
Volume 21 (1), pp. 33–51

http://www.orssa.org.za

ORiON
ISSN 0529-191-X

c©2005

Efficient heuristics for the Rural Postman Problem

GW Groves
∗

JH van Vuuren
†

Received: 29 July 2004; Revised: 16 December 2004; Accepted: 9 February 2005

Abstract

A local search framework for the (undirected) Rural Postman Problem (RPP) is presented
in this paper. The framework allows local search approaches that have been applied success-
fully to the well–known Travelling Salesman Problem also to be applied to the RPP. New
heuristics for the RPP, based on this framework, are introduced and these are capable of
solving significantly larger instances of the RPP than have been reported in the literature.
Test results are presented for a number of benchmark RPP instances in a bid to compare
efficiency and solution quality against known methods.
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1 Introduction

Consider a weighted graph G = (V, E), with vertex set V = {v1, . . . , vp}, edge set E,
and edge weights denoted by c(i, j) for all vivj ∈ E. The well–known Chinese Postman
Problem (CPP) is the problem of determining a minimum–weight closed route traversing
each edge vivj ∈ E at least once (Guan, 1962). The CPP is tractable and may be solved
in O(|V |3) time (Edmonds and Johnson, 1973). The Rural Postman Problem (RPP) is a
generalisation of the CPP in which a subset of the edges Er ⊆ E (called required edges)
have to be traversed. It is the problem of determining a minimum–weight closed route
traversing each edge in Er at least once. The RPP is NP–Hard (Lenstra and Rinnooy
Kan, 1976), except when Er = E, in which case the problem reduces to the CPP. The
above CPP and RPP definitions for undirected graphs have been generalised in many
ways, and algorithms catering for directed and mixed graphs, for example, have been
introduced — see Ball et al. (1995), Dror (2000) and Eiselt et al. (1995a, 1995b) for an
overview. These versions of the RPP have many applications — see, for example, Angel
et al. (1972), Beltrami and Bodin (1974), Bennet and Gazis (1972), Bodin and Berman
(1979), Bodin et al. (1989), Bodin and Kursh (1979), Braca et al. (1993), Desrosiers et al.
(1986), Eglese (1994), Eglese and Murdock (1991), Gelders and Cattrysse (1991), Ghiani
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and Improta (2001), Grötschel et al. (1991), Levy and Bodin (1988), Roy and Rousseau
(1989), Stern and Dror (1979) and Wunderlich et al. (1992).

In this paper, local search heuristics are presented for the (undirected) RPP. Heuristic
methods stand in contrast to exact methods (i.e., algorithms that yield optimal solutions)
in that they are designed with the aim of finding good (though not necessarily optimal)
solutions without expending much computational execution time. The class of so–called
local search heursitics is a family of methods that operates by iteratively performing
transformations (referred to as moves) to existing solutions to an optimisation problem in
a way that tends to (but is not guaranteed to) improve the solution as the search progresses.
Typically, a local search heuristic operates by considering a number of candidate moves
during each iteration, and selects the best one to perform on the solution. During the
next iteration, the process is repeated on the transformed solution, and so on.

Perhaps the best known heuristic for the undirected RPP is Frederickson’s heuristic (Fred-
erickson, 1979). This heuristic is similar to Christofides’ heuristic for the Travelling Sales-
man Problem1 (TSP), and operates by adding artificial edges (representing shortest paths
between the relevant vertices in G) to the subgraph induced by Er in a way that yields a
connected, Eulerian graph (i.e., one in which it is possible to find a closed route traversing
each edge exactly once). Hertz et al. (1999) introduced a family of local search heuris-
tics for the RPP, while Fernández de Córdoba et al. (1998) employed a heuristic based
on Monte Carlo principles. Exact algorithms have been proposed by Christofides et al.
(1986), Corberan and Sanchis (1991), Ghiani and Laporte (2000), and Letchford (1996).
The algorithm by Ghiani and Laporte has been used to solve instances with 350 vertices
to optimality, which seem to constitute the largest instances previously addressed by ei-
ther an exact or heuristic method in the literature. The heuristic presented in this paper
is capable of (approximately) solving considerably larger instances of the RPP, and the
quality of its solutions compare very favourably to those documented in the literature for
benchmark problems.

This paper is structured as follows. A local search framework is described in §2, which
allows local search moves that have traditionally been applied successfully to Vertex Rout-
ing Problems (VRPs), such as the TSP, also to be applied to Arc Routing Problems
(ARPs), such as the RPP and the Capacitated Arc Routing Problem2. This transition
is achieved by the introduction of a complexity reduction method (in §2.3) in which both
aspects of the order (in §2.1) and direction (in §2.2) of edge traversals are accommodated.
The section is concluded with a worked example, before we report results obtained by the
heuristics for a number of benchmark RPP instances in §3. The paper closes with a short
conclusion in §4.

1The problem of finding a minimum–weight closed route, containing every vertex of a weighted graph.
2The problem of finding a set of closed routes of minimum total weight in a weighted graph, satisfying

the following conditions: (i) each route starts and ends at a specified vertex, representing a depot, (ii) each
edge in Er is traversed at least once by some route, and (iii) the sum of demands of each route does not
exceed vehicle capacity.
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2 Local Search Framework

Denote a solution to the RPP by the sequence S = 〈(vs1
, vt1), (vs2

, vt2), . . . , (vsn , vtn)〉 of
required edges in the order in which they are traversed. Traversals taking place between
the required traversals are omitted from the sequence and are assumed to take place along
routes corresponding to shortest distances between the required edges of the sequence.
The total weight of the route is therefore given by

C(S) =
n

∑

i=1

c(si, ti) +
n−1
∑

j=1

d(tj , sj+1) + d(tn, s1), (1)

where d(k, ℓ) denotes the shortest distance between two vertices vk, vℓ ∈ V (G), and c(i, j)
is the cost weight associated with the edge vivj , as before.

2.1 Applying Local Search Moves

In a local search framework moves are performed on candidate solutions to the RPP
that directly specify the order in which required edges are traversed in the transformed
solution. An example of such a move is one that simply exchanges the order in which two
required edges are traversed. Given, for example, the route

S1 = 〈(3, 4), (4, 1), (5, 6), (5, 4), (6, 8)〉,

the edges (3, 4) and (5, 4) might be exchanged, to yield the transformed route

S1∗ = 〈(5, 4), (4, 1), (5, 6), (3, 4), (6, 8)〉.

Typically, one would consider all pairs of these exchanges during a single iteration of
the search and then perform one that yields a route of minimum overall cost. In the
above example, the traversal order of required edges was altered, but not their traversal
directions. However, it may be better to traverse the edge (3, 4) in S1∗, for example, in the
direction (4, 3) instead of in the direction (3, 4). Consequently, it is necessary to determine
the optimal directions of traversals of required edges in S1∗ after performing an exchange.

Applying a move therefore involves altering the order of the required edges in the route, and
then determining their directions of traversal. This requirement for determining traversal
directions results in an increased time complexity, when compared to applying the same
type of move to a VRP. However, by using a complexity reduction method presented later,
it is, in fact, possible to determine the cost of a route without redetermining the traversal
directions of all of its required edges. This allows for the development of comparatively
efficient procedures for many ARPs.

The moves considered in this paper for the RPP are slightly more involved than the above
example, and are based on the well–known Two–Opt (Flood, 1956 and Croes, 1958) and
Three–Opt (Bock, 1958 and Lin, 1965) procedures for the TSP. The application of the
Two–Opt method is explained with the aid of Figure 1(a), depicting a solution for a small,
hypothetical instance of the RPP. The vertices in the figure represent the required edges
of the problem, and the solid arcs represent shortest paths between vertices incident to
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0 s5; t5 s4; t4 s3; t3s2; t2s1; t1
(a) Two–Opt moves1; t1 s2; t2 s3; t3 s4; t4 s5; t5s6; t6s7; t7s8; t8s9; t90

(b) Three–Opt move

Figure 1: Operation of the Two–Opt and Three–Opt move types. Cancelled solid arcs are

removed, and the route is reconnected as shown by the dashed lines.

required edges. The Two–Opt procedure is applied by deleting two of the edges, and re–
connecting the route so that it corresponds to the dotted arcs, again using shortest paths
between the relevant vertices. Two–Opt is typically implemented as a post–optimisation
procedure by performing the best Two–Opt move out of all possible moves, and then
repeating this process until no improving solution can be found.

The Three–Opt procedure, depicted in Figure 1(b), is similar to Two–Opt, but three
edges are deleted instead and are replaced with shortest paths in a differently connected
traversal order. Note that there are eight possible ways of connecting three route segments
in this way. Of course the Three–Opt procedure includes Two–Opt as a special case. The
vertex 0 in Figure 1 represents a domicile vertex, from which a route is considered to start
and end, and may represent a depot in a practical context. However, for the RPP, in
which a specific domicile vertex is not specified, the vertex 0 may be taken as any vertex
incident to a required edge.

Returning to our previous small example sequence for the RPP, the solution sequence

S2 = 〈(3, 4), (5, 4), (5, 6), (4, 1), (6, 8)〉
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is found upon applying the Two–Opt procedure to S1, deleting the shortest path between
the first and second required edges, and between the fourth and the fifth required edges
in S1 and assuming that the traversal directions of the edges are not also reversed. The
Three–Opt procedure for the RPP may be applied in a similar manner.

However, as mentioned earlier, the optimal traversal directions for the edges also have to
be determined after performing the standard Two–Opt or Three–Opt operation.

2.2 Determining Traversal Directions

The algorithm described in this section may be used to compute optimal traversal direc-
tions for the edges in a solution sequence S for the RPP, given a fixed order of the edges
in the sequence. The algorithm may be applied after each local search move performed in
order to yield the smallest cost weight for the new ordering of S.

Consider a routing sequence S = 〈(vs1
, vt1), (vs2

, vt2), . . . , (vsn , vtn)〉 and construct, from
the solution sequence, a directed, layered auxilliary graph L with vertex set V (L) =
{b, s1t1,t1s1,s2t2, t2s2,. . . , sntn, tnsn, e} . The first and last layer of the auxilliary graph
each consists of a single vertex, and the other layers each consist of two vertices. Each
internal layer of the graph represents the two possible active traversal directions vsi

vti and
vtivsi

(0 < i ≤ n) of an edge in S. The labels b and e represent the vertices at which the
route is to begin and end. For a closed route vb = ve, and in the RPP vb = ve is incident
to an edge in Er.
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Figure 2: The layered graph L, corresponding to the solution sequence S =

〈(vs1
, vt1

), (vs2
, vt2

), . . . , (vsn
, vtn

)〉.

For each i (0 < i < n) construct edges in L directed from siti to si+1ti+1 & ti+1si+1, and
from tisi to si+1ti+1 & ti+1si+1. Also add edges directed from b to s1t1 & t1s1 and from
sntn & tnsn to e. Assign a weight of d(ti, si+1) [d(si, ti+1), respectively] to the edge in
L between siti and si+1ti+1 [tisi and ti+1si+1, respectively] for every 0 < i < n, where
d(i, j) denotes the cost of a shortest path from vi to vj , as before. Similarly assign a
weight of d(ti, ti+1) [d(si, si+1), respectively] to the edge in L between siti and ti+1si+1

[tisi and si+1ti+1, respectively] for every 0 < i < n. Assign a weight of d(b, s1) [d(b, t1)
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respectively] to the edge in L between b and s1t1 [t1s1 respectively] and a weight d(tn, e)
[d(sn, e) respectively] to the edge between sntn [tnsn respectively] and e.

Each route from b to e in L represents one way of arranging the traversal directions of
edges within S, and a shortest path from b to e in L represents a set of optimal directions
by which to traverse the edges of S. For example, if vertex t2s2 is on a calculated shortest
path, then the second edge of S should be traversed from vt2 to vs2

, and hence coded as
(vt2 , vs2

) in S, instead of (vs2
, vt2). Note that the total weight of a route may be found by

adding the sum of the weights of the required edges to the weight of the shortest path.

The computational complexity of finding a shortest path in a directed, acyclic graph, such
as L, is O(E(L)+V (L)) (Mehlhorn and Näher, 1999), because no updating of information,
such as occurs in Dijkstra’s method (Dijkstra, 1959), is necessary during the algorithm
execution. However, because no earlier layer of L can be reached from a later layer, and
because each layer consists of a predetermined number of vertices, and is connected to the
other layers in the particular manner shown, this complexity may be reduced further to
O(V (L)).

The algorithm for computing a shortest path between b and e in L is a straightforward
one, and is given by the pseudo–code listing in Algorithm 1. Let dL(i, j) be the distance
between vertices i and j in the auxilliary graph L, and let wL(i, j) be the weight of the edge
between i and j in L. In the algorithm pred(i) is a variable that stores the predecessor
vertex of vertex i in a shortest path from b to e in L.

Algorithm 1 (Shortest path through the layered graph L)
Input: A layered graph L, as described earlier, with edge weights wL(i, j) for each edge
ij ∈ E(L).
Outputs: (1) The shortest path from b to e in L, stored in the variables pred(i), for all
i ∈ V (L), (2) The shortest distance, dL(b, e), from b to e in L.

1. dL(b, s1t1) ← wL(b, s1t1), dL(b, t1s1) ← wL(b, t1s1),
pred(s1t1) ← b, pred(t1s1) ← b.

2. For i ← 2, . . . , n:

2a. val1 ← dL(b, si−1ti−1) + wL(si−1ti−1, siti),
val2 ← dL(b, ti−1si−1) + wL(ti−1si−1, siti)).

2b. if (val1 < val2) then {dL(b, siti) ← val1, pred(siti) ← si−1ti−1}
else {dL(b, siti) ← val2, pred(siti) ← ti−1si−1}.

2c. val1 ← dL(b, si−1ti−1) + wL(si−1ti−1, tisi),
val2 ← dL(b, ti−1si−1) + wL(ti−1si−1, tisi).

2d. if (val1 < val2) then {dL(b, tisi) ← val1, pred(tisi) ← si−1ti−1}
else {dL(b, tisi) ← val2, pred(tisi) ← ti−1si−1}.

3. val1 ← dL(b, sntn) + wL(sntn, e),
val2 ← dL(b, tnsn) + wL(tnsn, e)
if(val1 < val2) then {dL(b, e) ← val1, pred(e) ← sntn}
else {dL(b, e) ← val2, pred(e) ← tnsn}. ¥
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Every vertex of L (except b) is considered once by the algorithm, and its complexity is
therefore O(V (L)). The operation of assigning the computed distance of a vertex (from
some other vertex) is referred to as labelling in the literature on shortest path algorithms.
Each step of the algorithm performs a labelling operation on one or two vertices with
respect to vertex b. In the next section, it is argued that the above procedure does not
necessarily need to be applied each time that a move is evaluated.

2.3 Reducing Computational Complexity

The task of computing a shortest path in the layered graph in §2.2 is of linear compu-
tational complexity. Hence, if the shortest path is computed each time that a move is
evaluated, it adds an order of magnitude to the computational complexity of the search
heuristic. However, an approach is presented in this section that allows a move to be evalu-
ated without having to re–compute the shortest path through the layered graph, provided
that certain shortest path information is known about the untransformed solution (i.e.,
the solution before the move was implemented).

For the purposes of describing the method of computational complexity reduction, a move
performed in a candidate solution S to obtain a transformed candidate solution S∗ may
be viewed as a sequence of z subsequences, containing pairs, given by

TRANSFORM(S → S∗) = 〈 〈 (o1, n1), . . . , (ol1 , nl1) 〉1 , 〈 (ol1+1, nl1+1), . . . , (ol2 , nl2) 〉2,

. . . , 〈 (olz−1+1, nlz−1+1), . . . , (olz , nlz) 〉z 〉,

where each subsequence represents adjacent elements in S involved in the move. In each
pair, o and n represent respectively the old position (in S) and the new position (in S∗)
of an edge in S that had its position changed in the sequence during the move. The edges
of each subsequence are adjacent both before and after the move (else they are placed in
separate subsequences), and the subsequences are listed in increasing order of the positions
of their edges after the move, i.e. no subsequence placed later than another will contain
a smaller n value than the earlier subsequence, and the pairs within the subsequences
themselves are arranged in increasing order of n. To illustrate this notation, consider
again our hypothetical solution sequence S1 in §2.1. Assuming that a move involves
moving the second edge to the end of the sequence (which incidentally is one of the moves
considered by a Three–Opt procedure), the resulting sequence is

S3 = 〈(3, 4), (5, 6), (5, 4), (6, 8), (4, 1)〉,

and the move may be expressed as

TRANSFORM(S1 → S3) = 〈 〈(3, 2), (4, 3), (5, 4)〉 , 〈(2, 5)〉 〉,

where the second subsequence, consisting of a single pair, represents the edge that is
moved from position 2 to position 5, as reflected by its entry (2, 5). The first subsequence,
consisting of 3 pairs, represents the edges that move to the left to make place for the edge
that moved to the end.

The complexity reduction method is based on the observation that edges of the same subse-
quence will retain their distances with respect to each other during a move. Note, however,
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Figure 3: The layered graph, L4, corresponding to the solution sequence S4 =

〈(2, 1), (1, 3), (3, 2), (5, 6), (8, 7), (7, 2)〉. A shortest path from the first to the last layer is shown

using bold edges.

that when a subsequence describes edges that are reversed in the transformed sequence,
the shortest paths take place along routes that are perhaps not as intuitive as in the case
where the edges are not reversed. Consider, for example, the layered graph L4, corre-
sponding to a hypothetical solution sequence S4 = 〈(2, 1), (1, 3), (3, 2), (5, 6), (8, 7), (7, 2)〉,
shown in Figure 3. The bold edges in the figure indicate a shortest path (and opti-
mal traversal directions) of S4. Consider the Two–Opt move TRANSFORM(S4 → S4∗) =
〈 〈(5, 2), (4, 3), (3, 4), (2, 5)〉 〉, which reverses the segment between (and including) the sec-
ond and fifth edges in S4. The layered graph of the transformed solution, L4∗, is shown in
Figure 4. A shortest path between vertices 5 and 11 of L4∗ (shown as bold edges) has the
same length as the shortest path from vertex 4 to 10 in L4. Similarly, the distance from
4 to 10 in L4∗ equals the distance from 5 to 11 in L4. The distance from 4 to 11 [5 to 10,
respectively] in L4∗ equals the distance from 4 to 11 [5 to 10, respectively] in L4.
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Figure 4: The layered graph L4∗ of the transformed solution sequence S4∗. The path indicated

by the bold edges, between vertices 5 and 11, represents the same path as the path between vertices

4 and 10 in Figure 3.

The complexity reduction method is now described in general, using the alternative nota-
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tion for a move introduced earlier in the section. The method is described in some detail in
the pseudo–code listing below, and may be read in conjunction with subsequent example,
provided after the algorithm listing, to simplify understanding. Define label(L,i,j) as a
function that performs the labelling operation of a vertex j (with respect to a vertex i) in
order to yield dL(i, j) (see §2.2). Each iteration of a local search procedure proceeds as
listed in Algorithm 2.

Algorithm 2 (Local search iteration using the complexity reduction method)
Input: A solution sequence S with corresponding layered graph L, as described in §2.2.
Output: A transformed solution sequence, with the minimum total cost out of all the moves considered.

1. Calculate, in L, the shortest distance from all vertices to e (the distances from each of these vertices
to all vertices in later layers becomes known).

2. For each possible move (denote the transformed solution S∗, and its auxilliary graph L∗):

2.1 Set dL∗(b, sn1−1tn1−1) ← dL(b, sn1−1tn1−1), dL∗(s, tn1−1sn1−1) ← dL(b, tn1−1sn1−1)

2.2 For each subsequence k ← 1, . . . , z in TRANSFORM(S → S∗):

2.2.1 Assume l0 = 0, n0 = 0; label(L∗, b, snlk−1+1
tnlk−1+1

), label(L∗, b, tnlk−1+1
snlk−1+1

)

2.2.2 If nlk > nlk−1+1 (i.e., more than one pair in subsequence) calculate dL∗(b, snlk
tnlk

) and
dL∗(b, tnlk

snlk
) as follows: (else they are already known)

If olk > olk−1 (i.e., if the edges of subsequence are not reversed):

dL∗(b, snlk
tnlk

) ← min

{

dL∗(b, snlk−1+1
tnlk−1+1

) + dL(solk−1+1
tolk−1+1

, solk
tolk

)

dL∗(b, tnlk−1+1
snlk−1+1

) + dL(tolk−1+1
solk−1+1

, solk
tolk

)

dL∗(b, tnlk
snlk

) ← min

{

dL∗(b, snlk−1+1
tnlk−1+1

) + dL(solk−1+1
tolk−1+1

, tolk
solk

)

dL∗(b, tnlk−1+1
snlk−1+1

) + dL(tolk−1+1
solk−1+1

, tolk
solk

)

else (i.e., edges of subsequence are reversed):

dL∗(b, snlk
tnlk

) ← min

{

dL∗(b, snlk−1+1
tnlk−1+1

) + dL(tolk
solk

, tolk−1+1
solk−1+1

)

dL∗(b, tnlk−1+1
snlk−1+1

) + dL(tolk
solk

, solk−1+1
tolk−1+1

)

dL∗(b, tnlk
snlk

) ← min

{

dL∗(b, snlk−1+1
tnlk−1+1

) + dL(solk
tolk

, tolk−1+1
solk−1+1

)

dL∗(b, tnlk−1+1
snlk−1+1

) + dL(solk
tolk

, solk−1+1
tolk−1+1

)

2.2.3 If (k < z AND nlk+1 − nlk > 1) OR (k = z AND nlz < |S|):

label(L∗
, b, snlk

+1tnlk
+1), label(L∗

, b, tnlk
+1snlk

+1).

2.3 If nlz < |S|:

dL∗(b, e) ← min

{

dL∗(b, snlz
+1tnlz

+1 + dL(snlz
+1tnlz

+1, t)
dL∗(b, tnlz

+1snlz
+1 + dL(tnlz

+1snlz
+1, t)

else: label(L∗, b, e).

3 Select the move for which dL∗(b, e) is a minimum and perform this move on S. ¥

Note that Algorithm 2 does not apply any of the moves during step 2, but computes
what the total route cost would be if they were to be applied. The sequence S∗ is
therefore not seen as an existing sequence, but rather as one that may be inferred from
TRANSFORM(S → S∗).
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The computational complexity of step 1 is O(|V (L)|2). The complexity of step 2 depends
on two factors, the first of which is the number of moves evaluated and the second, the
time taken to evaluate a move. Using Two–Opt and Three–Opt, for example, there are
respectively O(|S|2) and O(|S|3) moves to be evaluated. The method takes O(z) time
to evaluate a move, and the complexity of step 3 is O(|S|). Therefore, the worst–case
computational complexity of using Two–Opt and Three–Opt in the pseudo–code algo-
rithm shown, is respectively O(|S|2) and O(|S|3). The average–case execution time of the
procedures are of the same orders of magnitude.

Finally, although it was stated earlier that TRANSFORM(S → S∗) describes only edges
that have their position changed in the transformed solution, in one particular case an
edge that does not have its positions changed may be included in the notation to sim-
plify the execution of the complexity reduction method. Consider the Two–Opt move
TRANSFORM(S5 → S5∗) = 〈 〈(5, 1), (4, 2)〉 〈(2, 4), (1, 5)〉 〉 performed on a hypothetical
solution sequence, S5. This move could also be encoded as TRANSFORM(S5 → S5∗) =
〈 〈(5, 1), (4, 2), (3, 3), (2, 4), (1, 5)〉 〉. The inclusion of the pair (3, 3) does not influence
the result of the complexity reduction method, but improves its execution time slightly,
because the method evaluates fewer subsequences. Therefore, in a move where a sequence
consisting of an odd number of edges is reversed, without otherwise moving their positions
in the sequence, it is more efficient to include, in the notation TRANSFORM(S → S∗),
the edge that does not have its position changed. Nevertheless, in a computer imple-
mentation, this is not a practical concern, because a move would not be encoded as in
TRANSFORM(S → S∗) during execution, since this would take O(|S|) time to encode.
Rather, the computer program would keep track of the untransformed and transformed
positions of the endpoints of each subsequence, and in doing so, would automatically en-
sure this benefit. The operation of the complexity reduction method is now illustrated by
means of example.
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Figure 5: An example RPP problem instance. Edge cost weights are shown next to each edge,

and required edges are denoted in bold face.

Example 1 The complexity reduction method is demonstrated in this example by applying
it to the graph in Figure 5, in which the required edges are denoted in bold face. Assume
that an initial solution to this instance has been determined, and is given by
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S0 = 〈(1, 3), (4, 8), (8, 5), (6, 9), (10, 6), (2, 1)〉.

The corresponding layered graph, denoted L0, is depicted in Figure 6. Its vertex set is
given by V (L0) = {1, . . . , 2 × 6 + 2 = 14}. The cost of S0 may be determined by adding
the sum of the cost weights of the required edges (i.e., the value 11) to dL0

(1, 14) = 15 to
yield a total cost of 26.

The evaluation of a single move by the complexity reduction method is described next. The
move under consideration is the Two–Opt move TRANSFORM(S0 → S∗

0 ) = 〈 〈(5, 2), (4, 3),
(3, 4), (2, 5)〉 〉, in which the sequence of edges between the first and the last edges in S0

are reversed. The resulting layered graph, as it would appear if the move were applied, is
shown in Figure 7. Note that the edges of this graph are omitted for the sake of clarity.
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Figure 6: The layered graph, L0, corresponding to the initial solution seqence S0 =

〈(1, 3), (4, 8), (8, 5), (6, 9), (10, 6), (2, 1)〉 of the RPP instance in Example 1.

The relevant cost labels required to compute the route weight are shown on the graph, as
computed by the complexity reduction method. The computations performed in step 2 of
the complexity reduction method proceed as follows:

2.1 Set dL∗
0
(1, 2) ← dL0

(1, 2) = 0, dL∗
0
(1, 3) ← dL0

(1, 3) = 1.

2.2 For the only subsequence k ← 1 in TRANSFORM(S0):

2.2.1 label(L∗
0, 1, 4), label(L∗

0, 1, 5) (yielding dL∗
0
(1, 4) = 3, dL∗

0
(1, 5) = 2).

2.2.2 nl1 = 5 > 2 = nl0+1, therefore dL∗
0
(1, 10) and dL∗

0
(1, 11) are computed in this

step. ol1 = 2 < 3 = ol1−1 (i.e. edges of subsequence reversed):

dL∗
0
(1, 10) ← min

{

dL∗
0
(1, 4) + dL0

(5, 11) = 3 + 10

dL∗
0
(1, 5) + dL0

(5, 10) = 3 + 8

}

= 11

dL∗
0
(1, 11) ← min

{

dL∗
0
(1, 4) + dL0

(4, 11) = 3 + 8

dL∗
0
(1, 5) + dL0

(4, 10) = 2 + 7

}

= 9.
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2.2.3 k = z = 1 AND nlz = 5, therefore:
label(L∗

0, 1, 12), label(L∗
0, 1, 13) (yielding dL∗

0
(1, 12) = 13, dL∗

0
(1, 13) = 11).

2.3 nlz = 5 < 6 = |S|, therefore:

dL∗
0
(1, 14) ← min

{

dL∗
0
(1, 12) + dL0

(12, 14) = 13 + 0

dL∗
0
(1, 13) + dL0

(13, 14) = 11 + 2

}

= 13.

The total cost of the solution after performing the move would be 24 (i.e., the sum of the
cost weights of the required edges, 11, added to dL∗

0
(1, 14) = 13). The example illustrates

how the total cost of the route may be found without actually performing the move or
computing an entire shortest path from vertex 1 to 14. Note also that the optimal traversal
directions need not be redetermined when the complexity reduction method is used. ¥
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Figure 7: The layered graph L∗

0
obtained by performing the move TRANSFORM(S0 → S∗

0
) =

〈〈(5, 2), (4, 3), (3, 4), (2, 5)〉〉. The labels calculated by the complexity reduction procedure are

shown as bold numbers beside the relevant vertices.

3 Computational Results for the RPP

The results obtained from applying the Two–Opt and Three–Opt heuristics (described in
§2) to benchmark problems and new test data are presented in this section and contrasted
with results previously obtained by others.

3.1 Details of Heuristics

A Two–Opt and Three–Opt procedures, described in §2.1, were used to arrive at the results
presented in this section. The heuristic of Frederickson (1979), of complexity O(|V |3), was
used to generate starting solutions for the Two–Opt and Three–Opt procedures, and the
method described in §2.3 was used to reduce the complexity of each iteration of Two–Opt
procedure [Three–Opt procedure, respectively] to O(|Er|

2) [O(|Er|
3), respectively]. A

one–dimensional array of integer values was used to represent the order in which the edges
of the route are traversed, and the Two–Opt and Three–Opt procedures were performed
on this array.
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3.2 Benchmark Graph Instances

The results obtained from applying the Two–Opt and Three–Opt heuristics to a set of
benchmark test instances are shown in Table 1. The instances numbered 1 to 24 in Table
1 are the instances used by Christofides et al. (1986), and the other two instances are two
of the so–called Albaida instances3 used by Corberán and Sanchis (1991). Hertz et al.
(1999) and Fernández de Córdoba et al. (1998) present results for the same data. Note
that the execution times listed in the columns for the Two–Opt and Three–Opt procedures
of Table 1 are the total execution time, including the time taken to generate an initial
solution.

Optimal Frederickson Two–Opt Three–Opt

Instance |V | |E| |Er| cost Cost Time Cost Time Cost Time

1 11 13 7 76 76 0 76 0 76 0
2 14 33 12 152 155 0 153 0 152 0
3 28 58 26 102 105 0 103 0 103 0
4 17 35 22 84 84 0 84 0 84 0
5 20 35 16 124 130 0 124 0 124 0
6 24 46 20 102 107 0 107 0 102 0
7 23 47 24 130 130 0 130 0 130 0
8 17 40 24 122 122 0 122 0 122 0
9 14 26 14 83 83 0 83 0 83 0
10 12 20 10 80 80 0 80 0 80 0
11 9 14 7 23 26 0 23 0 23 0
12 7 18 5 19 22 0 19 0 19 0
13 7 10 4 35 35 0 35 0 35 0
14 28 79 31 202 207 0 204 0 202 0
15 26 37 19 441 445 1 441 0 441 0
16 31 94 34 203 215 0 205 0 203 0
17 19 44 17 112 116 0 112 0 112 0
19 33 55 29 257 274 0 271 0 266 0
20 50 98 63 398 402 0 400 0 400 1
21 49 110 67 366 372 0 372 0 372 0
22 50 184 74 621 633 0 622 0 622 0
23 50 158 78 475 479 0 477 0 477 2
24 41 125 55 405 411 0 405 0 405 0

AlbA 102 160 99 10 599 10 599 0 10 599 0 10 599 2
AlbB 90 144 88 8 629 8 629 0 8 629 0 8 629 1

Table 1: Results for RPP benchmark test instances. Execution times are measured in seconds

and were achieved on an Intel Pentium IV processor (2.8 GHz) with 512 Mb memory.

Note also that instance 18 of the Christofides problems is omitted from this analysis due
to inconsistencies in its reported optimal value. Hertz et al. (1999) report that the optimal
solution for this graph instance has a cost weight of 147 and that a solution of this cost
is found by their heuristics, while Fernández de Córdoba et al. (1998) report that it is
148 and that their procedure also finds a solution of this cost. However, the heuristics
described in §2.1 and §2.3 found a solution of cost 146. A manual examination of the route
confirms that a feasible solution of cost 146 exists.

3Albaida is a Spanish town, on whose streets the graphs are based.
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Frederickson’s heuristic found an optimal solution 9 times out of the 25 instances consid-
ered. When the Two–Opt procedure was also applied, this number increased to 15. When
the Three–Opt procedure was used in conjunction with Frederickson’s heuristic instead, an
optimal solution was found 19 times out of 25. The heuristic of Fernández de Córdoba et
al. (1998) found an optimal solution 11 times out of 25, while the Two–Opt based heuristic
of Hertz et al. (1999) found an optimal solution 22 times out of 25. However, the high
computational complexity of the Hertz et al. (1999) Two–Opt heuristic (O(|E|5) per iter-
ation) and the fact that actual running times closely match theoretical worst–case times
in exchange–based moves (because all exchanges are considered), limits its applicability
to small problem instances, in our opinion.

3.3 Graph Instances with Euclidean and Random Edge Weights

The graph instances of Table 1 are clearly well within the capabilities of all the heuristics
considered, and two larger sets of data were therefore generated, in order to establish
bounds of practical feasiblity for the heuristics, in terms of problem instance sizes that
could be considered. The results of applying the heuristics to these larger instances are
shown in Table 2.

The instances of the first data set in Table 2(a) were generated with Euclidean edge
weights4, and the instances of the data set in Table 2(b) with random edge weights5. The
dimensions of the graphs were chosen uniformly in the ranges 500 ≤ |V | ≤ 1 000 and
2 500 ≤ |E| ≤ 3 500, and the number of required edges in each graph (i.e., |Er|) was set
to approximately 10% of the size of the graph. The edges designated as required were
selected iteratively — a random as yet non–required edge was chosen and then designated
as required only if the subgraph induced by the required edges would be disconnected if it
were to be chosen. The process was repeated until the desired number of required edges
had been selected. The graphs were generated according to the procedure outlined in
Algorithm 3.

Algorithm 3 (Generate Random Graph Instance)
Inputs: Order p and size p − 1 ≤ q ≤

(

p

2

)

of problem instance.
Output: Random instance of a connected graph G, of order p and size q.

1. Initialise the graph G to contain p vertices (and no edges).

2. Select two different components of G at random, and add an edge between a randomly chosen vertex
from each component. Repeat this step until G is connected.

3. While G has fewer than q edges, add an edge between two randomly chosen vertices not yet joined
by an edge.

4. Output G. ¥

The algorithm used to determine the lower bound values in Table 2 operates in a similar
way to the well–known Edmonds & Johnson algorithm for the CPP. A minimum cost
maximum cardinality matching is performed on the odd–degree vertices of the subgraph
induced by the required edges (Edmonds and Johnson, 1973).

4The vertices of each graph were each randomly assigned a position in a unit square (according to
a uniform distribution) and the edge weights were set equal to the value obtained by multiplying the
Euclidean distance between vertices by 1 000 and rounding the result to the nearest integer.

5The edge weights of the random instances were uniformly chosen integer values between 1 and 1 000.
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Lower Frederickson Two–Opt Three–Opt

Instance |V | |E| |Er| bound Cost Time Cost Time Cost Time

1 691 3 163 316 218 119 225 662 14 222 787 14 221 170 427
2 550 2 929 293 184 325 189 387 10 187 192 10 186 838 228
3 798 3 035 304 216 423 232 963 22 227 112 24 22 5146 658
4 949 2 964 296 236 528 266 009 36 254 086 38 252 358 539
5 942 2 560 256 205 765 233 626 35 225 755 36 221 497 656
6 979 2 750 275 222 316 252 088 38 239 067 41 236 606 844
7 507 3 368 337 204 543 209 001 8 208 157 8 207 478 225
8 703 3 086 309 199 995 211 372 17 207 067 19 204 870 641
9 931 3 299 330 246 775 269 025 34 261 619 37 257 978 989
10 569 2 809 281 193 185 200 594 10 198 415 10 196 181 327
11 622 2 602 260 188 206 198 362 21 193 000 23 192 659 347
12 522 3 444 344 208 101 210 810 8 209 970 8 209 235 485
13 516 3 182 318 196 353 201 176 8 198 980 9 198 660 300
14 582 2 910 291 191 034 199 944 10 197 222 11 195 900 328
15 609 3 193 319 218 343 227 234 11 223 737 13 221 830 626
16 508 2 562 256 166 198 170 718 6 168 878 7 168 178 106
17 642 3 426 343 226 939 232 660 12 230 594 13 229 444 659
18 671 2 528 253 182 133 197 226 14 191 998 15 189 767 335
19 776 2 835 284 206 621 226 058 21 220 830 21 217 659 471
20 678 3 499 350 221 710 230 688 15 226 875 18 225 473 1 119

(a) Euclidean Distances

Lower Frederickson Two–Opt Three–Opt

Instance |V | |E| |Er| bound Cost Time Cost Time Cost Time

1 967 3 119 312 214 326 227 852 36 221 246 39 219 664 856
2 929 2 783 278 187 957 201 579 33 197 444 34 193 954 881
3 599 2 569 257 148 932 153 963 10 151 811 11 151 036 284
4 550 3 303 330 184 770 186 243 8 185 855 9 185 831 143
5 685 3 053 305 179 895 185 820 15 184 144 16 183 750 475
6 955 2 752 275 210 372 227 992 35 223 118 37 221 149 503
7 944 2 880 288 198 584 215 513 35 209 089 38 207 532 758
8 838 3 115 312 206 151 215 805 40 211 609 44 211 198 690
9 536 3 181 318 180 559 182 763 16 182 137 18 181 497 387
10 673 3 282 328 186 293 189 757 29 187 760 33 187 461 602
11 707 2 735 274 171 334 177 479 31 175 019 34 174 389 413
12 607 2 642 264 162 047 166 290 21 163 926 23 163 265 277
13 640 3 028 303 177 381 179 896 24 178 605 26 178 043 471
14 883 3 343 334 219 426 229 799 60 226 281 61 225 202 748
15 763 3 098 310 182 712 189 261 39 185 883 43 185 685 603
16 648 2 882 288 169 575 175 739 25 173 387 27 173 321 314
17 617 3 427 343 204 898 208 236 24 206 502 28 206 486 635
18 976 3 451 345 221 410 233 249 78 227 217 84 226 224 1 100
19 919 2 856 286 197 571 208 484 63 205 113 66 204 361 479
20 831 3 359 336 215 776 222 990 50 219 805 54 219 115 772

(b) Random Distances

Table 2: Test results for two new RPP data sets, one consisting of Euclidean edge weights, and

the other with random edge weights. Execution times are measured in seconds and were achieved

on an Intel Pentium IV processor (2.8 GHz) with 512 Mb memory.
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Data Set Frederickson Two–Opt Three–Opt

Euclidean 5.9% 3.8% 3.0%
Random 4.1% 2.5% 2.0%

Table 3: Average percentage–gap–over–lower bound values obtained by the RPP heuristics on

the test problem instances of Table 2.

The performance of the heuristics, in relation to the lower bound values, are summarised
in Table 3. The Two–Opt procedure is typically able to reduce the gap over lower bound
values obtained by Frederickson’s heuristic by a further 1.5 − 2.0%. The Three–Opt
procedure is able to reduce this gap to approximately 2 − 3%.

3.4 Large Problem Instances

Computational results for a set of large test problems are shown in Table 4. These results
were obtained using the Two–Opt heuristic. The instances of this table were generated in
the same manner as those in Table 2, and were assigned random Euclidean edge weights.
The order and size of each graph were chosen uniformly from the ranges 3 000 ≤ |V | ≤ 5 000
and 20 000 ≤ |E| ≤ 30 000 respectively.

Lower Frederickson Two–Opt

Instance |V | |E| |Er| bound Cost Time Cost Time

1 4 462 27 506 2 751 1 729 797 1 764 008 3 718 1 752 799 4 339
2 3 130 22 342 2 234 1 363 165 1 374 875 1 270 1 369 920 1 518
3 4 555 24 398 2 440 1 577 885 1 628 666 3 859 1 610 481 4 622
4 4 592 22 492 2 249 1 502 920 1 564 479 3 945 1 539 635 4 852
5 4 740 28 547 2 855 1 809 672 1 846 532 4 342 1 833 930 5 079
6 4 927 25 007 2 501 1 632 439 1 692 323 4 836 1 669 227 5 901
7 3 260 29 835 2 984 1 743 054 1 749 300 1 508 1 747 615 1 641
8 4 221 23 490 2 349 1 497 199 1 536 811 3 014 1 523 367 3 568
9 4 519 20 839 2 084 1 413 368 1 480 931 3 678 1 458 962 4 288
10 3 908 20 660 2 066 1 326 576 1 373 923 3 365 1 353 635 4 538

Table 4: Test results for an RPP data set consising of large graphs. Execution times are

measured in seconds and were achieved on an Intel Pentium IV processor (2.8 GHz) with 512 Mb

memory.

The instances of Table 4 are the largest known RPP instances to which either a heuristic
or exact method have been applied successfully. The largest graphs previously reported
seem to be those of Ghiani and Laporte (2000), consisting of 350 vertices and an average
of 1370 edges (of which approximately 140 are required edges).

4 Conclusion

New heuristics for the Rural Postman Problem (RPP) were introduced in this paper. The
heuristics are based on a local search framework that can also be used to optimise routes
in other types of arc routing problems (e.g., the Capacitated Arc Routing Problem), and
seem to consistute the best heuristic approach currently available for the RPP.
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[28] Grötschel M, Jünger M & Reinelt G, 1991, Optimal control of plotting and
drilling machines: A case study, Operations Research, 35, pp. 61–84.

[29] Guan M, 1962, Graphic programming using odd and even cycles, Chinese Mathe-
matics, 1, pp. 237–277.



Efficient heuristics for the Rural Postman Problem 51

[30] Hertz A, Laporte G & Nanchen-Hugo P, 1999, Improvement procedures for
the undirected rural postman problem, INFORMS Journal on Computing, 11(1), pp.
53–62.

[31] Lacomme P, Prins C & Ramdane-Chérif W, 2002, Fast algorithms for gen-
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