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SUMMARY 
 

Processors face the problem of extending the shelf-life of yellowfin tuna, while still maintaining the 

desirable bright red colour.  Methods which have commonly been applied to meats and fish for 

shelf-life extension, such as ultra-low temperature freezing and vacuum packaging, have proved 

ineffective for tuna as these methods result in undesirable colour changes.  Another method is the 

use of a carbon monoxide (CO) treatment, which results in tuna muscle with a desirable cherry-red 

colour that is stable during freezing and vacuum packaging.  It is generally used in conjunction with 

freezing and vacuum packaging and can be used as a single gas (100% CO) or at varying 

concentrations in a mixture of gases.  Other benefits of the use of CO include the potential 

inhibition of protein and lipid oxidation which would result in shelf-life extension.  Its use with tuna 

has been criticised as it could mask spoilage indicators such as discolouration which could be 

misleading to consumers. 

Two pilot studies established that the tuna would be treated (+CO) for 150 min at 3 bar 

pressure to attain the desired surface colour development and colour penetration.  Untreated 

samples were used as a control (-CO).  In accordance to industry practices, the tuna was also 

subjected to both aerobic (overwrap) (OP) and anaerobic (OI) conditions and either one (Fx1) or 

two (Fx2) freeze/thaw cycles. 

It was found that the CO treatment did enhance, maintain and stabilise the surface colour of 

the tuna muscle during freezing and thawing.  The carboxymyoglobin of the OP samples, however, 

rapidly oxidised to metmyoglobin, resulting in an undesirable brown discolouration.  The OI 

samples maintained the colour throughout the shelf-life trial.  The enhanced damage caused by the 

second freeze/thaw cycle was not apparent in the OP +CO treatments but the effect was seen in 

the OI +CO treatments. 

The CO treatment had no effect on either the lipid or protein oxidation.  The number of 

freeze/thaw cycles also had no effect on the lipid oxidation but accelerated the protein oxidation to 

such an extent that the carbonyls being measured had reacted with other biological constituents 

and could no longer be detected.  The packaging had an effect on both the protein and lipid 

oxidation with less lipid oxidation and retarded protein oxidation being observed in the OI 

treatments. 

A correlation was observed between myoglobin oxidation and protein oxidation in the tuna 

muscle with all the treatments.  In the OI +CO samples, however, the a* values remained high 

even as the b* values and TBARS values increased.  Thus the CO treatment of the tuna masked 

the visible indicator (browning) of lipid oxidation. 

It was concluded that overall the OI +CO Fx1 treatment resulted in the best quality product 

with regards to colour stability, colour maintenance, and lipid and protein oxidation.  The results 

from this study reiterated the concerns regarding the use of CO with tuna as it can mask visible 

spoilage indicators which raise food safety concerns. 
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OPSOMMING 
 

Prosesseerders staar die probleem om geelvintuna se raklewe te verleng en terselfdertyd die 

helder rooi kleur van die vleis te behou, in die gesig.  Verskeie aanvaarde metodes, bv. die vries 

en vakuumverpakking van vleis teen ultra-lae temperature, wat gedurende die behandeling van 

ander soorte vleis en vis die gewenste uitwerking het, het nie die gewenste uitwerking op tuna nie.  

Beide laasgenoemde metodes veroorsaak ongewenste kleurverandering van die vleis.  ‘n 

Alternatiewe metode is die gebruik van koolstofmonoksied (CO) behandeling wat tunaspier met 'n 

wenslike kersie-rooi kleur wat stabiel tydens bevriesing en vakuumverpakking is tot gevolg het.  Dit 

word tipies in samewerking met bevriesing en vakuumverpakking gebruik en kan as 'n enkele gas 

(100% CO) of as deel van  'n mengsel van gasse by wisselende konsentrasies toegedien word. 

Ander voordele met die gebruik van CO behandeling sluit die potensiële inhibering van proteïen en 

lipied oksidasie in wat kan lei tot die verlenging van rakleeftyd. Die gebruik van CO met tuna word 

egter gekritiseer aangesien dit bederf aanwysers, soos verkleuring, kan verbloem wat misleidend 

vir verbruikers kan wees. 

Twee loodstudies het gewys dat tuna vir 150 min teen 3 bar druk behandel moet word 

(+CO) om die gewenste ontwikkeling van oppervlak kleur en kleur penetrasie te bekom.  As 

kontrole medium was onbehandelde toetsmonsters gebruik (-CO).  In ooreenstemming met 

industrie standaarde was die tuna aan aerobiese (toegedraai) (OP) sowel as anaerobiese (OI) 

toestande teen óf een (Fx1) óf twee (Fx2) vries/ontdooi siklusse blootgestel. 

Daar was gevind dat CO behandeling die oppervlakkleur van die tuna spiere gedurende die 

vries sowel as ontdooi siklusse bevorder, gehandhaaf en gestabiliseer het.  Die 

karboksimioglobien van die OP monsters het egter vinnig tot metmioglobien geoksideer en ‘n 

ongewenste bruin verkleuring tot gevolg gehad.  Die OI monsters daarenteen het hul kleur 

gedurende die duur van die raklewe toets behou.  Die verhoogde skade wat deur die tweede 

vries/ontdooi siklus teweeggebring was, was nie kennelik sigbaar in die OP +CO behandelings nie, 

maar die effek was tydens die OI +CO behandelings waargeneem. 

Die CO behandelings het op nóg die lipied nóg die proteïen oksidasie ‘n uitwerking gehad.  

Die aantal vries/ontdooi siklusse het ook geen effek op die lipied oksidasie gehad nie, maar het die 

proteïen oksidasie tot so ‘n mate versnel dat die karboniele wat gemeet was gereageer het met 

ander biologiese komponente en nie verder waargeneem kon word nie.  Die verpakking het op 

beide die proteïen sowel as lipied oksidasie ‘n effek gehad, maar ‘n verlaagde lipied oksidasie en 

gestremde proteïen oksidasie is waargeneem tydens OI behandelings. 

‘n Korrelasie tussen mioglobien oksidasie en proteïen oksidasie was in die tuna spiere 

gedurende al die behandelings waargeneem.  In die OI +CO monsters het die *a waardes egter 

hoog gebly selfs terwyl die b* sowel as TBARS waardes gestyg het.   Die CO behandeling het dus 

die sigbare aanwyser (verbruining) van lipied oksidasie verskans. 
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Daar was tot die gevolgtrekking gekom dat die algehele OI +CO Fx1 behandelings tot die 

beste produk ten opsigte van kleurstabiliteit en -handhawing sowel as lipied en proteïen oksidasie 

gelei het.  Daar was bevind dat die resultate van dié studie die besorgdheid met die gebruik van 

CO op tuna beaam het, deurdat dit die sigbare aanwysers van bederf en onderliggende 

veiligheidskwessies kan verdoesel. 
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CHAPTER 1 

INTRODUCTION 
 

Yellowfin tuna (Thannus albacares) is often referred to or marketed as ahi tuna.  This species is a 

member of the scombroid family and occurs in pelagic, warm temperate and tropical oceanic 

waters around the world (Filippone, 2007).  They are seasonally migratory, schooling fish that can 

grow to 239 cm in length and weigh up to 200 kg (Luna & Kesner-Reyes, 2012).  They are sold 

both fresh and canned and are popular for use in sushi due to their desirable bright red colour and 

flavour (Filippone, 2007).  As a result of over-fishing, this species it is currently listed as “Lower 

Risk/near threatened” (LR/nt) on the International Union for Conservation of Nature (IUCN) red list 

of threatened species (IUCN, 2012), with 4 359 372 tons of tuna being harvested worldwide in 

2008, of which 1 160 872 tons was yellowfin tuna (FAO, 2012). 

It has been shown that consumer preference, with regard to tuna and most other meat 

products, is mainly determined by colour (Garner, 2004; Mancini & Hunt, 2005).  Consumers prefer 

tuna muscle that is bright red in colour, rather than brown.  Besides being more aesthetically 

pleasing, the former is associated with tuna which is fresh and the latter with older, poorer quality 

tuna (Kropf, 1980; Livingston & Brown, 1981).  The market value of yellowfin tuna is thus based on 

its colour, with fresh, bright red tuna having the highest market value (Otwell, 2006).  This 

association was confirmed by Carpenter et al. (2001) who showed that there was a strong 

correlation between colour and purchase intent of the consumer.  The main problem faced by most 

tuna distributers is maintaining the bright red colour during processing, transportation, frozen 

storage and display (Kristinsson et al., 2008).  The reason for this is that tuna muscle readily 

discolours from bright red to brown, especially when stored under chilled or frozen conditions even 

for short time periods, resulting in a loss of market value (Kropf, 1980; Chow et al., 1988; Chow et 

al., 1989).  In an attempt to maintain the market value, tuna can be sold as “fresh” for up to 3 

weeks after being harvested due to the vast distances between where the tuna is caught and its 

end destination (Kristinsson et al., 2008).  Thus some of the tuna that is frozen directly after being 

harvested, can be of better quality than some of the “fresh” tuna available (Olson, 2006). 

One way of maintaining the colour of tuna is rapidly freezing it to very low temperatures     

(-56°C) and storing it at these temperatures.  The problem with this is that not only does the tuna 

rapidly discolour when thawed (accelerated oxidation of myoglobin), but it is not an economically 

viable process.  Cost effective alternatives to prevent tuna discolouration during processing, 

transportation, frozen storage and display should thus be investigated (Balaban et al., 2005). 

One such alternative is the use of carbon monoxide (CO), where the resulting colour 

pigment formed is stable during freezing and thawing (Balaban et al., 2005).  The exposure of the 

muscle to CO causes a similar reaction to that of oxygen when bound to myoglobin but with the 

formation of a 240 times more stable, bright cherry-red pigment known as carboxymyoglobin 
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(Sørheim et al., 1997; Mancini & Hunt, 2005).  The intensity of the colour and its duration depend 

both on the amount of CO exposure and the distribution of the myoglobin within the muscle 

(Otwell, 2006).  Currently, vacuum packaging followed by refrigerated storage is the most effective 

method used for shelf-life extension of uncooked meats.  Consumer acceptance of fresh, vacuum 

packaged tuna has however been low due to the resulting dark reddish-purple colour, known as 

deoxymyoglobin (Kristinsson et al., 2008).  The undesirable colour changes, the brown, 

metmyoglobin, and purple, deoxymyoglobin, can be prevented by treating the tuna muscle with 

CO.  It has also been suggested that the CO treatment of tuna may have other benefits such as 

decreasing the rate or onset of lipid and protein oxidation (Kristinsson et al., 2006), as well as 

preservation of taste, texture and aroma (Yamoaka et al., 1996). 

The high resistance of carboxymyoglobin to autoxidation and thus discolouration, even 

under abusive conditions, raises concerns as the bright, cherry-red colour remains well beyond the 

microbial shelf-life of the tuna.  Since consumers base the freshness and wholesomeness of tuna 

on the bright red colour (Mancini & Hunt, 2005), the use of CO on tuna could mask visual spoilage 

indicators such as discolouration.  It could also mask other underlying safety concerns such as 

elevated histamine levels and pathogens which occur in thermally abused tuna (Kropf, 1980; 

Balaban et al., 2005).  For this reason its use on meat and fish is currently not legal in many 

countries (European Parliament and Council Directive, 1995).  The United States Food and Drug 

Administration (FDA) has reviewed the use of CO on seafood under its generally recognised as 

safe (GRAS) notification program and allows the use of CO as a preservative for seafood in the 

USA, as long as it is frozen and correctly labelled (Hahn, 2000; Rulis, 2002). 

Despite these concerns there is still a growing market demand for CO treated tuna, which 

has caused producers to branch out into a variety of new products and different methods of 

application (Kristinsson et al., 2003; Otwell, 2006).  The demand is mainly driven by convenience, 

appeal, lower cost, increase in revenue and the availability of both frozen and thawed products 

(Kristinsson et al., 2003; Anderson & Wu, 2005; Otwell, 2006).   

Due to the negative connotations associated with use of CO to treat yellowfin tuna, the 

current study focussed not only on investigating whether, and to what extent the specific method of 

application that is used has an effect on the colour of the tuna, but also whether it has other 

advantageous quality benefits, such as a decrease in lipid and protein oxidation.  The main 

objective of this study was to ascertain whether a 100% CO treatment of previously frozen tuna 

would result in an increased surface a* value (redness), to what extent it would increase the 

surface a* value and how stable the colour will be over time when stored under both refrigerated 

(4°C) and frozen (-20°C) conditions.  The effect of aerobic and anaerobic conditions, as well as the 

effect of the number of freeze/thaw cycles was also investigated.  The secondary objective was to 

investigate whether the CO treatment had an effect on the rate of lipid and protein oxidation of the 

same samples.  A possible correlation between lipid oxidation and myoglobin oxidation was also 

investigated.  It is hoped that the results obtained will improve the utilisation and market value of 
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yellowfin tuna, potentially of reducing the post-harvest wastage by increasing the colour stability, 

shelf-life and quality of frozen yellowfin tuna. 
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CHAPTER 2 

LITERATURE REVIEW 
 

INTRODUCTION 
 

Seafood, including tuna, is of major economic importance to many countries (Garner, 2004), 

including South Africa.  As with most fish, tuna perishes rapidly and thus proper processing and 

storage is crucial in ensuring maximum shelf-life (Garner, 2004).  Tuna muscle quality will rapidly 

deteriorate after it is harvested and will continue to deteriorate while being processed, during 

transportation, storage and retail display.  The main factors affecting the quality deterioration of the 

tuna muscle are microorganisms, oxygen, lipid and protein oxidation (particularly oxidation of the 

haem proteins) and enzymes (Garner, 2004). 

Common methods used with other meats and meat products to extend the shelf-life, such 

as freezing and vacuum packaging, have proved effective with tuna but have resulted in 

undesirable consequences (Kjærsgård et al., 2006; Kristinsson et al., 2008).  Tuna readily 

discolours when frozen, from bright red to brown (Chow et al., 1988; Chow et al., 1989), and 

appears purple when vacuum packed (Kristinsson et al., 2008).  Consumers prefer the bright red 

colour associated with fresh tuna (Garner, 2004; Pivarnik et al., 2011) and find the brown or purple 

colours associated with poorer quality and vacuum packed tuna undesirable (Kropf, 1980; 

Livingston & Brown, 1981; Mancini & Hunt, 2005).  Since a strong link has been found between 

colour and purchase intent of consumers (Carpenter et al., 2001; Otwell, 2006), it is important to 

maintain the colour of the tuna during processing, transportation, storage and retail display 

(Kristinsson et al., 2008).  The onus of maintaining the colour falls to the processor, with great 

monetary losses being incurred due to discolouration.   

One solution to maintaining the colour, even under vacuum packed conditions, is the use of 

carbon monoxide (CO) (Balaban et al., 2005).  The treatment of tuna with CO results in a stable, 

bright cherry-red myoglobin derivative, known as carboxymyoglobin (Livingston & Brown, 1981; 

Mancini & Hunt, 2005).  Carboxymyoglobin is stable during freezing and thawing (Kristinsson et al., 

2006a) and does not discolour under anaerobic conditions (vacuum packaging) (Kristinsson et al., 

2008).  Although the use of CO would seem to be the ideal solution, it has sparked much 

controversy as the resulting carboxymyoglobin is highly resistant to oxidation under anaerobic 

conditions, with the bright, cherry-red colour remaining well after the tuna is no longer safe to 

consume (Olson, 2006).  Thus its use on seafood is illegal or highly regulated in many countries 

(Otwell, 2006).  It has also been suggested that the CO treatment may have a positive effect on the 

quality of tuna muscle by inhibiting lipid and protein oxidation by stabilising myoglobin and 

subsequently inhibiting its pro-oxidant effect (Kristinsson et al., 2005). 
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COLOUR OF FISH MEAT 

 

The colour of fish muscle can be influenced by several factors including: species; harvesting 

season; chemical composition; time after harvest (freshness); type of muscle; and type and 

quantity of haem proteins (Kristinsson et al., 2006a).  The factors which play the most important 

role are the haem proteins, haemoglobin and myoglobin.  This is particularly true for the dark 

muscle fish species such as tuna where the colour of the muscle results from the presence of 

these proteins. 

Haemoglobin and myoglobin are responsible for transporting oxygen through the body and 

muscle of living fish (Livingston & Brown, 1981).  Myoglobin is found in the muscle whereas 

haemoglobin is found in the blood.  In tuna which has been correctly exsanguinated, myoglobin will 

mainly be accountable for the muscle colour, as most of the haemoglobin would have been lost.  

The myoglobin concentration within muscles varies according to species, fibre type, activity, 

oxygen availability, blood circulation and age (Kristinsson et al., 2006a).  In the case of yellowfin 

tuna the concentration of myoglobin in the muscle is related to the tuna’s age, physical activity and  

the way the meat is treated during processing (Gidding, 1974; Livingston & Brown, 1981). 

 

Myoglobin 

Myoglobin (Mr ± 18 000 g.mol-1) is a monomeric, water soluble, globular haem protein containing 

8 α-helices (no β-pleated regions).  These α-helices are linked by non-helical sections.  Myoglobin 

has a central haem ring, consisting of a porphyrin ring with a central iron atom.  The iron atom can 

form six bonds of which four are used to link to pyrrole nitrogens’ with the 5th binding to a proximal 

histadine-93.  The 6th binding site is vacant and can reversibly bind ligands such as oxygen and 

CO.  The type of ligand bound to the 6th binding site and the valence of the iron atom will influence 

the colour of the meat (Mancini & Hunt, 2005; Campbell & Farrell, 2008).  There are four major 

myoglobin derivatives responsible for meat colour: deoxymyoglobin; oxymyoglobin; metmyoglobin; 

and carboxymyoglobin (Fig. 1) (Mancini & Hunt, 2005). 

 

Deoxymyoglobin 

Deoxymyoglobin is the derivative of myoglobin where no ligand is bound to the 6th vacant position 

on the iron atom and is thus in its ferrous form (Fe2+).  Meat that contains high proportions of 

deoxymyoglobin has a purplish-red or purplish-pink appearance usually associated with the interior 

of freshly cut meat or vacuum packaged meat i.e. meat under low oxygen conditions (Mancini & 

Hunt, 2005). 
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Figure 1 Myoglobin derivatives and their corresponding meat colour (adapted from Sørheim et al., 

1997; Mancini & Hunt, 2005). 

 

Oxymyoglobin 

Oxymyoglobin, is the diamagnetic ferrous form of myoglobin (Livingston & Brown, 1981).  It is 

stable under high oxygen conditions characterised by the development of a bright red colour 

(Livingston & Brown, 1981; Mancini & Hunt, 2005).  The oxygenation of myoglobin does not lead to 

a change in the valance of the iron atom (it remains as Fe2+), there is only a diatomic oxygen 

bound to the 6th site of the iron atom.  The distal histadine also interacts with the bound oxygen, 

altering the stability and structure of the myoglobin molecule (Mancini & Hunt, 2005). 

As exposure to oxygen is increased, more oxymyoglobin will form deeper beneath the 

surface of the meat.  Various factors such as temperature, oxygen partial pressure, pH and 

competition for oxygen by other processes play a role in the depth of oxymyoglobin penetration 

that will occur (Mancini & Hunt, 2005). 

It is important to note that ferrous (Fe2+) myoglobin is required to bind oxygen stably.  Once 

oxidation has occurred the undesirable brown derivative of myoglobin, metmyoglobin, will 

irreversibly replace oxymyoglobin except under reducing conditions (Livingston & Brown, 1981). 

 

Metmyoglobin 

Metmyoglobin forms due to the oxidation of deoxymyoglobin or oxymyoglobin causing the 

formation of the undesirable brown colour of meat (Livingston & Brown, 1981; Mancini & Brown, 
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2005).  Although exposure to oxygen initially results in the formation of oxymyoglobin, extended 

periods of exposure to oxygen eventually leads to oxidation of the ferrous iron (Fe2+) to form ferric 

iron (Fe3+) (Wallace et al., 1982).  The formation of metmyoglobin is influenced by numerous 

factors such as oxygen partial pressure, temperature, pH, reducing activity of meat and microbial 

growth (Mancini & Hunt, 2005). 

The colour of red meat and red-fleshed fish species, such as tuna, plays an import role in 

the purchasing decisions of consumers as they use it as an indicator of freshness and 

wholesomeness (Garner, 2004; Mancini & Hunt, 2005).  Consumers prefer the bright red colour of 

oxymyoglobin and dislike the brown colour of metmyoglobin (Mancini & Hunt, 2005).  Studies have 

shown that approximately 60% conversion of myoglobin to metmyoglobin causes the meat product 

to become unacceptable to consumers (Lawrie, 2006).  Since red-fleshed fish muscle reacts 

similarly to that of red-fleshed meat, it can be assumed that the same or a similar percentage of 

metmyoglobin would also cause the tuna flesh to become unacceptable to consumers.  Thus the 

proportion of oxymyoglobin to metmyoglobin is of great importance to consumer acceptability of 

meat products (Lawrie, 2006). 

 

Carboxymyoglobin 

The exact mechanism which results in carboxymyoglobin is unclear.  It is not known whether CO 

can displace oxygen from the 6th binding site or whether it has a reducing ability on metmyoglobin 

to form a bright red colour.  It has been noted that deoxymyoglobin more readily converts to 

carboxymyoglobin than oxy- and metmyoglobin (Mancini & Hunt, 2005).  Research has shown that 

CO can readily bind to both oxy- and deoxymyoglobin (Lanier et al., 1978).  Carboxymyoglobin is 

more resistant to oxidation than oxymyoglobin due to the stronger binding of CO to the iron binding 

site (>240 times higher) (Sørheim et al., 1997).  Despite the stronger binding of CO to myoglobin, it 

is not stable and CO will dissociate from myoglobin in atmospheres free of CO (Mancini & Hunt, 

2005).  In the presence of oxygen the CO will slowly dissociate from the myoglobin and be 

converted to oxymyoglobin which in turn will be oxidised to metmyoglobin (Krause et al., 2003; 

Anderson & Wu., 2005).  This is contradictory to the fact that CO has a higher binding affinity for 

myoglobin compared to that of oxygen (Sørheim et al., 1997).  There are several possible 

explanations for this.  The first is that myoglobin may have a predilection for oxygen rather than for 

CO, favouring oxygen rather than CO even though it has a higher binding affinity for the latter 

(Mancini & Hunt, 2005).  It was further noted by Hunt et al. (2004) that discolouration of CO treated 

meat will occur under atmospheric conditions due to the loss of the CO ligand from the myoglobin.  

Once the CO ligand has been lost it will be followed by re-oxygenation and subsequent iron 

oxidation.  Thus there will be a decrease in carboxymyoglobin with a concurrent increase in 

metmyoglobin.  It was further surmised by Hunt et al. (2004) that carboxymyoglobin which was 

exposed to atmospheric oxygen, resulted in oxymyoglobin which was more liable to oxidation than 
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the oxymyoglobin of meat not previously exposed to CO.  This accelerated oxidation could be due 

to longer storage times and the limited or absent reducing capacity remaining in the muscle. 

Another mechanism was also proposed where metmyoglobin reduction leads to the 

formation of deoxymyoglobin that was less stable and more liable to autoxidation than native 

deoxymyoglobin that had not previously been in the ferric form (Lanier, 1978).  Thus packaging CO 

treated meat and fish in oxygen permeable packaging (in atmospheres free of CO) will lead to a 

loss in colour (redness) and the formation of brown metmyoglobin over time. 

 

Tuna myoglobin 

Tuna myoglobin differs to mammalian myoglobin in that it has fewer amino acid residues and a 

lower molecular weight.  It also contains cysteine which could influence the susceptibility of 

myoglobin to oxidation (Brown, 1961).  The sulfhydryl group of cysteine is nucleophilic and is 

expected to be more reactive with lipid oxidation products than other less nucleophilic amino acids 

(Witting et al., 2000).  It is also possible that differences in the amino acid composition of the 

myoglobin between mammals and fish may influence the colour stability of the muscle post 

mortem.  There has however, been very little work published regarding the oxidative stability of fish 

myoglobin and its relationship with lipid oxidation (Lee et al., 2003). 

 

Colour measurements 

The colour of meat can be measured both subjectively and instrumentally (Honikel, 1998).  

In the current study only instrumental colour measurements (spectrophotometer) are of interest as 

colour intensity and stability are being investigated and not consumer acceptance or preference for 

the colour of the tuna muscle. 

There are three main causes of colour variation (Honikel, 1998): concentration of myoglobin 

is specific to the muscle, which is dependent on primary production factors such as breed, age and 

nutritional status (low or high plane of nutrition); rate and extent of pH and temperature decline 

which is determined by the pre-slaughter period, slaughter process and subsequent processing; 

and the process of oxygenation and oxidation of myoglobin during storage, transportation and retail 

display. 

The stipulations for correct colour measurement were set out by Honikel (1998).  The 

measurement should only be taken after the final pH of the muscle has been reached post mortem.  

This is due to, as mentioned above, the colour being affected by the pH of the muscle.  The 

muscle, from which the measurement is taken, should be clearly described and the location within 

the muscle noted.  The sampling should be done in the cross-section, perpendicular to the long 

axis of the muscle with a minimum thickness of 1.5 cm but preferably 2 cm.  At least triplicate 

measurements should be taken at three different points on the surface of the muscle.  The 
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instrument used should be calibrated using a black standard with L*=0 and a white standard with 

L*=100 (Honikel 1998). 

 
CARBON MONOXIDE AND MEAT COLOUR 
 

Carbon monoxide is a colourless, odourless and tasteless gas which is slightly lighter than air 

(Sørheim et al., 1997).  It is formed by the incomplete combustion of organic materials.  It is toxic, 

with exposure to ± 200 ppm resulting in a headache and overexposure resulting in death (Brown et 

al., 2009). 

 

Carbon monoxide treatment of meat and seafood 

Over 100 years ago the first patent was granted for packaging meat in a carbon dioxide/carbon 

monoxide gas mixture for shelf-life extension (Church, 1994).  Since then several patents have 

been granted for the use of CO on both meat and seafood (Woodruff & Silliker, 1985; Yomaoka et 

al., 1996; Kowalski, 1999).  There are currently several different forms of CO treatment used 

including traditional wood smoking, pure CO (100% CO), CO as a mixture of gasses in modified 

atmospheric packaging (MAP) (usually about 4% CO), filtered wood smoke (usually about 18% 

CO) and tasteless smoke (7-30% CO) (Olson, 2006). 

Several studies have shown that the use of CO significantly influences the red colour (a*) of 

muscle but does not have much of an effect on the lightness (L*) or yellowness (b*) values 

(Kristinsson et al., 2003; Otwell et al., 2003; Garner, 2004; Balaban et al., 2005; Mantilla et al., 

2008).  There are several factors which impact the level of redness attained.  One of these is the 

percentage CO used, as it influences the amount of CO available to be bound.  The more CO 

bound, the higher the concentration of carboxymyoglobin and thus the higher the level of redness 

attained.  Figure 2 shows the a* values obtained 48 h after yellowfin tuna was treated with varying 

CO concentrations.  It is clear that the 100% CO treatment gave the highest a* values and the 4% 

CO treatment the lowest.  Thus the increase in redness is directly proportional to the CO 

concentration in the muscle.  It should be noted that there will be residual CO in the muscle, 

especially in the 100% CO treated muscle, which leads to extension of the colour during storage 

(Kristinsson et al., 2006a). 

Another important factor is application time.  In Fig. 3 it can clearly be seen how varying 

application times for different CO concentrations influence the surface colour of the yellowfin tuna 

steaks.  It has been found that lower concentrations of CO (4%) require longer exposure times 

than higher concentrations of CO (100%) (Ross, 2000). 
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Figure 2 The increase in a* (redness) values of yellowfin tuna steaks after treatment for 48 h in 

different gas environments (filtered smoke treatment has an 18% CO concentration) (adapted from 

Kristinsson et al., 2006a). 

 

 
Figure 3 The influence of gas treatment time on increase in a* value of yellowfin tuna steak 

(filtered smoke has an 18% CO concentration) (adapted from Kristinsson et al., 2006a). 

  

Temperature also influences the redness of muscle with regard to CO treatment.  Carbon 

monoxide has a very low solubility, which increases with a decrease in temperature.  It would thus 

be expected that fish muscle, which consists of 60-80% water, at lower temperatures, would bind 

more CO, which would lead to an increase in the a* value.  This, however, is not the case, and in 

fact the opposite has been shown to be true (Kristinsson et al., 2005).  Yellowfin tuna treated at 

varying temperatures and CO concentrations showed that the a* values are higher at 20˚C than at 

4˚C (Fig. 4).  This could possibly be due to the fact that, although the CO is more soluble at lower 

temperatures, tuna myoglobin is adapted to warmer water temperatures and will thus presumably 

have a higher binding affinity for CO at higher temperatures (Kristinsson et al., 2006a).  Higher 

temperatures, however, have the disadvantage of increasing the chance of protein oxidation 

(Kristinsson et al., 2005), which would in turn retard CO binding. 
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Figure 4 Influence of temperature during gas treatment with 100% and 18% (filtered smoke) CO 

on the a* values of yellowfin tuna steak (adapted from Kristinsson et al., 2006a). 

 

Colour stability during refrigeration, freezing and thawing of CO treated fish 

Rapidly freezing tuna and then storing it at very low temperatures (-56°C) will stabilise its colour 

but upon thawing it will rapidly turn brown.  This procedure is also costly and cost effective 

methods of maintaining tuna colour during freezing and thawing have thus been sought by 

industry.  The use of CO was found to be effective in stabilising the tuna colour during freezing and 

thawing (Balaban et al., 2005).  Carbon monoxide treatment does not only increase the redness of 

the tuna muscle but also increases the stability of the colour during refrigerated and frozen storage, 

which is the main benefit of CO treatment of yellowfin tuna (Kristinsson et al., 2006a).  As 

mentioned, the main problem faced by distributers is maintaining the desirable bright red colour of 

tuna muscle during processing, transportation, frozen storage and display (Kristinsson et al., 

2008).  Commercial freezing of tuna (-20°C) causes myoglobin to oxidise, resulting in a brown 

coloured muscle (Balaban et al., 2005).  The thawing process also causes accelerated browning 

by accelerating protein oxidation.  It is also known that frozen and thawed muscles become brown 

quicker than unfrozen muscle during refrigeration (Chow et al., 1988; Chow et al., 1989).  Similar 

results have been found with various other meats and meat products (Leygonie et al., 2012). 

The data in Fig. 5 shows the results of yellowfin tuna steaks treated with varying 

concentrations of CO for 48 h and then subjected to 30 d of freezing at -30˚C, after which they 

were defrosted and kept at 4˚C.  It is interesting to note that an initial increase in redness occurs in 

the treated tuna after thawing.  This is due to the residual CO in the muscle binding to the 

remaining unbound myoglobin, resulting in increased redness.  It can be seen that CO stabilises 

the colour of yellowfin tuna muscle during freezing and refrigerated storage (Kristinsson et al., 

2006a). 
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Figure 5 The effect of various CO treatments on the a* value of yellowfin tuna steaks after 48 h of 

exposure and 30 d of freezing – () untreated; () 4% CO; () 18% CO; () filtered smoke (18% 

CO); and () 100% CO (adapted from Kristinsson et al., 2006a). 

 

REGULATIONS REGARDING THE USE OF CARBON MONOXIDE ON FISH 
 

Due to the potential for CO treatment of fish to mask underlying safety problems, strict regulations 

are required regarding its use (Otwell, 2006).  The intentional use of CO for colour retention in fish 

was employed prior to the existence of any regulations for this process (Otwell, 2006).  The use of 

CO on fish is currently not legal in European Union (European Parliament and Council Directive, 

1995).  In South Africa the legality of the use of CO on fish is unclear as no regulations exits 

regarding its use on foodstuffs.   It is however legal in the USA as long as it is correctly labelled 

(Rulis, 2002).  Thus CO treated tuna can be sold in the USA but may not be legally sold within the 

European Union. 

Since the regulatory status for the use of CO to retain the red colour of fish in commercial 

practices in the USA was initially unclear, clarification was sought.  Initial discussions started in 

1996 between the Food and Drug Administration (FDA), National Marine Fisheries Service and 

Hawaii’s State Department of Health and others interested parties’ regarding the clarification of the 

use of CO on tuna specifically.  These discussions addressed issues such as the food additive 

status for CO; labelling requirements; and potential for use in adulterated of products.  In 1999, the 

FDA issued an important bulletin (May 1999) regarding the use of tasteless smoke (TS) in the 

processing of tuna (FDA, 1999).  The bulletin did not object to the use of CO or TS as long as the 

tuna is labelled as processed foods that had been treated with CO or TS; not misrepresented as 

fresh frozen seafood by their label; and near normal in fresh colour (FDA, 1999).  It further stated 

that the minimum requirement for labelling, as part of the ingredients statement was “tasteless 

smoke (preservative to promote colour retention)”, which is in compliance with the Code of Federal 

Regulations, Title 21 (Food and drugs), Part 101 (Food labelling), Section 22(j) (Anon., 2012). 

The preliminary position of the FDA was then formally stated in the GRAS notification 

No. 0000015 (Oliver, 2000).  This response was more specific and dealt with tuna treated with TS 
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which was frozen after treatment.  It stated that TS was considered a preservative and as such, it 

required the declaration of both the common and unusual name in the ingredient list as well as a 

separate description of its function.  A similar position was taken by the FDA regarding the use of 

CO on tuna with the recommended labelling as: Tuna, Carbon Monoxide (as colour preservative) 

(Olson, 2006).  Recently the FDA decided that CO used as part of a mixture of gasses in MAP of 

meat is a “processing aid” and thus does not require product labelling declarations (Rulis, 2002; 

Tarantino, 2004). 

The leading concern regarding CO treated fish is the masking of inferior quality products 

which may already have or may develop high levels of histamine.  Tuna is one of the species 

prone to the development of high histamine levels associated with scombroid poisoning (FDA, 

2001).  Although it is important to address the concerns regarding the use of CO on fish products 

the potential safety benefits of such a process should also be evaluated.  Tuna can be sold as 

“fresh” for up to three weeks after being harvested due to the vast distances between where the 

tuna is harvested and the end destination.  Thus, in an attempt to market tuna as fresh, never 

frozen, to attain a high market value, the product quality and safety may be reduced (Olson, 2006).  

Since most of the tuna harvested is shipped to distant locations, freezing is the best method to use 

in preventing and controlling histamine levels in tuna and increasing its shelf-life.  As mentioned, 

however, freezing and thawing of tuna results in colour loss (Chow et al., 1988; Chow et al., 1989) 

and decreased market value (Kropf, 1980).  The use of CO and similar processes allows for the 

freezing of tuna without reducing its market value as the colour is retained during freezing and 

thawing (Olson, 2006). 

The fact remains that the use of CO can be used to mask poor quality and potentially 

unsafe tuna and is thus still not approved in most countries other than the USA.   In Japan the use 

of CO on fish has been banned (Huang et al., 2006) and Canada does not allow the use of CO but 

the use of tasteless smoke is still under consideration (Prince, 1999; Andruckzk, 2000).  The EU 

also does not allow CO as an additive in any food (European Parliament and Council Directive, 

1995).  As previously mentioned the legality of CO treatment of foodstuffs in South Africa is unclear 

as no laws exits regarding its use. 

 

CARBON MONOXIDE TREATED MEAT CONSUMPTION AND HUMAN HEALTH 
 

As previously discussed, CO has a more than 240 times stronger binding affinity for haem proteins 

(myoglobin and haemoglobin) than oxygen and can thus compete with oxygen for the haem 

binding site (Sørheim et al., 1997).  Thus the CO will competitively bind to the haem binding site by 

displacing oxygen.  In the case where both oxygen and CO are present, the CO will displace the 

oxygen (Sørheim et al., 1997).  Although the binding of CO to haem proteins is reversible and 

concentration dependent, it results in a much slower dissociation from the haem proteins than 

oxygen.  This means that CO will bind to more haem molecules and will saturate all available haem 
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binding sites by displacing oxygen at low concentrations and stay bound for a longer time (El-

Badawi et al., 1964). 

Haemoglobin and myoglobin are the proteins responsible for transporting oxygen around 

the human body in blood and muscle, respectively (Kristinsson et al., 2006a).  There is thus some 

concern that during mastication and digestion of CO treated tuna that the released CO will be 

absorbed into the human blood.  Davenport et al. (2006) showed that the consumption of CO 

treated tuna did result in a rapid but brief increase of exhaled CO, which is an indication of the 

amount of CO in human blood.  The exhaled CO originated from blood absorption from the 

mucosal membranes of the mouth during mastication and the stomach during digestion.  The 

amount of CO increase that is caused is still far below the blood CO safety limits and is rapidly 

removed from the blood by exhalation. It is thus not detrimental to human health to consume CO 

treated meat or tuna (Davenport et al., 2006). 

 

THE EFFECT OF CARBON MONOXIDE TREATMENT OF SEAFOOD ON MICROORGANISM 
GROWTH 
 

Seafood has a very short shelf-life due to the impact of microbial and chemical processes 

(Kristinsson et al., 2006b).  There is very little known about the effect of CO on microbial growth.  

Studies which involved brief exposure of bacteria to 100% CO showed hardly any effect on the 

growth of Staphylococcus aureus, Clostridium botulinum or Escherichia coli (Kaffegakis et al., 

1969).  It was however shown that CO could inhibit the growth of an aquatic Streptomyces 

(Fransisco & Silvery, 1971).  Several studies have been conducted on red meats such as beef and 

goat using CO as a single gas or as part of a gas mixture.  These studies have either shown that 

CO had an inhibitory effect on the microbial growth or that there was no inhibitory effect (Gee & 

Brown, 1978; Woodruff & Silliker, 1985; Hunt et al., 2004; Kristinsson et al., 2005).  In some of the 

cases it was difficult to ascertain whether the CO was actually having an effect or if it was merely 

due to the exclusion of oxygen or the presence of CO as part of the gas mixture used (Kristinsson 

et al., 2006b).  Studies involving yellowfin tuna and other fish species showed that high CO 

concentrations did in fact lead to the reduction of microbial levels (Demir et al., 2004; Balaban et 

al., 2005).  Again, it was not clear whether the CO had an effect on the microorganism or if the 

inhibition was due to the exclusion of oxygen. 

In terms of histamine formation, CO treatment does not promote the formation of histamine 

provided the process is done correctly and followed by freezing directly after treatment (Kristinsson 

et al., 2006a).  In fact, Ross (2000) indicated that CO may retard the formation of histamine, with 

CO treated tuna showing lower histamine concentrations over time compared to untreated tuna. 
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LIPID OXIDATION 

 

Lipid oxidation is one of the main causes of meat deterioration.  It affects fatty acids, particularly 

polyunsaturated fatty acids (PUFAs) (Gray, 1978; Apgar & Hultin, 1982; Gordon, 2003; 

Munasinghe et al., 2005; Kristinsson et al., 2006a).  The products formed by lipid oxidation result in 

negative quality changes affecting colour, aroma, flavour, texture and nutritive value and possibly 

the development of toxic compounds (Eriksson, 1982; Love, 1983; Kanner, 1994).  Lipid oxidation 

is the process by which oxygen reacts with unsaturated lipids forming lipid peroxides.  It proceeds 

via an autocatalytic mechanism of ‘free radicals’ known as autoxidation involving three stages: 

initiation; propagation; and termination (Fig. 6) (Gray 1978; Raharjo & Sofos, 1993; Monahan, 

2000). 

Hydroperoxides have been identified as primary products of autoxidation.  Decomposition 

of the hydroperoxides yield aldehydes, ketones, alcohols, hydrocarbons, volatile organic acids and 

epoxy compounds, known as secondary oxidation products.  These compounds, together with free 

radicals, are used for measurement of lipid oxidation (Shahidi & Zhong, 2005).  Hydroperoxides 

(LOOH) are considered to be the most important products produced during lipid oxidation.  

Hydroperoxides are highly reactive and transitory and undergo changes and deterioration with 

radicals causing secondary products such as malondialdehyde (MDA) (Raharjo & Sofos, 1993). 

Figure 6 Mechanism of lipid oxidation (adapted from Shahidi & Zhong, 2005). 

 

Lipid oxidation and carbon monoxide treatment 

The quality deterioration of many fish species is directly related to lipid oxidation and reactions 

which occur from the by-products of lipid oxidation (Richards & Hultin, 2002).  Lipid oxidation 
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results in various undesirable off-odours and flavours (Eriksson, 1982) and the by-products formed 

can react with proteins leading to deterioration in texture (Kristinsson et al., 2006b).  Fish muscle is 

highly susceptible to lipid oxidation due to the high concentration of PUFAs.  Fish muscle also 

contains various pro-oxidants that promote oxidation (Kristinsson et al., 2006a) including copper, 

iron and haem protein (haemoglobin and myoglobin) (Strasburg et al., 2007). The haem proteins 

are believed to be the two main pro-oxidants in meat (Richards et al., 1998; Undeland et al., 2004).  

It can also be assumed that if exsanguination was performed correctly, only myoglobin will play a 

significant role in lipid oxidation (Kristinsson et al., 2006a). 

Myoglobin can cause lipid oxidation when oxygen is released from oxymyoglobin to form 

ferric metmyoglobin and super oxide anion radicals.  Metmyoglobin can further oxidise to ferryl 

(Fe4+) myoglobin which is very reactive.  This oxidised form of myoglobin is thought to be the main 

catalyst of lipid oxidation (Richards & Hultin, 2002).  Subsequently the by-products formed from 

lipid oxidation are implemented in haem protein oxidation, which further lead to muscle 

discolouration and deterioration (Faustman et al., 1999).  It has been found that antioxidants 

successfully retard lipid oxidation (Richards et al., 1998) by retarding the activity of the pro-

oxidants present such as the haem proteins (Richards et al., 1998; Kristinsson 2002).  In the case 

of myoglobin, when it is bound to CO to form carboxymyoglobin, it remains in the reduced state 

and does not readily oxidise (Kristinsson et al., 2005).  It is thus expected that the stabilisation of 

myoglobin with CO will reduce lipid oxidation.  It can further be surmised that fish muscle treated 

with CO may be less prone to lipid oxidation and in fact several studies support this theory (Luno et 

al., 2000; Garner, 2004; Kristinsson et al., 2005; Pivarnik et al., 2011). 

 

Methods for determining lipid oxidation 

Various analytical methods are used to determine lipid oxidation in foods.  There is however no 

standard method for detecting all the oxidative changes in all types of food.  It is thus important to 

select a suitable method for the specific application (Shahidi & Zhong, 2005).  The current methods 

used to determine lipid oxidation in foods can be classified into four groups based on what is being 

measured: the absorption of oxygen; the loss of initial substrates; and the formation of primary 

(hydroperoxides) and secondary (decomposition of hydroperoxides) oxidation products 

(Dobarganes & Velasco, 2002; Shahidi & Zhong, 2005).  Both physical and chemical tests have 

been employed for measurement of lipid oxidation (Dobarganes & Velasco, 2002). 

One of the most commonly used methods to quantify lipid oxidation in meat products is the 

2-thiobarbituric acid (TBA) test (Gray, 1978; Kishida et al., 1993).  It is based on the principle that 

the TBA reacts with the malondialdehyde (MDA) formed from lipid oxidation giving a colour 

reaction which can be quantified spectrophotometrically (Tarladgis et al., 1960).  According to 

Dobarganes and Velasco (2002), this method can be used for all samples but is specifically used 

for biological samples and fish oils.  It is frequently employed to test the extent of lipid oxidation in 
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muscle foods even though it lacks specificity and sensitivity (Raharjo & Sofo, 1993; Shahidi & 

Zhong, 2005).  It has also been noted that due to the interference, the TBARS method should only 

be used to assess the extent of lipid oxidation in general (Gray & Monahan, 1992).  It should thus 

not be expected that the TBA test will give exact results regarding the amount of lipid oxidation 

which has occurred. 

 

PROTEIN OXIDATION 
 

Oxidation, in general, is one of the leading causes of quality deterioration in muscle foods (Xiong, 

2000).  The susceptibility of meat, poultry and seafood to oxidative processes is due to the 

relatively high concentrations of unsaturated fatty acids and oxidising agents in their muscles 

(Johns et al., 1989).  Although lipid oxidation has been extensively studied, protein oxidation has 

only been thoroughly investigated in recent years and as such the basic mechanisms involved are 

still being clarified (Lund et al., 2011). 

It is believed that protein oxidation proceeds via a free radical chain reaction, comparable to 

that of lipid oxidation although the higher complexity of the pathways leads to the production of 

more by-products (Lund et al., 2011).  Reactive oxygen species (ROS) have been found to play a 

role in the oxidation of proteins.  In protein oxidation the reaction of radicals with proteins and 

peptides in the presence of oxygen causes alterations in both their backbone and their amino acid 

side chains (Dean et al., 1997; Lund et al., 2011).  These oxidative changes include cleavage of 

peptide bonds, modification of amino acid side chains and the formation of covalent intermolecular 

cross-linked protein derivatives.  During the modification of amino acid side chains, carbonyl 

groups and protein hydroperoxides are formed (Lund et al., 2008; Estévez et al., 2009). 

Although the implications of protein oxidation in quality deterioration has not yet fully been 

investigated, it has been found that the changes caused by ROS in muscle proteins could cause 

the loss of their functionality and thus, loss in quality of muscle foods (Xiong, 2000).  Numerous 

mechanisms have been suggested for the impact that protein oxidation has on the texture of meat 

with regards to tenderness and juiciness (Rowe et al., 2004; Huff-Lonergan & Lonergan, 2005; 

Lund et al., 2007; Kim et al., 2010).  Protein oxidation may also lead to changes in hydrophobicity, 

conformation and solubility of proteins.  It may also lead to altered susceptibility of protein 

substrates to proteolytic enzymes (Wolff & Dean, 1986; Davies et al., 1987).  This altered 

susceptibility has been implemented as one of the major reasons for the low digestibility and 

consequently, lower nutritional value of oxidised proteins (Morzel et al., 2006). 

 

Protein oxidation and carbon monoxide treatment 

In the same way that the binding of CO to myoglobin could retard lipid oxidation (mentioned 

above), it could possibly also retard protein oxidation (Kristinsson et al., 2006b).  However, 
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previous studies were inconclusive regarding whether protein oxidation of yellowfin tuna was in fact 

influenced by CO treatment and concluded that further research would have to be done (Demir & 

Kristinsson, 2005). 

 

Methods for determining protein oxidation  

There are various methods used to determine protein oxidation.  Currently the most commonly 

measured products of protein oxidation are the carbonyls formed as by-products (Shacter, 2000).  

Many of the analyses involve reacting the carbonyl group with dinitrophenylhydrazine (DNPH), 

which leads to formation of a stable dinitrophenylhydrazone product (Levine et al., 1990).  

Dinitrophenylhydrazone can then be quantified using various methods such as spectrophotometry, 

ELISA, HPLC and SDS electrophoresis (Shacter, 2000).  Alternatively, specific carbonyls which 

have been found to be markers for protein oxidation (Daneshvar et al., 1997) have been used to 

quantify protein oxidation (Estévez, 2011).  These specific carbonyls are α-aminoadipic and γ-

glutamic semialdehydes, commonly referred to as AAS and GGS, respectively.  After AAS and 

GGS are stabilised using various chemicals, they are quantified using various methods such as 

HPLC-MS, GC-MS and HPLC-ESI-MS (Shacter, 2000). 

 

GENERAL CONCLUSIONS 
 

Carbon monoxide has successfully been used to stabilise the colour of tuna by forming 

carboxymyoglobin (Kristinsson et al., 2006a).  The carboxymyoglobin is stable even under frozen 

storage conditions (Kristinsson et al., 2006a) but the CO will dissociate from the myoglobin under 

atmospheric conditions to form brown metmyoglobin (Krause et al., 2003; Anderson & Wu., 2005).  

There is also evidence to suggest that the treatment of tuna with CO has possible quality benefits 

by potentially inhibiting lipid and protein oxidation (Luno et al., 2000; Garner, 2004; Kristinsson et 

al., 2005; Pivarnik et al., 2011). 

There are two main areas of concern with tuna and the CO treatment of tuna.  The first is 

that tuna discolours when frozen (Chow et al., 1988; Chow et al., 1989) which considerably 

reduces its market value (Kropf, 1980).  Tuna often needs to be transported vast distances and 

freezing is the only effective method to prolong its shelf-life (Kristinsson et al., 2008).  Thus to 

maintain the quality, colour and market value of the yellowfin tuna CO treatment can be used as it 

is stable during frozen storage.  Secondly, the potential for CO to mask underlying safety concerns, 

such as microbial spoilage, high histamine levels and thermal abuse raises concerns regarding its 

use with tuna (Balaban et al., 2005).  Thus other potential benefits, such as CO’s potential to inhibit 

lipid and protein oxidation (Luno et al., 2000; Garner, 2004; Kristinsson et al., 2005; Pivarnik et al., 

2011) should also be investigated to improve the perception of its use with consumers, industry 

and regulatory bodies. 
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CHAPTER 3 

OPTIMISATION OF CARBON MONOXIDE PRESSURE AND EXPOSURE TIME DURING THE 
TREATMENT OF YELLOWFIN TUNA (THUNNUS ALBACARES) MUSCLE TO ENHANCE 

COLOUR STABILITY 
 

ABSTRACT 

 

The aim of these pilot studies was to determine the ideal carbon monoxide pressure and exposure 

time to use on yellowfin tuna after developing a lab-scale gas chamber.  It was found that both 

pressure and exposure time played a significant role in the degree of colour development and 

penetration.  A higher pressure and longer exposure time was found to produce more desirable 

results.  It was established that 150 min exposure time at 3 bar pressure would be optimal for the 

treatment of yellowfin tuna in the main study as it resulted in the desired surface colour 

development and colour penetration. 

 

KEYWORDS: Carbon monoxide; Yellowfin tuna; Carboxymyoglobin; Colour stability 

 

BACKGROUND 
 

Several studies have evaluated the use of carbon monoxide (CO) on yellowfin tuna (Balaban et al., 

2005; Huang et al., 2006) as well as on other fish species (Kristinsson et al., 2003; Garner, 2004; 

Anderson & Wu, 2005; Mantilla et al., 2008) to enhance the colour stability.  In these studies 

different application methods were used including flushing bags or chambers with varying 

concentrations of CO for up to 24 h (Kristinsson et al., 2003; Garner, 2004; Anderson & Wu, 2005; 

Balaban et al., 2005; Huang et al., 2006) or euthanasia of live fish using CO (Mantilla et al., 2008). 

Processors usually receive the whole tuna frozen which is then subsequently thawed, 

processed and either sold as “fresh” or re-frozen for further transportation.  Frozen storage is 

widely accepted as a good method to lengthen the shelf-life of fish and other meat products 

(Kjærsgård et al., 2006).  Unfortunately frozen tuna readily discolours when thawed (Chow et al., 

1988; Chow et al., 1989; Anderson & Wu, 2005) and the main challenge producers face is 

maintaining the colour of tuna during processing, transport, storage and retail display while 

maintaining the quality of the product (Kristinsson et al., 2008). 

Various concentrations and sources (filtered smoke, tasteless smoke and pure CO) of CO 

have been used to treat different fish species using several application methods (Kristinsson et al., 

2003; Garner, 2004; Anderson & Wu, 2005; Balaban et al., 2005; Huang et al., 2006; Mantilla et 

al., 2008).  In all these cases, an increase in the redness (a* value) of the muscle was noted.  

There are, however, various factors which influence the increase in redness, among these: the 
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concentration and source of the CO; the method of application; treatment/exposure time; and the 

fish species (as different fish species contain varying myoglobin content) (Kristinsson et al., 2006).  

The aim of this study was to determine the ideal pressure and exposure time to use for preserving 

the colour of yellowfin tuna muscle. 

 

EXPERIMENTAL PROCEDURE 
 

Gas chamber 

The yellowfin tuna was treated using a purpose built chamber (Fig. 1) which allowed for accurate 

and consistent treatment of the tuna in respect of pressure and exposure time.  The samples to be 

treated were placed on the tray (Fig. 2) inside the chamber, which was then tightly sealed to 

prevent CO leakage.  The chamber was vacuated to -1 bar and then flushed with CO (99.97% min, 

AFROX, Cape Town, South Africa) until the desired pressure (Fig. 6) was reached.  The tuna was 

treated for the desired exposure time (Fig. 7).  The CO was then released via a tube into a well-

ventilated outdoor area.  Once the pressure had normalised, the chamber was unsealed and the 

tray removed. 

 
Figure 1 Purpose built gas chamber for the treatment of tuna samples with CO under pressure. 
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Figure 2 Tuna rounds prior to CO treatment (note the large colour variations). 

 

Experimental layout 

The main aim of this study was to evaluate the effect of the CO (100%) on colour stability of the 

yellowfin tuna.  Since the reason for investigating the effect of the CO on the colour development of 

yellowfin tuna was as a result of muscle rapidly discolouring once frozen, two different freeze/thaw 

cycles were investigated as this is common practise in industry (multiple freeze thaw cycles)  In the 

first, the whole tuna was frozen, cut and thawed as is done in industry, treated with CO, if required 

according to the statistical randomisation, and then subjected to a shelf-life study (the tuna 

underwent one freeze/thaw cycle) (Fx1).  In the second, the whole tuna was frozen, cut, thawed, 

treated, if required according to the statistical randomisation, refrozen for 30 d, thawed and then 

subjected to the shelf-life trial (the tuna underwent two freeze/thaw cycles) (Fx2).  The purpose of 

the two freeze/thaw cycles was to establish whether the CO had an effect on the colour of 

previously frozen tuna and to what extent, and whether the colour of treated samples would remain 

stable during frozen storage and subsequent thawing. 

Since there is controversy surrounding the use of CO to treat tuna, other possible beneficial 

aspects of the treatment were also investigated with the aim of enhancing the public and scientific 

perception of its use.  It has been postulated that the use of CO could retard/inhibit the onset of 

lipid and protein oxidation by stabilising the myoglobin in muscle and subsequently inhibiting its 

pro-oxidative effects (Kristinsson et al., 2006).  Thus the effect of the CO treatment on lipid and 

protein oxidation was also investigated.  Furthermore, since the colour of muscle and lipid and 

protein oxidation are greatly influenced under both aerobic and anaerobic conditions (Ladikos & 

Lougovois, 1990) the effect of two different packaging types were also investigated; overwrap, 

which is oxygen permeable (aerobic) (OP) and vacuum packaging, which is oxygen impermeable 

(anaerobic) (OI).  When all factors were included eight different treatments were established 

(Table 1). 
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Table 1 Experimental layout from which the eight treatments were established 

Treatments 1 2 3 4 5 6 7 8 

Packaging type OP OI 

Tuna number Tuna 1-7 Tuna 8-14 

Shelf-life trial 8 d 32 d 

Sampling 24 h (T0-T8) 96 h (T0-T8) 

Gas treatment +CO -CO +CO -CO 

Freeze/thaw cycle Fx1 Fx2 Fx1 Fx2 Fx1 Fx2 Fx1 Fx2 

OP – oxygen permeable; OI – oxygen impermeable; +CO – treated with 100% CO; -CO – untreated; Fx1 –one freeze/thaw cycle; Fx2 - 

two freeze/thaw cycles. 

 

Shelf-life trial 

The shelf-life trial was based on a partially staggered design as suggested by Gacula (1975) 

(Fig. 3).  This design is the most commonly used approach for shelf-life testing and involves either 

a single batch or replicate of batches of product put on test at time zero with samples being taken 

for testing at intervals determined by expectations of probable shelf-life (Kilcast et al., 2000).  The 

shelf-life trial time period of 8 d for the OP treatments was established using time periods 

employed in a previous study (Garner, 2004) where CO treatment of fish was done with samples 

being taken every day (24 h).  In the case of the OI samples, a 32 d shelf-life trail was conducted 

with samples being taken every 4 d (96 h).  The 4 d intervals were based on a previous study 

where vacuum packaging had also been used on fish where lipid oxidation was assessed over 

16 d (Khalil & Mansour, 1998).  The reason for extending the shelf-life time period in this 

investigation to 32 d was that the same number of time periods, as used for the OP treatments, 

was preferred for better statistical analyses.  Discussions with industry also indicated that they 

would like to see the shelf-life testing being conducted over a longer period.  The samples for the 

OI treatments were taken at longer time intervals as it was assumed that, in the absence of 

oxygen, chemical reactions would not occur as rapidly as compared to the OP treatment samples 

(Ladikos & Lougovois, 1990). 

 

Packaging 

The OP samples were packed in polystyrene trays and wrapped in 10 micron thick oxygen 

permeable cling film (Versafilm, Crown National, Montague Gardens, Cape Town, South Africa) 

with a moisture vapour transfer rate of 585 g.m-2.24 h-1.1 atm-1, O2 permeability of 25 000 cm-3.m-

2.24 h-1.1 atm-1 and a CO2 permeability of 180 000 cm-3.m-2.24 h-1.1 atm-1. 
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The OI samples were packaged in 70 micron thick polyethylene bags (ESB).  The samples 

were vacuum packed using a Multivac packaging system (Type C200; Multivac Sepp 

Haggenmueller GmbH & Co. KG, Wolfertschwenden, Germany) at 3 mbar pressure. 

 

Figure 3 A partially staggered design for shelf-life testing (adapted from Kilcast et al., 2000). 

 

Tuna harvesting 

Fourteen yellowfin tuna were caught off the west coast of South Africa by South Seas Safaris 

(owner Alan du Plessis; alan@southseasafaris.co.za) in May 2011, which is late autumn in South 

Africa.  Tuna were caught around S 34°29’00 E17°54’00 and S 34°35’00 E17°58’00.  The tuna 

were collected at the Gordons Bay harbour on the day of capture and exsanguinated on board, 

directly after being harvested.  Exsanguination was done by cutting behind the pectoral fin, slitting 

open the gills and pithing the tuna with a stainless steel rod. 

 

Statistical randomisation of samples 

It was assumed, that since the tuna used in this study were harvested from the ocean and no 

control could be exercised over which tuna were selected, that the tuna used were representative 

of the population.  It was decided that seven of the tuna harvested would be used for the OP 

samples and seven for the OI samples, as not enough samples could be extracted per tuna to use 

only seven tuna for both treatments.  Furthermore, to prevent any further bias, the tuna caught 

were randomised across the treatments and across the days, ensuring that each tuna received 

each gas treatment on each time period within the packaging type (Table 1).  The randomisations 

were done using Excel (Microsoft Excel ® 2010). 

 START  FINISH 

Time 0 
Time 1 

 Time 2 

 Time 3 

 Time X 
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Sample preparation 

The 14 yellowfin tuna used in the trial were collected from Gordons Bay harbour, the same day 

they were caught and transported to the Department of Animal Sciences at Stellenbosch 

University.  The tuna had been exsanguinated on board directly after having been caught but had 

not been eviscerated.  The tuna were weighed before (Table 2) and after evisceration (Table 3) 

and the head, gills, caudal fin (tail fin), second dorsal fin and anal fin were removed and discarded.  

The tuna were then wrapped in plastic bin bags and frozen (-20°C) until required. 

 

Table 2 Mass frequency table for the 14 tuna prior to evisceration 

 
 

Table 3 Minimum and maximum mass of the 14 tuna, mean mass, standard deviation and average 

dressing percentage 

 Before evisceration After evisceration 

Minimum mass 29 26.5 

Maximum mass 75.7 71.5 

Mean mass ± standard deviation (n=14) 50.8 ± 15.5 47.2 ± 14.6 

Average dressing % 92.8 

 

The day before the trial commenced the tuna were cut into steaks while still frozen on a 

band saw.  Seven tuna were used for the OP treatments and seven for the OI treatments as not 

enough steaks could be cut per tuna to allow for OP and OI samples to be taken from the same 

tuna.  The tuna were cut from directly behind the pectoral fin, vertically, into 18, 2.5 cm thick steaks 
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(± industry standard) (Fig. 4).  From these steaks two, 10 cm in diameter (Fig. 5), samples (called 

rounds) were cut from the loins (white muscle) of the tuna (Fig. 4).  Since only two rounds could be 

extracted from each steak, and four were required (one for each treatment), the rounds from two 

consecutive steaks were counted as one experimental unit.  These rounds were vacuum packed, 

marked according to their statistical randomisation and allowed to defrost overnight in the 

refrigerator at ~4°C. 

The defrosted rounds were then removed from their vacuum packaging and either treated 

with CO, if required, and then repacked according to their randomisation, clearly labelled and 

stored according to their randomisation.  The OP and OI samples which underwent one 

freeze/thaw cycle (Fx1) were placed in polystyrene trays and wrapped in oxygen permeable film or 

repacked in vacuum bags and vacuum sealed, respectively.  The OP and OI samples which 

underwent two freeze/thaw cycles (Fx2) were repacked in vacuum bags, vacuum sealed and 

refrozen (-20°C) for 30 d.  The samples were then defrosted (~4°C) a day before the 

commencement of the shelf-life trials.  The OP samples were then removed from the vacuum 

packaging and placed in polystyrene trays, wrapped in oxygen permeable film, clearly labelled and 

refrigerated (~4°C).  The OI samples were kept in the same refrigerator (~4°C). 

 

 

Figure 5 Tool used to extract the rounds from the loins of the yellowfin tuna steaks. 
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Figure 4 Tuna sample preparation and sampling area. 

 

ESTABLISHING GAS (CO) APPLICATION PARAMETERS 

 
Since the method of CO application used in the current study was not the same as those 

previously used, the exposure time/pressure combination needed to be determined.  In this study, 
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only 100% CO (99.97% min, AFROX, Cape Town, South Africa) was used and thus the gas 

concentration was considered constant.  The variables evaluated in this application method were 

the exposure time to the CO and the pressure that would be used. 

The importance of exposure time has been noted (Kristinsson et al., 2006), with longer 

exposure times leading to higher a* values.  Thus higher CO concentrations require shorter 

exposure times for the development of high a* values.  Most of the commercial application 

methods currently employed, expose the tuna for 24 h and longer at atmospheric pressure to allow 

for maximum CO binding to myoglobin (Kristinsson et al., 2003; Garner, 2004; Anderson & Wu, 

2005; Balaban et al., 2005; Huang et al., 2006; Mantilla et al., 2008).  Chambers, containers or 

bags are used, which are flushed with CO, where after the samples are left for a predetermined 

exposure time (24 h and longer).  Although these application methods have proven effective, they 

are lengthy and also require large amounts of space.  The aim behind the specific application 

method employed in the current study was not only to reduce the exposure time required, but also 

the amount of space required.  Treating the tuna for a considerably shorter time than is currently 

used, and subsequently being able to package it in packaging that takes up considerably less 

space, such as vacuum packaging, will have financial advantages for the industry (Garner, 2004).  

To achieve this, the majority of the air inside the chamber is removed, by creating a vacuum, after 

which the tuna is exposed to the CO under pressure, in hopes that the CO will be forced into the 

tuna muscle, increasing the exposure of the myoglobin in the muscle to the CO.  This should 

theoretically reduce the time required for the binding of the CO to the myoglobin and penetration of 

the CO into the tuna muscle.  Thus effectively reducing the exposure time required for achieving a 

considerable increase in the surface a* (colour ordinate) value of the tuna muscle and penetration 

of the colour into the muscle. 

 

Pilot studies 

Several preliminary studies using exposure times of between 240 and 360 min at 3 bar pressure 

resulted in tuna which was too pink, creating an artificial looking product.  Thus during the pilot 

studies, shorter time periods were assessed.  Two pilot studies were done to investigate the best 

time/pressure combination to be used.  Although, it would have been ideal to test a broad range of 

time/pressure combinations, time and cost constraints allowed for only two pilot studies.  From 

these the best combination was deduced.  The samples used in the pilot studies were obtained 

from SAMPER SA, Réunion Island (www.samper.com). 

 

Pilot study one 

In the first pilot study, four different time/pressure combinations were tested: 10 min/2 bar; 20 min/2 

bar; 10min/3 bar; and 20 min/3 bar.  Three yellowfin tuna loin samples were used for each 

combination which were approximately 2.5 cm thick.  Data from this study indicated that the higher 
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exposure times and higher pressure lead to higher surface a* values (more pink/red) (Fig. 6).  The 

higher pressure also resulted in better colour penetration, although not complete penetration, 

which was evaluated by cutting the samples in half.  Although the importance of exposure time has 

previously been noted (Kristinsson et al., 2006), the interaction between exposure time and 

pressure has not.  Thus it was decided that a 3 bar pressure would be used for the main 

investigation.  The a* values achieved during this pilot study resulted in acceptable colour 

development on the surface but not thorough penetration of the sample.  Thus a longer exposure 

time at 3 bar pressure needed to be investigated. 

 

Pilot study two 

In the second pilot study the pressure was kept constant (3 bar) and the exposure time was 

increased to 60 min and 180 min.  Since the idea behind the shorter exposure time was to freeze 

the sample immediately after treatment, both refrigerated and frozen treatment, post CO exposure, 

were investigated.  From the results (Fig. 7) it could be seen that the a* values were higher in the 

frozen (-20°C) samples compared to that of the refrigerated (~4°C) samples, thus showing that 

colour development continued even during frozen storage.  The 60 min exposure time resulted in 

tuna samples which had developed acceptable surface colour but again insufficient colour 

penetration.  The 180 min samples resulted in sufficient surface colour development and sufficient 

colour penetration. 

 

Figure 6 Pilot study conducted to investigate the effect of exposure time and pressure on the a* 

values of 100% CO treated yellowfin tuna loin. 
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Figure 7 Pilot study investigating the effect of longer exposure times of 100% CO at a constant 

pressure (3 bar) under refrigerated (~4°C) and frozen storage (-20°C) conditions on yellowfin tuna 

loin. 

 

In the second pilot study it was found that there was little difference in the surface a* values 

between the 60 min and 180 min exposure times at 3 bar pressure.  It was also found that the 180 

min exposure time resulted in sufficient colour penetration.  Since the desired result was sufficient 

surface colour development and sufficient colour penetration in the shortest time, 30 min was 

removed from the 180 min exposure time so as to shorten the exposure time (150 min).  It was 

found (data not shown) that 150 min resulted in sufficient colour penetration and this exposure time 

was used for the rest of the study. 

CONCLUSION 
 

It was found that the both the pressure and exposure time were important with regard to the 

amount of colour development (increase in surface a* value), speed of colour development and the 

depth of colour penetration.  A higher pressure and longer exposure time led to the desired colour 

development and penetration.  It was established that 150 min exposure time at 3 bar pressure 

was the most optimum combination and would be used in the main study as it resulted in the 

desired surface colour development and colour penetration. 
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CHAPTER 4 

EFFECT OF CARBON MONOXIDE TREATMENT ON THE COLOUR OF YELLOWFIN TUNA 
(THUNNUS ALBACARES) MUSCLE 

 

ABSTRACT 
 

This study was aimed at investigating the effect of a 100% carbon dioxide (CO) treatment on the 

surface colour of yellowfin tuna muscle, under aerobic (overwrap) and anaerobic (vacuum packed) 

conditions, subjected to either one or two freeze/thaw cycles.  The yellowfin tuna samples were 

either subjected to an 8 d (overwrap) or 32 d shelf-life trial (vacuum packed), with samples taken 

every 24 h or 96 h, respectively.  The colour was assessed using the CIE Lab colour system.  The 

results showed that the CO treatment resulted in higher surface a* values for all the treatments, 

with those stored under aerobic conditions having reduced surface a* values over time (oxidation) 

and those stored under anaerobic conditions maintaining higher a* values over time.  The number 

of freeze/thaw cycles did play a role in the treated and untreated samples with those which 

underwent two freeze thaw cycles having lower a* values.  It was concluded that the vacuum 

packaged, treated samples which underwent one freeze/thaw cycle resulted in the best product 

with regards to colour development and stability over time. 

 

KEYWORDS: Carbon monoxide; Yellowfin tuna; Carboxymyoglobin; CIE Lab 

 

INTRODUCTION 
 

The colour of meat is the most important factor influencing the purchasing decision of consumers 

(Gee & Brown, 1978; Mancini & Hunt, 2005), with consumers preferring the bright red colour 

associated with fresh meat and disliking the brown colour associated with older, poor quality meat 

(Kropf, 1980; Livingston & Brown, 1981).  This is also true for dark-muscle fish species such as 

tuna (Garner, 2004), where the purchase intent of consumers has been linked to its bright red 

colour which is associated with fresh, wholesome tuna.  Bright red tuna fetches higher prices than 

brown, discoloured tuna (Carpenter et al., 2001; Otwell, 2006).  The perception that “fresh” bright 

red tuna is of better quality than brown, discoloured tuna is often incorrect.  Due to loses in market 

value of tuna which has discoloured, tuna can be sold as “fresh” for up to three weeks after being 

harvested due to the vast distances between where tuna is harvested and the end consumer.  In 

industry, to preserve tuna, it is often frozen directly after being harvested which leads to 

discolouration. Thus some of the frozen tuna available can be of better quality than the “fresh” tuna 

as the former is frozen directly after being harvested (Olson, 2006).  The problem is that tuna 

readily discolours when frozen and thawed (Chow et al., 1988; Chow et al., 1989) and loses a 

considerable amount of market value (Kropf, 1980).  Processors thus face the task of maintaining 

the bright red colour of tuna during processing, transportation, frozen storage and display to ensure 
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maximum profit while at the same time maintain the integrity and quality of the product (Kristinsson 

et al., 2008).  One method which has proved very effective is the use of carbon monoxide (CO) as 

either a single gas or as part of a mixture of gasses, such as filtered smoke, tasteless smoke or as 

part of modified atmospheric packaging (Balaban et al., 2005).  This research focussed only on the 

use of 100% CO. 

Although CO treatment of tuna has several theorised benefits, the main reason for its use is 

to maintain the bright red colour of the muscle during frozen storage (Kristinsson et al., 2006).  The 

exposure of the muscle to CO causes a similar reaction to that of oxygen when bound to 

myoglobin but with the formation of a more stable (240 times more stable), bright cherry-red colour 

known as carboxymyoglobin (Sørheim et al., 1997) owing to myoglobin’s high affinity for CO (Hunt 

et al., 2004).  The carboxymyoglobin complex is stable during refrigerated and frozen storage and 

is the one of the main reasons why it is deemed so effective in its use with tuna (Balaban et al., 

2005). 

The main concern regarding the use of CO for colour preservation of tuna is that it 

maintains the bright red colour of the muscle long after it is no longer safe for human consumption 

due to microbial deterioration, effectively masking visible spoilage indicators (Balaban et al., 2005).  

The process also allows for potential product abuse (Anderson & Wu, 2005) as the 

carboxymyoglobin formed is highly resistant to autoxidation even under abusive conditions 

(Balaban et al., 2005).  Despite these concerns there is still a growing market demand for CO 

treated tuna which has caused producers to branch out into a variety of new products and different 

methods of application (Kristinsson et al., 2003; Otwell, 2006).  The demand is mainly driven by 

convenience, appeal, lower cost, increase in revenue and the availability of both frozen and 

thawed products (Kristinsson et al., 2003; Anderson & Wu, 2005; Otwell, 2006).  Producers 

frequently receive whole frozen tuna, which is subsequently thawed, processed and either sold as 

“fresh” or re-frozen for further transportation to an alternative destination where it is again thawed.  

Thus the influence of multiple freeze/thaw cycles on the colour stability of the tuna was 

investigated. 

Several studies have shown that the use of CO significantly influences the red colour 

(a* value) of tuna muscle (Kristinsson et al., 2003; Otwell et al., 2003; Garner, 2004; Balaban et al., 

2005; Mantilla et al., 2008).  Although some of these studies used similar experimental procedures 

as those used in the current study, none were identical.  The current study employed the use of 

100% CO under 3 bar pressure with an exposure time of 150 min, with the aim at investigating the 

effect of the treatment on the surface L*, a*, b*, hue angle and chroma values, under both aerobic 

and anaerobic conditions.  The effect on the number of freeze/thaw cycles was also evaluated. 
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MATERIALS AND METHODS 
 

The experimental layout can be seen in Table 1.  For the full experimental design, sample 

preparation and packaging refer to Chapter 3. 

 

Table 1 Experimental layout from which the eight treatments were established 

Treatments 1 2 3 4 5 6 7 8 

Packaging type OP OI 

Tuna number Tuna 1-7 Tuna 8-14 

Shelf-life trial 8 d 32 d 

Sampling 24 h (T0-T8) 96 h (T0-T8) 

Gas treatment +CO -CO +CO -CO 

Freeze/thaw cycle Fx1 Fx2 Fx1 Fx2 Fx1 Fx2 Fx1 Fx2 

OP – oxygen permeable; OI – oxygen impermeable; +CO – treated with 100% CO gas; -CO – untreated; Fx1 –one freeze/thaw cycle; 

Fx2 - two freeze/thaw cycles. 

 

Surface L* a* b* measurements 

The surface colour of the tuna samples was measured according to the CIE Lab colour system 

using a colour-guide 45°/0° colorimeter (BYK-Gardner GmbH, Geretsried, Germany).  The 

colorimeter was calibrated using the light trap, white and high gloss standards provided (BYK-

Gardner GmbH, Geretsried, Germany).  The colorimeter was calibrated at least once a week and 

checked against the green standard daily to ensure the calibration was still correct.  The samples 

were removed from their packaging before being measured, as previous trials had shown that the 

packaging influenced the results.  Three L*, a* and b* measurements were taken with the 

colorimeter on different areas of the sample and the average of these three measurements, L*, a* 

and b* respectively, was used in the statistical analysis (Honikel, 1998).  The hue angle (h°ab) and 

the chroma (C*) were calculated using the a* and b* values: 

h°ab = arctan (b*/a*) 

C* = (a*2 + b*2)½ 

 

Statistical analysis 

The colour determination involved two main effects, time and treatment, as well as the seven tuna 

used for each type of packaging.  The data was analysed using a two way repeated measure 

analysis of variance (RMANOVA) using the general linear models (GLM) procedure.  Each 

variable, L*, a*, b*, hue angle and chroma were analysed separately.  The model for the 

RMANOVA of the data is indicated by the following equation: 
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yijk = µ + αi + βj + (αβ)ij + γ(i)k + δ(j)k + εijk 

The terms within the model are defined as: 

yijk= observation k in the ith treatment at the jth time 

µ - the overall mean; 

αi - the effect of the ith treatment (fixed effect); 

βj - the effect of the jth time (fixed effect); 

(αβ)ij - the interaction of the ith treatment with the jth time; 

γ(i)k - the effect of the kth tuna on the ith treatment (random effect); 

δ(i)k - the effect of the kth tuna on the ith time period (variable effect); and 

εijk - the error associated with the time, treatment and tuna. 

The RMANOVA is performed on the assumption that the data has compound symmetry on 

the time and treatment correlation.  The data was also assumed to be normally distributed.  The 

least significant interactions (LSD) were calculated at a 95% significance level to compare the 

treatment means i.e. results were defined as significant when P≤0.05 and not significant when 

P>0.05.  If the interaction between the main effects, time and treatment, was not significant 

(P>0.05) then the main effects could be interpreted separately.  In the case where the interaction is 

found to be significant a Bonferroni pair wise comparisons was done to identify the specific 

interactions.  STATISTICA version 10 (StatSoft South Africa Pty (Ltd)) was used to analyse the 

data collected for each treatment. 

 

RESULTS 
 

For the results of the L*, a*, b*, hue angle and chroma values, where no significant interaction 

(P>0.05) was found between the treatments, only the combined data were reported. 

 

Surface L* a* b* measurements 

Oxygen permeable (OP) treatments 

Fx1 treatments - The RMANOVA showed no significant interactions (P>0.05) between the main 

effects tested for the L*, a*, b*, hue angle or chroma values for the Fx1 treatments over time (Fig. 

2).  There was an overall increase in the L*, b* and hue angle values over time and an overall 

decrease in the a* values, for both treatments.  The chroma values showed an initial increase (T0 

to T1), after which the values decreased (T3), and then remained relatively constant until T8. 

 

Fx2 treatments - The RMANOVA showed no significant interactions (P>0.05) between the main 

effects tested for the L* and b* values for the Fx2 treatments over time (Figs. 3a and c); however, 

significant interactions (P≤0.05) were found between the a*, hue angle and chroma values over 

time (Figs. 3b, d and e).  There was an overall increase in the L* and b* values over time.  The a* 
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values showed and overall decrease over time for both the treated and untreated samples, with the 

treated samples having higher a* values over time but resulting in similar a* values as the 

untreated samples by T8.  The chroma values for the treated samples showed an initial increase, 

then a decrease, levelling out after T6 and having the same/similar values as the untreated 

samples.  The chroma values for the untreated samples showed an overall increase over time, 

resulting in similar values as the treated samples after T6.  The hue angle values for the treated 

and untreated sample increase over time, with the untreated sample having overall higher hue 

angle values over time but resulting in similar values as the treated samples by T8. 

 

Figure 2 Surface L*, a* and b* values as well as the chroma and hue angle values for the OP Fx1 

treatments: a) combined L* values; b) combined a* values; c) combined b* values; d) combined 

chroma values; and e) combined hue angle values. 
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Figure 3 Surface L*, a* and b* values as well as the chroma and hue angle values for the OP Fx2 

treatments: a) combined L* values; b) a* values - () +CO and () -CO; c) combined b* values; d) 

chroma values - () +CO and () -CO; and e) hue angle values - () +CO and () -CO. 

 

Combined Fx1 and Fx2 treatments - The RMANOVA for the combined OP treatments showed no 

significant interaction (P>0.05) between the main effects tested for the L*, b* and hue angle values 

(Figs. 4a, c and e) and significant interactions between the a* and chroma values (Figs. 4b and d).  

The L*, b* and hue angle values showed an increase over time.  All the treatments showed a 

decrease in a* values over time, with the Fx2 +CO treatment having the highest overall a* values 

and the Fx2 -CO treatments having the lowest, with all the treatments resulting in similar a* values 

at T8.  The chroma values show a varying trend (as discussed above) with all treatments resulting 
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in similar chroma values by T8.  The Fx2 +CO samples had the highest initial chroma value and the 

Fx2 -CO values the lowest. 

 

Figure 4 Surface L*, a* and b* values as well as the chroma and hue angle values for all the OP 

treatments: a) combined L* values; b) a* values - () +CO Fx1, () -CO Fx1, () +CO Fx2 and 

() -CO Fx2; c) combined b* values; d) chroma values - () +CO Fx1, () -CO Fx1, () +CO Fx2 

and () -CO Fx2; and e) combined hue angle values. 

 

Oxygen Impermeable (OI) treatments 

Fx1 treatments - The RMANOVA showed no significant interactions (P>0.05) between the main 

effects tested for the L*, b* and hue angle values (Figs. 5a, c and e) and significant (P≤0.05) 
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interactions between the a* and chroma values (Figs. 5b and d).  The L*, b* and hue angle values 

all showed an increase over time.  The a* values for the treated samples were considerably higher 

than those of the untreated samples, with the a* values of the untreated samples decreasing over 

time.  The a* values for the treated samples showed a sharp increase from T0 to T1, after which the 

a* values decrease from T3 to T4, with the a* values levelling off/decreasing slightly from T5 to T8.  

Overall, the chroma values for the treated samples were higher than those of the untreated 

samples.  The treated samples show a sharp increase in the chroma values from T0 to T1, after 

which the values level off/increase slightly over time, then decrease from T4 to T5 and finally level 

off/decrease slightly. 

 

Fx2 treatments - The RMANOVA showed no significant interactions (P>0.05) between the main 

effects tested for the L*, b* and hue angle values (Figs. 6a, c and d) and significant interactions 

(P≤0.05) between the a* and chroma values (Figs. 6b and d).  The L*, b* and hue angle values 

increased over time.  The a* values for the treated samples were considerably higher than those of 

the untreated samples, with the a* values for the untreated samples decreasing over time.  There 

was also a sharp increase in the a* values from T0 to T1.  The treated samples showed an increase 

in the a* values over time.  The chroma values for the treated and the untreated samples showed 

an increase over time, with the treated samples having higher chroma values than the untreated 

samples. 

 

Combined Fx1 and Fx2 treatments - The RMANOVA for all the OI treatments showed no 

significant (P>0.05) interactions between the main effects tested for the L* and hue angle values 

(Figs. 7a and e) and significant (P≤0.05) interactions between the a*, b* and chroma values (Figs. 

7b, c and d).  The L* and hue angle values showed an overall increase over time. The a* values for 

the treated samples were considerably higher than those of the untreated samples, with the a* 

values for the untreated samples decreasing over time.  There was also a sharp increase in the a* 

values from T0 to T1.  The a* values for the treated samples follow a similar trend, with the Fx2 

treated samples having slightly lower initial a* values compared to the Fx1 samples but resulting in 

similar a* values over time.   The untreated samples for both treatments follow a similar trend and 

have similar values for the entire shelf-life trial.  The b* values for all the treatments showed an 

increase over time, with the Fx2 -CO samples having the highest b* values and the Fx1 +CO 

samples having the lowest.  The chroma values for the treated and untreated samples showed an 

increase over time, with the treated samples having higher chroma values than the untreated 

samples over time. 
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Figure 5 Surface L*, a* and b* values as well as the chroma and hue angle values for the OI Fx1 

treatments: a) combined L* values; b) a* values - () +CO Fx1 and () -CO Fx2; c) combined b* 

values; d) chroma values - () +CO Fx1 and () -CO Fx2; and e) combined hue angle values. 
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Figure 6 Surface L*, a* and b* values as well as the chroma and hue angle values for the OI Fx2 

treatments: a) combined L* values; b) a* values - () +CO Fx1 and () -CO Fx2; c) combined b* 

values; d) chroma values - () +CO Fx1 and () -CO Fx2; and e) combined hue angle values. 
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Figure 7 Surface L*, a*and b* values as well as the chroma and hue angle values for all the OI 

treatments: a) combined L* values; b) a* values - () +CO Fx1, () -CO Fx1, () +CO Fx2 and 

() -CO Fx2; c) b* values - ) +CO Fx1, () -CO Fx1, () +CO Fx2 and () -CO Fx2; d) chroma 

values - () +CO Fx1, () -CO Fx1, () +CO Fx2 and () -CO Fx2; and e) combined hue angle 

values. 

 

DISCUSSION 
 

Although the L* values were included in the results for thoroughness, previous studies have shown 

that the CO treatment of meat has little effect on the L* values (Garner, 2004; Balaban et al., 2005; 

Kristinsson et al., 2006).  The results from this study reiterate this, as none of the treatments had a 

significant on the L* values.  Thus the L* values are not indicative of any colour changes. The a* 

value gives an indication of redness in meat, which is correlated with the presences of 
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oxymyoglobin (Mancini & Hunt, 2005) and/or carboxymyoglobin (Garner, 2004; Kristinsson et al., 

2006) in meat.  The b* value is an indication of yellowness, which in meat has been correlated with 

the browning of meat (formation of metmyoglobin) (Mancini & Hunt, 2005). 

The hue angle and chroma values are calculated using the a* and b* values (Anon., 1998) 

and thus give a better indication of the overall colour of the muscle.  The hue angle values indicate 

where in the colour spectrum the colour of the meat lies (red, yellow, orange, green, blue or violet).  

In this case it will give an indication of whether the samples lie more towards the red (0°) or yellow 

area (90°) of the spectrum.  The chroma value gives an indication of the colour saturation, with 

higher values indicating a more saturated colour (Anon., 1998). 

 

Surface L* a* b* measurements 

Oxygen permeable (OP) treatments 

Fx1 treatments - The Fx1 treatments resulted in an overall decrease in a* values over time with a 

concurrent increase in the b* values (Figs. 2b and c).  This is to be expected since, over time, in 

the presence of oxygen, the oxymyoglobin and carboxymyoglobin in the tuna muscle (measured by 

the a* values) will oxidise to form brown metmyoglobin (measured by the b* value) (Livingston & 

Brown, 1981; Krause et al., 2003; Anderson & Wu., 2005).  This is further reiterated by the hue 

angle (Fig. 2e) which increased over time, showing that both the treated and untreated samples 

move from the red area (0°) of the colour spectrum toward the yellow (90°) over time.  The chroma 

values (Fig. 2d) initially increase slightly, which could be explained by the increase in CO binding to 

myoglobin and oxygenation of myoglobin leading to the formation of oxy- and carboxymyoglobin, 

respectively, which will lead to a more saturated red colour (Mancini & Hunt, 2005; Kristinsson et 

al., 2006).  Overall however, there is little to no change in the chroma value, indicating that there 

was not much change in colour saturation over time.  These results are similar to results seen in 

other studies on yellowfin tuna (Kristinsson et al., 2006) and other dark meat fish species treated 

with CO (Garner, 2004).  Furthermore, the rapid discolouration can be explained by the tuna being 

frozen and thawed prior to being treated.  Freezing and thawing of tuna causes myoglobin to 

oxidise more readily to metmyoglobin resulting in a brown coloured muscle (Chow et al., 1988; 

Chow et al., 1989; Leygonie et al., 2012).  This is thought to be caused by denaturation of the 

globin moiety at some point during the freeze/thaw process resulting in the myoglobin being more 

susceptible to discolouration (Leygonie et al., 2012).  This hypothesis has been proven in several 

studies (Marriott et al., 1980; Lanari et al., 1990; Lanari & Zaritzky, 1991; Farouk & Swan, 1998; 

Abdallah et al., 1999; Otremba et al., 1999; Leygonie et al., 2011).  The change in colour is also 

partly due to the loss of myoglobin in the exudate once the meat is thawed (Añón & Cavelo, 1980).  

The difference between the initial colour (T0) and the final colour (T8) is illustrated in Fig. 8. 
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Figure 8 The colour difference between the treated and untreated tuna rounds of T0 and T8: a) OP 

Fx1 +CO T0; b) OP Fx1 +CO T8; c) OP Fx1 -CO T0; and d) OP Fx1 –CO T8. 

 

Fx2 treatments - The Fx2 treatments resulted in a decrease in the a* values for both the treated 

and untreated samples over time (Fig. 3b), with a concurrent increase in the b* values (Fig. 3c).  

This is to be expected since, over time, in the presence of oxygen, the oxymyoglobin and 

carboxymyoglobin in the tuna muscle (measured by the a* values) will oxidise to form brown 

metmyoglobin (measured by the b* value) (Livingston & Brown, 1981; Krause et al., 2003; 

Anderson & Wu., 2005). This is similar to the results of the Fx1 treatments, except that there is a 

significant interaction (P≤0.05) between the a* values for the treated and untreated samples, with 

the treated samples having higher a* values than the untreated samples for most of the shelf-life 

trial.  The higher a* values of the treated samples is due to the fact that the samples were vacuum 

packed immediately after being treated, allowing for more CO to bind to myoglobin before being 

frozen.  In the absence of oxygen the CO will not dissociate from the myoglobin and residual CO 

will bind to the myoglobin (Kristinsson et al., 2006).  It has also been postulated that residual CO 

will bind to the unbound myoglobin during thawing (Kristinsson et al., 2006).  The increased 

binding before freezing and during thawing will result in a higher concentration of 

carboxymyoglobin and thus increased a* values.  The rapid decrease and low a* values of the 

untreated samples is due to the damage caused to the tuna muscle during freezing and thawing 

which results in accelerated oxidation of the myoglobin to metmyoglobin (Chow et al., 1988; Chow 

et al., 1989; Leygonie et al., 2012) as well as a loss of myoglobin in the exudate when the meat is 

thawed (Añón & Cavelo, 1980).  The negative effects of freezing on the tuna muscle are amplified 

by the tuna having gone through two freeze/thaw cycles.  The chroma and hue angle results 

a 

c d 

b 
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reiterate the above findings, with the results showing that the treated samples initially have a more 

saturated, more red colour than the untreated samples, which have a less saturated more 

brown/tan colour, with the samples eventually developing the same/similar surface colour over 

time.  The difference in colour between the initial colour (T0) and the final colour (T8) can be seen in 

Fig. 9. 

 

Figure 9 The colour difference between the treated and untreated tuna rounds of T0 and T8: a) OP 

Fx2 +CO T0; b) OP Fx2 +CO T8; c) OP Fx2 -CO T0; and d) OP Fx2 -CO T8. 

 

Combined Fx1 and Fx2 treatments - Combined Fx1 and Fx2 treatment data revealed a decrease in 

a* values over time and a concurrent increase in b* values i.e. all the samples lost redness and 

became more brown over time.  The chroma and hue angle indicated that both Fx1 and Fx2 

treatments resulted in a similar meat colour by T8 which was confirmed by visual observations of 

meat colour (Figs. 8 and 9).  The results illustrated that the Fx2 +CO samples were initially the 

darkest red (chroma and a* values) and the Fx2 -CO samples the least red.  The darker red colour 

is attributed to the higher percentage of carboxymyoglobin which formed as a result of the tuna 

being vacuum packed directly after having been treated with CO.  In the absence of oxygen, the 

residual CO bound to the unbound myoglobin before the samples were refrozen.  Furthermore 

during thawing further binding would occur between residual CO and any unbound myoglobin 

resulting in a darker red colour (Kristinsson et al., 2006).  Effectively the tuna muscle had a longer 

exposure time to the CO than the Fx1 +CO samples.  The lack of redness in the Fx2 -CO samples 

can be attributed to the loss of myoglobin in the exudate during thawing (Añón & Cavelo, 1980) 

and the increased oxidation of the myoglobin in frozen/thawed tuna muscle (Chow et al., 1988; 

a 
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Chow et al., 1989; Leygonie et al., 2012), both of which were more pronounced due to the sample 

having undergone two freeze/thaw cycles. 

 

Oxygen impermeable (OI) treatments 

Fx1 treatments – Large differences were observed between the treated and untreated OI samples 

with regards to the a* and chroma values.  Similar trends are seen in the b* and hue angle values, 

which increased over time.  The b* and hue angle values indicate that both the treated and 

untreated samples browned to some extent over time.  The a* and chroma values indicated that 

the untreated samples decreased in redness over time and become more saturated in colour i.e. a 

darker brown/tan colour.  On the other hand, the treated samples displayed a rather dark 

(saturated) red colour initially and then become less red and lighter (less saturated) over time, 

most probably due to microbial growth (Mancini & Hunt, 2005).  These results are consistent with 

those of Mantilla et al. (2008) who also observed a decrease in colour saturation over time.  The 

results observed in this study are to be expected since, in the absence of oxygen, any residual CO 

will bind to the unbound myoglobin resulting in a higher concentration of carboxymyoglobin 

(Kristinsson et al., 2006), leading to a more saturated red colour.  The low a* and chroma values of 

the untreated samples would have been due to the increased myoglobin oxidation as a result of 

the freeze/thaw cycle (Chow et al., 1988; Chow et al., 1989; Leygonie et al., 2012) it underwent 

prior to vacuum packaging.  The results are consistent to what was visually observed (Fig. 10). 

 

Fx2 treatments - The Fx2 results mirrored the Fx1 displaying large interactions between the treated 

and untreated samples with regards to the a* and chroma values, and similar trends for the b* and 

hue angle values, which increase over time.  The b* and hue angle values indicate that both the 

treated and untreated samples brown to some extent over time.  The a* and chroma values 

indicated that the untreated samples decrease in redness over time and become more saturated in 

colour i.e. a darker brown/tan colour.  On the other hand, the treated samples displayed quite a 

dark (saturated) red colour initially, then became less red and lighter (less saturated) and yielded 

erratic colour changes near the end, most probably due to microbial growth (Mancini & Hunt, 

2005).  These results were expected since, in the absence of oxygen, the residual CO will bind to 

the unbound myoglobin resulting in a higher concentration of carboxymyoglobin (Kristinsson et al., 

2006), leading to a more saturated red colour.  The low a* and chroma values of the untreated 

samples are ascribed to the increased myoglobin oxidation and loss in myoglobin in the tuna 

muscle as a result of the freeze/thaw cycle (Añón & Cavelo, 1980; Chow et al., 1988; Chow et al., 

1989; Leygonie et al., 2012) that was applied prior to vacuum packaging.  The results are 

consistent to what was visually observed (Fig. 11). 
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Figure 10 The colour difference between the treated and untreated tuna rounds of T0 and T8: a) OI 

Fx1 +CO T0; b) OI Fx1 +CO T8; c) OI Fx1 -CO T0; and d) OI Fx1 -CO T8. 

 

Combined Fx1 and Fx2 treatments - Combined Fx1 and Fx2 treatment data revealed that the hue 

angle indicates that all the treatments results in tuna muscle that browns to some extent (increase 

in hue angle over time).  This is reiterated by the b* values which all follow a similar upward trend 

over time, with the Fx2 -CO samples having the highest b* values (more brown) and the Fx1 +CO 

samples having the lowest (less brown).  This was expected since the two freeze/thaw cycles that 

the Fx2 -CO samples underwent would have exaggerated the browning and colour loss caused by 

freezing and thawing (Añón & Cavelo, 1980; Chow et al., 1988; Chow et al., 1989; Leygonie et al., 

2012).  The Fx1 +CO samples having the least damage to the muscle as they were only frozen 

and thawed once and were also treated with CO giving them the lowest b* values (least amount of 

browning).  This is reiterated by the a* values where the Fx1 +CO treatment has higher a* values 

than the Fx2 +CO treatment and both the untreated treatments.  The untreated samples yielded 

similar a* and chroma values, which revealed a decrease in redness and an increase in saturation 

i.e. the untreated samples became more brown/tan over time.  For the treated samples the Fx1 

treatment has higher initial a* and chroma values than the Fx2 treatments, indicating that the Fx1 

treatments samples were a darker (more saturated) red initially than the Fx2 samples.  This could 

have been due to the increased in damage to the proteins (myoglobin) (Chow et al., 1988; Chow et 

al., 1989; Leygonie et al., 2012) and an increased loss of myoglobin (Añón & Cavelo, 1980) in the 

exudate caused by the second freeze/thaw cycle which resulted in less CO binding to the 

myoglobin and subsequently a lower carboxymyoglobin percentage and thus lower a* values.  This 

is consistent to what was observed (Figs. 10 and 11).  The decrease in a* and chroma values over 

a 

c d 

b 
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time and the erratic pattern of the Fx2 samples could be explained by microbial growth (Mancini & 

Hunt, 2005). 

 

Figure 11 The colour difference between the treated and untreated tuna rounds of T0 and T8: a) OI 

Fx2 +CO T0; b) OI Fx2 +CO T8; c) OI Fx2 -CO T0; and d) OI Fx2 –CO T8. 

 

CONCLUSION 
 

It was clear from the results that the treatment of yellowfin tuna muscle with CO had a positive 

effect on the red colour.  In all the treatments, exposure to CO led to an increase in the surface a* 

values (redness) of the tuna muscle.  With regard to the OP samples, although the surface a* 

values were increased by the CO exposure, the effect was short lived, as the exposure to oxygen 

rapidly lead to oxidation of the carboxymyoglobin to metmyoglobin and a concurrent increase in b* 

values (browning).  The OI samples, however, maintained the increased a* values over time.  The 

number of freeze/thaw cycles also had an effect on the overall colour development.  In the OP 

treatments the pronounced damage and the resulting discolouration caused by the two freeze/thaw 

cycles, was only apparent in the untreated samples with the effect being overshadowed in the 

treated samples by the longer CO exposure time and consequent higher carboxymyoglobin 

concentration, resulting in the OP Fx2 +CO samples having the highest initial surface a* values.  

The effect of the longer exposure time was cancelled out in the OI samples as all the samples 

were vacuum packed.  The results showed that the second freeze/thaw cycle led to lower values in 

the treated samples, with the OI Fx1 +CO samples having the highest initial surface a* values.  It 

a 

c d 

b 
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could thus be concluded that the OI Fx1 +CO treatment resulted in the best product with regard to 

surface colour development and stability. 
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CHAPTER 5 

EFFECT OF CARBON MONOXIDE ON THE LIPID AND PROTEIN OXIDATION OF YELLOWFIN 
TUNA (THUNNUS ALBACARES) MUSCLE 

 

ABSTRACT 
 

This study investigated the effect of carbon monoxide (CO) treatment of yellowfin tuna muscle on 

the lipid and protein oxidation, stored under aerobic (overwrap) and anaerobic (vacuum packed) 

conditions. The tuna had been subjected to either one or two freeze/thaw cycles.  The CO 

treatment and the number of freeze/thaw cycles had no effect (P>0.05) on the lipid and protein 

oxidation of the yellowfin tuna.  The vacuum packaged (anaerobic) samples showed lower 

thiobarbituric acid reactive substances (TBARS) values than those covered in overwrap (aerobic) 

and also retarded the onset of protein oxidation.  The number of freeze/thaw cycles had an effect 

on the carbonyl concentration of both the vacuum packaged and overwrapped samples, with the 

twice frozen samples indicating accelerated protein oxidation in the yellowfin tuna muscle.  It was 

recommended that vacuum packaging be used with the yellowfin tuna (both treated and untreated) 

and that the number of freeze/thaw cycles be kept to a minimum as this resulted in better quality 

tuna. 

 

KEYWORDS: Yellowfin tuna; Carbon monoxide; Carboxymyoglobin; Lipid oxidation; Protein 

oxidation 

 

INTRODUCTION 
 

Oxidation of muscle foods, including seafood, is the leading cause of quality deterioration during 

processing and storage (Xiong, 2000).  This is especially true for fish which are high in 

polyunsaturated fatty acids (PUFAs) (Strasburg et al., 2007).  PUFAs are particularly liable to 

oxidation (Gray, 1978; Apgar & Hultin, 1982; Gordon, 2003; Munasinghe et al., 2005; Kristinsson et 

al., 2006a).  There are also several pro-oxidants which naturally occur in fish muscle including the 

haem proteins (myoglobin and haemoglobin), copper and iron which will catalyse oxidative 

processes (Kristinsson et al., 2006a).  The haem proteins are believed to be the two main pro-

oxidants in meat (Richards et al., 1998; Undeland et al., 2004).  It can also be assumed that if 

exsanguination was performed correctly, only myoglobin will play a significant role in muscle 

oxidation (Kristinsson et al., 2006b). 

Myoglobin has the ability to cause oxidation when oxygen is released from oxymyoglobin to 

form ferric (Fe3+) metmyoglobin and super oxide anion radicals.  Metmyoglobin can oxidise further 

to ferryl (Fe4+) myoglobin which is highly reactive.  It is thought that ferryl (Fe4+) myoglobin is the 

main catalyst of oxidation (Richards & Hultin, 2002).  Antioxidants have been found to successfully 

Stellenbosch University  http://scholar.sun.ac.za



61 
 

retard oxidation (Richards et al., 1998) by inhibiting the activity of the pro-oxidants, such as 

myoglobin (Richards et al., 1998; Kristinsson, 2002). 

Myoglobin remains in the reduced state when bound to CO and this reduced state does not 

readily oxidise (Kristinsson et al., 2005).  Thus, it is expected that the stabilisation of myoglobin 

with CO will reduce oxidation.  It can further be surmised that fish muscle treated with CO may be 

less prone to oxidation, with several studies supporting this theory (Luno et al., 2000; Garner, 

2004; Kristinsson et al., 2005; Pivarnik et al., 2011). 

Frozen storage of meat is widely accepted as a good method to lengthen the shelf-life of 

fish and other meat products (Kjærsgård et al., 2006).  However, during frozen storage various 

biochemical reactions can still occur.  Fish are particularly susceptible to oxidation during frozen 

storage due to the high concentration of pro-oxidants (Soyer et al., .2010).  On the other hand, 

vacuum packaging of meat has been shown to reduce oxidation by limiting the amount of oxygen 

available for oxidative reactions (Min & Ahn, 2005).  This however may not be the case since the 

oxidation of both lipids and proteins include oxidative and non-oxidative reactions (Gray, 1978; 

Gray & Monohan, 1992; Dean et al., 1997). 

The objective of this study was to investigate the effect that 100% CO treatment had on the 

lipid and protein oxidation of yellowfin tuna muscle under aerobic and anaerobic conditions 

subjected to a different freeze/thaw cycles.  The oxidative state was determined by measuring the 

rate of oxidation of the lipids and proteins using the TBARS (Lynch & Frei, 1993) and DNPH (Oliver 

et al., 1987) methods, respectively. 

 

MATERIALS AND METHODS 
 

The experimental layout can be seen in Table 1.  For the full experimental design, sample 

preparation and packaging refer to Chapter 3. 

 

Table 1 Experimental layout from which the eight treatments were established 

Treatments 1 2 3 4 5 6 7 8 

Packaging type OP OI 

Tuna number Tuna 1-7 Tuna 8-14 

Shelf-life trial 8 d 32 d 

Sampling 24 h (T0-T8) 96 h (T0-T8) 

Gas treatment +CO -CO +CO -CO 

Freeze/thaw cycle Fx1 Fx2 Fx1 Fx2 Fx1 Fx2 Fx1 Fx2 

OP – oxygen permeable; OI – oxygen impermeable; +CO – treated with 100% CO gas; -CO – untreated; Fx1 –one freeze/thaw cycle; 

Fx2 - two freeze/thaw cycles. 
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Lipid oxidation – Quantification of MDA using the TBARS method 

Sample preparation 

The level of lipid oxidation over time was assessed by the 2-thiobarbituric acid (TBARS) extraction 

method (Lynch & Frei, 1993).  Each tuna sample was cut into blocks (±1 cm x 1 cm) and a sub-

sample (≈5 g) were wrapped in aluminium foil.  This sub-sample was snap frozen in liquid nitrogen, 

to prevent any further oxidation occurring, and subsequently stored at -80°C until required for 

analysis (< one month). 

As described by the method of Lynch and Frei (1993), a 1 g sample was cut from the snap 

frozen tuna and placed in 10 ml of 0.15 M KCl with 0.1 mM BHT solution, and homogenised (P-8, 

Kinematica AG Littau, Switzerland) for 30 sec.  From this sample, 0.5 ml was pipetted into a 

separate test tube containing 0.25 ml of 50 mM NaOH with 1% (w/v) 2-thiobarbituric acid and 

0.25 ml of 2.8% (w/v) trichloroacetic acid.  The test tube was then incubated in a boiling waterbath 

for 10 min, removed and cooled in a bath of cold tap water.  At this point the mixture in the test 

tube had turned varying shades of pink depending on the amount of lipid oxidation which had 

occurred.  To extract the pink chromagen from the solution, 2 ml of n-butanol was pipetted into the 

test tube which was then vortexed for 30 sec.  The sample was centrifuged (Allegra X22R, 

Beckman Coulter, Germany) at 2 240 xg for 25 min to clear all debris from the n-butanol extraction.  

The pink n-butanol extracted was then removed from the test tube using a Pasteur pipette and 

placed in a cuvette and the absorbance measured spectrophotometrically (CE 2021, Cecil, 

Cambridge, England) at 532 nm.  The TBARS concentrations were calculated from a standard 

curve and expressed as mg malondialdehyde (MDA).kg-1 of meat (Shahidi & Zhong, 2005). 

 

Standard curve 

A standard curve was drawn up using known concentrations of 1,1,3,3-tetramethoxypropane 

(TMP) (0-68 µM) (Lynch & Frei, 1993).  The various TMP concentrations were made by diluting 

varying amounts of TMP in distilled water.  The standard solutions were prepared in the same way 

as the tuna samples above, except using the dilutions in lieu of the tuna i.e. 0.5 ml of each dilution 

was added to the test tubes containing 0.25 ml of 50 mM NaOH with 1% (w/v) 2-thiobarbituric acid 

and 0.25 ml of 2.8% (w/v) trichloroacetic acid.  The incubation, extraction and absorbances were 

conducted as described for the samples above.  The values obtained were used to draw up a 

standard curve of known TMP concentrations that could be used to calculate the amount of 

TBARS in each sample. 

 

Protein oxidation – Quantification of carbonyls using DNPH 

The amount of protein oxidation over time was determined using the protein carbonyl concentration 

with the derivation of DNPH as described by Oliver et al. (1987).  Each tuna sample was cut into 
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blocks (±1 cm x 1 cm) and a sub-sample (≈5 g) were wrapped in aluminium foil, snap frozen and 

stored at -80°C until required for analysis (< one month). 

As described by the method of Oliver et al. (1987) 1 g sample was cut from the snap frozen 

tuna and placed in 10 ml of a 0.15 M KCl with 0.1 mM BHT solution and homogenised (P-8, 

Kinematica AG Littau, Switzerland) for 30 sec.  Two equal 0.1 ml aliquots were taken from the 

homogenised solution and pipetted into two separate vials.  Each aliquot was incubated with 10% 

trichloroacetic acid (TCA) and centrifuged for 5 min at 2 240 xg (Allegra X22R, Beckman Coulter, 

Germany).  The supernatant on the surface was discarded.  One pellet was treated with 1 ml 2 N 

HCl and the other with equal volumes (0.5 ml) of 2 N HCl and 0.2% (w/v) dinitrophenylhydrazine 

(DNPH).  Both samples were incubated at room temperature for 60 min and then precipitated with 

10% TCA (w/v) and centrifuged for 5 min at 2 240 xg.  The supernatant of both was again 

discarded and the pellets were washed twice with ethanol:ethyl acetate (1:1) to eliminate any 

residual lipids.  The pellets were then dissolved in 2 ml 8 M urea and 20 mM sodium phosphate 

buffer (pH 6.5).  The samples were again centrifuged for 2 min at 2 240 xg.  The supernatant from 

each pellet was transferred into two separate cuvettes and the absorbance of each was measured 

using a spectrophotometer (CE 2021, Cecil, Cambridge, England) at 320 nm.  The carbonyl 

concentration was calculated by subtracting the absorbance of the HCl control sample from the 

DNPH sample, using 21.0 mM.cm-1 as the absorption coefficient.  The protein concentration was 

determined on the HCl control sample using a bicinchoninic acid (BCA) protein assay kit and 

measuring the absorbance spectrophotometrically (CE 2021, Cecil, Cambridge, England) at 

562 nm.  The two absorbance values obtained were used to determine the concentration of protein 

oxidation which was expressed as nM DNPH.mg-1 protein. 

 

Statistical analysis 

The protein and lipid oxidation determination involved two main effects, time and treatment, as well 

as the seven tuna used for each type of packaging.  The data was analysed with a two-way 

repeated measure analysis of variance (RMANOVA) using the general linear models (GLM) 

procedure.  The model for the RMANOVA of the data is indicated by the following equation: 

yijk = µ + αi + βj + (αβ)ij + γ(i)k + δ(j)k + εijk 

The terms within the model are defined as: 

yijk= observation k in the ith treatment at the jth time 

µ - the overall mean; 

αi - the effect of the ith treatment (fixed effect); 

βj - the effect of the jth time (fixed effect); 

(αβ)ij - the interaction of the ith treatment with the jth time; 

γ(i)k - the effect of the kth tuna on the ith treatment group (variable effect); 

δ(i)k - the effect of the kth tuna on the ith time period (variable effect); and  
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εijk - the error associated with the time, treatment and tuna. 

The RMANOVA is performed on the assumption that the data has compound symmetry on 

the time and treatment correlation.  The data was also assumed to be normally distributed.  The 

least significant interactions (LSD) were calculated at a 95% significance level to compare the 

treatment means i.e. results were defined as significant when P≤0.05 and not significant when 

P>0.05.  If the interaction between the main effects, time and treatment, was not significant 

(P>0.05) then the main effects could be interpreted separately.  In the case where the interaction is 

found to be significant, a Bonferroni pair wise comparison was done to identify the specific 

interactions.  STATISTICA version 10 (StatSoft South Africa Pty (Ltd)) was used to analyse the 

data collected for each treatment.   

 

RESULTS 
 

Lipid oxidation 

Oxygen permeable (OP) treatments 

Fx1 treatments - The RMANOVA for the OP Fx1 treatments showed that there was no significant 

interaction (P>0.05) between the main effects (time and treatment) (Fig. 1a).  The data could thus 

be combined and then interpreted (Fig. 1b) allowing for trends in the data to be seen.  From the 

combined data (Fig. 1b) it can be seen that there is an overall increase in the TBARS values over 

time.  Initially the values decrease, followed by a rapid increase, with the values levelling-

off/decreasing slightly after T5. 

 

 
Figure 1 (a) The mean TBARS values (with confidence intervals) for the () OP Fx1 +CO and 

() OP Fx1 -CO treatments measured every 24 h for 8 d (T0-T8) on yellowfin tuna loins; (b) the 

combined TBARS values (with confidence intervals) for the OP Fx1 treatments measured every 

24 h for 8 d (T0-T8) on yellowfin tuna loins. 
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Fx2 treatments - The RMANOVA for the OP Fx2 treatments showed that there was no significant 

interaction (P>0.05) between the main effects (time and treatment) (Fig. 2a).  The data could thus 

be combined and then interpreted (Fig. 2b) allowing for trends in the data to be seen.  The 

combined data (Fig. 2b) shows an overall increase in the TBARS values over time.  The TBARS 

values initially decrease slightly and then increase rapidly, finally level-off/decrease at T6. 

 
Combined Fx1 and Fx2 treatments - The combined data for the OP treatments allows for the 

comparison of the effect of the number of freeze/thaw cycles on the lipid oxidation (TBARS values) 

of the tuna samples.  The RMANOVA for the combined OP treatments (Fx1 and Fx2) showed that 

there was no significant interaction (P>0.05) between the main effects (time and treatment) 

(Fig. 3a).  The data could thus be combined and then interpreted (Fig. 3b) allowing for trends in the 

data to be seen.  The combined data of all the OP treatments (Fig. 3b) shows that initially there is a 

slight decrease in the TBARS values, followed by a rapid increase and then a levelling-off/slight 

decrease in the TBARS values at T6. 

 

 
Figure 2 (a) The mean TBARS values (with confidence intervals) for the () OP Fx2 +CO and 

() OP Fx2 -CO treatments measured every 24 h for 8 d (T0-T8) on yellowfin tuna loins; (b) the 

combined TBARS values (with confidence intervals) for the OP Fx2 treatments measured every 

24 h for 8 d (T0-T8) on yellowfin tuna loins. 

 

Oxygen impermeable (OI) treatments 

Fx1 treatments - The RMANOVA for the OI Fx1 treatments showed that there was no significant 

interaction (P>0.05) between the main effects (time and treatment) (Fig. 4a).  The data could thus 

be combined and then interpreted (Fig. 4b) allowing for trends in the data to be seen.  The 

combined data shows an increase in the TBARS values until T5 after which the TBARS values 

decrease, resulting in a slight overall increase in TBARS values over time. 
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Fx2 treatments - The RMANOVA for the OI Fx2 treatments showed that there was no significant 

interaction (P>0.05) between the main effects (time and treatment) (Fig. 5a).  The data could thus 

be combined and then interpreted (Fig. 5b) allowing for trends in the data to be seen.  The 

combined data shows a very slight overall increase in the TBARS values over time.  Initially there 

is little change in the TBARS values, the TBARS values then begin to increase (T3) until T5, after 

which the values decrease until T7. 

 

 
Figure 3 (a) The mean TBARS values (with confidence intervals) for all the OP treatments, () OP 

Fx1 +CO, () OP Fx1 -CO, () OP Fx2 +CO and () OP Fx2 -CO, measured every 24 h for 8 d 

(T0-T8) on yellowfin tuna loins; (b) the combined TBARS values (with confidence intervals) for all 

the OP treatments measured every 24 h for 8 d (T0-T8) on yellowfin tuna loins. 

 

 
Figure 4 The mean TBARS values (with confidence intervals) for the () OI Fx1 +CO and () OI 

Fx1 -CO treatments measured every 96 h for 32 d (T0-T8) on yellowfin tuna loins; (b) the combined 

TBARS values (with confidence intervals) for the OI Fx1 treatments measured every 96 h for 32 d 

(T0-T8) on yellowfin tuna loins. 
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Figure 5 (a) The mean TBARS values (with confidence intervals) for the () OI Fx2 +CO and 

() OI Fx2 -CO treatments measured every 96 h for 32 d (T0-T8) on yellowfin tuna loins; (b) the 

combined TBARS values (with confidence intervals) for the OI Fx2 treatments measured every 

96 h for 32 d (T0-T8) on yellowfin tuna loins. 
 

Combined Fx1 and Fx2 treatments - The combined data for the OP treatments allows for the 

comparison of the effect of the number of freeze/thaw cycles on the lipid oxidation (TBARS values) 

of the tuna samples.  The RMANOVA for the combined OI treatments (Fx1 and Fx2) showed that 

there was no significant interaction (P>0.05) between the main effects (time and treatment) 

(Fig. 6a).  The data could thus be combined and then interpreted (Fig. 6b) allowing for trends in the 

data to be seen.  The combined data for all the OI treatments shows a very slight overall increase 

in the TBARS values over time. 

 

 
Figure 6 (a) The mean TBARS values (with confidence intervals) for all the OI treatments, () OI 

Fx1 +CO, () OI Fx1 -CO, () OI Fx2 +CO and () OI Fx2 -CO, measured every 96 h for 32 d 

(T0-T8) on yellowfin tuna loins; (b) the combined TBARS values (with confidence intervals) for all 

the OI treatments measured every 96 h for 32 d (T0-T8) on yellowfin tuna loins. 
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Comparison between OP and OI treatments - The OP and OI samples could not be compared 

statistically as different yellowfin tuna were used in each case and because the shelf-life time 

periods differed (8 d vs. 32 d).  However, the data could still be combined to highlight interactions 

between the packaging types (Fig. 7).  Since there was no significant interaction found between 

the four treatments of both the OP and OI samples, the average of all four treatments in each case 

was taken and plotted on the same graph (Fig. 7).  It can clearly be seen that the TBARS values 

for the final OP samples are considerably higher than those for the OI final samples, even though 

the OI samples were subjected to considerably longer shelf-life studies. 

 

Figure 7 Comparison of () OP and () OI treatments. 

 

Protein oxidation 

Oxygen permeable (OP) treatments 

Fx1 treatments - The RMANOVA for the OP Fx1 treatments showed that there was no significant 

interaction (P>0.05) between the main effects (time and treatment) (Fig. 8a).  The data could thus 

be combined and interpreted together (Fig. 8b), allowing for trends in the data to be seen.  The 

combined data shows an initial increase in the carbonyl values, followed by a decrease at T2 and 

finally a levelling-off (T5) of the values.  Overall there was a slight increase in the carbonyl values. 

 

Fx2 treatments - The RMANOVA for the OP Fx2 treatments showed that there was no significant 

interaction (P>0.05) between the main effects (time and treatment) (Fig. 9a).  The data could thus 

be combined and interpreted together (Fig. 9b).  This allows for trends in the data to be seen.  The 

combined values showed little to no change in the carbonyl concentration over time. 
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Figure 8 (a) The mean carbonyl values (with confidence intervals) for the () OP Fx1 +CO and 

() OP Fx1 -CO treatments measured every 24 h for 8 d (T0-T8) on yellowfin tuna loins; (b) the 

combined carbonyl values (with confidence intervals) for the OP Fx1 treatments measured every 

24 h for 8 d (T0-T8) on yellowfin tuna loins. 
 

 
Figure 9 (a) The mean carbonyl values (with confidence intervals) for the () OP Fx2 +CO 

samples  and () OP Fx2 -CO samples measured every 24 h for 8 d (T0-T8) on yellowfin tuna 

loins; (b) the combined carbonyl values (with confidence intervals) for the OP Fx2 samples 

measured every 24 h for 8 d (T0-T8) on yellowfin tuna loins. 

 

Combined Fx1 and Fx2 treatments - The combined data for the OP treatments allows for the 

comparison of the effect of the number of freeze/thaw cycles on the protein oxidation (carbonyl 

concentration) of the tuna samples.  The RMANOVA for the combined OP treatments (Fx1 and 

Fx2) showed that there was a significant interaction (P≤0.05) between the main effects (time and 

treatment) (Fig. 10).  The combined data shows a similar trend and similar values for all the OP 

treatments over time, except at time points T1, T2 and T3.  The Bonferroni pairwise analysis shows 

that only the peak of OP Fx1 +CO values at T2 differed significantly (P≤0.05) from all the rest and 

that the peaks at T1 and T3 did not differ significantly (P>0.05).  Overall there was little to no overall 

increase in the carbonyl values over time for all treatments. 
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Figure 10 The mean carbonyl values (with confidence intervals) for all OP treatments, () OP Fx1 

+CO, () OP Fx1 -CO, () OP Fx2 +CO and () OP Fx2 -CO measured every 24 h for 8 d (T0-T8) 

on yellowfin tuna loins. 

 

Oxygen impermeable (OI) treatments 

Fx1 treatments - The RMANOVA for the OI Fx1 treatments showed that there was no significant 

interaction (P>0.05) between the main effects (time and treatment) (Fig. 11a).  The data could thus 

be combined and then interpreted (Fig. 11b), allowing for trends in the data to be seen.  The 

combined data showed and overall decrease in the carbonyl values over time with a peak at T3. 

 

 
Figure 11 (a) The mean carbonyl values (with confidence intervals) for the () OI Fx1 +CO and 

() OI Fx1 -CO treatments measured every 96 h for 32 d (T0-T8) on yellowfin tuna loins; (b) the 

combined carbonyl values (with confidence intervals) for the OI Fx1 treatments measured every 

96 h for 32 d (T0-T8) on yellowfin tuna loins. 
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Fx2 treatments - The RMANOVA for the OI Fx2 treatments showed that there was no significant 

interaction (P>0.05) between the main effects (time and treatment) (Fig. 12a).  The data could thus 

be combined and then interpreted (Fig. 12b) allowing for trends in the data to be seen.  The 

combined data shows an overall increase in the carbonyl values over time with a peak in the 

carbonyl concentration at T1. 

 

 
Figure 12 (a) The mean carbonyl values (with confidence intervals) for the () OI Fx2 +CO and 

() OI Fx2 -CO treatments measured every 96 h for 32 d (T0-T8) on yellowfin tuna loins; (b) the 

combined carbonyl values (with confidence intervals) for the OI Fx2 treatments measured every 

96 h for 32 d (T0-T8) on yellowfin tuna loins. 

 

Combined Fx1 and Fx2 treatments - The RMANOVA for the OI treatments showed that there was 

a significant interaction (P≤0.05) between the main effects (time and treatment) (Fig. 13).  The Fx1 

and Fx2 treatments have a similar trend over time except for the Fx1 samples showing a sharp 

increase in carbonyl concentration at T3.  The Bonferroni analysis shows that the peaks of the Fx1 

treatments at T3 differs significantly (P>0.05) from the Fx2 treatments. 

 

Comparison between OP and OI treatments 

The OP and OI samples could not be compared statistically as different yellowfin tuna were used in 

each case and due to the shelf-life time periods differing (8 d vs. 32 d).  However, the data could 

still be combined to highlight differences between the packaging types (Fig. 14).  The treatments 

were compared using their combined data.  The Fx2 samples for both the OP and OI treatments 

show little to no increase in carbonyl values whereas the Fx1 treatments show increases in 

carbonyl values. 
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Figure 13 The mean carbonyl values (with confidence intervals) for all OI treatments, () OI Fx1 

+CO, () OI Fx1 -CO, () OI Fx2 +CO and () OI Fx2 -CO measured every 96 h for 8 d (T0-T8) 

on yellowfin tuna loins. 
 

Figure 14 Comparison of OP and OI treatments: () OP Fx1, () OP Fx2, () OI Fx1, () OI 

Fx2. 

 

DISCUSSION 
 

Lipid oxidation 

The TBARS method for assessing secondary lipid oxidation is frequently employed to test the 

extent of lipid oxidation in muscle foods even though it lacks specificity and sensitivity (Raharjo & 

Sofo, 1993; Shahidi & Zhong, 2005).  It has also been noted that due to interference, the TBARS 

method should only be used to assess the extent of lipid oxidation in general (Gray & Monohan, 

1992).  The method was thus ideal for this study as only a general overview of the results was 
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required i.e. the overall amount of lipid oxidation over time. The data from this study showed a 

large amount of variation in the lipid oxidation results which could be attributed to the large amount 

of biological variation in chemical composition between the tuna (Baron et al., 2007).  This variation 

was also seen in other studies where the TBARS method was used to assess the lipid oxidation in 

muscle foods (Richards & Hultin, 2002; Richards et al., 2002; Garner, 2004; Soyer et al., 2012). 

The results showed that there were no significant interactions (P>0.05) between either the 

OP or OI treatments (Figs. 1b, 2b, 4b and 5b), nor was there any significant interaction found when 

the four OP and the four OI treatments were analysed together (Figs. 3b and 6b, respectively).  

The number of freeze/thaw cycles did thus not have a statistically significant effect on the TBARS 

values of the yellowfin tuna samples, regardless of whether they were treated or not.  The overall 

trend of all the combined data of the four OP treatments and four OI treatments (Figs. 3b and 6b, 

respectively) will thus be discussed. 

The overall increase observed in the TBARS values over time for the OP treatments 

(Fig. 3b) was expected since the plastic overwrap film used for the packaging of the samples was 

oxygen permeable.  Lipid oxidation primarily involves autoxidative reactions (Gray, 1978) and thus, 

in the presence of oxygen, lipid oxidation proceeds spontaneously and will lead to increased 

TBARS values (Gordon, 2003).  This is especially true for fish which are high in PUFAs (Strasburg 

et al., 2007), PUFAs being particularly liable to oxidation (Gray, 1978; Apgar & Hultin, 1982; 

Gordon, 2003; Munasinghe et al., 2005; Kristinsson et al., 2006a).  Fish muscle also has a high 

concentration of pro-oxidants which enhance lipid oxidation (Kristinsson et al., 2006a).  This, 

coupled with the PUFAs, explains the sudden sharp increase in lipid oxidation early in the shelf-life 

trial.  The effect of the pro-oxidants was also most likely exaggerated by the damaged cause to the 

cell membranes by ice crystal formation during freezing (Leygonie et al., 2012).  This damage 

results in the release of pro-oxidants, especially myoglobin, when the meat is thawed, resulting in 

accelerated lipid oxidation and subsequently, higher TBARS values (Benjakul & Bauer, 2001).  It 

has also been postulated that chemical reactions can continue during frozen storage.  These 

reactions could initiate primary lipid oxidation which subsequently leads to accelerated secondary 

oxidation, the products of which are measured by the TBARS method, upon thawing as seen in 

these results (Owen & Gray, 1975; Leygonie et al., 2012).  This concurs with findings in other 

studies where accelerated lipid oxidation was observed in frozen and thawed meat which was also 

subsequently subjected to refrigerated shelf-life studies (Akamittath et al., 1990; Hansen et al., 

(2004). 

With regards to the effect of the 100% CO treatment on the OP samples, the results from 

this study are similar to those of Garner (2004) who found that there was an overall increase in the 

mean TBARS of Spanish mackerel fillets of the treated (100% CO) and untreated fillets when 

sampled over an 8 d shelf-life trial.  However, in that study it was found that the 100% CO 

treatment did have a significant effect on the oxidation of the lipids.  The treated samples had lower 

overall TBARS values after 8 d compared to the untreated samples (Garner, 2004).  The 
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differences seen between these results and those of this study may be attributed to several factors 

being different between the two studies.  Garner (2004) used a different method of application and 

a longer application time employed, the fillets were not frozen prior to being used and a different 

fish species (thus containing different levels of pro-oxidants) was used.  Garner (2004) treated the 

samples by placing them in bags flushed with 100% CO and treating the fillets for 24 h.  This is 

considerably longer than the 150 min used in the current study.  The longer exposure time may 

have allowed a higher quantity of CO to bind to the myoglobin, resulting in better stabilisation of the 

lipids.  However, it is more likely that the frozen storage prior to the shelf-life study had the greatest 

effect on the difference in the results as these results are similar to those in studies were the fish 

had been frozen prior to treatment (Akamittath et al., 1990; Hansen et al., 2004). 

The overall increase in the TBARS values of the OI treatments is consistent with results 

found in vacuum packaged beef samples where an overall increase in TBARS values over time 

was also observed (Lynch et al., 1999).  It is however expected that in the absence of oxygen, lipid 

oxidation would not occur.  There are two possible reasons why, even though the samples were 

vacuum packed in oxygen impermeable packaging, lipid oxidation still occurred.  The first is that it 

was found by Lynch et al. (1999) that that vacuum packaging does not remove all the oxygen from 

the packaging.  Thus any residual oxygen in the packaging could have led to the lipid oxidation 

which was seen in the results of this study.  The second is that the TBARS method measures 

secondary lipid oxidation products and not primary lipid oxidation products (Draper & Hadley, 1990; 

Gray & Monohan, 1992; Leygonie et al., 2012).  These secondary reactions involve both oxidative 

and non-oxidative reactions (Gray, 1978; Gray & Monohan, 1992).  Thus in the absence of oxygen, 

secondary lipid oxidation will still occur.  Furthermore, as mentioned for the OP treatments, there is 

some evidence that suggests primary lipid oxidation could occur during frozen storage (initial 

frozen storage of the whole tuna).  This leads to accelerated secondary oxidation during thawing 

(Owen & Gray, 1975; Leygonie et al., 2012), the products of which, as mentioned, are measured 

by the TBARS method (Draper & Hadley, 1990; Gray & Monohan, 1992; Leygonie et al., 2012). 

 

Overall comparison between OP and OI treatments 

The overall comparison of the OP and OI treatments (Fig. 7) clearly shows considerably higher 

TBARS values for the OP treatments compared to those of the OI treatments, even though the OP 

treatments were subjected to a considerably shorter shelf-life study.  It has been noted that the 

most obvious precaution to take against lipid oxidation is the removal of oxygen (Ladikos & 

Lougovois, 1990).  The high TBARS values seen in the OP samples is most likely due to the 

cumulative effect caused by both the oxidative and non-oxidative secondary reactions of lipid 

oxidation (Gray, 1978; Gray & Monohan, 1992), resulting in higher TBARS values.  This is in 

agreement with the results seen by Hwang and Regenstein (1988) and Khalil and Mansour (1998) 

who showed that vacuum packaging retarded lipid oxidation. 
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Protein oxidation 

The DNPH method is widely employed as a general overall measure of protein oxidation in food 

systems (Estévez et al., 2009; Estévez, 2011), including fish and fish products (Lund et al., 2011).  

The method was ideal for this study as only a general overview of the results was required i.e. the 

overall amount of protein oxidation over time.  The method has been described as being robust 

and accurate for the measurement of protein oxidation (Estévez et al., 2008). The variation in the 

data is consistent with results where the DNPH method was also employed (Lund et al., 2007).  

The large amount of variation seen in the results may also be due to the amount of biological 

variation between the tuna (Baron et al., 2007). 

The results showed that there were no significant interactions (P>0.05) between the OP 

and OI treatments (Figs. 8b, 9b, 11b and 12b) and thus it could be assumed that the 100% CO 

treatment has no effect on the protein oxidation of yellowfin tuna muscle regardless of the number 

of freeze/thaw cycle.  The combined data showed that the OP (Fig. 8b) and OI (Fig. 11b) Fx1 

treatments showed an initial increase in the carbonyl concentration over time, indicating that 

protein oxidation occurred.  The combined data for the OP (Fig. 9b) and OI (Fig. 12b) Fx2 

treatments showed that there was little to no change in the carbonyl concentration over time, with 

the peak at T1 being explained by variation caused by the method used (Lund et al., 2011). 

In the case of the OP Fx1 treatments, the increase in the carbonyl concentration is to be 

expected since, in the presence of oxygen, protein oxidation proceeds spontaneously with the 

overall reaction of protein oxidation being oxygen dependant (Dean et al., 1997).  After the initial 

increase in the carbonyl concentration, it begins to decrease over time (T2).  This decrease in the 

concentration may be due to the protein carbonyls (that which is measured by the DNPH method) 

formed, reacting further with other cellular constituents and could thus not be detected (Baron et 

al., 2007).  The involvement of protein carbonyls in other biologically significant interactions has 

also been noted (Estévez, 2011).  However, in the case of the OI Fx1 treatments the increase in 

the carbonyl concentration is contradictory to what is expected.  In the absence of oxygen, protein 

oxidation would not be expected to occur.  As with lipid oxidation, this could be due to not all the 

oxygen being removed during vacuum packaging (Lynch et al., 1999) and it may be that residual 

oxygen inside the packaging lead to the protein oxidation.  Another possible reason is that 

although protein oxidation overall is oxidative, the process involves both aerobic and anaerobic 

processes (Dean et al., 1997).  It may be that the carbonyls resulting from anaerobic reactions 

reacted with other cellular constituents (Baron et al., 2007) and could thus result in the decrease in 

the concentration. 

In the case of the OP Fx2 treatments, the absence of protein oxidation is contradictory to 

what is expected since, as mentioned, in the presence of oxygen, protein oxidation proceeds 

spontaneously with the overall reaction of protein oxidation being oxygen dependant (Dean et al., 

1997).  A possible reason for the lack of observed protein oxidation is that the two freeze/thaw 
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cycles emphasised the effect that freezing and thawing has on increasing protein oxidation 

(Leygonie et al., 2011).  Thus the protein oxidation reactions have proceeded further and the 

protein carbonyls which formed have been used in other reactions and are no longer detectable 

(Baron et al., 2007).  However, in the case of the OI Fx2 treatments, the lack of protein oxidation is 

to be expected since in the absence of oxygen, protein oxidation is not expected to occur (Lynch et 

al., 1999).  However, in light of the above results, the more likely explanation is that the lack of 

observed protein oxidation is due to, as mentioned, the two freeze/thaw cycles emphasising the 

effect that freezing and thawing have on increasing protein oxidation.  The protein oxidation 

reactions had thus proceeded further and the carbonyls (measured by the DNPH method) were no 

longer detectable. 

The combined results for the OP treatments showed that there was a significant interaction 

(P>0.05) between the treatments.  The Bonferroni pairwise analysis showed that only the peak at 

T2 (Fig. 10), differed significantly from the other treatments.  This would indicate that only the Fx1 

+CO treatment differed significantly from the other treatments.  However, if you were to combine 

the Fx1 and Fx2 values, respectively (as done in Figs. 8b & 9b) and then compare the Fx1 and Fx2 

treatments, there would probably be a significant interaction between the two.  The dip (negative 

peak) at T2 resulted in the Fx1 -CO treatment not being significantly different from the Fx2 

treatments.  This dip in the result is most likely caused by the DNPH method used and this 

phenomenon has been noted by Lund et al. (2011).  Thus it will be assumed that the Fx1 and Fx2 

treatments differed significantly.  Leygonie et al. (2011) made similar conclusions when using the 

DNPH method.  The combined results for the OI treatments (Fig. 13) showed that there was a 

significant interaction (P>0.05) between the treatments. 

Since the results of the Fx1 and Fx2 treatments for both the OP and OI treatments differed 

significantly, it showed that the number of freeze/thaw cycles did have an effect on the protein 

oxidation of yellowfin tuna muscle.  The results showed an initial increase in the carbonyl 

concentration for the Fx1 treatments and little to no change in the carbonyl concentrations over 

time for the Fx2 treatments.  Although it would be assumed that two freeze/thaw cycles inhibited 

protein oxidation, the more likely explanation is that the two freeze/thaw cycles accentuated the 

effect that freezing and thawing have on increasing protein oxidation (Leygonie et al., 2012). 

 

Comparison between OP and OI treatments 

The comparison of the OP and OI treatments indicate that the Fx1 treatments both show increased 

carbonyl concentrations whereas the Fx2 treatments show little to no increase.  As mentioned 

above, the lack of increase in carbonyl concentration, may be misleading and is most likely not due 

to a lack of protein oxidation.  Although an increase in carbonyl values was seen in both the OP 

and OI Fx1 treatments, the onset of lipid oxidation took longer in the OI treatments.  Vacuum 
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packaging would thus be the better choice of the two types of packaging used when considering 

the inhibition/retardation of protein oxidation. 

 

CONCLUSIONS 
 

The result of the lipid oxidation of all the treatments showed that neither the CO treatment nor the 

number of freeze/thaw cycles (either Fx1 or Fx2) had a significant effect on the TBARS values over 

time.  Although this was contradictory to results found in other studies, none used the same 

combination of method of application, application time or species, which could explain the 

differences in the results.  The packaging did play a substantial role in the amount of lipid oxidation 

which occurred.  The result clearly showed that the OI treatments resulted in much lower overall 

TBARS values than that of the OP treatments. 

The results for the protein oxidation showed that the CO treatment had no significant 

(P>0.05) effect on the carbonyl concentration over time. The results did however show a difference 

with regards to the number of freeze/thaw cycles and the packaging used.  In both the OP and OI 

Fx1 treatments protein oxidation was observed but the onset of oxidation was retarded in the OI 

treatments.  It was expected that the two freeze/thaw cycles would increase the protein oxidation 

and lead to higher carbonyl values.  This was however not the case, with no protein oxidation 

being observed for the OP and OI Fx2 treatments.  It was postulated that this was due to the two 

freeze/thaw cycles emphasising the effect that freezing and thawing has on increasing the rate of 

protein oxidation.  The protein oxidation reactions had thus proceeded further and the carbonyls 

produced (measured by the DNPH method) had reacted with other biological constituents and 

were thus no longer detectable. 

From the above results it is recommended that vacuum packaging conditions be used when 

packaging yellowfin tuna as significantly lower lipid oxidation was observed and the onset of 

protein oxidation was also retarded in comparison to the overwrap.  It is also recommended that 

the number of freeze/thaw cycles be kept to a minimum when dealing with yellowfin tuna, 

especially with regards to protein oxidation.  Furthermore, it is suggested that a more sensitive and 

specific method be used for protein oxidation determination.  A method which could detect protein 

biomarkers such as α-aminoadipic and γ-glutamic semialdehydes (Daneshvar et al., 1997) would 

be advisable.  Although the CO treatment as determined in this study had no effect on the amount 

of lipid or protein oxidation which occurred, it was found in Chapter 4 that it improved the colour of 

the yellowfin tuna.  The use of CO on yellowfin tuna can thus still be advocated with regards to 

colour development and stability but not with regards to inhibiting lipid and protein oxidation. 
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CHAPTER 6 

RELATIONSHIP BETWEEN MYOGLOBIN OXIDATION AND LIPID OXIDATION IN CARBON 
MONOXIDE TREATED YELLOWFIN TUNA (THUNNUS ALBACARES) MUSCLE 

 

ABSTRACT 
 

An investigation of the relationship between surface a* and b* colour ordinate values and TBARS 

values was done to determine the link between myoglobin oxidation and lipid oxidation in 100% 

carbon monoxide (CO) treated yellowfin tuna.  The tuna was also subjected to aerobic and 

anaerobic storage conditions as well as to one or two freeze/thaw cycles.  The a* and b* values 

were used to assess the oxidation of oxy- and carboxymyoglobin to metmyoglobin.  In the majority 

of the treatments, there was a negative correlation between the a* values and a positive correlation 

between the b* values with the TBARS values, indicating that the oxidation of the myoglobin 

(decrease in a* values and increase in b* values) was concurrent with an increase in lipid oxidation 

(increase in TBARS values).  In those treatments where both the a* and b* values showed a 

positive correlation to the TBARS values, it was concluded that the combination of vacuum 

packaging and CO treatment masked the visual indicator (browning) of myoglobin oxidation but 

that lipid oxidation and myoglobin oxidation still occurred simultaneously.  It was thus surmised that 

there is a link between lipid oxidation and myoglobin oxidation in yellowfin tuna muscle. 

  

KEYWORDS: Yellowfin tuna; Carbon monoxide; Carboxymyoglobin; Myoglobin oxidation; Lipid 

oxidation; CIE Lab; Shelf-life; Colour stability 

 

INTRODUCTION 
 

Correlations have been found between myoglobin oxidation and lipid oxidation in meat (Renerre, 

2000).  Research on tuna muscle has also shown that there is an interaction between myoglobin 

oxidation and lipid oxidation (Pivarnik et al., 2011).  Thus there is a relationship between pigment 

oxidation and lipid oxidation (Andersen et al., 1990; Fraustman et al., 1992), with metmyoglobin 

formation being positively correlated to lipid oxidation (Chaijan et al., 2006). 

Fish is particularly liable to oxidation due to the high concentration of polyunsaturated fatty 

acids (Gray, 1978; Apgar & Hultin, 1982; Gordon, 2003; Munasinghe et al., 2005; Kristinsson et al., 

2006a; Strasburg et al., 2007; Chaijan, 2008) and pro-oxidants found in the muscle (Kristinsson et 

al., 2006a).  It is thought that the main pro-oxidant in fish muscle is myoglobin (Kristinsson et al., 

2006a).  Myoglobin has the ability to cause oxidation when oxygen is released from oxymyoglobin 

to form ferric (Fe3+) metmyoglobin and super oxide anion radicals.  Metmyoglobin can further 

oxidise to ferryl (Fe4+) myoglobin which is highly reactive.  This oxidised form of myoglobin is 

thought to be the main catalyst of oxidation (Richards & Hultin, 2002).  When carbon monoxide 
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(CO) binds to myoglobin the resulting carboxymyoglobin is more stable than oxymyoglobin (>240 

times more) (Sørheim et al., 1997) and is thus more resistant to autoxidation (Sørheim et al., 1997; 

Kristinsson et al., 2005).  It can therefore be postulated that the increased stability of the 

carboxymyoglobin to autoxidation would also inhibit lipid oxidation by impeding the pro-oxidative 

effect of myoglobin (Luno et al., 2000; Garner, 2004; Kristinsson et al., 2005; Pivarnik et al., 2011). 

The formation of carboxymyoglobin and oxymyoglobin are related to the a* values and 

metmyoglobin to the b* values of the meat when measured spectrophotometrically (Mancini & 

Hunt, 2005; Kristinsson et al., 2006b).  Thus the correlation between a* and b* values of the 

yellowfin tuna and the TBARS values can be used to determine whether there is a relationship 

between myoglobin oxidation and lipid oxidation. 

The aim of this study was to investigate whether there is any evidence of a correlation 

between lipid oxidation and myoglobin oxidation in CO treated yellowfin tuna muscle.  To ascertain 

this, the surface colour of the tuna muscle was measured using the CIE Lab colour system 

(Mancini & Hunt, 2005) and the lipid oxidation using the TBARS method (Lynch & Frei, 1993). 

 

MATERIALS AND METHODS 
 

The experimental layout can be seen in Table 1.  For the full experimental design, sample 

preparation and packaging refer to Chapter 3. 

 

Table 1 Experimental layout from which the eight treatments were established 

Treatments 1 2 3 4 5 6 7 8 

Packaging type OP OI 

Tuna number Tuna 1-7 Tuna 8-14 

Shelf-life trial 8 d 32 d 

Sampling 24 h (T0-T8) 96 h (T0-T8) 

Gas treatment +CO -CO +CO -CO 

Freeze/thaw cycle Fx1 Fx2 Fx1 Fx2 Fx1 Fx2 Fx1 Fx2 

OP – oxygen permeable; OI – oxygen impermeable; +CO – treated with 100% CO gas; -CO – untreated; Fx1 –one freeze/thaw cycle; 

Fx2 - two freeze/thaw cycles. 

 

Surface L*, a*, b* measurements 

The surface L*, a*, b* measurements were done using a colorimeter as per the method described 

in Chapter 4. 
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Lipid oxidation – Quantification of MDA using the TBARS method 

Lipid oxidation was measured using the TBARS methods as described in Chapter 5. 

Correlations 

The correlations (r-value) between the a* and b* values and TBARS values and their associated p-

values were calculated using SAS Enterprise Guide (SAS Institute Inc., SAS Online 

Documentation 9.2 Copyright © 2002-2010 by SAS Institute Inc., Cary, NC, USA). 
 

RESULTS 
 

OP treatments 

Fx1 treatments 

Fx1 +CO treatment - A strong negative correlation (r=-0.86; p=0.00) and strong positive correlation 

(r=0.73; p=0.03) was observed between the a* and b* values and TBARS values, respectively (Fig. 

1). 

 

 
Figure 1 The () a*, () b* and () TBARS values for the OP Fx1 +CO samples of yellowfin tuna 

loins taken every 24 h for 8 d (T0-T8). 

 

Fx1 -CO treatment - A strong negative correlation (r=-0.88; p=0.00) and strong positive correlation 

(r=0.80; p=0.01) was observed between the a* and b* values and TBARS values, respectively (Fig. 

2). 
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Figure 2 The () a*, () b* and () TBARS values for the OP Fx1 -CO samples of yellowfin tuna 

loins taken every 24 h for 8 d (T0-T8). 

 

Fx2 treatments 

Fx2 +CO treatment - A strong negative correlation (r=-0.88; p=0.00) and strong positive correlation 

(r=0.87; p=0.00) was observed between the a* and b* values and TBARS values, respectively (Fig. 

3). 

 

 
Figure 3 The () a*, () b* and () TBARS values for the OP Fx2 +CO samples of yellowfin tuna 

loins taken every 24 h for 8 d (T0-T8). 

 

Fx2 -CO treatment - A strong negative correlation (r=-0.91; p=0.00) and strong positive correlation 

(r=0.86; p=0.00) was observed between the a* and b* values and TBARS values, respectively (Fig. 

4). 
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Figure 4 The () a*, () b* and () TBARS values for the OP Fx2 -CO samples of yellowfin tuna 

loins taken every 24 h for 8 d (T0-T8). 

 

OI treatments 

Fx1 treatments 

Fx1 +CO treatment - A weak positive correlation (r=0.19; p=0.63) and strong positive correlation 

(r=0.69; p=0.04) was observed between the a* and b* values and TBARS values, respectively (Fig. 

5). 

Figure 5 The () a*, () b* and () TBARS values for the OI Fx1 +CO samples of yellowfin tuna 

loins taken every 96 h for 32 d (T0-T8). 

 

Fx1 -CO treatment - A weak negative correlation (r=-0.38; p=0.32) and positive correlation (r=0.29; 

p=0.45) was observed between the a* and b* values and TBARS values, respectively (Fig. 6). 
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Figure 6 The () a*, () b* and () TBARS values for the OI Fx1 -CO samples of yellowfin tuna 

loins taken every 96 h for 32 d (T0-T8). 

 

Fx2 treatments 

Fx2 +CO treatment - A weak positive correlation (r=0.32; p=0.39) and weak positive correlation 

(r=0.34; p=0.36) was observed between the a* and b* values and TBARS values, respectively (Fig. 

7). 

 

Fx2 -CO treatment - A weak negative correlation (r=-0.12; p=0.75) and weak positive correlation 

(r=0.44; p=0.23) was observed between the a* and b* values and TBARS values, respectively (Fig. 

8). 

 

Comparison of all the correlation values for all the treatments 

The r values for the correlations between the a* and b* values with the TBARS values, 

respectively, are given in Table 1.  It can be seen that, for the OP treatments, when there is a 

strong negative correlation between the a* and TBARS values, there is a concurrent strong 

positive correlation between the b* and TBARS values.  With the OI +CO samples for both the Fx1 

and Fx2 treatments, both the a* and b* value correlations are positive, whereas the OI -CO 

treatments follow a similar trend to the OP treatments with a negative a* value correlation being 

concurrent to a positive b* value correlation.  Overall the OP treatments displayed higher 

correlation values than the OI treatments. 

 

 

0

2

4

6

8

10

12

14

16

18

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

TB
A

R
S

 (m
g 

M
D

A
 / 

kg
 m

ea
t) 

a*
 a

nd
 b

* 
va

lu
es

 

Time (96 h) 

Stellenbosch University  http://scholar.sun.ac.za



88 
 

 
Figure 7 The () a*, () b* and () TBARS values for the OI Fx2 +CO samples of yellowfin tuna 

loins taken every 96 h for 32 d (T0-T8). 

 

 
Figure 8 The () a*, () b* and () TBARS values for the OI Fx2 -CO samples of yellowfin tuna 

loins taken every 96 h for 32 d (T0-T8). 
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Table 1 The correlation values between the a* values and TBARS values and the b* values and 

TBARS values for the eight treatments 

Treatments 
Correlation between 
TBARS and a* values 

P value 
Correlation between 
TBARS and b* values 

P value 

OP Fx1 +CO -0.86 0.00 0.73 0.03 

OP Fx1 -CO -0.88 0.00 0.80 0.01 

OP Fx2 +CO -0.88 0.00 0.87 0.00 

OP Fx2 -CO -0.91 0.00 0.86 0.00 

OI Fx1 +CO 0.19 0.63 0.69 0.04 

OI Fx1 -CO -0.38 0.32 0.29 0.45 

OI Fx2 +CO 0.32 0.39 0.34 0.36 

OI Fx2 -CO -0.12 0.75 0.44 0.23 

 

DISCUSSION 
 

OP treatments 

The results for the Fx1 treatments showed a strong negative correlation and strong positive 

correlation between the a* and b* values and the TBARS values, respectively.  The correlations 

were related to a decrease in the a* values and an increase in the b* values with a concurrent 

increase in the TBARS values (Figs. 1 and 2).  The decrease in the a* values (redness) and 

increase in b* values (brownness) is consistent with the oxidation of oxy- and carboxymyoglobin 

(red/pink) and the formation of metmyoglobin (brown) (Mancini & Hunt, 2005; Kristinsson et al., 

2006b).  This was expected, as the samples were packaged in oxygen permeable plastic 

overwrap.  In the presence of oxygen the lipids will readily oxidise (autoxidation), resulting in an 

increase in TBARS values (Gray, 1978; Gordon, 2003).  Carboxymyoglobin, although more stable 

than oxymyoglobin, will oxidise to metmyoglobin in the presence of oxygen over time, as will any 

oxymyoglobin present in the tuna muscle (Livingston & Brown, 1981; Krause et al., 2003; 

Anderson & Wu, 2005), thus resulting in decreased a* values and increased b* values.  The 

oxidation of oxymyoglobin to metmyoglobin has the ability to initiate lipid oxidation (Chaijan, 2008).   

It could be surmised that, since the increase in TBARS values is concurrent with the 

oxidation of oxy- and metmyoglobin (decrease in a* and increase in b* values), that lipid oxidation 

is initiated/promoted by the oxidation of myoglobin.  With regards to the untreated samples, this is 

similar to other studies that concluded that lipid oxidation and myoglobin oxidation are linked 
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(Andersen et al., 1990; Fraustman et al., 1992). For the treated samples however, this is 

contradictory to other studies which found evidence that treatment of muscle with CO and the 

subsequent formation of carboxymyoglobin led to a reduction in lipid oxidation (Luno et al., 2000; 

Garner, 2004; Kristinsson et al., 2005; Pivarnik et al., 2011).  There are several possible reasons 

for this.  In some of the other studies, different species were used.  Different species, and different 

muscles, have different myoglobin concentrations and thus different oxidative abilities (Chaijan, 

2008).  Fish muscle, in general, is also more liable to autoxidation than other species (Balaban et 

al., 2005; Chaijan, 2008).  It is more likely that the results differ as, in most of the studies, the 

exposure time to the CO was considerably longer (24 h and longer) than those used in this 

investigation.  The longer exposure times led to the formation of higher concentrations of 

carboxymyoglobin (more CO bound to the myoglobin) (Kristinsson et al., 2006b).  

Carboxymyoglobin is more resistive to oxidation than oxymyoglobin (Sørheim et al., 1997) and 

thus the higher concentration of carboxymyoglobin in the muscle would have led to a reduction in 

lipid oxidation or the retardation of its onset.  The lack of difference between the correlations of the 

treated and untreated samples and the fact that the correlations were both linked to an increase in 

TBARS and a decrease in a* and increase in b* values, respectively, reiterates the results found in 

Chapter 5, that the CO treatment did not retard the lipid oxidation of the yellowfin tuna muscle.  It 

also suggests a link between myoglobin oxidation and lipid oxidation. 

As with the Fx1 treatments, both the treated and untreated samples for the Fx2 treatments 

show strong negative and positive correlations between the TBARS values and the a* and b* 

values, respectively (Figs. 3 and 4), thus further reiterating that myoglobin oxidation and lipid 

oxidation are linked and that the CO treatment had no effect on the lipid oxidation of the yellowfin 

tuna muscle. 

 

OI treatments 

The Fx1 results showed a weak positive correlation and strong positive correlation between the 

TBARS values and the a* and b* values respectively, for the treated samples.  The untreated 

samples showed a weak negative and weak positive correlation between the TBARS values and 

the a* and b* values, respectively.  The a* and b* values for the untreated samples reiterate what 

was found in the OP treatments, that an increase in the TBARS values leads to an increase in the 

b* values and a decrease in the a* values,  again suggesting a link between myoglobin oxidation 

and lipid oxidation in tuna muscle.  The treated samples however, show a dissimilar pattern to all 

the previous treatments, with the increase in the TBARS values having a positive correlation with 

both the a* and b* values, with an overall increase in both the a* and b* values over time (Figs. 5 

and 6).  This would suggest not only an increase in the carboxymyoglobin but also metmyoglobin 

concentrations with a concurrent increase in lipid oxidation.  This dissimilar pattern is due to the 

combination of the vacuum packaging with the CO treatment.  In the absence of oxygen, the 
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residual CO will bind to any unbound/undamaged myoglobin to form carboxymyoglobin which 

increases the redness of the tuna (a* value) (Kristinsson et al., 2006a).  In theory, the increased 

carboxymyoglobin concentration (stabilisation of myoglobin) should result in a decrease/retardation 

of the lipid oxidation (Pivarnik et al., 2011) and, in fact, other studies support this theory (Luno et 

al., 2000; Garner, 2004; Kristinsson et al., 2005; Pivarnik et al., 2011).  However, these studies 

allowed for considerably longer exposure times (24 h and longer), which would have allowed for 

the development of much higher carboxymyoglobin concentrations and the samples used had not 

been previously frozen.  In this treatment although the a* values increased, it is most likely that the 

exposure time and residual binding did not create a high enough concentration of 

carboxymyoglobin to stabilise enough of the myoglobin to prevent lipid oxidation.  The tuna was 

also frozen prior to being treated.  Lipid oxidation can occur during frozen storage (Owen & Gray, 

1975; Leygonie et al., 2012) and thus, since TBARS measure secondary lipid oxidation products 

(Draper & Hadley, 1990; Gray & Monahan, 1992; Leygonie et al., 2012), it can be assumed that 

primary oxidation occurred during frozen storage.  It has also been found that accelerated lipid 

oxidation occurs during thawing (Benjakul & Bauer, 2001).  This, coupled to the damage caused to 

the proteins during freezing (Leygonie et al., 2012), explains why there is a positive correlation 

between the a* and b* values and the TBARS values.  The a* values increased (CO binding to 

myoglobin in the absence of oxygen) even though lipid and myoglobin oxidation (due to 

freeze/thaw cycle) still occurred (increase in b* values).  Thus, the CO treatment masked the 

effects of lipid oxidation (decrease in a*) to some extent and a link between lipid oxidation and 

myoglobin oxidation is still evident. 

The untreated samples follow the same pattern as the OP treatments and the OI Fx1 -CO 

treatment (Figs. 7 and 8), thus further reiterating that myoglobin oxidation and lipid oxidation are 

linked and that the CO treatment had no effect on the lipid oxidation of the yellowfin tuna muscle.  

The a* and b* values for the untreated samples reiterate what was found in the OP treatments, that 

an increase in the TBARS values leads to an increase in the b* values and a decrease in the a* 

values, suggesting a link between myoglobin oxidation and lipid oxidation in tuna muscle. 

 

Comparison of all the correlation values for all the treatments 

The OP treatment have higher correlations with the TBARS values for both the a* and b* values 

compared to the OI treatments.  This is ascribed to  the effect that the aerobic environment, 

created in the oxygen permeable packaged samples, has on oxidative processes, with the 

presence of oxygen increasing their rate (Ladikos & Lougovois, 1990). 

 

CONCLUSION 
 

In the majority of the treatments there was an increase in TBARS values with a concurrent 

decrease in a* values and increase in b* values, indicating a decrease in oxy- and 
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carboxymyoglobin respectively, with a concomitant increase in metmyoglobin.  This indicates the 

oxidation of myoglobin is concurrent with the oxidation of lipids.  In the treatments where both the 

a* and b* values increased with a concurrent increase in TBARS values, it was established that the 

CO treatment of the tuna muscle combined with vacuum packing resulted in the occurrence of lipid 

oxidation being masked. 

Thus from the above results it could be surmised that myoglobin oxidation is linked to lipid 

oxidation.  It also further reiterates the concerns of the use of CO treatment of meat as some of the 

treatments were able to mask the visible indicator (browning) of lipid oxidation and thus could also 

mask other underlying quality and safety issues. 
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CHAPTER 7 

GENERAL DISCUSSION AND CONCLUSIONS 
 

Fishing is of great economic importance to many countries (Garner, 2004), including South Africa.  

In 2007 396 660 tons were harvested for direct human consumption, of which 144 005 tons were 

exported (FAO, 2010).  In 2008 the revenue generated from fishery exports was over 5 million US 

dollars (FAO, 2010).  Among the fish harvested and exported was yellowfin tuna (Thannus 

albacares) (FAO, 2010).  However, over-fishing has resulted in this species currently being listed 

as “Lower Risk/near threatened” (LR/nt) on the International Union for Conservation of Nature 

(IUCN) red list of threatened species (IUCN, 2012). 

As with all fish species, tuna muscle is particularly liable to oxidative changes with tuna 

rapidly perishing.  Proper processing and storage is crucial in ensuring maximum shelf-life (Garner, 

2004), with muscle quality rapidly deteriorating after it has been harvested and this continues 

during processing, during transportation, storage and retail display.  The main factors affecting the 

quality deterioration of the tuna muscle are microorganisms, oxygen, lipid and protein oxidation 

(particularly oxidation of the haem proteins) and enzymes (Garner, 2004).  The most effective and 

widely accepted method to lengthen the shelf-life of tuna is freezing (Balaban et al., 2005).  

Unfortunately freezing causes tuna muscle to discolour from bright red to brown (Chow et al., 

1988; Chow et al., 1989).  Consumer acceptance of tuna is based on its bright red colour which is 

associated with fresh tuna and as such, the market value of tuna is based in its colour (Garner, 

2004).  Once tuna has discoloured, it is perceived as being older and of poorer quality and 

subsequently loses market value (Carpenter et al., 2001; Otwell, 2006). This problem is 

exasperated by the fact that the tuna is harvested in areas far from the markets and thus shelf-life 

time is lost during the transport of the fish to the markets.  In an attempt to maintain the market 

value, tuna is frequently sold as “fresh” for up to three weeks after being harvested (Kristinsson et 

al., 2008).  Tuna processors thus need to find ways of increasing the shelf-life of tuna while 

maintaining the colour of tuna muscle, thereby maintaining the optimum market value, without 

compromising product quality (Kristinsson et al., 2008). 

Rapidly freezing tuna to very low temperatures (-56°C) and maintaining these low 

temperature has proved effective in preventing discolouration until the tuna is thawed (Balaban et 

al., 2005).  Vacuum packaging has also been used but the resulting purple colour of 

deoxymyoglobin is not desirable to consumers (Kristinsson et al., 2008).  Another way that proved 

effective was the use of carbon monoxide (CO).  Treating tuna with CO results in a stable cherry-

red myoglobin derivative, known as carboxymyoglobin (Sørheim et al., 1997).  Carboxymyoglobin 

is stable during frozen storage and thawing and under low oxygen conditions such as vacuum 

packaging (Balaban et al., 2005; Kristinsson et al., 2008). 
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Several studies have been conducted on the use of CO with fish (Kristinsson et al., 2003; 

Garner, 2004; Anderson & Wu, 2005; Mantilla et al., 2008), including yellowfin tuna (Balaban et al., 

2005; Huang et al., 2006).  In these studies various concentrations of CO as well as various 

applications were employed.  Each combination of CO concentration and application method 

requires the establishment of parameters to ensure that the desired results are achieved.  In this 

study, a purpose built chamber was used, which allowed for the tuna to be treated under pressure.  

It was thought that treating the tuna under pressure would reduce the time required for surface 

colour development and colour penetration.  In this study, 100% CO was used and thus only the 

exposure time and pressure needed to be established.  Both the pressure and exposure time used 

were found to influence the surface colour and colour penetration.  It was established that 150 min 

exposure at 3 bar pressure resulted in the desired surface colour development and colour 

penetration.  Untreated samples were used as a control.  The effect of aerobic (overwrap) (OP) 

and anaerobic (vacuum packaging) (OI) conditions was also investigated as the samples are often 

removed from vacuum packaging and placed in polystyrene trays and overwrapped for retail 

display.  The effect of one (Fx1) and two freeze/thaw (Fx2) cycles was also investigated as this 

correlated to industry practices. 

It was found that the treatment of the yellowfin tuna muscle with CO did have an effect on 

the surface colour, resulting in an increase in the surface a* values (redness).  Although the treated 

OP samples showed an increase in the surface a* values, the increase was short lived.  The 

exposure to oxygen resulted in oxidation of the carboxymyoglobin to metmyoglobin (increase in b* 

values).  On the other hand, the OI samples maintained the surface a* values resulting from the 

CO treatment.  The effect of the second freeze/thaw (Fx2) cycle on the treated samples was not as 

apparent in the OP samples as the OI samples, as the longer exposure time in the OP Fx2 +CO 

samples overshadowed the effects.  In the OI samples the effect was clearly evident with the OI 

Fx1 +CO samples having the highest initial surface a* values.  Thus the OI Fx1 +CO treatment 

resulted in the best product with regard to surface colour development and stability. 

Since the use of CO on meat and fish products is highly controversial due to its ability to 

mask underlying safety issues, other benefits of its use were also investigated.  It has been 

postulated that lipid and protein oxidation may be retarded by the formation of carboxymyoglobin 

(Kristinsson et al., 2006).  It was however found in this study that neither the CO treatment nor the 

number of freeze/thaw cycles had an effect on the lipid oxidation.  The CO treatment also had no 

effect on the protein oxidation.  The number of freeze/thaw cycles did however have an effect of 

the protein oxidation.  Protein oxidation was observed for the Fx1 treatments (both the OI and OP 

treatments), with the onset being retarded for the OI treatments.  Although it was expected that the 

Fx2 treatments would result in higher carbonyl values this was not the case, with none being 

observed.  It was postulated that this was due to the protein oxidation having progressed so far 

that the carbonyls being measured had reacted with other biological constituents and were thus no 

longer detectable.  In both lipid and protein oxidation the packaging was found to have an effect.  
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Considerably lower levels of lipid oxidation were observed as well as retardation of the protein 

oxidation in the OI treatments compared to the OP treatments. 

A correlation between myoglobin oxidation and lipid oxidation has been observed in tuna 

(Pivarnik et al., 2011).  As mentioned the carboxymyoglobin formed from the CO treatment is more 

stable than oxymyoglobin and will thus not oxidise as readily (Sørheim et al., 1997).  It was thus 

investigated whether the same correlation was observed with carboxymyoglobin.  The results 

showed a correlation between myoglobin oxidation and lipid oxidation for all of the treatments.  

However, the OI +CO samples resulted in an increase in the a*, b* and TBARS values i.e. the 

surface colour remained bright cherry-red even though lipid oxidation was occurring.  Thus the 

visible indicator (browning) of lipid oxidation was masked. 

From the above results it can be concluded that the treatment of yellowfin tuna with 100% 

CO for 150 min under 3 bar pressure is effective in producing a product that has a desirable 

surface colour and sufficient colour penetration.  However, the CO treatment did not have an effect 

on the rates and levels of protein and lipid oxidation i.e. neither increased nor decreased the rate 

and level of lipid and protein oxidation.  The OI +CO Fx1 sample resulted in the best quality 

product overall with regards to colour stability and maintenance, and lipid and protein oxidation.  

The question does however arise that since the visible indicators of lipid and protein oxidation are 

masked by this method, at what point does the lipid and protein oxidation result in a product that is 

undesirable to consumers. 

Nonetheless, the results reiterated the concerns regarding the use of CO on tuna meat and 

its ability to mask underlying safety issues.  Thus it is strongly recommended that the use of CO on 

tuna and any other meat or fish should be considered carefully and should be subjected to strict 

hygiene, safety and labelling regulations. 

Future research should be done to assess whether longer exposure times and varying CO 

concentrations, using the same application method, will give acceptable colour development, 

stability and penetration as well as what effect the longer exposure time and varying CO 

concentrations have on lipid and protein oxidation.  It would also be recommended that more 

specific methods be used for the determination of the protein and lipid oxidation.  Myoglobin 

extraction and the assessment of the composition of the moisture lost may also give a better 

understanding of the colour changes which occurred.  Furthermore a sensory study should be 

done regarding the levels of protein and lipid oxidation in CO treated tuna that result in a product 

that is undesirable to consumers’. 

From the knowledge gained from the research done and in light of the finding from this 

study there are clearly both arguments for and against the use of CO in the treatment of yellowfin 

tuna.  On the one hand there is the question of whether the use of CO on tuna is an ethical 

industry practise due to the possibility of defrauding consumers being so great.  Since the colour of 

tuna is used by consumers as an indicator of wholesomeness, the potential to manipulate the 

colour could have dire consequences with regard to product quality and safety.  Consumers could, 
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unknowingly, potentially purchase inferior quality tuna or tuna which is no longer safe to consume 

which appears to be fresh and wholesome.  On the other had, in a world where the demand for 

perfection is so high and where good quality tuna is downgraded solely based on discolouration, it 

seems that the use of CO is the ideal solution to maintain market value of tuna and prevent 

wastage and monetary losses to the industry.  If this method was advocated with regard to its use 

on tuna solely for colour maintenance, it is recommended that it only be done under strict 

regulations and labelling requirements such as those applicable in the USA.  It would also have to 

be classified as a preservative in the Foodstuffs, Cosmetics and Disinfectants Act (DOH, 1997) 

and as such would thus have to be labelled.  Labelling could be similar to that used in the USA: 

Tuna, Carbon Monoxide (as colour preservative).  Tuna which is treated and then frozen would 

also have to be labelled as previously frozen in accordance with the labelling legislation is South 

Africa (DOH, 1997). 
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