ,
657 "\nBayes e r r o r : " , round ( bayesError , 3 ) ) , h ju s t=0)+
658 g g t i t l e (TeX( "Regu la r i s ed Random Forest ( $\\ lambda = 0 .6 $ ) " ) )
659 g r r f
660 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
661 ##########################################################################
662 # Table 6 . 2 : Estimated bias , var iance , sy s temat i c and var iance e f f e c t s f o r
663 # random f o r e s t a lgor i thms .
664 ##########################################################################
665 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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666 majVote <− f unc t i on (x ) {names ( which .max( t ab l e ( x ) ) ) }
667 nTrain <− 400
668 nTest <− 1000
669 Models <− f a c t o r ( rep ( c ( "Forest−RI" , "ERF" , "RotationRF" , "ORF−l og " ) , each=6) ,

l e v e l=c ( "Forest−RI" , "ERF" , "RotationRF" , "ORF−l og " ) )
670
671 # performs computations in p a r a l l e l
672 c l <− makeCluster (3 , type="SOCK" )
673 registerDoSNOW( c l )
674
675 # MAIN EXPERIMENT FUNCTIONS
676 runBiasVarSimulat ion <− f unc t i on ( t r a i n i ngSe t s , simTest , BayesPreds ) {
677
678 # parameter tuning s e t t i n g s
679 f i tCon t r o l <− t r a inCont ro l (method = "cv" , number = 10)
680 r fparaGr id <− expand . g r id (mtry=c (1 , f l o o r ( s q r t ( nco l ( simTest )−1) ) , f l o o r (

nco l ( simTest ) / 2) ) )
681 or fparaGr id <− expand . g r id (mtry=c (1 , f l o o r ( s q r t ( nco l ( simTest )−1) ) , f l o o r (

nco l ( simTest ) / 2) ) )
682 r r fparaGr id <− expand . g r id (L=200 , K=f l o o r ( ( nco l ( simTest )−1)/c (2 , 3 , 4) ) )
683 er fparaGr id <− expand . g r id (mtry=c (1 , f l o o r ( s q r t ( nco l ( simTest )−1) ) , f l o o r (

nco l ( simTest ) / 2) ) , numRandomCuts=c (1 , 5 , 10 , nrow ( simTest ) / 2) )
684
685 # extremely randomised t r e e s model
686 sim .ERF <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s , simTest=

simTest ,
687 method=" extraTrees " , paraGrid =

er fparaGrid ,
688 tContro l = f i tCon t r o l , BayesPreds =

BayesPreds , n t r ee =200)
689 # ro t a t i on random f o r e s t
690 sim .RRF <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s , simTest=

simTest ,
691 method=" ro t a t i onFo r e s t " , paraGrid =

rr fparaGr id ,
692 tContro l = f i tCon t r o l , BayesPreds =

BayesPreds )
693 # ob l i que random f o r e s t ( l o g i s t i c ) model
694 sim .ORF <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s , simTest=

simTest ,
695 method="ORFlog" , paraGrid =

orfparaGrid ,
696 tContro l = f i tCon t r o l , BayesPreds =

BayesPreds , n t r ee =200)
697 # random f o r e s t model
698 sim .RF <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s , simTest=simTest

,
699 method=" r f " , paraGrid = rfparaGrid ,
700 tContro l = f i tCon t r o l , BayesPreds =

BayesPreds , n t r ee =200)
701
702
703 l i s t ( r e s u l t s=rbind ( sim .RF$ r e s u l t s , sim .ERF$ r e s u l t s , sim .RRF$ r e s u l t s , sim .

ORF$ r e s u l t s ) ,
704 tuneValues=l i s t ( sim .RF$ tuneValues , sim .ERF$tuneValues , sim .RRF$

tuneValues , sim .ORF$ tuneValues ) )
705 }
706
707
708 simulateBiasVarDecomp <− f unc t i on ( t r a i n i ngSe t s , simTest , method , paraGrid ,

tControl , BayesPreds , . . . ) {
709
710 majVote <− f unc t i on (x ) {names ( which .max( t ab l e ( x ) ) ) }
711 tuneVals <− paraGrid [ 1 , ]
712 numOfExp <− 100
713 # t r a i n models and make p r ed i c t i o n s
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714 BVpreds <− matrix (0 , nrow=numOfExp , nco l=nTest )
715 var .T <− NULL
716 var <− NULL
717 b ia s <− NULL
718 VE <− NULL
719 SE <− NULL
720 mi s c l a s sEr ro r <− NULL
721 C <− as . numeric ( simTest $ c l a s s e s )
722
723 # t r a i n models
724 f o r ( j in 1 : numOfExp) {
725 Model <− t r a i n ( c l a s s e s ~ . , data=t r a i n i n gS e t s [ [ j ] ] , method=method ,
726 tuneGrid=paraGrid , t rCont ro l=tControl , . . . )
727 tuneVals <− rbind ( tuneVals , Model$bestTune )
728 BVpreds [ j , ] <− as . numeric ( p r ed i c t (Model , simTest ) )
729 p r i n t ( paste ( "Method : " , method , " , I t e r : " , j , " out o f " , numOfExp) )
730 }
731
732 # James (2003) decomposit ion e s t imate s
733 Bay e sC l a s s i f i e r <− BayesPreds
734 ma jVot eC la s s i f i e r <− apply (BVpreds , 2 , f unc t i on (x )majVote (x ) )
735 var .T <− mean( Bay e sC l a s s i f i e r != C)
736 var <− mean( apply (BVpreds , 1 , f unc t i on (x ) mean(x != ma jVot eC la s s i f i e r ) ) )
737 b ia s <− mean( ma jVot eC la s s i f i e r != Bay e sC l a s s i f i e r )
738 VE <− mean( apply (BVpreds , 1 , f unc t i on (x ) mean(x != C) ) − mean(

ma jVot eC la s s i f i e r != C) )
739 SE <− mean( ma jVot eC la s s i f i e r != C) − mean( Bay e sC l a s s i f i e r != C)
740 meanError <− mean( apply (BVpreds , 1 , f unc t i on (x ) { mean(x != C) }) )
741
742 # s t o r e b i a s and var iance and sys temat i c e f f e c t and var iance e f f e c t
743 vb <− c (meanError , var .T, SE , VE, bias , var )
744 bar <− f a c t o r ( c ( 1 , 2 , 3 , 4 , 5 , 6 ) )
745 type <− c ( "Error " , "Bayes Error " , " Systematic E f f e c t " , "Variance E f f e c t " ,

"Bias " , "Variance " )
746 model <− rep (method , 6)
747 biasVarPlotData <− data . frame (vb=vb , Decomposition=type , bar=bar , model=

model )
748 l i s t ( r e s u l t s=biasVarPlotData , tuneValues=tuneVals [ −1 , ] )
749 }
750 ####################
751 # Designed s c en a r i o s
752 ####################
753 # load data gene ra t i on l i b r a r y
754 # s imulate data func t i on from "pensim" package
755 simData <− f unc t i on ( nvars = c (100 , 100 , 100 , 100 , 600) , co r s = c ( 0 . 8 , 0 , 0 . 8 ,

0 , 0) ,
756 a s s o c i a t i o n s = c ( 0 . 5 , 0 . 5 , 0 . 3 , 0 . 3 , 0) , f i r s t o n l y = c (

TRUE, FALSE, TRUE, FALSE, FALSE) ,
757 nsamples = 100 , c en so r ing = "none" ,
758 labe lswapprob = 0 , re sponse = " t imetoevent " , basehaz =

0 . 2 ,
759 l o g i s t i c i n t e r c e p t = 0)
760 {
761 i f ( labe lswapprob < 0)
762 stop ( " labelswapprob cannot be negat ive " )
763 i f ( labe lswapprob > 0 & response == " t imetoevent " )
764 stop ( " labelswapprob i s only implemented f o r binary response " )
765 i f ( ! c l a s s ( nvars ) %in% c ( "numeric " , " i n t e g e r " ) )
766 stop ( " nvars must be a numeric vec to r " )
767 i f ( ! c l a s s ( co r s ) %in% c ( "numeric " , " i n t e g e r " ) )
768 stop ( " co r s must be a numeric vec to r " )
769 i f ( c l a s s ( f i r s t o n l y ) != " l o g i c a l " )
770 stop ( " f i r s t o n l y must be a l o g i c a l vec to r " )
771 i f ( ! c l a s s ( a s s o c i a t i o n s ) %in% c ( "numeric " , " i n t e g e r " ) )
772 stop ( " a s s o c i a t i o n s must be a numeric vec to r " )
773 i f ( l ength ( nvars ) != length ( co r s ) | l ength ( nvars ) != length ( f i r s t o n l y ) |
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774 l ength ( nvars ) != length ( a s s o c i a t i o n s ) )
775 stop ( "nvars , cors , f i r s t o n l y , and a s s o c i a t i o n s must a l l have the

same length . " )
776 x . out <− matrix (0 , nco l = sum( nvars ) , nrow = nsamples )
777 d e f i n e c o r s <− data . frame ( s t a r t = c (1 , cumsum( nvars [− l ength ( nvars ) ] ) +
778 1) , end = cumsum( nvars ) , c o r s =

cors , a s s o c i a t i o n s =
a s s o c i a t i o n s ,

779 num = nvars , f i r s t o n l y = f i r s t o n l y , row . names =
l e t t e r s [ 1 : l ength ( nvars ) ] )

780 Sigma <− matrix (0 , nco l = sum( nvars ) , nrow = sum( nvars ) )
781 wts <− rep (0 , sum( nvars ) )
782 f o r ( i in 1 : nrow ( d e f i n e c o r s ) ) {
783 th i s r ange <− d e f i n e c o r s [ i , " s t a r t " ] : d e f i n e c o r s [ i , "end" ]
784 Sigma [ th i s range , th i s r ange ] <− d e f i n e c o r s [ i , " co r s " ]
785 diag ( Sigma ) <− 1
786 x . out [ , t h i s r ange ] <− mvrnorm(n = nsamples , mu = rep (0 ,
787 nvars [ i ] ) ,

Sigma =
Sigma [
th i s range
,
th i s r ange
] )

788 i f ( d e f i n e c o r s [ i , " f i r s t o n l y " ] ) {
789 wts [ d e f i n e c o r s [ i , " s t a r t " ] ] <− d e f i n e c o r s [ i , " a s s o c i a t i o n s " ]
790 }
791 e l s e {
792 wts [ d e f i n e c o r s [ i , " s t a r t " ] : d e f i n e c o r s [ i , "end" ] ] <−

d e f i n e c o r s [ i , " a s s o c i a t i o n s " ]
793 }
794 varnames <− paste ( l e t t e r s [ i ] , 1 : nvars [ i ] , sep = " . " )
795 names ( wts ) [ d e f i n e c o r s [ i , " s t a r t " ] : d e f i n e c o r s [ i , "end" ] ] <−

varnames
796 }
797 names ( wts ) <− make . unique ( names ( wts ) )
798 dimnames ( Sigma ) <− l i s t ( colnames = names ( wts ) , rownames = names ( wts ) )
799 colnames (x . out ) <− names ( wts )
800 betaX <− x . out %∗% wts
801 x . out <− data . frame (x . out )
802 i f ( i d e n t i c a l ( response , " t imetoevent " ) ) {
803 h = basehaz ∗ exp ( betaX [ , 1 ] )
804 x . out$ time <− rexp ( l ength (h) , h )
805 x . out$ cens <− 1
806 i f ( c l a s s ( c en so r ing ) == "numeric " | c l a s s ( c en so r ing ) ==
807 " i n t e g e r " ) {
808 i f ( l ength ( c enso r ing ) == 2) {
809 censt imes <− r un i f ( l ength (h) , min = censo r ing [ 1 ] ,
810 max = censo r ing [ 2 ] )
811 }
812 e l s e i f ( l ength ( c enso r ing ) == 1) {
813 censt imes <− rep ( censor ing , l ength (h) )
814 }
815 x . out$ cens [ x . out$ time > censt imes ] <− 0
816 x . out$ time [ x . out$ time > censt imes ] <− censt imes [ x . out$ time >

censt imes ]
817 }
818 }
819 e l s e i f ( i d e n t i c a l ( response , " binary " ) ) {
820 p <− 1/ (1 + exp(−(betaX + l o g i s t i c i n t e r c e p t ) ) )
821 x . out$outcome <− i f e l s e (p > run i f ( l ength (p) ) , 1 , 0)
822 i f ( labe lswapprob > 0) {
823 do . swap <− r un i f ( l ength (p) ) < labelswapprob
824 new . outcome <− x . out$outcome
825 new . outcome [ x . out$outcome == 1 & do . swap ] <− 0
826 new . outcome [ x . out$outcome == 0 & do . swap ] <− 1
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827 x . out$outcome <− new . outcome
828 }
829 x . out$outcome <− f a c t o r ( x . out$outcome+1)
830 }
831 e l s e stop ( " response must be e i t h e r t imetoevent or binary " )
832 re turn ( l i s t ( summary = de f i n e co r s , a s s o c i a t i o n s = wts , covar iance = Sigma

,
833 data = x . out , probs=p) )
834 }
835
836 ###################
837 # SETUP 1 : co r r =0.9
838 ###################
839 # s imluat ing t r a i n i n g data s e t s
840 t r a i n i n gS e t s <− l i s t ( )
841 f o r ( i in 1 : 100 ) {
842 s e t . seed ( i +1)
843 t r a i n <− simData ( nvars=c (15) , co r s=c ( 0 . 9 ) , a s s o c i a t i o n s=c (1) ,
844 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
845 t r a i n <− t r a i n $data
846 t r a i n $ c l a s s e s <− t r a i n $outcome
847 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
848 }
849
850 # s imulate t e s t data s e t
851 s e t . seed (1 )
852 t e s t <− simData ( nvars=c (15) , co r s=c ( 0 . 9 ) , a s s o c i a t i o n s=c (1) ,
853 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
854 testData <− t e s t $data
855 testData $ c l a s s e s <− testData $outcome
856 simTest <− testData [ ,−16]
857
858 # run s imu la t i on and p lo t data
859 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
860 se tup1Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
861 se tup1Resu l t s $ r e s u l t s $model <− Models
862 saveRDS( setup1Resu l ts , " se tup1Resu l t s . rda" )
863 ###################
864 # SETUP 2 : co r r =0.5
865 ###################
866 # s imluat ing t r a i n i n g data s e t s
867 t r a i n i n gS e t s <− l i s t ( )
868 f o r ( i in 1 : 100 ) {
869 s e t . seed ( i +1)
870 t r a i n <− simData ( nvars=c (15) , co r s=c ( 0 . 5 ) , a s s o c i a t i o n s=c (1) ,
871 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
872 t r a i n <− t r a i n $data
873 t r a i n $ c l a s s e s <− t r a i n $outcome
874 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
875 }
876
877 # s imulate t e s t data s e t
878 s e t . seed (1 )
879 t e s t <− simData ( nvars=c (15) , co r s=c ( 0 . 5 ) , a s s o c i a t i o n s=c (1) ,
880 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
881 testData <− t e s t $data
882 testData $ c l a s s e s <− testData $outcome
883 simTest <− testData [ ,−16]
884
885 # run s imu la t i on and p lo t data
886 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
887 se tup2Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
888 se tup2Resu l t s $ r e s u l t s $model <− Models
889 saveRDS( setup2Resu l ts , " se tup2Resu l t s . rda" )
890 ###################
891 # SETUP 3 : co r r =0.1
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892 ###################
893 # s imluat ing t r a i n i n g data s e t s
894 t r a i n i n gS e t s <− l i s t ( )
895 f o r ( i in 1 : 100 ) {
896 s e t . seed ( i +1)
897 t r a i n <− simData ( nvars=c (15) , co r s=c ( 0 . 1 ) , a s s o c i a t i o n s=c (1) ,
898 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
899 t r a i n <− t r a i n $data
900 t r a i n $ c l a s s e s <− t r a i n $outcome
901 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
902 }
903
904 # s imulate t e s t data s e t
905 s e t . seed (1 )
906 t e s t <− simData ( nvars=c (15) , co r s=c ( 0 . 1 ) , a s s o c i a t i o n s=c (1) ,
907 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
908 testData <− t e s t $data
909 testData $ c l a s s e s <− testData $outcome
910 simTest <− testData [ ,−16]
911
912 # run s imu la t i on and p lo t data
913 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
914 se tup3Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
915 se tup3Resu l t s $ r e s u l t s $model <− Models
916 saveRDS( setup3Resu l ts , " se tup3Resu l t s . rda" )
917 #################
918 # SETUP 4 : co r r=0
919 #################
920 # s imluat ing t r a i n i n g data s e t s
921 t r a i n i n gS e t s <− l i s t ( )
922 f o r ( i in 1 : 100 ) {
923 s e t . seed ( i +1)
924 t r a i n <− simData ( nvars=c (15) , co r s=c (0 ) , a s s o c i a t i o n s=c (1 ) ,
925 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
926 t r a i n <− t r a i n $data
927 t r a i n $ c l a s s e s <− t r a i n $outcome
928 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
929 }
930
931 # s imulate t e s t data s e t
932 s e t . seed (1 )
933 t e s t <− simData ( nvars=c (15) , co r s=c (0 ) , a s s o c i a t i o n s=c (1 ) ,
934 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
935 testData <− t e s t $data
936 testData $ c l a s s e s <− testData $outcome
937 simTest <− testData [ ,−16]
938
939 # run s imu la t i on and p lo t data
940 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
941 se tup4Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
942 se tup4Resu l t s $ r e s u l t s $model <− Models
943 saveRDS( setup4Resu l ts , " se tup4Resu l t s . rda" )
944
945 # Mease et a l . data s c e na r i o s
946 # s imulate data func t i on
947 generateMeasedata <− f unc t i on ( nTrain=400 , nTest=1000 , Ndata=100 , p=30, J=2,

s e edSta r t =1, q = 0 . 15 ) {
948
949 t r a i n i n gS e t s <− l i s t ( )
950 # s imulate data
951 f o r ( i t e r in 1 : Ndata ) {
952 s e t . seed ( i t e r +1)
953 Xtrain<−matrix (0 , nTrain , p)
954 f o r ( i in 1 : p ) {
955 Xtrain [ , i ]<−r un i f ( nTrain )
956 }
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957 y t ra in<−rep (0 , nTrain )
958 f o r ( i in 1 : nTrain ) {
959 y t ra in [ i ]<−1∗ ( r un i f (1 )<(q+(1−2∗q ) ∗1∗ (sum( ( Xtrain [ i , 1 : J ] ) )>(J

/ 2) ) ) )+1
960 }
961 # t r a i n i n g data
962 t r a i n i n gS e t s [ [ i t e r ] ] <− data . frame ( c l a s s e s=f a c t o r ( y t r a in ) , Xtrain )
963 }
964 s e t . seed (1 )
965 Xtest<−matrix (0 , nTest , p )
966 f o r ( i in 1 : p) {
967 Xtest [ , i ]<−r un i f ( nTest )
968 }
969 y t e s t<−rep (0 , nTest )
970 f o r ( i in 1 : nTest ) {
971 y t e s t [ i ]<−1∗ ( r un i f (1 )<(q+(1−2∗q ) ∗1∗ (sum( ( Xtest [ i , 1 : J ] ) )>(J/ 2) ) ) )+1
972 }
973 # t r a i n i n g s e t s and t e s t s e t data
974 t e s t i n g S e t s <− data . frame ( c l a s s e s=f a c t o r ( y t e s t ) , Xtest )
975 l i s t ( t r a i n i n gS e t s=t r a i n i ngSe t s , t e s t i n g S e t s=t e s t i n g S e t s )
976 }
977
978 ################
979 # Setup 5 : J = 2
980 ################
981 # s imluat ing t r a i n i n g data s e t s
982 q <− 0 .15
983 simData1 <− generateMeasedata ( J=2)
984 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
985 simTest <− simData1 [ [ 2 ] ]
986 # run s imu la t i on and p lo t data
987 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −1 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(q

+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
988 se tup5Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
989 se tup5Resu l t s $ r e s u l t s $model <− Models
990 saveRDS( setup5Resu l ts , " setup5ResultsAR . rda" )
991 ################
992 # Setup 6 : J = 5
993 ################
994 # s imluat ing t r a i n i n g data s e t s
995 simData1 <− generateMeasedata ( J=5)
996 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
997 simTest <− simData1 [ [ 2 ] ]
998 # run s imu la t i on and p lo t data
999 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −1 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(q

+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
1000 se tup6Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
1001 se tup6Resu l t s $ r e s u l t s $model <− Models
1002 saveRDS( setup6Resu l ts , " setup6ResultsAR . rda" )
1003 #################
1004 # Setup 7 : J = 15
1005 #################
1006 # s imluat ing t r a i n i n g data s e t s
1007 simData1 <− generateMeasedata ( J=15)
1008 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
1009 simTest <− simData1 [ [ 2 ] ]
1010 # run s imu la t i on and p lo t data
1011 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −1 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(q

+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
1012 se tup7Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
1013 se tup7Resu l t s $ r e s u l t s $model <− Models
1014 saveRDS( setup7Resu l ts , " setup7ResultsAR . rda" )
1015 #################
1016 # Setup 8 : J = 20
1017 #################
1018 # s imluat ing t r a i n i n g data s e t s
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1019 simData1 <− generateMeasedata ( J=20)
1020 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
1021 simTest <− simData1 [ [ 2 ] ]
1022 # run s imu la t i on and p lo t data
1023 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −1 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(q

+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
1024 se tup8Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , BayesClasses )
1025 se tup8Resu l t s $ r e s u l t s $model <− Models
1026 saveRDS( setup8Resu l ts , " setup8ResultsAR . rda" )
1027
1028 # MLBENCH DATA
1029 #########################
1030 # twonorm s imu la t i on data
1031 #########################
1032 # s imluat ing t r a i n i n g data s e t s
1033 t r a i n i n gS e t s <− l i s t ( )
1034 f o r ( i in 1 : 100 ) {
1035 s e t . seed ( i +1)
1036 t r a i n <− mlbench . twonorm (400 , d=20)
1037 t r a i n <− as . data . frame ( t r a i n )
1038 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
1039 }
1040
1041 # s imulate t e s t data s e t
1042 s e t . seed (1 )
1043 t e s t <− mlbench . twonorm (1000 , d=20)
1044 testFrame <− as . data . frame ( t e s t )
1045 simTest <− testFrame
1046
1047 # run s imu la t i on and p lo t data
1048 twonormResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s ( t e s t )

)
1049 twonormResults $ r e s u l t s $model <− Models
1050 saveRDS( twonormResults , "twonormResultsAR . rda" )
1051 ###########################
1052 # threenorm s imu la t i on data
1053 ###########################
1054 # s imluat ing t r a i n i n g data s e t s
1055 t r a i n i n gS e t s <− l i s t ( )
1056 f o r ( i in 1 : 100 ) {
1057 s e t . seed ( i +1)
1058 t r a i n <− mlbench . threenorm (400 , d=20)
1059 t r a i n <− as . data . frame ( t r a i n )
1060 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
1061 }
1062
1063 # s imulate t e s t data s e t
1064 s e t . seed (1 )
1065 t e s t <− mlbench . threenorm (1000 , d=20)
1066 testFrame <− as . data . frame ( t e s t )
1067 simTest <− testFrame
1068
1069 # run s imu la t i on and p lo t data
1070 threenormResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s (

t e s t ) )
1071 threenormResults $ r e s u l t s $model <− Models
1072 saveRDS( threenormResults , " threenormResultsAR . rda" )
1073 ##########################
1074 # ringnorm s imu la t i on data
1075 ##########################
1076 # s imluat ing t r a i n i n g data s e t s
1077 t r a i n i n gS e t s <− l i s t ( )
1078 f o r ( i in 1 : 100 ) {
1079 s e t . seed ( i +1)
1080 t r a i n <− mlbench . ringnorm (400 , d=20)
1081 t r a i n <− as . data . frame ( t r a i n )
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1082 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
1083 }
1084
1085 # s imulate t e s t data s e t
1086 s e t . seed (1 )
1087 t e s t <− mlbench . ringnorm (1000 , d=20)
1088 testFrame <− as . data . frame ( t e s t )
1089 simTest <− testFrame
1090
1091 # run s imu la t i on and p lo t data
1092 r ingnormResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , bay e s c l a s s ( t e s t

) )
1093 r ingnormResults $ r e s u l t s $model <− Models
1094 saveRDS( ringnormResults , " ringnormResultsAR . rda" )
1095
1096 ###############################################
1097 # Make tab l e f o r a l l roud b ia s var i ance r e s u l t s
1098 ###############################################
1099 re s1 <− readRDS( "twonormResultsAR . rda" )
1100 r e s2 <− l i s t ( r e s u l t s=readRDS( " threenormResultsAR . rda" ) )
1101 r e s3 <− readRDS( " ringnormResultsAR . rda" )
1102 r e s4 <− readRDS( " c i r c l eResu l t sAR . rda" )
1103 r e s5 <− readRDS( " setup1ResultsAR . rda" )
1104 r e s6 <− readRDS( " setup2ResultsAR . rda" )
1105 r e s7 <− readRDS( " setup3ResultsAR . rda" )
1106 r e s8 <− readRDS( " setup4ResultsAR . rda" )
1107 r e s9 <− readRDS( " setup5ResultsAR . rda" )
1108 re s10 <− readRDS( " setup6ResultsAR . rda" )
1109 re s11 <− readRDS( " setup7ResultsAR . rda" )
1110 re s12 <− readRDS( " setup8ResultsAR . rda" )
1111 r e s L i s t <− l i s t ( res1 , res2 , res3 , res4 , res5 , res6 , res7 , res8 ,
1112 res9 , res10 , res11 , r e s12 )
1113 t ab l eF ina l <− NULL
1114 f o r ( k in 1 : l ength ( r e s L i s t ) ) {
1115 r e s <− r e s L i s t [ [ k ] ]
1116 sp l i tDa t <− s p l i t ( r e s $ r e s u l t s , r e s $ r e s u l t s $model )
1117 cname <− unique ( r e s $ r e s u l t s $model )
1118 rname <− unique ( r e s $ r e s u l t s $Decomposition )
1119 tableFrame <− matrix (0 , nrow=length ( rname ) , nco l=length ( cname ) )
1120 f o r ( i in 1 : l ength ( sp l i tDa t ) ) {
1121 tableFrame [ , i ] <− sp l i tDa t [ [ i ] ] $vb
1122 }
1123 rownames ( tableFrame ) <− paste (k , rname )
1124 colnames ( tableFrame ) <− cname
1125 t ab l eF ina l <− rbind ( tab l eF ina l , tableFrame )
1126 }
1127 t ab l eF ina l <− as . data . frame ( t ab l eF ina l )
1128
1129 n <− nrow ( t ab l eF ina l )
1130 er rorTab le <− t ab l eF ina l [ seq (1 , n , by=6) , ]
1131 SEtable <− t ab l eF ina l [ seq (3 , n , by=6) , ]
1132 VEtable <− t ab l eF ina l [ seq (4 , n , by=6) , ]
1133 biasTable <− t ab l eF ina l [ seq (5 , n , by=6) , ]
1134 varTable <− t ab l eF ina l [ seq (6 , n , by=6) , ]
1135 compTableList <− l i s t ( errorTable , SEtable , VEtable , biasTable , varTable )
1136 compPVals <− l i s t ( )
1137
1138 # compute omnibus p−va l s
1139 l i b r a r y (scmamp)
1140 f o r ( i in 1 : l ength ( compTableList ) ) {
1141 compPVals [ [ i ] ] <− fr iedmanAlignedRanksTest ( compTableList [ [ i ] ] )
1142 }
1143
1144 # compute post−hoc p−va l s
1145 postPVals <− l i s t ( )
1146 f o r ( i in 1 : l ength ( compTableList ) ) {
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1147 postPVals [ [ i ] ] <− postHocTest ( compTableList [ [ i ] ] , t e s t=" fr iedman" ,
1148 c o r r e c t=" s h a f f e r " )
1149 }
1150
1151 # cr ea t e l a t e x tab l e
1152 s t a r g a z e r ( tab l eF ina l , summary = FALSE)
1153 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1154 #########################################################################
1155 # Table 6 .5 (RESULTS) : Win/Tie an a l y s i s o f b ias , var iance , sys t emat i c and
1156 # var iance e f f e c t s f o r random f o r e s t s , i n c l ud ing random ro t a t i on f o r e s t s .
1157 #########################################################################
1158 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1159 majVote <− f unc t i on (x ) {names ( which .max( t ab l e ( x ) ) ) }
1160 nTrain <− 400
1161 nTest <− 1000
1162
1163 # MAIN EXPERIMENT FUNCTIONS
1164 runBiasVarSimulat ion <− f unc t i on ( t r a i n i ngSe t s , simTest , paraGrid , BayesPreds ) {
1165
1166 # l i n e a r combination ob l i que t r e e s
1167 sim . obliqueRRFrf <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s ,

simTest=simTest ,
1168 model=" r f " , paraGrid =

paraGrid , BayesPreds =
BayesPreds )

1169
1170 # randomised ob l i que t r e e s us ing l o g i s t i c s p l i t s
1171 sim . obliqueRRFlog <− simulateBiasVarDecomp ( t r a i n i n gS e t s=t ra i n i ngSe t s ,

simTest=simTest ,
1172 model=" log " , paraGrid =

paraGrid , BayesPreds =
BayesPreds )

1173 l i s t ( sim . obliqueRRFlog , sim . obliqueRRFrf )
1174 }
1175
1176
1177 simulateBiasVarDecomp <− f unc t i on ( t r a i n i ngSe t s , simTest , model , paraGrid ,

BayesPreds , . . . ) {
1178
1179 numOfExp <− 100
1180 # t r a i n models and make p r e d i c t i o n s
1181 BVpreds <− matrix (0 , nrow=numOfExp , nco l=nTest )
1182 var .T <− NULL
1183 var <− NULL
1184 b ia s <− NULL
1185 VE <− NULL
1186 SE <− NULL
1187 mi s c l a s sEr ro r <− NULL
1188 p <− nco l ( simTest )
1189 C <− as . numeric ( simTest $ c l a s s e s )
1190
1191 # t r a i n models
1192 f o r ( j in 1 : numOfExp) {
1193 x <− t r a i n i n gS e t s [ [ j ] ] [ , −p ]
1194 y <− t r a i n i n gS e t s [ [ j ] ] [ , p ]
1195 mod <− RRotF(x=x , y=y , K=paraGrid [ 1 ] , L=200 , mtry=paraGrid [ 2 ] ,

model=model )
1196 BVpreds [ j , ] <− p r ed i c t (mod , simTest [ ,−p ] )+1
1197 p r i n t ( paste ( "Method : " , model , " , I t e r : " , j , " out o f " , numOfExp

) )
1198 }
1199
1200 # James (2003) decompos it ion e s t imate s
1201 Bay e sC l a s s i f i e r <− BayesPreds
1202 ma jVot eC la s s i f i e r <− apply (BVpreds , 2 , f unc t i on (x )majVote (x ) )
1203 var .T <− mean( Bay e sC l a s s i f i e r != C)

Stellenbosch University  https://scholar.sun.ac.za



APPENDIX D. SOURCE CODE 227

1204 var <− mean( apply (BVpreds , 1 , f unc t i on (x ) mean(x != ma jVot eC la s s i f i e r ) ) )
1205 b ia s <− mean( ma jVot eC la s s i f i e r != Bay e sC l a s s i f i e r )
1206 VE <− mean( apply (BVpreds , 1 , f unc t i on (x ) mean(x != C) ) − mean(

ma jVot eC la s s i f i e r != C) )
1207 SE <− mean( ma jVot eC la s s i f i e r != C) − mean( Bay e sC l a s s i f i e r != C)
1208 meanError <− mean( apply (BVpreds , 1 , f unc t i on (x ) { mean(x != C) }) )
1209
1210 # p lo t b i a s and var iance and sys temat i c e f f e c t and var iance e f f e c t
1211 vb <− c (meanError , var .T, SE , VE, bias , var )
1212 bar <− f a c t o r ( c ( 1 , 2 , 3 , 4 , 5 , 6 ) )
1213 type <− c ( "Error " , "Bayes Error " , " Systematic E f f e c t " , "Variance E f f e c t "

, "Bias " , "Variance " )
1214 modelName <− rep (model , 6)
1215 biasVarPlotData <− data . frame (vb=vb , Decomposition=type , bar=bar , model=

modelName)
1216 biasVarPlotData
1217 }
1218
1219 ###################
1220 # SETUP 1 : co r r =0.9
1221 ###################
1222 # s imluat ing t r a i n i n g data s e t s
1223 t r a i n i n gS e t s <− l i s t ( )
1224 f o r ( i in 1 : 100 ) {
1225 s e t . seed ( i +1)
1226 t r a i n <− simData ( nvars=c (15) , co r s=c ( 0 . 9 ) , a s s o c i a t i o n s=c (1) ,
1227 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
1228 t r a i n <− t r a i n $data
1229 t r a i n $ c l a s s e s <− t r a i n $outcome
1230 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
1231 }
1232
1233 # s imulate t e s t data s e t
1234 s e t . seed (1 )
1235 t e s t <− simData ( nvars=c (15) , co r s=c ( 0 . 9 ) , a s s o c i a t i o n s=c (1) ,
1236 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
1237 testData <− t e s t $data
1238 testData $ c l a s s e s <− testData $outcome
1239 simTest <− testData [ ,−16]
1240
1241 # run s imu la t i on and p lo t data
1242 setup1TuneVals <− readRDS( " setup1ResultsAR . rda" ) [ [ 2 ] ]
1243 setup1ParaGrid <− c (median ( setup1TuneVals [ [ 3 ] ] [ , 2 ] ) , median ( setup1TuneVals

[ [ 4 ] ] ) )
1244 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
1245 se tup1Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , setup1ParaGrid ,

BayesClasses )
1246 saveRDS( setup1Resu l ts , " obl iqueRRFsetup1Results . rda" )
1247 ###################
1248 # SETUP 2 : co r r =0.5
1249 ###################
1250 # s imluat ing t r a i n i n g data s e t s
1251 t r a i n i n gS e t s <− l i s t ( )
1252 f o r ( i in 1 : 100 ) {
1253 s e t . seed ( i +1)
1254 t r a i n <− simData ( nvars=c (15) , co r s=c ( 0 . 5 ) , a s s o c i a t i o n s=c (1) ,
1255 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
1256 t r a i n <− t r a i n $data
1257 t r a i n $ c l a s s e s <− t r a i n $outcome
1258 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
1259 }
1260
1261 # s imulate t e s t data s e t
1262 s e t . seed (1 )
1263 t e s t <− simData ( nvars=c (15) , co r s=c ( 0 . 5 ) , a s s o c i a t i o n s=c (1) ,
1264 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
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1265 testData <− t e s t $data
1266 testData $ c l a s s e s <− testData $outcome
1267 simTest <− testData [ ,−16]
1268
1269 # run s imu la t i on and p lo t data
1270 setup2TuneVals <− readRDS( " setup2ResultsAR . rda" ) [ [ 2 ] ]
1271 setup2ParaGrid <− c (median ( setup2TuneVals [ [ 3 ] ] [ , 2 ] ) , median ( setup2TuneVals

[ [ 4 ] ] ) )
1272 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
1273 se tup2Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , setup2ParaGrid ,

BayesClasses )
1274 saveRDS( setup2Resu l ts , " obl iqueRRFsetup2Results . rda" )
1275 ###################
1276 # SETUP 3 : co r r =0.1
1277 ###################
1278 # s imluat ing t r a i n i n g data s e t s
1279 t r a i n i n gS e t s <− l i s t ( )
1280 f o r ( i in 1 : 100 ) {
1281 s e t . seed ( i +1)
1282 t r a i n <− simData ( nvars=c (15) , co r s=c ( 0 . 1 ) , a s s o c i a t i o n s=c (1) ,
1283 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
1284 t r a i n <− t r a i n $data
1285 t r a i n $ c l a s s e s <− t r a i n $outcome
1286 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
1287 }
1288
1289 # s imulate t e s t data s e t
1290 s e t . seed (1 )
1291 t e s t <− simData ( nvars=c (15) , co r s=c ( 0 . 1 ) , a s s o c i a t i o n s=c (1) ,
1292 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
1293 testData <− t e s t $data
1294 testData $ c l a s s e s <− testData $outcome
1295 simTest <− testData [ ,−16]
1296
1297 # run s imu la t i on and p lo t data
1298 setup3TuneVals <− readRDS( " setup3ResultsAR . rda" ) [ [ 2 ] ]
1299 setup3ParaGrid <− c (median ( setup3TuneVals [ [ 3 ] ] [ , 2 ] ) , median ( setup3TuneVals

[ [ 4 ] ] ) )
1300 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
1301 se tup3Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , setup3ParaGrid ,

BayesClasses )
1302 saveRDS( setup3Resu l ts , " obl iqueRRFsetup3Results . rda" )
1303 #################
1304 # SETUP 4 : co r r=0
1305 #################
1306 # s imluat ing t r a i n i n g data s e t s
1307 t r a i n i n gS e t s <− l i s t ( )
1308 f o r ( i in 1 : 100 ) {
1309 s e t . seed ( i +1)
1310 t r a i n <− simData ( nvars=c (15) , co r s=c (0 ) , a s s o c i a t i o n s=c (1 ) ,
1311 f i r s t o n l y=c (FALSE) , nsamples=400 , re sponse="binary " )
1312 t r a i n <− t r a i n $data
1313 t r a i n $ c l a s s e s <− t r a i n $outcome
1314 t r a i n i n gS e t s [ [ i ] ] <− t r a i n [ ,−16]
1315 }
1316
1317 # s imulate t e s t data s e t
1318 s e t . seed (1 )
1319 t e s t <− simData ( nvars=c (15) , co r s=c (0 ) , a s s o c i a t i o n s=c (1 ) ,
1320 f i r s t o n l y=c (FALSE) , nsamples=1000 , re sponse="binary " )
1321 testData <− t e s t $data
1322 testData $ c l a s s e s <− testData $outcome
1323 simTest <− testData [ ,−16]
1324
1325 # run s imu la t i on and p lo t data
1326 setup4TuneVals <− readRDS( " setup4ResultsAR . rda" ) [ [ 2 ] ]
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1327 setup4ParaGrid <− c (median ( setup4TuneVals [ [ 3 ] ] [ , 2 ] ) , median ( setup4TuneVals
[ [ 4 ] ] ) )

1328 BayesClasses <− as . numeric ( f a c t o r ( i f e l s e ( t e s t $probs > 0 . 5 , 1 , 0) ) )
1329 se tup4Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , setup4ParaGrid ,

BayesClasses )
1330 saveRDS( setup4Resu l ts , " obl iqueRRFsetup4Results . rda" )
1331 #################
1332 # Setup 5 : J = 2
1333 #################
1334 # s imluat ing t r a i n i n g data s e t s
1335 q <− 0 .15
1336 simData1 <− generateMeasedata ( J=2)
1337 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
1338 simTest <− simData1 [ [ 2 ] ]
1339 # run s imu la t i on and p lo t data
1340 setup5TuneVals <− readRDS( " setup5ResultsAR . rda" ) [ [ 2 ] ]
1341 setup5ParaGrid <− c (median ( setup5TuneVals [ [ 3 ] ] [ , 2 ] ) , median ( setup5TuneVals

[ [ 4 ] ] ) )
1342 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −31 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(

q+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
1343 se tup5Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , setup5ParaGrid ,

BayesClasses )
1344 saveRDS( setup5Resu l ts , "obliqueRRFsetup5ResultsAR . rda" )
1345 #################
1346 # Setup 6 : J = 5
1347 #################
1348 # s imluat ing t r a i n i n g data s e t s
1349 simData1 <− generateMeasedata ( J=5)
1350 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
1351 simTest <− simData1 [ [ 2 ] ]
1352 # run s imu la t i on and p lo t data
1353 setup6TuneVals <− readRDS( " setup6ResultsAR . rda" ) [ [ 2 ] ]
1354 setup6ParaGrid <− c (median ( setup6TuneVals [ [ 3 ] ] [ , 2 ] ) , median ( setup6TuneVals

[ [ 4 ] ] ) )
1355 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −31 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(

q+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
1356 se tup6Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , setup6ParaGrid ,

BayesClasses )
1357 saveRDS( setup6Resu l ts , "obliqueRRFsetup6ResultsAR . rda" )
1358 #################
1359 # Setup 7 : J = 15
1360 #################
1361 # s imluat ing t r a i n i n g data s e t s
1362 simData1 <− generateMeasedata ( J=15)
1363 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
1364 simTest <− simData1 [ [ 2 ] ]
1365 # run s imu la t i on and p lo t data
1366 setup7TuneVals <− readRDS( " setup7ResultsAR . rda" ) [ [ 2 ] ]
1367 setup7ParaGrid <− c (median ( setup7TuneVals [ [ 3 ] ] [ , 2 ] ) , median ( setup7TuneVals

[ [ 4 ] ] ) )
1368 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −31 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(

q+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )
1369 se tup7Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , setup7ParaGrid ,

BayesClasses )
1370 saveRDS( setup7Resu l ts , "obliqueRRFsetup7ResultsAR . rda" )
1371 #################
1372 # Setup 8 : J = 20
1373 #################
1374 # s imluat ing t r a i n i n g data s e t s
1375 simData1 <− generateMeasedata ( J=20)
1376 t r a i n i n gS e t s <− simData1 [ [ 1 ] ]
1377 simTest <− simData1 [ [ 2 ] ]
1378 # run s imu la t i on and p lo t data
1379 setup8TuneVals <− readRDS( " setup8ResultsAR . rda" ) [ [ 2 ] ]
1380 setup8ParaGrid <− c (median ( setup8TuneVals [ [ 3 ] ] [ , 2 ] ) , median ( setup8TuneVals

[ [ 4 ] ] ) )
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1381 BayesClasses <− as . numeric ( f a c t o r ( apply ( simTest [ , −31 ] , 1 , f unc t i on (x ) 1∗ (0.5 <(
q+(1−2∗q ) ∗1∗ (sum( ( x [ 1 : J ] ) )>(J/ 2) ) ) ) ) ) )

1382 se tup8Resu l t s <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , setup8ParaGrid ,
BayesClasses )

1383 saveRDS( setup8Resu l ts , "obliqueRRFsetup8ResultsAR . rda" )
1384 #########################
1385 # twonorm s imu la t i on data
1386 #########################
1387 # s imluat ing t r a i n i n g data s e t s
1388 t r a i n i n gS e t s <− l i s t ( )
1389 f o r ( i in 1 : 100 ) {
1390 s e t . seed ( i +1)
1391 t r a i n <− mlbench . twonorm (400 , d=20)
1392 t r a i n <− as . data . frame ( t r a i n )
1393 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
1394 }
1395
1396 # s imulate t e s t data s e t
1397 s e t . seed (1 )
1398 t e s t <− mlbench . twonorm (1000 , d=20)
1399 testFrame <− as . data . frame ( t e s t )
1400 simTest <− testFrame
1401
1402 # run s imu la t i on and p lo t data
1403 twonormTuneVals <− readRDS( "twonormResultsAR . rda" ) [ [ 2 ] ]
1404 twonormParaGrid <− c (median ( twonormTuneVals [ [ 3 ] ] [ , 2 ] ) , median ( twonormTuneVals

[ [ 4 ] ] ) )
1405 twonormResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest , twonormParaGrid ,

baye s c l a s s ( t e s t ) )
1406 saveRDS( twonormResults , "obliqueRRFtwonormResults . rda" )
1407 ###########################
1408 # threenorm s imu la t i on data
1409 ###########################
1410 # s imluat ing t r a i n i n g data s e t s
1411 t r a i n i n gS e t s <− l i s t ( )
1412 f o r ( i in 1 : 100 ) {
1413 s e t . seed ( i +1)
1414 t r a i n <− mlbench . threenorm (400 , d=20)
1415 t r a i n <− as . data . frame ( t r a i n )
1416 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
1417 }
1418
1419 # s imulate t e s t data s e t
1420 s e t . seed (1 )
1421 t e s t <− mlbench . threenorm (1000 , d=20)
1422 testFrame <− as . data . frame ( t e s t )
1423 simTest <− testFrame
1424
1425 # run s imu la t i on and p lo t data
1426 threenormTuneVals <− readRDS( " threenormResultsAR . rda" ) [ [ 2 ] ]
1427 threenormParaGrid <− c (5 , 4)
1428 threenormResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest ,

threenormParaGrid , baye s c l a s s ( t e s t ) )
1429 saveRDS( threenormResults , "obliqueRRFthreenormResultsAR . rda" )
1430 ##########################
1431 # ringnorm s imu la t i on data
1432 ##########################
1433 # s imluat ing t r a i n i n g data s e t s
1434 t r a i n i n gS e t s <− l i s t ( )
1435 f o r ( i in 1 : 100 ) {
1436 s e t . seed ( i +1)
1437 t r a i n <− mlbench . ringnorm (400 , d=20)
1438 t r a i n <− as . data . frame ( t r a i n )
1439 t r a i n i n gS e t s [ [ i ] ] <− t r a i n
1440 }
1441
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1442 # s imulate t e s t data s e t
1443 s e t . seed (1 )
1444 t e s t <− mlbench . ringnorm (1000 , d=20)
1445 testFrame <− as . data . frame ( t e s t )
1446 simTest <− testFrame
1447
1448 # run s imu la t i on and p lo t data
1449 ringnormTuneVals <− readRDS( " ringnormResultsAR . rda" ) [ [ 2 ] ]
1450 ringnormParaGrid <− c (median ( ringnormTuneVals [ [ 3 ] ] [ , 2 ] ) , median (

ringnormTuneVals [ [ 4 ] ] ) )
1451 r ingnormResults <− runBiasVarSimulat ion ( t r a i n i ngSe t s , simTest ,

ringnormParaGrid , baye s c l a s s ( t e s t ) )
1452 saveRDS( ringnormResults , "obliqueRRFringnormResultsAR . rda" )
1453
1454 #############################################################
1455 # Make tab l e f o r r o t a t i on random f o r e s t b i a s var i ance r e s u l t s
1456 #############################################################
1457 re s1 <− readRDS( "obliqueRRFtwonormResults . rda" )
1458 r e s2 <− readRDS( "obliqueRRFthreenormResultsAR . rda" )
1459 r e s3 <− readRDS( "obliqueRRFringnormResultsAR . rda" )
1460 r e s5 <− readRDS( " obl iqueRRFsetup1Results . rda" )
1461 r e s6 <− readRDS( " obl iqueRRFsetup2Results . rda" )
1462 r e s7 <− readRDS( " obl iqueRRFsetup3Results . rda" )
1463 r e s8 <− readRDS( " obl iqueRRFsetup4Results . rda" )
1464 r e s9 <− readRDS( "obliqueRRFsetup5ResultsAR . rda" )
1465 re s10 <− readRDS( "obliqueRRFsetup6ResultsAR . rda" )
1466 re s11 <− readRDS( "obliqueRRFsetup7ResultsAR . rda" )
1467 re s12 <− readRDS( "obliqueRRFsetup8ResultsAR . rda" )
1468 ORRFresList <− l i s t ( res1 , res2 , res3 , res5 , res6 , res7 , res8 ,
1469 res9 , res10 , res11 , r e s12 )
1470
1471 # rbind r e s u l t s
1472 f o r ( i in 1 : l ength (ORRFresList ) ) {
1473 temp <− ORRFresList [ [ i ] ]
1474 i f ( i < 4 | | i > 7) {
1475 ORRFresList [ [ i ] ] <− rbind ( temp [ [ 3 ] ] , temp [ [ 1 ] ] )
1476 } e l s e {
1477 ORRFresList [ [ i ] ] <− rbind ( temp [ [ 2 ] ] , temp [ [ 1 ] ] )
1478 }
1479 }
1480
1481 # import o ld r e s u l t s
1482 r e s1 <− readRDS( "twonormResultsAR . rda" ) $ r e s u l t s
1483 r e s2 <− readRDS( " threenormResultsAR . rda" )
1484 r e s3 <− readRDS( " ringnormResultsAR . rda" ) $ r e s u l t s
1485 r e s5 <− readRDS( " setup1ResultsAR . rda" ) $ r e s u l t s
1486 r e s6 <− readRDS( " setup2ResultsAR . rda" ) $ r e s u l t s
1487 r e s7 <− readRDS( " setup3ResultsAR . rda" ) $ r e s u l t s
1488 r e s8 <− readRDS( " setup4ResultsAR . rda" ) $ r e s u l t s
1489 r e s9 <− readRDS( " setup5ResultsAR . rda" ) $ r e s u l t s
1490 re s10 <− readRDS( " setup6ResultsAR . rda" ) $ r e s u l t s
1491 re s11 <− readRDS( " setup7ResultsAR . rda" ) $ r e s u l t s
1492 re s12 <− readRDS( " setup8ResultsAR . rda" ) $ r e s u l t s
1493 r e s L i s t <− l i s t ( res1 , res2 , res3 , res5 , res6 , res7 , res8 ,
1494 res9 , res10 , res11 , r e s12 )
1495
1496 # combine o ld with new r e s u l t s
1497 f o r ( i in 1 : l ength (ORRFresList ) ) {
1498 temp <− r e s L i s t [ [ i ] ]
1499 ORRFresList [ [ i ] ] <− rbind ( temp , ORRFresList [ [ i ] ] )
1500 }
1501
1502 # make t ab l e s f o r t h e s i s
1503 t ab l eF ina l <− NULL
1504 f o r ( k in 1 : l ength ( r e s L i s t ) ) {
1505 r e s <− ORRFresList [ [ k ] ]
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1506 sp l i tDa t <− s p l i t ( res , r e s $model )
1507 cname <− unique ( r e s $model )
1508 rname <− unique ( r e s $Decomposition )
1509 tableFrame <− matrix (0 , nrow=length ( rname ) , nco l=length ( cname ) )
1510 f o r ( i in 1 : l ength ( sp l i tDa t ) ) {
1511 tableFrame [ , i ] <− sp l i tDa t [ [ i ] ] $vb
1512 }
1513 rownames ( tableFrame ) <− paste (k , rname )
1514 colnames ( tableFrame ) <− cname
1515 t ab l eF ina l <− rbind ( tab l eF ina l , tableFrame )
1516 }
1517 t ab l eF ina l <− as . data . frame ( t ab l eF ina l )
1518
1519 # makes t ab l e s
1520 n <− nrow ( t ab l eF ina l )
1521 er rorTab le <− t ab l eF ina l [ seq (1 , n , by=6) , ]
1522 SEtable <− t ab l eF ina l [ seq (3 , n , by=6) , ]
1523 VEtable <− t ab l eF ina l [ seq (4 , n , by=6) , ]
1524 biasTable <− t ab l eF ina l [ seq (5 , n , by=6) , ]
1525 varTable <− t ab l eF ina l [ seq (6 , n , by=6) , ]
1526 compTableList <− l i s t ( errorTable , SEtable , VEtable , biasTable , varTable )
1527 compPVals <− l i s t ( )
1528
1529 # compute omnibus p−va l s
1530 l i b r a r y (scmamp)
1531 f o r ( i in 1 : l ength ( compTableList ) ) {
1532 compPVals [ [ i ] ] <− fr iedmanAlignedRanksTest ( compTableList [ [ i ] ] [ , − 5 ] )
1533 }
1534
1535 # compute post−hoc p−va l s
1536 postPVals <− l i s t ( )
1537 f o r ( i in 1 : l ength ( compTableList ) ) {
1538 postPVals [ [ i ] ] <− postHocTest ( compTableList [ [ i ] ] [ , − 5 ] , t e s t=" a l i gned

ranks " ,
1539 c o r r e c t=" f i n n e r " , c on t r o l =5)
1540 }
1541
1542 # cr ea t e l a t e x tab l e
1543 s t a r g a z e r ( tab l eF ina l , summary = FALSE)
1544 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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D.7 Chapter 7 Code: Comparing Random
Forests

R Code D.7: Source Code: Comparing Random Forests
1 #####################################
2 # CHAPTER 7 : Comparing Random Fore s t s
3 #####################################
4
5 # Check f o r miss ing packages and i n s t a l l i f mis s ing
6 l i s t . o f . packages <− c ( "MASS" , " dplyr " , " la tex2exp " , "mlbench" , " ggp lot2 " , " ca r e t

" , "doSNOW" , " l a t t i c e " ,
7 "obliqueRF" , " s t a r g a z e r " , " r o t a t i onFo r e s t " , "

randomForest" ,
8 "scmamp" , "surv2sampleComp" , "ElemStatLearn" , "hmeasure"

)
9 new . packages <− l i s t . o f . packages [ ! ( l i s t . o f . packages %in% i n s t a l l e d . packages ( )

[ , "Package" ] ) ]
10 i f ( l ength (new . packages ) ) i n s t a l l . packages (new . packages )
11
12 # load r equ i r ed packages
13 load <− l app ly ( l i s t . o f . packages , r equ i r e , cha rac t e r . only = TRUE)
14
15 # requ i r ed packages from bioconductor f o r scmamp package
16 source ( " https : // bioconductor . org / b i o cL i t e .R" )
17 b i o cL i t e ( "graph" )
18 n
19 b i o cL i t e ( "Rgraphviz " )
20 n
21
22 # download and load random ro t a t i on f o r e s t s package
23 i f ( "RRotF" %in% i n s t a l l e d . packages ( ) [ , "Package" ] == FALSE) {
24 l i b r a r y ( dev too l s )
25 i n s t a l l_github ( " a rnupre to r iu s /RRotF" )
26 }
27 l i b r a r y (RRotF)
28
29 #######################################################################
30 # Table 7 . 1 : Ava i l ab l e so f tware f o r random f o r e s t s in the R programming
31 # language
32 #######################################################################
33 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 data <− read . csv ( "RFvariantsData . csv " )
35 data <− arrange ( data , year )
36 p s a l s <− paste ( data [ , 2 ] , " ( " , data [ , 3 ] , " ) " , sep="" )
37 pks <− c ( " unava i l ab l e " , " unava i l ab l e " , " ip red " , " unava i l ab l e " , " unava i l ab l e " ,
38 " unava i l ab l e " , " unava i l ab l e " , " unava i l ab l e " , " randomForest" ,
39 " unava i l ab l e " , " unava i l ab l e " , " ca r e t " , " unava i l ab l e " , " extraTrees " ,
40 " unava i l ab l e " , " unava i l ab l e " , " unava i l ab l e " , " unava i l ab l e " , "

unava i l ab l e " ,
41 " party " , " unava i l ab l e " , " unava i l ab l e " , "obliqueRF" , " unava i l ab l e " ,
42 "RRF" , "wsr f " , " unava i l ab l e " , " unava i l ab l e " , "RRF" , "RRF" , "

unava i l ab l e " ,
43 " unava i l ab l e " , " unava i l ab l e " , " unava i l ab l e " , " unava i l ab l e " , "

unava i l ab l e " ,
44 " unava i l ab l e " )
45 so f tTab l e <− data . frame ( "Proposa l s "=psa l s , "R package"=pks )
46 # make l a t e x tab l e
47 s t a r g a z e r ( so f tTable , summary = FALSE, rownames=FALSE)
48 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
49 #################################################################
50 # Table B . 1 : Papers cons ide r ed in the meta−ana l y s i s . ( Appendix B)
51 #################################################################
52 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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53 data <− read . csv ( "RFComparisonsData . csv " )
54 lop <− arrange ( data , year ) %>% s e l e c t ( paper_t i t l e , author , year , j ou rna l ) %>%
55 group_by ( paper_t i t l e ) %>% d i s t i n c t ( . keep_a l l=TRUE)
56 lop <− as . data . frame ( lop )
57 colnames ( lop ) <− c ( "Paper t i t l e " , "Author ( s ) " , "Year" , " Journal " )
58 s t a r g a z e r ( lop , summary = FALSE, rownames = FALSE)
59 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
60 #####################################################################
61 # Table 7 . 3 : Algorithm performance measures f o r binary c l a s s i f i c a t i o n
62 #####################################################################
63 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
64 measures <− c ( "Error " , "Accuracy" , " S e n s i t i v i t y " , " S p e c i f i c i t y " , " P r e c i s i on " ,
65 "Kappa" , "AUC" , "F−s c o r e " , "H−measure" )
66 formula <− 1 :9
67 aps <− c ( "Balanced data" , "Balanced data" , "Skew data/minor i ty c l a s s " , "Skew

data" ,
68 "Skew data" , "Skew data" , "Not recommended" , "Skew data/minor i ty

c l a s s " ,
69 "Balanced data/skew data" )
70 measFrame <− data . frame ( "Performance measure"=measures , " Ca l cu l a t i on "=formula ,
71 "Appropriate s c ena r i o "=aps )
72 s t a r g a z e r (measFrame , summary = FALSE, rownames = FALSE)
73 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
74 ############################################################################
75 # Figure 7 . 2 : Performance e s t imat i on method used in the papers cons ide r ed in
76 # the meta−ana l y s i s .
77 ############################################################################
78 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
79 # load data
80 data <− read . csv ( "RFComparisonsData . csv " )
81 evalMeth <− data %>% s e l e c t ( paper_t i t l e , eva lua t i on )
82 evalMeth <− unique ( evalMeth )
83 evalMeth <− as . data . frame ( evalMeth %>% count ( eva lua t i on ) )
84 evalMeth <− evalMeth [ order ( evalMeth$n , de c r ea s ing = TRUE) , ]
85
86 # mark which e s t imat ion methods are not " r e l i a b l e "
87 notIndex <− c (4 , 9 , 22 , 27)
88 grp <− rep ( " Re l i ab l e " , 27)
89 grp [ notIndex ] <− "Not r e l i a b l e "
90 evalMeth$grp <− grp
91
92 # p lo t e s t imat ion methods used
93 ggp lot ( evalMeth , aes ( x=eva luat ion , y=n , f i l l =grp ) ) + geom_bar ( s t a t=" i d e n t i t y " )

+
94 s c a l e_x_d i s c r e t e ( l im i t s=evalMeth$ eva lua t i on ) +
95 s c a l e_ f i l l _manual (name="" , va lue s=c ( " darkgreen " , " skyblue " ) ) +
96 theme_bw( ) + ylab ( "#Papers " ) + xlab ( "Est imation method" ) +
97 theme ( legend . p o s i t i o n = c ( 0 . 9 , 0 . 7 ) , ax i s . t ex t . x = element_text ( ang le =

30 , v ju s t = 1 , h ju s t = 1) )
98 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
99 #########################################################################

100 # Figure 7 . 5 : Reported e r r o r r a t e s f o r Breimans Forest−RI on the top ten
101 # most popular data s e t s used in papers .
102 #########################################################################
103 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
104 # load data
105 data <− read . csv ( "RFComparisonsData . csv " )
106
107 # compute top used data s e t s a c r o s s papers
108 ds <− data %>% s e l e c t ( paper_t i t l e , data se t )
109 al lDS <− unique ( ds$ datase t )
110 allDSCount <− rep (0 , l ength ( al lDS ) )
111 d sSp l i t <− s p l i t ( ds , ds$paper_t i t l e )
112 f o r ( i in 1 : l ength ( d sSp l i t ) ) {
113 dsPerPaper <− unique ( d sSp l i t [ [ i ] ] [ , 2 ] )
114 f o r ( j in 1 : l ength ( dsPerPaper ) ) {
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115 index <− which ( al lDS == dsPerPaper [ j ] )
116 allDSCount [ index ] <− allDSCount [ index ] + 1
117 }
118 }
119 dsFrame <− data . frame ( datase t=allDS , freqUsed=allDSCount )
120 dsFrame <− dsFrame [ order ( dsFrame$ freqUsed , dec r ea s i ng = TRUE) , ]
121
122 # get datase t c h a r a c t e r i s t i c s
123 dataChar <− data %>% s e l e c t ( dataset , datase t_s i z e , num_inputs , c l a s s e s ) %>%

d i s t i n c t ( . keep_a l l=TRUE)
124 dataChar <− merge ( dsFrame , dataChar )
125 dataChar <− dataChar [ order ( dataChar$ freqUsed , dec r ea s ing = TRUE) , ]
126
127 # p lo t v a r i a t a b i l i t y o f RF on above data s e t s
128 r fDataSets <− f a c t o r ( unique ( dataChar$ datase t ) [ 1 : 1 0 ] )
129 keepIndex <− NULL
130 count <− 1
131 f o r ( i in 1 : nrow ( data ) ) {
132 i f ( data [ i , ] $method == " r f " && data [ i , ] $ datase t %in% rfDataSets ) {
133 keepIndex [ count ] <− i
134 count <− count + 1
135 }
136 }
137 rfCompData <− data [ keepIndex , ] %>% s e l e c t ( paper_t i t l e , dataset , method , e r r o r )
138 rfCompData <− rfCompData [ order ( rfCompData$ datase t ) , ]
139 # remove other lymphoma
140 lympRemove <− NULL
141 count <− 1
142 f o r ( i in 1 : nrow ( rfCompData ) ) {
143 i f ( rfCompData [ i , ] $ datase t == "lymphoma" && rfCompData [ i , ] $ e r r o r > 3) {
144 lympRemove [ count ] <− i
145 count <− count + 1
146 }
147 }
148 rfCompData <− rfCompData[−lympRemove , ]
149 rfCompData <− rfCompData [−101 , ] # remove g ro s s o u t l i e r in : On extreme pruning

( po s s i b l y repor ted e r r o r in s t ead o f acc )
150 # p lo t e r r o r s
151 ggp lot ( rfCompData , aes ( y=error , x=datase t ) ) + geom_boxplot ( f i l l =" skyblue " ,

o u t l i e r . c o l ou r = " red " )+
152 theme_bw( ) + ylab ( "Reported e r r o r r a t e s " ) + xlab ( "Benchmark data s e t " )+
153 s c a l e_x_d i s c r e t e ( l im i t s=unique ( dataChar$ datase t ) [ 1 : 1 0 ] )+
154 theme ( ax i s . t ex t . x = element_text ( ang le = 30 , h ju s t = 1 , v ju s t = 1) )
155
156 # ou t l i e r b r ea s t cancer : On extreme pruning ( Pos s ib ly not the same brea s t

cancer datase t )
157 # o u t l i e r g l a s s : T r i p o l i e t a l . paper
158 # ou t l i e r sonar : On extreme pruning ( po s s i b l y repor ted e r r o r in s t ead o f acc )
159 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
160 ############################################################
161 # In text : Omnibus p−va l f o r Forest−RI over d i f f e r e n t papers
162 ############################################################
163 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
164 # t e s t between random f o r e s t s from d i f f e r e n t papers
165 lop <− arrange ( data , paper_t i t l e ) %>% s e l e c t ( paper_t i t l e , dataset , method ,

e r r o r )
166 lop <− f i l t e r ( lop , lop $method == " r f " )
167 lop $ acc <− round(100− l op $ er ro r , 3 )
168
169 # top 10 used data s e t s f o r Forest−RI
170 topDataset <− f a c t o r ( dsFrame [ 1 : 1 5 , 1 ] )
171 papers <− f a c t o r ( unique ( lop $paper_t i t l e ) )
172
173 # compute a l l combinat ions
174 al lcomb <− combn (1 : 1 5 , 10 , s imp l i f y = FALSE)
175 cand ida t eL i s t <− l i s t ( )
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176 canL <− NULL
177 # f i nd combinations o f 15 choose 10 such that l a r g e s t number o f r f s can be

compared
178 f o r ( k in 1 : l ength ( al lcomb ) ) {
179 datasetTop10 <− topDataset [ al lcomb [ [ k ] ] ]
180 lop10 <− f i l t e r ( lop , lop $ datase t %in% datasetTop10 )
181 s p l i t l o p <− s p l i t ( lop10 , f a c t o r ( lop10 $ datase t ) )
182 candidatePapers <− NULL
183 check <− 0
184 count <− 1
185 f o r ( i in 1 : l ength ( papers ) ) {
186 f o r ( j in 1 : l ength ( s p l i t l o p ) ) {
187 papersPresent <− f a c t o r ( s p l i t l o p [ [ j ] ] [ , 1 ] )
188 i f ( ! ( papers [ i ] %in% papersPresent ) ) {
189 check <− 1
190 }
191 }
192 i f ( check == 0) {
193 candidatePapers [ count ] <− as . cha rac t e r ( papers [ i ] )
194 count <− count + 1
195 } e l s e {
196 check <− 0
197 }
198 }
199 cand ida t eL i s t [ [ k ] ] <− candidatePapers
200 canL [ [ k ] ] <− l ength ( candidatePapers )
201 }
202
203 # f i nd combination shar ing the maximum number o f da ta s e t s
204 maxIndex <− which ( canL == max( canL ) ) [ 1 ]
205 # l i s t o f papers
206 cand ida t eL i s t [ [ maxIndex ] ]
207
208 # cr ea t e compare matrix
209 ds e t s <− f a c t o r ( topDataset [ al lcomb [ [ maxIndex ] ] ] )
210 f i l t e r I n d e x <− sapply ( lop $ dataset , f unc t i on (x ) { i f e l s e ( x %in% dsets , TRUE,

FALSE) })
211 lop <− l op [ f i l t e r I n d e x , ]
212 l o pSp l i t <− s p l i t ( lop , f a c t o r ( lop $ datase t ) )
213 compareMat <− matrix (0 , nrow=length ( d s e t s ) , nco l=length ( papers ) )
214 rownames ( compareMat ) <− names ( l o p Sp l i t )
215 colnames ( compareMat ) <− papers
216 f o r ( i in 1 : l ength ( l o pSp l i t ) ) {
217 f o r ( j in 1 : nrow ( l o pSp l i t [ [ i ] ] ) ) {
218 compareMat [ i , which ( papers == as . cha rac t e r ( l o pSp l i t [ [ i ] ] $ paper_

t i t l e [ j ] ) ) ] <− l o p Sp l i t [ [ i ] ] $ acc [ j ]
219 }
220 }
221 # prune to in c lude papers conta in ing a l l top ten data s e t s
222 keepIndex <− apply ( compareMat , 2 , f unc t i on (x ) {
223 i f e l s e ( l ength ( which (x == 0) ) == 0 , TRUE, FALSE)
224 })
225 rCompareMat <− compareMat [ , keepIndex ]
226
227 # compute omnibus t e s t s (#algor i thm < 5)
228 imanDavenportTest ( rCompareMat )
229 friedmanAlignedRanksTest ( rCompareMat )
230 quadeTest ( rCompareMat )
231 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
232 ########################################################################
233 # Figure 7 . 6 : Methods used to compare d i f f e r e n t a lgor i thms over mu l t ip l e
234 # data s e t s in the papers cons ide r ed f o r the meta−ana l y s i s .
235 ########################################################################
236 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
237 # p lo t eva lua t i on method used
238 evalsData <− data %>% s e l e c t ( paper_t i t l e , comparison ) %>% d i s t i n c t ( . keep_a l l=
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TRUE)
239 l ims <− unique ( evalsData $ comparison ) [ c ( 1 , 2 , 4 , 3 , 5 , 6 , 7 , 8 ) ]
240 ggp lot ( evalsData , aes ( x=comparison ) ) + geom_bar ( f i l l ="darkgreen " ) +
241 xlab ( "Comparison method" ) + ylab ( "#Papers " )+
242 theme_bw( )+
243 s c a l e_x_d i s c r e t e ( l im i t s=l ims )+
244 s c a l e_y_cont inuous ( breaks = seq (0 , 20 , by = 2) )+
245 theme ( ax i s . t ex t . x = element_text ( ang le = 10 , v ju s t = 1 , h ju s t = 1) )
246 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
247 ########################################################################
248 # Figure 7 . 6 : Methods used to compare d i f f e r e n t a lgor i thms over mu l t ip l e
249 # data s e t s in the papers cons ide r ed f o r the meta−ana l y s i s .
250 ########################################################################
251 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
252 # Redo ana ly s e s us ing omnibus and post−hoc t e s t s
253 da taSp l i t <− s p l i t ( data , f a c t o r ( data$paper_t i t l e ) )
254 pva l s <− NULL
255 checkPhTest <− NULL
256 phTests <− l i s t ( )
257
258 # f o r each paper bu i ld a compare matrix and compute the Ivan−Davenport t e s t p−

value
259 f o r ( k in 1 : l ength ( da taSp l i t ) ) {
260 lop <− arrange ( da taSp l i t [ [ k ] ] , da ta se t ) %>% s e l e c t ( dataset , method ,

e r r o r )
261 lop <− as . data . frame ( summarise ( group_by ( lop , dataset , method ) , mean(

e r r o r ) ) )
262 lop $ acc <− round(100− l op $ ‘mean( e r r o r ) ‘ , 3 )
263
264 # cr ea t e compare matrix
265 l o pSp l i t <− s p l i t ( lop , f a c t o r ( lop $ datase t ) )
266 ds e t s <− unique ( lop $ datase t )
267 methods <− unique ( lop $method )
268 compareMat <− matrix (0 , nrow=length ( d s e t s ) , nco l=length (methods ) )
269 rownames ( compareMat ) <− dse t s
270 colnames ( compareMat ) <− methods
271 f o r ( i in 1 : l ength ( l o pSp l i t ) ) {
272 f o r ( j in 1 : nrow ( l o pSp l i t [ [ i ] ] ) ) {
273 compareMat [ i , which (methods == as . cha rac t e r ( l o pSp l i t [ [ i ] ] $

method [ j ] ) ) ] <− l o p Sp l i t [ [ i ] ] $ acc [ j ]
274 }
275 }
276 pva l s [ k ] <− round ( imanDavenportTest ( compareMat ) [ [ 3 ] ] , 3)
277 i f ( ! i s . na ( pva l s [ k ] ) && pva l s [ k ] < 0 .05 && " r f " %in% colnames ( compareMat )

) {
278 phTests [ [ k ] ] <− postHocTest ( compareMat , t e s t = " fr iedman" ,
279 con t r o l = " r f " , c o r r e c t = " f i n n e r " ,

alpha = 0 .05 )
280 checkPhTest [ k ] <− i f e l s e ( l ength ( which ( phTests [ [ k ] ] $ c o r r e c t ed . pval

< 0 . 05 ) ) == 0 , TRUE, FALSE)
281 }
282 }
283
284 # paper where no s i g n i f i c a n t r e s u l t was found
285 omnibusFailed <− which ( pva l s > 0 . 05 )
286 PHvsRFFailed <− which ( checkPhTest )
287 nonSigResult <− c ( omnibusFailed , PHvsRFFailed )
288
289 # p lo t pva l s
290 pva l s [ PHvsRFFailed ] <− 0 .05
291 grp <− rep ( "Omnibus : Iman−Davenport" , l ength ( pva l s ) )
292 grp [ PHvsRFFailed ] <− "Post−hoc : Finner ( Forest−RI as c on t r o l ) "
293 grp <− f a c t o r ( grp )
294 pvalData <− data . frame (pv = pva l s [−29] , Test=grp [−29])
295 ggp lot ( pvalData , aes ( x=1:nrow ( pvalData ) , y=pv , f i l l =Test ) ) + geom_bar ( s t a t="

i d e n t i t y " ) +
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296 theme_bw( ) + xlab ( " ’ Papers ’ ( no names g iven ) " ) +
297 ylab ( "p−value " ) + geom_h l i n e ( y i n t e r c ep t = 0 .05 , c o l=" red " , l i n e t yp e="

dashed" ) +
298 s c a l e_ f i l l _manual ( va lue s=c ( " darkgreen " , " skyblue " ) )+
299 s c a l e_x_cont inuous ( breaks = seq ( from=1, to=34, by=1) )+
300 annotate ( " text " , x=0.5 , y=0.09 , l a b e l = "alpha==0.05 " , parse = TRUE)+
301 theme ( legend . p o s i t i o n=c ( 0 . 2 , 0 . 8 ) )
302 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
303 ############################################
304 # In text : Omnibus p−va l f o r Breiman (2001 a )
305 ############################################
306 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
307 # Breiman RF paper omnibus p−va l = 0.014 !
308 # pa i rw i s e co r r e c t ed p−va lue s
309 phTests [ [ 2 6 ] ] $ c o r r e c t ed . pval
310 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
311 #########################################################
312 # Figure 7 . 8 : The adjusted ranks f o r a l l−round a lgor i thms
313 #########################################################
314 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
315 # load data
316 data <− read . csv ( "RFComparisonsData . csv " )
317
318 # remove obs e rva t i on s that are not " r e l i a b l e "
319 data <− f i l t e r ( data , data$ eva lua t i on != "OOB" )
320 data <− f i l t e r ( data , data$ eva lua t i on != "1 run" )
321 data <− f i l t e r ( data , data$ eva lua t i on != "3− f o l d cv" )
322 data <− f i l t e r ( data , ! i s . na ( data$ eva lua t i on ) )
323
324 # s p l i t between a l l r ound s i t u a t i o n s and high−dimens iona l s i t u a t i o n s
325 a l l r ound <− f i l t e r ( data , data$ s i t u a t i o n == " a l l r ound " )
326 HD <− f i l t e r ( data , data$ s i t u a t i o n == "HD" | data$ s i t u a t i o n == " s e l e c t−HD" )
327
328 # ALLROUND methods
329 lop <− arrange ( a l l round , datase t ) %>% s e l e c t ( dataset , method , e r r o r )
330 lop <− as . data . frame ( summarise ( group_by ( lop , dataset , method ) , mean( e r r o r ) ) )
331 lop $ acc <− round(100− l op $ ‘mean( e r r o r ) ‘ , 3 )
332
333 # cr ea t e compare matrix
334 l o pSp l i t <− s p l i t ( lop , f a c t o r ( lop $ datase t ) )
335 ds e t s <− unique ( lop $ datase t )
336 methods <− unique ( lop $method )
337 compareMat <− matrix (0 , nrow=length ( d s e t s ) , nco l=length (methods ) )
338 rownames ( compareMat ) <− dse t s
339 colnames ( compareMat ) <− methods
340 f o r ( i in 1 : l ength ( l o pSp l i t ) ) {
341 f o r ( j in 1 : nrow ( l o pSp l i t [ [ i ] ] ) ) {
342 compareMat [ i , which (methods == as . cha rac t e r ( l o pSp l i t [ [ i ] ] $method [ j

] ) ) ] <− l o p Sp l i t [ [ i ] ] $ acc [ j ]
343 }
344 }
345 #remove ra r e data s e t s
346 removeRowIndex <− apply ( compareMat , 1 , f unc t i on (x ) {
347 i f e l s e ( l ength ( which (x != 0) ) < 3 , 1 , 0)
348 })
349 removeColIndex <− apply ( compareMat , 2 , f unc t i on (x ) {
350 i f e l s e ( l ength ( which (x != 0) ) < 10 , 1 , 0)
351 })
352 removeRowIndex <− which ( removeRowIndex == 1)
353 removeColIndex <− which ( removeColIndex == 1)
354 compareMat <− compareMat[−removeRowIndex ,− removeColIndex ]
355
356 # compute nomial ranks
357 rankMat <− apply ( compareMat , 1 , f unc t i on (x ) {
358 index <− which (x != 0)
359 rankVec <− rank(−x [ index ] , t i e s . method = " average " )
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360 x [ index ] <− rankVec/ l ength ( rankVec )
361 x
362 })
363 rankMat <− t ( rankMat )
364
365 # adjus t f o r number o f da ta s e t s used
366 rankMat <− apply ( rankMat , 2 , f unc t i on (x ) {
367 prop <− l ength ( which (x == 0) ) / l ength (x )
368 x∗prop
369 })
370
371 # compute average rank per method
372 avgRanks <− apply ( rankMat , 2 , f unc t i on (x ) {
373 index <− which (x != 0)
374 mean(x [ index ] )
375 })
376
377 # s c a l e ranks
378 range2 = length ( avgRanks ) − 1
379 avgRanksStand = ( avgRanks∗ range2 ) + 1
380
381 # sor t ed ranks
382 sortAvgRanks <− s o r t ( avgRanksStand )
383
384 # p lo t so r t ed ranks
385 plotData <− data . frame ( rank=sortAvgRanks , names=names ( sortAvgRanks ) )
386 ggp lot ( plotData , aes ( x=names , y=rank ) ) +
387 geom_bar ( s t a t=" i d e n t i t y " , f i l l ="orange " ) + ylab ( "Adjusted Rank" ) +
388 xlab ( "Algorithm" ) +
389 s c a l e_x_d i s c r e t e ( l im i t s=names ( sortAvgRanks ) )+ theme_bw( )+
390 theme ( ax i s . t ex t . x = element_text ( ang le = 90 , h ju s t = 1 , v ju s t = 0 . 5 ) )+
391 g g t i t l e ( "All−round a lgor i thms " )
392 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
393 ###########################################################################
394 # Figure 7 . 9 : Resu l t s from comparing the top f i v e a l l−round a lgor i thms : Top
395 # l e f t : Kernel ( Gaussian ) dens i ty e s t imat i on s based on accuracy . Top r i gh t :
396 # Adjusted p−value matrix us ing the Sha f f e r s t a t i c approach . Bottom :
397 # Pai rwi se comparisons p l o t .
398 ###########################################################################
399 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
400 # choose top 5 a lgor i thms
401 top5Algs <− names ( sortAvgRanks ) [ 1 : 5 ]
402
403 # f i nd data s e t s a s s o c i a t ed with each r f
404 r f sA l g s <− top5Algs
405 a l g sData s e t s <− l i s t ( )
406 algsDatLen <− NULL
407 temp <− NULL
408 f o r ( i in 1 : l ength ( r f sA l g s ) ) {
409 f o r ( j in 1 : l ength ( l o pSp l i t ) ) {
410 i f ( r f sA l g s [ i ] %in% l o pSp l i t [ [ j ] ] [ , 2 ] ) {
411 temp <− c ( temp , as . cha rac t e r ( l o pSp l i t [ [ j ] ] [ 1 , 1 ] ) )
412 }
413 }
414 a l g sData s e t s [ [ i ] ] <− temp
415 algsDatLen [ i ] <− l ength ( temp)
416 temp <− NULL
417 }
418 # ( a l l a l g s come from same a r t i c l e => same 24 da ta s e t s )
419 # de f i n e reduced comare matrix
420 da ta s e t s <− a l g sData s e t s [ [ 2 ] ]
421 cAlgs <− top5Algs
422 rowIndex <− sapply ( rownames ( compareMat ) , f unc t i on (x ) x %in% data s e t s )
423 co l Index <− sapply ( colnames ( compareMat ) , f unc t i on (x ) x %in% cAlgs )
424 rCompareMat <− compareMat [ rowIndex , co l Index ]
425
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426 # p lo t d e n s i t i e s
427 p l o tDen s i t i e s ( rCompareMat ) + xlab ( "Accuracy" ) + theme_bw( ) + theme ( legend .

p o s i t i o n=c ( 0 . 2 , 0 . 7 ) )
428
429 # perform Iman−Devenport t e s t
430 imanDavenportTest ( rCompareMat )
431 # ( s i g n i f i c a n t d f f e r e n c e found => perform post−hoc t e s t )
432
433 # perform Sha f f e r ’ s s t a t i c t e s t
434 pva l s Sha f f e r <− postHocTest ( rCompareMat , t e s t = " fr iedman" , use . rank=TRUE,

c o r r e c t=" s h a f f e r " )
435
436 # p lo t p−va lue s and hypothes i s t e s t s
437 # Sha f f e r
438 p lotPva lues ( pva l s Sha f f e r $ co r r e c t ed . pval ) + g g t i t l e ( " Sha f f e r ’ s s t a t i c " )
439 drawAlgorithmGraph ( pva l s Sha f f e r $ co r r e c t ed . pval , p va l s Sha f f e r $summary , f ont .

s i z e = 5)
440 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
441 ######################################################################
442 # Figure 7 . 1 0 : Resu l t s from comparing the top f i v e high−dimens iona l
443 # algor i thms : Top l e f t : Adjusted ranks . Top r i gh t : Kernel ( Gaussian )
444 # dens i ty e s t imat i on s based on accuracy . Bottom l e f t : Adjusted p−value
445 # matrix us ing the Sha f f e r s t a t i c approach . Bottom r i gh t : Pa i rwi se
446 # comparisons p l o t .
447 ######################################################################
448 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
449 # HD methods
450 lopHD <− arrange (HD, datase t ) %>% s e l e c t ( dataset , method , e r r o r )
451 lopHD <− as . data . frame ( summarise ( group_by ( lopHD , dataset , method ) , mean( e r r o r )

) )
452 lopHD$acc <− round(100−lopHD$ ‘mean( e r r o r ) ‘ , 3 )
453
454 # cr ea t e compare matrix
455 lopHDSplit <− s p l i t ( lopHD , f a c t o r ( lopHD$ datase t ) )
456 ds e t s <− f a c t o r ( unique ( lopHD$ datase t ) )
457 methods <− f a c t o r ( unique ( lopHD$method ) )
458 compareMat <− matrix (0 , nrow=length ( d s e t s ) , nco l=length (methods ) )
459 rownames ( compareMat ) <− dse t s
460 colnames ( compareMat ) <− methods
461 f o r ( i in 1 : l ength ( lopHDSplit ) ) {
462 f o r ( j in 1 : nrow ( lopHDSplit [ [ i ] ] ) ) {
463 compareMat [ i , which (methods == as . cha rac t e r ( lopHDSplit [ [ i ] ] $method

[ j ] ) ) ] <− lopHDSplit [ [ i ] ] $ acc [ j ]
464 }
465 }
466 #remove ra r e data s e t s
467 removeRowIndex <− apply ( compareMat , 1 , f unc t i on (x ) {
468 i f e l s e ( l ength ( which (x != 0) ) < 3 , 1 , 0)
469 })
470 #remove a lgor i thms f i t t e d to only a very smal l number o f data s e t s
471 removeColIndex <− apply ( compareMat , 2 , f unc t i on (x ) {
472 i f e l s e ( l ength ( which (x != 0) ) < 5 , 1 , 0)
473 })
474 removeRowIndex <− which ( removeRowIndex == 1) #( none found )
475 removeColIndex <− which ( removeColIndex == 1)
476 compareMat <− compareMat [ , −removeColIndex ]
477
478 # compute nomial ranks
479 rankMat <− apply ( compareMat , 1 , f unc t i on (x ) {
480 index <− which (x != 0)
481 rankVec <− rank(−x [ index ] , t i e s . method = " average " )
482 x [ index ] <− rankVec/ l ength ( rankVec )
483 x
484 })
485 rankMat <− t ( rankMat )
486
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487 # adjus t f o r number o f da ta s e t s used
488 rankMat <− apply ( rankMat , 2 , f unc t i on (x ) {
489 prop <− l ength ( which (x == 0) ) / l ength (x )
490 i f ( prop == 0) {
491 prop <− 1/ ( l ength (x )+1)
492 }
493 x∗prop
494 })
495
496 # compute average rank per method
497 avgRanks <− apply ( rankMat , 2 , f unc t i on (x ) {
498 index <− which (x != 0)
499 mean(x [ index ] )
500 })
501
502 # s c a l e ranks
503 range2 = length ( avgRanks ) − 1
504 avgRanksStand = ( avgRanks∗ range2 ) + 1
505
506 # sor t ed ranks
507 sortAvgRanks <− s o r t ( avgRanksStand )
508
509 # p lo t so r t ed ranks
510 plotData <− data . frame ( rank=sortAvgRanks , names=names ( sortAvgRanks ) )
511 ggp lot ( plotData , aes ( x=names , y=rank ) ) +
512 geom_bar ( s t a t=" i d e n t i t y " , f i l l ="orange " ) + ylab ( "Adjusted Rank" ) +
513 xlab ( "Algorithm" ) +
514 s c a l e_x_d i s c r e t e ( l im i t s=names ( sortAvgRanks ) )+ theme_bw( )+
515 theme ( ax i s . t ex t . x = element_text ( ang le = 90 , h ju s t = 1 , v ju s t = 0 . 5 ) )+
516 g g t i t l e ( "High−dimens iona l a lgor i thms " )
517
518 # choose top 5 a lgor i thms
519 top5Algs <− names ( sortAvgRanks ) [ 1 : 5 ]
520
521 # f i nd data s e t s a s s o c i a t ed with each r f
522 r f sA l g s <− top5Algs
523 a l g sData s e t s <− l i s t ( )
524 algsDatLen <− NULL
525 temp <− NULL
526 f o r ( i in 1 : l ength ( r f sA l g s ) ) {
527 f o r ( j in 1 : l ength ( lopHDSplit ) ) {
528 i f ( r f sA l g s [ i ] %in% lopHDSplit [ [ j ] ] [ , 2 ] ) {
529 temp <− c ( temp , as . cha rac t e r ( lopHDSplit [ [ j ] ] [ 1 , 1 ] ) )
530 }
531 }
532 a l g sData s e t s [ [ i ] ] <− temp
533 algsDatLen [ i ] <− l ength ( temp)
534 temp <− NULL
535 }
536
537 # de f i n e reduced comare matrix
538 da ta s e t s <− i n t e r s e c t ( i n t e r s e c t ( a l g sData s e t s [ [ 1 ] ] , a l g sData s e t s [ [ 2 ] ] ) ,

a l g sData s e t s [ [ 3 ] ] )
539 cAlgs <− top5Algs
540 rowIndex <− sapply ( rownames ( compareMat ) , f unc t i on (x ) x %in% data s e t s )
541 co l Index <− sapply ( colnames ( compareMat ) , f unc t i on (x ) x %in% cAlgs )
542 rCompareMat <− compareMat [ rowIndex , co l Index ]
543
544 # p lo t d e n s i t i e s
545 p l o tDen s i t i e s ( rCompareMat ) + xlab ( "Accuracy" ) + theme_bw( ) + theme ( legend .

p o s i t i o n=c ( 0 . 2 , 0 . 7 ) )
546
547 # perform Iman−Devenport t e s t
548 imanDavenportTest ( rCompareMat )
549 # ( s i g n i f i c a n t d f f e r e n c e found => perform post−hoc t e s t )
550
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551 # perform Sha f f e r ’ s s t a t i c t e s t
552 pva l s Sha f f e r <− postHocTest ( rCompareMat , t e s t = " fr iedman" , use . rank=TRUE,

c o r r e c t=" s h a f f e r " )
553
554 # p lo t p−va lue s and hypothes i s t e s t s
555 # Sha f f e r
556 p lotPva lues ( pva l s Sha f f e r $ co r r e c t ed . pval ) + g g t i t l e ( " Sha f f e r ’ s s t a t i c " )
557 drawAlgorithmGraph ( pva l s Sha f f e r $ co r r e c t ed . pval , p va l s Sha f f e r $summary , f ont .

s i z e = 5)
558 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
559 ###################
560 # Algorithm : r f−wv3
561 ###################
562 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
563 expo r tL i s t <− c ( "predTestHVDM" , "distNew" , "HVDM" , "dp" , "norm_d i f f " , "norm_

vdm" , "npx" , "npxc" , "Ppxc" )
564
565 # make p r ed i c t i o n s f o r a l l t e s t ca s e s
566 p r ed i c t .HVDM <− f unc t i on (model , Xtest , k ) {
567 responseVarName <− as . cha rac t e r (model [ [ 2 1 ] ] [ [ 2 ] ] )
568 Xtest <− Xtest [ , ! names ( Xtest ) %in% responseVarName ]
569 preds <− f o r each ( i =1:nrow ( Xtest ) , . combine = c , . export = expo r tL i s t ) %

dopar% {
570 predTestHVDM(model , Xtest [ i , ] ,
571 model$ t ra in ingData [ , ! names (model$ t ra in ingData ) %in%

" . outcome" ] ,
572 model$ t ra in ingData [ , " . outcome" ] , k )
573 }
574 preds
575 }
576
577 # make p r ed i c t i on f o r t e s t i n s t ance
578 predTestHVDM <− f unc t i on (model , new , Xtrain , C, k ) {
579 nn <− distNew (new , Xtrain , C, k )
580 c l a s s e s <− l e v e l s (C)
581 preds <− p r ed i c t (model , Xtrain [ nn$ index , ] )
582 voteCount <− sapply ( 1 : l ength ( c l a s s e s ) , f unc t i on ( i ) {
583 c <− c l a s s e s [ i ]
584 indexc <− which ( preds == c )
585 sum(1 /nn$ d i s t s [ indexc ] )
586 })
587 c l a s s e s [ which ( voteCount == max( voteCount ) ) ]
588 }
589
590 # f i nd k nea r e s t ne ighbours to new in s tanc e
591 distNew <− f unc t i on (new , Xtrain , C, k ) {
592 N <− nrow ( Xtrain )
593 distVec <− sapply ( 1 :N, func t i on ( i ) {
594 HVDM(new , Xtrain [ i , ] , Xtrain , C)
595 })
596 indexMat <− data . frame ( d i s t s=distVec , index=1:N)
597 indexMat <− indexMat [ order ( indexMat$ d i s t s ) , ]
598 re turn ( indexMat [ 1 : k , ] )
599 }
600
601 # compute HVDM between obs x and y
602 HVDM <− f unc t i on (x , y , Xtrain , C) {
603 P <− nco l ( Xtrain )
604 dis tVar <− sapply ( 1 :P, func t i on ( i ) {
605 dp(x [ i ] , y [ i ] , Xtrain [ , i ] , C)^2
606 })
607 d i s t <− sum( distVar )
608 sq r t ( d i s t )
609 }
610
611 # compute d i s t ance between x and y on var p us ing HVDM
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612 dp <− f unc t i on (x , y , p , C) {
613 i f ( c l a s s (p) != "numeric " && c l a s s (p) != " i n t e g e r " ) {
614 i f ( l ength ( which (p == x) ) == 0 | | l ength ( which (p == y) ) == 0) {
615 re turn (1 )
616 } e l s e {
617 norm_vdm(x , y , p , C)
618 }
619 } e l s e {
620 norm_d i f f (x , y , p )
621 }
622 }
623
624 # compute the normal ized d i f f f o r x and y on var p [ l i n e a r v a r i a b l e ]
625 norm_d i f f <− f unc t i on (x , y , p ) {
626 abs (x − y ) /4∗ sd (p)
627 }
628
629 # compute normal ized vdm f o r x and y on var p [ nominal v a r i a b l e ]
630 norm_vdm <− f unc t i on (x , y , p , C) {
631 vdmTerm <− sapply ( 1 : l ength ( l e v e l s (C) ) , f unc t i on ( i ) {
632 c <− l e v e l s (C) [ i ]
633 abs (Ppxc (p , x , C, c ) − Ppxc (p , y , C, c ) )^2
634 })
635 varDist <− sum(vdmTerm)
636 sq r t ( varDist )
637 }
638
639 # compute number o f obs in t r a i n i n g s e t with value x f o r var p
640 npx <− f unc t i on (p , x ) {
641 l ength ( which (p == x) )
642 }
643 # compute number o f obs in t r a i n i n g s e t with value x f o r var p and c l a s s c
644 npxc <− f unc t i on (p , x , C, c ) {
645 l ength ( i n t e r s e c t ( which (p == x) , which (C == c ) ) )
646 }
647 # compute c ond i t i o na l p r obab i l i t y o f c l a s s c g iven value o f x f o r var p
648 Ppxc <− f unc t i on (p , x , C, c ) {
649 npxc (p , x , C, c ) /npx (p , x )
650 }
651 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
652 ###########################################################################
653 # Figure 7 . 1 1 : Pr ed i c t i on time comparisons between Forest−RI and r f−wv3 .
654 # Lef t : Pr ed i c t i on time as a func t i on o f the number o f t e s t ob s e rva t i on s .
655 # Right : Pre− d i c t i o n time f o r twenty t e s t ob s e rva t i on s f o r d i f f e r e n t s i z e s
656 # of the input space .
657 ###########################################################################
658 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
659 # s imulate twonorm data f o r d i f f e r e n t va lue s o f N and p
660 # experiment with growth in N
661 genExp1Data <− f unc t i on ( Ngrid ) {
662 tnTrain <− data . frame (mlbench . twonorm (100 , d=5) )
663 tnTest <− l i s t ( )
664 f o r ( i in 1 : l ength ( Ngrid ) ) {
665 s e t . seed ( i )
666 tnTest [ [ i ] ] <− data . frame (mlbench . twonorm( Ngrid [ i ] , d=5) )
667 }
668 l i s t ( tnTrain , tnTest )
669 }
670 # Experiment with growth in p
671 genExp2Data <− f unc t i on ( pGrid ) {
672 tnTrain <− l i s t ( )
673 tnTest <− l i s t ( )
674 f o r ( i in 1 : l ength ( pGrid ) ) {
675 s e t . seed ( i )
676 tnTrain [ [ i ] ] <− data . frame (mlbench . twonorm (100 , d=pGrid [ i ] ) )
677 tnTest [ [ i ] ] <− data . frame (mlbench . twonorm (20 , d=pGrid [ i ] ) )
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678 }
679 l i s t ( tnTrain , tnTest )
680 }
681 exp1Data <− genExp1Data ( seq (1 , 100 , by=10) )
682 exp2Data <− genExp2Data ( seq (2 , 20 , by=2) )
683 # perform N experiment
684 l i b r a r y ( ca r e t )
685 rfTime <− NULL
686 rfwv3Time <− NULL
687
688 # Pa r a l l e l computing
689 c l <− makeCluster (3 , type="SOCK" )
690 registerDoSNOW( c l )
691
692 # run experiment 1
693 f o r ( i in 1 : l ength ( exp1Data [ [ 2 ] ] ) ) {
694 s t a r t <− Sys . time ( )
695 r f <− t r a i n ( c l a s s e s ~ . , data=exp1Data [ [ 1 ] ] , method=" r f " , t rCont ro l=

tControl , tuneGrid=tg r i d )
696 preds <− p r ed i c t ( r f , exp1Data [ [ 2 ] ] [ [ i ] ] )
697 rfTime [ i ] <− as . numeric ( Sys . time ( ) − s t a r t )
698 s t a r t <− Sys . time ( )
699 r f <− t r a i n ( c l a s s e s ~ . , data=exp1Data [ [ 1 ] ] , method=" r f " , t rCont ro l=

tControl , tuneGrid=tg r i d )
700 preds <− p r ed i c t .HVDM( r f , exp1Data [ [ 2 ] ] [ [ i ] ] , k=nrow ( exp1Data [ [ 1 ] ] ) )
701 rfwv3Time [ i ] <− as . numeric ( Sys . time ( ) − s t a r t )
702 }
703
704 rfTime2 <− NULL
705 rfwv3Time2 <− NULL
706 tContro l <− t r a inCont ro l (method="none" )
707 # run experiment 2
708 f o r ( i in 1 : l ength ( exp2Data [ [ 2 ] ] ) ) {
709 s t a r t <− Sys . time ( )
710 r f <− t r a i n ( c l a s s e s ~ . , data=exp2Data [ [ 1 ] ] [ [ i ] ] , method=" r f " , t rContro l=

tControl ,
711 tuneGrid=data . frame (mtry=f l o o r ( s q r t ( nco l ( exp2Data [ [ 1 ] ] [ [ i ] ] )

) ) ) )
712 preds <− p r ed i c t ( r f , exp2Data [ [ 2 ] ] [ [ i ] ] )
713 rfTime2 [ i ] <− as . numeric ( Sys . time ( ) − s t a r t )
714 s t a r t <− Sys . time ( )
715 r f <− t r a i n ( c l a s s e s ~ . , data=exp2Data [ [ 1 ] ] [ [ i ] ] , method=" r f " , t rContro l=

tControl ,
716 tuneGrid=data . frame (mtry=f l o o r ( s q r t ( nco l ( exp2Data [ [ 1 ] ] [ [ i ] ] )

) ) ) )
717 preds <− p r ed i c t .HVDM( r f , exp2Data [ [ 2 ] ] [ [ i ] ] , k=nrow ( exp2Data [ [ 1 ] ] [ [ 1 ] ] )

)
718 rfwv3Time2 [ i ] <− as . numeric ( Sys . time ( ) − s t a r t )
719 }
720
721 # p lo t comparisons with i n c r e a s e in N
722 time1Data <− data . frame (N=seq (1 , 100 , by=10) , time=c ( rfwv3Time , rfTime ) ,

Algorithm=c ( rep ( " r f−wv3" , 10) , rep ( " r f " , 10) ) )
723 ggp lot ( time1Data , aes ( x=N, y=time , c o l=Algorithm ) ) + geom_l i n e ( ) + geom_point

( ) +
724 theme_bw( ) + xlab ( "Number o f t e s t ob s e rva t i on s (p f i x ed at 5) " ) + ylab ( "

Pred i c t i on time ( in s e c s ) " ) +
725 s c a l e_co l o r_manual ( va lue s=c ( " skyblue " , " red " ) ) + theme ( legend . p o s i t i o n=c

( 0 . 2 , 0 . 7 ) )
726
727 # p lo t comparisons with i n c r e a s e in p
728 time2Data <− data . frame (p=seq (2 , 20 , by=2) , time=c ( rfwv3Time2 , rfTime2 ) ,

Algorithm=c ( rep ( " r f−wv3" , 10) , rep ( " r f " , 10) ) )
729 ggp lot ( time2Data , aes ( x=p , y=time , c o l=Algorithm ) ) + geom_l i n e ( ) + geom_point

( ) +
730 theme_bw( ) + xlab ( "Number o f input v a r i a b l e s (N f i x ed at 20) " ) + ylab ( "
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Pred i c t i on time ( in s e c s ) " ) +
731 s c a l e_co l o r_manual ( va lue s=c ( " skyblue " , " red " ) ) + theme ( legend . p o s i t i o n=c

( 0 . 2 , 0 . 7 ) )
732 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
733 #####################################################################
734 # Table 7 .5 (RESULTS) : Win/Tie an a l y s i s o f benchmark performances f o r
735 # ob l i que random ro t a t i on f o r e s t s .
736 #####################################################################
737 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
738 # prepare the data
739 # data from UCI
740
741 #######################
742 # All−round data s e t s
743 #######################
744 # SAheart
745 data ( "SAheart" )
746 colnames ( SAheart ) [ 1 0 ] <− " response "
747 SAheart$ re sponse <− f a c t o r ( SAheart$ response )
748 l e v e l s ( SAheart$ response ) <− c ( "A" , "B" )
749 # spam
750 data ( "spam" )
751 colnames ( spam) [ 5 8 ] <− " response "
752 # Adult
753 adult <− read . csv ( " adul t . data" , header = FALSE)
754 colnames ( adul t ) [ 1 5 ] <− " response "
755 # bank
756 bank <− read . t ab l e ( "bank− f u l l . csv " , sep=" ; " , header = TRUE)
757 colnames ( bank ) [ 1 7 ] <− " response "
758 # bank note
759 bankNote <− read . csv ( "data_banknote_authen t i c a t i on . txt " , header = FALSE)
760 colnames ( bankNote ) [ 5 ] <− " response "
761 bankNote$ response <− f a c t o r ( bankNote$ response )
762 l e v e l s ( bankNote$ re sponse ) <− c ( "A" , "B" )
763 # popFai lure
764 popFai lure <− read . t ab l e ( "pop_f a i l u r e s . dat" , header = TRUE)
765 colnames ( popFai lure ) [ 2 1 ] <− " response "
766 popFai lure $ response <− f a c t o r ( popFai lure $ re sponse )
767 l e v e l s ( popFai lure $ re sponse ) <− c ( "A" , "B" )
768 # wiscons in b r ea s e t cancer data
769 wdbc <− read . csv ( "wdbc . data" , header = FALSE)
770 colnames (wdbc) [ 2 ] <− " response "
771 wdbc$ response <− f a c t o r (wdbc$ response )
772 # Breast cancer
773 data ( "BreastCancer " )
774 BreastCancer <− BreastCancer [ ,−1]
775 BreastCancer <− BreastCancer [ complete . c a s e s ( BreastCancer ) , ]
776 colnames ( BreastCancer ) [ 1 0 ] <− " response "
777 # German c r e d i t
778 data ( "GermanCredit" )
779 colnames (GermanCredit ) [ 1 0 ] <− " response "
780 # Votes
781 data ( "HouseVotes84" )
782 HouseVotes84 <− HouseVotes84 [ complete . c a s e s ( HouseVotes84 ) , ]
783 colnames ( HouseVotes84 ) [ 1 ] <− " response "
784 # pima
785 data ( "PimaIndiansDiabetes " )
786 colnames ( PimaIndiansDiabetes ) [ 9 ] <− " response "
787 # Sonar
788 data ( "Sonar" )
789 colnames ( Sonar ) [ 6 1 ] <− " response "
790
791 # cr ea t e benchmark datase t l i s t
792 mlbList <− l i s t ( adul t=adult , bank=bank , bankNote=bankNote , breastCancer=

BreastCancer , pima=PimaIndiansDiabetes ,
793 germandCredit=GermanCredit , popFai lure=popFai lure , sahear t=
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SAheart , sonar=Sonar , spam=spam ,
794 votes=HouseVotes84 , wdbc=wdbc)
795
796 # s p l i t i n to t r a i n i n g and t e s t s e t s
797 mlTrain ingSets <− l i s t ( )
798 mlTest ingSets <− l i s t ( )
799 f o r ( i in 1 : l ength ( mlbList ) ) {
800 dat <− mlbList [ [ i ] ]
801 t ra in Index <− c r ea t eDataPar t i t i on ( dat$ response , p=0.7 , l i s t=FALSE)
802 mlTrain ingSets [ [ i ] ] <− dat [ t ra inIndex , ]
803 mlTest ingSets [ [ i ] ] <− dat [− t ra inIndex , ]
804 }
805
806 # est imate performance
807 perfMeasuresRF <− matrix (0 , nrow=length ( mlbList ) , nco l=7)
808 rownames ( perfMeasuresRF ) <− names ( mlbList )
809 colnames ( perfMeasuresRF ) <− c ( "Acc" , "Sens" , "Spec" , "Prec" , "Kappa" , "F" , "H"

)
810 perfMeasuresORRF <− matrix (0 , nrow=length ( mlbList ) , nco l=7)
811 rownames ( perfMeasuresORRF ) <− names ( mlbList )
812 colnames ( perfMeasuresORRF ) <− c ( "Acc" , "Sens" , "Spec" , "Prec" , "Kappa" , "F" , "

H" )
813 perfMeasuresORRFlog <− matrix (0 , nrow=length ( mlbList ) , nco l=7)
814 rownames ( perfMeasuresORRFlog ) <− names ( mlbList )
815 colnames ( perfMeasuresORRFlog ) <− c ( "Acc" , "Sens" , "Spec" , "Prec" , "Kappa" , "F"

, "H" )
816 perfMeasuresRotF <− matrix (0 , nrow=length ( mlbList ) , nco l=7)
817 rownames ( perfMeasuresRotF ) <− names ( mlbList )
818 colnames ( perfMeasuresRotF ) <− c ( "Acc" , "Sens" , "Spec" , "Prec" , "Kappa" , "F" , "

H" )
819 perfMeasuresORFlog <− matrix (0 , nrow=length ( mlbList ) , nco l=7)
820 rownames ( perfMeasuresORFlog ) <− names ( mlbList )
821 colnames ( perfMeasuresORFlog ) <− c ( "Acc" , "Sens" , "Spec" , "Prec" , "Kappa" , "F" ,

"H" )
822
823 f o r ( j in 1 : l ength ( mlbList ) ) {
824 # t r a i n i n g data
825 tra inData <− mlTrain ingSets [ [ j ] ]
826 x <− tra inData [ , ! names ( tra inData ) %in% " response " ]
827 y <− tra inData $ response
828
829 # t e s t i n g data
830 testData <− mlTest ingSets [ [ j ] ]
831 x t e s t <− testData [ , ! names ( testData ) %in% " response " ]
832 y t e s t <− testData $ response
833
834 # model parameter g r i d s
835 # parameter tuning s e t t i n g s
836 f i tCon t r o l <− t r a inCont ro l (method = "cv" , number = 10)
837 or fparaGr id <− expand . g r id (mtry=c (1 , f l o o r ( s q r t ( nco l ( x ) ) ) , f l o o r ( nco l ( x )

/ 2) ) )
838 r r fparaGr id <− expand . g r id (L=200 , K=f l o o r ( ( nco l ( x ) ) /c (2 , 3 , 4) ) )
839 or r fparaGr id <− expand . g r id (K=f l o o r ( ( nco l ( x ) ) /c (3 ) ) , L=200 , mtry=c (1 ,

f l o o r ( s q r t ( nco l ( x ) ) ) , f l o o r ( nco l ( x ) / 2) ) )
840
841 # Forest−RI
842 p r i n t ( paste ( "Method : Forest−RI ; Data s e t : " , names ( mlbList ) [ j ] ) )
843 Mod <− t r a i n ( re sponse~ . , data=trainData , method=" r f " , t rCont ro l=

f i tCon t r o l ,
844 tuneGrid=or fparaGr id )
845 preds <− p r ed i c t (Mod, testData )
846 confMat <− confus ionMatr ix ( preds , y t e s t )
847 probs <− p r ed i c t (Mod, xtes t , type="prob" ) [ , 2 ]
848
849 # Forest−RI : performance measures
850 r e s u l t s <− summary(HMeasure ( ytes t , probs ) , show . a l l = TRUE)
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851 r e s u l t s $ACC <− confMat$ o v e r a l l [ 1 ]
852 r e s u l t s $Kappa <− confMat$ o v e r a l l [ 2 ]
853 perfMeasuresRF [ j , ] <− as . numeric ( r e s u l t s [ , c (23 ,11 ,12 ,13 ,24 ,17 ,1 ) ] )
854
855
856 # ob l i que r o t a t i on random f o r e s t : p r e d i c t i o n s
857 p r i n t ( paste ( "Method : r o t a t i on random f o r e s t ; Data s e t : " , names ( mlbList ) [

j ] ) )
858 optPara <− f indOptimalTuning (x=x , y=y , paraGrid = orr fparaGr id , model="

r f " )
859 optTune <− as . numeric ( optPara$optTuneVals )
860 Mod <− RRotF(x=x , y=y , K=optTune [ 1 ] , L=optTune [ 2 ] , mtry=optTune [ 3 ] ,

model=" r f " )
861 preds <− p r ed i c t (Mod, x t e s t )
862 confMat <− confus ionMatr ix ( preds , as . numeric ( y t e s t )−1)
863 probs <− p r ed i c t (Mod, xtes t , type="prob" )
864
865 # ob l i que r o t a t i on random f o r e s t : performance measures
866 r e s u l t s <− summary(HMeasure ( ytes t , probs ) , show . a l l = TRUE)
867 r e s u l t s $ACC <− confMat$ o v e r a l l [ 1 ]
868 r e s u l t s $Kappa <− confMat$ o v e r a l l [ 2 ]
869 perfMeasuresORRF [ j , ] <− as . numeric ( r e s u l t s [ , c (23 ,11 ,12 ,13 ,24 ,17 ,1 ) ] )
870
871 # ob l i que r o t a t i on random f o r e s t with l o g s i t i c s p l i t s : p r e d i c t i o n s
872 p r i n t ( paste ( "Method : ob l i que r o t a t i on random f o r e s t with l o g i s t i c s p l i t s

; Data s e t : " , names ( mlbList ) [ j ] ) )
873 optPara <− f indOptimalTuning (x=x , y=y , paraGrid = orr fparaGr id , model="

log " )
874 optTune <− as . numeric ( optPara$optTuneVals )
875 Mod <− RRotF(x=x , y=y , K=optTune [ 1 ] , L=optTune [ 2 ] , mtry=optTune [ 3 ] ,

model=" log " )
876 preds <− p r ed i c t (Mod, x t e s t )
877 confMat <− confus ionMatr ix ( preds , as . numeric ( y t e s t )−1)
878 probs <− p r ed i c t (Mod, xtes t , type="prob" )
879
880 # ob l i que r o t a t i on random f o r e s t with l o g s i t i c s p l i t s : performance

measures
881 r e s u l t s <− summary(HMeasure ( ytes t , probs ) , show . a l l = TRUE)
882 r e s u l t s $ACC <− confMat$ o v e r a l l [ 1 ]
883 r e s u l t s $Kappa <− confMat$ o v e r a l l [ 2 ]
884 perfMeasuresORRFlog [ j , ] <− as . numeric ( r e s u l t s [ , c (23 ,11 ,12 ,13 ,24 ,17 ,1 ) ] )
885
886 # ro t a t i on f o r e s t : p r e d i c t i o n s
887 p r i n t ( paste ( "Method : r o t a t i on f o r e s t ; Data s e t : " , names ( mlbList ) [ j ] ) )
888 Mod <− t r a i n ( re sponse~ . , data=trainData , method=" ro t a t i onFo r e s t " ,

t rContro l=f i tCon t r o l ,
889 tuneGrid=rr fparaGr id )
890 preds <− p r ed i c t (Mod, testData )
891 confMat <− confus ionMatr ix ( preds , y t e s t )
892 probs <− p r ed i c t (Mod, xtes t , type="prob" ) [ , 2 ]
893
894 # ro t a t i on f o r e s t : performance measures
895 r e s u l t s <− summary(HMeasure ( ytes t , probs ) , show . a l l = TRUE)
896 r e s u l t s $ACC <− confMat$ o v e r a l l [ 1 ]
897 r e s u l t s $Kappa <− confMat$ o v e r a l l [ 2 ]
898 perfMeasuresRotF [ j , ] <− as . numeric ( r e s u l t s [ , c (23 ,11 ,12 ,13 ,24 ,17 ,1 ) ] )
899
900 # ob l i que random f o r e s t us ing l o g i s t i c s p l i t s : p r e d i c t i o n s
901 p r i n t ( paste ( "Method : ob l i que random f o r e s t with log s p l i t s ; Data s e t : " ,

names ( mlbList ) [ j ] ) )
902 Mod <− t r a i n ( re sponse~ . , data=trainData , method="ORFlog" , t rCont ro l=

f i tCon t r o l ,
903 tuneGrid=or fparaGr id )
904 preds <− p r ed i c t (Mod, testData )
905 confMat <− confus ionMatr ix ( preds , y t e s t )
906 probs <− p r ed i c t (Mod, xtes t , type="prob" ) [ , 2 ]
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907
908 # ob l i que random f o r e s t us ing l o g i s t i c s p l i t s : performance measures
909 r e s u l t s <− summary(HMeasure ( ytes t , probs ) , show . a l l = TRUE)
910 r e s u l t s $ACC <− confMat$ o v e r a l l [ 1 ]
911 r e s u l t s $Kappa <− confMat$ o v e r a l l [ 2 ]
912 perfMeasuresORFlog [ j , ] <− as . numeric ( r e s u l t s [ , c (23 ,11 ,12 ,13 ,24 ,17 ,1 ) ] )
913
914 }
915
916 compareResu l t sL i s t <− l i s t ( " r o t a t i onFo r e s t "=perfMeasuresRotF , " obl iqueRFlog "=

perfMeasuresORFlog ,
917 "obliqueRRF"=perfMeasuresORRF , "obliqueORRFlog"=

perfMeasuresORRFlog , "Forest−RI"=perfMeasuresRF
)

918 saveRDS( compareResultsList , "benchMarkComparisonsRFs . rda" )
919
920 # format benchmark r e s u l t s f o r t h e s i s
921 B <− compareResu l t sL i s t
922 f i n a lR e s u l t L i s t <− l i s t ( )
923 algDat <− matrix (0 , nrow=7, nco l=5)
924 rownames ( algDat ) <− colnames (B [ [ 1 ] ] )
925 colnames ( algDat ) <− names (B)
926 f o r ( i in 1 : nrow (B [ [ 1 ] ] ) ) {
927 f o r ( j in 1 : l ength (B) ) {
928 algDat [ , j ] <− B [ [ j ] ] [ i , ]
929 }
930 f i n a lR e s u l t L i s t [ [ i ] ] <− algDat
931 }
932
933 # name l i s t with data s e t names
934 names ( f i n a lR e s u l t L i s t ) <− rownames (B [ [ 1 ] ] )
935 saveRDS( f i n a lR e s u l t L i s t , " f ina lBenchmarkResults . rda" )
936
937 # make l a t e x t ab l e s f o r the r e s u l t s from each data s e t
938 l i b r a r y ( s t a r g a z e r )
939 f o r ( i in 1 : l ength ( f i n a lR e s u l t L i s t ) ) {
940 s t a r g a z e r ( f i n a lR e s u l t L i s t [ [ i ] ] , summary = FALSE)
941 }
942
943 # Compute omnibus t e s t s f o r d i f f e r e n t performance metr i c s
944 f i n a lR e s u l t L i s t <− readRDS( " f ina lBenchmarkResults . rda" )
945 perfMat <− matrix (0 , nrow=length ( f i n a lR e s u l t L i s t ) , nco l=5)
946 per fMatList <− l i s t ( )
947 f o r ( i in 1 : nrow ( f i n a lR e s u l t L i s t [ [ 1 ] ] ) ) {
948 f o r ( j in 1 : l ength ( f i n a lR e s u l t L i s t ) ) {
949 perfMat [ j , ] <− f i n a lR e s u l t L i s t [ [ j ] ] [ i , ]
950 rownames ( perfMat ) <− names ( f i n a lR e s u l t L i s t )
951 colnames ( perfMat ) <− colnames ( f i n a lR e s u l t L i s t [ [ 1 ] ] )
952 }
953 per fMatList [ [ i ] ] <− perfMat
954 }
955 names ( per fMatList ) <− rownames ( f i n a lR e s u l t L i s t [ [ 1 ] ] )
956
957 # compute Iman−Devenport omnibus p−value per performance metr ic
958 omniBusTest <− l i s t ( )
959 f o r ( i in 1 : l ength ( per fMatList ) ) {
960 omniBusTest [ [ i ] ] <− imanDavenportTest ( per fMatList [ [ i ] ] [ , − 3 ] )
961 }
962 names ( omniBusTest ) <− names ( per fMatList )
963 # −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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