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Abstract

Vascular endothelium forms the first line of defence against harmful stimuli in the circulation.

Endothelial dysfunction is a valuable predictor of cardiovascular disease and therapies aimed at

improving endothelial function are therefore needed.  The anti-dyslipidaemic agents, simvastatin

and fenofibrate, are known for their beneficial effects on lipid parameters, however additional

pleiotropic effects have been shown for both. These include improved endothelial function due

to increased levels of nitric oxide (NO), as well as anti-oxidant and anti-inflammatory actions.  NO

is produced by the enzyme, nitric oxide synthase (NOS), which exists in the endothelial NOS

(eNOS), inducible NOS (iNOS) and neuronal NOS (nNOS) isoforms. Most studies investigating the

endothelial effects of simvastatin and fenofibrate are performed on macrovascular-derived

endothelial cells, and there is a lack of data on endothelial cells (ECs) from the microcirculation,

particularly the cardiac microvessels.

This dissertation aimed to investigate and elucidate mechanisms underlying the pleiotropic

effects of simvastatin and fenofibrate on ECs and vascular tissue using in vitro, ex vivo and in vivo

experimental models. In vitro investigations included flow cytometry-based intracellular

measurements of NO, as well as different types of reactive oxygen species (ROS) and cell viability

parameters. Signalling pathways involved with these changes were measured by western blot

analyses of the expression and phosphorylation of critical proteins involved in vascular function.

Results on cardiac microvascular ECs (CMECs) demonstrated that fenofibrate (50 μM) exerted a

potent, increasing effect on NO production after short periods (1 and 4 hour treatments), but

after 24 hours the effects were less robust.  Exhaustive investigations suggested that the NO-

increasing effects of fenofibrate in baseline CMECs were NOS-independent, a novel finding as far

as we are aware.  Fenofibrate’s ability to protect ECs against injury was demonstrated when

CMECs incubated with the pro-inflammatory cytokine, TNF-α, were pre-treated with fenofibrate,

resulting in increased NO and improved cell viability parameters. Simvastatin (1 μM) increased

NO to a lesser extent in baseline CMECs, and resulted in increased apoptosis and necrosis.

Following the cell studies, their effects on vascular reactivity was measured by aortic ring

isometric tension studies.  The effects of acutely administered fenofibrate to pre-contracted
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aortic rings were investigated, and results showed a modest, but significant NOS-dependent

vasodilatory response.  Next, an in vivo model of Wistar rats treated with simvastatin (0.5

mg/kg/day) and fenofibrate (100 mg/kg/day) for 6 weeks was established. Data showed that

neither drug was able to improve aortic ring contraction and dilation above baseline values. Both

drug treatments increased iNOS expression, which is usually associated with harmful actions.

However, in our hands, increased iNOS expression was associated with a beneficial anti-

contractile response in the simvastatin-treated animals.  Fenofibrate treatment increased NO

bioavailability in the blood of these animals.

In conclusion, fenofibrate showed endothelio-protective pleiotropic effects with regards to NO

production after short treatment periods in CMECs. These effects were mediated via a NOS-

independent mechanism, a novel finding.  Fenofibrate pre-treatment was also protective against

the harmful effects of TNF-α.  Simvastatin did not show pronounced pleiotropic effects in vitro

or in vivo on endothelial function.
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Opsomming

Die vaskulêre endoteellaag is die eerste linie van verdediging teen skadelike stimuli in die

bloedsirkulasie.  Endoteeldisfunksie is ‘n waardevolle voorspeller van kardiovaskulêre siektes en

enige terapeutiese behandeling wat kan bydra tot verbeterde endoteelfunksie is belangrik.

Simvastatien en fenofibraat word as anti-dislipidemiese middels voorgeskryf en hoewel hulle

primêr gebruik word om cholesterolvlakke te verbeter, toon hulle ook pleiotropiese (cholesterol-

onafhanklike) eienskappe. Dit sluit in bevordering van endoteelfunksie (via verhoogde

stikstofoksied (NO) produksie), asook anti-oksidant en anti-inflammatoriese effekte.  NO word

vervaardig deur die ensiem, stikstofoksiedsintase (NOS) wat voorkom in drie isovorme:  endoteel-

afgeleide NOS (eNOS), induseerbare NOS (iNOS) en neuronale NOS (nNOS). Die meerderheid

studies wat pleiotropiese effekte van simvastatien en fenofibraat ondersoek, gebruik

endoteelselle van makrovaskulêre bloedvate, wat beteken daar is ‘n tekort aan data aangaande

endoteelselle vanaf mikrovaskulêre vate, veral kardiale mikrovaskulêre vate (CMECs).

Hierdie proefskrif het dit ten doel gehad om meganismes betrokke by die pleiotropiese effekte

van simvastatien en fenofibraat te ondersoek deur van in vitro, ex vivo en in vivo modelle gebruik

te maak.  Die in vitro ondersoeke het gefokus op vloeisitometrie-gebaseerde metings van

intrasellulêre NO, reaktiewe suurstof-radikale (ROS) en sellewensvatbaarheid.  Seintransduksie

paaie betrokke by hierdie veranderinge was bepaal deur proteienuitdrukking en -fosforilasie

vlakke te meet van belangrike proteïene, met behulp van die Western-blot tegniek.

Resultate van die CMEC eksperimente het getoon dat fenofibraat (50 μM) ‘n kragtige en

verhogende effek op NO produksie uitgeoefen het na kort behandelingstye (1 en 4 ure), maar na

24 uur was hierdie effek minder uitgesproke.  Uitvoerige ondersoeke het getoon dat fenofibraat

se basislyn effekte op CMECs deur NOS-onafhanklike meganismes teweeggebring is, en sover ons

kennis strek, is dit ‘n nuwe bevinding.  Fenofibraat se endoteel-beskermende effekte kon ook

aangetoon word deur CMECs vir een uur te behandel voor byvoeging van die pro-inflammatories

sitokien, tumor nekrose faktor alpha (TNF-α), wat gelei het tot verhoogde NO vlakke en

verbeterde seloorlewing.  Simvastatien (1 μM) het tot ‘n mindere mate NO produksie verhoog in

CMECs, tesame met pro-apoptotiese en -nekrotiese effekte.
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Vervolgens was die effekte op vaskulêre reaktiwiteit geëvalueer d.m.v. isometriese

spanningsondersoeke.  Akute effekte van fenofibraat is gemeet deur byvoeging daarvan tot ‘n

vooraf saamgetrekte aorta-ring, wat tot matige, maar beduidende NOS-afhanklike verslapping

gelei het.  Hierna is ‘n in vivo model opgestel deur Wistar rotte vir ses weke met 0.5 mg/kg/dag

simvastatien of 100 mg/kg/dag fenofibraat te behandel.  Resultate toon dat geen van die

behandelings basislyn kontraksie of verslapping van aorta ringe kon verbeter nie.  Beide

behandelings het tot verhoogde iNOS uitdrukking gelei, wat gewoonlik met nadelige effekte

geassosieer word, maar in ons studies was dit met voordelige, anti-kontraktiele effekte in aorta-

ringe van simvastatien-behandelde rotte geassosieer.  Fenofibraat behandeling het die NO-

biobeskikbaarheid in die rotte se bloed verhoog.

Ten slotte, fenofibraat het met endoteel-beskermende, pleiotropiese effekte op endoteelselle

gepaard gegaan, veral t.o.v. NO-produksie na akute middeltoediening in die CMECs. Die

meganisme was ‘n NOS-onafkanklike proses, wat ‘n nuwe bevinding is.  Fenofibraat pre-

behandeling het teen die skadelike effekte van TNF-α beskerm. Geen uitgesproke pleiotropiese

effekte is in vitro of in vivo gevind met simvastatien behandeling nie.
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Chapter 1:  Literature overview

1.1  Cardiovascular disease

1.1.1 Introduction

According to recent reports from the World Health Organisation (WHO), non-communicable

diseases are the leading cause of mortality globally, while almost 80% of such deaths occur in

low- and middle income countries (Mendis, 2011).  Recent projections published in the SA Heart

Journal (Mpe, 2010) indicated that cardiovascular-related deaths in the age group 35-64 years

will increase by 41% in South Africa between the year 2000 and 2030. It is also stated that SA is

already losing more young and economically active people (in the age group mentioned above)

to cardiovascular disease (CVD) compared to the United States of America (USA) and Portugal.

These statistics clearly indicate that CVD is not only a major problem globally, but one that cannot

be ignored in South Africa.

According to Pearson et al., (1993) and Yusuf et al., (2001), most populations have experienced

a shift from nutritional deficiencies and infectious diseases to degenerative diseases such as CVD,

cancer and diabetes.  This has been termed the “epidemiologic transition”.  Epidemiological

transition consists of different stages, and at any given time populations in a particular country,

or even in a particular region of a country, can be experiencing a specific stage of epidemiological

transition.  The different stages of epidemiological transition are shown in figure 1.1. Developing

countries, such as those in Sub-Saharan Africa and rural areas of South America and South Asia,

are initially burdened with infectious diseases (including rheumatic heart disease) and

malnourishment.  During the next stage, as infectious disease control and nutritional status

improves, the countries or regions become burdened with hypertensive heart diseases, as has

been observed in China and other Asian countries.  During stage three, populations adopt the so-

called “Western lifestyle”, including factors such as consumption of high-fat diets, smoking and

sedentary lifestyles. Non-communicable diseases (NCD) predominate during this stage, with
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atherosclerotic CVD being the main cause of mortality (Yusuf et al., 2001).  According to the

Mendis (2011) 39% of global deaths could be attributed to CVD (figure 1.2). This increase in

cardiovascular related diseases can again contribute to the burden of infectious and nutritional

as well as perinatal diseases.  This is called a “double burden”.  These diseases can be delayed in

the fourth stage by interventions to treat and prevent ischaemic heart disease and stroke.

Countries of Western Europe, North America, Australia and New Zealand are said to be in the

fourth stage of epidemiological transition.  The authors further propose a fifth stage of this

transition, namely social upheaval or war.  These events break down current  social and health

structures which will again lead to the flare-up of diseases seen in stages one and two (Russia)

(figure 1.1) (Yusuf et al., 2001).
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Figure 1.1: An illustration of the five stages of Epidemiological Transition adapted from Yusuf et al., 2001.  It serves as an illustration

of how populations experience a shift from nutritional deficiencies and infectious diseases to degenerative diseases such as

cardiovascular disease, cancer and diabetes.
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Figure 1.2:  Pie chart indicating the proportion of global NCD deaths under the age of 70, 2008

(Mendis, 2011).

1.1.2 Risk factors contributing to CVD

Lin et al., 2013, described CVD as the result of chronic diseases that occur due to cumulative

effects over a long period of time.  The WHO reported that the four common and preventable

risk factors leading to NCD such as CVD include:  tobacco use, physical inactivity, unhealthy diet

and alcohol abuse.  These behavioural risk factors result in metabolic/physiological risk factors,

namely raised blood pressure, overweight/obesity, hyperglycaemia and dyslipidaemia (Mendis,

2011).  For the purpose of the current study, the focus will be on dyslipidaemia and anti-

dyslipidaemic therapies.
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1.1.2.1 Dyslipidaemia

Dyslipidaemia is a condition in which a patient has elevated plasma concentrations of total

cholesterol, low density lipoprotein cholesterol (LDL-C), and triglycerides, together with

subnormal concentrations of high density lipoprotein cholesterol (HDL-C) (Rached et al., 2014).

Hence multiple lipid parameters are deregulated.  Several clinical and epidemiological studies

confirmed the relationship between high levels of serum cholesterol and CVD (Wilson et al.,

1980;  Downs et al. 1998; Bays et al., 2001;  Raza et al., 2004).  Such studies gave rise to treatment

strategies focussed on decreasing total cholesterol and LDL-C levels. The different treatment

strategies will be discussed in detail under section 1.6. Since the current study will be focussing

on the pleiotropic effects of cholesterol drugs and not on their anti-dyslipidaemic effects, only a

short discussion will follow on lipids, their classification and functions.

1.1.3 Lipids

1.1.3.1 Classification and function

Lipids can be classified as neutral fat or triglycerides, phospholipids and cholesterol.  Fatty acids

(long chain hydrocarbon organic acids) form the basic lipid moiety of triglycerides and

phospholipids. Even though cholesterol does not contain fatty acids per se, the nature of its sterol

nucleus (synthesised from portions of fatty acids) provides it with the physical and chemical

properties of lipid substances. The main function of triglycerides in the body is to provide energy

for metabolic processes.  In addition, cholesterol, phospholipids and triglycerides form essential

components of membranes in the cell (Guyton & Hall, 2000).

Lipoproteins

Lipoproteins are small particles circulating in the plasma and contain triglycerides, phospholipids,

cholesterol and protein.  They are classified according to their densities:
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1) Very low density lipoprotein (VLDL) – contains a high concentration of triglycerides and

only moderate concentrations of phospholipids and cholesterol.

2) Intermediate density lipoprotein (IDL) – VLDLs from which some of the triglycerides have

been removed, leaving a higher concentration of cholesterol and phospholipids.

3) Low density lipoprotein (LDL) – they are again derived from IDLs from which almost all of

the triglycerides have been removed.  This yields a high concentration of cholesterol and

moderately high levels of phospholipids.

4) High density lipoprotein (HDL) – these lipoproteins contain a high concentration of

protein and only low concentrations of cholesterol and phospholipids.

All lipoproteins are synthesised in the liver.  The liver is also the centre for synthesis of

triglycerides, cholesterol and phospholipids (Guyton & Hall, 2000).

1.1.4 Ischaemic Heart Disease (IHD)

Cardiovascular diseases include diseases of the heart and blood vessels.  The WHO reported that

46% of global CVD deaths in males and 38% in females could be contributed to IHD (Mendis et

al., 2011).  The myocardium does not extract oxygen and nutrients from the blood in the atria

and ventricles, but it depends on blood supply from coronary arteries (figure 1.3).  In coronary

artery disease (CAD), changes to these arteries can lead to insufficient blood supply to the

myocardium, resulting in ischaemia of the tissue supplied by the particular arteries (Widmaier et

al., 2004).  Atherosclerosis is the underlying cause most often associated with coronary artery

disease, carotid artery disease and peripheral arterial disease (Falk, 2006).  Atherosclerosis refers

to the thickening and hardening of arteries, more specifically the intimal and medial layers which

results in a loss of elasticity of the vasculature (Lahoz & Mostaza 2007).  Fatty deposits,

cholesterol and fibrous tissue form a plaque on the inner surfaces of these arteries which causes

a narrowing of the artery and irregular surface area in the lumen (Mendis et al., 2011).

Disruptions of these plaques can be either through fissures, ulcerations or ruptures which will

lead to a thrombus on the area (Stary, 1995;  Lahoz & Mostaza 2007), culminating in clinical

complications such as myocardial infarction and stroke (Glass & Witztum 2001).
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1.1.4.1 Process of atherosclerosis and plaque formation

Incremental decreases in the diameter of the lumen of coronary arteries occur as follows:

Initially, minute depositions of cholesterol, mostly LDL-C, will occur on the intima and underlying

smooth muscle cells.  These deposits will grow larger and combine with others, which together

with other surrounding fibrous and smooth muscle tissue, form large plaques, decreasing the

lumen and increasing resistance to flow or even complete vessel occlusion (Guyton & Hall, 2000;

Widmaier et al., 2004).  Increased levels of plasma cholesterol, particularly LDL-C is highly

associated with increased risk for atherosclerotic diseases (Rozman & Monostory 2010). The

endothelium can express adhesion and chemotactic molecules and becomes more permeable to

macro-molecules such as LDL particles in the arterial wall.  These trapped LDL particles can be

oxidised by vascular cells and will exert their pro-atherogenic effect on these cells.  Resistant

vascular cells will produce factors leading to monocyte recruitment and differentiation into

macrophages.  Completely oxidised LDL particles can be internalised by macrophages to form

foam cells which is considered the hallmark of atherosclerotic lesions (Maiolino et al., 2013).
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Figure 1.3:  A graphic illustration of the coronary vascular network in the myocardium
(http://my.clevelandclinic.org/heart/heart-blood-vessels/coronary-arteries.aspx)
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1.1.4.2 The role of endothelial cells (ECs) in atherosclerosis – Endothelial
activation/dysfunction

It has become evident over the last few decades that the initiation and progression of

atherosclerosis is dependent on dynamic and profound changes in vascular biology (Ross 1999;

Deanfield et al., 2007). Endothelial cells (ECs) are responsible for vascular health and their

strategic positioning between blood and tissue renders them susceptible to changes in blood

composition, hemodynamic forces and other circulating stressors.  In response to these changes,

they can release a variety of paracrine factors acting on the vessel wall and lumen to maintain

vascular homeostasis (Brevetti et al., 2008), but during a state of endothelial activation or

dysfunction, as during pre-atherosclerosis and atherosclerosis (Davignon & Ganz 2004; Deanfield

et al., 2007), the “resting” ECs will switch to a phenotype involved with host defence (Deanfield

et al., 2007).  This involves expression of chemokines (e.g. monocyte chemoattractant protein-

1), cytokines (e.g. tumor necrosis factor α) and adhesion molecules (e.g. vascular cell adhesion

molecule-1) (Haas & Mooradian 2010; Mochizuki et al., 2010;  Kiechl et al., 2012).  The interaction

between endothelium and leukocytes is a key event in the process of atherogenesis.

Based on research by Butcher (1991) and Springer (1994), Heemskerk et al. (2014) proposed a 5-

stage process through which leukocytes transmigrate into the endothelium (figure 1.4).  The

process is initiated at stage 1 when E-selectin and P-selectin are expressed on the endothelial

surface leading to the capture of leukocytes.  During stages 2 and 3 activated integrins in

leukocytes will firmly attach to intercellular adhesion molecule (ICAM) and vascular adhesion

molecule (VCAM) and leukocytes starts crawling onto the endothelium.  The leukocytes “dock”

on the endothelium via actin rich “cups” (step 4).  Step 5 of the process consists of leukocytes

migrating through the endothelium via one of two mechanisms, either paracellularly, i.e. through

the endothelial cell-cell junctions or transcellulary.  The author also emphasises the importance

of Rho-GTPase signalling during this process of transmigration and cytoskeletal remodelling

(Heemskerk et al., 2014) (figure 1.4).
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Figure 1.4:  The multistage process of leukocyte transendothelial migration, divided into five

stages. Stage 1:  Rolling and tethering phase;  Stage 2:  Shows the initial adhesion of leukocytes

to the endothelium;  Stage 3:  The firm adhesion and crawling part. Stage 4:  Cup-like structures

are formed, resulting in the next step.  Stage 5:  Actual transmigration, either para- or

transcellular (modified from Heemskerk et al., 2014)

Endothelial dysfunction (ED) is characterised by a decrease in the bioavailability of nitric oxide

(NO) leading to impaired endothelium-dependent vasodilation of blood vessels (Bonetti, 2003).

ED is widely regarded as an early and reversible precursor and therefore predictor of

atherosclerosis (Grover-Páez & Zavalza-Gómez, 2009;  Mudau et al., 2012).  Considering all of

these findings, the endothelium is clearly an important target organ for the prevention and

treatment of atherosclerotic disease.
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1.2 The Vasculature

Blood ejected by the left ventricle, exits the heart via the aorta.  The aorta divides into many

arteries that become smaller arterioles before finally forming capillaries (Opie, 2004). The walls

of large vessels, such as arteries, consist of three layers, namely the intima, media and adventitia

with an endothelial layer separating the vessel wall and blood.  The internal elastic lamina is made

up of numerous bundles of elastic fibres that delimit the intima from the media.  In contrast to

the vascular wall of arteries, capillary walls only consist of connective tissue and endothelial cells,

with no vascular smooth muscle cells; therefore capillaries are unable to induce their own

contraction or dilation (Aird 2007; La Sala et al., 2012) (figure 1.5).

Figure 1.5:  The anatomical structure of arteries, arterioles and capillaries (La Sala et al., 2012)
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1.2.1 Endothelium - Structure and function

The vascular endothelium consists of a single layer of cells that line the entire vascular system

(Mas 2009).  It consists of nearly ten trillion (1013) cells  in adults and can weigh up to 1 kg (Galley

& Webster 2004) with a surface area of 350 m2 (Pries et al., 2000).  ECs are flat cells with a large

nucleus that often protrudes into the vascular lumen.  They are normally present as spindle-

shaped cells, but can adopt more rounded shapes when present in the capillaries and venules

(Mas 2009).  The phenotypic variations between ECs can cause  them to respond differently to

similar stimuli (Galley & Webster 2004).   ECs have caveolae in abundance.  Caveolae are

membrane invaginations and play a role in signal transduction and vesicular trafficking.  ECs also

have a prominent Golgi apparatus which has significant secretory activity and a large number of

mitochondria (Mas 2009).  Even though ECs have sufficient mitochondria, they receive most of

their energy/adenosine 5’-triphosphate (ATP) from anaerobic glycolysis (Davidson & Duchen

2007).  Vascular ECs are covered with a endothelial glycocalyx – extracellular glycoproteins and

proteoglycans anchored to the ECs (Pries et al., 2000; Tarbell & Pahakis 2006).  The endothelium

is a semi-permeable barrier and regulates the transport of small and large molecules across the

membrane (Michiels 2003).  ECs are linked to each other by means of junctions, structures

formed by transmembrane adhesion molecules linked to cytoskeletal proteins.  Three types of

junctions have been described in the endothelium namely:  tight junctions, adherence junctions

and gap junctions (Schnittler 1998).

The endothelium is a dynamic organ and has metabolic and synthetic functions (Galley & Webster

2004; Mas 2009).  One of the most important functions is the regulation of vaso-motor tone in

the vasculature.  Furchgott and Zawadzki (1980) showed that relaxation of vascular smooth

muscle is dependent on the integrity of the endothelium.  They ascribed this phenomenon to an

endothelium-derived relaxing factor (EDRF), later identified as nitric oxide (NO).
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1.2.1.1 Capillary derived endothelial cells (CMECs)

“EC heterogeneity” is a term that was coined when it was discovered that ECs across the vascular

tree present with distinct phenotypes, differentially regulated in space and time (Aird 2007).

Two types of endothelial cells are present in the heart, namely the endothelial cells that line the

capillaries (cardiac microvascular endothelial cells, CMECs) and endocardial endothelial cells

(EECs).  They are classified according to their effects on and proximity to cardiomyocytes.  The

cardiomyocytes are outnumbered by cardiac endothelial cells, and it is proposed that for every 3

cardiac ECs there is one cardiomyocyte.  The anatomy of the heart allows for close proximity

between cardiomyocytes and CMECs in particular, since the capillary network is situated around

cardiomyocytes (figure 1.6) (Strijdom & Lochner 2009). Strijdom et al. (2006) showed that

CMECs increased NO levels 26 fold higher than isolated cardiomyocytes.  This was associated

with a 22 fold higher expression in endothelial nitric oxide synthase (eNOS).  These results clearly

underlie the distinct differences in EC functioning.  From a pathophysiological perspective, it is

important to note that the myocardial capillaries (lined by CMECs), are regarded as a primary

target (and therefore the site of end-organ damage) of cardiovascular risk factors such as

hypertension and diabetes mellitus, rendering the CMECs particularly important in the

development of ischaemic heart disease.
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Figure 1.6:  The CMEC-cardiomyocyte arrangement in the myocardium. Cardiomyocytes

(approximately 10 – 100 μm in size) are surrounded by myocardial capillaries (average

intercapillary distance of approximately 10 – 50 μm).  Each cardiomyocyte is associated with at

least 3-4 capillaries (Strijdom & Lochner 2009).
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1.3 Nitric Oxide (NO)

The following sections will provide information on the properties of NO, its functional role and

regulation.

1.3.1 NO properties

Various vasodilating substances are secreted by ECs.  These include NO, prostacyclin, hydrogen

sulphide, carbon monoxide, arachidonic acid metabolites, endothelium derived hyperpolarising

factor (EDHF) and reactive oxygen species (ROS).  All of these factors can hyperpolarise

underlying vascular smooth muscle cell membranes and result in vasodilation (Félétou &

Vanhoutte 2009).  Induction of endothelial NO-release has been identified as the main

mechanism by which some anti-dyslipidaemic drugs elicit their vasodilating and pleiotropic

responses. In view of this, the current study focussed on NO-related mechanisms.

The story of NO started almost 25 years ago, when Robert Furchgott (Furchgott and Zawadzki

1980) discovered that isolated aortas relaxed in an endothelium-dependent manner after

administration of acetylcholine.  The endothelium-dependent factor that was released upon

stimulation by acetylcholine was later identified as NO (Furchgott 1988).  NO is a diatomic radical

with a dichotomous nature.  It can exert distinctly different actions under seemingly similar

pathological conditions (Thomas et al., 2010).  It is a gas which makes it highly diffusible and

enables it to move quickly between target and adjacent cells (Lei et al., 2013) and has a half-life

of 3-5 seconds (Rodeberg et al., 1995).

In mammals NO can be synthesized by the enzyme nitric oxide synthase (NOS), which exists in

three different isoforms, namely neuronal NOS (nNOS/NOS I), inducible NOS (iNOS/NOS II) and

endothelial NOS (eNOS/NOS III ) (Förstermann & Sessa 2011).  NOS utilizes L-arginine as substrate

and along with the co-substrates, molecular oxygen and reduced nicotinamide-adenine-

dinucleotide phosphate (NADPH), it produces NO and L-citrulline as end- products (figure 1.7).
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Furthermore, flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN) and (6R-)5,6,7,8-

tetrahydro-L-biopterin (BH4) have been identified as co-factors for all three NOS isoforms

(Strijdom et al., 2009a; Michel & Vanhoutte 2010; Förstermann & Sessa 2011).

Figure 1.7: Illustration of the NOS-dependent NO synthesis process. A simple illustration of the

process of electron transfer during NO synthesis (modified from Daff 2010).
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Two molecules of oxygen are required for the synthesis of one NO molecule (Lepore 2000).  The

synthesis process will be discussed in more detail under section 1.3.4.

NO is oxidised and broken down into the stable end-products, called nitrites (NO2-) and nitrates

(NO3-).  Approximately 70% of all circulating inorganic nitrites is generated via the NOS/NO

pathway (Kleinbongard et al., 2003).  Nitrites can serve as substrate for NO since they can be

converted back to NO through a non-enzymatic reduction of deoxyhaemoglobin, which acts as

nitrite reductase in the circulation (Cosby et al., 2003).  This provides an alternative pathway for

NO synthesis and is especially relevant under conditions of hypoxia or ischaemia when there is a

shortage of oxygen, which is a co-substrate for NO synthesis through the NOS pathway (Lepore

2000).

1.3.2 Functional role of NO

A variety of stimuli can elicit the release of NO.  These stimuli include physical forces such as

shear stress, circulating hormones (catecholamines, vasopressin, aldosterone), plasma

constituents (thrombin, sphingosine-1-phosphate), platelet products (serotonin, adenosine

diphosphate [ADP]), and autacoids (histamine, bradykinin, prostaglandin) (Lüscher and

Vanhoutte, 1990; Vanhoutte et al., 2009; Michel & Vanhoutte 2010).  Once synthesised, NO can

exert a variety of effects impacting on vascular homeostasis (figure 1.8).
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Figure 1.8: A)  NO produced by NOS diffuses from the endothelial cells into underlying vascular

smooth muscle cells (VSMC), activates the sGC-cGMP-PKG pathway and leads to closure of L-type

Ca 2+ channels, ultimately resulting in vasodilation. B)  Effects of nitrovasodilators, endothelial-

dependent vasodilators and atriopeptins on cyclin guanosine monophosphate (cGMP) and

vascular relaxation.  GTP indicates guanosine-5-triphosphate;  ANF, atrial natriuretic factor;

ONOO-, peroxynitrite; NO, nitric oxide;  sGC, soluble guanylyl cyclase;  PI3, phosphoinositide 3;

Gp, glycoprotein;  PKG, protein kinase G;  PLC, phospholipase, PI, phosphatidylinositol;  DG,

diacylglycerol;  IP, inositol 3 or 4 phosphate (modified from Strijdom et al., 2009a and Bian &

Murad 2008).

NO NO

A
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According to Dudzinski et al., (2006), the interaction of NO with the metal centres of other

molecules represents the classic mechanistic action of NO.  The most well-known haemoprotein

target of NO is guanylate cyclase, through which NO exerts its potent vasodilatory effects.  It has

been well described that once NO is released from the endothelial cells, it can lead to stimulation

of soluble guanylyl cyclase (sGC) in underlying vascular smooth muscle cells which will catalyse

the conversion of guanine triphosphate (GTP) to the second messenger cyclic guanosine

monophosphate (cGMP).  Increased levels in cGMP lead to the activation of protein kinase G

(PKG), ultimately resulting in vasodilation via inhibition of the L-type calcium channels (figure 1.8

A) (Strijdom, et al., 2009a) or via activation of the myosin light-chain phosphatase (MLCP) (figure

1.8 B) (Bian & Murad 2008).

NO is an important signalling molecule involved with mediating vascular endothelial growth

factor (VEGF)-induced increases in endothelial cell proliferation and permeability. Furthermore,

NO possesses anti-atherogenic properties by decreasing platelet aggregation, platelet and

leukocyte adhesion, vascular smooth muscle cell proliferation as well as apoptosis (Radomski et

al., 1987; Garg & Hassid 1989; Dimmeler et al., 2000; Venema 2002; Shaw et al., 2011).  NO

protects the vascular wall by inhibiting the actions of powerful platelet-derived vasoconstrictive

factors such as serotonin and thromboxane A2.  Whenever there is a disruption in the endothelial

barrier, platelets can approach vascular smooth muscle cells, release vasoconstrictors and initiate

the vascular phase of haemostasis (Michel & Vanhoutte 2010) (figure 1.9).
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Figure 1.9:  Vasculoprotective effects of NO. NO can be converted from NO donors; or released

from nitrite by nonenzymatic reaction, or deoxyhaemoglobin, or xanthine oxidoreductase; or

generated from substrate L-arginine via catalysis by NOS.  NO inhibits smooth muscle cell (SMC)

proliferation and migration; prevents endothelial cell apoptosis while enhancing endothelial cell

proliferation and migration; NO also inhibits platelet, leukocyte and monocyte adhesion to

endothelium and suppresses platelet aggregation.  All of these effects account for inhibition of

intimal hyperplasia (from Lei et al., 2013).
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1.3.3 The effects of NO on the heart

NO exerts positive inotropic effects on the heart, enhancing basal cardiac function (Massion et

al., 2003; Rastaldo et al., 2007). When intracoronary NOS is inhibited by inhibitors such as NG-

Monomethyl-L-arginine monoacetate (L-NMMA), left ventricular pressure is decreased (Cotton

et al., 2001).  Basal heart rate is regulated by NO, this is evident by low concentrations of NO

donors increasing heart rate, while high concentrations lead to a negative chronotropic effect

(Cotton et al., 2001).  Low concentrations of NO also result in an increased β-adrenergic response,

while high NO concentrations will attenuate this response. Increased NO bioavailability further

enhances the Frank-Starling mechanism leading to increased aortic output (Angelone et al.,

2012).

Studies on the hearts of eNOS knock out mice showed larger infarct sizes following an

ischaemia/reperfusion insult (Jones et al., 1999; Kanno et al., 2000).  Also, eNOS transgenic mice

with overexpressed eNOS showed smaller infarct sizes (Ohashi et al., 1998; Van Haperen et al.,

2002).  These findings clearly demonstrate the cardioprotective role of NO in the heart.  Of

interest to the current study, anti-dyslipidaemic drugs such as statins and fibrates have previously

been shown to exert pleiotropic effects on the eNOS-NO pathway (unrelated to their effects on

lipid parameters) by increasing NO levels in the heart via activation of eNOS (Harris et al., 2004;

Murakami et al., 2006; Li et al., 2012).  NO plays an important role in mitochondria where it binds

to the oxygen binding centre of cytochrome C oxidase and can lead to cytochrome C oxidase

inhibition.  Binding of NO to cytochrome C is a reversible process.  However, under conditions of

oxidative stress, NO can combine with superoxide to form peroxynitrite, which binds irreversibly

to cytochrome C oxidase (Srinivasan & Avadhani 2012).  This results in decreased mitochondrial

respiration and depolarization of the inner mitochondrial membrane.  In the pathological

context, NO-dependent regulation of mitochondrial respiration can contribute to cardiac

hypertrophy and heart failure (Shiva et al., 2001).
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1.3.4 Enzymatic sources of NO:  eNOS, nNOS and iNOS

1.3.4.1 NOS isoforms

All three isoforms, eNOS, nNOS and iNOS are expressed in mammalian tissue (Förstermann &

Sessa 2011).  eNOS and nNOS are constitutively expressed, while iNOS expression can be induced

upon stimulation by pro-inflammatory cytokines (Ziolo & Bers 2003; Strijdom et al., 2009a).

Even though the NOS isoforms share 50-60% sequence identity they have unique regulatory and

catalytic activity (Michel & Vanhoutte 2010).  Similar binding sites for NADPH, FAD, FMN and CaM

have been identified in all three NOS isoforms (Bredt et al., 1991; Lamas et al., 1992; Lyons et al.,

1992). NOS enzymes consist of an oxygenase domain containing an N-terminal and reductase

domain containing a C-terminal.  The oxygenase and reductase domains are connected via a

calcium-calmodulin binding domain.  The haem and BH4 binding sites are found on the oxygenase

domain, while NADH, FAD and FMN binding sites reside in the reductase domain (figure 1.10).

The reductase domain of NOS is structurally similar to the dual-flavin enzyme NADPH-

cytochrome P-450 reductase (Gorren & Mayer 2007; Daff 2010). Both NOS and cytochrome P-

450 function via the transfer of electrons from the NADPH prosthetic group in the reductase

domain to haem (another redox component) in the oxygenase domain (Siddhanta et al., 1998;

Panda et al., 2001).  Following this, the haem iron binds to and activates oxygen to catalyse the

oxidation of L-arginine to NO (Stuehr 1997).  Dimerization of the NOS enzyme is required for full

enzymatic activity (Stuehr 1997), however in the absence of substrates and co-factors NOS can

“uncouple” and instead of producing NO it will produce the reactive oxygen specie, superoxide

(Pou et al., 1992; Govers & Rabelink 2001). eNOS uncoupling is a phenomenon associated with

endothelial dysfunction and thus also with disease conditions such as atherosclerosis (Heitzer et

al., 2001; Grover-Páez & Zavalza-Gómez 2009) (figure 1.10).
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Figure 1.10:  Scheme depicting electron flow in coupled vs uncoupled eNOS. Electron flow is

initiated at NADPH and transferred to the flavins (FAD and FMN) of the reductase domain, which

deliver the electrons to the iron of the haem (oxygenase domain). BH4 is suggested to be an

essential electron and proton donor to versatile intermediates in the reaction cycle of L-

arginine/O2 to L-citrullin/NO.  Calmodulin (CaM) controls electron flow in eNOS.  Zinc ions (Zn)

bound to NOS are required for dimer formation and stability.  Monomeric eNOS or BH4/L-arginine-

deficient eNOS is uncoupled and produces O2- (Münzel et al., 2005).
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nNOS contains an extra 250-amino acid N-terminal leader sequence (PDZ domain) not found in

eNOS or iNOS (figure 1.11). This domain is not required for dimerization, binding of co-factors or

NO synthesis.  It is only involved with binding proteins targeting nNOS to certain locations in the

cell (Brenman et al., 1996; Stuehr 1997).  Binding of co-factors (haem and BH4) is important for

promoting dimerization (Marletta 1993), especially for iNOS (Michel & Vanhoutte 2010).

Monomeric NOS does not bind BH4 or substrate (Marletta 1993).  The dimer interface is found

between two N-terminal haem binding oxygenase domains and it is stabilised by a Zn2+ ion ligated

to two cysteine thiols from each sub-unit (Raman et al., 1998).
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Figure 1.11:  Structural composition of the three NOS enzymes involved with NO synthesis: nNOS, eNOS and iNOS. All three isoforms

consist of a reductase domain containing FAD and NADPH binding sites and a FMN-FMN inhibitory loop, as well as an oxygenase

domain with binding sites for arginine, haem and BH4.  nNOS has an additional PDZ-domain at the N-terminal end.  Dimer formation is

necessary for activation of NOS.  PDZ:  post-synaptic density protein, discs-large, ZO-1, Zn:  zinc, CaM:  calmodulin, FMN:  flavin

mononucleotide, FAD:  flavin adenine dinucleotide, BH4: (6R-)5,6,7,8-tetrahydro-L-biopterin, Arg:  arginine   (Adapted from Alderton et

al., 2001 and Mount et al., 2007).
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1.3.4.2 eNOS regulation

Considering that the current study focused on the post-translational regulation of eNOS by anti-

dyslipidaemic agents, the following section will discuss this aspect of eNOS regulation in detail.

Minimal attention will be given to transcriptional regulation.

1.3.4.2.1 Regulation of eNOS gene expression

In broad terms, factors influencing eNOS gene expression can be divided into physical and

humoral factors as well as complex pathophysiological conditions (figure 1.12) (Braam & Verhaar

2007).   Shear stress is an important modulator of the eNOS transcriptome in endothelial cells

and can induce eNOS transcription (Nishida et al., 1992; Malek et al., 1999; Woodman et al.,

1999).  This process is dependent on Ras, Raf and ERK 1/2 (Davis et al., 2001) and is mediated via

nuclear factor kappa B (NF-ĸB) coupling to the shear stress response element GAGACC.  NO can

lead to inhibition of eNOS transcription and this is due to the inhibitory action of NO on NF-ĸB

activity (Davis et al., 2004; Grumbach et al., 2005).  eNOS gene expression can be down-regulated

by calcium influx inhibitors and this effect seems to be enhanced by PI3-kinase (Malek et al.,

1999).  Other humoral factors inducing eNOS gene expression include growth factors such as

VEGF (Bouloumié et al., 1999), basic fibroblast growth factor (bFGF), epidermal growth factor

(EGF) and transforming growth factor-β (TGF-β) (Govers & Rabelink 2001). Inflammatory factors

(Anderson et al., 2004) and various peptide hormones (Zhang et al., 2008;  Sud & Black 2009)

have also been shown to regulate eNOS transcription (Braam & Verhaar 2007).
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Figure 1.12:  Physical and humoral factors influencing eNOS gene expression. Myr:  myristoylation

site, Palm:  palmitoylation site, Zn:  location of zinc-ligating cysteines. (From Braam & Verhaar

2007).

1.3.4.2.2 Post-translational regulation

For  years eNOS was considered as solely regulated by the binding of Ca2+ to CaM (Bredt & Snyder

1990; Andrew & Mayer 1999; Mount et al., 2007) but over the last decade or so it has become

evident that the regulation of eNOS is much more complex and involves post-translational multi-

site phosphorylation (Fulton et al., 2001; Mount et al., 2007) as well as essential co-factors and

protein-protein interactions (Govers & Rabelink 2001; Fleming & Busse 2003). Post-translational

modifications of eNOS underlie the dynamic regulation of its enzymatic activity (Michel &

Vanhoutte 2010).
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It is important to note that each regulatory mechanism does not take place in isolation but is

usually interconnected with other mechanisms (Boo et al., 2006).  These post-translational

mechanisms will subsequently be discussed.

1) Acylation and subcellular localisation

In resting cells, eNOS is targeted to the membrane, more specifically caveolae. These are

membrane microdomains with caveolin as scaffolding protein (Dudzinski & Michel 2007).

Caveolae are membrane lipid rafts that contain cholesterol and form flask-like invaginations of

the plasma membrane (Head et al., 2014).  Due to their nature and location, caveolae sequester

diverse receptors and signalling proteins from signalling cascades, including G-protein coupled

receptors, G proteins, growth factor receptors and calcium regulatory proteins that transfer

signals to downstream activators (Shaul et al., 1996).  eNOS can be post-translationally modified

by myristoylation of Gly2 (Pollock et al., 1992; Sessa et al., 1992; Sase & Michel 1997) and

palmitoylation of Cys 15 and Cys 26 (Robinson & Michel 1995).  Myristoylation and palmitoylation

anchor eNOS to the lipid bi-layer of caveolae by adding three acyl anchors (Fukata et al., 2004).

Depalmitoylation of eNOS, in response to prolonged agonist stimulation, will result in eNOS

translocating to the cytoplasm (Michel et al., 1997).

2) Intracellular calcium, calmodulin and caveolin

eNOS and nNOS contain an inhibitory loop (40-50 amino acids) within the FMN domain.  This

inhibitory loop destabilises calmodulin binding at low intracellular calcium levels (Fleming &

Busse 1999).  If calmodulin is not tightly bound to eNOS, electrons cannot be transferred from

the reductase domain to the oxygenase domain, thus making catalytic activity impossible.

Additionally, eNOS is inhibited by its protein-protein interaction with caveolin (Dudzinski et al.,

2006).  Caveolins are 20kDa membrane proteins.  Caveolin-1 and caveolin-2 are ubiquitously

expressed and abundant in endothelial cells, whilst caveolin-3 is expressed in skeletal muscle and

cardiomyocytes (Fridolfsson et al., 2014).  Caveolin-1 bound to eNOS serves as a gate-keeper for

eNOS activation.  Thus, increased intracellular Ca2+ fluxes lead to calmodulin binding, which leads
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to the disruption of the caveolin-1 and eNOS interaction resulting in eNOS activation (Dudzinski

et al., 2006).  According to Dudzinski et al. (2006), increased levels of intracellular calcium serve

as the most rapid induction of eNOS activity.  However, eNOS can be rapidly and strongly

activated in the absence of calcium.  cGMP-dependent protein kinase II (cGKII) and the catalytic

subunit of cAMP-dependent protein kinase have been shown in vitro to phosphorylate eNOS on

both Serine and Threonine residues in the absence of calcium (Butt et al., 2000).

3) S-Nitrosylation

S-nitrosylation is another dynamic receptor-mediated post-translational modification which

contributes to the regulation of eNOS when it is membrane localised (Dudzinski et al., 2006).  In

resting endothelial cells, eNOS is inhibited as a result of S-nitrosylation at the cysteine residues,

Cys 94 and Cys 99.  Cys 94 and Cys 99 form part of the zinc tetrathiolate cluster.  In response to

eNOS agonist stimulation, eNOS will be rapidly denitrosylated at a rate similar to increased

catalytic activity (Ravi et al., 2004; Erwin et al., 2005).

4) Phosphorylation of eNOS

Phosphorylation and dephosphorylation of the enzyme complement other mechanisms of

regulation (Dudzinski & Michel 2007) and is an important post-translational modification on

which we focussed in the present study.  eNOS can be phosphorylated on serine (Ser), threonine

(Thr) and tyrosine (Tyr) residues.  Five serine/threonine phosphorylation sites have been

identified.  Phosphorylation of Ser 1177 and Ser 632 are associated with enhanced eNOS activity.

Thr 495 phosphorylation is associated with eNOS inhibition and the actions of Ser 114 and Ser

615 remain controversial.  Tyr 83 has been identified as a mediator of eNOS activity but little is

known about the exact contribution.  Tyr 657 has been shown to be involved with attenuation of

eNOS activity.  These phosphorylation sites will be discussed in detail in the next section (all of

these sites are numbered according to their human sequence).  Figure 1.13 summarises the

factors involved with eNOS regulation.  The following phosphorylation sites will be discussed:
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Figure 1.13:  Principle disturbances in eNOS function to produce nitric oxide (Braam & Verhaar

2007).

a) eNOS Ser 1177

Phosphorylation of Ser 1177 is associated with enhanced activity of the enzyme (Schulz

et al., 2009).  This phosphorylation site is situated in the reductase domain, close to the

C-terminal (Mount et al., 2007).  Phosphorylation of this site was first described by Chen

et al., 1999 who showed Ser 1177 to be phosphorylated by AMPK during myocardial

ischaemia.  They showed recombinant and rat heart purified eNOS to be phosphorylated

in the presence of AMPK.  They also showed Ser 1177 to be the most prominent

phosphorylation site.  During ischaemia, eNOS phosphorylation at Ser 1177 was increased

3-fold, but not Thr 495 (Chen et al., 1999).  AMPK directly phosphorylates eNOS Ser 1177

by promoting its association with HSP90.  The role of HSP90 will be discussed later in this

section.  Physiological stimuli known to induce AMPK-mediated activation of eNOS
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include vascular endothelial growth factor, high-density lipoprotein, adiponectin, shear

stress, hydrogen peroxide, ghrelin, thrombin and oestrogen (Schulz et al., 2009)

Besides AMPK, several other upstream kinases have been identified as regulators of Ser

1177 phosphorylation.  These include protein kinase B (PKB)/Akt (Dimmeler et al., 1999;

Michell et al., 1999; Strijdom et al., 2009b), protein kinase A (PKA) (Boo et al., 2002),

protein kinase C (PKC) (Michell et al., 2001; Wang et al., 2010b) and Ca2+/Calmodulin-

dependent protein kinase (CaMKII) (Chen et al., 1999).

Heat shock protein 90 (HSP90) has been shown to play an important role in recruiting

PKB/Akt to phosphorylate eNOS at Ser 1177.  It has been identified as a chaperone protein

for interaction with eNOS (Taipale et al., 2010).  Inhibiting HSP90 leads to deactivation of

PKB/Akt (via degrading of PDK-1) and thus results in reduced phosphorylation of eNOS

Ser 1177. HSP90 is important for initial phosphorylation of eNOS Ser 1177, but also the

maintenance of this state.  HSP90 can be seen as a scaffold for PKB/Akt to phosphorylate

eNOS (Wei & Xia 2005).

Other types of stimuli activating Ser 1177 include mechanical (shear stress) (Michel et al.,

1997; Fisslthaler et al., 2000), humoral factors such as bradykinin (Harris et al., 2001;

Lowry et al., 2013), insulin (Zecchin et al., 2007; Huisamen et al., 2011), sphingosine 1-

phosphate (Igarashi et al., 2001; Rikitake et al., 2002) as well as pharmacological

activators such as statins (Harris et al., 2004; Li et al., 2012) and fibrates (Murakami et al.,

2006; Tomizawa et al., 2011).  Since many of these factors fall outside the scope of this

study, for more detail see a review by Mount et al., (2007).
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b) eNOS Ser 632

Phosphorylation of eNOS Ser 632 has been shown to increase the activity of the enzyme

(Bauer et al., 2003; Schulz et al., 2009) and therefore NO synthesis. Bauer et al. (2003)

stated that eNOS Ser 1177 is the major site for phosphorylation in response to agonist

stimulation, while Ser 632 is responsible for basal levels of NO.  It is known that many

stimuli that activate and phosphorylate Ser 1177 also phosphorylate Ser 632; however,

the rate of Ser 632 phosphorylation is much slower and Ca2+ -independent, and serves to

maintain NO generation after the initial burst of NO via Ser 1177 phosphorylation (Schulz

et al., 2009).

Ser 632 is situated in the CaM autoinhibitory sequence of eNOS, which is contained in the

FMN domain (Michell et al., 2002; Bauer et al., 2003).  As stated above, several stimuli

that activate eNOS Ser 1177 have also been shown to activate Ser 632, namely ATP,

bradykinin, VEGF, shear stress and statins (Boo et al., 2002; Michell et al., 2002; Bauer et

al., 2003; Harris et al., 2004).  The primary kinase involved with Ser 632 phosphorylation

and activation, has been identified as PKA (Boo et al., 2002; Boo et al., 2003; Harris et al.,

2004) whereas PKB/Akt is unable to phosphorylate this site (Michell et al., 2002).

c) eNOS Thr 495

This site is situated in the CaM-binding sequence between the reductase and oxygenase

domains (Chen et al., 1999).  eNOS Thr 495 is a negative regulatory site and

phosphorylation is associated with inhibition of enzyme catalytic activity (Fleming et al.

2001; Fleming & Busse 2003).  According to Fleming & Busse (2003), eNOS Thr 495 is

constitutively phosphorylated in all endothelial cells and substantially more CaM will bind

to eNOS when it is dephosphorylated. Fleming et al. (2001) showed that before eNOS can

be activated in response to Ca2+-elevating agents such as bradykinin, rapid changes take

place in Ser 1177 and Thr 495 and that the association of CaM with eNOS is dependent
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on dephosphorylation of Thr 495.  The interference of Thr 495 with CaM binding explains

its inhibitory effect on eNOS (Fleming et al., 2001).

The major kinase involved with Thr 495 phosphorylation is protein kinase C (Mount et al.

2007). Chiasson et al. (2011) identified the specific PKC isoform as PKCβII.  Increased levels

of Thr 495 phosphorylation were also associated with endothelial dysfunction. Chen et

al. (1999) found that in the absence of Ca2+/CaM, AMPK is able to phosphorylate eNOS

Thr 495 resulting in inhibition of the enzyme.

d) eNOS Ser 615

The exact role and contribution of eNOS Ser 615 to enzyme activity remain unclear.  The

available data on Ser 615 phosphorylation are mixed. Boo et al. (2002) showed that Ser

615 was phosphorylated under shear stress as well as in response to VEGF and cAMP

stimulation.  This was due to a PKA dependent, but PI3 kinase independent mechanism.

The slow manner in which Ser 615 was phosphorylated suggests a possible role in chronic

regulation of eNOS.  Ser 615 as activator of eNOS has been suggested by different authors

(Michell et al. 2002; Bauer et al. 2003; Harris et al. 2004) since it was also activated by

eNOS agonists such as bradykinin, VEGF, ATP and statins, but even within these studies,

the findings remained contradictory. Bauer et al. (2003) found increased activity with a

S615D mutant while the serine to alanine mutant (S615A) which mimicked

dephosphorylation, resulted in increased levels of basal and agonist induced NO release.

Michell et al. (2002) found that a serine to aspartate mutation (S615D) mimicking

phosphorylation at Ser 615, increased Ca2+/calmodulin sensitivity without changing

enzyme activity.

e) eNOS Ser 114

This is the only phosphorylation site situated in the oxygenase domain and the function

of Ser 114 is also controversial (Mount et al., 2007).  It has been proposed that
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dephosphorylation of this site results in activation of eNOS (Kou et al., 2002).  In contrast,

another study found that shear stress and HDL resulted in phosphorylation of  Ser 114

and it was proposed to be an activating stimulus (Gallis et al., 1999; Drew et al., 2004).

Complicating the matter further, Boo et al. (2002) found no change in phosphorylation

of Ser 114 with shear stress and VEGF as stimuli.  The role of eNOS Ser 114 therefore

remains inconclusive.

f) Tyrosine phosphorylation

Little is known about the effect of eNOS tyrosine phosphorylation on eNOS activity.

Tyrosine kinase and phosphatase inhibitors can modulate eNOS derived NO (Fleming &

Busse 1996; Fleming et al., 1998; Fisslthaler et al., 2000; Fleming & Busse 2003; Loot et

al., 2009). It has also been reported that tyrosine phosphatase inhibitors can activate

eNOS independently of Ca2+ (Fleming et al., 1998).

Fulton et al. (2005) showed phosphorylation at eNOS Tyr 83 by the kinase c-Src and this

was associated with increased enzyme activity.  eNOS forms homodimers with a large

dimer interface in the crystal structure and as already mentioned, dimerization is

essential for activity (Govers & Rabelink 2001; Mount et al., 2007; Förstermann & Sessa

2011).  Tyr 83 is located on a β-strand of the crystal structure in close proximity of the

dimer interface.  Since Tyr 83 phosphorylation does not directly modulate eNOS activity

it is possible to  speculate that Tyr 83 acts as a docking station for Src-homology proteins

(Fulton et al., 2005).

Phosphorylation of Tyr 657 has been linked to shear stress (Fisslthaler et al., 2008) as well

as angiotensin II and low concentrations of hydrogen peroxide via proline-rich tyrosine

kinase 2 (PYK2) (Loot et al., 2009).  Phosphorylation of the enzyme at this site attenuates

NO production (Fisslthaler et al., 2008; Loot et al., 2009). Fisslthaler et al. (2000) and

Fleming & Busse (2003) attributed the lack of information on this residue to the fact that

researchers have been struggling to show tyrosine phosphorylation of eNOS in any cells
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other than primary cell cultures or low passages of endothelial cells (Garcia-Cardena et

al., 1996; Fleming et al., 1998).

1.3.4.3 nNOS regulation

nNOS is responsible for the NO production in neuronal tissues and is located in the synaptic

spines (Zhou & Zhu 2009).  It is expressed in skeletal muscle, cardiac muscle, smooth muscle cells

(Schwarz et al., 1999; Xu et al., 1999; Rothe et al., 2005) and the pancreas (Arciszewski 2007).

Schwarz et al. (1999) only found nNOS immunoreactivity in smooth muscle cells of rat aorta but

not in the endothelium layer. Bers & Ziolo (2014) showed that nNOS is localized in the

sarcoplasmic reticulum (SR) and co-immunoprecipitated with ryanodine receptors (RyRs).

1.3.4.3.1 Gene expression

nNOS has been shown to be upregulated under various conditions, including cutaneous wound

repair (Boissel et al., 2004) and cardiac ischaemic preconditioning (Wang et al., 2004).

1.3.4.3.2 Post-translational regulation

The following post-translational mechanisms are involved with nNOS regulation:

1) Dimerization

As is the case with eNOS, dimerization is also required for activation and functioning of nNOS.  It

also requires the binding of substrate L-arginine and co-factors for activation, with electrons

flowing from the reductase domain to the oxygenase domain (Zhou & Zhu 2009).  nNOS activity

can be inhibited by the protein inhibitor called PIN, an associated protein inhibitor of nNOS.

Binding of PIN destabilizes nNOS dimerization (Fan et al., 1998).
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2) Phosphorylation

nNOS phosphorylation is an important post-translational modification required for enhanced

enzyme activity.  Phosphorylation of nNOS at Ser 847 reduces nNOS activity by inhibition of

Ca2+/CaM binding.  This is mediated via protein kinase CaMKII phosphorylation of nNOS (El-Mlili

et al. 2008).  Conversely, activity of nNOS can be increased by decreased levels of Ser 847

phosphorylation mediated via protein phosphatase 1 (PP1) (Rameau et al., 2004).

Phosphorylation of nNOS Ser 1412 will result in increased levels of catalytic activity (Adak et al.,

2001).  It has also been shown that nNOS can be phosphorylated on tyrosine residues, resulting

in increased levels of NO and protection against hypoxia in brain tissue (Mishra et al., 2009).

3) Cellular localization and protein-protein interactions

In neurons, nNOS occurs in a soluble and particulate protein form and subcellular localization

varies greatly among cell types (Förstermann et al., 1998; Ziolo & Bers 2003).

As mentioned previously, nNOS is structurally different from eNOS and iNOS.  It contains a PDZ

(post-synaptic density protein, discs-large, ZO-1) domain in the N-terminal.  This domain

participates in dimer formation and activation since it can interact with various other proteins in

specific regions of the cell (Cui et al., 2007; Chen et al., 2008 Zhou & Zhu 2009).  The PDZ-domain

is able to anchor nNOS to membrane or cytosolic proteins via direct PDZ-PDZ interactions, which

can modify NO signalling.  One example is the binding of the nNOS-PDZ domain to post-synaptic

density protein-95 (PSD95), a synaptic scaffolding protein and integral component of the post-

synaptic density, which links nNOS to N-methyl-D-aspartate receptor (NMDAR). This results in

efficient activation of nNOS by NMDAR.  Other protein targets for the PDZ domain have been

identified, such as phosphofructokinase (PFK-M) and a nNOS adapter protein, CAPON (Zhou &

Zhu 2009) however, since it falls outside the scope of this study, it will not be discussed in detail.
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It has been suggested that CaM acts as an allosteric activator for nNOS (Zhou & Zhu 2009).  As is

the case with eNOS, increased levels of intracellular Ca2+ will result in CaM binding to nNOS and

electron transfer from the reductase domain to the oxygenase domain (Roman & Masters 2006).

In an immortalized neuroepithelioma cell line (A673), nNOS was shown to be inactive at basal

levels of intracellular Ca2+ , whereas increased intracellular Ca2+ levels will cause CaM to bind to,

and activate nNOS (Dreyer et al., 2004).

As is the case with eNOS, nNOS has also been reported to form complexes with HSP90 and

caveolin.  nNOS-HSP90 complex formation will increase NO production (Bender et al., 1999) and

this is a result of HSP90 enhancing binding between nNOS and CaM resulting in nNOS activation

(Song et al., 2001).

Caveolin-3 (the skeletal muscle isoform of caveolin) can act as a gatekeeper for nNOS activation

as it prevents CaM binding, thus inhibiting nNOS (Stamler & Meissner 2001).

1.3.4.4 iNOS regulation

While eNOS and nNOS are associated with the maintenance of basal levels of NO in a Ca2+/CaM

dependent fashion, iNOS has traditionally been associated with high output NO-release in

response to pathological stimuli such as pro-inflammatory cytokines (Buchwalow et al., 2001)

and in many cases associated with cytotoxic peroxynitrite formation (Strijdom et al., 2009b;

McNeill & Channon 2012).

1.3.4.4.1 Gene and protein expression

NO produced by iNOS is mostly regulated on a transcriptional level. Various signalling pathways

have been identified in the activation of iNOS transcription.  These include PKC, tyrosine kinase,

janus kinases, raf-1 protein kinase and mitogen activated protein kinases (MAP kinase) (Aktan

2004).  Regulation of iNOS is distinctly different from eNOS and nNOS regulation.  iNOS is not

normally expressed in cells, but expression can be induced by pro-inflammatory cytokines such

lipopolysaccharide (LPS) (Nikolaeva et al., 2012), interleukin-1β (IL-1β) (Lowry et al., 2013) and
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tumor necrosis factor alpha (TNF-α) (Yoshioka et al., 2012).  Expression of iNOS is regulated by

transcription factors such as nuclear factor kappa B (NF-κB) and activating protein-1 (AP-1) (Xia

et al., 2001).

iNOS was initially identified in macrophages (Xie et al., 1992), where it plays an important role in

the immune system due to its antimicrobial and anti-tumour function (Bogdan et al., 2000;

Bogdan 2001; Blanchette et al., 2003) but its expression has since been shown in a variety of

tissues including renal mesangial cells (Pheilschifter & Vosbeck 1991), cardiac myocytes (Strijdom

et al., 2009b), endothelial cells (Singh et al., 1996), smooth muscle cells (Junquero et al., 1992),

fibroblasts (Shindo et al., 1994) and keratinocytes (Arany et al., 1996), provided the appropriate

agent is used for induction (Förstermann & Sessa 2011).

Interestingly, iNOS expression can also be related to peroxisome proliferator-activated receptors

(PPARs).  PPARs can antagonize the effects of transcriptional factors involved with iNOS

expression (Chinetti et al., 1998)

1.3.4.4.2 Post-translational regulation

iNOS-derived NO is also regulated post-translationally, however, the mechanisms are not clear

(Aktan 2004).  The following mechanisms have been identified:

1) Synthesis and Degradation

The issue of the balance between synthesis and degradation is also valid for iNOS as post-

translationally, it is regulated by either protein synthesis or degradation (Aktan 2004).  A

reduction in protein synthesis of iNOS results in a reduction of enzyme activity.  On the other

hand, transforming growth factor β (TGF-β) is known to down-regulate iNOS via increased

degradation (Matsuno et al., 2001).  The effect of TGF-β on degradation is indirectly mediated by

the proteasome pathway (Musial & Eissa, 2001).
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2) Dimerization

iNOS can also be regulated via structural stability, i.e. factors that influence the ability to form a

dimer.  Kalirin (playing a neuroprotective role during inflammation), (Ratovitski et al., 1999a),

macrophage product and inducible NOS associated protein (NAP 110) can prevent dimerization

of iNOS and therefore exert an inhibitory effect on the enzyme (Ratovitski et al. 1999ba).

Dimerization of iNOS is initiated by haem insertion.  This leads to a conformational change in

protein structure and allows incorporation of haem into the oxygenase domain (Panda et al.,

2002).  Binding sites for L-arginine and BH4 are then exposed (Ghosh et al., 1996) and iNOS forms

a tight dimer (Panda et al., 2002). BH4 is very important for iNOS dimerization (Stuehr 1999).

3) Substrate and co-factor availability

Of the three NOS isoforms, iNOS-protein has the shortest sequence.  It is able to bind CaM at all

physiological Ca2+ concentrations and is not dependent on Ca2+ regulation (Cho et al., 1992; Daff

2010).  It is however, dependent on availability of substrate, L-arginine as well as co-factors haem,

BH4 and NADPH.  A shortage of any of these factors can regulate iNOS activity  on a post-

translational level (Taylor et al., 1998; Mori & Gotoh 2000).

4) Phosphorylation

Little is known about the phosphorylation of iNOS.  It has been shown by Pan et al. (1996) that

iNOS can be phosphorylated on tyrosine residues by tyrosine kinases and phosphorylation was

associated with increased activity of iNOS, even though no increase in total expression was found.

Zhang et al. (2007) showed that iNOS can be phosphorylated at the Serine 745 site, which was

associated with a “super output” of NO.  This phenomenon was mediated via a B1-kinin receptor

dependent activation as well as the kinase ERK1/2.  However, measuring iNOS phosphorylation

is complicated and commercial antibodies are not available yet.
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1.3.4.5 The controversial mitochondrial NOS (mtNOS)

Reports on the existence of another isoform of NOS, namely mitochondrial NOS (mtNOS) started

appearing in the late 1990’s (Bates et al., 1995; Bates et al., 1996; Ghafourifar & Richter 1997).

Bates et al. (1995) was able to present immunocytochemical evidence for the existence of a NOS

isoform in the mitochondria of brain and liver tissue, located to the inner mitochondrial

membrane, but could not conclude anything about its activity.  A year later mtNOS was also

discovered in heart, kidney and skeletal muscle tissue  and the possible role of mtNOS in oxidative

phosphorylation was alluded to (Bates et al., 1996). Ghafourifar & Richter (1997) were able to

demonstrate in rat liver, functional and NO-generating mtNOS by using L-arginine as substrate;

they also revealed  that the enzyme was Ca2+ dependent and localized on the inner mitochondrial

membrane, therefore acting in a similar manner as existing NOS enzymes.  In 1998, however,

Tatoyan & Giulivi purified mtNOS from liver-derived mitochondrial membranes and indicated

that it was similar in structure and function to constitutive NOS (eNOS and nNOS), but that it did

not cross-react with any known NOS antibodies.  Furthermore, the mtNOS displayed  the same

tight binding of CaM and immunoreactivity as iNOS.  They also showed mtNOS to be catalytically

active and able to produce NO.  This highlighted the possible role of NO production in the

mitochondria as regulator of ATP production.  Since then there have been several  reports

claiming that mtNOS was in actual fact eNOS or nNOS or even iNOS, but there are still studies

claiming that mtNOS is in fact a distinct NOS isoform [reviewed in (Lacza et al. 2006)].  From the

literature it seems that the existence  of a distinct mtNOS isoform is inconclusive and  could

merely be a technical peculiarity (Lacza et al. 2006).

1.3.5 Non-enzymatic sources

The long held belief that nitrite is merely an inert metabolite of NO has been proven wrong.

Nitrates and nitrites have been used in the food preservation industry for 5000 years!  In the

early 19th century it was discovered that nitrates are reduced to nitrites by bacteria which led to

the rationale to only use nitrites. Nitrites have been shown to delay the development of

botulinum toxin, develop cured meat flavour, retard the development of rancidity during storage
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and to be responsible for the red colour of cured meat due to the reaction of nitrite and

oxyhaemoglobin to form S-nitroxohaemoglobin (Bryan 2006).

In the body, NO can be inactivated to nitrates and nitrites via the reaction with haemoglobin

(Doyle & Hoekstra 1981; Rassaf et al., 2002).  The concentrations of nitrites vary depending on

the tissue and compartment it is stored in, as well as NOS activity (Rodriguez et al., 2003; Bryan

et al., 2004).  It has been shown that approximately 70-90 % of all plasma nitrites is derived from

eNOS (Kleinbongard et al., 2003).

Plasma nitrite can remain stable for hours, however in whole blood it is rapidly oxidised to nitrate

or NO.  In blood, haemoglobin serves as a nitrite reductase and will convert nitrites to NO.  This

process is maximally effective at 50% oxygenation.  The flavoprotein enzyme, xanthine oxidase,

has also been implicated in nitrite reductase activities.  It can reduce molecular oxygen to

superoxide at low tensions of O2 and low pH values.  Oxygen is also considered as an important

competitive inhibitor of nitrite reductase by xanthine oxidase (Bryan 2006).

Nitrite reduction to NO has been implicated in the protective effects against

ischaemia/reperfusion injury (Lepore 2000; Kitakaze et al., 2001).  During ischaemia there is a

lack of blood flow and therefore sufficient oxygen cannot reach the ischaemic tissue. Duranski

et al. (2005) ascribed the protective effects due to haemoglobin acting as a nitrite reductase and

thus able to convert nitrite to NO.  However, Webb et al. (2004) in studies performed on perfused

isolated hearts, failed to demonstrate the conversion of nitrites to NO.  It has to be considered,

however, that isolated heart perfusion experiments are conducted in the absence of blood, which

suggests that the myocardial tissue may express nitrite reductases such as xanthine oxidase.  The

traditional NOS/NO pathway requires oxygen as co-substrate for NO synthesis, and under

conditions of oxygen deficiency it is unlikely to be a major contributor to NO synthesis.  Ischaemia

is also associated with a low tissue pH.  These factors create optimal conditions for the reduction

of nitrite to NO, a reaction that only requires one electron protonation step (Bryan 2006).

Considering the inter-relationship between nitrite-derived NO and NOS-derived NO in the body,

Bryan (2006) suggested that NO homeostasis is maintained with a “NOS and nitrite concert”.

Each mechanism has its role under certain physiological conditions.
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1.3.6 NOS uncoupling – NO versus Superoxide

As mentioned previously, the process of NO synthesis involves substrate binding, namely L-

arginine, molecular oxygen and NADPH, as well as the co-factors BH4, FAD and FMN.

Furthermore binding of CaM and haem to the enzyme is essential for NO synthesis.  NOS

uncoupling (i.e. uncoupling of NADPH oxidation and NO synthesis) is a process which results in

the generation of superoxide instead of NO by NOS (Pou et al., 1992; Govers & Rabelink 2001).

In the case of eNOS, superoxide generation occurs via the haem group of its oxygenase domain

(Stroes et al., 1998) in the absence of sufficient substrate, L-arginine and/or co-factors (Wever et

al., 1997; Vásquez-Vivar et al., 1998; Channon 2004).  NO synthesis will be replaced by

superoxide.  If the concentration of BH4 is low, for instance, due to the inhibition of its synthesis

in endothelial cells via an inhibitor of the rate limiting enzyme in BH4 synthesis, GTP

cyclohydrolase I, or eNOS dysfunction, eNOS will uncouple and generate superoxide (Ishii et al.,

1997; Meininger et al., 2000).  BH4 supplementation in conditions such as hypercholesterolaemia

(Fukuda et al., 2002), hypertension (Cosentino et al., 1998), diabetes (Heitzer et al., 2000) and

coronary artery disease (Setoguchi et al., 2001) has been shown to increase the bio-availability

of NO.  Not only is the absolute availability of BH4 important in the regulation of eNOS activity

and uncoupling, but also the ratio of fully reduced BH4 to partially oxidised 7,8-dihydrobioterin

(BH2) (Vasquez-Vivar et al., 2002).

Similar findings have been reported on the ability of nNOS to produce superoxide from its haem

domain (Pou et al., 1999; Vasquez-Vivar et al., 1999).  In the case of iNOS, uncoupling results in

superoxide generation via the reductase domain (Xia et al., 1998). McNeill & Channon (2012)

stated that the role of BH4 in the control of endothelial cell nNOS and iNOS is commonly

overlooked, since emphasis is normally placed on eNOS.   iNOS expression is normally regarded

as detrimental, especially due to its role in septic shock, but it is also involved in host defence

against pathological invaders (MacMicking et al., 1995). iNOS induction in inflammatory cells is

associated with increased levels of GCH1, the gene that encodes GTP cyclohydrolase (rate limiting

enzyme in BH4 synthesis) (Crabtree et al., 2009), thereby increasing BH4 synthesis necessary for
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normal iNOS functioning (Hattori et al., 1996).  Besides the co-induction of iNOS and BH4

synthesis, iNOS has also been shown to decrease BH4 levels in diseased states such as

atherosclerosis (Zhang et al., 2007).  In atherosclerotic plaques, iNOS-derived NO has been shown

to increase peroxynitrite formation and lipid peroxidation (Zhang et al., 2007), leading to

increased ROS in the vasculature (Ponnuswamy et al., 2009).  The regulation of iNOS-dependent

NO and ROS production by available BH4, plays and important role in vascular diseases.  These

effects may be opposing those of BH4 and eNOS (McNeill & Channon 2012) (figure 1.14).
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Figure 1.14:  Whilst coupled and uncoupled endothelial cell eNOS has well defined roles and

associations with vascular inflammation and disease, similar roles have not yet been assigned for

iNOS (adapted from McNeill & Channon 2012).
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1.4 Oxidative and nitrosative stress

According to a review by Mudau et al. (2012) the common underlying cause for endothelial

dysfunction associated with cardiovascular risk factors, is oxidative stress, and includes NO,

superoxide anion (O2-), hydrogen peroxide (H2O2) and peroxynitrite (ONOO-) (Griendling &

FitzGerald 2003). Reactive oxygen species (ROS) are formed when radicals escape from the

mitochondria.  Additionally ROS can be formed accidentally as is the case with monoxygenases

and dehydrogenases such as cytochrome P450 enzymes, xanthine oxidase and NOS (uncoupled).

Superoxide (O2-) is formed by a one electron reduction from oxygen via a variety of oxidases

(Griendling & FitzGerald 2003).  Superoxide anions can inactivate/scavenge NO by binding to it

resulting in the formation of the cytotoxic radical, peroxynitrite (Gryglewski et al., 1986):

O2.- + NO. → ONOO-

When excessive amounts of NO are produced, as is often the case with iNOS (Buchwalow et al.,

2001), NO can become detrimental due to the formation of powerful peroxynitrite.

Another source of cellular ROS is the Nox family of NADPH oxidases.  NADPH oxidase does not

generate ROS via accidental mechanisms, but seems to exist for the purpose of producing

superoxide anions (Braam & Verhaar 2007; Brandes et al., 2010).  The members of the Nox

(NADPH OXidase) family are named according to the large catalytic subunit which interacts with

downstream signalling molecules such as GTPases, cytosolic phoxproteins and cytoskeletal

proteins (Bedard & Krause 2007).  Seven Nox-type NADPH oxidases have been identified in

mammalian cells:  Nox 1 to Nox 5;  Duox 1 and Duox 2.  Nox 1, Nox 2, Nox 4 and Nox 5 are

significantly expressed in the cardiovascular system.  Each Nox is unique with regards to the type

of ROS generated, its mode of activation, expression and interaction with other proteins (Bedard

& Krause 2007).  In theory, due to a similar modular structure of the oxidoreductase, with binding

sites for NADPH and FAD, all Nox isoforms should primarily release superoxide (Lambeth et al.,

2000).  However, only Nox 1 (Suh et al., 1999), Nox 2 and Nox 5 (Serrander et al., 2007b) primarily

release superoxide.  Nox 4 is mainly responsible for the generation of hydrogen peroxide
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(Serrander et al., 2007a).  An important NADPH oxidase subunit, P22phox, is a transmembrane

scaffold protein and is required for Nox 1-4 activition (Ambasta et al., 2004).  P22phox forms

complexes with Nox 1, 2 and 4 and mutation of histidine 115 on Nox leads to disruption of these

complexes (Ambasta et al., 2004).  Besides p22phox, other cytosolic subunits of NADPH oxidase

include p47phox, p67phox and p40phox.  Interaction has previously been shown between

p22phox and Nox 2 (Ambasta et al., 2004).  This association provides stability to Nox 2.

Phosphorylation of p47phox results in a conformational change and interaction with p22phox

(Groemping & Rittinger 2005).  Activation of Nox 2 requires cytosolic factors to translocate to the

Nox 2/p22phox complex and p47phox facilitates this translocation.  This brings the “activator

subunit” p67phox into contact with Nox 2 (Han et al., 1998).  P40phox also joins the complex at

this stage.  Finally Rac (GTPase) interacts with Nox 2, directly followed by interaction with

p67phox (Diebold & Bokoch 2001).  The fully assembled complex is now ready to generate

superoxide via electron transfer from NADPH to molecular oxygen (Bedard & Krause 2007).  As

demonstrated in figure 1.15, activation of the different Nox isoforms is slightly different, but the

association of Nox with p22phox is an integral part of complex formation (with the exception of

Nox 5).
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Figure 1.15:  Activation model of Nox proteins. With the exception of Nox 4, the Nox homologues

are basally inactive.  Interactions with cytosolic proteins or increases in the calcium concentration

are required to activate Nox 1, Nox 2 and Nox 5.  Transforming growth factor β1 appears to

increase Nox 4 activity;  the mechanism underlying this effect, however is unknown (from Brandes

et al., 2010).
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Peroxynitrite is a strong oxidant and can react with electron rich groups such as iron-sulfur

centers (Castro et al., 1994), sulfhydryls (Radi et al., 1991) and zinc-thiolates (Crow et al., 1995)

as well as the sulfhydryl in tyrosine phosphatases (Takakura et al., 1999).  At a pH of 8 and lower,

Peroxynitrite will become protonated and form the unstable intermediate peroxynitrous acid

which yields highly reactive oxidant species (Ferdinandy & Schulz 2003).

The production of peroxynitrite occurs at a low rate with minimal oxidative damage during a

normal physiological state.  This is due to endogenous antioxidant defence systems (Radi et al.,

2002).  However during increased production of NO or superoxide, peroxynitrite formation will

increase significantly, i.e. a 10-fold increase in superoxide and NO results in a 100-fold increase

in peroxynitrite, as is the case during pathological conditions.  Due to substantial oxidation by

peroxynitrite, cellular constituents will be broken down leading to dysfunction of critical cellular

processes and cell death by apoptosis and necrosis (Virág et al., 2003) (figure 1.16).

According to Ferdinandy & Schulz (2003), mitochondrial Mn-superoxide dismutase (SOD),

cytosolic Cu-Zn SOD, extracellular Cu-Zn SOD, glutathione (GSH), uric acid and catalase are

important endogenous antioxidant enzymes  responsible for controlling ROS production.
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Figure 1.16:  Cellular mechanisms of nitric oxide (NO), superoxide (O2-) and peroxynitrite (ONOO-

) actions. NO is an important cardioprotective molecule via its vasodilatory, antioxidant,

antiplatelet, and antineutrophil actions and it is essential for normal heart functions.  However,

NO can become detrimental when it combines with superoxide to form peroxynitrite, which

rapidly decomposes to highly reactive oxidant species leading to tissue injury.  There is a critical

balance between cellular concentrations of NO, superoxide and superoxide dismutase (SOD).

Under physiological conditions, NO production is favoured, but under pathological conditions such

as ischaemia and reperfusion, peroxynitrite formation is favoured.  Peroxynitrite is detoxified

when it combines with reduced glutathione (GSH) or other thiols to form S-nitrogluthathione

(GSNO) or nitrothiols (NO donor molecules).  MMP – matrix metalloproteinase;  NOS – NO

synthase;  PARP – poly-ADP ribosepolymerase;  XOR – xanthine oxidoreductase (from Ferdinandy

& Schulz 2003).
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1.5 Inflammation

Inflammation is characterised by local recruitment and activation of leukocytes.  This process is

an important component of the innate immune response to pathogens and damaged cells (Pober

2002).  Inflammation can be triggered by different types of stimuli (Sullivan et al., 2000).  One

such stimulus is microbial infection (Nieminen et al., 1993).  Bacteria or virally infected cells are

destroyed by inflammatory cells.  Another stimulus for inflammation, is tissue trauma as seen in

organs stressed by ischaemia/reperfusion (Kin et al., 2006) or haemorrhagic shock (Shah & Billiar

1998).  As long as the inflammatory response is short-lived and localised to the site of invasion or

trauma it is not detrimental (Sullivan et al., 2000).  Chronic stimulation of inflammatory processes

in the cardiovascular system has been associated with the development of atherosclerotic

plaques (Jang et al., 1993) and other vascular diseases (Folkman & Shing 1992).

According to Libby (2006), inflammation occurs during atherosclerosis from the initial stages

through to the end  when thrombotic complications occur.  Once the ECs express adhesion

molecules such as VCAM-1, an attachment surface is provided for T lymphocytes and monocytes

(leukocytes present during the initial stages of atherogenesis).  Once inflammatory cells have

infiltrated the area of injury or infection they release cytokines, proteases, and ROS which trigger

vasoconstriction or vasodilation (Groth et al., 2014), thrombus formation (Carter 2005; Libby

2006), angiogenesis and tissue remodelling (Wilensky et al., 1995).

Nuclear factor kappa B (NF-κB) has emerged as a key regulator of inflammation and is activated

in many chronic inflammatory diseases and cancers ( Wolfrum et al., 2007; Gyrd-Hansen & Meier

2010; Ben-Neriah & Karin 2011; Cao et al., 2013).  The NF-κB family of nuclear transcription

factors consists of NF-κB1 (p50 and its precursor p105), NF-κB2 (p52 and its precursor p100), RelA

(also called p65), c-Rel, and RelB.  All the members of the NF-κB family are characterised by an

N-terminal Rel homology domain (RHF) responsible for homo- and heterodimerization and

sequence specific DNA binding (Vallabhapurapu & Karin 2009).  P52 and p50 do not rely on

interactions and associations with other factors in order to regulate transcription, however RelA,
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c-Rel and RelB contain a C-terminal transcription activation domain (TAD) (Hayden & Ghosh

2008).

NF-κB normally resides in the cytosol and needs to translocate to the nucleus to perform its

transcription role in the activation of DNA synthesis of target genes.  The group of proteins

involved with retaining NF-κB in the cytosol is known as the IκB family of proteins.  They include

IκBα, IκBβ, IκBε and the precursor proteins p100 and p105.  Another IκB protein, IκBγ, has been

identified in mice, but its relevance remains unknown.  Two inducible forms of IκB proteins have

also been identified, namely BCL-3 and IκBζ.  Upon stimulation by pro-inflammatory cytokines

such as tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), the kinase complex IKKα

and IKKβ (catalytic subunits) is activated, as well as the regulatory subunit NEMO (NF-κB essential

modulator).  IKK proteins phosphorylate IκB, leading to its ubiquitination and dissociation from

the NF-κB complex.  Dissociation of IκB provides the stimulus for NF-κB dimers to translocate to

the nucleus.  IκB in turn will undergo proteasomal degradation (Hoffmann et al. 2006; Hayden &

Ghosh 2008; Vallabhapurapu & Karin 2009) (figure 1.17).
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Figure 1.17:  NF-κB signalling pathways. Following receptor ligation and recruitment of receptor

proximal adaptor proteins, signalling to IKK proceeds through TRAF/RIP complexes.  The IKK

complexes phosphorylate IκB leading to proteasomal degradation and ultimately NF-κB

translocates to the nucleus to induce transcription of target genes (adapted from Hayden & Ghosh

2008).

Stellenbosch University  https://scholar.sun.ac.za



54 | P a g e

1.6 Anti-dyslipidaemic / Hypolipidaemic therapies

1.6.1 General background

An array of anti-dyslipidaemic drugs is available on the market today, each targeting different

physiological endpoints.  These therapies have been shown to decrease the incidence of

cardiovascular events and atherosclerosis (Rikitake & Liao 2005; Ii & Losordo 2007).  Therapies

aimed at lowering cholesterol, are essential in preventing plaque progression in vascular linings

(Rozman & Monostory 2010) as well as reducing pro-inflammatory markers in these patients

(Ascer et al., 2004; Blanco-Colio et al., 2007).  3-Hydroxy-3-methylglutaryl coenzyme A reductase

(HMG-CoA-R) inhibitors, otherwise known as statins, provided a breakthrough in the search for

drugs that lower circulation levels of LDL-cholesterol (LDL-C) (Gotto & Farmer 2006) and are

currently the most widely prescribed class of cholesterol-lowering drugs.  Statins serve as first

line therapy for lowering LDL-C levels (Noto et al., 2014).  The beneficial effects of statins are not

only due to their cholesterol lowering effects, since they have also been shown to exert

cholesterol-independent (or pleiotropic) effects such as the improvement of ED, increasing NO

bio-availability and reduction of vascular inflammation (Rikitake & Liao 2005; Ii & Losordo 2007;

Zhou & Liao 2010).  However, besides all of these beneficial effects, side-effects have been

documented, such as adverse muscular reactions as well as hepatic and renal complications

(Kashani et al., 2006; Kapur & Musunuru 2008).  Cerivastatin was retracted from market in 2001

due to 31 deaths related to myotoxicity (Staffa et al., 2002).

Even though statins have showed a 25-40% cardiovascular risk reduction in clinical trials, a

residual cardiovascular risk remains (LaRosa et al., 2005).  Combination therapy has been

implemented to address this problem.  This also improves the lipid profile of very high-risk

patients for whom the efficacy and tolerability of only statin therapy are not sufficient (Davidson

2005; Hou & Goldberg 2009; Rozman & Monostory 2010).  The rationale is, if the highest

tolerable statin dose does not succeed in decreasing LDL-C to target values, another drug, with a

different mode of action, can be combined with the statin in order to be more effective.  This can

be done in order to either further decrease LDL-C values or to selectively increase HDL-C.
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Simultaneous targeting of LDL-C and HDL-C would then account for additive effects on

cardiovascular risk reduction (Hausenloy & Yellon 2008; Polonsky & Davidson 2008).

A variety of alternative therapies exist that have different modes of action, and show greater

efficiency at targeting different parameters, such as LDL-C or HDL-C. These include fibrates,

ezetimibe, niacin, bile acid sequestrants, thiazolidinediones or cholesterol enzyme inhibitors

(Rozman & Monostory 2010).

1.6.2 Statins

The mechanism by which statins exert their effect, is via the inhibition of the de novo cholesterol

biosynthesis process.  The HMG-CoA-R inhibitors, i.e. statins, limit the rate limiting step in the

cholesterol synthesis process, namely conversion of HMG-CoA to mevalonate by 3β-hydroxy3-

methylglutharyl coenzyme A reductase (HMGCR) (figure 1.18).  The reduction of downstream

metabolites results in increased expression of the LDL-receptor on hepatocytes as well as

increased uptake of LDL from the circulation (Endo 2004; Rozman & Monostory 2010).  In terms

of their structure, statins can be classified as follows:  Type 1 inhibitors include simvastatin and

pravastatin, and contain a decalin ring.  Type 2 inhibitors include rosuvastatin, atorvastatin,

cerivastatin and fluvastatin which contain a fluorophenyl group allowing them additional binding

properties (Istvan et al., 2000; Rozman & Monostory 2010).  The differences in their

pharmacokinetic properties are due to differences in structure. The very first statin, mevastatin,

was extracted from peniciliium citrinum. Lovastatin, simvastatin and pravastatin are all

derivatives of fungal products and are manufactured with an open lactone ring, which is

transformed in the body to an open acid form.  Pravastatin is administered in a biologically active

open acid form.  Fluvastatin is a purely synthetic statin with a different structure (Schulz 2005)

(figure 1.19).
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Figure 1.18:  Cholesterol biosynthesis pathway. CoA:  coenzyme A;  PP:  pyrophosphate (from

(Rikitake & Liao 2005).
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Figure 1.19:  Chemical structures of different statins, inhibitors of 3β-hydroxy3-methylglutharyl

coenzyme A reductase (HMGCR) (Rozman & Monostory 2010).
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1.6.2.1 Simvastatin:  Effects on cholesterol

Several clinical trials have confirmed  the efficacy of simvastatin to decrease LDL-C, total

cholesterol and triglycerides as well as beneficial primary and secondary outcomes (Olsson et al.,

2003; meta-analysis by Rogers et al., 2007;  Armitage et al., 2010).  Some studies indicated that

simvastatin is less effective than atorvastatin to reach target levels (Olsson et al., 2003; Rogers et

al., 2007).  The focus of the current study is however not on the cholesterol effects of simvastatin,

but rather the pleiotropic effects.

1.6.2.2 Simvastatin:  Pleiotropic effects

The pleiotropic effects observed with all statins are mainly a result of the inhibition of isoprenoid

formation, farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate (GGPP) due to

mevalonic acid inhibition.  These isoprenoids are responsible for post-translational regulation of

proteins such as the small GTPases Ras, Rac and Rho.  Statins inhibit the activation of RhoA, which

normally inhibits PKB/Akt, resulting in the inhibition of one of its major downstream targets,

eNOS. eNOS is involved with keeping the mitochondrial permeability transition pore (mPTP)

closed, which ultimately results in cardioprotection.  Statins can also directly activate PKB/Akt

(Liao & Laufs 2005; Rikitake & Liao 2005). Rho/Rho Kinase (ROCK) is a protein serine/threonine

kinase, and a downstream effector of the small GTPase Rho (Rikitake & Liao, 2005; Zhou & Liao,

2010).  Statins lead to the inhibition of ROCK and it has been suggested that ROCK can regulate

eNOS mRNA (Rikitake & Liao, 2005; Zhou & Liao, 2010).  Inhibition of the Rho/ROCK pathway

leads to the upregulation of eNOS, which contributes to cardioprotection (Rikitake & Liao, 2005;

Zhou & Liao, 2010). This pathway represents the mechanism by which statins mostly exert their

pleiotropic effects especially in the cardiovascular system.  A novel mechanism relevant to the

effect of statins on leukocyte trafficking and T-cell activation has been described by Weitz-

Schmidt et al. (2001). They showed that statins bind to a novel allosteric site within the β2

integrin function associated antigen-1 (LFA-1).  This mechanism was found to be independent of

mevalonate inhibition.
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The group of statins can further be divided into lipophilic or hydrophilic statins.  Lipophilic statins

such as simvastatin are likely to have a more potent pleiotropic effect due to the fact that they

can enter endothelial cells via passive diffusion (Liao & Laufs 2005).  Of further relevance to the

pleiotropic effects of statins on vascular tissue, more specifically simvastatin, is the inhibitory

effect on endothelin-1.  Endothelin-1 (ET-1) is a powerful vasoconstrictor and growth factor

involved with the regulation of vascular tone and vascular smooth muscle mitogenesis (Gomez

Sandoval & Anand-Srivastava 2011; Kawanabe & Nauli 2011).  Simvastatin has also been shown

to significantly increase the vasodilatory response of spontaneously hypertensive rats due to

increased formation of NO and prevented endothelial dysfunction in rabbits on a high cholesterol

diet (Carneado et al., 2002).  This was, however, not associated with increased activation of

eNOS, but decreased expression of Cav-1 and increased total expression of eNOS (Arora et al.,

2012).  A summary of studies demonstrating vascular pleiotropic effects of simvastatin is shown

in Table 1.1.

The pleiotropic effects of simvastatin stretch further than just site specific alterations in the

vascular wall.  In the myocardium, simvastatin was shown to be anti-hypertrophic (Zou et al.,

2013), provide protection against ischaemia/reperfusion injury (Iliodromitis et al., 2010), reduce

inflammation (due to ischaemia) (Iliodromitis et al., 2010), limit infarct size (Ye et al., 2010) and

inhibit angiotensin II induced oxidative stress (Takemoto et al., 2001).  Simvastatin has also been

shown to protect against ischaemic stroke (Zhu et al., 2014).  The major pleiotropic effects,

however, are seen in the vascular wall.

In general, statins seem to have biphasic effects.  As expected, not only beneficial pleiotropic

effects have been documented.  Even though there are many studies indicating the anti-

inflammatory effect of statins, statins have also been shown to lead to a super-induction of E-

selectin, ICAM-1 and VCAM-1 in TNF-α stimulated vascular endothelial cells (Schmidt et al. 2002).

Kaneta et al. (2003) conducted a study on rat pulmonary vein endothelial cells using lovastatin,

simvastatin, atorvastatin, fluvastatin, cerivastatin and pravastatin, in which it was found that

lipophilic (all except pravastatin) statins induced apoptosis and decreased cell viability due to

DNA fragmentation, DNA laddering and activation of caspase-3.
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Table 1.1:  Pleiotropic effects of Simvastatin on the vascular wall.

Effect Mechanism Dose and model In vitro
Post-conditioning
mediated protection.

PKB/Akt activation. BPAEC – 0.5–10 μM Wu et al. 2010

Antioxidant ↑ Catalase
↑ SOD

Wistar rats
(Streptozotocin
induced) – 1
mg/kg/day i.p.

El-Azab et al.
2012

↑ SOD
↑ glutathione peroxydase

Wistar Kyoto and
SHR rats – 5
mg/kg/day

Carneado et al.
2002

Inhibits vasoconstrictor
ET-1

Via inhibition of Rho/ROCK
pathway.  Speculate due to
the inhibition of PKB/Akt and
eNOS.

 Sprague-Dawley
rat aortas – 0.1-
10 μM (in organ
bath).

 SMC – 0.1-10 μM

Mraiche et al.
2005

Contributes to plaque
stability

Inhibition of Rho and
subsequent inhibition of
COX-2 and MMP-9

HUVECs, HSVECs,
BAECs – 0.1-10 μM

Massaro et al.
2010

Inflammation ↓ IFN-γ induced CD40
expression and signalling

ECs, SMCs,
macrophages and
fibroblasts – 80 nM-5
μM

Mulhaupt et al.
2003

↑ synthesis of t-PA and ↓
PAI-1 via geranylgeranyl
modified intermediates
↓ NFκB and AP-1

HPMCs and HT1080
fibrosarcoma cells –
5 μM

Haslinger et al.
2003

Re-endotheliazation ↑ VEGF release Hamsters – 2
mg/kg/day

Matsuno et al.
2004

bone marrow
Sprague Dawley rats
– 0.2/1 mg/kg/day

Walter 2002

Pro-angiogenesis ↑ PKB/Akt and eNOS
activation

HUVECs – 1 μM Kureishi et al.
2000

↑ PKB/Akt
activation/translocation

BAECs and HUVECs –
0.5 μM

Skaletz-Rorowski
et al. 2003

Vasodilatory ↓ caveolin-1
↔ eNOS activation

New Zealand white
rabbit aortas – 5
mg/kg/day

Arora et al. 2012

↑ NO Wistar Kyoto and
SHR rats – 5
mg/kg/day

Carneado et al.
2002

t-PA:  tissue-type plasminogen activator (t-PA);  PAI-1: plasminogen activator inhibitor-1; ET-1:
endothelin-1;  eNOS:  endothelial nitric oxide synthase;  ROS:  reactive oxygen species;  SMC:
smooth muscle cell;  BPAEC:  bovine pulmonary arterial endothelial cells;  HUVECs:  human
umbilical vein endothelial cells;  HSVECs:  human saphenous vein endothelial cells;  BAECs:  bovine
aortic endothelial cells;  COX-2:  cyclooxygenase-2;  MMP-9:  metalloproteinase-9;  SOD:
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superoxide dismutase;  i.p.:  intra peritoneal;  Cav-1:  caveolin-1;  HPMCs:  human peritoneal
mesothelial cells;  AP-1:  activator protein-1;  SHR:  spontaneously hypertensive rats;  ECs:
endothelial cells

1.6.3 Fibrates

Low levels of HDL-C are a strong, independent and inverse predictor of coronary heart disease

(CHD).  The Framingham Heart study investigated men and women between the age of 49-82

years with no CHD at initial recruitment, and found HDL-C to be the most potent lipid risk factor

for CHD, more so than LDL-C, total cholesterol or triglycerides (Gordon et al., 1977; Castelli et al.,

1986; Assmann et al., 1996; Sharrett et al., 2001).  Gordon et al. (1977) also found a 2-3%

reduction in cardiovascular risk factors for every 1 mg increase in HDL.  Statins have been shown

to be distinctly effective in  decreasing LDL-C, but their effect on HDL-C is not that prominent

(Natarajan et al., 2010).  A meta-analysis showed that statins resulted in a 7.5% increase in HDL-

C in patients suffering from CHD.  This increase was independently associated with coronary

atherosclerosis regression (Nicholls et al., 2007).  Peroxisome proliferator-activated receptor

alpha (PPAR-α) agonists decrease LDL-C by approximately 10% - 20%, triglycerides by 25% - 45%

and increase HDL-C by 10%-15% (Saku et al., 1985; Birjmohun et al., 2005).

PPARs consist of a family of three nuclear receptor isoforms, namely α, γ and β/δ.  They are key

regulators of metabolism and inflammation.  Increasingly, studies are indicating that PPAR

activation is an important mechanism by which atherosclerosis can be reduced and

cardiovascular function improved (Fuentes & Palomo 2014).  Ligands of PPAR-α are regulators of

lipid and lipoprotein metabolism and therefore play an important role in limiting plasma risk

factors contributing to atherosclerosis.  Fibrates are synthetic ligands of PPARs.  They have been

used clinically since the late 1960s and include clofibrate, bezafibrate, gemfibrozil, ciprofibrate

and latest member of the family, fenofibrate (Farnier 2008), which will be discussed next.
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1.6.3.1 Fenofibrate:  Effects on cholesterol

Fenofibrate (2-[4[(4-chlorobenzoyl)phenoxy]-2- methyl-propanoic acid, 1-methylethyl ester) is a

synthetic ligand of PPAR-α and is highly lipophillic.  Once bound, PPAR-α forms a complex with

the retinoid-receptor X and will translocate from the cytosol to the nucleus where it plays a role

in transcription of genes involved with fatty acid metabolism (figure 1.20). Mechanisms that lead

to triglyceride lowering include suppression of hepatic apo-CIII gene expression and stimulation

of lipoprotein lipase (LPL) transcription, which promote increased cellular fatty acid uptake,

oxidation as well as decreased production (Berger & Moller 2002; Steiner 2008; Alagona 2010).

A meta-analysis of randomized controlled trials by Birjmohun et al., (2005) in which 15 trials with

fenofibrate were included, showed that fenofibrate had the following effects on lipid parameters:

reduction of total cholesterol levels by 13.3%, 40.1% reduction of triglyceride levels, 10.5%

reduction of LDL-C levels, and 10.2% increase in HDL-C levels (although increases of up to 23%

have been reported) (Kon Koh et al., 2006).  Adverse effects of fenofibrate treatment include

increased creatinine and homocysteine levels (Farnier 2008).  Even though fenofibrate reduced

CVD events,  it did not significantly improve primary outcomes in trials (Birjmohun et al., 2005;

Keech et al., 2005).
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Figure 1.20:  Binding of fenofibrate to peroxisome proliferator-activated receptor-α (PPAR-α)

affects lipid metabolism and regulates the cholesterol dependent effects thereof. Apo:

apolipoprotein;  CE:  cholesteryl ester;  CETP:  cholesteryl ester transfer protein;  FFA:  free fatty

acids;  HDL-C:  high density lipoprotein cholesterol;  LDL:  low density lipoprotein;  LPL:  liprotein

lipase;  RXR:  retinoid X receptor;  TG:  triglycerides;  VLDL:  very-low-density lipoprotein  (adapted

from Steiner 2008).
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1.6.3.2 Fenofibrate:  Pleiotropic effects

Besides the primary purpose of fenofibrate treatment to improve lipid parameters, a plethora of

studies have appeared showcasing its numerous pleiotropic effects (Wiel et al., 2005; Lee et al.,

2009; Balakumar et al., 2011; Tomizawa et al., 2011; Walker et al., 2012).  The pleiotropic effects

mainly revolve around the improvement of endothelial function, antioxidant, anti-inflammatory

and anti-thrombotic effects (Tsimihodimos et al., 2005).

Fenofibrate can protect the endothelium against nicotine induced endothelial dysfunction (Kaur

et al., 2010; Chakkarwar 2011) by increasing the bio-availability of NO as seen by increased

nitrite/nitrate levels in blood and aortic tissue.  Fenofibrate also improved endothelial function

in obese Zucker rats (Zhao et al., 2006).  It protected vascular endothelial cells against apoptosis

by up-regulating AMPK (Tomizawa et al., 2011) and also prevented hyperglycaemia-induced

apoptosis (Zanetti et al., 2008).  Fenofibrate has shown anti-inflammatory effects by down-

regulation of NF-κB expression (Belfort et al., 2010) although long term treatment resulted in

increased pancreatic expression of NF-κB (Liu et al., 2011).  Systemically, fenofibrate can

decrease lymphocyte release of pro-inflammatory cytokines and inflammation (Krysiak et al.,

2013).  Fenofibrate also displays  anti-oxidant effects via reducing plasma-oxidised LDL or

increasing superoxide dismutase (Wang et al., 2010; Walker et al., 2012).  An anti-thrombotic and

anti-platelet role has also been attributed to fenofibrate (Lee et al., 2009).  The main mechanism

by which fenofibrate exerts its endothelio-protective effects is by activation of NOS. Fenofibrate

has previously been shown to increase NO production via an increase in the phosphorylation and

activation of eNOS at the Ser1177 residue (for details on the specific tissue and species, please

refer to table 1.2) (Murakami et al. 2006; Katayama et al. 2009; Tomizawa et al. 2011; Becker et

al. 2012).  Furthermore, Del Campo et al. (2011) showed that fenofibrate can increase neuronal

release of NO in mesenteric arteries from diabetic rats, by increased phosphorylation of nNOS.

With regards to iNOS, one study found that fenofibrate increased pancreatic iNOS expression in

monosodium glutamate-induced obese rats, which was associated with an increase in NF-ĸB

activity (Liu et al. 2011).  Another study on rat aortic tissue showed that fenofibrate induced

endothelial dysfunction (observed as a diminished vasodilatory response) in a time-dependent

fashion, but failed to show changes in iNOS expression (Blanco-Rivero et al. 2007).  Controversy
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remains with regards to the effects of fenofibrate on NOS mRNA, expression and

posttranslational regulation (Table 1.2).

Even though many of the clinical trials of fenofibrate failed to show improved primary outcomes,

an interesting finding was made in the The Fenofibrate Intervention and Event Lowering in

Diabetes (FIELD) trial with regards to fenofibrate’s effect on microvascular vessels.  Fenofibrate

treated patients with type 2 diabetes showed a reduction in the rate of laser treatment for

retinopathy (by 30%), reduced progression of albuminuria and non-traumatic amputations (by

38%).  The mechanisms by which these changes were achieved remain unknown, although the

authors speculated that it could have been due to a protective effect on the endothelium of small

blood vessels (Sacks 2008).
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Table 1.2:  Differences in results investigating eNOS related stimulation by fenofibrate.

Article Model Concentration and
Duration

Method for NO eNOS

Deplanque et al.,
2003

Male apolipoprotein
(Apo) E-deficient mice
(hypercholesterolemic),
C57BL/6 and SV129
wild-type mice and
PPARalpha -deficient
mice.

Fenofibrate intra
peritoneally 50
mg/kg/day or 250
mg/kg/day for 14 days.  1
and 6 hours after the
beginning of MCA
occlusion.

Increased sensitivity
to endothelial
relaxation.

No change in eNOS expression.
No change in iNOS expression

Goya et al., 2004 BAECs 1 – 100uM for 1-48h Did not measure
directly

rom 10uM –
100uM (peak at 50uM); no increase after 2,
5 min or 1 hour, only after 24-48 h. eNOS
expression was dose-dependently
increased (10-100uM) as well as eNOS
mRNA levels (5-100uM) and mRNA stability
by increasing eNOS mRNA half-life –
unknown mechanism.

Murakami et al.,
2006

HUVECs 20- 100uM for 2.5 min – 6
hours

DAF/2DA and
spectrophotometry

↑ in p-eNOS after 2.5min to 10 min.  No
change in eNOS expression.
↑ p-AMPK.
No effect on PKB/Akt phosphorylation
(Thr308)

Alvarez De
Sotomayor et al.,
2007

Small mesenteric
arteries – Wistar rats
(12-14 weeks and 113-
114 weeks old)

100mg/kg/day for 8
weeks

Did not measure NO
bioavailability.

No change in expression.

Blanco-Rivero et
al., 2007

Aortic rings – Wistar
rats (4 months old)

100mg/kg/day for 1 week
or 6 weeks.
L-NAME (100uM)

DAF/2-DA in medium
– measure with
excitation and
emission wave
lengths.

No change in expression.
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Katayama et al.,
2009

C57BL/6J mice (male, 8
weeks old; weighing 20–
25 g)
HUVECs

100mg/kg/day for 28
days
HUVECs – 10uM for 24h

↑Nitrate/nitrite
levels in blood;
Abolished when L-
NAME was added.

No change in expression, ↑ in
phosphorylation of eNOS in mouse aortic
tissue – did not mention a specific eNOS
site.

Balakumar et al.,
2009

Aortic rings - Wistar rats
200-250g

32mg/kg/day for 7 weeks
Diabetic group – 50 mg
streptozotocin once off.

↑Nitrate/nitrite in
blood serum and
aortic segments.
Fenofibrate did not
increase
nitrate/nitrite levels
in non-diabetic rats,
only in diabetic
animals.

Did not investigate.

Kaur et al., 2010 Aortic rings - Wistar rats
200-250g

Nicotine 2mg/kg/day for
4 weeks
Sodium arsenite
1,5mg/kg/day for 2 weeks
Fenofibrate 30mg/kg/day
for 4 weeks
Atorvastatin
30mg/kg/day for 4 weeks
L-NAME 25mg/kg/day for
4 weeks.  Started with the
day of nicotine
administration
Fenofibrate and statin
started 3 days before
administration of nicotine
and arsenite.

↑Nitrate/nitrite in
blood serum and
aortic segments.

Suggest NOS to be involved with the
endothelioprotective effects of fenofibrate
and reduction in oxidative stress.  Used the
non-specific NOS inhibitor L-NAME and
found the vasodilatory effect to be
abolished.

Tomizawa et al.,
2011

HGMECs, mouse SVEC4
and HepG2

100uM for 15, 30 and 60
min

Nitrite/Nitrate levels
in medium with
automated liquid
chromatography
system.

AMPK ↑
PKB ↑
Increase in eNOS activity assay after 30 min
treatment with fenofibrate (effect
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abolished when silencing AMPK / inhibiting
with compound C) .
p-eNOS ↑ (peak after 30min).

Liu et al., 2011 Male Wistar rats –
injected with MSG to
create an obese model.

100mg/kg/day for 12
weeks.

↑Nitrate/nitrite in
blood serum.
Increased levels of
NO associated with
increased oxidative
stress.

Found increased expression of iNOS and
NFkB.  Did not investigate eNOS.

Chakkarwar 2011 Aortic rings – Wistar
rats 200-250g

Fenofibrate 32mg/kg/day
for 4 weeks
Nicotine 2mg/kg/day
Fenofibrate treatment
started 3 days before
nicotine.

↑Nitrate/nitrite in
blood serum and
aortic segments.

↑ in mRNA eNOS expression.

Becker et al., 2012 Airway reactivity - Nine-
week-old male C57BL/6
mice.

1.5, 3, or 15 mg/day for 1,
3 or 10 days.
L-NAME administered i.p.
1 h before airway
reactivity measurement
at the dose of 0.75 mg.

Did not measure
directly – found
vasodilatory
response.

↑ p-eNOS Ser 1177 in lung tissue.

NO:  nitric oxide; eNOS:  endothelial nitric oxide synthase;  HUVECs:  human umbilical vein endothelial cells;  SVECs: saphenous vein
endothelial cells;  BAECs:  bovine aortic endothelial cells;  i.p.:  intra peritoneal; MCA:  middle cerebral artery occlusion;  mRNA:
messenger ribonucleic acid;  DAF-2/DA:  diaminofluorescein diacetate;  L-NAME:  L-NG-Nitroarginine Methyl Ester; ↑:  increase.
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1.7 Motivation and aims

1.7.1 Problem identification, rationale and motivation

The growing problem of cardiovascular disease and high incidence of ischaemic heart disease,

also in developing countries such as South Africa, are having detrimental effects on a

population regardless of variables such as age, race and gender.   Atherosclerosis is the main

underlying pathological cause of ischaemic heart disease, and the earliest predictor of

atherosclerosis is endothelial dysfunction.  Endothelial dysfunction is regarded by many as a

reversible process; hence, investigating the underlying mechanisms of therapies aimed at

slowing down or reversing endothelial dysfunction is extremely relevant.

Drugs targeting dyslipidaemia and hypercholesterolaemia are essential tools in the hands of

clinicians in the quest to reduce cardiovascular risk; however, it has become increasingly

evident that these drugs are multi-mechanistic.  Among the important first-line anti-

dyslipidaemic drugs are the statins.  They have indeed been shown to improve lipid

parameters (especially LDL-C), along with improved primary and secondary outcomes.  Statins,

particularly lipophilic statins such as simvastatin, exert many (lipid-independent) pleiotropic

effects, including (and of interest for the current study), the improvement of endothelial

function.

Among the newer generation anti-dyslipidaemic drugs are the fibrates, with fenofibrate as the

most common fibrate prescribed by clinicians.  Fenofibrate, like simvastatin, is a lipophilic

compound and shows beneficial effects on lipid parameters, especially via increasing HDL-C

levels; however, it is also known to exert pleiotropic effects.  Since statins (especially high dose

statins) are often associated with adverse effects such as muscle toxicity and ineffective in

correcting multiple lipid parameters in dyslipidaemic patients, the prescription of combination

therapy has become an increasingly popular trend.

Although statins have been used in clinical practice for many years and have been studied

quite extensively with regards to their underlying mechanisms, less is known on fenofibrate.

One of the main objectives of the current study is therefore to focus more on the

endothelioprotective effects and underlying mechanisms of fenofibrate.  This is particularly

important since fenofibrate seems to have a distinct effect on microvascular vessels most
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likely due to endothelium-dependent mechanisms.  Capillary-derived endothelial cells are

quite different from macrovascular endothelial cells (“endothelial heterogeneity”), and most

studies investigating the endothelioprotective effects of fenofibrate are performed on

endothelial cells harvested from large bloodvessels.

Therefore, the first part of the study is aimed at investigating the underlying lipid-

independent, pleiotropic mechanisms exerted by simvastatin and fenofibrate in in vitro

models of different types of cultured endothelial cells, with a special focus on microvascular

endothelial cells.  The study also aimed to compare the results obtained from the fenofibrate

experiments with those obtained from simvastatin-treated microvascular endothelial cells, as

well as to investigate the possible additive effects when combining the drugs.  The second part

of this study investigates the in vivo and ex vivo effects of the drugs on endothelial function.

This study did not investigate the cholesterol related effects of simvastatin and fenofibrate.

1.7.2 Research aims

1) Simvastatin: In vitro investigations

To measure concentration and time responses for simvastatin with regards to NO and ROS

production and investigate the effects thereof on cell viability of CMECs purchased

commercially.  As discussed in the introduction, increased bio-availability of NO and decreased

levels of ROS are some of the basic pleiotropic effects associated with statin treatment and

served as the ideal starting point for this study. We also aimed to investigate the underlying

signalling mechanisms involved with NO and ROS production.  Finally, the study also aimed to

investigate whether pre-treatment with simvastatin was able to protect endothelial cells from

a harmful insult (pro-inflammatory stimulation with TNF-α).

2) Fenofibrate: In vitro investigations

In this part of the study, we aimed to focus specifically on the in vitro lipid-independent

pleiotropic effects of fenofibrate in cultured CMECs, especially in light of the interesting

clinical findings of fenofibrate on microvasculature (FIELD trial). Firstly, we aimed to measure

concentration and time responses for fenofibrate via baseline measurements of nitric oxide,

ROS and cell viability.  In order to assess possible endothelial heterogeneity, selected
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experiments were repeated on cultured macrovascular endothelial cells (aortic endothelial

cells; AECs).  We also aimed to investigate the underlying signalling mechanisms involved with

fenofibrate’s pleiotropic effects, especially with regards to the involvement of NOS and

associated proteins.  As with simvastatin, we aimed to determine whether pre-treatment with

fenofibrate was able to protect endothelial cells from a pro-inflammatory insult (TNF-α

stimulation).

3) Simvastatin and fenofibrate: In vivo and ex vivo

In this part of the study, we aimed to investigate the effects of in vivo treatment with

simvastatin and fenofibrate on vascular responses by means of ex vivo aortic ring isometric

tension studies. Simvastatin and fenofibrate were administered orally to Wistar rats for 6

weeks after which mechanisms involved with vasodilation or vasoconstriction induced by

these therapies were investigated.  The involvement of NOS was determined by selective NOS

inhibitors and signalling pathways were investigated by Western blotting techniques.

4) Combine and compare:  In vitro, in vivo and ex vivo

The final objective was to compare the results from all three models (in vitro, ex vivo and in

vivo) and interpret the combined endothelio-pleiotropic effects of simvastatin and fenofibrate

on the vascular tissue.

Stellenbosch University  https://scholar.sun.ac.za



72 | P a g e

Chapter 2

Material and Methods:  In vitro studies
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Chapter 2:  Materials and Methods: In vitro studies

This chapter contains all of the methods employed for the in vitro cell culture experiments.

For in vitro investigations a cell culture model of cardiac microvascular endothelial cells

(CMECs) was used, with selected experiments repeated in aortic endothelial cells (AECs).  The

results of these studies will follow in Chapter 3.

2.1 Endothelial cell cultures

2.1.1 Materials

Endothelial cell growth medium (EGM-2) was purchased from Clonetics (Cambrex Bio Science,

Walkersville, USA). Attachment factor and trypsin (500 BAEE units trypsin / 180 µg EDTA•4Na

per ml in Dulbecco’s PBS) were from Life Technologies (Carlsbad, California, USA).  Foetal

bovine serum (FBS) was obtained from Highveld Biological (Lyndhurst, RSA). 1,1'-dioctadecyl-

3,3,3',3'-tetramethylindo-carbocyanine perchlorate (Dil-ac-LDL) was purchased from

Biomedical Technologies (Stoughton, MA, USA). Dimethyl sulfoxide (DMSO) was purchased

from Sigma-Aldrich (St Louis, Mo, USA).

2.1.2 Passaging of CMECs and AECs

Primary adult rat CMEC and AEC cultures were purchased from VEC Technologies (Rensselaer,

New York, USA).  Cells were received in culture in 75 cm3 flasks and grown in EGM-2 growth

medium in our laboratory until fully confluent in a standard tissue culture incubator (Forma

Series II, Thermo Electron Corporation, Waltham, MA, USA) at 37 oC in a 40 – 60% humidified,

5% CO2 atmosphere. Cultures were maintained in EGM-2 growth medium, supplemented with

10% FBS, and vascular endothelial growth factor - VEGF, human epidermal growth factor –

hEGF, human fibroblastic growth factor hFGF, long chain human insulin-like growth factor -

R3-IGF-1, ascorbic acid, hydrocortisone and antibiotics (gentamicin and amphotericin) in

accordance with manufacturer’s instructions.  Cells received fresh growth medium every

second day.  Once cultures reached confluency, the cells were washed with PBS and incubated

with pre-warmed (37oC) trypsin until cells detached from the bottom of gelatin-containing
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attachment factor-coated 35 mm petri dishes (after approximately 2-5 minutes).  Detached

cells were rapidly transferred into a 15 ml conical tube containing growth media and

centrifuged for 3 minutes at 1000 revolutions per minute (rpm).  The supernatant was

aspirated and pellet resuspended in growth medium.  Passaging to the next generation was

performed at a 1:2 ratio. Cell aliquots were suspended in a freezing medium (90 % FBS, 5 %

growth medium and 5 % DMSO) and stored in liquid nitrogen for future use. The passaging

and storage procedures of the cells are shown in figure 2.1.
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Figure 2.1:  Passaging and cell aliquot storage procedures (from Genis, PhD thesis, University of Stellenbosch, April 2014)
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Endothelial cell culture purity was regularly monitored by light microscopic validation of the

typical monolayer, cobblestone appearance exhibited by cultured endothelial cells (Nishida et

al., 1993; Piper et al., 1990) as well as confirmation by FACS analysis of >80% positive staining

with the endothelial cell-specific marker, acetylated low density lipoprotein labeled with Dil-ac-

LDL (figure 2.2) (Nishida et al., 1992; Piper et al., 1990).

Figure 2.2:  CMECs stained with Dil-ac-LDL to confirm endothelial cell purity. A representative

microphotograph (20x magnification) of confluent CMECs showing the bright-red staining of

endothelial cells that have taken up the fluorescently-labeled LDL (Olympus IX-81 inverted

fluorescent microscope).
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2.2 Simvastatin and Fenofibrate experimental protocols

A detailed description of the various treatment protocols will appear in the Results Chapter 3.

2.2.1 Simvastatin and Vehicle

50 mg of simvastatin (Merck, Damstadt, Germany) was dissolved in 1 ml ethanol.  813 μL of a 1N

NaOH solution was added and pH adjusted to 7.2 by addition of small quantities of 1N HCl.  The

total volumes of all reagents added to dissolve as well as neutralize simvastatin were calculated

and vehicle solutions prepared accordingly.  Simvastatin and vehicle solutions were divided into

aliquots and stored at -20oC for 1 month. These steps ensure convertion of simvastatin to its

active form.

2.2.2 Fenofibrate and Vehicle

Fenofibrate (Sigma, St Louis, Mo, USA) was dissolved in 0.2% DMSO.  Equal volumes of DMSO

were used for vehicle controls.

2.3 Flow cytometric analyses

Flow cytometric analyses formed a cornerstone of the in vitro experiments and were conducted

on a Becton-Dickinson FACSCalibur flow cytometer (Franklin Lakes, NJ).  Flow cytometric data

were analysed by means of the WinMDI ® version 2.9 software package (Purdue University

Cytometry Laboratories, West Lafayette, USA). For each experimental sample, a total of 5000 -

10 000 “events” (cells) were acquired and visualised on a so-called scatterplot (figure 2.3 A). The

cell population of a given sample was subsequently gated (figure 2.3 A) in order to exclude any

debris and non-cellular particles. From the gated populations, the mean fluorescent intensity

emitted by the fluorescent probe was determined and depicted on histogram graphs (figure 2.3
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B).  Post-acquisition analysis allowed the user to perform overlays of the histograms, which

enabled visualisation of shifts (if any) in the fluorescence intensity between control and treated

samples (figure 2.4).  All fluorescence data are expressed relative to control (control adjusted to

100%).

Figure 2.3:  A)  A representative scatterplot of a CMEC sample indicating the forward scatter (FSC-

H; X axis), which measures cell size, and side scatter (SSC-H; Y axis) which measures cell

granularity. The population of interest is gated and only events acquired within the gate will be

taken into account in the histogram.  B)  A representative histogram plot showing the flow channel

1 (FL1-H; X axis) which measures fluorescence intensity and number of events (Events; Y axis). In

this example, the mean fluorescence intensity is indicated by “Mn: 6.82”, and a total number of

9454 gated events (cells) were analysed.

A B

Mean fluorescence intensity

Total number of events
included in gated population
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Figure 2.4:  A representative histogram showing the overlay of three separate samples, namely:

(i) Absolute control (sample without fluorescent probe representing baseline auto-fluorescence of

the cells), (ii) Control (sample with fluorescent probe), and (iii) Experimental sample (with

fluorescent probe). In the above example, the shift in mean fluorescence intensity between

absolute control to control to experimental sample can be clearly observed.
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2.3.1 Materials

4,5-Diaminofluorescein diacetate (DAF-2/DA) was from Calbiochem (San Diego, CA, USA)

Dihydrorhodamine-123 (DHR-123), dimethoxy-1,4-naphthoquinone (DMNQ), and diethylamine

NONOate (DEA/NO) were purchased from Sigma-Aldrich (St Louis, Mo, USA).  Alexa Fluor 647

Annexin V, Propidium iodide (PI) solution, Annexin V binding buffer and cell staining buffer were

purchased from Bio-Legend (Biochom-Biotech) (San Diego, CA, USA).  Authentic peroxynitrite was

from Millipore (Bedford, MA, USA). Dihydroethidium (DHE) and MitoSOXTM Red were from Life

Technologies (Carlsbad, California, USA). All other chemicals and buffer reagents were purchased

from Merck (Damstadt, Germany).

2.3.2 Methods

All experiments were performed on cell cultures that were fully confluent. The reasoning behind

this is that confluent cells develop cell cycle arrest at the G0 phase due to cell-to-cell contact.  In

this way, possible cell cycle variability is minimized since mitotic activity has ceased (Viñals &

Pouysségur 1999).

2.3.2.1 NO measurements:  DAF

Once confluent, cells were washed twice with sterile PBS and treated with fenofibrate and / or

simvastatin. At completion of the drug treatment period, the drugs were washed out with PBS

before administering 10 μM DAF-2/DA (in PBS) at 37 °C for 2 hours. DAF-2/DA is a NO-specific

fluorescent probe which measures intracellular NO-production. Upon reacting with NO, DAF-

2/DA is oxidized and emits a green fluorescent colour which can be analysed in flow channel 1 of

the flow cytometer.  This protocol has previously been established in the  laboratory (Strijdom et

al., 2004; Strijdom et al., 2006).

After 2 hours, the DAF-2/DA-PBS supernatant was aspirated, cells washed with PBS, trypsinized

with pre-warmed trypsin and added to a conical tube containing cell staining buffer.  Since flow

cytometry is based on fluorescent colour emission, cell staining buffer is used instead of growth

media.  Cell staining buffer is colourless whereas growth media has a light pink colour.  Cell
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suspensions were centrifuged at 1000 rpm for 3 minutes after which the supernatant was

aspirated.  Pellets were resuspended in PBS in preparation for flow cytometric analysis.

All experimental groups included an absolute control (AC) sample without DAF-2/DA and

represented the auto-fluorescence of cells as well as DAF-2/DA containing control samples.

Positive control:  DEA/NO

DEA/NO, a NO donor, has previously been shown in the laboratory to be a consistent and reliable

positive control for intracellular NO measured by DAF-2/DA (Genis, PhD thesis, University of

Stellenbosch, April 2014). The protocol used for DEA/NO is outlined in figure 2.5.  In short, petri

dishes designated for DEA/NO were washed with sterile PBS and incubated with 10 μM DAF-2/DA

for 1 hour, before adding 100 μM DEA/NO for an additional 2 hours (figure 2.6).  After 3 hours

the positive control samples were washed, trypsinized and prepared for flow cytometric analysis

as previously described.
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Figure 2.5: A schematic representation of the protocol used for the positive NO control, DEA/NO.

Figure 2.6:  DEA/NO (100 μM; 2 hours) significantly increased mean DAF-2/DA fluorescence

intensity and was included as a positive NO control in the study.
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2.3.2.2 ROS measurements

Three types of ROS were measured by flow cytometry:  superoxide anion by means of the DHE

fluorescent probe (Nazarewicz et al., 2013) or mitochondrial superoxide by means of MitoSOXTM

Red (Hulsmans et al., 2012), and peroxynitrite and mitochondrial ROS by means of the DHR-123

fluorescent probe (Tiede et al., 2011) based on protocols previously established by Strijdom et

al. (2006).

The superoxide-specific fluorescent probe, DHE, exhibits a blue-fluorescent colour when in the

cytosol, however when it reacts with superoxide anions it becomes oxidized and translocates to

the nucleus, where it intercalates with cellular DNA and emits a bright fluorescent red colour

detected by flow channel 2 of the flow cytometer.  MitoSOXTM is a fluorogenic dye targeted to

the mitochondria and produces a red fluorescence when it becomes oxidized by superoxide.

DHR-123 is an uncharged and non-fluorescent indicator of ROS that passively diffuse across the

membrane, and is oxidized to form cationic rhodamine 123.  Rhodamine-123 eventually localizes

in the mitochondria and emits a green fluorescence detected by flow channel 3 of the flow

cytometer.  The protocol for DHE and DHR-123 are very similar to the one explained in section

2.2.1 for DAF-2/DA.  At completion of the experimental intervention, (fenofibrate and /or

simvastatin treatment) cells were washed with sterile PBS and DHE (5 μM) or DHR-123 (2 μM)

added to cells in culture for 2 hours at 37 oC (Navarro-Antoli et al., 2001).  MitoSOXTM, however

is only incubated for 10 min at 37oC prior to trypsinization.  The fluorescent probes were washed

out and further prepared as described in section 2.3.2.1.

Positive controls:  DMNQ and authentic peroxynitrite

The positive controls for DHE and DHR-123 were the ROS donor DMNQ (100 μM) and authentic

peroxynitrite (100 μM) respectively.  Petri dishes designated as positive controls were first

incubated with DHE and DHR-123 respectively for 1 hour, prior to adding DMNQ and

peroxynitrite for an additional 2 hours (figure 2.7 and 2.9).  Subsequently, cells were washed and

prepared for flow cytometric analysis (figure 2.8 and 2.10).
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Figure 2.7:  A schematic representation of the protocol used for the positive superoxide anion

control, DMNQ.
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Figure 2.8: DMNQ (100 μM; 2 hours) significantly increased mean DHE fluorescence intensity and

was included as positive control for DHE.
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Figure 2.9:  A schematic representation of the protocol used for the positive DHR-123 control,

authentic peroxynitrite.
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Figure 2.10:  Peroxynitrite (100 μM; 2 hours) significantly increased mean DHR-123 fluorescence

intensity and was included as positive control for DHR-123.
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2.3.2.3 Cell viability measurements

Cell viability was assessed in all experimental groups by measuring apoptosis and necrosis. Cells

were removed from culture by trypsinization followed by a washing procedure with cell staining

buffer and binding buffer and centrifugation (700 rpm for 2 minutes).  Cell suspensions were

incubated in Alexa Fluor® 647 Annexin V conjugate (5 μM; marker of apoptosis) and propidium

iodide (PI) (5 μM; marker of necrosis) for 15 minutes at 37 oC. During the process of apoptosis,

phosphatidylserine will translocate from the inner membrane of a cell to the outer membrane.

Annexin V will bind to phosphatidylserine on the outer membrane and thereby identify cells

undergoing apoptosis.  PI, on the other hand, will enter the nucleus of a cell when membrane

integrity is lost due to necrosis (Wilkins et al., 2002).

Annexin V was measured in flow channel 4 and PI in flow channel 2 (figure 2.11 A – D).  These

two parameters were measured simultaneously and discrimination between the apoptotic and

necrotic populations was achieved by creating quadrants of the gated populations (figure 2.12).

Positive control:  H2O

As positive control for necrosis, AECs were treated with distilled water (H2O) for 3 minutes.  As a

result of osmosis, H2O will diffuse across a semi-permeable membrane from an area with low

osmolarity (high H2O concentration) to an area of high osmolarity (low H2O concentration).

Therefore the net result of treating the endothelial cells with distilled H2O is the movement of

H2O molecules over the cell membrane and into the cell.  Cells swell and eventually burst.

Rupturing of the cell membrane due to necrosis allows the PI fluorescent probe to enter and stain

the nucleus by intercalating with the DNA (figure 2.13).
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Figure 2.11: A) A representative scatterplot in which the sub-populations of viable and necrotic

cells have been gated. PI fluorescence is measured on the x-axis (FL2-H). B)  A representative

histogram of the same sample in (A) which clearly shows the distinction between the viable sub-

population and the necrotic sub-population respectively. C) A representative scatterplot in which

the sub-populations of viable and apoptotic cells have been gated. Annexin V fluorescence is

measured on the Y-axis (FL4-H).  D)  A representative histogram of the same sample in (C) which

clearly shows the distinction between the viable sub-population and the apoptotic sub-population

respectively.
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Figure 2.12:  A density plot showing the simultaneous measurement of necrosis and apoptosis in

the same sample (PI fluorescence measured in the FL2-H channel on the Y-axis and Annexin-V

fluorescence measured in the FL4-H channel on the X-axis), showing the percentage of viable (Left

lower quadrant), early apoptotic (Right lower quadrant) and necrosis (Right upper quadrant).

Figure 2.13:  Distilled H2O significantly increased propidium iodide staining in AECs. * p<0.05 vs

Control.
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2.4 NO measurements with the Griess Reagent

As an alternative method for measuring NO synthesis the Griess reagent was utilised, which

measures the break-down products of NO, namely nitrates and nitrites (Griess 1879).  As

discussed in chapter 1, nitrates can be converted to nitrites and nitrites can be converted back

to NO under ischaemic/hypoxic conditions (Webb et al., 2004; Duranski et al., 2005).  This

method is more than a hundred years old and is based on a colour reaction when nitrite reacts

with the Griess reagent to form an azo dye, which can be measured spectrophotometrically or as

a colorimetric reaction using a platereader (Giustarini et al., 2008).

2.4.1 Materials

The Griess Reagent kit was purchased from Sigma-Aldrich (St Louis, Mo, USA).

2.4.2 Methods

For the purpose of these experiments, CMECs and AECs were cultured in 24 well microplates.

Once the cultured cells reached confluency, they were subjected to the various experimental

conditions.  At the end of the treatment periods, Griess reagent (Griess 1879) was added in a 1:1

volume:volume ratio to each well and incubated in the dark for 15 min at room temperature.

The colorimetric reaction was measured at 540 nm on a FLUOstar Omega platereader from BMG

Labtech (Ortenberg, Germany).  A standard curve was included on each multiwell plate using a

200 μM stock solution of NaNO2 and PBS.  Serial dilutions (0.4-10 µM) were prepared as seen in

figure 2.14.  Colorimetric results from experimental samples were converted to μM nitrites using

the corresponding standard curve on each multiwell plate (figure 2.16).
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Positive control:  DEA/NO DEA

The NO donor, DEA/NO, was included as positive control for increased nitrite concentration.

DEA/NO was administered at a concentration of 10 μM for 3 hours after which Griess reagent

was added to all sample-containing wells, incubated for 15 minutes (room temperature) and

colorimetric reactions measured on the plate reader (figure 2.15 – 2.17).

Figure 2.14:  An example of the standard curve created for each experiment. Readings for the

experimental samples were derived from the standard curve.

Figure 2.15: A schematic representation of the protocol used for the positive control DEA/NO in

Griess reaction experiments.
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Figure 2.16:  A 24 well plate used for Griess reaction experiments. A gradual increase in colour

intensity can be observed in row A and represents the increased NaNO2 standard concentrations

(0 μM; 0.4 μM; 2 μM; 4 μM; 7 μM and 10 μM).  Row C represents the colour reaction observed

after treating cells with 10 μM DEA/NO for 3 hours (NO positive control).

Figure 2.17:  DEA/NO (10 μM for 3 hours) serves as a positive control for increased levels of nitrites

observed with the Griess reaction.
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2.5 Quantitative real-time polymerase chain reaction (qPCR)

2.5.1 Materials

High Capacity cDNA synthesis Kit (Lot # 1309189; Part # 4368814), TaqMan® gene expression

assays and TaqMan® Universal Master Mix II (Lot # 1308032; Part # 4400040) were obtained from

Life Technologies (Carlsbad, California, USA).  RNeasy Mini Kit (Cat # 74104) and RNase-free

DNase set (Cat # 79254) were from Qiagen (Hilden, Germany).

2.5.2 Methods

2.5.2.1 RNA extraction and cDNA synthesis

Control and experimental group CMECs were analysed for iNOS messenger ribonucleic acid

(mRNA) accumulation by means of quantitative real-time PCR.  Three biological replicates of each

group were analysed.  To account for technical variation, each replicate was assayed in triplicate.

CMECs were lysed directly in the cell culture dish by adding Buffer RLT (Qiagen RNeasy Mini Kit

component, Hilden, Germany) and the lysate removed using a cell scraper.  The lysates were

frozen on dry ice and transported to the Centre for Proteomic and Genomic Research (Cape

Town, South Africa) for further analysis.  RNA was extracted using the RNeasy Mini Kit (Qiagen,

Hilden, Germany) in compliance with manufacturer’s instructions.  RNase-free DNase (Qiagen)

was used for deoxyribonucleic acid (DNA) elimination.  RNA was quantified using the NanoDrop

ND-1000 (ThermoScientific, Waltham, MA, USA) and samples normalised to 500 ng/10 µL for

cDNA synthesis.  cDNA was synthesised using the High Capacity cDNA Synthesis kit (Life

Technologies, Carlsbad, CA, USA) according to manufacturer’s instructions.  For each sample two

cDNA synthesis reactions were performed.  A master mix of reverse transcriptase buffer, dNTP

mix, MultiScribeTM reverse transcriptase, random primers and nuclease free water was added to

10 µL of RNA for a total volume of 20 µL. Cycling was performed on the DNA Engine Tetrad 2

Peltier thermal cycler (BioRad, Hercules, CA, USA) and the reaction was kept at 25 oC for 10 min,

after which the temperature was raised to 37 oC for 120 min and then 85 oC for 5 min.
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2.5.2.2 Gene expression analysis

Quantitative real-time PCR was performed on the ABI 7900HT Fast Real Time PCR (Life

Technologies, Carlsbad, CA, USA) using catalogued TaqMan® Gene Expression assays for each

target gene combined with TaqMan® Universal Master Mix II.  Each reaction consisted of 1 µL

cDNA template (with a final concentration of 10 ng RNA), 0.5 µL of the Gene Expression assay, 5

µL of TaqMan® Universal Master Mix II and nuclease-free water sufficient to have a final volume

of 10 µL.  Thermal cycling consisted of one cycle of 10 min at 95 oC followed by 40 cycles of a

denaturing step at 95 oC for 15 seconds and an annealing/extension step of 60 seconds at 60 oC.

In order to exclude gDNA and template contamination, a water control and one replicate IL-1β

treated sample was added as a no-reverse transcription control.  SDS v2.3 software (Life

Technologies) was used for raw data analysis and relative gene expression analysis was

performed using qBase+ (BioGazelle, Zwijnaarde, Belgium) (Vandesompele et al., 2002).  Outliers

were identified as a replicate varying by >0.65 Cycle threshold (Ct) value.  The amplification

efficiencies of iNOS as well as three reference genes, HPRT, GAPDH and the gene encoding heat

shock protein 90 (HSP90) were found to be within the range of 90%-110% (addendum).  The

stability of the three reference genes was assayed using GeNorm (in qBase+, BioGazelle) and

found to be satisfactory (addendum).  These reference genes were used to normalise gene

expression data.

2.6 Signalling investigations – Western blot analyses

Signalling cascades and molecules were investigated by means of Western blot analyses.  The

following materials and methods were used for these investigations:

2.6.1 Materials

The following Western blot antibodies were obtained from Cell Signaling Technologies (Beverly,

MA, USA):  eNOS, phospho-eNOS (Ser 1177); protein kinase B (PKB)/Akt, phospho PKB/Akt (Ser
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473); poly ADP ribose polymerase (PARP), AMP activated protein kinase (AMPK), phospho AMPK

(Thr 172); cleaved caspase-3; IĸBα, β-tubulin and glyceraldehyde 3-phosphate dehydrogenase

(GAPDH).  Antibodies for nitrotyrosine, p22PHOX, and iNOS were purchased from Santa Cruz

Biotechnologies (Santa Cruz, CA, USA) and nNOS and phospho nNOS (Ser 1417) antibodies were

purchased from Abcam (Biocom-Biotech).  Antibodies for phospho-eNOS Ser 632 and phospho-

eNOS Tyr 657 were purchased from ECM Biosciences. Enhanced chemiluminescence (ECL)

detection reagent, ECL hyperfilm, and Horseradish peroxidase-linked anti-rabbit IgG were from

AEC Amersham (Buckinghamshire, UK).  Polyvinylidene difluoride (PVDF) membrane

(Immobilon™-P), was from Millipore (Bedford, MA, USA).  All other chemicals and buffer reagents

were purchased from Merck (Darmstadt, Germany).

2.6.2 Methods

2.6.2.1 Cell lysates

The Western blotting procedure requires a high yield of protein. Initially, for a typical experiment,

CMECs were grown in 35 mm petri dishes and cultured to the 7th passage (final number of petri

dishes: 130) in order to accommodate a maximum of 4 experimental groups and a n-value of 3

or 4 per experimental group.  These petri dishes were then pooled to have 9 to 10 petri dishes

per lysate.  Since it was quite a challenge to treat and trypsinize 130 petri dishes, it was decided

to rather grow the cells in larger (100 mm) petri dishes and found one of them to yield a sufficient

protein concentration for one lysate.  These petri dishes were also easier to treat, especially short

term treatments such as 5 and 10 minutes.

CMECs were removed from culture by trypsinisation and added to a conical tube containing

growth media.  Tubes were centrifuged for 3 minutes @ 1000 rpm, and pellets transferred to an

eppendorff tube. CMECs were homogenized in a lysis buffer containing 20 mM Tris; 1mM EGTA;

150 mM NaCl; 1mM β-glycerophosphate; 1 mM sodium orthovanadate; 2.5 mM tetra-sodium

diphosphate; 1 mM phenylmethylsulfonyl fluoride (PMSF); 0.1 % sodium dodecylsulfate (SDS);

10 μg/ml aprotinin; 10 μg/ml leupeptin; 50 nM NaF and 1 % triton-X100.  Zirconium oxide beads

(0.15 mm) were added to the pellet and lysis buffer followed by homogenization with a Bullet
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Blender™ (Next Advance, Inc., NY, USA).  3 cycles of 1 min were performed on setting 5 of the

Bullet Blender.  In between cycles, samples were allowed to cool for 5 minutes.  Samples were

placed on ice for 30 minutes after which they were centrifuged for 15 minutes at 14 000 rpm at

4 oC.  Protein content of the supernatant was determined using the Bradford assay (Bradford,

1976). Based on the Bradford assay findings, a sample was prepared containing 2X Laemmli

buffer (4% SDS, 20% glycerol, 10 % 2-mercaptoethanol, 0.004 % bromophenol blue and 0.125 M

Tris HCl) (Laemmli, 1970), lysis buffer and lysate ,  to ensure a final protein content of 20 - 50

μg/15 μl of sample.

2.6.2.2 SDS-polyacrylamide gel and membrane

These lysates were loaded on a SDS-polyacrylamide gel and transferred to a PDVF-membrane

(Immobilon™-P, from Millipore).  Table 2.1 indicates the percentage gel used for each antibody.

Non-specific binding sites on membranes were blocked with 5 % fat-free milk in Tris-buffered

saline, 0.1 % tween-20 (TBS-Tween) (Merck).

After blocking the non-specific sites, membranes were washed with TBS-Tween and incubated

overnight at 4 oC with the specific primary antibody.  The following morning, primary antibodies

were washed off with TBS-Tween and membranes were incubated with a horseradish

peroxidase-linked anti-rabbit IgG secondary antibody and subsequently protein bands were

visualized with the ECL™ chemiluminescent system.  Films were laser scanned and

densitometrically analysed (UN-SCAN-IT, Silk Scientific, Orem, UT, USA).  Equal loading was

verified by blotting for the housekeeping proteins β-tubulin/GAPDH, and in some instances a

ponceau stain was used.  The specific primary and secondary antibody conditions of each

antibody are shown in table 2.1.

Membranes were stripped of primary and secondary antibody with 0.2M NaOH and re-probed

at a different molecular weight on the membrane than the initial antibody, therefore some

proteins shared β-tubulin/ponceau loading controls.  Since a soft strip with NaOH never removes

the old signal completely this can to some extent avoid overlapping signals and false results.
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2.7 Statistical Analysis

All flow cytometry data were calculated as mean ± standard error of the mean, with values

expressed as % of control (control adjusted to 100%). For Western blot data, controls were

adjusted to the value of 1.  Total protein expression was calculated as a ratio of the loading

control.  Annexin V and propidium iodide data are expressed as % change in apoptotic or necrotic

cells compared to control adjusted to 100%. Student’s t-tests or one-way analysis of variance

(with Bonferroni multiple comparison test) were used to determine statistical significance.

Differences with a p-value < 0.05 were considered statistically significant.  Data were analysed

using GraphPad Prism 5 software (GraphPad Software, San Diego, CA, USA).  Sample sizes are

indicated below each graph in Chapter 3.
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Table 2.1:  Specifications for each antibody after optimization for Western blotting.

% SDS-

polyacrylamide

gel

Antibody Primary Antibody

conditions

Secondary antibody

conditions

7.5% Total-eNOS

140 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in 5%

TBS-Tween milk

7.5% Phospho-eNOS

Ser 1177

140 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in 5%

TBS-Tween milk

7.5% Phospho-eNOS

Ser 632 (Mouse

mAb)

140 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween (Anti-mouse)

7.5% Phospho-eNOS

Thr 495

140 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween

7.5% Phospho-eNOS

Tyr 657

140 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween

7.5% iNOS

131 kDa

1:200 dilution in 2.5%

TBS-Tween milk

1:4000 dilution in 5%

TBS-Tween milk

7.5% Total-nNOS

160 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween

7.5% Phospho-nNOS

160 kDa

1:416 dilution in TBS-

Tween

1:4000 dilution in 2.5%

TBS-Tween milk

10% Total-AMPK

63 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween

10% Phospho-AMPK

63 kDa

1:500 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween
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10% Total-PKB/Akt

60 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in 1%

TBS-Tween milk

10% Phospho-

PKB/Akt

60 kDa

1:500 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween

7.5% / 10% HSP90

90 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in 5%

TBS-Tween milk

12% Cleaved

Caspase-3

17/19 kDa

1:500 dilution in TBS-

Tween

1:4000 dilution in 1%

TBS-Tween milk

10% Cleaved PARP

89 kDa

1:500 dilution in TBS-

Tween

1:4000 dilution in 2.5%

TBS-Tween milk

7.5% / 10% Nitrotyrosine

90 kDa

1:5000 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween

12% P22phox

22 kDa

1:333 dilution in TBS-

Tween

1:4000 dilution in 5%

TBS-Tween milk

10% IκBα

39 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween

7.5%/10%/12% β-tubulin

55 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween

10%/12% GAPDH

37 kDa

1:1000 dilution in TBS-

Tween

1:4000 dilution in TBS-

Tween
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Chapter 3

Results and discussions on the in vitro pleiotropic effects of

Simvastatin and Fenofibrate

Stellenbosch University  https://scholar.sun.ac.za



100 | P a g e

Chapter 3: Results and discussions on the in vitro pleiotropic effects

of Simvastatin and Fenofibrate

3.1 Introduction
Most of the pleiotropic effects of simvastatin and fenofibrate revolve around their anti-oxidant

anti-inflammatory, and anti-thrombotic properties, as well as an overall improvement in

endothelial function (Davignon et al., 2004; Tsimihodimos et al., 2005; Zhou & Liao 2010). In vivo,

simvastatin is taken up by the liver where it inhibits the rate limiting step in de novo cholesterol

synthesis and exerts the cholesterol-dependent effects explained in chapter 1 (Rikitake & Liao

2005). In vivo, fenofibrate acts as a synthetic ligand for the PPAR-α receptor, forms a heterodimer

with retinoid-X receptor resulting in translocation of PPAR-α from the cytosol to nucleus where

it transcribes genes involved with lipid metabolism (Berger & Moller 2002).  Sure enough,

improvement of lipid parameters in the blood has beneficial effects on the vascular endothelium,

however there is evidence for direct pleiotropic effects of both simvastatin and fenofibrate on

the endothelium, independent of in vivo cholesterol-dependent effects (Mulhaupt et al., 2003;

Yang et al., 2005; Massaro et al., 2010).

The in vitro pleiotropic effects of simvastatin and fenofibrate have been investigated in many

types of cell culture models, however with regards to endothelial cell models, it is evident that

mainly large vessel-derived cultured endothelial cells were used (see table 1.1 and 1.2).  Although

fenofibrate was associated with improved microvascular function in a human study (Sacks 2008),

few in vitro studies have investigated the effects of fenofibrate in cultured endothelial cells

harvested from microvascular beds (Tomizawa et al., 2011). Furthermore, to the best of our

knowledge, no studies have been performed on cardiac microvascular endothelial cells (CMECs).

NO production is one of the most important functions of the endothelium and increased

bioavailability of NO is associated with cardioprotection (Jones et al., 1999; Jones & Bolli 2006).

Conversely, reduced bioavailability of NO is considered one of the major hallmarks of endothelial

dysfunction (Bonetti 2003).  NO is synthesised in the body by the enzyme, nitric oxide synthase
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(NOS).  NOS exists in three different isoforms, namely neuronal NOS (nNOS), inducible NOS (iNOS)

and endothelial NOS (eNOS) and the concentration of NO synthesised is oftern isoform-

dependent.  An important NOS-independent source of NO is the conversion of nitrites and

nitrates (breakdown products of NO) to NO, which can happen under hypoxic/ischaemic

conditions (i.e. in the absence of co-substrate oxygen), thus contributing to protective

mechanisms against ischaemic injury (Webb et al., 2004; Duranski et al., 2005).

Both simvastatin and fenofibrate have been shown to have a pronounced in vitro effects on

activating endothelial eNOS, be it directly or indirectly (Sun et al., 2006; Arora et al., 2012;

Murakami et al., 2006; Katayama et al., 2009; Tomizawa et al., 2011).  The main upstream

activator for simvastatin-dependent eNOS activation is mostly identified as PKB/Akt although

AMP-activated protein kinase (AMPK) has also been shown to be a role player.  As for fenofibrate,

AMPK is an important target resulting in activation and phosphorylation of eNOS (Ser 1177).

AMPK is a nutrient-sensing serine/threonine kinase which becomes activated when the ratio of

intracellular AMP:ATP is high. Phosphorylation at threonine (Thr) 172 is required for AMPK

activation (Coughlan et al. 2014).

All of the in vitro studies performed with simvastatin and fenofibrate have focussed on the

phosphorylation of eNOS at the Ser 1177 residue.  Although it is considered as the most well

described site of eNOS phosphorylation, the post-translational regulation of eNOS is a complex

process and involves different types of positive and negative regulatory sites.  To the best of our

knowledge, no other studies have investigated the role of simvastatin and fenofibrate on multiple

eNOS phosphorylation sites.

Contradictory results have been found for statins and fenofibrate with regards to their effects on

cell viability.  Statins have been shown to induce apoptosis (Blanco-Colio et al., 2002; Demyanets

et al., 2006) or reduce apoptosis (Son et al., 2007).  Similarly, fenofibrate treatment has resulted

in decreased cell viability (Kubota et al., 2005), and increased cell viability in HGMECs due to

AMPK activation (Tomizawa et al., 2011).

The inherent anti-oxidant properties of statins are not a new finding (Davignon et al., 2004b).  It

was first demonstrated by Girona et al., (1999) who showed that in vitro simvastatin treatment
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(5-100 μM) delayed oxidation of low-density lipoprotein (LDL) molecules derived from non-

dislipidaemic patients.  They further showed that LDL and high density lipoproteins (HDL)

molecules derived from simvastatin-treated patients had lower levels of aldehyde, a product of

lipid peroxidation. Fenofibrate was also shown to exert anti-oxidant effects via reducing plasma-

oxidised LDL or increasing superoxide dismutase activity (Wang, et al., 2010a;  Walker et al.,

2012).  Additionally, both drugs have been shown to be involved with an anti-inflammatory role

in the vasculature (Yang et al., 2005; Ni et al., 2013).

The main mechanism by which the statins are thought to exert cholesterol and pleiotropic effects

is due to inhibition of the rate-limiting step in cholesterol synthesis, namely the conversion of 3-

Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate.  Down-stream from

mevalonate, isoprenoids such as farnesylpyrophosphate (FPP) and geranylgeranylpyrophosphate

(GGPP) are formed.  FFP and GGPP serve as lipid attachments for the post-translational

modification of various proteins, including G proteins and small GTP binding proteins such as Ras,

Rho, Rap and Rab GTPases.  Thus if formation of the isoprenoid intermediates is inhibited,

inhibition of small GTPase isoprenylation will follow (Ii & Losordo 2007; Rikitake & Liao 2005).

RhoA is regarded as a molecular switch for many biological processes such as contraction,

migration, adhesion, cell cycle progression and gene expression (Rikitake & Liao 2005).  The main

down-stream effector of RhoA is known as ROCK (Rho-kinase).  Rho/ROCK has become a

therapeutic target to prevent cardiovascular diseases.  This is due to its involvement in rapid and

dynamic reorganization of the actin cytoskeleton and effect on NO production.  Activation of

ROCK inhibits eNOS, thereby decreasing NO production (Nunes et al., 2010).  Similarly, one of the

main mechanisms involved with fenofibrate-associated pleiotropic effects is the activation of the

eNOS/NO pathway with all of the resulting down-stream signalling consequences.
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3.2 Specific aims
Chapter 3 aimed to address aim 1 and 2 as set out in section 1.7.2 and included the following

specific aims:

 First of all, we aimed to establish a concentration and time response curve for

simvastatin and fenofibrate using NO, ROS and cell viability measurements as end-

points.  Since simvastatin is such a well researched therapy, special focus was given to

fenofibrate investigations.

 To investigate, the underlying signalling mechanisms involved with changes in NO and

ROS after simvastatin and fenofibrate treatment, especially with regards to NOS.

 To investigate the possible protective role of fenofibrate against injury induced by a pro-

inflammatory cytokine such as TNF-α.

3.3 Simvastatin

3.3.1 Experimental protocol and methods:  NO, ROS and cell viability

 Simvastatin concentrations:  100 nM, 1 μM and 3 μM.

 Time points:  1 hour and 24 hours.

Simvastatin (Merck, Darmstadt, Germany) was administered to CMECs in order to establish a

concentration-time curve with NO, ROS and cell viability measurements as end-points.  The

rationale was to first explore the ability of 100nM, 1 μM and 3 μM simvastatin to increase NO

levels at 1 or 24 hours, followed by confirmation that NO production is due to simvastatin-related

effects by adding (RS)-Mevalonic acid lithium salt (Sigma-Aldrich, St Louis, Mo, USA) as co-

treatment with simvastatin.  Mevalonic acid, when co-administered with simvastatin, abolishes

the effects of simvastatin.  The pleiotropic effects of simvastatin are mainly derived from the

inhibition of isoprenoid formation.  These isoprenoids are down-stream of mevalonic acid in the

cholesterol synthesis process.  NO measurements were performed with the fluorescent probe

4,5-diaminofluorescein diacetate (DAF-2/DA), reactive oxygen species (ROS) by means of

dihydrorhodamine-123 (DHR-123) fluorescence and cell viability using PI fluorescence and
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Annexin V staining, as described in methods section 2.3.2.1 – 2.3.2.3.  The experimental outline

of each of these experiments is given in figure 3.1 (A-C).

Since the validation of the fluorescent probe selectivity by various positive controls (DEA/NO

for DAF-2/DA, peroxynitrite for DHR-123 and DMNQ for DHE), were shown in Chapter 2 it will

not be repeated in this chapter.
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Figure 3.1:  The experimental outline for NO, ROS and cell viability treatments with simvastatin.

A) CMECs were treated with 100nM, 1 μM and 3 μM simvastatin for 1 and 24 hours, followed by

a 2 hour incubation with DAF-2/DA, to investigate the effect on NO levels.  If NO was elevated,

mevalonic acid was added as co-treatment with simvastatin to confirm that increased NO levels

are indeed due to simvastatin and inhibition of isoprenoid formation.  B)  CMECs were treated
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with 100nM, 1 μM and 3 μM simvastatin for 24 hours, followed by a 2 hour incubation with DHR-

123, to investigate the effect on ROS generation.  C)  Cell viability was measured using PI (necrosis)

and Annexin V (apoptosis) staining after 24 hour incubation with simvastatin.  Simva:

simvastatin;  NO:  nitric oxide; DAF-2/DA:  4,5-Diaminofluorescein diacetate;  DHR-123:

Dihydrorhodamine-123;  PI:  propidium iodide;  Ann V:  Annexin V.

3.3.2 Results:  The effect of simvastatin treatment on NO, ROS and cell viability.

3.3.2.1 NO measured with DAF-2/DA fluorescence

Initially, two treatment periods were included for NO investigations, namely 1 hour and 24 hours.

1 hour simvastatin treatment did not increase NO levels at any of the given concentrations.  100

nM simvastatin showed significantly lower DAF-2/DA fluorescence than its vehicle (Vehicle:

111.3% ± 3.6%;  Simva:  94.4% ± 1.3%;  p<0.05) (figure 3.2 A).  However, 1 μM simvastatin did

increase DAF-2/DA fluorescence significantly after 24 hour treatment (Vehicle:  95.9 ± 2.89%;  1

μM:  120.4% ± 6.9%;  p<0.05) (figure 3.2 B).  When mevalonic acid was administered in

combination with 1 μM simvastatin treatment, DAF-2/DA fluorescence was reduced, however

these values failed to reach significance (1 μM simvastatin:  120.4% ± 6.9%;  1 μM simvastatin +

mevalonic acid:  93.7% ± 5.8%) (figure 3.2 C).

3.3.2.2 ROS measured with DHR-123 fluorescence

Considering the fact that 1 hour simvastatin treatment was not sufficient to elicit robust effects

on NO production and changes were only observed after 24 hour simvastatin treatment, ROS and

all other investigations were only performed on 24 hours incubations.  Simvastatin 100 nM

significantly increased DHR-123 fluorescence compared to its vehicle control (100 nM vehicle:

97.0% ± 7.1%;  100 nM simvastatin:  121.4% ± 6.9%;  p<0.05 vs vehicle) (figure 3.3).  No other

changes were observed with regards to DHR-123 fluorescence (figure 3.3).
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3.3.2.3 Cell viability measured by PI fluorescence and Annexin V staining

100 nM simvastatin had profound effects on cell viability, resulting in a significant increase in

Annexin V fluorescence (Vehicle 100 nM:  83.5% ± 1.3%;  Simvastatin 100 nM:  141.7% ± 2.3%;

p<0.05) (figure 3.4 A) and PI fluorescence (Vehicle 100 nM:  102.6% ± 9.0%;  Simvastatin 100 nM:

156.5% ± 6.9%;  p<0.05) (figure 3.4 B).  1μM simvastatin similarly resulted in increased levels of

Annexin V fluorescence (Vehicle 1μM:  62.1% ± 1.3%;  Simvastatin 1μM:  110.5% ± 6.4%;  p<0.05)

(figure 3.4 A) and PI fluorescence (Vehicle 1 μM:  67.0% ± 4.4%;  Simvastatin 1 μM:  124.3 ± 9.2%;

p<0.05) (figure 3.4 B).
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Figure 3.2:  The effect of simvastatin treatment on NO as seen by DAF-2/DA fluorescence (1 and

24 hours). A)  1 hour simvastatin treatment did not significantly alter NO levels.  B)  1 μM

simvastatin significantly increased NO levels after 24 hours.  C)  Administration of 200 μM

mevalonic acid together with 1 μM simvastatin did not significantly alter NO levels.  * p<0.05 vs

Control;  # p<0.05 vs Simvastatin 100 nM;  $ p<0.05 vs Simvastatin 1 μM (n = 6 – 9).  Simva:

Simvastatin;  Meva:  Mevalonic acid.
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Figure 3.3:  The effect of 24 hour simvastatin treatment on ROS production. 100nM simvastatin

increased DHR-123 fluorescence significantly (n = 6 – 8).  *p<0.05 vs Control;  # p<0.05 vs

Simvastatin 100 nM.  Simva:  Simvastatin
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Figure 3.4:  The effect of 24 hour simvastatin treatment on cell viability. A) .% change in apoptosis

indicated by Annexin V fluorescence (n = 4).  B) % change in necrosis indicated by PI (propidium

iodide) fluorescence (n = 4).  *p<0.05 vs Control;  # p<0.05 vs Simvastatin 100 nM;  @ p<0.05 vs

Simvastatin 1 μM; $ p<0.05 vs Vehicle 1 μM.  Veh:  vehicle;  Simva:  simvastatin.

Contro
ls

Veh
 10

0n
M M

Veh
 1

M

Veh
 3

Sim
va

 10
0n

M

Sim
va

 1µ
M M

Sim
va

 3

0

50

100

150

200
*

$
#

#

#
$

Pr
op

id
iu

m
 Io

di
de

%
 c

ha
ng

e 
fr

om
 c

on
tr

ol
s

A

B

Contro
ls

Veh
 10

0n
M M

Veh
 1

M

Veh
 3

Sim
va

 10
0n

M

Sim
va

 1µ
M M

Sim
va

 3

0

50

100

150

200

*

#@ @
* #

#

#
#

@
$

$
An

ne
xi

n 
V

%
 c

ha
ng

e 
fr

om
 c

on
tr

ol
s

Stellenbosch University  https://scholar.sun.ac.za



111 | P a g e

3.3.3 Experimental protocol and methods:  Signalling investigations

Treating CMECs with simvastatin resulted in increased NO levels at a concentration of 1 μM.

Western blot analyses were therefore performed on CMECs treated with 1 μM simvastatin and

its vehicle control, for 24 hours (figure 3.5).  Western blot analyses were performed as described

in section 2.6 of Chapter 2.  Experimental conditions for the antibodies used in the Western blot

measurements are shown in table 2.1.

Figure 3.5:  An illustration of the experimental protocol followed for simvastatin signalling

investigations.
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3.3.4 Results:  Signalling investigations

It should be noted that all the total-protein expression blots were calculated and expressed as

a ratio of the corresponding loading controls.

3.3.4.1 NOS

Even though a significant increase in NO (DAF-2/DA) was seen after 24 hour simvastatin (1 μM)

treatment, the eNOS activation sites namely, Serine (Ser) 1177 and Ser 632 were not

phosphorylated.  No changes were found in total-eNOS (t-eNOS) (figure 3.6 B), phosphorylated

eNOS (p-eNOS) Ser 1177 (figure 3.6 C) or p-eNOS Ser 632 (figure 3.6 E).  Consequently the results

showed no changes in the phosphorylated/total (P/T) ratio of eNOS Ser 1177 (figure 3.6 D) and

Ser 632 (figure 3.6 F).

Simvastatin did however result in increased phosphorylation of the negative regulatory site,

eNOS Threonine (Thr) 495 (Vehicle:  1;  Simvastatin:  1.35 ± 0.06;  p<0.05) (figure 3.7 C).

Furthermore, decreased phosphorylation of eNOS Tyrosine (Tyr) 657 was found (Vehicle:  1;

Simvastatin:  0.75 ± 0.02;  p<0.05) (figure 3.7 E) which resulted in a decreased ratio in P/T eNOS

Tyr 657 (Vehicle:  1;  Simvastatin:  0.74 ± 0.05;  p<0.05) (figure 3.7 F).
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Figure 3.6:  Bar charts indicating changes in eNOS expression and phosphorylation (Ser 1177 and

632) of CMECs treated with simvastatin (1 μM) and vehicle control for 24 hours. A) Western blots

showing total-eNOS, phospho-eNOS Ser 1177 and Ser 632 as well as β-tubulin expression.  B)

Analysed results for total-eNOS.  C)  Analysed results for phospho-eNOS (Ser 1177).  D)

Phosphorylated over total (P/T) ratio of eNOS (Ser 1177).  E)  Analysed results for phospho-eNOS

(Ser 632).  F)  Phosphorylated over total (P/T) ratio of eNOS (Ser 632) n=3.
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Figure 3.7:  Bar charts indicating changes in eNOS expression and phosphorylation (Thr 495 and

Tyr 657) of CMECs treated with simvastatin (1 μM) and vehicle control for 24 hours. A) Western

blots showing total-eNOS, phospho-eNOS Thr 495 and Tyr 657 as well as β-tubulin expression.  B)

Analysed results for total-eNOS.  C)  Analysed results for phospho-eNOS (Thr 495).  D)

Phosphorylated over total (P/T) ratio of eNOS (Thr 495).  E)  Analysed results for phospho-eNOS

(Tyr 657).  F)  Phosphorylated over total (P/T) ratio of eNOS (Tyr 657).  * p<0.05 vs Vehicle, n=3.
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3.3.4.2 Protein kinase B (PKB / Akt) and HSP 90

The upstream activator of eNOS, PKB/Akt, showed no changes in total protein expression (figure

3.8 B), however simvastatin treatment did result in decreased phosphorylation of Ser 473

(Vehicle: 1; Simvastatin:  0.75 ± 0.05;  p<0.05) (figure 3.8 C).  No changes in P/T PKB/Akt were

seen (figure 3.8 D).  The chaperone HSP 90, involved with recruitment of PKB/Akt to activate

eNOS, showed significantly lower total protein expression (Vehicle: 1;  Simvastatin:  0.92 ± 0.01;

p<0.05) (figure 3.8 E).

3.3.4.3 AMPK

Another upstream activator of eNOS, AMPK showed significantly lower levels in expression

(Vehicle:  1;  Simvastatin:  0.83 ± 0.02;  p<0.05) (figure 3.9 B), however simvastatin increased

phosphorylation of AMPK (Thr 172) (Vehicle:  1;  Simvastatin:  1.36 ± 0.04;  p<0.05) (figure 3.9 C).

Consequently the ratio of P/T AMPK was significantly increased compared to vehicle control

(Vehicle:  1;  Simvastatin:  1.65 ± 0.09;  p<0.05) (figure 3.9 D).

3.3.4.4 Nitrotyrosine and IκBα

Nitrotyrosine is generated when peroxynitrite reacts with a tyrosine or tyrosine containing

proteins and serves as a marker for nitrosative stress (Halliwell 1997).  Simvastatin did not alter

nitrotyrosine levels (figure 3.10 C).  With regards to IκBα expression, simvastatin significantly

increased total expression (Vehicle:  1;  Simvastatin:  1.20 ± 0.02;  p<0.05) (figure 3.10 D).
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Figure 3.8:  Bar charts indicating changes in PKB/Akt and HSP 90 in CMECs treated with

simvastatin (1 μM) and vehicle control for 24 hours. A) Western blots showing total-PKB/Akt,

phospho-PKB/Akt (Ser 473) and heat shock protein 90 (HSP 90) as well as their respective β-

tubulin loading controls.  B)  Analysed results for total-PKB/Akt.  C)  Analysed results for phospho-

PKB/Akt (Ser 473).  D) Phosphorylated over total (P/T) ratio of PKB/Akt (Ser 473).  E) Analysed

results for total-HSP 90 expression. * p<0.05 vs Vehicle, n=3.
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Figure 3.9:  Bar charts indicating changes in AMPK expression and phosphorylation (Thr 172) in

CMECs treated with simvastatin (1 μM) and vehicle control for 24 hours. A) Western blots

showing total-AMPK, phospho-AMPK (Thr 172) and β-tubulin expression.  B)  Analysed results for

total-AMPK.  C)  Analysed results for phospho-AMPK (Thr 172).  D)  Phosphorylated over total

(P/T) ratio of AMPK (Thr 172).  * p<0.05 vs Vehicle, n=3.
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Figure 3.10:  Bar charts indicating changes in nitrotyrosine and IκBα of CMECs treated with

simvastatin (1 μM) and vehicle control for 24 hours. A) Western blots showing nitrotyrosine and

IκBα as well as their respective β-tubulin loading controls.  B)  Analysed results for nitrotyrosine.

C)  Analysed results for IκBα expression.  * p<0.05 vs Vehicle, n=3.
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3.3.5 Discussion:  Simvastatin

3.3.5.1 NOS/NO pathway

Intracellular NO measurements

CMECs were treated with 3 different concentrations of simvastatin, namely 100 nM, 1μM and 3

μM as well as vehicle controls, for either 1 or 24 hours.  Increased levels of NO were only seen

after 24 hour treatment with simvastatin at a concentration of 1 μM (figure 3.2 B).  No changes

were observed in 1 hour treated investigations (figure 3.2 A).  It was therefore decided to conduct

all further experiments at this concentration and time period.  Barrett et al. (2006) investigated

the concentration of simvastatin in plasma levels of patients treated with 80 mg/day and found

the simvastatin levels to range between 0.10 – 16.00 ng/ml.  Ahmed (PhD thesis, University of

Kentucky, 2013) investigated simvastatin as anti-cancer drug and found a 7.5 mg/kg/day (25 fold

higher than concentration used for dislipidaemia) resulted in a plasma concentration range of

0.08 – 2.2 μM.  Even though the in vitro concentration of 1 μM simvastatin used in the study falls

well within the range used in other in vitro endothelial based studies (Zhu et al., 2008; Chen et

al., 2010), it relates clinically to higher doses of simvastatin.

The main mechanism by which the statins exert cholesterol and pleiotropic effects is due to

inhibition of the rate-limiting step in cholesterol synthesis, namely the conversion of HMG-CoA

to mevalonate and consequently inhibition of isoprenoid formation.  Therefore, in order to

confirm that the NO-increasing effect was in fact due to simvastatin’s inhibitory effect on

isoprenoids and subsequent RhoA inhibition, mevalonic acid was added as co-treatment with

simvastatin to CMECs in order to reverse the statin induced effect.  Figure 3.2 C shows that

addition of mevalonic acid to simvastatin reduced NO back to control levels, however no

statistical significance was shown between simvastatin and simvastatin+mevalonic acid groups,

it can therefore not be confirmed that simvastatin resulted in isoprenoid inhibition. Simvastatin

is a pro-drug which is converted to its active open acid form, in vivo via the liver (Schulz 2005).

However, in cell culture investigations, simvastatin manufactured for research purposes is
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converted to its open acid form by different steps, pre-determined by the supplier.  Some

suppliers prescribe a two hour incubation at 50oC followed by a pH step to activate simvastatin.

Simvastatin used for in vitro investigations of the current study were prepared according to

manufacturer’s instruction, however these did not include a two hour incubation at 50oC. It is

possible that simvastatin was not properly converted to its active form prior to use on cells, which

could explain the lack of proper mevalonate inhibition.

Phospho eNOS (Ser 1177 and Ser 637) and PKB/Akt

Considering the relatively small increase in NO levels found in the present study (≈ 20% increase

with simvastatin 1 µM for 24 hours), we expected increased phosphorylation and activation of

eNOS, as eNOS is usually associated with modest NO production.  However, eNOS was not

activated at either of the positive regulatory sites namely Ser 1177 (figure 3.6 C and D) or Ser 632

(figure 3.6 E and F).  To the best of our knowledge no previous studies investigated eNOS

phosphorylation at Ser 632 in the context of simvastatin treatment.  Together with the lack of

eNOS phosphorylation at Ser 1177, one of the most well described Ser 1177 activators, namely

PKB/Akt, showed significantly reduced phosphorylation (Ser 473) after 24 hours (figure 3.8 C),

which suggests that the PKB/Akt – eNOS (Ser 1177) pathway was unlikely to be involved.

Furthermore, HSP 90 was found to be down regulated with simvastatin treatment (figure 3.8 E).

HSP 90 acts a chaperone to PKB/Akt, maintaining its activity and promoting phosphorylation of

eNOS via PKB/Akt (Sato et al., 2000). This finding is in contrast to other studies who showed

increased PKB/Akt phosphorylation in human umbilical vein endothelial cells (HUVECs) (Kureishi

et al., 2000) and bovine aortic endothelial cells (BAECs) (Skaletz-Rorowski et al., 2003).

It has to be noted that phosphorylation of eNOS is a dynamic process and agonist induced

stimulation by bradykinin has previously been shown to increase phosphorylation of Ser 1177

after only 30 seconds (Fleming et al., 2001).  The same study showed that phosphorylation of Ser

1177 started decreasing after 5 min of bradykinin treatment.  Similarly, phosphorylation of Thr

495 increased after 5 min of bradykinin treatment.  These findings illustrate the complex,

interactive and time-dependent relationship between the various eNOS phosphorylation sites.

In the current study, there was no increase in NO production after 1 hour of simvastatin
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treatment. Chen et al. (2010) showed that simvastatin increased NO in HUVECs at a similar

concentration after 2 hour treatment, which was associated with increased eNOS expression and

P/T eNOS ratio (no specific eNOS phosphorylation site was mentioned).  These changes were

associated with increased phosphorylation of PKB/Akt, however, the HUVECs in this study were

pre-incubated with hydrogen peroxide for 30 min prior to simvastatin administration.  The anti-

oxidant and ROS systems in these cells were therefore stimulated and could explain the

differences in results compared to ours.

Phospho eNOS (Thr 495) and AMPK

Although AMPK has previously been shown to induce eNOS phosphorylation and activation at

Ser 1177, it can also phosphorylate Thr 495 in vitro (Chen et al., 1999).  Other studies have also

found statins to increase AMPK phosphorylation which was associated with increased

phosphorylation of eNOS Ser 1177.  These include in vivo investigations in mouse aortic and

myocardial tissue and in vitro in HUVECs, BAECs and human capillary derived endothelial cells

(Sun et al., 2006) as well as in human iliac artery endothelial cells (Xenos et al., 2005).  In the

current study, simvastatin (1 µM for 24 hours), significantly increased AMPK phosphorylation

(figure 3.9 C) and the P/T AMPK ratio (figure 3.9 D); however, this was not associated with

increased phosphorylation of eNOS Ser 1177. At the same time, simvastatin significantly

increased phosphorylation of the inhibitory eNOS site, Thr 495 (figure 3.7 C).  It could therefore

be speculated that under the in vitro conditions of the current study, AMPK phosphorylation

resulted in eNOS Thr 495 phosphorylation (Chen et al., 1999), rather than Ser 1177

phosphorylation.

Phospho eNOS (Tyr 657)

eNOS tyrosine phosphorylation is not a topic included in many studies and considerably less

information is available.  The current study included the measurement of eNOS Tyr 657

phosphorylation in order to expand and broaden our understanding of the complex interaction

between eNOS phosphorylation sites and their contribution to simvastatin related changes in

NO. Fleming & Busse (2003) and Fisslthaler et al. (2000) contributed the lack of information on

this residue to the fact that investigators have been struggling to show tyrosine phosphorylation
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of eNOS in any cells other than primary cell cultures or low passages of endothelial cells (Garcia-

Cardena et al., 1996; Fleming et al., 1998). Despite a relative lack of data, phosphorylation of the

enzyme at this site has been shown to decrease NO production (Loot et al., 2009; Fisslthaler et

al., 2008).  In the current study, baseline phosphorylation of eNOS Tyr 657 could be

demonstrated, and simvastatin treatment resulted in a significant decrease in phosphorylation

of eNOS Tyr 657 as well as an overall decrease in P/T eNOS Tyr 657 ratio (figure 3.7 E and F),

thereby suggesting a potential mechanism for the modest increase in NO production.

Summary: role of various eNOS phosphorylation sites

In order to explain the source of increased NO production observed with simvastatin treatment

at 1 µM for 24 hours, it could be speculated that simvastatin induced an increase in phospho-

eNOS (Ser 1177) at an earlier stage than our measurements, resulting in sustained elevated levels

of NO at the time of the experimental analyses. Another mechanism could possibly be due to

decreased levels of Tyr 657 phosphorylation, which may result in a reduction in enzyme inhibition

and thus explain the moderate increase in NO production observed. Pinzón-Daza et al. (2012)

showed in human brain microvascular endothelial cells that simvastatin increased NO

production, although only a slight increase in phospho-eNOS Ser 1177 was observed, which could

not explain the full extent of the elevated NO levels.  The authors ascribed the increase in NO to

increased iNOS expression. iNOS expression was not measured in the simvastatin experiments of

the current study. However, since only a modest increase in NO was observed, it is unlikely to be

due to iNOS.  iNOS is traditionally associated with large increases in NO, even up to a 1000 fold

more than eNOS-derived NO production (Singh & Evans 1997).  Our laboratory has never found

nNOS to be a significant contributor to NO in the specific CMEC culture model, and it is therefore

not likely to be the source.

3.3.5.2 ROS and cell viability

Simvastatin has previously been shown to exert anti-oxidant effects. Parihar et al. (2012) found

that simvastatin decreased rat liver-derived mitochondrial ROS at a concentration of 1 μM.

Heeba et al. (2007) showed that simvastatin (10 μM) significantly decreased peroxynitrite

production in normal and dysfunctional HUVECs.  In the current study simvastatin showed
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unexpected effects on ROS production.  100 nM simvastatin significantly increased DHR-123

fluorescence compared to vehicle control, whereas 1 and 3 μM showed no changes in

peroxynitrite/mitochondrial ROS (figure 3.3) or nitrotyrosine (figure 3.10 B).  Together with the

increase in ROS seen with 100 nM of simvastatin, an increase in apoptosis (figure 3.4 A) and

necrosis (figure 3.4 B) was found.  ROS has the ability to induce endothelial apoptosis and DNA

damage (Wolin 2000) therefore the reduction in cell viability can be ascribed to increased ROS

formation.

The effect of 1 µM simvastatin on ROS and cell viability is more complicated.  No changes were

found in DHR 123-sensitive ROS (peroxynitrite and mitochondrial ROS) (figure 3.3), however

increased levels of apoptosis and necrosis (figure 3.4 A and B) occurred.  In line with our findings,

simvastatin has previously been shown to induce apoptosis in vascular smooth muscle cells and

cardiomyocytes (Blanco-Colio et al., 2002; Demyanets et al., 2006).  Interestingly, the very

mechanism responsible for statin-induced pleiotropic effects is also thought to be responsible

for pro-apoptotic actions.  A reduction in the isoprenoid intermediates due to statin treatment,

results in reduced prenylation of various proteins, which prevent these proteins from

translocating from the cytoplasm and inserting into the cell membrane where they function as

signal transducers (Katsiki et al., 2010).  An example is the small GTPase protein, RhoA, which can

downregulate expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) via simvastatin-

induced inhibition of its prenylation in vascular smooth muscle cells (Blanco-Colio et al., 2002).

It can therefore be speculated that the latter could be a mechanism responsible for simvastatin

induced apoptosis and necrosis found in the current study.

3.3.5.3 Inflammation:  NF-κB signalling

Simvastatin treatment of CMECs resulted in a small but significant increase in IκBα expression

(figure 3.10 C).  Normally, a decrease in IκBα expression implies that IκBα phosphorylation was

increased resulting in IκBα dissociating from NF-κB and consequently undergoing degradation by

proteasomal pathways leading to reduced levels.  Dissociation of IκBα from NF-κB allows NF-κB

to become activated and translocate to the nucleus where it serves as a transcription factor of

several pro-inflammatory proteins. In the current study, simvastatin treatment resulted in
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increased IκBα expression, which implies that NF-κB was prevented from being activated (i.e.

prevention of NF-κB-associated pro-inflammatory effects). Similar results were found by Ni et al.,

(2013) who induced plasminogen activator inhibitor-1 with high glucose concentrations in cardiac

microvascular endothelial cells (CMECs), resulting in IκBα degradation.  Simvastatin was able to

completely block IκBα degradation.

3.3.6 Summary of the in vitro effects of simvastatin

In our hands, simvastatin treatment exerted modest pleiotropic effects in healthy CMECs, which

included increased NO production and anti- NF-κB inflammatory signalling, accompanied by an

increase in cell viability parameters. In view of the fact that the addition of mevalonic acid did

not succeed in a significant reversal of simvastatin’s effects on NO production, it is possible that

the lack of robust pleiotropic effects could be ascribed to a failure of our protocol to effectively

inhibit the conversion of 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) to mevalonate.

Furthermore, it has to be borne in mind that the in vitro effects of statins are dependent on the

specific member of the statin family, the micro-environment surrounding the cells/tissue of

interest, and concentration of the drug.  Findings are summarized in figure 3.11.

Stellenbosch University  https://scholar.sun.ac.za



125 | P a g e

Figure 3.11:  A cartoon depicting in vitro findings and proposed pathways of simvastatin (1 μM;

24 hours) related changes. Normally statins inhibit the conversion of HMG-CoA to mevalonate

which results in inhibition of the Rho/ROCK pathway, increasing eNOS activity and NO production.

The current study could only show partial inhibition of the conversion to mevalonate (as shown

with the mevalonic acid co-treatment experiments), and therefore RhoA/ROCK inhibition may

have been lost, or ineffective. The result of such a scenario would be isoprenoid formation and

possible inhibition of Bcl-2 resulting in increased apoptosis and necrosis.  Additionally, the

inhibition of PKB/Akt and a loss of eNOS (Ser 1177) phosphorylation preventing large increases in

NO.  Despite the down-regulation of PKB/Akt and HSP 90, and a lack of eNOS activation via Ser

1177 phosphorylation a modest increase in NO was shown.  AMPK can also increase NO via

phosphorylation of eNOS (Ser 1177), and although increased AMPK phosphorylation was found,
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eNOS Ser1177 remained unchanged.  Increased phosphorylation of eNOS Thr 495 could be due to

AMPK phosphorylation, however Thr 495 phosphorylation is associated with enzyme inhibition.

Both eNOS Thr 495 and Tyr 657 are inhibitory sites of eNOS.  Therefore, decreased eNOS (Tyr 657)

phosphorylation could have resulted in the modest increase in NO.  For this to be possible, the

effect of reduced Tyr 657 phosphorylation had to be greater than increased phosphorylation of

the other inhibitory site, eNOS Thr 495.
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3.4 Fenofibrate

3.4.1 Experimental protocol and methods:  NO, ROS and cell viability - Concentration

and time response

Various investigations were performed to establish the optimal concentration of fenofibrate to

use in in vitro experiments.  CMECs were treated with 10 μM, 30 μM and 50 μM fenofibrate for

1, 4 and 24 hours.  These concentration and time periods were derived from similar, previously

published in vitro studies as summarised in table 1.2 (Chapter 1).  Intracellular NO levels were

assessed by the flow cytometric measurement of mean DAF-2/DA fluorescence intensity (figure

3.12 A).  Two types of ROS were measured, namely superoxide with DHE-fluorescence and

peroxynitrite/mitochondrial ROS with DHR-123 fluorescence (figure 3.12 B and C).  Apoptosis and

necrosis measurements were performed with Annexin V and PI fluorescence respectively (figure

3.12 D).  All methods were performed as described under section 2.3.2.1 – 2.3.2.3.
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Figure 3.12:  The experimental outline for NO, ROS and cell viability investigations with 10 μM, 30

μM and 50 μM fenofibrate. A) CMECs were treated with fenofibrate for 1, 4 and 24 hours,

followed by a 2 hour incubation with DAF-2/DA, to investigate the effect on intracellular NO.  B)

CMECs were treated with fenofibrate for 1, 4 and 24 hours, followed by a 2 hour incubation with

DHE, to investigate the effect on superoxide production.  C)  CMECs were treated with fenofibrate

for 1, 4 and 24 hours, followed by a 2 hour incubation with DHR-123, to investigate the effect on

ROS generation.  D)  Cell viability was measured using PI (necrosis) and Annexin V (apoptosis)

staining after 1, 4 and 24 hour fenofibrate treatment. DAF-2/DA:  4,5-Diaminofluorescein

diacetate;  DHE: Dihydroethidium; DHR-123:  Dihydrorhodamine-123 (DHR-123);  PI:  propidium

iodide;  Ann V:  Annexin V.
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3.4.2 Results:  The effect of fenofibrate on NO, ROS and cell viability – Concentration

and time response

3.4.2.1 NO measurements

The findings showed that fenofibrate increased DAF-2/DA fluorescence levels significantly with

concentrations of 30 μM and 50 μM after 1 hour (Control: 100%;  30 μM:  164.1% ± 2.7%;  50 μM:

208.3% ± 19.6%, p<0.05) (figure 3.13 A) and 4 hour treatments (Control: 100%;  30 μM:  161.4%

± 7.9%;  50 μM:  222.4% ± 24.25%, p<0.05) (figure 3.13 B).  10 μM fenofibrate did not significantly

alter DAF-2/DA fluorescence at any of the time points.  After 24 hours the NO-increasing effects

were less robust, and only 50 μM fenofibrate resulted in a significant elevation (Control:  100%;

24 hours [50 μM]:  135.3% ± 12.1%, p<0.05) (figure 3.13 C).  No significant vehicle (DMSO) effects

were observed at any of the concentrations or time points.  Since 10 μM fenofibrate exerted no

changes in NO production, this concentration was excluded from further investigations.

3.4.2.2 ROS measurements

Fenofibrate exerted variable effects on superoxide production as measured by DHE fluorescence.

No changes were seen in DHE fluorescence after 1 or 4 hour treatment with 30 μM and 50 μM

fenofibrate or the respective vehicle controls (figure 3.14 A and B).  However, at 24 hours, 30 μM

fenofibrate induced a statistically significant, albeit modest, increase in DHE fluorescence

intensity (Control:  100%;  30 μM:  107.4% ± 2.6%;  p<0.05 vs Control) (figure 3.14 C).  As

mentioned in the introduction, NO and superoxide can combine resulting in the formation of

peroxynitrite (Ferdinandy & Schulz 2003).  DHR-123 is a fluorescent probe that has previously

been shown to be sensitive for both peroxynitrite and mitochondrial related ROS (Ischiropoulos

et al. 1999; Navarro-Antolín et al. 2001; Chan & Miskimins 2012).  In contrast to the DHE

fluorescence findings, fenofibrate had robust effects on DHR-123 fluorescence at 1 and 4 hours.

30 μM and 50 μM fenofibrate significantly reduced DHR-123 fluorescence after 1 hour (Control:

100%; 30 μM:  71.1% ± 3.7%; 50 μM:  65.7% ± 3.6%;  p<0.05 vs Control) (figure 3.15 A) and 4

hours (Control:  100%; 30 μM:  75.8% ± 5.4%; 50 μM:  63.5% ± 3.5%;  p<0.05 vs Control) (figure

3.15 B).  After 24 hours no changes were found in DHR-123 fluorescence (figure 3.15 C).  Once

again, no vehicle effects were observed for any of the concentrations, time periods or ROS

probes.
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Figure 3.13:  Concentration and time response data of fenofibrate effects on NO generation. A)

1 Hour treatment with fenofibrate showed an increase in DAF-2/DA fluorescence with 30 μM and

50 μM (n = 5-9).  B)  4 Hour treatment with fenofibrate also showed an increase in DAF-2/DA

fluorescence with 30 μM and 50 μM (n = 5-11).  C)  After 24 hours only 50 μM fenofibrate

significantly increased DAF-2/DA fluorescence (n = 6-15).  *p<0.05 vs Control;  # p<0.05 vs

Fenofibrate 50 μM.  Feno:  fenofibrate.
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Figure 3.14:  Concentration and time response data of fenofibrate effects on superoxide

generation. A)  1 Hour treatment with fenofibrate showed no changes in DHE fluorescence (n =

10 - 14).  B)  4 Hour treatment with fenofibrate showed no changes in DHE fluorescence (n = 6 -

8).  C)  After 24 hours 30 μM fenofibrate significantly increased DHE fluorescence (n = 6 - 8).  *

p<0.05 vs Control, $ p<0.05 vs Vehicle 30 μM, # p<0.05 vs Fenofibrate 50 μM.  Veh:  Vehicle;  Feno:

fenofibrate.
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Figure 3.15:  Concentration and time response data of fenofibrate effects on mitochondrial

ROS/peroxynitrite generation. A)  1 Hour treatment with fenofibrate showed reduced levels of

DHR-123 fluorescence (n = 6 - 7).  B)  4 Hour treatment with fenofibrate showed reduced levels of

DHR-123 fluorescence (n = 4 - 8).  C)  After 24 hours no effect was seen on DHR-123 fluorescence

(n = 6 - 8).  * p<0.05 vs Control, $ p<0.05 vs Vehicle 30 μM, # p<0.05 vs Vehicle 50 μM.  Veh:

Vehicle;  Feno:  fenofibrate.
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3.4.2.3 Cell viability investigations

As can be clearly seen in Figure 3.16 (A and B), neither fenofibrate nor its vehicle controls altered

cell viability parameters at 1 hour.  The lack of effects on Annexin V persisted at 4 hours

treatment; however, 4 hour treatment with 50 μM fenofibrate significantly decreased necrosis

as measured by propidium iodide fluorescence (Control:  100%;  50 μM:  62.5% ± 10.6%, p<0.05

vs Control) (figure 3.17 B).  However, no difference was seen between fenofibrate 50 μM and its

vehicle control suggesting a possible vehicle effect.  24 hour treatment with 50 μM fenofibrate

significantly reduced Annexin V fluorescence levels compared to controls as well as vehicle

controls (Control:  100%;  Vehicle 50 μM:  93.1% ± 4.9%;  Fenofibrate 50 μM:  61.6% ± 2.4%*$;

*p<0.05 vs control, $p<0.05 vs vehicle 50 μM) (figure 3.18 A).  Even though 50 μM fenofibrate

reduced Annexin V fluorescence after 24 hours, no changes were observed in the propidium

iodide fluorescence measurements (figure 3.18 B).
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Figure 3.16:  CMECs treated with fenofibrate for 1 hour to investigate cell viability changes. A)

Neither vehicle controls nor fenofibrate treated samples changed Annexin V fluorescence after 1

hour (n = 5-10).  B)  Neither vehicle controls nor fenofibrate treated samples changed Propidium

iodide fluorescence after 1 hour (n = 5-10).  Veh:  vehicle;  Feno: fenofibrate.

Stellenbosch University  https://scholar.sun.ac.za



135 | P a g e

Figure 3.17:  CMECs treated with fenofibrate for 4 hours to investigate cell viability changes. A)

Neither vehicle controls nor fenofibrate treated samples changed Annexin V fluorescence after 4

hours (n = 6 - 12).  B)  50 μM fenofibrate significantly decreased propidium iodide fluorescence

after 4 hours (n = 6 - 12).  *p<0.05 vs Control;  Veh:  vehicle;  Feno:  fenofibrate.
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Figure 3.18:  CMECs treated with fenofibrate for 24 hours to investigate changes in cell viability.

A) Annexin V fluorescence was significantly reduced after 24 hour treatment with 50 μM

fenofibrate (n = 11 - 17).  B)  Neither vehicle controls nor fenofibrate treated samples changed

Annexin V fluorescence after 24 hour (n = 11 - 17).  *p<0.05 vs Control, #p<0.05 vs Vehicle 30 μM,

$p<0.05 vs Fenofibrate 30 μM;  Veh:  vehicle;  Feno:  fenofibrate.
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3.4.3 Summary:  Fenofibrate concentration and time response studies

Considering the combined results of concentration and time response studies, 50 μM fenofibrate

was chosen as the concentration for all further investigations. The majority of further

investigations were performed on 1 hour treatments, however selected experiments were

performed with 24 hour treatments.

Due to the fact that simvastatin did not result in robust pleiotropic effects, such as seen with

fenofibrate, at this stage it was decided to only continue in vitro investigations with

fenofibrate. A further motivation for this decision, was the fact that there are significantly

fewer publications in the literature available regarding in vitro fenofibrate studies compared

to simvastatin.

3.4.4 Experimental protocol:  NOS inhibition investigations

From concentration and time response studies it was evident that fenofibrate had a pronounced

effect on NO synthesis, especially at the shorter treatment period of 1 hour.  Previous studies

have found that increased fenofibrate-induced NO synthesis was mainly due to the activation of

eNOS.  In the current study, the aim was to perform an in-depth exploration of the NOS-derived

sources contributing to the observed increases in NO production, especially in view of the

relatively large (>2.1 fold) increase in NO production at 1 and 4 hour treatment. The large

increases in NO-production necessitated the employment of strategies to differentiate, among

others, between the eNOS and iNOS isoforms, as iNOS is known to be responsible for the

synthesis of large amounts of NO (Strijdom et al., 2009a). It was therefore decided to employ

two NOS inhibitors, each with different NOS isoform selectivity properties.  The following two

NOS inhibitors were used: (i) the non-selective inhibitor NG-Monomethyl-L-arginine monoacetate

(L-NMMA) (Calbiochem, San Diego, CA, USA) (Moore & Handy 1997), and (ii) 1400W dichloride

(Sigma-Aldrich, St Louis, Mo, USA) known to be an iNOS-specific inhibitor (Garvey et al., 1997).

L-NMMA competitively binds to the L-arginine binding site of NOS, thus preventing substrate (L-
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arginine) binding leading to reduced NO synthesis (Boer et al., 2000).  1400W has previously been

shown to be a 1000-fold more selective for iNOS than eNOS in rat tissue (Garvey et al. 1997).

1400W can act as competitive inhibitor of iNOS via binding of the amidine (in 1400W) to the

guanidine binding site of L-arginine on the NOS enzyme (Garvey et al., 1997). Furthermore, Zhu

et al., (2005) showed 1400W to be an irreversible inhibitor of iNOS.  The same authors showed

that 1400W prevented protonation of the haem peroxide intermediate and thus interfering with

the oxygenation of L-arginine.  Haem is converted to biliverdin and in the absence of haem the

normal activation and dimerization of NOS cannot occur, thus resulting in irreversible inactivation

of iNOS.

3.4.5 Validating the efficacy of L-NMMA and 1400W

As positive control for DAF-2/DA fluorescence we employed the use of the NO donor, DEA/NO

(chapter 2, figure 2.5). However, NO donors do not stimulate NO release via NOS.  They

decompose spontaneously in solution and donate nitrate groups that release NO (Miller &

Megson 2007).  Therefore, in order to confirm the efficacy of NOS inhibitors, other suitable

positive controls had to be employed.  The humoral factor bradykinin has been shown to increase

NO synthesis via activation and phosphorylation of eNOS (Harris et al., 2001) and served as a

suitable positive control for NOS derived NO.  CMECs were pre-treated with 100 μM L-NMMA for

10 minutes before administration of 10 μM Bradykinin for 30 minutes (figure 3.19).  NO was

measured by flow cytometric analysis of DAF-2/DA fluorescence, and results indicated that

bradykinin resulted in a modest, but significant increase in NO levels, while pretreatment with L-

NMMA abolished the increase. Noteworthy was the fact that L-NMMA also significantly

decreased baseline levels of NO compared to untreated control (Control: 100%; L-NMMA:  86 ±

0.4 %*; BK: 109 ± 1.3 %*#;  L-NMMA + BK:  97 ± 0.3 %#;  * p<0.05 vs control; # p<0.05 vs L-NMMA)

(figure 3.20).

In order to control for the proposed iNOS-selectivity of the 1400W NOS inhibitor, a pro-

inflammatory cytokine, interleukin-1β, was administered to stimulate iNOS.  This strategy was

based on the fact that several previous studies showed that iNOS is particularly responsive to

cytokine treatment (Wu & Wilson 2009; Lowry et al. 2013).  CMECs were pre-treated with 80 μM
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1400W for 2 hours prior to administration of 5 ng/ml interleukin-1β for 24 hours (figure 3.21).

Interleukin-1β showed potent NO-stimulating properties and increased NO levels significantly

compared to controls.  This increase was abolished by 1400W pre-treatment (Control:  100%;  IL-

1β:  165 ± 4.9 %*;  1400W + IL-1β:  65 ± 2.3 %#; * p<0.05 vs control; # p<0.05 vs IL-1β) (figure

3.22).
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Figure 3.19:  Protocol employed to confirm the efficacy of L-NMMA to inhibit NOS derived NO.

CMECs were pre-treated with 100 μM L-NMMA for 15 minutes prior to addition of bradykinin (10

μM) for a further 30 minutes.  NO was determined by DAF-2/DA fluorescence.

Figure 3.20:  Bar chart showing the effects of L-NMMA on bradykinin induced NO production. As

confirmation to the efficacy of L-NMMA to inhibit eNOS derived NO, we found 10 µM bradykinin

(BK) to significantly increase NO levels after 1 hour.  This increase was effectively inhibited by L-

NMMA, showing its effectiveness to inhibit eNOS derived NO. * p<0.05 vs control;  # p<0.05 vs L-

NMMA;  $ p<0.05 vs L-NMMA + BK (n = 3).  BK:  bradykinin;  L-NMMA: NG-Monomethyl-L-arginine

monoacetate.
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Figure 3.21:  Protocol employed to confirm the efficacy of 1400W to inhibit iNOS derived NO

CMECs were pre-treated with 80 μM 1400W for 2 hours prior to addition of interleukin-1β for a

further 24 hours. NO was determined by DAF-2/DA fluorescence.

Figure 3.22:  Bar chart to show the efficacy of interleukin-1β (5ng/ml) to induce iNOS derived NO.

This increase was abolished by 1400W (80 μM) pre-treatment, thereby demonstrating its efficacy

to inhibit iNOS derived NO (n = 3-4). * p<0.05 vs control; # p<0.05 vs 1400W; @ p<0.05 vs 1400W

+ IL-1β.  IL-1β:  Interleukin-1β
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3.4.6 Experimental protocol and methods:  L-NMMA and Fenofibrate

We have established that fenofibrate has a pronounced effect on NO production and that shorter

treatment periods resulted in larger increases.  In order to establish whether these effects were

NOS derived, CMECs were pre-treated with L-NMMA according to the protocol described in the

previous section (section 3.4.5).  Fenofibrate (50 μM) was administered for either 1 or 24 hours

and NO measured using DAF-2/DA fluorescence or the Griess method (figure 3.23).

Figure 3.23:  An illustration of the experimental protocol followed, using the non-selective NOS

inhibitor L-NMMA and fenofibrate (50 μM) treatment for 1 hour.

10 min0 min

DAF-2/DA
(10 μM; 2h)

L-NMMA (100 μM) Fenofibrate (50 μM)

70 min

OR

Griess Method
(1:1 volume

ratio; 15 min)
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3.4.7 Results:  L-NMMA and Fenofibrate

Although L-NMMA decreased baseline NO by ≈25% compared to untreated control groups, this

difference did not reach statistical significance.  Unexpectedly, the increase in fenofibrate-

derived NO levels was not altered by L-NMMA pretreatment (Fenofibrate:  164.2% ± 12.3%;  L-

NMMA + Fenofibrate:  175.2% ± 13.2; p>0.05) (figure 3.24 A).  In order to validate the DAF-2/DA

findings of the L-NMMA studies, the experiments were repeated with the Griess method, a

different NO measurement assay. Furthermore, in order to establish whether the L-NMMA

findings were CMEC-specific, we repeated the Griess investigations on aortic endothelial cells

(AECs). Similar results were observed with the Griess method in both CMECs and AECs. Data are

expressed as µM nitrites; CMECs: Control:  0.8 μM ± 0.2;  L-NMMA:  0.9 μM ± 0.2;  Fenofibrate:

1.8 μM ± 0.1*#;  L-NMMA + Fenofibrate:  2 μM ± 0.2*#, * p<0.05 vs control;  # p<0.05 vs L-NMMA),

and AECs: Control:  2.7 μM ± 0.3;  L-NMMA:  3.0 μM ± 0.3;  Fenofibrate:  5.9 μM ± 0.6*#;  L-

NMMA + Fenofibrate:  6.1 μM ± 0.4*#, * p<0.05 vs control;  # p<0.05 vs L-NMMA (figure 3.24 B

and C).
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Figure 3.24:  Bar charts showing the effects of 15 minutes L-NMMA (100 µM) pretreatment on

NO production. A)  Flow cytometric analysis of DAF-2/DA in CMECs showing non-significant

decrease in control CMECs pretreated with L-NMMA. Fenofibrate increased DAF-2/DA

fluorescence; however, L-NMMA pretreatment failed to reduce the fenofibrate-induced increase

(n = 13-15).  B and C) Repeating these experiments in CMECs and AECs with the Griess method

mirrored DAF-2/DA flow cytometry data (CMECs: n = 3-4; AECs: n = 4-8).  * p<0.05 vs control;  #

p<0.05 vs L-NMMA.  L-NMMA:  NG-Monomethyl-L-arginine monoacetate;  BK:  Bradykinin;  Feno:

Fenofibrate;  CMEC:  Cardiac microvascular endothelial cells;  AEC:  Aortic endothelial cells.
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3.4.8 Experimental protocol:  1400W and Fenofibrate

Since inhibition with the non-selective NOS inhibitor, L-NMMA did not result in reduced levels of

NO, we employed the iNOS-selective inhibitor, 1400W in the next set of experiments in order to

establish whether the increased NO production was via iNOS induction. CMECs and AECs and

were pre-treated with 1400W prior to 1 hour treatment with fenofibrate, as shown in figure 3.25.

Description of the optimised protocol is described in section 3.4.5 was used.  NO was measured

by flow cytometric analysis of DAF-2/DA fluorescence and the Griess method.

Figure 3.25:  An illustration of the experimental protocol for the iNOS-selective inhibitor, 1400W

and fenofibrate (50 μM) experiments (1 hour).

3.4.9 Results:  1400W and Fenofibrate

Similar to previous findings, fenofibrate (50 μM) increased DAF-2/DA fluorescence in CMECs as

well as the concentration nitrites in CMECs and AECs after 1 hour treatment (figure 3.26 A-C).

1400W pretreatment failed to reduce fenofibrate-derived NO in any of the experiments. Figure

3.26 A shows the DAF/2-DA fluorescence data in CMECs:  Control:  100%;  Fenofibrate:  149.5%

± 6.5%*;  1400W+Fenofibrate:  134.4% ± 12.9%*;  p<0.05 vs Control.  Figure 3.26 B shows the

concentration nitrites in CMECs: Control:  2.0 μM ± 0.2;  Fenofibrate:  2.8 μM ± 0.1*;

1400W+Fenofibrate:  3.3 μM ± 0.2*;  p<0.05 vs Control.  Figure 3.26 C shows the concentration

nitrites in AECs: Control:  1.9 μM ± 0.1;  Fenofibrate:  3.1 μM ± 0.2*;  1400W+Fenofibrate:  4.3

μM ± 0.4*;  p<0.05 vs Control.
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Figure 3.26:  Bar charts showing the effects of 2 hours 1400W (80 µM) pretreatment on NO

production. A)  Flow cytometric analysis of DAF-2/DA in CMECs showing fenofibrate (50 µM)

significantly increased NO after 1 hour treatment, however, L-NMMA pretreatment failed to

reduce the fenofibrate-induced increase (n = 8-12). B and C) Repeating these experiments in

CMECs and AECs with the Griess method mirrored DAF-2/DA flow cytometry data (CMECs: n = 3-

4; AECs: n = 4-8).  * p<0.05 vs control;  # p<0.05 vs L-NMMA. * p<0.05 vs control; @ p<0.05 vs

1400W; $ p<0.05 vs vehicle (1400W+fenofibrate);  ^ p<0.05 vs Fenofibrate.  Feno:  Fenofibrate;

Vehicle: Vehicle for feno + 1400W combination.
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3.4.10 Experimental protocol:  iNOS protein and gene expression investigations.

In view of the modest, albeit statistically non-significant reduction in DAF-2/DA fluorescence

observed in fenofibrate-treated CMECs pretreated with 1400W (figure 3.26 A), we further

explored the possible involvement of iNOS on protein and mRNA level. Buchwalow et al. (2001)

has shown iNOS protein expression in endothelial cells and therefore we set out to determine

whether iNOS expression could be detected in the CMECs used in the current study and if so,

whether fenofibrate treatment affected iNOS expression. CMECs were treated with 50 μM

fenofibrate for 1 hour after which cells were lysed and prepared for western blot analyses or

quantitative Real-Time Polymerase Chain Reaction (qPCR) (figure 3.27) as described in section

2.5 of chapter 2.  The pro-inflammatory cytokine interleukin-1β (5 ng/ml for 24 hours) was

included in the series of experiments to serve as a positive control for iNOS protein and gene

induction.

Figure 3.27:  Experimental protocols for the iNOS protein and gene expression studies. Interleukin

1-ß (24 hour incubation) was included as positive control, and in separate experiments, CMECs

were treated with 50 μM fenofibrate for 1 hour to investigate iNOS expression by western blots

and quantitative Real-Time Polymerase Chain Reaction (qPCR).
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3.4.11 Results:  iNOS protein and gene expression investigations

Although interleukin-1β was successful in the significant induction of iNOS protein expression,

the western blot results showed that 1 hour fenofibrate treatment failed to induce detectable

expression of iNOS protein (figure 3.28 A).  In order to confirm that the failure to detect iNOS

protein expression by western blot measurements was also reflected on iNOS mRNA level,

samples were subjected to quantitative real-time gene expression analyses. The results showed

that there was no iNOS mRNA expression under control/baseline conditions. The positive control,

interleukin-1β (5ng/ml), was successful in inducing iNOS mRNA expression, which was

significantly attenuated by a margin of ~50% via the knockdown by two iNOS siRNA constructs.

Similar to the iNOS protein expression data, there was no detectable iNOS gene expression after

1 hour fenofibrate treatment.
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Figure 3.28:  CMECs treated with interleukin-1β (5ng/ml for 24 hours) and fenofibrate (50 μM for

1 hour) to investigate iNOS protein and gene expression levels. A)  Western blot indicating that

although interleukin-1β successfully induced iNOS protein expression in CMECs, iNOS expression

was not detected under either control conditions or in response to fenofibrate treatment.  Β-

tubulin shows equal loading of protein (n=3).  B) Interleukin-1β increased iNOS gene expression

significantly, confirmed by knock down of iNOS mRNA at construct 5 and 7.  No iNOS mRNA was

detected in UC (untreated control), NSC (non-silencing control), KD5 (iNOS siRNA, construct 5), KD

7 (iNOS siRNA, construct 7) and fenofibrate treated samples (n=3 biological replicates, assayed in

triplicate).  * p<0.05 vs IL-1β.
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3.4.12 Experimental protocols: Western blot analyses of signalling proteins

Thus far it has been established that fenofibrate exhibits pleiotropic, cholesterol-independent

actions on endothelial cells, including increasing NO production after 1, 4 and 24 hour treatment,

decreasing DHR-123 related ROS production as well as some anti-apoptotic and anti-necrotic

properties.  L-NMMA and 1400W however failed to significantly inhibit NO increases. Despite the

fact that 1400W pretreatment resulted in a 15% reduction in NO production in fenofibrate-

treated CMECs, iNOS protein and mRNA expression could not be detected. In order to investigate

signalling pathways involved with these pleiotropic effects in more detail, western blot analyses

were performed as described in section 2.6.

Western blot analyses were performed on CMECs treated with fenofibrate for 1 and 24 hours, as

well as shorter durations namely, 5 min, 15 min and 30 minute according to figure 3.29.  Initially

CMECs were treated with 50 μM fenofibrate for 1 and 24 hours.  After these initial experiments,

shorter time periods were tested, namely, 5 min, 15 min and 30 min.  Information on the proteins

of interest as well as the antibodies are shown in table 2.1.  For the purpose of verifying the

correct position of proteins on the blots, 3 positive controls were included in the initial set of

experiments:  Interleukin-1β (5 ng/ml for 24 hours), AICAR (2 mM for 2 hours) and Okadiac acid

(500 μM or 45 min).

Please note that all the total-protein expression blots were calculated and expressed as a ratio

of the loading control.
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Figure 3.29:  A graphic illustration of the experimental protocols followed for western blot

investigations. The block marked with number 1 shows the 1 hour and 24 hour treatment

protocols, whereas block 2 indicates protocols using shorter treatment periods (5, 15 and 30

minutes).

3.4.13 Results:  1 and 24 hour fenofibrate western blot analyses

3.4.13.1 NOS

Fenofibrate treatment had no effect on total eNOS expression after 1 and 24 hours (figure 3.30

B).  Surprisingly, 1 hour fenofibrate significantly reduced phosphorylation of eNOS at Ser 1177

(1h Control:  1;  1h Fenofibrate:  0.56 ± 0.12, p<0.05) (figure 3.30 C) and a reduction in the P/T

ratio of eNOS Ser 1177 was also found (1h Control:  1;  1h Fenofibrate:  0.64 ± 0.15, p<0.05) (figure

3.30 D).  No differences were detected between the 24 hour fenofibrate treatment groups and

their time-matched untreated controls with regards to phosphorylation of eNOS Ser 1177 (figure

3.30 C).  Another interesting finding was the significant reduction in the phosphorylation of eNOS

Ser 1177 observed in the untreated control samples at 24 hours compared to 1 hour incubation

period (1h Control:  1;  24h Control:  0.17 ± 0.01, p<0.05) (figure 3.30 C).  Okadaic acid (loaded in

lane 3; figure 3.30 A), a phosphatase inhibitor, showed to be a functional positive control for all
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phosphorylated proteins.  AICAR (loaded in lane 2; figure 3.30 A) phosphorylates AMPK, an

upstream activator of eNOS, and served as an alternative positive control for phosphorylated

eNOS. The other positive regulatory site of eNOS, Ser 632, showed no change in phosphorylation

(figure 3.31 C) and no changes were observed in the P/T ratio of Ser 632 (figure 3.31 D).

1 hour treatment with fenofibrate did not result in any changes in the phosphorylation of eNOS

Thr 495 compared to 1 hour control, however 24 hour fenofibrate treatment significantly

increased phosphorylation compared to 24 hour control group (24h Control:  0.63 ± 0.05;  24h

Fenofibrate:  0.84 ± 0.03, p<0.05) (figure 3.32 C), but no changes were observed in the P/T eNOS

Thr 495 ratio.  Furthermore, phosphorylation of eNOS Thr 495 was significantly reduced in the

24 hour untreated control group, compared to 1 hour untreated controls (1h Control:  1;  24h

Control:  0.63 ± 0.05, p<0.05) (figure 3.32 C) and this was the case for P/T eNOS Thr 495 ratio as

well (1h Control:  1;  24h Control:  0.59 ± 0.05, p<0.05) (figure 3.32 D).

Phosphorylation of eNOS Tyr 657 was not altered by 1 hour fenofibrate treatment compared to

the 1 hour untreated control group, or in the 24 hour fenofibrate treatment compared to 24 hour

untreated control group (figure 3.33 C). However, the 24 hour untreated control group showed

significantly lower levels of phosphorylation compared to 1 hour untreated control group (1h

Control:  1;  24h Control:  0.36 ± 0.09, p<0.05) (figure 3.33 D).  These changes translated into a

similar decrease in the P/T ratio of Tyr 657 (1h Control:  1;  24h Control:  0.35 ± 0.09, p<0.05)

(figure 3.33 D).

Total expression and phosphorylation levels of nNOS were too low to be detected and quantified

and therefore no analyses were performed on experiments looking at this NOS isoform (figure

3.34).
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Figure 3.30:  Bar charts indicating changes in eNOS expression and phosphorylation (Ser 1177) of

CMECs treated with fenofibrate (50 μM) for 1 and 24 hours. A) Representative western blots

indicating total-eNOS, phospho-eNOS (Ser 1177) and β-tubulin;  Lane 1: Interleukin-1β; Lane 2:

AICAR; Lane 3: OA – Okadiac acid.  B)  Analysed results for total-eNOS.  C)  Analysed results for

phospho-eNOS (Ser 1177). D) Phosphorylated over total (P/T) ratio of eNOS Ser 1177.  * p<0.05

vs 1h Control; # p<0.05 vs 1h Feno.  Cntr:  Control;  Feno:  Fenofibrate.  n=3-7
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Figure 3.31:  Bar charts indicating changes in eNOS expression and phosphorylation (Ser 632) of

CMECs treated with fenofibrate (50 μM) for 1 and 24 hours A) Representative western blots

indicating total-eNOS, phospho-eNOS (Ser 632) and β-tubulin; Lane 1: Interleukin-1β; Lane 2:

AICAR; Lane 3: OA – Okadiac acid. B)  Analysed results for total-eNOS.  C)  Analysed results for

phospho-eNOS (Ser 632). D)  Phosphorylated over total (P/T) ratio of eNOS Ser 632.  * p<0.05 vs

1h Control; # p<0.05 vs 1h Feno.  ; Cntr:  Control;  Feno:  Fenofibrate.  n=3-7
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Figure 3.32:  Bar charts indicating changes in eNOS expression and phosphorylation (Thr 495) of

CMECs treated with fenofibrate (50 μM) for 1 and 24 hours A) Representative western blots

indicating total-eNOS, phospho-eNOS (Thr 495) and β-tubulin; Lane 1: Interleukin-1β; Lane 2:

AICAR; Lane 3: OA – Okadiac acid. B)  Analysed results for total-eNOS.  C)  Analysed results for

phospho-eNOS (Thr 495). D)  Phosphorylated over total (P/T) ratio of eNOS Thr 495.  * p<0.05 vs

1h Control; # p<0.05 vs 1h Feno; $ p<0.05 vs 24h Control.  Cntr:  Control;  Feno:  Fenofibrate.  n=3-

7.
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Figure 3.33:  Bar charts indicating changes in eNOS expression and phosphorylation (Tyr 657) of

CMECs treated with fenofibrate (50 μM) for 1 and 24 hours A) Representative western blots

indicating total-eNOS, phospho-eNOS (Tyr 657) and β-tubulin;  Lane 1: Interleukin-1β; Lane 2:

AICAR; Lane 3: OA – Okadiac acid. B)  Analysed results for total-eNOS.  C)  Analysed results for

phospho-eNOS (Tyr 657). D)  Phosphorylated over total (P/T) ratio of eNOS Tyr 657.  * p<0.05 vs

Control; # p<0.05 vs 1h Feno.  Cntr:  Control;  Feno:  Fenofibrate.  n=3-7
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Figure 3.34:  nNOS expression and phosphorylation (Ser 1417) of CMECs treated with fenofibrate

(50 μM) for 1 and 24 hours. Total expression levels of nNOS and phospho-nNOS were too low to

be detected and quantified.  (1) Interleukin-1β; (2) AICAR;  (3) OA – Okadiac acid.

3.4.13.2 AMPK

No changes were detected in total-AMPK expression after 1 or 24 hour treatment (figure 3.35 B).

1 hour fenofibrate treatment did, however, significantly decrease phospho-AMPK at Thr 172

compared to 1 hour untreated controls (1h Control:  1;  1h Fenofibrate:  0.73 ± 0.04, p<0.05)

(figure 3.35 C).  The same trend was seen in the P/T ratio of AMPK, where 1 hour fenofibrate

significantly decreased the P/T ratio compared to 1 hour untreated control group (1h Control:  1;

1h Fenofibrate:  0.64 ± 0.07, p<0.05) (figure 3.35 D).  No differences were observed in the

phospho-AMPK levels when subjected to 24 hours fenofibrate treatment compared to time-

matched untreated controls. AICAR treated CMECs (loaded in lane 2) and okadiac acid (loaded in

lane 3) showed to be potent inducers of AMPK phosphorylation, thereby serving as effective

positive controls (figure 3.35 A)

3.4.13.3 PKB/Akt

No changes were detected in total-PKB/Akt expression levels after 1 or 24 hour treatment with

fenofibrate (figure 3.36 B).  Although the detection of phosphorylated PKB/Akt (Ser 473) levels

was quite low, it was sufficient to be analysed and showed that 1 hour fenofibrate significantly

reduced phospho-PKB/Akt compared to the 1 hour untreated control group (1h Control:  1;  1h

Fenofibrate:  0.78 ± 0.05, p<0.05) (figure 3.36 C).  24 hour untreated controls showed reduced

phosphorylation compared to the 1 hour untreated control group (1h Control:  1;  24h Control:
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0.71 ± 0.05, p<0.05) (figure 3.36 C).  These results were mirrored in the P/T ratio of PKB/Akt (1h

Control:  1;  1h Fenofibrate:  0.83 ± 0.04, p<0.05) (1h Control:  1;  24h Control:  0.67 ± 0.02,

p<0.05) (figure 3.36 D).
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Figure 3.35:  Bar charts indicating changes in AMPK expression and phosphorylation (Thr 172) of

CMECs treated with fenofibrate (50 μM) for 1 and 24 hours. A) Representative western blots

showing total-AMPK, phospho-AMPK (Thr 172) and β-tubulin; Lane 1: Interleukin-1β; Lane 2:

AICAR; Lane 3: OA – Okadiac acid. B)  Analysed results for total-AMPK.  C)  Analysed results for

phospho-AMPK (Thr 172). D)  Phosphorylated over total (P/T) ratio of AMPK (Thr 172).  * p<0.05

vs Control; # p<0.05 vs 1h Feno.  ; Cntr:  Control;  Feno:  Fenofibrate.  n=3-7
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Figure 3.36:  Bar charts indicating changes in PKB/Akt expression and phosphorylation (Thr 172)

of CMECs treated with fenofibrate (50 μM) for 1 and 24 hours. A) Representative western blots

showing total-PKB/Akt, phospho-PKB/Akt (Ser 473) and β-tubulin; Lane 1: Interleukin-1β; Lane 2:

AICAR; Lane 3: OA – Okadiac acid. B)  Analysed results for total-PKB.  C)  Analysed results for

phospho-PKB (Ser 473). D)  Phosphorylated over total (P/T) ratio of PKB (Ser 473).  * p<0.05 vs

Control; Cntr:  Control;  Feno:  Fenofibrate.  n=3-7
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3.4.13.4 HSP 90

Neither 1 hour nor 24 hour treatment with fenofibrate altered HSP 90 expression levels

compared to their respective time-matched untreated controls (figure 3.37 B).

Figure 3.37:  Bar charts indicating changes in HSP 90 expression of CMECs treated with fenofibrate

(50 μM) for 1 and 24 hours. A) Representative western blots showing total HSP 90 and β-tubulin

expression; Lane 1: Interleukin-1β; Lane 2: AICAR; Lane 3: OA – Okadiac acid. B)  Analysed results

for HSP 90. # p<0.05 vs 1h Feno.  Cntr:  Control;  Feno:  Fenofibrate.  n=3-7

3.4.13.5  p22Phox and Nitrotyrosine

1 hour fenofibrate significantly increased p22Phox expression compared to the 1 hour untreated

control group (1h Control:  1;  1h Fenofibrate:  1.20 ± 0.07, p<0.05) (figure 3.38 C).  24 hour

fenofibrate treatment had no effect on p22Phox expression, however the 24 hour untreated

control group showed significantly lower expression of p22Phox compared to 1 hour untreated

controls (1h Control:  1;  24h Control:  0.75 ± 0.09, p<0.05).  Neither 1 hour nor 24 hour

fenofibrate treatment altered nitrotyrosine expression levels (figure 3.38 B and D).
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Figure 3.38:  Bar charts indicating changes in nitrotyrosine and p22Phox expression of CMECs

treated with fenofibrate (50 μM) for 1 and 24 hours. A) Representative western blots showing

total p22phox and β-tubulin expression. Lane 1: Interleukin-1β; Lane 2: AICAR; Lane 3: OA –

Okadiac acid.  B) Representative western blots indicating nitrotyrosine and β-tubulin expression;

Lane 1: Interleukin-1β; Lane 2: AICAR; Lane 3: OA – Okadiac acid. C) Analysed results for p22phox.

D) Analysed results for nitrotyrosine.  * p<0.05 vs Control; # p<0.05 vs 1h Feno.  Cntr:  Control;

Feno:  Fenofibrate.  n=3-7
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3.4.13.5 IκBα and Cleaved Caspase-3

Decreased total expression of IκBα is associated with increased NF-κB activity (Hayden & Ghosh

2008).  1 hour fenofibrate treatment significantly increased IκBα expression compared to

untreated controls (1h Control:  1;  1h Fenofibrate:  1.17 ± 0.05, p<0.05) (figure 3.39 C).  24 hour

fenofibrate treatment did not change IκBα expression.

Cleaved caspase-3 is a down-stream target of caspase-8 and indicative of apoptosis (Kuribayashi

et al. 2006).  Fenofibrate did not change cleaved caspase-3 levels after 1 hour or 24 hours

compared to time-matched untreated controls (figure 3.39 D).  However, the 24 hour untreated

control group expressed significantly less cleaved caspase-3 compared to 1 hour untreated

control group (1h Control:  1;  24h Control:  0.61 ± 0.16, p<0.05) (figure 3.39 D).
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Figure 3.39:  Bar charts indicating changes in IκBα and cleaved Caspase-3 expression of CMECs

treated with fenofibrate (50 μM) for 1 and 24 hours. A) Western blots showing total IκBα and β-

tubulin expression; Lane 1: Interleukin-1β; Lane 2: AICAR; Lane 3: OA – Okadiac acid. B) Western

blots indicating cleaved Caspase-3 and β-tubulin expression. Lane 1: Interleukin-1β; Lane 2:

AICAR; Lane 3: OA – Okadiac acid. C) Analysed results for IκBα.  D) Analysed results for cleaved

Caspase-3.  * p<0.05 vs Control; # p<0.05 vs 1h Feno.  Cntr:  Control;  Feno:  Fenofibrate.  n=3-4
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3.4.14 Results: 5 min, 15 min and 30 min fenofibrate western blot analyses

In view of the fact that the findings of 1 and 24 hour fenofibrate treatment experiments were

inconclusive with regards to which of the NOS isoforms were responsible for the increased NO

production, we had to consider the possibility that enzyme activation could be a much earlier

event. We therefore proceeded with experiments in which the fenofibrate treatment times were

shortened.

3.4.14.1 NOS

Western blot analyses were performed on CMECs treated with fenofibrate for 5 min, 15 min and

30 min.  Data showed that no changes occurred with respect to total eNOS expression at any of

the time points (figure 3.40 B).  5 min fenofibrate treatment significantly reduced

phosphorylation at Ser 1177 (Control: 1;  5 min:  0.86 ± 0.02, p<0.05) (figure 3.40 C) and the P/T

ratio of eNOS Ser 1177 was also significantly reduced (Control:  1;  5 min:  0.80 ± 0.06, p<0.05)

(figure 3.40 D).  The inhibitory eNOS site, Thr 495 showed no changes in phosphorylation or P/T

ratio at any of the time points (figure 3.41 B – D). With regards to nNOS, no changes in total nNOS

expression were observed (figure 3.42 B).  A significant decrease in nNOS phosphorylation (Ser

1417) occurred after 30 min of fenofibrate treatment (Control: 1;  30 min:  0.77 ± 0.18, p<0.05)

(figure 3.42 C), however the P/T ratio of nNOS was only significantly reduced at the 5 min

fenofibrate treatment time point (Control:  1;  5 min:  0.65 ± 0.11, p<0.05) (figure 3.42 D).
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Figure 3.40:  Bar charts indicating changes in total and phosphorylated eNOS (Ser 1177) of CMECs

treated with fenofibrate (50 μM) for for 5 min, 15 min and 30 min. A) Western blots showing total

eNOS, phospho-eNOS (Ser 1177) and total protein loaded (ponceau stain).  B)  Analysed results

for total-eNOS.  C)  Analysed results for phospho-eNOS (Ser 1177). D)  Phosphorylated over total

(P/T) ratio of eNOS (Ser 1177).  * p<0.05 vs Control;  n=3.
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Figure 3.41:  Bar charts indicating changes in total and phosphorylated eNOS (Thr 495) of CMECs

treated with fenofibrate (50 μM) for for 5 min, 15 min and 30 min. A) Western blots showing total

eNOS, phospho-eNOS (Thr 495) and total protein loaded (ponceau stain).  B)  Analysed results for

total-eNOS.  C)  Analysed results for phospho-eNOS (Thr 495). D)  Phosphorylated over total (P/T)

ratio of eNOS (Thr 495).  n=3.
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Figure 3.42:  Bar charts indicating changes in total and phosphorylated nNOS (Ser 1417) of CMECs

treated with fenofibrate (50 μM) for for 5 min, 15 min and 30 min. A) Western blots showing total

nNOS, phospho-nNOS (Ser 1417) and total protein loaded (ponceau stain).  B)  Analysed results

for total-nNOS.  C)  Analysed results for phospho-nNOS (Ser 1419). D)  Phosphorylated over total

(P/T) ratio of nNOS (Ser 1419). * p<0.05 vs Control;  n=3.
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3.4.14.2 AMPK

At 30 min fenofibrate treatment, total AMPK expression levels increased significantly (Control:

1;  30 min:  1.28 ± 0.01, p<0.05) (figure 3.43 B).  However, 5 and 15 min of fenofibrate treatment

resulted in significantly decreased AMPK phosphorylation (Thr 172) compared to the untreated

control group (Control:  1;  5 min:  0.79 ± 0.05*;  15 min:  0.70 ± 0.08*, *p<0.05 vs Control) (figure

3.43 C).  The P/T AMPK ratios were significantly lower at all three time points (Control:  1;  5 min:

0.67 ± 0.06*;  15 min:  0.66 ± 0.07*;  30 min:  0.65 ± 0.10*, *p<0.05 vs Control) (figure 3.43 D).

3.4.14.3 PKB/Akt

A significant increase in total PKB/Akt expression was observed at 30 min fenofibrate treatment

(Control:  1;  30 min:  1.26 ± 0.06, p<0.05) (figure 3.44 B).  Phosphorylated PKB/Akt (Ser 473)

could not be detected.
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Figure 3.43:  Bar charts indicating changes in total and phosphorylated AMPK (Thr 172) of CMECs

treated with fenofibrate (50 μM) for for 5 min, 15 min and 30 min. A) Western blots showing

total-AMPK, phospho-AMPK (Thr 172) and total protein loaded (ponceau stain).  B)  Analysed

results for total-AMPK.  C)  Analysed results for phospho-AMPK (Thr 172). D)  Phosphorylated

over total (P/T) ratio of AMPK (Thr 172).  * p<0.05 vs Control;  n=3.
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Figure 3.44:  Bar charts indicating changes in total and phosphorylated PKB/Akt (Ser 473) of

CMECs treated with fenofibrate (50 μM) for for 5 min, 15 min and 30 min. A) Western blots

showing total-PKB/Akt and total protein loaded (ponceau stain).  Phospho-PKB/Akt could not be

detected.  B)  Analysed results for total-PKB/Akt.  * p<0.05 vs Control; #p<0.05 vs 5 min, n=3.

Stellenbosch University  https://scholar.sun.ac.za



172 | P a g e

3.4.15 Experimental protocol:  Pretreatment with fenofibrate prior to TNF-α

administration

In the next set of experiments, it was investigated whether pretreatment of CMECs with

fenofibrate could protect the cells against the harmful effects of tumour necrosis factor alpha

(TNF-α). TNF-α is one of the most common pro-inflammatory cytokines in the body, known to be

a mediator of vascular/endothelial injury in disease conditions such as diabetes mellitus and

obesity (Picchi et al., 2006). CMECs were pretreated with 50 μM fenofibrate for 1 hour prior to

administration of 20 ng/ml TNF-α for a further 24 hours (figure 3.45).

Figure 3.45:  Experimental protocol followed to investigate the effects of fenofibrate pretreatment

on TNF-α-treated CMECs. CMECs were pretreated with 50 μM fenofibrate for 1 hour prior to

administration of 20 ng/ml TNF-α for a further 24 hours.  End points included NO, necrosis and

ROS production measurements by flow cytometric analysis of DAF-2/DA, PI and  MitoSox

fluorescence respectively. The expression and activation of important signalling proteins were

measured by western blot analyses.
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3.4.16 Results:  Pretreatment with fenofibrate prior to TNF-α administration

3.4.16.1 NO measurements

Pretreatment of control CMECs (in the absence of TNF-α) with 50 µM fenofibrate (total treatment

time: 25 hours) significantly increased DAF-2/DA fluorescence by ≈ 2.4-fold (Control:  100%;

Fenofibrate:  235.7 ± 41.7%, p<0.05) (figure 3.46).  CMECs treated with TNF-α only showed no

change in DAF-2/DA fluorescence compared to untreated controls.  Pretreatment of CMECs with

TNF-α+fenofibrate significantly increased the fluorescence to the same extent as observed with

fenofibrate treatment only (Control:  100%;  TNF-α:  103.5 ± 14.73%;  Fenofibrate + TNF-α:  219.2

± 45.05%*#, * p<0.05 vs Control, # p<0.05 vs TNF-α) (figure 3.46).

3.4.16.2 MitoSox fluorescence

TNF-α had a robust increasing effect on mitochondrial ROS production (measured by MitoSox)

(Control:  100%;  TNF-α:  253.3 ± 59.6%;  p<0.05) (figure 3.47).  Even though large trends can be

observed within the other groups, values did not reach significance.

3.4.16.3 Cell viability (necrosis):  PI fluorescence

TNF-α increased PI fluorescence significantly compared to vehicle, fenofibrate and fenofibrate +

TNF-α groups, and pretreatment with fenofibrate was able to prevent TNF- α induced necrosis

(Fenofibrate vehicle:  58.6  ± 9.5%;  Fenofibrate:  72 ± 4.8%;  TNF-α:  127.4 ± 15.6%*#$^;

Fenofibrate + TNF-α:  78.9 ± 5.8%;  * p<0.05 vs Control;  # p<0.05 vs Vehicle;  $ p<0.05 vs Feno;

@ p<0.05 vs TNF-α;  ^ p<0.05 vs Feno + TNF-α) (figure 3.48).
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Figure 3.46: Bar chart indicating DAF-2/DA fluorescence of CMECs pretreated with 50 μM

fenofibrate for 1 hour prior to 20 ng/ml TNF-α for 24 hours. DAF-2/DA fluorescence significantly

increased in response to fenofibrate treatment.  In combination with TNF-α, fenofibrate still

resulted in elevated DAF-2/DA levels.  * p<0.05 vs Control;  @ p<0.05 vs TNF-α.  Vehicle:  DMSO

(for fenofibrate);  Feno:  Fenofibrate;  TNF-α:  Tumor necrosis factor α, n = 4 – 11.

Figure 3.47:  Bar chart indicating MitoSox fluorescence of CMECs pretreated with 50 μM

fenofibrate for 1 hour prior to 20 ng/ml TNF-α for 24 hours. TNF- α significantly increased MitoSox

fluorescence compared to untreated control.  Pretreatment with fenofibrate reduced MitoSox

fluorescence back to control levels; the p-value of 0.06 was borderline significant.  * p<0.05 vs

Control; # p<0.05 vs (Fenofibrate) Vehicle, n = 3-4.
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Figure 3.48:  Bar chart indicating changes in necrosis of CMECs pretreated with 50 μM fenofibrate

for 1 hour prior to 20 ng/ml TNF-α for 24 hours. Graph illustrates % change in Propidium Iodide

fluorescence compared to controls expressed as 100%.  * p<0.05 vs Control;  # p<0.05 vs Vehicle;

$ p<0.05 vs Feno;  @ p<0.05 vs TNF-α;  ^ p<0.05 vs Feno + TNF-α;  n = 9-15.
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3.4.16.4 Western blot analyses

NOS

Total eNOS expression remained at control levels in the fenofibrate only treated group, but was

significantly reduced in the TNF-α-treated (with and without fenofibrate pretreatment) CMECs

(Control:  1;  TNF-α:  0.56 ± 0.02;  Fenofibrate + TNF-α:  0.73 ± 0.05, p<0.05) (figure 3.49 B).

Phosphorylated eNOS Ser 1177 levels were unchanged in all groups, except for a significant

increase in the fenofibrate pretreatment + TNF-α group compared to TNF-α only group (TNF-α:

0.70 ± 0.08;  Fenofibrate + TNF-α: 1.04 ± 0.06, p<0.05) (figure 3.49 C).  This resulted in a

significantly increased P/T eNOS (Ser 1177) ratio in the fenofibrate pretreatment + TNF-α group

(Control:  1;  Fenofibrate + TNF-α:  1.41 ± 0.10, p<0.05) (figure 3.49 D).

AMPK and PKB/Akt

The total protein expression of two upstream NOS activators, AMPK and PKB/Akt were

unaffected by any of the treatments (figure 3.50 B and 3.51 B).  Fenofibrate pretreatment did,

however, result in a significant increase in AMPK phosphorylation compared to the TNF-α group

without pretreatment (TNF-α:  0.76 ± 0.09;  Fenofibrate + TNF-α:  1.14 ± 0.07, p<0.05) (figure

3.50 C).

IκBα

As expected, TNF-α robustly decreased total-IκBα expression, and fenofibrate pretreatment

failed to change this (Control:  1;  Vehicle: 1.08 ± 0.16;  Fenofibrate:  1.12 ± 0.06;  TNF- α:  0.64 ±

0.03*#$;  Fenofibrate + TNF-α:  0.51 ± 0.03*#$, * p<0.05 vs Control;  # p<0.05 vs Vehicle;  $ p<0.05

vs Feno) (figure 3.52 B).

Cleaved PARP (poly ADP ribose polymerase) and Caspase-3

Both cleaved PARP and caspase-3 are indicators of apoptosis.  Both the TNF-α only and

fenofibrate pretreatment + TNF-α groups showed a pronounced up-regulation of PARP and

cleaved caspase-3.  Fenofibrate treatment resulted in a significant reduction in the expression of

cleaved PARP and caspase-3 compared to TNF-α.  The results were as follows: PARP: Control:  1;

Vehicle:  0.79 ± 0.14;  Fenofibrate:  0.76 ± 0.06;  TNF- α:  1.65 ± 0.08*#$;  Fenofibrate + TNF-α:
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1.28 ± 0.04*#$, and Caspase-3: Control:  1;  Vehicle:  0.94 ± 0.17;  Fenofibrate:  0.98 ± 0.11;  TNF-

α:  2.62 ± 0.22*#$;  Fenofibrate + TNF-α:  1.60 ± 0.08*#$; * p<0.05 vs Control;  # p<0.05 vs Vehicle;

$ p<0.05 vs Fenofibrate (figure 3.53 B and C).

Nitrotyrosine and p22Phox

None of the treatments altered nitrotyrosine levels (figure 3.54 B). However, p22Phox expression

was significantly reduced in the fenofibrate pretreatment + TNF-α group compared to the TNF-α

only group (TNF-α:  1.59 ± 0.15;  Fenofibrate + TNF-α:  0.78 ± 0.11;  ^ p<0.05 vs fenofibrate + TNF-

α) (figure 3.54 C).
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Figure 3.49:  Bar charts indicating changes in eNOS expression and phosphorylation (Ser 1177) of

CMECs pretreated with 50 μM fenofibrate for 1 hour prior to 24 hour administration of 20 ng/ml

TNF-α. A) Western blots showing total-eNOS, phospho-eNOS (Ser 1177) and total protein loaded

(ponseau stain).  B)  Analysed results for total-eNOS.  C)  Analysed results for phospho-eNOS (Ser

1177). D)  Phosphorylated over total (P/T) ratio of eNOS (Ser 1177).  * p<0.05 vs Control, @ p<0.05

vs TNF-α;  n=3.
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Figure 3.50:  Bar charts indicating changes in AMPK expression and phosphorylation (Thr 172) of

CMECs pretreated with 50 μM fenofibrate for 1 hour prior to 24 hour administration of 20 ng/ml

TNF-α. A) Western blots showing total-AMPK, phospho-AMPK (Thr 172) and total protein loaded

(ponseau stain).  B)  Analysed results for total-AMPK.  C)  Analysed results for phospho-AMPK (Thr

172). D)  Phosphorylated over total (P/T) ratio of AMPK (Thr 172).  @ p<0.05 vs TNF-α;  n=3
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Figure 3.51: Bar charts indicating changes in PKB/Akt expression and phosphorylation (Ser 473)

of CMECs pretreated with 50 μM fenofibrate for 1 hour prior to 24 hour administration of 20

ng/ml TNF-α. A) Western blots showing total-PKB/Akt, phospho- PKB/Akt (Ser 473) and total

protein loaded (ponseau stain).  B)  Analysed results for total- PKB/Akt.  C)  Analysed results for

phospho- PKB/Akt (Ser 473). D) Phosphorylated over total (P/T) ratio of PKB/Akt (Ser 473);  n=3
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Figure 3.52:  Bar chart indicating changes in IκBα expression of CMECs pretreated with 50 μM

fenofibrate for 1 hour prior to 24 hour administration of 20 ng/ml TNF-α. A) Western blots

showing total-IκBα and total protein loaded (ponseau stain).  B)  Analysed results for total-IκBα.

* p<0.05 vs Control;  # p<0.05 vs Vehicle;  $ p<0.05 vs Feno;  n=3
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Figure 3.53:  Bar charts indicating changes in PARP and Caspase-3 expression of CMECs pretreated

with 50 μM fenofibrate for 1 hour prior to 24 hour administration of 20 ng/ml TNF-α. A) Western

blots showing cleaved PARP, cleaved Caspase-3 and total protein loaded (ponseau stain).  B)

Analysed results for cleaved-PARP.  C)  Analysed results for cleaved-Caspase-3.  * p<0.05 vs

Control;  # p<0.05 vs Vehicle;  $ p<0.05 vs Feno;  @ p<0.05 vs TNF-α;  n=3.

Stellenbosch University  https://scholar.sun.ac.za



183 | P a g e

Figure 3.54:  Bar charts indicating changes in nitrotyrosine and p22Phox expression of CMECs

pretreated with 50 μM fenofibrate for 1 hour prior to 24 hour administration of 20 ng/ml TNF-α.

A) Western blots showing nitrotyrosine, p22Phox and total protein loaded (ponceau stain).  B)

Analysed results for Nitrotyrosine.  C)  Analysed results for p22Phox.  ^ p<0.05 vs Feno + TNF-α;

n=3.
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3.5 Discussion: In vitro findings of Fenofibrate

3.5.1 Intracellular NO production

In contrast to simvastatin, fenofibrate exerted pronounced increasing effects on NO production,

especially at shorter treatment periods (1 hour and 4 hours).  Based on the concentration and

time response investigations, it was decided to continue with a concentration of 50 μM

fenofibrate in further studies.  This concentration falls well within ranges used in other in vitro

experiments (Goya et al., 2004; Murakami et al., 2006) and compares well to the plasma

concentrations achieved with 200 mg/day oral treatment (Zanetti et al., 2008).  This was also the

dosage used in the so-called FIELD trial, which according to the authors, resulted in beneficial

microvascular effects (Keech et al., 2007).

Increases in NO production have been shown in fenofibrate treated HUVECs for periods as short

as 2.5 minutes (Murakami et al., 2006).  In our hands, increased levels of NO could be observed

after 5 min treatment in CMECs (data not shown). A previous study showed that fenofibrate (100

µM) treatment of human glomerular microvascular endothelial cells (HGMECs) resulted in a

substantial increase in NO after 1 hour, however the effects waned at longer time periods

(Tomizawa et al., 2011).  In the current study, a fenofibrate concentration of 50 µM significantly

increased NO levels at 24 hours, but the response was not as robust as observed at 1 and 4 hours.

These findings are in agreement with those observed by Tomizawa et al. (2011). Yang et al.,

(2005) could not demonstrate an increase in NO production in HUVECs treated with 30 μM

fenofibrate for 24 hours. Goya et al., (2004) did not measure NO directly.  They performed an

eNOS activity assay (conversion of radiolabeled L-arginine to L-citrulline) and could not

demonstrate increases in enzyme activity at 2 min, 5 min or 1 hour fenofibrate treatment.

However, eNOS activity was increased at 24 - 48 hour fenofibrate (10 and 50 μM) treatment,

therefore the current study contradicts the results of Goya et al. (2004). An interesting

observation is that studies using short fenofibrate treatment periods resulted in profound NO

increases of double the control values (Murakami et al., 2006; Tomizawa et al., 2011).
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3.5.2 NOS inhibition investigations

Most of the in vitro studies that investigated the role of NOS, concluded that the fenofibrate-

induced NO increases were mediated by eNOS (Goya et al., 2004; Murakami et al., 2006;

Katayama et al., 2009; Tomizawa et al., 2011) Therefore, in order to confirm whether the

fenofibrate-derived NO production observed after 1 hour treatment was due to eNOS we

employed the use of L-NMMA. Although L-NMMA is relatively non-selective with regards to its

NOS isoform specificity, many researchers use L-NMMA as a tool to investigate the contribution

of the eNOS isoform (Tejedo et al., 2010). In our hands, inhibition studies with L-NMMA

unexpectedly showed that NO production remained elevated at levels comparable with

fenofibrate alone (figure 3.24 A), suggesting that NO was unlikely to be eNOS-derived.  In an

attempt to confirm the findings of the above experiments, we repeated the experiments by using

a different NO measurement assay (Griess method) in CMECs, and a different, unrelated

endothelial cell type, namely aortic endothelial cells (AECs).  The data obtained from the Griess

assay mirrored those of the DAF-2/DA fluorescence studies. Our NOS inhibition data are in

contrast to those from a study by Murakami et al. (2006) who showed in HUVECs that fenofibrate-

induced NO production was abolished in the presence of the NOS-inhibitor, Nω-nitro-L-arginine

methyl ester (L-NAME). In another in vitro study on HGMECs, eNOS was implicated indirectly as

source of fenofibrate-induced NO by pharmacological inhibition of AMPK, one of the major

upstream activators of eNOS (Tomizawa et al., 2011). A summary of previous fenofibrate

treatment studies and their observations regarding NOS-NO biosynthesis appear in Table 1.2

(Chapter 1).

Pharmacological inhibition in experimental preparations does have shortcomings. It is often dose

and time-dependent, in addition to almost never being 100% specific and often leads to other

undesired and/or unknown biological effects unrelated to their intended application. In our

hands, the L-NMMA experiments were unable to demonstrate contributions by NOS / eNOS to

the fenofibrate-induced NO production. In view of this, comprehensive studies were conducted

to investigate the expression and activation patterns of the NOS isoforms, and other related

signalling proteins by means of western blotting.
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3.5.3 NOS signalling pathway – Western blot results

eNOS Ser 1177 related pathways

Total eNOS expression was not altered by 1 or 24 hours fenofibrate treatment.  These findings

are in agreement with other studies, such as those by Murakami et al. (2006) in HUVECs, as well

as Katayama et al. (2009) and Deplanque et al., (2003) in aortic tissue. On the other hand, Goya

et al. (2004) showed a significant increase in eNOS expression in cultured BAECs at 12 hours of

fenofibrate treatment, and the trends were sustained at 48 hours.  There were some

shortcomings in the study by Goya and co-workers, namely the fact that they did not measure

NO production as an important end-point, nor did they investigate the activation of eNOS

(phosphorylation of eNOS Ser 1177).  The study, however, did measure eNOS activity with an

assay which measures the conversion of radiolabeled L-arginine to L-citrulline, and results were

unchanged at 1 hour treatment with 50 μM fenofibrate.  However, eNOS activity was significantly

increased at 24 and 48 hour treatment periods.

As mentioned previously, the phosphorylation dynamics of kinases are highly complex and

phosphorylation can occur within very short time periods. This phenomenon poses a challenge

to the researcher when planning experimental protocols, and finding the optimal time-points of

tissue collection for measurements is often a chance of occurrence (and a costly exercise!). Since

no increases in the activation of eNOS via phosphorylation (Ser 1177) were observed at the initial

time-points of 1 or 24 hours, it was decided to repeat the experiments at shorter treatment

periods.  Once again, fenofibrate treatment could not be linked to increased phosphorylation of

eNOS at Serine 1177 at any of the shorter treatment periods; in fact, 5 min fenofibrate treatment

resulted in decreased phosphorylation along with a reduced P/T ratio (figure 3.40 C and D).  These

results confirmed that, in our hands, the fenofibrate-derived NO produced by the CMECs was not

mediated by arguably the most important kinase-dependent activation mechanism of eNOS,

namely phosphorylation at Ser 1177, at any of the time points investigated (5 min, 15 min, 30

min, 1 hour and 24 hours).

Phosphorylation of eNOS Ser 1177 depends on the nature of the stimulus. Phosphorylation of

Ser 1177 by means of shear stress results in sustained NO production (Dimmeler et al., 1999),
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whereas stimulation by bradykinin results in transient increases in NO synthesis.  Furthermore,

various kinases have been reported to phosphorylate eNOS at the Ser 1177 residue.  These

include PKB/Akt (Dimmeler et al., 1999;  Strijdom et al., 2009b), PKA (Boo et al., 2002), PKC

(Michell et al., 2001;  Wang et al., 2010b), AMPK and CaMKII (Chen et al., 1999).  Fenofibrate has

been associated with increased phosphorylation of PKB/Akt (Thr 308) in HGMECs (Tomizawa et

al., 2011) and PKB/Akt (Ser 473) in hepatocytes (Huang et al., 2008) and AMPK (Thr 172)

(Murakami et al., 2006; Kim et al., 2007; Tomizawa et al., 2011; Omae et al., 2012).  In the above

studies, experimental models of macrovascular and non-cardiac microvascular endothelial cells,

as well as vascular tissue such as aortas, were used. As far as we are aware, no previous studies

have been conducted on CMECs in the context of fenofibrate and NOS/NO biosynthesis.  In the

current study, reduced phosphorylation of eNOS Ser 1177 (1 hour treatment) was associated

with a reduction in phospho-AMPK and phospho-PKB/Akt (Ser 473). It can therefore be

speculated that eNOS Ser 1177 was simply not phosphorylated due to a lack of phosphorylated

upstream kinases. Another mechanism may be the dephosphorylation of eNOS via the actions of

phosphatases. Considering the large decrease in phosphorylation observed at 1 hour fenofibrate

treatment, the latter could be a plausible explanation.  In the western blot experiments, okadaic

acid was employed as a positive control for eNOS phosphorylation. CMECs were treated with 500

μM okadaic acid and a large increase in the phosphorylation of eNOS Ser 1177 was observed.

The mentioned concentration of okadaic acid has been reported to inhibit protein phosphatase

1 (PP1), protein phosphatase 2 A (PP2A) and protein phosphatase 2 B (PP2B) (Honkanan et al.

1994).  These phosphatases could therefore be involved with rapid dephosphorylation of eNOS

(Ser 1177). In separate studies in our laboratory, proteomic analysis of baseline CMECs

demonstrated a high abundance of protein phosphatase 1F (2-fold higher expression in CMECs

vs AECs), a known inhibitor of CAMK-II, which is one of the major upstream activators of eNOS.

Future studies could be conducted to explore the possibility of protein phosphatase activation

by fenofibrate.

HSP 90

eNOS can be post-translationally modified by protein-protein interactions with HSP 90.  HSP 90

acts as chaperone protein and can enhance PKB/Akt induced phosphorylation of eNOS, by
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enhancing kinase-substrate association and proximity, without interfering with the normal

actions of PKB/Akt (Takahashi & Mendelsohn 2003).  Similarly, HSP 90 can enhance eNOS

activation via phosphorylation by AMPK (Fujimura et al. 2012).  The present study found an

increase in HSP 90 expression after 24 hour fenofibrate treatment compared to 1 hour

fenofibrate treatment.  Similar time-dependent trends were observed with the AMPK

phosphorylation studies.  From these findings, it can be speculated that HSP 90 recruited AMPK

for eNOS phosphorylation, however, that it was insufficient to result in eNOS activation.

eNOS Ser 632 related signalling

Ser 1177 is not the only positive regulatory site of eNOS.  The general understanding is that Ser

1177 is more involved with rapid agonist induced activation of eNOS providing a burst of NO.  The

phosphorylation of eNOS at Ser 632 is a slower process and eNOS activation via this residue

contributes to a maintenance of NO levels after the initial burst (Mount et al., 2007).  However,

1 and 24 hour fenofibrate treatment did not affect eNOS Ser 632 phosphorylation, which

excludes eNOS phosphorylation at this site as a possible mechanism of increased NO production.

The data thus far suggest that eNOS was not activated by fenofibrate treatment via the positive

regulatory phosphorylation sites Ser 1177 and Ser 632. However, post-translational modification

of eNOS involves positive and negative regulatory phosphorylation residues; therefore, the aim

of the next series of experiments was to investigate the negative regulatory sites of eNOS.  Even

though no involvement of Thr 495 or Tyr 657 was found in the 1 hour treatment groups,

fenofibrate significantly inhibited eNOS via elevated phosphorylation at Thr 495 after 24 hours.

To the best of our knowledge, this is a novel finding. The major upstream kinase involved with

Thr 495 phosphorylation is protein kinase C (Mount et al. 2007). Chen et al. (1999) also found

that in the absence of Ca2+/CaM, AMPK is able to phosphorylate eNOS Thr 495, resulting in

inhibition of the enzyme. However, in our hands, activation and phosphorylation of AMPK were

not observed at 24 hours.  eNOS Tyr 657, associated with reduced enzyme activity (Fisslthaler et

al., 2008; Loot et al., 2009), also failed to undergo any changes in response to fenofibrate at any

of the given time points.
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nNOS

In the current study, the other constitutive NOS isoform, nNOS, was also investigated.  Del Campo

et al. (2011) showed that fenofibrate increased neuronal release of NO by increased

phosphorylation of nNOS in mesenteric arteries of diabetic rats.  However, the data showed that

in our hands, this isoform did not seem to play a significant role in CMECs.  Furthermore, from a

technical point of view, the detection of nNOS and phosphorylated nNOS was inconsistent (figure

3.34 and figure 3.42).  nNOS expression and phosphorylation were detected in the 5, 15 and 30

minute treatments with fenofibrate and these experiments indicated a decrease in

phosphorylation.  nNOS was therefore also excluded as source for fenofibrate-derived NO.

iNOS

The third major NOS isoform, is the inducible NOS (iNOS). Few studies have investigated the

effects of fenofibrate treatment on iNOS. One study showed that fenofibrate increased

pancreatic iNOS expression in monosodium glutamate-induced obese rats, which was associated

with an increase in NFĸB activity (Liu et al. 2011).  Another study on rat aortic tissue showed that

fenofibrate induced endothelial dysfunction (observed as a diminished vasodilatory response) in

a time-dependent fashion, and although iNOS expression was measured, they failed to show any

changes in iNOS expression (Blanco-Rivero et al. 2007). In the current study, the NO response to

1 hour fenofibrate was particularly robust (≈2-fold increase; figure 3.13 A), therefore we

speculated that it could be suggestive of iNOS induction (particularly in view of the eNOS

findings). We therefore repeated the experiments with the iNOS-selective inhibitor, 1400W.

Again two different NO-detection methods (DAF-2/DA fluorescence and Griess method) (figure

3.26 B and C) were used in both CMECs and AECs; however, the findings were similar to those of

the L-NMMA studies, with no reduction in the fenofibrate-induced NO production. DAF-2/DA

fluorescent results however showed a modest, yet statistically insignificant (≈15%) decreasing

trend in the NO production of the 1400W + fenofibrate group.  Even though this reduction was

not significant, the lack of eNOS and nNOS phosphorylation prompted us to further investigate

this finding by means of targeted mRNA and protein expression measurements. The pro-

inflammatory cytokine, interleukin-1β served as a positive control for iNOS induction (Lowry et

al., 2013).  Results indicated that CMECs did not express iNOS on protein or mRNA level under
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control conditions, however interleukin-1β was able to significantly increase iNOS mRNA and

protein expression (figure 3.28) while a ~50% knock-down was confirmed with two constructs of

iNOS silencing RNA.  This is in agreement with a study by Balligand et al. (1995) who showed

similar findings in CMECs.  Furthermore, the mRNA and protein expression data indicated that

fenofibrate did not induce iNOS after 1 hour treatment and was therefore an unlikely candidate

responsible for increased NO levels in this scenario.

Summary: NOS-NO studies

In summary, 50 μM fenofibrate resulted in a large increase in NO after 1 hour incubation in

CMECs.  The elevated levels of NO were associated with a lack of phosphorylation at the positive

regulatory site of eNOS Ser 1177 after 5 min, 15 min, 30 min, 1 hour and 24 hours.  Another

positive regulatory eNOS residue (Ser 632), was also excluded as a mechanism of increased NO

production at 1 and 24 hours.  The eNOS inhibitory site Thr 495, was significantly phosphorylated

after 24 hours of fenofibrate treatment, suggesting an inhibition of eNOS at this time-point. Two

of the major upstream activating kinases of eNOS, namely AMPK and PKB/Akt showed no signs

of activation, and the expression of HSP 90, associated with recruitment of PKB/Akt and AMPK in

activating eNOS, was only increased compared to 1 hour fenofibrate treatment.  iNOS was not

detected at mRNA or protein level in reponse to fenofibrate treatment and nNOS was

inconsistently detected, and therefore unlikely to be involved with the consistent increase in NO

found in this study.  After 24 hours some trends started to emerge suggestive of AMPK activation

along with increased HSP 90 expression, however it did not result in eNOS activation.  It is

therefore proposed that in our hands, the fenofibrate-derived effect on NO in CMECs is more

likely to be due to NOS-independent mechanisms.

NO synthesis: NOS-independent mechanisms

Fisslthaler et al. (1999) and Fichtlscherer et al. (2004) reported that endothelium-dependent pro-

vasodilation mechanisms exist in many arterial beds in response to stimuli, even after NOS

inhibition.  In the present study, an in vitro model of cultured CMECs was used, which to the best

of our knowledge, has never been used in previous in vitro investigations with fenofibrate. Zhao
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et al. (2013) showed that aortic ring contractions of spontaneously hypertensive rats were

decreased via an endothelium-dependent mechanism compared to normal Wistar-Kyoto rats.

Administration of the NOS inhibitors L-NAME and 1400W (directly to the organ bath) had no

effect on the contractile responses; however, when treated with diphenyleneiodonium (inhibitor

of flavonoid proteins including cytochrome P450 reductase) and clotrimazole (cytochrome P450

inhibitor), the contractile responses were abolished.  This effect was accompanied by increased

levels of nitrates and nitrites in plasma as well as aortic tissue.  They further showed by means of

DAF-FM diacetate fluorescence and human aortic endothelial cells (HAEC) that nitrate and nitrite

levels were reduced in the presence of the above mentioned cytochrome P450 inhibitors.  They

therefore concluded that the NO, which reversed the impaired contractile responses in the aortic

rings, was produced by an NOS- independent mechanism. In view of the cytochrome P450

inhibition studies, they suggested that the NO was synthesised via the reduction of nitrates and

nitrites to NO by cytochrome P450 reductase.  It has been known for many years that NO can be

generated via NOS-independent mechanisms; however, the phenomenon of nitrate and nitrite

reduction to form NO has exclusively been described in the context of hypoxia or ischaemia

(Kitakaze et al. 2001; Webb et al. 2004; Duranski et al. 2005) when there is a shortage of oxygen,

an essential substrate for NOS activity.  However, in the studies of Zhao et al. (2013), experiments

were conducted in an aerobic environment.

The family of cytochrome P450 enzymes are involved with the metabolism of xenobiotics and

vascular homeostasis (Campbell & Harder 1999) and is located in the membrane of the

endoplasmic reticulum (microsomes) (Roos & Jakubowski 2008; Pandey & Flück 2013).  The

tissue-selective distribution and regulation of cytochrome P450 is controlled by different nuclear

receptors, such as Pregnane X Receptor (PXR), Glucocorticoid receptor (GR) and Constitutive

Androstane Receptor (CAR).  Upon activation by a xenobiotic ligand, PXR forms a heterodimer

with retinoid X receptor (RXR) which can bind to response elements in the regulatory regions of

the induced genes (Bertrand-Thiebault et al. 2007).  Fenofibrate is a synthetic ligand for PPAR-α,

and upon binding also forms a heterodimer complex with RXR before binding to response

elements (Berger & Moller 2002).  PPAR-α has further been reported to participate with PXR in

metabolizing xenobiotics (Barbier et al., 2004).  It is therefore proposed that one possibility to
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explain the NOS-independent increases observed in our study with fenofibrate, could be via its

putative effects on cytochrome P450. Fenofibrate binds as a synthetic ligand to PPAR-α, which in

conjuction with PXR, could activate cytochrome P450 reductase.  Cytochrome P450 reductase

can utilise nitrites (as was found in figure 3.24 B and C; Griess assay) and produce NO by a NOS-

independent mechanism.  In separate studies in our laboratory, proteomic analysis of CMECs

showed abundant expression of the cytochrome P450 enzyme (unpublished data).  A summary

of the hypothetical pathways is depicted in figure 3.55.

3.5.4 ROS and cell viability

One of fenofibrate’s pleiotropic effects includes antioxidant activities.  Fenofibrate treatment has

previously been associated with decreased superoxide production derived from high glucose

treatment in HUVECs, which was also associated with decreased apoptosis (Zanetti et al., 2008).

Decreased superoxide production in aortic tissue of nicotine treated rats (Kaur et al., 2010)

pretreated with fenofibrate has also been reported.  In vivo, fenofibrate was shown to increase

superoxide dismutase activity in rat brain microvessels (Wang et al., 2010a).  It seems, however,

as if the antioxidant activities of fenofibrate are more evident during diseased states or

pathological conditions than under basal conditions.  The current study showed increased

expression of p22Phox after 1 hour treatment (figure 3.38 C).  P22Phox is the subunit of NADPH

oxidase, responsible for superoxide production (Ambasta et al., 2004).  Even though results

showed increased p22Phox expression, DHE data (figure 3.14 A) showed no changes in

intracellular superoxide production.  In the event of increased levels of NO as well as increased

levels of superoxide, superoxide can scavenge NO resulting in the formation of harmful

peroxynitrite (Ferdinandy & Schulz 2003).  30 μM and 50 μM fenofibrate resulted in decreased

levels of mitochondrial ROS/peroxynitirite at 1 and 4 hours.  As far as we are aware, no previous

studies used DHR-123 in order to assess oxidative stress. Furthermore, fenofibrate has previously

been reported to decrease nitrotyrosine in renal tissue when administered to control and

diabetic animals (Chen & Quilley 2008).  The current study did, however, not find any changes in

nitrotyrosine after 1 or 24 hours.
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NO can exert pro-apoptotic or anti-apoptotic effects.  As previously mentioned, if excessive

amounts of NO are produced, it can combine with superoxide anions to form peroxynitrite.

Peroxynitrite formation results in increased lipid peroxidation along with DNA breakage and

consequently a decrease in cell viability (Virág et al., 2003;  Razavi et al. 2005).  In the current

study, 24 hour treatment with fenofibrate resulted in a decrease in apoptosis as shown by the

Annexin-V data as well as decreased expression of cleaved-Caspase-3, which could be due to the

modest increase in NO.  NO can inhibit apoptosis by S-nitrosylation of the executer caspase,

caspase-3 (Rossig et al., 1999), rendering it inactive.  This is an interesting finding, since it seems

as if most of the robust pleiotropic effects found in the current study were observed at the

shorter treatment periods, however a decrease in apoptosis was only seen after 24 hours

treatment.

3.5.5 Pro-inflammatory pathways

Fenofibrate has previously been shown to possess anti-inflammatory properties, which was

demonstrated in vivo in human studies (Belfort et al., 2010), as well as in vitro by decreasing

nuclear factor kappa B (NF-κB) activity of endothelial cells (Yang et al. 2005; Tomizawa et al.

2011). NF-κB has emerged as a key cellular regulator of inflammation and is activated in many

chronic inflammatory diseases and cancers (Wolfrum et al., 2007; Gyrd-Hansen & Meier 2010;

Ben-Neriah & Karin 2011; Cao et al., 2013;).  IκBα plays an important inhibitory role on NF-κB

activity.  Whilst bound to NF-κB, the latter remains inactivated; however, upon phosphorylation,

IκBα dissociates from NF-κB, and is subsequently broken down via proteasomal processes. The

dissociation step provides the stimulus for NF-κB to become activated and to translocate to the

nucleus and perform its role as a transcription factor.  Therefore, a decrease in total IκBα protein

expression is associated with increased NF-κB activity.  In the present study, 1 hour fenofibrate

treatment resulted in a significant increase in IκBα expression, suggestive of lower levels of NF-

κB activity and hence reduced activation of NF-κB-dependent pro-inflammatory pathways. Our

data are in agreement with those of Tomizawa et al., (2011), who showed that fenofibrate (30

and 100 μM) increased IκBα expression in advanced glycated end-product (AGE)–bovine serum

albumin (BSA) treated HGMECs.  These changes were observed after only 30 minutes of

fenofibrate treatment.  The authors suggested decreased levels of NF-κB activity to be due to
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AMPK (Thr 172) activation.  The study of Yang et al. (2005) pretreated HUVECs with fenofibrate

prior to administration of oxidized-low density lipoprotein (ox-LDL) and found fenofibrate to

inhibit ox-LDL induced endothelial damage as a result of decreased levels of asymmetric

dimethylarginine (ADMA) (an endogenous inhibitor of NOS;  partakes in the vascular

inflammatory reaction).  These results were associated with decreased NF-κB activity, an effect

that was PPARα dependent.  Considering these studies and the fact that the present study did

not find increased AMPK activation after 1 hour treatment, it is proposed that increased

expression of IκBα is directly related to PPARα receptor activation.

3.5.6 1 hour untreated controls versus 24 hour untreated controls

An interesting observation was made with regards to the differences in phosphorylation between

the 1 hour control and 24 hour control groups.  Phosphorylation was significantly decreased in

the 24 hour control group compared to 1 hour in phospho-eNOS (Ser 1177), phospho-eNOS (Thr

495), phospho-eNOS (Tyr 657) and phospho-PKB/Akt.  Furthermore, p22Phox expression and

cleaved-caspase 3 formation was decreased.  These observations highlighted the importance of

including time-controls for treatments.  It can be speculated that these effects are due to

supplemental depletion of the growth media.  CMECs were cultured in growth media containing

vascular endothelial growth factor (VEGF), human epidermal growth factor (hEGF), human

fibroblastic growth factor (hFGF), long chain human insulin-like growth factor (R3-IGF-1), ascorbic

acid, hydrocortisone and antibiotics gentamicin and amphotericin.  VEGF (Yang et al. 2014) and

R3-IGF-1 (Imrie et al., 2009) have been shown to increase eNOS activity in endothelial cells and

that after 1 hour the effects of these supplements were still ongoing while after 24 hours

supplements have been depleted and the effects abolished.

3.5.7 Fenofibrate pretreatment studies

In the previous sections, the pleiotropic effects of fenofibrate in normal, baseline CMECs were

discussed, and indeed it was shown that fenofibrate could exert pleiotropic effects in a non-

diseased environment.  The next step was to establish whether the effects of fenofibrate were

able to protect against the endothelial cell injury induced by the harmful, pro-inflammatory

stimulus, TNF-α.  As discussed in chapter 1, inflammation is not only associated with
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cardiovascular risk factors such as diabetes or obesity, but also with atherosclerosis from the

initial to the end stages when thrombotic complications occur (Libby 2006).  Once inflammatory

cells (e.g. macrophages) have infiltrated the area of vascular injury, they release cytokines such

as TNF-α, proteases, and ROS, which trigger vasoconstriction or vasodilation (Groth et al., 2014),

thrombus formation (Carter 2005; Libby 2006), angiogenesis and tissue remodelling (Wilensky

et al., 1995). TNF-α has been shown to result in endothelial activation and dysfunction with

oxidative stress regarded as the likely common mechanism (Genis et al., 2014). The effects of

TNF-α are very much concentration-dependent. In a separate study from our laboratory, it was

confirmed that 20 ng/ml TNF-α resulted in upregulation of pro-apoptotic pathways as measured

by proteomic analysis (Genis et al., 2014).  Our aim was therefore to investigate whether the

beneficial baseline effects of fenofibrate that were observed in normal CMECs (increased NO

production, decreased mitochondrial/peroxynitrite formation, anti-apoptotic and anti-NF-KB

pro-inflammatory signalling) would be sustained and possibly even protect endothelial cells

against a harmful, pro-inflammatory microenvironment induced by TNF-α treatment.

eNOS-NO biosynthesis

Fenofibrate treatment alone significantly increased NO levels observed in the previous

experiments, whilst TNF-α treatment alone did not change NO levels.  However, when TNF-α-

treated CMECs were pretreated with fenofibrate, the NO production increased significantly to

reach the levels observed in fenofibrate only groups (figure 3.46).  The effects of TNF-α on the

NOS-NO biosynthesis pathway are quite variable, and are time, concentration and even cell type

specific (Genis, Stellenbosch University, 2014).  On the one hand, TNF-α has been shown to result

in an up-regulation of the NOS/NO pathway (Yoshizumi et al., 1993;  De Palma et al., 2006), whilst

others demonstrated the opposite effects (Ahmad 2002; Picchi et al., 2006; Gao et al., 2007).

Decreased bio-availability of NO is considered a hallmark of endothelial dysfunction (Bonetti

2003).  In the current study, the NO production in the TNF-α treatment group remained at

untreated control levels, while pretreatment with TNF-α increased NO levels approximately

120%;  furthermore, total eNOS expression was decreased in the TNF-α-treated cells, and

fenofibrate pretreatment could not alter this (figure 3.49B). However, interestingly, fenofibrate

pretreatment did significantly increase the phosphorylated eNOS (Ser 1177) levels compared to
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the TNF-α only group; in fact, the phospho / total eNOS ratio of the pretreatment group was the

only experimental intervention that was significantly increased compared to untreated control

samples.  This is an intriguing finding, considering the lack of eNOS activation seen with

fenofibrate treatment in previous in vitro studies of this chapter.  Additionally, the fenofibrate

pretreatment group also showed increased AMPK phosphorylation, which coincided with the

increased eNOS phosphorylation, suggesting that the AMPK-eNOS pathway was activated only

when fenofibrate was pre-administered to TNF-α-treated cells.

ROS production, apoptosis and NF-κB signalling

Although, in our hands, treatment of CMECs with 20 ng/ml TNF-α (24 hours) did not result in

reduced NO production (one of the hall-marks of endothelial dysfunction), it did result in the

manifestation of other major markers of endothelial cell injury, namely increased levels of

mitochondrial ROS (figure 3.47), increased levels of NADPH oxidase activity as seen in p22phox

expression (figure 3.54 C), as well as increased apoptosis (cleaved caspase-3 and PARP) (figure

3.53 B and C).  The pronounced effects of TNF-α treatment on ROS production failed to translate

into increased necrosis compared to untreated control samples, however, necrosis was

significantly higher in the TNF-α group compared to the fenofibrate only and fenofibrate

pretreatment groups (figure 3.48).  The effects of TNF-α on ROS generation and cell death have

been described by many others (reviewed in Zhang et al., 2009).  Increased ROS production is

one of the mechanisms of NF-κB activation, which can result in target gene activation for TNF-α

protein synthesis (De Martin et al., 2000).  In the present study, the TNF-α treatment and

fenofibrate pretreatment groups both showed reduced IκBα expression (i.e. increased NF-κB

activity) (figure 3.52). The data also showed that the increased ROS production in the TNF-α

group was abolished by fenofibrate pretreatment (figure 3.54 C).  Interestingly, these findings

were associated with reduced levels of necrosis and apoptosis.  PARP can be cleaved by caspase-

3 and is considered a prominent marker of apoptosis.  It is preferable not to observe PARP

cleavage in isolation since PARP-1 proteolysis has previously been found due to technical reasons

(Soldani & Scovassi 2002).  In the current study similar results were found for both markers of

apoptosis.  Cleaved PARP (89 kDa) expression correlated well with cleaved-caspase-3 expression

and both these apoptotic markers showed a similar trend to necrosis levels observed in figure
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3.48.  Fenofibrate pretreatment therefore improved cell viability by decreasing, although not

abolishing, the pro-apoptotic and pro-necrotic effects of TNF-α, possibly due to decreased levels

of ROS.

The marker of peroxynitrite damage, namely nitrotyrosine, showed no changes and it therefore

seems that TNF-α did not exert its detrimental effects through peroxynitrite formation, but

rather via increased ROS levels from the mitochondria and the NADPH oxidase system.

Peroxynitrite is generated as a result of the chemical reaction between NO and superoxide

(Ferdinandy & Schulz 2003).  Even though increased levels of superoxide were present, increased

NO levels were not, thus making peroxynitrite formation unlikely.  Pretreatment with fenofibrate

showed a strong anti-oxidant effect compared to TNF-α only samples, which could be due to the

up-regulation of anti-oxidant systems.  In previous studies we also showed that 1 and 4 hour

treatment with fenofibrate decreased mitochondrial ROS/peroxynitrite levels measured by DHR-

123 fluorescence (figure 3.15), which is suggestive of increased anti-oxidant mechanisms.

Fenofibrate has previously been reported to result in the up-regulation of superoxde dismutase

(SOD) as well as catalase (Toyama et al., 2004; Olukman et al., 2010;  Wang et al., 2010a) and it

is proposed that up-regulation of these anti-oxidants resulted in decreased levels of ROS.  The

anti-oxidant effects of fenofibrate seemed more robust than its effects on the pro-inflammatory

NF-κB pathway in the CMECs. As expected, the pro-inflammatory cytokine TNF-α resulted in

increased NF-κB activity in the CMECs as observed by a reduction in IκBα expression.  Fenofibrate

pretreatment was, however, not able to attenuate this effect. A summary of findings is depicted

in figure 3.56.

3.5.8 Summary of the in vitro effects of fenofibrate

Fenofibrate exerted pleiotropic effects in CMECs under basal conditions.  The effects on NO

production were more robust for shorter treatment periods and were associated with decreased

mitochondrial ROS/peroxynitrite.  NO seems to be produced via a NOS independent pathway, it

is proposed to be via cytochrome P450 reductase.  Pretreatment of CMECs with fenofibrate

resulted in beneficial effects with regards to NO production, ROS and cell viability.  Even though

fenofibrate increased NO after 1 hour via a NOS-independent mechanism, its seems as the micro-
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environment changed by adding TNF-α CMECs started to switch toward eNOS-prevalent

mechanisms.  Final conclusions will follow later in the dissertation.

Figure 3.55:  A cartoon depicting proposed mechanisms involved with fenofibrate-derived NO

production after 1 hour treatment. Our findings provided no evidence in favour of NOS-dependent

NO synthesis. It is proposed that fenofibrate bound as ligand to PPAR-α which formed a complex

with RXR.  RXR can either directly result in transcription of genes responsible for stimulating

cytochrome P450 reductase or RXR can via PXR result in gene transcriptions.  It is proposed that

cytochrome P450 reductase converted nitrates and nitrites to NO;  all of these mechanisms were

NOS-independent. Significant down-regulation of eNOS could possibly be due to increased

phosphatase activity. PPAR-α: Peroxisome proliferator activated receptor;  RXR:  Retinoid-X-

receptor;  PXR:  Pregnane-X-receptor;  AMPK:  AMP-activated protein kinase;  PKB/Akt:  Protein

kinase B;  HSP 90:  Heat shock protein 90;  eNOS:  Endothelial nitric oxide synthase;  nNOS:

neuronal nitric oxide synthase;  iNOS:  inducible nitric oxide synthase.
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Figure 3.56:  A cartoon depicting the effect of 1 hour fenofibrate pre-treatment on TNF-α. The

effects of TNF-α is indicated in black arrows, while changes brought about by fenofibrate pre-

treatment are indicated in red.  TNF-α:  Tumor necrosis factor alpha;  AMPK:  AMP-activated

protein kinase;  PKB/Akt:  Protein kinase B;  HSP 90:  Heat shock protein 90;  eNOS:  Endothelial

nitric oxide synthase;  MitoROS:  Mitochondrial reactive oxygen species;  P:  Phosphorylation.
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Chapter 4

Materials and Methods:  Ex vivo and In vivo studies
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Chapter 4:  Materials and Methods – Ex vivo and in vivo studies

4.1 Introduction
Chapter 4 describes the experimental methods and protocols followed for the ex vivo and in vivo

studies.  The ex vivo studies consisted of investigations into the organ bath-based vascular

contraction-relaxation function of aortas obtained from healthy male Wistar rats. In these

studies, fenofibrate was administered directly to the aortic rings mounted in the organ bath, and

acute vascular and endothelium-dependent responses measured. The in vivo studies comprised

a 6-week period of oral treatment with fenofibrate or simvastatin, followed by organ bath-based

investigations into the vascular contraction-relaxation function of the aortas obtained from the

treated animals.

4.2 Materials
NG-Monomethyl-L-arginine monoacetate (L-NMMA) was from Calbiochem (San Diego, CA, USA).

Dimethyl sulfoxide (DMSO), 1400W dichloride, nitrite/nitrate colorimetric kit, acetylcholine,

serotonin and phenylephrine were from Sigma-Aldrich (St Louis, Mo, USA).  All other chemicals

and buffer reagents were purchased from Merck (Darmstadt, Germany).

4.3 Animal care
Experiments were conducted according to “The Revised South African National Standard for the

Care and Use of Animals for Scientific Purposes (South African Bureau of Standards, SANS 10386,

2008)”.  Ethics approval was received from the University of Stellenbosch (Project number: SU-

ACUM11-00002 and SU-ACUM13-00041). Male Wistar rats weighing between 200 - 250 g were

housed at room temperature in the Animal Housing Unit of the Faculty of Medicine and Health

Sciences of Stellenbosch University. Animals were subjected to normal 12 hour light and dark

cycles and had free access to standard rat chow and water.  Animals were anaesthetized with

pentobarbital (160 mg / kg) before excision of the aortas.
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4.4 Excision and mounting of aortic rings
As soon as the rat stopped reacting to a toe-pinch test, an incision was made through skin and

muscle layers across the ventral side of the rat, just below the thoracic region.  The diaphragm

was cut and ribcage cut in a cranial direction as to expose the thoracic cavity.  Heart, lungs,

trachea and oesophagus were removed.  The thoracic aorta (above the diaphragm to distal end

of the aortic arch) was excised and immediately placed in ice cold Krebs Henseleit buffer (KHB;

composition in mM: NaCl 119, NaHCO3 25, KCl 4.75, KH2PO4 1.2, MgSO4.7H2O 0.6, Na2SO4 0.6,

CaCl2.H2O 1.25, and glucose 10).  Perivascular fat and connective tissue were removed (figure

4.1) and the aorta cut into a 3-4 mm ring segment that was subsequently mounted onto two

stainless steel hooks in a 25 ml organ bath (AD Instruments, Bella Vista, New South Wales,

Australia) (figure 4.2) containing oxygenated (95% O2 and 5% CO2) KHB (figure 4.3).  Aortic ring

tension was recorded with an isometric force transducer (TRI202PAD, Panlab, lCornellà, BCN,

Spain) and data analysed with LabChart 7 sofware (Dunedin, New Zealand).
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Figure 4.1:  A thoracic aorta excised and cleaned of connective tissue and perivascular fat (from

Loubser D, M.Sc thesis, Stellenbosch University, April 2014).
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Figure 4.2:  Tissue organ bath with force transducer (modified from Loubser D, M.Sc thesis,

Stellenbosch University, April 2014)

Figure 4.3:  Organ bath with an aorta ring segment suspended between two 2 steel hooks (from

Loubser D, M.Sc thesis, Stellenbosch University, April 2014).
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4.5 Experimental protocol: ex vivo studies
Pilot studies were performed to investigate the effect of ex vivo administration of fenofibrate

and simvastatin on vasodilation of a pre-contracted aortic ring.  Simvastatin administration did

not result in vasorelaxation of the aortic rings and it was decided to only continue with

fenofibrate for ex vivo studies.

The isometric tension measurement protocol was based on a modification of a previously

described technique (Privett et al., 2004). Mounted aortic rings were stabilised under a resting

tension of 1.5 g for 30 minutes during which time the KHB in the organ bath was changed every

10 minutes with pre-warmed (37 oC) KHB.  Functionality of the endothelium was tested with a

first round of contraction with phenylephrine (100 nM) and acetylcholine induced (10 μM)

relaxation. Phenylephrine is an α-adrenergic receptor agonist which acts directly on the vascular

smooth muscle cells leading to contraction.  Acetylcholine binds to endothelial surface receptors

resulting in an increase in intracellular calcium and consequently eNOS activation, NO release

and smooth muscle cell relaxation.  Rings that showed at least a 70% relaxation of maximum

phenylephrine-induced contraction were deemed viable, and included for further investigations.

Following the first round of contraction-relaxation induction, the organ bath was rinsed with

fresh KHB and rings were stabilised for a further 30 minutes at 1.5 g tension, replacing the KHB

every 10 minutes.  Aortic ring contraction was induced with the administration of 1 µM

phenylephrine until a plateau was reached. As a positive control for endothelium-dependent

relaxation, aortic rings were subsequently exposed to cumulative concentrations of acetylcholine

(30 nM – 10 µM), and experimental aortic rings to cumulative concentrations of fenofibrate (50

µM – 125 µM) added ex vivo to the organ bath.  In order to investigate whether the observations

were due to endothelial-derived eNOS-NO release, aortic rings were pre-treated with the NOS

inhibitor, L-NMMA (100 µM) for 15 min prior to the phenylephrine-acetylcholine and

phenylephrine-fenofibrate protocols (figure 4.4).
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Figure 4.4:  A representative LabChart recording showing the aortic ring responses to the

experimental protocol followed for the ex vivo studies. Phe:  Phenylephrine;  Ach:  Acetylcholine;

Feno:  Fenofibrate; L-NMMA: NG-Monomethyl-L-arginine monoacetate..
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4.6 Experimental protocol: in vivo studies
For the in vivo studies, 60 male Wistar rats were divided into 3 groups:  Control (untreated),

Fenofibrate and Simvastatin (figure 4.5).  Rats were included in the study with a starting weight

of approximately 140 – 160g.  They were housed 3 per cage according to conditions mentioned

in 4.3.

4.6.1 Drug administrations

Fenofibrate was retrieved from Lipanthyl® 200 mg (Abbott, Illinois, USA) capsules, while

simvastatin was retrieved from Zocor® 10 mg tablets (MSD), after crushing and powdering the

tablets. Drugs were set in jelly cubes and administered to the animals daily (figure 4.6).  The

untreated control animals received jelly cubes without any drugs.  Fenofibrate was administered

at a dose of 100 mg/kg/day (Blanco-Rivero et al., 2007; Alvarez de Sotomayor et al., 2007;

Katayama et al., 2009) and simvastatin was administered at 0.5 mg/kg/day (Lefer et al., 2001) for

6 weeks.  A week before treatment started, animals received plain jelly cubes to familiarise them

with the taste and feeding process.  Animals received treatments in the morning and all animals

were monitored until their jelly cube was consumed.  Food and water intake were carefully

monitored and animals were weighed each week in order to adjust treatments according to

increasing body-weight.
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Figure 4.5:  Flow chart indicating in vivo treatment groups.

Figure 4.6:  Photo of drug treatments made up in jelly cubes set in ice trays. Each animal received

1 cube per day for 6 weeks.
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4.6.2 Nitrite/nitrate colorimetric assay

Once animals were sacrificed, blood was collected from the thoracic cavity and placed in serum

separation tubes (BD VacutainerR).  Blood was left on ice for 30 minutes before being centrifuged

for 10 minutes at 3000 rpm.  Serum was removed and stored at -80 oC for nitrite/nitrate analysis.

For these investigations, serum samples were transferred to a 96-well plate, and the

nitrite/nitrate concentrations measured with the Griess colorimetric assay (Sigma-Aldrich, St

Louis, Mo, USA) in a standard microplate reader (FLUOstar Omega platereader from BMG

Labtech, Ortenberg, Germany). Standard curves were prepared by serial dilutions (0; 25; 50; 100

μM) of NaNO3 standard solution which were included on the 96-well plate.  Each standard was

assayed in duplicate.

All blood serum samples were ultra-filtrated (500 rpm, 4 oC for 1 hour) using Amicon 10

(Millipore) tubes in order to remove haemoglobin and proteins.  Following this, each sample was

added to the 96-well plate in duplicate.  In order to determine the combined nitrate + nitrite

concentrations, samples and standards were incubated with nitrate reductase solution and

enzyme co-factors (received with kit) to convert all nitrates to nitrites.  Griess reagent was then

added and nitrite concentrations determined by the colour reaction measured at 540 nM in the

microplate reader.  The concentration nitrates+nitrites in each sample were determined from

the standard curve (figure 4.7).

Figure 4.7:  Nitrate and nitrite standard curve.
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4.6.3 Liver weight measurements

Fenofibrate acts as a synthetic agonist of the peroxisome proliferator-activated receptor alpha

(PPAR-α) which ultimately regulates the cholesterol-dependent and independent effects (Despre

2001; Goya et al., 2004; Ali et al., 2009). PPAR-α is especially strongly expressed in the liver (Ferre

2004).  There is also an ongoing debate regarding the effect of statins on hepatotoxicity (Lewis

2012), and therefore liver weights from all groups were determined.  Livers were quickly removed

and weighed, as increased liver weight has been shown to be an indicator of liver toxicity (Smyth

et al., 2008).

4.6.4 Aortic ring investigations

The thoracic aorta was excised, cleaned of connective tissue and suspended in the organ bath as

described under section 4.4.  Two rings were cut out from each aorta and mounted immediately

in separate organ baths (figure 4.8), which allowed two simultaneous experiments to be

performed at a time.  Rings were subjected to the same protocol as mentioned in section 4.4.

Following the first round of phenylephrine-acetylcholine experiments, each group was subjected

to the following four isometric tension protocols (figure 4.9 and 4.10):
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Figure 4.8:  Scheme indicating procedures performed on cleaned aortic tissue to obtain aortic rings for isometric tension studies. L-

NMMA: NG-Monomethyl-L-arginine monoacetate.
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1) Cumulative phenylephrine-induced contraction followed by cumulative acetylcholine-

induced relaxation: This protocol was executed by cumulative aortic ring contractions

induced with phenylephrine (administration of phenylephrine in a cumulative fashion

resulting in a step-wise increase in the total concentration as follows: 100 nM;  300 nM;  500

nM;  800 nM;  1 μM). Each phenylephrine aliquot was administered directly to the organ

bath as soon as maximum contraction was reached with the previous administration.  Once

maximum contraction was reached at the final phenylephrine concentration of 1 µM,

acetylcholine was administered in a cumulative manner in order to induce relaxation (step-

wise increases in acetylcholine concentrations: 30 nM;  100 nM;  300 nM; 1 μM;  10 μM).

The experimental protocol was terminated once the final acetylcholine administration (final

concentration: 10 µM) resulted in maximum % relaxation of contraction (figure 4.9 A).

2) Cumulative serotonin-induced contraction: This protocol was executed by cumulative

aortic ring contractions induced with serotonin (administration of serotonin in a cumulative

fashion resulting in a step-wise increase in the total concentration as follows: 100 nM;  1 μM;

10 μM;  100 μM ).  Serotonin (5-hydroxytriptamine; 5-HT) was used as an alternative pro-

contractile agent as it binds to a different vascular smooth muscle cell receptor (5-HT2A

receptor) (Bae et al., 2007) than phenylephrine (figure 4.9 B).

3) L-NMMA pretreatment, followed by cumulative phenylephrine-induced contraction and

cumulative acetylcholine-induced relaxation: In this protocol, the role of NOS-derived NO

was manipulated by pre-administration of the NOS-inhibitor, L-NMMA (100 µM) 15 minutes

prior to the cumulative phenylephrine - acetylcholine protocol (figure 4.10 A).

4) 1400W pretreatment, followed by cumulative phenylephrine-induced contraction and

cumulative acetylcholine-induced relaxation: In this protocol, the role of iNOS-derived NO

was manipulated by pre-administration of the iNOS-inhibitor, 1400W (80 µM) 30 minutes

prior to the cumulative phenylephrine - acetylcholine protocol (figure 4.10 B).
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Figure 4.9:  Representative LabChart recordings showing the aortic ring responses to the

experimental protocols for A) Phenylephrine administration followed by acetylcholine and B)

Serotonin administration followed by acetylcholine.  These two protocols were performed on

aortic rings from the same aorta mounted at the same time in separate organ baths.  Phe:

Phenylephrine;  Ach:  Acetylcholine.
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Figure 4.10:  Representative LabChart recordings showing the aortic ring responses to the

experimental protocols for A) L-NMMA pre-incubation followed by phenylephrine and

acetylcholine administration and B) 1400W pre-incubation followed by phenylephrine and

acetylcholine administration.  These two protocols were performed on aortic rings from the same

aorta mounted at the same time in separate organ baths.  Phe:  Phenylephrine;  Ach:

Acetylcholine; L-NMMA: NG-Monomethyl-L-arginine monoacetate.
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4.7 Signalling investigations - Western blot analyses

4.7.1 Materials

Similar materials were used as mentioned in Chapter 2, section 2.6.1.

4.7.2 Aortic tissue homogenisation

Aortic tissue stored in liquid nitrogen was thawed and rinsed with 500 μL of PBS.  Tissue was then

cut into smaller aortic rings.  120 mg of aortic tissue was added to 120 mg of 1.6 mm stainless

steel beads and 400 μL of lysis buffer (modified from Hou et al., 2008).  Lysis buffer consisted of

20 mM Tris; 1mM EGTA; 150 mM NaCl; 1mM β-glycerophosphate; 1 mM sodium orthovanadate;

2.5 mM tetra-sodium diphosphate; 1 mM PMSF; 0.1 % sodium dodecylsulfate (SDS); 10 μg/ml

aprotinin; 10 μg/ml leupeptin; 50 nM NaF and 1 % triton-X100.  Tissue was homogenized in a

Bullet Blender™ (Next Advance, Inc., NY, USA) by the following steps:

- 3 minutes at speed selection 8

- 2 minutes at speed selection 10

- 5 minutes at speed selection 8

- 3 minutes at speed selection 8

In between the homogenisation cycles, samples were cooled on ice.  After homogenisation,

samples remained on ice for a further 30 minutes and were then centrifuged for 15 minutes at

14 000 rpm at 4 oC.  Protein content was determined by the Bradford assay (Bradford, 1976) as

mentioned in Chapter 2, section 2.6.2.1. Samples were made to yield a final protein content of

15 μg/15 μl of sample.

4.7.3 SDS-polyacrylamide gel and membrane

Loading of samples on a SDS-polyacrylamide gel, subsequent transfer to membrane as well as

antibody conditions and protein band visualization was conducted as described in chapter 2.
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4.8 Statistical analyses
Data were analysed using GraphPad Prism 5 software (GraphPad Software, San Diego, CA, USA).

All aortic ring isometric tension data are expressed as the % contraction from a resting tension

of 1.5 g or % relaxation of maximum contraction.  Data were statistically analysed by means of

two-way analysis of variance followed by Bonferroni post-test.  Overall differences in contraction

or relaxation of treatment groups were calculated by the area under the curve (AUC). Differences

with a p-value < 0.05 were considered statistically significant.

For the western blot data, controls were adjusted to the value of 1.  Student’s t-tests or one-way

analysis of variance (with Bonferroni multiple comparison test) were used to determine statistical

significance. Differences with a p-value < 0.05 were considered statistically significant.
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Chapter 5

Results and discussions on the ex vivo and in vivo pleiotropic

effects of Simvastatin and Fenofibrate
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Chapter 5: Results and discussions on the ex vivo and in vivo pleiotropic

effects of Simvastatin and Fenofibrate

5.1 Introduction
In vivo, simvastatin is taken up by the liver where it inhibits the rate limiting step in the de novo

cholesterol synthesis pathway and hence exerts the cholesterol-dependent and independent

effects explained in chapter 1 (Rikitake & Liao 2005). In vivo, fenofibrate acts as a synthetic ligand

for peroxisome proliferator-activated receptor alpha (PPAR-α)thereby activating PPAR- to form

heterodimers with retinoid-X receptor resulting in translocation of PPAR-α from the cytosol to

the nucleus where it transcribes genes involved with lipid metabolism (Berger & Moller 2002).

The in vitro results from chapter 3 indicated that although treatment with simvastatin resulted

in a modest increase in nitric oxide (NO) production, no other pleiotropic (cholesterol-

independent) effects were observed with regards to the end-points of interest to the current

study.  Conversely, fenofibrate showed pleiotropic effects under both basal and pro-

inflammatory conditions as demonstrated by the following observations: increased NO

production, reduced ROS levels, and selective anti-apoptotic effects.  Although in vitro

investigations such as with simvastatin and fenofibrate in the current study form an important

foundation in research, it has to be acknowledged that such treatments could exert different

effects when metabolised in an in vivo environment, especially with regards to simvastatin.

Simvastatin is a pro-drug and is metabolized in the liver to its active form, whereas in the in vitro

setting, it is converted to its active form before administration to cells.

The endothelium plays an important role in maintaining vascular tone by regulating the balance

between vasodilating and vasoconstricting factors.  During pathological conditions a decrease in

vasodilating substances such as nitric oxide (NO) is found with (relative or absolute) increased

levels of vasoconstrictors such as the prostanoids (Davignon & Ganz 2004; Vanhoutte et al.,

2009).  Vascular tension investigations have proven to be a valuable experimental tool to explore

endothelial and vascular function (Dhanakoti et al., 2000; Streefkerk et al., 2002; Cordaillat et al.,

2007).  The endothelium is the main vascular site of NO-production, which results in
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hyperpolarisation of underlying vascular smooth muscle cells and subsequent vasodilation

(Félétou & Vanhoutte 2009).  Therefore the current study undertook a drug treatment

programme whereby rats were treated with fenofibrate and simvastatin over a period of 6

weeks, allowing us to measure in vivo changes in protein expression and phosphorylation over

time, in addition to measuring the effects of the drugs on vasoreactivity using an aortic ring

model.

5.2 Specific aims
This chapter aimed to investigate the pleiotropic effects of fenofibrate and simvastatin in vascular

tissue by means of the following:

(i) To investigate the effects of in vivo and ex vivo treatment with simvastatin and

fenofibrate on vascular responses by means of aortic ring isometric tension

studies.

(ii) By determining Signalling proteins in the aortic tissue involved with these

responses by means of Western blotting.

5.3 Results:  Ex vivo fenofibrate administration
In chapter 3, in vitro studies with fenofibrate treatment showed a robust and large response with

regards to NO production, especially during shorter treatment periods.  The first phase of the

studies in this chapter was aimed at investigating the ability of fenofibrate to acutely dilate pre-

contracted aortic rings from healthy Wistar rats by direct administration in an ex vivo organ bath

– isometric tension model.  In order to elicit an endothelium / eNOS – dependent vasodilatory

response, phenylephrine precontracted rings were dilated with acetylcholine.

5.3.1 Vascular relaxation:  Ach and L-NMMA

Figure 5.1 indicates the normal vasodilatory response in aortas from healthy rats elicited by

cumulative concentrations of acetylcholine, expressed as % of maximum phenylephrine-pre-

contraction (% Relaxation at 10 µM cumulative acetylcholine concentration:  70.1 ± 3.44 %).

Vasodilation was significantly attenuated by pre-administration of the NOS inhibitor NG-

Monomethyl-L-arginine monoacetate (L-NMMA) as seen by an overall reduction in the area
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under the curve (Control: 6136;  L-NMMA:  3431;  p<0.0001).  Additionally, relaxation was

significantly inhibited by L-NMMA at the following cumulative Ach concentrations: 100 nM

(Control:  26.13 ± 3.01 %;  L-NMMA: 7.65 ± 1.50 %;  p<0.01), 300 nM (Control:  41.88 ± 4.02 %;

L-NMMA:  16.80 ± 3.22 %;  p<0.001), 1 μM (Control:  56.79 ± 4.17 %;  L-NMMA:  31.47 ± 7.45 %;

p<0.001) and 10 μM (Control:  70.10 ± 3.44 %;  L-NMMA:  40.40 ± 8.05 %; p<0.001).

Figure 5.1:  Graph indicating the % relaxation of aortic rings harvested from normal rats induced

by cumulative acetylcholine (Ach) concentrations (“Control” on the graph) and the attenuation of

relaxation by pre-incubation with the NOS-inhibitor, L-NMMA (n = 6 / group).
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5.3.2 Vascular relaxation:  DMSO, fenofibrate and L-NMMA

In the next series of ex vivo experiments, fenofibrate was added directly to aortic rings from

healthy rats pre-contracted with 1 μM of phenylephrine in a single administration. Although the

DMSO administrations exerted a small pro-relaxation response, fenofibrate significantly

increased the maximum recorded % relaxation of the aortic rings compared to DMSO

(Fenofibrate:  22.88 ± 2.24 % vs. DMSO vehicle: 9.93 ± 2.75%;  p<0.001) (figure 5.2 A). In order to

contextualise the % relaxation obtained with fenofibrate, a separate series of the standard Ach-

induced relaxation protocol was included, and from the data it is clear that the pro-relaxation

effects of fenofibrate were significantly less robust than those of Ach (figure 5.2 B).

Pre-incubation of the aortic rings with L-NMMA (prior to phenylephrine induced contraction)

abolished the vasodilatory response induced by fenofibrate (Fenofibrate:  22.88 ± 2.24 %;  L-

NMMA + fenofibrate:  7.90 ± 4.16 %;  p<0.05) (figure 5.3).
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Figure 5.2:  Graphs indicating vascular ring-relaxations induced by cumulative concentrations of

fenofibrate or DMSO and Ach (n = 4-5).  A)  Shows relaxation induced by ex vivo administration of

fenofibrate and its vehicle, DMSO.  B)  Graph illustrating the difference in % dilation by fenofibrate

and acetylcholine.  (Acetylcholine concentrations – 1:  0 nM; 2:  300 nM;  3:  1 μM;  4:  10 μM;

Fenofibrate concentrations - 1:  0 μM; 2:  50 μM;  3:  100 μM;  4:  125 μM);  n = 4-6
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Figure 5.3:  Graph indicating vascular ring-relaxations induced by cumulative concentrations of

fenofibrate, with and without pre-incubation with L-NMMA.
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5.4 Results: In vivo administration of fenofibrate and simvastatin
For the in vivo studies, 60 male Wistar rats were divided into control, fenofibrate (100 mg/kg/day)

and simvastatin (0.5 mg/kg/day) groups and received the respective treatments for 6 weeks.

After 6 weeks animals were sacrificed and the following data were obtained.

5.4.1 Biometric data

5.4.1.1 Body weights

No differences in body weight were found between groups at the start or end of the 6 weeks

treatment programme (Table 5.1).

Table 5.1:  Average body weights of Wistar rats at the beginning and end of study.

5.4.1.2 Liver weights

At the end of the six weeks feeding programme, untreated, control animals had an average liver

weight of 12.79 ± 0.39 g.  Fenofibrate significantly increased liver weight to an average of 23.48

± 0.71*# g (*p<0.05 vs control; #p<0.05 vs simvastatin) while simvastatin did not significantly alter

liver weight (14.75 ± 0.92 g) (figure 5.4).  The ratio of liver weight/body weight expressed in figure

5.5 showed similar trends.
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Figure 5.4:  Bar chart showing average rat liver weights of the three groups at the end of the 6

week feeding period. * p<0.05 vs control; # p<0.05 vs simvastatin (n = 20 per group).

Figure 5.5:  Bar chart showing average rat liver weight/body weight ratio of the three groups at

the end of the 6 week feeding period. * p<0.05 vs control; # p<0.05 vs simvastatin (n = 20 per

group).
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5.4.1.3 Food and Water intake

The average food (figure 5.6) and water (figure 5.7) intake were measured per cage/day for 24

rats.  Three rats were housed per cage.  Simvastatin treated animals showed a small, but

significantly greater food intake than control animals.  Fenofibrate treated animals also showed

a modest, but significantly higher food and water intake compared to control and simvastatin

treated animals: Food – Control:  65.17 ± 0.54 g;  Fenofibrate: 73.22 ± 0.69 g*#;  Simvastatin:

67.85± 0.67 g;  *p<0.05 vs control; #p<0.05 vs simvastatin; Water - Control:  97.13 ± 2.26 ml;

Fenofibrate:  110.80 ± 2.20 ml*#;  Simvastatin:  92.18 ± 2.40 ml;  *p<0.05 vs control; #p<0.05 vs

simvastatin.

Figure 5.6:  Bar chart showing average food intake of the three groups for the duration of the 6

week feeding period, * p<0.05 vs control; # p<0.05 vs simvastatin (n = 24 rats per group).
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Figure 5.7:  Bar chart showing average water intake of the three groups for the duration of the 6

week feeding period, * p<0.05 vs control; # p<0.05 vs simvastatin (n = 20 rats per group).
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In order to investigate whether the 6 week drug treatment regimens would result in detectable

increases in blood NO levels, the concentration of the major downstream metabolites of NO,

nitrites and nitrates was measured in the serum of the animals.  Fenofibrate significantly

increased the concentration of nitrites and nitrates compared to the untreated, control groups

(Control:  0.50 ± 1.43 μM;  Fenofibrate:  6.20 ± 1.43 μM;  p<0.05).  Although simvastatin treatment

increased the nitrites and nitrates in the serum, it failed to reach statistical significance (figure

5.8).
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Figure 5.8:  Bar chart indicating the concentration of nitrites + nitrates in serum of the three

groups (n = 6 / group; in duplicate);  *p<0.05 vs control.
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5.4.3 Aortic ring investigations

Results are presented in the same order as indicated in chapter 4, figure 4.9 and 4.10.

5.4.3.1 Protocol 1:  Phenylephrine – Acetylcholine

Cumulative contractions with phenylephrine (Phe) showed no changes in any of the treatment

groups compared to untreated control groups (figure 5.9 A).  Similarly, acetylcholine (Ach)

induced relaxations were similar in untreated control, fenofibrate and simvastatin treated groups

(figure 5.9 B).

5.4.3.2 Protocol 2:  Serotonin

Cumulative contractions were also induced with a different vasoconstrictor, serotonin and figure

5.10 A, C and D show that 100 μM of serotonin induced a significant pro-contractile response in

aortic rings from simvastatin treated animals compared to untreated control and fenofibrate

groups (Control:  115.84 ± 3.44 %;  Fenofibrate:  112.23 ± 6.19 %; Simvastatin:  137.80 ± 9.83*$

%;  *p<0.05 vs control; $ p<0.05 vs fenofibrate).  Fenofibrate showed no changes in contraction

compared to untreated controls (figure 5.10 B).
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Figure 5.9:  Graphs indicating the effects of in vivo fenofibrate and simvastatin treatment on

phenylephrine induced contraction and acetylcholine induced relaxation. A)  Aortic ring

contractions in response to cumulative concentrations of phenylephrine followed by B) cumulative

concentrations of acetylcholine (n = 7-8 per group).
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Figure 5.10:  Graphs indicating the effects of in vivo fenofibrate and simvastatin treatment on

serotonin induced contraction. A)  Aortic ring contractions of all experimental groups, in response

to cumulative concentrations of Serotonin.  The experimental group results are further separated

in B) for control and fenofibrate groups, C) control and simvastatin groups and D) simvastatin and

fenofibrate groups (n = 5 per group).
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5.4.3.3 Protocol 3:  L-NMMA – Phenylephrine – Acetylcholine

Contraction studies

Figure 5.11 A clearly illustrates the outstanding pro-contractile effects exerted by 100 µM L-

NMMA pre-administration in all the groups. L-NMMA pre-treatment significantly increased

contraction in untreated control rings: AUC (Control:  88.2; L-NMMA+Control:  146.0;  p<0.001),

which was further underscored by measuring a 64% increase in contraction at the maximum

cumulative Phe concentration in the L-NMMA+Control vs control groups (figure 5.11 A). Similar

pro-contractile effects were observed in aortic rings from fenofibrate treated (AUC: Fenofibrate:

92.45; L-NMMA+Fenofibrate: 154.2;  p<0.0001) (figure 5.11 A) and simvastatin treated (AUC:

Simvastatin: 90.88; L-NMMA+Simvastatin:  171.0;  p<0.0001) (figure 5.11 A). In the presence

of L-NMMA, aortas from fenofibrate and simvastatin treated animals showed a 63% and 84%

increase in contraction at the maximum cumulative Phe concentration respectively compared to

rings without L-NMMA (figure 5.11 A).

In the next set of analyses, the three L-NMMA pre-treated groups were compared with each

other.  Comparisons of the AUC indicated that L-NMMA pre-administration exerted a significant

pro-contractile response in the aortic rings from simvastatin treated rats compared to control

groups (L-NMMA+Control:  146.0;  L-NMMA+Simvastatin:  171.0;  p<0.05) (figure 5.11 C). These

findings were further underscored when the data at the first three cumulative Phe

concentrations were compared: 100 nM (L-NMMA+Control:  121.86 ± 7.33 %;  L-

NMMA+Simvastatin:  155.73 ± 9.69 %;  p<0.05 vs control), 300 nM (L-NMMA+Control:  150.01 ±

6.194 %;  L-NMMA+Simvastatin:  176.68 ± 7.8 %;  p<0.05 vs control) and 500 nM (L-

NMMA+Control:  158.53 ± 6.04 %;  L-NMMA+Simvastatin:  184.18 ± 7.41 %;  p<0.05 vs control)

(figure 5.11 C).  Furthermore, the AUC of aortic rings from simvastatin-treated animals was

significantly greater than that of fenofibrate-treated animals (L-NMMA+Simvastatin:  171.0; L-

NMMA+Fenofibrate:  152.4; p<0.05) (figure 5.11 D).  No differences in contraction were found

between untreated control + L-NMMA and fenofibrate treated + L-NMMA (figure 5.11 B).

Relaxation studies

As expected, figure 5.12 A clearly illustrates the anti-relaxation effects exerted by L-NMMA pre-

administration in all groups. Aortic rings from control animals showed a significant reduction in
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vasorelaxation in the presence of L-NMMA as calculated by the AUC (Control: 8903; L-

NMMA+Control:  4139;  p<0.0001) (figure 5.12 A), further underscored by the fact that L-NMMA

pre-treatment resulted in a 50% reduction in relaxation at the maximum cumulative Ach

concentration (figure 5.12 A).  Similar results were observed in the fenofibrate treated groups

(AUC: Fenofibrate: 8592; L-NMMA+Fenofibrate:  3427;  p<0.0001) (figure 5.12 A) and

simvastatin treated groups (AUC: Simvastatin:  8950; L-NMMA+Simvastatin:  2239;  p<0.0001)

(figure 5.12 A).  In the presence of L-NMMA, aortic rings from fenofibrate and simvastatin treated

animals resulted in a 51% and 68% decrease in relaxation at the maximum cumulative Ach

concentration (figure 5.12 A).

With regards to Ach-induced relaxation following L-NMMA pre-incubation, the simvastatin-group

showed an overall significant anti-relaxation response to Ach compared to the other groups as

calculated by the AUC (L-NMMA+Control:  4139;  L-NMMA+Fenofibrate:  3427;  L-

NMMA+Simvastatin:  2239*$; *p<0.0001 vs L-NMMA+Control; $ p<0.05 vs L-

NMMA+Fenofibrate) (figure 5.12A).  L-NMMA pre-incubation of aortic rings from the simvastatin

group further exerted Ach concentration specific differences in relaxation compared to the L-

NMMA+control group at the following cumulative Ach concentrations: 300 nM (L-

NMMA+Control:  32.27 ± 4.73 %;  L-NMMA+Simvastatin:  13.63 ± 2.019 %;  p<0.01 vs L-

NMMA+Control), 1 μM (L-NMMA+Control:  39.28 ± 5.35 %;  L-NMMA+Simvastatin:  19.562 ± 2.49

%;  p<0.01 vs L-NMMA+Control) and 10 μM (L-NMMA+Control:  45.69 ± 5.78 %;  L-

NMMA+Simvastatin:  27.04 ± 3.09 %;  p<0.01 vs L-NMMA+Control) (figure 5.12 C) as calculated

by the two-way ANOVA test.  The AUC of simvastatin-treated aortic rings was significantly less

than that of fenofibrate-treated rings (L-NMMA+Simvastatin:  2239; L-NMMA+Fenofibrate:

3427; p<0.05) (figure 5.12 D).  No differences in relaxation were found between untreated control

+ L-NMMA and fenofibrate treated + L-NMMA (figure 5.12 B).
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Figure 5.11:  Graphs showing the effects of L-NMMA pre-administration on Phe-induced

contraction. A)  Graph indicates differences in contraction of aortic rings between control,

fenofibrate and simvastatin treated groups incubated with or without L-NMMA.  Results are

further separated, showing aortic ring contractions from the B) L-NMMA+Control group versus L-

NMMA+Fenofibrate group, C) L-NMMA+Control group versus L-NMMA+Simvastatin group and

D) L-NMMA+Fenofibrate versus L-NMMA+Simvastatin; n = 6-7 per group.
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Figure 5.12:  Graphs showing the effects of L-NMMA pre-administration on Ach-induced

relaxation. A)  Graph indicates differences in relaxation of aortic rings between control,

fenofibrate and simvastatin treated groups incubated with or without L-NMMA.  Results are

further separated, showing aortic ring relaxations from the B) L-NMMA+Control group versus L-

NMMA+Fenofibrate group, C) L-NMMA+Control group versus L-NMMA+Simvastatin group and

D) L-NMMA+Fenofibrate versus L-NMMA+Simvastatin; n = 6-7 per group.
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5.4.3.4 Protocol 4:  1400W – Phenylephrine – Acetylcholine

Contraction studies

Figure 5.13 (A and F) shows the significant pro-contractile effect exerted by pre-administration

of the iNOS inhibitor, 1400W (80 µM) in the aortic rings from simvastatin treated animals; AUC:

Simvastatin:  90.88;  1400W+Simvastatin:  120.8;  p<0.0001).  In the next set of analyses, the

three 1400W pre-treated groups were compared with each other. 1400W pre-incubation elicited

a pronounced overall pro-contractile effect on aortic rings from simvastatin-treated animals as

shown by the AUC (1400W+Control:  79.45; 1400W+Fenofibrate:  75.09; 1400W+Simvastatin:

120.8*$;  *p<0.0001 vs 1400W+Control; $ p<0.05 vs 1400W+Fenofibrate) (figure 5.13 B and C).

1400W pre-incubation did not change the contractile responses of aortic rings in the fenofibrate-

treated group compared to control aortic rings.  1400W pre-incubation in the simvastatin treated

aortic rings further exerted Phe-induced concentration specific differences in contraction

compared to control and fenofibrate groups at the following cumulative Phe concentrations: 500

nM (1400W+Control:  88.41 ± 12.69 %;  1400W+Fenofibrate:  85.08 ± 11.88 %;

1400W+Simvastatin:  133.50 ± 15.33*$ %;  *p<0.05 vs Control; $ p<0.05 vs Fenofibrate), 800 nM

(1400W+Control:  95.87 ± 12.87 %;  1400W+Fenofibrate:  90.65 ± 12.07 %;  1400W+Simvastatin:

140.58 ± 15.54*$ %;  *p<0.05 vs Control; $ p<0.05 vs Fenofibrate) and 1 μM (1400W+Control:

97.45 ± 12.79 %;  1400W+Fenofibrate:  91.29 ± 12.69 %;  1400W+Simvastatin:  141.92 ± 15.64*$

%;  *p<0.05 vs Control; $ p<0.05 vs Fenofibrate) (figure 5.13 C and D) as calculated by a two-way

ANOVA .

The contraction of aortic rings from control animals was not affected by the presence or absence

of 1400W (figure 5.13 D).  Aortic rings from fenofibrate treated animals showed a significant pro-

contractile response to Phe in the absence of 1400W pre-incubation;  AUC: Fenofibrate: 92.45;

1400W+Fenofibrate:  75.09;  p<0.01) (figure 5.13 E).

Relaxation studies

With regards to Ach induced relaxation, pre-administration of the iNOS inhibitor, 1400W did not

exert any effects on aortic ring relaxation in any of the groups when compared to their treatment-

matched controls without 1400W pre-administration (figure 5.14 A).  Pre-incubation with 1400W
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in the simvastatin aortic rings did however result in an overall anti-relaxation response to Ach as

calculated by the AUC compared to the other groups pre-incubated with 1400W

(1400W+Control:  9379; 1400W+Fenofibrate:  9652;  1400W+Simvastatin:  8380*$;  *p<0.0001

vs 1400W+Control; $ p<0.01 vs 1400W+Fenofibrate) (figure 5.14 B, C and D).  The

1400W+simvastatin group further showed Ach concentration specific differences in relaxation

compared to control rings pre-incubated with 1400W at the following cumulative Ach

concentrations: 30 nM (1400W+ Control:  37.82 ± 3.05 %;  1400W+Simvastatin:  16.45 ± 1.86 %;

p<0.05), 100 nM (1400W+Control:  73.02 ± 3.52 %;  1400W+Simvastatin:  50.71 ± 3.76 %;  p<0.05)

and 300 nM (1400W+Control:  88.00 ± 3.30 %;  1400W+Simvastatin:  72.03 ± 4.57 %;  p<0.05 vs

control) (figure 5.14 C) as calculated by a two-way ANOVA .
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Figure 5.13:  Graphs showing the effects of 1400W pre-administration on Phe-induced contraction. A)  Graph indicates differences in

contraction of aortic rings between control, fenofibrate and simvastatin treated groups incubated with or without 1400W.  Results are further
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separated, showing aortic ring contractions from the B) 1400W+Simvastatin group and 1400W+Control group, C) 1400W+Fenofibrate and

1400W+Simvastatin group, D) Control group with or without 1400W;  E) Fenofibrate group with or without 1400W;  F) Simvastatin group

with or without 1400W;n = 6-7 per group.
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Figure 5.14:  Graphs showing the effects of 1400W pre-administration on Ach-induced relaxation.

A)  Graph indicates effects on relaxation of aortic rings between control, fenofibrate and

simvastatin treated groups incubated with or without 1400W.  Results are further separated,

showing aortic ring relaxations from the B) 1400W+control group and 1400W+Fenofibrate group,

C) 1400W+Control group and 1400W+Simvastatin group, D) 1400W+Fenofibrate group and

1400W+Simvastatin group,; n = 6-7 per group.
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5.4.4 Signalling investigations

In order to observe whether the functional data of the vascular reactivity investigations could be

explained by changes in intracellular signal transduction pathways, western blot analyses were

performed on frozen aortic tissue of control, fenofibrate and simvastatin treated animals.  Total

protein expression is expressed as a ratio of loading control (β-tubulin) and these values were

used to calculate the phosphorylation/total ratio.  Controls are expressed as 1.

5.4.4.1 NOS

No statistically significant changes were found in total-eNOS expression, phospho-eNOS Ser 1177

or the ratio of P/T eNOS in any of the experimental groups (figure 5.15 B - D).

With regards to iNOS expression, fenofibrate and simvastatin significantly increased iNOS

expression in aortic tissue (Control:  1;  Fenofibrate:  1.42 ± 0.15*;  Simvastatin:  1.84 ± 0.06*;

*p<0.05 vs Control) (figure 5.16).

nNOS expression could not be detected.

5.4.4.2 AMPK

Fenofibrate as well as simvastatin treated aortic tissue showed significantly lower expression of

AMPK (Control:  1 Fenofibrate:  0.74 ± 0.02*;  Simvastatin:  0.78 ± 0.05*;  *p<0.05 vs Control)

(figure 5.17 B).  Simvastatin treated aortic tissue further showed lower levels of phospho-AMPK

(Thr 172) (Control:  1;  Simvastatin:  0.62 ± 0.07;  p<0.05) (figure 5.17 C).  No changes were found

in the phospho/total ratio of AMPK (figure 5.17 D).

5.4.4.3 PKB/Akt

Fenofibrate treatment significantly increased PKB/Akt expression (Control:  1;  Fenofibrate:  1.33

± 0.04;  p<0.05) (figure 5.18 B).  Simvastatin treatment significantly decreased phosphorylation

of PKB/Akt (Control:  1;  Simvastatin:  0.37 ± 0.04;  p<0.05) (figure 5.18 C) while both treatments

resulted in a significantly reduced phospho/total ratio of PKB/Akt (Control:  1; Fenofibrate:  0.35

± 0.17*;  Simvastatin:  0.28 ± 0.05*;  *p<0.05 vs Control) (figure 5.18 D).
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5.4.4.4 HSP 90

Fenofibrate treatment did not change HSP 90 expression in aortic tissue, however simvastatin

treatment significantly reduced HSP 90 expression (Control:  1;  Simvastatin:  0.50 ± 0.01;  p<0.05)

(figure 5.19 B).

5.4.4.5 Nitrotyrosine and IκBα expression

Fenofibrate treatment did not change nitrotyrosine levels, however simvastatin treatment

significantly reduced nitrotyrosine levels compared to untreated controls (Control:  1;

Simvastatin:  0.59 ± 0.05;  p<0.05) (figure 5.20 C).  Similarly, fenofibrate treatment had no effect

on IκBα expression, however simvastatin treatment significantly reduced IκBα expression

compared to untreated controls and the fenofibrate treated group (Control:  1;  Fenofibrate:  1.12

± 0.22;  Simvastatin:  0.47 ± 0.06;  p<0.05) (figure 5.20 D)
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Figure 5.15:  Bar charts indicating changes in eNOS expression and phosphorylation (Ser 1177) in

aortic tissue from rats receiving fenofibrate and simvastatin treatment in vivo. A)  Representative

western blots indicating total-eNOS, phospho-eNOS (Ser 1177) and β-tubulin. B)  Analysed data

for total-eNOS.  C)  Analysed data for phospho-eNOS (Ser 1177). D) Phosphorylated over total

(P/T) ratio of eNOS Ser 1177.  * p<0.05 vs Control;  n = 3.
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Figure 5.16:  Bar charts indicating changes in iNOS expression in aortic tissue from rats receiving

fenofibrate and simvastatin treatment in vivo. A)  Representative western blots indicating iNOS

expression and β-tubulin. B)  Analysed data for HSP 90.  Interleukin-1β (IL-1β) included as positive

control for iNOS.  * p<0.05 vs Control, n = 3.
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Figure 5.17:  Bar charts indicating changes in AMPK expression and phosphorylation (Thr 172) in

aortic tissue from rats receiving fenofibrate and simvastatin treatment in vivo. A) Representative

western blots indicating total-AMPK, phospho-AMPK (Thr 172) and β-tubulin. B)  Analysed data

for total-AMPK.  C)  Analysed results for phospho-AMPK (Thr 172). D) Phosphorylated over total

(P/T) ratio of AMPK (Thr 172).  * p<0.05 vs Control;  n = 3.
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Figure 5.18:  Bar charts indicating changes in PKB expression and phosphorylation (Ser 473) in

aortic tissue from rats receiving fenofibrate and simvastatin treatment in vivo. A)  Representative

western blots indicating total-PKB, phospho-PKB (Ser 473) and β-tubulin. B)  Analysed data for

total-PKB.  C)  Analysed results for phospho-PKB (Ser 473). D) Phosphorylated over total (P/T)

ratio of PKB (Ser 473).  * p<0.05 vs Control;  n = 3.
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Figure 5.19:  Bar charts indicating changes in HSP 90 expression in aortic tissue from rats receiving

fenofibrate and simvastatin treatment in vivo. A)  Representative western blots indicating HSP

90 expression and β-tubulin. B)  Analysed data for HSP 90.  * p<0.05 vs Control, # p<0.05 vs

Fenofibrate;  n = 3.
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Figure 5.20:  Bar charts indicating changes in nitrotyrosine and IκBα expression in aortic tissue

from rats receiving fenofibrate and simvastatin treatment in vivo. A)  Representative western

blots indicating nitrotyrosine and β-tubulin. B) Representative western blots indicating IκBα

expression and β-tubulin.  C)  Analysed data for nitrotyrosine. D)  Analysed data for IκBα

expression.  * p<0.05 vs Control; #p<0.05 vs Fenofibrate;  n = 3.
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5.5 Discussion

5.5.1 Ex vivo fenofibrate administration

Figure 5.1 shows aortic rings from healthy rats, precontracted with phenylephrine (Phe), to relax

in a concentration-dependent manner in response to acetylcholine (Ach).  Cumulative

concentrations of Ach resulted in  75% maximum relaxation of aortic rings.  Pre-treatment with

the NOS-inhibitor, L-NMMA resulted in a significant inhibition of relaxation, confirming the

involvement of NOS-derived NO to relaxation.  These experiments confirmed that the vascular

isometric tension model was functional.

In these experiments, fenofibrate was added ex vivo directly to the aortic rings in the organ bath.

The acute ability of fenofibrate to induce vaso-relaxation was investigated by pre-contracting

aortic rings with the α-adrenergic stimulant, Phe, followed by cumulative concentrations (50 μM

– 125 μM) of fenofibrate (figure 5.2). The results from the in vitro experiments in chapter 3

demonstrated that 1 hour treatment with 50 μM fenofibrate increased NO production by  50 –

60% in cardiac microvascular endothelial cells (CMECs) (figure 3.13A, 3.24A and 3.26A).  Similar

increases in NO were shown in aortic endothelial cells (AECs) as measured by the Griess assay

(figure 3.24C and 3.26C). In the current chapter, we showed that ex vivo administration of

fenofibrate elicited a modest, yet significant  22% vasodilatory response in the aortic rings,

which was mediated by NO as confirmed by the L-NMMA inhibition studies (figure 5.2A).

However, the effect of fenofibrate should be seen in context when compared to the pro-

relaxation effects elicited by Ach (75%) (figure 5.2B). Although Liu et al. (2012) showed a  73%

relaxation in Sprague–Dawley rat aortic rings exposed to ex vivo administration of fenofibrate,

this was achieved with a very high concentration (2.2 mM), 17-fold higher than the maximum

cumulative concentration used in the current study.

Although both fenofibrate and Ach resulted in NOS-dependent vasodilation, a pronounced

difference was observed in the time response. Ach showed an instantaneous vasodilatory effect

after administration of the cumulative concentrations, and the maximum relaxation was

observed within an average of  3-5 minutes.  Maximum relaxation with cumulative fenofibrate

administration was only reached after  30 minutes.  These differences can be explained by

diverse mechanistic actions of Ach and fenofibrate.  Acetylcholine binds to receptors on the
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endothelial cell surface (Davignon & Ganz 2004) resulting in increased levels of intracellular

calcium, followed by eNOS activation and NO-production (Bredt & Snyder 1990).  Fenofibrate on

the other hand, binds to PPAR-α which forms a complex with retinoid-X-receptor and

translocates to the nucleus to perform transcriptional actions, a relatively time-consuming

process that is unlikely to lend itself to immediate detectable changes.  Furthermore, previous

studies on endothelial cells have shown that fenofibrate increases AMPK activation, resulting in

down-stream activation of eNOS ex vivo (Qu et al. 2012) and in vitro (Murakami et al. 2006). In

summary, compared to Ach, ex vivo administration of fenofibrate resulted in a slower and smaller

NO response in the aortic rings.

5.5.2 In vivo fenofibrate and simvastatin treatments

5.5.2.1 Biometric data

Both fenofibrate and simvastatin treatment groups showed higher food intake than untreated

control rats (figure 5.6).  Additionally, fenofibrate treated animals had a higher water intake

(figure 5.7).  Amidst these observations, no statistical differences in body weight were found

between groups (table 5.1).  Fenofibrate binds to PPAR-α which is involved with transcription of

genes  involved in  lipid metabolism and energy expenditure (Larsen et al., 2003) and has been

shown to increase basal metabolic rate in rats (Mancini et al., 2001).  These factors can explain

the higher food intake in the fenofibrate-treated animals.  Increased food intake could have

resulted in increased thirst and thus increased water intake.  Simvastatin has not previously been

associated with increased food intake or body weight gain in animal models (Carneado et al.,

2002; Wang et al., 2013) which makes the higher food intake observed in this study interesting.

Even though body weights were not statistically different, simvastatin treated animals were on

average 25 g heavier than untreated controls and could possibly account for the small but

significant increase in food intake.

5.5.2.2 Liver weight

Fenofibrate treatment increased average liver weights of the treated rats by ≈11 g (figure 5.4).

Fruchart et al. (1999) and Deplanque et al. (2003) ascribed this phenomenon to peroxisome

proliferation associated with fenofibrate treatment.  Peroxisomes are subcellular organelles and

in the liver they are usually about 0.5 – 1 microns in size.  Peroxisomes are involved with break-
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down of long-chain fatty acids and many chemicals are known to increase the number and size

of peroxisome organelles in hepatocytes from rats and mice.  This process is associated with

replicative DNA synthesis and subsequent hepatocyte growth (Bently et al., 1993).  Deplanque et

al. (2003) further stated that enlarged livers are actually an indication of fenofibrate showing

pharmacological activity.  Increased liver weight can, however, also be due to signs of liver

toxicity (Smyth et al., 2008).  Therefore, histological analyses of the fenofibrate-induced enlarged

livers will have to be performed in order to confirm or exclude this possibility.  Simvastatin did

not alter liver weight.

5.5.2.3 Serum nitrite and nitrate concentration

True to the in vitro and ex vivo results indicating increased NO production following fenofibrate

treatment, the 6 weeks in vivo fenofibrate treatment programme resulted in increased levels of

serum nitrites and nitrates (figure 5.8).  Similar results have been found in pre-diabetic C57BL/6J

mice treated with 100 mg/kg/day fenofibrate (Katayama et al., 2009) as well as in diabetic

animals (Balakumar et al., 2009), and nicotine treated rats (Kaur et al., 2010; Chakkarwar 2011)

receiving 32 mg/kg/day fenofibrate.  These results demonstrate the pleiotropic effects of

fenofibrate on NO synthesis, and indicate an overall increase in NOS activity, resulting in

increased levels of NO.

Simvastatin did not significantly alter the nitrite and nitrate levels in serum, although there was

an increasing trend (figure 5.8).  Similar results were shown by Carneado et al. (2002) who found

that 1 mg/kg/day and 2 mg/kg/day simvastatin treatment did not alter the levels of the NO break-

down products in Wistar Kyoto rats.  The same study showed that reduced levels of nitrites and

nitrates in spontaneously hypertensive rats were significantly increased by simvastatin

treatment. Conversely, Perez-Guerrero et al. (2003) showed that normotensive Wistar rats had

increased serum nitrite and nitrate levels after 1 mg/kg/day simvastatin treatment for 8 weeks.

The NOS-inhibitor L-NAME significantly attenuated the levels, thereby confirming that increased

NOS activation was the mechanism.
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5.5.2.4 Vascular ring investigations

Phenylephrine - Acetylcholine

No differences were found in Phe-induced contractions (figure 5.9A) or Ach-induced relaxations

(figure 5.9B) in any of the treatment groups.  It is important to note that the aortic rings were

harvested from healthy Wistar rats, in the absence of any pathophysiological changes. Changes

brought about by experimental treatments are therefore expected to be less robust. Both

fenofibrate (Qu et al., 2012) and simvastatin (Carneado et al., 2002) treatment in healthy animals

failed to show changes in Phe induced contractions and Ach-induced relaxations of aortic rings

from Wistar Kyoto or Wistar rats.  Other studies did, however, show that fenofibrate treatment

at a similar concentration used in the current study, resulted in improved vasodilatory effects in

spontaneously hypertensive rats (SHR) (Qu et al., 2012) and aged (113 – 114 week) rats (Alvarez

de Sotomayor et al., 2007).  Lower concentrations of fenofibrate such as 32 mg/kg/day

(Chakkarwar 2011) and 30 mg/kg/day (Kaur et al., 2010) have similarly shown improvements in

relaxation of nicotine treated rats.  Simvastatin (1 mg/kg/day) also improved the vaso-dilatory

response in SHR and at 2 mg/kg/day resulted in an anti-contractile effect (Carneado et al., 2002).

It further restored relaxation inhibited by the NOS-inhibitor L-NAME in Wistar rats (Perez-

Guerrero et al., 2003) and improved vascular relaxation of hereditary hyperglyceridemic rats at

a concentration of 10 mg/kg/day (Török et al. 2007).  It has to be noted that these studies used

higher concentrations than the 0.5 mg/kg/day simvastatin used in the current study.

Serotonin

Aortic rings from fenofibrate treated animals showed no changes in contraction when stimulated

with 100 µM serotonin. However, in contrast to the Phe-induced contraction studies, serotonin

induced pro-contractile effects in aortic rings from simvastatin treated animals (figure 5.10 C).

Serotonin was used as an alternative inducer of vasoconstriction, as it binds to a different

vascular smooth muscle cell receptor (5-HT2A receptor) (Bae et al., 2007) than phenylephrine and

therefore provides the investigator with a different receptor-induced mechanism to study the

contractility of the aortic rings. A possible explanation for the pro-contractile effects of serotonin

in the simvastatin treated aortas could be related to RhoA.  RhoA and its downstream kinase,

RhoA kinase/ROCK, play an important role in vascular smooth muscle cell contraction and

inhibition thereof shows promising results in the prevention of vascular diseases (Dong et al.,
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2010; Nunes et al., 2010).  ROCK activation results in dephosphorylation of myocin light chain

phosphatase, and consequently increased phosphorylation of myocin light chain and increased

contractility of smooth muscle cells (Yao et al., 2010) Simvastatin treatment results in inhibition

of RhoA due to inhibition of its upstream isoprenoid, however RhoA can also be activated via 5-

HT receptor activation. Guilluy et al. (2007) showed that 5-HT-receptors co-immunoprecipitated

with RhoA in vitro and in vivo, a pathway independent of isoprenoid formation. The study

showed that 5-HT results in activation of RhoA and if activation is prolonged (72 hours), RhoA will

be depleted.  It is proposed that the short period of the serotonin protocol (approximately 5-10

minutes of serotonin administration in the organ bath) was sufficient to activate RhoA and

subsequent contraction of aortic rings.

L-NMMA, 1400W and NOS related signalling

Inhibition of NOS with L-NMMA resulted in increased pro-contractile (figure 5.11) and reduced

vasodilatory responses (figure 5.12) in aortic rings from simvastatin treated rats compared to the

responses observed in control and fenofibrate treated aortic rings.  Although only simvastatin

treated aortic rings showed these differences mentioned, it is important to note that contraction

responses of untreated controls and fenofibrate treated rats were significantly increased and

relaxation responses were significantly reduced by NOS inhibition with L-NMMA compared to

control and fenofibrate rings without L-NMMA (figure 5.11 and 5.12).  These results demonstrate

the importance and involvement of NOS and NOS-derived NO in anti-contractile and vasodilatory

responses of the vasculature.  From the data, it appears as if simvastatin treated aortic rings were

more susceptible to NOS inhibition compared to the other groups. The functional observations

were not supported by western blot data of eNOS measurements, as the analyses showed no

changes in eNOS protein expression or phosphorylation in aortic tissue in any of the treatment

groups (figure 5.15).  However, both fenofibrate and simvastatin treatment did increase iNOS

expression compared to untreated control (figure 5.16).  The involvement of iNOS-derived NO in

anti-contractile responses was evident in figure 5.13 F.  When iNOS was inhibited with 1400W,

simvastatin treated aortic rings showed increased contraction compared to untreated control

and fenofibrate groups (figure 5.13 B and C).  While iNOS inhibition resulted in impaired dilation

of simvastatin aortic rings compared to untreated controls and fenofibrate (figure 5.14 C and D),

figure 5.14 B showed that there were no differences in the relaxation of simvastatin aortic rings
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in the presence or absence of 1400W.  iNOS expression was also significantly increased in the

fenofibrate group, however inhibition thereof did not affect any of the vascular responses (figure

5.13 and 5.14).  Long term (12 weeks) fenofibrate treatment has previously been shown to result

in increased iNOS expression in pancreatic tissue.  This was however associated with increased

NF-κB activity (Liu et al., 2011).  The current study did not find increased NF-κB activity, which

excludes this pathway as the mediator of increased iNOS expression.  A similar finding was

reported by Krishna et al. (2012) who found that fenofibrate increased iNOS expression in mouse

aortic tissue.

Vascular tissue has been shown to express nNOS (Del Campo et al., 2011), however in the current

study expression levels in aortic tissue were too low to be detected and therefore nNOS was

unlikely to play an important role in vascular responses.

eNOS associated proteins

Fenofibrate treatment did not change eNOS expression in the aortic tissue, and although

phospho-eNOS (Ser 1177) did not increase significantly, there appears to be an increasing trend

(figure 5.15 C). Other studies were also not able to show any changes in eNOS expression in

vascular tissue of rats or mice treated in vivo with fenofibrate (Deplanque et al., 2003; Alvarez de

Sotomayor et al., 2007). Katayama et al., (2009) showed increased phosphorylation of Ser 1177

in aortic tissue from mice treated with 100 mg/kg/day fenofibrate for 28 days and Becker et al.

(2012) also showed increased phosphorylation in mice lung tissue.  Considerably fewer studies

investigated the phosphorylation status of eNOS in vascular tissue, and most were interested in

eNOS expression. Associated with unchanged eNOS expression and activation, the upstream

activator AMPK showed significantly decreased levels of expression (figure 5.17B).  On the other

hand, PKB/Akt expression was increased in aortic tissue after fenofibrate treatment (figure 5.18

B).  HSP 90 showed no changes (figure 5.19B).  Previous studies in vascular endothelial cells

showed that fenofibrate treatment resulted in the up-regulation of AMPK and eNOS and thus

increase NO production in vitro (Kim et al., 2007; Tomizawa et al., 2011) and in vivo (Omae et al.,

2012).  The results of the current study contradict those of the mentioned studies.

Simvastatin similarly did not change eNOS expression or phosphorylation in aortic tissue and

additionally resulted in significant down-regulation of the eNOS upstream molecules, AMPK,
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PKB/Akt, as well as the chaperone HSP 90.  Considering the greater vascular responsiveness of

simvastatin aortic rings to inhibition of NOS (L-NMMA), this is an interesting finding.  Simvastatin

has been shown in vivo in Wistar rats to increase AMPK activation, resulting in increased eNOS

(Ser 1177) activation and resultant vaso-dilation of aortas (Rossoni et al., 2011). Additionally,

simvastatin has been shown in in vivo investigations of mouse aortic and myocardial tissue and

in vitro in HUVECs, BAECs and human capillary derived endothelial cells (Sun et al., 2006) and

human iliac artery endothelial cells (Xenos et al., 2005) to increase AMPK (Thr 172)

phosphorylation.  Due to the mechanistic action of simvastatin, namely inhibition of the

RhoA/ROCK pathway it has been shown to result in increased PKB/Akt phosphorylation (Rikitake

& Liao 2005); therefore our finding of PKB/Akt down-regulation was unexpected and difficult to

explain.

ROS and inflammatory proteins

Nitrotyrosine expression was investigated as a marker of oxidative stress, and our data showed

that fenofibrate had no effect on nitrotyrosine levels (figure 5.20 C).  Simvastatin, however,

decreased nitrotyrosine levels, demonstrating a potentially anti-oxidant effect.  Numerous

reports have been published showing the anti-oxidant effects of simvastatin in vivo (Girona et al.,

1999; Alvarez De Sotomayor et al., 2000; Carneado et al., 2002; Heeba et al., 2007).

Fenofibrate treatment could also not alter the expression of the inflammatory marker IκBα,

whereas simvastatin significantly decreased its expression, thereby indicating increased NF-κB

activity (figure 5.20 D).  The increase in NF-κB activity could explain increased iNOS expression as

this association has previously been shown (Aktan 2004).  Simvastatin is mostly associated with

increased eNOS activity although it has been reported to increase iNOS expression in human

brain microvascular endothelial cells (Pinzón-Daza et al., 2012). iNOS has been found to be

upregulated in atherosclerotic lesions, however contrary to the traditional view of increased

iNOS expression being associated with harmful effects, recent studies have shown that iNOS up-

regulation was protective against thrombotic occlusion (Upmacis et al., 2011). Krishna et al.,

(2012) showed increased expression of iNOS in supra-renal aortas of mice associated with a

protective effect against abdominal aortic aneurysm.  These studies attest to the fact that
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increased iNOS expression can contribute to protective mechanisms in the vasculature.  Findings

are summarized in figure 5.21 and 5.22.
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Figure 5.21:  Summary of findings after 6 weeks treatment with 100 mg/kg/day fenofibrate

treatment.
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Figure 5.22:  Summary of findings after 6 weeks treatment with 0.5 mg/kg/day simvastatin

treatment.
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Chapter 6:

Conclusion
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Chapter 6:  Conclusion

6.1 Introduction
This dissertation investigated the pleiotropic (i.e. cholesterol-independent) effects in vascular

cells and tissue, particularly with regards to the NOS-NO biosynthesis and related pathways of

two commonly prescribed anti-dyslipidaemic drugs. Simvastatin and fenofibrate were

investigated in different experimental models, making use of in vitro, ex vivo and in vivo

techniques.  The results of these investigations have been reported and discussed separately in

chapters 3 and 5. The aim of the current chapter is an attempt to integrate the results, and

provide some proposals as to how the data from the various experiments and experimental

models could fit together to form a whole. Due to very distinct differences in drug concentrations

and treatment periods within the in vitro, ex vivo and in vivo models, results cannot always be

compared directly, however overall trends will be discussed. The final section of this chapter

deals with the main conclusions.

6.2 Simvastatin
Statins have been prescribed to patients suffering from dyslipidaemia for decades.  The statin

drug family has proved its efficacy in clinical trials to improve cholesterol parameters as well as

result in improved primary outcomes e.g. reduction in coronary events or slowing of

atherosclerotic processes.  Recently, the focus has shifted from the cholesterol dependent effects

to the cholesterol-independent effects of statins.  Numerous reviews have been published

discussing these pleiotropic effects of statins (LaRosa 2001; Davignon et al. 2004; Greenwood &

Mason 2007; Ii & Losordo 2007; Blum & Shamburek 2009).  The current study focussed on the

pleiotropic effects of one of the most frequently prescribed statins, namely simvastatin, on the

following parameters:  NO production, ROS production and oxidative stress status, inflammatory

pathways, apoptosis and necrosis.  A summary of findings is presented in figure 6.1.

6.2.1 NO producing abilities

In vitro results demonstrated that simvastatin exerted modest increasing effects on NO

production in CMECs.  Subsequent signalling investigations could however not shed further light

on underlying NOS-derived sources of NO synthesis.  It is proposed that reduced phosphorylation
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of eNOS Tyr 657 (providing a mechanism for reduced inhibition of eNOS), could have resulted in

an increased NO output emanating from eNOS.  Besides an increase in the activation of a major

protein kinase upstream from eNOS, namely AMPK (Thr 172), no other indication of eNOS

activation or upstream activating molecules could be detected.  Pilot studies with ex vivo

administration of simvastatin to pre-contracted aortic rings failed to elicit vasodilatory responses

and thus further ex vivo investigations were terminated. In vivo treatment of rats with

simvastatin for 6 weeks failed to significantly increase the serum bioavailability of NO, as

measured by a nitrite and nitrate assay.  Furthermore, six weeks treatment with simvastatin

failed to alter the vasoactive responses (phenylephrine-induced contractility followed by

acetylcholine-induced relaxation) in aortic rings compared to untreated control groups.

However, interestingly, the aortic rings from simvastatin-treated animals did show a pro-

contractile response when contracted with serotonin; furthermore, it appeared that the aortic

rings in this group were more susceptible to NOS inhibition, compared to the rings from control

or fenofibrate treated animals.  Overall the results suggest that in our hands, simvastatin did

activate NO synthesis, however the effects were relatively modest.

An interesting finding of the study is the fact that iNOS inhibition with ex vivo administration of

1400W resulted in an anti-contractile response of fenofibrate and untreated control aortic rings,

while similar inhibition of iNOS in simvastatin treated rings resulted in a pro-contractile response.

These differences in responses were amidst increased iNOS expression in both fenofibrate and

simvastatin treated aortic tissue.  Even though values were not statistically different between

levels of iNOS expression in fenofibrate and simvastatin groups, simvastatin treated animals

showed a trend of higher expression.  Increased iNOS expression is commonly associated with

increased contractility of vascular tissue (Mathewson & Wadsworth 2004; Korkmaz et al., 2011)

and it is fascinating that simvastatin treatment would alter aortic tissue in such a way that it

utilizes iNOS in an anti-contractile manner, while untreated controls and fenofibrate treated

animals did not.

The lack of response in the signalling molecules eNOS and PKB/Akt could be due to insufficient

inhibition of the rate limiting step in cholesterol synthesis, namely HMG-CoA to mevalonate, thus

still yielding isoprenoids that would activate RhoA and ROCK, thereby attenuating the activation
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of PKB/Akt and eNOS.  The lack of robust responses from the in vivo experiments could be time

and concentration dependent.  The present study aimed to explore the effects of simvastatin

treatment at a lower rather than higher dosage, as many authors fall in the trap of increasing

drug dosages to achieve maximum effect. The chosen dosage in the current study of 0.5

mg/kg/day (Lefer et al. 2001) has previously been reported to be cardioprotective. In hindsight,

however, it can be speculated that the concentration of simvastatin was perhaps not sufficient

to effectively inhibit formation of isoprenoids. Under ideal circumstances, it would have been

appropriate to measure the serum levels of simvastatin in the animals, but such investigations

are very expensive and exceeded our budget. Signalling data from the aortic tissue samples

strongly suggested inhibition of PKB/Akt and eNOS.  The cholesterol-dependent and pleiotropic

effects of statins are ascribed to the very important inhibition of HMG-CoA to mevalonate along

with inhibition of downstream targets, therefore a lack of pleiotropic effects suggest a lack of

proper inhibition.

An editorial comment by Schulz (2005) suggested that statins exert measurable cardioprotective

effects in the acute/subacute setting.  The protective effects of simvastatin and other statins are

dependent on the modulation of kinase activity and over longer treatment periods, these effects

are lost.  A study by Mensah et al. (2005) found that treatment with atorvastatin resulted in an

up-regulation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) resulting

in a lower level of phosphorylation  of PKB/Akt.  Recently simvastatin was shown to upregulate

PTEN activity in human breast cancer cells (Ghosh-choudhury et al., 2010).  Phosphatase activity

was not measured in the current study, however it could explain the lack of kinase activity in the

in vitro and in vivo studies.

6.2.2 Decreased ROS production

In vitro, simvastatin failed to show any reduction in ROS levels.  In fact, 100 nM simvastatin

increased mitochondrial/peroxynitrite ROS. In vivo treatment did however result in decreased

levels of nitrotyrosine formation, which is a marker of intracellular nitrosative stress.  The pro-

vasodilatory effect of simvastatin found in other studies has been proposed to be due to

increased expression and activation of superoxide dismutase (Alvarez de Sotomayor et al., 2001;
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Carneado et al., 2002).  The current study did not investigate antioxidant enzymes and can

therefore not relate any improvements in ROS to any specific antioxidant system.  Comparing the

in vitro and in vivo results suggest that a longer treatment period might result in improved anti-

oxidant activities and decreased ROS formation.

6.2.3 Inflammatory pathways

In contrast to the effect of simvastatin on ROS, in vitro treatment with simvastatin resulted in

reduced activation of the pro-inflammatory transcription factor, NF-KB, as observed by increased

levels of IκBα expression. However in vivo treatment showed the opposite effect.  Decreased

IκBα expression was also associated with increased iNOS expression.  iNOS expression was not

measured in vitro in CMECs, and this is one of the shortcomings of the study.  Further

investigations will have to be performed to investigate to what extent simvastatin induced

inflammatory responses in vivo.

6.2.4 Anti-apoptotic and anti-necrotic properties

Unfortunately apoptosis and necrosis were only evaluated in in vitro experiments.  Simvastatin

treatment resulted in increased apoptosis and necrosis, and it is proposed to be due to increased

isoprenoid formation resulting in inhibition of the anti-apoptotic protein, Bcl-2.

6.3 Fenofibrate
Fenofibrate is the most recent member of the fibrate family to appear on the pharmaceutical

market. It has been shown to be very effective in increasing HDL-cholesterol levels as well as

leading to modest decreases in LDL-cholesterol and triglyceride levels.  Despite these

improvements in lipid parameters it has failed to improve primary outcomes such as

cardiovascular disease events in clinical trials.  Similar to simvastatin, fenofibrate has gained

attention due to its ability to exert pleiotropic effects. The current study aimed to investigate the

pleiotropic effects of fenofibrate in vascular cells and tissue with an emphasis on the NOS-NO

synthesis and related pathways. A summary of these effects are presented in figure 6.2.

6.3.1 NO producing abilities

In vitro measurements of NO showed robust responses to fenofibrate treatment.  The responses

were, however, more profound at shorter treatment periods (1 hour and 4 hours), after which
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they wore off as treatment periods increased.  This finding was confirmed by the ex vivo vaso-

dilatory effects of fenofibrate.  The involvement of eNOS, iNOS and nNOS in the increased levels

of NO were investigated rigorously, but despite an exhaustive array of experiments,

concentration-time investigations, pharmacological inhibition studies, and application of

different experimental models, in our hands, results failed to show a NOS-dependent

mechanism. In vivo treatment with fenofibrate significantly increased serum nitrite and nitrate

levels, indicating an overall increase in NO bio-availability in the circulation of the animals.

However, western blot data performed on the aortic tissue from the in vivo treated rats failed to

show increased levels of eNOS expression and phosphorylation. Previous in vitro studies have

shown that fenofibrate increased NO via eNOS-dependent mechanisms (Goya et al., 2004;

Murakami et al., 2006; Becker et al., 2012) and in vivo (Kaur et al., 2010; Chakkarwar 2011; Omae

et al., 2012). In the current study, we investigated eNOS activation by phosphorylation at various

time points in the endothelial cell models; however, increased activation by phosphorylation

could not be demonstrated. The difference in results compared to other studies could be due to

endothelial cell type-specific reasons.  There is no evidence of any other studies that investigated

the effects of fenofibrate on the NOS-NO biosynthesis system in cardiac derived microvascular

endothelial cells.

On the other hand, the isometric tension model in the current study did show that fenofibrate

exerted modest vasodilatory effects on aortic rings from healthy animals via acute ex vivo

administration, and that this effect was abolished in the presence of L-NMMA, thus confirming

that the vasodilatory response was a result of NOS-derived NO release. Six week treatment with

fenofibrate did result in increased iNOS expression in aortic tissue, but not eNOS, although the

phosphorylated eNOS (Ser 1177) levels increased by  2-fold (not statistically significant).

Vascular reactivity results do not suggest increased iNOS expression to have had any detrimental

effects with regards to contraction or relaxation.  iNOS showed no involvement in in vitro studies.

6.3.2 Decreased ROS production

Fenofibrate failed to show anti-oxidant effects after a 6 week in vivo treatment regimen.  Limited

markers of ROS were included in these investigations and anti-oxidant enzymes such as catalase

and superoxide dismutase were not investigated, therefore it is impossible to fully conclude
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about the anti-oxidant effects. In vitro fenofibrate treatment did however decrease

mitochondrial ROS/peroxynitrite after 1 hour.

6.3.3 NF-KB inflammatory pathway

Fenofibrate did not show any cellular pro-inflammatory effects in any of the experimental models

with regards to the NF-KB pathway. In vitro investigations showed increased IκBα expression

suggesting that the pro-inflammatory NF-KB pathway was not activated. This observation was

not reflected in the aortic tissue after prolonged in vivo treatment.  PPAR-α activation, the major

mechanism of fenofibrate actions, is commonly associated with anti-inflammatory effects in

humans (Belfort et al., 2010; Krysiak et al., 2013) and our in vitro results support these findings.

6.3.4 Anti-apoptotic and anti-necrotic properties

Markers of apoptosis and necrosis were only investigated in the in vitro studies.  Acute treatment

with fenofibrate did not show anti-apoptotic or necrotic effects, however after 24 hours an anti-

apoptotic effect was seen in CMECs.  It is important to note that these investigations were

performed in cells harvested from healthy rats. These results therefore indicate that fenofibrate

showed baseline pleiotropic effects, which contributed to cellular protection against a harmful

stimulus such as TNF-α.  Pre-treatment with fenofibrate resulted in decreased apoptosis and

necrosis, induced by the pro-inflammatory cytokine TNF-α.
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Figure 6.1:  Summary of findings from in vitro and in vivo treatment with simvastatin.
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Figure 6.2:  Summary of findings form in vitro and in vivo treatment with fenofibrate.
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6.4. Final conclusions

Simvastatin

This study aimed to investigate the pleiotropic effects of two anti-dyslipidaemic agents, namely

simvastatin and fenofibrate on vascular tissue, particularly with regards to the NOS-NO and other

related pathways.  Considering the reputation of statins in general, it was unexpected to find the

relative lack of robust, detectable pleiotropic effects in this study, either in vitro or in vivo.

Compared to fenofibrate, simvastatin only managed to result in a modest increase in NO in vitro

and although simvastatin treated rat aortic rings showed a greater susceptibility when NOS was

inhibited, no improvements were found in contractile and vaso-dilation responses. In our hands,

involvement of eNOS in the actions of simvastatin could not be demonstrated in any of the

experimental models and conditions, which is indeed surprising. In aortic tissue, increased iNOS

expression was observed, and the isometric tension studies demonstrated that iNOS played an

important anti-contractile role in the aortic rings from simvastatin-treated animals. As far as we

are aware, this observation is novel and has not been reported elsewhere, and investigations are

required to further elucidate this interesting finding.

Although simvastatin failed to improve the vaso-active responses in the aortic rings, there was,

at the same time, no indication that it was harmful (e.g. inducing endothelial dysfunction).

Considering the mechanism that has previously been described for the pleiotropic effects of

simvastatin, it can be concluded from our own data that simvastatin, at the dose utilized,

probably failed to effectively inhibit HMG-CoA to mevalonate; if this was the case, an inhibitory

effect on PKB/Akt phosphorylation due to ROCK could be a likely scenario.  This argument could

also help explain the in vitro findings of increased apoptosis and necrosis. In both in vitro and in

vivo studies a significant down-regulation of HSP 90 was observed.  HSP 90 plays an essential role

in PKB/Akt and AMPK related phosphorylation of eNOS and could possibly have been inhibited

by ROCK.  A possible explanation for the weak effect of simvastatin in vitro could be that the drug

was ineffectively metabolised.  As for the in vivo situation (6 weeks treatment programme), it has

previously been shown that statin-related protective effects are abolished over longer treatment

periods.  Additionally, the dosage of simvastatin used in the current study could have been too
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low to induce proper inhibition of ROCK. These factors may have constrained the study to show

the full potential of simvastatin with regards to pleiotropic effects in vascular tissue.

Overall, it can be concluded that simvastatin did not show endothelio-protective effects in a

model of CMECs or after 6 weeks in vivo treatment in aortic tissue.

Fenofibrate

Although it was not necessarily the intention at the outset, the current study evolved in such a

way that considerably more experiments were performed with fenofibrate than simvastatin.  On

the whole, considerably less data are available in the literature on fenofibrate’s effects and

underlying mechanisms in the context of vascular biology compared to simvastatin.

Furthermore, pilot studies with fenofibrate in our laboratory quickly revealed very interesting

data with regards to acute NO production, which had to be pursued further.  Reports from the

fenofibrate clinical trial (FIELD) suggested that fenofibrate treatment resulted in improved

outcomes with respect to microvascular disease conditions.  This prompted us to further

investigate fenofibrate in a model of cardiac derived microvascular endothelial cells.  In our

hands, fenofibrate was very effective in increasing NO in CMECs after acute treatments, however

subsequent efforts to identify the NOS isoform involved with these effects turned out to be a

challenging task.  The vast majority of previous studies have shown that eNOS is associated with

fenofibrate-induced NO production in one way or another, with only a handful of studies

suggesting contributions from iNOS and nNOS.

In the current study, eNOS activation was investigated by measuring phosphorylation at multiple

time points (5, 15, 30, 60 min and 24 hours), however we failed to demonstrate increased

phosphorylation of eNOS Ser 1177, the most well described phosphorylation site for activation,

at any of the time points.  The search for the involvement of alternative phosphorylation sites

revealed interesting data, but failed to show activation of eNOS.  Additionally, inhibition of NOS

with L-NMMA and iNOS with 1400W prior to fenofibrate administration did not reverse or abolish

elevated NO levels.  In order to confirm these results an alternative NO-detection technique

(Griess method) was used, which mirrored the DAF-2/DA flow cytometry data.  It can therefore

only be concluded that, in our hands, fenofibrate treatment in a model of cardiac microvascular

endothelial cells resulted in acute increases of intracellular nitric oxide via a NOS-independent
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mechanism.  Two mechanisms are proposed for these results.  One being that fenofibrate

treatment, most likely due to ligand binding to PPAR-α, activated the cytochrome P450 reductase

enzyme, which in turn converted nitrites and nitrates to NO.  Cytochrome P450 is involved with

xenobiotic metabolism and it is speculated that fenofibrate activated this system and bypassed

NOS completely.  The second proposed mechanism is that fenofibrate treatment resulted in the

up-regulation of an, as yet unknown, phosphatase, which could have resulted in the

dephosphorylation of eNOS and possibly also one or more of its upstream kinase activators;

however, this hypothesis only explains why we failed to show eNOS activation, but does not

address where the increased NO production originated.  Further investigations will however have

to be conducted to test these hypotheses.

Another significant finding was the fact that acute, short-term treatment with fenofibrate down-

regulated intracellular pro-inflammatory pathways by reducing the activation of NF-KB, an effect

that disappeared after 24 hours.  This was associated with a significant up-regulation of p22Phox,

subunit of the important endothelial ROS generating enzyme, NADPH-oxidase. Apart from this,

no other signs of oxidative stress could be demonstrated; in fact, a reduction in mitochondrial

ROS/peroxynitrite was observed. Since most of the investigations in this study were performed

on healthy CMECs, the relative lack of robust and detectable effects of fenofibrate can be

ascribed to the fact that the baseline status of the cells was associated with optimal homeostasis

and protection, and it can therefore be speculated that they were less receptive to any additional

pleiotropic effects exerted by the drug. It came as no surprise therefore, that the protective

effects (anti-oxidant, anti-apoptosis and anti-necrosis) of fenofibrate were considerably more

pronounced and detectable when fenofibrate was pre-administered to endothelial cells exposed

to the pro-inflammatory cytokine, TNF-α. This underlines the importance of incorporating models

of injury when performing experimental planning of studies investigating drug effects. In this

regard, 1 hour pre-treatment with fenofibrate resulted in increased NO even in the presence of

TNF-α, as well as reduction in oxidative stress and apoptosis.  The PI data additionally showed

that pre-treatment with fenofibrate attenuated necrosis induced by TNF-α.  The in vitro

pretreatment with fenofibrate prior to TNF-α administration was the only set of experiments in

the current study that could demonstrate a significant increase in phosphorylation of eNOS (Ser

1177).
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Our model of in vivo treatment of healthy rats with fenofibrate could also not show robust

pleiotropic effects.  Although 6 weeks of fenofibrate treatment increased the bioavailability of

NO in the blood, no anti-inflammatory or anti-oxidant effects were detected in the aortic tissue.

Despite the increased NO levels in the circulation of these animals, the ex vivo aortic ring studies

failed to show an improvement in their vaso-active properties compared to untreated control

groups; on the other hand, however, neither did fenofibrate treatment cause any harmful effects

on the aortas. Increased iNOS expression was detected in aortic tissue and inhibition studies with

1400W suggested iNOS to exert a pro-contractile effect in these vascular rings.  It would be

interesting to investigate the protective effects of these baseline pleiotropic effects on animals

with a pathological condition, similar to the pre-treatment studies performed in vitro.

Ex vivo administration of fenofibrate to pre-contracted aortic rings further confirmed the ability

of fenofibrate to induce NO production.  Even though the vasodilatory effect was not as

pronounced or rapid compared to the effect of acetylcholine, it was still evident within 30

minutes.  These were also some experiments in the current study that definitely linked

fenofibrate-derived NO to NOS, as observed when the vasodilatory response was abolished in

the presence of L-NMMA.

It can therefore be concluded that, in our hands, fenofibrate showed pleiotropic effects in

vascular endothelial cells and tissue, with increased NO production being the most pronounced

effect, confirmed in vitro, ex vivo and in vivo.  Only modest, and at times inconsistent anti-oxidant

and anti-inflammatory effects were demonstrated.  Acute administrations of fenofibrate were

also sufficient to protect endothelial cells against the harmful effects of stimuli, such TNF-α,

associated with vascular diseases.

Finally, this study showed for the first time that the mechanisms responsible for the pleiotropic

effects of fenofibrate on vascular NOS-NO pathways may not be as straight-forward as previously

thought.  In contrast to many other studies, the in vitro experiments of the present study showed

that fenofibrate exerted its actions via a NOS-independent mechanism, resulting in large

increases of NO after acute treatment. It has to be noted, however, that these experiments were

conducted on healthy endothelial cells. The mechanisms were investigated in detail in a model

of cardiac microvascular endothelial cells, and could very well be a cell-specific response,
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however in light of the beneficial clinical outcomes seen in studies where fenofibrate treatment

was associated with improvement in microvascular diseases, our data may shed light on the

mechanisms.  The present study further showed that fenofibrate treatment was not detrimental

to cell and tissue models from healthy animals, in in vitro or in vivo experimental conditions, and

furthermore, that acute treatment resulted in more robust pleiotropic effects than longer

treatments.  These acute treatments were also sufficient to protect endothelial cells from the

effects of TNF-α by showing improvements in cell viability parameters measured with different

techniques.  Along with these findings, fenofibrate treatment was able to prevent the large

increases in ROS associated with TNF-α treatment, possibly suggesting an up-regulation of anti-

oxidant systems already after 1 hour.  It is also important to note that even though

concentrations and time-frames of fenofibrate treatment varied between the in vitro, ex vivo and

in vivo models, a prominent and common observation between these models was the

pronounced ability of fenofibrate to increase NO levels.  It is by far the most robust and consistent

finding of the study and shows that if an effect of a drug is biologically relevant it will be robust

enough to be evident independent of a specific model.

Comparing the two anti-dyslipidaemic agents, fenofibrate and simvastatin, fenofibrate showed

greater pleiotropic effects in vitro, ex vivo and in vivo.  Simvastatin treatment resulted in

inconsistent results and it seems as though the inhibition of isoprenoid synthesis is truly the most

important and possibly the only pathway related to pleiotropic effects of simvastatin, making

fenofibrate more diverse in its pleiotropic actions.  The study also demonstrated the novel finding

of increased iNOS expression and functioning in simvastatin-treated, anti-contractile aortic

responses.  The relatively small role eNOS played in in vitro and in vivo investigations possibly

highlights the strong relationship between ROCK and eNOS.  ROCK, an upstream inhibitor of

eNOS, is one of the main role players of simvastatin related mechanisms, and if the lack of robust

pleiotropic effects found with simvastatin treatment was indeed due to insufficient inhibition of

mevalonate and consequently ROCK, these results suggest ROCK to have a potent eNOS

inhibitory action under baseline conditions.  Therefore, in as much as upstream activators of

eNOS, such as PKB/Akt and AMPK were included in normal baseline investigations of eNOS (even

using other therapies than statins), the role of ROCK should not be underestimated in these
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scenarios.  In conclusion, this study contributed to valuable insights and mechanisms underlying

the pleiotropic effects of two commonly used anti-dyslipidaemic agents.

6.5 Shortcomings of the study
In hindsight, the following investigations would have added great value to this study, however

due to time and cost-constraints it could not be performed:

a) Repeating Western blots with all the eNOS phosphorylation site antibodies in in vitro and

in vivo investigations of fenofibrate and simvastatin.  Some of the antibodies were only

purchased later in the study, thus creating gaps in signalling results between different

models.

b) In addition to measuring iNOS mRNA levels following fenofibrate treatment, it would have

been interesting to also perform qPCR analysis on eNOS and nNOS mRNA.

c) Should time have allowed, the involvement of cytochrome P450 reductase in fenofibrate-

derived NO production could have been investigated.

d) With regards to simvastatin treatment in in vitro and in vivo models, the extent of ROCK

activation would have provided valuable information and answers to the lack of PKB/Akt,

and possibly further downstream eNOS activity.

e) In vivo treatment with simvastatin could have been performed using a higher dosage, thus

possibly resulting in more robust pleiotropic effects.

f) Along with investigations on kinase activity involved in changes brought about by

fenofibrate and simvastatin treatments, investigating phosphatase contributions would

have added great value to the study.

g) In light of the beneficial outcomes of fenofibrate pre-treatment studies prior to TNF-α

administration, additional investigations with fenofibrate as post-treatment would also

have added great value to the study.
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6.6 Future directions
Future investigations are mostly based on the shortcomings of the present study and would aim

to address the following issues:

 Explore and investigate the NOS-independent mechanisms resulting in acute fenofibrate-

derived NO production, including cytochrome P450 reductase and phosphatase role-

players in this scenario.

 Perform NOS gene expression investigations on all three isoforms from endothelial cell

cultures and in vivo treated animals.

 Investigate the fascinating finding of iNOS expression contributing to the anti-contractile

effect of simvastatin in vivo.  Also, repeat in vivo investigations using different dosages of

simvastatin and also shorter treatment periods.

 To further investigate changes in contraction of simvastatin treated aortic rings and its

susceptibility to serotonin as vaso-constrictor.
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6.7 Outputs
The following outputs derived directly or indirectly from the study:

Book chapter

Genis A, Smit S, Westcott C, Mthethwa M, Strijdom H. Attenuation of eNOS-NO biosynthesis, up-

regulation of antioxidant proteins and differential protein regulation in TNF-alpha-treated

cardiac endothelial cells: Early signs of endothelial dysfunction. In: Endothelial Dysfunction: Risk

Factors, Role in Cardiovascular Diseases and Therapeutic Approaches (Nova Scientific Publishers,

Hauppauge, NY, USA) 2014.

Peer reviewed published conference proceedings

1. Westcott C, Genis A, Mthethwa M, Strijdom H.  Short term fenofibrate treatment

increases nitric oxide production in cardiac endothelial cells through a nitric oxide

synthase-independent mechanism.  Cardiovascular Research Supplements (2014)

103, S9–S463.

2. Westcott C, Strijdom H. Fenofibrate causes nitric oxide production from an unknown

source. Scientific Research and Essays April 2012; 7: 48.

Conference contributions

1. Smith T, Van Vuuren D, Westcott C, Strijdom H. Simvastatin and Fenofibrate in

myocardial ischaemia/reperfusion. Poster presentation at the 58th Annual

Academic Day of Stellenbosch University’s Faculty of Medicine and Health Sciences,

13 August 2014.

2. Westcott C, Loubser D, Genis A, Mudau M, Strijdom H.  Fenofibrate and the

vasculature:  The NOS-tastic journey to underlying mechanisms.  Oral presentation

at the the 41st Annual Physiology Society of South Africa congress, held at

Roodevallei Conference lodge, South Africa, 15-18 September 2013.
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3. Westcott C, Van Wyk WA, Genis A, Mudau M, Strijdom H.  Fenofibrate and

endothelial cells:  Building the NOS puzzle.  Oral presentation at the Faculty’s

Annual Academic Day, held at Tygerberg campus, Stellenbosch University, South

Africa, 14-15 August 2013.

* Received second prize in the Basic Sciences division.

4. Westcott C, Strijdom H.  The pleiotropic effects of fenofibrate on microvascular

level.  Oral presentation at the Medical Research Council Annual research day,

Parow, South Africa, 23-24 October 2012.

5. Westcott C, Strijdom H.  Fenofibrate and nitric oxide:  what happens on

microvascular level?  Poster presentation at the 40th Annual Conference of the

Physiology society of Southern Africa, hosted by the University of Stellenbosch,

South Africa, 11-13 September2012.

6. Graham R, Mudau M, Westcott C, Strijdom H. Investigating the pro-injury

properties of ADMA and TNF-α, and endothelioprotective effects of oleanolic acid

and fenofibrate in cardiac microvascular endothelial cells (CMECs). Oral

presentation at the Physiology Society of Southern Africa Congress, Stellenbosch,

September 2012

*One of the winning presentations in the Honours student category.

7. Westcott C, Strijdom, H.  Fenofibrate causes large amounts of nitric oxide, but

where does it come from?  Oral presentation at the annual academic day of the

Faculty of Health Sciences, Stellenbosch University, 17-18 August 2011.

* Received second prize in the Basic Sciences division.

8. Westcott C, Strijdom, H.  Fenofibrate causes large amounts of nitric oxide from an

unknown source.  Poster presentation at the 39th Annual Conference of the

Physiology society of Southern Africa, hosted by the University of Western Cape,

South Africa, 29-31 August 2011.

Stellenbosch University  https://scholar.sun.ac.za



277 | P a g e

Student supervision

Honours student supervision:

Ms Roxy Graham – Graduated 2012

Ms Graham successfully finished her B.Sc Honours degree (cum laude) and her research
project was graded with the highest marks in her group.

Mr Wiehan van Wyk – Graduated 2013

Successful applications for research grants

This project was successful in funding applications from the following funding bodies:

National Research Foundation, Thuthuka 2012 – 2014.

Harry Crossley foundation, 2011 – 2014.
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Addendum
The following information is relevant to qPCR analysis:

Table A: Information pertaining to target and reference genes

Gene ID TaqMan Assay ID RefSeq ID Chromosomal Position

iNOS Rn00561646_m1 NM_012611 Chr.10: 65036884 – 65072453

HPRT1 Rn01527840_m1 NM_012583 Chr.X:139929647 – 139961616

GAPDH Rn01775763_g1 NM_017008 Chr.4:161282215 - 161286090

Hsp90ab1 Rn01511686_g1 NM_001004082 Chr.9: 11033496 - 11038868
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Table B: RNA concentrations and integrity. Samples highlighted in yellow showed lower than

acceptable A260/A230 ratios.

Sample ID Date ng/ul 260/280 260/230

UC1 2013/12/10 210.24 2.02 1.31

UC2 2013/12/10 212.04 2.03 1.42

UC3 2013/12/10 200.57 2.02 1.33

NSC1 2013/12/10 148.16 2.01 2.07

NSC2 2013/12/10 158.16 2.03 1.96

NSC3 2013/12/10 141.82 2.06 2.2

IL1B 1 2013/12/10 142.02 2.04 1.25

IL1B 2 2013/12/10 150.8 1.96 1.71

IL1B 3 2013/12/10 136.9 2 1.65

FENO1 2013/12/10 174.36 2.06 1

FENO2 2013/12/10 161.66 2.01 2.11

FENO3 2013/12/10 153.14 2.01 1.37

KD5 1 2013/12/10 157.86 1.97 1.74

KD5 2 2013/12/10 189.18 2 1.8

KD5 3 2013/12/10 159.25 2 1.76

KD7 1 2013/12/10 159.05 1.98 1.93

KD7 2 2013/12/10 145.1 2.03 1.88

KD7 3 2013/12/10 163.84 2.03 2.1

NSC+IL1B 1 2013/12/10 128.79 2.06 0.67

NSC+IL1B 2 2013/12/10 117.36 2.01 2.02

NSC+IL1B 3 2013/12/10 147.66 1.97 2.01

KD5+IL1B 1 2013/12/10 140.67 1.69 1.16

KD5+IL1B 2 2013/12/10 139.56 2.02 1.86

KD5+IL1B 3 2013/12/10 127.02 2.03 0.59

KD7+IL1B 1 2013/12/10 126.9 2.01 1.02

KD7+IL1B 2 2013/12/10 150.75 2.04 2.14
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KD7+IL1B 3 2013/12/10 128.22 1.94 1.97

Table C: qPCR amplification efficiency for target genes.

Gene name Slope R2 value

iNOS -4.0 0.99

HPRT -3.5 0.98

GAPDH -3.9 0.99

HSP90 -3.7 0.99

The following graph shows the average expression stability of reference genes.

Figure A: GeNorm analysis of reference gene stability
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